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ABSTRACT OF THE DISSERTATION

Improving On-line Learning

by Jon Christian Mesterharm

Dissertation Director: Dr. Haym Hirsh

In this dissertation, we consider techniques to improve the performance and applicability

of algorithms used for on-line learning. We organize these techniques according to the

assumptions they make about the generation of instances. Our first assumption is that

the instances are generated by a fixed distribution. Many algorithms are designed to

perform well when instances are generated by an adversary; we give two techniques

to modify these algorithms to improve performance when the instances are instead

generated by a distribution. We validate these techniques with extensive experiments

using a wide range of real world data sets. Our second assumption is that the target

concept the algorithm is attempting to learn changes over time. We give a modification

of the Winnow algorithm and show it has good bounds for tracking a shifting concept

when instances are generated by an adversary. We also consider the case that the

instances are generated by a shifting distribution. We apply variations of the previous

fixed distribution techniques and show, with real data derived experiments, that these

techniques continue to significantly improve performance. Last, we assume that the

labels for instances may be delayed for a number of trials. We give techniques to

modify an on-line algorithm so that it has good performance even when the labels are

delayed. We derive upper-bounds on the performance of these modifications and show

through lower-bounds that these modifications are close to optimal.
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Chapter 1

Introduction

Machine learning is an area of computer science that deals with making computers

learn. While there are many types of learning, one of the simplest is learning from

examples. Traditionally, this is called inductive learning. Consider a collection of

documents that we wish to classify into various categories. This is a useful task to

automate given the large number of documents found electronically on the Internet. If

the computer has access to a large set of previously classified documents then it can use

these documents to compute a rule to classify future documents. For example, assume

we want to classify whether or not a document is about basketball, and we have a large

set C of previously classified documents. The computer needs to find a rule that works

on future documents based on rules that work for C.

In this dissertation, we consider a particular type of induction called on-line learning

[Lit89]. In this model of inductive learning, the computer starts with zero examples

and builds its knowledge one example at a time. Each example allows the computer

to learn more about the problem and refine its classification rule. However, each time

an example appears, the algorithm must predict the category. Assume we want to

predict whether a fund in the stock market goes up or down in price. Each day we get

a new example for the stock price. If the algorithm guesses the wrong category then

the algorithm makes a mistake. To minimize the number of mistakes, it is important

that the computer quickly learn a good prediction rule.

Before the computer can consider possible classifying rules, it needs a way to repre-

sent the example. Returning to document classification, while a document is naturally

represented as a string of characters, the computer needs a representation that will have

elements in common between documents. We need a representation that allows a rule
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to capture what a set of documents with a particular property has in common. For

our example, we want a representation that allows the computer to form a rule that

includes documents about basketball and excludes all other documents. One popular

representation for documents is to use a vector where each element of the vector corre-

sponds to a specific word. If the word is in a particular document then that element of

the vector is set to 1 otherwise the element is set to 0. This is refereed to as the bag of

words representation [LSCP96]. To classify documents about basketball, the computer

can learn to look for words such as basketball, NBA, NCAA, dunk, or dribble.

Machine learning can be applied to many different problems, therefore it is useful

to have a general terminology. In what follows, we define the terminology with respect

to the document problem and then give some examples to see how it generalizes to

other problems. In our document example, each of the elements of the word vector is

an attribute. The full vector of attributes for a document is an instance of the learning

problem and the document category is the label of that instance. For the purpose of

learning, the vector of attribute values and the label is all that is necessary to represent

a document. This type of representation is useful for a wide range of learning problems

[Mit97]. One may want to predict the next day’s weather. This can be done inductively

by using a sequence of previous days where each day is an instance with attributes based

on a series of meteorological tests. Another learning problem is to determine if a patient

has a particular disease. A patient instance can be represented with the results from a

standard set of medical tests.

One problem with induction is that, for many learning problems, a good representa-

tion is not obvious. Currently, a machine learning algorithm needs help. The algorithm

relies on someone to devise a representation that allows the algorithm to learn a rule

that includes most of the correct instances and excludes most of the wrong instances.

Each learning problem requires some expertise in finding a good representation for in-

stances and multiple representations are possible. While this is still an open problem,

current machine learning algorithms do partially address this issue. By allowing a large

number of attributes, the learning algorithm can explore a wide range of representa-

tions. Some of the attributes may not be relevant to the problem, but it is the job of the
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learning algorithm to find a good prediction function in this large space of attributes.

Given our general terminology, we can give a more precise definition of on-line

learning. In on-line learning, we assume that, soon after the learning algorithm makes

a prediction, the algorithm is told the correct label for the instance. This is a reasonable

assumption for many problems. Going back to our weather example, after the learning

algorithm predicts tomorrow’s weather, it only has to wait a day before it discovers

the actual weather. This is a useful model of induction because it allows the learning

algorithm to receive a potentially infinite stream of labeled instances. Each instance

can be used to refine the prediction hypothesis of the algorithm.

Formally on-line learning consists of a sequence of trials where each trial is composed

of three steps.

1. The algorithm receives the instance.

2. The algorithm predicts the label of the instance.

3. The algorithm receives the actual label.

The algorithm can use the actual label to update its hypothesis so that it can perform

better on future trials. The goal of the algorithm is to minimize the total number of

mistakes over the trials [Lit88].

The major difficulty with on-line learning is guaranteeing that the algorithm always

receives label feedback. When the algorithm gets an instance, it does not have the

correct label for the instance; however, after the algorithm makes the prediction, the

label must become available. The main type of problem that satisfies this constraint

is predicting the future. As soon as the future becomes the present, the algorithm

can observe the environment and determine the correct label. Of course, there must

be value in knowing the label today instead of waiting for tomorrow. For example,

if a wedding planner knows it is going to rain tomorrow, he can prepare to move the

wedding indoors today. If a CPU knows the outcome of a future branch instruction, it

can start filling up the processor pipeline with the correct instructions. If a computer

interface knows the next option a user is going to select, it can make that option easier

to select and start early processing of that option.
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A different approach to induction is to take a set of labeled instances and use them

to learn a classifying function. This classifying function is then fixed and used for

future prediction of labels. This creates two phases for the learning algorithm. First

the algorithm trains on a set of labeled instances to create a hypothesis; second the

hypothesis is used for future prediction. In the machine learning literature, this type of

inductive learning is called batch learning [Lit88]. Batch learning is popular because the

second phase does not require labels for instances. For many problems, it is difficult to

guarantee the label will eventually become available. For example, if we want to train

an algorithm to read books into a computerized format, we do not want to continually

provide the correct text to the algorithm. The whole purpose of using the algorithm is

to automate the text recognition. In this case, batch learning is more appropriate. We

can train the algorithm until it reaches an acceptable level of performance and then use

the hypothesis it generates for all future text recognition.

While batch learning is a useful model, for those problems where label feedback is

available, on-line learning is a better choice. Why stop learning when more labels are

always available? The longer an on-line algorithm is used, the more it can potentially

improve its performance by exploiting the extra labels.

The purpose of this thesis is to improve upon the existing research in on-line learning

and make on-line learning more practical. This includes improving existing on-line

algorithms to decrease the number of mistakes for practical problems and extending

the existing on-line algorithms to handle a wider range of problems. It even includes

extending the on-line model to study and solve new types of practical problems. In

general, our main purpose is to expand the applicability and performance of the on-line

model.

1.1 Linear-threshold Algorithms

In this section, we describe the most popular class of algorithms for on-line learning.

These algorithms represent a hypothesis with a hyperplane in the attribute space where

each side of the hyperplane predicts a different label. For convenience, we use -1 and 1
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as the two binary labels. This representation is also called a linear-threshold function,

since the hyperplane can be represented by a linear function with a constant threshold

term [Lit88]. For this reason, we call any algorithm that represents its hypothesis as a

hyperplane a linear-threshold algorithm.

More formally, assume an instance is a vector x with n attributes. Let xi be the ith

attribute. We assume that each xi is an element of [0, 1].1 A linear-threshold function

uses n + 1 real valued weights to compute the prediction for an instance. There is

one weight, wi, for each attribute and an extra weight θ called the threshold. The dot

product of w and x is compared to θ. If
∑n

i=1 wixi ≥ θ the prediction is 1 otherwise

the prediction is -1

There are many different linear-threshold algorithms. The linear-threshold threshold

algorithms we cover in this thesis include the Perceptron [Ros62], Winnow [Lit89],

and ALMA [Gen01]. One advantage of these algorithms is that they are efficient for

prediction and updating using only O(n) time per trial. Another advantage is that

they have good performance guarantees even when an adversary is allowed to pick the

instances. The adversary is allowed to pick any sequence of instances, but the adversary

is constrained to label most of the instances based on a linear-threshold function. Even

with an adversary picking the instances, these algorithms have nontrivial upper-bounds

on the total number of mistakes. In this thesis, we often call algorithms with these types

of performance guarantees adversarial algorithms.

Since linear-threshold algorithms only use a hyperplane to represent the hypothesis,

one may think they would do poorly on many real world problems; however, good

accuracy is possible on many data-sets even with such a seemingly simple hypothesis.

In [DP97], the authors show that Naive Bayes, which uses a linear-threshold function,

is competitive with more expressive learning algorithms on data from the U. C. Irvine

repository [DNMml]. The U. C. Irvine data repository is a diverse collection of machine

learning problems that have been submitted by various machine learning researchers.

This shows that a linear-threshold function is a reasonable representation for a wide

1While many linear-threshold algorithms can work with real valued attributes outside of [0, 1], in
practice it is useful to normalize the attributes to some interval.
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range of learning problems.

Additional research has shown that linear-threshold algorithms work well on other

real world problems. Much of this research has focused on the recent class of Winnow

algorithms [Lit89]. The Winnow algorithms are desirable because they can perform

well even if many of the attributes are not relevant to the target function. For example,

the text learning problem, which we talked about earlier in this chapter, creates a large

instance vector to describe documents. The maximum size of an instance could be

close to the number of words in the dictionary. However, only a small fraction of these

attributes may be useful. As we will see in the next chapter, the Winnow algorithms

make few mistakes while finding these relevant attributes.

This advantage makes it possible to add many speculative features to the Winnow

algorithms. For example, to take the text example even further, instead of just dealing

with single words in a document, one can look at pairs of words. For every pair of

words, have an attribute that is 1 when that pair of words appear next to each other

in the document. This can cause an explosion in the number of features, but the

computational efficiency of the Winnow algorithm and its ability to find the relevant

attributes makes the problem tractable.

Based on this advantage, Winnow algorithms have been used on a wide range of

problems. Winnow algorithms have been found effective for efficiently learning how to

categorize text into different classes [CS96, LSCP96, DKR97, KMB03, BKV03]. This

is particularly useful given the large amount of text information found on the Internet.

The ability to handle large amounts of text is also useful for natural language process-

ing (NLP). This includes tasks such as segmenting sentences and tagging words with

different parts of speech [KR98, ZDJ01, TCS03, RZ98, RtY01, Sid02]. In a NLP related

task, Winnow has been used to help with spell checking [GR99, BB01, MKCN98]. It has

even been used on tasks as diverse as predicting instruction branches in a CPU [LH02],

determining when to stop spinning a hard drive for mobile applications [HLSS00], pre-

dicting calendar appointments [Blu95], and predicting which links a user should follow

on a website [AFJM95].

Interestingly, many of these problems do not directly fit into the on-line model.
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They may be either batch problems, or they may make or need extra assumptions not

included in the traditional on-line model. To handle these differences, much of this

work makes modifications to the original Winnow algorithms to handle the particular

problem and improve performance. In this thesis, our goal is similar but broader. We

want to find general ways to take existing on-line algorithms and improve them based

on the extra assumptions one is likely to encounter in a real problem. Much of our

thesis will deal with linear-threshold algorithms with a focus on Winnow algorithms.

Some of our results will be more general, applying to other on-line algorithms, but we

limit our testing to linear-threshold algorithms.

1.2 Thesis Overview

The purpose of this dissertation is to improve the performance and applicability of

on-line learning algorithms. Most of our results deal with modifying existing on-line

algorithms to improve performance when certain explicit assumptions are true for a

problem. The goal of all our modifications is to improve the algorithm while maintaining

the benefits of the original on-line learning algorithm. To help distinguish between the

original and the modified algorithms, we often refer to the original on-line algorithm as

the basic algorithm.

The second chapter gives information about the basic on-line linear-threshold al-

gorithms we use in the thesis. An advantage of these on-line learning algorithms is

that they are designed to perform well even when an adversary is allowed to pick the

instances. In Chapter 2, we describe the algorithms and give bounds on the maximum

number of mistakes for problems where instances are generated by an adversary. In

many cases, these bounds are improvements over previously published bounds. At the

end of the chapter, we give a common notation that allows us to compare the mistake

bounds for all the algorithms.

While it is impressive that adversarial algorithms can perform well under such

adverse conditions, for many real world problems an adversary is not a realistic as-

sumption. Chapter 3 and Chapter 4 give techniques to improve the performance of
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adversarial algorithms when instances are generated by something weaker than an ad-

versary. The technique in Chapter 3 predicts using a weighted vote from a collection of

hypotheses. This voting technique is designed to improve performance when instances

are generated by a fixed distribution. In Chapter 4, we improve performance by reusing

instances from previous trials. Since adversarial algorithms make a bounded number

of mistakes, any mistake made on a saved instance could prevent a mistake on a real

instance. We perform experiments with both of these techniques on real world data. In

Chapter 5, we combine both of these techniques and show that the combined algorithm

gives even better performance on real world data.

In on-line learning, it is possible to learn a target function that changes over time.

For example, assume a learning algorithm is trying to predict if the price of a stock will

go up or down during a day of trading. The stock market has many influences that

gradually or infrequently change over time. A prediction function that works well one

month may not work well next month because of influences that are not captured in

the instance representation. Because an on-line learning algorithm continually receives

newly labeled instances, it can potentially modify its hypothesis to track these changes.

In Chapter 6, we give a modified version of the Winnow algorithm that allows the

tracking of changing target functions. We compare this algorithm to a version of ALMA,

another recent algorithm that can track target functions. In Chapter 7, we perform

experiments on these and other linear-threshold algorithms when learning a shifting

target function. To improve performance, we use some of the techniques from Chapter 3

and Chapter 4.

The greatest restriction of the on-line model is the need for the correct label at the

end of a trial. For many problems, it is not possible to get the correct label before

the start of the next trial. For example, a doctor may wait a week before he gets the

results of a blood test. While waiting for the result, he may need to diagnose several

other patients. In the last chapter, we show how to modify the on-line model to handle

delayed labels. We give different algorithms to handle fixed or shifting target functions

and to handle instances generated by an adversary or a distribution. We show that

these new algorithms are close to optimal for delayed feedback.
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The final chapter reviews the contributions of this dissertation and considers possible

future work. Some of this future work is based on on discoveries made during the course

of our research. Other parts are based on interesting extensions of on-line learning that

we have not yet had a chance to explore.
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Chapter 2

On-line Linear-threshold Algorithms

In this chapter, we describe the linear-threshold learning algorithms used in this thesis.

All these algorithms have been previously published, so we only give a short description

of each algorithm along with references where further details can be found. In addition,

we give some information that may be useful in determining when to use the algorithm,

such as a bound on the number of mistakes and conditions for when that bound is

valid. Previously these bounds have used different notation making them difficult to

compare. Therefore, towards the end of the chapter, we convert all the bounds to a

single notation.

We use these linear-threshold algorithms as basic algorithms on which the techniques

given in this thesis will be applied. We cover many popular algorithms in order to show

how our techniques work on a wide range of linear-threshold algorithms. For the most

part, our results suggest not using the algorithms in the forms given in this chapter,

but to instead use a modified algorithm as discussed in later chapters.

This chapter is organized as follows. We start with some essential notation and

then work into a proof of an upper-bound on the number of mistake for the Perceptron

algorithm. In Section 2.3, we then give mistake bounds and other information for all the

linear-threshold algorithms used in this dissertation. In Section 2.4, we convert these

bounds into a single notation and compare the bounds. Last, we explain a popular

technique used to deal with the many parameters found in several of the algorithms.

2.1 Notation and Terminology

The notation we use in this chapter builds off the notation given in Chapter 1. Vector

xt represents the instance the algorithm receives on trial t. This vector is of size n
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and for most algorithms we assume that each component is an element of [0, 1]. Often,

we need to deal with the components of the instance vector; we use xi,t to refer to

the ith component of instance xt. Each instance has a label yt ∈ {−1, 1}. Let s be

a sequence of these instances. The set of trials where on-line algorithm B makes a

mistake on sequence s is denoted by M(B, s). When the algorithm and sequence can

be determined from context, we use the notation MT where T refers to the length of

the sequence. To refer to the number of elements in a set or sequence A, we use the

standard notation |A|. For example, the number of mistakes made by an algorithm can

be represented as |MT |.

The linear-threshold functions in this chapter learn a function from the instances

to the labels. This binary function is often called a concept. The weights of the linear-

threshold function, at trial t, are represented by the vector wt. Again, we use wi,t to

represent the ith component of the vector. The weight vector is of the same size, n, as

the instance vector and predictions are made by taking the dot product of the weight

vector and the instance vector and comparing the result to θ ∈ R. If the dot product

is greater than or equal to θ then the algorithm predicts 1. If the dot product is less

than θ then the algorithm predicts -1.

The algorithms we consider in this chapter only change their state after they have

made a mistake on a prediction. These are called mistake-driven algorithms. A related

definition, that we use later in the dissertation, is a conservative algorithm. This is

an algorithm that only changes its prediction hypothesis after a mistake.1 The key

difference between these definitions is that a mistake-driven algorithm is never affected

by instances that are predicted correctly. A conservative algorithm does not change its

prediction hypothesis when it makes a correct prediction, but the instance can still affect

the state of the algorithm and therefore can have an influence on future predictions.

Notice that mistake-driven algorithms are a subset of conservative algorithms. More

information on mistake-driven algorithms can be found in Appendix F.

1There is some discrepancy in the literature with the definition of a conservative algorithm. Some
people use the term conservative and mistake-driven interchangeably.
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Perceptron
Initialization

t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = 0.

Trials
Instance: xt ∈ Rn.
Prediction: If wt · xt ≥ 0 then

predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ 0 then
∀i ∈ {1, . . . , n} wi,t+1 = wi,t + ytxi,t.

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 2.1: Pseudo-code for the Perceptron algorithm.

2.2 Mistake-bounds

One advantage of the linear-threshold algorithms used in this thesis is that we can

bound the maximum number of mistakes the algorithm makes even when instances

are selected by an adversary. To help explain the mistake bounds of linear-threshold

algorithms, we start with an in-depth example. One of the first algorithms able to

learn arbitrary linear-threshold functions was the Perceptron [Ros62]. The code and

the proof for the Perceptron algorithm are fairly straightforward, so it is a good choice

to help explain some of the common properties of the mistake bounds used in this

thesis. We give the code for the Perceptron algorithm in Figure 2.1 This code is similar

to the algorithm published in [DH73].

The algorithm works according to the on-line model explained in Chapter 1. The

algorithm has n weights; one weight for each attribute of the learning problem. The

weights are initialized to 0. After initialization, the algorithm starts to predict the

labels of instances. This is broken down into three steps. First the algorithm receives

the instance. Second the prediction is made by taking the dot product of the weight

vector and the instance. If this dot product is at least 0 then the algorithm predicts

1; otherwise, the algorithm predicts -1. Last, the algorithm receives the correct label.

If the algorithm makes a mistake on the instance (ytwt · xt ≤ 0) then the weights are
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Figure 2.2: Linear-threshold target function where no instance is allowed to occur within
a δ margin around the target function.

adjusted to counteract the mistake. If the dot product is too small, the algorithm

changes the weights to increase the dot product for the instance. If the dot product

is too big then the algorithm changes the weights to decrease the dot product for the

instance. The weights are moved by adding or subtracting the instance vector from the

weight vector.

As is the standard practice, we do not include an explicit threshold term in the Per-

ceptron algorithm. To learn linear-threshold functions that have a non-zero threshold,

an extra attribute with a fixed value of 1 is added to all instances [DH73]. Its weight

is updated along with the other weights allowing the algorithm to effectively learn the

threshold. This is a standard technique we will see with other linear-threshold learning

algorithms; we add extra attributes to expand the set of functions the algorithm can

represent.

Next we want to prove an upper-bound on the number of mistakes made by the

Perceptron algorithm when the instances are generated by an adversary. For a first
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effort, we assume that no instance generated by the adversary can get too close to the

hyperplane that separates the two labels. Later, we will relax this assumption and allow

noisy instances. In Figure 2.2, we have drawn a hyperplane where all the instances are

predicted correctly, but no instances are allowed to occur within a distance δ > 0 of the

linear-threshold function. More formally, let u be the weights of the target function.

All instances must satisfy ytu · xt ≥ δ. This is the only assumption we make on the

instances.2 The adversary is allowed to know all the details of the learning algorithm

and can generate any instance that satisfies the above separation condition.

Using the above idea of a margin, we are almost ready to give a proof of the Percep-

tron mistake bound. The proof is typical of proofs used for linear-threshold algorithms

and is similar to the proof given in [DH73]. It shows that a certain “progress” function

of the learning algorithm weights must decrease by at least a constant, positive amount

every time the learning algorithm makes a mistake. It also shows that this function has

a minimum value. This gives the finite mistake bound. In the case of the Perceptron,

the progress function is just the squared two-norm of the difference between the current

weight vector and a multiple of the target vector. In other words, the progress function

is ‖wt − au‖22. Intuitively this is a reasonable choice since we want the weight vector

to get close to the target vector. The constant a is needed since any multiple of the

target weights makes identical predictions. We use the constant a to create the target

function that the algorithm weights approach.

Before we give the proof, we need some new notation. Let β2 be the average square

of the two-norm of the instance vectors over all trials where there is a mistake. More

formally, let MT be the set of trials that have a mistake up to trial T . Let β2 =
∑

t∈MT
‖xt‖22/|MT |.

Theorem 2.1 When all instances satisfy ytu · xt ≥ δ, the number of mistakes made

by Perceptron is at most β2‖u‖22/δ2.

Proof Assume there is a mistake made on trial T . Based on the update procedure of

2This description of the target function is not unique. We can multiply u and δ by any constant
and get the same target function.
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the Perceptron algorithm

(wT+1 − au) = (wT − au) + yTxT.

Taking the two norm of both sides and squaring both sides gives,

‖wT+1 − au‖22 = ‖wT − au‖22 + 2(wT − au) · (yTxT) + ‖xT ‖22.

Because xT was misclassified, we know that yTwT · xT ≤ 0. Also because of the

restriction on the adversary, yTu · xT ≥ δ. Using these facts, we get

‖wT+1 − au‖22 − ‖wT − au‖22 ≤ −2aδ + ‖xT ‖22.

This means that the ‖wT −au‖2 must change by −2aδ+‖xT ‖22 on a mistake. Summing

over all mistakes up to trial T gives

‖wT+1 − au‖22 − ‖w1 − au‖22 ≤ −2aδ|MT |+
∑

t∈MT

‖xt‖22.

We can drop the first norm term and use the fact that w1 is all zeros to get

−a2‖u‖22 ≤ −2aδ|MT |+
∑

t∈MT

‖xt‖22.

Using the fact that β2 =
∑

t∈MT
‖xt‖22/|MT | gives

−a2‖u‖22 ≤ −2aδ|MT |+ β2|MT |.

As long as a > β2/(2δ), we can use the above equation to bound |MT | with

|MT | ≤
a2‖u‖22

2aδ − β2
.

Setting a = β2/δ minimizes this bound and proves the theorem.

This new proof is similar but slightly stronger than the proof of [DH73]; the primary

difference is that we define β2 based on the average value of ‖xt‖22 during mistakes as

opposed to the maximum value. This shows that the Perceptron will not be unduly

affected if a single instance has an exceptionally large ‖xt‖22; it is the average value that

matters. Of course, this average is an average over all the mistakes. An adversary can
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Figure 2.3: Linear-threshold target function with instances with δ noise and 4δ noise.

maximize the mistake bound by creating mistakes on instances with large ‖xt‖22. How-

ever, the β2 term is still useful because we sometimes apply the Perceptron algorithm

on problems where the instances are generated by something weaker than an adversary.

The Perceptron mistake bound grows rapidly as δ shrinks. In addition, the mistake

bound does not apply if there does not exist a hyperplane that correctly classifies the

data. Fortunately, because of the nature of the proof technique, it is generally easy

to modify these proofs to include noisy instances that are either inside the margin,

allowing for a larger margin, or on the wrong side of the target hyperplane. We just

need to keep track of how these noisy instances affect the progress function.3 Generally,

a mistake on a noisy instance will move the progress function in the wrong direction.

If we can bound the amount these noisy instances change the progress function, we can

bound the extra mistakes that are needed to correct these changes.

Because ytu · xt ≥ δ for a non-noisy instance, the amount of noise can be measured

3Littlestone gives a general technique to modify progress function based proofs to handle noise in
instances [Lit89]. However, he assumes each noisy instance has the same effect on the progress function.
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by the size of δ − ytu · xt. The larger this number, the larger the noise. Let νt =

max(0, δ− ytu ·xt) be the noise in trial t. This noise value is often called the hinge-loss

[GW99]. If an instance is non-noisy then νt will be 0. If an instance is noisy then νt is

the perpendicular distance of the instance from the side of the margin that corresponds

to the correct classification of the instance. See Figure 2.3 for an example. Notice that

the syntactic form of the noise function contains all the information about the target

function: the target weights u and the margin δ. Therefore, for most algorithms we

only specify the definition of the noise function; the target function is implied.

We can use this measure of noise to give a new mistake bound based on the amount

of noise in the instances. Let N be an upper-bound on the total amount of noise up to

trial T ; in other words,
∑T

t=1 νt ≤ N . Using this definition of noise, we are ready to

give the proof. The proof is similar to the no noise case except we let the value of a

remain a variable.

Theorem 2.2 For a > β2/(2δ), the number of mistakes made by Perceptron is at most

a2‖u‖22 + 2aN

2aδ − β2
.

Proof Assume there is a mistake made on trial t. Based on the update procedure of

the Perceptron algorithm

(wt+1 − au) = (wt − au) + ytxt.

Taking the two norm of both sides and squaring both sides gives,

‖wt+1 − au‖22 = ‖wt − au‖22 + 2(wt − au) · (ytxt) + ‖xt‖22.

Because xt was misclassified, we know that ytwt · xt ≤ 0. Using this fact, we get

‖wt+1 − au‖22 ≤ ‖wt − au‖22 − 2aytu · xt + ‖xt‖22.

Next we use the fact that ytu · xt ≥ δ − νt. We get

‖wt+1 − au‖22 − ‖wt − au‖22 ≤ −2aδ + 2aνt + ‖xt‖22.
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This means that the ‖wt−au‖22 must change by −2aδ +2aνt +‖xt‖22 on every mistake.

Summing over all mistakes up to trial T gives

‖wt+1 − au‖22 − ‖w1 − au‖22 ≤ −2aδ|MT |+
∑

t∈MT

2aνt +
∑

t∈MT

‖xt‖22.

We can drop the first norm term and use the fact that w1 is all zeros, to get

−a2‖u‖22 ≤ −2aδ|MT |+ 2a
∑

t∈MT

νt +
∑

t∈MT

‖xt‖22.

Using the definition of noise, N and the definition of β2 gives,

−a2‖u‖22 ≤ −2aδ|MT |+ 2aN + β2|MT |.

As long as a > β2/(2δ), we can use the above equation to bound |MT | with

|MT | ≤
a2‖u‖22 + 2aN

2aδ − β2
.

The value of a that minimizes the bound gives a somewhat complicated bound.

Therefore we start with a simpler bound that, while not optimal, is easy to relate to

the no noise case.

Corollary 2.3 The number of mistakes made by Perceptron is at most

β2‖u‖22
δ2

+
2N

δ
.

Proof Just set a = β2/δ in Theorem 2.2.

This bound is the same as the bound given in Theorem 2.1 except that we add the

term 2N/δ to account for the noisy instances. Next we give the optimal bound.

Corollary 2.4 Let ξ =
√

1 + 4Nδ
β2‖u‖2

2

. The number of mistakes made by Perceptron is

at most

β2‖u‖22
2δ2

(

1 +
1

ξ

)

+
N

δ

(

1 +
2

ξ

)

.
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Proof Using a =
(

‖u‖22β2 +
√

‖u‖42β4 + 4‖u‖22δNβ2
)

/(2‖u‖22δ) minimizes the bound

in Theorem 2.2. Plugging this value into Theorem 2.2 gives the result.

This bound shows that, as the noise starts to dominate, the Perceptron algorithm

makes N/δ, plus lower order terms, mistakes. Therefore our simple bound, in Corol-

lary 2.3, is somewhat deceptive as it does not give the correct long term behavior of

the algorithm with respect to noisy instances. However, for ξ close to 1, the optimal

bound becomes deceptive. In the limit, the concept term goes to β2‖u‖22/δ2 while the

noise term goes to 3N/δ. This bound appears to be greater than our simple bound. In

truth, the bound is still optimal. The interaction of the two terms gives a bound that

is close to the bound in Corollary 2.3 for ξ values close to 1.4

It is interesting to note that the Perceptron bound depends on the representation

used for the instances. For example, binary attributes which are normally represented

as either {0, 1} or {−1, 1}. For some binary problems, the {0, 1} representation will give

a better bound because the β2 factor will be much smaller when many attributes have

value 0. This is partially offset because δ is smaller when using a {0, 1} representation.

In this thesis, many of the experiments have few non-zero attributes. Therefore we

always use a {0, 1} representation for binary attributes.

Also notice that the Perceptron algorithm allows attributes xt ∈ Rn. Most of the

other proofs, we cover in this thesis, assume xt ∈ [0, 1]n. While it is possible to extend

the other proofs, we feel it is a reasonable assumption to assume the attributes are

normalized to be in the [0, 1] interval.

While the Perceptron algorithm is well studied, as far as we know, the above proof

has not been previously published. In [FS98], an alternative proof is given for the

Perceptron with noisy instances using the technique of [KS95]. This technique handles

noisy instances by allowing an extra attribute for each trial. The target weight of

this attribute is used to correct for any noise on the trial and allow a hyperplane that

4This can be seen by looking at the Taylor series of the bound around N = 0.
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perfectly separates the instances. This is a general technique that can convert a linear-

threshold learning algorithm with a no noise proof into an algorithm that can handle

noisy instances. In the case of the Perceptron, this technique does not change the

behavior of the learning algorithm, so it gives a proof that Perceptron can learn noisy

instances. To describe the bound, we need some new notation. Let β′ = maxt∈T ‖xt‖2.

Clearly β ≤ β′. Let N ′ =
√

∑T
t=1 ν2

t . The new bound is (β′‖u‖2 + N ′)2/δ2. Even

assuming that β′ = β, this bound is always higher than our bound in Corollary 2.4.

At this point, we want to clarify the generality of the noise model based on hinge-

loss. This noise model allows us to give mistake bounds that covers many types of

noise simply by making assumptions about νt. For example, a common assumption

is to allow only a fixed amount of noise by assuming
∑∞

t=1 νt ≤ K for some constant

K ∈ R. Another possibility is to allow
∑T

t=1 νt ≤ KT . This allows the noise to grow

linearly with the trial number. We can even assume that the various νt are random

variables allowing something similar to the noise model in [Lit91]. In general, the noise

component of the mistake bound at trial T will depend on
∑

t∈M νt no matter how the

noisy instances are generated.

A subtle aspect of the previous Perceptron mistake-bound is that any value of u

and δ gives a legal mistake bound for a sequence of instances. Of course, if a given

u misclassifies most of the instances then the noise will be large. If another u exists

that correctly classifies most of the instances, it will most likely give a better bound.

Another possibility is that u correctly classifies the instances, but many of the instances

are within δ of the hyperplane. In that case, a smaller δ is likely to give a better bound.

Since all target functions are valid, what we are really interested in is a target function

that gives the minimum mistake bound. However, any target function we use gives an

upper-bound on that minimum.



21

2.3 Algorithms

In this section, we give the details on the remaining basic algorithms we use in this

thesis.5 This includes pseudo-code, upper-bounds on mistakes, and some relevant facts

for each algorithm. Most of the mistake bounds are refinements of existing bounds

and have not been previously published. We include the proofs of these bounds in the

appendix. In Section 2.4, we compare the bounds of the various algorithms.

2.3.1 Unnormalized Winnow Algorithm

The Unnormalized Winnow algorithm is the first of a series of “Winnow” algorithms

introduced by Littlestone [Lit88, Lit89, Lit91]. Its original name is Winnow, but we

follow the convention of [HPW99] and call it Unnormalized Winnow so as not to confuse

it with the other Winnow style algorithms that we also discuss. Unnormalized Winnow,

like Perceptron, can learn arbitrary linear-threshold functions, but it has the advantage

of making fewer mistakes for problems with a large number of attributes where only a

small fraction of the attributes are used in the target function. This can be seen in the

mistake bounds given below and will be further clarified in Section 2.4.2.

The code for Unnormalized Winnow is given in Figure 2.4. The main difference be-

tween the Winnow algorithms and Perceptron is that the Winnow algorithms perform

a multiplicative update on the weights instead of an additive update. Specifically, Per-

ceptron uses wi,t+1 = wi,t + ytxi,t, and Unnormalized Winnow uses wi,t+1 = wi,tα
ytxi,t .

The constant α > 1 is used to control the strength of the updates.

Next, we specify the noise function used in our mistake-bound for Unnormalized

Winnow. Since Unnormalized Winnow always multiplies its weights by α > 1, and the

initial weights have value σ, it can not directly learn negative weights. Therefore all ui

must be greater or equal to zero.6 Let δ ∈ (0, 1] be the margin. The noise on instance

xt is defined as νt = max(0, δ − yt(u · xt − 1)), and the total noise, up to trial T , is

N =
∑T

t=1 νt.

5Information on the Perceptron algorithm can be found in Section 2.2.

6Later in the section, we show how to change the representation to effectively allow negative target
weights.
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Unnormalized Winnow(α, σ)
Parameters

α > 1 is the update multiplier.
σ > 0 is the initial weight value.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = σ are the weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If wt · xt ≥ 1

predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ 0 then
∀i ∈ {1, . . . , n} wi,t+1 = αytxi,twi,t.

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 2.4: Pseudo-code for the Unnormalized Winnow algorithm.

This parallels the noise definition used for the Perceptron algorithm. Any instance

that is within δ distance of the hyperplane specified by u · xt − 1 will have a positive

noise. The further the instance is from the side of the half-space that corresponds to its

label, the larger the noise. The noise function explicitly includes the threshold term -1

to match the negative of the threshold used in Unnormalized Winnow. For most cases,

an algorithm that predicts 1 if and only if wt · xt ≥ c uses a noise function of the form

νt = max(0, δ − yt(u · xt − c)).

Theorem 2.5 The number of mistakes made by Unnormalized Winnow when α = 1+δ

and σ = 1/n is at most

(2 + δ) (1 +
∑n

i=1 ui ln ui + ln (n)
∑n

i=1 ui −
∑n

i=1 ui)

δ2
+

(2 + δ2/5)N

δ
.

The proof of this result can be found in Appendix A along with an explanation for

the parameter choices. The proof is a small refinement of previous proofs [Lit88, Lit89,

Lit91]. The refinement primarily consists of lowering the constants on the bound and

changing the noise definition.

In order for any Unnormalized Winnow bound to apply, the α and σ parameter need
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to be set appropriately. For most problems, the number of attributes in an instance is

fixed, so one can set σ = 1/n. The α parameter is more difficult. For most problems we

do not know the size of δ, therefore we may choose a sub-optimal multiplier. This can

greatly increase the number of mistakes made by the algorithm. We consider possible

ways to set α when we talk about parameter selection in Section 2.5.

A general problem with Winnow algorithms is that they can only represent positive

weights because the weights start out positive and are always multiplied by a positive

number. Fortunately there is a simple solution for learning negative weights. For every

attribute xi, we add the complemented attribute x̄i = 1 − xi. This complemented

attribute allows the algorithm to use positive weight to create negative weights [Lit88].

Let wi be the weight on attribute xi and wc
i be the weight on attribute x̄i. If wi is 0

then any weight wc
i > 0 effectively becomes a negative weight for xi. Therefore anytime

we need a negative weight for a target function, we just use 0 weight for the normal

attribute and place all the weight on the complemented attribute. The negative weight

technique doubles the number of attributes, but because of the logarithmic nature of

the bound it has a small effect on the mistake bound.

This negative weight technique has some beneficial consequences. Because of the

1 term in the complemented attribute, the target function gets some extra constant

weight. This extra weight is useful because it allows the target to represent a negative

threshold. For example, it allows the algorithm to represent a target function that

always predicts 1. In this case, just set the weight on all attributes, including the

complements, to 2/n. This creates a target function that always predicts 1 with a

mistake-bound of at most 7.63 + 2.2N .

2.3.2 Complemented Unnormalized Winnow Algorithm

The Complemented Unnormalized Winnow Algorithm is a slight variation of the Un-

normalized Winnow Algorithm. It was originally mentioned in [Lit88] as a technique to

convert a target function consisting of a conjunction of attributes into a disjunction of

attributes. As we will see, this significantly lowers the mistake-bound on conjunctions.

We give the code for Complemented Unnormalized Winnow in Figure 2.5.
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Complemented Unnormalized Winnow(α, σ)
Parameters

α > 1 is the update multiplier.
σ > 0 is the initial weight value.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = σ are the weights.

Trials
Instance: xt ∈ [0, 1]n. Let x̄i,t = 1− xi,t

Prediction: If wt · x̄t ≥ 1
predict ŷt = −1 else predict ŷt = 1.

Update: Let yt ∈ {−1, 1} be the correct label and ȳt = −yt.
If ȳt(wt · x̄t) ≤ 0 then
∀i ∈ {1, . . . , n} wi,t+1 = αȳtx̄i,twi,t.

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 2.5: Pseudo-code for the Complemented Unnormalized Winnow algorithm.

Complemented Unnormalized Winnow uses the same noise function as Unnormal-

ized Winnow. Let the target weights ui ≥ 0. Let δ ∈ (0, 1] be the margin. The noise

on instance xt is defined as νt = max(0, δ − yt(u · xt − 1)), and the total noise is

N =
∑T

t=1 νt.

To help motivate the complemented algorithm, it is useful to understand how Un-

normalized Winnow behaves with conjunctions and disjunctions. Given our notation,

if the target function is composed of a disjunction of k literals then the target weights

can be set to 2. This allows us to set δ = 1; its maximum value. If the target function is

composed of a conjunction of k literals then each target weight can be set to 2/(2k− 1)

and δ = 1/k. According to Theorem 2.5, this gives disjunctions a mistake-bound of

roughly 6k ln n and conjunctions a mistake-bound of roughly 2k2 lnn. However, there

is not much difference between a conjunction and a disjunction. The only difference is

whether -1 or 1 is called true.

Therefore, we can modify any algorithm to learn conjunctions as if they were dis-

junctions. All we need to do is flip the values of all the attributes and labels. For

attributes, every 0 becomes a 1 and every 1 becomes a 0. For labels, the new label is
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just the negative of the old label. This new problem turns a conjunction into a disjunc-

tion. To get the answer to the original problem, we just run the algorithm on the new

problem and flip the label of the algorithm’s prediction. [Lit88]

We can generalize this technique to more than just conjunctions. Recall the defini-

tion of a complemented attribute is x̄i = 1−xi. This flips a {0, 1} attribute, but can also

handle attributes in [0, 1] [Lit89]. Define the flipping of a label as ỹ = −y. The Comple-

mented Unnormalized Winnow algorithm is the same algorithm as Winnow except that

every attribute is complemented and every label is flipped before they are accepted as

input by the algorithm. This allows the algorithm to work on a different target function

where the -1 and 1 labels are flipped. When the algorithm returns a prediction, the

label must be flipped again to return to the label syntax of the environment.

Before we give the mistake-bound for Complemented Unnormalized Winnow, we

want to simplify its statement with some new notation. Let h = (
∑n

i=1 ui) − 1. We

assume h > 0 because a target function with h ≤ 0 must always predict -1. This

causes the complemented problem to always predict 1. This is a special case that we

mentioned in the section on Unnormalized Winnow. It can be handled separately and

gives a mistake-bound of at most 7.63+2.2N . Also notice that because
∑n

i=1 ui ≥ 1+δ,

h ≥ δ.

Corollary 2.6 Assume h = (
∑n

i=1 ui) − 1 > 0. The number of mistakes made by

Complemented Unnormalized Winnow when σ = 1/n and α = 1 + δ
(
Pn

i=1
ui)−1 is at

most

(2h + δ) (
∑n

i=1 ui ln ui − ln (h)
∑n

i=1 ui + ln (n)
∑n

i=1 ui)

δ2
+

(2 + δ2

5h2 )N

δ
.

Proof Our goal is to manipulate the noise function into a form that corresponds to a

related but different target function that works with the complimented attributes.

νt = max(0, δ − yt(u · xt − 1))

= max(0, δ + yt(

n
∑

i=1

ui − u · xt + 1−
n
∑

i=1

ui))

= max(0, δ + yt(

n
∑

i=1

ui(1− xi)− h))
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= max(0, δ − ỹt(u · x̄− h)).

This is close to a legal noise function for the Unnormalized Winnow algorithm. We

only need to make the threshold term 1 by dividing by h.

νt

h
= max(0,

δ

h
− ỹt(

u · x̄
h
− 1)).

This is a noise function that can be used by Unnormalized Winnow with complemented

attributes. Let uc be the target weights and δc be the margin for this noise function.

Let N c be the sum of the noise term over all the trials. Therefore uc
i = ui/h, δc = δ/h,

and N c = N/h.

We can use these instances on the Unnormalized Winnow algorithm with α = 1+δc

and σ = 1/n. However, we are learning the flipped label. Therefore, every time the

Unnormalized Winnow returns a label yt, the complemented algorithm returns -yt.

This algorithm only makes a mistake if the Unnormalized Winnow algorithm makes

a mistake on a flipped label. Using Theorem 2.5 with this noise function and these

parameters gives an upper-bound on the number of mistakes. This proves the theorem.

The (2h+δ) factor is the primary difference between the mistake-bounds of Comple-

mented Unnormalized Winnow and Unnormalized Winnow. The Unnormalized Win-

now algorithm has a similar factor of (2+δ). For h values close to 0, the Complemented

Unnormalized algorithm has a clear advantage. For h = 1 the bounds are similar. For

large h, the Unnormalized Winnow should be superior. Notice that our previous ex-

ample of a disjunction with k literals has h = 2k − 1, and a conjunction with k literals

has h = 1
2k−1 .

Complemented Unnormalized Winnow suffers from the same strengths and weakness

as Unnormalized Winnow. The α and σ parameters still need to be set appropriately.

Again, setting σ = 1/n is a good choice, but see Appendix A for more possibilities.

Setting α is more difficult because for most problems one does not know δ. See Sec-

tion 2.5 for information on how to deal with parameter selection. Also negative weights

are only possible if the complement of the attributes are included. In this case, the
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complements are the original attributes. Therefore, to deal with positive and negative

weights both the complemented and normal attributes must be used by the algorithm.

In this case, the Complemented Unnormalized Winnow only needs to implement the

label flipping.

2.3.3 Normalized Winnow Algorithm

The Normalized Winnow algorithm was first proven to learn linear-threshold functions

in [Lit89]. It is similar to the Unnormalized Winnow algorithm except that it effectively

forces the weights of the algorithm to always sum to 1. The Normalized Winnow

algorithm was originally called the Weighted Majority Algorithm (WMA) since it is

almost identical to the original WMA [LW94]. The only difference is that Normalized

Winnow only updates on mistakes while WMA can update on all trials. We will talk

about WMA more extensively in Section 2.5 when we talk about parameter selection.

In this thesis, we give a more general form of Normalized Winnow. It uses an

extra parameter θ that controls the target function threshold. The original version of

Normalized Winnow has θ = 1/2. This more general algorithm was originally designed

by Nick Littlestone but never published [Lit94]. We give the code for Normalized

Winnow in Figure 2.6. Notice that one can normalize the weights to sum to 1 at the

end of any trial without affecting the behavior of the algorithm.

Let ui ≥ 0 be the weights for the target function where
∑n

i=1 ui = 1. Let τ =

min(θ, 1 − θ) and let δ ∈ (0, τ ] be the margin. The noise on instance xt is defined as

νt = max(0, δ− yt(u ·xt− θ)). Therefore, the hyperplane defined by this noise function

is u · xt − θ.

Theorem 2.7 When α = min(6, 1 + δ
τ(1−τ−δ) ), the number of mistakes made by Nor-

malized Winnow is at most

2(θ(1− θ) + δ|1− 2θ|)(ln n +
∑n

i=1 ui ln ui)

δ2
+

2.8N

δ
.

The original proof for this algorithm is by Nick Littlestone [Lit94]. However, his

proof did not clarify the improvements of this algorithm over Normalized Winnow when
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Normalized Winnow(α, θ)
Parameters

α > 1 is the update multiplier.
0 < θ < 1 is the threshold.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = 1 are the weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If wt · xt/

∑n
i=1 wi,t ≥ θ

predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ 0 then
∀i ∈ {1, . . . , n} wi,t+1 = αytxi,twi,t.

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 2.6: Pseudo-code for the Normalized Winnow algorithm.

θ 6= 1/2. In Appendix B, we prove Theorem 2.7 along with some slightly improved

but more complicated bounds. These proofs are based on joint work done with Nick

Littlestone. Proofs for normalized Winnow with a threshold have since appeared in

other publications. In [HPW99], Normalized Winnow is presented, and mistake bounds

are given for learning disjunctions. Our bound is more general since it allows arbitrary

linear-threshold functions.

As before, Normalized Winnow handles only positive weights. The solution is the

same as with Unnormalized Winnow. We use complemented attributes, 1−xi to handle

negative weights; this will at most double the number of attributes.

Another problem with Normalized Winnow is that θ may not be the correct value

for the concept. Assume the concept is described by a particular hyperplane. The

hyperplane can be represented with a vector of weights for the attributes and the

appropriate threshold. We can multiply all these values by the same constant and still

have the same hyperplane. If we divide all the values by the sum of the weights, the new

weights sum to 1 and the threshold is a positive constant c. This matches the target

function required by Normalized Winnow when θ = c. When θ 6= c, we need to use
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extra attributes to correct the θ value. If θ is too small, we need to use an attribute that

is always 0. Any weight on this attribute will effectively lower the one-norm of the other

target weights. This will effectively increase the value of θ. If θ is too large, we need to

use an attribute that is always 1. The weight of this attribute can be subtracted from

θ to lower its value. Therefore, we need to add two attributes to learn the threshold.

Just as with Unnormalized Winnow, we need to set parameters correctly for the

bounds to apply. In this case, both parameters, α and θ, can be difficult to set. The

same problems we had with α in Unnormalized Winnow occur here. With θ, we show

in Section 2.4 that the bound is optimal when θ = c and gets much worse the further

θ is from c. We talk about how to solve these problems in Section 2.5.

2.3.4 Balanced Winnow Algorithm

The Balanced Winnow algorithm first appeared in [Lit89]. It gives another variation

on the Winnow family of algorithms. Balanced Winnow keeps track of two vectors

of weights, one for label 1 and the other for label -1. Whichever vector of weights

has the larger dot product with the attributes determines the prediction label. It is

interesting to note that the Balanced Winnow algorithm is identical to the Normalized

Winnow algorithm using θ = 1/2, complemented attributes, and transforming all the

[0, 1] attributes to [1/2, 1] using the linear transformation (xi + 1)/2 [GLS01]. We give

the code for Balanced Winnow in Figure 2.7.

Let u+ and u− be the weights for the target function where each u+
i ≥ 0, each u−

i ≥ 0

and
∑n

i=1

(

u+
i + u−

i

)

= 1. The noise on instance xt is defined as νt = max(0, δ−yt(u
+ ·

xt − u− · xt) where δ ∈ (0, 1/2] is the margin. This noise function is based on the

(u+ − u−) · xt hyperplane.

Theorem 2.8 If α =
√

1+δ
1−δ then the number of mistakes made by Balanced Winnow

is at most

2 ln 2n + 2
∑n

i=1(u
+
i ln u+

i + u−
i ln u−

i )

δ2
+

2
(

1 + 2δ2

5(1−δ)2

)

δ
N.

A proof of this result is found in Appendix C. The proof is almost identical to a

proof presented in [Lit89] with the exception of a more modern type of noise analysis.
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Balanced Winnow(α)
Parameters

α > 1 is the update multiplier.
Initialization

t← 1 is the current trial.
∀i ∈ {1, . . . , n} w+

i,1 = 1 are the positive weights.

∀i ∈ {1, . . . , n} w−
i,1 = 1 are the negative weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If w+

t
· xt ≥ w−

t
· xt

predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(w
+
t
· xt −w−

t
· xt) ≤ 0

∀i ∈ {1, . . . , n} w+
i,t+1 = αytxi,tw+

i,t and w−
i,t+1 = α−ytxi,tw−

i,t.

Else
∀i ∈ {1, . . . , n} w+

i,t+1 = w+
i,t and w−

i,t+1 = w−
i,t.

t← t + 1.

Figure 2.7: Pseudo-code for the Balanced Winnow algorithm.

One advantage of Balanced Winnow is that complemented attributes are not needed.

Negative weights are created with the w−
t weights. However a constant 1 attribute is still

needed to create a threshold. Another much more subtle advantage involves the proof

technique. We show in Appendix C that the proof technique is not tight. Therefore,

we could get better than expected performance for certain types of problems.

The main difficulty of Balanced Winnow, just like the other Winnow algorithms,

is the setting of the α parameter. In Section 2.5, we address the issue of parameter

selection.

2.3.5 ALMA Algorithm

The ALMA algorithm was originally published in [Gen01]. It is based on a generaliza-

tion of Perceptron and Normalized Winnow called a p-norm algorithm [GLS01]. The

algorithm includes a parameter p that allows it to perform like the Perceptron (p = 2),

a Winnow (p = O(log n)) algorithm, or something in between. While it has several

parameters, part of the algorithm’s appeal is that these parameters do not have to

depend on the target concept to achieve a good mistake bound. We give the code for
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ALMA(p,B,C)
Parameters

B ≥ 0 controls the algorithm margin.
C > 0.
p ≥ 2 and q = p

p−1 control the norms.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = 0 are the algorithm weights.
k = 0 is the number of updates.

Trials
Instance: xt ∈ Rn.
Prediction: If wt · xt ≥ 0

predict ŷt = 1 else predict ŷt = −1.

Update: Let yt ∈ {−1, 1} be the correct label and δ̂ = B‖xt‖p
√

p−1
k .

If yt(wt · xt) ≤ δ̂.

Let η =
C

√

k(p− 1)‖xt‖p
Let f(wi,w) = sign(wi)|wi|q−1/‖w‖q−2

q .

Let f−1(zi, z) = sign(zi)|zi|p−1/‖z‖p−2
p .

∀i ∈ {1, . . . , n} zi,t = f(wi,t,wt) + ηytxi,t.
∀i ∈ {1, . . . , n} w′

i,t = f−1(zi,t, zt).

∀i ∈ {1, . . . , n} wi,t+1 = w′
i,t/max(1, ‖w′

t‖q).
k ← k + 1.

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 2.8: Pseudo-code for the ALMA algorithm.

ALMA in Figure 2.8.

The ALMA algorithm works by computing a vector zt. This vector is roughly equiv-

alent to the weights used by the Perceptron algorithm. ALMA changes the influence

of the individual weights by computing weights proportional to zp−1
i,t . When p = 2 this

gives Perceptron like weights. As p gets larger the influence of larger z values increases

in a way that is similar to the multiplicative updates used by Winnow algorithms.

These updates are further refined by allowing η to control the size of each z change and

by a normalization step that is based on the size of the weights. These additions allow

the algorithm to adapt the size of the updates during learning.

Let u be the vector of target weights where each ui ∈ R, let ω = maxi∈T ‖xi‖p, and
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let δ > 0 be the margin. The noise for instance xt is defined as νt = max(0, δ − ωytu ·

xt/‖xt‖p). This unusual definition of noise is required since the algorithm effectively

normalizes every instance vector so that its p-norm is 1. The hyperplane for this noise

function is still u · xt. In Section 2.4.1, where we compare the various algorithms, we

will see this definition of noise can be exploited by an adversary to increase the number

of mistakes.

The main term in the mistake bound is G = (p− 1)ω2‖u‖2q/δ2. This term is similar

to the bound for the Perceptron when p = 2 and similar to the bounds on the Winnow

algorithms when p = lnn. However, the full bound is more complicated.

Theorem 2.9 (Gentile, 2001) The number of mistakes made by ALMA(p) when

C =
√

B2 + 1−B is at most

G

2C2
+

√

G2

4C4
+

G

C2
+

GN

δC2
+

N

δ
.

This bound is in a slightly different form, but it is equivalent to the bound first

published in [Gen01]. First, we have simplified their bounds by removing a parameter.

This parameter was only useful for improving the bound when there are no noisy

instances. Second we have moved some factors around to make it easier to compare to

the other algorithms.

In this thesis, we always set B = 0 and C = 1. This optimizes the bound in

Theorem 2.9 and corresponds to making ALMA mistake-driven. When B > 0, ALMA

performs updates on instances that are correctly predicted but close to the current

algorithm hyperplane. This is a technique that has been used in the past to improve

the performance of linear-threshold learning algorithms [Ros62, LL00]. Unfortunately,

this can not improve the performance against adversaries.7 However, the technique

might be effective when the instances are generated by something weaker than an

adversary. ALMA has a sophisticated way of using these extra updates to approximate

a hyperplane that maximally separates the data in a way similar to Support Vector

Machines [CV95]. While this technique seems promising, we do not explore these extra

updates in this thesis.

7See Appendix F for details.



33

A large advantage of this algorithm is that the parameters are easy to set. To get a

Perceptron like bound set p = 2; to get a Winnow like bound set p = lnn. Notice that

for the Winnow case, no multiplication parameter is necessary. The only variable the

algorithm needs is n which is available for most problems. In chapter 6, we will use a

slightly modified form of the ALMA algorithm that allows learning with shifting target

concepts [KSW02]. This form is identical except that it removes parameters B and C

and instead gives η and δ̂ fixed values. Unfortunately, its mistake bound will depend

on setting these parameters correctly.

2.4 Mistake bound Comparison

One problem with the previously published mistake bounds of linear-threshold algo-

rithms is that they use a similar notation, but the notation often has a slightly different

meaning for each algorithm. The main difference is the target weights. The algorithms

need different target weights because some algorithms can not directly represent neg-

ative weights, and some algorithms can not directly represent the correct threshold.

These differences change the value of δ, νt, and the number of attributes.

In this section, we give a standard form of target function. We use this target func-

tion to give comparable mistake bounds for each algorithm. To simplify the analysis,

we often remove some negative terms from the bounds. This means the upper-bounds

are not as tight as possible. Refer to earlier in this chapter or the appendices to tighten

the mistake bounds. After we give the mistake bounds, we will comment on some of

the similarities and differences between the bounds of the algorithms.

One difficulty with a standard target function is that the target function that gives

the best mistake-bound for one algorithm may not be the best choice for another algo-

rithm. For example, a learning problem might have two sets of attributes that indepen-

dently give enough information to determine the concept. One set of attributes may

give a better mistake bound for Normalized Winnow, the other set may give a better

mistake bound for Perceptron. To avoid this problem, we restrict our analysis to the

comparison of algorithm mistake bounds when given a particular target function and
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margin.

2.4.1 Standard Target Function

We use the following notation for the standard target function. Let x ∈ [0, 1]n be the

instance vector.8 Assume that all target weights are non-negative and that
∑n

i=1(ui +

uc
i ) = 1 where at most one of ui and uc

i is positive. Let c ∈ (0, 1) be the threshold and

δ ∈ [0, c] be the margin. We define the standard target function as

Predict 1 if
n
∑

i=1

uixi,t +
n
∑

i=1

uc
i(1− xi,t) ≥ c + δ;

Predict -1 if

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i (1− xi,t) ≤ c− δ.

Including the complemented attributes, there are a total of 2n attributes. The noise

function is derived directly from the target function. In the case of the standard target

function, νt = max(0, δ − yt(
∑n

i=1 uixi,t +
∑n

i=1 uc
i x̄i,t − c)).

Our goal is to express the bounds of all the algorithms covered in this chapter in

terms of this notation. Several simple operations on a target function preserve the

target function’s hyperplane and have easily calculated effects on the noise function

and other parameters of the target.

We consider two operations. First, we multiply both sides of the prediction inequal-

ities by a positive constant k1. The purpose of this operation is to renormalize the

weights.

Predict 1 if k1

(

n
∑

i=1

uixi,t +
n
∑

i=1

uc
i (1− xi,t)

)

≥ k1c + k1δ;

Predict -1 if k1

(

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i (1− xi,t)

)

≤ k1c− k1δ.

This new target function has a margin of k1δ and new target weights of u/k1 and uc/k1.

The new noise function is νt/k1. The number of attributes stays the same.

8Other instance representations could be beneficial for the Perceptron and ALMA algorithms. While
we do not explore this issue in our definition of a standard target function, more information can be
found at the end of Section 2.2.
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Second, we add a value k2 to both sides of the target function. The purpose of this

operation is to change the algorithm’s threshold.

Predict 1 if k2 +

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i (1− xi,t) ≥ k2 + c + δ;

Predict -1 if k2 +

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i(1− xi,t) ≤ k2 + c− δ.

This new target function gives the same margin and the same noise function but changes

the threshold. It can be created by using an attribute that is always 1, but the specific

details depend on the algorithm.

Notice that these two operations behave the same on both prediction inequalities.

Therefore, we only consider the inequality
∑n

i=1 uixi,t +
∑n

i=1 uc
i x̄i,t ≥ c + δ for the

target functions. The operations on the other inequality are symmetric.

Unnormalized Winnow

We start with the standard target function and show how to modify it into a form used

by Unnormalized Winnow. The standard target function predicts 1 if

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i (1− xi,t) ≥ c + δ.

Dividing both sides by c gives

∑n
i=1 uixi,t +

∑n
i=1 uc

i (1− xi,t)

c
≥ 1 +

δ

c
.

This target function can be used by Unnormalized Winnow and Complemented Unnor-

malized Winnow.

Using Theorem 2.5, the number of mistakes made by Unnormalized Winnow is at

most
(2c + δ) ln

(

2n
c

)

δ2
+

2.2N

δ
.

Using Corollary 2.6, the number of mistakes made by Complemented Unnormalized

Winnow is at most
(2(1 − c) + δ) ln

(

2n
1−c

)

δ2
+

2.2N

δ
.
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Notice that the noise term of Unnormalized Winnow is the same as with the original

representation. This is common in the conversions because the operations on the target

functions usually change N and δ by the same amount.

Normalized Winnow

We start with the standard target function and show how to modify it into a form used

by Unnormalized Winnow. The standard target function predicts 1 if

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i (1− xi,t) ≥ c + δ.

When θ = c, the target function is in a form that can be used by Normalized Winnow.

If θ 6= c, we can get a usable target function by putting target weight on either a

constant 0 or constant 1 attribute.

If θ ≤ c then multiply the inequality by θ/c to get

θ

c

(

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i(1− xi,t)

)

≥ θ +
θ

c
δ.

This is close to an acceptable target function, but we need the weights to sum to 1.

Therefore set the weight of an attribute that is always 0 to (c − θ)/c. This creates

a target function that is usable by Normalized Winnow. Applying Theorem 2.7, the

number of mistakes made by Normalized Winnow is at most

2( c
θ )2
(

θ(1− θ) + θδ|1−2θ|
c

)

ln (2n + 2)

δ2
+

2.8N

δ

If θ ≥ c then multiply the inequality by (1− θ)/(1− c) to get

1− θ

1− c

(

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i (1− xi,t)

)

≥ c(1− θ)

1− c
+

1− θ

1− c
δ.

The target weights need to sum to 1 so add (θ− c)/(1− c) to both sides. This gives us

1− θ

1− c

(

n
∑

i=1

uixi,t +
n
∑

i=1

uc
i (1− xi,t)

)

+
θ − c

1− c
≥ θ +

1− θ

1− c
δ.

This creates a target function that is usable by Normalized Winnow. Applying Theo-

rem 2.7, the number of mistakes made by Normalized Winnow is at most

2( 1−c
1−θ )2

(

θ(1− θ) + (1−θ)δ|1−2θ|
1−c

)

ln (2n + 2)

δ2
+

2.8N

δ
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We can combine the previous results by defining H = max
(

c
θ , 1−c

1−θ

)

. This gives an

upper-bound of

2H2
(

θ(1− θ) + δ|1−2θ|
H

)

ln (2n + 2)

δ2
+

2.8N

δ

Balanced

The standard target function predicts 1 if

n
∑

i=1

uixi,t +

n
∑

i=1

uc
i (1− xi,t) ≥ c + δ.

To convert the standard target function to the form used by Balanced, we need to

uncomplement the attributes.

n
∑

i=1

uixi,t −
n
∑

i=1

uc
ixi,t +

n
∑

i=1

uc
i − c ≥ δ.

The term
∑n

i=1 uc
i − c can be represented by the weight on an extra attribute that is

always 1. If this term is positive, it can represented by a target weight associated with

u otherwise it can represented in uc. However, the target weights do not sum to 1 with

this extra target weight. In order for the bounds to apply, we need to divide the target

by (1 + |c−∑n
i=1 uc

i |). This gives a target that predicts 1 when
∑n

i=1 uixi,t −
∑n

i=1 uc
ixi,t

(1 + |c−∑n
i=1 uc

i |)
− c−∑n

i=1 uc
i

1 + |c−∑n
i=1 uc

i |
≥ δ

1 + |c−∑n
i=1 uc

i |
.

This creates a target function that is usable by Balanced Winnow. Applying Theo-

rem 2.8, the number of mistakes made by Balanced Winnow is at most

2(1 + |c−∑n
i=1 uc

i |)2 ln (2n + 2)

δ2
+

2.8N

δ
.

Perceptron

The target function for Balanced Winnow also works for Perceptron. The only difference

is that Perceptron can represent negative target weights, so it does not explicitly need

uc. Instead Perceptron uses u− uc as the target weights.

Following the same manipulations as Balanced Winnow we convert our standard

target function to
n
∑

i=1

(ui − uc
i )xi,t +

n
∑

i=1

uc
i − c ≥ δ.
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At this point, we could apply the mistake bound from Section 2.2, since there is no

requirement to normalize the target weights. However, we find it easier to compare the

algorithms if we normalize the target weights so that their absolute value sums to 1.

This new target function predicts 1 when

∑n
i=1(ui − uc

i )xi,t

(1 + |c−
∑n

i=1 uc
i |)
− c−∑n

i=1 uc
i

1 + |c−
∑n

i=1 uc
i |
≥ δ

1 + |c−
∑n

i=1 uc
i |

.

The Perceptron algorithm mistake bound explicitly involves the target weights and

the instances, so we need some new notation. Let ûi = (ui − uc
i )/ (1 + |c−∑n

i=1 uc
i |),

and for the threshold, let ûn+1 = (
∑n

i=1 uc
i − c)/ (1 + |c−∑n

i=1 uc
i |). Let x̂i,t = xi,t

and x̂n+1,t = 1. This adds the attribute that is always 1. Based on Theorem 2.3, and

defining β̂2 =
∑

t∈MT
‖x̂t‖22/|MT |, the number of mistakes made by Perceptron is at

most

(1 + |c−∑n
i=1 uc

i |)2β̂2‖û‖22
δ2

+
2N

δ
.

ALMA

The target function for ALMA is the same as Perceptron; predict 1 when

∑n
i=1(ui − uc

i )xi,t

(1 + |c−∑n
i=1 uc

i |)
− c−∑n

i=1 uc
i

1 + |c−∑n
i=1 uc

i |
≥ δ

1 + |c−∑n
i=1 uc

i |
.

We normalized the target weights to simplify comparison with other algorithms. Let

ûi = (ui − uc
i )/ (1 + |c−∑n

i=1 uc
i |), and for the threshold, let ûn+1 = (

∑n
i=1 uc

i −

c)/ (1 + |c−∑n
i=1 uc

i |). Let x̂i,t = xi,t and x̂n+1,t = 1. This adds an attribute that

is always 1. Using this notation, the target function is predict 1 if

n
∑

i=1

ûix̂i,t ≥
δ

1 + |c−∑n
i=1 uc

i |
.

The difficulty for ALMA comes from the unusual definition of noise.9 Let ω =

maxt∈T ‖x̂t‖p. The noise for ALMA is defined as

νt(ALMA) = max

[

0,
δ

1 + |c−∑n
i=1 uc

i |
− yt

ω(û · x̂t)

‖x̂t‖p

]

.

9The definition of noise for the other algorithms seems more natural because the amount of noise is
proportional to the amount the relevant attributes are perturbed.
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For any instance where ytû · x̂t ≥ 0, this noise is maximized when ‖x̂t‖p = ω. For

these instances, νt(ALMA) ≤ (1 + |c−∑n
i=1 uc

i |))νt(Std), where νt(Std) = max(0, δ −

yt(
∑n

i=1 uixi,t +
∑n

i=1 uc
i (1 − xi,t) − c)) is the noise for the standard target function.

The noise is worse when ytû · x̂t ≤ 0. This corresponds to instances on the wrong side

of the target hyperplane.

To help understand the behavior of the noise when yt(û · x̂t) ≤ 0 define A =

(1 + |c−
∑n

i=1 uc
i |) and κ = δ

δ+A|û·x̂t|
∈ (0, 1]. Because there is an attribute that is

always 1, mint∈T ‖x̂t‖p ≥ 1. We can use these terms to bound the change in noise.

Based on the above notation, when ytû · x̂t ≤ 0,

νt(ALMA)

νt(Std)
=

1

A

(

δ + A ω
‖x̂t‖p

|û · x̂t|
δ + A|û · x̂t|

)

=
κ

A
+

ω

‖x̂t‖p
(1− κ)

A
<

ω

A
.

Therefore, the noise in the ALMA algorithm changes by a factor that is an average

of 1/A and ω/(‖x̂t‖pA). The upper-bound of ω/A should be accurate when κ and

‖x̂‖p are small. The value of κ is small for problems where the adversary creates noisy

instances that are far away from the target hyperplane. Whether ‖x̂‖p can be made

much smaller than ω at the same time will depend on the target function.

In order to give the final bound let

G =
(1 + |c−

∑n
i=1 uc

i |)2(p − 1)ω2‖û‖2q
δ2

.

Based on Theorem 2.9, with our target function, the number of mistakes made by

ALMA is at most

G

2
+

√

G2

4
+ G +

GωN

δ
+

ωN

δ
.

2.4.2 Algorithm Comparison

In Table 2.1, we give the mistake bounds for the linear-threshold algorithms in this

dissertation. Since we have expressed the relevant notation of each algorithm in terms

of our standard target function, we can express each bound in that same notation.

To make the bounds easier to interpret, we have approximated some of the bounds

by removing lower order terms and/or simplifying the leading constant. As a reminder

on notation, c is the threshold of the standard target function. For Normalized Winnow
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Unnormalized Winnow
(2c + δ) ln

(

2n
c

)

δ2
+

2.2N

δ

Complemented Unnormalized Winnow
(2(1 − c) + δ) ln

(

2n
1−c

)

δ2
+

2.2N

δ

Normalized Winnow
2H2

(

θ(1− θ) + δ
H

)

ln (2n + 2)

δ2
+

2.8N

δ

Balanced Winnow
2(1 + |c−

∑n
i=1 uc

i |)2 ln (2n + 2)

δ2
+

2.8N

δ

Perceptron
(1 + |c−∑n

i=1 uc
i |)2β̂2‖û‖22

δ2
+

2N

δ

ALMA
(1 + |c−∑n

i=1 uc
i |)2(p− 1)ω2‖û‖2q
δ2

+
ωN

δ

Table 2.1: Comparison of mistake bounds for linear-threshold algorithms.

let H = max( c
θ , 1−c

1−θ ). For Perceptron let β̂2 =
∑

t∈MT
‖x̂t‖22/|MT |. For ALMA recall

that p ≥ 2, q = p/(p−1), and ω = maxt∈T ‖x̂t‖p. Also, for both Perceptron and ALMA

the vector û has a one-norm of 1.

The common element of all these bounds is the dependence of the mistake bounds

on 1/δ2 for the term that involves the target, and a dependence of 1/δ for the term

that involves the noise. Therefore as the δ term goes to 0, our upper-bounds will go to

infinity. Unfortunately, the δ margin can be surprisingly small even for problems with

binary attributes. There exist functions for which 1/δ grows exponentially with n. For

example,

f(x1, . . . , xn) = x1 ∨ (x2 ∧ (x3 ∨ (x4 ∧ · · · xn) · · ·))

has a δ of approximately (1/2)n/2 [Lit88]. This leads to a poor mistake bound. Fortu-

nately, as we shall see in later chapters, the real-world problems on which we experiment

do not exhibit such poor performance. Either they do not have such small δ values,

or the effects of small δ is mitigated because the problems are based on a distribution

generating the instances and only a small percentage of the instances have a small δ.
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Attribute Dependence

Looking at the bounds, we can lump the algorithms roughly into two group. The

algorithms that depend on ln(n) are the Winnow algorithms and ALMA(ln n). The

algorithms that depend on ‖xt‖22 are Perceptron and ALMA(2). (The two-norm comes

from the β and ω definitions.) ALMA has an algorithm in both groups. When p = 2

it has a bound that is similar to the Perceptron. When p = O(ln(n)) it has a bound

similar to Balanced Winnow. Taking p values in between will give algorithms that

interpolate between the two groups of algorithms [Gen03].

For algorithms with ln(n) in the bound, attributes not in the target function have

a small effect on the bound. These are called irrelevant attributes [Lit88]. If we take

a learning problem and add n1 attributes, the mistake bound only increases a small

amount because n + n1, the number of attributes, only appears in ln(n + n1).
10 This is

in comparison to the Perceptron like algorithms that depend on ‖xt‖22. Assuming that

the instances are in [0, 1]n, if the instance vectors have a large number of attributes

that are 1 then ‖xt‖22 ≈ n. Therefore, Winnow algorithms seem to be a better choice

when there are a large number of attributes.

There are situations where the ‖xt‖22 algorithms give better mistake bounds. If the

instance vectors are sparse on trials with updates then the ‖xt‖22 factor can be much

smaller than n. Also the ‖û‖22 factor can decrease the bound. Remember that ‖û‖1 = 1.

Therefore, if each of the ûi is 1/n then ‖û‖22 = 1/n. This is commonly interpreted to

mean that Perceptron does better than Winnow when there are a small number of

non-zero attributes and many of the attributes are relevant [Lit88, KW97].

However, a ln(n) bound seems more practical. For many problems, it is useful to

use a large number of speculative attributes. Often, only a few of these attributes are

needed to form a good target function, but the extra attributes are included since we

do not know the target function ahead of time. This common situation is what makes

the bounds for the Winnow algorithms attractive.

10The mistake bound may decrease if the new attributes can be used to create a target function with
a lower mistake bound.



42

Threshold Dependence

The threshold of the target function has a disproportionate effect on the mistake bound

for many of the learning algorithms. It is not just another target weight. At a mini-

mum, many of the algorithms need to learn at least part of the threshold. Perceptron,

Normalized Winnow, Balanced Winnow, and ALMA all need to use weight on a con-

stant attribute to learn the threshold. For most of these algorithms, the threshold adds

a (1 + |c−∑n
i=1 uc

i |)2 factor to the concept part of the bound. Since |c−∑n
i=1 uc

i | is at

most 1, this can quadruple the bound.

The threshold value c has a particularly large effect on the mistake bounds of the

Winnow algorithms. Unnormalized Winnow gets an improved bound when the thresh-

old is small because of the (2c + δ) factor. Complemented Unnormalized Winnow gets

an improved bound for c values close to 1 because of the (2(1 − c) + δ) factor. When

θ = c, Normalized Winnow is potentially the best algorithm because of the 2θ(1 − θ)

factor. It performs well for large and small c values. Even when θ = c = 1/2, the

Normalized Winnow algorithm has a target function bound of roughly ln(2n)
2δ2 . The 1/2

factor on this term gives it an advantage over all the other Winnow algorithms. Unfor-

tunately, as θ gets further away from c, the value of H grows. For Normalized Winnow,

the optimal value of θ is c and values away from c cause the mistake bound to grow

rapidly.

Balanced Winnow does not seem to be affected by the value of c as much as the

other Winnow algorithms. However, as shown in Appendix C, the Balanced Winnow

bound is not tight and the algorithm performs better for certain types of problems. In

particular, problems with small c values should perform better than indicated in the

bounds.

Noise Dependence

Last we want to mention the large similarity between all the parts of the bounds dealing

with noise. Most of the algorithms have a noise bound of kN/δ where k is a constant.

Therefore, every time a value of δ is added to N , the number of mistakes increases by
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k. Put another way, the distance of the noisy instance from the margin determines the

amount the instance increases the mistake bound. A natural measure of the distance is

in terms of δ. If an instance is δ away then the instance is right on the target function

hyperplane and is close to being incorrectly predicted by the target function. As noisy

instances get further away from the correct side of the margin, they have a stronger

effect on the mistake bound.

Using our above notation and our definition of N , all deterministic linear-threshold

algorithms must have k ≥ 1. More precisely, for a learning problem with linear-

threshold target functions, the number of mistakes is at least M(Opt) + ⌊N/δ⌋ where

M(Opt) is the maximum number of mistakes made by the optimal algorithm for the

learning problem with no noisy instances. This is because an adversary can always force

a deterministic algorithm to make a mistake with an instance that has νt = δ noise.

The adversary just picks an instance on the target function hyperplane and sets the

label to ensure that the algorithm makes the wrong prediction. This forces a mistake

for every δ amount of noise. Therefore, for any algorithm, the adversary can create

at least M(Opt) mistakes using non-noisy instances and then another ⌊N/δ⌋ mistakes

using noisy instances.

Looking over the algorithms, ALMA(p) potentially gives the worst behavior because

of the k = ω = maxi∈T ‖xi‖p factor in the noise term. This is a result of the noise

definition used by ALMA. The effect is large when p is small, for example, when p = 2

the value of ω could be as large as
√

n + 1. When p = ln n the effect is less severe since

ω ≤ e. As explained in Section 2.4.1, this poor behavior depends on the adversary

being able to exploit this weakness.

As we saw in Section 2.2, the Perceptron algorithm has optimal performance as the

total noise gets large. In fact, many of the algorithms can give optimal performance on

noisy instances. We show in the various Winnow appendices that the noise bounds for

the Winnow algorithms approach N/δ as the multiplier approaches 1. This is intuitive,

since smaller multipliers cause the algorithm to make a smaller adjustment on a noisy

instance. However, there is a trade-off with the Winnow algorithms. As the multiplier

gets smaller, the target function term in the mistake-bound grows. Fortunately, the



44

multiplier that is optimal for learning the target function often gives reasonable per-

formance for noise. However, if the noise is excessive, a smaller multiplier can lower

the mistake-bound. In practice, one should try a range of multipliers to get the best

performance.

Finally, we do not want to give the impression that a N/δ mistake-bound is ideal.

In many ways, optimal is still far from good. If a noisy instance has νt = 10δ then it

will only cause 1 mistake on the target function, but according to the bounds, appears

to cost at least 10 mistakes for the learning algorithms. The lower-bound relies on all

the noisy instances having a νt = δ. Realistic problems may have νt > δ for many of

the noisy instances. Therefore, even if the noise term is close to N/δ, noisy instances

can have a large effect on the number of mistakes.

2.5 Parameters

One difficulty with the algorithms we use in this thesis is that they often have various

parameters to set. In fact, as we have seen, the mistake bound of an algorithm often

depends on the parameters being set appropriately. Unfortunately, for most practical

problems, we do not have enough information about the problem to set the parameter

to the theoretically optimal value. In addition, we do not know that the theoretically

optimal value, based on the mistake bound proof, is the best value for the problem at

hand. The proofs assume an adversary is generating the instances. When something

weaker than an adversary, such as a distribution, is generating the instances, a different

set of parameters may give better results. Even in the case of an adversary, there are

currently no lower bound arguments for learning arbitrary linear-threshold functions

with these algorithms that show the above parameter choices are optimal.

One solution to this parameter problem is to combine the results of several versions

of the algorithm where each version is using a different parameter value. Because

the algorithm’s mistake bound varies continuously with the input parameters in the

neighborhood of the optimal value,11 hopefully one choice of parameters will be close

11This can be seen in the proofs found in the appendices.
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enough to give good results. Ideally, we would like to make a number of mistakes

close to the algorithm with the optimal parameters. The naive way to do this is to

run several versions with different parameters and predict with the algorithm that is

currently making the fewest mistakes. In practice, this will often work quite well, but

an adversary can exploit this strategy to greatly increase the number of mistakes.

A better alternative is to use the Weighted Majority Algorithm (WMA) [LW94].

WMA is an on-line algorithm that is designed to perform almost as well as the best

expert. Typically, we use the predictions of various algorithms and input them as

experts into WMA. By best expert, we mean the expert that makes the fewest mistakes.

As long as one expert is based on an algorithm with a “good” set of parameters, WMA

will perform well.

WMA is similar to the Normalized Winnow algorithm with θ = 1/2 and the in-

stances restricted to {0, 1}n.12 The only difference is WMA updates its hypothesis on

every trial, not just trials with mistakes. This change sacrifices the ability of WMA to

learn arbitrary linear-threshold functions in exchange for fewer mistakes when learning

the best expert.13 More formally, let n be the number of experts, let α = 2, and let q

be the minimum number of mistakes by any expert. The number of mistakes made by

WMA is at most 2.41q +2.41 ln n [LW94]. There are other expert algorithms that have

similar bounds [CBFH+97].

While WMA is a good solution, particularly when dealing with an adversary, we

explore other solutions to the parameter selection problem in Chapter 3 and Chapter 7.

These solutions are aimed at problems where instances are generated by distributions.

Distributions are more typical of the problems one is likely to encounter in practical

machine learning and is the focus of much of the remaining chapters in this thesis.

12To use the algorithms in this thesis as experts, one must change any -1 prediction of an algorithm
to 0 before inputting the prediction into WMA.

13In truth, making updates on every trial does not improve the performance against an adversary
but can improve performance when dealing with something weaker than an adversary.
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2.6 Summary

In this chapter, we give the linear-threshold algorithms used in this thesis and explain

the adversarial on-line model that is commonly used to analyze these algorithms. For

each algorithm, we give some information that may be useful in determining when to

use the algorithm, such as a bound on the number of mistakes and conditions for when

that bound is valid. Some of these bounds are improvements to previously published

results. More details can be found in the appendices.

To facilitate comparison between the various algorithms, we convert all the mistake

bounds into a single consistent notation. In previously publications, each algorithm

used slightly different conventions and notation making any comparison difficult. With

this uniform notation, we can more easily identify potential advantages between the

various algorithms in the adversarial on-line setting.

These upper-bounds on the number of mistakes depend on certain details of the

learning problem. For most problems, some of these details are unavailable to the

learner. However, the bounds are still of value. First, a mistake-bound guarantees that

the algorithm will work for a wide range of problems. An algorithm without a proven

mistake bound may fail on untested problems. Second, a mistake bound allows us to

easily compare algorithms. This comparison may show a particular algorithm is superior

on a set of problems. Third, the bounds quantify the performance of the algorithms

in terms of various problem parameters. For example, the Winnow algorithm performs

well even with a large number of irrelevant attributes. This property is evident in the

mistake bound.

While these linear-threshold algorithms are interesting in their own right, our main

purpose, in this dissertation, is to use them as pieces of more complicated algorithms.

The rest of the dissertation consists of techniques that modify on-line learning algo-

rithms to make them more suitable for handling specific types of problems. Many of

these techniques are designed explicitly for linear-threshold algorithms.
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Chapter 3

Improving On-line Learning with Hypotheses Voting

In the previous chapter, we focused on the traditional analysis of on-line learning in

which an adversary generates the instances. However, many practical problems do

not involve a malevolent adversary trying to maximize the number of mistakes. Some

problems are better modeled by sampling instances from a distribution. For example,

when predicting phenomena in the natural world, such as sunspots or earthquakes, it

is unlikely that nature is conspiring against our predictions.

All the algorithms we covered in Chapter 2 have performance guarantees against

an adversary. We call these adversarial algorithms. Because the upper-bound on mis-

takes for an adversary covers all possible sequences of instances, these mistake bounds

also apply when the instance are sampled from a distribution. Therefore adversarial

algorithms are often applied to distribution based problems [CS96, LSCP96, DKR97,

KMB03, BKV03, KR98, ZDJ01, TCS03, RZ98, RtY01, Sid02, GR99, BB01, MKCN98].

Unfortunately, most adversarial algorithms do not exploit the extra assumptions im-

plicit when instances are generated by a distribution.

In this chapter, we give a technique that modifies an adversarial on-line algorithm

and improves its performance on problems where instances are independently picked

from an identical distribution. We give experiments that show these techniques lower

the number of mistakes on real world data sets along with arguments to justify why

this technique works.

Our technique modifies an existing on-line algorithm, B, to generate a new algo-

rithm. We call B the basic algorithm and the new algorithm V-B. A basic on-line

algorithm naturally generates new hypotheses as it changes its current hypothesis dur-

ing an update. V-B periodically saves some of these hypotheses and uses a weighted
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vote of the saved hypotheses for prediction. V-B selects these hypotheses in an attempt

to maximize the accuracy of prediction.

Our main algorithm of the chapter is V-Combine. It is nearly identical to V-B

except that it selects hypotheses from a set of basic algorithms. Any time algorithm

V-B selects the current hypothesis from algorithm B, algorithm V-Combine selects

the current hypothesis from whichever basic algorithm is currently making the fewest

mistakes. This allows algorithm V-Combine to select hypotheses from the best of the

basic algorithms.

This voting techniques is designed for inexpensive on-line algorithms. The algo-

rithms we have tested all allow instances xt ∈ [0, 1]n and use linear-threshold functions

to represent hypotheses. The time cost for these algorithms is O(mt) per trial where

mt is the number of non-zero attributes during trial t.1 A major constraint of our tech-

nique is to keep the computational advantage of these inexpensive algorithms. This is

necessary for problems with a large number of attributes. For example, we give results

from text data experiments that have over 30,000 attributes.

The remainder of the chapter is organized as follows. In Section 3.1, we give in-

formation on previous research with on-line voting techniques. In Section 3.2, we give

the motivation behind our on-line voting techniques. In Section 3.3, we give the voting

technique. This includes a six part incremental breakdown of the modifications used

in our voting procedure. In Section 3.4, we give experiments with the our voting tech-

nique on real world data sets. These experiments compare our technique with the basic

on-line algorithms and some previously published on-line voting techniques.

3.1 Previous Research

There is a wide range of previous work on using voting techniques to improve the

performance of prediction algorithms. However, only a small amount of this work has

considered on-line learning. In this thesis, we only consider previous work that deals

with on-line learning.

1More details can be found in Appendix D.



49

Our work builds off the on-line voting ideas in [Lit95]. The basic idea in [Lit95] is

to take a random uniform sample of 30 hypotheses from the previous trials. A majority

vote of these 30 hypotheses is used for predictions. To keep the computational costs

low, the hypotheses used from trial to trial are not independent. During every trial,

all the hypotheses currently used by the voting procedure have a small probability of

being replaced by the current hypothesis. By choosing this probability appropriately,

the hypotheses voting procedure predicts with a uniform sample of hypotheses from

previous trials. A large motivation of this voting technique is to reduce the effects of

noisy data on mistake-driven on-line learning algorithms [Lit95].

Another technique, presented in [OR01], uses bagging [Bre96] as a motivation to

improve on-line voting. The main idea is to create multiple hypotheses from various

samples of instances and then combine these hypotheses with a vote. The primary

means of sampling is a Poisson distribution with a hypothesis often getting multiple

copies of the current instance. Later we show that this technique is not as effective as

Littlestone’s voting for the algorithms considered in this thesis.

A related technique presented in [FG03] uses the Arc-x4 boosting algorithm [Bre98]

to improve performance with voting. The algorithm assigns a value to each instance

that is reflective of its importance in being classified correctly [Elk01]. All instances

start with an importance of 1. When an instance arrives it is used to update the voting

hypotheses sequentially. If the instance is predicted correctly by a voting hypothesis

then its importance weight is decreased. If the instance is predicted incorrectly then its

importance value is increased. This causes voting hypotheses later in the sequence to

focus more of their effort correctly predicting instances that are difficult for the early

hypotheses [FS96].

While the Arc-x4 algorithm is interesting, it allows the algorithm to explore a dif-

ferent representation space. We are primarily interested in linear-threshold functions

in this thesis. Boosting algorithms, in general, use their voting hypotheses as a way to

extend the representational ability of the algorithm. For example, an algorithm that

can only learn hyperplanes can be used with boosting to create an algorithm that can

learn a linear combination of hyperplanes that can perfectly separate the data [FS96].
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In many ways, this amounts to learning new features where each feature is a hyperplane

learned by focusing on a subset of the instances. While feature exploration is a desirable

research avenue for on-line learning, it is not a problem we address in this dissertation.

In [FS98], voting uses all the hypotheses generated during the previous trials. If a

hypothesis was used for l trials then it gets a weight of l when voting. This technique

can become expensive as the number of trials grows. Saving and predicting with all the

hypotheses multiplies the time and space costs of a mistake-driven algorithm by the

number of mistakes. For some problems, this can become computationally impractical.

The solution proposed in [FS98] for the Perceptron algorithm is to store only one

hypothesis that keeps track of the average weight values of all the hypotheses. Later,

we give results of this technique applied to all of our basic algorithms.

3.2 Voting Motivation

The main motivation for our voting technique is based on the observation that many

algorithms have unstable accuracy in their hypotheses when instances are generated by

a distribution. Instead of a smooth increase in accuracy over the course of the learning

trials, these algorithms have an accuracy that can jump over a range of values. While

this accuracy, on average, tends to increase, the trials with a low accuracy hypothesis

can inflate the number of mistakes.

A good example of this instability can be seen in Figure 3.1. The figure contains a

graph that shows the accuracy during a typical run of Balanced Winnow. The learning

problem is to predict whether or not an area of land has forest cover that is of type

spruce.2 The accuracy is measured at every trial by sampling with a holdout set of

10,000 test instances. As can be seen, the accuracy is unstable. These inaccurate

hypotheses cause extra mistakes.

The goal of an on-line algorithm is to minimize the number of mistakes. When the

instances are generated by a distribution, this is achieved by predicting on each trial

with a hypothesis that has high accuracy. All the algorithms in this thesis behave in a

2For more information on this concept see Section 3.4.1.
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Figure 3.1: Accuracy of Balanced with α = 1.2 on forest cover problem.

similar unstable way as Balanced Winnow on the data sets we have tested. This causes

these algorithms to make extra mistakes.

The lack of stable hypothesis accuracy can partially be explained by the mistake-

driven nature of these algorithms. As the current hypothesis improves, the algorithm is

more likely to feel the effect of the noisy instances since the instances that correspond

to the correct hypothesis are more likely to be skipped for updates. If the optimal

hypothesis is reached, only the noisy instances can update the hypothesis. These noisy

instances can cause a large change in the accuracy of the hypothesis.

Voting helps solve this problem in two ways. First, it uses a large number of hy-

potheses to remove the effects of poor hypotheses. If there are a few bad hypotheses,

they do not outvote the majority of good hypotheses. Second voting improves accuracy

by combining the influence of somewhat independent hypotheses. This is an effect that

is similar to bagging [Bre96]. When a noisy instance occurs, the hypothesis is often

perturbed to a poor hypothesis. The algorithm will continue to make updates on good,

non-noisy trials in an attempt to correct the hypothesis. It may not get all the way to
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the optimal hypothesis before another noisy instance perturbs the hypothesis in a po-

tentially new direction. The basic algorithm may never learn the optimal hypothesis, it

may only learn partially correct hypotheses. Since the trials are drawn from a distribu-

tion, the hypotheses are randomly perturbed and corrected based on the distribution.

For many distributions, this will cause the partially correct hypotheses to perform well

on different instances. Based on this intuition, these different hypotheses are likely to

be spread out over the various trials.

3.3 Voting Algorithm

In this section, we give the algorithmic details of transforming a basic algorithm into

our voting algorithm. We develop the voting technique gradually by starting with a

simple form of the algorithm and continually adding details until we get the complete

algorithm. In total, we make six refinements to our voting technique. We will give

names to each of these refinements so that we can later test the effect of each addition

with experiments. Our naming convention is to add a prefix to the name of the basic

learning algorithm. For example, let B be a basic learning algorithm. L-B is the name

we give to the Littlestone voting technique applied to algorithm B. The main algorithm

of this chapter uses all six of our refinements.

To analyze the cost of a voting procedure, we break the time complexity into two

pieces: the cost for the prediction step and cost of the update step. We assume that

the number of attributes in an instance is always n but that the number of non-zero

attributes for trial t is mt. Furthermore, we assume these instances are presented to

the learner in a sparse format that takes O(mt) storage.3 We assume that the basic

algorithms use O(n) storage for their hypotheses and that they can predict and update

these hypotheses in time O(mt). In many cases, our voting techniques needs to perform

predictions during updates. These predictions are counted with the update cost since

they occur during the update phase of on-line learning.

We need some additional notation to express the cost of the voting procedure. Let

3See Appendix D for more information on this sparse format.
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|MT | be the number of mistakes made by the basic algorithm on a sequence of instances

of length T . The particular sequence does not matter as the cost of the voting only

depends on the number of mistakes. To simplify our results, let m = maxt∈T mt. The

cost of the algorithm depends on the sparsity of the individual instances used, but it is

simpler to express the bounds in terms of the maximum sparsity.

3.3.1 Littlestone’s Voting

Littlestone’s algorithm [Lit95] runs a basic on-line algorithm with no modification,

however it does not use the basic algorithm’s hypothesis to make predictions. Instead

the algorithm stores h hypotheses, where h is a parameter set by the user, and predicts

according to the majority prediction of these h hypotheses. At the start of each trial,

the voting algorithm potentially replaces each of the the h voting hypotheses with the

current hypothesis of the basic algorithm. Each hypothesis is independently replaced

with probability 1/t, where t is the current trial. This gives the voting a uniform

distribution of hypotheses from the sequence of hypotheses used over the previous

trials.

Over T trials, the total prediction cost of Littlestone’s voting procedure is O(hmT )

because each stored hypotheses must make a prediction on every trial and each pre-

diction takes O(m). The update cost is more complicated since the voting algorithm

is randomized. Each hypothesis is replaced with probability 1/t on trial t, therefore

each hypothesis is expected to be replaced
∑T

t=1 1/t ≤ ln T + 1 times. Since the cost

of replacing a hypothesis is O(n) and there are h hypotheses, the total expected cost

is O(hn log T ). Adding in the cost for updating the basic algorithm gives a cost of

O(m|MT |+ hn log T ). This gives a total expected time of O(hmT + hn log T ) for pre-

dicting and updating. The space complexity is just the space complexity of the basic

algorithm plus O(hn) to store the h voting hypotheses. For all the algorithms we

consider, this gives an O(hn) space requirement.
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3.3.2 Modification A

Our first modification is fairly simple. One problem with Littlestone’s voting procedure

is that at the start of voting the voting procedure is full of hypotheses from early trials.

Since the algorithm has not had time to learn, these hypotheses are quite poor. Unfor-

tunately, even after the basic algorithm starts to improve, these older, poor hypotheses

are used for voting until they are randomly replaced. To solve this problem, instead

of always predicting with the majority vote, we predict with the basic algorithm if it

has better performance. Our measure of performance is just the current number of

mistakes made by the voting hypotheses compared to the basic algorithm. In case of a

tie, we randomly pick which prediction to use.

A related minor modification is to always use the most recent hypothesis in the

voting procedure. We can do this essentially for free since the basic algorithm uses this

hypothesis. Also, majority voting is most effective when there is an odd number of

hypotheses.4 Therefore we always round h up to an even number. Combining this with

the most recent hypothesis gives an odd number of hypotheses.

The cost of this modification is essentially zero. The prefix given the voting proce-

dure that uses these modifications is Va. For example, applying these modifications to

the Perceptron algorithm forms the algorithm Va-Perceptron.

3.3.3 Modification B

In Littlestone’s algorithm, h hypotheses are selected uniformly over all the trials. This

has the effect of spreading out the selected hypotheses over the previous trials. This is

an inexpensive way to randomly select hypotheses that are likely to make mistakes on

different instances. As we explained in Section 3.2, the further apart the hypotheses

the more likely that they have been perturbed in different ways.

Our second modification removes the randomization and picks h hypotheses from

4Let V1 be a voting procedure with an even number of hypothesis. Let V2 be identical to V1 except
that one hypothesis has been removed. Algorithm V1 can have a tie when predicting a concept. The tie
is generally decided by an arbitrary choice. Algorithm V2 will give the exact same predictions as V1 on
all instances except instances that caused ties. Since V1 made an arbitrary decision on these instances,
the extra hypothesis of V1 is not useful.
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trial hypotheses spacing

1 (1) 1
2 (1,2) 1
3 (1,2,3) 1
4 (1,2,3,4) 1
5 (1,2,3,4) 1
6 (2,3,4,6) 2
7 (2,3,4,6) 2
8 (2,4,6,8) 2
9 (2,4,6,8) 2
10 (2,4,6,8) 2

trial hypotheses spacing

11 (2,4,6,8) 2
12 (4,6,8,12) 4
13 (4,6,8,12) 4
14 (4,6,8,12) 4
15 (4,6,8,12) 4
16 (4,8,12,16) 4
...

...
...

24 (8,12,16,24) 8
...

...
...

32 (8,16,24,32) 8

Figure 3.2: Example of the hypothesis replacement for voting modification B.

regularly spaced trials. For example, if h = 4 and the algorithm is at trial 128, we vote

with hypotheses from trial 32, 64, 96, and 128. However to always keep a close to equal

spacing between hypothesis, we would need to store many of the old hypotheses. For

example, at trial 132 to keep a roughly equal spacing we would need the hypotheses

from trial 33, 66, 99, and 132. To cut down on the storage requirements, we use a

doubling technique to ensure that we reuse many of the saved hypotheses.

The doubling technique works as follows. We only replace voting hypotheses at

certain trials in order to continually double the spacing between the voting hypothesis.

Let (t1, t2, . . .) represent the trial numbers from which we have selected hypotheses for

voting. In Figure 3.2, we give an example of how modification B works when h = 4.

Every time a hypothesis is added it is marked with the current trial number. At the

start, the algorithm just fills the voting with the first 4 hypotheses from the first 4

trials. At this point, the spacing between hypotheses is 1 trial. Next, the algorithm

adds new hypotheses to give a spacing of 2. Therefore, the next hypotheses are added

at trial 6 and 8. To add these hypotheses, we need to remove some existing hypotheses.

The key to the technique is to always remove a hypothesis that creates a gap with the

appropriate spacing. In this example, currently we want to create a spacing of 2 trials.

We remove the hypothesis that corresponds to trial 1 when adding the hypothesis from

trial 6, and we remove the hypothesis from trial 3 when adding the hypothesis from
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Hypotheses replacement

Let t be the current trial and let

φ =

⌈

lg

(

t + 1

h

)⌉

k =

⌊

t− h2φ−1

2φ

⌋

Add hypothesis
Next hypothesis added from trial h2φ−1 + (k + 1)2φ.

Remove hypothesis
Next hypothesis removed from trial (2k + 1)2φ−1.

Figure 3.3: Pseudo-code to determine which hypotheses to add and remove for voting
modification B.

trial 8. The new hypotheses and the new gaps create a spacing of two trials while only

replacing half of the h hypotheses. Next the algorithm creates a spacing of 4 trials.

This continues each time doubling the spacing.

Modification B replaces half of the existing hypotheses every time we double the

spacing. It is not difficult to implement this system efficiently. When we reach the

trial for the new hypothesis, we replace the oldest hypothesis that needs to be removed

for the new spacing. The hypothesis to be removed follows a straightforward pattern.

The first hypothesis to be placed with spacing 2s removes the hypothesis with trial

number 2s−1. The next hypothesis with spacing 2s removes the hypothesis with trial

number 3(2s−1). This continues until all h/2 hypotheses from spacing 2s are copied to

the voting algorithm. In Figure 3.3, we give pseudo-code to determine the next trial

to add a hypothesis to voting and which hypothesis to remove. The prefix given the

voting procedure that uses this modification is Vb.

The time complexity of prediction is the same as Littlestone’s voting algorithm,

O(mhT ), because we are still performing each prediction with at most h+1 hypotheses.

The updating is simplified since we do not have randomization. The cost can be derived

from the number of times the spacing doubles. For T > h, the trial number is at

least (h/2 + 1)2s where 2s is the current spacing. This is based on when the first

hypothesis with the new spacing arrives. This inequality can be rearranged to show

that s ≤ ⌊lg (2T/(h + 2))⌋ where T is the current trial. For the initial hypotheses, we

replace h hypotheses; for each following doubling, we replace h/2 hypotheses. This
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gives at most h + h⌊lg (2T/(h + 2))⌋/2 = O(h log T ) hypotheses copied. Including the

updating of the basic hypothesis, the total cost is O(mM + nh log T ) for updating.

Therefore, the total cost is the same as Littlestone’s voting technique.

3.3.4 Modification C

To further refine the voting, our third modification searches for high accuracy hypothe-

ses. Assume we are using modification B and that we have hypotheses from trials

(128, 256, 384, 512) where 2s = 128 is the size of the current spacing. Instead of using

hypotheses from these trials, modification C searches a window of trials centered around

theses numbers. The size of the window is 1 + min(w, f2s) where f ∈ [0, 1] is the frac-

tion of the full window to search and w is a parameter to control the maximum window

size. Letting w = 100 and f = 0.5, our example gives trial 256 a window from 224 to

288. As soon as we reach trial 224, we save the current hypothesis for voting. Call this

hypothesis h1. For each following trial, up to trial 288, if we get a new hypothesis, we

estimate its accuracy. If that accuracy is higher than the estimate for h1, we replace

h1 with the new hypothesis. This testing and replacement continues until we reach the

end of the window.

Each time a new hypothesis is created, we estimate its accuracy by keeping track

of the number of instances it predicts correctly during on-line learning. Let a be the

number of instances predicted correctly by the hypothesis and let b be the number of

total instances predicted. The accuracy estimate is (a + 1)/(b + 2). We refine this

estimate by saving r recent instances and testing the accuracy of the hypothesis on

these r instances. Let c be the number of instances predicted correctly from the saved

instances. Our refined estimate is (a+ c+1)/(b+ r+2). The prefix given to the voting

procedure that use this modification is Vbc since we must use modification B in order

to use modification C.

The time complexity of the predictions is still O(hmT ). The time complexity of the

updates is based on the number of hypotheses that we test using the r saved instances,

and the number of times we copy a hypothesis because it appears better than our

current hypothesis. When dealing with modification B, we derived that there is a new
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window at most h+h lg (2T/(h + 2)) /2 = O(h log T ) times. For each of these windows,

we need to make predictions on at most w hypotheses with r instances. In practice, the

number of predictions is much smaller than w since we only need to test hypotheses

that have changed. If a hypothesis appears more accurate then we need to copy that

hypothesis for voting. At worst this means we have to copy a hypothesis for all w trials

of the voting window. Again, this will typically be smaller since we only make a copy

when a new hypothesis performs better on our statistical test. Therefore the worst-case

cost of the updates is O(mM + (rwm + wn)h log T ). We also need extra space to store

the extra r instances. Storing them in a sparse format gives a total space complexity

of O(hn + rm).

3.3.5 Modification D

With modification C, we have already spent the effort to estimate the accuracy of

the hypotheses we are using for voting. A further modification is to use those accuracy

estimates to compute weights for voting. We use a weighting scheme related to the Naive

Bayes algorithm [DH73]. While it is possible to use the full Naive Bayes algorithm to

compute weights for voting, the lack of real independence between the hypotheses can

cause it to make more mistakes than the following simplified version.

The voting procedure gives hypothesis hi a weight of log(pi/(1−pi)) where pi is the

estimate of the accuracy of hypothesis i used in voting. The voting algorithm predicts

the weighted majority prediction of all the hypotheses. These weights have the effect

of giving hypotheses with a lower accuracy a lower weight. This is helpful to reduce

the influence of poor hypotheses that are learned during the beginning trials. These

poor hypotheses can stay around a long time and cause extra mistakes. For example,

if h = 30, the hypothesis from trial 16 will still be used in the voting procedure during

trial 480. However, if the hypothesis has a relatively poor accuracy estimate then it

will have a smaller influence on the voting when using modification D. Even hypotheses

that are learned later in the learning process may benefit from these weights. The prefix

given a voting procedure that uses this modification is Vd.
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The additional cost of this modification is essentially zero if one has already per-

formed modification B and C. To perform this modification independently, the cost is

just based on modification C with a window size of w = 1. This will estimate the

accuracy of the new hypothesis which can then be used to compute the weight.

3.3.6 Modification E

If the voting procedure is doing poorly, it may be caused by a large number of early, poor

hypotheses. While modifications A and D help performance by reducing the influence of

poor voting hypotheses, we can also improve performance by removing these inaccurate

hypotheses and creating space for accurate hypotheses. Modification E accomplishes

this by restarting the voting procedure. After a restart, all the internal variables of

the voting procedure are reset to their initial values and the voting procedure restarts

with the current trial set as the initial trial. This effectively removes all the hypotheses

currently stored in the voting algorithm.

We only check for a restart after a certain number of trials in order to give the voting

procedure a chance to learn. After this designated number of trials, we continually check

to see if the basic algorithm has made fewer mistakes than the voting algorithm.5 If the

basic algorithm has made fewer mistakes then the voting algorithm is restarted. Let d

be the number of trials we wait until we start checking for a restart. The initial value of

d in our experiments is 50. After each restart, we double the value of d. Therefore, after

k restarts, the algorithm will wait 50(2k) trials until it begins checking for a restart.

This allows the voting algorithm to handle cases where a large number of trials is needed

before the voting procedure begins to pay off. It also keeps the extra cost associated

with restarts small. The prefix given to this voting modification is Ve.

This is the last voting modification that involves a prefix. Therefore our full tech-

nique applied to basic algorithm B is Vabcde-B. To simplify our notation, when using

all five previous voting modifications, we just use the name V-B. In other words, V-B

5Voting modification A uses the basic algorithm for prediction if it has fewer mistakes than the
voting procedure. Therefore, to accurately gauge the performance of voting, we need to explicitly keep
track of the number of mistakes made by the voting hypotheses.
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is the same as Vabcde-B.

The prediction time complexity for this modification is still O(hmT ). The update

cost is based on the number of restarts. Let q be the number of times the voting is

restarted. Based on the doubling scheme, T ≥ d
∑q−1

i=0 2i. Rearranging this inequality,

we get q ≤ lg (T/d). The total update cost will depend on the cost of an update

from the voting algorithm we are modifying. Let c be the voting update cost; the new

update cost is O(c log(T/d)). Assume B is a basic algorithm. The total update cost of

Vabcde-B is O(mM + (rwm + wn)h(log T )2). As T grows this still compares favorably

to the prediction cost. The space complexity of modification E is the same as the voting

algorithm it is modifying.

3.3.7 Modification F

Our last refinement is a way to combine several different learning algorithms into a

single voting technique. This is helpful if no single basic algorithm is the best on all

problems. We want a voting algorithm that, in a sense, finds the best basic algorithm

for voting on a particular problem. This is also the case when considering parameter

choices for algorithms. A learning algorithm with parameters can be used to form

a collection of learning methods where each algorithm in the collection uses different

values for the parameters.

Modification F works on a set of basic algorithms. Let v be the number of basic

algorithms. For each basic algorithm we keep track of the total number of mistakes. At

the start of a trial, we determine which basic algorithm is making the fewest mistakes.

For the rest of that trial, we use that algorithm as the basic algorithm for voting.

Recall that the voting techniques all select a hypothesis for inclusion into voting based

on the current hypothesis of a basic algorithm. Modification F makes the voting select

a hypothesis from the basic algorithm that currently has the fewest mistakes. Notice

that this often causes the voting to store hypotheses that were generated by different

basic algorithms.

Modification F runs v basic algorithms but only runs one voting algorithm that

potentially selects hypotheses from all the basic algorithms. We call this algorithm
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Combine. The set of basic algorithms used in Combine are determined from context.

When a voting technique is used with Combine we add the prefix notation. Vabcde-

Combine is the main algorithm of this chapter since it uses all the voting modifications.

Again, for brevity, we also call this algorithm V-Combine.

When using Combine, the time complexity of voting increases because we have

to run v basic algorithms. The cost of finding which basic algorithm has the fewest

mistakes is O(vT ). The time complexity of prediction increases to O(vmT ) since each

basic algorithm needs to make a prediction on every trial. The time complexity of the

updates is increased by O(vmM ′) where M ′ is the maximum number of mistakes made

by one of the v basic algorithms. Therefore the total time complexity of modification

F is the time complexity of the original voting algorithm plus O(vmT ). For example,

Vabcde-Combine has a total time complexity of O(vmT +hmT +(rwm+wn)h(log T )2).

The space complexity of modification F is the same as the modified voting algorithm.

While this cost may seem excessive, most of these parameters are fixed by the user,

and can be used to control the cost. Furthermore, as the number of trials increases, the

logarithmic nature of the update bound means the prediction cost dominates. When

v = O(h), the time complexities of our full algorithm and Littlestone’s voting algorithm

are similar.

3.4 Voting Experiments

In this section, we give experiments to verify the effectiveness of the voting technique.

We perform the experiments using each of the linear-threshold algorithms of Chapter 2.

As we will see, voting greatly improves performance.

We use the algorithms and parameter setting in Table 3.1 for our experiments.

The Winnow-based algorithms use multiplier values 1.05, 1.2, 1.4, 1.7, and 2.0. For

Normalized Winnow, we select the same multipliers along with thresholds of 0.3, 0.5,

and 0.7. We choose these values based on preliminary experiments with artificial data.

For both Normalized and Unnormalized Winnow, for each attribute xi, we add a new

attribute 1 − xi. This doubles the number of attributes but allows these algorithms
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to learn negative weights. See Section 2.3.1 for more information on complemented

attributes.

It is possible that all these Winnow algorithms will perform poorly because of our

parameter choices. Fortunately the Perceptron, ALMA(2), and ALMA(ln n) algorithms

have a finite mistake bound for learning linear-threshold functions regardless of param-

eter settings.6 Furthermore, the two selections for the ALMA algorithm show its range

of behavior from Perceptron like performance to Winnow like performance. In total,

this gives us thirty-three algorithms to use with voting. Of course more algorithm and

parameter choices are possible, but we limited the selection to reduce the computational

complexity of the V-Combine algorithm.

3.4.1 Data Sets

Most of our data sets come from the UCI data set repository [DNMml]. We selected all

problems from this data set that deal with supervised inductive learning and that have

at least one thousand instances. This gives us a total of twenty-three UCI data sets. The

names of these data sets along with a brief description is given in Table 3.2. For each

data set we convert the problem into separate binary concepts. For any problem that

has L > 2 labels, this creates L binary concepts. For each particular label/problem, all

instances with that label are assigned a new label with value 1 while all other instances

get a label of -1.

We performed a small amount of processing on the UCI data sets. The data sets

have three types of attributes: binary, nominal, and continuous. The binary attributes

are left unchanged. A nominal attribute with k values is converted into k binary

attributes. Only one of these k attributes is set to 1 corresponding to the value of the

original nominal attribute. The remaining binary attributes are set to 0.

Every continuous attribute is converted into eleven attributes. First, the continuous

attribute is normalized into the [0, 1] interval. This is our first attribute; call it c.

Second, following the technique of [MHBD01], we create nine binary attributes that

6See Section 2.3.5.
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Full Name Abbreviated Name

Perceptron Per
ALMA(2) ALMA(2)
ALMA(ln n) ALMA(ln n)
Balanced Winnow(1.05) Bal(1.05)
Balanced Winnow(1.2) Bal(1.2)
Balanced Winnow(1.4) Bal(1.4)
Balanced Winnow(1.7) Bal(1.7)
Balanced Winnow(2.0) Bal(2.0)
Unnormalized Winnow(1.05) UWin(1.05)
Unnormalized Winnow(1.2) UWin(1.2)
Unnormalized Winnow(1.4) UWin(1.4)
Unnormalized Winnow(1.7) UWin(1.7)
Unnormalized Winnow(2.0) UWin(2.0)
Complemented Unnormalized Winnow(1.05) CUWin(1.05)
Complemented Unnormalized Winnow(1.2) CUWin(1.2)
Complemented Unnormalized Winnow(1.4) CUWin(1.4)
Complemented Unnormalized Winnow(1.7) CUWin(1.7)
Complemented Unnormalized Winnow(2.0) CUWin(2.0)
Normalized Winnow(1.05,.3) NWin(1.05,.3)
Normalized Winnow(1.2,.3) NWin(1.2,.3)
Normalized Winnow(1.4,.3) NWin(1.4,.3)
Normalized Winnow(1.7,.3) NWin(1.7,.3)
Normalized Winnow(2.0,.3) NWin(2.0,.3)
Normalized Winnow(1.05,.5) NWin(1.05,.5)
Normalized Winnow(1.2,.5) NWin(1.2,.5)
Normalized Winnow(1.4,.5) NWin(1.4,.5)
Normalized Winnow(1.7,.5) NWin(1.7,.5)
Normalized Winnow(2.0,.5) NWin(2.0,.5)
Normalized Winnow(1.05,.7) NWin(1.05,.7)
Normalized Winnow(1.2,.7) NWin(1.2,.7)
Normalized Winnow(1.4,.7) NWin(1.4,.7)
Normalized Winnow(1.7,.7) NWin(1.7,.7)
Normalized Winnow(2.0,.7) NWin(2.0,.7)

Table 3.1: A list of the basic algorithms used in our experiments.
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Name concepts attributes instances Description

ad 1 1589 3279 advertisements on Internet
adult 1 161 48842 salary census data
agaricus 1 112 8124 edible mushrooms
cmc 3 57 1473 contraceptive use
connect-4 3 126 67557 game openings
covtype 7 144 581012 forest cover type
flare 1 41 1066 solar flare activity
german 1 124 1000 bank loan
isolet 26 617 7797 speech recognition
kr-vs-kp 1 38 3196 chess end-game
letter 26 160 20000 optical character recognition
nursery 5 26 12960 nursery school applications
optdigits 10 640 5620 optical digit recognition
page-blocks 5 100 5473 document page layout
pendigits 10 160 10992 optical digit recognition
sat 6 360 6435 soil type from satellite image
segmentation 7 190 2310 image segmentation
shuttle 7 90 58000 shuttle data
spambase 1 570 4601 email spam
splice 3 287 3190 DNA splice junctions
thyroid 3 104 9172 thyroid disease diagnosis
mfeat 10 6490 2000 optical digit recognition
yeast 10 80 1484 protein localization sites
news 20 32889 18828 Usenet articles
reuters 11 18307 19813 news wire stories
web 7 22123 8282 web pages

Table 3.2: A description of the data sets used in our experiments.
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correspond to the numbers 0 to 9. We set attribute j to 1 if j/10 < c. The remaining

binary attributes are set to 0. For example, if c = .25 then the eleven attributes are

< .25, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 >.

This representation of continuous attributes allows a linear-threshold algorithm to

represent a wider range of concepts. For example, assume x is a single continuous

attribute and that x0 through x10 correspond to the new eleven attributes based on

x. Furthermore, assume attribute x only increases the chance of label 1 when 0.2 ≥

x ≤ 0.8. Therefore the algorithm can give weight w to attribute x3 and weight −w to

attribute x9, where w corresponds to the influence of this attribute range on the label.

This representation is not possible if the instance only uses attribute x.

We performed this processing on continuous attributes for all the UCI data sets

except for isolet. Isolet is too expensive for our experiments since it is composed of a

large number of trials, concepts, and continuous attributes. Instead, we just use one

attribute with value c for every continuous attribute in isolet.

We also use three data sets that come from popular text sources. Reuters-21578

(reuters) is a data set of Reuters news wire stories [HBdu]. The stories have been

categorized under various topics. We use the eleven labels that correspond to the most

frequent topics. The twenty Newsgroups data set (news) is a collection of Usenet articles

posted to twenty different newsgroups [HBdu]. The label of an article is based on the

newsgroups in which it appears. The 4 Universities data set (web) is a collection of

web pages that have been manually grouped into seven classes [CDF+ta]. For each of

these problems we create a binary concept to learn each label in the same way as the

UCI data sets.

The attributes describing a text document are based on the words in the document.

If the corresponding word is in the document the feature is set to 1 otherwise the feature

is set to 0 [Lew92]. This gives a sparse representation that can be efficiently handled by

the algorithms in this thesis. Before generating the features we remove a common set

of stop words [Fox90] and stem the words [McCow]. Also to further reduce the number

of features, we remove any word that appears less than three times in a data set.

To help design our techniques we used mostly artificial data sets. This is important



66

since we did not want to bias the results by using the testing data sets to help construct

the algorithms. The only exception is the Reuters data set. We made some small

improvements to the voting technique after noticing problems with the Reuters data

set. This was before we did any experiments with the UCI data sets.

3.4.2 Statistics

For all the experiments in this chapter, we report results based on an average of 50

bootstrap samples [HMM+03]. Let T be the number of instances for a particular

experiment. Each bootstrap sample is composed of min(T, 10000) instances sampled

independently with replacement from all the instances in a problem. We limit the

number of trials to 10,000 to reduce the cost of running the experiments. This does not

have a large effect on our results since most algorithms seem to stop learning before

10,000 trials on these experiments. For statistical significance, we give a confidence

interval for a bootstrap sample based on a t-test with a 95% confidence interval [DeG86].

Ideally, our result would include a graph that plots the total number of mistakes

at the various trials. In Figure 3.4.2, we give one such graph for the satellite data

set with label 1. We plot V-Combine along with the algorithms that make the fewest

mistakes from the basic algorithms and Littlestone’s voting procedure applied to the

basic algorithms. The plots are fairly smooth since it is an average over the 50 bootstrap

samples. Notice how the algorithms have a greater error rate at the beginning of the

trials and then settle towards a fixed slope line. This is typical for our average plots

when dealing with distributions generating the data. At the beginning there is a learning

phase. This is followed by a phase where the algorithm does not improve its average

error rate. This transition is gradual, and when learning is difficult, such as when there

are many attributes, it can require more trials than available to get to the fixed error

phase.

Unfortunately, we have too many algorithms and concepts to give mistake plots for

every problem. Therefore, our primary technique for comparing algorithms is to give

the total number of mistakes summed over all the data sets. However, as explained

above, this could give a deceptive picture of the long term error rate of an algorithm.
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Figure 3.4: Mistake curve for Satellite label 1 concept.

Therefore, we also give the total sum of mistakes on the last 500 trials of each concept.

In both cases, we use the notation M̂(B) for the confidence interval on the expected

number of mistakes made by algorithm B.

3.4.3 Main Voting Results

In this section, we report experimental results that show how voting improves the

performance of the basic algorithms. All of our experiments set h, the number of voting

hypotheses, to 30. This matches the value used in [Lit95]. For our voting algorithm,

we use the following default values for the parameters explained in Section 3.3. We set

w = 100, f = 0.5, and r = 100. These values are based on limited experiments with

artificial data. In Section 5.2.2, we perform experiments where we test different values

for these parameters.

Our first results compare a basic algorithms B to our voting algorithm V-B. In

Figure 3.5, we give a scatter plot that contains a point for each algorithm/concept pair.

This gives a total of 6138 points. The y coordinate of each points corresponds to the
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Figure 3.5: Scatter plot comparing basic algorithm to our voting algorithm.

final number of mistakes made by a basic algorithm on the particular concept; the x

coordinate corresponds to the final number of mistakes made by the full voting version

of the basic algorithm. Because all the points are above the y = x line, the voting

version increases performance for every algorithm/concept pair.

A large part of voting’s advantage comes from the technique used by Littlestone’s

voting algorithm. In Figure 3.6, we repeat the previous scatter plot, this time using

the final number of mistakes made by Littlestone’s voting for the y coordinate and the

final number of mistakes made by our voting procedure for the x coordinate. As can

be seen, while the gain performance is not as dramatic, there is a consistent decrease in

the number of mistakes. Only 149 of the algorithm/concept pairs show a small increase

in mistakes when using our voting technique. By far, the majority of algorithms and

concepts show a large statistically significant decrease in mistakes.

To further document the performance of voting, our remaining results focus on the

performance of the individual algorithms and the V-Combine algorithm. In Table 3.3

we give the total number of mistakes for each basic algorithm, Littlestone’s voting
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Figure 3.6: Scatter plot comparing Littlestone’s voting algorithm to our voting algo-
rithm.

algorithm, and our voting algorithm. For a given algorithm B, we refer to Littlestone’s

modified algorithm as L-B and our modified algorithm as V-B. We also included a new

algorithm to help judge the difficulty of these concepts. The Majority Label algorithm

keeps a running estimate of the probability that the label is 1. The algorithm predicts

the label that has the highest probability based on this estimate.

In Table 3.4, we give the total number of mistakes of the algorithms on the last 500

trials of the concepts. This gives an approximation of the asymptotic behavior of these

algorithms.

As can be seen in Table 3.3, Littlestone’s voting algorithm always lowers the number

of mistakes in these experiments. In some cases, the decrease is dramatic. In particular,

the fewest mistakes, of the Littlestone voting algorithms, is made by L-Balanced(1.2)

with a decrease of more than 27% over Balanced(1.2). Our voting algorithms continue

this trend and always lowers the number of mistakes compared to Littlestone’s algo-

rithm. While the decrease is often only slightly better, the similar computational costs



70

Name M̂(Name) M̂(L-Name) M̂(V-Name)

Per 73342 ± 80 54352 ± 108 51295± 74
ALMA(2) 66066 ± 95 52838 ± 117 50046± 93
ALMA(ln n) 71023 ± 105 55217 ± 90 53301± 82
Bal(1.05) 72989 ± 83 53336 ± 107 51275± 96
Bal(1.2) 72398 ± 83 52542 ± 111 50621± 84
Bal(1.4) 74887 ± 86 52904 ± 99 50779± 79
Bal(1.7) 81075 ± 109 55954 ± 118 52386± 87
Bal(2.0) 86641 ± 89 57199 ± 113 54221± 79
UWin(1.05) 93375 ± 93 70226 ± 179 65027± 103
UWin(1.2) 88163 ± 93 64315 ± 152 59561± 87
UWin(1.4) 88900 ± 87 62678 ± 131 57949± 74
UWin(1.7) 94672 ± 103 65376 ± 144 58841± 73
UWin(2.0) 100624 ± 89 63452 ± 104 60564± 81
CUWin(1.05) 99476 ± 98 77527 ± 154 68613± 94
CUWin(1.2) 85792 ± 91 63654 ± 86 59509± 84
CUWin(1.4) 81676 ± 96 59746 ± 114 56068± 92
CUWin(1.7) 81567 ± 95 57845 ± 114 55141± 73
CUWin(2.0) 82557 ± 78 57579 ± 94 55290± 77
NWin(1.05,.3) 110746 ± 76 105828 ± 158 87083± 110
NWin(1.2,.3) 88760 ± 89 73787 ± 120 66453± 87
NWin(1.4,.3) 85753 ± 96 65946 ± 110 60923± 78
NWin(1.7,.3) 88529 ± 85 63792 ± 95 59332± 76
NWin(2.0,.3) 92840 ± 97 62376 ± 119 59661± 92
NWin(1.05,.5) 86721 ± 91 61630 ± 136 58946± 145
NWin(1.2,.5) 80307 ± 102 58627 ± 124 55167± 94
NWin(1.4,.5) 79405 ± 91 56055 ± 102 54021± 80
NWin(1.7,.5) 81935 ± 91 55709 ± 86 54098± 71
NWin(2.0,.5) 85610 ± 111 56979 ± 99 54927± 74
NWin(1.05,.7) 86297 ± 97 71848 ± 143 65306± 96
NWin(1.2,.7) 77574 ± 82 59102 ± 99 55917± 87
NWin(1.4,.7) 76053 ± 93 56666 ± 109 53446± 77
NWin(1.7,.7) 77541 ± 90 55338 ± 93 52705± 71
NWin(2.0,.7) 80087 ± 92 56065 ± 107 53127± 72
Combine 46432± 86
Majority Label 124266 ± 50

Table 3.3: Total mistakes out of 1028600 trials from 186 concepts.
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Name M̂(Name) M̂(L-Name) M̂(V-Name)

Per 4734 ± 22 3443 ± 19 3303± 15
ALMA(2) 4304 ± 18 3451 ± 19 3259± 20
ALMA(ln n) 4590 ± 25 3547 ± 20 3468± 18
Bal(1.05) 4708 ± 22 3445 ± 16 3309± 18
Bal(1.2) 4700 ± 21 3423 ± 17 3285± 18
Bal(1.4) 4979 ± 23 3433 ± 18 3323± 17
Bal(1.7) 5522 ± 24 3685 ± 20 3487± 18
Bal(2.0) 5960 ± 30 3838 ± 18 3649± 15
UWin(1.05) 5739 ± 23 4319 ± 20 4054± 17
UWin(1.2) 5494 ± 20 3983 ± 19 3716± 17
UWin(1.4) 5745 ± 22 3938 ± 19 3699± 15
UWin(1.7) 6317 ± 25 4256 ± 19 3840± 14
UWin(2.0) 6830 ± 25 4208 ± 17 4004± 17
CUWin(1.05) 5758 ± 23 4454 ± 21 4173± 16
CUWin(1.2) 5215 ± 25 3863 ± 16 3696± 16
CUWin(1.4) 5181 ± 23 3726 ± 18 3567± 17
CUWin(1.7) 5359 ± 21 3736 ± 19 3592± 17
CUWin(2.0) 5516 ± 21 3780 ± 17 3645± 17
NWin(1.05,.3) 6022 ± 29 5368 ± 25 5162± 27
NWin(1.2,.3) 5301 ± 21 4296 ± 20 3975± 18
NWin(1.4,.3) 5392 ± 25 3970 ± 20 3754± 16
NWin(1.7,.3) 5787 ± 21 3967 ± 18 3764± 16
NWin(2.0,.3) 6224 ± 20 3998 ± 19 3858± 18
NWin(1.05,.5) 5300 ± 20 3845 ± 21 3689± 17
NWin(1.2,.5) 5077 ± 19 3718 ± 19 3523± 17
NWin(1.4,.5) 5131 ± 22 3640 ± 16 3499± 19
NWin(1.7,.5) 5460 ± 24 3682 ± 19 3565± 18
NWin(2.0,.5) 5804 ± 24 3794 ± 20 3658± 16
NWin(1.05,.7) 5327 ± 22 4515 ± 20 4103± 16
NWin(1.2,.7) 4955 ± 21 3718 ± 19 3563± 19
NWin(1.4,.7) 4966 ± 21 3658 ± 17 3460± 17
NWin(1.7,.7) 5212 ± 23 3641 ± 16 3486± 16
NWin(2.0,.7) 5451 ± 23 3752 ± 19 3556± 18
Combine 3103± 18
Majority Label 9404 ± 14

Table 3.4: Sum of mistakes from the last 500 trials of 186 concepts.
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of the two algorithms makes it worthwhile.

The results in Table 3.4 closely parallel the previous results. This is partially due to

the fact that many of the concepts rapidly converge, on average, to a fixed error rate.

Therefore this error rate has a large influence on the total number of mistakes.

The best algorithm in both tables is V-Combine. V-Combine uses modification F to

combine the basic algorithms. It makes over 11% fewer mistakes than L-Balanced(1.2).

A large part of its advantage comes from its ability to use different algorithms when

voting. This can be seen in Table 3.5. This table gives the number of concepts where

the corresponding algorithm has the fewest mistakes. The first column deals with the

basic algorithms; the second column gives the results for our voting algorithm. For all

concepts, a voting algorithm always produces the minimum number of mistakes.

One can make several interesting observations from Table 3.5. First, no single

algorithm dominates the performance of the basic algorithms. This shows that running

a wide range of algorithms is beneficial for V-Combine as it allows it to use hypotheses

from whichever basic algorithm has the fewest mistakes. Second, the basic algorithm

with the fewest mistakes is not always the voting algorithm with the fewest mistakes.

This shows that our strategy of just picking the basic algorithm with the fewest mistakes

for voting in V-Combine does not appear optimal since another basic algorithm may

make fewer mistakes when used for voting.

Given these facts, it is surprising that V-Combine does so well. V-Combine might

get an advantage because it uses several basic learning algorithms. At a particular trial,

V-Combine selects a hypothesis from the algorithm that is currently doing the best.

This may not be the basic algorithm that makes the fewest mistakes at the final trial.

These hypotheses from different basic algorithms are most likely more diversified than

hypotheses from the same algorithm. This extra diversity improves the performance of

voting.

Notice that several of the basic algorithms in Table 3.5 do not have the minimum

number of mistakes for any concept. However, based on the previous paragraph, it

is possible that they still might help performance by increasing the diversity of the

hypotheses used by V-Combine. Also, notice how the Normalized Winnow algorithm
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Name # basic best concepts # V-Name best concepts

Per 0 0
ALMA(2) 56 15
ALMA(ln n) 17 2
Bal(1.05) 0 0
Bal(1.2) 1 1
Bal(1.4) 2 3
Bal(1.7) 0 2
Bal(2.0) 0 2
UWin(1.05) 2 0
UWin(1.2) 0 0
UWin(1.4) 0 2
UWin(1.7) 0 1
UWin(2.0) 0 0
CUWin(1.05) 0 0
CUWin(1.2) 0 0
CUWin(1.4) 0 0
CUWin(1.7) 0 0
CUWin(2.0) 0 3
NWin(1.05,.3) 2 0
NWin(1.2,.3) 0 0
NWin(1.4,.3) 0 1
NWin(1.7,.3) 1 1
NWin(2.0,.3) 0 1
NWin(1.05,.5) 0 3
NWin(1.2,.5) 0 3
NWin(1.4,.5) 1 2
NWin(1.7,.5) 0 0
NWin(2.0,.5) 1 4
NWin(1.05,.7) 39 2
NWin(1.2,.7) 21 4
NWin(1.4,.7) 6 12
NWin(1.7,.7) 8 13
NWin(2.0,.7) 29 12
Combine 97

Table 3.5: Number of concepts where the algorithm gives the minimum number of
mistakes.
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with threshold value of 0.7 seems to dominate in terms of performance. With the

exception of the ALMA algorithm, it has the fewest mistakes on almost all the other

concepts. This suggests that the concepts we use, on average, are somewhat conjunctive

in nature where most of the relevant attributes need to have a value of 1 in order for

the label to be 1. See Section 2.3.3 for more details.

To further elaborate on the statistics of Table 3.3, in Table 3.6 we give the number

of concepts where Littlestone’s voting algorithm makes fewer mistakes than our full

voting algorithm. In addition, we give the sum of the mistake difference over those

concepts where our voting technique make more mistakes. As can be seen, for most

algorithms we improve on the performance of Littlestone’s algorithms, and in those few

cases where we make more mistakes, the number of extra mistakes is small.7

3.4.4 Voting Modifications

In this section, we break down our voting technique based on the individual modification

described in Section 3.3. However, it requires too many experiments to test every legal

combination of the voting modifications. Therefore, to give a partial analysis of the

voting modifications, Table 3.7 gives results based on incrementally adding modification

A through E to Littlestone’s voting algorithm. To make the results easier to interpret,

each column gives the change in mistakes based on adding the next modification. In

other words, given on-line algorithm B, we report

∆(V a) = M̂(L-B)− M̂(Va-B).

∆(V ab) = M̂(Va-B)− M̂(Vab-B).

∆(V abc) = M̂(Vab-B)− M̂(Vabc-B).

∆(V abcd) = M̂(Vabc-B)− M̂(Vabcd-B).

∆(V abcde) = M̂(Vabcd-B)− M̂(Vabcde-B).

Therefore if the additional voting modification lowers the mistakes from the previous

modifications then the corresponding entry in the table is positive. Table 3.8 includes

7In Table 3.6, the number of extra mistakes is not an integer because our results are based on a
bootstrap average.
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Name # of concepts M̂(V-Name)-M̂(L-Name)

Per 4 1.5
ALMA(2) 2 0.2
ALMA(ln n) 4 0.2
Bal(1.05) 5 9.8
Bal(1.2) 6 2.0
Bal(1.4) 13 3.9
Bal(1.7) 3 0.2
Bal(2.0) 1 0.0
UWin(1.05) 10 3.7
UWin(1.2) 7 3.6
UWin(1.4) 3 1.5
UWin(1.7) 3 0.1
UWin(2.0) 4 16.0
CUWin(1.05) 0 0
CUWin(1.2) 1 3.9
CUWin(1.4) 0 0
CUWin(1.7) 1 3.5
CUWin(2.0) 6 10.9
NWin(1.05,.3) 0 0
NWin(1.2,.3) 0 0
NWin(1.4,.3) 1 17.6
NWin(1.7,.3) 1 9.0
NWin(2.0,.3) 11 29.1
NWin(1.05,.5) 10 7.2
NWin(1.2,.5) 4 8.7
NWin(1.4,.5) 4 17.9
NWin(1.7,.5) 14 11.9
NWin(2.0,.5) 13 28.1
NWin(1.05,.7) 6 8.6
NWin(1.2,.7) 8 16.1
NWin(1.4,.7) 1 3.8
NWin(1.7,.7) 1 10.2
NWin(2.0,.7) 2 0.2

Table 3.6: Number of concepts where Littlestone’s voting algorithm makes fewer mis-
takes than our voting algorithm and the sum of the difference over those concepts.
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the same algorithms but reports the difference in mistakes from the last 500 trials.

As can be seen in Table 3.7, in almost all cases the modifications yield fewer mistakes.

The sole exceptions are for modification B. Note however that modification C only works

when using modification B, modification C always significantly lowers the number of

mistakes, and the few cases where modification B increases the number of mistakes,

modification C more than makes up the deficit. The modification with the least average

effect is modification E, restarting. While restarting is not, on average, very successful

it does consistently lower the number of mistakes. Also it gives a large decrease in

mistakes for V-Combine, which is the main algorithm of this chapter.

Table 3.8 shows a similar consistent gain in performance on the last 500 trials of the

concepts. There are some discrepancies in the amount of improvement. Some of the

techniques that have a large improvement over all the trials have a relatively smaller

improvement during the final 500 trials. This can be explained by the initial learn-

ing phase of the algorithms as described in Section 3.4.2. Some of the modifications

may help an algorithm more during the initial phase and some may the help the algo-

rithm more with the final error-rate. More detailed analysis is obscured by the limited

statistical significance of the the mistakes from the final 500 trials.

3.4.5 On-line Bagging

Bagging [Bre96] can also be used to create an on-line voting technique. On-line Bagging

predicts with a majority vote of h hypotheses. The technique runs h versions of a basic

algorithm where each algorithm is modified by updating with the current instance a

random number of times. The number of updates is based on a Poisson distribution

with a mean of 1. This simulates a bagged sample and hopefully causes the hypotheses

to become independent enough to reduce the number of mistakes when predicting with

a majority vote [OR01]. Given a basic algorithm B let B-B be the on-line bagged

version of the algorithm. In Table 3.9, we give the results of applying this bagging

technique to all the basic algorithms. As can be seen, while the algorithm does improve

on the basic algorithm, it does not perform as well as our voting technique.

One explanation for this relatively poor performance is based on the mistake-driven
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Name ∆(Va) ∆(Vab) ∆(Vabc) ∆(Vabcd) ∆(Vabcde)

Per 938 ± 22 833± 98 411± 81 842 ± 31 33± 18
ALMA(2) 780 ± 26 873± 80 358± 67 716 ± 33 65± 20
ALMA(ln n) 693 ± 21 50± 60 585± 43 511 ± 24 78± 21
Bal(1.05) 717 ± 20 144± 81 386± 64 775 ± 30 38± 20
Bal(1.2) 695 ± 24 50± 82 417± 54 703 ± 29 54± 19
Bal(1.4) 720 ± 20 148± 69 552± 62 654 ± 25 51± 13
Bal(1.7) 920 ± 25 1297 ± 87 707± 61 612 ± 30 32± 15
Bal(2.0) 806 ± 27 774± 88 778± 64 611 ± 29 9± 20
UWin(1.05) 1616 ± 54 1283 ± 145 394± 101 1389 ± 45 519± 29
UWin(1.2) 1300 ± 53 1719 ± 121 674± 95 959 ± 32 102± 21
UWin(1.4) 1216 ± 27 1866 ± 111 861± 84 740 ± 31 47± 20
UWin(1.7) 1306 ± 43 3687 ± 115 937± 71 572 ± 26 33± 18
UWin(2.0) 862 ± 24 609± 100 900± 91 506 ± 30 12± 23
CUWin(1.05) 1475 ± 54 214± 157 557± 102 6608 ± 51 60± 22
CUWin(1.2) 1108 ± 26 175± 80 800± 64 2002 ± 33 60± 16
CUWin(1.4) 1073 ± 24 556± 85 844± 59 1155 ± 27 50± 17
CUWin(1.7) 940 ± 28 16± 81 883± 64 833 ± 32 32± 15
CUWin(2.0) 786 ± 22 −93 ± 82 770± 64 777 ± 21 50± 21
NWin(1.05,.3) 10660 ± 113 −580 ± 120 842± 95 7610 ± 87 213± 30
NWin(1.2,.3) 3046 ± 66 432± 87 682± 72 2976 ± 44 198± 24
NWin(1.4,.3) 1637 ± 41 467± 83 678± 57 2085 ± 36 155± 21
NWin(1.7,.3) 1090 ± 33 985± 87 746± 62 1523 ± 30 116± 22
NWin(2.0,.3) 729 ± 23 −26 ± 85 728± 70 1187 ± 39 96± 27
NWin(1.05,.5) 950 ± 43 281± 116 434± 89 1019 ± 41 1± 27
NWin(1.2,.5) 1000 ± 29 1191 ± 90 654± 67 595 ± 32 20± 18
NWin(1.4,.5) 785 ± 28 120± 62 671± 61 432 ± 29 26± 16
NWin(1.7,.5) 669 ± 21 −111 ± 74 660± 60 362 ± 33 30± 21
NWin(2.0,.5) 771 ± 24 299± 75 650± 49 293 ± 33 39± 23
NWin(1.05,.7) 3522 ± 43 834± 111 390± 83 1215 ± 39 581± 33
NWin(1.2,.7) 1361 ± 26 234± 83 602± 69 657 ± 34 331± 25
NWin(1.4,.7) 1096 ± 26 907± 75 528± 47 504 ± 26 183± 21
NWin(1.7,.7) 953 ± 26 626± 73 574± 63 355 ± 30 126± 23
NWin(2.0,.7) 991 ± 25 1053 ± 104 542± 62 292 ± 32 60± 26
Combine 1504 ± 24 158± 70 331± 63 498 ± 25 1164 ± 40

Table 3.7: Difference in number of mistakes as voting modification A, B, C, D, E, F
are incrementally added.
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Name ∆(Va) ∆(Vab) ∆(Vabc) ∆(Vabcd) ∆(Vabcde)

Per 43± 6 17± 11 43± 14 34± 5 2± 3
ALMA(2) 36± 5 86± 12 39± 10 32± 5 −1 ± 3
ALMA(ln n) 19± 6 −23 ± 11 54± 10 26± 6 3± 4
Bal(1.05) 45± 5 7± 11 51± 11 28± 6 4± 3
Bal(1.2) 39± 4 31± 11 48± 10 17± 6 4± 4
Bal(1.4) 30± 5 −7 ± 13 59± 11 25± 6 3± 3
Bal(1.7) 46± 5 52± 12 79± 12 22± 6 −1 ± 4
Bal(2.0) 48± 5 42± 14 82± 12 19± 5 −2 ± 4
UWin(1.05) 54± 7 76± 20 48± 12 72± 6 14 ± 5
UWin(1.2) 68± 6 100± 14 66± 12 31± 6 3± 3
UWin(1.4) 54± 6 70± 17 85± 14 27± 6 3± 3
UWin(1.7) 65± 6 227± 17 97± 11 29± 5 −2 ± 3
UWin(2.0) 40± 5 42± 16 102 ± 13 23± 7 −1 ± 4
CUWin(1.05) 27± 10 79± 23 58± 16 116± 10 1± 3
CUWin(1.2) 43± 5 44± 12 50± 11 27± 5 3± 3
CUWin(1.4) 40± 4 34± 13 61± 11 22± 5 2± 3
CUWin(1.7) 44± 4 11± 14 70± 12 19± 5 0± 4
CUWin(2.0) 38± 4 8± 11 69± 9 18± 4 2± 4
NWin(1.05,.3) 201 ± 16 −86 ± 12 69± 13 2± 13 20 ± 5
NWin(1.2,.3) 129 ± 9 76± 14 56± 9 40± 7 20 ± 4
NWin(1.4,.3) 52± 8 45± 16 60± 12 49± 7 10 ± 5
NWin(1.7,.3) 22± 5 66± 15 72± 11 34± 6 8± 5
NWin(2.0,.3) 26± 5 14± 12 78± 11 19± 5 4± 5
NWin(1.05,.5) 39± 6 2± 16 64± 12 50± 8 1± 4
NWin(1.2,.5) 49± 5 75± 15 48± 13 20± 6 2± 4
NWin(1.4,.5) 37± 5 33± 13 58± 11 11± 6 2± 4
NWin(1.7,.5) 26± 4 19± 14 61± 11 9± 7 1± 4
NWin(2.0,.5) 30± 4 30± 14 60± 11 10± 5 6± 4
NWin(1.05,.7) 121 ± 9 101± 12 69± 10 86± 7 34 ± 7
NWin(1.2,.7) 43± 6 6± 14 61± 12 27± 7 17 ± 6
NWin(1.4,.7) 43± 5 72± 12 53± 11 22± 6 7± 4
NWin(1.7,.7) 32± 4 53± 12 50± 11 18± 5 2± 4
NWin(2.0,.7) 45± 5 87± 13 52± 9 13± 6 0± 5
Combine 16± 6 19± 13 50± 9 35± 5 28 ± 8

Table 3.8: Difference in mistakes on last 500 trials as voting modification A, B, C, D,
E, F are incrementally added.
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Name M̂(Name) M̂(B-Name) M̂(L-Name) M̂(V-Name)

Per 73342 ± 80 57214 ± 95 54352 ± 108 51295 ± 74
ALMA(2) 66066 ± 95 53455 ± 94 52838 ± 117 50046 ± 93
ALMA(ln n) 71023 ± 105 57230 ± 96 55217 ± 90 53301 ± 82
Bal(1.05) 72989 ± 83 57163 ± 82 53336 ± 107 51275 ± 96
Bal(1.2) 72398 ± 83 56656 ± 94 52542 ± 111 50621 ± 84
Bal(1.4) 74887 ± 86 57410 ± 88 52904 ± 99 50779 ± 79
Bal(1.7) 81075 ± 109 60312 ± 93 55954 ± 118 52386 ± 87
Bal(2.0) 86641 ± 89 63309 ± 95 57199 ± 113 54221 ± 79
UWin(1.05) 93375 ± 93 85178 ± 80 70226 ± 179 65027 ± 103
UWin(1.2) 88163 ± 93 75234 ± 86 64315 ± 152 59561 ± 87
UWin(1.4) 88900 ± 87 71205 ± 90 62678 ± 131 57949 ± 74
UWin(1.7) 94672 ± 103 72348 ± 84 65376 ± 144 58841 ± 73
UWin(2.0) 100624 ± 89 74801 ± 87 63452 ± 104 60564 ± 81
UCWin(1.05) 99476 ± 98 91143 ± 96 77527 ± 154 68613 ± 94
UCWin(1.2) 85792 ± 91 75016 ± 93 63654 ± 86 59509 ± 84
UCWin(1.4) 81676 ± 96 68452 ± 89 59746 ± 114 56068 ± 92
UCWin(1.7) 81567 ± 95 66396 ± 87 57845 ± 114 55141 ± 73
UCWin(2.0) 82557 ± 78 65833 ± 80 57579 ± 94 55290 ± 77
NWin(1.05,.3) 110746 ± 76 105786 ± 105 105828 ± 158 87083 ± 110
NWin(1.2,.3) 88760 ± 89 79049 ± 107 73787 ± 120 66453 ± 87
NWin(1.4,.3) 85753 ± 96 72220 ± 93 65946 ± 110 60923 ± 78
NWin(1.7,.3) 88529 ± 85 70067 ± 92 63792 ± 95 59332 ± 76
NWin(2.0,.3) 92840 ± 97 70643 ± 89 62376 ± 119 59661 ± 92
NWin(1.05,.5) 86721 ± 91 73936 ± 102 61630 ± 136 58946 ± 145
NWin(1.2,.5) 80307 ± 102 66440 ± 86 58627 ± 124 55167 ± 94
NWin(1.4,.5) 79405 ± 91 64004 ± 83 56055 ± 102 54021 ± 80
NWin(1.7,.5) 81935 ± 91 63668 ± 93 55709 ± 86 54098 ± 71
NWin(2.0,.5) 85610 ± 111 64638 ± 78 56979 ± 99 54927 ± 74
NWin(1.05,.7) 86297 ± 97 81413 ± 89 71848 ± 143 65306 ± 96
NWin(1.2,.7) 77574 ± 82 67591 ± 84 59102 ± 99 55917 ± 87
NWin(1.4,.7) 76053 ± 93 63502 ± 85 56666 ± 109 53446 ± 77
NWin(1.7,.7) 77541 ± 90 62003 ± 86 55338 ± 93 52705 ± 71
NWin(2.0,.7) 80087 ± 92 62352 ± 86 56065 ± 107 53127 ± 72

Table 3.9: Number of mistakes made by algorithms including on-line bagging algorithms
on all data sets.
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nature of the basic algorithms we use. A mistake-driven algorithm will ignore an in-

stance that is predicted correctly. Therefore, updating the algorithm with k copies of

an instance may not result in k changes. As soon as the algorithm gets a hypothesis

that predicts the instance correctly the remaining updates are ignored.

In fact, this can make the algorithm much more susceptible to noisy instances. A

noisy instance is likely to require more updates before it is correctly predicted, and

therefore will be given more influence. In addition, this noisy instance will affect a

large fraction of the voting hypotheses. Each hypothesis has a 1/e probability of getting

k = 0 based on the Poisson distribution. Therefore most hypotheses will attempt to

update at least one copy of the noisy instance. If a hypothesis is accurate, it has a

high probability of making a mistake on the noisy instance. This update on a noisy

instance can cause a loss of accuracy.8 Having a majority of the voting hypotheses with

either poor accuracy or updating on a noisy instance will cause the bagging algorithm

to make additional mistakes.

However, it is clear that Bagged voting does improve the performance over the

basic algorithm. It also has the advantage that all of its hypotheses are based on the

current trial and have seen a significant fraction of the instances. This is beneficial

when dealing with a concept that is changing over the trials. Voting with hypotheses

from previous trials can degrade performance in this case since these older hypotheses

may be unrelated to the current concept. We will return to this topic in Chapter 6

when we deal with on-line learning of changing concepts.

3.4.6 On-line Averaging

In this section, we consider the technique of Freund and Schapire [FS98] that predicts

with an average weight vector of all the previous hypotheses used by the basic algorithm.

We call this the hypothesis averaging modification. The technique works by giving the

hypothesis in each previous trial equal weight in the average. Therefore, any hypothesis

that is used in multiple trials will have a larger effect on the average. This tends to

8See Section 3.2 for more details.
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favor hypotheses that are accurate since they are changed less often with mistake-driven

algorithms.

Unfortunately, doing a direct average of the weights does not make sense for all

algorithms. Any hypothesis used by an algorithm can be multiplied by a constant

without affecting the predictions of the algorithm. An algorithm might use a hypothesis

during certain trials that effectively has a large normalization constant. During other

trials the normalization constant might be much smaller. This causes the trials with

the small normalization to have a much smaller effect on the average. This weighting

can be undesirable if these trials have a hypothesis that is more accurate.

To help resolve this problem, we consider two averaging algorithms. The first al-

gorithm, A1, does a direct average using the weight vectors provided by the basic

algorithm. The second algorithm, A2, normalizes the weights before the average. The

normalization consists of multiplying all the weights by a positive constant that ensures

the infinity norm of the new weights is 1. In addition to applying these two modifi-

cation to all 33 basic algorithms, we also created new Combine algorithms based on

averaging. The A1-Combine algorithm averages using the unmodified weights of the

current hypothesis; however, it always uses the hypothesis of the basic algorithm that is

currently making the fewest mistakes. The A2-Combine algorithm is similar. It uses the

hypothesis from the best basic algorithm, but A2-Combine normalizes the hypothesis

before the hypothesis is added to the average.

The results of these techniques can be seen in Table 3.10. The table reports the

total sum of mistakes over all 186 concept. As can be seen, for most algorithms the

voting technique gives the best performance. However, for some basic algorithms the A1

modification is competitive. This is especially true for the Balanced Winnow algorithm.

The A2 modification is more disappointing. We had hoped this technique would re-

solve any normalization issues in the basic algorithm and give performance close to that

of voting. There are some cases where A2 does improve on the A1 algorithm; however,

A2 always does worse than voting. In particular, we had hoped the A2-Combine al-

gorithm would see the same performance increase as V-Combine. Unfortunately, while

A2-Combine greatly improves the A1-Combine algorithm, the different hypotheses used
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Name M̂(A1-Name) M̂(A2-Name) M̂(V-Name)

Per 52519 ± 91 58463 ± 105 51295± 74
ALMA(2) 53515 ± 89 55620 ± 98 50046± 93
ALMA(ln n) 56663 ± 102 61741 ± 151 53301± 82
Bal(1.05) 52224 ± 93 58494 ± 109 51275± 96
Bal(1.2) 50957 ± 89 59416 ± 117 50621± 84
Bal(1.4) 50582 ± 86 60878 ± 123 50779 ± 79
Bal(1.7) 52217 ± 88 63309 ± 135 52386 ± 87
Bal(2.0) 54737 ± 93 65594 ± 148 54221± 79
UWin(1.05) 84054 ± 95 73200 ± 88 65027± 103
UWin(1.2) 64635 ± 80 62932 ± 138 59561± 87
UWin(1.4) 60947 ± 131 59625 ± 126 57949± 74
UWin(1.7) 59790 ± 77 59560 ± 97 58841± 73
UWin(2.0) 61495 ± 82 60656 ± 93 60564± 81
UCWin(1.05) 97969 ± 166 80647 ± 169 68613± 94
UCWin(1.2) 66239 ± 101 65599 ± 128 59509± 84
UCWin(1.4) 60357 ± 93 62459 ± 228 56068± 92
UCWin(1.7) 59302 ± 85 59433 ± 188 55141± 73
UCWin(2.0) 59160 ± 87 59779 ± 265 55290± 77
NWin(1.05,.3) 207839 ± 711 134147 ± 306 87083± 110
NWin(1.2,.3) 103805 ± 416 77754 ± 132 66453± 87
NWin(1.4,.3) 81723 ± 238 66791 ± 116 60923± 78
NWin(1.7,.3) 73253 ± 190 63247 ± 106 59332± 76
NWin(2.0,.3) 70703 ± 171 62790 ± 103 59661± 92
NWin(1.05,.5) 64485 ± 342 60751 ± 157 58946± 145
NWin(1.2,.5) 60851 ± 320 57309 ± 89 55167± 94
NWin(1.4,.5) 58393 ± 276 55992 ± 90 54021± 80
NWin(1.7,.5) 57631 ± 234 55778 ± 78 54098± 71
NWin(2.0,.5) 58493 ± 211 56318 ± 87 54927± 74
NWin(1.05,.7) 77285 ± 79 82904 ± 124 65306± 96
NWin(1.2,.7) 58850 ± 85 61405 ± 85 55917± 87
NWin(1.4,.7) 53486 ± 68 56140 ± 69 53446± 77
NWin(1.7,.7) 52295 ± 72 54378 ± 81 52705± 71
NWin(2.0,.7) 53252 ± 67 54429 ± 79 53127± 72
Combine 94238 ±2755 60185 ±1377 46432± 86

Table 3.10: Number of mistakes made by algorithms including on-line averaging algo-
rithms on all data sets.
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in A2-Combine do not mix as well as V-Combine. Perhaps a different more complicated

normalization scheme would give a better average.

While the performance of these averaging modifications is still below the perfor-

mance of voting, there are places where the averaging techniques are desirable. The

main advantage of hypotheses averaging is reduced computational cost. Since the aver-

aging algorithm only needs to maintain a single hypothesis, the cost of prediction and

updating for the linear-threshold algorithms covered in this dissertation is just O(n) per

trial. This can be significantly faster than the O(hmt) cost of the voting prediction.9

Unfortunately, when dealing with sparse instances, a straightforward implementation

of the averaging modification still needs to spend O(n) per trial in order to compute

the new average. We are unsure if this can be improved to take advantage of sparse

instances.

3.4.7 On-line Best Hypothesis

The final technique we compare against is not a voting technique. In [Gal90], Gallant

uses the most accurate hypothesis currently generated by the on-line algorithm to make

a prediction. The accuracy is measure by using the number of instances the current

hypothesis has predicted correctly. This strategy only makes sense for a mistake-driven

algorithm since such algorithms repeatedly use a hypothesis until a mistake is made. In

our experiments, we refine this strategy using a set of r recent instances to help estimate

the accuracy. This is the same strategy as using in modification C of Section 3.3.4. We

call this technique the best hypothesis modification.

Table 3.11 gives the total number of mistakes over all 186 concept for three version

of the best hypothesis modification. The H1 algorithm sets r = 0 and only uses the

number of correct predictions made by the current hypothesis to estimate accuracy.

The H2 modification uses 100 recent instances to improve the accuracy estimate. H3

uses 3000 instances to give an estimate of the performance limit of this technique. Fi-

nally, we include our main voting algorithm with the default parameters for comparison

9Recall that n is the number of attributes and mt is the number of nonzero attributes on trial t.
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purposes. Also, we include a Combine version for all algorithms. For the best hypothe-

sis algorithm, Combine works by predicting with the hypothesis of the best hypothesis

algorithm that is currently making the fewest mistakes.

As can be seen in Table 3.11, the H3 modification with 3000 instances is always

the best algorithm. Unfortunately, it can be expensive in both time and space since it

needs store and predict with the 3000 saved instances. The more modest algorithms,

H1 and H2, always do significantly worse than the full voting algorithm.

It is interesting to note that if one can find the most accurate hypotheses used by

the basic algorithm that this hypothesis makes fewer mistakes, on average, than the

voting technique. However, if one looks at the individual concepts, one finds that the

best hypothesis technique is not always better than the voting technique. There are

still several concepts where voting does improve on the best hypothesis.

3.5 Summary

In this chapter, we gave a technique that modifies adversarial on-line algorithms to

improve their performance on problems where instances are sampled from a distribution.

Our technique modifies an existing on-line algorithm B to generate a new algorithm we

call V-B. V-B is a voting procedure that combines several hypotheses to make a more

accurate prediction.

We explained V-B in terms of five separate modifications. The purpose these modifi-

cations is to increase the accuracy of prediction by helping to keep the voting procedure

full of accurate and diverse hypotheses. These modifications are inexpensive and in-

crease the cost of the algorithms used in this dissertation roughly by a factor equal to

the number of hypothesis used for voting. We performed experiments that show our

technique lowers the number of mistakes on real world data sets. The improvement is

consistent over a wide range of problem types.

The main algorithm of this chapter is called V-Combine. V-Combine is similar to

V-B but it selects hypotheses for its voting procedure from a set of basic algorithms.

V-Combine selects its hypothesis from the basic algorithm that is currently making
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Name M̂(H1-Name) M̂(H2-Name) M̂(H3-Name) M̂(V-Name)

Per 60368 ± 85 55238 ± 63 49510 ± 60 51295 ± 74
ALMA(2) 57439 ± 107 53469 ± 95 48739 ± 87 50046 ± 93
ALMA(ln n) 61785 ± 104 57418 ± 88 51856 ± 98 53301 ± 82
Bal(1.05) 60191 ± 95 54971 ± 81 49322 ± 81 51275 ± 96
Bal(1.2) 60080 ± 107 54958 ± 89 49090 ± 81 50621 ± 84
Bal(1.4) 61874 ± 103 56510 ± 92 50006 ± 79 50779 ± 79
Bal(1.7) 66175 ± 114 59919 ± 95 52132 ± 91 52386 ± 87
Bal(2.0) 70048 ± 105 62924 ± 90 54135 ± 93 54221 ± 79
UWin(1.05) 71655 ± 112 65781 ± 121 59558 ± 90 65027 ± 103
UWin(1.2) 67454 ± 102 60775 ± 92 54535 ± 83 59561 ± 87
UWin(1.4) 68265 ± 106 61041 ± 88 54055 ± 81 57949 ± 74
UWin(1.7) 72365 ± 113 64439 ± 91 56085 ± 66 58841 ± 73
UWin(2.0) 76611 ± 95 67710 ± 95 58167 ± 99 60564 ± 81
UCWin(1.05) 77404 ± 100 71242 ± 107 66048 ± 97 68613 ± 94
UCWin(1.2) 67718 ± 113 61873 ± 100 56296 ± 85 59509 ± 84
UCWin(1.4) 65671 ± 106 59749 ± 92 53591 ± 79 56068 ± 92
UCWin(1.7) 66752 ± 93 60666 ± 77 53687 ± 75 55141 ± 73
UCWin(2.0) 68222 ± 100 61999 ± 82 54373 ± 89 55290 ± 77
NWin(1.05,.3) 96776 ± 96 90664 ± 100 84454 ± 92 87083 ± 110
NWin(1.2,.3) 75350 ± 112 69651 ± 81 63317 ± 86 66453 ± 87
NWin(1.4,.3) 71870 ± 97 65912 ± 99 58922 ± 92 60923 ± 78
NWin(1.7,.3) 73126 ± 115 66549 ± 79 58444 ± 88 59332 ± 76
NWin(2.0,.3) 75929 ± 120 68354 ± 101 59247 ± 97 59661 ± 92
NWin(1.05,.5) 67683 ± 116 61991 ± 116 55397 ± 111 58946 ± 145
NWin(1.2,.5) 64734 ± 101 59277 ± 92 52829 ± 74 55167 ± 94
NWin(1.4,.5) 64957 ± 100 59436 ± 92 52532 ± 74 54021 ± 80
NWin(1.7,.5) 67487 ± 95 61499 ± 92 53609 ± 77 54098 ± 71
NWin(2.0,.5) 70289 ± 106 63710 ± 100 54916 ± 91 54927 ± 74
NWin(1.05,.7) 71353 ± 112 66645 ± 94 61505 ± 94 65306 ± 96
NWin(1.2,.7) 64335 ± 106 59405 ± 90 53468 ± 85 55917 ± 87
NWin(1.4,.7) 63456 ± 101 58381 ± 89 51990 ± 79 53446 ± 77
NWin(1.7,.7) 65067 ± 100 59622 ± 85 52247 ± 82 52705 ± 71
NWin(2.0,.7) 67272 ± 106 61286 ± 96 53101 ± 89 53127 ± 72
Combine 55132 ± 97 51205 ± 83 46277 ± 75 46432 ± 86

Table 3.11: Number of mistakes made by algorithms including on-line best hypothesis
algorithms on all data sets.
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the fewest mistakes. This allows V-Combine to efficiently select the best of the basic

algorithms. In our experiments, the number of mistakes made by V-Combine is close to

the minimum number of mistakes made by V-B where B is chosen from the set of basic

algorithms used by V-Combine. Sometimes V-Combine even surpasses this minimum.
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Chapter 4

Improving On-line Learning with Instance Recycling

In this chapter, we continue the theme started in the last chapter. Our goal is to modify

algorithms that have performance guarantees against adversaries so that they perform

well against something weaker than an omniscient adversary. While in the last chapter

we assumed that the instances are generated by a fixed distribution, in this chapter,

we are a little more flexible.

Assume B is an on-line algorithm. Our new algorithm is called R-B and works

by saving and learning from old instances as if they were new trials. It is similar to

algorithm B, but R-B keeps an array of recently seen instances to use for recycling.

For each old instance, the algorithm keeps track of how many times the instance is used

to change the state of the basic algorithm. When an instance changes the state, we

say the instance has been used. A user specified parameter u sets a maximum on the

number of times an instance can be used.

The R-B algorithm is useful for more than just distribution-based problems. For

example, consider setting u = 1 so that each instance can only be used once. Anytime

R-B does not use a new instance, the instance can be saved for a future update. If a

subsequent hypothesis predicts this saved instance incorrectly, the learning algorithm

can process the instance as if it is a new trial. The algorithm now makes a mistake

on the saved instance, but it is not a real mistake since the trial did not come from

the on-line environment. However, the adversarial mistake bound does not make this

distinction; the number of mistakes that algorithm can make on real trials is lowered

by one. Therefore, any problem where algorithm B does not use every instance could

benefit from the R-B modification.

The R-B algorithm is designed for inexpensive on-line algorithms that have a
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mistake-bound for an adversary. The algorithms we have tested all allow instances

xt ∈ [0, 1]n and use linear-threshold functions to represent hypotheses. The time cost

for these algorithms is O(mt) per trial where mt is the number of non-zero attributes

during trial t.1 As before, a major constraint of our techniques is to keep the computa-

tional advantage of these inexpensive algorithms. This is necessary for problems with

a large number of attributes.

The remainder of this chapter is organized as follows. In Section 4.1, we cover

previous research on recycling instances and using extra instances for on-line learning.

In Section 4.2, we give the formal statement of our instance recycling algorithm. Next, in

Section 4.4, we justify why instance recycling works, focusing particularly on instances

generated by a fixed distribution. Section 4.3 gives the results of experiments with

instance recycling using the experimental framework of Chapter 3.

4.1 Previous Research

Instance recycling has typically been used when applying on-line algorithms in a batch

setting. In this case, a fixed sized set of instances is repeatedly cycled over until an

accurate hypothesis has been learned [DH73]. For on-line learning, Littlestone proposed

the idea to recycle over all old instances after every update but to only allow each

instance to be used once for an update [Lit96]. While he achieved good performance

with this technique, he considered the computational cost too expensive. Here we

modify that technique to keep a recent window of instances and allow more than one

update with an instance. This window technique allows us to reduce the computational

cost while the additional updates gives the algorithm some extra flexibility.

Another technique to improve the performance of mistake-driven linear-threshold

algorithms is to modify the algorithm to update when an instance is close to being

incorrect [Ros62, LL00]. More precisely, when an instance is close to the current hyper-

plane, update the algorithm even if the instance is correctly predicted. The closeness

is usually a parameter, δ′, specified by the user of the algorithm. This parameter is

1More details can be found in Appendix D.
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often called the margin of the algorithm.2 This technique does not improve the ad-

versarial mistake bound of the algorithm, but may improve performance on problems

where instances are generated by something weaker than an adversary.3 However, on

experiments with artificial data, we have found the value of δ′ to be difficult to set.

Therefore, we only use the mistake-driven version of the linear-threshold algorithms in

our experiments.

4.2 Instance Recycling Algorithm

Instance recycling is a simple extension of an on-line algorithm. Assume B is a basic on-

line algorithm. We create a new algorithm R-B that recycles old instances by running

algorithm B with additional steps added to the update procedure. Instance recycling

works by saving the most recent s instances. Anytime the state of the algorithm changes

because of an update, we iterate over the s old instances as if they are new trials. This

includes updating with the old instances. Every time we update with an instance, we

record whether it changes the state of the basic algorithm. If it changes the state we say

that the instance has been used. Each instance is only allowed to be used u times where

u is a parameter set by the user. We only stop iterating over the old instances when

updates that have been used less than u times no longer change the state of the basic

algorithm. The process repeats on the next new instance that changes the algorithm’s

state. Since all the algorithms in this dissertation are mistake-driven, they only change

their state on a mistake.

There are two types of mistakes made by algorithm R-B. Any mistake on a new

instance is a real mistake made on the learning problem. Any mistake on an old instance

is not counted as a real mistake since it is entirely internal to the algorithm. For this

reason, we call mistakes on old instances internal mistakes.

This transformation is based on an idea proposed by Littlestone [Lit96]. The differ-

ence is Littlestone used all old instances instead of a shifting window of recent instances,

2See Section 2.3.5 for more details.

3See Appendix F.
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and he only allowed each instance to be used for a single update. As we will see, we get

good performance with a smaller increase in computational cost using our more general

transformation.

The cost of this recycling technique is small enough to keep the on-line learning

algorithms we use in this thesis efficient. We use an extra O(sm) space to store the

saved instances4 in a sparse format. We break the time complexity up into the cost for

prediction and updating; these costs include the cost of the basic algorithm. The cost of

the prediction step is the same as the basic algorithm. Updates are more complicated.

At most, the algorithm can perform a basic algorithm update on an instance u times.

This means the algorithm updates at most uT times. For basic algorithms that can

update in O(m) time, the updates take O(umT ) time. This includes most of the

algorithms in this thesis. In practice, we expect this cost to be only a fraction of this

since many of the instance will not be used for the maximum number of updates. For

a mistake-driven algorithm, when u = 1, the number of updates is at most min{M,T}

where M is the mistake bound of the basic algorithm. When u > 1, we may increase

the number of updates with noisy instances. This could increase the mistake bound

because of the extra noise.

The update step also includes some predictions. After a basic algorithm update,

we search the old instance list for an instance to use in an update. Since we treat

these old instances as new trials, we need to make predictions on them. Based on the

recycling algorithm, we can make at most s predictions until we either stop recycling or

update on an old instance. Therefore, the maximum number of old instance predictions

depends on s and the number of updates. Since there are at most uT updates, there

are at most usT predictions from the old instances. Since all of our basic algorithms

take O(m) for a prediction, this gives a total cost of O(usmT ). The cost of old instance

predictions dominates the cost of the algorithm, so the time complexity of the algorithm

is O(usmT ). In practice, the number of predictions is only a fraction of this number

since we generally have fewer updates.

4These saved instance can also be used for hypothesis accuracy estimation in voting.
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We may want to run multiple basic algorithms and apply instance recycling to each

algorithm. Generally, the goal will be to make a number of mistakes close to the best

from the set of algorithms. For example, we can run the WMA algorithm as described in

Section 2.5 to get performance close to the best of the individual algorithms. However,

if we use instance recycling on v algorithms then the cost will increase by a factor of

v. Instead, in Chapter 5, we show how combining instance recycling with voting to

perform algorithm/parameter selection.

4.3 Instance Recycling Experiments

In this section, we give experiments to show how instance recycling improves the per-

formance of basic algorithms. Our experimental methodology is identical to that used

in Chapter 3. Please see Section 3.4 for details on the basic algorithms, data sets, and

experiments.

For a given on-line algorithm B, we refer to the algorithm that uses recycled in-

stances as R-B. For all the algorithms in this chapter, we set s the number of recycling

instances to 100 and u the number of times we can update an instance to 1. These

values are chosen as a baseline to judge performance and to keep the algorithm inex-

pensive. In Section 5.2.2, we perform experiments where we test different values for

these parameters.

Our first results compare a basic algorithms B to the instance recycling algorithm

algorithm R-B. In Figure 4.1, we give a scatter plot that contains a point for each

algorithm/concept pair. This gives a total of 6138 points. The y coordinate of each

points corresponds to the final number of mistakes made by a basic algorithm on the

particular concept; the x coordinate corresponds to the final number of mistakes made

by the instance recycling version of the basic algorithm. All but one point is above the

y = x line. This single point corresponds to 0.1 extra mistakes made by the recycling

version of Normalized Winnow(1.2,.3) on a single concept.

Our remaining results focus on the performance of the individual algorithms. In

Table 4.1, we give the total number of mistakes over all 186 concepts when s = 0 and
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Figure 4.1: Scatter plot comparing basic algorithm to recycled algorithm.

s = 100. Table 4.2 uses the same experiments but only reports the sum of mistakes on

the last 500 trials of each concept. As can be seen, the recycling consistently improves

performance across all the algorithms.

The best algorithm in Table 4.1 is R-ALMA(2). Currently, the only algorithm that

makes fewer mistakes is V-Combine from Section 3.3. The superiority of V-Combine is

most likely a result of its ability to select hypotheses from any of the basic algorithms.

A similar advantage should be possible with the instance recycling algorithms. The first

column of Table 4.3 gives a count of the number of concepts where the corresponding

algorithm makes the minimum number of mistakes. While it’s not surprising that

R-ALMA(2) performs best on the largest number of concepts, it does not have the

best performance on all concepts. This suggests that a combination of these recycling

algorithms should make fewer mistakes. While it is possible to create a straightforward

algorithm to combine all of these recycling algorithms using a tool such as WMA,5

we use the V-Combine algorithm as a way to get the benefits of instance recycling

5See Section 2.5 for more details.
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Name M̂(Name) M̂(R-Name)

Per 73342 ± 80 50926 ± 76
ALMA(2) 66066 ± 95 48914 ± 72
ALMA(ln n) 71023 ± 105 53091 ± 89
Bal(1.05) 72989 ± 83 50782 ± 77
Bal(1.2) 72398 ± 83 50888 ± 76
Bal(1.4) 74887 ± 86 53703 ± 91
Bal(1.7) 81075 ± 109 58924 ± 86
Bal(2.0) 86641 ± 89 62837 ± 85
UWin(1.05) 93375 ± 93 63041 ± 79
UWin(1.2) 88163 ± 93 58735 ± 68
UWin(1.4) 88900 ± 87 60417 ± 73
UWin(1.7) 94672 ± 103 64862 ± 72
UWin(2.0) 100624 ± 89 69016 ± 83
CUWin(1.05) 99476 ± 98 66768 ± 71
CUWin(1.2) 85792 ± 91 57946 ± 70
CUWin(1.4) 81676 ± 96 56905 ± 81
CUWin(1.7) 81567 ± 95 58406 ± 71
CUWin(2.0) 82557 ± 78 60109 ± 79
NWin(1.05,.3) 110746 ± 76 85230 ± 72
NWin(1.2,.3) 88760 ± 89 64192 ± 74
NWin(1.4,.3) 85753 ± 96 61872 ± 73
NWin(1.7,.3) 88529 ± 85 63935 ± 75
NWin(2.0,.3) 92840 ± 97 66664 ± 73
NWin(1.05,.5) 86721 ± 91 57966 ± 82
NWin(1.2,.5) 80307 ± 102 55295 ± 70
NWin(1.4,.5) 79405 ± 91 56125 ± 63
NWin(1.7,.5) 81935 ± 91 59080 ± 71
NWin(2.0,.5) 85610 ± 111 61877 ± 75
NWin(1.05,.7) 86297 ± 97 62901 ± 81
NWin(1.2,.7) 77574 ± 82 55290 ± 75
NWin(1.4,.7) 76053 ± 93 54890 ± 73
NWin(1.7,.7) 77541 ± 90 56953 ± 68
NWin(2.0,.7) 80087 ± 92 59205 ± 83
Majority Label 124266 ± 50

Table 4.1: Number of mistakes for all algorithms with 0 recycled instances and 100
recycled instances
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Name M̂(Name) M̂(R-Name)

Per 4734 ± 22 3408± 20
ALMA(2) 4304 ± 18 3278± 17
ALMA(ln n) 4590 ± 25 3539± 19
Bal(1.05) 4708 ± 22 3396± 18
Bal(1.2) 4700 ± 21 3439± 17
Bal(1.4) 4979 ± 23 3719± 21
Bal(1.7) 5522 ± 24 4145± 19
Bal(2.0) 5960 ± 30 4443± 19
UWin(1.05) 5739 ± 23 3991± 17
UWin(1.2) 5494 ± 20 3849± 18
UWin(1.4) 5745 ± 22 4093± 18
UWin(1.7) 6317 ± 25 4493± 18
UWin(2.0) 6830 ± 25 4823± 20
CUWin(1.05) 5758 ± 23 3989± 18
CUWin(1.2) 5215 ± 25 3717± 18
CUWin(1.4) 5181 ± 23 3789± 19
CUWin(1.7) 5359 ± 21 4010± 16
CUWin(2.0) 5516 ± 21 4168± 20
NWin(1.05,.3) 6022 ± 29 4633± 22
NWin(1.2,.3) 5301 ± 21 3898± 17
NWin(1.4,.3) 5392 ± 25 3995± 20
NWin(1.7,.3) 5787 ± 21 4297± 17
NWin(2.0,.3) 6224 ± 20 4560± 18
NWin(1.05,.5) 5300 ± 20 3769± 19
NWin(1.2,.5) 5077 ± 19 3684± 16
NWin(1.4,.5) 5131 ± 22 3820± 20
NWin(1.7,.5) 5460 ± 24 4101± 18
NWin(2.0,.5) 5804 ± 24 4344± 17
NWin(1.05,.7) 5327 ± 22 3989± 19
NWin(1.2,.7) 4955 ± 21 3655± 17
NWin(1.4,.7) 4966 ± 21 3740± 21
NWin(1.7,.7) 5212 ± 23 3972± 18
NWin(2.0,.7) 5451 ± 23 4171± 18
Majority Label 9404 ± 14

Table 4.2: Number of mistakes on last 500 trials for all algorithms with 0 recycled
instances and 100 recycled instances
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algorithm, voting, and multiple algorithms in one algorithm. This topic is covered in

depth in the next chapter.

4.4 Discussion

Instance recycling is effective for a variety of reasons. First, as discussed before, the

algorithms we consider have a bound on the total number of mistakes for instances

generated by an adversary. Based on the recycling update procedure, this bound is on

the total number of mistakes including internal mistakes. Therefore internal mistakes

can potentially reduce the number of mistakes on new instances. It is important that the

mistake bound on the basic algorithm is true for any distribution since the recycling

technique can change the distribution of the instances. This is not a problem for

algorithms with mistake bounds against adversaries.

Recycling is particularly effective for mistake-driven algorithms. Mistake-driven al-

gorithms skip many instances because they are predicted correctly. In a sense, these

instances are wasted because they have no effect on a mistake-driven algorithm. How-

ever, given the instability of the accuracy of these algorithms as seen in Section 3.2, a

past instance may no longer be predicted correctly after several updates. Therefore it is

useful to recycle these old instances for more updates. An update from an old instance

may even have a cascading effect. Another old instance may be predicted incorrectly

causing further updates. These internal mistakes can help lower the number of real

mistakes.

Our last reason recycling gives good performance is that it removes instability in

the accuracy of the current hypothesis of the basic algorithm.6 Recycling is finished

when there are no more possible updates. This means that either the update count for

each instance is at its maximum or all the old instances that are not at their maximum

are predicted correctly. If we assume that most instances are at their maximum then

the algorithm has made a large number of internal mistakes, which should help lower

the number of real mistakes. If many of the instances are not at their maximum count

6See Section 3.2.
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Name # Name best concepts # R-Name best concepts

Perceptron 0 0
ALMA(2) 56 60
ALMA(ln n) 17 8
Bal(1.05) 0 2
Bal(1.2) 1 0
Bal(1.4) 2 7
Bal(1.7) 0 0
Bal(2.0) 0 0
UWin(1.05) 2 3
UWin(1.2) 0 3
UWin(1.4) 0 1
UWin(1.7) 0 0
UWin(2.0) 0 1
UCWin(1.05) 0 0
UCWin(1.2) 0 1
UCWin(1.4) 0 1
UCWin(1.7) 0 1
UCWin(2.0) 0 1
NWin(1.05,.3) 2 0
NWin(1.2,.3) 0 0
NWin(1.4,.3) 0 0
NWin(1.7,.3) 1 0
NWin(2.0,.3) 0 0
NWin(1.05,.5) 0 9
NWin(1.2,.5) 0 4
NWin(1.4,.5) 1 2
NWin(1.7,.5) 0 2
NWin(2.0,.5) 1 7
NWin(1.05,.7) 39 2
NWin(1.2,.7) 21 21
NWin(1.4,.7) 6 17
NWin(1.7,.7) 8 12
NWin(2.0,.7) 29 21

Table 4.3: Number of concepts where the algorithm gives the minimum number of
mistakes.
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then these instances are predicted correctly by the current hypothesis. Therefore, we

must have a hypothesis that is accurate for a sample of recent instances. In practice,

we find that many of the instances do not reach the maximum count and therefore the

recycling often returns more accurate hypotheses than the basic algorithm.

The parameter u, that controls the maximum number of times we can reuse an

instance, is useful when dealing with the effects of noise. If we know there is no noise

in the concept then setting u =∞ should give the best results. The algorithm recycles

over the old instances until the hypothesis is consistent with these instances, and every

internal mistake can help lower the number of real mistakes. As noise is added to the

problem, internal mistakes on a noisy instance can mislead the algorithm and increase

the number of mistakes. Recycling with a large u value tends to focus on the noisy

instances, attempting to predict them correctly. This has the potential to greatly

increase the number of mistakes. If u =∞ this can even cause the algorithm to enter

an infinite loop because there may be not be a target function that correctly predicts

all the old instances.7 However when u = 1, for the algorithms in the thesis, instance

recycling has the same mistake bound against an adversary as the basic algorithm.8

For something weaker than an adversary, such as a distribution, instance recycling can

decrease the mistake bound, even when u > 1, if the number of internal mistakes offsets

the loss of progress from noisy instances.

4.5 Summary

In this chapter, we gave another technique to improve the performance of adversarial

on-line algorithms. Assume B is an on-line algorithm. Our new algorithm is called R-B

and it works by recycling over saved old instances as if they were new trials. For each

old instance, the algorithm keeps track of how many times it has been used to change

the state of the basic algorithm. A user specified parameter, u, sets a maximum on the

7Only when s ≤ n can we guarantee that a hyperplane must exist that separates the s old instances
[DH73].

8This is based on the adversary being able to generate the instances in any order. For more infor-
mation see Appendix F.
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number of times an instance can change the state. The R-B algorithm is efficient with

only a modest increase in cost over the basic algorithms used in this dissertation.

Algorithm R-B, with u = 1, has the same mistake bound as algorithm B when

instances are generated by an adversary. However, it can improve performance for

something weaker than an adversary. A popular type of problem that is weaker than an

adversary is based on a fixed distribution generating the instances. In this chapter, we

performed experiments on the same fixed distribution problems introduced in Chapter 3.

The R-B showed significant and consistent reductions in the number of mistakes over

the basic algorithms. Some of the R-B algorithms even surpassed the voting algorithms

of Chapter 3.
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Chapter 5

Combining Voting and Recycling

The purpose of this chapter is to combine the techniques from the previous two chap-

ters. In Chapter 3 and Chapter 4, we give techniques to improve the performance of

algorithms that have a mistake-bound against an adversary for problems where the in-

stances are generated by something weaker than an adversary. In particular, we focus

on a fixed distribution generating the instances. While the linear-threshold algorithms

used in this thesis are guaranteed to perform well against an adversary, for many prac-

tical learning problems, a distribution is a more realistic model for instance generation.

Both techniques modify an existing basic on-line algorithm to generate a new al-

gorithm. The first technique, from Chapter 3, uses multiple hypotheses to replace

the prediction strategy of the basic on-line algorithm. An on-line algorithm naturally

generates new hypotheses as it changes its current hypothesis during an update. We

periodically save some of these hypotheses. Instead of predicting with the current

hypothesis, a vote of the saved hypotheses is used for predictions.

The second technique, from Chapter 4, recycles over saved old instances as if they

were new trials. It is similar to the basic algorithm, but it keeps an array of recent

instances to use for the recycling. For each old instance, the algorithm keeps track

of how many times it has been used by an update. A user specified parameter sets a

maximum on this number.

These techniques can be used together. Given an on-line algorithm B, one can

apply the recycling technique to form algorithm R-B. Algorithm R-B can then be

used as a basic algorithm to supply hypotheses to the voting procedure. This generates

algorithm VR-B. Our full combined algorithm allows many basic algorithms and is

based on modification F from Section 3.3.7. In this case, a set of basic algorithms
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with recycling are used with voting to create the VR-Combine algorithm. This is the

algorithm we recommend for on-line learning when instances are generated by fixed

distributions.

Our techniques are designed for inexpensive on-line algorithms. The algorithms

we have tested all allow instances, xt ∈ [0, 1]n and use linear-threshold functions to

represent hypotheses. The time cost for these algorithms is O(mt) per trial where

mt is the number of non-zero attributes during trial t.1 A major constraint of our

techniques is to keep the computational advantage of these inexpensive algorithms.

This is necessary for problems with a large number of attributes.

In this chapter, we give the results of experiments using the same data sets from

Section 3.4. The experiments combine the voting and recycling technique using the

linear-threshold algorithms from Chapter 2 as basic algorithms. In addition, we exper-

imentally explore the parameter space of these techniques.

This chapter is organized as follows. In Section 5.1, we describe the technique used

to combine voting and instance recycling and analyze its cost. In Section 5.2, we give

experiments with the combined technique. This includes experiments on the parameters

used in the voting and instance recycling. Section 5.3 gives a limited comparison with

linear Support Vector Machines [CV95]. The final section is a summary of our results.

5.1 Voting and Recycling Algorithm

The algorithm that combines voting and recycling is straightforward given the voting

technique in Chapter 3 and the instance recycling technique from Chapter 4. Assume B

is an on-line learning algorithm. Applying instance recycling to this algorithm generates

algorithm R-B. Using R-B as a basic algorithm for a voting procedure generates

algorithm VR-B. This is the default notation if we use all the voting modifications

from Section 3.3. If we only use some of the voting modifications we can prefix these

modifications. For example, if we only use voting modifications A, B, and C then the

algorithm would be called VRabc-B.

1More details can be found in Appendix D.
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The cost of the combined algorithm is based on cost of the instance recycling and

voting techniques. This information can be found in their respective chapters. As an

example, consider the VR-B algorithm. The cost of the instance recycling is O(usmT )

where u is the number of times an instance can be used in an update, s is the number

of saved old instances, m is the maximum number of non-zero attributes in an instance,

and T is the current trial number. The cost of voting is the cost of the basic algorithm

plus O(hmT ) plus O((rwm + wm)h(log T )2). Remember that h is the number of hy-

potheses used in the voting, r is the number of instance used to help estimate accuracy,

and w is the maximum window size that is used to search for good hypotheses. This

gives a total cost of O(usmT + hmT + (rwm + wm)h(log T )2). As T gets large, this

gives a bound of approximately O(usmT + hmT ). The space cost is O(sm) to store

the instances and O(hn) to store the voting hypotheses.

Our main algorithm uses modification F of the voting procedure to allow a set

of basic algorithms, {B1, B2, . . . , Bv}. Instance recycling is added by using instance

recycling on all the basic algorithms. These algorithms, {R-B1,R-B2, . . . ,R-Bv}, are

used as the basic algorithms of the Combine voting algorithm. The new algorithm

is called VR-Combine. It is the algorithm we recommend for on-line learning when

instances are generated by a fixed distribution. The cost is similar to VR-B except

that cost of instance recycling is O(vusmT ). Therefore the total cost is O(vusmT +

hmT + (rwm + wm)h(log T )2). As T gets large this gives a bound of approximately

O(vusmT + hmT ). Typically, the instance recycling dominates this cost. The space

used is O(sm) to store the instances, O(hn) to store the voting hypotheses, and O(vn)

to store the basic algorithms.

5.2 Voting and Recycling Experiments

In this section, we give experiments to verify the effectiveness of combining the vot-

ing and instance recycling techniques. We perform the experiments using the linear-

threshold algorithms and experimental methodology described in Section 3.4. As we

will see, the combined technique improves upon the individual techniques.
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Our experiments are divided into four sections. The first section tests the default

parameter values that are used for voting in Chapter 3 and instance recycling in Chap-

ter 4. The second section varies the parameter settings for the voting component and

the third section varies the parameter settings for the instance recycling. The last sec-

tion gives the results of experiments based on the best parameter settings found in the

previous two sections.

5.2.1 Default Parameters

All our experiments in this section are based on using the previous default parameter

settings for the voting and recycling techniques. For voting, the default values are

h = 30, w = 100, f = 0.5, and r = 100. For instance recycling, the default values are

s = 100 and u = 1.

In Figure 5.1, we give a scatter plot that compares a recycled algorithm, R-B, to

voting and recycling algorithm, VR-B. Each point of the scatter plot represents an

algorithm/concept pair, and we plot every possible combination used in our experi-

ments. This gives a total of 6138 points. The y coordinate of each points corresponds

to the final number of mistakes made by the recycling version of an algorithm on the

particular concept; the x coordinate corresponds to the final number of mistakes with

voting applied to the recycled algorithm. As can be seen, for every algorithm R-B, the

VR-B algorithm makes fewer mistakes.

In Figure 5.2, we give a similar scatter plot that compares the voting version of

algorithm B to VR-B. Again, we plot all 6138 possible combinations. For basic algo-

rithm B, the y coordinate corresponds to the final number of mistakes made by V-B

and the x coordinate corresponds to VR-B. The results are not as clear cut as the

previous figure. There are several cases where V-B performs better than VR-B. While

it is difficult to tell based on the density of the plot, V-B makes fewer mistakes in 277

of the experiments. This is a relatively small number, and we will show that on average

VR-B makes fewer mistakes.

Next, we focus on the performance of the individual algorithms. In Table 5.1 we

give the results for all of our algorithms with the default parameters. The first column
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Figure 5.1: Scatter plot comparing recycled algorithm to algorithm with voting and
recycling.
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Figure 5.2: Scatter plot comparing recycled algorithm to algorithm with voting and
recycling.
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gives the total mistakes for the basic algorithm. The second column gives the results

for voting with these basic algorithms. The next column gives the results with instance

recycling, and the last column gives the full algorithm with both voting and instance

recycling. Table 5.2 gives the mistake count for the same algorithms on the last 500

trials of all the concepts.

As can be seen in Table 5.1, combining voting and instance recycling continues to

lower the number of mistakes. While the decrease is not additive, it is still significant.

This is expected since there is less room for improvement with voting when the instance

recycling is generating more accurate hypotheses. Still, for a small increase in cost, the

VR algorithms give a significant decrease in mistakes.

The results in Table 5.2 show a somewhat more complicated but related picture.

During the last 500 trials, for most cases, the voting algorithm makes less mistakes than

the instance recycling version of the algorithm. However, over all the trials the recycling

algorithm often makes less mistakes than the voting algorithm. This demonstrates that

the recycling algorithm tends to make a greater contribution during the initial trials of

the learning. This is not surprising since the voting procedure has difficulty during the

initial stages of learning while instance recycling can exploit many of the early instances

because of the initial inaccuracy of the prediction hypothesis.

Unfortunately, even though the VR algorithms make the smallest total number of

mistakes, they do not always have the smallest number of mistakes on the final 500

trials. Eight of the VR algorithms make more mistakes on the last 500 trials. However,

the VR algorithm is often close to the minimum; so close that the difference is often

not statistically significant.

Overall the best performance comes from the VR-Combine algorithm. It makes

more than 9% fewer mistakes than VR-ALMA(2). In fact, it makes the fewest mistakes

on almost all the concepts. In the second column of Table 5.3, for each algorithm, we

give the total number of concepts where that algorithm makes the fewest mistakes. The

VR-Combine algorithm makes the fewest mistakes on all but one of the 186 concepts.

This is the same effect we observed with the V-Combine algorithm in Section 3.4. The

VR-Combine algorithm does so well because it selects hypotheses from several different
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Name M̂(Name) M̂(V-Name) M̂(R-Name) M̂(VR-Name)

Per 73342 ± 80 51295 ± 74 50926 ± 76 46179± 77
ALMA(2) 66066 ± 95 50046 ± 93 48914 ± 72 45276± 67
ALMA(ln n) 71023 ± 105 53301 ± 82 53091 ± 89 49341± 89
Bal(1.05) 72989 ± 83 51275 ± 96 50782 ± 77 46153± 77
Bal(1.2) 72398 ± 83 50621 ± 84 50888 ± 76 45987± 74
Bal(1.4) 74887 ± 86 50779 ± 79 53703 ± 91 47338± 79
Bal(1.7) 81075 ± 109 52386 ± 87 58924 ± 86 50672± 86
Bal(2.0) 86641 ± 89 54221 ± 79 62837 ± 85 53580± 83
UWin(1.05) 93375 ± 93 65027 ± 103 63041 ± 79 59204± 70
UWin(1.2) 88163 ± 93 59561 ± 87 58735 ± 68 54182± 67
UWin(1.4) 88900 ± 87 57949 ± 74 60417 ± 73 54334± 84
UWin(1.7) 94672 ± 103 58841 ± 73 64862 ± 72 57082± 85
UWin(2.0) 100624 ± 89 60564 ± 81 69016 ± 83 59707± 83
CUWin(1.05) 99476 ± 98 68613 ± 94 66768 ± 71 62696± 77
CUWin(1.2) 85792 ± 91 59509 ± 84 57946 ± 70 54068± 72
CUWin(1.4) 81676 ± 96 56068 ± 92 56905 ± 81 51939± 79
CUWin(1.7) 81567 ± 95 55141 ± 73 58406 ± 71 52371± 66
CUWin(2.0) 82557 ± 78 55290 ± 77 60109 ± 79 53520± 79
NWin(1.05,.3) 110746 ± 76 87083 ± 110 85230 ± 72 79418± 101
NWin(1.2,.3) 88760 ± 89 66453 ± 87 64192 ± 74 59791± 63
NWin(1.4,.3) 85753 ± 96 60923 ± 78 61872 ± 73 55926± 69
NWin(1.7,.3) 88529 ± 85 59332 ± 76 63935 ± 75 56413± 83
NWin(2.0,.3) 92840 ± 97 59661 ± 92 66664 ± 73 58163± 78
NWin(1.05,.5) 86721 ± 91 58946 ± 145 57966 ± 82 53568± 87
NWin(1.2,.5) 80307 ± 102 55167 ± 94 55295 ± 70 50493± 71
NWin(1.4,.5) 79405 ± 91 54021 ± 80 56125 ± 63 50277± 62
NWin(1.7,.5) 81935 ± 91 54098 ± 71 59080 ± 71 51778± 70
NWin(2.0,.5) 85610 ± 111 54927 ± 74 61877 ± 75 53725± 76
NWin(1.05,.7) 86297 ± 97 65306 ± 96 62901 ± 81 59755± 79
NWin(1.2,.7) 77574 ± 82 55917 ± 87 55290 ± 75 51091± 70
NWin(1.4,.7) 76053 ± 93 53446 ± 77 54890 ± 73 49587± 70
NWin(1.7,.7) 77541 ± 90 52705 ± 71 56953 ± 68 50260± 71
NWin(2.0,.7) 80087 ± 92 53127 ± 72 59205 ± 83 51647± 77
Combine 46432 ± 86 41029± 68
Majority Label 124266 ± 50

Table 5.1: Number of mistakes made by all the voting and recycling techniques with
default parameter values.
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Name M̂(Name) M̂(V-Name) M̂(R-Name) M̂(VR-Name)

Per 4734 ± 22 3303 ± 15 3408 ± 20 3076± 17
ALMA(2) 4304 ± 18 3259 ± 20 3278 ± 17 3035± 18
ALMA(ln n) 4590 ± 25 3468 ± 18 3539 ± 19 3283± 17
Bal(1.05) 4708 ± 22 3309 ± 18 3396 ± 18 3071± 15
Bal(1.2) 4700 ± 21 3285 ± 18 3439 ± 17 3090± 16
Bal(1.4) 4979 ± 23 3323 ± 17 3719 ± 21 3232± 18
Bal(1.7) 5522 ± 24 3487 ± 18 4145 ± 19 3514 ± 18
Bal(2.0) 5960 ± 30 3649 ± 15 4443 ± 19 3725 ± 17
UWin(1.05) 5739 ± 23 4054 ± 17 3991 ± 17 3703± 17
UWin(1.2) 5494 ± 20 3716 ± 17 3849 ± 18 3499± 16
UWin(1.4) 5745 ± 22 3699 ± 15 4093 ± 18 3595± 17
UWin(1.7) 6317 ± 25 3840 ± 14 4493 ± 18 3862 ± 15
UWin(2.0) 6830 ± 25 4004 ± 17 4823 ± 20 4081 ± 17
CUWin(1.05) 5758 ± 23 4173 ± 16 3989 ± 18 3814± 14
CUWin(1.2) 5215 ± 25 3696 ± 16 3717 ± 18 3418± 15
CUWin(1.4) 5181 ± 23 3567 ± 17 3789 ± 19 3408± 17
CUWin(1.7) 5359 ± 21 3592 ± 17 4010 ± 16 3532± 18
CUWin(2.0) 5516 ± 21 3645 ± 17 4168 ± 20 3640± 19
NWin(1.05,.3) 6022 ± 29 5162 ± 27 4633± 22 4666 ± 27
NWin(1.2,.3) 5301 ± 21 3975 ± 18 3898 ± 17 3601± 17
NWin(1.4,.3) 5392 ± 25 3754 ± 16 3995 ± 20 3533± 17
NWin(1.7,.3) 5787 ± 21 3764 ± 16 4297 ± 17 3697± 16
NWin(2.0,.3) 6224 ± 20 3858 ± 18 4560 ± 18 3885 ± 17
NWin(1.05,.5) 5300 ± 20 3689 ± 17 3769 ± 19 3440± 16
NWin(1.2,.5) 5077 ± 19 3523 ± 17 3684 ± 16 3316± 15
NWin(1.4,.5) 5131 ± 22 3499 ± 19 3820 ± 20 3355± 16
NWin(1.7,.5) 5460 ± 24 3565 ± 18 4101 ± 18 3521± 16
NWin(2.0,.5) 5804 ± 24 3658 ± 16 4344 ± 17 3690 ± 18
NWin(1.05,.7) 5327 ± 22 4103 ± 16 3989 ± 19 3737± 19
NWin(1.2,.7) 4955 ± 21 3563 ± 19 3655 ± 17 3318± 16
NWin(1.4,.7) 4966 ± 21 3460 ± 17 3740 ± 21 3305± 16
NWin(1.7,.7) 5212 ± 23 3486 ± 16 3972 ± 18 3426± 15
NWin(2.0,.7) 5451 ± 23 3556 ± 18 4171 ± 18 3560 ± 18
Combine 3103 ± 18 2861± 18
Majority Label 9404 ± 14

Table 5.2: Number of mistakes on the last 500 trials made by all the voting and recycling
techniques with default parameter values.



107

algorithms increasing the relative independence between its voting hypotheses.

5.2.2 Varying Parameters

Next, we explore our default choices for voting and instance recycling parameters.

Unfortunately, it is too expensive to do an exhaustive test of the parameter choices,

therefore we use the default parameters as a reference and perform experiments by

varying one parameter from its default value. For voting, the default values are h = 30,

w = 100, f = 0.5, and r = 100. For instance recycling, the default values are s = 100

and u = 1. In each table, the column header uses an abbreviated notation that includes

the value of the changing parameter. At the end of the section, we run a final experiment

using the optimal values from all the single parameter experiments.

Voting Parameters

Figure 5.3 contains a graph that shows the average number of mistakes as r, the number

of instances used to estimate the accuracy of the hypotheses, is varied from 0 to 500.

This average is taken over the 33 voting versions of the basic algorithms. The r param-

eter is used by voting modification C to select an accurate hypothesis from a window

of candidates. In Table 5.4, we give the same results for each individual algorithm. As

can be seen in the graph and table, all the algorithms show a monotonic decrease in

the number of mistakes as we increase the number of instances. This suggests we use

as many instances as possible given the complexity constraints on the algorithm. See

Section 3.3.4 for more information on the complexity of this parameter.

The next parameter we vary is f , the percentage of the trial window that the

voting algorithm is allowed to search for the most accurate hypothesis. These windows

are chosen so that there is no overlap between successive windows; therefore when

f = 1, as soon as the algorithm replaces one hypothesis and exits one window, it begins

searching the next window for the next replacement. We show the average results over

all algorithms in Figure 5.4, and the result for the individual algorithms in Table 5.5.

The results in both the graph and table show a monotonic decrease in the number

of mistakes as the window size grows. While many of these gains are modest and
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Name # Name best concepts # VR-Name best concepts

Perceptron 0 0
ALMA(2) 56 0
ALMA(ln n) 17 1
Bal(1.05) 0 0
Bal(1.2) 1 0
Bal(1.4) 2 0
Bal(1.7) 0 0
Bal(2.0) 0 0
UWin(1.05) 2 0
UWin(1.2) 0 0
UWin(1.4) 0 0
UWin(1.7) 0 0
UWin(2.0) 0 0
UCWin(1.05) 0 0
UCWin(1.2) 0 0
UCWin(1.4) 0 0
UCWin(1.7) 0 0
UCWin(2.0) 0 0
NWin(1.05,.3) 2 0
NWin(1.2,.3) 0 0
NWin(1.4,.3) 0 0
NWin(1.7,.3) 1 0
NWin(2.0,.3) 0 0
NWin(1.05,.5) 0 0
NWin(1.2,.5) 0 0
NWin(1.4,.5) 1 0
NWin(1.7,.5) 0 0
NWin(2.0,.5) 1 0
NWin(1.05,.7) 39 0
NWin(1.2,.7) 21 0
NWin(1.4,.7) 6 0
NWin(1.7,.7) 8 0
NWin(2.0,.7) 29 0
Combine 185

Table 5.3: Number of concepts where the algorithm gives the minimum number of
mistakes.
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Algorithm M̂(VR(0)) M̂(VR(10)) M̂(VR(100)) M̂(VR(200)) M̂(VR(500))
Per 46441± 76 46395± 75 46179± 77 46145± 77 46108± 79
ALMA(2) 45362± 70 45340± 68 45276± 67 45242± 68 45221± 70
ALMA(lnn) 49442± 87 49435± 88 49341± 89 49303± 88 49279± 90
Bal(1.05) 46398± 80 46358± 75 46153± 77 46097± 77 46079± 77
Bal(1.2) 46231± 74 46202± 77 45987± 74 45929± 75 45881± 74
Bal(1.4) 47736± 85 47671± 83 47338± 79 47238± 80 47174± 78
Bal(1.7) 51361± 87 51265± 87 50672± 86 50529± 80 50471± 86
Bal(2.0) 54598± 89 54423± 91 53580± 83 53411± 82 53327± 87
UWin(1.05) 59418± 72 59388± 72 59204± 70 59196± 68 59169± 66
UWin(1.2) 54434± 65 54407± 67 54182± 67 54099± 67 54047± 63
UWin(1.4) 54889± 83 54814± 87 54334± 84 54198± 82 54098± 80
UWin(1.7) 57995± 83 57852± 83 57082± 85 56891± 84 56800± 87
UWin(2.0) 60807± 82 60624± 88 59707± 83 59528± 84 59438± 80
UCWin(1.05) 62969± 77 62899± 77 62696± 77 62658± 81 62626± 77
UCWin(1.2) 54263± 75 54248± 74 54068± 72 54008± 72 53977± 75
UCWin(1.4) 52276± 77 52209± 81 51939± 79 51858± 75 51801± 76
UCWin(1.7) 52881± 70 52796± 70 52371± 66 52269± 69 52196± 75
UCWin(2.0) 54164± 73 54085± 71 53520± 79 53343± 75 53286± 73
NWin(1.05,.3) 79717± 101 79606± 100 79418± 101 79307± 96 79161± 98
NWin(1.2,.3) 60013± 71 59985± 68 59791± 63 59736± 64 59700± 66
NWin(1.4,.3) 56342± 72 56297± 78 55926± 69 55854± 67 55805± 70
NWin(1.7,.3) 57135± 82 57057± 82 56413± 83 56263± 77 56202± 77
NWin(2.0,.3) 59150± 84 59008± 83 58163± 78 57988± 81 57916± 77
NWin(1.05,.5) 53801± 88 53762± 89 53568± 87 53522± 86 53507± 87
NWin(1.2,.5) 50773± 68 50708± 69 50493± 71 50443± 73 50404± 70
NWin(1.4,.5) 50680± 68 50630± 68 50277± 62 50197± 66 50146± 61
NWin(1.7,.5) 52436± 77 52342± 80 51778± 70 51624± 76 51563± 75
NWin(2.0,.5) 54669± 85 54526± 78 53725± 76 53560± 72 53489± 72
NWin(1.05,.7) 59849± 86 59808± 82 59755± 79 59719± 84 59702± 84
NWin(1.2,.7) 51282± 66 51246± 67 51091± 70 51045± 67 51020± 65
NWin(1.4,.7) 49914± 73 49863± 73 49587± 70 49516± 71 49467± 72
NWin(1.7,.7) 50808± 71 50720± 73 50260± 71 50148± 69 50078± 73
NWin(2.0,.7) 52393± 79 52281± 78 51647± 77 51512± 74 51437± 76
Combine 41147± 69 41129± 66 41029± 68 41005± 66 40976± 67

Table 5.4: Number of mistakes when using r = {0, 10, 100, 200, 500} instances for hy-
potheses accuracy estimation. The remaining parameters are set at the default values.



110

 53600

 53700

 53800

 53900

 54000

 54100

 54200

 54300

 0  100  200  300  400  500

M
is

ta
ke

s

r value

Figure 5.3: Average number of total mistakes of all versions of the VR algorithm when
using r = {0, 10, 100, 200, 500}. All other parameters set to default value.

not statistically significant, the consistency of the gains suggests that choosing a large

window is the best strategy.

Originally, we were concerned that allowing f to get too large would cause problems

since the voting procedure could select a hypothesis from the end of one window and

from the start of the next window. These hypotheses might be strongly correlated

limiting the diversity of the voting hypotheses. Over these data sets, this does not

appear to be a problem.

A parameter related to f is w, the maximum number of trials to search in a window.

Searching the entire window for an accurate hypothesis can become expensive. This

is, in part, why we have a limit to the number of trials that the algorithm is allowed

to search. The default value for w is set to 100. However, we do not perform any

experiments varying w because with only 10,000 trials and default values h = 30 and

f = 0.5, the 100 trial limit is rarely reached. While we could test values of w smaller

than 100, the experiments with f already gives a good idea of how voting is affected

by window size.

Last, we consider the total number of mistakes as the number of hypotheses is

varied from 10 to 50. The results for the average number of mistakes for all algorithms

is given in Figure 5.5; the results for the individual algorithms is given in Table 5.6.
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Name M̂(VR(.1)) M̂(VR(.25)) M̂(VR(.5)) M̂(VR(.75)) M̂(VR(.9))
Per 46395± 79 46285± 78 46179± 77 46097± 76 46072± 76
ALMA(2) 45358± 68 45317± 68 45276± 67 45214± 67 45206± 66
ALMA(ln n) 49436± 90 49400± 90 49341± 89 49306± 89 49288± 89
Bal(1.05) 46353± 79 46271± 76 46153± 77 46065± 79 46034± 76
Bal(1.2) 46183± 80 46078± 74 45987± 74 45920± 74 45895± 72
Bal(1.4) 47644± 83 47485± 77 47338± 79 47242± 79 47205± 77
Bal(1.7) 51241± 88 50932± 86 50672± 86 50520± 86 50474± 82
Bal(2.0) 54354± 85 53951± 83 53580± 83 53380± 84 53295± 86
UWin(1.05) 59393± 73 59311± 71 59204± 70 59162± 70 59139± 72
UWin(1.2) 54380± 67 54265± 65 54182± 67 54086± 68 54060± 67
UWin(1.4) 54751± 85 54539± 80 54334± 84 54202± 81 54156± 81
UWin(1.7) 57766± 82 57407± 83 57082± 85 56878± 82 56799± 83
UWin(2.0) 60555± 80 60101± 79 59707± 83 59486± 79 59407± 77
CUWin(1.05) 62897± 76 62816± 77 62696± 77 62611± 80 62582± 78
CUWin(1.2) 54231± 73 54154± 74 54068± 72 54006± 70 53984± 73
CUWin(1.4) 52190± 79 52049± 79 51939± 79 51856± 78 51834± 75
CUWin(1.7) 52757± 78 52540± 71 52371± 66 52263± 65 52234± 66
CUWin(2.0) 53989± 74 53718± 81 53520± 79 53377± 75 53331± 77
NWin(1.05,.3) 79703± 103 79568± 98 79418± 101 79280± 97 79221± 97
NWin(1.2,.3) 59956± 66 59880± 70 59791± 63 59755± 64 59719± 66
NWin(1.4,.3) 56226± 77 56062± 74 55926± 69 55872± 71 55843± 69
NWin(1.7,.3) 56950± 89 56642± 86 56413± 83 56273± 78 56230± 76
NWin(2.0,.3) 58872± 81 58485± 78 58163± 78 57996± 80 57939± 80
NWin(1.05,.5) 53762± 88 53674± 88 53568± 87 53492± 87 53456± 88
NWin(1.2,.5) 50697± 73 50594± 72 50493± 71 50426± 73 50403± 70
NWin(1.4,.5) 50570± 69 50411± 66 50277± 62 50200± 65 50170± 62
NWin(1.7,.5) 52237± 74 51962± 70 51778± 70 51648± 72 51624± 75
NWin(2.0,.5) 54394± 78 54011± 79 53725± 76 53572± 71 53516± 74
NWin(1.05,.7) 59843± 81 59798± 83 59755± 79 59718± 82 59705± 81
NWin(1.2,.7) 51232± 68 51153± 70 51091± 70 51037± 69 51022± 66
NWin(1.4,.7) 49813± 70 49693± 72 49587± 70 49518± 68 49504± 69
NWin(1.7,.7) 50629± 72 50430± 73 50260± 71 50165± 68 50146± 67
NWin(2.0,.7) 52160± 77 51865± 78 51647± 77 51532± 74 51488± 75
Combine 41129± 68 41092± 70 41029± 68 40972± 67 40961± 65

Table 5.5: Number of mistakes when using f = {0.1, 0.25, 0.5, 0.75, 0.9} of the hypoth-
esis window for the highest accuracy hypothesis. The remaining parameters are set at
the default value.
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Figure 5.4: Average number of total mistakes of all versions of the VR algorithm when
using f = {0.1, 0.25, 0.5, 0.75, 0.9}. All other parameters set to default value.

These results are somewhat surprising. The number of mistakes consistently increases

for all algorithms when we increase the number of voting hypotheses beyond 30. In

fact, for most algorithms h = 20 gives the fewest mistakes. While the difference in the

number of mistakes is small, it is consistent.

More extensive testing on individual concepts suggests that the number of mistakes

made by the voting algorithm is at a minimum for smaller h only after adding voting

modification C. This seems plausible since voting modification C allows a window of

hypothesis to be searched at a given trial. With a larger h value more hypotheses will be

added but each will have a smaller window to select an accurate hypothesis. This may

cause the algorithm to add both the accurate hypothesis and several lesser hypotheses.

The net effect of these extra lower accuracy hypotheses is an increase in the number of

mistakes. While this effect is not present on all concepts, it appears enough to make a

smaller number of hypotheses better on average. These results suggest that h = 20 is

a good parameter choice to maximize performance with the added benefit of keeping

costs small.

Looking over all the parameter experiments for voting, while it is possible to lower

the number of mistakes by choosing different values than the defaults, it does not have a

large effect. In particular, for the VR-Combine algorithm r = 500, f = 0.9, and h = 20
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Name M̂(VR(10)) M̂(VR(20)) M̂(VR(30)) M̂(VR(40)) M̂(VR(50))
Per 46281± 82 46186± 79 46179± 77 46228± 75 46245± 76
ALMA(2) 45334± 67 45274± 71 45276± 67 45280± 68 45290± 69
ALMA(ln n) 49463± 84 49343± 87 49341± 89 49352± 87 49369± 90
Bal(1.05) 46208± 74 46132± 74 46153± 77 46192± 75 46223± 78
Bal(1.2) 46107± 75 45984± 69 45987± 74 46015± 75 46037± 74
Bal(1.4) 47494± 76 47330± 80 47338± 79 47375± 77 47402± 77
Bal(1.7) 50843± 88 50654± 82 50672± 86 50758± 84 50812± 81
Bal(2.0) 53667± 93 53548± 87 53580± 83 53701± 87 53776± 83
UWin(1.05) 59307± 80 59200± 70 59204± 70 59237± 66 59265± 68
UWin(1.2) 54242± 66 54164± 65 54182± 67 54186± 65 54200± 67
UWin(1.4) 54418± 74 54303± 80 54334± 84 54374± 81 54427± 81
UWin(1.7) 57123± 88 57016± 86 57082± 85 57167± 80 57247± 80
UWin(2.0) 59752± 85 59648± 80 59707± 83 59837± 82 59927± 78
CUWin(1.05) 62540± 75 62618± 81 62696± 77 62761± 79 62792± 75
CUWin(1.2) 54097± 77 54049± 76 54068± 72 54082± 75 54098± 74
CUWin(1.4) 52036± 72 51914± 74 51939± 79 51952± 75 51976± 77
CUWin(1.7) 52466± 75 52355± 70 52371± 66 52431± 71 52459± 69
CUWin(2.0) 53594± 87 53464± 80 53520± 79 53573± 72 53617± 74
NWin(1.05,.3) 79214± 99 79356± 96 79418± 101 79547± 98 79547± 99
NWin(1.2,.3) 59876± 64 59800± 63 59791± 63 59814± 64 59823± 66
NWin(1.4,.3) 56135± 67 55955± 66 55926± 69 55956± 73 55981± 71
NWin(1.7,.3) 56566± 82 56392± 79 56413± 83 56468± 85 56529± 76
NWin(2.0,.3) 58289± 80 58094± 78 58163± 78 58269± 79 58326± 76
NWin(1.05,.5) 53638± 88 53558± 88 53568± 87 53595± 89 53636± 91
NWin(1.2,.5) 50628± 79 50501± 72 50493± 71 50521± 74 50547± 73
NWin(1.4,.5) 50443± 64 50299± 60 50277± 62 50301± 61 50329± 63
NWin(1.7,.5) 51989± 80 51763± 68 51778± 70 51809± 68 51851± 70
NWin(2.0,.5) 53888± 79 53689± 76 53725± 76 53790± 76 53856± 78
NWin(1.05,.7) 59881± 82 59783± 79 59755± 79 59761± 83 59763± 80
NWin(1.2,.7) 51214± 70 51102± 69 51091± 70 51101± 67 51108± 64
NWin(1.4,.7) 49780± 71 49610± 67 49587± 70 49618± 70 49607± 68
NWin(1.7,.7) 50443± 65 50260± 69 50260± 71 50294± 69 50312± 69
NWin(2.0,.7) 51847± 72 51657± 72 51647± 77 51715± 76 51745± 75
Combine 41101± 61 41009± 65 41029± 68 41048± 66 41057± 67

Table 5.6: Number of mistakes made with h = {10, 20, 30, 40, 50} voting hypotheses.
The remaining parameters are set at the default values.
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Figure 5.5: Average number of total mistakes of all versions of the VR algorithm when
using h = {10, 20, 30, 40, 50}. All other parameters set to default value.

give the fewest mistakes, however, the differences are not statistically significant over

the default values. Later we run experiments that use all the best parameter values for

VR-Combine to see if in aggregate these parameter changes have a larger influence.

Instance Recycling Parameters

Next we look at the parameters for the instance recycling algorithm. In this case, we

give results for recycling on the basic version of the algorithm and the basic version

with voting. While the voting results are the most important, we include the results

for the basic algorithms since they are affected by the parameter choices, and their

behavior gives us insight into the VR algorithms. Again, we keep all the parameters at

their default value and only modify a single instance recycling parameter.

The graph labeled basic in Figure 5.6 gives the average number of mistakes for

recycling on the basic algorithms as we vary the number of recycling instances using s =

{10, 50, 100, 200, 500}. The results for the individual algorithms are given in Table 5.7.

As can be seen, the number of mistakes monotonically decreases as we increase the

value of s. If fact, there is a dramatic statistically significant decrease in the number of

mistakes for all of the algorithms. In some cases, the number of mistakes using s = 500

approaches the the performance of the voting and recycling algorithm with the default
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Figure 5.6: Average number of total mistakes for all basic and voting algorithms when
using s = {10, 50, 100, 200, 500}. All other parameters set to default value.

parameters. Still instance recycling gets expensive as s grows, and we still expect a

large benefit using the VR-Combine algorithm to effectively use different algorithms for

different problems.

The graph labeled voting in Figure 5.6 gives the average result of using using

s = {10, 50, 100, 200, 500} on all the VR voting algorithms. Table 5.8 gives the re-

sults on the individual algorithms. Here the results are not so clear cut. While the

average graph is almost monotonically decreasing, the individual algorithms show a

wider range of behavior. The number of mistakes does monotonically decrease for

the ALMA algorithms and Perceptron, but the Winnow algorithms often make more

mistakes as the number of recycled instances increases. In particular, the larger the

Winnow multiplier the more mistakes with a large s value.

This could be caused by a lack of diversity in the hypotheses generated by the

instance recycling. The instances that are used for recycling are not from the same

distribution that generated the instances. With the default u = 1 parameter, each

instance can only be used for a single update, therefore the recycled instances only

contain instances that are correctly predicted by the algorithm. While this will most

likely lower the amount of noise in the recycled instances, this change in distribution

can also effect the diversity in the generated hypotheses.
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Name M̂(R(10)) M̂(R(50)) M̂(R(100)) M̂(R(200)) M̂(R(500))
Per 59635± 88 53052± 80 50926± 76 49288± 77 47846± 68
ALMA(2) 56616± 94 50832± 82 48914± 72 47407± 83 46003± 77
ALMA(ln n) 61407± 91 55191± 90 53091± 89 51501± 87 50055± 90
Bal(1.05) 59501± 79 52880± 74 50782± 77 49090± 62 47644± 74
Bal(1.2) 59565± 98 53034± 81 50888± 76 49260± 75 47803± 77
Bal(1.4) 62338± 94 55818± 80 53703± 91 52108± 90 50783± 88
Bal(1.7) 67826± 107 61047± 98 58924± 86 57415± 92 56245± 92
Bal(2.0) 72356± 103 65033± 93 62837± 85 61319± 82 60309± 94
UWin(1.05) 69931± 86 64575± 75 63041± 79 61836± 74 60831± 70
UWin(1.2) 67134± 85 60685± 65 58735± 68 57306± 67 56227± 64
UWin(1.4) 69471± 90 62538± 71 60417± 73 59015± 68 58080± 71
UWin(1.7) 75041± 94 67190± 81 64862± 72 63345± 77 62365± 83
UWin(2.0) 80166± 100 71549± 87 69016± 83 67399± 86 66314± 87
UCWin(1.05) 74855± 86 68486± 73 66768± 71 65538± 75 64510± 75
UCWin(1.2) 65856± 78 59723± 72 57946± 70 56686± 74 55613± 72
UCWin(1.4) 64716± 84 58756± 67 56905± 81 55521± 73 54376± 75
UCWin(1.7) 66324± 87 60396± 81 58406± 71 56935± 76 55736± 75
UCWin(2.0) 68191± 88 62132± 76 60109± 79 58617± 73 57358± 74
NWin(1.05,.3) 93265± 81 87341± 75 85230± 72 83490± 69 81909± 69
NWin(1.2,.3) 73344± 78 66505± 76 64192± 74 62387± 66 60916± 63
NWin(1.4,.3) 71195± 89 64230± 75 61872± 73 60116± 69 58711± 77
NWin(1.7,.3) 73964± 90 66419± 82 63935± 75 62188± 79 60951± 75
NWin(2.0,.3) 77509± 86 69282± 72 66664± 73 64904± 82 63761± 76
NWin(1.05,.5) 66295± 92 59977± 88 57966± 82 56501± 79 55316± 80
NWin(1.2,.5) 63775± 80 57348± 77 55295± 70 53725± 73 52486± 70
NWin(1.4,.5) 64665± 75 58255± 77 56125± 63 54532± 71 53219± 65
NWin(1.7,.5) 67948± 85 61318± 79 59080± 71 57463± 72 56224± 67
NWin(2.0,.5) 71338± 93 64203± 83 61877± 75 60262± 86 59124± 79
NWin(1.05,.7) 69112± 87 64501± 77 62901± 81 61646± 80 60457± 84
NWin(1.2,.7) 62913± 82 57231± 64 55290± 75 53822± 72 52570± 68
NWin(1.4,.7) 62695± 88 56905± 68 54890± 73 53364± 74 52051± 71
NWin(1.7,.7) 64920± 82 59035± 71 56953± 68 55374± 67 54095± 70
NWin(2.0,.7) 67498± 93 61350± 78 59205± 83 57609± 81 56350± 74

Table 5.7: Number of mistakes made by instance recycling on basic algorithms with
s = {10, 50, 100, 200, 500} saved instances. The remaining parameters are set at the
default values.
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Name M̂(VR(10)) M̂(VR(50)) M̂(VR(100)) M̂(VR(200)) M̂(VR(500))
Per 48405± 75 46747± 76 46179± 77 45813± 70 45484± 66
ALMA(2) 47810± 78 45971± 75 45276± 67 44651± 79 44060± 76
ALMA(ln n) 51564± 83 49981± 84 49341± 89 48781± 83 48279± 87
Bal(1.05) 48418± 82 46706± 69 46153± 77 45706± 71 45394± 66
Bal(1.2) 48070± 77 46549± 69 45987± 74 45645± 70 45387± 74
Bal(1.4) 48650± 70 47606± 67 47338± 79 47265± 84 47405± 83
Bal(1.7) 50917± 81 50582± 79 50672± 86 51066± 86 51684± 84
Bal(2.0) 53168± 84 53268± 97 53580± 83 54256± 90 55265± 96
UWin(1.05) 60745± 84 59517± 82 59204± 70 58973± 68 58862± 73
UWin(1.2) 55689± 71 54477± 63 54182± 67 54010± 68 54083± 60
UWin(1.4) 55117± 78 54362± 75 54334± 84 54545± 72 55031± 73
UWin(1.7) 56888± 75 56758± 74 57082± 85 57596± 79 58431± 92
UWin(2.0) 59112± 75 59299± 88 59707± 83 60411± 88 61416± 88
UCWin(1.05) 64758± 86 63168± 80 62696± 77 62358± 87 62111± 76
UCWin(1.2) 56047± 77 54531± 72 54068± 72 53734± 75 53564± 71
UCWin(1.4) 53371± 83 52241± 65 51939± 79 51779± 71 51783± 75
UCWin(1.7) 53131± 79 52492± 77 52371± 66 52413± 71 52635± 75
UCWin(2.0) 53776± 75 53480± 73 53520± 79 53710± 71 54088± 69
NWin(1.05,.3) 83303± 107 80498± 106 79418± 101 78514± 103 77722± 90
NWin(1.2,.3) 63149± 80 60715± 79 59791± 63 59096± 67 58602± 63
NWin(1.4,.3) 58312± 80 56542± 67 55926± 69 55632± 73 55582± 79
NWin(1.7,.3) 57450± 83 56552± 84 56413± 83 56584± 78 57089± 95
NWin(2.0,.3) 58331± 90 58009± 77 58163± 78 58650± 73 59486± 89
NWin(1.05,.5) 55332± 87 53957± 96 53568± 87 53290± 87 53248± 89
NWin(1.2,.5) 52267± 77 50897± 75 50493± 71 50231± 70 50216± 75
NWin(1.4,.5) 51771± 71 50610± 71 50277± 62 50186± 67 50237± 73
NWin(1.7,.5) 52435± 68 51837± 70 51778± 70 51955± 79 52398± 82
NWin(2.0,.5) 53766± 78 53553± 82 53725± 76 54155± 92 54937± 95
NWin(1.05,.7) 61963± 101 60400± 94 59755± 79 59273± 91 58792± 88
NWin(1.2,.7) 53139± 67 51619± 69 51091± 70 50712± 70 50492± 70
NWin(1.4,.7) 51129± 72 49948± 67 49587± 70 49374± 73 49313± 68
NWin(1.7,.7) 51091± 80 50421± 67 50260± 71 50311± 67 50593± 79
NWin(2.0,.7) 51908± 82 51596± 79 51647± 77 51941± 78 52397± 82
Combine 43558± 85 41670± 73 41029± 68 40465± 69 39955± 67

Table 5.8: Number of mistakes made by instance recycling on the voting algorithms
with s = {10, 50, 100, 200, 500} saved instances. The remaining parameters are set at
the default values.
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In the majority of our experiments, the label of the data is skewed towards -1.

However, a mistake-driven algorithm tends to make an equal number of mistakes on

label -1 and label 1. Therefore, a higher proportion of instances with label 1 will cause

a mistake, and the instance recycling will contain more label -1 instances. When the

recycling takes place, the algorithms update on these label -1 instances and create a

bias towards this label. This becomes more of a problem as we increase the number of

recycling instances. The Winnow algorithms with large multipliers are more susceptible

to this problem since they make the biggest changes to their current hypothesis.

Still, even with this problem, our primary algorithm, VR-Combine, improves as we

increase s. This is most likely because it gains some additional diversity since it selects

hypotheses from different algorithms. It is currently the best algorithm with a decrease

of over a 1000 mistakes from VR-Combine with default parameters.

Last, we experiment with the number of times an instance can be used in an update.

Our experiments test u = {1, 2, 3, 4, 5}. The average total number of mistakes for all

the basic algorithms is given in Figure 5.7 and is labeled basic. Table 5.9 gives the same

results for the individual basic algorithms. Remember from Section 4.4 that larger u

values can increase the number of times an algorithm updates on noisy instances. This

can cause the algorithm to make more mistakes. In addition, based on Appendix A, B,

and C, the noise component of a Winnow algorithm’s mistake bound depends on the

value of the multiplier. A smaller multiplier is more resistant to noise. This matches

the results we see in Table 5.9. When the multiplier is small the Winnow algorithms

benefit from a large u value. However, as the multiplier grows, even u = 2 causes an

increase in the number of mistakes.

The results of varying u are more positive with voting. The graph labeled voting in

Figure 5.7 gives the total number of mistakes averaged over all the voting algorithms.

Table 5.10 gives the same results for the individual algorithms. In general, a larger u

value improves the performance for voting. There are a few exceptions exceptions, but

on average the larger u value lowers the number of mistakes. This is probably a result

of the larger hypothesis diversity that results from the large u values. A larger u value

will cause more updates with instances which tends tends to increase the diversity as
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Name M̂(R(1)) M̂(R(2)) M̂(R(3)) M̂(R(4)) M̂(R(5))
Perceptron 50926± 76 50180± 52 49807± 75 50029± 78 50350± 78
ALMA(2) 48914± 72 48363± 82 48583± 85 48934± 85 49317± 85
ALMA(ln n) 53091± 89 52209± 83 52414± 80 52793± 77 53163± 77
Bal(1.05) 50782± 77 49675± 69 49673± 72 49910± 68 50162± 70
Bal(1.2) 50888± 76 50288± 75 50482± 76 50810± 77 51177± 82
Bal(1.4) 53703± 91 53878± 80 54577± 85 55216± 91 55766± 84
Bal(1.7) 58924± 86 59517± 79 60271± 89 60989± 80 61470± 86
Bal(2.0) 62837± 85 63520± 79 64281± 91 64820± 96 65291± 84
UWin(1.05) 63041± 79 58030± 68 56036± 78 55143± 75 54537± 79
UWin(1.2) 58735± 68 55633± 76 55043± 66 55092± 73 55350± 75
UWin(1.4) 60417± 73 58979± 80 59211± 82 59749± 78 60314± 76
UWin(1.7) 64862± 72 64280± 76 64774± 85 65372± 76 65942± 85
UWin(2.0) 69016± 83 68626± 83 69201± 84 69748± 100 70385± 163
UCWin(1.05) 66768± 71 60388± 72 58151± 73 57031± 69 56491± 82
UCWin(1.2) 57946± 70 54775± 70 54319± 80 54486± 75 54853± 79
UCWin(1.4) 56905± 81 55602± 70 56024± 74 56662± 81 57330± 77
UCWin(1.7) 58406± 71 58271± 78 59012± 90 60025± 156 61171± 262
UCWin(2.0) 60109± 79 60400± 79 61522± 147 62936± 286 64378± 291
NWin(1.05,.3) 85230± 72 74034± 73 69792± 66 67611± 76 66338± 80
NWin(1.2,.3) 64192± 74 60204± 72 59469± 71 59489± 77 59771± 79
NWin(1.4,.3) 61872± 73 60471± 74 60955± 70 61658± 78 62302± 89
NWin(1.7,.3) 63935± 75 63887± 76 64755± 83 65622± 82 66296± 86
NWin(2.0,.3) 66664± 73 67078± 70 67918± 91 68683± 80 69311± 80
NWin(1.05,.5) 57966± 82 55309± 70 54714± 86 54597± 85 54703± 78
NWin(1.2,.5) 55295± 70 53949± 60 54193± 70 54710± 85 55242± 77
NWin(1.4,.5) 56125± 63 55974± 74 56911± 70 57784± 67 58537± 74
NWin(1.7,.5) 59080± 71 59845± 75 60954± 73 61926± 80 62679± 90
NWin(2.0,.5) 61877± 75 62795± 75 63882± 78 64713± 87 65360± 88
NWin(1.05,.7) 62901± 81 58347± 82 56827± 84 56210± 71 55919± 80
NWin(1.2,.7) 55290± 75 53534± 70 53566± 70 54005± 75 54514± 75
NWin(1.4,.7) 54890± 73 54686± 69 55565± 76 56402± 82 57151± 84
NWin(1.7,.7) 56953± 68 57723± 74 58852± 76 59742± 79 60474± 84
NWin(2.0,.7) 59205± 83 60225± 81 61310± 72 62161± 79 62818± 79

Table 5.9: Number of mistakes made by instance recycling on the basic algorithms with
the number of times an instance can be used set to u = {1, 2, 3, 4, 5} . The remaining
parameters are set at the default values.
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Figure 5.7: Average number of total mistakes for all basic and voting algorithms when
using u = {1, 2, 3, 4, 5}. All other parameters set to default value.

explained in Section 3.2. In addition, the recycled instances are less likely to contain

a skewed distribution of labels since an instance can be used multiple times. As can

be seen, this gives us the best algorithm so far with VR-Combine making only 39578

mistakes when u = 5. The extra diversity of the hypotheses used most likely explains

the large u value for VR-Combine.

Best Parameters

The final experiment for this chapter is to take the best results on VR-Combine from the

previous parameter experiments and see how much these values improve the algorithms.

We give the total number of mistakes in Table 5.11 and the mistakes in the last 500

trials in Table 5.12. The tables use VR1 to represent the voting and instance recycling

algorithm with default parameters and VR2 to represent the algorithms with r = 500,

f = 0.9, h = 20, s = 500, and u = 5. As can be seen, all the algorithms have a large

statistically significant decrease in total mistakes over the default parameters. In the

final 500 trials, the algorithms also have a decrease in mistake count from the default

parameters. The result is not always statistically significant, but this could be a result

of the smaller number of trials we are testing.

These parameters give us the best algorithm we have seen on these sets of data.
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Name M̂(VR(1)) M̂(VR(2)) M̂(VR(3)) M̂(VR(4)) M̂(VR(5))
Perceptron 46179± 77 44100± 65 43371± 63 43057± 71 42913± 66
ALMA(2) 45276± 67 43783± 77 43321± 77 43121± 78 43026± 77
ALMA(ln n) 49341± 89 47294± 88 46585± 83 46264± 77 46120± 75
Bal(1.05) 46153± 77 44010± 70 43279± 70 42984± 63 42831± 66
Bal(1.2) 45987± 74 44111± 69 43458± 71 43139± 73 42952± 69
Bal(1.4) 47338± 79 45913± 70 45503± 74 45351± 69 45285± 79
Bal(1.7) 50672± 86 49494± 77 49185± 80 49023± 77 48919± 79
Bal(2.0) 53580± 83 52452± 82 51988± 92 51714± 86 51513± 88
UWin(1.05) 59204± 70 53575± 68 50968± 70 49524± 66 48560± 66
UWin(1.2) 54182± 67 49872± 65 48210± 63 47340± 68 46864± 64
UWin(1.4) 54334± 84 51125± 75 50108± 76 49643± 80 49448± 72
UWin(1.7) 57082± 85 54717± 75 53930± 77 53611± 78 53438± 81
UWin(2.0) 59707± 83 57810± 76 57223± 89 56994± 88 56974± 116
UCWin(1.05) 62696± 77 55948± 80 52932± 77 51098± 67 49946± 66
UCWin(1.2) 54068± 72 49278± 63 47582± 71 46743± 71 46310± 63
UCWin(1.4) 51939± 79 48658± 67 47683± 75 47278± 67 47142± 71
UCWin(1.7) 52371± 66 50247± 71 49676± 73 49506± 83 49476± 89
UCWin(2.0) 53520± 79 51862± 73 51480± 81 51510± 115 51715± 156
NWin(1.05,.3) 79418± 101 69317± 83 64533± 79 61739± 76 59939± 84
NWin(1.2,.3) 59791± 63 54254± 71 52224± 70 51311± 76 50828± 80
NWin(1.4,.3) 55926± 69 52514± 83 51561± 82 51243± 85 51097± 86
NWin(1.7,.3) 56413± 83 54233± 85 53737± 79 53589± 76 53582± 84
NWin(2.0,.3) 58163± 78 56523± 76 56113± 87 56051± 83 55981± 85
NWin(1.05,.5) 53568± 87 49460± 74 47858± 84 47077± 73 46551± 74
NWin(1.2,.5) 50493± 71 47467± 61 46482± 70 46025± 68 45837± 69
NWin(1.4,.5) 50277± 62 48005± 63 47501± 65 47381± 66 47384± 73
NWin(1.7,.5) 51778± 70 50400± 78 50152± 75 50201± 79 50260± 82
NWin(2.0,.5) 53725± 76 52641± 74 52481± 77 52455± 78 52465± 71
NWin(1.05,.7) 59755± 79 53897± 78 51390± 81 49970± 76 49085± 70
NWin(1.2,.7) 51091± 70 47607± 64 46394± 62 45866± 69 45646± 65
NWin(1.4,.7) 49587± 70 47227± 71 46679± 64 46582± 68 46587± 69
NWin(1.7,.7) 50260± 71 48847± 68 48591± 70 48552± 66 48644± 65
NWin(2.0,.7) 51647± 77 50594± 79 50416± 73 50426± 71 50464± 75
Combine 41029± 68 39960± 69 39699± 67 39606± 63 39581± 68

Table 5.10: Number of mistakes made by instance recycling on the voting algorithms
with the number of times an instance can be used set to u = {1, 2, 3, 4, 5}. The remain-
ing parameters are set at the default values.
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Name M̂(Name) M̂(VR1-Name) M̂(VR2-Name)

Per 73342 ± 80 46179 ± 77 40924 ± 57
ALMA(2) 66066 ± 95 45276 ± 67 40921 ± 58
ALMA(ln n) 71023 ± 105 49341 ± 89 43564 ± 77
Bal(1.05) 72989 ± 83 46153 ± 77 40791 ± 59
Bal(1.2) 72398 ± 83 45987 ± 74 41168 ± 65
Bal(1.4) 74887 ± 86 47338 ± 79 44270 ± 69
Bal(1.7) 81075 ± 109 50672 ± 86 48798 ± 84
Bal(2.0) 86641 ± 89 53580 ± 83 52166 ± 92
UWin(1.05) 93375 ± 93 59204 ± 70 46609 ± 63
UWin(1.2) 88163 ± 93 54182 ± 67 45493 ± 65
UWin(1.4) 88900 ± 87 54334 ± 84 48730 ± 78
UWin(1.7) 94672 ± 103 57082 ± 85 53480 ± 87
UWin(2.0) 100624 ± 89 59707 ± 83 56975 ± 80
CUWin(1.05) 99476 ± 98 62696 ± 77 47865 ± 67
CUWin(1.2) 85792 ± 91 54068 ± 72 44462 ± 66
CUWin(1.4) 81676 ± 96 51939 ± 79 45770 ± 68
CUWin(1.7) 81567 ± 95 52371 ± 66 48498 ± 155
CUWin(2.0) 82557 ± 78 53520 ± 79 51000 ± 228
NWin(1.05,.3) 110746 ± 76 79418 ± 101 56081 ± 81
NWin(1.2,.3) 88760 ± 89 59791 ± 63 48058 ± 69
NWin(1.4,.3) 85753 ± 96 55926 ± 69 49476 ± 88
NWin(1.7,.3) 88529 ± 85 56413 ± 83 53002 ± 89
NWin(2.0,.3) 92840 ± 97 58163 ± 78 56051 ± 81
NWin(1.05,.5) 86721 ± 91 53568 ± 87 44580 ± 63
NWin(1.2,.5) 80307 ± 102 50493 ± 71 44004 ± 69
NWin(1.4,.5) 79405 ± 91 50277 ± 62 46096 ± 62
NWin(1.7,.5) 81935 ± 91 51778 ± 70 49576 ± 87
NWin(2.0,.5) 85610 ± 111 53725 ± 76 52228 ± 80
NWin(1.05,.7) 86297 ± 97 59755 ± 79 46520 ± 69
NWin(1.2,.7) 77574 ± 82 51091 ± 70 43670 ± 62
NWin(1.4,.7) 76053 ± 93 49587 ± 70 45183 ± 64
NWin(1.7,.7) 77541 ± 90 50260 ± 71 47720 ± 69
NWin(2.0,.7) 80087 ± 92 51647 ± 77 49959 ± 82
Combine 41029 ± 68 37393 ± 65

Table 5.11: Number of mistakes over all concepts made with VR1 using the default
parameters and VR2 using r = 500, f = 0.9, h = 20, s = 500, u = 5.
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Name M̂(Name) M̂(VR1-Name) M̂(VR2-Name)

Per 4734 ± 22 3076 ± 17 2801± 17
ALMA(2) 4304 ± 18 3035 ± 18 2785± 15
ALMA(ln n) 4590 ± 25 3283 ± 17 2924± 16
Bal(1.05) 4708 ± 22 3071 ± 15 2789± 16
Bal(1.2) 4700 ± 21 3090 ± 16 2826± 18
Bal(1.4) 4979 ± 23 3232 ± 18 3100± 19
Bal(1.7) 5522 ± 24 3514 ± 18 3442± 17
Bal(2.0) 5960 ± 30 3725 ± 17 3689± 19
UWin(1.05) 5739 ± 23 3703 ± 17 3069± 16
UWin(1.2) 5494 ± 20 3499 ± 16 3121± 15
UWin(1.4) 5745 ± 22 3595 ± 17 3366± 14
UWin(1.7) 6317 ± 25 3862 ± 15 3723± 17
UWin(2.0) 6830 ± 25 4081 ± 17 3967± 16
CUWin(1.05) 5758 ± 23 3814 ± 14 3064± 17
CUWin(1.2) 5215 ± 25 3418 ± 15 3017± 16
CUWin(1.4) 5181 ± 23 3408 ± 17 3161± 17
CUWin(1.7) 5359 ± 21 3532 ± 18 3365± 22
CUWin(2.0) 5516 ± 21 3640 ± 19 3543± 23
NWin(1.05,.3) 6022 ± 29 4666 ± 27 3300± 19
NWin(1.2,.3) 5301 ± 21 3601 ± 17 3104± 17
NWin(1.4,.3) 5392 ± 25 3533 ± 17 3326± 16
NWin(1.7,.3) 5787 ± 21 3697 ± 16 3617± 17
NWin(2.0,.3) 6224 ± 20 3885 ± 17 3855± 14
NWin(1.05,.5) 5300 ± 20 3440 ± 16 2990± 16
NWin(1.2,.5) 5077 ± 19 3316 ± 15 3018± 16
NWin(1.4,.5) 5131 ± 22 3355 ± 16 3214± 15
NWin(1.7,.5) 5460 ± 24 3521 ± 16 3482± 15
NWin(2.0,.5) 5804 ± 24 3690 ± 18 3665± 16
NWin(1.05,.7) 5327 ± 22 3737 ± 19 3057± 17
NWin(1.2,.7) 4955 ± 21 3318 ± 16 2998± 18
NWin(1.4,.7) 4966 ± 21 3305 ± 16 3160± 17
NWin(1.7,.7) 5212 ± 23 3426 ± 15 3357± 17
NWin(2.0,.7) 5451 ± 23 3560 ± 18 3517± 18
Combine 2861 ± 18 2655± 16

Table 5.12: Number of mistakes made on the final 500 trials with VR1 using the default
parameters and VR2 using r = 500, f = 0.9, h = 20, s = 500, u = 5.
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The VR2-Combine algorithm only makes 37,393 mistakes on all the trials and 2,655

mistakes on the final 500 trials. In fact, the improvement in VR2-Combine in Table 5.11

is greater than the sum of improvements from the single parameter experiments. This

implies the parameters interact in positive ways to decrease the number of mistakes. It

is possible that further modification, most likely by increasing s and u, could give even

more improvement.

Unfortunately, our parameter experiments have biased results. These results are

biased because we learned the parameters based on experiments over the same data sets

used to test the algorithms. However, the bias is most likely small since we only tested a

small number of parameters. In practice, one could remove this bias. For example, one

could use the common batch learning technique of using one set of instances to learn the

parameters and another set to evaluate the algorithm. Another option, keeping with the

on-line nature of the evaluation, is to run the algorithms with all the possible parameter

values and use either WMA (see Section 2.5) or our previous voting techniques to

combine predictions from the various algorithms. To keep costs reasonable, one could

delete some of the algorithms at certain trials based on performance.

Based on the results, we recommend use s = 500 and u = 5, for future problems

that do not contain an excessive amount of noise. If noise or computational cost is

a problem then a smaller s and u value might be necessary. If cost is not a large

factor, multiple s and u values can be used with a single VR-Combine algorithm to

help optimize performance.

5.3 SVM Comparison

Our final set of experiments with fixed concepts allow us to gauge how well our tech-

niques perform compared to an expensive globally optimizing linear-threshold algo-

rithm. In this case, we compare against SVMlight [Joa98] which is an implementation

of the Support Vector Machine (SVM) learning algorithm of Cortes and Vapnick [CV95].

SVM classification algorithms learn a hyperplane that maximizes the δ margin between

the two classes. See Section 2.2 for more information on the margin. While an SVM
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algorithm can learn more complicated target functions than a hyperplane, we restricted

the experiments to hyperplanes to facilitate the comparison.

SVM algorithms can allow noisy instances on the wrong side of the margin. However,

any instance that occurs on the wrong side incurs a penalty in the optimization problem.

The amount of this penalty depends on the perpendicular distance to the correct side

of the margin and the value of a parameter C. A large C value minimizes the number

of noisy instances while a small value allows a larger margin at the expense of more

noisy instances.

For our on-line experiments, we used twelve different C values. These values in-

cluded the default C value used by SVMlight. Unfortunately, the default value per-

formed poorly for many of the 186 fixed concept problems. Therefore, based on the

recommendation of Jankowski and Grabczewski [JG03], we included eleven other C

values. We used C ∈ {2−5, 2−4, . . . , 25}. This range of values from [JG03] was justified

based on the performance of an SVM algorithm using many of the same data sets as

this dissertation.

Because the SVMlight algorithm solves a quadratic programming problem, it can be

prohibitively expensive. This is even more so when using the algorithm in an on-line

fashion. Therefore, we used many techniques to speed up execution.

First, we only update the SVM algorithm when a new instance could change the

optimal hyperplane. This means the instance must be on the wrong side of the current

margin. Therefore, the algorithm needs to reprocess all the instances to determine

if this new instance should be considered a noisy instance or the current hyperplane

should be changed. Second, we only run all twelve C values for the first 1000 trials.

After this point, we only continue with the C parameter that is currently making the

fewest mistakes. To convert this technique into a single on-line algorithm, we create a

new algorithm, Combine-SVM, that always predicts with the SVM algorithm that is

currently making the fewest mistakes. After 1000 trials, Combine-SVM predicts based

on the single remaining SVM algorithm. Third, we performed a bootstrap sample using

an average of twenty samples instead of fifty samples.

However, even using all of the techniques, the SVMlight algorithm was still too
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M̂(VR1-Combine) M̂(VR2-Combine) M̂(Combine-SVM)

35795 ± 59 32884 ± 60 34395 ± 140

Table 5.13: Total Number of mistakes made on all trials of the 178 concepts with VR1
using the default parameters and VR2 using r = 500, f = 0.9, h = 20, s = 500, u = 5.

M̂(VR1-Combine) M̂(VR2-Combine) M̂(Combine-SVM)

2598 ± 16 2428 ± 14 2451 ± 26

Table 5.14: Number of mistakes on the final 500 trials of the 168 concepts with VR1
using the default parameters and VR2 using r = 500, f = 0.9, h = 20, s = 500, u = 5.

expensive for our time constraints. Sometimes a single bootstrap sample on a single

concept would take over three weeks to complete. Therefore, we removed some concepts

that were taking too long to execute. We removed a total of eight of the the 186

concepts: the connect-4 with label win, optdigits with label 0, shuttle with labels 1, 4,

and 5, thyroid0387 with label -, yeast with label ERL, and the spambase concept.

In Figure 5.8, we give a scatter plot showing the total number of mistakes made

on the 178 concepts by VR2-Combine on the x-axis and Combine-SVM on the y-axis.

As can be seen the performance of the algorithms is comparable. VR2-Combine makes

fewer mistakes on 113 of the concepts; however, in most cases, the algorithms give

similar performance. In Table 5.13, we give the sum of the mistakes over the 178

concepts for VR1-Combine, VR2-Combine and Combine-SVM. VR2-Combine has a

definite statistical advantage when summed over all the concepts. In Table 5.14, we

give the sum of the mistakes for the final 500 trials of the 178 concepts. VR2-Combine

still has an advantage, but there is limited statistical significance. In general, the

superior performance and the greatly reduced computational cost make VR2-Combine

a compelling choice when learning learning threshold functions.

5.4 Summary

This chapter continues the theme of improving the performance of adversarial on-line

algorithms for problems where instances are generated by a fixed distribution. We give
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Figure 5.8: Scatter plot comparing VR2 using r = 500, f = 0.9, h = 20, s = 500, u = 5
with Combine-SVM.

a straightforward combination of the voting technique from Chapter 3 and the instance

recycling technique of Chapter 4. Given a basic on-line algorithm B, the new algorithm

that combines instance recycling and voting is called VR-B. We show VR-B improves

the performance over either solitary technique using the fixed distribution, experimental

framework of Chapter 3.

The main algorithm of this chapter is VR-Combine. It performs instance recycling

on a set of basic algorithms, S, and uses the hypotheses generated from these algorithms

to supply the voting procedure. VR-Combine is the algorithm we recommend for on-

line learning with fixed distributions. It is a flexible algorithm with several useful

parameters and includes the ability to use any number of basic algorithms. In our

experiments, VR-Combine performs better than almost all of the VR-B algorithms.

The only exception is a single concept out of the 186 concepts we tested.

We also explored other parameters that are used in the voting and instance recy-

cling algorithms. We found that our default parameter settings are overly conservative
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and that large performance gains are possible with different parameter settings. In

particular, the VR-Combine has a large reduction in mistakes when the instance re-

cycling parameter s and u are increased in value. This reduction in mistakes makes

VR-Combine competitive with state of the art algorithms such as Support Vector Ma-

chines when learning linear-threshold functions. It is plausible that even fewer mistakes

are possible if one uses multiple values of u and s for each basic algorithm, and if one

increases the set of basic algorithms.



129

Chapter 6

Tracking Linear-threshold Concepts

In this chapter we give a mistake bound for tracking shifting concepts using a simple

variation of the Unnormalized Winnow algorithm. We show that this version of Winnow

can learn arbitrary linear-threshold functions that are allowed to change over the trials.

This chapter extends the results found in [Mes02] and [Mes03].

Tracking is a natural advantage of the on-line model. Since the algorithm constantly

receives new feedback on instances, it can use this feedback to refine the hypothesis.

Even if the target function changes over the course of the trials, the algorithm can use

the new information to, in principal, modify its hypothesis to the new target function.

Of course, the mistake bound must depend on how much and how often the target

function changes. In this chapter, we give such a bound for a version of the Winnow

algorithm showing, in a limited sense, that the mistake bound depends on changes in

the target function in close to an optimal way.

Our tracking version makes two modifications to the Unnormalized Winnow algo-

rithm. The first is a standard modification to force the attribute weights to stay above

a given constant, ǫ > 0. Anytime a normal update attempts to lower a weight below

ǫ, the weight is set to ǫ. Intuitively, this modification allows the algorithm to quickly

learn a moving concept by not allowing the weights to get too small. When an attribute

becomes relevant, its weight only needs to be increased from ǫ to the new value.

After proving a bound with the above algorithm, our second modification refines

the result by preprocessing the instances to guarantee that the attribute weights can

not get too large. While it is not obvious, very small positive attribute values can lead

to large weights in the Winnow algorithm. These large weights increase the mistake

bound, so we need some type of guarantee that the weights can not get too large. This
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is accomplished by shifting the attributes so they are not allowed to get arbitrarily close

to zero.

The minimum weight modification has been used with various Winnow type algo-

rithms. In particular, it has been used to give mistake bounds for learning changing

experts [LW94, HW98] and shifting disjunctions [AW98]. These algorithms have been

shown to be useful in practice when learning shifting concepts such as predicting disk

idle times for mobile applications [HLSS00] and solving load balancing problems on a

network of computers [BB00]. This chapter builds on these results by giving a mistake

bound for learning arbitrary linear-threshold functions that are allowed to change over

the trials. The additional knowledge that some of these algorithms have good bounds

when learning arbitrary shifting linear-threshold concepts may help justify applying

these algorithms to a wider range of tracking problems.

There are other linear-threshold algorithms that can track concepts. In [Her01]

a variation of the Perceptron algorithm is given that allows tracking concepts. In

[KSW02], two algorithms are given that allow concept tracking. Of these three algo-

rithms, the best bounds are obtained by a tracking version of ALMA found in [KSW02].

ALMA has a parameter p that allows the algorithm to behave like Perceptron when

p = 2 and Winnow when p = O(ln n). Later in this chapter, we compare this tracking

version of ALMA to the tracking version of Unnormalized Winnow.

Another advantage of our tracking version of Winnow is that it eliminates the de-

pendence of the algorithm on the number of attributes. With an appropriate setting

of parameters, instead of the algorithm depending on ln (n), as in the normal Win-

now algorithm proof [Lit89, AW98], the algorithm depends on the maximum value of

ln (‖Xt‖1). In Appendix A, we show how these parameters can be used for the standard

Unnormalized Winnow algorithm to achieve a similar mistake bound.

The remainder of the chapter is organized as follows. In Section 6.1, we give a formal

statement of the concept tracking problem and explain the Tracking Unnormalized

Winnow algorithm; we then present the main mistake bound. In Section 6.2, we give a

proof of the main mistake bound along with a slight refinement. In Section 6.3, we give

an alternative form of Tracking Unnormalized Winnow that works with complemented
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Tracking Unnormalized Winnow(α, σ, ǫ)
Parameters

α > 1 is the update multiplier.
ǫ > 0 is the minimum value of the weights.
σ ≥ ǫ is the starting value of the weights.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = σ are the weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If wt · xt ≥ 1

Predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If (yt = 1 and ŷt = −1) then (promotion step)
∀i ∈ {1, . . . , n} wi,t+1 = αxi,twi,t.

Else If (yt = −1 and ŷt = 1) then (demotion step)
∀i ∈ {1, . . . , n} wi,t+1 = max(ǫ, α−xi,twi,t).

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 6.1: Pseudo-code for Tracking Unnormalized Winnow

attributes. In Section 6.4, we analyze the strengths and weaknesses of the bound and

give an instance transformation that improves the bound when the attribute values

become small. In Section 6.5, we compare the mistake bound to bounds on certain

types of linear-threshold problems.

6.1 Tracking Problem Statement and Algorithm

In this section, we review the concept tracking Winnow algorithm and give the notation

that is needed to understand an upper-bound on the number of mistakes.

In Figure 6.1, we give the modified Winnow algorithm for learning shifting concepts.

This algorithm is based on the Unnormalized Winnow algorithm from Chapter 2. The

tracking version’s main difference is that the weights are not allowed to go below a min-

imum value ǫ. This minimum weight allows the algorithm to recover quickly when there

is a change in the target concept [LW94]. The algorithm is identical to an algorithm

given in [AW98].



132

The model of on-line tracking we present in this chapter is similar to models defined

by Kuh, Petsche, and Rivest [KPR91] and Helmbold and Long [HL91]. The central

element of the mistake bound is a sequence of target functions. Let C = (C1, . . . , CT )

be a sequence of concepts with one concept per trial where T is the final trial. The

concept is allowed to change each trial, and the bound will depend on how often and how

much the concept changes. Intuitively, a good bound should be possible if the concept

makes small changes or if the concept makes infrequent large changes. Allowing the

concept to vary each trial allows us to represent changes that occur every trial; however,

the concept might remain the same for large sequences of trials.

An adversary generates the instances, and the goal of the algorithm is to minimize

the number of mistakes. The mistake bound will depend on the sequence of concepts

and the amount of noise in the instances generated by the adversary.

We define concept Ct by specifying the weights, ut, of a hyperplane and a margin

parameter, δt. Let u1,t, . . . , un,t ≥ 0 where ui,t ∈ R, and 0 < δt ≤ 1 where δt ∈ R. Each

ut and δt specifies a target function as explained in Section 2.2. In order to work with

all these target functions, let δ = mint∈{1,...,T} δt. The noise in an instance is defined as

νt = max[0, δ − yt(ut · xt − 1)]. An instance with νt = 0 corresponds to an instance of

the trial concept. An instance with νt > 0 corresponds to a noisy instance, and νt is a

measure of the noise in the linear-threshold function.

If the adversary is allowed to generate an arbitrary number of noisy instances, the

concept would be impossible to learn. We can restrict the amount of noise by making

assumptions on νt. For example, we can assume that
∑T

t=1 νt ≤ N where N ∈ R. This

is similar to the noise model in [Lit89] where only a finite amount of noise is allowed

over all trials. More information on bounding the amount of noise can be found in

Section 2.2.

The mistake bound uses the following notation. This notation will be explained and

motivated in the proof section. For notational convenience, we assume that T is the

final trial, although our results can apply to a potentially infinite set of trials.

Terms used in the mistake bound
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Let λ ≥ maxt∈{1,...,T} ‖Xt‖1.

Let ζ = mint∈{1,...,T}, i∈{1,···,n}{xi,t | xi,t > 0}.

Let H(C) =
∑n

i=1(ui,T +
∑T−1

t=1 max(0, ui,t − ui,t+1)).

Let νt = max[0, δ − yt(ut · xt − 1)].

Let N =
∑T

t=1 νt

Theorem 6.1 For instances generated by a concept sequence C, if α = 1 + δ and

ǫ = σ = δ
50λ then the number of mistakes is less than

(2.05 + δ)





ζH(C)

δ(1 + δ)
+

ln
(

50λ
δζ

)

H(C)

δ2
+

N

δ(1 + δ)



 .

We can use asymptotic notation to make this bound a little more digestible. Re-

moving some lower order terms and using the fact that 0 < ζ ≤ 1, ζ < λ, and 0 < δ ≤ 1,

the number of mistakes is

O

(

H(C) ln

(

50λ

δζ

)

/δ2 + N/δ

)

.

6.2 Proof of Mistake Bound

While most modern Winnow type proofs use a potential function to bound the number

of mistakes [Lit89, Lit91, AW98, GLS01], we have found it useful to go back to the old

style of proof used in [Lit88] to deal with tracking linear-threshold functions. While

potential functions are useful for generalizing over a range of learning algorithm [GLS01,

HW01, KSW02], it is a topic for future research to understand how this type of proof

relates to the potential function technique.

The purpose of the next four lemmas is to give an upper-bound on the number of

weight demotions as a function of the number of weight promotions. Remember that a

promotion is an update that increases the weights on a mistake where the correct label

is 1, and a demotion is an update that decreases the weights on a mistake where the

correct label is 0. Intuitively, a bound must exist as long as every demotion removes

at least a fixed constant of weight. This is because the algorithm always has positive

weights and the only way the weights can increase is through a promotion.
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Let △ (f) represent the change in function f after a trial is completed. For example,

△ (
∑n

i=1 wi,t) =
∑n

i=1 wi,t+1 −
∑n

i=1 wi,t.

Lemma 6.2 On a promotion, △ (
∑n

i=1 wi,t) < (α− 1).

Proof After a promotion,

n
∑

i=1

wi,t+1 =

n
∑

i=1

wi,t αxi,t .

Next, we use the fact that αxi,t ≤ (α−1)xi,t +1 for all xi,t ∈ [0, 1]. (This is true because

αxi,t is a convex function.) This shows that,

n
∑

i=1

wi,t αxi,t ≤
n
∑

i=1

wi,t[(α− 1)xi,t + 1] = (α− 1)
n
∑

i=1

wi,txi,t +
n
∑

i=1

wi,t .

Since we have a promotion,
∑n

i=1 wi,txi,t < 1. This combined with the above facts and

remembering that α > 1 gives

n
∑

i=1

wi,t+1 < (α− 1) +
n
∑

i=1

wi,t .

Therefore,

△
(

n
∑

i=1

wi,t

)

=

n
∑

i=1

wi,t+1 −
n
∑

i=1

wi,t < (α− 1) .

Next we want to prove a similar result about demotions. However, because demo-

tions have the added difficulty of not being able to lower the weight below ǫ, the proof

is a little more complex. First we prove a small lemma that will help with the more

difficult proof.

We are going to consider two types of attributes that occur during a demotion. Let

A ⊆ {1, . . . , n} be all i such that wiα
−xi,t < ǫ. These are the indexes of weights that

are forced to ǫ since wi,t+1 = max(ǫ, α−xi,twi,t). Let B ⊆ {1, . . . , n} be the indexes of

weights that have a normal demotion. These are the attributes such that xi,t > 0 and

wi,tα
−xi,t ≥ ǫ. All the other weights do not change.

Lemma 6.3 On a demotion, if
∑

i∈B wi,txi,t ≥ θ then △
(
∑

i∈B wi,t

)

≤ 1−α
α θ.
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Proof After a demotion,

∑

i∈B

wi,t+1 =
∑

i∈B

wi,t α−xi,t .

Next, we use the fact that α−xi,t ≤
(

1
α − 1

)

xi,t + 1 for all xi,t ∈ [0, 1]. (This fact is true

because α−xi,t is a convex function.) This shows that

∑

i∈B

wi,t α−xi,t ≤
∑

i∈B

wi,t

[(

1

α
− 1

)

xi,t + 1

]

=
1− α

α

∑

i∈B

wi,txi,t +
∑

i∈B

wi,t .

Based on the assumption of the lemma,
∑

i∈B wi,txi,t ≥ θ. This combined with the

above facts and remembering that α > 1 gives

∑

i∈B

wi,t+1 ≤
1− α

α
θ +

∑

i∈B

wi,t .

Therefore,

△
(

∑

i∈B

wi,t

)

=
∑

i∈B

wi,t+1 −
∑

i∈B

wi,t ≤
1− α

α
θ .

Here is the main lemma concerning demotions. This lemma gives an upper-bound on

how much the weights decrease after a demotion. The amount of decrease will depend

on various factors including λ ≥ maxt∈{1,...,T} ‖Xt‖1. Also this lemma assumes that

ǫ < 1/λ. This is a reasonable assumption that ensures the algorithm can lower weights

during demotions. Otherwise the algorithm could be forced to always make a mistake

on certain instances for many linear-threshold concepts. For example, assume there

are λ attributes that are not part of the target concept. An adversary can give these

attributes value 1 on every instance and every other attribute value 0. This creates an

instance with label 0. If ǫ ≥ 1/λ then the algorithm will always incorrectly predict 1

since
n
∑

i=1

wi,txi,t ≥
n
∑

i=1

ǫxi,t = ǫ

n
∑

i=1

xi,t = ǫλ ≥ 1.

Lemma 6.4 On a demotion, if ǫ < 1/λ then △ (
∑n

i=1 wi,t) < 1−α
α (1− ǫλ).

Proof We are going to use the set of attributes A and B defined earlier. We will break

the proof into two cases. For the first case assume that there is at least one attribute
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in B. Since a demotion has occurred we know,

∑

i∈A

wi,txi,t +
∑

i∈B

wi,txi,t =
n
∑

i=1

wi,txi,t ≥ 1 .

From this we can use Lemma 6.3 to derive that

△
(

∑

i∈B

wi,t

)

≤ 1− α

α

(

1−
∑

i∈A

wi,txi,t

)

.

Now we want to get
∑

i∈A wi,txi,t into a more useful form. Let vi,t represent the amount

wi,t is above ǫ.

∑

i∈A

wi,txi,t =
∑

i∈A

(ǫ + vi,t)xi,t = ǫ
∑

i∈A

xi,t +
∑

i∈A

vi,txi,t < ǫλ +
∑

i∈A

vi,t .

Being careful to keep track of what is negative, we can substitute this into the previous

formula.

△
(

∑

i∈B

wi,t

)

<
1− α

α

(

1− ǫλ−
∑

i∈A

vi,t

)

.

Next, since all the weights with an index in A get demoted to ǫ, we know that for

all i ∈ A, the weight vi,t will be removed. Therefore △
(
∑

i∈A wi,t

)

= −∑i∈A vi,t.

Combining this information proves the first case where B has at least one element.

△
(

n
∑

i=1

wi,t

)

= △
(

∑

i∈B

wi,t

)

+△
(

∑

i∈A

wi,t

)

<
1− α

α

(

1− ǫλ−
∑

i∈A

vi,t

)

−
∑

i∈A

vi,t ≤
1− α

α
(1− ǫλ) .

The second case, where B is empty, is similar. Using some of the same notation,

△
(

n
∑

i=1

wi,t

)

= △
(

∑

i∈A

wi,t

)

= −
∑

i∈A

vi,t .

Since a demotion has occurred, we know that
∑n

i=1 wi,txi,t ≥ 1, but since the only

active attributes are in A,

1 ≤
n
∑

i=1

wi,txi,t =
∑

i∈A

(ǫ + vi,t)xi,t = ǫ
∑

i∈A

xi,t +
∑

i∈A

vi,txi,t ≤ ǫλ +
∑

i∈A

vi,t .

We can use this to bound △ (
∑n

i=1 wi,t).

△
(

n
∑

i=1

wi,t

)

= −
∑

i∈A

vi,t ≤ ǫλ− 1 <
1− α

α
(1− ǫλ) .
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The last step of the inequality is true since we assumed ǫ < 1/λ.

Now we can combine the lemmas to give an upper-bound on the number of demotions

as a function of the number of promotions. Let P = {t | promotion mistake on trial t},

and let D = {t | demotion mistake on trial t}.

Lemma 6.5 If ǫ < 1/λ then at any trial, |D| < α(σ−ǫ)n
(α−1)(1−ǫλ) + α

1−ǫλ |P |.

Proof We know
∑n

i=1 wi,t can never go below ǫn, and we know
∑n

i=1 wi,t has a value

of σn at the beginning of the algorithm. Since the weights can only change during

demotions and promotions, we can relate the minimum weight to the current weight as

follows.

ǫn ≤ σn +
∑

t∈P

△
(

n
∑

i=1

wi,t

)

+
∑

t∈D

△
(

n
∑

i=1

wi,t

)

.

Using the upper-bounds from Lemma 6.2 and Lemma 6.4,

ǫn < σn + (α− 1)|P |+ 1− α

α
(1− ǫλ)|D| .

Noting that 1−α is negative and 1− ǫλ is positive, we can rearrange the inequality to

prove the lemma.

Our goal at this stage is to show how the relevant weights1 increase in weight during

the running of the algorithm. If we can show that they must eventually increase, and

that they have a maximum value, we can derive a mistake bound on the algorithm.

First we want to give a bound on the maximum value of a weight. Let wmax be the

maximum value of any weight, and ζ = mint∈{1,...,T}, i∈{1,···,n}{xi,t | xi,t > 0}.

Lemma 6.6 If α < e then wmax ≤ max
(

σ, αζ

ζ

)

.

Proof If a promotion never occurs the maximum weight is the initial weight, σ. The

only time a weight, wa,t can increase is after a promotion where xa,t > 0. Promotions

1Relevant weights are defined as weights wi where the corresponding target weights have ui > 0
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can only occur if
∑n

i=1 wi,txi,t < 1. Therefore for any attribute xa,t > 0,

wa,txa,t ≤
n
∑

i=1

wi,txi,t < 1 .

Since the new weight is αxa,twa,t, we want to find max(αxw) over all x and w where

0 < ζ ≤ x ≤ 1 and wx < 1. Since any feasible solution to the above problem can be

changed to increase the maximum by increasing either w or x until wx = 1, we can

get an upper-bound on the maximum weight by setting wx = 1. This transforms the

problem to max(αx/x) over all x given that 0 < ζ ≤ x ≤ 1.

We can use calculus to show that the maximum must occur at x = ζ. Let f(x) =

αx/x. To find the critical points, we solve

f ′(x) = αx ln (α) /x− αx/x2 = 0

This gives a single critical point at xc = 1/ ln (α). Since we are assuming that α < e

then xc = 1/ ln (α) > 1/ ln (e) = 1. Therefore the maximum must occur at one of

the endpoints since the critical point is past the right endpoint of [ζ, 1]. Assume the

maximum occurs at x = 1. Since α < e,

f ′(1) = α ln (α)− α < α− α = 0.

Therefore the slope of f(x) = αx/x must be negative at x = 1. Since f(x) is continuous,

there must be a point xa < 1 such that f(xa) > f(1). This is a contradiction since we

assumed f(1) was the maximum value in the interval. The maximum must occur at

x = ζ. This gives an upper-bound on any weight of max(σ, αζ/ζ).

The next lemma deals with the effects of the demotions and promotions on a se-

quence of target concepts. Let H(C) =
∑n

i=1

(

ui,T +
∑T−1

t=1 max(0, ui,t − ui,t+1)
)

and

let νt = max[0, δ − yt(ut · xt − 1)] where δ ∈ (0, 1].

Lemma 6.7 If α < e then

logα

(wmax

ǫ

)

H(C) + N − logα

(σ

ǫ

)

n
∑

i=1

ui,1 > (1 + δ)|P | − (1− δ)|D| .
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Proof Let zi,t = logα (wi,t/ǫ). This is just the amount weight i has been increased

by an α factor over the minimum value ǫ before the update on trial t. Based on this

formula, zi,1 = logα (σ/ǫ). Assume that the last trial is T . Because an update could

occur on this final trial, the last index of z is T + 1.

The value of wi,t is ǫ multiplied by αxi,t on every promotion and effectively multiplied

by a number as small as α−xi,t on every demotion. The multiplier on demotions may

be larger since the weight value can not go below ǫ. For example, if the current weight

value is ǫ, a demotion would not change the value; therefore, in this case, the effective

multiplier is 1. Using the definition of z, gives zi,t+1 − zi,t = xi,t on a promotion,

zi,t+1 − zi,t ≥ −xi,t on a demotion, and zi,t+1 − zi,t = 0 on a trial without an update.

Let P be the set of promotion trials and let D be the set of demotion trials. At this

point, we want to weight the change in the z values by u, the target weights. This will

allow us to relate the z values to the mistakes.

n
∑

i=1

T
∑

t=1

ui,t(zi,t+1 − zi,t) ≥
∑

t∈P

n
∑

i=1

ui,txi,t −
∑

t∈D

n
∑

i=1

ui,txi,t .

Let P̂ = {t | t ∈ P and νt > 0} and D̂ = {t | t ∈ D and νt > 0}. These are the noisy

promotion and demotion trials. Using this notation, we can break up the summations.

The last formula is equal to

∑

t∈P−P̂

n
∑

i=1

ui,txi,t −
∑

t∈D−D̂

n
∑

i=1

ui,txi,t +
∑

t∈P̂

n
∑

i=1

ui,txi,t −
∑

t∈D̂

n
∑

i=1

ui,txi,t .

Since for every non-noisy promotion
∑n

i=1 ui,txi,t ≥ (1+ δ), and every non-noisy demo-

tion
∑n

i=1 ui,txi,t ≤ (1− δ), then the last formula is greater or equal to

(1 + δ)|P − P̂ | − (1− δ)|D − D̂|+
∑

t∈P̂

n
∑

i=1

ui,txi,t −
∑

t∈D̂

n
∑

i=1

ui,txi,t

= (1 + δ)|P | − (1− δ)|D| −
∑

t∈P̂

(

(1+ δ) −
n
∑

i=1

ui,txi,t

)

−
∑

t∈D̂

(

(1− δ) +

n
∑

i=1

ui,txi,t

)

.

Using the definitions of noisy promotion and demotion trials along with the definition

N =
∑T

t=1 νt, we can use the previous equations to conclude that

n
∑

i=1

T
∑

t=1

ui,t(zi,t+1 − zi,t) ≥ (1 + δ)|P | − (1− δ)|D| −N .
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Based on the definition of z, 0 ≤ zi,t < logα

(

wmax

ǫ

)

. We can use this constraint to

compute an upper-bound. Using the fact that zi,1 = logα (σ/ǫ),

(1 + δ)|P | − (1− δ)|D| −N ≤ max

(

n
∑

i=1

ui,1(zi,2 − zi,1) + · · ·+ ui,T (zi,T+1 − zi,T )

)

= max

(

n
∑

i=1

−zi,1ui,1 + zi,2(ui,1 − ui,2) + · · ·+ zi,T (ui,T−1 − ui,T ) + zi,T+1ui,T

)

= max

(

n
∑

i=1

zi,2(ui,1 − ui,2) + · · ·+ zi,T (ui,T−1 − ui,T ) + zi,T+1ui,T

)

−
n
∑

i=1

ui,1zi,1

< logα

(wmax

ǫ

)

n
∑

i=1

(

ui,T +
T−1
∑

t=1

max(0, ui,t − ui,t+1)

)

− logα

(σ

ǫ

)

n
∑

i=1

ui,1 .

Rearranging the terms proves the lemma.

In its current form, the above lemma is not very intuitive. However, there is another

way to look at the bound. Define ui,0 = 0, ui,T+1 = 0, and h(i) =
∑T

t=1 max(0, ui,t −

ui,t+1). Notice that H(C) =
∑n

i=1 h(i). The value h(i) is equivalent to summing the

local maximums and subtracting the local minimums for target weight ui. For example,

if the sequence of ui is (0, .1, .3, .5, .5, .2, .1, .4, .2, 0) then h(i) = .5− .1+ .4 = .8. This is

because ui,t−ui,t+1 is only positive while the target weights are decreasing in value. The

target weights decrease in value from a local maximum, ui,a, to the next local minimum,

ui,b. The sum of these differences, as we go from ui,a to ui,b, is just ui,a − ui,b.

This suggests how an adversary can maximize the number of mistakes. The adver-

sary should increase a weight as much as possible during the maximum target value

and decrease the weight to ǫ during the minimum. This requires that the adversary

knows the future behavior of the sequence of concepts in order to know if the current

concept is a local maximum or a local minimum. For some practical problems, the

adversary may not have this knowledge. However, the bounds in this chapter assume

the adversary knows the future sequence of concepts.

At this point, we want to prove the main theorem. We have attempted to set the

parameters and arrange the inequalities to optimize the mistake bound for small δ.



141

Theorem 6.1 If α = 1+δ, ǫ = σ = δ
50λ then the number of mistakes made by Tracking

Unnormalized Winnow is less than

(2.05 + δ)





ζH(C)

δ(1 + δ)
+

ln
(

50λ
δζ

)

H(C)

δ2
+

N

δ(1 + δ)



 .

Proof First we want to show that wmax ≤ αζ/ζ. Based on Lemma 6.6, we know that

wmax ≤ max(σ, αζ/ζ). Therefore, we just need to show that σ ≤ αζ/ζ. Using the facts

that ζ ≤ λ, δ ≤ 1, and that α > 1,

σ =
δ

50λ
≤ 1

50ζ
<

αζ

ζ
.

Next we want to substitute Lemma 6.5 into Lemma 6.7 to get an upper-bound on

|P |. The lemma condition that α < e is satisfied since α = 1 + δ ≤ 2 < e. The

condition that ǫ < 1/λ is satisfied since ǫλ = δ/50 < 1. Now we can proceed with the

substitution. Using the fact that ǫ = σ, we derive

H(C) logα

(

αζ

ǫζ

)

+ N > (1 + δ)|P | − (1− δ)
α

1 − ǫλ
|P | .

Solving for |P | gives

|P | <
H(C) logα

(

αζ

ǫζ

)

+ N

(1 + δ) − (1− δ) α
1−ǫλ

as long as (1 + δ) > α(1−δ)
1−ǫλ . It is not difficult to verify this for our choices of α and ǫ.

To get a mistake bound add |P | to both sides of Lemma 6.5 and substitute in the

previous result to get a bound on the number of mistakes.

|P |+ |D| <
(

1 +
α

1− ǫλ

)

|P | <
(

1 +
α

1− ǫλ

) H(C) logα

(

αζ

ǫζ

)

+ N

(1 + δ) − (1− δ) α
1−ǫλ

=
1− ǫλ + α

(1 + δ)(1 − ǫλ)− (1− δ)α



ζH(C) +
H(C) ln

(

1
ǫζ

)

ln (α)
+ N



 .

Substituting in the values α = 1 + δ and ǫ = δ
50λ , the preceding equation is equal to

100 + 49δ

49δ(1 + δ)



ζH(C) +
H(C)

(

ln
(

50λ
δζ

))

ln (1 + δ)
+ N



 .
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To make the bound more intuitive, we use the fact that ln (1 + δ) ≥ δ − δ2/2. (One

can prove this using the Taylor formula with a fourth term remainder.) The previous

equation is less than or equal to

(2.05 + δ)





ζH(C)

δ(1 + δ)
+

ln
(

50λ
δζ

)

H(C)

δ2
+

N

δ(1 + δ)



 .

The previous theorem can be slightly improved when ǫ < 1/n. In Appendix A, we

show that a good choice of σ for the fixed concept Unnormalized Winnow algorithm is

1/n. This is also true for the tracking version. As long as ǫ < 1/n, we can set σ = 1/n

to get a small decrease in the number of mistakes.

Theorem 6.8 If α = 1 + δ, ǫ = δ
50λ < 1/n, and σ = 1/n then the number of mistakes

made by Tracking Unnormalized Winnow is less than

2.05
(

1− δn
50λ

)

δ2
+(2.05+δ)





ζH(C)

δ + δ2
+

ln
(

50λ
δζ

)

H(C)− ln
(

50λ
δn

)
∑n

i=1 ui,1

δ2
+

N

δ + δ2



 .

Proof First we want to show that wmax ≤ αζ/ζ. Based on Theorem 6.6, we know

that wmax ≤ max(σ, αζ/ζ). Therefore, we just need to show that σ ≤ αζ/ζ. Using the

facts that α > 1 and 0 < ζ ≤ 1

σ =
1

n
≤ 1 <

αζ

ζ
.

Next we want to substitute Lemma 6.5 into Lemma 6.7 to get an upper-bound on |P |.

The lemma condition that α < e is satisfied since α = 1 + δ ≤ 2 < e. The condition

that ǫ < 1/λ is satisfied since ǫλ = δ/50 < 1. Now we can proceed with the substitution

to derive an upper-bound on |P |.

|P | <
α(1−δ)(σ−ǫ)n
(1−α)(1−ǫλ) + logα

(

αζ

ǫζ

)

H(C)− logα

(

σ
ǫ

)
∑n

i=1 ui,1 + N

1 + δ − α(1−δ)
1−ǫλ

as long as (1 + δ) > α(1−δ)
1−ǫλ . It is not difficult to verify this for our choices of α and ǫ.
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To get a mistake bound add |P | to both sides of Lemma 6.5.

|P |+ |D| < α(σ − ǫ)n

(1− α)(1− ǫλ)
+

(

1 +
α

1− ǫλ

)

|P | .

Next substitute the previous upper-bound on |P | and the values α = 1 + δ, σ = 1/n,

and ǫ = δ
50λ into the preceding formula.

100λ− 2δn

49λδ2
+

100 + 49δ

49δ(1 + δ)



ζH(C) +
ln
(

50λ
δζ

)

H(C)− ln
(

50λ
δn

)
∑n

i=1 ui,1

ln (1 + δ)
+ N



 .

To make the bound more intuitive, we use the fact that ln (1 + δ) ≥ δ − δ2/2. The

above formula is less than or equal to

2.05
(

1− δn
50λ

)

δ2
+(2.05+δ)





ζH(C)

δ + δ2
+

ln
(

50λ
δζ

)

H(C)− ln
(

50λ
δn

)
∑n

i=1 ui,1

δ2
+

N

δ + δ2



 .

Notice that this bound is similar to the bound in Theorem 6.1. The only difference

are the extra terms

2.05 (1− ǫn)

δ2
and

−(2.05 + δ) ln
(

1
ǫn

)
∑n

i=1 ui,1

δ2
.

Both of these terms go to zero as ǫ approaches 1/n. Also, because ln (1/x) ≥ 1− x for

x ∈ (0, 1] and
∑n

i=1 ui,1 ≥ 1, the net effect of these terms is to decrease the number

of mistakes up until this point. Therefore, according to these theorems, one should set

σ = max(1/n, ǫ) to minimize the mistake bound. However, as the number of concept

shifts increase, these terms have a smaller effect because H(C) dominates
∑n

i=1 ui,1. In

these cases, this refinement has a negligible effect on the mistake bound.

6.3 Complemented Algorithm

The Unnormalized Winnow algorithm is well suited to solving certain types of learning

problems. Given our notation, if the target function is composed of shifting disjunctions

where each disjunction has k literals then the target weights can be set to 2 and δt = 1

for each concept. If the target function is composed of shifting conjunctions where
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Complemented Tracking Unnormalized Winnow(α, σ, ǫ)
Parameters

α > 1 is the update multiplier.
ǫ > 0 is the minimum value of the weights.
σ ≥ ǫ is the starting value of the weights.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = σ are the weights.

Trials
Instance: xt ∈ [0, 1]n. Let x̄i,t = 1− xi,t

Prediction: If wt · x̄t ≥ 1
Predict ŷt = −1 else predict ŷt = 1.

Update: Let yt ∈ {−1, 1} be the correct label.
If (yt = −1 and ŷt = 1) then (promotion step)
∀i ∈ {1, . . . , n} wi,t+1 = αx̄i,twi,t.

Else If (yt = 1 and ŷt = −1) then (demotion step)
∀i ∈ {1, . . . , n} wi,t+1 = max(ǫ, α−x̄i,twi,t).

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 6.2: Pseudo-code for Complemented Tracking Unnormalized Winnow

each conjunction has k literals then the target weights can be set to 2/(2k − 1) and

δt = 1/k for each concept. According to our theorems, the target function for tracking

conjunctions gives a mistake bound close to k times worse than tracking disjunctions.

However, there is not much difference between a conjunction and a disjunction. The

only difference is based on the label of true and false.

As described in Section 2.3.1, we can complement the Unnormalized Winnow algo-

rithm to allow it to treat conjunctions like disjunctions. We give the algorithm for the

Tracking Complemented Unnormalized Winnow in Figure 6.2. The algorithm is similar

to the Tracking Unnormalized Winnow algorithm except that it works with a slightly

modified set of instances and labels. Every attribute xi,t is converted to x̄i,t = (1−xi,t).

This is called complementing the attribute [Lit89]. In the same way, every label, includ-

ing the algorithm’s prediction, is flipped. This allows the algorithm to change the target

function. For example, this transformation converts a conjunction into a disjunction.

To express the full bound of the Complemented Tracking Unnormalized Winnow,
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we need some new notation.

Terms used in the complemented mistake bound

Let ûi,t = ui,t/(−1 +
∑n

i=1 ui,t).

Let
∥

∥X̄t

∥

∥

1
= (x̄1,t, x̄2,t, . . . , x̄n,t).

Let λ̂ ≥ maxt∈{1,...,T}

∥

∥X̄t

∥

∥

1
.

Let ζ̂ = mint∈{1,...,T}, i∈{1,···,n}{x̄i,t | x̄i,t > 0}.

Let Ĥ(C) =
∑n

i=1(ûi,T +
∑T−1

t=1 max(0, ûi,t − ûi,t+1)).

Let 0 < δ̂ ≤ mint∈{1,...,T} δt/(−1 +
∑n

i=1 ui,t).

Let N̂ = N/(−1 +
∑n

i=1 ui,t)

Theorem 6.9 For instances generated from a concept sequence C, if α = 1 + δ̂, ǫ =

σ = δ̂
50λ̂

then the number of mistakes made by Complemented Unnormalized Tracking

Winnow is less than

(2.05 + δ̂)





ζ̂Ĥ(C)

δ̂(1 + δ̂)
+

ln
(

50λ̂
δ̂ζ̂

)

Ĥ(C)

δ̂2
+

N̂

δ̂(1 + δ̂)



 .

Proof The target function from concept Ct is of the form

Predict 1 if

n
∑

i=1

ui,txi,t ≥ 1 + δ;

Predict -1 if

n
∑

i=1

ui,txi,t ≤ 1− δ.

This is equivalent to

Predict 1 if
n
∑

i=1

ui,t(1− xi,t) ≤
n
∑

i=1

(ui,t)− 1− δ;

Predict -1 if
n
∑

i=1

ui,t(1− xi,t) ≥
n
∑

i=1

(ui,t)− 1 + δ

To get this closer to a form used by Tracking Unnormalized Winnow, we normalize.

Predict 1 if

∑n
i=1 ui,t(1− xi,t)
∑n

i=1(ui,t)− 1
≤ 1− δ

∑n
i=1(ui,t)− 1

;

Predict -1 if

∑n
i=1 ui,t(1− xi,t)
∑n

i=1(ui,t)− 1
≥ 1 +

δ
∑n

i=1(ui,t)− 1
;
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If we flip the labels of this target function then it is in a form that can be used by

Tracking Unnormalized Winnow. Therefore, we use Tracking Unnormalized Winnow

to learn the target function with the complemented attributes, but we flip the labels

returned by the environment.

When the Unnormalized Winnow algorithm makes a prediction, it is predicting the

flipped label. Therefore, we flip the answer returned by Tracking Unnormalized Win-

now to give the predicted label for the original problem. Plugging this target function

into Theorem 6.1 and taking into account the complemented attributes proves the the-

orem.

A similar result can be derived from Theorem 6.8. Therefore, the complemented

algorithm should set σ = max(1/n, ǫ) to minimize the number of mistakes.

6.4 Analyzing the mistake bound

In this section, we analyze the Tracking Unnormalized Winnow mistake bound. This

analysis applies to both our previous proofs. To make this exposition clear we will use

an asymptotic form of the bound. The number of mistakes of Tracking Unnormalized

Winnow is equal to

O

(

H(C) ln

(

50λ

ζδ

)

/δ2 + N/δ

)

.

6.4.1 Advantages of the Algorithm

One of the advantages of the tracking version of Unnormalized Winnow is the relative

insensitivity to the number of irrelevant attributes. This can be seen by looking at

λ ≥ maxt∈{1,...,T} ‖Xt‖1. Based on this definition, we can always set λ to the number of

attributes. Imagine we have a learning problem with n1 attributes. Let U be the target

function that optimizes the mistake bound. Now assume that we increase the number

of attributes by n2. Since the target concept must still be valid, the only effect on the

bound is the potential increase in the value of λ from n1 to n1 + n2. Since the bound

only contains λ inside the logarithm function, this at worst causes a small increase
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in the bound. Of course, the bound may not increase at all. If the added attributes

allow a better target function then this new target can lower the bound. Also, the new

attributes may not increase the value of λ; they can increase the value of λ by anything

from 0 to n2.

A related benefit of the algorithm is that the mistake bound only depends on λ

as opposed to n. For sparse problems, with few active attributes (xi > 0), this could

have a large effect on the bound. Most upper-bounds on mistakes, for algorithms

with multiplicative updates, depend on the number of attributes [Lit89, AW98, HW98,

GLS01]. However, in Appendix A, we show how to use σ to extend this benefit to the

normal version of Unnormalized Winnow.

There is one practical problem with sparse instances. Since Winnow algorithms

only have positive weights, a trick is used to allow negative weights. For each attribute

xi, a new complemented attribute 1 − xi is added. A positive weight on 1 − xi can

effectively allow a negative weight on xi. However, these extra attributes will force

λ = n. Therefore, the advantages of a small λ are only possible if one can assume the

target concept only has positive weights and does not need complemented attributes.

It is possible to get similar sparse instance benefits with Winnow type algorithms

by using an infinite attribute algorithm [BHL91]. Infinite attribute algorithms take

advantage of the fact that only attributes that are active during updates affect the

algorithm. Therefore the number of attributes that are involved in updates is just the

maximum number of attributes active per trial times the mistake bound. Combining

this with the logarithmic nature of the Winnow bounds gives a mistake bound that

only depends logarithmically on the maximum number of attributes active per trial.

However there are certain advantages to the proofs in this chapter. First maxt∈T ‖Xt‖1
may be small, yet the total number of active attributes may be large. Second when a

potentially infinite amount of noise is involved in on-line learning, there cannot be a

finite mistake bound, and a large number of attributes could eventually be active during

mistakes. Since the analysis in this chapter does not depend on the total number of

active attributes during mistakes, these problems do not occur.
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6.4.2 Algorithm Problems and Solutions

One important limitation of the preceding result is that the mistake bound is allowed to

grow arbitrarily large when ζ = min{xi,t | xi,t > 0} approaches zero. There are several

ways to overcome this problem.

In Appendix E, we give an alternative proof that shows Tracking Unnormalized

Winnow has a finite mistake bound even when ζ is allowed to approach 0. The proof

is similar to our previous proofs. We assume that α = 1 + δ and that ǫ = σ = δ
50λ . In

addition, we assume that λ ≥ (1 + δ)/50. With these assumptions, we get an upper-

bound of

2.05+δ

1 + δ

[

2H(C)

δ2(2− δ)

(

ln
2.05H(C)

δ2(2 + δ − δ2)

)2

+

(

2 ln (50λ) H(C)

δ2(2− δ)
+

N

δ

)

ln
2.05H(C)

δ2(2 + δ − δ2)

]

.

However, it is clear this bound is not tight because the proof assumes the adversary

maximally increases the weight of every relevant attribute on every promotion. This is

not possible especially with shifting concepts. A more effective way to avoid small ζ

values is to increase the value of ζ by transforming the instances. With the appropriate

setting of parameters this transformation gives a better bound.

In Figure 6.3, we give a procedure called Shift that shifts the values of attributes that

are too close to zero. Any value in (0,m/2] gets shifted to 0; any value in (m/2,m) gets

shifted to m. To show how these transformed instances change the learning problem, we

need some extra notation. Let v = maxt∈{1,...,T}

∑n
i=1 ui,t. This is just the maximum

sum of target weights on any single trial. The smaller v, the better the bound. This

corresponds to the assumption that the concept has few relevant attributes. Even in

problems with shifting concepts, while the total number of attributes involved might

be large, the number in a single trial might be relatively small.

Corollary 6.10 Let m = δ/v. If procedure Shift(x,m) is applied to all instances gener-

ated by concept sequence C then the number of mistakes made by Tracking Unnormalized

Winnow is at most

O

(

H(C) ln

(

vλ

δ

)

/δ2 + N/δ

)

.
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Shift(x,m)
Parameters

m > 0 is the new ζ value.
x = (x1, . . . , xn) ∈ [0, 1]n is the instance.

Transformation
if xi ∈ [0,m/2]

xi ← 0
else if xi ∈ (m/2,m]

xi ← m
else

xi ← xi

Figure 6.3: Instance transformation for small ζ values.

Proof We use the hat notation to refer to a parameter dealing with the transformed

instance. The H(C) function is the same since the target function is the same. We

have ζ̂ ≥ δ/v because the transformation forces this new minimum value, and λ̂ ≤ 2λ

since we are at most doubling the value of any single attribute. To compute δ̂, consider

the case where the label is 1. A non-noisy instance has
∑n

i=1 ui,txi,t ≥ 1 + δ.

n
∑

i=1

ui,tx̂i,t ≥
n
∑

i=1

ui,t(xi,t −m/2) ≥
n
∑

i=1

ui,txi,t − vm/2 ≥ 1 + δ − δ/2 .

Therefore we can set δ̂ = δ/2. The same result holds for -1 labels. Noise is handled

in a similar way. Again consider the case where the label is 1. The noise is defined as

νt = max (0, 1 + δt −
∑n

i=1(ui,txi,t)). Therefore,

1 + δ̂ −
n
∑

i=1

ui,tx̂i,t ≤ 1 + δ̂ −
n
∑

i=1

ui,t(xi,t −m/2)

≤ 1 + δ̂ + vm/2−
n
∑

i=1

ui,txi,t = 1 + δ −
n
∑

i=1

ui,txi,t .

This shows that the noise can only decrease on the transformed instances. The same

result holds for -1 labels. Plugging these values into Theorem 6.1 gives the result.

One problem with this transformation is the addition of extra algorithm parameters.

Besides needing to know values for δ and λ, we need a value for v in order to set

the parameters. A standard technique for this problem is to run several copies of

the algorithm with different choices for the parameters. These copies would be used
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as experts in an algorithm such as the Weighted Majority Algorithm (WMA) [Lit88,

LW94, CBFH+97]. As long we do not run an extremely large number of copies, the

number of mistakes made by WMA should be close to the performance of the algorithm

with the best parameter values. See Section 2.5 for more information.

6.5 Bounds on Specific Problems

In this section, we compare our mistake bounds to other published results. This com-

parison includes fixed concepts, shifting disjunctions, and shifting linear-threshold func-

tions.

6.5.1 Fixed Concept

First we consider the bound for a fixed concept, Cf . To fix concept Cf , assume ∀t1 ∈

{1, . . . , T} and ∀t2 ∈ {1, . . . , T} that ui,t1 = ui,t2.

Corollary 6.11 When instances are generated from Cf , if α = 1 + δ, ǫ = δ
50λ , and

σ = max(1/n, ǫ) then the number of mistakes of tracking Winnow when σ = 1/n is at

most

2.05
(

1− δn
50λ

)

δ2
+ (2.05 + δ)





ζ
∑n

i=1 ui,1

δ + δ2
+

ln
(

n
ζ

)

∑n
i=1 ui,1

δ2
+

N

δ + δ2



 .

and the number of mistakes when σ > 1/n is at most

(2.05 + δ)





ζ
∑n

i=1 ui,1

δ + δ2
+

ln
(

50λ
δζ

)

∑n
i=1 ui,1

δ2
+

N

δ + δ2





Proof When ǫ ≤ 1/n use Theorem 6.8 with the fact that H(C) =
∑n

i=1 ui,1. When

ǫ > 1/n use Theorem 6.1.

Comparing these bound with the general concept tracking bound, it is clear the

main difference is the value of the H(C) function. The H(C) function encodes the

extra difficulty of tracking a changing concept.
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For the Unnormalized Winnow algorithm, when α = 1 + δ and the starting weights

are σ, the number of mistakes is at most

(2 + δ) (nǫ +
∑n

i=1 ui,1 ln ui,1 +
∑n

i=1 ui,1 ln (1/ǫ)−
∑n

i=1 ui,1)

δ2
+

(2 + δ2/5)N

δ
.

Using σ = 1/n, the number of mistakes is less than or equal to

(2 + δ) (1 +
∑n

i=1 ui,1 ln ui,1 + ln n
∑n

i=1 ui,1 −
∑n

i=1 ui,1)

δ2
+

(2 + δ2/5)N

δ
.

See Appendix A for more details.

Looking at just the main terms in the bounds, several differences are evident. The

term ln (1/ζ) in Tracking Unnormalized Winnow is partially the result of the weights

getting larger than the corresponding weights in the target function. There is no cor-

responding term in normal Winnow bound since the weights of the algorithm must

eventually get close to the target weights. Intuitively, if the weights do not get close

then the adversary can make more mistakes exploiting this difference. However, this

is not the best strategy for a shifting concept. If the adversary waits until a relevant

attribute xi becomes irrelevant then it can use all the weight in this newly irrelevant

attribute to help perform demotions on any currently relevant attributes. The adver-

sary can cause more demotions when xi becomes irrelevant than when it is relevant.

Therefore, the adversary tries to build up a large weight on xi while it is relevant and

then uses this weight for demotions when xi becomes irrelevant. More precisely, as can

be seen in Lemma 6.7, the adversary should maximize the weight values when ui reaches

a global maximum and minimize the weight value when ui reaches a global minimum.

Another difference is how the standard Winnow bound depends on ln n. In the

target tracking proof, the bound depends on ln (λ/δ), where λ is at least max ‖X‖1.

This difference is largely an effect of the starting weight values used by the algorithms.

If we use the same starting weight value as the Tracking Unnormalized Winnow and use

a slightly different representation of the concept, we can give a bound for Unnormalized

Winnow that performs well on sparse instances. The proof exploits the fact that any

set of concept weights that correctly classifies the instances gives a mistake bound. We

use target weights that do well for sparse instances.
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Theorem 6.12 When instances are generated from Cf , if α = 1+0.98δ, σ = δ
50λ , and

only k target weights have ui > σ then, without loss of generality, we can assume the

first k attributes have ui > σ and that the number of mistakes for the Unnormalized

Winnow algorithm is less than

(2.09 + 1.03δ)
(

∑k
i=1 ui ln ui + ln

(

50λ
δ

)
∑k

i=1 ui

)

δ2
+

(2.05 + δ2/5)N

δ
.

The proof can be found in Appendix A. This bound is similar to the second tracking

Winnow bound except that it does not have a ζ parameter. The similar bound for the

two algorithms shows that the key to getting a good bound on sparse instances for

the Unnormalized Winnow algorithms is to properly set the starting weight of the

attributes. One should set the starting weight values to whatever gives the minimum

number of mistakes. Setting σ = max(50λ/δ, 1/n) is a good choice.

6.5.2 Tracking Disjunctions

As a second example, we give a bound for shifting disjunctions with Boolean attributes.

Let Cd be a concept sequence such that each uj
i ∈ {0, 2} and H(Cd) = 2Z+. This gives

δ = 1 and corresponds to a sequence where Z+ is the number of disjunction literals

that are added to the concept either at the start of the algorithm or during the trials.

Corollary 6.13 When instances X ∈ {0, 1}n are generated from concept Cd with noise

N , if α = 2 and σ = 1
50λ , then the number of mistakes is less than

6.1Z+ ln λ + 27Z+ + 1.53N .

Proof Concept sequence Cd has H(Cd) = 2Z+, ζ = 1 and δ = 1. Substituting these

values into Theorem 6.1 gives the result.

A similar bound for this algorithm is given in [AW98]. Let Z− equal to the number

of disjunction literals that are removed from the concept and let Z = Z+ +Z−. For the

deterministic disjunction tracking algorithm given in Theorem 4 of [AW98] the number
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of mistakes is less than or equal to

4.32Z ln n + 16.9Z + min(n,Z)(4.32 ln n + 5.79) + 0.232 + 1.2N .

The bounds we give are similar and have a distinct advantage for sparse instances.

However, our bounds are worse for large amounts of noise. This is largely due to our

parameter choices though it is also effected by the approximations we use to deal with

small δ values. Looking over Theorem 6.1, we can remove some of the approximations

and set α = 1.36 and σ = 1
35λ to derive a mistake bound of 2

7.81Z+ ln λ + 30.2Z+ + 1.2N .

The lower α value is used to improve the performance of the algorithm on noise. In

general, there is a trade-off with the α parameter. One value of α optimizes the first

portion of the bound that does not deal with noise, but a smaller α value lowers the

constant on the noise term. This can be seen in the proof of Theorem 6.1.

We give lower bounds for learning disjunctions by slightly modifying the results of

[Lit89, AW98] to handle sparse instances. In [AW98], they prove that any deterministic

learning algorithm must generate at least

⌊(Z + 1)/2⌋⌊log2 (n)⌋+ N

mistakes in the worst case when n ≥ 2. The noise function corresponds to the target

function mentioned at the start of the section. Therefore, N is always an even integer.

It is not difficult to generalize the proof in [AW98] to handle sparse binary instances.

Theorem 6.14 Let λ′ equal the maximum number of attributes set to 1 in any instance.

If λ′ ≤ n/2 then the maximum number of mistakes made by any deterministic algorithm

when learning disjunctions is at least

Z+⌊log2(2λ
′)⌋+ N

2This upper-bound corrects an error found in [Mes03] where the bound was mistakenly given as
3.98Z+ lnλ + 15.37Z+ + 1.2N .
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Proof For convenience assume λ′ = 2v. We create a sequence of concepts where each

concept has only a single attribute in the disjunction. However, we do not specify

which attribute is in the disjunction and instead specify the disjunction based on the

predictions of the learning algorithm in order to force mistakes.

We break the proof into two pieces. Consider the first Z+ − 1 concepts. For each

of these concepts, the adversary does not generate any noisy instances. The adversary

always forces the label to be the opposite of the algorithm’s prediction. By setting λ

attributes to 1, after the first trial at least λ attributes must be consistent with the

label. During the next trial, the algorithm sets λ/2 attributes to 1. Again at most

λ/2 attributes can be consistent with the label. This repeats until there is only one

attribute consistent with the label. Over the Z+ − 1 concepts, this forces at least

(Z+ − 1) log2(2λ) mistakes.

For the final concept, the adversary proceeds in the same way until there are only

two possible attributes that match the concept. This forces an additional log2(λ) mis-

takes. For the next N +1 trials, the adversary uses the same instance. The instance is 1

for the first possible attribute and 0 for the other attributes. Recall that, based on the

target function for disjunctions, N is an even integer. The adversary forces the label to

be the opposite of the algorithm’s prediction for each of these trials. Notice that one of

the two attributes must be consistent with the labels for N/2+1 of the trials. Therefore

only N/2 of the trials are noisy instances. Based on the target function, νt = 2 for each

of these noisy instances. Therefore the total amount of noise is at most N and the total

number of mistakes is Z+ log2(2λ
′) + N .

Therefore our bound for disjunctions with sparse instances is within a constant of

the lower bound.
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6.5.3 Tracking Linear-threshold Functions

To get a better feel for the strength of the Tracking Unnormalized Winnow bound, we

compare it to the Unnormalized Winnow bound on a modified on-line tracking prob-

lem. Assume the environment gives additional information to the learning algorithm

by revealing when the concept is going to change. A straightforward use of the Un-

normalized Winnow algorithm to solve this problem is to reset the weights on every

concept change. The mistake bound for this problem can be derived from Theorem A.3

by summing the bounds for each concept.

Assume there are k concepts and let the weights for concept j be specified by uj

and the margin by δj . The largest term for learning the target function is

k
∑

j=1

(2 + δ) ln (n)
(

∑n
i=1 uj

i

)

(δj)2
.

If all the δj are identical one can just sum up all the target weights. Otherwise the sum

is weighted with smaller δj causing a greater increase in the mistake bound.

Now consider the Tracking Unnormalized Winnow algorithm. From Theorem 6.1,

its largest term for learning the target function is

(2.05 + δ) ln
(

50λ
δζ

)

H(C)

δ2
.

This algorithm has some advantages over the previous Unnormalized Winnow modifica-

tion. First, it does not need to know when the concept changes. Second, we effectively

sum the weights in the H(C) function. However if a concept change shares relevant at-

tributes from the previous concept then H(C) is lowered. Another potential advantage

is when λ is small; however, as we have seen, the Normalized Winnow algorithm can

adjust its parameters to change the ln n factor in the above bound to ln(50λ/δ).

The previous observation also results in a disadvantage of Tracking Unnormalized

Winnow. When ln
(

50λ
δζ

)

is much larger than ln (n), the tracking bound is probably

worse. However because of the logarithmic nature of the bound, and the fact that

λ ≤ n, the tracking bound is generally not much worse.3 Another disadvantage is the

3If ζ is very small then one can use Corollary 6.10.
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fact that Tracking Unnormalized Winnow depends on the smallest δj value over all the

concepts. However, this is somewhat an artifact of the analysis. Therefore, somewhat

surprisingly, the Tracking Unnormalized Winnow algorithm has a comparable bound to

a “cheating” version of Unnormalized Winnow. It even has the potential to do better

for problems that involve a gradually shifting target function.

A related concept tracking algorithm is based on a modification of ALMA.4 Pseudo-

code for this modified ALMA algorithm can be found in Figure 6.4. It is a simplification

of the original ALMA algorithm, and it provably allows the algorithm to track linear-

threshold functions [KSW02]. The only difference between the tracking and normal

versions of ALMA is that the tracking algorithm uses a fixed update constant η and a

fixed algorithm margin δ̂, while the original version dynamically adjusts these parame-

ters based on the instances and the number of updates. However, both algorithms have

a parameter p that allows the algorithms to have Perceptron like bounds when p = 2

and Winnow like bounds when p = O(log n).

To help compare Tracking ALMA and Tracking Unnormalized Winnow, remember

that v = maxt∈{1,...,T}

∑n
i=1 ui,t. The bound for ALMA when p = log n is

O

(

vH(C) ln n

δ2
+

N

δ

)

.

When δ and v are small and λ is large, this compares favorably to the Winnow bound

in Corollary 6.10 of

O

(

H(C) ln (vλ/δ)

δ2
+

N

δ

)

.

However, when δ is small both bounds may become too large to be useful because of

the common 1/δ2 factor.

We need some new notation to give the bounds for ALMA when p = 2. Let Xmax =

maxt∈{1,...,T} ||Xt||2, Umax = maxt∈{1,...,T} ||Ut||2, and H2(C) =
∑T

t=1 ||Ut−Ut+1||2. The

bound for ALMA when p = 2 is

O

(

X2
maxUmaxH2(C)

δ2
+

N

δ

)

.

4More information on ALMA can be found in Section 2.3.5.
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Tracking ALMA(p, δ̂, η)
Parameters

δ̂ ≥ 0 controls the algorithm margin.
η > 0.
p ≥ 2 and q = p

p−1 controls the norms.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,t = 0 are the algorithm weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If wt · xt ≥ 0 predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ δ̂.

Let f(wi,w) = sign(wi)|wi|q−1/‖w‖q−2
q .

Let f−1(zi, z) = sign(zi)|zi|p−1/‖z‖p−2
p .

∀i ∈ {1, . . . , n} zi,t = f(wt, wi,t) + ηytxi,t.
∀i ∈ {1, . . . , n} w′

i,t = f−1(zt, zi,t).

∀i ∈ {1, . . . , n} wi,t+1 = w′
i,t/max(1, ‖w′

t
‖q).

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure 6.4: Pseudo-code for Tracking ALMA.

Comparing against the Winnow bound, this bound might be better for sparse instances

especially when the target concept has negative weights. This is because λ needs to be

set to n when complemented attributes are used in Tracking Unnormalized Winnow. For

these types of problems the X2
max term in ALMA might be smaller than the ln (vn/δ)

term in Winnow. It may also do better for large concept shifts since the H2(C) function

involves the 2-norm instead of the 1-norm. However, these advantage are likely offset

by the extra term Umax if the maximum concept size is large.

A current disadvantage of the Tracking Unnormalized Winnow algorithm is com-

putational cost. As explained in Appendix D, linear-threshold algorithms can be im-

plemented in a form that accepts sparse instances. These instances only encode the

attributes that are non-zero. Letting mt be the number of non-zero attributes on trial t,

all linear-threshold algorithms in this thesis can be implemented to perform predictions

in O(mt). In addition, we show that many linear-threshold algorithms can perform

updates in O(mt). This includes ALMA, and because the tracking version of ALMA is
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just a simplification, this also includes Tracking ALMA. Unfortunately, we currently do

not have an implementation of Tracking Unnormalized Winnow that performs efficient

updates on sparse instances. A straightforward implementation of updates takes O(n)

time with Tracking Unnormalized Winnow.

6.6 Summary

In this chapter, we give a proof for a tracking version of Unnormalized Winnow that

shows that the bounds for learning shifting linear-threshold functions have many of the

same advantages that the traditional Winnow algorithm has on fixed concepts. These

benefits include a weak dependence on the number of irrelevant attributes, inexpensive

run-time, and robust behavior against noise. We also show how the performance of

this algorithm does not depend on the number of attributes and instead depends on

maxt∈{1,...,T} ln (‖Xt‖1). This is similar to the infinite attribute model but has advan-

tages when dealing with real world constraints such as noise.

To get Winnow to track concepts, we use the standard technique of setting a min-

imum value for the weights. However, given our proof technique, this gives a mistake

bound that is allowed to grow arbitrarily large when ζ = min{xi,t | xi,t > 0} approaches

zero. One solution is to transform the instances such that ζ is not allowed to get arbi-

trarily small. By making the appropriate assumptions, it is possible to allow the effects

of these small shifts in the value of attributes to be characterized in the δ parameter

of the learning problem. Such a transformation allows us to improve the worst-case

mistake bounds.
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Chapter 7

Experiments with Shifting Distributions

In this chapter, we give the results of experiments with linear-threshold algorithms

on concept tracking problems. Recall that concept tracking allows the target function

to change during the on-line learning trials. Our experiments include the tracking

algorithms from Chapter 6 and, for comparison purposes, the fixed concept algorithms

from Chapter 2. To improve the performance on tracking problems, we also perform

experiments using the instance recycling from Chapter 4 and a modification of the

voting technique from Chapter 3.

Our model for instance generation is a shifting distribution. For each trial, an

instance is generated by sampling from a distribution; however, this distribution is

allowed to change. In particular, the label probabilities can change causing a shift in

the optimal target function. This is a realistic and flexible instance generation model.

While it can represent something as difficult as an adversary, the difficulty is limited

by how much the distribution is allowed to change.

For example, when predicting the weather, we do not think an adversary is attempt-

ing to maximize the mistakes. However, it is also unrealistic to think that weather

prediction should be based on a fixed target function. There may be changes in the

target function caused by variables not directly accounted for in our model, for exam-

ple, El Niño or global warming. These effects can cause a slow or infrequent change

in the target function and make a shifting distribution a realistic model for instance

generation.1

Our first set of experiments deal with just the basic linear-threshold algorithms. Our

goal is to compare the performance of Tracking Unnormalized Winnow and Tracking

1We give a more formal definition of the shifting distribution model in the next chapter.
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ALMA. We test a range of parameters for both algorithms. We also compare the

performance of the tracking algorithms to the fixed concept algorithms of Chapter 2. As

we will see, the fixed concept algorithms do surprisingly well on our tracking problems.

Next, we perform experiments with the voting techniques from Chapter 3 and the

instance recycling technique from Chapter 4. These techniques are designed to improve

the performance of adversarial algorithms when instances are generated by a fixed

distribution. In this chapter, we show they can also improve performance when the

instances are generated by a shifting distribution.

The instance recycling technique is identical to what was described in Chapter 4, but

the main voting technique from Chapter 3 is primarily designed for fixed distributions.

Therefore, we use the Bagging technique described in Section 3.4.5 and a new voting

technique based on the VR-Combine algorithm from Section 3.3.7. The new voting

technique creates an instance based on the output of a set of basic algorithms. Therefore

if there are v basic algorithms then the new instance will have v attributes. This

information and the original label are input into the VR-Combine algorithm. The

VR-Combine algorithm attempts to minimize the number of mistakes by finding a

hypothesis that combines the predictions of these basic algorithms.

The remainder of the chapter is organized as follows. Section 7.1 gives information

on the data sets and our experimental methodology. Section 7.2 gives experiments with

the basic linear-threshold learning algorithms. In Section 7.3, we explain the voting

techniques and give the results of experiments using these techniques. In Section 7.4,

we explain why instance recycling works with shifting target concepts and give the

results of experiments with recycling. Finally, in Section 7.5, we give a rough cost

analysis of the voting and recycling techniques along with experiments combining the

two techniques.

7.1 Experimental Framework

Our primary algorithm for experimentation is the tracking version of Unnormalized

Winnow. Tracking Unnormalized Winnow has a number of parameters and options.
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First, for every attribute xi, we add a complemented attribute 1−xi. This increases the

number of attributes to 2n and makes ‖Xt‖1 = n for all trials. This forces λ ≥ n and

ruins the theoretical advantage of Tracking Unnormalized Winnow on problems with a

small ‖Xt‖1. However, it allows Unnormalized Winnow to represent negative weights.

More information on Tracking Unnormalized Winnow can be found in Chapter 6.

Based on Theorem 6.8, when λ = n we should set σ = 1/(2n). Of course, this is

based on the assumption that the instances are generated by an adversary and that

our proof is tight. However, experiments on artificial data suggest σ = 1/(2n) is a

reasonable choice when λ = n. In addition, σ = 1/(2n) matches the value used for the

experiments in Chapter 3 with Unnormalized Winnow. Therefore, we can compare the

normal versus tracking algorithms based on the effect of the ǫ parameter.

For our experiments, we use ǫ values from the set {0.00005/n, 0.005/n, 0.05/n, 0.5/n}

and α values from the set {1.05, 1.2, 1.4, 1.7, 2.0}. These are the same values for α as

used in previous chapters. We selected these parameter values based on experiments

with artificial data. Using all combinations of these parameters gives 20 algorithms.

While it could be beneficial to use a wider range of values, we limit the number of al-

gorithms so that running all the algorithms is still efficient. Running all the algorithms

allows one to use an algorithm such as WMA to make a number of mistakes close to

the best of the 20 algorithms. See Section 2.5 for more details.

Another option for Tracking Unnormalized Winnow is the instance transformation

as explained in Section 6.4.2. This transformation shifts the value of attributes that have

a value close to zero. We do not use this instance transformation in our experiments

since the technique is primarily intended for instances generated by an adversary. The

sequence of instances needed by the adversary to cause problems for the algorithm is

complex and unlikely to be generated by a distribution.2

In addition to Tracking Unnormalized Winnow, we also experiment with the comple-

mented form of this algorithm, Tracking Complemented Unnormalized Winnow. More

details on this algorithm can be found in Section 6.3. We use the same parameter values

2See Appendix E for more details.
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and options as Tracking Unnormalized Winnow. For brevity, we abbreviate the Track-

ing Unnormalized Winnow as TUWin(α, σ) and Tracking Complemented Unnormalized

Winnow as TCUWin(α, σ).

The tracking ALMA algorithm given in Figure 6.4 has three parameters; however,

we only use the p parameter in our experiments. We start with the minimum p = 2

value and linearly work our way up to 6.5 in steps of 0.25. According to theoretical

results, larger p values could be beneficial[Gen03]; however, in preliminary experiments

we found that p values over 6.5 always increased the number of mistakes. Just in case,

we include the theoretically motivated value of p = ln n as our final test case.

The δ̂ parameter controls the margin of the algorithm. As explained in Section 2.3.5,

we do not perform experiments with the algorithm margin because our artificial data

experiments have shown the parameter is difficult to set properly for various algorithms.

The η parameter should have no effect on the algorithm though we do find using a small

η value is helpful in controlling numerical stability issues. We use the value η = 0.0001

for all our experiments. In our experiments, the abbreviation for Tracking ALMA is

TALMA(p).

7.1.1 Data Sets

Since machine learning research has primarily focused on learning fixed concepts it is

difficult to find many tracking data sets. Instead, we generate our own tracking data

sets using the fixed distribution data sets from Chapter 3. These data sets primarily

come from the UCI repository [DNMml].

Recall that the data sets we use are multi-class and often have many labels. Again,

we convert these data sets into binary concepts, but instead of just a single concept

we force the concept to change every 2000 trials. To generate tracking problems, we

only use data sets that have at least five labels. We use the labels to create a tracking

problem composed of five different concepts. Each concept is based on a single label.

All instances with this label are instances of the concept; the remaining instances are

not in the concept. We sample 2000 instances from the data set and give them each a

new binary label according to the current concept. After 2000 instances, we switch to
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Name attributes shifting label order

covtype 144 1, 2, 3, 4, 5
isolet 617 1, 2, 3, 4, 5
letter 160 A, B, C, D, E
nursery 26 not recom, recommend, very recom, priority, spec prior
optdigits 640 0, 1, 2, 3, 4
page-blocks 100 1, 2, 3, 4, 5
pendigits 160 0, 1, 2, 3, 4
sat 360 1, 2, 3, 4, 5
segmentation 190 brickface, sky, foliage, cement, window
shuttle 90 1, 2, 3, 4, 5
yeast 80 CYT, ERL, EXC, ME1, ME2
mfeat 6490 0, 1, 2, 3, 4
news 32889 alt.atheism, comp.graphics, comp.os.ms-windows.misc,

comp.sys.ibm.pc.hardware, comp.sys.mac.hardware
reuters 18307 acq, crude, dlr, earn, grain
web 22123 course, department, faculty, other, project

Table 7.1: A description of the shifting data sets used in our experiments.

the next concept. We repeat this procedure changing the concept every 2000 instances

until we reach 10000 trials. In Table 7.1, we give the shifting concepts used in this

chapter along with the order of labels used to generate the data. More information on

these data sets can be found in Section 3.4.1.

7.1.2 Statistics

For all the experiments in this chapter, we report results based on an average of 50

bootstrap samples [HMM+03]. Each bootstrap sample is generated by sampling inde-

pendently with replacement from all the instances in a problem. We sample until we

have a sequence of 2000 instances from a concept. We repeat this for all five concepts.

The instances are labeled with a binary label as explained in the previous section. This

gives 50 bootstrap samples of the tracking problem. For statistical significance, we give

a confidence interval for a bootstrap sample based on a t-test with a 95% confidence

interval [DeG86].

Ideally, our result would include a graph that plots the average number of mistakes

at each trial. In Figure 7.1, we give one such plot for the mfeat data set using the
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Figure 7.1: Mistake curve for tracking version of mfeat concept.

Tracking Complemented Unnormalized Winnow algorithm with α = 2.0, ǫ = 0.05/n,

and σ = 1/(2n). The plot is fairly smooth since it is an average over the 50 bootstrap

samples. The concept shifts can be seen every 2000 trials.

Notice how the algorithm has a greater error rate at the beginning of a concept shift

and then settles towards a fixed slope line. This is typical for our average plots when

dealing with distributions generating the data. At the beginning there is a learning

phase. This is followed by a phase where the algorithm does not improve its average

error rate. This transition is gradual, and when learning is difficult, such as when there

are many attributes, it can require more trials then available to get to the fixed error

phase. Also notice how the learning curves from the 5 concepts are different. The

algorithm has more difficulty with certain concepts.

Unfortunately, we have too many algorithms and problems to display the results

with mistake plots. Instead, we report the total number of mistakes over all 15 tracking

problems and/or we report the total number of mistakes for each tracking problem.

In both cases, we use the notation M̂(B) for the confidence interval on the expected
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number of mistakes made by algorithm B. When giving the results for individual

tracking problems, because of the number of algorithms, we only give the results for

the best algorithm from a set of algorithms. For example, we might consider all Tracking

ALMA algorithms and report the parameter and mistake total that corresponds to the

algorithm with the fewest mistakes.

When dealing with a set of algorithms, reporting only the results for the algorithm

that makes fewest mistakes can bias the results. To be safe, we use a confidence interval

of 95.5% when reporting the results on the best algorithm from a set. Because each

set contains at most 20 algorithms, the union bound gives a confidence of at least 95%

that every interval from the set contains the expected value. Therefore, the algorithm

with the fewest mistakes has a confidence interval of at least 95%.

7.2 Basic Tracking Algorithms

Our first results are in Table 7.2. On each data set, we give the mistakes for three

algorithms: one from the set of Tracking ALMA algorithms, one from the set of Tracking

Unnormalized Winnow algorithms, and one from the set of Tracking Complemented

Unnormalized Winnow algorithms.

There are several facts that stand out in the table. First, the uncomplemented form

of Tracking Unnormalized Winnow almost always does worse than the complemented

form. This parallels our results on fixed concepts from Chapter 3 and seems to be a

property of these learning tasks. Second, neither the Tracking Complemented Unnor-

malized Winnow or Tracking ALMA algorithm dominate on the problems. Each does

best on several problems. In particular, the Tracking ALMA algorithm does best on the

three text problems: news, reuters, and web. These problems have sparse instances and

the Tracking ALMA algorithm exploits this with a small p value. Last, the Tracking

Complemented Unnormalized Winnow algorithm does the best on 10 of the data sets.

For 8 of these problems, the best multiplier is at the maximum value tested, and for all

of the problems the best ǫ is at least 0.1/2n. This suggests there might be more room

for improvement with even larger α and ǫ values.
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Concept Name M̂(Best TUWin) M̂(Best TCUWin) M̂(Best TALMA)

TUWin(1.4, .1
2n ) TCUWin(2.0, .1

2n ) ALMA(3.25)
covtype 1662 ± 16 1608 ± 15 1646 ± 16

TUWin(1.05, 1
2n ) TCUWin(2.0, .1

2n ) ALMA(5.0)
isolet 516± 9 401± 7 517 ± 11

TUWin(1.4, .1
2n ) TCUWin(2.0, 1

2n ) ALMA(2.5)
letter 534± 10 444± 9 524 ± 11

TUWin(1.05, .00012n ) TCUWin(1.4, .1
2n ) ALMA(3.0)

nursery 796± 14 755± 15 705± 14

TUWin(1.2, 1
2n ) TCUWin(2.0, .1

2n ) ALMA(2.5)
optdigits 472± 7 358± 6 425 ± 7

TUWin(1.7, .1
2n ) TCUWin(2.0, .1

2n ) ALMA(2.0)
page-blocks 515± 14 484± 13 477± 13

TUWin(1.05, 1
2n ) TCUWin(2.0, .1

2n ) ALMA(2.25)
pendigits 510± 8 384± 8 510 ± 9

TUWin(1.05, 1
2n ) TCUWin(2.0, .1

2n ) ALMA(2.25)
sat 843± 13 732± 13 814 ± 12

TUWin(1.4, .1
2n ) TCUWin(2.0, .1

2n ) ALMA(3.25)
segmentation 824± 16 614± 12 652 ± 13

TUWin(1.4, .1
2n ) TCUWin(1.7, .1

2n ) ALMA(2.75)
shuttle 554± 13 488± 13 609 ± 14

TUWin(1.7, .1
2n ) TCUWin(2.0, .1

2n ) ALMA(5.75)
mfeat 299± 7 208± 4 279 ± 6

TUWin(1.2, .1
2n ) TCUWin(2.0, 1

2n ) ALMA(2.75)
yeast 966± 12 916± 13 949 ± 12

TUWin(2.0, 1
2n ) TCUWin(2.0, 1

2n ) ALMA(2.75)
news 804± 12 792± 11 662± 10

TUWin(2.0, 1
2n ) TCUWin(2.0, 1

2n ) ALMA(2.75)
reuters 693± 11 733± 12 559± 10

TUWin(1.7, 1
2n ) TCUWin(1.7, 1

2n ) ALMA(2.75)
web 1133 ± 11 1111 ± 11 1015± 13

Table 7.2: Average number of mistakes for best algorithm on 15 tracking problems.
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In general, the Tracking Unnormalized Winnow algorithm has a fairly coarse param-

eter spread in our experiments. A finer and larger grid of parameters yields substantial

improvements for TUWin but not much improvement in Tracking ALMA. This is most

likely because of the single parameter used for Tracking ALMA which we already test

with 20 values. To keep the number of TUWin algorithms similar, we explore less of

their parameter space. We place this limit on the number of algorithms to keep the

computational cost of concurrently running all the algorithms reasonable.

A natural choice for comparison with the tracking algorithms is their non-tracking

predecessors. In Table 7.3, we give the results for the algorithms from Chapter 3 on

our tracking experiments. We use the same parameters for all of these algorithms as in

Section 3.4 except for the ALMA algorithm. For ALMA, we start with the minimum

p = 2 value and linearly work our way up to 6.5 in steps of 0.25. These are the

same values previously used for Tracking ALMA. In the table, we only report the

mistakes for a single algorithm out of various sets of algorithms. Our sets consist of the

Balanced algorithms, the Unnormalized Winnow algorithms, the Normalized Winnow

algorithms, Perceptron, and the ALMA algorithms. We report the mistake count for

the best algorithm from the set. All of these algorithms do not currently have proofs

for tracking based mistake bounds.

In the comparison between the tracking and normal version of Complemented Un-

normalized Winnow, the tracking version always makes fewer mistakes. This decrease

in mistakes can vary greatly. For a few problems the decrease is not significant, but for

several the decrease is over 10%. However, one might be suprised that the performance

gain of the tracking version is not larger.

In principle, the reason the normal versions of Winnow have difficulty with tracking

is that the algorithm weights get too small. If the concept shifts and an attribute with

a small weight becomes relevant, the algorithm might need to make a large number of

mistakes to increase the value. For our experiments, this issue does not cause a large

increase in the number of mistakes. This is most likely a result of the instances being

generated by a distribution. An adversary might be needed to create a large difference

between the tracking and non-tracking versions of Unnormalized Winnow.
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Concept M̂(Bal) M̂(UWin) M̂(NWin) M̂(Per) M̂(ALMA)
Bal(1.4) UCWin(2.0) NWin(1.7,.7) Per ALMA(3.75)

covtype 1647± 17 1640± 17 1610± 18 1693± 15 1634± 16
Bal(1.7) UCWin(2.0) NWin(2.0,.7) Per ALMA(4.5)

isolet 517± 9 420± 8 346± 9 563± 10 543± 12
Bal(1.2) UCWin(2.0) NWin(1.4,.7) Per ALMA(3.0)

letter 524± 11 478± 10 463± 10 536± 12 524± 11
Bal(1.4) UCWin(1.4) NWin(1.2,.7) Per ALMA(2.5)

nursery 703± 15 759± 15 691± 14 720± 12 661± 15
Bal(1.2) UCWin(1.7) NWin(1.4,.7) Per ALMA(2.0)

optdigits 422± 7 410± 9 329± 7 433± 7 464± 8
Bal(1.05) UCWin(2.0) NWin(1.7,.7) Per ALMA(2.0)

page-blocks 476± 13 502± 14 476± 14 476± 13 476± 12
Bal(1.2) UCWin(1.7) NWin(1.2,.7) Per ALMA(2.0)

pendigits 505± 8 448± 10 373± 7 518± 7 542± 10
Bal(1.2) UCWin(1.7) NWin(1.4,.7) Per ALMA(2.25)

sat 814± 13 767± 13 695± 12 814± 13 804± 13
Bal(1.4) UCWin(2.0) NWin(1.4,.7) Per ALMA(2.75)

segmentation 667± 13 677± 13 644± 12 712± 14 702± 14
Bal(1.4) UCWin(1.7) NWin(1.7,.7) Per ALMA(3.25)

shuttle 612± 14 530± 15 490± 12 701± 14 596± 14
Bal(1.4) UCWin(2.0) NWin(1.7,.7) Per ALMA(5.0)

mfeat 300± 6 258± 6 197± 6 338± 9 346± 9
Bal(1.2) UCWin(2.0) NWin(1.05,.7) Per ALMA(2.25)

yeast 953± 12 936± 12 911± 12 952± 14 925± 14
Bal(1.4) UCWin(2.0) NWin(2.0,.5) Per ALMA(2.0)

news 659± 10 821± 12 805± 13 677± 11 699± 11
Bal(1.2) UWin(2.0) NWin(2.0,.3) Per ALMA(2.0)

reuters 556± 9 745± 12 717± 12 567± 9 573± 9
Bal(1.2) UCWin(1.7) NWin(1.7,.5) Per ALMA(2.25)

web 1011± 11 1262± 12 1187± 11 1068± 11 1137± 13

Table 7.3: Average number of mistakes for best algorithm on 15 tracking problems.
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The difference between Tracking ALMA and ALMA is less clear; it is close to an

even split between the problems. The normal version of ALMA attempts to dynamically

adjust its η parameter to improve performance.3 This technique could fail with a

tracking problem where the concept is changing. A similar problem occurs with how

the normal version of ALMA handles noisy instances. The dynamic adjustment of

its η parameter causes certain types of noise to have a disproportionate effect on the

algorithm.4 Either of these effects could explain the decrease in performance over the

tracking version of ALMA. Of course, the dynamic η parameter must also explain why

the normal ALMA algorithm just as often makes fewer mistakes than Tracking ALMA.

However, the improvement is often small.

When considering all the algorithms, even though Normalized Winnow and Bal-

anced Winnow do not currently have proofs for tracking problems, they give the best

performance on several problems. The Balanced Winnow algorithm performs best on

the three text based problems. These problems have a large number of attributes with

only a small fraction of these attributes having a non-zero value. The Normalized

Winnow algorithm does well on most of the other problems. It is the best of all the

algorithms on seven of the tracking problems. These results are not surprising given our

comparison of the algorithms in Section 2.4.2 and the previous evidence that small algo-

rithm weights do not have a large effect on performance. However, while the minimum

weight modification in Tracking Unnormalized Winnow may not have a large impact,

it is clear that it does improve performance. It is possible that a similar modification

could benefit the other Winnow algorithms on tracking problems.

7.3 Voting

The main voting procedure in Chapter 3 votes based on the predictions of several

hypotheses generated during the trials. These hypotheses can be spread out over all

the previous trials. This type of procedure cannot work when dealing with a changing

3See Section 2.3.5 for more details.

4See Section 2.4.1 for more details.
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target function. Older hypotheses might have been accurate in previous trials, but the

target function can be completely different in the current trial.

In order to improve the performance with a shifting target function, we use voting

procedures that only use the current hypotheses of any basic algorithms. We con-

sider two techniques. The first is the bagging technique of [OR01] first described in

Section 3.4.5.

7.3.1 Bagging

The on-line bagging technique is based on running several versions of a basic algorithm

where each algorithm gets a slightly different stream of instances. The different streams

are based on randomly repeating instances in the original sequence. For each instance

in the original sequence, a number k is generated based on a Poisson distribution with

mean 1; this is the number of times the instance is repeated. There are a total of

h algorithms running the same basic algorithm but each gets a different stream of

instances based on sampling. The bagging algorithm predicts based on the majority

vote of these h hypotheses.

We already described some of the problems with on-line bagging in Section 3.4.5.

However, the main advantage when dealing with tracking is that the bagging procedure

uses the current hypotheses from the h basic algorithms. Since each of these hypotheses

has seen a slightly different stream of instances, the hope is that the majority of these

hypotheses will have a higher prediction accuracy than any single hypotheses in the

group. This is the main motivation of the batch bagging technique described in [Bre96].

An additional problem that we have not yet discussed with on-line bagging is the

cost. Since we found the other voting techniques in Chapter 3 to be superior, we

did not discuss the cost, which can be excessive. Because the algorithm is essentially

running h times, the cost increases by a factor of h. While this may seem similar to the

increases seen with the voting techniques of Chapter 3, in that case the h factor was

only significant with the rather simple prediction procedure used by the voting. In this

case, the whole algorithm increases by a factor of h. As we will see, in many cases this

extra cost is difficult to justify.
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7.3.2 VR-Combine

The VR-Combine technique is an application of the results from Chapter 5. Typically,

we do not know which algorithm will give the fewest mistakes for a particular tracking

problem. Therefore, we run a set of algorithms and give them all the same stream of

instances. Assume the set has v algorithms. At this point, there are standard techniques

to make a number of mistakes close to the fewest mistakes made by any algorithm in the

set.5 However, another alternative is to do something similar to bagging and combine

the predictions of the v algorithms in an attempt to make fewer mistakes than any

single algorithm.

The naive bagging approach would be to use a simple majority vote based on the

predictions of the v algorithms. However, there is no guarantee that the majority vote

will maximize the accuracy particularly since this naive technique violates the typical

assumptions of bagging. A more sophisticated approach is to make the predictions using

a weighted vote of the algorithm predictions. This is a convenient way to formulate the

problem because the purpose of a linear-threshold algorithm is to learn such weights. We

have covered several possible linear-threshold algorithms in this dissertation. However,

instead of just using a linear-threshold algorithm, we can apply our previous results

and use the combined voting and recycling algorithms of Chapter 5. The best of these

algorithms is VR-Combine. Therefore we use the VR-Combine algorithm with the basic

algorithms of Section 3.4 and the default parameters described in Section 5.2.1.

While justification of voting in VR-Combine was based on the assumption that the

instances come from a fixed distribution, the essential idea of the voting techniques

in Chapter 3 is to combine a set of different but relatively accurate hypotheses to

improve performance. Even with shifting concepts, this motivation often remains true.

Remember that VR-Combine is learning a way to combine the predictions of the current

hypothesis of each algorithm that is being used on the tracking problem. As the concept

shifts, this combination will most likely fall in accuracy, but the accuracy might still

be high relative to the other possible combinations. In a sense, the shifting concept

5See Section 2.5 for more details on this approach.
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causes extra noise in the VR-Combine instances, but this extra noise may not effect

the optimal hypothesis for VR-Combine. However, even if voting does not improve

performance, the VR-Combine algorithm is designed, at a minimum, to do as well as

its best basic algorithm.6

Fortunately, unlike on-line bagging, the cost of this VR-Combine technique is rela-

tively small. Instead of increasing the cost of the entire algorithm by some multiplicative

factor we only add an extra term. In Section 7.5, we give more details on this cost.

While this application of the VR-Combine algorithm seems complicated when one

delves into the details, the best way to view the VR-Combine algorithm is as a black

box. This black box works according to the on-line model. It takes in instances formed

from the predictions of the algorithms used for the tracking problem and returns a

label. It receives the feedback label from the tracking problem and uses this to update

its hypothesis.

7.3.3 Voting Experiments

We perform the same experiments as described in Section 7.1.1. However, along with

giving results for each individual tracking problem, we also give a scatter plot to show

the improvements of bagging, and we give tables that sum the number of mistakes over

all fifteen tracking problems. The tables are useful to show the average effect of bagging

for each algorithm.

In Figure 7.2, we give a scatter plot that contains a point for each algorithm/concept

pair. We include the same set of tracking and non-tracking algorithms as used in the

previous sections. This gives a total of 1395 points. The y coordinate of each points

corresponds to the final number of mistakes made by a basic algorithm on the particular

concept; the x coordinate corresponds to the final number of mistakes made by the

bagging version of the basic algorithm. As can be seen, the majority of points are

above the line y = x showing that bagging reduces the number of mistakes on most

data sets. Only 22 points show a basic algorithm doing better than bagging on a

6See Section 3.3.2 for details.
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Figure 7.2: Scatter plot comparing basic algorithm to bagging algorithm.

concept.

In Table 7.4, we give the results of the tracking algorithms covered in Chapter 6.

We use the same parameters and notation as described in Section 7.1. In order to make

the table concise, we have left out the results of the Tracking Unnormalized Winnow

algorithm and only report results for ALMA and Tracking Complemented Unnormalized

Winnow. As we saw in Section 7.2, the ALMA and complemented Winnow algorithms

give the best performance for our data sets. Therefore, we leave the results for Tracking

Unnormalized Winnow out of all the tables in this chapter.

For each algorithm in Table 7.4, we give the results of the basic algorithm and

the algorithm with bagging. We use 30 voting hypotheses for all our experiments

with bagging. At the bottom of the table, we give the results for the VR-Combine

algorithm. In the first column, VR-Combine uses the basic algorithms and has 60

attributes because the predictions of Tracking Unnormalized Winnow is included in

the input. In the second column, the VR-Combine algorithm has 120 inputs because

we include the basic algorithms and the predictions of the bagging algorithms. To
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Name M̂(Name) M̂(B-Name)

TALMA(2.0) 10778 ± 27 9125± 27
TALMA(2.25) 10566 ± 26 8896± 29
TALMA(2.5) 10478 ± 27 8771± 28
TALMA(2.75) 10432 ± 27 8710± 27
TALMA(3.0) 10443 ± 31 8678± 28
TALMA(3.25) 10450 ± 34 8658± 26
TALMA(3.5) 10485 ± 32 8667± 28
TALMA(3.75) 10518 ± 35 8669± 25
TALMA(4.0) 10561 ± 32 8683± 30
TALMA(4.25) 10606 ± 35 8711± 28
TALMA(4.5) 10674 ± 33 8722± 29
TALMA(4.75) 10719 ± 30 8757± 27
TALMA(5.0) 10773 ± 29 8778± 29
TALMA(5.25) 10835 ± 33 8794± 27
TALMA(5.5) 10882 ± 30 8843± 28
TALMA(5.75) 10922 ± 32 8868± 27
TALMA(6.0) 10984 ± 33 8902± 27
TALMA(6.25) 11038 ± 37 8926± 30
TALMA(6.5) 11070 ± 29 8953± 30
TALMA(ln n) 11109 ± 34 8940± 28
TCUWin(1.05, .00012n ) 13582 ± 35 12662 ± 33
TCUWin(1.05, .012n ) 13579 ± 35 12657 ± 31
TCUWin(1.05, .1

2n ) 13530 ± 34 12631 ± 32
TCUWin(1.05, 1

2n ) 13238 ± 30 12205 ± 31
TCUWin(1.2, .00012n ) 11888 ± 33 10742 ± 31
TCUWin(1.2, .012n ) 11848 ± 33 10702 ± 33
TCUWin(1.2, .1

2n ) 11739 ± 32 10608 ± 28
TCUWin(1.2, 1

2n ) 11251 ± 30 9987± 31
TCUWin(1.4, .00012n ) 11126 ± 34 9655± 29
TCUWin(1.4, .012n ) 11040 ± 32 9575± 29
TCUWin(1.4, .1

2n ) 10817 ± 31 9369± 29
TCUWin(1.4, 1

2n ) 10534 ± 31 8954± 29
TCUWin(1.7, .00012n ) 10768 ± 32 9127± 28
TCUWin(1.7, .012n ) 10525 ± 31 8954± 27
TCUWin(1.7, .1

2n ) 10289 ± 31 8697± 29
TCUWin(1.7, 1

2n ) 10338 ± 32 8569± 27
TCUWin(2.0, .00012n ) 10647 ± 34 8891± 27
TCUWin(2.0, .012n ) 10347 ± 34 8634± 28
TCUWin(2.0, .1

2n ) 10132 ± 33 8406± 25
TCUWin(2.0, 1

2n ) 10360 ± 33 8482± 28
VR-Combine 8020 ± 27 7511± 26

Table 7.4: Total mistakes on basic tracking and bagging algorithms from 15 tracking
concepts.
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help distinguish between these algorithms, we call VR-Combine with just the basic

algorithms VR-Combine1, and VR-Combine with the basic and bagging algorithms

VR-Combine2.

The VR-Combine algorithm also has its own set of basic algorithms that it uses to

generate a hypothesis. These are not necessarily related to the basic algorithms used

for the tracking problem. In all cases in this chapter, the VR-Combine algorithms use

the basic algorithms and default parameter settings as described in Chapter 5. This

includes 33 basic algorithms where each algorithm performs recycling with 100 old

instances and each instance can be used for a single update.

In Table 7.5, we give the results for all the fixed concept algorithms of Chapter 2.

We use the same parameters and notation as described in Section 3.4. The table follows

the conventions described in the previous paragraphs except that the results of all the

algorithms are reported. In this case, VR-Combine1 has 33 inputs for the first column,

and VR-Combine2 has 66 inputs for the second column.

As can be seen in the tables, bagging consistently improves the performance of the

basic algorithm. To a first approximation, the better the basic algorithm the better

the bagging algorithm. However, as we saw in Chapter 3, higher multipliers with

the Winnow algorithms can give better performance with voting. The same is true

with TALMA; the optimal p value for the TALMA basic algorithms tends to be slightly

lower than the optimal value for bagging. In general, the advantage of larger parameters

could be a result of greater hypotheses diversity. However, the effect is short lived. As

the parameters continue to grow larger, the bagging algorithm performance starts to

degrade.

By far the best algorithm is VR-Combine2. This algorithm makes over 25% fewer

mistakes than the best basic algorithm, and over 10% fewer mistakes than the best

bagging algorithm. Even VR-Combine1, using just the basic algorithms, out performs

all of the bagging algorithms. This can be partially explained based on the implicit

parameter selection of VR-Combine. For each problem, VR-Combine can weight the

algorithms differently giving a preference for the best algorithm for a particular problem.
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Name M̂(Name) M̂(B-Name)

Perceptron 10769 ± 28 9133± 25
ALMA(2) 10853 ± 34 9423± 28
ALMA(ln n) 11545 ± 37 9610± 31
Bal(1.05) 10719 ± 27 9063± 28
Bal(1.2) 10450 ± 29 8819± 27
Bal(1.4) 10485 ± 32 8712± 27
Bal(1.7) 10925 ± 32 8816± 26
Bal(2.0) 11424 ± 36 9012± 32
UWin(1.05) 13172 ± 41 12109± 33
UWin(1.2) 12248 ± 33 10793± 29
UWin(1.4) 12060 ± 39 10137± 29
UWin(1.7) 12599 ± 39 10142± 30
UWin(2.0) 13335 ± 39 10463± 30
CUWin(1.05) 13581 ± 34 12649± 29
CUWin(1.2) 11888 ± 33 10727± 30
CUWin(1.4) 11129 ± 33 9637± 30
CUWin(1.7) 10813 ± 31 9129± 26
CUWin(2.0) 10850 ± 38 8958± 31
NWin(1.05,.3) 14179 ± 32 13680± 30
NWin(1.2,.3) 11733 ± 30 10553± 30
NWin(1.4,.3) 11274 ± 31 9695± 28
NWin(1.7,.3) 11498 ± 30 9407± 28
NWin(2.0,.3) 11989 ± 33 9501± 28
NWin(1.05,.5) 11786 ± 31 10357± 28
NWin(1.2,.5) 10916 ± 32 9365± 28
NWin(1.4,.5) 10587 ± 31 8876± 28
NWin(1.7,.5) 10647 ± 27 8651± 30
NWin(2.0,.5) 10967 ± 35 8690± 30
NWin(1.05,.7) 12143 ± 36 11621± 32
NWin(1.2,.7) 10676 ± 28 9541± 28
NWin(1.4,.7) 10238 ± 29 8830± 30
NWin(1.7,.7) 10110 ± 34 8431± 28
NWin(2.0,.7) 10224 ± 35 8335± 27
VR-Combine 7965 ± 26 7462± 28

Table 7.5: Total mistakes on basic fixed concept and bagging algorithms from 15 track-
ing concepts.
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To better help understand this behavior, we include tables that give the best algo-

rithm for each of the fifteen individual tracking problems. Table 7.6 selects the best

from the tracking algorithms, and Table 7.7 selects the best from the fixed concept

algorithms. The first column of each table corresponds to the best basic algorithm.

The second column gives the results of VR-Combine1. The third column gives the best

bagging algorithm. The last column gives the results of VR-Combine2.

As can be seen in both tables, the best basic algorithm gives the worst performance

and VR-Combine2 gives the best. The bagging algorithm and VR-Combine1 alternate

for second place. A bagging algorithm wins in 17 of the 30 concepts; however, the best

bagging algorithm changes from problem to problem. This can be seen in Table 7.4

and Table 7.5, where VR-Combine1 does better on average than any single bagging

algorithm.

7.4 Instance Recycling

In this section, we apply the instance recycling technique from Chapter 4 to concept

tracking problems. While instance recycling is designed to work on a range of problems,

including adversarial problems, the implicit assumption of instance recycling is that

the problem is based on a fixed target function. If the target function is allowed to

change then the old instances might correspond to a different target function. These

old instances are effectively noisy instances with respect to the current target function

and can cause an increase in the number of mistakes.

On the positive side, if the old instances still have sufficient information about the

current target function, they can help reduce the number of mistakes. For example,

if the target function only changes infrequently then most of the old instances used

for updates correspond to the correct target function. Another possibility is that the

target function is changing every trial but only by a small amount. When instances are

generated by a shifting distribution, these old instances can still be helpful since there

is a high probability they correspond to the correct target function.

In both of the above cases, the amount of correct information in the old instances is
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Concept Basic VR-Combine1 Bagging VR-Combine2
TCUWin(2.0, .1

2n
) TCUWin(2.0, .1

2n
)

covtype 1608± 15 1526± 16 1458± 17 1448± 15
TCUWin(2.0, .1

2n
) TCUWin(2.0, 1

2n
)

isolet 401± 7 322± 7 348± 6 311± 6
TCUWin(2.0, 1

2n
) TCUWin(2.0, 1

2n
)

letter 444± 9 342± 7 332± 7 325± 8
ALMA(3.0) ALMA(ln n)

nursery 705± 14 630± 15 588± 14 577± 14
TCUWin(2.0, .1

2n
) TCUWin(2.0, 1

2n
)

optdigits 358± 6 277± 6 250± 6 246± 6
ALMA(2.0) ALMA(2.0)

page-blocks 477± 13 373± 11 378± 12 351± 11
TCUWin(2.0, .1

2n
) TCUWin(1.7, 1

2n
)

pendigits 384± 8 327± 7 296± 8 290± 7
TCUWin(2.0, .1

2n
) TCUWin(2.0, .1

2n
)

sat 732± 13 616± 13 579± 10 560± 11
TCUWin(2.0, .1

2n
) TCUWin(2.0, 1

2n
)

segmentation 614± 12 526± 11 493± 10 474± 9
TCUWin(1.7, .1

2n
) TCUWin(2.0, .1

2n
)

shuttle 488± 13 419± 12 428± 12 392± 11
TCUWin(2.0, .1

2n
) TCUWin(2.0, 1

2n
)

mfeat 208± 4 152± 4 151± 4 137± 4
TCUWin(2.0, 1

2n
) TCUWin(2.0, .1

2n
)

yeast 916± 13 799± 11 828± 12 779± 12
ALMA(2.75) ALMA(5.0)

news 662± 10 471± 7 511± 8 462± 7
ALMA(2.75) ALMA(2.5)

reuters 559± 10 440± 9 433± 8 411± 8
ALMA(2.75) ALMA(2.75)

web 1015± 13 798± 9 846± 11 747± 10

Table 7.6: Number of mistakes for best tracking algorithm on 15 tracking problems.
Includes bagging and VR-Combine techniques. Each VR-Combine column combines
algorithms from previous columns algorithms.
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Concept Basic VR-Combine1 Bagging VR-Combine2
NWin(1.7,.7) NWin(2.0,.7)

covtype 1610± 18 1514± 17 1463± 16 1439± 17
NWin(2.0,.7) NWin(2.0,.7)

isolet 346± 9 290± 6 294± 7 277± 7
NWin(1.4,.7) NWin(2.0,.7)

letter 463± 10 339± 7 335± 8 326± 7
ALMA(lnn) NWin(1.05,.5)

nursery 670± 14 604± 15 583± 13 547± 14
NWin(1.4,.7) NWin(2.0,.7)

optdigits 329± 7 270± 6 246± 5 241± 5
ALMA(lnn) NWin(2.0,.7)

page-blocks 476± 12 368± 11 373± 11 344± 11
NWin(1.2,.7) NWin(1.4,.7)

pendigits 373± 7 324± 7 303± 7 292± 7
NWin(1.4,.7) NWin(2.0,.7)

sat 695± 12 598± 10 558± 9 549± 10
NWin(1.4,.7) NWin(1.7,.7)

segmentation 644± 12 544± 11 523± 11 499± 12
NWin(1.7,.7) NWin(2.0,.7)

shuttle 490± 12 420± 11 425± 12 389± 11
NWin(1.7,.7) NWin(2.0,.5)

mfeat 197± 6 142± 4 144± 5 130± 4
NWin(1.05,.7) NWin(2.0,.7)

yeast 911± 12 796± 11 829± 12 780± 10
Bal(1.4) Bal(2.0)

news 659± 10 471± 7 514± 8 459± 7
Bal(1.2) Bal(1.4)

reuters 556± 9 444± 9 431± 9 407± 8
Bal(1.2) Bal(1.4)

web 1011± 11 841± 12 849± 11 784± 10

Table 7.7: Number of mistakes for best fixed concept algorithm on 15 tracking problems.
Includes bagging and VR-Combine techniques. Each VR-Combine column combines
algorithms from previous columns algorithms.
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controlled by the age of the instances used in recycling. If the instances are from older

trials, there is a greater chance that these older instances will be based on a target

function that is significantly different than the current target function. Therefore, it is

important to limit s, the size of the window of old instances, when dealing with tracking

problems.

The other parameter for instance recycling is u, the number of times an instance

can be used for updates. For tracking problems, we can assume a greater amount of

noise in the instances used for recycling. Since noisy instances are more likely to be

used for updates when using a mistake-driven algorithm,7 a large u value could cause

problems with the algorithms in this thesis. However, a large u value does allow the

algorithm to make more use of the recycled instances without increasing their age. In

Section 7.5.2, we perform experiments with the s and u parameters to see how they

effect the results on our data sets.

7.4.1 Recycling Experiments

In this section, we give the results of experiments with instance recycling using the

same tracking experiments as the previous section. Based on the previous explanation,

we set the default parameters for instance recycling to s = 50 old instances and u = 1

updates per instance.

We start with a scatter plot to compare the basic algorithms to recycling. The

scatter plot in Figure 7.3 contains a point for each algorithm/concept pair. We include

the same set of tracking and non-tracking algorithms as used in the previous sections.

This gives a total of 1395 points. The y coordinate of each points corresponds to the

final number of mistakes made by a basic algorithm on the particular concept; the x

coordinate corresponds to the final number of mistakes made by the recycled version

of the basic algorithm. As can be seen, all but one point is above the y = x line.

Table 7.8 gives the total number of mistakes made by the basic tracking algorithms.

The first column has zero instances used for recycling; the second column uses 50

7See Section 4.4 for details.
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Figure 7.3: Scatter plot comparing basic algorithm to recycling version.

instances for recycling. As can be seen, the recycling gives a consistent and large

decrease in the total number of mistakes over the 15 tracking concepts. In fact, the

decrease for a particular algorithm is much larger than that seen by bagging. Also,

just as with bagging, the optimal algorithm parameter is often slightly higher than the

optimal parameter value for the corresponding basic algorithm. The results in Table 7.9

mirror these results but use the fixed concept algorithms of Chapter 2.

At the bottom of the tables, we include the results of using algorithm VR-Combine

from Chapter 5 with the basic algorithms as input. In the first column VR-Combine1

uses the basic algorithms with no recycling. The second column uses the algorithms

with recycling. We call this algorithm VR-Combine3 to help distinguish it from the

other versions of VR-Combine. Again, there is a large improvement based on using

the recycling. VR-Combine3, using the recycled tracking algorithms, makes only 6721

mistakes. This is an improvement of almost 10% over the previous best algorithm,

VR-Combine2.

Table 7.10 gives the tracking algorithm with the fewest mistakes for each of the 15
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Name M̂(Name) M̂(R-Name)

TALMA(2.0) 10778 ± 27 8320± 25
TALMA(2.25) 10566 ± 26 8130± 30
TALMA(2.5) 10478 ± 27 8052± 25
TALMA(2.75) 10432 ± 27 8018± 26
TALMA(3.0) 10443 ± 31 8003± 28
TALMA(3.25) 10450 ± 34 7990± 28
TALMA(3.5) 10485 ± 32 8010± 28
TALMA(3.75) 10518 ± 35 8033± 26
TALMA(4.0) 10561 ± 32 8061± 27
TALMA(4.25) 10606 ± 35 8098± 28
TALMA(4.5) 10674 ± 33 8113± 27
TALMA(4.75) 10719 ± 30 8158± 28
TALMA(5.0) 10773 ± 29 8195± 29
TALMA(5.25) 10835 ± 33 8221± 26
TALMA(5.5) 10882 ± 30 8253± 26
TALMA(5.75) 10922 ± 32 8296± 29
TALMA(6.0) 10984 ± 33 8325± 28
TALMA(6.25) 11038 ± 37 8355± 29
TALMA(6.5) 11070 ± 29 8390± 25
TALMA(ln n) 11109 ± 34 8394± 26
TCUWin(1.05, .00012n ) 13582 ± 35 9468± 25
TCUWin(1.05, .012n ) 13579 ± 35 9459± 25
TCUWin(1.05, .1

2n ) 13530 ± 34 9418± 26
TCUWin(1.05, 1

2n ) 13238 ± 30 9133± 28
TCUWin(1.2, .00012n ) 11888 ± 33 8347± 27
TCUWin(1.2, .012n ) 11848 ± 33 8312± 27
TCUWin(1.2, .1

2n ) 11739 ± 32 8219± 24
TCUWin(1.2, 1

2n ) 11251 ± 30 7896± 24
TCUWin(1.4, .00012n ) 11126 ± 34 8125± 27
TCUWin(1.4, .012n ) 11040 ± 32 8020± 25
TCUWin(1.4, .1

2n ) 10817 ± 31 7844± 25
TCUWin(1.4, 1

2n ) 10534 ± 31 7685± 25
TCUWin(1.7, .00012n ) 10768 ± 32 8100± 24
TCUWin(1.7, .012n ) 10525 ± 31 7901± 26
TCUWin(1.7, .1

2n ) 10289 ± 31 7727± 27
TCUWin(1.7, 1

2n ) 10338 ± 32 7721± 26
TCUWin(2.0, .00012n ) 10647 ± 34 8118± 29
TCUWin(2.0, .012n ) 10347 ± 34 7912± 29
TCUWin(2.0, .1

2n ) 10132 ± 33 7769± 28
TCUWin(2.0, 1

2n ) 10360 ± 33 7845± 28
VR-Combine 8020 ± 27 6721± 25

Table 7.8: Total mistakes on basic tracking and recycling algorithms from 15 tracking
concepts.
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Name M̂(Name) M̂(R-Name)

Perceptron 10769 ± 28 8293± 30
ALMA(2) 10853 ± 34 8801± 29
ALMA(ln n) 11545 ± 37 9286± 32
Bal(1.05) 10719 ± 27 8209± 27
Bal(1.2) 10450 ± 29 8021± 25
Bal(1.4) 10485 ± 32 8133± 28
Bal(1.7) 10925 ± 32 8613± 30
Bal(2.0) 11424 ± 36 8991± 32
UWin(1.05) 13172 ± 41 9165± 32
UWin(1.2) 12248 ± 33 8491± 26
UWin(1.4) 12060 ± 39 8612± 29
UWin(1.7) 12599 ± 39 9245± 32
UWin(2.0) 13335 ± 39 9805± 43
CUWin(1.05) 13581 ± 34 9435± 28
CUWin(1.2) 11888 ± 33 8331± 28
CUWin(1.4) 11129 ± 33 8113± 25
CUWin(1.7) 10813 ± 31 8421± 57
CUWin(2.0) 10850 ± 38 8912± 85
NWin(1.05,.3) 14179 ± 32 11047± 26
NWin(1.2,.3) 11733 ± 30 8746± 26
NWin(1.4,.3) 11274 ± 31 8478± 26
NWin(1.7,.3) 11498 ± 30 8769± 32
NWin(2.0,.3) 11989 ± 33 9170± 32
NWin(1.05,.5) 11786 ± 31 8411± 29
NWin(1.2,.5) 10916 ± 32 7935± 25
NWin(1.4,.5) 10587 ± 31 7909± 21
NWin(1.7,.5) 10647 ± 27 8183± 30
NWin(2.0,.5) 10967 ± 35 8519± 29
NWin(1.05,.7) 12143 ± 36 9186± 27
NWin(1.2,.7) 10676 ± 28 7944± 25
NWin(1.4,.7) 10238 ± 29 7768± 26
NWin(1.7,.7) 10110 ± 34 7909± 27
NWin(2.0,.7) 10224 ± 35 8137± 29
VR-Combine 7965 ± 26 6919± 28

Table 7.9: Total mistakes on basic fixed concept and recycling algorithms from 15
tracking concepts.
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Concept Recycle VR-Combine3 Bag & Recycle VR-Combine4

TCUWin(1.4, 1

2n
) TCUWin(1.4, 1

2n
)

covtype 1315± 18 1268± 18 1285± 18 1257± 18

TCUWin(2.0, .1

2n
) TCUWin(2.0, .1

2n
)

isolet 284± 6 261± 6 265± 5 255± 5

TCUWin(1.7, 1

2n
) TCUWin(2.0, 1

2n
)

letter 319± 8 293± 7 290± 7 287± 7
ALMA(3.0) ALMA(3.0)

nursery 572± 12 523± 11 530± 12 513± 11
TCUWin(1.4, 1

2n
) TCUWin(1.7, 1

2n
)

optdigits 267± 5 216± 5 212± 5 203± 4
TCUWin(2.0, 1

2n
) TCUWin(2.0, 1

2n
)

page-blocks 361± 11 337± 10 346± 10 333± 10
TCUWin(1.4, 1

2n
) TCUWin(1.7, 1

2n
)

pendigits 290± 6 259± 7 248± 6 242± 6
TCUWin(1.4, 1

2n
) TCUWin(1.4, 1

2n
)

sat 545± 10 489± 10 500± 9 476± 9
TCUWin(1.4, 1

2n
) TCUWin(1.4, 1

2n
)

segmentation 460± 10 407± 10 415± 10 393± 10
TCUWin(1.4, 1

2n
) TCUWin(1.4, 1

2n
)

shuttle 349± 10 318± 9 338± 10 315± 9
TCUWin(2.0, 1

2n
) TCUWin(2.0, 1

2n
)

mfeat 153± 4 116± 3 118± 3 110± 3
TCUWin(1.7, .1

2n
) TCUWin(1.7, .1

2n
)

yeast 770± 11 724± 11 748± 11 717± 11
TCUWin(1.2, .0001

2n
) TCUWin(2.0, 1

2n
)

news 504± 8 456± 7 487± 8 447± 7
ALMA(3.25) ALMA(3.0)

reuters 455± 9 392± 7 402± 8 379± 7

TUWin(1.4, 1

2n
) ALMA(3.25)

web 804± 10 662± 9 737± 11 638± 9

Table 7.10: Number of mistakes for best tracking algorithm on 15 tracking problems.
Includes instance recycling, bagging and VR-Combine techniques.

tracking concepts. The first column gives the results for the algorithms with recycling.

The second column gives the results with VR-Combine3. We will refer to the third and

forth column in the next section when we talk about combining bagging and recycling.

Comparing with Table 7.6, we see that recycling improves performance over the basic

algorithm on every tracking problem. Unsurprisingly, VR-Combine3 makes even fewer

mistakes. These trends are repeated in Table 7.11 with the fixed concept algorithms.
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Concept Recycle VR-Combine3 Bag & Recycle VR-Combine4
NWin(1.4,.7) NWin(1.4,.7)

covtype 1334± 18 1291± 18 1297± 18 1278± 17
NWin(2.0,.7) NWin(2.0,.7)

isolet 266± 7 243± 5 232± 5 228± 5
NWin(1.7,.7) NWin(1.7,.7)

letter 333± 7 300± 6 295± 7 294± 6
ALMA(2) ALMA(lnn)

nursery 569± 11 525± 11 524± 12 510± 11
NWin(1.4,.7) NWin(1.4,.7)

optdigits 267± 6 236± 5 220± 5 216± 5
NWin(1.7,.7) NWin(1.7,.7)

page-blocks 372± 11 341± 9 350± 10 337± 10
NWin(1.2,.7) NWin(1.4,.7)

pendigits 315± 7 279± 7 269± 6 262± 6
NWin(1.2,.5) NWin(1.05,.5)

sat 537± 9 503± 9 480± 9 484± 9
NWin(1.4,.7) NWin(1.4,.7)

segmentation 470± 11 427± 10 420± 9 409± 9
NWin(1.4,.5) NWin(1.7,.5)

shuttle 358± 11 320± 10 346± 11 315± 9
NWin(1.4,.5) NWin(2.0,.5)

mfeat 168± 5 131± 4 126± 4 121± 4
NWin(1.2,.7) NWin(1.2,.7)

yeast 770± 11 726± 11 746± 10 726± 10
NWin(1.05,.7) Bal(2.0)

news 496± 8 456± 7 484± 9 447± 7
Bal(1.4) Bal(1.4)

reuters 452± 8 404± 8 395± 8 385± 8
Bal(1.2) Bal(1.2)

web 837± 12 737± 11 746± 10 695± 9

Table 7.11: Number of mistakes for best fixed concept algorithm on 15 tracking prob-
lems. Includes instance recycling, bagging and VR-Combine techniques.
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7.5 Combining Recycling and Voting

In this section, we consider combining voting and recycling to further improve the

performance of on-line algorithms on tracking problems. While we do not expect a

decrease in mistakes as dramatic as the individual techniques, the goal is a decrease

that is significant given the extra cost involved. We have already seen how to combine

voting and instance recycling using the VR-Combine3 algorithm. Combining bagging

and instance recycling is also straightforward. The recycling technique is applied to

every basic algorithm and these algorithms are used by the bagging technique.

One important criteria for applying these techniques is computational cost. The

analysis is complicated by the fact that our Tracking Unnormalized Winnow imple-

mentation performs updates in O(n), where n is the number of attributes, while the

remaining algorithms perform updates in O(m), where m is the maximum number of

non-zero attributes in an instance, and by the fact that we use some parameters twice,

once for the tracking problem and once for VR-Combine.

We use the following notation for the algorithms that process instances from the

tracking problem. Let v1 be the number of basic algorithms, let u1 be the number of

times an instance can be used for an update, and let s1 be the size of the window of

old instances. In addition, let M be the maximum number of mistakes made by a basic

algorithm and let T be the current trial number. We also need notation for VR-Combine

when it is used to perform voting on the tracking problem. For VR-Combine let v2 be

the number of basic algorithms, let u2 be the number of times an instance can be used

for an update, and let s2 be the size of the window of old instances. For VR-Combine,

the maximum size of an instance is v1 since the predictions of the algorithms used for

the tracking problem are used to generate the new instances.

In Table 7.12, we give the cost of various combinations of techniques. We have

arranged the order so that the table is organized from least expensive to most expensive

based on the experiments used in this chapter. However, the table is slightly misleading

in that the first technique, VR-Combine, must be used in combination with one of the

other techniques. However, for our experiments, VR-Combine generally only adds a
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Algorithm Without Tracking Winnow With Tracking Winnow

VR-Combine O(v2u2s2v1T ) O(v2u2s2v1T )
Basic O(v1mT ) O(v1(mT + nM))
Basic & Recycling O(v1u1s1mT ) O(v1u1T (s1m + n))
Basic & Bagging O(hv1mT ) O(hv1(mT + nM))
Recycling & Bagging O(hv1u1s1mT ) O(hv1u1T (s1m + n))

Table 7.12: Asymptotic cost of running algorithms from this chapter.

minimal cost to the other techniques

Comparing the cost of the basic algorithms with VR-Combine, the factors that do

not cancel are v2u2s2 for VR-Combine and m for the basic algorithms without Tracking

Winnow. While VR-Combine may appear expensive, one must recall that the u2s2

factor overestimates the increase in cost from instance recycling. For most practical

problems, the algorithms do not come close to to averaging u2s2 predictions every

trial. See Chapter 4 for more details. Therefore, as long as v2u2s2 is not significantly

larger than m, VR-Combine should be efficient relative to the basic algorithms. For

our experiments v2 = 33, u2 = 1, and s2 = 100 while the average value of m is 588.

Things are even better for VR-Combine when taking into account the additional cost

associated with Tracking Winnow.

The next most expensive algorithm is the recycling algorithm. While it adds an

extra u1s1 factor to most basic algorithms, again the increase is generally more modest.

On most practical problems, algorithms do not average close to u1s1 predictions every

trial. The increase with Tracking Winnow is even smaller as the n component of the

bound only increases by a u1 factor. This is because O(n) is need to update a hypothesis,

but prediction still takes O(m). See Appendix D for more details.

The addition of bagging causes a large increase in computational cost. A bagging

algorithm essentially runs h versions of the same algorithm, and therefore the h factor

is an accurate estimate of the increase in cost. The same is true when combining

recycling and bagging. The bagging causes a factor of h increase in the cost of the

recycling algorithm.

In the remainder of this chapter, we give the results of experiments that combine
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the voting and recycling techniques. Based on these results, for tracking problems we

recommend using VR-Combine3. We find that bagging is too expensive to justify given

its relatively small performance gains. At the end of the chapter, we focus on exploring

the effect of the s1 and u1 parameters on the recycling algorithms and VR-Combine3.

7.5.1 Recycling and Bagging Experiments

In Table 7.13, we give the total number of mistakes over all the tracking problems of

the combination bagging and recycling algorithm. For comparison purposes, we also

include the total mistake count for the basic algorithm, the bagging algorithm, and the

recycling algorithm. As can be seen, every algorithm has a decrease in the number

of mistakes as it progresses from the basic algorithm to the combined bagging and

recycling algorithm. The same result can be seen in Table 7.14 with respect to the

fixed concept algorithms.

Again the best algorithm is VR-Combine. This algorithm makes the fewest mistakes

with only a small extra computational cost with respect to the other algorithms in the

same column. Referring back to Table 7.10 and Table 7.11, the third column gives

the best algorithm on each of the fifteen tracking problems. The last column gives the

number of mistakes made by VR-Combine using the recycling and bagging versions of

the basic algorithms. For convenience, we call this algorithm VR-Combine4.

Notice that VR-Combine4 gives the best performance for each tracking problem.

This again shows that the VR-Combine algorithm is doing more than just selecting

the best algorithm. If possible, it combines the algorithms to perform better than

any single input algorithm. However, VR-Combine4 only makes approximately 3%

fewer mistakes than VR-Combine3. While this is a statistically significant increase in

performance, it is difficult to justify based on the factor of 30 cost increase for bagging.

For many problems, this computational effort could be better used by running more

basic algorithms for input to VR-Combine.
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Name M̂(Name) M̂(B-Name) M̂(R-Name) M̂(B-R-Name)

TALMA(2.0) 10778 ± 27 9125 ± 27 8320 ± 25 7674± 27
TALMA(2.25) 10566 ± 26 8896 ± 29 8130 ± 30 7493± 27
TALMA(2.5) 10478 ± 27 8771 ± 28 8052 ± 25 7408± 25
TALMA(2.75) 10432 ± 27 8710 ± 27 8018 ± 26 7364± 25
TALMA(3.0) 10443 ± 31 8678 ± 28 8003 ± 28 7345± 25
TALMA(3.25) 10450 ± 34 8658 ± 26 7990 ± 28 7340± 25
TALMA(3.5) 10485 ± 32 8667 ± 28 8010 ± 28 7343± 25
TALMA(3.75) 10518 ± 35 8669 ± 25 8033 ± 26 7365± 23
TALMA(4.0) 10561 ± 32 8683 ± 30 8061 ± 27 7384± 24
TALMA(4.25) 10606 ± 35 8711 ± 28 8098 ± 28 7408± 23
TALMA(4.5) 10674 ± 33 8722 ± 29 8113 ± 27 7436± 23
TALMA(4.75) 10719 ± 30 8757 ± 27 8158 ± 28 7461± 24
TALMA(5.0) 10773 ± 29 8778 ± 29 8195 ± 29 7497± 24
TALMA(5.25) 10835 ± 33 8794 ± 27 8221 ± 26 7513± 24
TALMA(5.5) 10882 ± 30 8843 ± 28 8253 ± 26 7554± 24
TALMA(5.75) 10922 ± 32 8868 ± 27 8296 ± 29 7573± 24
TALMA(6.0) 10984 ± 33 8902 ± 27 8325 ± 28 7603± 24
TALMA(6.25) 11038 ± 37 8926 ± 30 8355 ± 29 7636± 22
TALMA(6.5) 11070 ± 29 8953 ± 30 8390 ± 25 7660± 24
TALMA(ln n) 11109 ± 34 8940 ± 28 8394 ± 26 7660± 23
TCUWin(1.05, .00012n ) 13582 ± 35 12662 ± 33 9468 ± 25 8992± 26
TCUWin(1.05, .012n ) 13579 ± 35 12657 ± 31 9459 ± 25 8979± 26
TCUWin(1.05, .1

2n ) 13530 ± 34 12631 ± 32 9418 ± 26 8931± 28
TCUWin(1.05, 1

2n ) 13238 ± 30 12205 ± 31 9133 ± 28 8659± 26
TCUWin(1.2, .00012n ) 11888 ± 33 10742 ± 31 8347 ± 27 7875± 25
TCUWin(1.2, .012n ) 11848 ± 33 10702 ± 33 8312 ± 27 7840± 24
TCUWin(1.2, .1

2n ) 11739 ± 32 10608 ± 28 8219 ± 24 7749± 25
TCUWin(1.2, 1

2n ) 11251 ± 30 9987 ± 31 7896 ± 24 7426± 21
TCUWin(1.4, .00012n ) 11126 ± 34 9655 ± 29 8125 ± 27 7593± 23
TCUWin(1.4, .012n ) 11040 ± 32 9575 ± 29 8020 ± 25 7507± 24
TCUWin(1.4, .1

2n ) 10817 ± 31 9369 ± 29 7844 ± 25 7349± 21
TCUWin(1.4, 1

2n ) 10534 ± 31 8954 ± 29 7685 ± 25 7198± 24
TCUWin(1.7, .00012n ) 10768 ± 32 9127 ± 28 8100 ± 24 7544± 24
TCUWin(1.7, .012n ) 10525 ± 31 8954 ± 27 7901 ± 26 7366± 24
TCUWin(1.7, .1

2n ) 10289 ± 31 8697 ± 29 7727 ± 27 7212± 25
TCUWin(1.7, 1

2n ) 10338 ± 32 8569 ± 27 7721 ± 26 7215± 25
TCUWin(2.0, .00012n ) 10647 ± 34 8891 ± 27 8118 ± 29 7548± 28
TCUWin(2.0, .012n ) 10347 ± 34 8634 ± 28 7912 ± 29 7355± 26
TCUWin(2.0, .1

2n ) 10132 ± 33 8406 ± 25 7769 ± 28 7248± 26
TCUWin(2.0, 1

2n ) 10360 ± 33 8482 ± 28 7845 ± 28 7345± 26
VR-Combine 8020 ± 27 7511 ± 26 6721 ± 25 6565± 24

Table 7.13: Total mistakes on basic tracking algorithms with bagging and recycling.
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Name M̂(Name) M̂(B-Name) M̂(R-Name) M̂(BR-Name)

Perceptron 10769 ± 28 9133 ± 25 8293 ± 30 7662± 25
ALMA(2) 10853 ± 34 9423 ± 28 8801 ± 29 8064± 27
ALMA(ln n) 11545 ± 37 9610 ± 31 9286 ± 32 8343± 26
Bal(1.05) 10719 ± 27 9063 ± 28 8209 ± 27 7577± 27
Bal(1.2) 10450 ± 29 8819 ± 27 8021 ± 25 7406± 26
Bal(1.4) 10485 ± 32 8712 ± 27 8133 ± 28 7450± 26
Bal(1.7) 10925 ± 32 8816 ± 26 8613 ± 30 7805± 27
Bal(2.0) 11424 ± 36 9012 ± 32 8991 ± 32 8131± 29
UWin(1.05) 13172 ± 41 12109 ± 33 9165 ± 32 8617± 26
UWin(1.2) 12248 ± 33 10793 ± 29 8491 ± 26 7908± 23
UWin(1.4) 12060 ± 39 10137 ± 29 8612 ± 29 7978± 24
UWin(1.7) 12599 ± 39 10142 ± 30 9245 ± 32 8509± 27
UWin(2.0) 13335 ± 39 10463 ± 30 9805 ± 43 9089± 31
CUWin(1.05) 13581 ± 34 12649 ± 29 9435 ± 28 8954± 25
CUWin(1.2) 11888 ± 33 10727 ± 30 8331 ± 28 7850± 24
CUWin(1.4) 11129 ± 33 9637 ± 30 8113 ± 25 7592± 23
CUWin(1.7) 10813 ± 31 9129 ± 26 8421 ± 57 7670± 30
CUWin(2.0) 10850 ± 38 8958 ± 31 8912 ± 85 8061± 63
NWin(1.05,.3) 14179 ± 32 13680 ± 30 11047 ± 26 10408± 29
NWin(1.2,.3) 11733 ± 30 10553 ± 30 8746 ± 26 8170± 25
NWin(1.4,.3) 11274 ± 31 9695 ± 28 8478 ± 26 7829± 24
NWin(1.7,.3) 11498 ± 30 9407 ± 28 8769 ± 32 8044± 27
NWin(2.0,.3) 11989 ± 33 9501 ± 28 9170 ± 32 8398± 27
NWin(1.05,.5) 11786 ± 31 10357 ± 28 8411 ± 29 7866± 24
NWin(1.2,.5) 10916 ± 32 9365 ± 28 7935 ± 25 7389± 27
NWin(1.4,.5) 10587 ± 31 8876 ± 28 7909 ± 21 7306± 24
NWin(1.7,.5) 10647 ± 27 8651 ± 30 8183 ± 30 7470± 24
NWin(2.0,.5) 10967 ± 35 8690 ± 30 8519 ± 29 7751± 27
NWin(1.05,.7) 12143 ± 36 11621 ± 32 9186 ± 27 8730± 25
NWin(1.2,.7) 10676 ± 28 9541 ± 28 7944 ± 25 7471± 25
NWin(1.4,.7) 10238 ± 29 8830 ± 30 7768 ± 26 7224± 24
NWin(1.7,.7) 10110 ± 34 8431 ± 28 7909 ± 27 7248± 26
NWin(2.0,.7) 10224 ± 35 8335 ± 27 8137 ± 29 7402± 25
VR-Combine 7965 ± 26 7462 ± 28 6919 ± 28 6705± 23

Table 7.14: Total mistakes on basic fixed concept algorithms with bagging and recycling.
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7.5.2 Instance Recycling Parameters

Next, we explore various parameter values for the recycling algorithm. We do not

include the bagging algorithm because, based on previous experiments, its cost is not

justified by its performance gains. However, we do include VR-Combine3. When used

with the recycled algorithms, it gives a large performance boost for almost no extra

cost.

In Table 7.15, we give the total number of mistakes made by the tracking algorithms

for various sizes of the instance recycling window. We give the results for window sizes

s = {0, 10, 50, 100, 150}. The same results are presented in Table 7.16 for the fixed

concept algorithms. The best two window sizes for both tables are 50 and 100. In

Table 7.15, the results are somewhat surprising as s = 100 does the best for all the

algorithms but s = 50 does the best for VR-Combine. However, the difference between

VR-Combine with s = 50 and VR-Combine with s = 100 is small. We assume, just as

in Chapter 5, the smaller s values give more diversity in the hypotheses used by VR-

Combine. In Table 7.16, we see a much more even mix between s = 50 and s = 100.

Again, the main algorithm, VR-Combine, does best with s = 50. Therefore, our default

value performs best on these data sets.

In Table 7.17, we give the total number of mistakes made by the tracking algorithms

for various values of u, the maximum number of times an instance can be used for an

update. We give the results for u = {1, 2, 3, 4, 5}. The same results are presented in

Table 7.18 for the fixed concept algorithms. There appears to be a rough pattern for

both ALMA and the Winnow algorithms.

Tracking ALMA generally does best when u = 3. While there are five cases where

u = 3 does not give the best performance, these cases do not appear statistically

significant. We only have two parameter values for the normal ALMA algorithm, but

the algorithm makes the fewest mistakes on both when u = 5. These results are on

the edge of statistical relevance if variance reduction techniques are used. The Winnow

algorithms tend to prefer a larger u value when they use a smaller multiplier. This is

the same behavior we saw in Section 5.2.2. A larger multiplier causes an increase in
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Name M̂(R(0)) M̂(R(10)) M̂(R(50)) M̂(R(100)) M̂(R(150))
TALMA(2.0) 10778± 27 9011± 33 8320± 25 8299± 29 8397± 25
TALMA(2.25) 10566± 26 8857± 27 8130± 30 8116± 26 8222± 26
TALMA(2.5) 10478± 27 8790± 27 8052± 25 8022± 26 8122± 25
TALMA(2.75) 10432± 27 8758± 30 8018± 26 7977± 25 8070± 30
TALMA(3.0) 10443± 31 8749± 28 8003± 28 7950± 25 8048± 25
TALMA(3.25) 10450± 34 8760± 32 7990± 28 7948± 26 8048± 26
TALMA(3.5) 10485± 32 8798± 27 8010± 28 7945± 30 8044± 27
TALMA(3.75) 10518± 35 8820± 28 8033± 26 7981± 27 8068± 25
TALMA(4.0) 10561± 32 8857± 32 8061± 27 7993± 26 8078± 24
TALMA(4.25) 10606± 35 8892± 33 8098± 28 8021± 27 8105± 28
TALMA(4.5) 10674± 33 8920± 30 8113± 27 8048± 28 8128± 26
TALMA(4.75) 10719± 30 8977± 36 8158± 28 8080± 25 8175± 25
TALMA(5.0) 10773± 29 9016± 30 8195± 29 8105± 27 8201± 27
TALMA(5.25) 10835± 33 9067± 28 8221± 26 8134± 29 8226± 27
TALMA(5.5) 10882± 30 9107± 31 8253± 26 8173± 26 8258± 28
TALMA(5.75) 10922± 32 9144± 30 8296± 29 8212± 26 8290± 28
TALMA(6.0) 10984± 33 9190± 32 8325± 28 8244± 26 8333± 27
TALMA(6.25) 11038± 37 9227± 33 8355± 29 8269± 26 8345± 27
TALMA(6.5) 11070± 29 9276± 29 8390± 25 8298± 25 8387± 26
TALMA(ln n) 11109± 34 9246± 30 8394± 26 8290± 24 8369± 28
TCUWin(1.05, .0001

2n
) 13582± 35 10130± 29 9468± 25 9452± 26 9553± 25

TCUWin(1.05, .01

2n
) 13579± 35 10120± 28 9459± 25 9440± 27 9543± 25

TCUWin(1.05, .1

2n
) 13530± 34 10080± 29 9418± 26 9403± 27 9504± 26

TCUWin(1.05, 1

2n
) 13238± 30 9795± 32 9133± 28 9102± 28 9192± 28

TCUWin(1.2, .0001

2n
) 11888± 33 9038± 28 8347± 27 8336± 22 8447± 23

TCUWin(1.2, .01

2n
) 11848± 33 9004± 28 8312± 27 8301± 23 8411± 23

TCUWin(1.2, .1

2n
) 11739± 32 8927± 28 8219± 24 8191± 24 8311± 25

TCUWin(1.2, 1

2n
) 11251± 30 8577± 27 7896± 24 7886± 24 8001± 21

TCUWin(1.4, .0001

2n
) 11126± 34 8800± 28 8125± 27 8103± 24 8210± 25

TCUWin(1.4, .01

2n
) 11040± 32 8721± 27 8020± 25 7979± 24 8074± 24

TCUWin(1.4, .1

2n
) 10817± 31 8559± 26 7844± 25 7801± 23 7909± 24

TCUWin(1.4, 1

2n
) 10534± 31 8389± 27 7685± 25 7658± 24 7770± 21

TCUWin(1.7, .0001

2n
) 10768± 32 8808± 27 8100± 24 8054± 28 8168± 23

TCUWin(1.7, .01

2n
) 10525± 31 8597± 32 7901± 26 7856± 25 7956± 25

TCUWin(1.7, .1

2n
) 10289± 31 8418± 29 7727± 27 7689± 25 7807± 24

TCUWin(1.7, 1

2n
) 10338± 32 8437± 28 7721± 26 7675± 27 7766± 29

TCUWin(2.0, .0001

2n
) 10647± 34 8852± 28 8118± 29 8068± 25 8158± 24

TCUWin(2.0, .01

2n
) 10347± 34 8604± 28 7912± 29 7853± 27 7964± 27

TCUWin(2.0, .1

2n
) 10132± 33 8451± 26 7769± 28 7715± 27 7826± 25

TCUWin(2.0, 1

2n
) 10360± 33 8586± 29 7845± 28 7781± 25 7874± 25

VR-Combine 8020± 27 7134± 25 6721± 25 6750± 23 6808± 24

Table 7.15: Total mistakes with recycling on tracking algorithms using recycling pa-
rameters u = 1 and s = {0, 10, 50, 100, 150}.
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Name M̂(R(0)) M̂(R(10)) M̂(R(50)) M̂(R(100)) M̂(R(150))
Perceptron 10769± 28 8995± 27 8293± 30 8309± 28 8468± 27
ALMA(2) 10853± 34 9417± 29 8801± 29 8809± 29 8945± 26
ALMA(ln n) 11545± 37 10077± 35 9286± 32 9246± 32 9362± 30
Bal(1.05) 10719± 27 8927± 31 8209± 27 8222± 24 8353± 24
Bal(1.2) 10450± 29 8754± 25 8021± 25 8018± 28 8160± 26
Bal(1.4) 10485± 32 8851± 30 8133± 28 8139± 30 8274± 29
Bal(1.7) 10925± 32 9321± 31 8613± 30 8615± 29 8746± 31
Bal(2.0) 11424± 36 9749± 29 8991± 32 8979± 37 9109± 30
UWin(1.05) 13172± 41 9762± 33 9165± 32 9189± 32 9335± 27
UWin(1.2) 12248± 33 9218± 28 8491± 26 8513± 26 8671± 24
UWin(1.4) 12060± 39 9363± 29 8612± 29 8641± 26 8812± 26
UWin(1.7) 12599± 39 9988± 32 9245± 32 9308± 31 9472± 34
UWin(2.0) 13335± 39 10590± 34 9805± 43 9846± 41 9995± 43
CUWin(1.05) 13581± 34 10081± 29 9435± 28 9477± 28 9617± 26
CUWin(1.2) 11888± 33 9007± 30 8331± 28 8361± 27 8524± 25
CUWin(1.4) 11129± 33 8787± 29 8113± 25 8143± 27 8306± 24
CUWin(1.7) 10813± 31 8975± 31 8421± 57 8525± 68 8659± 66
CUWin(2.0) 10850± 38 9242± 57 8912± 85 8954± 112 9143± 108
NWin(1.05,.3) 14179± 32 11763± 33 11047± 26 10952± 25 11009± 26
NWin(1.2,.3) 11733± 30 9512± 26 8746± 26 8688± 27 8813± 25
NWin(1.4,.3) 11274± 31 9218± 29 8478± 26 8461± 25 8611± 28
NWin(1.7,.3) 11498± 30 9550± 33 8769± 32 8778± 28 8914± 30
NWin(2.0,.3) 11989± 33 9992± 33 9170± 32 9180± 27 9328± 29
NWin(1.05,.5) 11786± 31 9036± 31 8411± 29 8413± 27 8540± 27
NWin(1.2,.5) 10916± 32 8649± 29 7935± 25 7941± 24 8080± 24
NWin(1.4,.5) 10587± 31 8625± 30 7909± 21 7919± 27 8068± 23
NWin(1.7,.5) 10647± 27 8883± 26 8183± 30 8192± 26 8349± 26
NWin(2.0,.5) 10967± 35 9252± 32 8519± 29 8526± 30 8682± 27
NWin(1.05,.7) 12143± 36 9810± 31 9186± 27 9151± 28 9240± 27
NWin(1.2,.7) 10676± 28 8594± 29 7944± 25 7951± 24 8080± 24
NWin(1.4,.7) 10238± 29 8427± 28 7768± 26 7768± 24 7915± 26
NWin(1.7,.7) 10110± 34 8555± 30 7909± 27 7905± 24 8038± 24
NWin(2.0,.7) 10224± 35 8785± 32 8137± 29 8144± 29 8285± 27
VR-Combine 7965± 26 7265± 27 6919± 28 6963± 25 7035± 23

Table 7.16: Total mistakes with recycling on fixed concept algorithms using recycling
parameters u = 1 and s = {0, 10, 50, 100, 150}.
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Name M̂(R(1)) M̂(R(2)) M̂(R(3)) M̂(R(4)) M̂(R(5))
TALMA(2.0) 8320± 25 7979± 26 7910± 26 7896± 29 7910± 28
TALMA(2.25) 8130± 30 7856± 24 7822± 25 7821± 28 7821± 29
TALMA(2.5) 8052± 25 7805± 23 7769± 25 7784± 27 7796± 28
TALMA(2.75) 8018± 26 7790± 27 7756± 25 7759± 28 7782± 30
TALMA(3.0) 8003± 28 7784± 24 7749± 28 7767± 29 7778± 28
TALMA(3.25) 7990± 28 7797± 29 7770± 29 7781± 28 7799± 30
TALMA(3.5) 8010± 28 7811± 30 7781± 27 7807± 28 7816± 30
TALMA(3.75) 8033± 26 7834± 25 7823± 28 7822± 29 7848± 30
TALMA(4.0) 8061± 27 7844± 25 7835± 28 7849± 29 7862± 27
TALMA(4.25) 8098± 28 7888± 29 7864± 28 7875± 28 7900± 28
TALMA(4.5) 8113± 27 7921± 26 7902± 30 7915± 29 7927± 32
TALMA(4.75) 8158± 28 7953± 25 7928± 26 7942± 29 7946± 29
TALMA(5.0) 8195± 29 7978± 25 7966± 31 7968± 29 7988± 26
TALMA(5.25) 8221± 26 8006± 30 8000± 28 8009± 26 8019± 29
TALMA(5.5) 8253± 26 8036± 25 8028± 27 8022± 26 8043± 27
TALMA(5.75) 8296± 29 8073± 25 8044± 29 8071± 25 8069± 29
TALMA(6.0) 8325± 28 8104± 26 8088± 27 8094± 28 8104± 27
TALMA(6.25) 8355± 29 8132± 28 8099± 27 8135± 31 8137± 33
TALMA(6.5) 8390± 25 8168± 29 8143± 24 8142± 31 8149± 28
TALMA(ln n) 8394± 26 8159± 25 8159± 27 8171± 28 8197± 29
TCUWin(1.05, .0001

2n
) 9468± 25 8604± 28 8276± 22 8148± 26 8084± 27

TCUWin(1.05, .01

2n
) 9459± 25 8591± 28 8264± 23 8137± 27 8067± 27

TCUWin(1.05, .1

2n
) 9418± 26 8547± 27 8218± 22 8095± 27 8031± 26

TCUWin(1.05, 1

2n
) 9133± 28 8283± 26 8032± 28 7936± 29 7887± 27

TCUWin(1.2, .0001

2n
) 8347± 27 7884± 27 7799± 29 7806± 28 7855± 26

TCUWin(1.2, .01

2n
) 8312± 27 7847± 26 7758± 28 7766± 27 7799± 28

TCUWin(1.2, .1

2n
) 8219± 24 7758± 24 7675± 26 7692± 26 7727± 30

TCUWin(1.2, 1

2n
) 7896± 24 7575± 28 7543± 27 7567± 26 7627± 28

TCUWin(1.4, .0001

2n
) 8125± 27 7836± 26 7845± 26 7885± 28 7938± 28

TCUWin(1.4, .01

2n
) 8020± 25 7712± 27 7725± 29 7771± 29 7830± 28

TCUWin(1.4, .1

2n
) 7844± 25 7577± 26 7618± 25 7675± 27 7746± 28

TCUWin(1.4, 1

2n
) 7685± 25 7542± 26 7596± 27 7697± 28 7781± 32

TCUWin(1.7, .0001

2n
) 8100± 24 7926± 29 7962± 28 8022± 29 8099± 27

TCUWin(1.7, .01

2n
) 7901± 26 7751± 29 7825± 24 7912± 25 8004± 28

TCUWin(1.7, .1

2n
) 7727± 27 7645± 32 7741± 30 7862± 30 7964± 30

TCUWin(1.7, 1

2n
) 7721± 26 7712± 26 7839± 31 7973± 31 8083± 33

TCUWin(2.0, .0001

2n
) 8118± 29 8004± 28 8066± 27 8145± 27 8229± 29

TCUWin(2.0, .01

2n
) 7912± 29 7839± 30 7955± 28 8073± 31 8184± 30

TCUWin(2.0, .1

2n
) 7769± 28 7771± 30 7913± 29 8053± 28 8175± 32

TCUWin(2.0, 1

2n
) 7845± 28 7909± 30 8075± 28 8205± 31 8335± 35

VR-Combine 6721± 25 6546± 25 6514± 24 6508± 25 6517± 25

Table 7.17: Total mistakes with recycling on tracking algorithms using recycling pa-
rameters u = {1, 2, 3, 4, 5} and s = 50.
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Name M̂(R(1)) M̂(R(2)) M̂(R(3)) M̂(R(4)) M̂(R(5))
Perceptron 8293± 30 7961± 24 7891± 26 7889± 27 7891± 25
ALMA(2) 8801± 29 8370± 31 8258± 30 8252± 26 8240± 27
ALMA(ln n) 9286± 32 8962± 28 8901± 29 8879± 30 8875± 32
Bal(1.05) 8209± 27 7903± 25 7852± 25 7840± 30 7857± 28
Bal(1.2) 8021± 25 7786± 27 7766± 24 7805± 25 7844± 29
Bal(1.4) 8133± 28 8024± 27 8065± 32 8132± 28 8184± 28
Bal(1.7) 8613± 30 8620± 32 8706± 32 8886± 52 9044± 34
Bal(2.0) 8991± 32 9015± 33 9327± 34 9344± 57 9654± 82
UWin(1.05) 9165± 32 8456± 26 8167± 27 8026± 26 7948± 26
UWin(1.2) 8491± 26 7992± 24 7869± 26 7867± 29 7886± 30
UWin(1.4) 8612± 29 8323± 28 8326± 29 8393± 29 8469± 28
UWin(1.7) 9245± 32 9156± 38 9356± 66 9499± 66 9614± 67
UWin(2.0) 9805± 43 9811± 55 10102± 83 10213± 97 10375± 79
CUWin(1.05) 9435± 28 8575± 28 8260± 26 8124± 24 8051± 23
CUWin(1.2) 8331± 28 7856± 25 7786± 25 7794± 26 7843± 31
CUWin(1.4) 8113± 25 7881± 29 7908± 28 7977± 25 8063± 28
CUWin(1.7) 8421± 57 8819± 75 9075± 63 9315± 80 9404± 74
CUWin(2.0) 8912± 85 9436± 96 9696± 114 9955± 101 10128± 115
NWin(1.05,.3) 11047± 26 9848± 27 9415± 27 9216± 27 9097± 28
NWin(1.2,.3) 8746± 26 8282± 26 8197± 31 8195± 28 8224± 27
NWin(1.4,.3) 8478± 26 8265± 26 8320± 29 8363± 27 8436± 31
NWin(1.7,.3) 8769± 32 8703± 31 8799± 31 8880± 32 8920± 30
NWin(2.0,.3) 9170± 32 9170± 32 9246± 28 9287± 33 9325± 37
NWin(1.05,.5) 8411± 29 7981± 26 7855± 32 7837± 27 7850± 28
NWin(1.2,.5) 7935± 25 7707± 27 7710± 26 7753± 26 7812± 30
NWin(1.4,.5) 7909± 21 7811± 30 7888± 33 7995± 29 8055± 32
NWin(1.7,.5) 8183± 30 8205± 31 8302± 29 8395± 27 8443± 30
NWin(2.0,.5) 8519± 29 8562± 28 8656± 29 8716± 29 8777± 37
NWin(1.05,.7) 9186± 27 8495± 26 8265± 26 8183± 27 8138± 26
NWin(1.2,.7) 7944± 25 7667± 23 7665± 29 7705± 29 7773± 29
NWin(1.4,.7) 7768± 26 7667± 27 7749± 28 7845± 29 7917± 27
NWin(1.7,.7) 7909± 27 7939± 28 8043± 30 8147± 32 8217± 30
NWin(2.0,.7) 8137± 29 8220± 34 8327± 33 8426± 32 8471± 34
VR-Combine 6919± 28 6734± 26 6695± 26 6679± 25 6676± 26

Table 7.18: Total mistakes with recycling on fixed concept algorithms using recycling
parameters u = {1, 2, 3, 4, 5} and s = 50.
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the effect of noisy instances. The larger u values cause the algorithm to focus on these

noisy instances creating more mistakes.

Of course, the most important algorithm is VR-Combine since it always gives the

fewest mistakes. As we explained in Section 5.2.2, voting techniques seem to have a

preference for larger u values. Presumably, the larger u values increase the hypotheses

diversity by causing more updates on the algorithms. We see this both in Table 7.17

where u = 4 gives the fewest mistakes, and Table 7.18 where u = 5 gives the fewest

mistakes. In fact, the fewest mistakes on these learning problems comes from VR-

Combine with s = 50 and u = 4 on the tracking basic algorithms. This algorithm

makes only 6508 mistakes. This is an improvement of over 35% on the best basic

algorithm. We believe further improvement is possible by using a wider range of basic

algorithms along with multiple s and u values, all combined with a single VR-Combine

algorithm.

7.6 Summary

In this chapter, we give the results of experiments on tracking problems that are gen-

erated by a shifting distribution. We show that the Tracking Unnormalized Winnow

algorithm from Chapter 6 gives the fewest mistakes on several realistic data sets when

compared to the other basic linear-threshold algorithms used in this thesis. We also

give experiments that show our previous techniques of instance recycling and voting

can also improve the performance of adversarial on-line algorithms when instances are

generated by a shifting distribution. We improve upon the basic algorithms by over

35%. These techniques are efficient and can be applied to a wide range of adversarial

on-line learning algorithms.

The recycling technique we use is identical to that found in Chapter 4. Our main

voting technique is an application of the VR-Combine algorithm from Chapter 5. For

learning tracking concepts, VR-Combine uses an instance based on the output of a set

of algorithms. If there are v algorithms then the new instance will have v attributes.

This information and the original label are input into the VR-Combine algorithm. The
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VR-Combine algorithm attempts to minimize the number of mistakes by finding a

hypothesis that combines the predictions of these algorithms.
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Chapter 8

Delayed Label Feedback

In this chapter, we consider the problem of label feedback in on-line learning. According

to the on-line model, after an algorithm makes a prediction, it is supposed to receive

the label from the environment. For many practical problems, the algorithm may

have to wait before it receives the label. This chapter builds on the work of [Mes05].

The problem of label delay with on-line learning was first brought to our attention by

Davison [Dav01].

Consider spam email filtering. The filtering algorithm often allows the user to

train the algorithm using labeled emails [AKC+00]. In between training, many emails

may arrive that need to be classified. Anytime successive predictions need to be made

without receiving a label, it is a delayed learning problem. Another example is webpage

prefetching. This is useful for speeding up the performance of low bandwidth Internet

connections. Learning which links to preload is a useful optimization [PM96]; however,

the label feedback might be delayed until it is determined that a prefetched webpage

will not be used. As a final example, a doctor may want to predict health problems in

a patient in order to start treatment as soon as possible. A more definitive test may be

prescribed to confirm the diagnosis; this test provides delayed feedback.

To solve this problem, we propose the delayed model of on-line learning. This model

is identical to the traditional on-line learning except that the environment can return

the label feedback any number of trials after the arrival of the instance. This amounts

to changing the last step of on-line learning to receive possibly multiple labels from

the current or previous trials. For every on-line learning problem, there is a matching

delayed learning problem that receives delayed labels.

In this chapter, we give multiple ways to transform a traditional on-line algorithm
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to an algorithm that works with delayed labels. We give upper-bounds on the number

of mistakes made by these algorithms, where the bounds are given as a function of the

bounds for the original on-line algorithm. Our transformations are relatively simple

and generally inexpensive. To allow the transformations to be as general as possible,

we allow randomized on-line algorithms to be used in the transformations.

We assume two different techniques for instance generation. First, we assume the

instances are generated by an adversary. This is similar to the adversary in Chapter 2

except the adversary is also given some control over the delays of the instances. Second,

we assume the instances are generated by a distribution. This includes a shifting

distribution as described in Chapter 7. In both cases, the bounds are robust; the

bounds allow noisy instances that do not correspond to a target function [Lit89], and

the bounds allow tracking a target function that is allowed to change over the trials

[HL91, KPR91, Mes02]. We also give lower-bounds on these two instance generation

techniques. We show these lower-bounds are close to our upper-bounds.

The choice of which technique to apply for converting an algorithm to the delayed

model depends on the type of instance generation. When the instances correspond to

a fixed target function, the order of the instance updates does not matter. Therefore,

we want to update soon after the label arrives. When the instance corresponds to a

shifting target function, we risk increasing the noise if we update with older instances.

Therefore we must be careful to keep the updates in the same order as the original

sequence of instances. The specific strategy will depend on whether an adversary or a

shifting distribution is generating the instances.

The remainder of the chapter is organized as follows. The next section gives some

notation needed for the delayed model. Section 8.2 gives algorithms and mistake bounds

for the case where instances are generated by an adversary; this includes lower-bounds.

In Section 8.3, algorithms and mistake bounds are given for problems with instances

generated by a shifting distribution. Again, this includes lower-bounds.
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Algorithm B
Initialization

t← 0 is the trial number.
Initialize algorithm state s← s0.

Trials
t← t + 1.
Instance: xt.
Prediction: ŷt ← Pred(s,xt).
Update: Let yt be the correct label.

s← Update(s,xt, yt, ŷt).

Figure 8.1: Pseudo-code for on-line algorithm B.

8.1 Notation

All of our transformations take an existing traditional on-line algorithm and convert

it to handle delayed instances. Assume algorithm B is a traditional on-line algorithm

with pseudo-code given in Fig. 8.1. On trial t, the algorithm accepts instance xt ∈ X

and returns a distribution ŷt ∈ [0, 1]|Y | over the possible output labels. The algorithm

predicts by sampling from this distribution.1 The algorithm then receives feedback on

the correct label yt ∈ Y . It can use this information to update the current state of the

algorithm to improve performance on future instances.

We assume that the only randomization in algorithm B comes from the sampling

of the label distribution returned by the prediction procedure. The update procedure

is deterministic. More information on this assumption can be found in Appendix F.

The transformed algorithms use the same procedures as algorithm B for updates

and predictions. The prediction procedure of algorithm B accepts two parameters: the

instance xt for prediction and the current state of the algorithm, s. The state of the

algorithm encodes the value of all the memory used by the algorithm that can have

an effect on future predictions. This is different than the hypothesis the algorithm

uses to make predictions. The current hypothesis is defined as the label prediction

probabilities assigned to all instances. It is possible that the state of the algorithm may

change without changing the current hypothesis. The initial state is represented as s0.

1While it is common to just let ŷt be the predicted label, a distribution is needed to help describe
one of the later algorithm transformations.
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The prediction procedure returns a probability distribution for the label. We use the

notation ŷt[i] to determine the probability that the predicted label is i on trial t. For a

deterministic algorithm, a single label will have value 1.

The update procedure accepts four parameters: the state of the algorithm, the in-

stance, the label returned by the environment, and the predicted label distribution. The

update procedure returns two outputs: the new algorithm state and Boolean variable

change state that is TRUE if the algorithm state has changed because of the update

and FALSE otherwise. We ignore the change state variable if it is not used by a par-

ticular algorithm. Notice that, based on our definition, a traditional on-line algorithm

can only change its state after an update.

Next, we need notation for the delayed labels returned by the environment. We use

ya,b to refer to the label of an instance where the attributes arrive on trial a and the

label arrives right before the start of trial b. Each trial, the algorithm gets a new vector

of attributes, but each trial may get zero or more labels. Therefore, when we want to

specify an instance, we refer to the trial where the attributes arrived. We define the

delay of a particular instance, with label ya,b, as b−a. Let k be the maximum delay over

all instances. In traditional on-line learning, all instances have a delay of 1 and have

labels of the form yt,t+1. In delayed on-line learning, each instance has an arbitrary

positive integer delay.

In the rest of the chapter, we use the following notation. A sequence of instances

is a potentially infinite sequence where each item in the sequence is a tuple with two

elements: a sequence of attributes and a label. Let E[Mist(B, s)] be the expected

number of mistakes algorithm B makes on s, a sequence of instances. Let E[C1(B, s)]

be the expected number of times B changes its current hypothesis on sequence s and

let E[C2(B, s)] be the expected number of times B changes its state on sequence s.

The expectation is taken with respect to any randomization used by the algorithm. If

the instances are generated by an adversary, let E[Mist(B)] be the maximum expected

mistakes made by algorithm B over a set of instance sequences. The particular set of

sequences should be clear from context. If the instances are generated by a distribu-

tion, let E[Mist(B)] be the expected number of mistakes based on sampling from the
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distribution. In the case of a distribution, the expectation is taken with respect to the

generation of instances and any randomization of the algorithm.

When giving lower-bounds, we often need to refer to the optimal algorithm in the

traditional on-line setting. Let OptD be the algorithm that minimizes E[Mist(B)] over

all traditional deterministic algorithms B. Let OptR be the algorithm that minimizes

E[Mist(B)] over all traditional randomized algorithms B. Notice that the optimal

algorithm can change depending on whether instances are generated by an adversary

or a distribution.

8.2 Instances Generated by an Adversary

In this section, we give algorithms and bounds on mistakes when instances are generated

by an adversary. First, we need to define what we mean by an adversary generating

instances. Later we will allow the adversary to set delays for these instances.

Let S be a set of instance sequences. An adversary generates a sequence of instances

by selecting any sequence from S. Typically this is a sequence that maximizes the

number of mistakes for the particular learning algorithm being used. Therefore, we

need to make assumptions about the types of sequences found in S in order to give a

mistake bound for an algorithm. For our purposes, most of the assumptions about S

will come from the traditional on-line algorithm that we are converting to the delayed

setting. Therefore these assumptions are implicit in our analysis.

For example, S might contain all possible sequences that can be generated by any

disjunction of at most k literals. One can even model noise by allowing S to contain any

sequence that is correctly labeled by a disjunction with at most k literals after at most

2N of the binary attributes are changed. Notice that any sequence from S has an upper-

bound on the number of mistakes using the algorithms and analysis from Chapter 2.

In a similar way, we can generate sequence sets based on the shifting linear-threshold

functions from Chapter 6.

However, for the purposes of this chapter, we make few explicit restrictions on the

instance sequences contained in S. Therefore, these techniques apply to a wide range of
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learning problems. The only assumption we need to make about S depends on whether

the learning algorithm applies to fixed or shifting learning problems. Before we give

these assumptions, we start with some useful definitions.

Definition 8.1 A set of sequences S is closed under permutation if, for every sequence

s ∈ S, every size of permutation of s is also contained in S.

Definition 8.2 An set of sequences S is closed under subsequence if, for every sequence

s ∈ S, every subsequence of s is also contained in S.

We call an adversary that is closed under permutation a permutation adversary.

A permutation adversary can take any s ∈ S and generate any sized permutation of

s. This is a natural assumption for a fixed target function. For a particular sequence

s ∈ S, all the instances correspond to a single target function, so an adversary should

be able to mix the instances to maximize the difficulty of learning.

We call an adversary that is closed under subsequence a subsequence adversary. A

subsequence adversary can take any s ∈ S and generate every subsequence of s. This is

a weaker assumption than the permutation adversary. It is needed when dealing with

shifting target functions. For a shifting target function, a permutation would mix up

the target functions. A subsequence adversary preserves the target function shifts but

allows the adversary to skip over some of the instances in s to form a new sequence.

Notice that every permutation adversary is a subsequence adversary.

The analysis in Chapter 2 applies to a permutation adversary. The analysis in

Chapter 6 applies to a subsequence adversary. Given a problem where the adversary

S is not a permutation or subsequence adversary, it is easy to convert the adversary

by adding the necessary sequences to form S′. Since we are adding sequences any

upper-bound on mistakes for S′ also applies to S.

It is an open question as to what types of adversaries are useful for modeling learning

problems. One purpose of an adversarial analysis is to show that an algorithm performs

well even given unrealistic worst-case assumptions. Since adding sequences to create

a permutation or subsequence adversary increases the mistake bound, these additions

can be seen as continuing this tradition of worst-case analysis.
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For delayed on-line learning, we need to let the adversary delay the label feedback.

To make this as general as possible, we let the adversary pick the delay for an instance

from an infinite sized multi-set D of positive numbers. For any sequence of instances

s ∈ S, the adversary assigns a single element of D to each instance in s. Each element in

D can only be used for a single instance in each sequence. Therefore, delayed adversary

S maximizes the number of mistakes by considering all possible delays from D assigned

to all sequences in S. For example, D may contain the number 5 an infinite number of

times and the number 20 ten times. In this case, for every sequence s ∈ S the adversary

can give at most 10 instances a delay of 20; the remaining instances all have a delay of

5.

Let di ∈ R∪ {∞} be the number of delays of length i in D. Our bound is based on

values of the various di; this allows us to model a wide range of problems. For example,

in the medical problem explained earlier, each patient may take a different amount of

time to get the lab test needed for the label; a few patients may never take the lab test

and therefore have an infinite delay.

Throughout this chapter, we refer to both delayed and traditional sequences of

instances. To make the distinction clear, a traditional sequence of instances is defined

as a sequence of instances where each instance has a delay of 1. A delayed sequence

of instances has delays set by the adversary from the multi-set D. Often the type of

sequence will be clear from context because a delayed sequence can not typically be

used with a traditional on-line algorithm.

Before we give our main bound, we need a lemma to help us work with the delay

multi-set D. We want to place as many elements from D into a list L with the restriction

that the first c numbers must be at least 1, the next c numbers must be at least 2, and

so on where the mth block of c numbers must be at least m. We call this the ordered

class selection problem.

Another way to view the ordered class selection problem is to create c lists where

the value of each element in each list is at least equal to the index of the element in

the list, and we want to maximize the sum of the sizes of all the lists.. For example,

the list [1, 2, 5, 5] would be valid, but the list [1, 2, 2, 5, 5] would be invalid because the
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third element is smaller than three.

Notice that if the adversary uses the values [5, 5, 2, 1] as delays assigned to con-

secutive instances then the algorithm would not receive any labels for these instances

until after predictions have been made on all four instances. Therefore, if the adversary

knows the algorithm is likely to make a mistake on a particular instance and the algo-

rithm repeats this instance for these four trials the adversary can cause several mistakes

while only revealing information about a single instance.

Next we give a simple way to compute the maximum value of the ordered class

selection problem. If one uses the greedy algorithm of always placing the smallest

number remaining in D into the next position in the list then the total number of

elements of value i that are in this greedy list is ri = min
(

di, ic−
∑i−1

j=1 rj

)

.

Lemma 8.3 Let F (D, c) be the maximum number of elements that can be placed from

D in the ordered class selection problem. This maximum is obtained by the greedy

algorithm, and F (D, c) =
∑∞

j=1 rj .

Proof We break the proof into two cases. First, assume that F (D, c) = ∞. Based

on the definition of the ordered class problem, for any number a, there must be an

infinite number of elements in D greater than a. Therefore, the greedy algorithm will

also generate an infinite list.

Second, assume that F (D, c) is finite. Let lo be a list of elements that satisfy the

ordered class selection problem with the number of elements in lo equal to F (D, c). Let

lg be the list generated by the greedy algorithm. We will compare each element of lg

with lo and show that the lists must have the same length.

Start at the beginning of each list and compare elements. If lo(0) = lg(0) then go

to the next element. If lo(0) > lg(0) then find the next index, i > 0, in list lo such that

lo(i) = lg(0). If index i exists then, in list lo, swap values lo(0) and lo(i). This still gives

a legal list. If there is no such index then the number of elements with value lg(0) used

in list lo must be less then dlg(0). Therefore we can just assign lo(0) to value lg(0). The

new lo list is still a valid list and still has length F (D, c).

We can repeat this procedure for each pair of elements from list lo and lg. Let ie
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be the last element in list lg. At this point both lists are identical up to index ie. Any

additional elements in lo must have a value of at least lg(ie) since otherwise the lg list

would not be greedy. However, if the additional elements have values of at least lg(ie)

then lg would not end at index ie. Therefore the new lo list and lg list must be the same

length. Since the length of the modified lo has not changed from the original length,

the length of lg is F (D, c). Based on the greedy algorithm, the length of lg is equal to
∑∞

j=1 rj. This proves the lemma.

The value of F (D, c) is important for our adversarial mistake bounds. As previously

mentioned, one can view the F (D, c) list as built from c separate lists where each list

item must have a value greater than its index. These lists can be used as delays that are

assigned to consecutive instances such that no label for these instances is returned until

after all the instances have been received for prediction. As we will see, the adversary

tries to force a mistake on all the instances in a list while only allowing one of the

instances to help lower the mistake bound.

Another way of viewing the F (D, c) function is to consider the average size of a list.

Let k̄(c) = F (D, c)/c. The k̄ function gives the average size of the c delay lists. As

we will see, the k̄ function is, in some sense, the effective delay of the on-line learning

problem.

Note that the F (D, c) function is monotonically increasing with c while k̄(c) is

monotonically decreasing with c. Also notice that adding a few large outlier delays

does not have much of an influence on F (D, c). No matter how large the delay, each

outlier can increase F (D, c) by at most one.

8.2.1 Fixed Target Function

Assume B is a traditional on-line algorithm. Our first transformation creates the de-

layed on-line algorithm OD2-B . This algorithm just updates any instance as soon as

the label becomes available. The pseudo-code for OD2-B is given in Fig. 8.2.

The computational cost of the OD2-B algorithm is similar to the cost of the B
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Algorithm OD2-B
Initialization

t← 0 is the trial number.
Initialize empty hash table H that stores new instances.
Initialize algorithm to state s← s0.

Trials
t← t + 1.
Instance: Store xt in H with key t.
Prediction: ŷt ← Pred(s,xt).
Update:

For all returned labels ya,t

Remove xa from H.
ŷ ← Pred(s, xa).
s← Update(s, xa, ya,t, ŷ).

Figure 8.2: Pseudo-code for delayed on-line algorithm OD2-B .

algorithm. The number of updates is at most the same as algorithm B and the number

of predictions is at most double. The OD2-B algorithm needs extra storage for at most

F (D, 1) instances since this is the maximum number of instances that have arrived for

prediction but have not yet received their labels.

The next lemma gives a mistake bound and proof for the OD2-B algorithm. Recall

that C1(B, s) is a random variable for the number of times algorithm B changes its

hypothesis on instance sequence s.

Lemma 8.4 Assume B is a traditional on-line algorithm, and s is a sequence of delayed

instances generated by a permutation adversary. There exists a traditional instance

sequence us which is a permutation of s such that the expected number of mistakes of

the OD2-B algorithm on sequence s is at most E[Mist(B,us)] + E[F (D,C1(B,us))] −

E[C1(B,us)] in the delayed on-line model.

Proof Define an internal mistake as an incorrect prediction made during an update.

These are not real mistakes as they only occur during the update procedure. However,

we can bound the expected number of internal mistakes and use this to help bound the

number of real mistakes.

Let us be the sequence of instances from s arranged in order of the updates in

algorithm OD2-B with all the delays set to 1. If these instances are passed to algorithm
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B, the expected number of mistakes is E[Mist(B,us)]. Notice that any mistakes made

by B on us corresponds to an internal mistake on sequence s for algorithm OD2-B .

Therefore the expected number of internal mistakes is E[Mist(B,us)].

Next, it is useful to partition the sequence s into two sets. Let Q1 be the set of

instances xt such that, when OD2-B updates the label yt,t+k, the hypothesis at trial

t + k has not changed since trial t. Let Q2 be the set of all other instances.

For any instance xt from Q1, the probability of a mistake on trial t is the same as the

probability of an internal mistake when the label arrives. Since the expected number of

internal mistakes is E[Mist(B,us)], the expected number of mistakes on instances from

Q1 is at most E[Mist(B,us)].

Next consider Q2. There is a limit on the number of instances in Q2 based on

the number of times the hypothesis changes and the number of instances with specific

delay values. This number is primarily determined by the solution to the multi-set

problem in Lemma 8.3. However, for each hypothesis change at least one of the delayed

instances from the multi-set solution must cause the update that changes the hypothe-

sis. Therefore the expected number of elements in Q2 is at most E[F (D,C1(B,us))]−

E[C1(B,us))]. Since each instance in Q2 can cause at most one mistake, this proves

the theorem.

In order to get a good bound, we need to use a B algorithm that makes a small

number of mistakes and changes its hypothesis infrequently. Fortunately, deterministic

mistake-driven algorithms fulfill these criteria. A deterministic mistake-driven algo-

rithm is an algorithm that only updates its state when it makes a mistake [Lit88]. In

Appendix F, we define a transformation that takes a traditional on-line algorithm B

and converts it into a mistake-driven algorithm MD -B . We show that MD -B does

not increase the mistake bound of algorithm B when instances are generated by a

subsequence adversary.

To handle randomized algorithms, we use the fact that any randomized learning
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algorithm can be converted to a deterministic learning algorithm with a similar mis-

take bound. On every trial, this new deterministic algorithm just predicts the highest

probability label from the randomized algorithm. The deterministic algorithm makes

at most double the expected number of mistakes of the randomized algorithm [AW95].

Given a learning algorithm B, we call DR-B the derandomized learning algorithm. See

Appendix F for more details.

Theorem 8.5 Assume B is an on-line algorithm and that instances are generated by a

permutation adversary. The number of mistakes made by the OD2-MD-DR-B algorithm

is at most Mist(B)k̄(Mist(B)) when B is deterministic and 2E[Mist(B)]k̄(2E[Mist(B)])

when B is randomized.

Proof Assume B is deterministic. In this case, algorithm DR-B is identical to algo-

rithm B. Based on Theorem F.2, Mist(MD -B) = Mist(B). Because MD -B is mistake-

driven, it only changes its hypothesis on a mistake. Therefore, using Lemma 8.4, the

maximum number of mistakes made by OD2-MD-DR-B is Mist(B)k̄(Mist(B)).

Assume B is randomized and E[Mist(B)] = M . Using the derandomized algo-

rithm, we get Mist(DR-B) ≤ 2M . Theorem F.2 shows that Mist(MD -DR-B) ≤ 2M .

Since algorithm MD -DR-B is mistake-driven it can only change its hypothesis on

mistakes. Therefore, using Lemma 8.4, the maximum number of mistakes made by

OD2-MD-DR-B is 2E[Mist(B)]k̄(2E[Mist(B)]).

This theorem shows that the number of mistakes made by algorithm OD2-MD-DR-B

versus B could grow by a factor of at most k̄(Mist(B)) when B is deterministic and

2k̄(2E[Mist(B)]) when B is randomized. Using this technique, randomization does not

help because the technique removes any randomization. Unfortunately, while algorithm

OD2-MD-B or OD2-B may improve the mistake bound, we do not currently have a

useful way to analyze these algorithms. The principle problem is that we need a way

to bound the number of times OD2-MD-B and OD2-B change their hypotheses. We

discuss this issue more in Section 8.2.3
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Algorithm OD1-B
Initialization

t← 0 is the trial number.
last ← 0 is the last instance used for an update.
Initialize empty hash table H that stores new instances.
Initialize empty stack U that stores instances ready for updates.
Initialize algorithm to state s← s0.

Trials
t← t + 1.
Instance: Store xt in H with key t.
Prediction: ŷt ← Pred(s,xt).
Update:

For all returned labels ya,t

Remove xa from H.
If a > last add instance (a, xa, ya,t) to U in sorted order based on a.

For i = 1 to |U |
(a, xa, ya,t)← pop(U).
ŷ ← Pred(s, xa).
(s, new state)← Update(s, xa, ya,t, ŷ).
If new state = 1 or ŷ[ya,t] 6= 1 then

last← a.
Periodically remove all instances from H older than last.

Figure 8.3: Pseudo-code for delayed on-line algorithm OD1-B .

8.2.2 Shifting Target Function

For problems that have shifting target functions, we cannot assume a permutation ad-

versary. In this case, we assume the instances are generated by a subsequence adversary.

For solving these problems, we covert a traditional on-line algorithm B into OD1-B

using our second transformation.2 This algorithm is similar to algorithm B except that

it potentially skips some of the updates. The pseudo-code for OD1-B is in Fig. 8.3.

OD1-B keeps track of a last trial and only performs updates using instances that

are more recent than last. After the algorithm performs an update, if the update

either changes the state of the algorithm, or if the update is based on an instance that

could have caused an internal mistake3 then the algorithm increases last to the trial

2The out of order naming is based on previous publications [Mes05].

3An internal mistake is not a real mistake since it does not occur during the original prediction with
the instance.
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of the instance used for the update. This ensures that the changes to the algorithm

occur in the same order as the instance arrival times. Changes occurring out of order

can cause problems when the concept is shifting.

The computational cost of the OD1-B algorithm is similar to the cost of algorithm

B. The number of updates is at most the same as algorithm B and the number of

predictions is at most double. There is an extra cost based on sorting the instances in

U . This cost depends on the number of labels returned per trial. Let γ be the maximum

number of label returned during a trial. Using merge sort gives an amortized cost of

at most O(ln (γ)) per trial. Because F (D, 1) is the maximum number of instances that

can be simultaneously waiting for their labels, we have that γ ≤ F (D, 1) ≤ k.

The OD1-B algorithm needs extra storage for at most F (D, 1) instances. By keeping

space for 2F (D, 1) instances, the algorithm can periodically remove any old instances

that were skipped for updates with only a constant amortized increase in the cost per

trial.

The next lemma gives an upper-bound on the number of mistakes for the OD1-B

algorithm. It is similar to the result in Lemma 8.4. Recall that C2(B, s) is a random

variable for the number of times algorithm B changes its state on instance sequence s.

Lemma 8.6 Assume B is a traditional on-line algorithm, and assume s is a delayed

sequence of instances generated by a subsequence adversary. There exists an instance

sequence us which is a subsequence of s such that the expected number of mistakes of

the OD1-B algorithm is at most E[Mist(B,us)]+E[F (D,C2(B,us))]−E[C2(B,us)] in

the delayed on-line model.

Proof Consider all the instances that change the variable last in algorithm OD1-B .

Let us be this subsequence of instances with all the delays set to 1. These instances

are in trial order. Notice that the algorithm states for OD1-B on s are related to the

states used by algorithm B on us. Every update for OD1-B on s maps to an identical

update by algorithm B on us.

It is useful to partition the sequence s into two sets. Let Q1 be the set of instances

xt such that, when OD1-B updates the label yt,t+k, the state at trial t + k has not
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changed since trial t. Let Q2 be all other instances. We can divide the instances from

Q1 into two groups. Let g1 be the instances from Q1 that are in us. Let g2 be all other

instances in Q1. Notice that an instance in g2 did not cause a mistake and did not

change the state of OD1-B .

Assume that x is an instance from g1. The probability of a mistake by OD1-B

on x must equal the probability of a mistake in the equivalent instance from us with

algorithm B since the state when the label arrived is the same as the state when the

instance arrived. For the instances in g2, the OD1-B algorithm must have a zero

probability of making a mistake otherwise the instance would be in us. Therefore the

expected number of mistakes by algorithm OD1-B for instances from Q1 must be at

most E[Mist(B,us)].

Next consider Q2. There is a limit on the number of instances in Q2 based on

the number of times the state changes and the number of instances with specific delay

values. This number is primarily determined by the solution to the multi-set problem

in lemma 8.3. However, for each state change at least one of the delayed instances

from the multi-set solution must cause the update that changes the state. Therefore

the expected number of elements in Q2 is at most E[F (D,C2(B,us))]−E[C2(B,us))].

Since each instance in Q2 can cause at most one mistake, this proves the theorem.

Next, we use the same technique as we used for algorithm OD2-B . We derandomize

the B algorithm and convert it to a mistake-driven form.

Theorem 8.7 Assume B is an on-line algorithm and that instances are generated

by a subsequence adversary. The number of mistakes made by the OD1-MD-DR-B

algorithm is less than or equal to Mist(B)k̄(Mist(B)) when B is deterministic and

2E[Mist(B)]k̄(2E[Mist(B)]) when B is randomized.

Proof Assume B is deterministic. In this case, algorithm DR-B is identical to al-

gorithm B. Based on Theorem F.2, Mist(MD -B) = Mist(B). Because MD -B is

mistake-driven, it only changes its state on a mistake. Therefore, using Lemma 8.6, the

maximum number of mistakes made by OD2-MD-DR-B is Mist(B)k̄(Mist(B)).



213

Assume B is randomized and E[Mist(B)] = M . Using the derandomized algo-

rithm, Mist(DR-B) ≤ 2M . Theorem F.2 shows that Mist(MD -DR-B) ≤ 2M . Since

algorithm MD -DR-B is mistake-driven, it can only change its state on mistakes. There-

fore, using Lemma 8.6, the maximum number of mistakes made by OD2-MD-DR-B is

2E[Mist(B)]k̄(2E[Mist(B)]).

Notice that the OD1 transformation is more general than OD2 as it can handle

both fixed and shifting target concepts and that it has the same mistake bound. Still

the OD2 transformation is useful. When dealing with something more realistic than

a worst-case adversary, OD2-B might lower the number of mistakes since it attempts

to update on all of its instances instead of skipping updates. These extra updates may

improve performance in practice.

8.2.3 Lower-bounds

A natural question is whether a different transformation can make fewer mistakes.

To help answer this question, we define another type of adversary. This new type of

adversary implicitly removes noisy instances from a set of sequences. We start with

another definition on sequences.

Definition 8.8 A set of sequences S is closed under repetition if for every element s =

(z1, z2, . . .) ∈ S and every legal index j of s, the sequence s′ = (z1, z2, . . . , zj , zj , zj+1, . . .)

is also contained in S.

We call an adversary that is closed under repetition a repetition adversary. As an

example, consider the set of sequences S = {12, 3}. To convert this into a repetition

adversary, add all sequences of the form 1+2+ and 3+, where the + operator is a

standard operator for repetition in regular expressions.

A repetition adversary can be combined with the previous adversary definitions.

The previous example can be made into a repetition, permutation adversary by adding

all sequences of the form 1∗2∗, 2∗1∗, and 3∗. The Kleene star operator allows zero or

more repetitions and is commonly used in regular expressions.
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For a fixed target function, if there are instances that cannot be represented by a

legal target function then a repetition adversary must have an infinite mistake bound.

In order to generate useful mistake bounds, the repetition adversary can not have noisy

instances. For a shifting target function, the noisy instances can always be represented

by using more shifts of the target function. Therefore, with a repetition adversary, any

instances inconsistent with the current value of the target function can be incorporated

into a new shift of the target function. This removes any noisy instances.

We want our lower-bounds to allow some noisy instances, but we need to precisely

control how much noise is allowed by the adversary. The easiest way is to give a

procedure to add a specified amount of noise to an adversary and then use this procedure

on a repetition adversary. To create label noise in adversary S, copy any sequence in

S and change at most A labels. This new sequence is then added to S. We formalize

this in the following definition.

Definition 8.9 Assume S is an adversary and let s ∈ S. For every subsequence s′ of

s where |s′| = A, SA contains copies of s using all possible labels for the instances in

subsequence s′.

Our lower-bound proof depends on being able to use a delayed on-line learning al-

gorithm to solve a traditional on-line learning problem. The essence of the proof is to

show that the delayed on-line learning algorithm can not be used to create a traditional

on-line algorithm that is better than optimal. We start with an algorithm transfor-

mation that converts a delayed on-line learning algorithm C into a traditional on-line

algorithm DO -C (k). We use the k notation because we have a different transformation

for each value of k.

The DO -C (k) algorithm solves a traditional on-line problem. The DO -C (k) algo-

rithm receives instance x1 and creates k copies of the instance, (x′
1 = x1, . . . ,x

′
k = x1).

These k copies are used as the first k instances of algorithm C. When the label y1 is

received, it is copied to k labels for instances x′
1 to x′

k. The labels must be spaced to

make sure that no label arrives before algorithm C has made predictions on all k in-

stances. This continues for every trial of DO -C (k) algorithm, creating k instances and
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labels for input into the C algorithm. The prediction for xt by the DO -C (k) algorithm

is just the random majority prediction of the C algorithm over the k identical instances.

By random, we mean the DO -C (k) algorithm predicts label y with a probability equal

to the ratio of the k identical instances that predict label y with algorithm C.

Recall that k̄(c) = F (D, c)/c. If c is infinite, we define k̄(c) in terms of the limit as

c approaches infinity. This is always defined as long as there is an upper-bound on the

size of the delays in D and corresponds to the first delay value with an infinite number

of entries in the delay multi-set. We use the k̄(c) function in the following lemma.

Lemma 8.10 Let C be a delayed on-line learning algorithm. Assume s is a traditional

sequence of instances generated by a repetition adversary and that D is the multi-set

of delays for the delayed version of this learning problem. Assume k̂ ≤ ⌊k̄(|s|)⌋. When

running algorithm DO-C(k̂) on sequence s, E[Mist(DO-C(k̂), s)] ≤ E[Mist(C)]/k̂.

Proof Create a new delayed sequence s′ from s that can be used by the C algorithm

to duplicate the behavior of the DO -C (k̂) algorithm. The delays in D are sufficient to

create this sequence based on the definition of k̂. The repeated instances are allowed

since the instances are generated by a repetition adversary.

Running algorithm DO -C (k̂) on s is related to running algorithm C on s′. Every in-

stance from s′ that is predicted incorrectly increases the probability that DO -C (k̂) will

make a mistake on that instance by 1/k̂ because of the random majority algorithm.

Therefore, for all sequences s generated by the adversary, E[Mist(DO -C (k̂), s)] =

E[Mist(C, s′)]/k̂ ≤ E[Mist(C)]/k̂.

Lemma 8.10 implies how the bound for a delayed on-line learning algorithm must

grow with k̂. We flesh out that implication with two lower-bound theorems. The first

theorem deals with the an arbitrary multi-set D. The second theorem gives a slightly

better bound for the a multi-set that has an infinite number of delays greater than a

particular value.

Theorem 8.11 Assume Mist(OptD) = M for a traditional on-line learning problem

with instances generated by a repetition adversary S. Let SA be the repetition adversary



216

S with A added noise. For any delayed learning algorithm C using instance from SA

and delays from multi-set D, E[Mist(C)] ≥ ⌊k̄(M)⌋M/2 + A.

Proof First we consider a bound based on adversary S. Let k̂ = ⌊k̄(M)⌋. First we con-

vert algorithm C to the traditional on-line algorithm DO -C (k̂). Based on Lemma F.4,

there must exist a sequence s of length M such that Mist(DO -C (k̂), s) ≥M/2. Based

on Lemma 8.10, E[Mist(DO -C (k̂), s)] ≤ E[Mist(C)]/k̂. Combining these, we conclude

that E[Mist(C)] ≥ k̂M/2.

Using adversary SA, we can add new instances to the end of sequence s. We add

2A+1 instances where each instance has the same attributes. This instance is identical

to one of the instances that has already appeared in sequence s. Call this instance x.

The correct label for x has already been set in sequence s. Next, we randomly select A

of these 2A + 1 instances and change their labels. There is no way for algorithm C to

determine which of the 2A + 1 instances have the noisy label. To minimize the number

of mistakes algorithm C must predict with the original label on all 2A + 1 instances.

This adds an extra A mistakes.

Theorem 8.12 Assume Mist(OptR) = M for a traditional on-line learning problem

with instances generated by a repetition adversary S. Let SA be the repetition adversary

S with A added noise. For any delayed learning algorithm C using instance from SA,

when D has an infinite number of delays of value k̂ or greater, E[Mist(C)] ≥ k̂M + A.

Proof First, we consider a bound based on adversary S. We use Lemma 8.10 to create a

traditional on-line algorithm DO -C (k̂) where for all sequences s, E[Mist(DO -C (k̂), s)]≤

E[Mist(C)]/k̂. Since there must exist an s where M ≤ E[Mist(DO -C (k̂), s)], we con-

clude that M ≤ E[Mist(C)]/k̂.

Using adversary SA, we can follow the same strategy as Theorem 8.11. After we

receive the correct label for some instance x generated by adversary S, we create 2A+1

copies of this instance to force A mistakes due to noise.
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These two bounds are similar. Based on the technique of derandomizing an al-

gorithm covered in Appendix F, E[Mist(OptR)] ≤ Mist(OptD) ≤ 2E[Mist(OptR)].

Therefore, Theorem 8.11 is at most a factor of two lower than the specialized case in

Theorem 8.12. Also, the algorithms OD1-MD-OptD and OD2-MD-OptD give upper-

bounds on mistakes that are at most a factor of two worse than Theorem 8.11 and

Theorem 8.12 when the label noise is zero.

There are learning problems that show Theorem 8.11 and Theorem 8.12 are tight.

Consider a problem that has l instances, and assume the learning problem allows all

2l possible binary target functions. The adversary is not allowed to shift the target

function and there is no noise, so every instance must be correctly classified by the

target function. Call this learning problem H(l).

Define algorithm LR as follows. The algorithm keeps a label count for each instance.

Every time LR receives an instance, the algorithm predicts according to the majority

label for that instance. If there is a tie then the algorithm predicts -1 with probability

1/2 and 1 with probability 1/2. Define algorithm LD in a similar way. The only

difference is that if the label count is tied, algorithm LD always predicts 1. Both the

LD and LR algorithms only change their state when they receive a new label.

The LR algorithm is an optimal randomized algorithm for the traditional on-line

H(l) problem because for each instance the adversary can choose either label. If the

algorithm predicts one label with higher probability, the adversary will always choose

the other label. Once all the instances have been seen, the target function has been de-

termined. Therefore the expected number of mistakes for LR is l/2. The LD algorithm

is optimal based on the same reasoning for the deterministic case. It makes at most l

mistakes.

Assume the delayed version of problem H(l) has a maximum delay of k and that an

infinite number of instances have delay k. Both Theorem 8.11 and Theorem 8.12 imply

that any algorithm must make at least kl/2 mistakes on some sequence of instances.

Algorithm OD2-LR learns the correct label of each instance within k trials. Therefore,

because the algorithm has a 1/2 probability of getting an unknown instance wrong,

OD2-LR expects to make at most kl/2 mistakes. This shows the lower-bounds are
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tight. The upper-bound in Lemma 8.4 gives a bound of kl− l/2 for algorithm OD2-LR.

This shows that are upper-bounds are off by a factor of close to two even when we do

not use derandomization.

Another issue with our lower-bounds is the effect of label noise. Both lower-bounds

only increase the number of mistakes by A where A is the number of label flips allowed

on the instances by an adversary. However, in Appendix F we show that, on the previous

H(l) problem with A label flips, the OD2-LD algorithm makes at most kl+2A mistakes.

This shows our lower-bound is close to tight.

Unfortunately, the upper-bounds in Theorem 8.5 and Theorem 8.7 give a much

weaker bound with respect to noise. If the upper-bound of a traditional deterministic

algorithm B increases from M to M + 2A with the addition of A label flips then the

upper-bound of OD1-MD-DR-B increases from Mk̄(M) to (M + 2A)k̄(M + 2A). The

tightness of this upper-bound may seem questionable given that the OD2-LD algorithm

only increases its mistake bound by 2A.

In Appendix F, we show that there exists a sequence of instances that causes al-

gorithm OD2-MD -LD to make kl + (k + 1)A mistakes. Therefore, our upper-bound is

close to tight for some algorithm/problem combinations. This example also shows that,

unlike the traditional on-line model, the mistake-driven modification is not always op-

timal for delayed learning with subsequence adversaries. Therefore, given a traditional

algorithm B, it may be beneficial to use algorithms OD1-B and OD2-B with delayed

learning problems when dealing with noise.

8.3 Instances Generated by a Distribution

In this section, we give algorithm transformations for delayed on-line learning when

the instances are generated by a shifting distribution. This shifting includes both the

target function and the probability of a particular instance. A shifting distribution is a

realistic model for many on-line learning problems. Often the learning environment is

not trying to maximize the number of mistakes; instead, the instances are generated by

a distribution that is infrequently or slowly changing. For example, in our hypothetical
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medical learning problem, the population may be slowly changing dietary habits which

could effect the target function.

Let D be a distribution over X × Y . Let W be a sequence, (D1,D2, . . .), of these

distributions. An instance is generated at trial t by sampling an instance from distri-

bution Dt. Let Υ be a set of sequences of these distributions. The goal of the learning

algorithm is to minimize the expected number of mistakes for a sequence of distribu-

tions selected from Υ. Our bounds will depend on how much the distribution changes

over the selected sequence. We call this the adversarial distribution instance generation

model.

To make our techniques work, we need to make a similar assumption as Section 8.2.

Definition 8.13 A distribution adversary Υ is a subsequence distribution adversary if

Υ is closed under subsequence.

This definition says that a subsequence distribution adversary can pick any subsequence

of distributions to generate the instances. This is a worst-case assumption, as any

adversary can be converted to a subsequence distribution adversary by adding the

missing sequences and possibly increasing the upper bound on the number of mistakes.

For the delayed on-line model, the environment selects the delays of the instances

from a multi-set D. We assume the environment must select a delay before picking an

instance from the distribution. Allowing the environment to select the delays is again

a worst-case assumption. It is possible to refine the analysis to allow a distribution to

generate the delays, but this does not have a large effect on the mistake bound.

A key component of the bound is the total amount the distribution changes over

the trials. We use variational distance to measure the change between two distribu-

tions [DGL91]. Given discrete distributions D1 and D2 over sample space H, let the

probability of an element x be p1(x) for D1 and p2(x) for D2. The variational dis-

tance is V (D1,D2) = 1
2

∑

x∈X |p1(x) − p2(x)|. Using a sequence of distributions W,

the total variational distance over all trials is Ψ(W) =
∑∞

i=1 V (Di+1,Di). We define

Ψ = maxW∈Υ Ψ(W). These definitions generalize to arbitrary probability measures.
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Algorithm OD2-B
Initialization

t← 0 is the trial number.
Initialize empty hash table H that stores new instances.
Initialize empty stack U that stores instances ready for updates.
Initialize algorithm to state s← s0.

Trials
t← t + 1.
Instance: Store xt in H with key t.
Prediction: ŷt ← Pred(s,xt).
Update:

For all returned labels ya,t

Remove xa from H.
Add instance (xa, ya,t) to U .

If |U | > 0 then
(xa, ya,t)← pop(U).
ŷ ← Pred(s, xa).
s← Update(s, xa, ya,t, ŷ).

Figure 8.4: Pseudo-code for delayed on-line algorithm OD2-B .

8.3.1 Fixed Distribution

In this section, we transform a traditional on-line algorithm B to perform well in the

delayed on-line model when instances are generated by a fixed distribution. We call the

transformed algorithm OD2-B . It is related to algorithm OD2-B except that it uses at

most one instance per trial for an update. If multiple labels arrive at the start of the

trial, only one can be used for the update. The remaining labels must wait for another

trial to perform their update. The pseudo-code for OD2-B is given in Fig. 8.4.

The computational cost of the OD2-B algorithm is the same as OD2-B . The number

of updates is at most the same as algorithm B and the number of predictions is at most

double. The OD2-B algorithm needs extra storage for at most F (D, 1) instances since

this is the maximum number of instances that have arrived for prediction but have not

yet received their labels.

Before we give the upper mistake bound for the OD2-B algorithm, we give a lemma

that upper-bounds the number of trials where no update occurs for algorithm OD2-B .
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These are trials where no attribute label pair is available for an update.

Lemma 8.14 There are at most F (D, 1) trials where no update occurs for algorithm

OD2-B.

Proof Assume that trial t does not perform an update and that it is the F (D, 1) + 1

trial that does not perform an update. Therefore, a total of t − (F (D, 1) + 1) labels

have been used for updates. Because trial t does not perform an update, there are no

labels waiting to be used in the stack. This gives a total of F (D, 1)+1 labels that have

not yet been received by trial t. The maximum number of instances that have arrived

but not yet received their label is F (D, 1) based on the definition of F (D, 1). This is a

contradiction.

Theorem 8.15 Assume B is a traditional on-line algorithm where E[Mist(B)] = M

when instances are generated from a fixed distribution D. The OD2-B algorithm expects

to make at most F (D, 1) − 1 + M mistakes when instances are generated by a fixed

distribution in the delayed distribution model.

Proof Let s be the sequence of instances seen by algorithm OD2-B . Let us be the

subsequence of instances that cause updates in algorithm OD2-B based on the order of

update. If we use sequence us on algorithm B with a delay of 1 given to each instance

then we expect to make at most M mistakes. This is because sequence us is based on

the same distribution that generated the original sequence.

For algorithm B on sequence us, let hi be the hypothesis that is used for prediction

in trial i, and let Xi be a random variable that is 1 if algorithm B makes a mistake

on trial i and 0 otherwise. Let Yi be a random variable that is 1 if algorithm OD2-B

makes a mistake on trial i and 0 otherwise.

The hypotheses used by OD2-B on sequence s are the same as the hypotheses used

by algorithm B on us. The only difference is that sequence s does not always perform

an update and may have to use a hypothesis on more than one trial. The total number
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of trials with repeated hypotheses is at most F (D, 1)− 1 based on Lemma 8.14 and the

fact that the first trial does not cause an update but does use a new hypothesis.

Since the hypotheses are the same for OD2-B and algorithm B, their expected ac-

curacies will be the same since they both are used for predictions on instances drawn

from distribution D. We already know that algorithm B makes at most M mistakes,

therefore algorithm OD2-B makes at most M + F (D, 1) − 1 mistakes since at worst it

can make a mistake on every repeated hypothesis.

The above result can be improved slightly by predicting with an unbiased coin flip

every time the algorithm is forced to use a hypothesis that missed a chance at an update.

In this case, the bound becomes (F (D, 1) − 1)/2 + M expected mistakes. However, if

the repeated hypothesis has better than 1/2 accuracy, it is better to use the repeated

hypothesis for prediction. Heuristically, if the algorithm has already been learning for

many trials, the repeated hypothesis is probably better than a random coin flip. This

is especially likely if the techniques from Chapter 5 are used to increase the accuracy

of the predictions.

Along the same lines, one can apply algorithm OD2-B to solve the fixed distribution

problem. Remember that OD2-B updates as soon as it gets a label instead of updating

at most once a trial. This has the potential advantage of using the label information

as quickly as possible to improve the current hypothesis. The main disadvantage is

that we can not bound the accuracy of the subset of hypotheses used for prediction by

OD2-B in terms of the hypotheses used by algorithm B. A perverse algorithm B could

predict with a coin flip every 10 trials while otherwise using the optimal hypothesis.

The adversary could use the delays to force OD2-B to always predict with a coin flip.

One possible assumption that allows Theorem 8.15 to apply to algorithm OD2-B is

if we assume algorithm B predicts with hypotheses that are expected to monotonically

increase in accuracy. This accuracy is measured over the distribution of hypotheses

generated by selecting instances from distribution D. This is a desirable property for

any learning algorithm that uses instances generated by fixed distributions. We are
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unaware of any proofs that show this to be true for the linear-threshold algorithms

used in this thesis; however it must be true for optimal Bayesian algorithms such as

Naive Bayes [DH73].

8.3.2 Shifting Distribution

Our next algorithm works with the general case of a shifting distribution. Given a

traditional on-line algorithm B, we call the transformed algorithm OD3-B(k′). The

OD3-B(k′) algorithm does an update with every instance, and it does the updates in

trial order, the same order as B. In other words, OD3-B(k′) can only update the

instance from trial t + 1 after the update for trial t occurs. Also only a single update

is allowed per trial, so if multiple labels arrive at the start of the trial, only one can be

used for the update. The remaining labels must wait for another trial to perform their

update. Therefore, OD3-B(k′) computes the same hypotheses as algorithm B but uses

them in different trials.

There is an exception to the above scheme based on the single parameter k′. This

parameter controls the maximum delay OD3-B(k′) allows for any instance. If an in-

stance has not received its label after k′ + 1 trials then the algorithm pretends the

instance does not exist for the purpose of updates. For some problems, this technique

is important since otherwise a single early instance with an infinite delay can prevent

all later updates. The pseudo-code for OD3-B(k′) is given in Fig. 8.5. We use a heap U

to store the instances that are ready for updates. Also we have designed the OD3-B(k′)

algorithm so that the k′ parameter can be increased while the algorithm is running.

This allows use to build off the OD3-B(k′) algorithm to create an algorithm that learns

a good k′ parameter.

The computational cost of the OD3-B(k′) algorithm is similar to the cost of the

B and OD1-B algorithms. The number of updates is at most the same as algorithm

B and the number of predictions is at most double. There is an extra cost based on

using the heap. The cost to insert and remove instances from the heap adds a cost of

O(ln(min(k′, k))) per trial. The OD3-B(k′) algorithm needs space for at most min(k′, k)

instances.
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Algorithm OD3-B(k′)
Initialization

t← 0 is the trial number.
current ← 1 is the next instance for an update.
skipped ← 0 is the number of instances skipped.
Initialize empty hash table H that stores new instances.
Initialize empty stack U that stores instances ready for updates.
Initialize algorithm to state s← s0.

Trials
t← t + 1.
Instance: Store xt in H with key t.
Prediction: ŷt ← Pred(s,xt).
Update:

For all returned labels ya,t

Remove xa from H .
If a ≥ current then insert instance (a, xa, ya,t) to U .

(a, xa, ya,t)← min(U).
If a = current

(a, xa, ya,t)← extract-min(U)
ŷ ← Pred(s, xa)
s← Update(s, xa, ya,t, ŷ)
current← current+ 1.

Else if t− current = k′ then
Remove xcurrent from H .
current← current+ 1.
skipped← skipped+ 1.

Figure 8.5: Pseudo-code for delayed on-line algorithm OD3-B(k′).

Before we give the upper mistake bound for the OD3-B(k′) algorithm, we prove a

lemma that bounds the number of trials that do not perform an update. We need the

following notation; let µ be the number of instances that are skipped by OD3-B(k′)

because their delay is too large. This is stored in the variable skipped.

Lemma 8.16 When running the OD3-B(k′) algorithm, there are at most µ+min(k′, k)

trials that do not perform an update.

Proof Assume that trial t is the min(k′, k) + µ + 1 trial that does not perform an

update. Therefore only t−min(k′, k)− µ− 1 labels have been used for updates. Look-

ing at instance x1 to instance xt−min(k′,k), any of these instances that have not been

skipped must have already returned their labels by trial t. Since at most µ of these

instances have been skipped, the minimum number of labels from these instances that

have been returned is t−min(k′, k) − µ. This means there must be at least one label

from this sequence of instances that has not been used for an update. By trial t, this
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label has been placed on the heap for an update. This is a contradiction since trial t

does not perform an update.

Theorem 8.17 Assume the instance are generated by a subsequence distribution ad-

versary Υ. Assume the expected number of mistakes of a traditional on-line algo-

rithm B is at most M when instances are generated by a sequence of distributions

from Υ. The expected number mistakes made by the OD3-B(k′) algorithm is at most

M + (µ + min(k′, k)− 1)(Ψ + 1) in the delayed distribution model.

Proof Let s be a sequence of instances generated by W ∈ Υ with delay set D. Let

us be the sequence of instances that cause updates in algorithm OD3-B(k′). If we use

sequence us on algorithm B with a delay of 1 given to each instance then we expect to

make at most M mistakes. This is because Υ is a subsequence distribution adversary.

For algorithm B on sequence us, let hi be the hypothesis that is used for prediction

in trial i, and let Xi be a random variable that is 1 if algorithm B makes a mistake on

trial i and 0 otherwise. Let Yi be a random variable that is 1 if algorithm OD3-B(k′)

makes a mistake on trial i and 0 otherwise.

The hypotheses used by OD3-B(k′) on s are the same as the hypotheses used by

algorithm B on us. The only difference is that hypotheses of OD3-B(k′) are shifted a

certain positive number of trials since the instances have to wait for their labels. This

will force the OD3-B(k′) algorithm to occasionally use the same hypothesis for multiple

trials as the algorithm waits for a label. Based on Lemma 8.16, the maximum number

of trials that do not perform an update for algorithm OD3-B(k′) is µ + min(k′, k).

Since the first trial never performs an update, this means that µ + min(k′, k)− 1 of the

hypotheses from algorithm B are reused. Let r = µ + min(k′, k)− 1.

Consider the shifted hypothesis of algorithm OD3-B(k′). When the same hypothesis

is used on two related distributions, the accuracies will be similar. The difference in

accuracy comes from the amount the distribution changes between the trials. Let

vt = V (Dt+1,Dt). Based on this metric, the error-rate of hypothesis ht may, in the

worst case, increase by vt if used during trial t + 1. Since each hypothesis is shifted
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Algorithm OD3-B
Initialization

t← 0 is the trial number.

skipped is the number of instances that have been skipped in OD3-B(k′).
Trials

Run algorithm OD3-B(k′) always setting k′ ← skipped+1

Figure 8.6: Pseudo-code for delayed on-line algorithm OD3-B .

by at most r trials, the error-rate of hypothesis ht can increase by at most
∑t+r−1

i=t vi.

We can use this to bound the expected number of mistakes. Assuming mistakes on

repeated hypotheses and taking into account the number of trials the hypothesis from

B are shifted,

E[Mist(OD3-B(k′))] ≤ r +

∞
∑

i=1

E[Yi] .

The above is

≤ r +

∞
∑

i=1



E[Xi] +

i+r−1
∑

j=i

vj



 ≤ r + E

[

∞
∑

i=1

Xi

]

+ r

∞
∑

i=i

vi ≤ r + M + rΨ .

This proves the result.

A major disadvantage of the OD3-B(k′) algorithm is specifying the k′ parameter. A

simple modification that gives close to optimal performance is to set k′ = 1 + skipped.

We call this algorithm OD3-B . Algorithm OD3-B has a similar cost as OD3-b(k′).

Let k2 be the maximum value of k′ used in OD3-B . The computation cost of OD3-B

is at most the cost of OD3-B(k2) since the cost per trial of OD3-B(k′) monotonically

increases with k′.

Next, we want to relate the mistake bound of OD3-B with OD3-B(k′) when k′ is

chosen to have the optimal fixed value. First, we need a better understanding of the

optimal k′ for algorithm OD3-B(k′). Because the number of skipped instances is at

most
∑

i>k′ di, the bound from Theorem 8.17 is at most

M +

((

∑

i>k′

di

)

+ k′ − 1

)

(Ψ + 1)
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To minimize this bound, we want to choose a value of k′ that minimizes k′ +
∑

i>k′ di.

Call one of these values k1.

Corollary 8.18 Assume the expected number of mistakes of traditional on-line algo-

rithm B is at most M when instances are generated from Υ. The expected number

mistakes made by the OD3-B algorithm is at most M + (2k1 − 1 + 2
∑

i>k1
di)(Ψ + 1)

in the delayed distribution model.

Proof For any value a ∈ N , algorithm OD3-B skips at most a +
∑

i>a di instances

because each time an instance is skipped, k′ increases by 1. Therefore algorithm

OD3-B can skip at most k1 +
∑

i>k1
di instances. This gives a final k′ value of at

most k1 +
∑

i>k1
di. Plugging these value into Theorem 8.17 proves the corollary.

The previous theorem shows that, in the worst-case, we do roughly a factor of two

worse than the bound for an optimal setting of the k′ parameter. This bound is tight

as it is straightforward to generate the delays that cause this increase in the mistake

bound.

A possible modification to algorithm OD3-B(k′) or OD3-B is to predict with a

random coin flip on any repeated hypothesis. This will lower the upper-bound on

mistakes for OD3-B(k′) to M + (µ + min(k′, k) − 1)(Ψ + 1/2). In practice, one may

want to restrict a coin flip prediction to repeated hypotheses near the start of the trials

since later repeated hypotheses may have a high accuracy.

Also, just as with the OD2-B algorithm, it could be beneficial to update with

multiple instance on a single trial. Again, this has the advantage of using the label

information as soon as it is available, but requires the B algorithm to have hypotheses

where the expected accuracy is monotonically increasing in order to preserve the mistake

bound.
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8.3.3 Lower-bounds

In this section, we consider lower-bounds on the number of mistakes when instances are

generated in the adversarial distribution model with delayed instances. These lower-

bounds are based on the optimal randomized algorithm, OptR, in the traditional on-line

setting. For the most part, we will consider a fixed distribution generating the instances.

For a fixed distribution, a trivial lower bound for the delayed learning problem is

the bound of the optimal algorithm on the traditional on-line learning problem. We

can refine this bound slightly by noticing that the adversary can select delays so that

no label is received for the beginning on-line trials. At first glance, it seems the best

the algorithm can do is to predict with a coin flip on these initial instances because no

labels are available. There are two difficulties with this assumption.

First, the algorithm might be able to select an initial hypothesis that guarantees

better than random performance during the initial trials. Whether this is possible

depends on Υ, but for many sets of learning problems, it is not possible. Many sets of

learning problems have a symmetry such that for every problem and starting hypothesis

that performs better than chance, there is another problem of equal difficulty that forces

the same starting hypothesis to perform worse than chance. For example, if the problem

has a bias for a particular label, there is generally a matching problem that has a bias

for another label.

The second difficulty is that the algorithm might be able to perform semi-supervised

learning techniques to get information on the target function using the instances without

the labels. For example, if instances from each label are known to come from different

normal distributions then this information could help the learning algorithm without

the need for labels [DH73].

To improve our lower-bound, we assume that the adversary has the symmetry

needed to prevent the initial hypothesis from performing better than chance and that

the algorithm does not update its state based on attributes without label information.

This is true for all the algorithms considered in this dissertation. Given these assump-

tions, the best the algorithm can do is to predict over the labels uniformly until the
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environment starts returning labels.

Therefore, our lower-bound depends on the number of instances that can be received

before a label arrives. This is just determined by F (D, 1) since this is the maximum

number of instances that arrived but have not yet returned their labels. For binary

labels, this gives a lower-bound of Mist(OptR) + (F (D, 1) − 1)/2. The −1/2 term

comes from the fact that the first hypothesis needs to make a best guess for both the

traditional setting and the delayed setting, and therefore it is already counted in the

bound for OptR. This is identical to the bound for OD1-OptR when OD1-OptR uses

coin flips to predict for repeated hypothesis.

For a shifting adversary, we do not have a strong lower-bound. We can use the

bound from the fixed distribution to lower-bound the shifting adversary since the shift-

ing adversary is more general. This lower-bound of Mist(OptR) + (F (D, 1) − 1)/2

will be good when there is not much shifting in the distribution. Using algorithm

OD3-OptR(k′) gives a bound of Mist(OptR) + (µ + min(k′, k) − 1)(Ψ + 1). This com-

pares well to the lower bound when (µ + min(k′, k) − 1)(Ψ + 1) is small. Of course,

this bound is progressively worse as Ψ is allowed to grow. However, remember that

a shifting distribution can duplicate an adversary by using distributions that place all

the weight on particular instances. Therefore, the bounds for shifting distributions also

covers our previous adversaries. However, when dealing with a problem that is more

adversarial, this distribution based bound will be quite poor. The distribution bound

is most relevant for problems where Ψ is small.

8.4 Summary

In this chapter, we give algorithms and mistake bounds for delayed on-line learning.

In general, when dealing with an adversary generating the instances, the new bounds

can be poor. If the instances all have a delay of k trials then the mistake bound can

grow by a factor of 2k over the normal on-line learning bounds. We show this bound is

within a factor of 2 from optimal in the no-noise case.

We also give a more general analysis for problems where the adversary must select
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the delay of instances from a multi-set D. This upper-bound depends on a particular

combinatorial property of D and gives insight to how the algorithm behaves with a

range of instance delays.

Things are more hopeful when dealing with a fixed distribution generating the in-

stances. In this case, if all the instances have a delay k then the expected mistake bound

only increases by k − 1. Even with a slightly shifting distribution, we give a transfor-

mation that performs well with a small increase in mistakes based on the amount of

shifting.
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Chapter 9

Conclusion and Future Work

The goal of this dissertation is to give several techniques to improve the performance of

on-line learning for specific types of practical problems. While further work is needed,

we feel that this dissertation is an important step in making on-line learning a more

practical tool for machine learning applications.

9.1 Contributions

Chapter 2 is a preliminary chapter that gives information about several linear-threshold

algorithms. These are the main algorithms that we use and modify in this dissertation.

For all of these algorithms, we give bounds on the number of mistakes when instances

are generated by an adversary. While all of these algorithms have been previously

published, the upper-bounds on mistakes are either new or refinements of previous

bounds. In addition, we express all the bounds in a uniform notation. This simplifies

comparison of the algorithms.

Chapter 3 gives a technique that modifies on-line algorithms to improve their per-

formance on problems where instances are generated by sampling from a distribution.

Our technique modifies existing on-line algorithm to generate a new algorithm that

combines several hypotheses to make a more accurate prediction. While similar voting

techniques have been studied [Lit95], we build off this previous work and show with real

world data sets that our voting technique improves performance at a similar computa-

tional cost. In addition, our voting technique gives an efficient method for parameter

and algorithm selection with on-line learning.

Chapter 4 gives another technique to improve the performance of adversarial on-

line algorithms. We modify an existing algorithm to recycle over saved instances as
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if they were new trials. However, each instance can only be used once in an update

that changes the algorithm’s hypothesis. Any mistakes on these saved instances can

potentially decrease the number of mistakes on new trials. This technique was originally

created by Littlestone [Lit96]. We modify his technique to allow only a recent window of

saved instances in order to keep the computational cost low, and we allow the algorithm

to use each instance u times, where u is set by the user of the algorithm. We show that

instance recycling works on the same data sets used with voting, and Chapter 5 shows

that combining instance recycling and voting improves performance more than either

technique in isolation.

In Chapter 6, we give an upper-bound on the number of mistakes for a version

of the Unnormalized Winnow algorithm that tracks linear-threshold functions. The

bound shows that the concept tracking version has many of the same advantages as

traditional fixed concept Winnow algorithm. We also show how the performance of

this algorithm does not depend on the number of attributes and instead depends on

maxt∈{1,...,T} ln (‖Xt‖1). In Appendix A, we prove that the original Winnow algorithm

also has this property if its parameters are set to an appropriate value. Chapter 7

continues the work on tracking by giving experiments with the tracking version of

Winnow and a tracking version of ALMA [KSW02]. We also perform experiments to

improve the tracking algorithms using the voting and instance recycling techniques of

Chapter 3 and Chapter 4.

Our final chapter introduces a modification of the on-line model. The on-line model

traditionally reports the label for each previous instances before the algorithm needs

to make a prediction on the next instance. Here we extend the model and allow the

label to be returned during any future trial. We give general techniques to transform

traditional on-line algorithms to this setting and give upper and lower bounds on these

transformed algorithms for both adversarial instance generation and distribution in-

stance generation. Given an optimal algorithm for the traditional on-line setting, our

transformations generate algorithms for the delayed setting that are close to optimal.
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9.2 Future Work

We have several areas of research we wish to explore in the future. Part of this research

is based on the results discovered in the course of completing this thesis. Other parts

are based on related ideas that did not fit into the thesis based on time and space

constraints.

9.2.1 Extensions of Thesis

Normalized Winnow often performed the best in our experiments with fixed and shift-

ing distributions. However, for some experiments, particularly with sparse instances,

Balanced Winnow gave the best performance. In the future, we would like to do exper-

iments with Balanced Winnow using the threshold parameter of Normalized Winnow.

The threshold parameter of Normalized Winnow has a large effect on its performance,

and it is likely that Balanced Winnow would also benefit. This could create a new set

of Balanced Winnow algorithms with even better performance on sparse instances.

Another interesting topic is to expand the set of algorithms with good mistake

bounds for concept tracking. In particular, we would like to research variants of Nor-

malized Winnow and Balanced Winnow that allow the algorithms to track concepts.

Part of this research should focus on the somewhat surprising result that most of the

fixed concept algorithms already perform well on several tracking problems. Do there

exist distributions that cause these fixed concept algorithms to perform poorly on track-

ing concept problem or are adversaries necessary?

On the same topic, we would like to find a way to increase the efficiency of tracking

Unnormalized Winnow algorithm. The complemented attributes combined with the

minimum weight value make it difficult to efficiently implement the algorithm when

updating with sparse instances. This also gives more incentive to modify Balanced

Winnow to handle concept tracking. Because Balanced Winnow does not need comple-

mented attributes, it can efficiently work with sparse instances even with the minimum

weight modification used by Tracking Unnormalized Winnow.
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Another area for future research is to consider more complicated techniques to im-

prove the performance of adversarial on-line algorithms for shifting distributions. In

Chapter 7, we used slight modifications to the techniques developed for fixed distribu-

tions. It should be possible to specialize these techniques for even greater improvement.

9.2.2 Promising Avenues for On-line Learning

Next we consider some areas of on-line research that we feel are important, but we have

not had a chance to significantly explore in this dissertation. One omission is multi-

class learning. Here the target function can have more than just two output labels.

We have done some preliminary work in this area [Mes00, Mes01]. Also our work in

Chapter 8 on delayed learning covers multi-class problems. However, a more extensive

evaluation of the wide range of research on multi-class learning is needed to understand

what works best for on-line learning.

Another interesting area of on-line learning research is the creation of new features.

The main advantage of on-line learning is a potentially infinite stream of label feedback.

On-line learning algorithms need to find ways to exploit this information to improve

performance. One possibility is the constant exploration of new features that may give

a better representation of the target function. This is partially explored in [FG03]

using boosting like techniques on the problem of CPU branch prediction. While this

is a promising initial step, we feel other techniques should be considered along with a

more comprehensive set of experiments to help evaluate performance.

On problem with applying the techniques of [FG03] is that the Arc-x4 boosting

algorithm [Bre98] requires some instances to be given more influence on learning. This

is commonly called cost-sensitive learning [ZLA03]. Previous work on cost-sensitive,

on-line learning includes [HLL00b] and [HLL00a]. Unfortunately, this work is highly

theoretical, and the algorithms have a high computational cost. Part of the problem is

that the techniques attempt to give good bounds even when dealing with an adversary.

Cost sensitive learning is an important problem in its own right, and it would be inter-

esting to see if efficient on-line algorithms exist that give good performance guarantees.

Another alternative is to optimize cost-sensitive learning for on-line problems where
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instances are generated by something weaker than an adversary such as a distribution.

The very same advantage of on-line learning is also one of its greatest weaknesses.

The constant need for label feedback restricts the applicability of the model. Many

learning problems can not provide label feedback for most of the instances because of

the cost involved in getting accurate labels. An important solution to this problem

is to consider co-training techniques for on-line learning [BM98]. These techniques

use multiple ways to solve the problem as a technique to generate labels. While the

labels might initially have low accuracy, the technique bootstraps itself to improve

performance. We feel that some of our work on improving the accuracy of on-line

algorithm hypotheses when dealing with distributions might be important tools for

creating solutions for co-training problems using efficient on-line algorithms.
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Appendix A

Unnormalized Winnow

In this appendix, we prove mistake bounds for Unnormalized Winnow. First, we give

a slightly refined analysis of the algorithm which lowers previously published mistake-

bounds by a constant. The analysis also shows how noisy instances affect the mistake-

bound. The noise analysis is similar to that presented in [Lit89], but uses the noise

notation of Chapter 2. Second, we use an alternative initial value of the weights to

improve the mistake bound when the maximum one-norm of the instances is small.

Last, we show how noisy instances effect the algorithm as the multiplier α approaches

1. To clarify the results, we restate the algorithm in Figure A.1. This is identical to

the algorithm found in Section 2.3.1. For the following proofs define 0 ln 0 = 0.

Our first theorem is a slight modification of the result found in [Lit91]. We improve

some of the approximations used, which decreases the upper-bound by a constant factor,

and we change the notation to a form more compatible with the other results in this

dissertation.

First, we need to specify the noise function that controls the generation of the

instances. Let u ∈ [0,∞)n be the target weights. Let δ > 0 be the margin. The noise

on instance xt is defined as νt = max(0, δ − yt(u · xt − 1)) and the total noise, up to

trial T , is N =
∑T

t=1 νt. For more information on the noise function see Section 2.2.

Before we begin the proof, we give a helpful lemma. This lemma gives upper and

lower bounds for ln (1 + x) using rational functions.

Lemma A.1 For all x ≥ 0,

2x

2 + x
≤ ln (1 + x) ≤ 2x(1 + x2/10)

2 + x
.

Proof Let f(x) = 2x(1+x2/10)
2+x − ln (1 + x). It is sufficient to show that f(0) = 0 and
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Unnormalized Winnow(α, σ)
Parameters

α > 1 is the update multiplier.
σ > 0 is the initial weight value.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = σ are the weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If wt · xt ≥ 1

Predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ 0 then
∀i ∈ {1, . . . , n} wi,t+1 = αytxi,twi,t.

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure A.1: Pseudo-code for the Unnormalized Winnow algorithm.

f ′(x) ≥ 0 for all x ≥ 0. Clearly f(0) = 0. The derivative f ′(x) = (2x2+8x+1)x2

5(1+x)(2+x)2
≥ 0 for

all x > 0.

The same technique works for the lower-bound. Let f(x) = ln (1 + x)− 2x
2+x . Again

f(0) = 0 and f ′(x) = x2

(1+x)(2+x)2
≥ 0 for all x > 0.

The derivation of a mistake-bound is based on a progress function. This progress

function increases on every mistake by at least a fixed amount and has a maximum

value. The only exception occurs for noisy instances, which can cause a decrease in

the progress function. However, since we assume a upper-bound on the noise, the net

effect is to increase the total amount of progress we must make until we we reach the

maximum value of the progress function.

Let the progress function be Q(t) =
∑n

i=1 ui ln wi,t −
∑n

i=1 wi,t where u are the

weights from the target function, and wt are the weights from the Unnormalized Win-

now algorithm at the start of trial t [Lit91]. The progress function can only change after

a mistake because that is the only time Unnormalized Winnow changes its weights.
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Lemma A.2 After a mistake on trial t, if α = 1 + δ then

Q(t + 1)−Q(t) >
δ2

2 + δ
− δ(2 + δ2/5)

2 + δ
νt.

Proof After a mistake,

Q(t + 1)−Q(t) =

n
∑

i=1

ui ln (αytxi,twi,t)−
n
∑

i=1

αytxi,twi,t −
(

n
∑

i=1

ui ln wi,t −
n
∑

i=1

wi,t

)

=

n
∑

i=1

wi,t + yt ln (α)

n
∑

i=1

uixi,t −
n
∑

i=1

αytxi,twi,t.

Based on the convexity of αx, αytxi,t ≤ 1 + (αyt − 1)xi,t for all xi,t ∈ [0, 1] and yt ∈

{−1, 1}. Using this fact, the preceding is greater than or equal to

n
∑

i=1

wi,t + yt ln (α)

n
∑

i=1

uixi,t −
n
∑

i=1

wi,t − (αyt − 1)

n
∑

i=1

wi,txi,t

= yt ln (α)
n
∑

i=1

uixi,t − (αyt − 1)
n
∑

i=1

wi,txi,t.

We break the rest of the proof into two cases. For the first case, assume yt = −1.

Therefore

Q(t + 1)−Q(t) ≥ − ln (α)

n
∑

i=1

uixi,t − (1/α − 1)

n
∑

i=1

wi,txi,t.

Because ŷt = 1,
∑n

i=1 wi,txi ≥ 1, and
∑n

i=1 uixi,t ≤ 1−δ+νt, the last formula is greater

than or equal to

− ln (α) (1− δ + νt)− (1/α − 1) = 1− 1/α− ln (α) (1− δ) − ln (α) νt (A.1)

Using our assumption that α = 1 + δ and the upper-bound from Lemma A.1,

Q(t + 1)−Q(t) ≥ δ2

2 + δ

5 + 9δ + δ3

5 + 5δ
− 2δ(1 + δ2/10)

2 + δ
νt >

δ2

2 + δ
− δ(2 + δ2/5)

2 + δ
νt

The second case is similar. Assume yt = 1. Therefore

Q(t + 1)−Q(t) ≥ ln (α)

n
∑

i=1

uixi,t − (α− 1)

n
∑

i=1

wi,txi,t.

Because ŷt = −1,
∑n

i=1 wi,txi ≤ 1, and
∑n

i=1 uixi,t ≥ 1 + δ − νt, the last formula is

greater than or equal to

ln (α) (1 + δ − νt)− (α− 1) = ln (α) (1 + δ) − α + 1− ln (α) νt (A.2)
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Using our assumption that α = 1 + δ and the bounds from Lemma A.1, we get

Q(t + 1)−Q(t) ≥ δ2

2 + δ
− δ(2 + δ2/5)

2 + δ
νt.

The main theorem follows by computing the starting value and maximum value of

the progress function, Q.

Theorem A.3 The number of mistakes made by Unnormalized Winnow when α = 1+δ

is at most

(2 + δ) (σn +
∑n

i=1 ui lnui + ln (1/σ)
∑n

i=1 ui −
∑n

i=1 ui)

δ2
+

(2 + δ2/5)N

δ
.

Proof The maximum value of Q(t) can be determined by taking its derivative with

respect to the algorithm weights and setting these equations to zero. The maximum is

achieved when wt = u. Therefore,

n
∑

i=1

ui ln ui −
n
∑

i=1

ui −
(

n
∑

i=1

ui ln σ −
n
∑

i=1

σ

)

≥ Q(T + 1)−Q(1)

=

T
∑

t=1

Q(t + 1)−Q(t) =
∑

t∈M

Q(t + 1)−Q(t) ≥
∑

t∈M

(

δ2

2 + δ
− δ(2 + δ2/5)

2 + δ
νt

)

=
δ2

2 + δ
|M | − δ(2 + δ2/5)

2 + δ

∑

t∈M

νt ≥
δ2

2 + δ
|M | − δ(2 + δ2/5)

2 + δ
N.

Rearranging the inequality gives,

|M | ≤ (2 + δ) (σn +
∑n

i=1 ui ln ui + ln (1/σ)
∑n

i=1 ui −
∑n

i=1 ui)

δ2
+

(2 + δ2/5)N

δ
.

Notice that this proof works for any value of T , therefore it is an upper-bound on the

number of mistakes.

Given Theorem A.3, the optimal setting of the initial weights is σ =
∑n

i=1 ui/n.

Unfortunately, for most problems the user of the algorithm does not know the value of
∑n

i=1 ui. However, as can be seen in the previous bound, σ = 1/n is close to optimal

as long as
∑n

i=1 ui << n. Typically this is true when only a few of the n attributes are

relevant.
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Corollary A.4 The number of mistakes made by Unnormalized Winnow when α =

1 + δ and σ = 1/n is at most

(2 + δ) (1 +
∑n

i=1 ui ln ui + ln (n)
∑n

i=1 ui −
∑n

i=1 ui)

δ2
+

(2 + δ2/5)N

δ
.

Proof Just use Theorem A.3 with σ = 1/n.

The previous result can be improved if we impose further restrictions on the ad-

versary. For example, assume the adversary can only generate instances with a small

one-norm. Let λ be an upper-bound on the one norm of the instances.

Theorem A.5 Let α = 1 + 0.98δ and σ = δ
50λ . Let k be the number of target weights

that have ui > σ. Without loss of generality, assume the first k attributes have ui > σ.

The number of mistakes made by Unnormalized Winnow is less than

(2.09 + 1.03δ)
(

∑k
i=1 ui ln ui + ln

(

50λ
δ

)
∑k

i=1 ui

)

δ2
+

(2.05 + δ2/5)N

δ
.

Proof For every target weight value ui that is less than σ, shift its value to σ. Every

other target weight keeps the same value. Let ûi be the new target weights and let k

be the number of new target weights that do not equal σ.

Since we have increased the target weight values, the value of u · xt may increase.

We have increased each weight by at most σ, and λ is an upper-bound for the one-norm

of an instance, therefore

n
∑

i=1

uixi,t ≤
n
∑

i=1

ûixi,t ≤
n
∑

i=1

uixi,t + σλ .

Let δ̂ = δ − σλ = δ(1 − 1/50) and ν̂t = max(0, δ̂ − yt(û · xt − 1)). When y = −1,

ν̂t = max(0, δ − σλ + (û · xt − 1)) ≤ max(0, δ − σλ + (u · xt + σλ− 1)) = νt .

When y = 1,

ν̂t = max(0, δ − σλ− (û · xt − 1)) ≤ max(0, δ − σλ− (u · xt − 1)) ≤ νt .

Therefore N̂ =
∑T

t=1 ν̂t ≤
∑T

t=1 νt = N .
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Without loss of generality, assume the first k attributes have ûi > σ. Substituting

the new target function into the bound in Theorem A.3 gives

(2 + δ̂) (σn +
∑n

i=1 ûi ln ûi + ln (1/σ)
∑n

i=1 ûi −
∑n

i=1 ûi)

δ̂2
+

(2 + δ̂2/5)N̂

δ̂
.

=
(2 +δ̂)

(

σn +
∑k

i=1 ui ln ui + ln (1/σ)
∑k

i=1 ui −
∑k

i=1 ui − σ(n− k)
)

δ̂2
+

(2 + δ̂2/5)N̂

δ̂
.

<
(2.09 + 1.03δ)

(

∑k
i=1 ui ln ui + ln

(

50λ
δ

)
∑k

i=1 ui

)

δ2
+

(2.05 + δ2/5)N

δ
.

The upper-bound in Theorem A.5 is similar to the bound in Corollary A.4. The

main difference is the ln (50λ/δ) instead of ln n term. As 50λ/δ gets smaller than n,

the Theorem A.5 bound becomes advantageous. The advantage of using a large σ value

with sparse instances was first mentioned in [GR96], however, the result was justified

empirically without proof.

Inside the proof of Lemma A.2, we identified two equations. Equation A.1 and

Equation A.2 show how the progress changes as a function of α. We can use these

equations to show that, as we decrease α, the noise term tends to N/δ. As explained

in Section 2.2, this is optimal. Let D be the set of trials where a mistake occurs and

yt = −1. Let P be the set of trials where a mistake occurs and yt = 1.

Theorem A.6 As α approaches 1, the upper-bound on the number of mistakes made

by Unnormalized Winnow due to the noise term approaches N/δ.

Proof Assume the change in progress on a mistake is upper-bounded by a + bν when

the label is -1 and c + dν when the label is 1. Following the proof of Theorem A.3, the

number of mistakes at trial T is at most

Q(T )−Q(1)

min(a, c)
+
∑

t∈D

b

a
νt +

∑

t∈P

d

c
νt.

Substituting in the values of a, b, c, and d from Equation A.1 and Equation A.2 gives

a number of mistakes less than

Q(T )−Q(1)

min(a, c)
+
∑

t∈D

ln α
α−1

α − (1− δ) ln α
νt +

∑

t∈P

ln α

(1 + δ) ln α− α + 1
νt.
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=
Q(T )−Q(1)

min(a, c)
+
∑

t∈D

1
α−1
α ln α − (1− δ)

νt +
∑

t∈P

1

(1 + δ) − α+1
lnα

νt.

Because both α−1
α lnα and α+1

lnα tend to 1 as α approaches 1, the sum of the noise terms

tends towards
∑

t∈M νt/δ.

For problems, where the noise is bounded, these ideas can be used to set the multi-

plier to minimize the trade-off between the mistakes made by learning the concept and

mistakes made by noisy instances [CBFH+97].

In this appendix, our main result is a proof on the maximum number of mistakes

made by Unnormalized Winnow. This bound gives a constant factor improvement

on previous bounds found in [Lit91]. We also show how to set the parameters of

Unnormalized Winnow to improve performance when the maximum one-norm of the

instances is small. Last, we show how noisy instances effect Unnormalized as the

multiplier α approaches 1.
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Appendix B

Normalized Winnow

In this appendix, we prove an upper-bound on the number of mistakes made by the Nor-

malized Winnow algorithm. This version of the algorithm allows a threshold parameter

that significantly improves the performance for some learning problems. We also show

that the algorithm exhibits optimal behavior for noisy instances as the weight multi-

plier α approaches 1. To clarify these results, we restate the algorithm in Figure B.1.

This is identical to the algorithm found in Chapter 2. For the following proofs define

0 ln 0 = 0.

The addition of a threshold parameter to Normalized Winnow was made by Nick

Littlestone [Lit94], but his original proof did not clarify the improvements of this algo-

rithm over using Normalized Winnow with θ = 1/2. The proof in this thesis is based

on unpublished work done with Nick Littlestone to refine that proof. Normalized Win-

now with a threshold has since appeared in other publications. In [GW99], Normalized

Winnow is presented, and mistake bounds are given for learning disjunctions. Here we

give more general mistake bounds for linear-threshold functions.

First, we need some information about the target function. Let u be a vector of n

target weights where each ui ≥ 0 and
∑n

i=1 ui = 1. Let τ = min(θ, 1 − θ) and let δ

be the margin for the target function where 0 < δ ≤ τ . The noise for instance xt is

defined as νt = max(0, δ− yt(u ·xt− θ)), and the total noise is N =
∑T

t=1 νt. For more

information on target functions see Section 2.2.

The derivation of a mistake-bound is based on a progress function. This progress

function increases on every mistake by at least a fixed amount and has a maximum

value. The only exception is for noisy instances, which can cause a decrease in the

progress function. However, since we assume an upper-bound on the noise, the net
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Normalized Winnow(α, θ)
Parameters

α > 1 is the update multiplier.
0 < θ < 1 is the threshold.

Initialization
t← 1 is the current trial.
∀i ∈ {1, . . . , n} wi,1 = 1 are the weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If wt · xt ≥ θ

∑n
i=1 wi,t

Predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ 0 then
∀i ∈ {1, . . . , n} wi,t+1 = αytxi,twi,t.

Else
∀i ∈ {1, . . . , n} wi,t+1 = wi,t.

t← t + 1.

Figure B.1: Pseudo-code for the Normalized Winnow algorithm.

effect is to increase the total amount of progress we must make until we we reach the

maximum value of the progress function.

Let the progress function be Q(t) =
∑n

i=1 ui ln wi,t − ln (
∑n

i=1 wi,t) where u are the

weights from the target function, and wt are the weights from the Normalized Winnow

algorithm at the start of trial t [Lit89]. The progress function can only change after a

mistake because that is the only time Normalized Winnow changes its weights.

Lemma B.1 If there is a mistake on trial t and the correct label is y = −1 then

Q(t + 1)−Q(t) ≥ ln (α) (1− θ + δ) − ln (1 + (α− 1)(1− θ))− ln (α) νt

If there is a mistake on trial t and the correct label is y = 1 then

Q(t + 1)−Q(t) ≥ ln (α) (θ + δ) − ln (1 + (α− 1)(θ))− ln (α) νt

Proof Using the definition of Q(t) =
∑n

i=1 ui ln wi− ln (
∑n

i=1 wi), we derive that on a

mistake

Q(t + 1)−Q(t) =
n
∑

i=1

ui ln wi,t+1 −
n
∑

i=1

ui ln wi,t − ln

(

n
∑

i=1

wi,t+1

)

+ ln

(

n
∑

i=1

wi,t

)
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=
n
∑

i=1

ui ln

(

wi,t+1

wi,t

)

− ln

(∑n
i=1 wi,t+1
∑n

i=1 wi,t

)

=
n
∑

i=1

ui ln (αytxi,t)− ln

(∑n
i=1 αytxi,twi,t
∑n

i=1 wi,t

)

Based on the convexity of αx, αytxi,t ≤ 1+(αyt −1)xi,t for xi,t ∈ [0, 1] and yt ∈ {−1, 1},

therefore

Q(t + 1)−Q(t) ≥ yt ln (α)

n
∑

i=1

uixi,t − ln

(

1 + (αyt − 1)

∑n
i=1 wi,txi,t
∑n

i=1 wi,t

)

We break the rest of the proof into two cases. First assume that yt = −1. Therefore,

based on the definition of noise,
∑n

i=1 uixi,t ≤ θ−δ+νt. Also since the algorithm made

a mistake,
∑n

i=1 wixi,t/
∑n

i=1 wi,t ≥ θ. This gives us

Q(t + 1)−Q(t) ≥ − ln (α) (θ − δ + νt)− ln
(

1 + (α−1 − 1)θ
)

= − ln (α) (θ − δ + νt)− ln

(

α + θ − αθ

α

)

= ln (α) (δ − θ)− ln (α + θ − αθ) + ln (α)− ln (α) νt

= ln (α) (1− θ + δ)− ln (1 + (α− 1)(1 − θ))− ln (α) νt.

Assume y = 1. Therefore,
∑n

i=1 uixi,t ≥ θ + δ − νt and
∑n

i=1 wixi,t/
∑n

i=1 wi,t < θ.

This gives us

Q(t + 1)−Q(t) ≥ ln (α) (θ + δ − νt)− ln (1 + (α− 1)θ)

= ln (α) (θ + δ) − ln (1 + (α− 1)θ)− ln (α) νt.

This completes the proof.

The purpose of our next lemma is to help understand the lower-bounds that we just

derived in Lemma B.1. Let P−1(θ) = ln (α) (1−θ+δ)−ln (1 + (α− 1)(1 − θ))−ln (α) νt

and let P1(θ) = ln (α) (θ + δ)− ln (1 + (α− 1)(θ))− ln (α) νt. Our goal is to show that

P1(θ) is a lower-bound on the change in progress when θ ∈ [0, 1/2].

Lemma B.2 If θ ∈ [0, 1/2] then P1(θ) ≤ P−1(θ).

Proof Let

G(θ) = P−1(θ)− P1(θ) = ln (α) (1− 2θ) + ln (1 + (α− 1)θ)− ln (1 + (α− 1)(1 − θ)) .
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Notice that G(0) and G(1/2) are both zero. We prove that G(θ) is non-negative for

θ ∈ [0, 1/2] by showing that G′(0) > 0 and that G(θ) has one critical point in [0, 1/2].

G′(θ) =
α− 1

1 + (α− 1)θ
+

α− 1

1 + (α− 1)(1 − θ)
− 2 ln (α) .

Let

f(α) = G′(0) = α− 1

α
− 2 ln α.

Using Taylor’s Theorem around α = 1 gives f(α) = 0 + 0 + z−1
z3 (α− 1)2 for z ∈ (1, α).

Therefore, because α > 1, G′(0) > 0.

Notice that G′(θ) = 0 is quadratic in θ and that

1

2
+

√

ln (α) (α2 ln α + 2α lnα + ln α− 2α2 + 2)

2(α− 1) ln α
>

1

2

is one of the critical points. Therefore there is only one critical point in [0, 1/2].

This next lemma gives us a single lower-bound on the change in progress. It uses

the fact that P−1(θ) and P1(θ) are mirror images. It also uses the previous definition

that τ = min(θ, 1− θ).

Lemma B.3 If there is a mistake on trial t then

Q(t + 1)−Q(t) ≥ ln (α) (τ + δ)− ln (1 + (α− 1)τ)− νt ln (α) .

Proof Recall the definitions for P−1(θ) and P1(θ). These functions mirror each other

around θ = 1/2. In other words, P−1(θ) = P1(1− θ) for θ ∈ [0, 1].

Based on Lemma B.1 and Lemma B.2, for θ ∈ [0, 1/2], Q(t+1)−Q(t) ≥ P1(θ). When

θ ∈ [1/2, 1], we can combine the mirror nature of the functions with Lemma B.2 to show

that P−1(θ) ≤ P1(θ). Therefore when θ ∈ [1/2, 1], Q(t+1)−Q(t) ≥ P−1(θ) = P1(1−θ).

This proves the lemma.

Next we use the previous lemma to give the mistake-bound for Normalized Winnow.

Recall that we define M as the set of trials where a mistake occurs.
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Theorem B.4 If ln (α) (τ + δ) − ln (1 + (α− 1)τ) > 0 then the number of mistakes

made by Normalized Winnow is at most

ln n +
∑n

i=1 ui ln ui

ln (α) (τ + δ) − ln (1 + (α− 1)τ)
+

ln (α) N

ln (α) (τ + δ) − ln (1 + (α− 1)τ)
.

Proof The maximum value of Q(t) can be determined by taking it’s derivative with

respect to the algorithm weights and setting these equations to zero. The maximum is

achieved when wi,t/(
∑n

i=1 wi,t) = ui. This gives a maximum Q(t) value of
∑n

i=1 ui ln ui.

Therefore, for any trial T ,

n
∑

i=1

ui ln ui + lnn ≥ Q(T + 1)−Q(1) =

T
∑

t=1

Q(t + 1)−Q(t) =
∑

t∈M

Q(t + 1)−Q(t).

Based on Lemma B.3,

∑

t∈M

Q(t + 1)−Q(t) ≥
∑

t∈M

(ln (α) (τ + δ)− ln (1 + (α− 1)τ)− ln (α) νt)

= (ln (α) (τ + δ) − ln (1 + (α − 1)τ))|M | − ln (α)
∑

t∈M

νt

≥ (ln (α) (τ + δ) − ln (1 + (α− 1)τ))|M | − ln (α) N.

Therefore,

n
∑

i=1

ui ln ui + ln n ≥ (ln (α) (τ + δ)− ln (1 + (α− 1)τ))|M | − ln (α) N.

Rearranging this inequality proves the theorem.

At this stage, the upper-bound is not very intuitive because we do not know how

the denominator, ln (α) (τ + δ)− ln (1 + (α− 1)τ), behaves. However, in this form, we

can say some interesting things about how α effects the bounds. In particular, we can

show how the noise term behaves as α gets close to 1.

Corollary B.5 As α approaches 1, the number of mistakes made by Normalized Win-

now tends to at most

ln n +
∑n

i=1 ui ln ui

ln (α) (τ + δ)− ln (1 + (α− 1)τ)
+

N

δ
.



248

Proof The only part of the bound from Theorem B.4, we are concerned with is the

noise term,

ln (α) N

ln (α) (τ + δ) − ln (1 + (α− 1)τ)
=

N

τ + δ − ln(1+(α−1)τ)
ln α

Using L’Hôpital’s rule,

lim
α→1+

ln (1 + (α− 1)τ)

ln α
= τ.

Plugging this into the noise term from above gives

lim
α→1+

ln (α) N

ln (α) (τ + δ)− ln (1 + (α− 1)τ)
=

N

τ + δ − τ
.

In the previous corollary, we were only concerned with the noise term. As α goes

to 1, the first part of the bound, that deals with learning the target function, goes

to infinity. A trade-off is needed. The value of α that minimizes the target function

portion of the bound is 1+ δ
τ(1−τ−δ) . However, this goes to infinity as τ and δ approach

1/2 and causes the constant on the noise term to approach infinity. Therefore, we must

restrict the α value in order to control the effect of the noise.

For purposes of the proof, we set α = min
(

6, 1 + δ
τ(1−τ−δ)

)

. This cutoff on the

value of the multiplier is sufficient to control the effects of noise on the mistake bound.

This is not to say that one should never use a multiplier greater than 6. Even against

an adversary, a larger multiplier may make fewer mistakes if the noise on the problem

is small. However, a maximum value of 6 is convenient for our proof technique.

The remainder of the appendix is focused on restating Theorem B.4 in a more

intuitive form. In its present form, the mistake-bound is difficult to interpret. Unfortu-

nately, this requires some effort given the number of variables involved and the cutoff

used in setting α. We start with two lemmas that help us determine when α = 6.

Lemma B.6 If 1 + δ
τ(1−τδ) ≥ 6 then τ ≥ 2/5.

Proof Let f(δ) = 1 + δ
τ(1−τ−δ) . The function f(δ) strictly increases with δ. Solving

f(δ) = 6 gives δ = 5τ(1−τ)
5τ+1 . Therefore, if f(δ) ≥ 6 then δ ≥ 5τ(1−τ)

5τ+1 . Based on the defi-

nition of the learning problem, τ ≥ δ. Therefore, δ ≥ 5τ(1−τ)
5τ+1 implies that τ ≥ 5τ(1−τ)

5τ+1 .
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Rearranging this inequality shows that τ ≥ 2/5.

Lemma B.7 If 1 + δ
τ(1−τδ) ≥ 6 then δ ≥ 5/14.

Proof Let f(δ) = 1 + δ
τ(1−τ−δ) . The function f(δ) strictly increases with δ. Solving

f(δ) = 6 gives δ = 5τ(1−τ)
5τ+1 . Therefore, if f(δ) ≥ 6 then δ ≥ 5τ(1−τ)

5τ+1 . Using Lemma B.6,

we know that τ ≥ 2/5. Therefore δ ≥ minτ∈[2/5,1/2]
5τ(1−τ)
5τ+1 = 5/14.

Our next lemma approximates the change in progress for a limited range of param-

eters and concepts. This includes θ = 1/2. This is the default parameter setting used

for Normalized Winnow before it was generalized to handle θ ∈ (0, 1) [Lit89].

Lemma B.8 If τ + δ ≥ 1/2 and α = min(6, 1 + δ
τ(1−τ−δ) ) then

ln (α) (τ + δ)− ln (1 + (α− 1)τ) ≥ 2δ2.

Proof Let f(δ) = ln (α) (τ + δ)− ln (1 + (α− 1)τ). We break the proof into two cases.

For the first case assume α < 6. Substituting α into f(δ) gives

f(δ) = ln

(

1 +
δ

τ(1− τ − δ)

)

(τ + δ)− ln

(

1 +
δ

1− τ − δ

)

.

Using Taylor’s Theorem around δ = 0 gives

f(δ) = 0 + 0 +
δ2

2(τ + z)(1− τ − z)
for z ∈ (0, δ).

The minimum value is obtained by maximizing (τ + z)(1− τ − z) which is achieved at

z = 1/2 − τ . Therefore f(δ) ≥ 2δ2.

For the second case, assume α = 6. Therefore,

f(δ) = ln (6) (τ + δ)− ln (1 + 5τ) .

Based on Lemma B.6, τ ≥ 2/5. The value of τ ∈ [2/5, 1/2] that minimizes the previous

equation is 2/5. Therefore,

ln (6) (τ + δ)− ln (1 + 5τ) ≥ ln (6) δ +
2

5
ln (6)− ln (3) .
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For δ ∈ [5/14, 1/2] the previous formula is greater than 2δ2. Based on Lemma B.7, this

proves the result.

The originally published mistake-bounds on Normalized Winnow also show the

progress function changes by 2δ2 [Lit89]. In that paper, a multiplier of (1+2δ)/(1−2δ)

is used. This is almost the same as our multiplier when θ = 1/2. Our multiplier adds

protection against noise by cutting off the value of α at 6. This cut-off lowers the change

in progress, but the 2δ2 approximation is still valid.

Our next lemma is slightly unconventional, in that we prove part of the approxima-

tion with a computer based proof. The proof was executed with the MapleTM program

[MGH+05].

Lemma B.9 If τ + δ ≥ 1/2 then

ln
(

min
(

6, 1 + δ
τ(1−τ−δ)

))

2δ
≤ 2.53.

Proof We break the proof into two cases. First assume δ ≤ 1/16. Based on Lemma B.7,

min

(

6, 1 +
δ

τ(1− τ − δ)

)

= 1 +
δ

τ(1− τ − δ)
.

Using the fact that ln (1 + x) ≤ x, we derive

ln
(

min
(

6, 1 + δ
τ(1−τ−δ)

))

2δ
=

ln
(

1 + δ
τ(1−τ−δ)

)

2δ
≤ 1

2τ(1− τ − δ)
.

Because τ + δ ≥ 1/2, we know that τ ∈ [7/16, 1/2]. With these constraints, the

maximum of the last formula is achieved when τ = 1/2 and δ = 1/16. This gives us

ln
(

min
(

6, 1 + δ
τ(1−τ−δ)

))

2δ
≤ 16/7 ≤ 2.29 .

For the second case assume that δ ≥ 1/16. We create a grid that covers δ ∈

[1/16, 1/2] and τ ∈ [1/2−δ, 1/2]. For each element of the grid we compute the maximum

value of
ln
(

min
(

6, 1 + δ
τ(1−τ−δ)

))

2δ
.
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highest:=0;

step:=1/256:

delta:=1/16:

f:=1+x/y/(1-y-x):

while delta<=1/2-step do

tau:=1/2-delta:

while tau<=1/2-step do

d_min:=delta:

d_max:=delta+step:

t_min:=tau:

t_max:=tau+step:

a_max:=min(6,maximize(subs(x=d_max,f),y=t_min..t_max)):

val:=log(a_max)/(2*d_min):

real_val:=evalf(val):

if real_val>highest then

highest:=real_val:

end if:

tau:=tau+step:

end do:

delta:=delta+step:

end do:

print(highest):

Figure B.2: MAPLE code for Lemma B.9.

The MAPLE code for this case is in Figure B.2. The computation is exact until we

compare with the current maximum value. At this stage, we convert to a floating

point representation. However, the conversion to floating point only introduces a small

round-off error because the exact value is of the form a ln b where a and b are fractions.

This round-off error is accounted for in our final answer. The algorithm returns an

upper-bound of 2.528929873 which we round to 2.53.

Next, we combine the previous results to give an approximation of maximum number

of mistakes made by Normalized Winnow when τ + δ ≥ 1/2.

Theorem B.10 If τ + δ ≥ 1/2 and α = min(6, 1 + δ
τ(1−τ−δ)) then the number of

mistakes made by Normalized Winnow is at most

ln n +
∑n

i=1 ui ln ui

2δ2
+

2.53N

δ
.
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Proof Based on Theorem B.4 and Lemma B.8, the number of mistakes is at most

ln n +
∑n

i=1 ui lnui

2δ2
+

ln (α) N

2δ2
.

Using Lemma B.9 proves the result.

Next, we turn to the more interesting case where τ +δ ≤ 1/2. We start with another

lemma that is partially based on a computer proof. Again this helps us approximate

the noise term in the mistake-bound.

Lemma B.11 If τ + δ ≤ 1/2 then

2(τ + δ)(1 − τ − δ) ln
(

1 + δ
τ(1−τ−δ)

)

δ
≤ min(2 + 2δ/τ, 2.8)

Proof We break the proof up into two cases. First assume δ/τ ≤ 1/4. Using the fact

that ln (1 + x) ≤ x,

2(τ + δ)(1 − τ − δ) ln
(

1 + δ
τ(1−τ−δ)

)

δ
≤ 2(τ + δ)

τ
= 2 + 2δ/τ ≤ 2.5 .

Next assume that δ/τ ≥ 1/4. We use the MapleTM program in Figure B.3 to generate

an upper-bound. We create a grid looping over all τ ∈ [0, 1/4] and δ/τ ∈ [1/4, 1]. For

each element of the grid we compute the maximum value of

2(1 + δ/τ)(1 − τ − δ) ln
(

1 + δ
τ(1−τ−δ)

)

δ/τ
.

The computation is exact until we compare with the current maximum value. At this

stage, we convert to a floating point representation. However, the conversion to floating

point only introduces a small round-off error because the exact value is of the form a ln b

where a and b are fractions. This round-off error is accounted for in our final answer.

The algorithm returns an upper-bound of 2.793773101 which we round to 2.8.

Theorem B.12 If τ + δ ≤ 1/2 and α = min(6, 1 + δ
τ(1−τ−δ)) then the number of

mistakes made by Normalized Winnow is at most

2(τ + δ)(1 − τ − δ)(ln n +
∑n

i=1 ui ln ui)

δ2
+

min(2 + 2δ/τ, 2.8)N

δ
.
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highest:=0;

step:=1/256:

tau:=0:

while tau<=1/4-step do

ratio:=1/4:

while ratio<=1-step do:

r_min:=ratio:

r_max:=ratio+step:

t_min:=tau:

t_max:=tau+step:

d_min:=r_min*t_min:

d_max:=r_max*t_max:

a_max:=1+r_max/(1-d_max-t_max):

val:=2*(1+1/r_min)*(1-t_min-d_min)*log(a_max):

real_val:=evalf(val):

if real_val>highest then

highest:=real_val:

end if:

ratio:=ratio+step:

end do:

tau:=tau+step:

end do:

print(highest):

Figure B.3: MAPLE code for Theorem B.11.

Proof Let f(δ) = ln (α) (τ + δ) − ln (1 + (α− 1)τ). Recall that this is the progress

made during a mistake from Lemma B.3 without the noise term. Based on Lemma B.7,

α = 1 + δ
τ(1−τ−δ) . Substituting this value into f(δ) we get

f(δ) = ln

(

1 +
δ

τ(1− τ − δ)

)

(τ + δ)− ln

(

1 +
δ

1− τ − δ

)

.

Using Taylor’s Theorem around δ = 0 gives

f(δ) = 0 + 0 +
δ2

2(τ + z)(1− τ − z)
for z ∈ (0, δ).

The minimum value is obtained by maximizing (τ + z)(1− τ − z). Given the constraint

that τ + δ ≤ 1/2, the maximum of (τ + z)(1 − τ − z) is achieved at z = δ. Therefore,

f(δ) ≥ δ2

2(τ + δ)(1 − τ − δ)
.

Combining this result with Theorem B.4, the number of mistakes made by Normal-

ized Winnow is at most

2(τ + δ)(1 − τ − δ)(ln n +
∑n

i=1 ui ln ui)

δ2
+

2(τ + δ)(1 − τ − δ) ln
(

1 + δ
τ(1−τ−δ)

)

N

δ2
.
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Using Lemma B.11 completes the proof.

The previous bound is significantly better than the mistake-bound given in Theo-

rem B.10 as τ gets close to zero. While it appears that the noise term gets slightly worse

in Theorem B.12 because of the 2.8 factor, this is an artifact of our approximation. In

addition, smaller α values can be used to reduce the effects of noise.

Finally, we want to give a single bound to cover the two cases: τ + δ ≤ 1/2 and

τ + δ ≥ 1/2. It is not as tight as the other bounds, but as we have explained, the

purpose of these approximations is to make the bound more intuitive, and a single

bound is easier to interpret.

Corollary B.13 If α = min(6, 1 + δ
τ(1−τ−δ)) then Normalized Winnow makes at most

2(θ(1− θ) + δ|1− 2θ|)(ln n +
∑n

i=1 ui ln ui)

δ2
+

2.8N

δ
.

Proof The bound in Theorem B.12 handles the case τ + δ ≤ 1/2. The bound is

2(τ + δ)(1 − τ − δ)(ln n +
∑n

i=1 ui ln ui)

δ2
+

min(2 + 2δ/τ, 2.8)N

δ
.

The factor 2(τ + δ)(1 − τ − δ) in the target function term equals

2τ(1− τ) + 2δ(1 − 2τ)− 2δ2 = 2θ(1− θ) + 2δ|1 − 2θ| − 2δ2 ≤ 2θ(1− θ) + 2δ|1 − 2θ|.

The bound in Theorem B.10 handles the case τ + δ ≥ 1/2. The bound is

ln n +
∑n

i=1 ui ln ui

2δ2
+

2.53N

δ
.

Next, we prove that 2θ(1 − θ) + 2δ|1 − 2θ| ≥ 1/2 when τ + δ ≥ 1/2. This means

that this term can be used in place of the 1/2 factor in the target function term. We

break the proof into two cases. First assume θ ∈ (0, 1/2]. Therefore, because δ is at

least 1/2− τ = 1/2 − θ,

2θ(1− θ) + 2δ|1 − 2θ| ≥ 2θ(1− θ) + 2(1/2 − θ)(1− 2θ) = 2θ2 − 2θ + 1 ≥ 1/2

Second, assume θ ∈ [1/2, 1). Therefore, because δ is at least 1/2− τ = 1/2− (1− θ) =

θ − 1/2,

2θ(1− θ) + 2δ|1 − 2θ| ≥ 2θ(1− θ) + 2(θ − 1/2)(2θ − 1) = 2θ2 − 2θ + 1 ≥ 1/2.
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The noise term is based on the maximum noise term from Theorem B.10 and The-

orem B.12. Combined with the target function term, this proves the corollary.

In this appendix, our main result is an upper-bound on the number of mistakes made

by the Normalized Winnow algorithm. This version of the algorithm allows a threshold

parameter that significantly improves the performance for some learning problems. We

also show that the algorithm exhibits optimal behavior for noisy instances as the weight

multiplier α approaches 1.
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Appendix C

Balanced Winnow

In this appendix, we prove an upper-bound on the number of mistakes made by the

Balanced Winnow algorithm. In addition, we show that the bound can not always be

tight and give some examples of where the algorithm may do better than predicted by

the mistake bound. We also show that the algorithm exhibits optimal behavior for noisy

instances as the weight multiplier, α approaches 1. To clarify these results, we restate

the algorithm in Figure C.1. This is identical to the algorithm found in Chapter 2. For

the following proofs define 0 ln 0 = 0.

The proof for the mistake bound is similar to the result presented by Littlestone in

[Lit89]. The main difference is that we modify the noise analysis used in [Lit89] to a

form based on the hinge-loss [GW99]. All other changes are purely notational.

First, we need to specify the noise function that controls the generation of the

instances. Let u+ and u− be the weights for the target function where u+
i ≥ 0,

u−
i ≥ 0, and

∑n
i=1 u+

i + u−
i = 1. The noise on instance xt is defined as νt =

max (0, δ − yt(u
+ · xt − u− · xt)) where δ > 0 is the margin. The total noise up to

trial T is N =
∑T

t=1 νt.

The derivation of the mistake-bound is based on a progress function. This progress

function increases on every mistake by at least a fixed amount and has a maximum

value. The only exception is for noisy instances, which can cause a decrease in the

progress function. However, since we assume a upper-bound on the noise, the net

effect is to increase the total amount of progress we must make until we we reach the

maximum value of the progress function.

The progress function is Q(t) =
∑n

i=1(u
+
i ln w+

i,t + u−
i ln w−

i,t)− ln
(

∑n
i=1 w+

i,t + w−
i,t

)

where u+ and u− are the weights from the target function; w+
t and w−

t are the weights
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Balanced Winnow(α)
Parameters

α > 1 is the update multiplier.
Initialization

t← 1 is the current trial.
∀i ∈ {1, . . . , n} w+

i,1 = 1 are the positive weights.

∀i ∈ {1, . . . , n} w−
i,1 = 1 are the negative weights.

Trials
Instance: xt ∈ [0, 1]n.
Prediction: If w+

t
· xt ≥ w−

t
· xt

Predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(w
+
t
· xt −w−

t
· xt) ≤ 0

∀i ∈ {1, . . . , n} w+
i,t+1 = αytxi,tw+

i,t and w−
i,t+1 = α−ytxi,tw−

i,t.

Else
∀i ∈ {1, . . . , n} w+

i,t+1 = w+
i,t and w−

i,t+1 = w−
i,t.

t← t + 1.

Figure C.1: Pseudo-code for the Balanced Winnow algorithm.

from the algorithm at the start of trial t [Lit89]. The progress function can only change

after a mistake because that is the only time the Balanced Winnow algorithm changes

its weights. Our first lemma bounds this change in progress.

Lemma C.1 After a mistake on trial t,

Q(t + 1)−Q(t) ≥ δ ln (α)− ln

(

α2 + 1

2α

)

− ln (α) νt.

Proof Based on the definition of Q(t), after a mistake

Q(t+1)−Q(t) =

n
∑

i=1

[

u+
i ln

(

w+
i,t+1

w+
i,t

)

+ u−
i ln

(

w−
i,t+1

w−
i,t

)]

−ln

(

∑n
i=1(w

+
i,t+1 + w−

i,t+1)
∑n

i=1(w
+
i,t + w−

i,t)

)

=

n
∑

i=1

[

u+
i ln αytxi,t + u−

i ln α−ytxi,t
]

− ln

(
∑n

i=1(w
+
i,tα

ytxi,t + w−
i,tα

−ytxi,t)
∑n

i=1(w
+
i,t + w−

i,t)

)

.

Based on the convexity of αx, αytxi,t ≤ 1 + (αyt − 1)xi,t for all xi,t ∈ [0, 1] and yt ∈

{−1, 1}. Using this fact, the preceding is greater than or equal to

yt ln (α)
n
∑

i=1

(u+
i,t−u−

i,t)xi,t−ln

(

∑n
i=1[w

+
i,t(1 + (αyt − 1)xi,t) + w−

i,t(1 + (α−yt − 1)xi,t)]
∑n

i=1(w
+
i,t + w−

i,t)

)

= yt ln (α)

n
∑

i=1

(u+
i,t−u−

i,t)xi,t−ln

(

1 +
(αyt−1)

∑n
i=1 w+

i,txi,t + (α−yt−1)
∑n

i=1 w−
i,txi,t

∑n
i=1(w

+
i,t + w−

i,t)

)

.
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We can break the rest of the proof into two cases. First assume yt = −1. In this case,
∑n

i=1(u
+
i xi,t − u−

i xi,t) ≤ −δ + νt and
∑n

i=1 w−
i,txi,t ≤

∑n
i=1 w+

i,txi,t. Plugging these into

the previous formula gives

− ln (α) (νt − δ) − ln

(

1 +
(α−1 − 1 + α− 1)

∑n
i=1 w−

i,txi,t
∑n

i=1(w
+
i,t + w−

i,t)

)

. (C.1)

Notice that
Pn

i=1
w−

i,txi,t
Pn

i=1
(w+

i,t
+w−

i,t
)
≤ 1/2 because the maximum value of

∑n
i=1(w

+
i,txi,t +w−

i,txi,t)

is
∑n

i=1(w
+
i,t + w−

i,t) and
∑n

i=1 w−
i,txi,t ≤

∑n
i=1 w+

i,txi,t. Therefore the previous equation

is greater than or equal to

− ln (α) (νt − δ) − ln

(

1 +
(α−1 − 1 + α− 1)

2

)

= δ ln (α)− ln

(

α2 + 1

2α

)

− ln (α) νt.

The case for yt = 1 is symmetrical. In this case,
∑n

i=1(u
+
i xi,t−u−

i xi,t) ≥ δ− νt and
∑n

i=1 w−
i,txi,t ≥

∑n
i=1 w+

i,txi,t. Plugging these into the lower-bound from above gives

ln (α) (δ − νt)− ln

(

1 +
(α− 1 + α−1 − 1)

∑n
i=1 w+

i,txi,t
∑n

i=1(w
+
i,t + w−

i,t)

)

. (C.2)

Using the fact that
Pn

i=1
w+

i,txi,t
Pn

i=1(w
+

i,t+w−

i,t)
≤ 1/2, we lower-bound the previous formula with

ln (α) (δ − νt)− ln

(

1 +
(α− 1 + α−1 − 1)

2

)

= δ ln (α)− ln

(

α2 + 1

2α

)

− ln (α) νt.

In the previous lemma, we use the fact that
Pn

i=1
w−

i,txi,t
Pn

i=1
(w+

i,t+w−

i,t)
≤ 1/2 in equation C.1

when y = −1, and the fact that
Pn

i=1
w+

i,txi,t
Pn

i=1
(w+

i,t+w−

i,t)
≤ 1/2 in equation C.2 when y = 1. It

is impossible for the adversary to make these conditions tight for many problems. The

only way an adversary can make these conditions tight is to make every wi,t > 0 have

a corresponding xi,t = 1.

For example, if the problem consists of sparse instances where ‖Xt‖1 is small com-

pared to n then during the starting trials both of the previous formulas must be signif-

icantly less than 1/2. This is because the initial weight of each attribute is 1. Later, if

the target function is a disjunction then these conditions still can not be made tight.

As the algorithm gets close to learning the disjunction, most of the weight must be dis-

tributed on the relevant variables in the disjunction. However, for this very reason the
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adversary can not make xi = 1 for all of these relevant attributes since the algorithm

would not make a mistake.

For many problems, the lower-bound on progress in Lemma C.1 is not tight. The

Balanced Winnow algorithm will make more progress when
Pn

i=1 w+

i,txi,t+
Pn

i=1 w−

i,txi,t
Pn

i=1
(w+

i,t+w−

i,t)
< 1.

The amount of extra progress depends on the setting of α and can be computed using

Equation C.1 and C.2 from Lemma C.1.

Next we give a proof of the mistake bound. At this point, we do not substitute in

a value for α. Later, this will allow us to analyze the behavior of the algorithm as α

approaches 1. Recall that we defined M as the set of trials where the algorithm makes

a mistake.

Theorem C.2 If δ ln (α) − ln
(

α2+1
2α

)

> 0 then the number of mistakes made by Bal-

anced Winnow is at most

ln (2n) +
∑n

i=1(u
+
i ln u+

i + u−
i ln u−

i )

δ ln (α)− ln
(

α2+1
2α

) +
ln (α) N

δ ln (α)− ln
(

α2+1
2α

) .

Proof The maximum value of Q(t)=
∑n

i=1(u
+
i ln w+

i,t+u−
i ln w−

i,t)−ln
(

∑n
i=1 w+

i,t + w−
i,t

)

can be determined by taking it’s derivative with respect to the algorithm weights and

setting these equations to zero. The maximum is achieved when
w+

i,t
Pn

i=1
(w+

i,t+w−

i,t)
=

u+
i and

w−

i,t
Pn

i=1
(w+

i,t+w−

i,t)
= u−

i . This gives a maximum Q(t) value of
∑n

i=1(u
+
i ln u+

i +

u−
i ln u−

i ). Therefore, for any trial T ,

n
∑

i=1

(u+
i ln u+

i + u−
i ln u−

i ) + ln 2n ≥ Q(T + 1)−Q(1)

=

T
∑

t=1

Q(t + 1)−Q(t) =
∑

t∈M

Q(t + 1)−Q(t).

Based on Lemma C.1,

∑

t∈M

Q(t + 1)−Q(t) ≥
∑

t∈M

[

δ ln (α)− ln

(

α2 + 1

2α

)

− ln (α) νt

]

.

=

[

δ ln (α)− ln

(

α2 + 1

2α

)]

|M | − ln (α)
∑

t∈M

νt

≥
[

δ ln (α)− ln

(

α2 + 1

2α

)]

|M | − ln (α) N.
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Therefore,

n
∑

i=1

(u+
i ln u+

i + u−
i ln u−

i ) + ln 2n ≥
[

δ ln (α)− ln

(

α2 + 1

2α

)]

|M | − ln (α) N.

Rearranging this inequality proves the theorem.

A good choice for α is
√

1+δ
1−δ . With this choice, we get the following upper-bound

on the number of mistakes.

Theorem C.3 If α =
√

1+δ
1−δ then the number of mistakes made by Balanced Winnow

is at most

2 ln 2n + 2
∑n

i=1(u
+
i ln u+

i + u−
i ln u−

i )

δ2
+

2
(

1 + 2δ2

5(1−δ)2

)

δ
N.

Proof The bound in Theorem C.2 has two terms. The first term is

∑n
i=1(u

+
i ln u+

i + u−
i lnu−

i ) + ln 2n

δ ln (α)− ln
(

α2+1
2α

) (C.3)

and deals with learning the concept. To simplify this term substitute α =
√

1+δ
1−δ and

let

f(δ) = δ ln (α)− ln

(

α2 + 1

2α

)

=
δ

2
ln

(

1 + δ

1− δ

)

+
ln
(

1− δ2
)

2
.

Using Taylor’s Theorem around δ = 0, we get

f(δ) = 0 + 0 +
δ2

2(1− z2)
for z ∈ (0, δ).

Therefore f(δ) > δ2/2. Substituting this into the equation C.3 gives the first term of

the bound. This also shows that δ ln (α) − ln
(

α2+1
2α

)

> 0 which is a requirement of

Theorem C.2.

The second term

ln (α) N

δ ln (α)− ln
(

α2+1
2α

) . (C.4)

deals with the noise. Using the result from the previous term, let

g(δ) =
ln (α)

δ ln (α)− ln
(

α2+1
2α

) =

1
2 ln

(

1+δ
1−δ

)

f(δ)
≤

1
2 ln

(

1+δ
1−δ

)

δ2

2

=
ln
(

1+δ
1−δ

)

δ2
.
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Next, we use the result that ln (1 + x) ≤ 2x(1+x2/10)
2+x from Lemma A.1. This show that

ln
(

1+δ
1−δ

)

δ2
=

ln
(

1 + 2δ
1−δ

)

δ2
≤

4δ
1−δ

(

1 + 4δ2

10(1−δ)2

)

(

2 + 2δ
1−δ

)

δ2
=

2
(

1 + 2δ2

5(1−δ)2

)

δ
.

This completes the theorem.

The choice of α =
√

1+δ
1−δ is optimal for the target function term in the previous mis-

take bound, but it is not necessarily optimal when noise is considered. As α approaches

1 the noise term becomes optimal as explained in Section 2.2.

Corollary C.4 As α approaches 1, the number of mistakes made by Balanced Winnow

is at most

ln (2n) +
∑n

i=1(u
+
i ln u+

i + u−
i ln u−

i )

δ ln (α)− ln
(

α2+1
2α

) +
N

δ
.

Proof In order for Theorem C.2 to apply, we first show that δ ln (α)− ln
(

α2+1
2α

)

> 0.

Using the fact that x/(1 + x) ≤ ln (1 + x) ≤ x,

δ ln (α)− ln

(

α2 + 1

2α

)

≥ δ(α − 1)

α
− (α− 1)2

2α
=

α− 1

α

(

δ − α− 1

2

)

.

This is positive as long as α > 1 and α < 1 + 2δ.

Next, we deal with the noise term from Theorem C.2. The noise term is

ln (α) N

δ ln (α)− ln
(

α2+1
2α

) =
N

δ −
ln

“

α2+1

2α

”

ln α

.

Using L’Hôpital’s rule,

lim
α→1+

ln
(

α2+1
2α

)

ln α
= lim

α→1+

α2 − 1

α2 + 1
= 0.

Therefore, the noise term approaches N/δ.

In the previous corollary, we were only concerned with the noise term. As α goes

to 1, the first part of the bound, that deals with learning the target function, goes to

infinity. A trade-off is needed. In Theorem C.3, because the maximum value of δ is



262

1/2, the noise term can be at most 2.8N/δ. In truth, this approximation is slightly

misleading, and the maximum of the noise term is only 2.2N/δ. Therefore, even the

optimal value of α causes only a 2.2 factor in the effect of the noise term. However, for

problems with a large amount of noise, this can be significant. In practice, one should

use several α values to find the one that gives the best mistake bound. See Section 2.5

for more details on parameter selection.

In this appendix, we prove an upper-bound on the number of mistakes made by

the Balanced Winnow algorithm. This is essentially the same proof and bound given

in [Lit89] with the addition of a noise analysis based on the hinge loss. However, we

use this proof to give some new insight into the Balanced Winnow algorithm. We show

that the bound can not always be tight and give some examples of where the algorithm

may do better than predicted by the mistake bound. We also show that the algorithm

exhibits optimal behavior for noisy instances as the weight multiplier, α approaches 1.
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Appendix D

Sparse Instances

All the algorithms we covered in Chapter 2 have a straightforward implementation

that performs predictions and updates in O(n). In this appendix, we give implementa-

tions for linear-threshold learning algorithms that are more efficient when most of the

attributes of the instances have a value of zero. We call these sparse instance problems.

An example of a sparse instance problem is the bag of words representation for a

text problem. With the bag of words representation, an instance can have at most the

word length of the document non-zero attributes, but the size of the instance can be on

the order of the number of words in the dictionary. Therefore, for any given instance,

most of the attributes have value zero.

The main idea behind these implementations is to exploit the fact that attributes

with an identical value have a similar effect when predicting and updating. Instead of

manipulating each weight, we keep track of their aggregate effect and only explicitly

deal with the attributes that deviate from the fixed value. These implementations are

based on a suggestion by Nick Littlestone that the Unnormalized Winnow algorithm

could be implemented in a form that is efficient on problems where few attributes are

non-zero even with complemented attributes [Lit97].

In order to speed up the implementation of a linear-threshold algorithm, we need to

compress the size of the instances. If the instance representation is O(n) then the time

spent reading the instance may dominate any improvement in prediction and updating.

Given our assumption that many of the attributes have a value of zero, we represent an

instance using only the attributes that are non-zero. We call these the active attributes.

Let mt be the number of active attributes on trial t. For each active attribute, the

instance encodes the position of the attribute in the attribute vector and the value of
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the attribute. This gives a total storage requirement of O(mt log n). In practice, the

required storage can be approximated as O(mt) because the largest practical values of

n are small enough to be represented by an integer in a modern computer architecture.

Therefore, we make the simplifying assumption that an instance only takes O(mt)

storage.

For some problems, the algorithm may need to spend ω(n) time to generate the

instances. For these types of problems, the sparse representation is less beneficial. For

example, if the attributes are computed based on a digitized picture then many of the

attributes might be zero for a problem such as optical character recognition. However,

most algorithms still need to perform work proportional to the number of pixels. The

algorithm might even perform complex computations on the raw attributes to calculate

new attributes. In this dissertation, we do not consider the cost of generating the

instances, but in practice it may effect the overall efficiency of learning

D.1 Perceptron and Balanced Winnow

Perceptron and Balanced Winnow require little modification to perform predictions

and updates in O(mt) time. The Perceptron algorithm is explained in Section 2.2,

and the Balanced Winnow algorithm is explained in Section 2.3.4. Both algorithms

make predictions using the dot product of the weight and instance vectors. Using the

sparse instance representation, this can be computed in O(mt) time. Both algorithms

only change the weights that correspond to attributes that are non-zero. Again using

the sparse instance representation, this can be computed in O(mt) time. The sparsity

advantage of these algorithms was originally mentioned in [GR96].

D.2 Unnormalized Winnow

Information on Unnormalized Winnow can be found in Section 2.3.1. Unnormalized

Winnow has the same sparsity properties as Perceptron and Balanced Winnow. There-

fore, the algorithm performs predictions and updates in O(mt) time. Unfortunately, this

form of the algorithm does not allow negative weights. To allow negative weights, the
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algorithm must add attribute x̄i = 1− xi for every attribute xi. We call x̄ the comple-

mented attributes [Lit89] and call x the normal attributes. Fortunately, Unnormalized

Winnow using both the normal and complemented attributes can be implemented to

perform predictions and updates in O(mt) time [Lit97].

The complemented attributes destroy the natural sparsity of a problem. With com-

plemented attributes every instance has at least n attributes that are non-zero. How-

ever, these complemented attributes have a large amount of structure. They are com-

pletely determined by the values of the normal attributes. Therefore, we do not encode

the complemented attributes into the instance representation. Their value is implied

by the values of the normal attributes. Whenever we talk about an active attribute,

we are only referring to the normal attributes; when xi = 0, x̄i = 1, but we do not call

the complemented attributes active.

In Figure D.1, we give pseudo-code for Unnormalized Winnow with complemented

attributes that performs predictions and updates in O(mt). Notice that we do not

explicitly keep track of all the weight values since at least n values change every update.

Instead, we compute the weight values as needed using si and U . The value of si keeps

track of the effect of updates on active attributes. The value of U keeps track of the

updates on inactive attributes. The value of wi is σαsi because only the active attributes

effect the normal weights. The value of wc
i is σαU−si because U encodes the effect on

a complemented attribute assuming it is 1 on every update. The -si factor corrects for

the times that the complemented attribute is not 1.

Unnormalized Winnow also needs to keep track of the sum of the complemented

weights, W c. This is needed for prediction since a large number of complemented at-

tributes have value 1 and are used in the prediction. The algorithm predicts 1 if and

only if W c +
∑

i∈active(wi − wc
i )xi,t ≥ 1. The

∑

i∈active(wi − wc
i )xi,t term includes

all the normal weights from active attributes and subtracts off any extra weight from

complemented attributes that are not 1. The update procedure makes the necessary

changes to U and s. It also updates the sum of the complemented weights by break-

ing the sum into two terms. First it computes the new weight total for the inactive

attributes; second it computes the new weight total for the active attributes.
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Unnormalized Winnow(α, σ)
Parameters

α > 1 is the update multiplier.
σ > 0 is the initial weight value.

Initialization
t← 1 is the current trial.
U ← 0 keeps track of the updates.
W c ← nσ is the sum of the complemented weights.
si ← 0 is the sum of ytxi,t for each attribute.

Trials
Instance: xt ∈ [0, 1]n. For all xi,t > 0, wi ← σαsi and wc

i ← σαU−si

Prediction: If W c +
∑

i∈active(wi − wc
i )xi,t ≥ 1 then

predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ 0 and yt = −1 then
U ← U + yt.
s← s + ytx.

W c ← (W c −
∑

i∈active wc
i )α

yt +
∑

i∈active αyt(1−xi)wc
i .

t← t + 1.

Figure D.1: Pseudo-code for Sparse Implementation of Unnormalized Winnow algo-
rithm.

This implementation of Normalized Winnow is based on the fact there are groups

of attributes where only a small number deviate from a fixed value. In our case, the

normal attributes have fixed value 0 and the complemented attributes have fixed value

1. In general, we can implement Normalized Winnow for any number of groups where

each group has its own fixed value. The cost of the algorithm is proportional to the total

number of attributes that deviate from their fixed value plus the number of groups.

D.3 Normalized Winnow

Information on Normalized Winnow can be found in Section 2.3.3. In Figure D.2, we

give the pseudo-code for Normalized Winnow that performs predictions and updates

in O(mt) with complemented attributes. The code and explanation is almost identical

to Unnormalized Winnow. The only exception is that we also need to keep track of

the sum of the normal weights because of the normalization used in prediction. This is

straightforward to implement since only the active attributes affect the normal weights.
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Normalized Winnow(α, θ)
Parameters

α > 1 is the update multiplier.
0 < θ < 1 is the threshold.

Initialization
t← 1 is the current trial.
U ← 0 keeps track of the updates.
W ← n is the sum of the normal weights.
W c ← n is the sum of the complemented weights.
si ← 0 is the sum of ytxi,t for each attribute.

Trials
Instance: xt ∈ [0, 1]n. For all xi,t > 0, wi ← αsi and wc

i ← αU−si

Prediction: If W c +
∑

i∈active(wi − wc
i )xi,t ≥ θ(W + W c) then

predict ŷt = 1 else predict ŷt = −1.
Update: Let yt ∈ {−1, 1} be the correct label.

If yt(wt · xt) ≤ 0 and yt = −1 then
U ← U + yt.
s← s + ytx.
W ←W +

∑

i∈active wi(α
ytxi,t − 1).

W c ← (W c −∑i∈active wc
i )α

yt +
∑

i∈active αyt(1−xi)wc
i .

t← t + 1.

Figure D.2: Pseudo-code for Sparse Implementation of Normalized Winnow algorithm.

One possible modification is to add an attribute that is always 1. This increases mt

by one but allows the algorithm to represent a wider range of concepts as explained in

Section 2.3.3.

D.4 ALMA

Information on the ALMA algorithm can be found in Section 2.3.5. Here we show how

to implement the algorithm to take advantage of sparse instances. The main problem

is that updates affect all the weights even if only a small number of attributes are non-

zero. Just as with the Unnormalized Winnow, we use an extra variables to keep track

of common changes to all the weights.

The pseudo-code for the sparse efficient implementation of ALMA is in Figure D.3.

The algorithm performs predictions and updates in O(mt) time using the sparse instance

representation. Unlike our original explanation of ALMA, the weights are not explicitly
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stored. Instead they are computed using vector v. These variable are related to the

code given in Section 2.3.5 by the equality zi = vi/vmult. Therefore vmult keeps track

of any multiplicative change on all the zi variables. The algorithm also keeps track of

vsum1 = ‖vt‖pp and vsum2 = ‖vt‖(p−1)q
(p−1)q. These are necessary to compute the various

norms used by the algorithm. These norms allow the algorithm to compute the weights

and normalize the weights.

D.5 Mistake-Driven Linear-threshold Algorithms

Some algorithms might be impossible to implement in a form that performs predictions

and updates in o(n) time. However, it still might be possible to get some performance

improvement. Mistake-driven algorithms only perform updates on mistakes. For prob-

lems with few mistakes, the prediction procedure is executed much more frequently

than the update procedure. Therefore making the prediction procedure more efficient

can dramatically reduce the cost on some problems.

Linear-threshold algorithms are generally easy to modify to perform predictions

in O(mt) when using sparse instances. The algorithm can spend a small amount of

extra effort during the update procedure to put the weights in a form that makes the

predictions more efficient. For example, if the algorithm uses complemented attributes

then we can expand wc
i,t(1− xi) and subtract wc

i,t from wi,t and subtract wc
i,t from the

threshold. This removes the need to use the complemented attributes for prediction

since their weight has been moved to the normal attributes. Using the sparse instance

representation, the algorithm can perform the prediction in O(mt) using these weights.

We use a similar trick with the Tracking Unnormalized Winnow algorithm of Chap-

ter 6 to perform updates in O(n) and predictions in O(mt). In general, this trick can

be applied to speed up prediction for problems with groups of attributes where each

group has a nominal value and only a small number number of attributes deviate from

the corresponding nominal value.
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ALMA(p,B,C)
Parameters

B ≥ 0 controls the algorithm margin.
C > 0.
p ≥ 2 and q = p

p−1 control the norms.

Initialization
t← 1 is the current trial.
k = 0 is the number of updates.
vi,1 = 0 stores information on weights.
vsum1 ← 0 corresponds to ‖vt‖pp.
vsum2 ← 0 corresponds to ‖vt‖(p−1)q

(p−1)q.

vmult ← 1.
Trials

Instance: xt ∈ [0, 1]n.

Prediction: For xi,t > 0 compute wi,t =
sign(vi,t)|vi,t|p−1

vmultv
(p−2)/p
sum1

.

If wt · xt ≥ 0 then predict ŷt = 1 else predict ŷt = −1.

Update: Let yt ∈ {−1, 1} be the correct label and δ̂ = B‖xt‖p
√

p−1
k .

If yt(wt · xt) ≤ δ̂ then

η ← C
√

k(p − 1)‖xt‖p
vi,t+1 = vi,t + vmultηytxi,t.

vsum1 ← vsum1 +
∑

i∈active

(

vp
i,t+1 − vp

i,t

)

vsum2 ← vsum2 +
∑

i∈active

(

v
(p−1)q
i,t+1 − v

(p−1)q
i,t

)

‖wt‖q =
v
1/q
sum2

vmultv
(p−2)/p
sum1

.

If ‖wt‖q > 1 then
vmult ← vmult‖wt‖q.

k ← k + 1.
Else

vi,t+1 = vi,t.
t← t + 1.

Figure D.3: Pseudo-code for the sparse ALMA algorithm.
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D.6 Conclusion

In this appendix, we give implementation details for various linear-threshold algorithms

that allow them to perform predictions and updates in O(mt), where mt is the number

of nonzero attributes in trial t. These linear-threshold algorithms are given in a form

that allows them to learn arbitrary linear-threshold functions. The algorithms include

Perceptron, Unnormalized Winnow, Normalized Winnow, Balanced Winnow, ALMA,

and Tracking ALMA.

We also give implementation details to perform O(mt) predictions for any linear-

threshold algorithm. This is beneficial for mistake-driven algorithms because they tend

to make more predictions than updates. For example, Tracking Unnormalized Win-

now can benefit from this technique even though we do not currently have a way to

implement O(mt) updates for this algorithm.
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Appendix E

Alternative proof for Tracking Unnormalized Winnow

In this appendix, we give a proof for an upper-bound on the number of mistakes made

by Tracking Unnormalized Winnow that does not depend on ζ. Refer to Chapter 6 for

more information on the Tracking Unnormalized Winnow and the terms used in this

proof.

Our proof uses many of same lemmas as Chapter 6. One lemma we can not use is

Lemma 6.6 because it bounds the maximum value of an algorithm weight in terms of

ζ. Instead, we prove an alternative lemma that bounds the maximum weight in terms

of the total number of promotions made by the algorithm.

Lemma E.1 If the starting weight σ ≤ (α − 1)/α then the maximum value of any

weight of the Tracking Unnormalized Winnow algorithm is (α − 1)|P |, where P is the

set of trials where a promotion occurs.

Proof An algorithm weight can only increase on a promotion. Assume the first

promotion occurs at trial t. On the first promotion, wj,t+1 = αxj,tσ. Since max xj,t ≤ 1,

wj,t+1 ≤ ασ ≤ α− 1. Our goal is to show that the maximum increase for a weight on

any of the remaining promotions is α− 1. We break the proof into two cases.

Assume the value of weight wj,t is at most 1. Since max xj,t ≤ 1, the new weight,

after a promotion, is at most αwj,t. This gives a change in weight of

αwj,t −wj,t = (α − 1)wj,t ≤ (α− 1).

Assume that the current value of weight wi is greater than 1. For a promotion

to occur,
∑n

i=1 wi,txi,t < 1. Therefore wj,txj,t <
∑n

i=1 wi,txi,t < 1 implies that xj,t <
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1/wj,t. This give a change in weight of at most

α1/wj,twj,t − wj,t =

(

e
ln α
wj,t − 1

)

wj,t.

Using the fact that ex = 1 + x + x2

2! + x3

3! + · · · and the fact that wj,t > 1,

(

e
ln α
wj,t − 1

)

wj,t = ln α +
(ln α)2

wj,t2!
+

(ln α)3

w2
j,t3!

+ · · ·

≤ ln α +
(ln α)2

2!
+

(ln α)3

3!
+ · · · = eln α − 1 = α− 1.

Given that the weight after the first promotion is at most α−1 and that the weight

increases by at most α−1 on the remaining promotions, the maximum value of a weight

is (α− 1)|P |.

This bound on the maximum weight is problematic because it involves |P |, one of

the mistake-bound components which we are trying to upper-bound. To help solve this

problem we need another lemma.

Lemma E.2 If r < a ln (r) + b, a ≥ e4, and b > 1 then r < a(ln a)2 + b ln a.

Proof Let f(x) = a ln x + b. If we graph y = x and y = f(x) for all x ≥ 1 then the

lines must cross at one point s > 1. For all z ≥ s, z ≥ f(z). Therefore, if we find

a point t > 1 such that t ≥ f(t) then r < t. Next we show that t = a(ln a)2 + b ln a

satisfies t ≥ f(t). We break the proof into two cases.

First assume that a(ln a)2 ≥ b ln a.

f(t) = a ln(a(ln a)2 + b ln a) + b ≤ a ln(2a(ln a)2) + b = a ln 2 + a ln a + 2a ln ln a + b.

Using the definition of t,

t− f(t) ≥ a(ln a)2 + b ln a− a ln 2− a ln a− 2a ln ln a− b.

Using that fact that a ≥ e4 and b > 1 the last formula is at least

a(ln a)2 − a ln 2− a ln a− 2a ln ln a ≥ 4a ln a− a ln 2− a ln a− 2a ln ln a

= (a ln a− a ln 2) + (a ln a− a ln a) + (2a ln a− 2a ln ln a) > 0
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Next assume a(ln a)2 ≤ b ln a. This implies b ≥ a ln a. Let b = ak where k ≥ ln a.

f(t) = a ln(a(ln a)2 + b ln a) + b ≤ a ln(2b ln a) + b = a ln 2 + a ln b + a ln lna + b.

Using the definition of t and k,

t− f(t) ≥ a(ln a)2 + ak ln a− a ln 2− a ln(ak)− a ln ln a− ak.

Using the fact that a ≥ e4, the last formula is

≥ 4a ln a + 4ak − a ln 2− a ln(ak)− a ln ln a− ak

≥ (a ln a− a ln 2) + (a ln a− a ln a) + (ak − a ln k) + (a ln a− a ln lna) + (ak − ak) > 0.

Finally, we give an upper-bound on the number of mistakes made by Tracking

Unnormalized Winnow. Notice that this mistake-bound does not depend on ζ and

is only logarithmic in λ. Unlike Theorem 6.1, there is an extra condition that λ ≥

(1 + δ)/50.

Theorem E.3 For instances generated from a concept sequence C, if α = 1 + δ, ǫ =

σ = δ
50λ and λ ≥ (1 + δ)/50 then the number of mistakes is less than

2.05+δ

1 + δ

[

2H(C)

δ2(2− δ)

(

ln
2.05H(C)

δ2(2 + δ − δ2)

)2

+

(

2 ln (50λ) H(C)

δ2(2− δ)
+

N

δ

)

ln
2.05H(C)

δ2(2 + δ − δ2)

]

.

Proof First we want to substitute Lemma 6.5 into Lemma 6.7. The lemma condition

that α < e is satisfied since α = 1 + δ ≤ 2 < e. The condition that ǫ < 1/λ is satisfied

since ǫλ = δ/50 < 1. Now we can proceed with the substitution. Using the fact that

ǫ = σ and our bound on the maximum weight from Lemma E.1, we derive

H(C) logα

(

(α− 1)|P |
ǫ

)

+ N > (1 + δ)|P | − (1− δ)
α

1 − ǫλ
|P | .

Converting this to the form handled by Lemma E.2 gives

|P | ≤ H(C) ln |P |
ln α

1 + δ − α(1−δ)
1−ǫλ

+
H(C)

(

ln(α−1)+ln(1/ǫ)
ln α

)

+ N

1 + δ − α(1−δ)
1−ǫλ
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Substituting α = 1 + δ and ǫ = δ
50λ and using the fact that ln (1 + δ) ≥ δ − δ2/2, we

can compute the variables a and b used in Lemma E.2.

a =
H(C)

(

1 + δ − α(1−δ)
1−ǫλ

)

ln α
=

(50− δ)H(C)

49δ(1 + δ) ln (1 + δ)
≤ (100 − 2δ)H(C)

49δ2(1 + δ)(2 − δ)

b =
H(C)

(

ln(α−1)+ln(1/ǫ)
ln α

)

+ N

1 + δ − α(1−δ)
1−ǫλ

=
50− δ

49δ(1 + δ)

(

H(C) ln (50λ)

ln (1 + δ)
+ N

)

=
(100 − 2δ) ln (50λ) H(C)

49δ2(1 + δ)(2 − δ)
+

50− δ

49δ(1 + δ)
N.

Lemma E.2 shows us that

|P | < a(ln a)2 + b ln a

Again using Lemma 6.5,

|P |+ |D| <
(

1 +
α

1− ǫλ

)

|P | <
(

1 +
α

1− ǫλ

)

(a(ln a)2 + b ln a).

The preceding is less than

2.05+δ

1 + δ

[

2H(C)

δ2(2− δ)

(

ln
2.05H(C)

δ2(2 + δ − δ2)

)2

+

(

2 ln (50λ) H(C)

δ2(2− δ)
+

N

δ

)

ln
2.05H(C)

δ2(2 + δ − δ2)

]

.

The main result in this appendix is to give an upper-bound on the number of

mistakes made by Tracking Unnormalized Winnow that does not depend on ζ. The

proof is also interesting in that it gives some insight into how an adversary can increase

an algorithm weight well beyond the value of the corresponding target weight.
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Appendix F

General Results for Adversarial On-line Algorithms

In this appendix, we give some general results for adversarial on-line learning. We

divide the results into two sections. The first sections deals with traditional on-line

learning where the label for each instance is returned before the next trial. The second

section deals primarily with delayed on-line learning where the label for an instance

might be received during some future trial. See Chapter 8 for more information on

delayed on-line learning.

We use some of the same notation as defined in Chapter 8. Let Mist(B, s) be the

number of mistakes algorithm B makes on s, a sequence of instances. Let Mist(B) be the

maximum number of mistakes made by algorithm B over a set of instance sequences.

The particular set of sequences should be clear from context. When dealing with

randomized algorithms, the previous notation refers to a random variable; therefore,

we often refer to the expectation of the variable. Let OptD be the algorithm that

minimizes Mist(B) over all traditional deterministic algorithms B. Let OptR be the

algorithm that minimizes E[Mist(B)] over all traditional randomized algorithms B.

F.1 Traditional On-line Learning

We start with two transformations that can be applied to a traditional on-line algorithm

B. The pseudo-code for algorithm B is found in Figure F.1. The prediction procedure of

this algorithm is somewhat non-standard. The algorithm returns a probability vector,

ŷt, over all the possible labels, Y . The algorithm makes a prediction on trial t by

sampling from this distribution. This distribution encodes any randomization used by

algorithm B.

Another possibility for randomization is to allow an algorithm to make randomized
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Algorithm B
Initialization

t← 0 is the trial number.
Initialize algorithm state s← s0.

Trials
t← t + 1.
Instance: xt.
Prediction: ŷt ← Pred(s,xt).
Update: Let yt be the correct label.

s← Update(s,xt, yt, ŷt).

Figure F.1: Pseudo-code for on-line algorithm B.

updates to its state. However, for every algorithm B that performs randomized updates

to its state, there is another algorithm B̂ that only uses randomization in prediction and

makes the same expected number of mistakes on any sequence of instances. Algorithm

B̂ works by keeping track of a distribution over algorithm B states. This distribution

is based on the randomized updates used by algorithm B. Algorithm B̂ then pre-

dicts by sampling from this distribution. This forces algorithm B̂ to have the same

expected number of mistakes as algorithm B. Therefore, we only consider randomized

predictions.

The first transformation converts a randomized on-line learning algorithm B to a

deterministic learning algorithm DR-B with a similar mistake bound. Assume the

prediction procedure of algorithm B returns a probability vector, ŷt over the possible

label outputs. Algorithm B predicts based on sampling this distribution. Algorithm

DR-B modifies this by predicting the label with the highest probability. Algorithm

DR-B makes at most twice the number of expected mistakes as algorithm B since the

worst case corresponds to algorithm B predicting the wrong label with 1/2 probability

on any given trial. This transformation and bound is from [AW95]. A popular use

of this result is to show that the optimal deterministic algorithm makes at most two

times the number of mistakes as the optimal randomized algorithm. In other words,

randomization helps by at most a factor of two.

The second transformation is to convert an on-line algorithm to a mistake-driven

algorithm. Traditionally, a mistake-driven algorithm is an algorithm that only updates
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its state when it makes a mistake on an instance [Lit88]. In other words, the algorithm

ignores any instance that it predicts correctly. We generalize this definition to handle

randomized algorithms. A mistake-driven algorithm is an algorithm that only updates

its state when it could have made a mistake on a instance. More formally, let ŷt be

a prediction probability distribution over the labels and let yt be the correct label. A

mistake-driven algorithm can only updates its state on trial t when ŷt(yt) < 1.

The transformation is straightforward. Assume B is an on-line algorithm. The

algorithm MD -B does not update on any instance when ŷt(yt) = 1. These instances

can not change the state of algorithm MD -B , so MD -B is a mistake-driven algorithm.

Littlestone gives a similar transformation to convert algorithms to a mistake-driven form

[Lit88, Lit95]. However, his transformation only applies to deterministic algorithms

and his proof only handles fixed concepts without noise. Littlestone’s transformation

works by skipping any instances that are predicted correctly. This transformation was

also used to convert Bayesian algorithms into algorithms that perform well against

adversaries [Lit95, LM97].

Next, we prove that the MD transformation retains the existing mistake bound for

a specific type of adversary called a subsequence adversary.

Definition F.1 An adversary S is a subsequence adversary if, for every sequence s ∈

S, the adversary can generate every subsequence of s.

Theorem F.2 For a traditional on-line learning problem with instances generated by

a subsequence adversary, E[Mist(MD-B)] ≤ E[Mist(B)].

Proof Since the instances are generated by a subsequence adversary, there must exist

a sequence of instances s that maximizes the expected number of mistakes for algorithm

MD -B where all the trials that could cause a mistake occur at the beginning of the

sequence. Let m be the first trial that algorithm MD -B must predict correctly. If trial

m does not exist then set m =∞. Up to trial m, both algorithm B and MD -B expect

to make the same number of mistakes. Since MD -B makes no further mistakes past

trial m, Mist(MD -B) = Mist(MD -B , s) ≤Mist(B, s) ≤ Mist(B).
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Intuitively, this theorem says that if an algorithm would get any advantage from an

instance that is predicted correctly then a subsequence adversary will never generate an

instance that is predicted correctly. An adversary that is not a subsequence adversary

may be forced to generate instances that are correctly classified. The information in

these instances could be beneficial for the learning algorithm.

We want to stress that many practical on-line problems will not have an adversary

generating the instances. In these cases, a more aggressive algorithm that sometimes

updates on correct predictions can improve performance [LL00]. Still, the algorithm

must be careful to avoid extra updates that increase the number of mistakes.

Next is a useful lemma that is similar to Theorem F.2 but is restricted to deter-

ministic algorithms. This lemma shows that the adversary can create a sequence of

mistakes at the start of learning.

Lemma F.3 Assume B is a deterministic on-line algorithm. If the instances are

generated by a subsequence adversary then there exists a sequence s such that |s| =

Mist(MD-B) and Mist(B, s) = Mist(MD-B)

Proof Since the instance are generated by a subsequence adversary, and MD -B is

deterministic and mistake-driven, we can take any sequence of instances that maximize

the mistake bound of MD -B and remove any instances that are predicted correctly so

that the start of the sequence is composed entirely of instances that cause mistakes.

Let s be this portion of the sequence that has all the mistakes. Algorithm B must also

make mistakes on all the instances in s.

This next lemma generalizes the previous lemma to handle randomized algorithms.

Lemma F.4 Assume B is an on-line algorithm. If the instances are generated by a

subsequence adversary then there exists a sequence s such that |s| = Mist(OptD) and

E[Mist(B, s)] ≥ Mist(OptD)/2.

Proof Convert algorithm B to DR-B . Since DR-B is deterministic by Lemma F.3 there
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must exist a sequence of instances such that |s| ≥ Mist(OptD) and Mist(DR-B , s) = |s|.

For every instance in s, the probability of a mistake by B must be at least 1/2 based

on how the derandomization transformation works. Therefore E[Mist(B, s)] ≥ |s|/2 ≥

Mist(OptD)/2.

F.2 Delayed On-line Learning

The previous results all dealt with the traditional on-line model. Next, we prove some

related results with the delayed on-line model of Chapter 8. The main purpose of these

results is to show that the optimal mistake-driven algorithm for traditional on-line

learning may not give optimal results with the transformation of Chapter 8.

The results are based on a simple learning problem described in Section 8.2.3. Con-

sider a learning problem that has a finite number l of instances and assume the learning

problem allows all 2l possible binary target functions. The adversary selects one of these

target functions and can generate all l instances with the label determined by the se-

lected target function. The only exception is that for up to A instances the adversary

is allowed to return the opposite label. We call this learning problem HA(l).

We solve HA(l) with deterministic algorithm LD. Algorithm LD keeps a label count

for each instance. Every time the algorithm receives an instance, the algorithm predicts

according to the majority label. If there is a tie the algorithm predicts 1.

Theorem F.5 Algorithm LD is an optimal deterministic algorithm for problem HA(l)

in the traditional on-line model and makes at most l + 2A mistakes.

Proof When A = 0, every deterministic algorithm can be forced to make at least

one mistake on each instance. The first time an instance appears, the adversary just

selects the opposite label of the algorithm. This is always possible since all 2l target

functions are allowed. Therefore every deterministic algorithm must make at least l

mistakes. Based on our description, l is the maximum number of mistakes made by LD

on problem H0(l).
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When A > 0 a result by Littlestone implies that any deterministic algorithm must

make at least l + 2A mistakes in the worst-case [Lit89]. Next we prove that the LD

algorithm makes at most l + 2A mistakes and therefore is optimal.

For instance x, let a be the number of times the instance appears with the wrong

label. In the worst-case, algorithm LD can make a mistake on all a of these incorrectly

labeled instances and another a + 1 correctly labeled instances. After a + 1 correctly

labeled x instances, the algorithm can never make another mistakes on a correctly la-

beled instances since the correct label will always have a higher label count. Summing

over all the instances, algorithm LD makes at most l + 2A mistakes.

Using the on-line-to-delayed transformation OD2 from Section 8.2.1, we can convert

LD into an algorithm that solves the delayed on-line learning problem.

Theorem F.6 The algorithm OD2-LD makes at most kl+2A mistakes on the delayed

version of problem HA(l) when the maximum delay of any instance is k.

Proof We start by considering a single instance x. This instance can appear multiple

times in a sequence of instances. Let a be the number of times this instance appears

with the incorrect label. After a + 1 correct labels appear for instance x, algorithm

OD2-LD can only predict the correct label.

For the rest of the proof, we need to make a distinction between when the attributes

of an instance with a particular label arrives and when the label arrives. Assume that

repeat r of instance x corresponds to the a+1 instance with the correct label. Therefore

there must be r − a− 1 instances with the incorrect label in these first r repeats. The

label for repeat r must be returned by trial r + k. This means that any mistakes on

repeats greater than r + k − 1 can only be caused by an incorrect label. Since there

are at most a− r + a + 1 incorrect labels left, only 2a − r + 1 mistakes can be caused

after repeat r + k − 1. Assuming a mistake on each of these first repeats gives at most

r + k − 1 + 2a− r + 1 = k + 2a mistakes.

This analysis can be reused for each instance. Therefore the total number of mis-

takes is at most kl + 2A.
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Theorem F.6 is tight. We can prove this by showing a sequence of instances that

generates kl + 2A mistakes.

Theorem F.7 If multi-set D contains at at least 2A elements with a delay of 1 and

at least kl elements with a delay of k then there exists a delayed sequence of instances

from problem HA(l) where algorithm OD2-LD makes kl + 2A mistakes.

Proof Pick any instance and repeat the instance 2A times. Give each of these repeated

instances a delay of 1 and alternate the label starting with label 0. This causes algorithm

OD2-LD to make 2A mistakes on these instances and uses all A label flips. At this

point, the algorithm has an equal count of 0 and 1 labels for all instances.

Repeat each instance k times. Give each instance a delay of k and a label of 0.

Algorithm OD2-LD predicts 1 for all of these labels and therefore makes a mistake on

all of these instances. This adds an additional kl mistakes.

Unfortunately, unlike in the traditional on-line model, the mistake-driven version of

LD does not do as well. Because of the nature of the mistake-driven algorithm, MD -LD

only keeps track of the last label it receives. At the start, the algorithm predicts 1.

After that, it always predicts based on the last label.

Theorem F.8 If multi-set D contains at least 2A + l elements with a delay of 1 and

at least A + l elements with a delay of 2 through k then there exists a delayed sequence

of instances from problem HA(l) where algorithm OD2-MD-LD makes kl + (k + 1)A

mistakes.

Proof We start by considering a single instance x that is repeated. The correct label

for this instance is 0. The first k repeats of instance x all receive their label at trial

k + 1 and the label is 0 for all k instances. This causes a mistake on the first k trials.

The k + 1 trial is updated on a single mistake from the first k trials. The remaining

trials are ignored because after the first update, the mistake-driven algorithm makes

the correct prediction.
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Instance x is again repeated for trial k + 1; a label of 1 is returned at the start of

trial k+2. This causes a mistake as the algorithm is currently predicting 0 for the label.

After the update, the algorithm is back to predicting 1. Notice that this is the same

state the algorithm was in during trial 1. Therefore, we can use the same sequence of

labels with more copies of instance x. This generates k mistakes for the first k trials

and k + 1 mistakes for each noisy instance. This gives a total of k + (k + 1)A mistakes

caused by instance x.

For the other l − 1 instances, we can always force k mistakes on each instance by

repeating each instance k times with a label of 0 and a delay of k on each instance.

This gives kl + (k + 1)A total mistakes.

Theorem F.8 shows that mistake-driven algorithms are not necessarily the best basic

algorithms to use with the delayed on-line learning transformations given in Chapter 8.

See Section 8.2 for more details.

F.3 Summary

In this appendix, we give some general results for adversarial on-line learning. We

divide the results into two sections. The first sections deals with traditional on-line

learning where the label for each instance is returned before the next trial. The second

section deals primarily with delayed on-line learning where the label for an instance

might be received during some future trial.

For traditional on-line learning, we give the details for two transformations. The

first transformation converts a randomized algorithm B into a deterministic algorithm

DR-B . The second transformation converts an arbitrary on-line algorithm B into a

mistake-driven algorithm MD -B . We show that MD -B has the same upper-bound on

mistakes as B for a wide range of problems. We also give related information on how

an adversary can force an on-line algorithm to make a large number of mistakes during

the initial trials of learning. This is useful for the lower-bound results in Chapter 8.

For delayed on-line learning, we given additional results on a learning problem that
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was used as an example in Chapter 8. We give an algorithm, LD, that is optimal for this

problem in the traditional on-line setting and show that the OD2-LD transformation

is optimal for the delayed instance problem. Unfortunately, algorithm OD2-MD -LD

is not optimal showing that, unlike the traditional on-line setting, the mistake-driven

transformation is not optimal for subsequence adversaries.
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Press, New York, US.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-
rithm. Information and Computation, 108:212–261, 1994.

[McCow] Andrew Kachites McCallum. Bow: A toolkit for statistical lan-
guage modeling, text retrieval, classification and clustering, 1996;
http://www.cs.cmu.edu/ mccallum/bow.



289

[Mes00] Chris Mesterharm. A multi-class linear learning algorithm related to win-
now. In Advances in Neural Information Processing Systems 12, pages
519–525. MIT Press, 2000.

[Mes01] Chris Mesterharm. Transforming linear-threshold learning algorithms into
multi-class linear learning algorithms. Technical Report dcs-tr-460, Rut-
gers University, 2001.

[Mes02] Chris Mesterharm. Tracking linear-threshold concepts with winnow. In
Proceedings of the 15th Annual Conference on Computational Learning

Theory, pages 138–152. Springer, 2002.

[Mes03] Chris Mesterharm. Tracking linear-threshold concepts with winnow. Jour-

nal of Machine Learning Research, 4:819–838, 2003.

[Mes05] Chris Mesterharm. On-line learning with delayed label feedback. In
Proceedings of the 16th Annual International Conference on Algorithmic

Learning Theory, pages 399–413, 2005.

[MGH+05] Michael B. Monagan, Keith O. Geddes, K. Michael Heal, George Labahn,
Stefan M. Vorkoetter, James McCarron, and Paul DeMarco. Maple 10

Programming Guide. Maplesoft, Waterloo ON, Canada, 2005.

[MHBD01] Sofus A. Macskassy, Haym Hirsh, Arunava Banerjee, and Aynur A.
Dayanik. Using text classifiers for numerical classification. In Bernhard
Nebel, editor, Proceeding of 17th International Joint Conference on Arti-

ficial Intelligence, pages 885–890, Seattle, US, 2001.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[MKCN98] Surapant Meknavin, Boonserm Kijsirikul, Ananlada Chotimongkol, and
Cholwich Nuttee. Combining trigram and winnow in thai OCR error cor-
rection. In Proceedings of the 36th annual meeting on Association for

Computational Linguistics, volume 2, pages 836–842, 1998.

[OR01] Nikunj C. Oza and Stuart J. Russell. Experimental comparisons of online
and batch versions of bagging and boosting. In Knowledge Discovery and

Data Mining, pages 359–364, 2001.

[PM96] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to
improve world wide web latency. Computer Communication Review, 3:22–
36, 1996.

[Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the The-

ory of Brain Mechanisms. Spartan Books, Washington, DC, 1962.

[RtY01] Dan Roth and Wen tau Yih. Relational learning via propositional al-
gorithms: An information extraction case study. In Proceeding of 17th

International Joint Conference on Artificial Intelligence, pages 1257–1263,
2001.



290

[RZ98] Dan Roth and Dmitry Zelenko. Part of speech tagging using a network of
linear separators. In Proceedings of the 36th annual meeting on Association

for Computational Linguistics, pages 1136–1142, 1998.

[Sid02] Advaith Siddharthan. Resolving relative clause attachment ambiguities
using machine learning techniques and wordnet hierarchies. In Proceedings

of the 5th National Colloquium for Computational Linguistics in the UK,
pages 45–49, 2002.

[TCS03] V. Tesprasit, P. Charoenpornsawat, and V. Sornlertlamvanich. A context-
sensitive homograph disambiguation in thai text-to-speech synthesis. In
Proceedings of the 2003 Conference of the North American Chapter of the

Association for Computational Linguistics on Human Language Technol-

ogy, pages 103–105, 2003.

[ZDJ01] Tong Zhang, Fred Damerau, and David Johnson. Text chunking using
regularized winnow. In Meeting of the Association for Computational Lin-

guistics, pages 539–546, 2001.

[ZLA03] Bianca Zadrozny, John Langford, and Naoki Abe. A simple method for
cost-sensitive learning. Technical Report RC22666, IBM, 2003.



291

Vita

Jon Christian Mesterharm

1988-1992 Attended Virginia Tech, Blacksburg, Virginia.

1992 B.A. in Computer Engineering, Virginia Tech.

1992-1999 Attended Rutgers University, New Brunswick, New Jersey.

1999 M.S. in Computer Science, Rutgers University.

2000-2007 Attended Rutgers University, New Brunswick, New Jersey.

2007 Ph.D. in Computer Science, Rutgers University.

1993-1995 Teaching Assistant, Rutgers Department of Computer Science.

1995-1999 Research Assistant, NEC Institute, Princeton, New Jersey.

2000-2006 Teaching Assistant, Rutgers Department of Computer Science.

1997 Nick Littlestone and Chris Mesterharm. An Apobayesian Relative of Win-
now. In Neural Information Processing Systems 9, pages 204-210, 1997.

2000 Chris Mesterharm. A Multi-class Linear Learning Algorithm. In Neural
Information Processing Systems 12, pages 519-525, 2000.

2002 Chris Mesterharm, Tracking Linear-threshold Concepts with Winnow, In
Proceedings of the 15th Annual Conference on Computational Learning
Theory, pages 138-152, 2002.

2003 Chris Mesterharm. Using Linear-threshold Algorithms to Combine Multi-
class Sub-experts. In Proceeding of the 20th International Conference on
Machine Learning, pages 544-551, 2003.

2003 Chris Mesterharm. Tracking Linear-threshold Concepts with Winnow. In
Journal of Machine Learning Research 4, pages 819-838, 2003.

2005 Chris Mesterharm. On-line Learning with Delayed Label Feedback. In
Proceedings of the 16th Annual International Conference on Algorithmic
Learning Theory, pages 399-413, 2005.



292

2006 Alexander Strehl, Chris Mesterharm, Michael Littman, and Haym Hirsh.
Experience-Efficient Learning in Associative Bandit Problems. In Pro-
ceedings of the 23rd International Conference on Machine Learning, pages
889-896, 2006.


