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ABSTRACT OF THE DISSERTATION

The Marker Level Set method: applications
to simulation of liquids

by Viorel Mihalef
Dissertation Director: Professor Dimitris Metaxas

Interface advection methods are important tools with applications in computer graphics

and computer vision, as well as in computational �uid dynamics and other engineering

domains. The classic level set method in particular is one of the most widely used

methods for interfacial advection; however, this method is less successful in tracking

high-curvature regions and thin sheets, and it completely discards information tangential

to the interface.

In this thesis we introduce a new method for advection of interfaces by an external

velocity �eld with improved performance in the problematic areas of the classic level

set method mentioned above, and present several applications to simulation of liquids.

We show that our method, which we term the Marker Level Set (MLS), provides an

accurate, simple, and e�cient alternative to the present technology for interfacial advec-

tion. Moreover, MLS features several capabilities that are quite important for computer

graphics, such as automatic surface texture transport and an easy way of generating

spray and small bubbles during simulation of liquids. We introduce as well a new

MLS-based level set reinitialization procedure which gives improved performance over

classical reinitialization procedures used in the context of the level set method alone.
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Chapter 1

Introduction

The special e�ects industry has always required good methods for simulating free surface

�ows. Such methods need to be accurate, simple to implement, e�cient, versatile and

to o�er a good degree of control on the simulation. This thesis presents a method for

interface advection that has many such desired features. We will show that this method,

which we term the Marker Level Set (MLS), provides an accurate, simple and e�cient

alternative to the present technology for interfacial advection. One of the most widely

used interface tracking methods by the �uid simulation e�ects developers is the Particle

Level Set method (PLS), and we will try to compare our method with that one whenever

possible. As an overview, on standard two dimensional tests our method outperforms

the PLS while being theoretically more e�cient and easier to implement.

At the Siggraph 2004 conference the developers that worked on the movie Day After

Tomorrow (2003) explained that, for simulating the scene of the �ooding of the streets

of New York City, they had to constantly reinitialize the position of the foam particles

traveling with the giant wave, so that they align with the wave surface. Similarly, the

developers who worked on the special e�ects involving the Sandman in Spiderman 3

(2007) reported at the Siggraph 2007 conference that they had as well to realign the

sand or other particles supposed to travel on the surface of the Sandman's deforming

body. For such cases the Marker Level Set method may be a blessing, given that it

features markers on the surface at any time. The markers actually de�ne the surface in

the MLS method, and they are coupled with a level set which helps recover a smooth

surface and also helps detect topological changes.

The surface markers characteristic to the MLS method o�er several important capa-

bilities to the method, namely automatic surface texture transport and an easy way of
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generating spray and bubbles during simulation of liquids by using the deleted markers.

The PLS is the only other interface advection method that o�ers similar capabilities,

however MLS can handle surface texture dynamics with less di�usion induced by the

interface sub�ow as we will argue later on.

Although we focus in this thesis on its applications to simulation and animation

of liquids (that is, computer graphics) the MLS method may prove useful in computer

vision as well. For example, as a more-accurate-than-the-level-set method it could be

used to improve the results obtained with the standard level set method, for problems

in which corner resolution or thin strands are important to detect or to track. It can

also be used to �nd skeletons of two or three dimensional closed regions - and we

present several encouraging preliminary results in the last chapter. We will also outline

directions of possible research in computational �uid dynamics that may bene�t from

the features of the Marker Level Set. To name only two, surfactant controlled dynamics

and atomization are among the most promising.

In the following chapters we will look �rst at alternative methods for surface evo-

lution, including texturing issues, then we will present the general idea and its speci�c

implementation, together with relevant two and three dimensional validating numerical

tests. The issue of redistancing and its new incarnation in the MLS framework will be

discussed in chapter 4, while the following chapter will be dedicated to showcasing the

strengths of MLS when coupled to a Navier-Stokes solver, stressing on its texture dy-

namics capabilities and ease of generation small scale structures like droplets of bubbles.

Conclusions and directions for future work will round up the thesis in the �nal chapter.
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Chapter 2

MLS in the context of alternative methods for interface
advection

In this chapter we will give an overview of several representative interface advection

methods used in computational �uid dynamics and computer graphics, and make per-

tinent comparisons with the Marker Level Set Method where appropriate. The setup

we are considering is the following: given an initial (closed) surface (or a closed curve

in two dimensions) and a smooth velocity �eld u varying in time, one would like to

�nd the position of the surface at any instant in time, given that each point of the

surface moves with a velocity given by the velocity �eld at that point. The surface

is allowed to change topology upon self-intersection or break-up. The motion of the

surface points is thus governed by the equation dx/dt = u(x, t). Dual to this explicit

formulation are the formulations that describe the surface and its dynamics implicitly.

The level set method is an example of such an implicit method, describing the surface

as the zero level of a three-dimensional scalar function, usually denoted with φ. The

dynamics of the surface are embedded in the dynamics of the whole level set with the

level set equation φt +u ·∇φ = 0. Implicit methods like the level set method are usually

Eulerian, meaning they are numerically discretized on a �xed grid. Explicit methods on

the other hand are usually Lagrangian, in that the numerical discretizations are done in

a moving coordinate system (usually respecting the characteristics of motion - we will

come back to this later in the text). Exceptions exists, like the Lagrangian Level Set

method proposed in Hieber and Koumoutsakos [1], but usually one uses the duality Eu-

lerian/Lagrangian to situate a speci�c method, and we will shape our next discussion in

such a manner. Anticipating, our Marker Level Set method is an Eulerian-Lagrangian

hybrid, using �the best of both worlds� to its advantage.
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2.1 Level Set based methods.

The Eulerian part of our method uses a level set method to advect the interface, and

we begin our discussion of Eulerian methods with it. Level Set Methods are widely

used tools for advecting interfaces with applications in computational �uid dynam-

ics, computer graphics, computer vision, and many other �elds, as presented by books

like [4�6]. The original level set approach to interface capturing was proposed by Osher

and Sethian [7], and is a particular case for a general class of the so-called interface cap-

turing methods, in which the interface is not explicitly tracked but rather reconstructed

from a scalar �eld (the level set in our case; in general this scalar �eld may be thought as

a "color function"). Implementation simplicity and automatic handling of topological

changes of the interface are the main strengths of the original level set method. Among

its weaknesses lie excessive numerical regularization, which results in rounding of the

interface corners and a possible overall-large mass loss or gain. These issues are ad-

dressed in a number of papers. For example, Sussman and Puckett [8] and Sussman [9]

combine the use of level sets and volume fractions for exact mass conservation; however,

one drawback of this method is that it is slightly inaccurate with respect to corner ad-

vection because both level set and volume of �uid methods are Eulerian, thus displaying

similar numerical di�culties to the original level set method. Enright et al. [2] propose

hybridizing Lagrangian and Eulerian techniques and obtain a successful particle level set

method (PLS), in which Lagrangian massless particles are placed inside and outside the

interface, advected concurrently with it, and used to correct the zero level set location.

The success of the method consists in its high accuracy in high-curvature regions and

good mass-preservation properties in simple tests. Potentially even more successful is

the update of the PLS by Losasso et al. [10, 11] by using adaptive (octree) techniques.

Similarly with the PLS, our markers provide subpixel information that the Eulerian grid

loses due to discretization errors. Such information is not directly available in methods

like the one proposed by Bargteil et al. [12], where Lagrangian information is given by

the surface triangles obtained by isocontouring the (Eulerian) level set. The main two

di�erences between their and our framework are that, �rst, their (Lagrangian) triangle
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vertices are reinitialized every time step, based on the Eulerian reconstruction of the

zero level set, thus are prone to reinitialization errors, while we do not reinitialize the

markers, and thus do not introduce grid-based errors. Second, the number of markers

used by our method is user-de�ned, and can be as large as the computational resources

allow it to be, whereas they are constrained to use a number of Lagrangian markers

between 3 and 12 in three dimensions (the number of the zero level set crossing points

in a cubic cell). [1] proposed recently a Lagrangian PLS (LPLS), in which they also

use a level set and particles placed within a tube about the interface. Their particles

do not carry along spheres that de�ne the interface, but rather Gaussian maps that

spread their in�uence locally. Their method is more e�cient than the PLS, but their

3D implementation is less accurate. Our second Marker Level Set method resembles

the LPLS in the use of the Gaussian kernels but we place our particles directly on the

interface, unlike the PLS type of methods, resulting in more accurate interface tracking.

2.2 Tangential information. Texture advection.

Another undesirable feature of the level set method and its Eulerian updates, cured by

our MLS method, is the loss of tangential information along the interface in the level

set setting. This is due to the fact that the tangential component of the advection

velocity in the level set equation (1) is not taken into account - the advection velocity u

is projected onto the local gradient of the level set, which is normal to the interface. The

only works we are aware of that address this problem are Pons et al. [13] and Xu and

Zhao [14]. Their respective formulations are based on the use of two coupled level sets.

Although they manage to show successful results for simple cases of tangential advection,

their purely Eulerian method still displays the aforementioned problems that mar the

original level set approach. In particular, their method cannot be used for accurate

computational �uid dynamics numerical simulations (which is one of the goals of our

method). Our method recovers the tangential information, lost by Eulerian techniques

that use the level set or the volume of �uid method, through the use of an unstructured

set of surface markers. As an important note, for both the PLS and the LPLS methods
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one may imagine a conceptual attempt to transport interfacial tangential information by

using the particles near the zero level set and interpolating/extrapolating techniques.

However, for highly deforming velocity �elds, the nonzero level sets may su�er high

distortions. As a consequence, the particles would not anymore be a reliable source for

transporting information tangential to the interface. This does not happen in our MLS

framework, because the markers are always situated on the interface, they de�ne the

interface! Here is a good place to mention that the advection of tangential information

is especially important in graphics, speci�cally in the form of texture advection on

surfaces. There are several methods that concentrate on advecting the texture through

the �ow �eld, e.g. [15�17], that work well for some �uid simulations, but not for our

speci�c case of liquid surface (rather than volume) texture advection. Stam [18] showed

beautiful �uid texture advection on arbitrary surfaces of �xed shapes, in contrast MLS

can handle textured dynamic liquid shapes. To address the particular context of liquids,

Rassmusen et al. [19] proposed a method that advects texture particles, initialized near

the interface, through the �uid �ow �eld. Their method, while closest to MLS among all

the current advection methods, di�ers from MLS in an essential way: the markers they

use are �passive� color carriers, whereas our method recognizes their essential capacity

of carrying both texture and motion characteristic information. We also provide a full

mechanism for deletion and addition of markers, including local color inheritance. Wiebe

and Houston [20] and Houston et al. [21] stored three-dimensional texture coordinates

in a grid structure and advected them as scalar �elds. To avoid artifacts resulting from

volumetric advection, the authors used extrapolation techniques to force the gradient

of the texture �eld to be perpendicular to the interface normal. Kwatra et al. [22]

and Bargteil et al. [23] present two similar approaches to generate liquid �ows with user

speci�ed textures. In their work they use texture synthesis methods to create the illusion

that the liquid has a volumetric patterned texture similar to the one initially visible on

the surface. Our results can be viewed rather as simulating a liquid carrying a very

shallow strip of surface paint, which is moved together with the surface and changes

color due to mixing. Another di�erence is that in our approach the textures su�er

less grid-based di�usion per advection step than in their work, due to the colors being
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carried by the surface markers, in a Lagrangian rather than an Eulerian method. The

method of Bargteil et al. [12] allows for advection of texture coordinates (or other surface

properties) on the actual surface, even though no mechanism for texture generation in

the case of topological break-ups was o�ered. We note that the MLS has a built-in

marker addition routine for such cases, and along with it local interpolation of texture

from neighboring markers.

2.3 Lagrangian methods. SPH based methods.

Another class of interface advection methods is that of the (Lagrangian) front tracking

methods, which track the interface directly by placing particles/markers along the in-

terface and advecting them directly, such as proposed by Unverdi amd Tryggvason [24]

or Shin and Juric [25]. The usual problem with these types of methods is that three-

dimensional formulations become complicated when dealing with topological changes

and the subsequent manifold surgery. The method presented in [25] is a somewhat

unique case in front tracking in that it manages to treat both two and three dimen-

sional cases without using logical connectivity between elements. However, their method

would have problems resolving �ows featuring long and thin strands or many small

droplets/bubbles because they use a global volume conservation technique. Their spe-

ci�c volume conservation method biases small curvature regions against large curvature

regions in a nonphysical manner, and may lead to shrinking and ultimate disappear-

ance of �ne features like the ones mentioned above. For example, regions where the

u · ∇φ = 0 (e.g. if the velocity equals zero) will be mistakenly adjusted. They may

also lose mass as every once in a while they remove all markers and reconstruct them

based on a possibly inaccurate indicator function. Our method does not perform such

reconstruction which is ultimately destructive of the characteristics, but rather tries to

carefully preserve them and, as a consequence, our volume is also very well preserved.

The work of Raad and Bidoae [26] is similar to ours in the spirit of using surface mark-

ers to designate the position of the interface. However, their approach doesn't use a

consistently closed surface representation of the interface (the zero level set component
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of the MLS ful�lls that function for us) and their results su�er as a consequence, dis-

playing artifacts such as holes in the surface. For the same reason, their approach to

increasing local surface marker density, based purely on interpolating marker positions,

is likely to introduce extra artifacts in the surface location. Aullisa et al. [27] propose a

useful method for accurately and e�ciently tracking interfaces with the help of surface

markers, showing better test results than PLS or any other approach based on a single

scalar function, such as a volume fraction or a level set function. Their method is not

formulated to deal with topological changes though, which is an important case that

MLS does address successfully. Our method can be also compared to the various particle

methods used in graphics, for example [28�30]. These methods are customarily variants

of the smoothed particle hydrodynamics method of Monaghan [31], and as such they

place particles throughout the body of the liquid; MLS is more e�cient in this respect,

placing particles only along the interface. Also, their surface reconstruction often uses

an implicit method that is employed at every time step to recover a smooth surface from

the particles. Because there is no dynamic link between the implicit surface and the par-

ticles (in MLS this link exists), these methods are prone to lacking temporal coherence.

Adams et al. [32] is a nice recent attempt that improves a lot on the interface resolution

by the SPH particles, proving that the SPH methods are reaching maturity and are

a good candidate for attempting both CFD simulations and animations for computer

graphics.



9

Chapter 3

The MLS method. General framework and
implementation. Numerical tests.

In this chapter we will present in detail the theoretical idea of the MLS method, its

implementation and various test results. In the next chapter we will also introduce a

new method for solving the level set reinitialization equation, including a preliminary

analysis of the cases in which the Russo and Smereka [3] reinitialization method may fail,

but where our method does not. Before getting into the meat of the problem, we will

make a short preamble concerning the advection equation in general and its treatment

by the level set method.

3.1 Preamble: the level set method and the advection equation.

The standard level set setting is the following: in a domain Ω ⊂ Rn we are given a

closed hypersurface Σ (which may be thought of as the interface between two di�erent

materials, e.g. water and air), which we represent as the zero level of a di�erentiable

function φ (the level set), de�ned on the whole domain: Σ = {x ∈ Ω : φ(x) = 0}. Σ

thus separates the positive region of the level set (water) from the negative one (air).

The hypersurface moves inside Ω following a velocity vector �eld u de�ned on the whole

domain (or extended to the whole domain from a velocity vector �eld de�ned along the

interface). The equation of motion is the transport (or advection) equation

Dφ

Dt
= 0 (3.1.1)

written with the use of the material derivative D
Dt = ∂

∂t +u ·∇. The standard interpreta-

tion of this equation is that φ stays constant along the characteristics of motion. From

a mathematical point of view, this is a �rst order (linear) PDE, and one of the preferred
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methods for its resolution is the method of characteristics. Intuitively, a characteris-

tic curve can be understood as the trajectory of a massless marker following the path

of motion. A characteristic curve has the nice mathematical property that the original

PDE to be solved reduces to an ODE along each characteristic curve. For example, if we

work in one dimension and the velocity �eld is constant, the characteristics can be com-

puted to be parallel straight lines. A similar situation occurs if one solves the inviscid

Burgers'equation, although in this case the straight lines may intersect (see for example

chapter 3 in Chorin and Marsden [33]). The characteristics in our case of a variable

smooth external velocity �eld are non-intersecting curves. The method of characteris-

tics has an immediate implication in choosing the correct spatial discretization method

for 3.1.1, namely the so-called upwind methods. These methods bias the discretization

stencil in order to conform to the local �ow of information which follows the character-

istics. For example, in one dimension, if the velocity is positive at a node, the values of

φ are moving from left to right, and one looks to the left of the node to determine what

value of φ will land on the node at the end of the time step. In practice, we discretize

the equation 3.1.1 on an Eulerian grid and we solve it using �rst order upwind methods

of advection for the level set (speci�cally, we use an implicit semi-Lagrangian method,

as in Strain [34]). Although higher-order discretization methods like Hamilton-Jacobi

ENO or WENO (see [4,5,7]) have been an important part of the level set methodology

from its birth, they are less important for us (in a �rst stage at least), due to the sub-

grid accuracy induced by the markers, that alleviates the need of using such high-order

methods. The interface can be reconstructed at any step by using a contouring routine

to extract the zero level set, for example, marching squares/cubes in 2D/3D. More often

than not, authors prefer to keep the level set as a signed-distance function with respect

to the interface, in order to ensure more robust and accurate computation of gradients

and other constant level sets. With this in mind, Chopp [35] introduced the idea of

reinitialization, whose purpose is to maintain the signed-distance property. Sussman et

al. [36] formalized it into solving the reinitialization equation

∂φ

∂t
= sgn(φ0)(1− |∇φ|) (3.1.2)
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and proposed upwind methods for solving it. Related important contributions are Peng

et al. [37], who discuss improvements to the numerical solution of 3.1.1 and use them

in the development of fast level set methods, and Adalsteinsson and Sethian [38], who

obtain the signed distance function as a bi-product of the fast marching method. Russo

and Smereka [3] discuss various artifacts associated with certain numerical solutions

to 3.1.1 and o�er solutions to them. In the next chapter we show how their work can

be improved in the MLS framework.

Equations 3.1.1 and 3.1.2 need to be solved only in a neighborhood of the interface

(see e.g. [37,38]), and we apply the same philosophy. One of the advantages of the level

set method is that many important geometrical quantities can be readily calculated

from the level set function, for example the unit normal n = ∇φ/|∇φ| and the curvature

κ = ∇ · (∇φ/|∇φ|).

3.2 General framework of the MLS.

Our method uses a set of markers placed along the zero level set. They are used

for several purposes: 1) to track characteristic information, 2) to help reconstruct the

interface in regions where the level set method has failed to accurately preserve mass,

and 3) to provide tangential dynamics information that the level set method discards.

Conceptually, our approach is more e�cient than the PLS or other standard methods

such as Harlow and Welch [39] or Rider and Kothe [40], which place particles either

throughout the domain or in a narrow band about the zero level set. We �rst place

marker particles in a regular fashion along a linear reconstruction of the zero level set,

obtained with marching squares/cubes. After this marker initialization process we

advect the particles using, at each time step, the evolution equation

dxp

dt
= u(xp) (3.2.1)

where xp is the position of the particle and u is its velocity. Particle velocities are

interpolated from the velocities on the underlying grid using either trilinear or tricubic

interpolation. Similarly to the proponents of the PLS, we found that we need the

numerical solution of 3.2.1 to be at least second-order accurate for good results, and we
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used the second-order Runge-Kutta (Heun's version) in order to accomplish this.

We limit the total number of markers that lie inside a cell, which the PLS does as

well. In our experiments, we initialize up to 20 markers per interface cell and allow a

maximum of 50 markers (this maximum is rarely reached or needed though; in fact, as

we will show in the examples section, the average number of markers per cell was in the

range of 6-9). If more markers enter a full cell we delete the new comers. When dealing

with stretching/compressing of velocity �elds, markers may clump together; limiting

the maximum number of markers per interface cell is one of the methods that helps

keep the markers relatively well distributed. Other methods consist in the addition and

deletion of markers. We use two routines for these processes, with the following logic.

AddMarkers If the number of markers within an interface cell drops below a certain

threshold (1 in our case) we consider adding markers to the cell. If the length (area in

3D) of the interface is above a certain threshold τ (for example τ = ∆x/2), then we add

markers along the linear reconstruction of the interface (in a number proportional with

its length); this ensures that we don't add markers all the time the interface enters a

new cell, and makes the method more robust. If the length (area in 3D) of the interface

is below τ , we add only two markers (in 2D), at the intersection with the cell edges.

For all the results presented in this thesis we do not apply any extra regularization

techniques to ensure a uniform marker distribution. The addition/deletion mechanism

already provides good results for practical purposes, although there is still room for

further improvement (for more considerations on this please see the convergence section

in this chapter).

Delete Markers Our approach to deleting surface markers is inspired from physical

reality: we consider that interfacial markers carry properties of both phases. Let us

illustrate this concept with two examples. If a thin sheet of water stretches more and

more, it becomes a spray of �ne liquid particles due to surface tension. In such a

case the Lagrangian surface markers can be used to capture the spray that would be

missed by a coarse Eulerian grid, hence they should not be deleted. Similarly, if an air

bubble "dissolves" inside water, leading to formation of an underwater cloud of micro

bubbles, the surface markers could be used to capture this phenomenon. Again, this
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suggests that they should not be deleted. In both these examples markers represent

subcell information lost by the Eulerian grid. While this seems to indicate that the

most realistic philosophy would be not to delete surface markers, our experiments show

that when implementing MLS one has to take into consideration the speci�c correction

methods for the level set values based on the marker placement. In particular, marker

deletion contributes to a more robust overall MLS method. Thus, for the examples

presented in this work we do delete markers, but only if they lie in "positive" cells (with

all four corners positive). Such markers would customarily appear when reconnection

takes place, and are deleted to mark the topological reconnection of two bodies of liquid.

In contrast, markers that lie in "negative" cells are not deleted, and this allows the MLS

method to capture thin sheets of liquid, similarly with the PLS method.

The MLS method starts with the initialization procedure already described, and

then repeats the following procedures every time step:

1. Advect the level set

2. Advect the markers

3. Correct the level set values based on marker positions

4. Add and then delete markers

3.3 Implementation.

We covered all the steps with the exception of the fourth one in the previous two

sections. Next, we present two versions of the MLS that di�er from one another in the

method used to implement step 3. To get an idea in advance of our strategy, MLS-1

uses markers in two fashions to help with the update of the signed-distance. In a �rst

step, it updates the local distance based on marker position, but preserves the sign. In

a second step, it updates the sign using a linear reconstruction/approximation of the

±∆x level sets. MLS-2 uses markers in some neighborhood of each grid point to apply

a correction to the level set value. The correction is performed so that it forces the level

set to take (approximately) zero values at the marker positions. The two versions have
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similar accuracy. The �rst version seems to be slightly more robust while the second

one is more e�cient and easier to implement in three dimensions.

3.3.1 MLS-1, a �rst version of the MLS

The �rst thing that one naturally tries to do in order to carry information from surface

markers to the level set is to update the level set value by keeping its sign but modifying

its value, based on the exact distance to local markers. We accomplish that with the

following routine:

Update Distance

for each marker mk

for any grid point (i,j) in a small neighborhood of mk

|φi,j | = min(|φi,j |, dist(nodei,j ,mk)

Here dist is the exact Euclidean distance. The whole update takes O(M*k) opera-

tions, where M is the total number of markers and k is the dimension of the zero level

set (e.g. 2 in three dimension). It is important to note that, at the end of this proce-

dure, all the values in a narrow band about the interface have correct absolute values.

Furthermore, all the nodes farther than ±∆x from the interface have the correct sign

as well, hence we can consider them fully updated.

However, updating the distance is not enough - a subtle local error mechanism

requires more work to be done. This error can cause the level set to "hang" over grid

nodes (see �gure 3.1 for a 2D illustration of the e�ect).

The "hanging e�ect" is present only in more than one dimension. It simply consists

of a node receiving wrong sign information from the level set computation at some

instant in time, and being unable to recover its correct sign at subsequent time steps

even after the distance is updated from local markers. In order to eliminate this e�ect we

need to somehow send the correct sign information to the level set. Figure 3.1 indicates

that the ±∆x level sets are correctly constructed (these are obtained using the same

marching squares algorithm as for determining the zero level) and do not su�er from
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Figure 3.1: The "hanging" e�ect in 2D: before and after hanging occurs.
The grid point that "hangs" has the wrong sign information, even though
updated with the correct distance information. The interface is �gured in
green, the ±∆x level sets in light blue and red.

any artifacts, unlike the zero level set. This is the core idea for MLS-1: to use the ±∆x

level information in order to reconstruct the correct sign within the narrow band. This

is the second (and last) step in which we use (indirectly) the marker information to

reconstruct the level set about the zero interface:

Update Sign

for each "interface node" (i,j)

d1 = dist((i, j),−∆x level set)

d2 = dist((i, j), +∆x level set)

if d1 < d2

sgn(φi,j) = sgn(d1−∆x)

else

sgn(φi,j) = sgn(∆x− d2)

This second procedure updates the sign of the level set in the immediate vicinity of
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the interface, essentially selecting the closest characteristic information of the reinitial-

ization equation 3.1.2 in making its decision on which sign to choose. For computing

the distances d1 and d2 we can either use level set values, or compute exact distances

to the reconstructed linear approximations to the ±∆x level sets.

Our implemented algorithm seems to indicate that more accurate results are obtained

when an extra Update Distance procedure is run after all was said and done, i.e. after

step 5 (as a note, the original PLS works the same way). This way the signed distances

are updated using the correct sign, thus the hanging e�ect does not occur anymore.

Note that, because we compute in this method exact distances to the interface in a

tubular neighborhood, there is no need to solve the reinitialization equation 3.1.2.

3.3.2 MLS-2, a second version of the MLS

Our second version of the MLS computes correction terms for the level set values at

each of the nodes located in a tubular neighborhood Σ∆x of the interface. Namely, for

each node (i, j) ∈ Σ∆x we compute φnew
i,j = φi,j − λi,j , with λi,j the local corrections

of the level set. These corrections are computed as an average of the current level set

values at the closest local markers:

λi,j =
∑

k

wkφ(xk)/
∑

k

wk (3.3.1)

where xk are the positions of the markers from a small neighborhood of (i, j) and wk

are weights associated to these markers and the node (i, j). φ(xk) is the interpolated

value of the level set function at the marker location. By performing the local correction

of the level set we e�ectively force its zero level to align with the markers. Thus, our

procedure is simply the following:

Update LS Value

for each node (i, j) close enough to the set of markers

φnew
i,j = φi,j −

∑
k wkφ(xk)/

∑
k wk
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We used Gaussian weights of the form

w(q) =





e−(q/c)2−e−1/c2

1−e−1/c2
, 0 ≤ q ≤ 1;

0, otherwise.
(3.3.2)

where q = qi,j(x) = dist(x, (i, j))/ρ, c ∈ [0, 1] is a constant and ρ is the kernel radius

(the distance beyond which the weight vanishes).

We also need to perform periodic reinitialization of the level set in this setup. To

that end, we solve 3.1.2 with our update of the Russo-Smereka reinitialization procedure

(see [3]) in the context of the MLS, developed in last section of the next chapter. The

scheme is the following:

Reinitialize

for each node (i, j)

φn+1
i,j =





di,j , (i, j) ∈ Σ∆x

φn
i,j −∆t · sgn(φ0

i,j)(G(φ)i,j − 1), otherwise.

where di,j is the local distance as computed by the MLS2 update. We use an upwind

scheme to compute G(φ)i,j , the approximation to the gradient of φ.

3.4 Numerical tests.

3.4.1 Rigid Body Rotation of Zalesak's Disk

We �rst test the rigid-body rotation of Zalesak's disk in a constant-vorticity velocity

�eld, as in [41]. The initial data is a slotted circle centered at (50,75) with a radius of

15, a width of 5, and a slot length of 25. The velocity �eld is given by

u(x, y) = (π/314)(50− y)

v(x, y) = (π/314)(x− 50)

so that the disk completes one revolution every 628 time units. We use a 100×100 grid,

and the time step equals the grid spacing.

Figures 3.2 and 3.3 illustrate the high quality solutions obtained with MLS-1 and

MLS-2, after one or two rotations. The �nal solution is plotted overlapped with the
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Figure 3.2: Zalesak's problem using MLS-1. The MLS-1 solution is in black,
theory in orange. From left to right: after one rotation, after two rotations,
after one rotation showing also the ±∆x level sets.

Table 3.1: Comparison of initial particle counts for MLS, PLS and LPLS. The
results for PLS and LPLS come from [1].

Spacing MLS-1 MLS-2 PLS LPLS
1/50 770 413 3328 208
1/100 1552 840 12864 804

theoretical solution for the sake of comparison, and the position of the ±∆x level sets

after one rotation is also shown. These �gures indicate that both MLS versions do well

in rigid motion velocity �elds and are very good at preserving the corners of the original

geometry. Level set reinitialization was used for MLS-2 only. For the sake of comparison

we show also in �gure 3.4 the result of PLS and simple level set method in the Zalesak

test case. Our result is comparable to the PLS and superior to the level set solution.

Figure 3.3: Zalesak's problem using MLS-2. The MLS-2 solution is in black,
theory in orange. From left to right: after one rotation, after two rotations,
after one rotation showing also the ±∆x level sets.
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Table 3.2: Area preservation properties for Zalesak's problem
MLS-1 MLS-2 PLS (from [2])

Grid Cells Area Area Loss Area Area Loss Area Area Loss
exact 582.2 0% 582.2 0% 582.2 0%

One rev. 50 576.14 1.04% 577.38 0.82% 495.7 14.9%
100 581.04 0.20% 580.96 0.21% 580.4 0.31%
200 581.73 0.08% 581.78 0.07% 581.0 0.20%
exact 582.2 0% 582.2 0% 582.2 0%

Two rev. 50 576.12 1.04% 576.54 0.97% 487.6 16.2%
100 581.05 0.20% 581.04 0.20% 578.0 0.72%
200 581.81 0.07% 581.80 0.07% 580.0 0.38%

Figure 3.4: Comparison of the level set solution (red), particle level set solu-
tion (blue) and theory (green) after one revolution. See also [2]. Our result
is slightly better than the PLS one. This is visible in our solution having
more overlapping between the initial and �nal curves compared to PLS, and
also in the better area conservation properties reported in table 3.2.

For each of the tests we ran, we performed a comparison between the area loss that

each of the MLS methods incurs, and the results for PLS and LS from [2]. Overall, we

obtained better area preservation than PLS and much better than the LS. Here are the

results for the Zalesak problem for the two MLS methods and the PLS (from Enright

et al. [2]).

The total number of markers in the Zalesak problem stays fairly constant (in the

range of the initial number of markers 1544, which resulted over the whole period in an

8.63 average/cell for MLS-1 and an 8.6 average/cell for MLS-2). We present in Figure 3.5

the variation in time of the average marker-per-cell count. In Table 3.1 we show the

initial particle counts for MLS-1 and MLS-2, and how they compare to PLS and LPLS.
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Figure 3.5: Variation in time of the average marker-per-cell count in interfa-
cial cells for the Zalesak test.

In fact, MLS-2 was able to sustain good runs with fewer particles than MLS-1, and

both were using much fewer particles than PLS and slightly more than LPLS. The data

for PLS and LPLS come from [1]. In section 3.4.4 we will show and discuss numerical

convergence results for Zalesak and the other 2D tests we ran.

3.4.2 Single Vortex

In order to check how the MLS does when dealing with stretching and tearing �ows

we use the "vortex-in-a-box" problem proposed by Bell et al. [42]. The velocity �eld is

de�ned by the stream function

Ψ(x, y) =
1
π

sin2(πx) sin2(πy) (3.4.1)

The computational domain is the unit square with a disk of radius 0.15 placed at

(0.5, 0.75), and we use a 128 × 128 grid. The time step used for this grid was 0.01.
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The velocity �eld stretches the disk into a long thin spiral, testing the capacity of the

interface advection method to preserve long thin strands. PLS is known to be one of

the few methods that can pass this test quite successfully. We can see that the MLS

methods also do well. Figure 3.6 shows the solution obtained with MLS-1 at time t=5.

In green we show the initial green markers (2334 altogether at the beginning, or 20 per

cell) and in brown the markers during the simulation. The total number of markers at

the end of the run is 9417.

Figure 3.6: The MLS-1 solution to the vortex �ow (black) show here together
with initial particles (green) and added particles (brown) at time t = 5. On
the right we show only the particles.

Figure 3.7 illustrates how MLS-1 performs in the same experiment if we modulate

the velocity �eld so that it is time reversed until the geometry returns to the initial

con�guration. This is achieved by multiplying the velocity �eld by , where T is the time

at which the �ow returns to its initial state (see [43]). The reversal period used in the

error analysis of the vortex problem is T = 8, producing a maximal stretching at T =

4. Figure 3.7 shows the con�guration at time 4 on the left, and the usual initial (green)

and added (brown) particles in the middle, while on the right we show superimposed
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the initial con�guration (in orange) and the �nal solution after one period (in black).

The overlapping is almost perfect. Our solution is slightly more resolved that the PLS

one (see for example [44], �g.4). The total particle count is 4880 at T = 4 and 3480 at

T = 8.

Figure 3.7: MLS-1 results for the periodic vortex �ow. Left and middle show
the interface (black) and the particles (initial = green, added = brown) at
maximum stretching time T=4. On the right we see overlapped the original
(orange) and the �nal (black) con�guration of the interface.

In �gure 3.8 we illustrate the MLS-2 simulation results. The total marker count at

T = 5 is 5076. We used trilinear interpolation of the level set function at the markers

positions in the Update LS Value procedure (section 3.3.2) - this ensured the presence

of the interface almost everywhere a marker was present. For the periodic vertex �ow

problem (�gure 3.9), the marker count was 3045 at T = 4 and 2827 at T = 8. We

performed reinitialization every tenth step. Again, the solution returns to an almost

perfect circle and, at T = 4, the interface was even better resolved than for MLS-1 (again,

an e�ect of the trilinear interpolation). In Table 3.3 we display the percentage of lost

area and we notice improvement even over the PLS for both MLS implementations with

full particle addition/deletion.

For the periodic single vortex problem we measured over the whole period a 7.73

marker average/cell for MLS-1 and a 6.74 marker average/cell for MLS-2. The variation

in time of the average marker-per-cell count is presented below. Further down, in

Table 3.4, we compare again the initial particle count for successful runs using MLS,

PLS and LPLS. The MLS methods use 3-6 times fewer particles than PLS and 2-5 times
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Figure 3.8: The MLS-2 solution to the vortex �ow (black) show here together
with initial particles (green) and added particles (brown) at time t=5. On
the right we show only the particles.

Figure 3.9: MLS-2 results for the periodic vortex �ow. Left and middle show
the interface (black) and the particles (initial = green, added = brown) at
maximum stretching time T=4. On the right we see overlapped the original
(orange) and the �nal (black) con�guration of the interface.

more than LPLS. Compared to a second order implementation of the standard level set

method, MLS2 was twice as slow, for and initial marker density of 6 markers/interfacial

cell. For numerical convergence results please see section 3.4.4.
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Figure 3.10: Variation in time of the average marker-per-cell count in inter-
facial cells for the 2D single-vortex problem.

Table 3.3: Area preservation properties for the single vortex problem after
one period

MLS-1 MLS-2 PLS
Grid Cells Area Area Loss Area Area Loss Area Area Loss

exact 0.07069 0% 0.07069 0% 0.07069 0%
64 0.0706 0.12% 0.07036 0.46% 0.0694 1.81%
128 0.07061 0.11% 0.07062 0.09% 0.0702 0.71%
256 0.07066 0.04% 0.07063 0.08% 0.0704 0.35%

Table 3.4: Comparison of initial particle counts for MLS, PLS and LPLS in
the single-vortex problem. The results for PLS and LPLS come from [1].

Spacing MLS PLS LPLS
1/64 1164 3776 236
1/128 2334 15040 940
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3.4.3 2D Deformation Field

The �nal test is the most di�cult so far, with more dramatic stretching and tearing

involved inside a unit box. It involves the entrainment of a circle of radius 0.15 in a

deformation �eld de�ned by 16 vortices (as introduced by Smolarkiewicz [45]). The

velocity �eld is periodic in space and given by the stream function

Ψ =
1
4π

sin(4π(x + 0.5)) cos(4π(y + 0.5)) (3.4.2)

Figure 3.11: The deformation �eld setup: 16 vortices treading on a central
circle.

Table 3.5: Area preservation properties for the deformation problem after one
period

MLS-1 MLS-2 PLS
Grid Cells Area Area Loss Area Area Loss Area Area Loss

exact 0.07069 0% 0.07069 0% 0.07069 0%
64 0.0756 -6.95% 0.0703 0.54% 0.0696 1.59%
128 0.0706 0.12% 0.07064 0.06% 0.0705 0.26%
256 0.0706 0.05% 0.07067 0.02% 0.0705 0.26%

The �eld is made also periodic in time (of period 2) using the same procedure outlined

in the single vortex section. We prefer to use (as in Aulisa et al. [46]) a slightly modi�ed

variant of the original test (�gure 3.11), which places the initial circle at (0.5, 0.5), rather

than at (0.5, 0.75), as was originally proposed. This is just for convenience and the �nal
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Figure 3.12: Deformation �eld simulation using MLS-1 at t = 1. Interface in
black, particles in green (initial) and brown (added).

Figure 3.13: Deformation �eld simulations at time t = 2. Final solution
(black) superimposed onto theoretical solution (orange). From left to right:
MLS-1, MLS-2 without marker addition/deletion, MLS-2 with marker addi-
tion/deletion.

results are symmetric to the original procedure (compare [2] and [46] for example). The

initial marker count for the 128×128 test was 2368. The results for MLS-1 at time t = 1,

when the maximum stretching occurs, are presented in �gure 3.12. The marker count at

that time is 4089, while at time t = 2 (when the periodic �ow reverses the circle to the

initial position), the marker count is 2569. At time t = 2 the �ow returns to a perfect

circle (�gure 3.13). MLS-2 performed similarly with MLS-1 (�g. 3.13 and 3.14) and we

tried both a version that does not perform marker addition/deletion and one that does.

Both versions performed similarly at the moment of maximum stretching (t = 1), but

we noticed that the version that uses marker addition and deletion may introduce extra
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markers that would be considered �otsam and jetsam. This happens if one performs too

frequent addition of markers (we found that adding markers every tenth step is good

enough, and the results obtained prove this). We show again excellent area preservation

properties for both MLS (superior to PLS in almost all cases) in Table 3.5.

Figure 3.14: Deformation �eld simulations using MLS-2 at t = 1. No particle
addition/deletion on the left, with marker addition and deletion on the right.

Figure 3.15: Variation in time of the average marker-per-cell count in inter-
facial cells for the 2D deformation problem.
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Finally, for the periodic deformation �eld problem, we measured over the whole

period an 8.27 marker average/cell for MLS-1 and a 6.18 marker average/cell for MLS-

2. Figure 3.15 displays the variation in time of the average marker-per-cell count.

3.4.4 Convergence issues

A proof of convergence for either MLS1 or MLS2 would be a rather involved matter,

in which one would have to account for the global e�ect that local operations like the

level set error correction, deletion and addition of markers would have on the numerical

solution. This would need to also take into account variables like the gaussian width

and slope of the weight functions and the order of the local interpolation. A simpler case

one can look at is the one in which there is no marker addition, and one either enables

marker deletion or not. In such a case let us �rst note that the MLS algorithm consists

of modifying the level set solution (known to be convergent, given that one enforces

stability) in a set of points in the neighborhood of the interface. The modi�cation is

based on marker positions that are easily seen to converge to the exact solution in the

linear case (externally generated smooth velocity �eld) as they give (stable) approxima-

tions to the motion characteristics with order of accuracy equal to the temporal order of

accuracy of the markers (equal to 2 in our tests). If the local error correction of the level

set based on marker position is stable and does not increase the error order of accuracy

then the MLS would converge. While we have no proof yet that this is the case, the

numerical convergence tests performed for MLS2 without marker addition or deletion

indicate that our error correction is indeed stable and the convergence reaches second

order of accuracy. We should however underline the fact that the method has an order

of convergence that depends on several factors: the order of convergence of the markers,

the order of convergence of the level set, the frequency of deletion and the frequency of

addition of markers.

The numerical tests refer to the three problems presented before for a �xed resolution,

the Zalesak, vortex in a box and deformation problems. We present the associated error

and order of accuracy tables in 3.6, 3.7 and 3.8. The tests were performed without en-

abling the addition of markers, and this lead to obtaining convergence rates approaching
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two - the marker advection order of accuracy. We expect that the order of accuracy of

marker advection will be the one dictating the MLS order of accuracy, at least in linear

cases like the ones tested. The error was computed similarly to [8] for example, by

measuring how much the computed interface di�ers from the expected interface:
∫

Ω

1
L
|H(φexpected)−H(φcomputed)|dxdy (3.4.3)

where L is the perimeter size of the expected interface. The error is computed by

1. partitioning the domain into many tiny pieces (e.g., 1000× 1000)

2. interpolating the values of φexpected and φcomputed onto the newly created pieces

3. numerically integrating 3.4.3, where H is the already familiar Heaviside function.

We should mention that performing the MLS marker addition may decrease the accuracy

of the overall method. This is at the moment due to our choice of a low accuracy

marker addition algorithm, that uses the level set itself to introduce the new markers.

The appeal of such an algorithm is that it is simple to implement, but one should be

aware of its shortcomings - the main one being that it uses the possibly inaccurate

level set information to generate the new markers. One can increase its accuracy in

several ways: one can implement a method to generate the new markers at the roots

of a cubic (rather than linear) reconstruction of the level set in the interfacial cells.

One can use for example Newton's method to quickly generate such markers on the

edges of interfacial cells. Another natural way to increase the accuracy is to increase

the accuracy of the level set itself. Related to this, one may want to place the newly

added markers in regions in which the curvature does not exceed a chosen threshold, as

the level set solution's error scales proportionally with the curvature. Finally, a fourth

method that may increase the accuracy of new marker placement is trying to make use

of the local marker distribution, and we are currently investigating such an approach.
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Table 3.6: Absolute area interface error computations for Zalesak's problem
using MLS2.

Spacing Error Order
1/50 10.9 NA
1/100 1.1 3.3
1/200 0.33 1.7
1/400 0.1 1.7
1/800 0.028 1.8

Table 3.7: Absolute area interface error computations for vortex problem
using MLS2.

Spacing Error Order
1/50 5.4e-4 NA
1/100 9.1e-5 2.5
1/200 2.8e-5 1.7
1/400 7.3e-6 1.9
1/800 1.9e-6 1.9

Table 3.8: Absolute area interface error computations for deformation prob-
lem using MLS2.

Spacing Error Order
1/50 19.5e-4 NA
1/100 3.4e-4 2.5
1/200 4.9e-5 2.7
1/400 7.5e-6 2.7
1/800 1.9e-6 2.0

3.4.5 Tangential dynamics

Our method features an extra quality not immediately shared by PLS or other interface

capturing methods of comparable accuracy: it handles naturally movement tangential

to the interface. The level set approach focuses only on motion normal to the interface

and all tangential dynamics is lost. This e�ect is easy to illustrate if we consider a

color �eld associated with the interface and monitor its dynamics in time. In �gure 3.16

we show that nothing changes in time in the appearance of a circle placed into a rigid

rotation �eld similar to the one from Zalesak's test (the grid size is 40 × 40), as there

is no explicit connection between the color �eld and the zero level set. An attempt to

associate color to vertices and advect the color as a vector �eld would show that di�usion

problems appear very soon and the color �eld moves slower that the zero interface. The
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PLS may also have some di�culty capturing accurately the tangential motion of the

interface because its particles lie away from the zero interface. Consequently, under

the in�uence of highly deforming velocity �elds, the particles would lose accuracy in

approximating tangential motion along the zero level set.

Figure 3.16: Inside a rigid rotational �eld a circle represented as a level set doesn't
transport its tangential information (interface color) in time. From left to right:
(left) the velocity �eld and initial level set, (middle) the grid and initial parti-
cle placement and (right) the level set at times 0.66 and 1.32 seconds (and any
subsequent times) when marker-level set coupling is not used.

Figure 3.17: The MLS method transports naturally the tangential information (in-
terface color) in time. From left to right we show the level set at times 0, 0.66 and
1.32 seconds.

Figure 3.18: A contact test: two circles with di�erent colors connect. MLS takes
care of the color change naturally.
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In contrast, �g. 3.17 illustrates the changes that occur as time passes, from the initial

moment to times 0.66 and 1.32. All these are handled naturally by the MLS, by reading

color information from the markers and using it to keep the node colors close to the

zero interface always updated. As with every other detail of the MLS, this is a process

that works painlessly in three dimensions as well.

As a �nal two dimensional test we present (in �g. 3.18) the contact of two circles of

radius 0.15 placed on a unit grid inside a unit velocity �eld pointing up in the lower half

and down in the upper half. The MLS handles both the contact and the color change

of the interface.

3.4.6 3D examples: the Zalesak sphere test

Implementing a three dimensional version of the MLS-2 method requires minimal e�ort,

as all the steps carry on easily from 2D. The only real novelty is that the marker

initialization and addition is now being done along a surface rather than a curve. For

this we reconstruct the surface at every time step using marching cubes and place

markers regularly along each of the surface triangles.

The Zalesak sphere test consists (as in [2]) in a rigid rotation of a notched sphere

of radius 15 placed at (50, 75, 50) in a [0, 100] × [0, 100] × [0, 100] domain. The slot is

5 grid cells wide and 12.5 grid cells deep on a 100 × 100 × 100 grid cell domain. The

constant vorticity velocity �eld is given by

u(x, y, z) = (π/314)(50− y)

v(x, y, z) = (π/314)(x− 50)

w(x, y, z) = 0

so that the sphere completes one revolution every 628 time units. Figure 3.19 shows

the MLS solution at approximately equally spaced time intervals from t = 0 to t = 628.

One may appreciate the non-di�usive quality of our MLS advection method, with the

notch features being nicely preserved, unlike the di�usive performance of the level set

method (see for example [2], �g.27 and 28).
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Figure 3.19: 3D Zalesak sphere test using the MLS method.

3.4.7 3D examples: The Enright test with tangential dynamics

Our last test is the Enright test from [2], which places a sphere of radius 0.15 within

a unit computational domain at (0.35, 0.35, 0.35). The sphere is deformed by the three

dimensional incompressible �ow �eld proposed by [43], which combines a deformation

in the x− y plane with one in the x− z plane. The velocity �eld is

u(x, y, z) = 2 cos(πT/2) sin2(πx) sin(πy) sin(πz) (3.4.4)

v(x, y, z) = − cos(πT/2) sin(πx) sin2(πy) sin(πz) (3.4.5)

w(x, y, z) = − cos(πT/2) sin(πx) sin(πy) sin2(πz) (3.4.6)

T is the period of the �ow, after which the sphere returns to its initial con�guration.

We used a domain of 100×100×100 grid cells. In �gure 3.20 we present the �nal results

for a period T = 3 test, at times t = 0, 10∆s, 20∆s, 30∆s, 40∆s, 50∆s, 60∆s, 70∆s,

90∆s, 110∆s, 130∆s and 150∆s. Our results are comparable to the ones obtained by

the PLS and much superior to the simple level set method ( [2], �g. 29 and 30). The

extreme stretching at the time t = 75∆s thins the interface to less than a grid cell, and

several surface break-ups appear as a consequence. This is similar to the performance of

the PLS, and an octree-based extension of the MLS would certainly improve the results,
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as proved by [11].

Finally, we show in �gure 3.21 the results of an Enright test with period T = 2.5,

for which we applied a surface texture to the initial sphere. Each of the surface markers

receives the initial texture information as an (R, G, B) triplet, and carries it along,

thus showing in a dramatic fashion the tangential dynamics of the interface. Even

after severe stretching and compression, the texture returns to its initial con�guration

with no visible di�usion. We also implemented successful routines that handle texture

extrapolation to newly added markers (reported elsewhere). This functionality that

o�ers immediate visual information about the tangential motion of the interface goes

beyond present methods reported in CFD literature, as far as these authors know. Note

that the MLS method works in such a manner that it handles automatically tangential

motion/texture advection even for topology changing cases. We are certain that this

will prove very useful for many numerical experiments involving interfacial dynamics.

Figure 3.20: The Enright test using the MLS method.
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Figure 3.21: Textured Enright test with period T = 2.5. First row times: 0,
0.16T, and 0.32T. Second row times: 0.5T, 0.75T, and T.
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Chapter 4

Analysis of the reinitialization equation. MLS
reinitialization.

This chapter contains our new approach to reinitializing the level set based on the

Marker Level Set approach. We will present several analytical and numerical insights

that lead to the �nal solution. We start with a preamble concerning the reinitialization

philosophy.

Many authors prefer to keep the level set as a signed-distance function in a tubular

neighborhood of the interface, in order to avoid numerical errors in the gradient and the

non-zero level sets due to the possible distortions that the level set may incur during its

movement. Such distortions may be spatially unevenly distributed along the interface,

and using the same stencil for the level set everywhere along the interface would not take

into account this lack of uniformity. Maintaining the level set a signed-distance function

amounts to keeping the length of the gradient equal to 1 throughout the domain. The

process that performs this was called reinitialization by Chopp [35] where it was used

in the context of minimal surfaces. Sussman et al. [36] and [47] used it in the context of

free boundary problems in two-phase �ow, Chen et al. [48] for crystal growth, Merriman

et al. [49] for dynamics of multiple junctions. Other important contributions are Peng

et al. [37], who used it in the development of fast level set methods, and Adalsteinsson

and Sethian [38] who obtain the signed distance function as a bi-product of the fast

marching method.

There are several methods of performing the reinitialization. The conceptually sim-

plest one would be to measure the distance from each grid point to the interface itself

and multiply it with the sign at the grid point. This is considered usually to be too ex-

pensive for practical purposes, but [38] proposed e�cient methods of implementing this
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idea locally, in the context of the narrow band methods, while Strain [50] has developed

fast tree-based methods.

In the following we focus on the approach introduced in Sussman et al. [36] and

discussed and updated in Russo and Smereka [3]. It is based on solving the following

reinitialization PDE :
∂φ

∂t
= sgn(φ0)(1− |∇φ|) (4.0.1)

φ0(x) = φ(x, 0) is the initial level set, which has to be changed into a signed-distance

function, such that the zero level set is preserved. When this equation is solved up to

time T , then φ(x, T ) is the signed-distance function for all the points within distance T

from the interface. This is apparent once we rewrite the equation in a scalar convection

form: ∂φ
∂t + sgn(φ0)n · ∇φ = sgn(φ0) and observe that the transport speed is 1. Here

n = ∇φ/|∇φ| is the unit �eld normal to the interface and the sign function is the usual

one:

sgn(x) =





−1, if x < 0;

0, if x = 0;

1, if x > 0.

The signal propagates away from the interface, as illustrated in �gure 4.1.

In the following we take a close analytical look to the various artifacts associated

with various numerical solutions to the reinitialization equation 4.0.1, and present an

approach that does not move the zero interface even upon repeated application, unlike

previous schemes.

4.1 The problem in one dimension and its solution

We examine now the Sussman Smereka Osher [36] reinitialization approach. The �rst-

order 1D version used in [36] is given by

φn+1
i = φn

i −4tS(φ0
i )G(φ)i (4.1.1)

where

G(φ)i =





max(|a+|, |b−|)− 1, if φ0
i > 0;

max(|a−|, |b+|)− 1, if φ0
i < 0.
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Figure 4.1: Propagation of the signal o� the zero level set. The arrows repre-
sent the unit normal to the zero level set. The dashed arrows represent the
direction of propagation of the signal. See also [3].

and

a ≡ D−
x φi = (φi − φi−1)/4x

b ≡ D+
x φi = (φi+1 − φi)/4x

and, for any real number h, we de�ne h+ = max(h, 0) and h− = min(h, 0). The

smoothed sign function S is given by

S(φ) =
φ√

φ2 +4x2

[3] pointed out that, even though the above scheme has been used apparently success-

fully in several contexts, it su�ers from the artifact illustrated in Fig. 4.2: after repeated

iterations, even though the local gradient converges to 1 in absolute value, the zero of

the level set is being moved and may converge towards the closest grid point. In the

following we analyze theoretically why and when this happens.

Let us assume without loss of generality that the level set function is increasing in

the interval [i − 1, i + 1] and has a zero between i − 1 and i. In this case, a and b are
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Figure 4.2: The �gure shows how the zero of the initial level set function
(dashed) moves towards the closest grid point. See also [3].

positive numbers, and we have

G(φ)i =





(φi − φi−1)/4x− 1, if φ0
i > 0;

(φi+1 − φi)/4x− 1, if φ0
i < 0.

Consequently, we obtain the following two equations for the nodes i− 1 and i:

φn+1
i = φn

i (1− h)− φn
i−1h +4t

φn+1
i−1 = φn

i−1(1− h)− φn
i h−4t

where we used the notation h = 4t/4x. We also assume for the moment that the

sign of the level set at the nodes i and i − 1 does not change when solving the above

numerically, hence the zero doesn't exit the interval [i − 1, i]. We will see that this is

not necessarily true. These two equations form a coupled system of the form

Φn+1 = AΦn + b (4.1.2)

where Φn =


 φn

i−1

φn
i


, A =


 1− h h

h 1− h


, and b = 4t


 −1

1


. The itera-

tion 4.1.2 converges if and only if the eigenvalues of the matrix A (1 and 1 − 2h) are



40

less than 1 in absolute value, in other words we need h ∈ [0, 1], which is just the ex-

pected CFL condition for unit speed. Let us note that Anb = 4t(1 − 2h)nb and that

An converges (in the conditions above) to the matrix


 0.5 0.5

0.5 0.5


. Consequently we

can rewrite 4.1.2, after computations, as

Φn+1 = An+1Φ0 +4t
1− (1− 2h)n+1

2h


 −1

1


 (4.1.3)

It is now visible that one obtains at the limit

φ∞i−1 = φ0
avg −4x/2 (4.1.4)

φ∞i = φ0
avg +4x/2

to be the converged solutions at the nodes i − 1 and i, where we denoted φ0
avg =

(φ0
i−1 + φ0

i )/2. One readily observes that the numerical gradient between the level set

values at the two nodes equals one. One can also formulate the following:

Proposition 4.1.1. If |φ0
avg| < 4x/2 and 0 < h < 1 the system 4.1.2 converges, and

the zeros of the level set don't move outside their initial intervals.

Indeed, if |φ0
avg| < 4x/2 then, clearly, sgn(φ∞i−1) = sgn(φ0

i−1) and the same for

the index i. Furthermore, it is visible that, if |φ0
avg| > 4x/2, the level set value at

the node i will change sign and become negative for a large enough n, at which point

the system 4.1.2 will (have to) be solved on the interval [i, i + 1]. Based on the above

analysis but without getting into a rigorous proof, we can deduce that, depending on

the value of the level set at the node i + 1, the level set will either:

1. cross back to the initial interval [i− 1, i], using a similar mechanism with the one

that pushed it out of it to begin with, and oscillate about the node i, or

2. stay within the new interval, or

3. travel further on to the next interval

As a note regarding the example used in [3], in �gures 2 and 3 of that paper, in that

case one has φ0
avg = −0.2625 and 4x/2 = 0.25 hence, by Proposition 4.1.1, the zero
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will move out of the interval, and converge to x = 0. Following the explanation given

in [3] one may get the wrong impression that the convergence is one sided, whereas the

mechanism must be of an oscillatory nature, as outlined in the �rst of the three options

above.

To conclude this discussion, the zero of the level set may move during the reinitial-

ization process as outlined above. Furthermore, using our results 4.1.4 one can see, after

a few computations, that the zero will always move upon reinitialization, unless the nu-

merical gradient (φ0
i − φ0

i−1)/4x equals either 0 or 1. Russo and Smereka provided in

their paper [3] a method to �x this. They correctly identi�ed the problem as stemming

from an incorrect use of upwinding, namely from evaluating the gradient across the

interface. Their �x consists in modifying the computation of the discrete gradient at

the nodes of an interval containing a zero of the level set. Their computation is based

on the better approximation of the G function in 4.0.1 with

G(φ)i = |Dup
x φi|,

where the upwind derivative |Dup
x φ| of the function φ near the interface is given by

|Dup
x φ| =





φi/|Di|, if φ0
i φ

0
i−1 < 0;

−φi/|Di|, φ0
i φ

0
i+1 < 0.

where Di is an approximation of the signed distance function from the interface to the

ith node. To get a picture of the situation, note that the left derivative at point 4

in �g. 4.3 is given by φ4/D4, where D4 is the approximation of the distance function

computed using the original level set function φ0 (the length of the thick segment in the

�gure). These considerations lead to their �nal (RS) scheme:

φn+1
i = φn

i −4t





sgn(φ0
i )|φn

i |−Di

4x , if φ0
i φ

0
i+1 < 0 or φ0

i φ
0
i−1 < 0;

sgn(φ0
i )G(φi), otherwise.

(4.1.5)

[3] proposes as a possible choice for Di

Di = 4x
2φ0

i

|φ0
i+1 − φ0

i−1|
(4.1.6)

and shows simple examples in 1D and 2D that work well with this choice (we will see

that in 2D the similar computation of Di based only on level set values is not accurate
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enough for practical purposes). Let us see if the scheme 4.1.5 moves the interface in 1D.

Figure 4.3: Example that shows why the original Sussman Smereka Osher
scheme is not truly upwinding. The dashed line represents the piecewise
linear reconstruction of the original level set function. Point A represents
the intersection of the latter with the x axis, and the length of the thick line
is the approximation of the distance function at point 4. See also [3].

Assume, again without loss of generality, that φ0
i > 0 > φ0

i−1, so that we have that

φn+1
i = φn

i − 4t
4x(|φn

i |−Di) and φn+1
i−1 = φn

i−1− 4t
4x(|φn

i−1|−Di−1). Furthermore, assume

that φn
i > 0 > φn

i−1 also holds up to n. In this case, both the equations above become

(we write down the one for i): φn+1
i = φn

i (1− h) + hDi with h = 4t
4x . By induction we

obtain

φn+1
i = φ0

i (1− h)n +
(1− h)n − 1
1− h− 1

hDi = φ0
i (1− h)n + (1− (1− h)n)Di (4.1.7)

But, by the de�nition of Di, φ0
i and Di (this also holds for index i− 1) have the same

sign, hence any a�ne combination of them (we assume again that 0 < h < 1) has that

same sign, consequently φn+1
i has the same sign and, by induction, the sign is preserved

for all n. Hence we can pass to the limit and we obtain φ∞i = Di and φ∞i−1 = Di−1,

hence the initial signed distances are preserved ! The above considerations prove then

the following:
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Proposition 4.1.2. If 0 < h < 1 then, for any node i neighboring a zero of the level

set, the numerical scheme 4.1.5 converges and the limit veri�es φ∞i = Di.

Of course, the local gradient on a �zero interval� is Di − Di−1 = ±1, as wished.

Also, as an immediate corollary, we observe that the zero of the level set does not

move, indeed. Let us notice however, that we essentially reached the conclusion that

the Russo-Smereka algorithm updates the level set values φi in the zero intervals with

the signed-distance values Di, and nothing more. This can be done, of course, in 0

iterations! In section 5.2.2 we will look at a fast implementation for redistancing that

makes use of this observation in two dimensions.

4.2 The problem in two or more dimensions

4.2.1 Discussion of the Russo-Smereka scheme

As noted by Russo and Smereka, in two or more dimensions, the redistancing errors

are more severe, and marching in �ctitious time in order to �nd the solution to the

reinitialization PDE will lead to area loss (�g. 4.4). Their solution to the problem

consists in naturally extending their 1D scheme to two dimensions:

φn+1
i,j =





φn
i,j − 4t

4x(sgn(φ0
i,j)|φn

i,j | −Di,j), if (i, j) ∈ Σ∆x;

φn
i,j −4tsgn(φ0

i,j)G(φi,j), otherwise.
(4.2.1)

where the set Σ∆x de�nes the points which are within one grid point from the zero level

set, namely the grid points (i, j) which verify

φ0
i,jφ

0
i−1,j < 0 or φ0

i,jφ
0
i+1,j < 0 or φ0

i,jφ
0
i,j−1 < 0 or φ0

i,jφ
0
i,j+1 < 0

One can see easily that the discussion we did in the one dimensional case holds as well

for this one, and, if the reasonable assumption 0 < 4t
4x < 1 holds, we have:

Proposition 4.2.1. For any node (i, j) ∈ Σ∆x the numerical scheme 4.2.1 converges,

and the limit veri�es φ∞i,j = Di,j.

This method solves indeed problems like the one visible in �gure 4.4, but the choice

they suggest

Di,j =
24xφ0

i,j

[(φ0
i+1,j − φ0

i−1,j)2 + (φ0
i,j+1 − φ0

i,j−1)2]1/2
(4.2.2)
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Figure 4.4: In 2D the interface moves considerably and has spatial anisotropy.
In the left �gure we see how the zero level set of φ shrinks when the number
of iterations is 0, 160, 320, 480, 640, 800. In the right �gure the artifact
is �xed using the Russo-Smereka �x. The domain is [−5, 5] × [−5, 5], and we
took 4t = 4x/2 and 4x = 10/16.

is not good enough for all practical purposes. Namely, the choice of the stencil isn't

careful enough to stay close to the interface (again we should use upwinding), and errors

can creep in. To illustrate what we mean, we run repeatedly the redistancing procedure

25, 50 and 75 times using the suggested choice for Di,j , with 20 iterations for each

redistancing (for this speci�c problem 20 iterations are enough to ensure a reasonably

converged solution, namely a 10−6 relative error for φ). We also perform similar repeated

applications of the redistancing algorithm 25 and 50 times for an upwind computation

of Di,j :

Di,j = φ0
i,j/





√
max(|a+|2, |b−|2) + max(|c+|2, |d−|2), if φ0

i,j > 0;
√

max(|a−|2, |b+|2) + max(|c−|2, |d+|2), if φ0
i,j < 0.

(4.2.3)

where a = D−
x φi,j = (φi,j − φi−1,j)/4x, b = D+

x φi,j = (φi+1,j − φi,j)/4x, c = D−
y φi,j =

(φi,j−φi,j−1)/4y and d = D+
y φi,j = (φi,j+1−φi,j)/4y, and show the results in the last

two pictures of �gure 4.5 (the �rst one uses unsmoothed sign function, while the last

one uses the smoothed one). (As a note, we also performed similar computations for

Di,j being the exact distance to the linear reconstruction of the level set, and the results

are qualitatively the same with the upwind simulation). We see that the choice 4.2.2 for

the gradient approximation is unstable in such a case, while for the upwind choice 4.2.3
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the zero level set does not leave Σ∆x and converges to adjacent nodes. Depending on

the smoothing of the sign function (last picture) or lack of it (middle picture) we obtain

dispersive or dissipative error.

Figure 4.5: Upon repeated application of the Russo-Smereka redistancing al-
gorithm one can see how the error accumulates in time and again moves the
interface. The �rst picture uses the Di,j from 4.2.2, the last two from 4.2.3.
The number of repetitions is respectively 25, 50, and 75 for the �rst pic-
ture, 25 and 50 for the second one and 50 for the last one (which uses the
smoothed sign function).

Obviously the use of the upwind scheme is advantageous, even though still not

perfect. What is the source of these errors anyway? This is easy to see if we consider

the result of Proposition 4.2.1. In the Russo-Smereka scheme, the �nal value of the

level set is replaced after each redistancing with the computed value of Di,j . Unless the

scheme ensures that, upon its application, the discrete approximation of the gradient

norm of the new level set equals one, the interface will move. In a Navier-Stokes or

simply in a moving interface simulation this artifact may become very visible when it

dominates the dynamics, namely when the advection velocity is very small.

Let us look at a quick example that will shed some light on one of the mechanism

that draws the interface towards grid points (refer to �g. 4.6). The initial value of the

level set at the center point (i, j) is φ0
i,j = 3, and the other nodal values are as in the

left picture. Using the upwinding algorithm we calculate up to two decimals (assuming

4x = 10): Di,j = 3/
√

92 + 92 ∗ 10 = 2.36 and Di−1,j = Di,j−1 = −6/
√

92 + 62 ∗ 10 =

−5.54. These are in fact the new values of the level set at those nodes, and they
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Figure 4.6: Level set values before and after the reinitialization procedure is
applied. This showcases one of the possible mechanisms that move the zero
interface towards grid points.

e�ectively pull the interface toward the center node. If one repeats the procedure, the

new values would be 2.1 respectively -5.74, and the small value would get closer and

closer to 0 as we repeat the iterations. If we look at the general case and replace

the values 0,3 and -6 with some arbitrary values, then it becomes readily visible that,

unless some magical equalities involving those values happen (namely, unless the cross-

interface gradients along the grid directions are equal |φ0
i−1,j −φ0

i−1,j+1| = |φ0
i,j−1−φ0

i,j |
and/or |φ0

i−1,j − φ0
i−1,j | = |φ0

i,j−1 − φ0
i+1,j−1|) the interface bordering (i, j) will move

towards grid points (this is similar to what we observed in 1D about the Sussman [36]

reinitialization). Repeated application of the scheme will increase the errors and will

steadily displace the interface towards nodes.

In conclusion, the Russo-Smereka reinitialization scheme in two dimensions (or more)

must be carefully supplied with upwind computations of the distances Di,j , in order to

provide stable results upon repeated use. Except for a few symmetric situations (read:

zero probability for all practical purposes) the scheme will move the zero interface upon

repeated application.
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4.2.2 A fast alternative scheme

Before we look at a possible solution for these issues we should again note that Propo-

sition 4.2.1 enables us to perform the RS-scheme in a fast manner, given also that we

mainly are interested in maintaining unit gradients along the interface. Namely, we can

simply set the values φi,j inside Σ∆x to be equal to Di,j (computed as in 4.2.3) and use

those as boundary conditions for the rest of the iteration. This is similar to the high

order fast marching method proposed by Chopp [51].The number of iterations need not

be large at all, given that we iterate in the �less interesting� region outside Σ∆x. The

new scheme will be

φn+1
i,j =





Di,j , if (i, j) ∈ Σ∆x

φn
i,j −4tsgn(φ0

i,j)G(φ)i,j , otherwise.
(4.2.4)

This scheme achieved similar results with the RS scheme 4.2.1 for the ellipse redistancing

problem (see [3]) in less than half of the iterations (6 versus 16), and less than half the

time (0.02sec vs. 0.045sec). Please refer to �gure 4.7.

Figure 4.7: In the ellipse redistancing test ( [3]) the distorted level sets (left)
are recovered after 16 iterations of the RS scheme (middle) and only 6 iter-
ations using our fast scheme (right). The grid size is 40× 40.

4.2.3 A possible solution: reinitialization in the Marker Level Set
framework

The second version of the Marker Level Set method introduced in section 2.3.3 takes

advantage of marker placement along the interface to update the level set values in the

interface neighborhood. This enables us to use the markers to compute the level set
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Figure 4.8: Our scheme does a very good job at preserving the initial interface
location while making the gradient a unit vector �eld throughout the domain.
The pictures above show in black the initial level set and, superimposed, its
�nal position after 1,2,3...500 applications of the redistancing scheme 4.2.5.
In blue and red we pictured the ±∆x level sets. We used two markers per
cell.

values within Σ∆x and use those values as boundary conditions for solving iteratively

outside Σ∆x, similarly to what we do in equation 4.2.4. The new scheme becomes

φn+1
i,j =





di,j , if (i, j) ∈ Σ∆x

φn
i,j −4tsgn(φ0

i,j)G(φ)i,j , otherwise.
(4.2.5)

where di,j are the level set values computed with the aid of markers. Before we explain

how this is done, we present the graphic results in �g. 4.8. It is obvious that our scheme

cures the previous artifacts and does the job. Now let us explain how we use the markers

in order to determine the values of di,j . Assume that there are markers present in each

of the interface cells (one can easily ensure this by placing them at zero crossings along

each grid edge). Then, for each node (i, j) ∈ Σ∆x we compute di,j = φi,j−λi,j , where λi,j

are the local corrections of the level set. These corrections are computed as a weighted

average of the current level set values at the closest local markers:

λi,j =
∑

k

wkφ(xk)/
∑

k

wk (4.2.6)

where xk are the positions of the markers from a small neighborhood of (i, j) and wk are

weights associated to these markers and the node (i, j). φ(xk) is the interpolated value

of the level set function at the marker location. By performing the local correction of
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the level set we e�ectively force its zero level to align with the markers. This provides

excellent values for the level set in the neighborhood of the interface, which in their turn

provide very accurate boundary conditions for the iteration outside Σ∆x. The speci�c

solution to the iteration problem is solved, as we saw earlier, along characteristics that

move away from the interface, so that it does not modify the good values inside Σ∆x

and ensures that our scheme 4.2.5 works quickly and accurately.
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Chapter 5

Applications to simulation and animation of liquids.

In this chapter we will look at some direct applications of the MLS method to simulation

of liquids. Firstly, as an interface tracker MLS can be combined with a Navier-Stokes

solver in the same way the level set was used in Sussman et al. [36], and use as a free

surface �uid simulator. Based on the two dimensional tests from chapter 3 we can

expect that immediate advantages may ensue, for example one can get more detail than

with the level set at even coarse resolutions, better mass conservation, and thin sheets

and threads can be tracked better. Secondly, the surface markers have the capability

of carrying tangential information, like texture. This feature can be regarded as the

simulation of a liquid carrying a very shallow strip of surface paint, which is moved

together with the surface and can change color due to mixing. We demonstrate how

this works in several simulations below.

5.1 The �uid simulator

The �uid simulator uses the technology proposed by Sussman [9] and introduced to

graphics by Mihalef et al. [52], but instead of CLSVOF (the coupled level set and vol-

ume of �uid method) we use MLS for interface advection. The MLS method's excellent

motion characteristic tracking properties ensure that its mass preservation is also very

good. We already saw in chapter 3 that in several standard 2D tests for surface track-

ers MLS preserved mass to a fraction of a percent, while in the physically realistic

3D simulations presented in this chapter, the mass loss was less than two percent for

averagely sized computations (e.g. 64 × 64 × 64 grids), and mass conservation is ex-

pected to improve even more when more resolved grids are used. Moreover, due to the

same motion characteristic tracking built into MLS, its preservation of high-gradient or
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high-curvature quantities (corners, for example) is better than CLSVOF's for any given

resolution.

The �uid simulator consists of the Navier-Stokes simulator which advances the ve-

locity, coupled with the MLS, which advances the level set. It consists of solving, at

every time step:

• conservation of momentum equations

• conservation of mass equation

• MLS equations

We have already discussed the MLS equations in chapter 2. For the rest of the solver

we use the inviscid incompressible form of the Navier-Stokes equations:

ρ
Du
Dt

= −∇p + ρg (5.1.1)

∇ · u = 0 (5.1.2)

Here u denotes the velocity, p the pressure, ρ is the �uid density and g is the gravity

vector. D
Dt is the material (advective) derivative:

D

Dt
=

∂

∂t
+ u · ∇ (5.1.3)

A second order upwind �nite di�erence scheme is used to discretize the nonlinear

advective terms. The vapor pressure is considered constant (one-phase formulation).

The density ρ is controlled at any time step by the level set:

ρ =





ρliquid, φ ≥ 0;

0, φ < 0.
(5.1.4)

The Navier-Stokes equations are solved using the projection approach of Bell et al. [42].

One can �nd more information on the general setup of the solver, including possible

addition of viscosity and surface tension terms, in [9].

5.2 Simulation results

We tested the power of the Marker Level Set method by running several 3D simulations

on a 2.4GHz Core 2 Duo machine. The results are very encouraging judging from their
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Figure 5.1: Swirly water simulation. From left to right and top to bottom,
time t = 0,1,2,3,4,5.

accuracy and the display of the color advection capabilities of the MLS. Several of these

results have already been published in our paper [53].

5.2.1 The swirl

In this simulation (Figure 5.1) we set up a small-depth body of liquid with a radial stripe

texture on the surface and a radially-decreasing rotational velocity. This setup forces

the liquid to twist and produces nice color mixing on the surface. Due to the higher

center velocity and gravitational pull, the surface su�ers a central depression. This

forms a wavefront that is bounced back and forth to the circular walls several times,

while the surface color continues to mix. The grid was fairly coarse, 64×64×16, and one

simulation step took about 45 seconds. The presence of the subpixel color information

stored by the markers is essential for providing robust local color information, even in

the presence of such a strongly distorting �ow. In this simulation the average number

of markers was 140 thousands, with a fairly small time variance.

5.2.2 A splashing liquid simulation

In this experiment a body of water is placed on top of a solid object. Due to grav-

ity, waterfall-type dynamics ensues and the top water falls over the static water at the



53

Figure 5.2: Splashing liquid simulation with milk shader (�rst row) and marker
color based shader (second row). From left to right, time t = 0, 0.8, 1.6, 6.4
seconds.

bottom of the solid object, forming local overturning waves with various splashing ef-

fects, after which the dynamics tones down. The top surface markers are colored while

the bottom ones are white. The experiment showcases successful dynamics with many

topological changes, in which the colors vary continuously in time and space. The do-

main was discretized with a 96× 48× 48 grid and one simulation step took about 120

seconds. The average number of markers used was 180K. The grid size is average, but

one can already see that the waterfall sheet receives a good interfacial treatment, due

to the excellent characteristics tracking of the markers. Upon reconnection, the surface

markers are deleted by the MLS, due to becoming trapped inside the liquid, and this

leads to the disappearance of several of the initial colors by the end of the simulation.

We should note however that this is essentially a characteristic of the one-phase �ow

�uid simulator we use in this work and of the numerical discretization errors, rather

than of the MLS. In the continuum limit, if the air bubbles would be safely restituted

to the surface by the Navier-Stokes simulator, the colors would be also carried along to

the surface by each bubble's surface markers.

5.2.3 A dam breaking problem

We set up a dam breaking problem, with the top half multi-colored and the bottom

half using just one color. The water falls due to gravity and leads to the formation
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of several overturning waves, entraining the surface texture as well (Figure 5.3). The

power of the MLS is quite obvious: its level set component handles the normal dynamics

of the interface, while its surface marker component also handles dynamics tangential

to the interface (disregarded by the level set formulation). The standard attempt to

advect surface textures volumetrically on the 3D Eulerian grid would lead to strong

color di�usion very quickly, even for very simple �ows. The MLS markers instead

may introduce color di�usion only in the case of interfacial stretching that necessitates

marker addition, and are thus much better suited to carry robustly surface information,

for example color or transparency. In fact, if one has a very dense initial distribution of

markers one is likely to su�er very little di�usion, or almost none (as the color Enright

test shows). The average number of markers varied between 135-165K in this simulation.

Figure 5.3: Dam breaking simulation with matte rendering. From left to right
and top to bottom, time t = 0, 1, 3.6, 6, 8.6, and 10.2 seconds.

Regarding transparency, we note that one can start from the fully colored animations

(�g. 5.3) and obtain for free new ones featuring partially transparent surfaces, by de�ning

a chosen color to be transparent (�g. 5.4). Surely, partially transparent animations could

be also obtained by advecting an extra transparency �eld with the markers, but this
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would involve an extra variable. The domain had the physical dimensions 20m× 5m×
5m, was discretized with a 128 × 32 × 32 grid and one simulation step took about 75

seconds. It is apparent that even for such a coarse grid the results are quite satisfactory.

Figure 5.4: Dam breaking simulation with transparent rendering. From left
to right, time t = 0 and 3.6 seconds. First row: no color from markers.
Second row: with surface color interpolated from markers.

5.2.4 Small droplet and bubble generation in the context of MLS

One of the immediate advantages of the MLS method over Eulerian advection ap-

proaches is that its formulation lends itself naturally and easily to devising methods

for spray and small bubble generation. This is due to the fact that the deleted markers

are essentially an expression of the subgrid information lost by the Eulerian level set.

As such, they may be treated, up to a certain approximation, as escaped liquid droplets

(for markers deleted in the gas region) or gas bubbles (for markers deleted in the liquid

region). In the following we will show an example that implemented such a treatment,

and discuss choices for dealing with the dynamics of the escaped markers. Before we

describe our simulations, let us note that Eulerian methods like the volume of �uid

method could theoretically generate droplet and bubbles based on small volume frac-

tions that are otherwise deleted as �otsam, but �nding their location may be hampered

(especially in on coarse grids) by the fact that the characteristic information is �hidden�

by such methods, and consequently de�ning the position of the �otsam piece inside a

cell is an unsolved (and possibly hard) problem.



56

We used a version of our dam breaking example as a basis for this experiment. After

each time step of the original simulation we built a list of the deleted markers, using

a boolean indicator to specify their nature (air bubbles or water droplets). After the

initial Navier-Stokes simulation of the dam breaking was �nished, we de�ned new dy-

namics for the generated droplets and bubbles.

Droplet dynamics

Once the droplets break free from the main body of liquid their motion may be approx-

imated with ballistic dynamics (this is the method that we used). Namely, their initial

velocity is de�ned to be their original velocity as interface markers, then the global po-

sition is updated by solving the inertial equation xnew = xold +u(x)dt+αudt+mgdt2

2 ,

where xold,new are the old respectively the updated marker position, u(x) is the old

marker velocity, α is the drag coe�cient, u is the �uid velocity at the xold marker posi-

tion, m is the particle mass, g is the gravity vector and dt is the time step. The droplets

are deleted once they reenter the body of liquid, which is easily detected by checking

the sign of the level set at the droplet location. The drag coe�cient may be de�ned to

depend on the radius of the droplet, conforming to a Stokes like law, as described in the

bubble dynamics below. Also, the use of drag requires that the simulation is performed

in the whole domain, so that one has a valid (i.e. nonzero) air velocity. Surely, this

is only a �rst approximation dynamics that may work in the air region for animation

purposes, but one would need a more complex model for more realistic simulations. In

particular, one needs to address the transfer of momentum from the water reentering

droplets. One way to do this is to assign initial weight values to each droplet marker,

and use them to modify the local density in the Navier-Stokes simulator.

Small bubble dynamics

We modeled the small bubble dynamics by regarding them as spherical bubbles in Stokes

�ow. Without getting into too much detail, bubble hydrodynamics theory says that after

its formation, a bubble rapidly accelerates to its terminal velocity. This terminal veloc-

ity is determined by the balance between the buoyant rise force, and the drag force.This

can be calculated for small, spherical bubbles, yielding Stokes' Law: vStokes = 2
9
gr2

ν ,

where g is the gravity vector, r is the bubble radius and ν is the kinematic viscosity.
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The Stokes velocity was added to the local �uid velocity (obtained by interpolation) to

give the �nal marker velocity. In our simulation we used a (uniformly randomly gener-

ated) base radius of 1 ± 0.5mm for the bubbles, and a viscosity coe�cient of 10−6cs.

There was no extra routine to handle bubble collision, yet the results of rising bubble

cloud look quite realistic (�gure 5.5).

5.3 Ray tracing with particles

All the 3D results presented in this thesis are rendered in the commercial software Vue

D'Esprit, using the following routine. First, a cubic interpolated isosurface is extracted

from each level set (the level set is discretized on the grid nodes). The isosurface is

rendered using either a standard ray-tracer, without considering color properties, or an

MLS-augmented ray-tracer, that uses the markers local to each ray intersection point

as the basis for a kernel-based color integration. The kernels are similar to the ones

used by the MLS itself for de�ning the color of the added markers. For rendering the

partly transparent colored water without advecting extra transparency information we

use the color info from the original animations. We choose a base color (very close to

white, for our multicolored simulations) to be the �transparent� color, and resort again

to local kernel interpolation for smoothing out the transparency regions (namely, the

closer a color is to white, the more transparent it becomes). The values of the kernel

coe�cients are the same with the ones used by the MLS (see section 3.2.4).
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Figure 5.5: Addition of spray and bubbles to a dam breaking simulation. Each
original simulation image (�rst and third images) is followed by an image
with spray and bubble e�ects added. First two images, time t = 2.6; next
two at t = 3.2 seconds.
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Chapter 6

Conclusion and directions for future work

We presented in this thesis a novel method for surface advection which has the addi-

tional ability to handle surface texture (or any other interfacial tensor �eld) advection

very accurately. This method, the Marker Level Set, combines in a unique way a level

set and a set of markers placed on the interface, so that, for example, color information

is carried along by the markers and texture advection is thus possible. From the two

proposed MLS methods we chose the second one for full blown convergence tests that

showed its numerical convergence with an order of accuracy equal to that of the marker

advection, and also (because of its implementation simplicity) for 3D simulation of free

surface �ows. We interpreted physically the generated textured �ows as liquid carrying

a thin layer of paint, and we also showed an easy way to generate spray and small bub-

bles by identifying them with markers deleted in insu�cient grid resolution regions.

We have discussed in the text several of the technical limitations of the MLS method.

At a higher level, we should also mention that theoretically the MLS method may have

di�culties in handling surface tension dominated e�ects, as instabilities may occur due

to the markers having microscale resolution, whereas the �uid equations would be solved

on a macroscale. However, the nice bubble and droplet simulation results obtained us-

ing the PLS method by Hong and Kim [54] provide a nice reference and the hope that

MLS may succeed as well in attempting such simulations. Another issue that future

extensions to the MLS method will need to solve is how to treat the impact between

the surface markers describing a free surface and solid bodies.

Possible directions for future work may come from several directions. First, while
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MLS is successful as both a sharp interface tracker and a texture advecting tool, we feel

that there is room for improvement in the way the textures are rendered and initialized.

Our marker-based rendering method may be updated with mesh-based functions that

smoothly integrate the marker color to vertices, prior to rendering.

Another nice graphics/ocean engineering project could be to simulate realistically

foam dynamics on ocean or sea surface. While MLS o�ers immediate support for the

tangential dynamics, it must be complemented with a realistic mechanism for foam

generation and disappearance. Figure 6.1 for example shows that an initial foam texture

loses its fractal characteristics in the regions of high stretching soon after being advected,

appearing di�used on the back of the wave. A possible solution to this problem may be

o�ered by the MLS itself, by using its small droplet and bubble generation capability

and modeling the dynamics of droplets and bubbles once they intersect the wave surface.

Figure 6.1: Simulation of a breaking wave with a textured surface. Without
adequate treatment the initial foam texture (left) would only stretch along
the surface (right).

Directly related to the droplet and bubble generation is an exciting computationally

�uid dynamics project that would attempt to model the transition of �uid �ow from a

breakup region to spray region, and the subsequent dynamics using ballistics. Another

CFD project should take advantage of the surface information carried by the markers,

for simulations in which surfactant e�ects are important. The markers could track the
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dynamics of a quantity of surfactant along the surface in a way implicit methods would

not be able to. While front tracking methods would also perform well in such a task,

the capability of the MLS of handling topology changes gives it an advantage over most

front tracking methods.

Exciting directions for further research may come from the �eld of computer vision.

Due to its accuracy, MLS could be used to improve the results obtained with the stan-

dard level set method, for problems in which corner or thin structure resolution is an

important matter. The method can be also used to �nd skeletons of two or three dimen-

sional closed regions. For example, one can make good use of the fact that the markers

travel with the same velocity as the zero level set. If one starts with a closed 2D contour

and advects it inwards with constant velocity, the moment a portion of the zero level

set disappears, the associated markers land exactly on the skeleton of the contour. One

can then stop the local velocity of the level set in the cells that contain markers but do

not contain a portion of the zero contour, and thus obtain a very good approximation

of the skeleton given by the markers. Note that the fact that in the MLS framework

the markers de�ne the zero level is crucial here, and a method that advects surface

markers uncoupled with the zero of the level set would not give the true skeleton. This

is because the markers would be advanced with the wrong velocity in the regions where

they do not coincide with the zero level set. In �gure 6.2 we show several encouraging

preliminary results of 2D skeletons obtained with the approach described above. In

particular our method handles simple (row 1 through 3) or multiple component (row 4)

objects, regardless of genus. The method is easily extendable to three dimensions.
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Figure 6.2: Skeletonization of binary images (positive inside the contour, neg-
ative outside). Original contour in orange. Level set in white (row 1).
Markers in green. Last column shows the initial contour + �nal skeleton.
Row 1: Fish. Row 2: Genus 3 object. Row 3: Kiwi. Row 4: Objects with
various genuses and separate connected components.
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