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ABSTRACT OF THE DISSERTATION

Relay Cooperation in Multiaccess Networks

by Lalitha Sankar

Dissertation Director: Prof. Narayan Mandayam

Cooperationin communication networks results when terminals use theirenergy

and bandwidth resources to mutually enhance their transmissions. Cooperation can be

induced in many ways and each approach entails a different tradeoff of power, band-

width, complexity, and costs to achieve spatial diversity gains characteristic of antenna

arrays. In this dissertation, we study a specific cooperative network - amultiaccess

relay channel(MARC) where cooperation is induced via a dedicated relay node in a

network where multiple users communicate with one destination.

We extend the relaying strategies ofdecode-and-forward(DF), compress-and- for-

ward (CF), andamplify-and-forward(AF) to the MARC. Specifically, for DF we show

that real-time decoding at the destination using asliding-windowincurs a rate loss

relative to an offlinebackward decodingtechnique. We develop anoffset encoding

technique that improvessliding windowdecoding and achieves the corner points of the

backward decodingrate region with significantly smaller delay.

Next we compare two approaches to inducing cooperation in a multiaccess chan-

nel. In one approach we allow the users to cooperate while in the other we induce

cooperation via a relay when the users cannot or do not cooperate. Using the total

transmit and processing power consumed at all nodes as a costmetric, we compare

the DF and AF sum-rates and outage probabilities for the two networks. Our results

ii



show that cooperation is most desirable in the regime where processing power is sig-

nificantly smaller than the transmit power. We also show thatrelay cooperation is on

average more energy efficient than user cooperation.

Finally, we develop a capacity result for the MARC. The MARC belongs to a class

of multi-terminal networks whose capacity is, in general, not known. For a degraded

GaussianK-user MARC, we usemax-min optimizationtechniques to show that DF

achieves theK-user sum-capacity.
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Chapter 1

Introduction

The growing demand for wireless applications is fueling research in the design and

development of a variety of wireless network architecturesranging from wide-area

cellular to decentralized ad-hoc and low-power sensor networks. The limitation of

restricted power and bandwidth resources holds for all wireless networks, regardless

of architecture. In [1], Telatar (and independently Foschini and Gans in [2]) showed

that adding multiple antennas to wireless transmitters andreceivers can yield dramatic

gains in rate and reliability. However, restrictions in size and form factor of wireless

devices largely limit the practical applicability of theseresults.

Cooperationis an alternative approach to this problem: cooperation results when

nodes in a network share their bandwidth and power resourcesto mutually enhance

their transmissions. This allows wireless devices constrained in size and processing

capabilities to exploit the broadcast nature of the wireless medium to achieve the spa-

tial diversity gains characteristic of multi-antenna channels [3]. In multi-terminal net-

works, cooperation can be induced in many ways with different approaches requiring

different tradeoffs of power, bandwidth, and economic resources to achieve a desired

fading diversity. In this thesis, we investigate one such approach, namely that of induc-

ing cooperation using dedicated relay nodes.

1.1 Motivation

It is generally known that communications between a source-destination pair can ben-

efit from cooperative forwarding by nodes overhearing the transmission [4]. A simple

model for such a communication network is the relay channel introduced and studied

by van der Meulen [5]. Two fundamental coding strategies forthe relay channel were
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developed by Cover and El Gamal [6] and are based on the idea that the relay aids the

destination in decoding by transmitting a signal based on what it overhears. These cod-

ing techniques have been applied to a variety of multi-terminal wireless networks [7,8],

and more recently, to quantify the rate and diversity benefits of node cooperation (see

e.g., [3,9–11], [12–16] and the references therein).

In their seminal work on the throughput of wireless ad hoc networks [17], Gupta

and Kumar showed that in a network of homogeneous cooperating nodes the per node

throughput decreases (due to interference) with increasing number of nodes. They also

showed that information-theoretic relaying schemes [6] can reverse this behavior [18]

and thus provided added motivation for the information theory community to extend

the relaying strategies of [6] to a variety of multi-terminal networks and channel mod-

els. For a detailed history and bibliography of cooperativecommunications see [4].

In the most general model of cooperation, some or all nodes ina network share

their resources and some nodes called relays may be purely dedicated to aiding other

nodes. The former cooperative approach has been referred toasuser cooperation[3];

analogously, we can call the latter approachrelay cooperation. The choice between

the two models is significant because, in general, the nodes in a network can vary

widely in their transmission and processing capabilities and independent nodes may

not be willingly to share with other nodes their limited power and bandwidth resources

for forwarding and cooperation. In fact, it has been shown inan economic model

that cooperating users need to be offered incentives (such as increased throughput or

diversity) to share their resources voluntarily [19–21]. The user cooperation model

may be better suited for special purpose homogeneous networks such as those used in

military, sensor and monitoring applications; however, even in such networks where

the network lifetime depends on the lifetime (battery resources) of the most connected

node, it has been shown [22] and demonstrated [23] that designating some nodes as

dedicated relay nodes can help preserve the lifetime of nodes that transmit data.
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Figure 1.1: An example of a three-layer hierarchical relay network with source nodes
(SN), forwarding nodes (FN) and access points (AP).

1.2 Hierarchical Relay Cooperation

Motivated by the above arguments, in this thesis, we study a specific relay coopera-

tion model, namely, the multiaccess relay channel (MARC) where multiple sources

transmit to a destination in the presence of a relay [24] . Onecan view the MARC as

a building block of a large-scalehierarchical relay network, where a layer of one or

more relay nodes enables cooperation between the layers containing source and desti-

nation nodes (see Fig. 1.1). Examples of such amulti-tier communication network [25]

include hybrid wireless LAN/WAN networks and sensor networks where cooperation

between user or sensor nodes is either undesirable or not possible, but an intermediate

relay node can be used to aid communication between the sources and the destinations.

We present models for a discrete memoryless MARC and a Gaussian MARC. Be-

cause the MARC is a multiaccess generalization of the relay channel [5,6], the achiev-

able strategies developed for the relay channel extend to the MARC. In addition to the
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cut-set outer bounds, we study the strategies of decode-and-forward (DF), compress-

and-forward (CF), partial decode-and-forward (PDF), and amplify-and-forward (AF)

[26–28]. We also present a memoryless model for a MARC with ahalf-duplexrelay

and extend the capacity theorems (inner and outer bounds) tothis channel.

The DF rate for the relay channel can be achieved by a variety of encoding/decoding

techniques. However, the DF rate region for the MARC dependson the decoding tech-

nique chosen at the destination. (Indeed, using an offline delay-intensivebackward

decodingtechnique at the destination achieves a larger rate region than a real-time

sliding-windowdecoding technique.) We present anoffset encodingtechnique that im-

proves the rate region achieved by sliding-window decodingfor K-user multiaccess

channels. The technique offsets user transmissions by one block per user and achieves

the corner points of thebackward decodingrate region but with a significantly smaller

delay.

Cooperation can be induced in practice in many ways and each approach may re-

quire a different tradeoff of power, bandwidth, processing, and economic resources. In

order to design practical networks that derive maximal performance gains from coop-

eration, it is necessary to understand the similarities anddifferences between the user

and relay cooperation models. We compare the performance ofsource cooperation in a

multiaccess network to that of using a wireless relay. The former is modeled as a mul-

tiaccess channel with generalized feedback [7, Chap. 7] andthe latter as a MARC. In

general, it is hard to quantify the costs associated with thetwo cooperative approaches.

We present a power-based cost metric to enable comparisons and determine the energy

regimes where the two approaches to cooperation may be desirable.

Using the total transmit and processing power consumed as a cost metric, we com-

pare the PDF and AF rates and the DF and AF outage probabilities for an area-averaged

geometry. We show that both user and relay cooperation is energy efficient only in the

regime where the processing power is negligible relative tothe transmit power. We
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also show that relay cooperation is (on average) more energyefficient than user coop-

eration. Finally, using a geometry-inclusive outage analysis, we show that for single

antenna nodes, the relay network is limited in diversity to amaximum of2 while aK-

user cooperative network can achieve a maximum ofK at the cost of using the channel

K times. However, theK-fold diversity gains diminishes when one accounts for the

processing costs of cooperation, i.e., the maximum diversity predicted by a diversity-

multiplexing tradeoff analysis may not always be achievable in practical SNR regimes

of interest without trading off power, delay, and complexity.

Finally, we develop a capacity result for the MARC. Cooperative networks belong

to a large class of multi-terminal networks whose capacities have been a long-standing

open problem in network information theory. In [6], Cover and El Gamal show that

DF achieves capacity for a degraded relay channel. For a degraded MARC, unlike the

relay channel, applying the degradedness condition does not simplify the outer bounds

to match those for DF. Specifically for a degraded Gaussian MARC, we use a max-min

optimization technique to show that DF achieves theK-user sum-capacity.

1.3 Outline of Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 we present various

MARC models and their inner and outer bounds. In Chapter 3 we present an off-

set encoding technique that improves sliding-window decoding with DF for K-user

multiaccess channels. In 4, we compare the performance of source cooperation in a

multiaccess network with that of one that uses a wireless relay. Finally, in Chapter 5,

we develop the sum-capacity of a degraded Gaussian MARC.
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Chapter 2

Multiaccess Relay Channel: Capacity Theorems and
Cooperative Strategies

2.1 Introduction

The multiaccess relay channel (MARC) is a network where several users communicate

with a single destination in the presence of a relay [24]. Recently, there has been

an increased focus on networks with one or more relays as models for wireless ad

hoc and sensor networks, see for e.g., [9, 10, 12, 13, 18] and the references therein.

Successful deployment of any such network lies in its ability to support multiple users

simultaneously and not only one. We study the MARC as a specific model of a multi-

user relay network.

Several coding strategies for the relay channel [5, 6] extend readily to the MARC

[10, 26]. For example, the strategy of [6, Theorem 1], now often calleddecode-

and-forward (DF), has a relay that decodes user messages before forwarding them

to the destination [10, 26]. Similarly, the strategy in [6, Theorem 6], now often called

compress-and-forward(CF), has the relay quantize its output symbols and transmitthe

resulting quantization bits to the destination [26]. For Gaussian channels, one can also

consider anamplify-and-forwardstrategy where the relay forwards a scaled version of

its output symbols to the destination [26].

In this chapter, we present models for a discrete memorylessand a Gaussian MARC

with a full-duplexrelay, i.e., a relay that can transmit and receive simultaneously in the

same bandwidth. We also present a memoryless model for a MARCwith ahalf-duplex

relay and obtain the capacity theorems for this channel as a straightforward extension

of those developed for the full-duplex case. We present a cut-set outer bound on the

capacity region of the MARC and develop the rate regions for DF, CF, and AF. We also
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present apartial decode-and-forward(PDF) strategy where the relay decodes only a

part of the messages from the sources. This strategy generalizes DF and is particularly

useful when there may be costs associated with relay cooperation. We also present a

mixed strategy that combines DF and CF as a generalization of[6, Theorem 7]. For

the Gaussian MARC, we focus on the line-of-sight and ergodicfading environments

and study the rate regions achieved by the different strategies. Finally, we illustrate our

results for two example geometries.

2.2 Model and Preliminaries

2.2.1 Network Model

TheK-user MARC hasK sources, one relay, and one destination (see Fig. 2.1). The

sources emit the messagesWk, k = 1, 2, . . . , K, that are statistically independent and

take on values uniformly in the sets{1, 2, . . . , Mk}. The channel is usedN times so

that the rate ofWk is RWk
= BWk

/ N bits per channel use whereBWk
= log2 Mk

bits. The channel inputXk,i from sourcek at time i, i = 1, 2, . . . , N , is a function

of Wk, while the relay’s channel inputXr,i is a causal function of its received signals

Y i−1
r = (Yr,1, Yr,2, . . . , Yr,i−1). The destination uses theN channel outputsY N

d to

decode theK messages as(Ŵ1, Ŵ2, . . . , ŴK). We writeK = {1, 2, . . . , K} for the

set of sources,T = {1, 2, . . . , K, r} for the set of transmitters, andD = {r, d} for

the set of receivers. We writeXS = {Xk : k ∈ S} for all S ⊆ K, Sc to denote the

complement ofS in K, and|S| for the cardinality ofS. The channel is time-invariant

and memoryless with the conditional probability distribution

p(yr, yd|xK, xr). (2.1)

The capacity regionCMARC is the closure of the set of rate tuples(RW1 , RW2, . . . , RWK
)

for which the destination can, for sufficiently largeN , decode theK source messages

with an arbitrarily small positive error probability.
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Figure 2.1: AK-user multiaccess relay channel.

As further notation, we writeRS =
∑

k∈SRk and we use the vector notationxk

for length-n codewords of userk. We use the usual notation for entropy and mutual

information [29, 30] and take all logarithms to the base 2 so that our rate units are

bits. We write random variables (e.g.Wk) with uppercase letters and their realizations

(e.g. wk) with the corresponding lowercase letters. We drop subscripts on probability

distributions if the arguments are lowercase versions of the random variables, e.g., we

write (2.1) asp(yr, yd|xK, xr).

For a Gaussian MARC (see Fig. 2.2), the received signalsYr,i andYd,i are [24]

Yr,i =

(

K
∑

k=1

hr,k,iXk,i

)

+ Zr,i (2.2)

Yd,i =

(

K
∑

k=1

hd,k,iXk,i

)

+ hd,r,iXr,i + Zd,i (2.3)

whereZr,i andZd,i are independent and identically distributed (i.i.d.) zero-mean, unit

variance circularly symmetric (proper) complex Gaussian random variables andhm,k,i

is the channel gain between receiverm and transmitterk at timei. Unless otherwise

noted, we assume that a receiving nodem knows only its own channel gains, i.e.,

it knows hm,k,i for all i andk, but it does not knowhm′,k,i for any m′ 6= m. The

transmitted signals from sourcek and the relay are constrained in power as

n
∑

i=1

E |Xk,i|2 ≤ nPk k ∈ T (2.4)
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Figure 2.2: A two-user Gaussian MARC with a full-duplex relay.

The models described above consider afull-duplexrelay, i.e., a relay that can trans-

mit and receive at the same time and in the same bandwidth. Onecan also model

practical constraints on the transmit-receive capabilities of a relay by considering a

MARC with a half-duplexrelay where the relay is in one of two modes, namely,lis-

ten (L) or transmit(T). We model a MARC with a half-duplex relay as a memoryless

channel with inputsxk at sourcek, xr,i = [xr,i, mr,i] at the relay with alphabet

X r = {(L, ∅)} ∪ ({T} × Xr) (2.5)

and outputsym,i =
[

ym,i, hm,i

]

, m ∈ D, whereMr,i ∈ {L, T} represents the relay’s

mode at timei andhm,i is a channel gain vector with entrieshm,k,i for all k ∈ T ,

k 6= m. As before, the channel is a time-invariant memoryless model given by (2.1).

We remark that the relay’s inputXr,i is typically a function of the modeMr,i. In

general, one could either consider afixedduplexing scheme where theMr,i is known

at all nodes or arandomscheme where knowledge ofMr,i is restricted to a subset of

nodes [31]. We assume thatMr,i is either knowna priori at all nodes or shared at the

appropriate time-instant with a negligible effect on the rate or transmission costs. We

write θ = Pr (Mr = L) to denote the fraction of time the relay is in the listen mode,

i.e., receiving transmissions from the sources.
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Figure 2.3: A two-user Gaussian MARC with a half-duplex relay.

One can generalize the model to include asleep(S) state as well as cost constraints

in each mode and at all the nodes [31]. Finally, for a GaussianMARC, the half-duplex

condition simplifies as

Yr,i =















(

∑

k 6=m

hr,k,iXk,i

)

+ Zr,i Mr,i = L

0 Mr,i = T

(2.6)

whereXr,i = 0 for Mr,i = L (see Fig. 2.3).

2.2.2 Fading Models

We model the channel gainshm,k,i as

hm,k,i =
Am,k,i
√

dγ
m,k

(2.7)

wheredm,k is the distance between themth receiver and thekth source,γ is the path-

loss exponent, andAm,k,i is a proper complex fading random variable. We assume that

the fading gainshm,k,i are known only at receiverm. We consider the following fading

channels.

1. no fadingAm,k,i = 1 for all m, k, i.
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2. ergodic fading whereAm,k,i are jointly i.i.d zero-mean, unit variance proper,

complex Gaussian random variables for alli.

We writeh to denote the vector of fading gains,hk,m,i, for all k ∈ D, m ∈ T , k

6= m, such thath is a realization for a given channel use of a jointly independent and

ergodic vector fading processH.

Remark 2.1 The no fading model can be viewed as a simplification of a Ricean chan-

nel with a large Ricean factor, i.e., we assume the line-of-sight component dominates

the fading model thereby simplifying the model to a path-loss dependent Gaussian

channel.

2.3 Outer Bounds

An outer bound on the capacity region of a MARC is presented in[27] using the cut-

set bounds in [30, Th. 14.10.1] as applied to the case of independent sources. We

summarize the bounds below.

Proposition 2.2 The capacity regionCMARC is contained in the union of the set of rate

tuples(R1, R2, . . . , RK) that satisfy, for allS ⊆ K,

RS ≤ min (I(XS ; YrYd|XScXrU), I(XSXr; Yd|XScU)) (2.8)

where the union is over all distributions

p(u) ·
(

∏K

k=1
p(xk|u)

)

· p(xr|xK, u) · p(yr, yd|xK, xr). (2.9)

Remark 2.3 The time-sharing random variableU ensures that the region in (2.8) is

convex. One can apply Caratheodory’s theorem [32] to thisK-dimensional convex

region to bound the cardinality ofU as|U| ≤ K + 1.

Remark 2.4 For the Gaussian channel, one can verify that Gaussian signaling maxi-

mizes the outer bounds (see [6]). The bounds for the half-duplex case are obtained by

conditioning the bounds in (2.8) onMr and including the factorp(mr) in (2.9).
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2.4 Achievable Strategies

2.4.1 Decode-and-Forward Strategy

A DF code construction for the white Gaussian MARC is presented in [24]. This

construction is extended to the d.m. MARC in [10] using regular Markov encoding at

the sources and relay andbackward decoding [7, p. 63]at the destination. We detail the

encoding and decoding procedure in Chapter 3 and summarize the rate region below.

Proposition 2.5 The rate region for DF is the union of the set of rate tuples(R1, R2, . . . ,

RK) that satisfy,

RS ≤ min (I(XS ; Yr|XScVKXrU), I(XSXr; Yd|XScVScU)) for all S ⊆ K
(2.10)

where the union is over all distributions that factor as

p(u) ·
(

K
∏

k=1

p(vk|u)p(xk|vk, u)

)

· p(xr|vK, u) · p(yr, yd|xT ). (2.11)

Proof: See Appendix B.1.

We remark that the time-sharing random variableU ensures that the region of

Proposition 2.5 is convex. Further, the auxiliary random variable Vk enables coop-

eration between the relay and sourcek, for all k. Finally, one can also use a real-time

sliding-windowdecoding technique at the destination to recover the cornerpoints of

the rate region achieved at the destination. This scheme hasa significantly smaller de-

lay than backward decoding where the destination waits for the entire message from

all the sources before decoding. We develop this scheme in detail in Chapter 3.

The memoryless model presented in Section 2.2 for the half-duplex MARC allows

us to use the rate results developed for the memoryless full-duplex MARC. Note further

that we consider afixed duplexing scheme where the listen and transmit fractions at

the relayθ and 1 − θ respectively are assumed knowna priori at all nodes where

θ = Pr (Mr = L) = 1−Pr (Mr = T ) andθ ∈ [0, 1]. Thus, one can obtain the DF rate
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bounds for a half-duplex MARC from Proposition 2.5 by conditioning the bounds in

(2.10) over the half-duplex states of the relay as follows.

Corollary 2.6 The DF rate region for a half-duplex MARC is the union of the set of

rate tuples(R1, R2, . . . , RK) that satisfy

RS ≤ min(I(XS ; Yr|XScVKXrMrU), I(XSXr; Yd|XScVScMrU) for all S ⊆ K
(2.12)

where the union is over all distributions

p(u) · p(mr) ·
(

∏K
k=1p(xk, vk|u, mr)

)

· p(xr|u, mr) · p(yr, yd|xK, xr) (2.13)

such that the signaling at the relay satisfies (2.5) formr ∈ {L, T} and

VK =







∅ Mr = L

XK Mr = T.
(2.14)

Note that the relay decodes the messages from the sources only in thelistenfraction

θ and cooperates with the sources in thetransmitfractionθ = 1 − θ.

Consider the Gaussian MARC with fixed channel gains. We writethe signal trans-

mitted by sourcek, for all k ∈ K, and the relay in each channel as

Xk =
√

αkPkVk +
√

(1 − αk) PkVk,0 (2.15)

Xr =
K
∑

k=1

√

βkPrVk +

√

βPrVr,0 (2.16)

whereVk, Vk,0, andVr,0 are independent and identically distributed (i.i.d) proper com-

plex Gaussian random variables with zero mean and unit variance and the power frac-

tionsαk, βk ∈ [0, 1] such that

β = 1 −∑K
k=1βk. (2.17)

Note that in general,αk andβk are complex. However, when the channel gains are

not known at the transmitters one can show that it suffices to restrictαk andβk to be

positive real numbers between0 and1 (see [33]).
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For the MARC, substituting (2.15) and (2.16) in (2.10), we have

RS ≤ max{αk ,βk}K
k=1

min (Ir,S , Id,S) for all S ⊆ K (2.18)

where

Ir,S = C

(

∑

k∈S
|hr,k|2 αkPk

)

(2.19)

Id,S = C

(

(1 − βSc) |hd,r|2 Pr +
∑

k∈S

(

|hd,k|2 Pk + 2
√

αkβkPkPr Re
(

hd,rh
∗
d,k

)

)

)

(2.20)

whereαk = 1 − αk, βSc =
∑

k∈Sc βk andC(x) = log(1 + x).

For an ergodic fading channel where the transmitted signalsexperience all possible

fading states over a message block, the DF rates are bounded as

RS ≤ max
{αk ,βk}K

k=1

min (EIr,S , EId,S) (2.21)

where the expectationE is over the joint fading processH whereIr,S andId,S are given

by (2.19) and (2.20) respectively. Further, one can use the fact that the transmitters do

not have knowledge of the channel state to show that1 − αk = βk = 0 maximize the

rate bounds in (2.19) and (2.20) respectively [33].

Finally, for the half-duplex MARC, the rate region is achieved by simplifying

(2.15) for the two modes as

Xk =







√
PkVk,0 Mr = L

√
PkVk Mr = T

. (2.22)

The relay’s signalXr is then set to0 for the listen fraction and to (2.16) for the transmit

fraction. We obtain the DF rate region by substituting (2.22) and (2.16) in (2.12).

2.4.2 Compress-and-Forward Strategy

One can also consider a strategy where the relay compresses its received signal as

in [6, Theorem 6]. The destination first decodes the compressed signal from the relay
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Figure 2.4: Block Markov encoding for CF and a two-user MARC.

and uses that in conjunction with its own received signal to decode the source messages

[34]. Note that the received and compressed signals at the relay carry messages from

all the sources.

The encoding is done as follows. Consider the probability distribution

(

∏K

k=1
p(xk)

)

· p (xr) · p(ŷr|xr, yr) · p(yr, yd|xK, xr). (2.23)

For each userk, generate2nRk codewordsxk(wk), wk = 1, 2, . . . , 2nRk , by choosing

the lettersxk,i (wk), i = 1, 2, . . . , n, independently with distributionp(xk). Similarly,

generate2nRr codewordsxr(wr), wr = 1, 2, . . . , 2nRr , by choosing the lettersxr,i(wr)

independently with distributionp(xr) for all i. For eachxr(wr) generate2nR′
r code-

words ŷr(zr), zr = 1, 2, . . . , 2nR′
r , by choosing the letterŝyr,i(zr, wr) independently

with distributionpŶr|Xr
( · | xr,i(wr)) for all i wherep(ŷr|xr) is obtained from the dis-

tributionp(ŷr|yr, xr) as

p(ŷr|xr) =
∑

xK,yr,yd

p (xK) p (ŷr|yr, xr) p (yr, yd|xK, xr) . (2.24)

Finally, we randomly partition the set{1, 2, . . . , 2nR′
r} into2nRr subsets and index them

via wr. The above code construction procedure is repeatedB + 1 times, once for each

block, and thebth codebook is used in blockb, b = 1, 2, . . . , B + 1. Note that the

codebooks are independent across blocks and this fact simplifies the error analysis [8,

35].
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A block Markov encoding strategy is employed where in blockb, b = 1, 2, . . . , B,

thekth source transmits its independent messagewk,b ∈ [1, 2nRk ] via xk(wk,b) while

the relay transmitsxr(wr,b), wr,b ∈ [1, 2nRr ], whereRr is the rate at which the relay

forwards the compressed messagezr,b−1 from the previous block (see Fig. 2.4). In

the same block, the relay also compresses its received signal yr asŷr(zr,b, wr,b), zr,b ∈
[1, 2nRr ]. The resulting rate region is given by the following theorem.

Theorem 2.7 Compress-and-forward yields a rate regionRCF given by the union of

the set of rate tuples(R1, R2, . . . , RK), that satisfy

RS ≤ I(XS ; ŶrYd|XScXrU) for all S ⊆ K (2.25)

where the union is over all joint distributions

p(u) ·
(

∏

k∈T
p(xk|u)

)

· p(ŷr|yr, xr, u) · p(yd, yr|xT ) (2.26)

and subject to the constraint

I(Xr; Yd|U) ≥ I(Ŷr; Yr|XrYdU). (2.27)

Proof: For a constantU , the proof involves a relatively straightforward gen-

eralization of the decoding procedure in [6, Thm. 6] to the multiaccess problem of

decodingK users at the destination [30, 14.3]. The time-sharing random variableU

convexifies the rate region of Theorem 2.25.

Remark 2.8 The constraint in (2.27) indicates that the rate achievablebetween the

relay and destination limits the fidelity of the compressed signal.

Corollary 2.9 The CF rate region for a half-duplex relay is given by the union of the

set of rate tuples(R1, R2, . . . , RK), that satisfy

RS ≤ I(XS ; ŶrYd|XScXrMrU) for all S ⊆ K (2.28)
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where the union is over all distributions

p(u) · p(mr) ·
(

∏

k∈T
p(xk|mr, u)

)

· p(xr|mr, u) · p(ŷr|yr, xr, u) · p(yd, yr|xK, xr)

(2.29)

and subject to the constraint

I(Xr; Yd|MrU) ≥ θI(Ŷr; Yr|YdXrMrU). (2.30)

Consider the Gaussian MARC with fixed channel gains. We generate proper com-

plex Gaussian i.i.d. sequencesXk ∼ CN (0, pk), for all k ∈ T , wherepk satisfies (2.4).

Each letter in the quantized codewordŷr is generated as

Ŷr,i = Yr,i + Qr,i i = 1, 2, . . . , n (2.31)

whereQr,i ∼ CN (0, D) is generated independent ofYr,i andYd,i for all i. Using (2.2),

(2.3), and (2.31), the constraint in (2.27) simplifies to yield the lower bound on the

distortionD as

D ≥

(

∑

k∈K
|hr,k| pk + 1

)(

∑

k∈K
|hd,k| pk + 1

)

−
∣

∣

∣

∣

∑

k∈K
hd,kh

∗
r,kpk

∣

∣

∣

∣

2

(

|hd,r|2 Pr

) . (2.32)

Finally, the bounds in (2.25) simplify as

RS ≤ log







 

P

k∈S
|hr,k|pk+D+1

! 

P

k∈S
|hd,k|pk+1

!

−
˛

˛

˛

˛

˛

P

k∈S

hd,kh∗
r,kpk

˛

˛

˛

˛

˛

2

D+1






for all S ⊆ K.

(2.33)

We denote the region achieved by (2.33) asRCF (p). Note that the minimum distortion

in (2.32) increases with increasingK. This is due to the fact that the relay compresses

the signal from all users simultaneously. Note further thatin (2.33) the expression in

the numerator depends only on the signal power of the users inS; however, the distor-

tion D in the denominator depends on the transmit power of all usersin K. Thus, for

a fixed user and relay transmit signal-to-noise ratio (SNR),the bounds onRS , for all

S, in (2.33) decreases as increasing number of sources transmit. In fact, the maximum
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single-user rate for any source is achieved only when the remaining sources remain

‘silent’, i.e., do not transmit. Thus, to obtain the set of all achievable CF rate tu-

plesRG−CF , one must consider all possible source power tuples,p = (p1, p2, . . . , pK)

wherepk satisfies (2.4) such that

RG−CF = co

(

⋃

p
RCF (p)

)

(2.34)

whereco(·) denotes the convex hull operation.

Remark 2.10 Note that sinceD depends on the transmit SNR at the sources,RS is in

general not a convex function ofp and thus, the rate region is a convex hull of the union

of all rate regions, where the union is over allp.

Remark 2.11 As (2.32) indicates, the distortionD decreases as the SNR between the

relay and destinationPr (normalized by unit variance noise) increases. Note that as

Pr increases, the CF strategy yields sum rates that approach the two-antenna multiple-

access clustering capacity [10].

Finally, the rate region for the ergodic channel is obtainedby averaging (2.33) over

all channel states subject to a fading averaged distortion in (2.32). We remark that

implicit in this averaging is the assumption that the destination also knows the channel

gains at the relay.

The rate region for the ergodic channel is obtained by averaging (2.33) over all

channel states subject to averaging the constraint in (2.32) over the joint fading process

H. We remark that implicit in this averaging is the assumptionthat the destination also

knows the channel gains at the relay and vice-versa. Finally, the code construction for

the full-duplex Gaussian MARC detailed above can be extended in a straightforward

manner to the half-duplex case.
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Figure 2.5: Block Markov Encoding for the PDF strategy for a two-user MARC.

2.4.3 Partial Decode-and-Forward Strategy

One can generalize DF by limiting the relay to decode only oneof two streams trans-

mitted by a source as in [6, theorem 7]. We refer to this strategy as apartial decode-

and-forward strategy [28, 31]; this strategy is also called amultipath decode-and-

forward to characterize the multipath nature of the data flow from thesources [4, Chap.

4]. In general, it may seem desirable to use the relay node to forward all messages from

a source. In practice, however, the costs associated with using a relay node [21,36] may

limit their usage by the source nodes to transmitting data streams with higher reliability

or QoS requirements.

We construct the codebooks at the sources and relay as follows. Consider the prob-

ability distribution
(

K
∏

k=1

p(vk)p(qk|vk)p(xk|qk)

)

· p (xr|vK) · p(yr, yd|xK, xr). (2.35)

For eachk, generate2nRk,2 codewordsvk(sk), sk = 1, 2, . . . , 2nRk,2, by choosing the

lettersvk,i (sk), i = 1, 2, . . . , n, independently with distributionp(vk). Similarly, for

everyvk(sk) generate2nRk,2 codewordsqk(wk,2, sk), wk,2 = 1, 2, . . . , 2nRk,2 , by choos-

ing the lettersqk,i(wk,2, sk) independently with distributionpQk|Vk
( · |vk,i(sk)) for all i.

For everyqk(wk,2, sk), generate a length-n relay codewordxk(wk,1, wk,2, sk), wk,1 =
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1, 2, . . . , 2nRk,1, by choosing the lettersxk,i(wk,1, wk,2, sk) independently with probabil-

ity distributionpXk|Qk
( · |qk,i(wk,2, sk)) for all i. Finally, generate one length-n code-

wordxr (s1, s2, . . . , sK) for each tuple(s1, s2, . . . , sK) by choosingxr,i(s1, s2, . . . , sK)

independently with distributionpXr |V1,V2,...,Vk
( · |v1,i(s1), . . . , vK,i(sK)) for all i. The

above code construction procedure is repeatedB + 1 times, once for each block, and

thebth codebook is used in blockb, b = 1, 2, . . . , B + 1. Note that the codebooks are

independent across blocks and this fact simplifies the erroranalysis [8,35].

A block Markov encoding strategy is employed where in blockb, b = 1, 2, . . . , B,

thekth source transmits its independent message streamswk,1,b ∈ [1, 2nRk,1] andwk,2,b ∈
[1, 2nRk,2] viaxk(wk,1,b, wk,2,b, wk,2,b−1) while the relay transmitsxr(s1,b, s2,b, . . . , sK,b).

The encoding is illustrated in Fig. 2.5 for a two-user MARC. In each block, the relay

decodes the messageswk,2, for all k, while the destination decodes(wk,1, wk,2). The

kth source rate isRk = Rk,1 + Rk,2 and we writeRS,k =
∑

k∈SRk,m, m = 1, 2. We

use backward decoding at the destination to prove the following theorem.

Theorem 2.12 The rate region for the PDF strategy is the union of the set of rate

tuples(R1, R2, . . . , RK) that, for all non-empty setsG, S with G ⊆ S ⊆ K, satisfy

RS,2 ≤ I(QS ; Yr|QScVKXrU) (2.36)

RS,1 ≤ I(XS ; Yd|XScVKQKXrU) (2.37)

RS,1 + RG,2 ≤ I(XSXr; Yd|XScQGcVGcU) (2.38)

where the union is over all input distributions of the form

p(u) ·
[

K
∏

k=1

p(vk, qk, xk|u)

]

· p(xr|vK, u). (2.39)

Proof: In Appendix A, we first develop the rate bounds forK = 2 and use this

to demonstrate the generalization for arbitraryK.

Remark 2.13 The rate bounds for the half-duplex channel can be obtained by condi-

tioning the bounds in (2.36)-(2.38) on the relay’s transmitand receive modes.
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For a Gaussian MARC, we consider Gaussian signaling at the sources and relay.

We write

Xk =
√

(1 − αk,1 − αk,2) PkVk,0 +
√

αk,2PkQk +
√

αk,1PkVk k ∈ K (2.40)

Xr =
K
∑

k=1

√
βkPrVk +

√

(

1 −∑K
k=1 βk

)

PrVr,0 (2.41)

whereVk,0, Vk, andQk for all k are i.i.d proper complex Gaussian random variables.

We first consider the case where the channel gains are fixed. One can simplify the

rate bounds by substituting (2.40) and (2.41) in (2.36)-(2.38). Note that the signals

Vk,0 for all k act as interference at the relay. In fact, for most geometries of interest

where the relay is closer to the destination than the sourcesare, one can see that the

PDF bounds are maximized forαk,1 + αk,2 = 1 for all k; that is, PDF simplifies to DF.

However, PDF can achieve larger rates for the half-duplex case as now the sources can

transmit directly to the destination in the relay’stransmitfraction, i.e., the sources set

αk,1 + αk,2 = 1 in the θ fraction andαk,2 = 0 in the 1 − θ fraction. We detail this

strategy in Chapter 4. Finally, one can achieve the rate bounds for the ergodic case by

averaging the fixed fading rate bounds over all channel states.

2.4.4 Mixed Strategy – PDF and CF

One can also combine the PDF and CF strategies as in [6, Theorem 7]. The rate bounds

in [6, Theorem 7] are obtained using successive decoding andcan also be obtained

using sliding-window decoding. For the MARC, we combine thetechniques of back-

ward and sliding-window decoding at the destination to achieve the rate region for this

mixed strategy. Our motivation for doing so stems from the fact that the DF and PDF

rate bounds achieved by backward decoding are at least as large as sliding window

decoding as detailed in Chapter 3.

The encoding is done as follows. Consider the probability distribution
(

K
∏

k=1

p(vk)p(qk|vk)p(xk|qk)

)

·p (xr|vK)·p (ŷr|yr, xr, qK, vK)·p(yr, yd|xK, xr). (2.42)
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Figure 2.6: Block Markov encoding for the mixed PDF and CF strategy for a two-user
MARC.

For eachk, generate2nRk,2 codewordsvk(sk), sk = 1, 2, . . . , 2nRk,2, by choosing the

lettersvk,i (sk), i = 1, 2, . . . , n, independently with distributionp(vk). Similarly, for

everyvk(sk) generate2nRk,2 codewordsqk(wk,2, sk), wk,2 = 1, 2, . . . , 2nRk,2 , by choos-

ing the lettersxk,i(wk,2, sk) independently with distributionpQk|Vk
( · |vk,i(sk)) for all i.

Further, for everyqk(wk,2, sk) generate a length-n relay codewordxk(wk,1, wk,2, sk),

wk,1 = 1, 2, . . . , 2nRk,1, by choosing the lettersxk,i(wk,1, wk,2, sk) independently with

distributionpXk|Qk
( · |qk,i(wk,2, sk)) for all i. Generate one length-n relay codeword

xr(wr,s1, s2, . . . , sK), wr = 1, 2, . . . , 2nRr , for each tuple(s1, s2, . . . , sK) by choos-

ingxr,i(wr, s1, s2, . . . , sK) independently with probability distributionpXr |V1,V2,...,Vk
( · |

v1,i(s1), . . . , vK,i(sK)) for all i. Further, generate one length-n codeword̂y
r
(zr, wr, sK,

wK,2), zr = 1, 2, . . . , 2nR′
r , for each tuplesK = (s1, s2, . . . , sK) andwK,2 = (w1,2, w2,2,

. . . , wK,2) by choosinĝyr,i(zr, wr, wK,2, sK,2) for all i independently with distribution

pŶr |Q1,Q2,...,QK ,Xr
( · | q1,i(w1,2), . . . , qK,i(wK,2), xr (wr, sK)). Finally, we randomly par-

tition the set{1, 2, . . . , 2nR′
r} into 2nRr subsets and index them viawr.

A block Markov encoding strategy is employed where in blockb, b = 1, 2, . . . , B,

thekth source transmits its independent message streamswk,1,b ∈ [1, 2nRk,1] andwk,2,b ∈
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[1, 2nRk,2] via xk(wk,1,b, wk,2,b, wk,2,b−1) while the relay transmitsxr(wr,b, s1,b, s2,b, . . . ,

sK,b) whereRr is the rate at which the relay forwards the compressed messagewr,b as

the index of the partition to whichzr,b−1 belongs (see Fig. 2.6). Finally, the relay also

compresses its received signal asŷr (zr,b, wK,2, sK,2).

In block b, the relay decodes the messageswk,2,b, for all k. The destination first

decodes(w1,2,b, w2,2,b, . . . , wK,2,b) in block b using backward decoding starting from

block B + 1. After decoding allB + 1 blocks, the destination uses sliding-window

decoding to decodezr,b, b using blocksb andb +1. Thekth source rate isRk = Rk,1 +

Rk,2 and we writeRS,k =
∑

k∈SRk,m, m = 1, 2. We use backward decoding followed

by sliding-window decoding at the destination to prove the following theorem.

Theorem 2.14 The rate region for the mixed PDF-CF strategy is the union of the set

of rate tuples(R1, R2, . . . , RK) that, for all non-empty setsS withG ⊆ S ⊆ K, satisfy

RS,2 ≤ I(QS ; Yr|QScVKXrU) (2.43)

RS,2 ≤ I(QSVS ; Yd|QScVScU) (2.44)

RS,1 ≤ I(XS ; ŶrYd|XScQKVKXrU) (2.45)

where the union is over all input distributions in (2.42) subject to the constraint

I(Xr; Yd|QKVKU) ≥ I(Ŷr; Yr|QKVKXrYdU). (2.46)

Proof: The proof is a straightforward extension of the proofs for Theorems 2.7

and 2.12. Thus, the bounds in (2.43) are obtained by decodingwK,2 at the relay in every

block while the bounds in (2.44) are obtained by decodingwK,2 at the destination using

backward decoding. This is followed by decodingzr,b in every block at the destination

using successive decoding [6, Theorem 6]. Combining the resulting bounds at the

destination with the bounds on the quantization rate at the relay yields the constraint

(2.46). Finally, the bounds in (2.45) result from decodingwK,1 at the destination using

Ŷr andYd in every block.
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One can extend the code constructions for PDF and CF for the Gaussian case to

obtain the bounds for this case. Finally, the half-duplex bounds are obtained by condi-

tioning (2.43)-(2.45) over the transmit and receive modes at the relay.

2.4.5 Amplify-and-Forward Strategy

For a Gaussian MARC, one can also consider a strategy where the relay amplifies its

received signal before forwarding it to the destination. Thus, the transmitted signal at

the relay in each time-symbol isXr,i = cYr,i−1 where the constantc results from apply-

ing the power constraint at the relay in (2.4). The resultingchannel at the destination

is a unit delay multiaccess inter-symbol interference (ISI) channel with the received

signal in each time instant given as

Yd,i =

(

K
∑

k=1

hd,kXk,i

)

+ chd,r

(

K
∑

k=1

hr,kXk,i−1

)

+ cZr,i−1 + Zd,i (2.47)

For the case of fixed channel gains, the AF rate region is the capacity region of a unit-

memory ISI MAC in (2.47) and is given by amultiuser water-fillingsolution [37]. We

obtain the ergodic region by averaging this region over all possible channel instantia-

tions.

For a set ofK sources transmitting at powerpk, the scale factorc is given as

c =

√

Pr

1 +
∑K

k=1hr,kpk

. (2.48)

Observe thatc decreases with increasingK as the relay power is now shared over more

users. Further, since the rate boundsRS for all S at the destination depends onc, as

with the CF strategy, we consider all possible power tuplesp in developing the AF rate

regionRAF . Thus, we write

RAF = co

(

⋃

p

RCV (p)

)

(2.49)

whereRCV (p) is the capacity region of an ISI channel for somep andco (·) represents

the convex hull of the union of such regions over all possiblep.
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For the half-duplex case, we considerθ = 1/2. The signalsYd,1 andYd,2 in the two

fractions are given as

Yd,1 =

(

K
∑

k=1

Xk,1

)

+ Zd,1 (2.50)

Yd,2 =

(

K
∑

k=1

hd,kXk,2

)

+ chd,r

(

K
∑

k=1

hr,kXk,1

)

+ cZr,1 + Zd,2 (2.51)

and result in a two-symbol multiaccess ISI channel. The ratebounds are given as [30,

10.5]

RS ≤ max
{Qk:tr(Qk)≤2Pk}k∈K

1

2
log

∣

∣

∣

∣

∣

I2 +
∑

k∈S
HkQkH

†
k

∣

∣

∣

∣

∣

(2.52)

where

Hk =





hd,k 0

chd,rhr,k/cs hd,k/cs



 (2.53)

wherecs =
√

|hd,r| c2 + 1 andH†
k is the conjugate transpose ofHk for all k andI2 is

a2 × 2 identity matrix.

2.5 Illustration of Results

We illustrate our results for a two user MARC and the two example geometries shown

in Fig. 2.7. While the two geometries chosen here illustratethe capacity achieving

behavior of the DF and CF strategies, they are also reflectiveof the typical performance

achieved by the various strategies considered here for an arbitrary placement of source

and relay nodes. Case 1 is a geometry with a symmetric positioning of the sources

with respect to the relay and destination while case 2 is a collinear geometry with both

sources at the origin and the destination a unit distance away from the origin. In both

cases, the relay moves along the line connecting the destination with the origin.

We plot the sum-rate in bits per channel use for each strategyas a function of the

relay’s distance from the origin. The noise normalized transmit SNR at the sources and

relay is chosen asP1 = P2 = Pr = 10. We present and analyze the results separately

for the no fading and ergodic fading model; to develop the we present the results for



26

dd,1=1dr ,1

dr ,2

Destination

d

S1

S2

(0,0) Relay

Case 1

dd,2=1

.6

.6

DestinationS1 ,S2 : (0,0)

dr ,1=dr,2=d

dd,1=dd,2=1
Relay

Case 2

Figure 2.7: Two example geometries.

an ergodic phase fading channel, i.e.,Am,k,i = ejθm,k,i whereθm,k,i are i.i.d. uniformly

between[−π, π) for all m ∈ D, k ∈ T and time-instantsi. For the following analysis

we use the free-space path loss exponentγ = 2 and evaluate all logarithms with respect

to base 2 so that the resulting rates are in units of bits per channel use.

2.5.1 No Fading or Line-of-sight Model

MARC

The two user DF, CF, and AF sum-rates and the outer bounds of Proposition 2.2 are

plotted in Figs. 2.8 and 2.9 for geometry 1 and 2 respectively. Recall that the DF

and CF sum-rates for a Gaussian MARC are given by (2.18), (2.33) respectively. The

direct multiple-access sum-rate between the sources and destination is also plotted as

a straight-line since it is independent of the relay’s position. The plots also include the

optimal DF power fractionα1 = α2 = α allocated by the sources to transmitting a new

message in (2.16) where the two fractions have the same valueα at the maximum sum-

rate point for the symmetric geometries in cases 1 and 2. We note thatα does not apply

to the CF and AF strategies where the relay does not decode thesource messages.
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Figure 2.8: Inner and outer bounds on the sum rateR1 + R2 for Case 1 and the no
fading model.
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Figure 2.9: Inner and outer bounds on the sum rateR1 + R2 for Case 2 and the no
fading model.
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In Fig. 2.8, we observe that when the relay is closer to the destination, the CF

strategy approaches the upper bound achieving capacity when the relay and destination

enjoy an error-free channel. This can be verified analytically and results from the fact

the distortion in the quantized signal decreases as the channel between the relay and

destination becomes more reliable. In the limit, when the relay and destination are

co-located, the destination has access to both channel outputs thus achieving the upper

bound in (2.8).

The AF strategy performs only as well as the DF strategy when the relay is very

close to the destination. The performance of the AF strategysuffers from the ampli-

fication of the received noise at the relay. Further as the relay moves away from the

destination, the advantage of a high-rate channel between the relay and destination is

also lost resulting in the AF strategy falling below the direct multiple-access sum-rate

that is achievable in the absence of the relay.

The DF strategy approaches the outer bounds when the relay isphysically close

to the two sources. The resulting high rate channel between the relay and the sources

forces maximum cooperation between the sources and the relay. This is clear from the

optimalα curve in Figs. 2.8 and 2.9 whereα = 1 (no cooperation) results only when

the rate achieved by the sources and relay at the destinationexceeds the maximum rate

achievable between the sources and relay.

For the collinear geometry considered in case 2, we observe from Fig. 2.9 that

DF approaches the upper bound when the relay is physically close to the two sources.

Finally, we note that the achievable rates for DF and CF are greater than the direct

sum-rate when the relay is closer to the sources than the destination even if it does not

physically lie between the sources and destination.
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Figure 2.10: Inner and outer bounds on the sum rateR1+R2 for the half-duplex MARC
of Case 1.

Half-Duplex MARC

The achievable sum-rate bounds for DF, PDF, CF, and AF are shown in Fig. 2.10 and

2.11 for Case 1 and Case 2 respectively. Also shown is the outer bound on the sum-

rate obtained by conditioning the bounds in (2.8) on the relay’s half-duplex modes.

For the sake of simplicity and to make comparisons between the CF, DF, PDF and

AF strategies, we setθ = 1 /2 . Analogous to the full-duplex MARC, we consider

Gaussian signaling at the sources and relay for every strategy.

As expected, for both geometries the CF strategy approachesthe upper bound as

the relay approaches the destination. Here too, the CF strategy exploits the correlation

between the received signals at the relay and destination and for the case where the

relay is at the destination, the destination has reliable access to both channel outputs

thus achieving capacity.

For case 2, we see that when the relay and sources are physically very close that

the DF sum-rate approaches the outer bounds. The optimalα curve in Figs. 2.10 and
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Figure 2.11: Innner and outer bounds on the sum rateR1 + R2 for the half–duplex
MARC of Case 2

2.11 measures the fraction of power allocated to a new message at each source in the

(1 − θ) fraction for the PDF strategy. The sources do not cooperate with relay in the

CF and AF strategies while for the DF strategy,α1 = α2 = 1 since the sources do not

send a new message in the(1 − θ) fraction. Note thatθ = 1/2 may not maximize the

sum-rate achieved by the DF or the PDF strategy.

2.5.2 Ergodic Phase Fading

MARC

In [10], the authors show that for an ergodic fading channel,DF achieves the sum-

capacity of a MARC when the relay lies in a region around the sources such that

∑

k∈S

Pk

dγ
d,k

+ Pr

dγ
d,r

≤ ∑

k∈S

Pk

dγ
r,k

for all S ⊆ K. (2.54)

Further, they also showed that due to the lack of channel state information at the trans-

mitters and a uniform phase-fading channel the ergodic capacity is maximized when
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Figure 2.12: Inner and outer bounds on the sum rateR1 + R2 for the MARC and
half-duplex MARC of Case 2 under ergodic fading

the sources do not cooperate with the relay, i.e.,αk = 0 for all k.

Half-Duplex MARC

In an analogous manner, one can show that for a half–duplex MARC with fixed frac-

tions θ and1 − θ, the DF strategy achieves capacity when the relay lies in a region

about the sources such that, for allS ⊆ K,

(

1 +
∑

k∈S

Pk

dγ
d,k

)θ

·
(

1 +
Pr

dγ
d,r

+
∑

k∈S

Pk

dγ
d,k

)(1−θ)

≤
(

1 +
∑

k∈S

Pk

dγ
r,k

)θ

. (2.55)

The resulting rate region for the half-duplex MARC under ergodic fading conditions is

then given by the set of rate tuples(R1, R2, . . .RK) that satisfy

RS ≤ θ log

(

1 +
∑

k∈S

Pk

dγ
d,k

)

+ (1 − θ) log

(

1 + Pr

dγ
d,r

+
∑

k∈S

Pk

dγ
d,k

)

for all S ⊆ K.

(2.56)



32

Further, for anyθ, one can extend the analysis in [10] to show that the PDF strategy

achieves capacity when the relay lies in a region about the sources such that

(

1 +
∑

k∈S

Pk

dd,k

)θ

·
(

1 + Pr

dd,r
+
∑

k∈S

Pk

dd,k

)(1−θ)

≤
(

1 +
∑

k∈S

Pk

dr,k

)θ

·
(

1 +
∑

k∈S

Pk

dd,k

)(1−θ)

for all S ⊆ K.

(2.57)

This capacity achieving behavior of the DF and PDF strategy for the MARC and half-

duplex MARC respectively under ergodic fading conditions is clearly demonstrated

in Fig. 2.12 for the collinear geometry of case 2. The wide range of relay positions

between[−.9, .45] where the DF strategy achieves capacity for the MARC and between

[−.95, .45] for the half-duplex MARC clearly illustrates how clustering the sources and

relay helps achieve the ergodic capacity. Further, for the half-duplex MARC the DF

strategy also achieves capacity albeit over the smaller range[−.15, .15] where the relay

is very close to the sources.

Effect of Transmit SNR

One can similarly plot the DF, CF, and AF sum-rates for different values of transmit

SNR at the sources and relay. In general, for a fixed transmit SNR at the relay, reducing

the transmit SNR at the sources will reduce the maximum sum-rates achievable. On

the other hand reducing only the transmit SNR at the relay will reduce the sum-rate

gains achieved by relaying relative to the MAC sum-capacity. Further, the AF sum-

rate decreases with decreasing transmit SNR at the sources due to noise amplification.

However, one can verify from the rate expressions in Section2.4 that the geometry-

dependent performance of DF and CF does not change with transmit SNR; i.e., DF

achieves or approaches capacity when the sources and the relay are clustered close to-

gether while CF does so when the relay is clustered close to the destination irrespective

independent of transmit SNR.
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2.6 Conclusions

We presented discrete and Gaussian memoryless models for a full-duplex multiaccess

relay channel. We also presented a memoryless model for a MARC with a half-duplex

relay. We extended the relaying strategies of DF, CF, and PDFdeveloped by Cover

and El Gamal for the relay channel [6] and studied their rate regions for both the no

fading and ergodic fading channels. Finally, we illustrated the maximum sum-rates

achieved by DF, CF, AF, and PDF for two example geometries anddemonstrated the

topology-dependent rate and capacity behavior for the no fading and ergodic phase-

fading models.
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Chapter 3

Offset Encoding for Multiaccess Relay Channels

3.1 Introduction

For the classic relay channel, several block-Markov encoding and decoding techniques

achieve the DF rate in [6, Theorem 1] (see [10, Sec. I]):

• irregular encoding (different size codebooks at the source and relay)andsucces-

sivedecoding [6, Theorem 1],

• regular encoding (same size codebooks at the source and relay) andsliding-

windowdecoding [8],

• regular encoding andbackward decoding[7].

One can, in fact, use irregular encoding with any of the abovedecoding methods.

The above techniques have all been generalized to multiple relay networks [10, 18,

35, 38, 39]. For the MARC, however, the different DF decodingmethods do not al-

ways yield the same rate region. For example, we show that backward decoding can

give larger rates than sliding-window decoding (see also [40, 41]). On the other hand,

sliding-window decoding decodes blocks of message bits at regular intervals before all

channel-symbol blocks are transmitted. This is useful: if the sliding window length

is much smaller than the backward decoding delay, then sliding-window decoding is

preferable forstreamingapplications.

To compare the methods, suppose the destination uses backward decoding forB

message blocks transmitted inB + 1 channel-symbol blocks. The decoding delay is

thenB+1 channel-symbol blocks for the first message block, where we measure delay

from the start of the block to the time the block is decoded. Our main contribution is an
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Figure 3.1: AK-user multiaccess relay channel.

offset encodingtechnique for sliding-window decoding that recovers the corner points

of the destination’s backward decoding rate regions with a delay of K + 1 channel-

symbol blocks for every message block. The total number of channel-symbol blocks

required isB + K. Note thatK can be much smaller thanB, e.g., if the relay serves

only a small number of users at a time. For the non-corner boundary points of the

backward decoding rate regions, we use a combination of offset encoding, no-offset

encoding, and/or time sharing between different offset encoding methods. Note, how-

ever, that time-sharing increases decoding delay; rate-splitting methods might perhaps

avoid this delay [42,43].

This correspondence is organized as follows. In Section 3.2we present the MARC

model and summarize the DF random code construction of [10, Appendix A]. In Sec-

tion 3.3, we review the backward decoding rate region and compute the sliding-window

decoding rate region. The latter region is in general smaller than the former. In Sec-

tion 3.4, we describe offset encoding and develop its rate region when combined with

sliding-window decoding. Section 3.5 concludes the paper.
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Figure 3.2: Regular encoding for a two-user MARC assuming the relay decodes cor-
rectly.

3.2 Preliminaries

3.2.1 Model and Notation

TheK-user MARC model is the same that as detailed in Chapter 2. As further notation,

we writeRS =
∑

k∈SRk, [m, n] = {m, m + 1, . . . , n}, and we use the vector notation

xk for length-n codewords of userk. We use the usual notation for entropy and mutual

information [29,30] and take all logarithms to the base 2 so that our rate units are bits.

We write random variables (e.g.Wk) with uppercase letters and their realizations (e.g.

wk) with the corresponding lowercase letters.

We assume familiarity of the reader with basic notions of backward decoding and

joint decoding as described in [7,8,10,35,40].

3.2.2 Random Code Construction

A DF code construction is presented in [10, Appendix A] and wereview it below.

This construction is common to all the decoding methods considered below and it uses

independent random variablesVk, k = 1, 2, . . . , K, to help the sources cooperate with

the relay. TheVk have finite alphabets.

Random Code Construction:
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Consider the probability distribution

(

K
∏

k=1

p(vk)p(xk|vk)

)

· p(xr|vK). (3.1)

We use regular encoding. For eachk, generate2nRk codewordsvk(sk), sk = 1, 2, . . . ,

2nRk , by choosing the lettersvk,i (sk), i = 1, 2, . . . , n, independently with distribu-

tion p(vk). Similarly, for everyvk(sk) generate2nRk codewordsxk(wk, sk), wk =

1, 2, . . . , 2nRk , by choosing the lettersxk,i(wk, sk) independently with probability dis-

tribution pXk|Vk
( · |vk,i(sk)) for all i. Finally, generate one length-n relay codeword

xr(s1, s2, . . . , sK) for each tuple(s1, s2, . . . , sK) by choosingxr,i(s1, s2, . . . , sK) inde-

pendently with distributionpXr |V1,V2,...,Vk
( · |v1,i(s1), . . . , vK,i(sK)) for all i.

The above code construction procedure is repeatedB + 1 times, once for each

block, and thebth codebook is used in blockb, b = 1, 2, . . . , B + 1. Note that the

codebooks are independent across blocks; this fact simplifies the error analysis [8,35].

The encoding procedure of [10, Appendix A] proceeds as follows. We change this

procedure in Sec. 3.4.

Regular Block Markov Encoding:

Encoderk parseswk into B blocks wk,1, wk,2, . . . , wk,B, each havingnRk bits,

and transmits these messages overB + 1 channel-symbol blocks as shown in Fig.

3.2 for K = 2. More generally, userk transmitsxk(wk,b, wk,b−1) in block b where

wk,0 = wk,B+1 = 1 for all k. The relay sends the codewordxr(s1,b, s2,b, . . . , sK,b) in

block b wheresk,b is the relay’s estimate ofwk,b−1 from blockb − 1. We setsk,1 = 1

for all k. We thus haveN = n(B + 1) andBWk
= nRkB so the overall rate of userk

is RWk
= Rk · B /(B + 1) which approachesRk for largeB.
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Figure 3.3: Example of a rate region achieved by DF and backward decoding for a
two-user MARC.

3.3 Decode-and-Forward

3.3.1 Backward Decoding

Consider a2-user MARC where the sources and the relay use the block-Markov encod-

ing method described above. The relay decodes the messages reliably if (see Appendix

B.1)

R1 ≤ I(X1; Yr|X2V1V2Xr) (3.2)

R2 ≤ I(X2; Yr|X1V1V2Xr) (3.3)

R1 + R2 ≤ I(X1X2; Yr|V1V2Xr). (3.4)

The destination decodes the message blocks in reverse orderusing its channel-symbol

blocksy
d,B+1

, y
d,B

, . . . , y
d,2

. The resulting destination rate bounds are (see Appendix

B.1)

R1 ≤ I(X1Xr; Yd|X2V2) (3.5)

R2 ≤ I(X2Xr; Yd|X1V1) (3.6)

R1 + R2 ≤ I(X1X2Xr; Yd). (3.7)

Fig. 3.3 shows an example of the rate region defined by (3.2)-(3.7). For aK-user

MARC, these bounds generalize as follows.



39

Theorem 3.1 The capacity region of aK-user MARC includes the union of the set of

rate tuples(R1, R2, . . . , RK) that satisfy, for allS ⊆ K,

RS ≤ min





I(XS ; Yr|XScVKXrU),

I(XSXr; Yd|XScVScU)



 (3.8)

where the union is over all distributions that factor as

p(u) ·
(

∏K
k=1p(xk, vk|u)

)

· p(xr|vK, u) · p(yr, yd|xK, xr). (3.9)

Proof: See Appendix B.1.

Remark 3.2 The time-sharing random variableU ensures that the region of Theorem

3.1 is convex. For simplicity, we will develop the theory below for a constantU only.

Remark 3.3 The destination decodes the message blockswk,B, wk,B−1, . . . , wk,1 with

delays of2, 3, . . . , B + 1 channel-symbol blocks, respectively. Note thatB must be

large to ensure that the rate-loss factorB/(B + 1) due to block Markov encoding is

close to1.

3.3.2 Sliding-Window Decoding

Suppose the destination uses sliding-window decoding, i.e., the destination decodes

the message pair(w1,b, w2,b) transmitted in blockb by usingyd,b andyd,b+1. For exam-

ple, in Fig. 3.2, the destination decodes(w1,2 , w2,2) by usingy
d,2

andy
d,3

. Observe

that(w1,b+1, w2,b+1) is not known while decoding(w1,b, w2,b). One can check that the

bounds in (3.5)-(3.7) are replaced by

R1 ≤ I(X1; Yd|X2V1V2Xr) + I(V1Xr; Yd|V2) (3.10)

R2 ≤ I(X2; Yd|X1V1V2Xr) + I(V2Xr; Yd|V1) (3.11)

R1 + R2 ≤ I(X1X2Xr; Yd). (3.12)

The analysis used to obtain (3.10)-(3.12) is similar to thatpresented in Appendix B.2

and is hence omitted. In brief, the termI(X1; Yd|X2V1V2Xr) in (3.10) results fromyd,b
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Figure 3.4: Offset encoding for aK-user MARC assuming the relay decodes correctly.

while the termI(V1Xr; Yd|V2) is due toyd,b+1. In fact, the same bounds result if one

increases the sliding window length to decode messages frommany past blocks, unless

this window includes blockB+1. The bounds (3.11) and (3.12) are obtained similarly.

We next compare (3.5)-(3.7) and (3.10)-(3.12). Obviously,the bounds (3.7) and

(3.12) are the same. But consider the right-hand side of (3.5) that expands as

I(X1Xr; Yd|X2V2) = I(X1V1Xr; Yd|X2V2) (3.13)

= I(X1; Yd|X2V1V2Xr)

+ I(V1Xr; Yd|X2V2). (3.14)

where (3.13) follows from the Markov chain(V1, V2) − (X1, X2, Xr) − Yd and (3.14)

from the chain rule for mutual information. We further have

I(V1Xr; Yd|X2V2) = I(V1Xr; X2Yd|V2) (3.15)

≥ I(V1Xr; Yd|V2) (3.16)

where (3.15) follows from the Markov chainX2−V2−(V1, Xr). Note that (3.16) holds

with equality if and only if

I(V1Xr; X2|V2Yd) = 0. (3.17)

Comparing (3.14) and (3.16) with (3.10), we see that the right-hand side of (3.5) is

at least the right-hand side of (3.10). By symmetry, the right-hand side of (3.6) is at
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least the right-hand side of (3.11). Hence, backward decoding is at least as good as

sliding-window decoding.

We show by example that backward decoding can be strictly better than sliding-

window decoding. Consider a MARC with{0, 1} inputsX1, X2, andXr. Suppose we

have

Yr = X1 + X2 (3.18)

Yd = X1 + Xr (3.19)

where we use integer addition. Any DF rate region must be in the capacity region of

the user-to-relay multiaccess channel. This capacity region in bits per channel use is

given by (see [30, p. 392])

R1 ≤ 1, R2 ≤ 1, R1 + R2 ≤ 3/2. (3.20)

One can check that backward decoding achieves this largest-possible DF region with

independent and coin-tossingV1, V2, X1, X2, andXr. However, for sliding-window

decoding the bounds (3.2)-(3.4) and (3.10)-(3.12) are

R1 ≤ H(X1|V1) (3.21)

R2 ≤ min ( H(X2|V2), I(V2Xr; Yd|V1) ) (3.22)

R1 + R2 ≤ min ( H(X1 + X2|V1V2), H(X1 + Xr) ) . (3.23)

Suppose we desireR2 = 1 so that (3.22) implies thatX2 is coin-tossing and indepen-

dent ofV2. For suchV2 andX2 the bound (3.23) implies

R1 + R2 ≤ H(X1 + X2|V1V2)

= 1 + H(X1|V1)/2. (3.24)

We further have from (3.22) that

R2 ≤ I(V2Xr; Yd|V1)

= H(X1 + Xr|V1) − H(X1|V1)

≤ log2 3 − H(X1|V1). (3.25)
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The combination ofR2 = 1, (3.24) and (3.25) gives

R1 ≤ H(X1|V1)/2 ≤ (log2(3) − 1)/2 ≈ 0.292. (3.26)

The same bound results if we add a time-sharing random variable U to all the entropies

in (3.21)-(3.23). Sliding-window decoding cannot therefore achieve the backward de-

coding corner point(R1, R2) = (1/2, 1).

ForK > 2, the bounds (3.10)-(3.12) generalize to

RS ≤ I(XS ; Yd|XScVSXr) + I(VSXr; Yd|VSc) (3.27)

for all S ⊆ K. One can show that the bounds in (3.27) are in general more restrictive

than the corresponding destination bounds in (3.8) for allS ⊂ K.

3.4 Offset Encoding

To improve sliding-window decoding, we offset the message blocks from theK sources

by one block per source. Letπ denote a permutation (order) of the source indices, i.e.,

π = (π(1), π(2), . . . , π(K)) whereπ(i) ∈ K for all i and{π(i) : i = 1, 2, . . . , K} =

K. We let userπ(i) start transmitting in blocki, i.e., we setwπ(i),b = 1 for b < i

and b ≥ B + i. The resulting message-to-codeword mappings with offset order

π = (1, 2, . . . , K) are shown in Fig. 3.4. Observe that offset encoding usesB + K

channel-symbol blocks so the overall rate-loss factor isB/(B + K).

The relay decodes at the end of each block as before, except that sπ(i),b is now the

relay’s estimate ofwπ(i),b−i. We thus require

RS ≤ I(XS ; Yr|XScVKXr) (3.28)

for all S ⊆ K as in (3.8). In blockb, the relay sends the codewordxr(sK,b) where

sK,b = {sk,b : k ∈ K}.

The destination uses a sliding window of lengthK + 1 to decode the message

blocks with the same indexb. Hence, the combined encoding and decoding delay for
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every message block isK +1 channel-symbol blocks. We summarize the resulting rate

bounds below and give the performance analysis in Appendices B.2 and B.3.

3.4.1 Two Users with Joint Decoding

ConsiderK = 2 and suppose the offset order isπ = (1, 2). Suppose the destination

decodes(w1,b, w2,b) jointly by usingy
d,b

, y
d,b+1

, andy
d,b+2

. The analysis in Appendix

B.2 shows that we can achieve(R1, R2) satisfying

R1 ≤ I(X1Xr; Yd|X2V2) (3.29)

R2 ≤ I(X2; Yd|V1V2Xr) + I(V2; Yd) (3.30)

R1 + R2 ≤ I(X1X2Xr; Yd). (3.31)

Note that (3.29) is the same as (3.5) but (3.30) is different from (3.6). The difference

arises because the destination does not knoww1,b+1 or w1,b+2 when decodingw2,b, in

contrast with the situation of no offset discussed in Section 3.3.2. We can show that

(3.6) is in general larger than (3.30) by expanding (3.6) as (see (3.13) and (3.14))

I(X2Xr; Yd|X1V1) = I(X2V2Xr; Yd|X1V1) (3.32)

= I(X2; Yd|X1V1V2Xr)

+ I(V2Xr; Yd|X1V1) (3.33)

where (3.32) follows from the Markov chain(V1, V2) − (X1, X2, Xr) − Yd and (3.33)

from the chain rule for mutual information. But the first mutual information term in

(3.33) satisfies

I(X2; Yd|X1V1V2Xr) = I(X2; X1Yd|V1V2Xr) (3.34)

≥ I(X2; Yd|V1V2Xr) (3.35)



44

where (3.34) follows from the Markov chainX1 − (V1, V2, Xr) − X2. Similarly, the

second mutual information term in (3.33) satisfies

I(V2Xr; Yd|X1V1) ≥ I(V2; Yd|X1V1) (3.36)

= I(V2; X1V1Yd) (3.37)

≥ I(V2; Yd) (3.38)

where (3.37) follows from the independence of(X1, V1) andV2. It thus seems that we

do not achieve all points in the backward decoding region. However, we next show that

we can obtain the corner points of the destination’s backward decoding region.

There are several types of corner points depending on whether the polytopes de-

fined by the relay bounds (3.2)-(3.4) and the destination bounds (3.5)-(3.7) intersect.

We focus on the destination bounds because the relay bounds are the same for both no-

offset and offset encoding. Note, however, that if the polytopes intersect as in Fig. 3.3,

then one of the corner points of the shaded region is not a corner point of the destina-

tion’s backward decoding region. To achieve such points, itturns out that we can use

either no-offset or offset encoding, as shown below. Alternatively, we could time-share

between different offset orders, but this increases the decoding delay.

Consider the corner point

(R1, R2) = (I(X1Xr; Yd|X2V2), I(X2V2; Yd)) (3.39)

labeled “π = (1, 2)” in Fig. 3.5. We can achieve this point (ignoring the relay bounds

(3.2)-(3.4)) provided that the sum of (3.29) and (3.30) is less restrictive than (3.31).

But (3.31) expands as

R1 + R2 ≤ I(X1X2Xr; Yd) (3.40)

= I(X1X2V2Xr; Yd) (3.41)

= I(X1Xr; Yd|X2V2) + I (X2V2; Yd) . (3.42)
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where (3.41) follows from the Markov chainV2 − (X1, X2, Xr)− Yd. We further have

I(X2V2; Yd) = I(X2; Yd|V2) + I(V2; Yd) (3.43)

≤ I(X2; V1XrYd|V2) + I(V2; Yd) (3.44)

= I(X2; Yd|V1V2Xr) + I(V2; Yd) (3.45)

where (3.45) follows from the Markov chainX2 −V2 − (V1, Xr). Thus, we achieve the

corner point under consideration. For the offset orderπ = (2, 1), we similarly obtain

the corner point labeled “π = (2, 1)” in Fig. 3.5. The shaded region in Fig. 3.5 shows

the points achieved by no-offset encoding that are defined by(3.10)-(3.12). Interest-

ingly, the union of rate-pairs achieved by the three methods(no-offset encoding, offset

encoding withπ = (1, 2), offset encoding withπ = (2, 1)) is precisely the backward

decoding rate region. Alternatively, we can achieve the backward decoding rates by

time-sharing between different offset orders, but this increases delay. Rate-splitting

methods [42,43] might let one avoid such delays.

Finally, we remark that the above shows that offset encodingimproves sliding-

window decoding, since one now achieves the corner point of the example in Sec-

tion 3.3.2.

3.4.2 K Users with Successive Decoding

We wish to show that offset encoding recovers the destination’s backward decoding

corner points forK > 2. However, the generalization of (3.29)-(3.31) is unwieldyand

gives limited insight. Instead, we use successive decodinginside the sliding window to

obtain the backward decoding corner points.

We begin by considering the set function (see (3.8))

f(S) =







I(XSXr; Yd|XSCVSC), S ⊆ K,S 6= ∅
0, S = ∅

(3.46)

for some distribution satisfying (3.9) withU a constant. We claim thatf( · ) is submod-

ular [44, Ch. 44]. To see this, considerk1 andk2 in K with k1 6= k2, k1 /∈ S, k2 /∈ S,
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Figure 3.5: Rate region with sliding-window decoding and offset encoding.

and expand

f(S ∪ {k1}) + f(S ∪ {k2})

= I(XSXk1Vk1Xr; Yd|X(S∪{k1})C V(S∪{k1})C )

+ I(XSXk2Vk2Xr; Yd|X(S∪{k2})CV(S∪{k2})C ) (3.47)

= I(Xk1Vk1 ; Yd|X(S∪{k1})CV(S∪{k1})C )

+ I(XSXr; Yd|XSCVSC)

+ I(XSXk2Vk2Xr; Yd|X(S∪{k2})CV(S∪{k2})C ) (3.48)

where (3.47) follows from the Markov chainVK − (XK, Xr) − Yd and (3.48) from the

chain rule for mutual information. We lower bound the first term in (3.48) as

H(Xk1Vk1|X(S∪{k1})C V(S∪{k1})C )

− H(Xk1Vk1 |X(S∪{k1})C V(S∪{k1})C Yd)

= H(Xk1Vk1 |X(S∪{k1,k2})CV(S∪{k1,k2})C )

− H(Xk1Vk1 |X(S∪{k1})C V(S∪{k1})C Yd) (3.49)

≥ I(Xk1Vk1 ; Yd|X(S∪{k1,k2})CV(S∪{k1,k2})C ) (3.50)
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where (3.49) follows from the independence of the(Xk, Vk) and (3.50) because condi-

tioning cannot increase entropy. The expression (3.50) added to the final term in (3.48)

is

I(XS∪{k1,k2}Xr; Yd|X(S∪{k1,k2})C V(S∪{k1,k2})C ). (3.51)

Inserting (3.50) into (3.48), we have

f(S ∪ {k1}) + f(S ∪ {k2}) ≥ f(S) + f(S ∪ {k1, k2}) (3.52)

for bothS 6= ∅ andS = ∅. The set functionf( · ) is therefore submodular by [44,

Theorem 44.1, p. 767].

The above shows that the rate region defined by the destination bounds (see (3.8))

RS ≤ I(XSXr; Yd|XScVSc), S ⊆ K (3.53)

is a polymatroid associated withf( · ) (see [44, p. 767]). But the non-zero corner points

of this polymatroid are known to be given by (see [44, p. 777])

Rπ(k) =



















f ({π(1), . . . , π(k)})
−f ({π(1), . . . , π(k − 1)}) , k ≤ `

0, k > `

(3.54)

whereπ is a permutation of the source indices,k = 1, 2, . . . , K, and` = 1, 2, . . . , K.

For example, considerπ = (1, 2, . . . , K) for which (3.54) evaluates to

Rk =



















I(X1Xr; Yd|X[2,K]V[2,K]), k = 1

I(XkVk; Yd|X[k+1,K]V[k+1,K]), 2 ≤ k ≤ `

0, k > `

(3.55)

whereX[K+1,K] andV[K+1,K] are considered to be constants.

We are mainly interested in the corner points of thebase polytopedefined bỳ = K

in (3.54) (see [44, p. 767]) because the other corner points are achieved by discarding

message bits. The expression (3.54) shows that there are up to K! base polytope corner

points, namely one point for eachπ.
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Suppose the offset order isπ = (1, 2, . . . , K) as in Fig. 3.4. Consider the window

with the channel-symbol blocksy
d,1

, y
d,2

, . . . , y
d,K+1

. In this window, the destination

successively decodeswK,1, wK−1,1, . . . , w1,1 by assuming that its past decoding steps

were successful. In Appendix B.3, we show that one can approach the rate pointR =

(R1, R2, . . . , RK) with

Rk =







I(X1Xr; Yd|X[2,K]V[2,K]), k = 1

I(XkVk; Yd|X[k+1,K]V[k+1,K]), 2 ≤ k ≤ K
(3.56)

whereX[K+1,K] andV[K+1,K] are considered to be constants. The codewords contribut-

ing to these rates are shown as shaded blocks in Fig. 3.4. But the rates (3.56) are

precisely the rates in (3.55) for` = K. Hence we achieve the desired corner point.

We can achieve the other corner points by changing the offsetorderπ. Finally, we can

achieve the non-corner points by time-sharing between offset orders. An interesting

open problem is whether the union of rate points achieved by using all combinations of

offset orderings and no-offsets gives the backward decoding rate region (see Fig. 3.5).

If so, then there is no need to time share between offset orders.

3.5 Conclusions

We presented an offset encoding technique for DF that improves the rate region of

sliding-window decoding. The technique achieves the corner points of the destination’s

backward decoding rate region but avoids the excessive delay associated with backward

decoding. Offset encoding will clearly apply to other multi-terminal problems [41,45–

47].
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Chapter 4

User vs. Relay Cooperation in a Multiaccess Network

4.1 Introduction

Cooperation results when nodes in a network share their power and bandwidth re-

sources to mutually enhance their transmissions and receptions. Cooperation can be

induced in several ways. In their seminal paper onuser cooperation[3], Sendonaris

et al demonstrate that rate and diversity gains can be achieved when a pair of users

in a wireless multiaccess channel (MAC) cooperate. Alternately, one can induce co-

operation by introducing a layer of dedicated relay nodes between the sources (user)

and the destinations [28]. For example, in [9–13, 48] and thereferences therein, the

rates achieved between a source-destination pair using oneor more wireless relays is

studied.

In this chapter, we compare two approaches to inducing cooperation in a multi-

access channel comprised ofK sources and one destination. First, we allow source

nodes to forward data for each other and second, we introducea wireless relay node

when cooperation between the sources nodes is either undesirable or not possible. We

refer to networks employing the former approach asuser cooperative networksand

those employing the latter ashierarchical relay networks. We model the user cooper-

ative network as a multiaccess channel with generalized feedback (MAC-GF) [7] and

the hierarchical relay network as a MARC [45]. We assume single-antenna nodes and

placehalf-duplexconstraints on the transmit-receive capabilities of all nodes. Note

that this requires time-duplexing sources in the cooperative network but not in the re-

lay network [28,49]. However, to achieve a fair comparison,we assume that the source

nodes in both networks time-duplex their transmissions. Wedeveloppartial decode-

and-forward(PDF) strategies, also calledmultipath decode-and-forward(MDF) [4],
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for both networks. As the name suggests, in PDF, the cooperating node/relay decodes

the user messages before forwarding them to the destination; further, the sources also

send a additional message that is decoded only at the destination. Note that when the

sources do not transmit an additional message stream to the destination, PDF simpli-

fies to adecode-and-forward(DF) strategy and thus our analysis encompasses DF as a

special case (see Appendix C.1). Further, for the user cooperative network we present

a PDF strategy that allows an arbitrary number of half-duplex users to cooperate with

each other. For a MARC with time-duplexed sources, the PDF strategy simplifies

to that for a half-duplex relay channel [31]. Finally, we also consideramplify-and-

forward (AF) strategies for both networks where each cooperating node or relay scales

its received signal before forwarding it to the destination.

There are important differences between user cooperative and hierarchical relay

networks that are not easy to analyze from an information-theoretic point of view. For

example, in cooperative networks one likely needs economicincentives to induce co-

operation [21]. On the other hand, hierarchical networks incur infrastructure costs [36].

While incentives and infrastructure costs are important elements that need to be con-

sidered in comparing the two networks, we use the total transmit and processing power

consumed in each network as a cost metric for our comparisons. Thus, in addition

to a transmit power, we also include in our costs theprocessing powerconsumed at

each node for both cooperative and individual transmissions. To this end, we present a

model for quantifying the processing power as a function of the transmission rate, and

hence, the transmit signal-to-noise ratio (SNR). The modelalso introducesprocessing

scale factorsthat can be roughly characterized as the ratio of the energy cost required

for processing to that required for transmission. In [4, Chap. 6], the authors argue that

cooperation is beneficial in the ‘long-distance’ regime where the energy costs of trans-

mission offset the energy costs of reception. Thus, by accounting for both the transmit

and processing power (energy) costs, we identify the regimes where cooperation is en-

ergy efficient and determine thecross-over SNRandprocessing factorthresholds that
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characterize the cooperative regime.

Cooperation in wireless networks has been shown to achieve gains in achievable

rates and fading diversity. However, the gains achieved arein general a function of

the transmission parameters and network geometry. In an effort to generalize such

results, we present anarea-averagedcomparison. Specifically, we consider a sector of

a circular area with the destination at the center and users randomly distributed in the

sector. For the case of relay cooperation we fix the position of the relay. We remark that

this geometry encompasses a variety of centralized networkarchitectures ranging from

wireless LAN and cellular to sensor networks. Further, our choice of a sectorized area

is motivated by the desire to maximize rate and diversity gains that result from both

user cooperation between adjacent nodes and from using a single relay in a circular

area. We present results for three kinds of wireless channelmodels, namely, the no-

fading, the ergodic fading, and the quasi-static fading model to model line-of-sight,

fast-fading, and slow fading environments respectively. For the first two models, we

compare the maximum sum-rates achieved by PDF and AF for bothnetworks using a

bits/Joule metric. We also compare these results with the sum-capacity achieved by a

MAC with time-duplexed sources and without user or relay cooperation. Our results

demonstrate the effect of processing power in cooperation and are summarized by the

following three observations:

• User or relay cooperation using PDF is most desirable in the regime where pro-

cessing power is negligible relative to transmit power. Thus, while coopera-

tion does not achieve multiplexing gains [9,14,15], decoding-based cooperative

schemes can be relevant in the regime where transmit power costs dominate, i.e.,

in the long-distance communicationregime [4, Chap. 6].

• For AF, a cooperative strategy with negligible processing costs, user coopera-

tion achieves negligible gains in rate and energy efficiencyrelative to the time-

duplexed MAC. Further, relaying is desirable relative to both user cooperation
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and no cooperation in the regime where processing costs are comparable to trans-

mit costs. This is because in this regime, the high processing costs at the users

helps offset the additional transmit costs at the relay.

• On average, relay cooperation is more energy efficient than user cooperation.

This is dominantly due to half-duplex nature of resource (power and bandwidth)

sharing in user cooperative networks.

In general, the ratio of processing to transmission power depends on both the device

functionality and the application supported. Thus, for short range mobile environments

comprised of either energy constrained devices (such as sensors) or devices supporting

high rate applications (such as laptops), it has been shown that the processing costs

dominate transmission costs [4,50,51]. On the other hand, low-rate cellular-like com-

munications are characterized by high transmission costs.Our results indicate that

different cooperative schemes are appropriate for networks and devices operating in

the different processing vs. transmit power regimes.

To understand the maximum diversity gains achievable by thetwo cooperative ap-

proaches, we compare the outage performance of the two networks for both DF and AF

as a function of the total SNR at all transmitting nodes. We specifically consider the

dynamic DF (DDF) protocol where the cooperating nodes or relay cooperate with the

transmitting users only after successfully decoding theirreceived signals [14]. In gen-

eral, analytical expressions for outage probability are not easy to develop. However, as

with multi-antenna networks [52], the benefits of cooperation can be quantified via an

asymptotic diversity-multiplexing tradeoff analysis, see, for e.g. [9,14,15,53]. In addi-

tion to the diversity-multiplexing tradeoff, one can also distinguish cooperative strate-

gies and their characteristic distributed architectures via a coding (SNR) gains[54]

that quantifies the network topology (quantified via distance-dependent path-gains) and

coding scheme. To this end, we develop geometry-inclusive upper and lower bounds

on the outage probability for both networks under DDF and AF.A geometry-inclusive
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outage analysis is developed in [9,54,55] and [16] for the high SNR and the low SNR

(wideband) regimes respectively. We here develop bounds using high SNR approxima-

tions and use numerical simulations to demonstrate the appropriateness of the analysis

to the intermediate SNR regime.

For a fixed rate and for single antenna nodes, the diversity-multiplexing tradeoff

analysis for both DDF and AF shows that the maximum diversityachievable for the

relay network, irrespective of the number of usersK, is2 [14,53,56]. On the other hand

in [14] the authors show that for specific cooperative strategies theK-user cooperative

network can achieve a maximum diversity ofK. Using a geometry-inclusive outage

analysis we show that the maximum diversity predicted by theDM tradeoff analysis

may not always be achievable in practical SNR regimes of interest without trading off

delay and complexity. Finally, we present the outage results as a function of the total

power to demonstrate the energy costs of achieving a desireddiversity.

This chapter is organized as follows. In Section 4.2, we present the network and

channel models and develop a power-based cost metric. In Section 4.3, we develop the

PDF, DF, and AF strategies for both networks. We present the achievable rate regions

for a non-fading and ergodic fading Gaussian channels and develop the geometry-

inclusive outage probability analysis for a quasi-static fading model.

4.2 Channel and Network Models

4.2.1 Network Model

Our networks consist ofK users (source nodes) numbered1, 2, . . . , K and a destina-

tion noded. For the MARC there is one additional node, the relay noder (see Fig. 4.1).

The input and output alphabets of nodek areXk andYk, respectively. We impose a

half-duplexconstraint on every node, i.e., each node can be in one of two modes,listen

(L) or transmit(T) (LoT). We writeK = {1, 2, . . . , K} for the set of users,xS = {xm

: m ∈ S}, andRS =
∑

m∈SRm for S ⊆ K. For the MARC, we writeT = K∪{ r}



54

rY

rX

2X

,1dh

,2dh

,1rh

,2rh

rZ

dZ

,d rh

dY
1X1W

2W

( )1 2,W W
\ \

Relay (FN)

Dest.Enc 1

Enc 2

User 1

User 2

α 1 α−

Figure 4.1: A two-user Gaussian MARC.

for the set of transmitters.

Let Xk,i ∈ Xk be the input of nodek at timei. We model the two wireless multiac-

cess networks under study as additive Gaussian noise channels with fading. For such

channels, the output of nodem at timei is

Ym,i =















(

∑

k 6=m

hm,k,iXk,i

)

+ Zm,i Mm,i = L

0 Mm,i = T

(4.1)

where theZm,i are independent, proper, complex, zero-mean, unit variance Gaussian

noise random variables,Mm,i is the half-duplex mode at nodem, andhm,k,i is the

fading gain between transmitterk and receiverm at time i. We assume that both

channels are usedn times, i.e.,i = 1, 2, . . . , n. Note that for both networks as well as

the (non-cooperative) MAC,Xd,i = 0, i.e.,Md,i = L, for all i. Further, for the MAC,

we also haveYk,i = 0, i.e.,Mk,i = T , for all i and for allk ∈ K. We assume that the

transmitted signals in both networks are constrained in power as

n
∑

i=1

E |Xk,i|2 ≤ nPk k ∈ T . (4.2)

We assume that the modesMk,i for all k are either known universally to all nodes

at all times or shared, when needed, between all nodes with negligible overhead. We
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also assume that the nodes can adjust the duration of their modes to maximize a desired

performance metric. Finally, we remark that one can generalize the model in (4.1) to

include a sleep state as well as cost constraints for each mode [31].

The capacity regionCMARC of a K-user MARC is the closure of the set of rate

tuples(R1, R2, . . . , RK) for which the destination can, for sufficiently largeN , decode

the K source messages with an arbitrarily small positive error probability [24]. We

define the capacity regionCMAC-GF of the MAC-GF similarly. Finally, we use the usual

notation for entropy and mutual information [29,30] and take all logarithms to the base

2 so that our rate units are bits. We write random variables (e.g. Wk) with uppercase

letters and their realizations (e.g.wk) with the corresponding lowercase letters. We

drop subscripts on probability distributions if the arguments are lowercase versions of

the random variables, e.g., we write the distribution ofHk,j asp(hk,j). We useh∗ to

denote the complex conjugate of a scalarh andH† to denote the complex conjugate

transpose of a matrixH. Finally, throughout the sequel we use the words user and

source interchangeably.
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4.2.2 Hierarchical Relay Network

We model the hierarchical relay network as a Gaussian MARC with K +1 inputsXk,i,

k ∈ T , and two outputsYr,i andYd,i given by (4.1). Note that in this network the

sources do not cooperate and thus,Yk,i = 0, for all k ∈ K. In general, all users in

a MARC can transmit simultaneously while the relay half-duplexes its transmissions

[45] (see Fig. 4.1). However, for comparison purposes as well as to simplify the

exposition, we consider a time-duplexed model where each source transmits messages

over the channel for a fixed periodT = 1/K of the total time. Further, the transmission

period of sourcek, for all k, is sub-divided into two slots such that the relay listens in

first slot and transmits in the second slot. We denote the timefractions for the two slots

asθk andθk = 1 − θk for userk such thatθk = Pr (Mr = L) = 1 − Pr (Mr = T ).

The time-duplexed two-hop scheme for the MARC is illustrated in Fig. 4.3 for user2

whereC2 = {r} denotes the set of nodes that cooperate with user2. We remark that the

time-duplex multiaccess (TDMA) model considered here simplifies the analysis for the

MARC to that for single-source relay channel and henceforthwe refer to this model as

a TD-MARC. Finally, note that Fig. 4.3 also includes the slotting schemes for a MAC

and a MAC with time-duplexed sources (TD-MAC).

4.2.3 Cooperative Network

We model the cooperative network as a Gaussian MAC-GF (see Fig. 4.2). In [7],

Willems developed a cooperative strategy, now often referred to as PDF, for a two-

user MAC with cooperating sources. In general, there is a combinatorial explosion in

the number of ways one can duplexK sources over their half-duplex states. In [45],

we present a scheme where allK users cooperate with each other overK + 1 slots.

In general, however, only a subset of sources with appropriate inter-user channels can

benefit from cooperation. We now present two schemes that allow each user to be aided

by an arbitrary number of users, up toK. In both schemes the users time-duplex their
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Figure 4.3: Time-duplexed transmission schemes for the MARC, the MAC-GF, and
the MAC.

transmissions such that each user transmits its messages over a fixed periodT = 1/K

of the total available time. The two schemes differ in the manner the periodT is further

sub-divided between thetransmitting and the cooperating users.

In the first scheme, we restrict cooperation to atwo-hop schemesuch that the period

over which userk, for all k, transmits is sub-divided into two slots. In the first slot

only userk transmits while in the second slot both userk and the setCk of users that

cooperate with userk transmit as shown in Fig. 4.3 for user2 andC2 = {3, 4}. We

remark that this scheme has the same number of hops as the MARCscheme described

above except now one user at a time is aided by some set of otherusers, i.e.,Ck ⊂ K.

We writeθk and1− θk to denote the time fractions associated with the first and second

slots of userk such thatθk = Pr (Mj = L) = 1 − Pr (Mj = T ) for all j ∈ Ck.

The second scheme we consider is amulti-hopscheme where we divide the total

transmission time for sourcek into Lk slots,1 ≤ Lk ≤ K. Thus, in each time-slot,

except the first slot where only userk transmits, one additional user cooperates in the

transmission until allLk users transmit in slotLk. We denote thelth time fraction for
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userk asθk,l, l = 1, 2, . . . , L. Note thatLk = |Ck| − 1 whereCk is the set of users

that cooperate with userk. The time-duplexedLk-hop scheme is demonstrated in Fig.

4.3 for user2 with L2 = 3 andC2 = {3, 4}. We henceforth refer to this model as a

MAC-GF with time-duplexed sources or simply a TDMA MAC-GF.

Remark 4.1 Observe that the TDMA model described for the MARC is also a two-hop

model withCk = {r} for all k.

Remark 4.2 We remark that for both networks under AF, we assume equal length slots

and consider a symbol-based slotted two-hop and multi-hop scheme.

4.2.4 Cost Metric: Total Power

From (4.2) we see that the cooperative relay network has additional power relative

to the other two networks due to an extra relay node. We incorporate a measure of

fairness in our comparisons by using the total power consumed by each network as the

cost metric. Further such a comparison also allows us to develop the energy regimes

where cooperation is desirable.

We observe that in addition to a transmission power cost a node also consumes

power in processing, i.e., encoding and decoding its transmissions and receptions re-

spectively. In addition to its own transmission and processing costs, a node that relays

for others consumes additional power in encoding and decoding packets for others. We

account for this by introducing processing costs for both encoding and decoding as a

function of the transmission and reception rates. To this end, we define encoding and

decoding factorsηk andδk respectively and write the power required to process the

transmissions of nodej at nodek as

P proc
k,j = P proc

k,0 +
(

ηkI
enc
k (j) + δkI

dec
k (j)

)

f (Rj) for all k ∈ T , j ∈ K (4.3)

whereIenc
k (j) andIdec

k (j) are indicator functions that are set to1 if userk encodes and

decodes respectively for userj, P proc
k,0 is the minimum processing power at userk that
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in general depends on the device functionality and design, and f(Rj) is a function of

the transmission rateRj at userj. Note thatP proc
k,k is the power consumed by nodek

in processing its own transmissions whileP proc
k,j is that required to cooperate with user

j and thus, by definition,P proc
r,r = P proc

r,0 . The functionf modeling the processing cost

typically depends on the encoding and decoding schemes usedas well as the device

functionality. For the Gaussian channel model considered here, since the rateRk is

proportional to the transmit SNRPk, we choosef as

f = log (1 + Pk) for all k. (4.4)

Note that in general the rateRk depends on the cooperative scheme used. However,

we justify the choice off in (4.4) by observing that cooperative schemes, while en-

abling coherent combining gains, do not achieve multiplexing gains relative to non-

cooperative communications. Finally, we assume that the destination in typical multi-

access networks such as cellular or many-to-one sensor networks [57] has access to an

unlimited energy source and ignore its processing costs in computing the total power

consumed in the network.

We thus write the total power consumed at nodek, k ∈ T , as

Pk,tot =















Pk + P proc
k,k +

∑

j∈K,j 6=k

Ik(j)P
proc
k,j k ∈ K

Pk +
∑

j∈K
Ik(j)P

proc
k,j k = r

(4.5)

whereIk(j) is an indicator function that takes the value1 if nodek cooperates with

nodej. The firstP proc
k,k term corresponds to the power used to process its own message

while the second summation term accounts for the power nodek incurs in cooperating

with all other source nodes. Observe that the relay node onlyincurs processing costs

for those source nodes that it aids.

The total power consumed by all transmitting nodes in each network is given as

Ptot =















∑

k∈K
Pk,tot MAC-GF or MAC

∑

k∈T
Pk,tot MARC.

(4.6)
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We remark that for the AF strategy,P tot
r = Pr + P proc

r,0 a cooperating node or the relay

does not expend power in processing (encoding and/or decoding) signals for any user.

We write the power normalized rate in bits/s/Watt (= bits per Joule) as

RbpJ = R
Ptot

bits/Joule (4.7)

wherePtot is the total power consumed by all transmitters involved in achieving the

rateR and is given by (4.6). We refer to the power normalized sum-rate achieved by

a specific communication strategy as itsenergy efficiencyin bits per Joule. Thus, for a

K-user multiaccess network, the energy efficiency for a specific transmission scheme

is given by the ratio of largestRK achieved by the scheme to the total consumed power

Ptot in (4.6). One can similarly compare the outage probability of a multiaccess net-

work as a function ofPtot for different cooperative and non-cooperative communication

strategies.

4.2.5 Fading Models

We model the fading gains as

hm,k,i =
Am,k,i
√

dγ
m,k

(4.8)

wheredm,k is the distance between themth receiver and thekth source,γ is the path-

loss exponent, andAm,k,i is a proper complex fading random variable. We assume that

the fading gainhm,k,i is known only at receiverm. We consider three kinds of fading

channels in this paper.

1. no fadingAm,k,i = 1 for all m, k, i.

2. ergodic Rayleigh fading whereAm,k,i are jointly independent and identically dis-

tributed (i.i.d) zero-mean, unit variance proper, complexGaussian random vari-

ables.

3. quasi-static Rayleigh fading whereAm,k,i are jointly i.i.d zero-mean, unit vari-

ance proper, complex Gaussian random variables.
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We assume that the fading gains are independent of the transmitted signalsXk,

for all k ∈ T . Finally, without loss of generality, we assume that no two nodes are

co-located.

4.3 Cooperative Strategies

We now develop the cooperative strategies of PDF and AF for the two networks. For

each network, we present the rate regions achieved by the twostrategies for the no

fading and ergodic fading channel models. Finally, for the quasi-static fading channel,

we present an outage probability analysis.

4.3.1 Partial- and Dynamic- Decode-and-Forward

In [6], Cover and El Gamal present an achievable strategy fora single-source relay

channel where the relay decodes the source messages before forwarding them to the

destination. This strategy, now often called decode-and-forward (DF), extends easily

to both a full-duplex [10, 58] and half-duplex MARC [28]. Note that for half-duplex

channels, the cooperating node or relay decodes the messagefrom the source in its

‘ listen’ mode and forwards the decoded message in its ‘transmit’ mode. The source

on the other hand transmits the same message in both modes. One can generalize

this construction by allowing the source to also transmit a new message in the re-

lay’s ‘transmit’ mode. We refer to the resulting strategy as partial decode-and-forward

(PDF) (see [31, Sec. 3.3]).

MARC with Time-Duplexed Sources

For a MARC with time-duplexed sources the PDF strategy for each user simplifies to

the PDF strategy for a single-source relay channel (see [31,Sec. 3.3]). In Appendix

C.1, we develop the PDF rate bounds for a general single-source multi-relay channel
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under a two-hop scheme. We specialize the bounds for the time-duplexed MARC

below.

Achievable Rates: The rate bounds achieved by PDF for a Gaussian single-source

relay channel under a half-duplex constraint are developedin Appendix C.1. We briefly

describe the code construction below. We use Gaussian signaling at the sources and

relay such that in slotk, in each use of the channel, userk transmits

Xk =







√

αkP kUk frac. θk
√

αkP kQk +
√

αkP kVk frac. θk

(4.9)

whereθk = Pr (Mj = L), Uk, Qk, andVk are i.i.d circularly symmetric complex Gaus-

sian random variables with zero mean and unit variance andαk = 1 − αk and from

(4.2) for time-duplexed users we have

P k = KPk (4.10)

P r = Pr/θk. (4.11)

Finally, the relay’s signal in its transmit fraction is

Xr =

√

P rVk. (4.12)

From (4.9), we see that sourcek transmits a new message viaUk in both fractions

while allocating a fraction of its power to cooperating withthe relay viaVk in the

second fraction. In Appendix C.1, we show that when the channel gains are fixed, the

rateRk is achievable when

Rk ≤ max
(θk,αk)

min (Ir
1 (θk, αk) , Ir

2 (θk, αk)) (4.13)

where

Ir
1 (θk, αk) = θk log

(

1 + |hr,k|2 P k

)

+ θk log
(

1 + αk |hd,k|2k P k

)

(4.14)

Ir
2 (θk, αk) = θk log

(

1 + |hd,k|2k P k

)

+ θk log

(

1 + |hd,k|2 P k + |hd,r|2 P r + 2 Re

(
√

αkP kP rhd,kh
∗
d,r

))

(4.15)
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The sum-rate of the TD-MARC is then obtained as

RK =
1

K

K
∑

k=1

Rk. (4.16)

For the ergodic fading case we writeRk as

Rk ≤ max
(θk,αk)

min (EIr
1 (θk, αk) , EIr

2 (θk, αk)) (4.17)

where the expectation is over the joint fading distribution. Note that we assume that

the channel state information (CSI) is only known at the receivers. Thus, we can use

an analysis similar to that in ( [33, Sec 4.2]) to show thatαk = 1 maximizes the bounds

for this case, i.e., the sources and the relay do not achieve coherent combining gains at

the destination.

Outage Probability: For a quasi-static fading channel where the CSI is not avail-

able at the transmitters, an outage occurs when the rate transmitted falls below that

supported by the channel. Observe that to achieve the spatial diversity gains of a2× 1

antenna array, it suffices to consider the DF strategy, i.e.,in thekth slot, for allk, user

k and the relay use independent codebooks in theθk fraction to retransmit the message

transmitted in theθk fraction. The resulting code construction for userk simplifies as

Xk =







√

αkP kUk frac. θk
√

αkP kQk frac. θk

(4.18)

while the relay transmits

Xr =

√

αkP kVk (4.19)

whereUk, Qk, andVk are i.i.d circularly symmetric complex Gaussian random vari-

ables with zero mean and unit variance. One can use the same techniques as in Ap-

pendix C.1 to show that the achievable rate for a particular instantiation of the channel

is bounded by

Rk ≤ min (Ir
1 (θk) , Ir

2 (θk)) (4.20)
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where

Ir
1 (θk, αk) = θk log

(

1 + |hr,k|2 P k

)

(4.21)

Ir
2 (θk, αk) = θk log

(

1 + |hd,k|2k P k

)

+ θk log
(

1 + |hd,k|2 P k + |hd,r|2 P r

)

. (4.22)

Specifically we focus on thedynamicDF protocol [14] where the relay ‘listens’

until it can successfully decodes the message from userk. Thus, the fractionθk is a

random variable defined as

θk = min

(

1,

⌈

Rk

log
(

1 + |hr,k|2 P k

)

⌉)

(4.23)

whereRk is the rate at which userk transmits. The outage probabilityP (k)
o is then

given as

P (k)
o = Pr

(

Ir
2,DF (θk) < Rk

)

. (4.24)

whereIr
2,DF (θk) is

Ir
2,DF (θk) = θk log

(

1 + |hd,k|2 P k

)

+ θk log
(

1 + |hd,k|2 P k + |hd,r|2 P r

)

(4.25)

In [14], the authors determine the diversity-multiplexingtradeoff for a half-duplex re-

lay channel under DDF and show that DDF achieves the diversity gains of a2 × 1

antenna array for small multiplexing gains. In Appendix C.3, we develop upper and

lower bounds on the outage probability. For simplicity, assuming largen, we relax the

fractional requirement onθk and derive the probability distribution ofθk as

p (θk) =











exp(
−2Rk/θkdγ

r,k

P k
) · Rk ln 2 · exp(Rk ln 2

θk
) · dγ

r,k

θ2
kP k

0 ≤ θk < 1

1 − exp
(−(2R−1)dγ

r,k

Pk

)

θk = 1.
(4.26)

Observe that the discrete distribution for fractionalθk is obtained by integrating (4.26)

over the appropriate range ofθk.

We use the functional form ofp(θk) to simplify the mixed distribution in (4.26) with

a discrete distribution with two elements,θ∗k and1 whereθ∗k is the half-duplex fraction
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at which its probability distributionp (θk) is maximized. We use this simplification to

show thatP (k)
o can be approximately bounded as

Po,2×1 ≤ P (k)
o ≤ K

(2R − 1)2dγ
d,kd

γ
d,r

2P
2

k

' KPo,2×1 (4.27)

wherePo,2×1 is the outage probability of a2 × 1 distributedMIMO channel whoseith

antenna is at a distancedd,i, i = k, r from the destination. Without loss of general-

ity, we assume that no two fading states have the same scale factors, i.e.,P k

/

dγ
d,k 6=

P k

/

dγ
d,r for all k andθk. Under this assumption, we can apply lemma C.2 from Ap-

pendix C.2 to upper bound boundPo,2×1 as

Po,2×1 ≤
(2R − 1)2dγ

d,kd
γ
d,r

2P
2

k

(4.28)

and show thatPo,2×1 asymptotically approaches the bound in (4.28) (see also [54,55]).

Finally, the coding gains factorK relating the bounds onP (k)
o to the MIMO bounds is

K =

(

(2R/(1−θ∗k) − 1)2P k

(2R − 1)2P ∗
r

+
2dγ

r,k

dγ
d,r

)

(4.29)

whereP ∗
r = Pr/ (1 − θ∗k), andp(θk = 1) is given by (4.26). We remark that for most

geometries of interest, i.e., those where the source is closer to the relay than to the

destination,θ∗k << 1. We demonstrate this in Fig. C.3 for a collinear geometry with

dd,k = 1 anddd,r = 0.5. In this regime of interest, we also observe that the bounds on

P
(k)
o are relatively tight. Finally, throughout the sequel we assumeP k

/

dγ
d,k 6= P k

/

dγ
d,r

for all k andθk. We justify this assumption ny noting that such an assumption holds in

general for arbitrary choices of node powersPk, half-duplex fractionθk, and a random

distribution of nodes over a fixed area.

Thus from (4.28) we see that for a fixed rate transmission, themaximum diversity

achieved by DDF is2, as predicted by the diversity-multiplexing tradeoff for DDF.

Additionally, the factorK upper bounds the multiplicative factor (coding gains) by

whichP
(k)
o differs from the MIMO lower bounds. Observe that the bounds in (4.27) get

tighter asds,r → 0, i.e., when userk and the relay form a cluster. FurtherK decreases
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asPr increases and/ordr,k decreases; note that decreasingdr,k also decreasesθ∗k as

shown in Appendix C.3 thereby revealing the optimal node geometries for whichP (k)
o

is closest to the MIMO bounds. We remark that these bounds explain such behavior

observed via simulations in ( [49]) for a simple collinear geometry.

Finally, we observe that for single-antenna sources and destination, to achieve a

maximum diversity greater than2 requires a multi-antenna relay.

Time-Duplexed MAC-GF – Two-Hop Scheme

Achievable Rates: We consider the PDF strategy and develop the set of achievable

rates for this case. Recall that in the two-hop scheme, only userk transmits in the

first hop for a fraction of timeθk while both userk and all the cooperating users inCk

transmit in the remaining fractionθk. Thus, for this case the code construction at the

transmitting user is the same as that for userk in (4.9) for the time-duplexed MARC.

In its transmitting fractionθk, the cooperating userj transmits

Xj =
√

P j

/

θk Vk for all j ∈ Ck (4.30)

whereP k for all k ∈ K satisfies (4.2) and is obtained as

P k = Pk · K /(Nk + 1) (4.31)

whereNk is the total number of users whose messages are decoded and forwarded by

userk. Note thatNk ≤ K − 1 and is not related toLk = |Ck|. Comparing (4.10) and

(4.31), we see thatP k decreases when userk forwards data for an increasing number

of other users. Finally, in the transmit fractionθk, userk splits its power between

cooperating with the users inCk and transmitting a new message. In Appendix C.1, we

show that for the case of fixed channel gains, the achievable rateRk is

Rk ≤ max
(θk,α)

min (Ic
1 (θk, α) , Ic

2 (θk, α)) (4.32)
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where

Ic
1 (θk, α) = θk min

j∈Ck

(

log
(

1 + |hj,k|2 P k

))

+ θk log
(

1 + αk |hd,k|2 P k

)

(4.33)

Ic
2 (θk, α) = θk log

(

1 + |hd,k|2 P k

)

+ θk log



1 + αk |hd,k|2 P k +

∣

∣

∣

∣

∣

√

αkP khd,k +
∑

j∈Ck

√

P j

/

θkhd,j

∣

∣

∣

∣

∣

2


 .

(4.34)

Note that forCk = ∅, θk = αk = 1 maximizes (4.32) thereby simplifying (4.32) to the

the point-to-point capacity boundRk ≤ log
(

1 + |hd,k|2 P k

)

.

The sum-rate of the MAC-GF with time-duplexed sources is then obtained as

RK =
1

K

K
∑

k=1

Rk. (4.35)

Finally, we remark that the rates achieved over an ergodic fading channel are obtained

by averagingIc
1 andIc

2 over all channel fading states. Observe that due to lack of CSI

at the transmitters,αk = 0 for all k for this case.

Outage Probability: We study the maximum diversity gains achieved by consid-

ering the DF strategy, i.e., userk, for all k, retransmits the same message in both

fractions. Note that due to lack of transmitter CSI, the codeconstruction for this case

in contrast to that in (4.30), simplifies to using independent Gaussian random variables

at the user and the cooperating nodes. Here again we study a DDF strategy where the

fractionθk is chosen such that every node in the setCk of cooperating nodes decodes

the message transmitted by userk. Thus, we have

θk = min

(

1, max
j∈Ck

⌈

Rk

log
(

1 + |hj,k|2 P k

)

⌉)

. (4.36)

An outage occurs when the transmitted rateRk is larger than the rate bound achieved

at the destination. The resulting outage probability for userk is

P (k)
o = Pr

(

Ic
2,DF < Rk

)

(4.37)
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whereIc
2,DF is

Ic
2,DF (θk) = θk log

(

1 + |hd,k|2 P k

)

+ θk log

(

1 + |hd,k|2 P k +
∑

j∈Ck

|hd,j |2
P j

θk

)

.

(4.38)

Observe that forθk → 1, the first log term in (4.38) dominates the outage probabil-

ity and thus we achieve a diversity approaching1 which is the maximum achievable

when the source transmits directly to the destination. On the other hand, asθk → 0,

Ic
2,DF (θk) is dominated by the secondlog term in (4.38) and thus, the achievable di-

versity approachesLk, the maximum diversity of aLk × 1 distributedMIMO channel

whoseith antenna,i ∈ Sk = Ck ∪ {k}, is at a distancedd,i from the destination.

To the best of our knowledge, the diversity-multiplexing tradeoff for this two-hop

scheme has not been evaluated. However, from (4.36) and (4.38), we see that irrespec-

tive of node geometry, one can choosePk, and hence,P k sufficiently large such thatθk

is negligible. Thus, we can asymptotically approach the outage probability of aLk × 1

MIMO channel whereLk = |Ck|+ 1. In Appendix C.4, we derive an approximation to

P
(k)
o and show that

Po,Lk×1 ≤ P (k)
o ≤

(

2Rk/θ
∗
k − 1

)Lk
(

θ
∗
k

)Lk−1

(Lk!)
(

P k

)Lk

∏

j∈Sk

dγ
d,j

λj
+

(2Rk − 1)2dγ
d,k

(

∑

j∈Ck
dγ

j,k

)

P
2

k

(4.39)

whereλj = P j/P k for all j ∈ Sk, θ∗k = arg maxθk
p(θk), andθ

∗
k = 1−θ∗k. Note that for

the case whereLk = 2, our analysis simplifies to the outage analysis for the half-duplex

relay channel. We now consider the case whereLk > 2 since this case suggests that

the two-hop cooperative network can potentially achieve larger diversity gains than the

time-duplexed relay network. Comparing the two terms in thesummation in (C.74),

we see that the first term dominates only when
(

∑

j∈Ck

dγ
j,k

)

≤ C0
(

P k

)Lk−2
(4.40)

whereC0 is a constant independent ofP k and is obtained by substituting (4.40) in

(4.39) and equating the two terms in the summation. Thus, to achieve the maximum
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diversityLk, we need to choosePk for all k large enough such that the finite distances

dj,k for all j ∈ Ck satisfy (4.40). Alternately, for a fixed choice ofPk, for all k, we

require userk and its cooperating users inCk to be clustered close enough to satisfy

(4.40).

Thus, we see that except when the inter-node distances between userk and its co-

operating users areclustered, i.e., satisfy (4.40), the maximum diversity gain achieved

by DDF for a two-hop cooperative network does not exceed thatof a single-antenna

relay network. We demonstrate this distance-dependent behavior in Section 4.4.

Time-Duplexed MAC-GF – Multi-Hop Scheme

Achievable Rates: As with the other two cases, here too we consider the PDF strategy

and develop the set of achievable rates for this scheme. Recall that in the multi-hop

scheme, following the first fractionθk,1 where only userk transmits, in each of the

fractionsθk,l, l = 2, 3, . . . , Lk, one additional user cooperates in the transmission until

all Lk users transmit in slotLk. Note thatθk,l, for all l, satisfy

Lk
∑

l=1

θk,l = 1. (4.41)

Thus, for this case userk transmits

Xk =







√

αkP kUk θk,l, l = 1, 2, . . . , Lk − 1
√

αkP kQk +
√

αkP kVk θk,Lk
.

(4.42)

Thus, userk transmits the same signal in the firstLk − 1 fractions until all theLk − 1

users decode its message reliably. Letπk (·) be a permutation onCk such that user

πk (l) begins its transmissions in the fractionθk,l, for all l = 2, 3, . . . , Lk. We further

defineπk (1) = k andπk (i : j) = {πk(i), πk(i + 1), . . . , πk(j)}. The signalXπk(l)

transmitted by userπk (l) from θk,l onwards is

Xπk(l) =

√

P πk(l)

θk,l
Vk for all πk (l) ∈ Ck (4.43)
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whereP k for all k ∈ K is given by (4.31) andθk,l is the total transmission fraction of

userπk (l), l = 1, 2, . . . , Lk, and is given as

θk,l =

Lk
∑

j=l

θk,j = 1 −
l−1
∑

j=1

θk,j. (4.44)

Note that, as expected, the total transmission fraction foruserk is θk,1 = 1 and

∑Lk

j=l θk,j = Pr (πk (l) = T ) = 1 − Pr (πk (l) = L) for all l. (4.45)

We writeθk to denote the vector of time fractions with entriesθk,l for all l = 1, 2, . . . , Lk.

In Appendix C.1, we show that for the case of fixed channel gains, the achievable rate

Rk for this scheme is

Rk ≤ max
πk(2:Lk)

max
(θk,α)

min (Ic
1 (θk, α) , Ic

2 (θk, α)) (4.46)

where

Ic
1 (θk, α) = min

l∈{2,3,...,Lk}

l−1
∑

j=1

θk,j log



1 +

∣

∣

∣

∣

∣

j
∑

m=1

hπk(l),πk(m)

√

P πk(m)

θk,m

∣

∣

∣

∣

∣

2




+ θk,Lk
log
(

1 + αk |hd,k|2 P k

)

(4.47)

Ic
2 (θk, α) = θk,1 log

(

1 + |hd,k|2k P k

)

+

Lk−1
∑

l=2

θk,l log



1 +

∣

∣

∣

∣

∣

∣

πk(l)
∑

j=πk(1)

√

P j

θk,j

hd,j

∣

∣

∣

∣

∣

∣

2



+ θk,Lk
log



1 + αk |hd,k|2 P k +

∣

∣

∣

∣

∣

∣

πk(Lk)
∑

j=πk(2)

√

P j

θk,j

hd,j

∣

∣

∣

∣

∣

∣

2

 . (4.48)

Note that forCk = ∅, θk,1 = αk = 1 maximizes (4.32) thereby simplifying (4.32) to the

the point-to-point capacity boundRk ≤ log
(

1 + |hd,k|2 P k

)

. As before, the sum-rate

of the MAC-GF with time-duplexed sources is then obtained as

RK =
1

K

K
∑

k=1

Rk. (4.49)

Finally, we remark that the rates achieved over an ergodic fading channel are obtained

by averagingIc
1 andIc

2 over all channel fading states. Observe that due to lack of CSI

at the transmitters,αk = 0 for all k for this case.
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Outage Probability: We study the maximum diversity gains achieved by consider-

ing the DF strategy, i.e., we setαk = 1 such that userk retransmits the same message

in all fractions. However, due to lack of transmitter CSI, the code construction for

this case in contrast to that in (4.30), simplifies to using i.i.d. zero-mean unit variance

Gaussian random variables at both userk and the cooperating nodes. Note that the

transmit power at userk, P k, is given by (4.31). Here again we consider the DDF strat-

egy. However, unlike the two-hop case where the choice ofθk is dictated by the node

with the worst receive SNR, we now choose the fractionθk,l small enough to ensure

that at least one node, denoted asπk (l + 1), decodes the message from userk. Thus

the fractionθk,l, for l = 1, 2, . . . , Lk − 1, is given as

θk,l =















min
j∈Ck

min

{

1,

⌈

Rk

log(1+|hm,j |2P k)

⌉}

l = 1

min
j∈C′

k(l)
min

{

1,

⌈

Rk−
Pl−1

m=1 θk,m log
“

1+
Pm

i=1|hj,πk(i)|2P πk(i)/θk,i

”

log
“

1+
Pl

i=1|hj,πk(i)|2P πk(i)/θk,i

”

⌉}

2 ≤ l ≤ Lk

(4.50)

whereLk = Lk − 1, C′
k (l) = Ck\ {πk (l)}l

l=2, i.e., the minimization ofθk,l in (4.50) is

over the setC′
k that results from excluding fromC′

k the set of users chosen to transmit

in thel − 1 preceding fractions. Finally,θk,Lk
is

θk,Lk
= 1 −

Lk−1
∑

l=1

θk,l. (4.51)

In general, computing the probability distribution ofp(θk,l) is not straightforward.

However, in Appendix C.5 we show that it suffices to consider specific values ofp(θk,l)

to obtain upper and lower bounds onP
(k)
o .

An outage occurs when the transmitted rateRk is larger than the rate bound achieved

at the destination. The resulting outage probability for userk is

P (k)
o = Pr

(

Ic
2,DF < Rk

)

(4.52)

whereIc
2,DF is

Ic
2,DF (θk) = θk,1 log

(

1 + |hd,k|2 P k

)

+

Lk
∑

l=2

θk,l log

(

1 +

l
∑

j=1

∣

∣hd,πk(j)

∣

∣

2 P πk(j)

θk,j

)

(4.53)
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andθk,l is defined in (4.44). In general, it is not easy to obtain closed form expressions

for the probability distribution ofθk,l, for all l. However, in Appendix C.5, we show

that for smallθ∗k,l, l = 1, 2, . . . , Lk − 1, P
(k)
o is bounded as

Po,Lk×1 ≤ P (k)
o ≤

(

2Rk/θ
∗
k,Lk − 1

)Lk (

θ∗k,Lk

)Lk−1

(Lk!)
(

P k

)Lk
·
∏

j∈Sk

dγ
d,j

λj

+
(2Rk − 1)Lk

(

∏

j∈Ck
dγ

j,k

)

dγ
d,k

P
Lk

k

. (4.54)

where from lemma C.2 we show that

Po,Lk×1 ≤
(

2Rk − 1
)Lk

(Lk!)
(

P k

)Lk

∏

j∈Sk

dγ
d,j

λj
(4.55)

and asymptotically approaches it. Thus, we see that DDF achieves a maximum diver-

sity of Lk for a Lk-hop cooperative network. However, achieving this diversity comes

at a cost of increasing transmission and decoding delays.

4.3.2 Amplify-and-Forward

The cooperative strategy of amplify-and-forward is relevant for nodes that are limited

in processing capabilities. Thus, instead of decoding their received signals, the coop-

erating node or relay, amplifies its received signal and forwards the resulting amplified

signal to the destination. We first develop the achievable rates and outage analysis for a

two-hop network where userk, for all k ∈ K, is aided by theLk −1 users in the setCk.

Note that forLk = 2 andCk = {r}, the analysis specializes to that for a time-duplexed

MARC. Without loss of generality, we considerθk = 1/2 for the two-hop scheme and

θk,l = 1/Lk, l = 1, 2, . . . , Lk, for theLk-hop scheme.

The AF outage analysis and diversity-multiplexing tradeoff for a half-duplex relay

channel was first studied in [9] under the assumption that thesource and relay transmit

over orthogonal channels. The diversity-multiplexing tradeoff for the more general

choice of non-orthogonal signaling schemes at the source and relay is studied in [14].
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For the same channel, the AF ergodic fading rate and outage probability is studied

in [59] for both orthogonal and non-orthogonal signaling schemes at the source and the

relay. For aK-user multi-hop cooperative network, the authors in [14] present an AF

protocol that achieves the diversity-multiplexing tradeoff of a K × 1 MIMO channel.

Finally, in [54], Laneman develops a coding-gain and geometry-inclusive AF outage

analysis for a half-duplex multi-relay channel for the caseof orthogonal signaling at

the source and cooperating relays.

For a half-duplex MARC, the AF rate region is presented in [28]. For a MARC

with time-duplexed users, the AF rate and outage analysis simplifies to that for a half-

duplex relay channel. For a MAC-GF with time-duplexed users, we present an AF rate

and outage analysis for both the two-hop and the multi-hop scheme. We also present a

simple AF protocol for the multi-hop scheme. For the ergodicchannel we assume that

the channel gains are the same in both fractions and that the destination also knows the

fading gains at the cooperating nodes. Finally, we also present upper and lower bounds

on the outage probability for both the two-hop and the multi-hop scheme. Due to the

difficulty in obtaining abalytically precise outage expressions, we apply a geometry-

inclusive high SNR upper bounds developed in [55] and lower bound the outage by the

outage of an equivalent MIMO channel.

Two-hop User- and Relay-Cooperative Networks

Achievable Rates: Consider the transmission of userk in the kth time-slot (see Fig.

4.4). We first study the no fading case. The signalsYd,1 andYd,2 received at the desti-

nation in the first and second fractions respectively are

Yd,1 = hd,kXk,1 + Zd,1 (4.56)

Yd,2 = hd,kXk,2 +
(

∑

j∈Ck

hd,jXj,2

)

+ Zd,2 (4.57)
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Figure 4.4: Encoding scheme for a two-hop AF strategy.

whereXj,2 is the transmitted signal at nodej in the second fraction and it depends on

Yj,1, its received signal in the first fraction via a scale factorcj as

Xj,2 = cjYj,1 = cj (hj,kXk,1 + Zj,1) . (4.58)

where

|cj |2 =
2P j

|hj,k|2 P k + 1
. (4.59)

For ease of analysis, we write

cs =

√

1 +
(

∑

j∈Ck

|cjhd,j |2
)

(4.60)

and simplify (4.56) and (4.57) as (see also [59])

Y d = HXk + Zd (4.61)

where

Y d =
[

Yd,1 Yd,2/ cs

]T

(4.62)

Xk =
[

Xk,1 Xk,2

]T

(4.63)

Zd =

[

Zd,1

(

∑

j∈Ck

cj

cs
hd,jZj,1

)

+
Zd,2

cs

]T

(4.64)

and

H =







hd,k 0
∑

j∈Ck

cj

cs
hd,jhj,k hd,k/cs






. (4.65)
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For the two-symbol channel in (4.61), we maximize the achievable rateRk by choosing

Xk as Gaussian distributed and subject to the power constraintin (4.2). We thus achieve

all Rk that satisfy [1, Sec. 3.1]

Rk ≤ max
Qk=E(XkX†

k):tr(Q)≤2P k

1

2
log
∣

∣I2 + HQkH
†∣
∣ . (4.66)

Remark 4.3 The AF analysis for the half-duplex relay channel is obtained by setting

Ck = {r}.

Remark 4.4 Note that the above analysis assumes that the destination, in addition to

knowinghd,k andhd,j for all j ∈ Ck, also knows the channel gainshj,k for all j.

Remark 4.5 One can also consider a relatively simpler orthogonal relaying scheme

where userk transmits on an orthogonal channel to that used by xthe cooperating users

in Ck, i.e.,Xk,2 = 0. Note that the resulting AF rate will be smaller.

Finally for the ergodic fading case, the achievable rate is bounded as

Rk ≤ E
1

2
log
∣

∣I2 + P kHH†∣
∣ (4.67)

where the expectation is over all the jointly independent fading processes{hl,m}, for

all l ∈ Ck ∪ {k}, m = d or l ∈ Ck, m = k. Note that due to lack of transmitter CSI the

bound in (4.67) is maximized when userk transmits i.i.d Gaussian signals in the two

fractions.

Outage Analysis: Due to a lack of CSI at the transmitters, we maximize the mutual

information, and hence minimize the outage probability, bychoosingXk,1 andXk,2

as independent Gaussian signals [33]. We circumvent the difficulty in developing an

exact expression for the outage probabilityPout by presenting high SNR upper and

lower bounds onPout. Expanding (4.66) and ignoring fading terms to the fourth power

(see also [59]), we can write the outage probabilityPout as

Pout = Pr





1

2
log



1 + |hd,k|2 P k

(

1 +
1

cs

)

+
P k

c2
s

∣

∣

∣

∣

∣

∑

j∈Ck

cj

cs

hd,jhj,k

∣

∣

∣

∣

∣

2


 < Rk





(4.68)
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whereRk is the rate at which userk transmits. In general, an analytic expression for

Pout is involved. However, one can lower boundPout by the outage probability of a

Lk × 1 distributed MIMO channel withLk − 1 antennas transmitting the same signal.

Thus, we have

Pout ≥ Pr

(

log

(

1 + |hd,k|2 P k + P k

∣

∣

∣

∑

j∈Ck

hd,j

∣

∣

∣

2
)

< Rk

)

(4.69)

= Pr
(

log
(

1 + |hd,k|2 P k + P k |h′
d|2
)

< Rk

)

(4.70)

∼
(

2Rk − 1
)2

dγ
d,k

2P
2

k

(

∑

j∈Ck
1/dγ

d,j

) (4.71)

where (4.70) follows from the fact that the sum,h′
d, of complex Gaussian random

variableshd,j, for all j, is also Gaussian distributed while (4.71) follows from ap-

plying lemma C.2 in the high SNR regime. The expressionf(x) ∼ g(x) implies

limx→∞ f/g = 1.

On the other hand, one can upper boundPout by the outage probability of an or-

thogonal AF protocol with|Cj | = 1. The bounds for the latter network in the high SNR

regime are developed in [54] and we summarize them below as

Pout ≤
(

22Rk − 1
)2

dγ
d,kd

′

2P
2

k

(4.72)

where

d′ = max
j∈Ck

(

dγ
j,k + dγ

d,j

)

. (4.73)

Thus, we see that the maximum diversity achievable by a two-hop AF scheme in the

high SNR regime is at most2 and is independent of the number of cooperating users

in Ck. At the other extreme of the low SNR wideband regime, the authors in [16] show

that for a half-duplex relay channel AF does not achieve the high SNR diversity gains

and propose an outage capacity achievingburstyAF scheme.

Multi-hop Cooperative Network

We consider a simpleLk-hop cooperative AF protocol where userk is aided by user

πk (l), l = 1, 2, . . . , Lk, in thelth fraction, i.e., userπk (l) forwards in the fractionθk,l
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Figure 4.5: AF encoding for userk in aK-user multi-hop cooperative network.

a scaled version of the signal it receives from userk in the first fraction (see Fig. 4.5).

Note thatπk (1) = k andθk,l = 1/Lk for all l. We denote the received signal at the

destination in thelth fraction asYd,l and write

Yd,l = hd,kXk,l + hd,πk(l)Xπk(l),l + Zd,l l = 1, 2, . . . , Lk (4.74)

where the signalXπk(l),l transmitted by userπk (l) in thelth fraction depends on signal

Yπk(l),1 that it receives in the first fraction as

Xπk(l),l = cπk(l)Yπk(l),1 = cπk(l)

(

hπk(l),kXk,1 + Zπk(l),1

)

(4.75)

and
∣

∣cπk(l)

∣

∣

2
=

LkP πk(l)
∣

∣hπk(l),k

∣

∣

2
P k + 1

. (4.76)

Achievable Rates: We simplify (4.56) as

Y d = HXk + Zd (4.77)

where

Y d =
[

Yd,1 Yd,2/ c′2 . . . Yd,2/ c′Lk

]T

(4.78)

Xk =
[

Xk,1 Xk,2 . . . Xk,Lk

]T

(4.79)

Zd =

[

Zd,1
cπk(2)hd,πk(2)Zπk(2),1+Zd,2

c′2
. . .

cπk(Lk)hd,πk(Lk)Zπk(Lk),1+Zd,Lk

c′Lk

]T

(4.80)

and

c′l =
√

1 + c2
πk(l)

∣

∣hd,πk(l)

∣

∣

2
for all l = 2, 3, . . . , Lk (4.81)
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such that the entrieshi,j of the matrixH, for all i, j = 1, 2, . . . , Lk, are

hi,j =



















cπk(i)hπk(i),khd,πk(i)/c
′
i j = 1

hd,k/c
′
i i = j

0 o.w.

(4.82)

For theLk-symbol vector channel in (4.77), we chooseXk as Gaussian distributed to

maximize the achievable rateRk. We thus achieve allRk that satisfy

Rk ≤ max
Qk=E(XkX†

k):tr(Q)≤2P k

1

Lk

log
∣

∣ILk
+ HQkH

†∣
∣ . (4.83)

Remark 4.6 Due to a pre-log factor of1/Lk, note that the above scheme is desirable

only when the rate gains are significant relative to direct transmission. Further, here

too we assume that the destination, in addition to knowinghd,k andhd,j for all j ∈ Ck,

also knows the channel gainshj,k for all j.

Remark 4.7 One can also consider an orthogonal relaying scheme where user k and

the cooperating users inCk use orthogonal channels to transmit to the destination, i.e.,

Xk,j = 0, j = 2, 3, . . . , Lk (see [54]).

Finally for the ergodic fading case, the achievable rate is bounded as

Rk ≤ E
1

Lk
log
∣

∣ILk
+ P kHH†∣

∣ (4.84)

where the expectation is over all the jointly independent fading processes{hl,m}, for

all (l, m) such thatl ∈ Ck ∪ {k}, m = d or l ∈ Ck, m = k. Note that due to lack of

CSI the bounds in (4.84) are maximized when userk, for all k, transmits i.i.d Gaussian

signals in the two fractions.

Outage Analysis: Due to a lack of CSI at the transmitters, we assume independent

and identically distributed Gaussian signaling in each fraction at userk. Then, for a

transmission rateRk, settingQk = P kILk
in (4.83), we write the outage probability

Pout as

Pout = Pr

(

1

Lk

log
∣

∣ILk
+ P kHH†∣

∣ < Rk

)

. (4.85)



79

An expression forPout is not easy to evaluate analytically. However, we can lower

boundPout with the outage probability of aLk × 1 distributed MIMO channel with

i.i.d Gaussian signaling across theLk transmit antennas. Thus, we have

Pout ≥ Pr

(

log

(

1 + |hd,k|2 P k + P k

∑

j∈Ck

h2
d,j

)

< Rk

)

(4.86)

∼
(

2Rk − 1
)Lk
∏Lk

l=1 dγ
d,πk(l)

(Lk!) P
Lk

k

(4.87)

where (4.87) follows from applying lemma C.2 in the high SNR regime and the ap-

proximationf(x) ∼ g(x) is in the sense off(x) /g(x) → 1 asx → ∞ [60]. On the

other hand, one can upper boundPout by the outage probability of an orthogonal AF

protocol where userk and its cooperating users transmit on orthogonal channels,i.e.,

only userπk (l) transmits in the fractionθk,l. A high SNR upper bound on the outage

probability of this orthogonal scheme is developed in [54] and we summarize it below

as

Pout ≤
(

2LkRk − 1
)Lk dγ

d,k

∏

j∈Ck

(

dγ
d,j + dγ

j,k

)

Lk!P
Lk

k

. (4.88)

Comparing (4.87) and (4.88), we see that theLk-hop AF scheme can achieve a max-

imum diversity ofLk in the high SNR regime at the expense of userk repeating the

signalLk times. We remark however that in the SNR ranges where the distance factors

in the numerator are comparable to the SNR in the denominator, the diversity gains will

reduce. We demonstrate such an observation using numericalresults in the following

section.

4.4 Illustration of Results

We consider a planar geometry with the users distributed randomly in a sector of a

circle of unit radius and angleπ/3. We place the destination at the center of the circle,

denoted as the origin, and for the relay network, we place therelay at(0.5, 0) as shown

in Fig. 4.6. TheK users are distributed randomly over the sector excluding a dead zone

around the destination of radius0.3. We plot theK-user sum-rate of the relay and user
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Figure 4.6: Planar sector of a circle with the destination atthe origin and100 randomly
chosen locations for a two-user multiaccess network.

cooperative networks and include the sum-capacity of a TD-MAC as a baseline for our

comparisons. We remark that the sum-rate optimization for both networks chooses a

cooperative strategy for userk, for all k, only when the rate achieved by cooperation

exceeds the TDMA rate for userk.

For all networks, we compute the achievable rates for the no fading channel and

outage probabilities for the quasi-static channel model assuming a random distribu-

tion of users and average the results over 100 such random placements. Further, for

the quasi-static fading channel, we also average the outageprobability over all time-

duplexed users. One can make similar comparisons for the ergodic fading case too.

We assume that allK users have the same transmit power constraint, i.e.,Pk = P1

for all k ∈ K. For the relay network we choose the relay’s transmit powerPr = fP1

where the scale factorf takes the values0.5 and1. To compare the energy efficiency

of the networks, we compute the total transmit and processing power assuming that the

same processing factors for encoding and decoding, i.e.,ηk = δk = η and the baseline
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Figure 4.7: Two user PDF sum-rateR1 + R2 vs. P1 (sub-plot 1) and vs.Ptot (sub-plot
2) for η = .01.

processing powerP proc
k,0 = 0 for all k ∈ T . For the following analysis we use the free-

space path loss exponentγ = 4. Finally, we compare the rate and outage performance

for η = .01, .5, and1, thereby modeling the extremes of the processing cost regime

as well as a mid-point. For the quasi-static fading model, weconsider a symmetric

transmission rate, i.e., all users transmit at a fixed rateR = 0.25.

We present the rate and outage plots forK = 2 andK = 3 as a function of the

transmit SNRP1 in dB, where the transmit SNR is the transmit powerP1 normalizing

by the unit variance noise at the receivers. We also plot the rate and outage probability

as a function of the noise normalized total transmit and processing SNRPtot in dB

wherePtot is given by (4.5) and (4.6). ForK = 3, we compare the performance of

both the two-hop and three-hop cooperative schemes.

4.4.1 Achievable Rates: PDF

The first sub-plot in Fig. 4.7 compares the area-averaged PDFsum-ratesR1 + R2 as a

function ofP1 for the user and relay cooperative network with that for the TD-MAC.
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The plot shows that for the relay network modeled as a time-duplexed MARC, the

achievable sum-rate increases with increasing relay powerand these rates are larger

than those achieved by the other three networks. Note further that the plot verifies the

known result that neither user nor relay cooperation achieves multiplexing gains [9,14].

However, this plot does not account for the additional powerat the relay. In sub-plot2,

we plotR1 + R2 as a function ofPtot for η = .01. This plot shows that with increasing

relay power the rate gains achieved by cooperation is not sufficient to overcome the

energy costs of cooperation. In fact, the plot shows that theincreased rates achieved by

the relay network forf = 1 requires proportionately larger total power relative to that

for f = .5. Further, from the two sub-plots in Fig. 4.8 one can see that with increasing

η, i.e., increasing processing power, while the rate gains achieved by both kinds of

cooperative networks diminishes relative to the TD-MAC; the sum-rate performance of

the relay network degrades more gracefully than that for theuser cooperative network.

Thus, we see that in the low transmit SNR regime relaying can still achieve gains, albeit

small, relative to the TD-MAC forη = 1, i.e., for the case where processing power is

comparable to the transmit power.

In Fig 4.9, we compare the energy efficiency of each network inbits per Joule as a

function of the transmit SNRP1 in dB for η = 0.01, 0.5, and1 in sub-plots1, 2, and

3 respectively. Recall that we model the energy efficiency of each network as its sum-

rate normalized with respect to the total power. One can clearly verify that the energy

efficiency, irrespective ofη, of all the networks increases as the transmit SNR decreases

[61]. Further, for anyη, asP1 increases, the energy costs of cooperation dominate any

gains in sum-rate achieved by cooperation thus driving the energy efficiency of the two

cooperative approaches below that of the TD-MAC. In other words, one can identify

cross-overpowers for both cooperative networks above which it is energy efficient to

abandon cooperation and transmit directly. Note that the total power range in each sub-

plot is chosen to ensure the same range of sum-rates. Comparing the three sub-plots,

we see that with increasingη the total power required to achieve the same sum-rate



84

-15 -10 -5 0 5 10
1

2

3

4

5

6

7

8

9

Transmit SNR P
1
 (dB)

R
1+

R
2+

R
3  

(b
its

/c
h.

 u
se

)

Sub-Plot 1

-10 -5 0 5 10 15
1

2

3

4

5

6

7

8

9

Transmit SNR P
1
 (dB)

R
1+

R
2+

R
3  

(b
its

/c
h.

 u
se

)

Sub-Plot 2

Coop. 2-hop

Coop. 3-hop

Relay P
r
=.5P

1

Relay P
r
=P

1

TD-MAC

Coop. 2-hop

Coop. 3-hop

Relay P
r
=.5P

1

Relay P
r
=P

1

TD-MAC

K=3 K=3
proc. factor η = .01

Figure 4.10: Three user PDF sum-rateR1 + R2 + R3 vs. P1 (sub-plot 1) and vs.Ptot

for η = .01 (sub-plot 2).

-5 0 5 10 15
1

2

3

4

5

6

7

8

9

Transmit SNR P
1
 (dB)

R
1+

R
2+

R
3  (

bi
ts

/c
h.

 u
se

)

Sub-Plot 1

-5 0 5 10 15
1

2

3

4

5

6

7

8

9

Transmit SNR P
1
 (dB)

R
1+

R
2+

R
3  (

bi
ts

/c
h.

 u
se

)

Sub-Plot 2

Coop. 2-hop

Coop. 3-hop

Relay P
r
=.5P

1

Relay P
r
=P

1

TD-MAC

Coop. 2-hop

Coop. 3-hop

Relay P
r
=.5P

1

Relay P
r
=P

1

TD-MAC

K=3
proc. factor η = 1

K=3
proc. factor η = .5

Figure 4.11: Three-user PDF sum-rateR1 + R2 + R3 vs. Ptot for η = .5 (sub-plot 1)
andη = 1 (sub-plot 2).
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Figure 4.12: Three user PDF energy efficiency(R1 + R2 + R3) /Ptot vs. Ptot for η =
.01 (sub-plot 1), .5 (sub-plot 2), and1 (sub-plot 3).

increases. Further, asη increases from.01 to 1 the cross-over power decreases for both

kinds of cooperative networks. Note that for all three values of η, the cross-over SNR

for the user cooperative network is smaller than that for therelay network. This is a

direct result of the fact that in the cooperative network theusers also bear the additional

processing costs of cooperative encoding and decoding. From the continuity of the rate

expressions as a function of power, one can see that the energy efficiency in general

decreases with increasingη for all networks as demonstrated by the lines connecting

the y-axis ticks from one sub-plot to another.

Next, we demonstrate the performance of the multi-hop cooperative scheme by

considering a three-user multiaccess network. In Fig. 4.10we compare the achievable

three-user sum-rateR1 + R2 + R3 as a function of bothP1 andPtot. The plots demon-

strate negligible gains between the two- and three-hop cooperative schemes. Recall that

for the multi-hop case, we choose the setCk of users cooperating with userk as that

which maximizesRk. Thus, the rate gains from multi-hopping are typically limited to

those users that are farther away from the destination than are their cooperating users.

This in turn implies that with increasingK the rate gains achieved by the distant users
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is offset by the reduction in rate experienced by the users closer to the destination as a

result of sharing their transmit power for cooperation. Further, comparing the rate gains

that result from relay cooperation in Figs. 4.7 and 4.10 forK = 2 andK = 3 respec-

tively, we see that sharing the relay between more users alsoreduces the cooperative

rate gains. These observations are further illustrated in sub-plot 2 where we compare

the sum-rates as a function ofPtot. This plot clearly shows that with increasingPr,

the rate gains resulting from relay cooperation do not scalefaster than the processing

power costs thereby suggesting that it is efficient to employrelay cooperation only in

the low transmit and processing power regime and for smallK.

Finally, Fig. 4.12 demonstrates that relay and user cooperation are energy efficient

only in the low transmit and processing power regimes. In fact, from Fig. 4.12 as well

as the continuity of the rate expressions one can show that there exists a processing

factorη0 beyond which the energy efficiency curves for both user and relay cooperation

falls below that for TD-MAC, i.e., it is more energy efficientto directly transmit to the

destination than it is to cooperate.

4.4.2 Achievable Rates: AF

In Fig. 4.13 and 4.15 we compare the sum-rate and energy efficiency of the relay and

user cooperative networks under AF. From the first sub-plot in Fig. 4.13 we see that

relay cooperation achieves rate gains as the transmit powerdecreases relative to the

TD-MAC sum-capacity; we note that the gains achieved by usercooperation while

non-zero are relatively insignificant. The gains for both networks however are limited

to the relatively low SNR regime. Further, from sub-plot 2, we see that in this regime,

the transmission is also energy-efficient. A similar behavior is demonstrated forη = .5

andη = 1 in Fig. 4.14.

Recall that since AF does not involve encoding or decoding bythe cooperating
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Figure 4.13: Two user AF sum-rateR1 + R2 vs. P1 (sub-plot 1) and vs.Ptot (sub-plot
2) for η = .01.
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Figure 4.14: Two user AF sum-rateR1 + R2 vs. Ptot for η = .5 (sub-plot 1) andη = 1
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users, the energy costs of cooperation for the TD-MAC and theuser cooperative net-

work are the same while that for the relay network includes the additional cost of trans-

mission at the relay, i.e.,Pr. This cost of relaying is demonstrated in the first sub-plot

of Fig. 4.15 where we see that the energy cost of relay transmissions shadows the rate

gains achieved thus driving the energy efficiency of the relay network below that of the

user cooperative and the TD-MAC network. However, asη increases to.05 and1 in

sub-plots2 and3 respectively we see that relaying is more energy-efficient relative to

the other two networks in the low transmit SNR regime. Further, the cross-over power

P1 of the relay network also increases with increasingη. This is due to the fact as

the processing factor increases, the fixed cost of transmission at the relay is dominated

by the increasing cost of processing (encoding) at the users. Thus, while the energy

efficiency of all networks decreases with increasingη, the effect ofPr reduces with in-

creasingη thus making relay cooperation more energy efficient in the high processing

factor regime. One can make a similar comparison for a three-user MAC and compare

the performance of the three-hop scheme. However, from (4.77), one can see that with

increasingK the pre-log factor1/Lk for userk will quickly outweigh the logarithmic

rate gains.

4.4.3 Outage Probability: DDF

In Fig. 4.16 we compare the two user DDF outage probability,Pout, of the two cooper-

ative networks and the TD-MAC as a function ofP1 in sub-plot 1 and as a function of

Ptot for η = 0.01 in sub-plot2. Recall thatPout is a average of the outage probability

of both users over all random user locations. As expected, wesee that both the relay

and the user cooperative network achieve a maximum diversity of 2 relative to the unit

diversity of the TD-MAC as seen from the slope of the outage curves for a fixed sym-

metric rateR = 0.25. Further sub-plot 1 also demonstrates a SNR gain achieved by

the relay network relative to the user cooperative network.Further as demonstrated in

sub-plot 2 and both sub-plots in Fig. 4.17 this SNR gain is notdiminished even when
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Figure 4.15: Two user AF energy efficiency(R1 + R2) /Ptot vs. Ptot for η = .01
(sub-plot 1), .5 (sub-plot 2), and1 (sub-plot 3).

we account for the energy costs of cooperation by plottingPout as a function of the to-

tal (transmit and processing) SNRPtot. Note further that accounting for the processing

costs translates the outage curves for all three networks.

We compare the outage probability of a three user MAC in Figs.4.18 and 4.19. The

figures clearly validates our analysis that the two hop cooperative scheme on average

does not achieve the maximum diversity gains of3. On the other hand, the slope

of Pout for the three-hop scheme approaches the maximum diversity of 3 but does

not achieve coding gains relative to the relay network. Further, accounting for the

processing costs, we see that the diversity gains of the three-hop scheme significantly

diminish with increasing processing factorη. In fact, with increasingη the two-hop

relay network demonstrates increased SNR gains relative tothe two and three-hop

cooperative networks.

In Section 4.3.1 we showed that a two-hopK-user cooperative network can achieve

the maximum diversity ofK when allK sources form a cluster. We demonstrate this in

Fig. 4.20 for a clustered geometry where the three users are randomly located in a circle

of radius0.1 and centered at(0.7, 0). We plot the outage probability averaged over the
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Figure 4.16: Two user DDF outage probabilityPout vs. P1 (sub-plot 1) and vs.Ptot for
η = 0.01 (sub-plot 2).
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Figure 4.17: Two user DDF outage probabilityPout vs. Ptot for η = 0.5 (sub-plot 1)
and forη = 1 (sub-plot 2).
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Figure 4.18: Three user DDF outage probabilityPout vs. P1 (sub-plot 1) and vs.Ptot

for η = 0.01 (sub-plot 2).
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Figure 4.19: Three user DDF outage probabilityPout vs. total transmit SNRPtot in dB
for η = 0.5 (sub-plot 1) andη = 1 (sub-plot 2).
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Figure 4.20: Two-hop three user DDF Outage ProbabilityPout vs. P1 (sub-plot 1) and
Ptot (sub-plot 2).

location of the three users and over 10 such random placements of the users. We also

plot the outage when the clustering radius is increased to0.5. The decrease in diversity

order from3 to 2 as the radius increases agree with our analysis and demonstrate the

need for user clustering to achieve a diversity order of3 for the chosen SNR range.

4.4.4 Outage Probability: AF

In Figs. 4.21 and 4.22 we plot the two user AF outage probability for the cooperative

user and relay networks and compare them with that for the non-cooperative TD-MAC.

As predicted, we see that both kinds of cooperative networksachieve the same max-

imum diversity of2. However, from sub-plot 2 in Fig 4.21 and the two sub-plots in

Fig. 4.22 we see that the relay network achieves an average coding gain of3 dB rel-

ative to the user cooperative network. In Figs. 4.23 and 4.24we compare the outage

probabilities of a three user cooperative, relay, and TD-MAC network. Observe that the

two-hop AF scheme only achieves a maximum diversity of2 as shown in Section 4.3.2.

The three-hop scheme on the other hand achieves a maximum diversity approaching
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Figure 4.21: Two user AF outage probabilityPout vs. P1 (sub-plot 1) and vs.Ptot for
η = .01 (sub-plot 2).

3. However, it does not uniformly achieves coding gains relative to the AF outage

probability (2-hop) achieved by the relay network.

4.4.5 Relay Position

We briefly discuss the effect of relay position on the rate andoutage performance of the

relay network. We presented numerical results for a fixed relay position at at(0.5, 0),

i,e, at half the sector radius and on the line bisecting the sector. A natural question

that arises is whether a different placement of the relay mayyield different results. For

instance, given the uniform node distribution over a circular sector, more nodes are

likely to be closer to the circumference than to the center and thus placing the relay

at (1/
√

2, 0), i.e. at a radius that divides the area in half, may result in alarger rates

and smaller outage probabilities. In Figs. 4.25 and 4.26 we illustrate the sum-rate and

energy efficiency respectively for this choice of relay position. Comparing Fig. 4.7 and

4.25 we see that the rate gains achieved by the relay network relative to the cooperative
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Figure 4.22: Two user AF outage probabilityPout vs. Ptot for η = 0.5 (sub-plot 1) and
for η = 1 (sub-plot 2).
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Figure 4.23: Three user AF outage probabilityPout vs. P1 (sub-plot 1) andPtot for
η = 0.01 (sub-plot 2).
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Figure 4.24: Three user AF outage probabilityPout vs. Ptot for η = 0.5 (sub-plot 1)
andη = 1 (sub-plot 2).
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Figure 4.25: Two user PDF sum-rateR1 +R2 vs. P1 (sub-plot 1) andPtot for η = 0.01
(sub-plot 2) for relay position fixed at(0.707, 0).
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Figure 4.26: Two user PDF energy efficiency(R1 + R2)/Ptot vs. P1 for η = 0.01
(sub-plot 1),η = 0.5 (sub-plot 2), andη = 1 (sub-plot 3) for relay position fixed at
(0.707, 0).

network diminish. Further, from Fig. 4.26 we see that both user cooperation and non-

cooperative time-duplexing are more energy efficient communication approaches than

relaying.

The larger rates achieved by placing the relay closer to the destination at(0.5, 0)

than at(0.707, 0) is due to the distance dependent fading gains seen by the relay’s

signal at the destination. While it is known that when the relay is clustered close to the

sources DDF achieves or approaches the channel capacity, wenote that the resulting

capacity is not the largest rate achieved over all relay positions; the latter is achieved at

a point midway between the sources and relay as illustrated in [28,31].

One can demonstrate a similar behavior for the AF scheme. Theeffect on the DDF

outage probability is demonstrated in Fig. 4.27. Comparingwith Fig. 4.16, we see that

the coding gains for the relay network reduces by3 dB when the relay is moved farther

away from the destination. In practice, the relay position may need to be chosen to

maximize the average achievable rates and diversity order.
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Figure 4.27: Two user DF outage probabilityPout vs. P1 (sub-plot 1) andPtot for
η = 0.01 (sub-plot 2) for relay placed at(0.707, 0).

4.5 Conclusions

We compared the rate and diversity performance of user and relay cooperation in a mul-

tiaccess network. We chose the total transmit and processing power as a cost metric for

the comparison and developed a model for processing power costs as a function of the

transmitted rate, and hence, transmitted power. We considered a time-duplexed trans-

mission model for both cooperative networks and the MAC and developed a two-hop

scheme for both the relay and user cooperative network. We also presented a multi-hop

scheme for the user cooperative network for the case of multiple cooperating users. For

the cooperative strategies of PDF (DF for outage) and AF, we developed the achievable

rate bounds as well as upper and lower bounds on the outage probability. We also pre-

sented numerical results for both the achievable rates and outage probability averaged

over random user locations within a circular sector. Our results demonstrated that due

to the processing (encoding and decoding) costs associatedwith PDF and DF, both user

and relay cooperative networks are energy efficient only in the regime where transmit

costs dominate processing costs, i.e., thelong distance communicationsregime. On
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the other hand, AF is desirable for the relay network only when the processing costs

are comparable to the transmit costs. Further, for both strategies, we showed that us-

ing a relay is on average more energy efficient than user cooperation. Finally, we also

showed that as a result of sharing fixed power and bandwidth resources the gains from

either kind of cooperation decreases with increasing number of users.

We also compared the diversity gains achieved by user and relay cooperation by

developing upper and lower bounds on the outage probabilityfor DDF and AF. Our

analytical results, verified by numerical simulations, showed that a two-hop relay net-

work can achieve a maximum diversity of2 for both DDF and AF. A two-hop user

cooperative network aided byK − 1 users achieves aK-fold diversity gain only when

the cooperating users are physical proximal, i.e., clustered. On the other hand, the

K-hop scheme achieves a maximum diversity order ofK; however the cooperative

energy costs of this scheme make it unattractive relative tothe2-hop AF strategy for

the relay network; in fact theK-hop scheme is desirable only in the low processing

costs regime where it achieves coding gains relative to the relay network. We make

similar observations for AF except now a two-hop relay and user cooperative network

only achieve a maximum diversity of2. On the other hand, despite aK-fold diversity

increase, the performance of theK-hop scheme for the user cooperative network suf-

fers from increased energy costs and diminished codings gains in the high processing

costs regime relative to the outage performance of the relaynetwork.

In conclusion, we see that cooperation is desirable only when the energy costs

of cooperation are neglible compared to the total energy costs. Further, multi-hop

schemes for the user cooperative network that achieve full diversity are desirable in

practice only if the associated processing costs are not prohibitive, i.e., in the regime

where they achieve positive coding gains relative to the relay and non-cooperative net-

works. The simple processing cost model presented here captures the effect of transmit

rate on processing power. One can also tailor this model to explicitly include delay,

complexity, and device-specific processing costs. Finally, one can also compare the
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energy-efficiency and diversity performance of a wide variety of cooperative schemes

ranging in complexity from a simple multi-hopping scheme tothe processing-intensive

compress-and-forward strategy over different SNR regimes.
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Chapter 5

Sum-Capacity of Degraded Gaussian Multiaccess Relay
Channels

5.1 Introduction

Capacity results for relay channels are known only for a few special cases such as

the degraded relay channel [6] and its multi-relay generalization [35, 62], the semi-

deterministic relay channel [63], orthogonal relay channels [64,65], the Gaussian relay

without delay channel [66, 67], and ergodic phase-fading relay channels [68]. Specif-

ically, for the classic single-user relay channel [6] and its multi-relay generalization

[35], applying the degradedness condition simplifies the outer bounds on the capacity

to coincide with the inner bounds achieved by DF. Applying the degradedness condi-

tion for a MARC, however, does not result in such a simplification.

For aK-user degraded Gaussian MARC, we use optimization techniques to show

that DF achieves theK-user sum-capacity. We first obtain the largestK-user DF sum-

rate by maximizing the minimum of the sum-rates achieved at the relay and at the des-

tination. The maximization is over all possible source and relay power fractions that

achieve coherent combining gains at the destination. We solve the max-min optimiza-

tion problem using techniques analogous to the classic minimax problem in detection

theory [69, II.C] and refer to the resulting sum-rate optimal power policy at each source

and the relay as amax-min rule.

One can obtain an outer bound on the capacity region of a MARC by specializing

the cut-set bounds of [30, Th. 14.10.1] for the case of independent sources [28]. As

with DF, the outer bound on theK-user sum-rate is also obtained by taking a minimum

over two bounds where the first bound results from a cut with both the relay and the
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Figure 5.1: A two-user Gaussian degraded MARC.

destination as receivers while the second bound results from a cut with only the des-

tination as a receiver. For the degraded case the first bound simplifies to using only

the relay’s signal; however, this bound is at least as large as the DF bound achieved

at the relay. The second outer bound on the other hand matchesthat achieved by DF

at the destination. We show that the cut-set bound on theK-user sum-rate can also

be maximized using max-min techniques and the resulting bound is the same as that

achieved by DF. Finally, we show that the max-min rule for DF also maximizes the

sum-rate outer bound.

This chapter is organized as follows. In Section 5.2 we present a model for a

degraded Gaussian MARC. In Section 5.3 we review the cut-setbounds on the capacity

region of a MARC. In Section 5.4 we determine the maximumK-user DF sum-rate.

We develop the converse in Section 5.5. Finally, in Section 5.6, we discuss the result

and conclude.

5.2 Channel Model and Preliminaries

A K-user degraded Gaussian MARC hasK user (source) nodes, one relay node,

and one destination node (see Fig. 5.1). The sources emit themessagesWk, k =

1, 2, . . . , K, that are statistically independent and take on values uniformly in the sets

{1, 2, . . . , Mk}. The channel is usedn times so that the rate ofWk is Rk = Bk/ n bits
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per channel use whereBk = log2 Mk bits. In each use of the channel, the input to the

channel from sourcek is Xk while the relay’s input isXr. The channel outputsYr and

Yd, respectively, at the relay and the destination are

Yr =

K
∑

k=1

Xk + Zr (5.1)

Yd =

K
∑

k=1

Xk + Xr + Zd (5.2)

= Yr + Xr + Z∆ (5.3)

whereZr and Z∆ are independent Gaussian random variables with zero-mean and

varianceNr andN∆ respectively such that the noise variance at the destination is

Nd = Nr + N∆. (5.4)

We remark that we assume a relay that operates in a full-duplex manner, i.e., it can

transmit and receive simultaneously in the same bandwidth.Further, its inputXr in

each channel use is a causal function of its outputs from previous channel uses. We

writeK = {1, 2, . . . , K} for the set of sources,T = K ∪ {r} for the set of transmitters,

R = {r, d} for the set of receivers,XS = {Xk : k ∈ S} for all S ⊆ K, andSc to denote

the complement ofS in K.

The transmitted signals from sourcek and the relay have a per symbol power con-

straint

E |Xk|2 ≤ Pk k ∈ T . (5.5)

One can equivalently express (5.3) as a Markov chain

(X1, X2, . . . , XK) − (Yr, Xr) − Yd. (5.6)

Finally, for K = 1, we note (5.6) simplifies to the degraded condition in [6, (10)].

The capacity regionCMARC is the closure of the set of rate tuples(R1, R2, . . . , RK)

for which the destination can, for sufficiently largen, decode theK source messages

with an arbitrarily small positive error probability. As further notation, we writeRS =
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∑

k∈SRk andYR = (Yr, Yd). We write0 and1 to denote vectors whose entries are

all zero and one respectively ande to denote aunit vector, i.e., a vector with only one

non-zero entry that is set to unity. We use the usual notationfor entropy and mutual

information [29,30] and take all logarithms to the base 2 so that our rate units are bits.

The degraded Gaussian MARC defined in (5.1)-(5.3) is aphysically degradedchan-

nel, i.e., it has one independent observation at the relay and a degraded copy of that

observation at the destination. Except for a few cases, suchas the broadcast channel,

physically degraded wireless channels have limited practical relevance. A degraded

model with perhaps more practical relevance is astochastically degradedGaussian

MARC shown in Fig. 5.2 whereZ ′
r 6= Zr though they the same varianceNr. For

example, a stochastically degraded Gaussian MARC may be used to model multiac-

cess relay networks where the received signal strength is dominated by path-loss. The

independence ofZ ′
r andZr adds an additional degree of freedom to the channel obser-

vations at the relay and destination and thus, the capacity of a stochastically degraded

Gaussian MARC is at least as large as its physically degradedcounterpart. The dif-

ference between a stochastically and a physically degradedGaussian MARC, however,

makes the converse obtained for the latter inapplicable forthe former. Thus, in addition

to solving a theoretical model, capacity results for the physically degraded Gaussian

MARC can provide insights into signaling schemes for the stochastically degraded

case.

5.3 Outer Bounds

An outer bound on the capacity region of a MARC is presented in[27] using the cut-

set bounds in [30, Th. 14.10.1] as applied to the case of independent sources. We

summarize the bounds below.

Proposition 5.1 The capacity regionCMARC is contained in the union of the set of rate
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Figure 5.2: A two-user stochastically degraded Gaussian MARC.

tuples(R1, R2, . . . , RK) that satisfy, for allS ⊆ K,

RS ≤ min





I(XS ; Yr, Yd|XSc, Xr, U),

I(XS , Xr; Yd|XSc, U)



 (5.7)

where the union is over all distributions

p(u) ·
(

∏K

k=1
p(xk|u)

)

· p(xr|xK, u) · p(yr, yd|xK, xr).

Remark 5.2 The time-sharing random variableU ensures that the region in (5.7) is

convex. One can apply Caratheodory’s theorem [32] to thisK-dimensional convex

region to bound the cardinality ofU as|U| ≤ K + 1.

5.4 Decode-and-Forward

A DF code construction is presented in [10, Appendix A] (see also [58]) and we extend

it here for the degraded Gaussian MARC. The rate region achieved by DF is presented

in [10,58, Appendix A] and we summarize the result below.

Proposition 5.3 The rate region for DF is the union of the set of rate tuples(R1, R2, . . . ,

RK) that satisfy, for allS ⊆ K,

RS ≤ min





I(XS ; Yr|XScVKXrU),

I(XSXr; Yd|XScVScU)



 (5.8)
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where the union is over all distributions that factor as

p(u) ·
(

∏K
k=1p(vk|u)p(xk|vk, u)

)

· p(xr|vK, u) · p(yr, yd|xT ). (5.9)

Proof: See [58].

Remark 5.4 The time-sharing random variableU ensures that the region of Theorem

5.3 is convex.

Remark 5.5 We remark that independent random variablesVk, k = 1, 2, . . . , K, are

used in the code construction to help the sources cooperate with the relay.

For the degraded Gaussian MARC, we employ the following codeconstruction.

We generate zero-mean, unit variance, independent and identically distributed (i.i.d)

Gaussian random variablesVk, Vk,0, andVr,0, for all k ∈ K, such that the channel
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inputs from sourcek and the relay are

Xk =
√

αkPkVk,0 +
√

(1 − αk)PkVk k ∈ K (5.10)

Xr =
K
∑

k=1

√
βkPrVk +

√

(

1 −
K
∑

k=1

βk

)

PrVr,0 (5.11)

where

αk ∈ [0, 1] andβk ∈ [0, 1] for all k. (5.12)

We write

αK =
(

α1, α2, . . . , αK

)

(5.13)

βK =
(

β1, β2, . . . , βK

)

(5.14)

and defineΓ to be the set of(αK, βK) that satisfy (5.12). Substituting (5.10) and (5.11)

in (5.8), for any choice ofαK andβK, we obtain

RS ≤ min
(

Ir,S (αK) , Id,S

(

αK, βK

))

for all S ⊆ K (5.15)

whereIr,S andId,S , the bounds at the relay and destination respectively, are

Ir,S = C





∑

k∈S
αkPk

Nr



 (5.16)

Id,S = C











∑

k∈S
Pk

Nd
+

0

@1−
∑

k∈Sc

βk

1

APr

Nd

+2
∑

k∈S

√

(1 − αk) βk
Pk

Nd

Pr

Nd











(5.17)

andC(x) = 1
2
log(1+x). For a fixed(αK, βK), the DF rate bounds are given by (5.15).

Note that one can use the concavity of thelog function to show thatIr,S for all S, is a

concave function ofαK. In Appendix D.1 we show thatId,S is a concave function of

αK andβK. The DF rate region,RDF , achieved over all(αK, βK) ∈ Γ, is given by the

following theorem.
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Theorem 5.6 The DF rate regionRDF for a degraded Gaussian MARC is

RDF =
⋃

αK,β
K

(

Rr (αK) ∩Rd

(

αK, βK

))

(5.18)

where the rate regionRt, t = r, d, is

Rt = {(R1, R2, . . . , RK) : 0 ≤ RS ≤ It,S} . (5.19)

Proof: The rate regionRDF follows directly from Proposition 5.8 an the code

construction in (5.10)-(5.11).

Corollary 5.7 The rate regionRDF is convex.

Proof: To show thatRDF is convex, it suffices to show thatIr,S andId,S, for

all S, are concave functions over the convex setΓ of (αK, βK). This ie because the

concavity ofIr,S andId,S , for all S, ensures that a convex sum of any collection of rate

tuples inRDF also belongs toRDF , i.e., satisfies (5.19) fort = r, d. The concavity of

Ir,S follows directly from the concavity of thelog function with respect toαK. Finally,

in Appendix D.1, we show thatId,S is a concave function of(αK, βK).

The regionRDF in (5.18) is a union of the intersection of the regionsRr andRd

achieved at the relay and destination respectively, where the union is over all(αK, βK)

∈ Γ. SinceRDF is convex, each point on the boundary ofRDF is obtained by maxi-

mizing the weighted sum
∑

k∈KµkRk over allΓ, and for allµk > 0. Specifically, we

determine the optimal policy(α∗
K, β∗

K) that maximizes the sum-rateRK whenµk = 1

for all k.

From (5.18), we see that every point on the boundary ofRDF results from the

intersection ofRr(αK) andRd(αK, βK) for some(αK, βK). In Fig. 5.3, we illustrate

the five possible choices for the sum-rate resulting from such an intersection for a two-

user MARC. Cases1 and2 result when no rate pair on the sum-rate plane achieved

at one receiver lies within or on the boundary of the rate region achieved at the other

receiver. On the other hand, cases3a, 3b, and3c result when there is more than one
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Figure 5.4: Illustration of Cases 1, 2, and 3.

such rate pair. We now argue that it suffices to consider only cases3a, 3b, and3c to

maximize the sum-rate. The argument uses the fact that, for any βK, the boundsIr,S

andId,S , for all S, are monotonically increasing and decreasing functions, respectively,

of αK. Consider an(α1, α2) that results in the rate region shown in Fig. 5.3 for Case2.

The sum-rate for this case is then given byRmax
1,r + Rmax

2,d whereRmax
k,t is the maximum

single-user rate achieved by userk at receivert. From the monotonic behavior of the

rate bounds at the two receivers, one can find an(α1, α
′
2) that increasesRmax

2,d while

decreasingRmax
2,r sufficiently to effect a transition towards one of cases3a, 3b, or 3c.

Observe further that the sum-rate increases as a result as shown in Fig. 5.3. Similar

arguments can also be applied to the pairRmax
2,r andRmax

1,d to increase the sum-rate.

Finally, one can also extend these arguments to theK-user case to show that it suffices

to consider only the three cases where the rate tuples on the sum-rate plane achieved

at one receiver lie within or on the boundary of the rate region achieved at the other

receiver. We henceforth enumerate cases3a, 3b, and3c as cases1, 2, and3 respectively.

The largest bound on theK-user DF sum-rateRK is then given as

max
(αK,β

K
)∈Γ

min
(

Ir,K (αK) , Id,K

(

αK, βK

))

. (5.20)



109

Themax-minproblem in (5.20) is a dual of the classicminimaxproblem in detection

theory [69, II.C]. This allows us to apply techniques used toobtain a minimax solution

to maximize the bounds in (5.20) over all(αK, βK) in Γ (see also [70]). We refer to a

sum-rate optimal(αK, βK) as amax-min rule. Consider the function

J(αK, βK, δ) = δIr,K (αK) + (1 − δ) Id,K

(

αK, βK

)

δ ∈ [0, 1]. (5.21)

Observe thatJ is linear inδ ranging in value fromId,K for δ = 0 to Ir,K for δ = 1.

Thus, the optimization in (5.20) is equivalent to maximizing the minimum of the two

end points of the lineJ overΓ. MaximizingJ(αK, βK, δ) over(αK, βK), we obtain a

continuous convex function

V (δ) = max
(αK,β

K)∈Γ
J(αK, βK, δ) δ ∈ [0, 1]. (5.22)

From (5.21) and (5.22), we see that for any(αK, βK), J(αK, βK, δ) either lies strictly

below or is tangential toV (δ). The following proposition summarizes a well-known

solution to the max-min problem in (5.20) [70].

Proposition 5.8 (αK,δ∗ , βK,δ∗
) is a max-min rule where

δ∗ = arg min
δ∈[0,1]

V (δ). (5.23)

The maximum bound onRK, V (δ∗), is completely determined by the following three

cases (see Fig. 5.4).

Case 1: δ∗ = 0 : V (δ∗) = Id,K(αK,δ∗ , βK,δ∗
) < Ir,K(αK,δ∗) (5.24)

Case 2: δ∗ = 1 : V (δ∗) = Ir,K(αK,δ∗) < Id,K(αK,δ∗ , βK,δ∗
) (5.25)

Case 3: 0 < δ∗ < 1 : V (δ∗) = Ir,K(αK,δ∗) = Id,K(αK,δ∗ , βK,δ∗
). (5.26)

We apply Proposition 5.8 to determine the maximum bound onRK. We study each

case separately and determine the optimal power fractions at the sources and relay, i.e.,

the max-min rule(αK,δ∗ , βK,δ∗
), for each case.
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Case 1: δ∗ = 0 : This case occurs when the maximum bound achievable at the

destination,Id,K(αK,δ∗ , βK,δ∗
) is smaller than the bound at the relayIr,K(αK,δ∗). From

(5.17), we observe thatId,K(αK, βK) decreases monotonically withαk for all k and

achieves a maximum atαK,δ∗ = 0 of

Id,K(αK,δ∗ , βK) = C





∑

k∈K
Pk + Pr + 2

∑

k∈K

√
βkPkPr

Nd



 . (5.27)

Further, sinceId,K is a concave function ofβK, from Appendix D.1 we see that it is

maximized by setting

c =

K
∑

k=1

βk = 1 (5.28)

such that from (D.18) we have

βk,δ∗ =
Pk

∑

k∈K Pk
. (5.29)

SubstitutingαK,δ∗ = 0 in (5.16), we obtain

Ir,K(αK,δ∗) = 0 (5.30)

which contradicts the assumption in (5.24), thus making this case infeasible. The in-

feasibility of this case implies that the largest rate region that is achievable at the desti-

nation cannot be enclosed within the region achieved at the relay. Note that we did not

need to determineβ∗
K to demonstrate the infeasibility of this case.

Case 2: δ∗ = 1 : This case occurs when the maximum bound achievable at the

relay, Ir,K(αδ∗) is smaller than the bound at the destinationId,K(αK,δ∗ , βK,δ∗
). From

(5.16), we observe thatIr,K increases monotonically withαk for all k and achieves a

maximum at

αK,δ∗ = 1 (5.31)

of

Ir,K(αK,δ∗) = C





∑

k∈K
Pk

Nr



 . (5.32)
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Comparing (5.16) and (5.17) atαK,δ∗ = 1, we obtain the condition for this case as
∑

k∈K
Pk

Nr
≤

∑

k∈K
Pk + Pr

Nd
. (5.33)

Expanding (5.33), we have, for anyS ⊂ K,
∑

k∈S
Pk

Nr
≤

∑

k∈S
Pk + Pr

Nd
−

∑

k∈Sc

Pk (Nd − Nr)

NdNr
(5.34)

<

∑

k∈S
Pk + Pr

Nd
(5.35)

where (5.35) follows from (5.4). This implies thatαK,δ∗ = 1 also maximizes the bound

onRS for all S. The largest rate region achieved in this case is the set of(R1, R2, . . . ,

RK) tuples that satisfy

RS ≤ C





∑

k∈S
Pk

Nr



 for all S ⊂ K. (5.36)

Observe that forαK,δ∗ = 1, sourcek, for all k, does not allocate any power to transmit

Vk and thus we do not achieve coherent combining gains at the destination. The op-

timal power policy at the relay is thenβK,δ∗ = 0, i.e., the relay forwards the decoded

messages from all sources via a single codewordXr = Vr,0 in (5.11). Intuitively, one

expects this case to occur when the relay has a relatively high signal-to-noise ratio

(SNR) at the destination. The condition in (5.33) confirms this observation as

Pr

Nd

≥
∑

k∈K
Pk

(

1

Nr

− 1

Nd

)

. (5.37)

Case 3: Equal bounds case:0 < δ∗ < 1 : This case occurs when the maximum

rate bound achievable at the relay and destination are related as

Ir,K (αδ∗) = Id,K

(

αδ∗ , βδ∗

)

(5.38)

The max-min solution for this case falls in one of two possible categories. The first is

the relatively straightforward case whereαK,δ∗ = 1 is the max-min rule that satisfies

(5.38). Observe that the maximum sum-rate achieved is the same as that in case 5.4.
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We now study the second and more interesting case whereαK,δ∗ 6= 1. For ease of

notation, we dropδ from the subscript and write the max-min rule as(α∗
K, β∗

K). From

(5.17), we see that forαK 6= 1, Id,K is maximized by aβ∗
K with entriesβ

∗

k that, for all

k ∈ K, satisfy
∑

k∈K
β

∗

k = 1. (5.39)

In Appendix D.1 we show that, for a fixedαK and forβK subject to (5.39),Id,K is a

concave function ofβK that achieves a maximum at

β∗
k =







(1−αk)Pk
PK

k=1(1−αk)Pk
αK 6= 1

0 αK = 1
for all k ∈ K. (5.40)

The rate region at the destination for a fixedαK is then a union over allβK subject

to (5.39) (see Fig. D.1). Observe that the optimal power fraction β
∗

k that the relay

allocates to cooperating with userk is proportional to the power allocated by userk to

achieve coherent combining gains at the destination.

Thus, from (5.26) and (5.39), one can formulate the optimization problem for this case

as

maximize Ir,K (α)

subject to Ir,K (α) = Id,K
(

α, β
)

∑

k∈K
βk = 1.

(5.41)

Using Lagrange multipliers one can show that it suffices to considerβk = β
∗

k in the

maximization. Observe that since the optimalβ∗
k is a function ofαK, Id,K(αK, β∗

K)

simplifies to a function ofαK as

Id,K(αK, β∗
K) = C









∑

k∈K
Pk + Pr + 2

√

∑

k∈K
(1 − α∗

k) PkPr

Nd









. (5.42)

We further simplifyId,K(αK, β∗
K) andIr,K(αK) as follows. We write

Pmax = maxk∈K Pk and λk = Pk/Pmax. (5.43)

qK
M

=
√

∑

k∈K
(1 − α∗

k)λk. (5.44)
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Using (5.43) and (5.44), we have

Ir,K(qK) = C











(

∑

k∈K
Pk

)

− qKPmax

Nr











. (5.45)

Id,K(qK) = C











(

∑

k∈K
Pk

)

+ Pr + 2qK
√

PmaxPr

Nd











. (5.46)

Observe thatIr,K(qK) andId,K(qK) are monotonically increasing and decreasing func-

tions of qK and thus, the maximization in (5.41) simplifies to determining aqK such

that
∑

k∈K
Pk − q2

KPmax

Nr
=

∑

k∈K
Pk + Pr + 2qK

√
PmaxPr

Nd
. (5.47)

We remark that the condition in (5.47) has the geometric interpretation that the bounds

onRK are maximized when theK-user sum rate plane achieved at the relay is tangen-

tial to the concave sum-rate surface achieved at the destination at its maximum value.

From (5.12), sinceαk ≤ 1 for all k, the condition for this case simplifies as
∑

k∈K
Pk

Nr
≥

∑

k∈K
Pk + Pr

Nd
. (5.48)

Strict inequality in (5.48) requires thatα∗
k < 1 for at least onek ∈ K. To determine the

optimalα∗
K, we write the solutions to the quadratic in (5.47) as

qK,1 =
−K1 +

√

K2
1 − (K2 − K3) K0

K0
(5.49)

qK,2 =
−K1 −

√

K2
1 − (K2 (K) − K3 (K)) K0

K0
(5.50)

where

K0 = Pmax /Nr (5.51)

K1 =
√

PmaxPr /Nd (5.52)

K2(K) =

∑

k∈K Pk

Nd

+
Pr

Nd

(5.53)

K3(K) =

∑

k∈KPk

Nr
. (5.54)
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From (5.48), we have

K3(K) − K2(K) ≥ 0. (5.55)

Using (5.55) in (5.49) and (5.50), we obtain a unique solution qK,1 ≥ 0 sinceqK,2 < 0.

The max-min rule for this case is then the setAK of α∗
K satisfying

AK =

{

α∗
K :

∑

k∈K
(1 − α∗

k)λk = q2
K,1

}

(5.56)

and a uniqueβ∗
K with entriesβ∗

k as in (5.40).The maximum achievable sum-rate for

this case is then obtained from (5.49) and (5.16) as

C

((

∑

k∈K
Pk/Nr

)

− q2
K,1Pmax/Nr

)

. (5.57)

5.5 Converse

Consider the outer bounds in Proposition 5.1. For a degradedGaussian MARC we

apply (5.6), the Markov relationshipU − (XK, Xr) − (Yr, Yd), and the fact that condi-

tioning does not increase entropy to simplify (5.7) as

RS ≤ min





I(XS ; Yr|XrXSc),

I(XSXr; Yd|XSc)



 for all S ⊆ K (5.58)

and a joint distribution
(

K
∏

k=1

p(xk)

)

· p(xr|xK) · p(yr, yd|xK, xr). (5.59)

We writeBr,S andBd,S to denote, respectively, the first and second bound onRS in

(5.58).

Expanding the bounds onRS in (5.58), we have

RS ≤ min (h(Yr|XrXSc) − h(Zr), h(Yd|XSc) − h(Zd)) . (5.60)

For a fixed covariance matrix of the input random variablesXK andXr, one can apply

a conditional entropy maximization theorem [71, Lemma 1] toshow that

h(Yr|XrXSc) (5.61)

h(Yd|XSc) (5.62)
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are maximized by choosing the distribution in (5.59) as jointly Gaussian.

Consider the boundBr,S . ExpandingYr, we have

RS ≤ C





Evar(
∑

k∈S
Xk|XrXSc)

Nr



 . (5.63)

For Gaussian signals, using chain rule, we have

Evar(
∑

m∈S
Xk|XrXSc) =

det(KA|C)

det(KB|C)
(5.64)

where

A =





∑

m∈SXk

Xr



 (5.65)

B = [Xr] (5.66)

C = [XSc] (5.67)

and for random vectorsX andY , KX|Y is

KX|Y = E
[

(X − E (X|Y )) (X − E (X|Y ))T
]

(5.68)

whereXT is the transpose ofX. Note that the expectationE (X|Y ) is with respect

to X for a fixed value ofY = y while the expectation outside the square brackets in

(5.68) is over all random variables. We use the fact thatXS andXSc are independent

to expand (5.64) as

Evar(
∑

k∈S
Xk|XrXSc) = var(

∑

k∈S
Xk) −

E2

(

∑

k∈S
XkX̃r,S

)

Pr,S
(5.69)

whereX̃r,S = (Xr − E(Xr | XSc)) is a Gaussian random variable with variance

Pr,S = EX̃2
r,S = Evar(Xr|XSc). (5.70)
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Substituting (5.69) in (5.63) and using (5.5) to boundvar (Xk) for all k, we obtain,

RS ≤ C











∑

k∈S
varXk − 1

Pr,S
E2

(

∑

k∈S
XkX̃r,S

)

Nr











(5.71)

≤ C











(

∑

k∈S
Pk

)

− 1
Pr,S

E2

(

∑

k∈S
XkX̃r,S

)

Nr











. (5.72)

We define, for allk ∈ K,

√

γkPkPr
M

= E(XkXr). (5.73)

Note that by definition,

γk ∈ [0, 1] for all k. (5.74)

Using the independence ofXk for all k and (5.73), we write

E

(

∑

k∈S
XkX̃r

)

=
∑

k∈S
E (XkXr) =

∑

k∈S

√

γkPkPr. (5.75)

Next we use (5.73) to evaluatePr,S. We start by considering the random variable

X̂r = Xr − E(Xr|XK). (5.76)

Using (5.73) and the independence ofXk for all k, we can write the variance of̂Xr as

EX̂2
r = Evar (Xr|XK) (5.77)

= (1 − γK) Pr. (5.78)

where we used (5.68) to simplify (5.77) to (5.78). Continuing thus, we consider the

random variableX̄r = X̂r − E(X̂r|XK−1). Using the independence ofXk for all k,

we thus have

EX̄2
r = EX̂2

r − EE2(X̂r|XK−1) (5.79)

= Evar (Xr|XK−1XK) (5.80)

= (1 − γK−1 − γK) Pr. (5.81)
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Generalizing this, we have

Evar(Xr|XSc) =

(

1 − ∑

k∈Sc

γk

)

Pr
M

= γScPr for all S ⊆ K. (5.82)

Finally, we substitute (5.82) and (5.75) in (5.71) to simplify the first bound as

RS ≤



























C

(

∑

k∈S

Pk

Nr

)

∑

k∈Sc

γk = 1

C







∑

k∈S

Pk

Nr
−

 

P

k∈S

√
γkPk

!2

NrγSc






o.w.

(5.83)

Observe that forK = 1, we haveV1 = Xr andγ1 = 1, and thus, (5.83) simplifies to

the first outer bound in [6, theorem 5]. Finally, from (5.82),observe thatγk, for all k,

satisfy
∑

k∈K
γk ≤ 1. (5.84)

Consider the boundBd,S in (5.58). ExpandingYd using (5.2), we have

RS ≤ C





Evar(
∑

k∈S
Xk + Xr|XSc)

Nd



 (5.85)

= C









∑

k∈S

(

Pk + 2E
(

XkX̃r

))

+ Evar(Xr|XSc)

Nd









(5.86)

Using (5.5), (5.82,) and (5.75), we simplify (5.86) as

RS ≤ C





∑

k∈S
Pk + γScPr + 2

∑

k∈S

√
γkPkPr

Nd



 . (5.87)

Observe that forK = 1, (5.87) simplifies to the second bound in [6, theorem 5].

Combining (5.83) and (5.87), we have

RS ≤ min (B1,S , B2,S) for all S ⊆ K (5.88)

whereBr,S andBd,S are the bounds in (5.83) and (5.87) respectively. Comparing(5.83)

and (5.16), we see thatBr,S in is, in general, not equal to the DF boundIr,S. Further,
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Br,S is not a concave function ofγK. However, in Appendix D.2, we show that for a

fixed γSc
, Br,S is a concave function ofγS . On the other hand, as shown forId,S , one

can verify thatBd,S in (5.87) is a concave function of(αK, βK).

We obtain the outer bound rate regionROB as follows. From (5.88) we see that

for any choice ofγK, the rate region is an intersection of the regions enclosed by

the boundsBr,S andBd,S for all S. SinceBr,S is not a concave function ofγK, one

must also consider all possible convex combinations ofγK to obtainROB. For theK-

dimensional convex regionROB, we can apply Caratheodory’s theorem [32] to express

every rate tuple(R1, R2, . . . , RK) in ROB as a convex combination of at mostK + 1

rate tuples, where each rate tuple is obtained for a specific choice ofγK. We denote

a collection ofK + 1 power fractions as{γK}K+1 such that the rate tuple achieved

by themth vectorγ(m)
K is weighted by themth entry of the weight vectorη, for all

m ∈ K∪{K + 1}. Note that the entries ofη satisfy

∑K+1
m=1ηm = 1. (5.89)

Finally, we denote the set of allζ = ({γK}K+1,η) satisfying (5.74) and (5.89) asΓOB.

Theorem 5.9 The outer bound regionROB for a degraded Gaussian MARC is given

as

ROB =
⋃

ζ∈ΓOB

(

R1

(

ζ
)

∩R2

(

ζ
))

(5.90)

where the rate regionRob
j , j = r, d, is

Rob
j

(

ζ
)

=
{

(R1, R2, . . . , RK) : 0 ≤ RS ≤ Bj,S
(

ζ
)}

(5.91)

and the boundBj,S is obtained as

Bj,S
(

ζ
)

=
K+1
∑

m=1

ηmBj,S

(

γ(m)

K

)

. (5.92)

The regionROB in (5.18) is a union of the intersection of the regionsRob
r andRob

d ,

where the union is over all convex combinations ofγK. SinceROB is convex, we obtain
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the boundary ofROB by maximizing the weighted sum
∑

k∈KµkRk over all−OB and

for all µk > 0. Specifically, we determine the sum-rateRK whenµk = 1 for all k.

Comparing (5.83) and (5.87), we see thatBr,S andBd,S are monotonically increasing

and decreasing functions respectively ofγS for a fixedγSc
. Then using arguments

similar to those used for DF we restrict our maximization analysis to the three cases in

Proposition 5.8 and write the largest outer bounds on theK-user sum-rateRK as

max
γ∈ΓOB

min{Br,K, Bd,K}. (5.93)

From (5.83) and (5.87), we see thatBr,K andBd,K can be simplified as

Br,K = C





∑

k∈K
Pk

Nr

− x2Pmax

Nr



 (5.94)

Bd,K = C





∑

k∈K
Pk

Nd

+
Pr

Nd

+
2x

√
PmaxPr

Nd



 (5.95)

where we define

x
M

=

K
∑

k=1

√

γkλk (5.96)

andλk, for all k, is defined in (D.29) as the ratio ofPk to Pmax = maxk∈K Pk. In

Appendix D.2 we show thatBr,K is a concave function ofx. Further, one can similarly

verify thatBd,K is also a concave function ofx. Thus, the max-min problem in (5.93)

simplifies to

max
x

min{Br,K (x) , Bd,K (x)} (5.97)

where the maximization is over allx that result choosingγk, for all k, that satisfies

(5.74) and (5.84).

Remark 5.10 Note that in generalBr,K is not a concave function ofγK. However,

from the dependence ofBr,K onγK in (5.83), we see that is suffices to limit the analysis

to a setΓob of non-negativeγK that satisfy (5.94) and the constraint
∑

k∈Kγk ≤ 1.

Remark 5.11 Note that one can defineγk
M

= (1 − αk)βk for αk ∈ [0, 1], βk ∈ [0, 1]

and
∑

k∈K βk ≤ 1. Substituting this in (5.83) and (5.87), we haveBd,K = Id,K while

Br,K ≥ Ir,K with equality forβk = β∗
k in (5.40).
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We now apply Proposition 5.8 to solve (5.97). Then, for anyδ ∈ [0, 1], we write

Job (x, δ) = δBr,K (x) + (1 − δ) Bd,K (x) (5.98)

V ob(δ) = max
x

Job (x, δ) (5.99)

and denotexob as the max-min rule that minimizesV ob(δ) at δ∗. We now study the

three cases and determin the max-min rule and the maximum sum-rate in each case.

Case 4: δ∗ = 0 : Bd,K
(

xob
)

< Br,K
(

xob
)

: SinceBd,K is a concave function of

γk, for all k, following steps similar to those in Appendix D.1, one can show that it is

maximized by

γ
(ob)
k = Pk

P

k∈K Pk
for all k ∈ K. (5.100)

The maximum sum-rateBd,K(αob
K , βob

K ) is

Bd,K(αob
K , βob

K ) = C









∑

k∈K
Pk + Pr + 2

√

∑

k∈K
PkPr

Nd









. (5.101)

Observe that the resultingxob is given as

xob =
√

∑

k∈K
λk. (5.102)

Finally, substitutingxob in (5.94), we obtain

Br,K(xob) = Br,K(γob

K ) = 0 (5.103)

which contradicts the assumption of this case, thus making this case infeasible.

Case 5: δ∗ = 1 : Br,K
(

xob
)

< Bd,K
(

xob
)

: From (5.94), we see thatBr,K achieves

a maximum atxob = 0 of

Br,K(αob
K , βK) = C





∑

k∈K
Pk

Nr



 . (5.104)

From (5.96) we see thatxob = 0 is achieved forγob
K = 0. The analysis from here on is

exactly the same as in DF for case 5.4 and the rate region achieved by the outer bounds
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is the same asRDF in case 5.4. Thus, we obtain the capacity region for this caseas the

set of(R1, R2, . . . , RK) tuples that satisfy

RS ≤ C





∑

k∈S
Pk

Nr



 for all S ⊆ K. (5.105)

Finally, we remark that the condition under which the case occurs is the same as that

for DF case 5.4 and the subsequent observations hold here too. Further,γk = 0 implies

that the the sum-rate optimal strategy involves independent signaling at the sources and

the relay.

Case 6: Equal bounds case:0 < δ∗ < 1 : Br,K
(

xob
)

= Bd,K
(

xob
)

: As in case

5.4, the max-min solutionxob for this case also falls in one of two possible categories.

The first is the relatively straightforward case where the bounds are equal forxob = 0 ,

i.e., γob
K = 0 and the maximum sum-rate achieved is the same as that in case 5.5. We

now study the second and more interesting case wherexob 6= 0. Observe that this

corresponds to the requirement thatγob
K lies on the simplex

∑

k∈K
γob

k = 1. (5.106)

From (5.94) and (5.95), we see thatBr,K (x) andBd,K (x) are monotonically decreasing

and increasing functions ofx respectively and thus intersect at most once over the range

of x. The optimalxob then satisfies

C

(

∑

k∈KPk

Nr
−
(

xob
)2

Pmax

Nr

)

= C











(

∑

k∈K
Pk

)

+ Pr + 2xob
√

PmaxPr

Nd











. (5.107)

Observe that the condition in (5.107) is the same as that for DF case 5.4, and thus, we

have

xob = qK,1 =
−K1 +

√

K2
1 − (K2 − K3) K0

K0
(5.108)

where the constantsK0, K1, K2 , andK3 are as defined in (5.51)-(5.54) andqK,1 sat-

isfies the DF condition for case 5.4. The resulting max-min bound is then given by
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(5.57). Theγob
K that achieves this maximum satisfies

K
∑

k=1

√

γob
k λk = xob. (5.109)

For the definition

γob
k

M

=
(

1 − αob
k

)

βob
k (5.110)

such thatαob
k ∈ [0, 1], βob

k ∈ [0, 1], for all k, and

∑

k∈K
βk = 1 (5.111)

(5.109) simplifies to
K
∑

k=1

√

(

1 − αob
k

)

βob
k λk = xob. (5.112)

Further for the choice of

βob
k = β∗

k =















(1−αk)Pk
K
P

k=1
(1−αk)Pk

αK 6= 1

0 αK = 1

for all k ∈ K. (5.113)

we can find anαob
K that satisfies

K
∑

k=1

(

1 − αob
k

)

λk =
(

xob
)2

= q2
K,1. (5.114)

Thus, the set ofαob
K that maximizeBr,K = Bd,K is the same as the setAK of α∗

K that

maximizes the DF sum-rate. This implies that the set ofγob
K that maximize the sum-rate

outer bound for this case also contains those correlation coefficients that maximize the

DF bounds.

Thus, we’ve shown that the maximumK-user sum-rate outer bounds, for each of

the two feasible cases that result from the max-min optimization, can be achieved by

DF for a specific choice of the power fractions that the sources and the relay allocate

to achieving cooperative (coherent combining) gains.
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5.5.1 Average Transmit Power Constraint

We determined the sum-capacity for a degraded Gaussian MARCunder a per symbol

transmit power constraint at the sources and relay. One can also consider an average

power constraint at every transmitter. The achievable strategy remains unchanged; for

the converse we start with the convex sums of the outer boundsin (5.7) overn channel

uses. The boundsBr,S andBd,S are now written as convex sums overn channel uses

such thatB(i)
j,K is the bound achieved in theith channel use for alli = 1, 2, . . . , n. The

analysis in Section 5.4 can be applied to developB
(i)
j,K for eachi under the assumption

that the power transmitted in that channel use is subject to an average constraint over

all n uses. Finally, we can use the concavity ofB
(i)
j,K, j = r, d, as a function of a single

variablexi to simplify the bounds to those developed in Section 5.5, andthus, obtain

the same sum-capacity result.

5.6 Concluding Remarks

We determined the sum-capacity of a degraded Gaussian MARC.For the inner bounds,

we considered the achievable strategy of DF and determined the largestK-user sum-

rate using max-min optimization techniques. For the converse, we considered the cut-

set outer bounds for the case of independent sources and showed that theK-user sum-

rate outer bounds can also be maximized using max-min optimization techniques. In

fact the max-min optimization for both the inner and outer bounds simplified to two

feasible cases.

We showed that both the inner and outer bounds on theK-user sum-rate are a min-

imum of two bounds, one obtained usingYr and the other usingYd; however, the inner

and outer bounds that useYr are not exactly the same. This difference is due to the

fact that the input distributions for the inner and outer bounds are different. In fact,

the input distribution for the inner bound uses auxiliary random variablesVK to model

the correlation between the inputs at the sources and the relay and is more restrictive
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than the distribution for the outer bound. Despite this difference, the reason we achieve

sum-capacity is due to the form taken by the solutions for thetwo feasible cases. The

maximum sum-rate for the first feasible case for both the inner and outer bound is

achieved when the sources and the relay do not allocate any power to achieving coher-

ent combining gains at the destination Thus, for this case,VK = 0, and the two bounds

match. In fact, the sum-capacity is the largest value that the bound achieved usingYr

takes and and corresponds to a geometry where the relay has a relatively high SNR

channel to the destination.

The largest sum-rate for the second case is achieved by maximizing the bounds

at the relay and destination when they are equal. In general,for this caseVK 6= 0,

i.e., a non-empty subset of sources and the relay allocate power to achieve cooperative

combining gains at the destination. The largest DF sum-rateis then achieved by a relay

power policy that maximizes the cooperative gains achievedat the destination, i.e.,Xr

is a unique weighted sum ofVk for all k where the weight for eachk is proportional to

the power allocated by sourcek to cooperating with the relay. Further, the maximum

sum-rate admits several solutions for the power fractions allocated at the sources for

cooperation subject to a constraint that results from the equating the two bounds on

the sum-rate. For the converse, we showed that the maximum outer bound on the

K-user sum-rate is the same as the maximum DF sum-rate. We alsoshowed that

the outer bound is maximized by a set of source-relay cross-correlation coefficients

(source and relay power fractions) subject to the same constraint as DF. Further, we

showed that a subset of such a set also maximizes the DF sum-rate and thus we achieve

the sum-capacity for this subset. Finally, since the DF max-min rule requires a unique

correlation betweenXr andVK, conditioning the outer bound that usesYr onXr alone

suffices to achieve the sum-capacity.
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Appendix A

Partial Decode-and-Forward: Coding Theorem

We derive the PDF rate bounds for discrete memoryless MARCs,K = 2, and back-

ward decoding. The random code construction and the encoding are described in Sec-

tion 2.4.3 and we use (strongly) typical sequence decoders.Define the set of typical

sequences of lengthn with respect toε andPX,Y (·) as

T (n)
ε (X, Y ) =

{

(x, y) :

∣

∣

∣

∣

n(a, b|x, y)

n
− PX,Y (a, b)

∣

∣

∣

∣

≤ ε

|X | · |Y|

}

(A.1)

wheren(a, b|x, y) is the number of times the pair(a, b) occurs in the sequence of pairs

(x1, y1), (x2, y2), . . . (xn, yn). X andY are the alphabets ofX andY with cardinalities

|X | and|Y|, respectively. We refer to [72, Ch. 2] for properties of suchsequences.

Encoding: Consider blockb.

1. Source1 transmitsx1(w1,1,b, w1,2,b, w1,2,b−1) while source2 transmitsx2(w2,1,b,

w2,2,b, w2,2,b−1) wherew1,2,0, w2,2,0, w1,1,B+1, w2,1,B+1, w1,2,B+1, andw2,2,B+1 are

set to1.

2. The relay transmitsxr(s1,b, s2,b) where(s1,b, s2,b) is the message pair decoded at

the relay in block(b − 1).

Decoding:

1. At the relay: The relay decodes(w1,2,b, w2,2,b) in block b, b = 1, 2, . . . , B, by

usingy
r,b

and by assuming that its message estimates in the previous blocks are

correct (see [6]). More precisely, the relay decodes by finding a(w̃1,2,b, w̃2,2,b)
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such that

(q
1
(w̃1,2,b, w1,2,b−1), q2

(w̃2,2,b, w2,2,b−1), v1(w1,2,b−1),

v2(w2,2,b−1), xr(w1,2,b−1, w2,2,b−1), yr,b
) ∈

T (n)
ε (Q1, Q2, V1, V2, Xr, Yr). (A.2)

We assume that the correct codewords are identified as being typical since this

is a high probability event for largen. With this assumption the relay makes

an error only if it identifies a(w̃1,2,b, w̃2,2,b) 6= (w1,2,b, w2,2,b) that satisfies (A.2).

This error event can be further split into three disjoint error events. The first

error event has ãw1,2,b 6= w1,2,b andw̃2,2,b = w2,2,b satisfying (A.2). Using [10,

Lemma 1] and the union bound, the probability of this event isat most

2n(R1,2−I(Q1;Yr|Q2V1V2Xr)+6ε). (A.3)

Thus, for reliable decoding we set

R1,2 < I(Q1; Yr|Q2V1V2Xr). (A.4)

The second error event has̃w1,2,b = w1,2,b and aw̃2,2,b 6= w2,2,b satisfying (A.2).

By symmetry to (A.4), we set

R2,2 < I(Q2; Yr|Q1V1V2Xr). (A.5)

The third error event has ãw1,2,b 6= w1,2,b and aw̃2,2,b 6= w2,2,b satisfying (A.2).

We again use [10, Lemma 1] to bound the probability of this event by

2n(R1,2+R2,2−I(Q1Q2;Yr|V1V2Xr)+6ε). (A.6)

Reliable decoding thus requires

R1,2 + R2,2 < I(Q1Q2; Yr|V1V2Xr). (A.7)

2. At the destination: The destination collects all of itsB+1 output blocks. Starting

from the last block, the destination decodes(w1,1,,b+1, w2,1,b+1, w1,2,b, w2,2,b), b =
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B, B − 1, . . . , 1 by usingy
d,b+1

and by assuming that its previously decoded

message estimates are correct (see [6]). More precisely, the destination decodes

by finding a(w̃1,1,b+1, w̃2,1,b+1, w̃1,2,b, w̃2,2,b) such that

(x1(w̃1,1,b+1, w1,2,b+1, w̃1,2,b), x2(w̃2,1,b+1, w2,2,b+1, w̃2,2,b), q1
(w1,2,b+1, w̃1,2,b),

q
2
(w2,2,b+1, w̃2,2,b), v1(w̃1,2,b), v2(w̃2,2,b), xr(w̃1,2,b, w̃2,2,b), yd,b+1

)

∈ T (n)
ε (X1, X2, Q1, Q2, V1, V2, Xr, Yd). (A.8)

As before we assume that the correct codewords are identifiedas being typi-

cal. Specifically, fifteen kinds of errors occur in decoding the message tuple

(w̃1,1,b+1, w̃2,1,b+1, w̃1,2,b, w̃2,2,b). We first consider the singleten error events, i.e.,

only one of the four messages is decoded incorrectly using (A.8). We have four

such events, corresponding to eitherw̃1,1,b+1 6= w1,1,b+1 or w̃2,1,b+1 6= w̃2,1,b+1, or

w̃1,2,b 6= w̃1,2,b, or w̃2,2,b 6= w̃2,2,b. Using [10, Lemma 1] and the union bound,

we follow the same decoding steps as for the relay decoder to show that

R1,1 < I(X1; Yd|Q1Q2V1V2Xr) (A.9)

R2,1 < I(X2; Yd|X1Q1Q2V1V2Xr) (A.10)

R1,2 < I(X1XrQ1V1; Yd|X2Q2V2Xr) (A.11)

= I(X1Xr; Yd|X2Q2V2) (A.12)

R2,2 < I(X2Xr; Yd|X1Q1V1) (A.13)

ensures reliable communications where (A.12) and (A.13) result from the Markov

chain(Vk, Qk)− (Xk, Xr)− (Yr, Yd) for k = 1 and2 respectively. We next con-

sider the six error events where a pair of messages is decodedincorrectly, i.e.,

the incorrect message pair satisfies (A.8). We use the union bound and [10,
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Lemma 1] to show that reliable communications requires

R1,1 + R2,1 < I(X1X2; Yd|Q1V1Q2V2Xr) (A.14)

R1,1 + R1,2 < I(X1Xr; Yd|X2Q2V2) (A.15)

R1,1 + R2,2 < I(X1X2Xr; Yd|Q1V1) (A.16)

R2,1 + R1,2 < I(X1X2Xr; Yd|Q2V2) (A.17)

R2,1 + R2,2 < I(X2Xr; Yd|X1Q1V1) (A.18)

R1,2 + R2,2 < I(X1X2Xr; Yd) (A.19)

where the bounds (A.14)-(A.19) are obtained by bounding theerror probability

of the events

(w̃1,1,b+1, w̃2,1,b+1) 6= (w1,1,b+1, w2,1,b+1) (A.20)

(w̃1,1,b+1, w̃1,2,b) 6= (w1,1,b+1, w1,2,b) (A.21)

(w̃1,1,b+1, w̃2,2,b) 6= (w1,1,b+1, w2,2,b) (A.22)

(w̃2,1,b+1, w̃1,2,b) 6= (w2,1,b+1, w1,2,b) (A.23)

(w̃2,1,b+1, w̃2,2,b) 6= (w2,1,b+1, w2,2,b) and (A.24)

(w̃1,2,b, w̃2,2,b) 6= (w1,2,b, w2,2,b) (A.25)

respectively for the case when both messages in a pair are decoded incorrectly.

Note that (A.15) and (A.18), simplify to the bounds onR1 andR2 respectively.

Further, comparing (A.12) and (A.15), we see that the boundsfor the case when

eitherw1,2,b or the pair(w1,1,b+1, w1,2,b) are decoded incorrectly are the same.

One can similarly see that the bounds in (A.13) and (A.18) that result from in-

correctly decodingw2,2,b and(w2,1,b+1, w2,2,b) respectively are also the same. For

the case where three of the four messages in(w̃1,1,b+1, w̃2,1,b+1, w̃1,2,b, w̃2,2,b) are

decoded incorrectly, i.e., an incorrect triple satisfies the typicality requirement in

(A.8), we obtain four possible error events. Using the same decoding steps as
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before, we can show that reliable communications requires

R1,1 + R2,1 + R1,2 < I(X1X2Xr; Yd|Q2V2) (A.26)

R1,1 + R2,1 + R2,2 < I(X1X2Xr; Yd|Q1V1) (A.27)

R1,1 + R1,2 + R2,2 < I(X1X2Xr; Yd) (A.28)

R2,1 + R1,2 + R2,2 < I(X1X2Xr; Yd) (A.29)

where the bounds (A.26)-(A.29) are obtained by bounding theerror probability

of the events

(w̃1,1,b+1, w̃2,1,b+1, w̃1,2,b) 6= (w1,1,b+1, w2,1,b+1, w1,2,b) (A.30)

(w̃1,1,b+1, w̃2,1,b+1, w̃2,2,b) 6= (w1,1,b+1, w2,1,b+1, w2,2,b) (A.31)

(w̃1,1,b+1, w̃1,2,b, w̃2,2,b) 6= (w1,1,b+1, w1,2,b, w2,2,b) and (A.32)

(w̃2,1,b+1, w̃1,2,b, w̃2,2,b) 6= (w2,1,b+1, w1,2,b, w2,2,b) (A.33)

respectively for the case where all three messages in a triple are decoded in-

correctly. Comparing (A.26) and (A.17), we see that the bounds for the case

when eitherw1,2,b or the pair(w1,1,b+1, w1,2,b) are decoded incorrectly are the

same. A similar observation results from comparing (A.27) and (A.16). Finally,

we consider the event where there exists a tuple(w̃1,1,b+1, w̃2,1,b+1, w̃1,2,b, w̃2,2,b)

satisfying (A.8) such that all four message are decoded incorrectly. Reliable

communications then require

R1,1 + R1,2 + R2,1 + R2,2 = R1 + R2 < I(X1X2Xr; Yd). (A.34)

Comparing (A.34) with (A.28) and (A.29), we again see that decoding a tuple

with wk,2,b yields the same bounds as decoding a tuple with both(wk,1,b+1, wk,2,b)

for k = 1, 2. One can generalize this observation for anyK > 2 ; thus, for any

disjointA,G ⊂ K we haveR1,A + R2,G = R1,A∪G + R2,G and hence it suffices

to consider setsS andG such thatG ⊆ S.
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Finally, combining the bounds in (A.9)-(A.13), (A.14)-(A.19), (A.26)-(A.29), and

(A.34) the bounds simplify to those in (2.36)-(2.38). The analysis carries over in a

straightforward way to weakly-typical (or entropy-typical) sequences [30, p. 51], the

addition of a time-sharing random variableU [30, p. 396], andK > 2.
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Appendix B

DF Rate Region: Coding Theorems

B.1 Backward Decoding Analysis

We derive the DF rate bounds for discrete memoryless MARCs,K = 2, and backward

decoding. The random code construction and the encoding aredescribed in Section

3.2.2 and we use (strongly) typical sequence decoders. Define the set of typical se-

quences of lengthn with respect toε andPX,Y (·) as

T (n)
ε (X, Y ) =

{

(x, y) :

∣

∣

∣

∣

n(a, b|x, y)

n
− PX,Y (a, b)

∣

∣

∣

∣

≤

ε

|X | · |Y| for all (a, b) and

n(a, b|x, y) = 0 if PX,Y (a, b) = 0
}

. (B.1)

wheren(a, b|x, y) is the number of times the pair(a, b) occurs in the sequence of pairs

(x1, y1), (x2, y2), . . . , (xn, yn). X andY are the alphabets ofX andY with cardinalities

|X | and|Y|, respectively. We refer to [72, Ch. 2] for properties of suchsequences.

Decoding:

1. At the relay: The relay decodes(w1,b, w2,b) in block b, b = 1, 2, . . . , B, by using

y
r,b

and by assuming that its message estimates in the previous blocks are correct

(see [6]). More precisely, the relay decodes by finding a(w̃1,b, w̃2,b) such that

(x1(w̃1,b, w1,b−1), x2(w̃2,b, w2,b−1), v1(w1,b−1), v2(w2,b−1),

xr(w1,b−1, w2,b−1), yr,b
) ∈ T (n)

ε (X1, X2, V1, V2, Xr, Yr). (B.2)

We assume that the correct codewords are identified as being typical since this

is a high probability event for largen. With this assumption the relay makes an

error only if it identifies a(w̃1,b, w̃2,b) 6= (w1,b, w2,b) that satisfies (B.2). This
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error event can be further split into three disjoint error events. The first error

event has ãw1,b 6= w1,b andw̃2,b = w2,b satisfying (B.2). Using [10, Lemma 1]

and the union bound, the probability of this event is at most

2n(R1−I(X1;Yr|X2V1V2Xr)+6ε). (B.3)

Thus, for reliable decoding we set

R1 < I(X1; Yr|X2V1V2Xr). (B.4)

The second error event has̃w1,b = w1,b and aw̃2,b 6= w2,b satisfying (B.2). By

symmetry to (B.4), we set

R2 < I(X2; Yr|X1V1V2Xr). (B.5)

The third error event has ãw1,b 6= w1,b and aw̃2,b 6= w2,b satisfying (B.2). We

again use [10, Lemma 1] to bound the probability of this eventby

2n(R1+R2−I(X1X2;Yr|V1V2Xr)+6ε). (B.6)

Reliable decoding thus requires

R1 + R2 < I(X1X2; Yr|V1V2Xr). (B.7)

2. At the destination: The destination collects all of itsB+1 output blocks. Starting

from the last block, the destination decodes(w1,b, w2,b), b = B, B − 1, . . . , 1 by

usingy
d,b+1

and by assuming that its previously decoded message estimates are

correct (see [6]). More precisely, the destination decodesby finding a(w̃1,b, w̃2,b)

such that

(x1(w1,b+1, w̃1,b), x2(w2,b+1, w̃2,b), v1(w̃1,b), v2(w̃2,b), xr(w̃1,b, w̃2,b), yd,b+1
)

∈ T (n)
ε (X1, X2, V1, V2, Xr, Yd). (B.8)

As before we assume that the correct codewords are identifiedas being typical.

Again, three kinds of error events can occur in decoding(w1,b, w2,b). Using [10,



133

Lemma 1] and the union bound, we follow the same decoding steps as for the

relay decoder to show that

R1 < I(X1Xr; Yd|X2V2) (B.9)

R2 < I(X2Xr; Yd|X1V1) (B.10)

R1 + R2 < I(X1XrX2; Yd) (B.11)

ensures reliable communications.

Combining (B.4), (B.5), (B.7), and (B.9)-(B.11), we have the bounds (3.2)-(3.7).

The analysis carries over in a straightforward way to weakly-typical (or entropy-typical)

sequences [30, p. 51], the addition of a time-sharing randomvariableU [30, p. 396],

andK > 2.

B.2 Sliding-Window Joint Decoding Analysis

We derive the DF rate bounds forK = 2, offset encoding, and sliding-window decod-

ing. Without loss of generality, we consider the offset order π = (1, 2). Section 3.2.2

describes the random code construction.

Encoding: Consider blockb.

1. Source1 transmitsx1(w1,b, w1,b−1) while source2 transmitsx2(w2,b−1, w2,b−2)

wherew2,−1, w2,0, w1,0, w1,B+1, w1,B+2, andw2,B+1 are set to1.

2. The relay transmitsxr(s1,b, s2,b) where(s1,b, s2,b) is the message pair decoded at

the relay in block(b − 1).

Decoding:

1. At the relay: The relay decoder error analysis is the same as that described in

Appendix B.1 up to changes in the message indices. We therefore have the same

rate bounds (B.4), (B.5), and (B.7).
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2. At the destination: The destination decodes(w1,b, w2,b) by usingy
d,b

, y
d,b+1

, and

y
d,b+2

and by assuming that no errors were made up to blockb. More precisely,

the destination decodes by finding a(w̃1,b, w̃2,b) such that three events occur:

E1 : (v1(w1,b−1), v2(w2,b−2), x1(w̃1,b, w1,b−1), x2(w2,b−1, w2,b−2),

xr(w1,b−1, w2,b−2), yd,b
) ∈ T

(n)
ε (V1, V2, X1, X2, Xr, Yd)

(B.12)

E2 : (v1(w̃1,b), v2(w2,b−1), x2(w̃2,b, w2,b−1), xr(w̃1,b, w2,b−1), yd,b+1
)

∈ T
(n)
ε (V1, V2, X2, Xr, Yd)

(B.13)

E3 : (v2(w̃2,b), yd,b+2
) ∈ T

(n)
ε (V2, Yd). (B.14)

Note that the codebooks in different blocks are generated independently (see

Section 3.2.2) so the above three error events are independent (see [8, 35]).

As before, we consider three disjoint error events that can occur in decoding

(w1,b, w2,b). The first event has ãw1,b 6= w1,b andw̃2,b = w2,b satisfying (B.12)-

(B.14). We upper bound the probability of this error event using [10, Lemma 1]

and the union bound as

∑

w̃1,b 6=w1,b

Pr (E1 ∩ E2 ∩ E3)

=
∑

w̃1,b 6=w1,b

Pr (E1) · Pr (E2) · Pr (E3) (B.15)

≤ 2n(R1−I(X1;Yd|X2V1V2Xr)−I(V1Xr;Yd|X2V2)+12ε) (B.16)

= 2n(R1−I(X1Xr ;Yd|X2V2)+12ε) (B.17)

where we usedPr (E3) ≤ 1 for (B.16) and (3.13)-(3.14) for (B.17). Thus, we set

R1 < I(X1Xr; Yd|X2V2). (B.18)

Consider next the case wherew̃1,b = w1,b but w̃2,b 6= w2,b. The expression (B.15)

with the summation over̃w2,b 6= w2,b instead ofw̃1,b 6= w1,b is upper bounded as

2n(R2−I(X2;Yd|V1V2Xr)−I(V2;Yd)+12ε) (B.19)
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where we usedPr (E1) ≤ 1. We thus require

R2 < I(X2; Yd|V1V2Xr) + I(V2; Yd). (B.20)

Finally, consider the casẽw1,b 6= w1,b andw̃2,b 6= w2,b. The expression (B.15)

with the summation now over both̃w1,b 6= w1,b andw̃2,b 6= w2,b is upper bounded

as

2n(R1+R2) · 2−nI(X1;Yd|X2V1V2Xr)+n6ε

· 2−nI(X2V1Xr ;Yd|V2)+n6ε · 2−nI(V2;Yd)+n6ε (B.21)

= 2n(R1+R2−I(X1X2Xr ;Yd)+18ε) (B.22)

where we have used the chain rule for mutual information and the Markov chain

(V1, V2) − (X1, X2, Xr) − Yd. For reliable decoding, we thus require

R1 + R2 < I(X1X2Xr; Yd). (B.23)

Combining (B.18), (B.20), and (B.23), we obtain (3.29)-(3.31). Again, the analysis

carries over in a straightforward way to weakly-typical sequences, the addition of a

time-sharing random variableU , andK > 2.

B.3 Sliding-Window Successive Decoding Analysis

We derive DF rate bounds forK ≥ 2, offset encoding, and sliding-window decoding.

We further focus on the message blockswk,b with b = 1. However, the destination

decoder now performs successive rather than joint decoding. Without loss of generality,

we consider the offset orderπ = (1, 2, . . . , K). Section 3.2.2 describes the random

code construction, and the encoding and relay decoding are the same as in Appendix

B.2.

Decoding at the destination: Consider the window with the channel-symbol blocks

y
d,1

, y
d,2

, . . . , y
d,K+1

. As explained in Section 3.4.2, the destination successively de-

codes in the reverse orderwK,1, wK−1,1, . . . , w1,1 (see the shaded blocks in Fig. 3.4 for
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the casesk = K, k = 2, andk = 1). The destination further assumes that its past de-

coding steps were successful, and we perform our analysis with the same assumption.

Fork = K, K − 1, . . . , 2, the destination finds ãwk,1 such that two events occur:

E1,k : (vk(w̃k,1), v[k+1,K](1), x[k+1,K](1, 1), y
d,k+1

) ∈ T
(n)
ε (Vk, V[k+1,K], X[k+1,K], Yd)

(B.24)

E2,k : (xk(w̃k,1, 1), v[k,K](1), x[k+1,K](1, 1), y
d,k

) ∈ T
(n)
ε (Xk, V[k,K], X[k+1,K], Yd)

(B.25)

wherev[i,j](1) = {vi(1), vi+1(1), . . . , vj(1)} and similarly forx[i,j](1, 1) andvK(1) be-

low. As before, we assume that variables with vacuous index sets are appropriate con-

stants, e.g., we assume that all the entries ofv[K+1,K] are the same constantV[K+1,K].

The eventsE1,k andE2,k are independent and we assume that the correct codewords

are identified as being typical. The destination thus makes an error only if it identifies

a w̃k,1 6= wk,1 that satisfies both (B.24) and (B.25). We upper bound the probability of

this event using [10, Lemma 1] as

∑

w̃k,1 6=wk,1

Pr (E1,k) · Pr (E2,k) ≤ 2n(Rk−I(XkVk ;Yd|X[k+1,K]V[k+1,K])+12ε). (B.26)

For1 < k ≤ K, we therefore require

Rk < I(XkVk; Yd|X[k+1,K]V[k+1,K]). (B.27)

Fork = 1, we addxr (·) to (B.24) and (B.25) as follows:

E1,1 : (v1(w̃1,1), v[2,K](1), x[2,K](1, 1), xr(w̃1,1, 1, . . . , 1), y
d,2

)

∈ T
(n)
ε (V1, V[2,K], X[2,K], Xr, Yd)

(B.28)

E2,1 : (x1(w̃1,1, 1), vK(1), x[2,K](1, 1), xr(1, 1, . . . , 1), y
d,1

)

∈ T
(n)
ε (X1, VK, X[2,K], Xr, Yd).

(B.29)

The resulting bound is

R1 < I(X1Xr; Yd|X[2,K]V[2,K]). (B.30)
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For example, forK = 2 the two rate bounds are

R2 < I(X2V2; Yd) (B.31)

R1 < I(X1Xr; Yd|X2V2) (B.32)

and one can approach the corner point (3.39). One can check that the above analysis

generalizes tob > 1.
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Appendix C

MARC and MAC-GF: Rate and Outage Derivations

C.1 PDF Rate Region for User and Relay Cooperative Networks

We derive the PDF rate bounds for both two-hop and multi-hop Gaussian single-source

multi-relay channels using typical sequence decoding. We summarize the typicality

definition for a collection ofL random variables(X1, X2, . . . , XL) as follows [30, Chap

10, p. 384].

Definition C.1 The setA(n)
ε of ε-typicaln-sequences(x1, x2, . . . , xL) with respect toε

andPX1,X2,...,XL
(·) is defined by

A(n)
ε (X1, X2, . . . , XL) = A(n)

ε = {(x1, x2, . . . , xL) :

∣

∣

∣

∣

−1

n
log p (s) − H(S)

∣

∣

∣

∣

< ε,

for all S ⊆ {X1, X2, . . . , XL}}. (C.1)

We develop the rate bounds for userk and writeCk to denote the set of users that

act as relays for userk such that|Ck| = Lk − 1. We assume that the total number of

channel uses for userk over all fractions, denoted asn, is sufficiently large to invoke

typicality arguments. Note that the number of channel uses in a fractionθk is simply

nθk, where we assume thatθk is chosen such thatnθk is a positive integer.

C.1.1 Two-hop Scheme

Encoding: We use Gaussian signaling at the sources and relay such thatin slot k user

k transmits

Xk =







√

αkP kUk frac. θk
√

αkP kQk +
√

αkP kVk frac. θk

(C.2)



139

,1( )� �x w ,2 ,1( , )k k
�x w w

(2) ,1( )kπ �x w

(3) ,1( )kπ �x w

( ) ,1( )
kL kπ �x w

�

Fraction kθ
kθFraction 

Figure C.1: Partial decode-and-forward encoding for a two-hop cooperative network.

whereUk, Qk, and Vk are independent and identically distributed (i.i.d) circularly

symmetric complex Gaussian random variables with zero meanand unit variance and

αk = 1−αk. The powerP k satisfies (4.2) and is defined for the MARC and MAC-GF,

respectively, in (4.10) and (4.31). Thus userk uses the signals in (C.2) to transmit the

messagewk,1 ∈ {1, 2, . . . , 2nRk,1} in the fractionθk at a rateRk,1. In the fractionθk,

userk retransmitswk,1 via Vk and also sends a new messagewk,2 ∈ {1, 2, . . . , 2nRk,2}
at rateRk,2 via Qk. Note thatwk,2 is only decoded by the destination.

Let πk (·) be a permutation onCk such that userπk (l) begins its transmissions in

the fractionθk, for all l = 2, 3, . . . , Lk. We further defineπk (1) = k andπk (i : j) =

{πk(i), πk(i + 1), . . . , πk(j)}. We remark that, unlike the multi-hop scheme, the order

of the user indexes inCk does not affect the achievable rate for the two-hop scheme.

However, for ease of use, we use the same notation for both schemes. Thus for the

two-hop scheme, userπk(l), for all l = 2, 3, . . . , Lk, decodeswk,1 in the fractionθk

and retransmits it in fractionθk such that its transmitted signalXπk(l) is

Xπk(l) =
{
√

P k

θk
Vk for all l = 2, 3, . . . Lk. (C.3)

The resulting encoding scheme is shown in Fig. C.1. Note thatwe writexm to denote

a codeword transmitted by nodem.

Decoding:
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1. At the nodes inCk: The nodeπk (l) decodeswk,1 in the fractionθk by usingy
πk(l)

.

More precisely, nodeπk (l) decodes by finding ãwk,1 such that

(xk(w̃k,1), yπk(l)
) ∈ A(nθk)

ε (Xk, Yπk(l)). (C.4)

Using [30, Thrm. 14.2.3] and the union bound, the probability of this event is at

most

2n(Rk,1−θkI(Xk;Yπk(l))+3ε). (C.5)

For Gaussian signaling in (C.2) over a Gaussian channel, reliable decoding then

requires [30, Th. 14.2.3]

Rk,1 ≤ θk log
(

1 +
∣

∣hπk(l),k

∣

∣

2
P k

)

for all l = 2, 3, . . . , Lk. (C.6)

2. At the destination: The destination uses its received signals from both fractions

to jointly decode(wk,1, wk,2). Focussing on the typical error events, we see that

the destination makes an error only if it identifies a(w̃k,1, w̃k,2) 6= (wk,1, wk,2)

using joint typical decoding. More precisely, the destination decodes by finding

a (w̃k,1, w̃k,2) such that two events occur:

E1 : (xk(w̃k,1), yd
) ∈ A

(nθk)
ε (Xk, Yd) (C.7)

E2 : (x1(w̃k,1, w̃k,2), xπk(1)(w̃k,1), xπk(2)(w̃k,1), . . . , xπk(Lk)(w̃k,1),

y
d
) ∈ A

(nθk)
ε (Xk, Xπk(1), Xπk(2), . . . , Xπk(Lk), Yd).

(C.8)

Note that the codebooks in different fractions are generated independently so the

above two events are independent (see [8, 35]). We consider three disjoint error

events that can occur in decoding(wk,1, wk,2). The first event has ãwk,1 6= wk,1

andw̃k,2 = wk,2 satisfying (C.7)-(C.8). We upper bound the probability of this

error event using [30, 14.3, p. 393] and the union bound as

∑

w̃k,1 6=wk,1

Pr (E1 ∩ E2) (C.9)

=
∑

w̃k,1 6=wk,1

Pr (E1) · Pr (E2) (C.10)

≤ 2n(Rk,1−θkI(X1;Yd)−θkI(X1XCk
;Yd)+3εθk+3εθk) (C.11)
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whereXCk
= {Xl : l ∈ Ck}. Then from (C.2) and (C.3), for reliable decoding

we set

Rk,1 < θk log
(

1 + |hd,k|2 P k

)

+

θk log



1 + α |hd,k|2 P k +

∣

∣

∣

∣

∣

∣

(1 − α)hd,k

√

P k +

Lk
∑

l=2

hd,πk(l)

√

P l

θk

∣

∣

∣

∣

∣

∣

2

 .

(C.12)

The second error event has has aw̃k,1 = wk,1 and aw̃k,2 6= wk,2 satisfying (C.7)-

(C.8). We again use [30, 14.3, p. 393] to bound the probability of this event

by

2n(Rk,2−θkI(Xk;Yd|XCk
)+6εθk). (C.13)

Reliable decoding thus requires

Rk,2 < θk log
(

1 + α |hd,k|2 P k

)

. (C.14)

Finally, consider the casẽwk,1 6= wk,1 andw̃k,2 6= wk,2. The expression (C.9) with

the summation now over both̃wk,1 6= wk,1 andw̃k,2 6= wk,2 is upper bounded as

2n(Rk,1+Rk,2) · 2−nθkI(Xk;Yd)+3εθkn

· 2−nθkI(X1;Yd)−nθkI(X1XCk
;Yd)+3nεθk+3nεθk (C.15)

For reliable decoding, we thus require

R1 < θk log
(

1 + |hd,k|2 P k

)

+

θk log



1 + αk |hd,k|2 P k +

∣

∣

∣

∣

∣

∣

αkhd,k

√

P k +

Lk
∑

l=2

hd,πk(l)

√

P l

θk

∣

∣

∣

∣

∣

∣

2

 . (C.16)

Combining (C.12), (C.14), and (C.16), we have the bounds (4.32), (4.33), and

(4.34). Finally, for the case whenCk = {r}, i.e., the time-duplexed MARC, we obtain

the bounds in (4.13), (4.14), and (4.15).
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C.1.2 Multi-hop Scheme

Encoding: In this scheme, userk transmits

Xk =







√

αkP kVk,l θk,l, l = 1, 2, . . . , Lk − 1
√

αkP kQk +
√

αkP kVk,Lk
θk,Lk

(C.17)

whereVk,l, Qk, for all l = 1, 2, . . . , Lk, are i.i.d zero-mean unit variance Gaussian

random variables. Userk transmits the messagewk,1 ∈ {1, 2, . . . , 2nRk,1} over the

fractionsθk,l, l = 1, 2, . . . , Lk − 1, at a rateRk,1. Note that it uses independent signals

in each fraction to transmit the same message; as shown in thesequel this simplifies

the decoding analysis. In the fractionθk,Lk
, userk retransmitswk,1 via Vk,Lk

and also

sends a new messagewk,2 ∈ {1, 2, . . . , 2nRk,2} at rateRk,2 via Qk. Note thatwk,2 is

only decoded by the destination. Finally, userπk(l), for all l = 2, 3, . . . , Lk, decodes

wk,1 in the fractionθk,l and retransmits it starting fromθk,l such that its transmitted

signalXπk(l) (θk,j) in the fractionθk,j is

Xπk(l) (θk,j) =

√

P πk(l)

θk,l
Vk,j for j = l, l + 1, . . . , Lk (C.18)

whereP k for all k ∈ K is given by (4.31) andθk,l is the total transmission fraction of

userπk (l) given as

θk,l =

Lk
∑

j=l

θk,j = 1 −
l−1
∑

j=1

θk,j. (C.19)

Fig. C.2 illustrates the multi-hop encoding scheme.

Decoding:

1. At the nodes inCk: The nodeπk (l) decodeswk,1 upto the fractionθk,l−1 by

usingy
πk(l)

. More precisely, nodeπk (l) decodes by finding ãwk,1 such that the

following (l − 1) events occurs:

Ej : (xπk(1)(w̃k,1), xπk(2)(w̃k,1), . . . , xπk(j)(w̃k,1), yd
) ∈

A
(nθk,j)
ε (Xπk(1), Xπk(2), . . . , Xπk(l−1), Yd). j = 1, 2, ..., πk (l − 1)
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Figure C.2: PDF encoding for aLk-hop cooperative network.

Note that the source codebooks in different fractions are generated independently

so the abovel − 1 events are independent (see [8, 35]). We upper bound the

probability of this error event using [30, 14.3, p. 393] and the union bound as

∑

w̃k,1 6=wk,1

Pr

(

l−1
⋂

j=1

Ej

)

(C.20)

=
∑

w̃k,1 6=wk,1

l−1
∏

j=1

Pr (Ej) (C.21)

≤ 2n(Rk,1−
Pl−1

j=1 θk,l(I(Xπk(1:j);Yd)+3ε)) (C.22)

For the signaling in (C.17), reliable decoding then requires

Rk,1 ≤
∑l−1

j=1 θk,j log

(

1 +
∣

∣

∣

∑j
m=1 hπk(l),πk(m)

P πk(m)

θk,m

∣

∣

∣

2
)

l = 2, 3, . . . , Lk.

(C.23)

2. At the destination: The destination uses its received signals from all fractions

to jointly decode(wk,1, wk,2). Focussing on the typical error events, we see that

the destination makes an error only if it identifies a(w̃k,1, w̃k,2) 6= (wk,1, wk,2)

using joint typical decoding. More precisely, the destination decodes by finding
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a (w̃k,1, w̃k,2) such that the followingLk events occur:

E1 : (xk(w̃k,1), yd
) ∈ A

(nθk,1)
ε (Xk, Yd) (C.24)

Ej : (xk(w̃k,1), xπk(2)(w̃k,1), . . . , xπk(j)(w̃k,1), yd
)

∈ A
(nθk,j)
ε (Xk, Xπk(2), Xπk(3), . . . , Xπk(j), Yd). j = 2, . . . , Lk − 1

(C.25)

ELk
: (x1(w̃k,1, w̃k,2), xπk(2)(w̃k,1), . . . , xπk(Lk)(w̃k,1), yd

)

∈ A
(nθk,Lk

)
ε (Xk, Xπk(2), Xπk(3), . . . , Xπk(Lk), Yd).

(C.26)

As before, due to the independence of the codebooks in the different fractions

the aboveLk events are independent. The decoding analysis of(wk,1, wk,2) can

be further broken down into three disjoint error events. Thefirst event has a

w̃k,1 6= wk,1 and w̃k,2 = wk,2 satisfying (C.24)-(C.26). We upper bound the

probability of this error event using [30, 14.3, p. 393] and the union bound as

∑

w̃k,1 6=wk,1

Pr

(

Lk
⋂

j=1

Ej

)

(C.27)

=
∑

w̃k,1 6=wk,1

Lk−1
∏

j=1

Pr (Ej) (C.28)

≤ 2n(Rk,1−
PLk

j=1 θk,l(I(Xπk(1:j);Yd)+3ε)) (C.29)

For the signaling in (C.17), reliable decoding then requires

Rk,1 ≤
Lk
∑

j=1

θk,j log



1 +

∣

∣

∣

∣

∣

j
∑

m=1

hd,πk(m)

√

P πk(m)

θk,m

∣

∣

∣

∣

∣

2


 (C.30)

The second error event has has aw̃k,1 = wk,1 and aw̃k,2 6= wk,2 satisfying (C.24)-

(C.26). We again use [30, 14.3, p. 393] to bound the probability of this event

by

2n(Rk,2−θk,Lk
I(Xk;Yd|XCk

)+6εθk,Lk
). (C.31)

Reliable decoding thus requires

Rk,2 < θk,Lk
log
(

1 + αk |hd,k|2 P k

)

. (C.32)
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Finally, consider the casẽwk,1 6= wk,1 andw̃k,2 6= wk,2. The expression (C.27)

with the summation now over both̃wk,1 6= wk,1 andw̃k,2 6= wk,2 is upper bounded

as

2n(Rk,1+Rk,2) · 2−n(
PLk

j=1 θk,l(I(Xπk(1:j);Yd)−3ε)) (C.33)

For reliable decoding, we thus require

R1 <

Lk−1
∑

l=1

θk,l log



1 +

∣

∣

∣

∣

∣

l
∑

m=1

hd,πk(m)

√

P k

θk,l

∣

∣

∣

∣

∣

2


+

θk,Lk
log



1 + αk |hd,k|2 P k +

∣

∣

∣

∣

∣

∣

αkhd,k

√

P k +

Lk
∑

m=2

hd,πk(m)

√

P l

θk

∣

∣

∣

∣

∣

∣

2

 .

(C.34)

Combining (C.30), (C.32), and (C.34), we obtain the bounds (4.46), (4.47), and

(4.48).

C.2 Hypoexponential Distribution

Consider a collection of independent identically distributed unit mean exponential ran-

dom variablesEl, l ∈ L = {1, 2, . . . , L}. We denote a weighted sum ofEl, for all l,

as

H =
L
∑

l=1

Elcl. (C.35)

We assume that the coefficientscl are unique, i.e., no two coefficients are equal to each

other. The following lemma summarizes the probability distribution ofH [73, p. 11].

Lemma C.2 The random variableH has a hypoexponential distribution given as [73,

p. 11]

pH (h) =







∑L
l=1

Cl

cl
e−h/cl h ≥ 0

0 o.w.
(C.36)

where the constantsCl, for all l, are given as

Cl =











1 L = 1

(−cl)
L−1

QL
j=1,j 6=l(cj−cl)

L > 1.
(C.37)
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The cumulative distribution function ofH is bounded as

FH (η) ≤ ηL

L!
(

∏L
l=1 cl

) . (C.38)

C.3 Half-Duplex Relay Channel – DDF Outage Analysis

The outage probability for userk transmitting at a fixed rateRk is

P (k)
o = Pr

(

IDF
2 < Rk

)

(C.39)

where

IDF
2 = θk log

(

1 + |hd,k|2 P k

)

+ θk log
(

1 + |hd,k|2 P k + |hd,r|2 Pr

)

(C.40)

whereP r = Pr/θk and

θk = min

(

1,
Rk

log
(

1 + |hr,k|2 P k

)

)

. (C.41)

Recall thathk,j = ak,j

/

d
γ/2
k,j whereak,j is a circularly symmetric complex Gaussian

random variable with zero-mean and unit variance,dk,j is the distance between nodes

k andj, andγ is the path-loss exponent. Thus,|hk,j|2 is exponentially distributed as

p(|hk,j|2 = x) = dγ
k,je

−x/dγ
k,j . (C.42)

Substituting (C.42) in (C.41), we see thatθk = 0 for dr,k = 0, i.e., when userk and the

relay are co-located. Observe that for this case, (C.39) simplifies to the outage bounds

of a2 × 1 MIMO channel.

In general, however,θk is a random variable and its probability distributionp(θk)

can be computed using (C.42) for anydr,k > 0. From (C.41) we see thatθk is a

mixed distribution with a discrete component atθk = 1. Using (C.42), we write the

probability distribution ofθk as

p (θk) =







fr (θk, Rk) · gr (θk, Rk) 0 ≤ θk < 1

1 − exp
(−(2R−1)dγ

r,k

Pk

)

θk = 1
(C.43)
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where

fr (θk, Rk) = exp(
−2Rk/θkdγ

r,k

P k

) · Rk ln 2 (C.44)

gr (θk, Rk) = exp(
Rk ln 2

θk
) ·

dγ
r,k

θ2
kP k

. (C.45)

Observe that for finite SNRp (θk = 1) is non-zero for alldr,k > 0. Furtherp (θk = 1)

decreases withP k as

p (θk = 1) =

(

1 − exp

(

−(2Rk − 1)dγ
r,k

P k

))

≤
(2Rk − 1)dγ

r,k

P k

. (C.46)

We assume a unit variance white Gaussian noise, we henceforth refer toP k as the

transmit signal-to-noise ratio (SNR). Observe that for a fixedP k, the functionsfr and

gr are monotonically increasing and decreasing functions ofθk. At θk = 0, the doubly

exponential functionfr dominates the product resulting inp(θk = 0) = 0. Further, as

θk increases from0, p(θk) first increases due tofr and then decreases asfr approaches

a constant whilegr continues to decrease. Note that theθ∗k that maximizesp(θk) de-

pend on bothdr,k andP k for a fixedRk. Finally, for a fixeddr,k, θ∗k decreases with

increasing transmit SNRP k. This is because the functionfr increases at least as fast

as1/
(

1 − 2Rk/θkdγ
r,k/P k

)

while the functiongr only decreases at a rate proportional

to 1/P k for anyθk. This causes bothθ∗k and the width of the peak aboutθ∗k to decrease

with P k. This is demonstrated in Fig.C.3 for a collinear geometry with dr,k = .5 and

dd,1 = 1. We will exploit this behavior to obtain an approximation. Finally, we remark

that the maximumθ∗k < 1 can be obtained analytically by differentiating (C.43) and

satisfies
2R/θ∗kRkd

γ
r,k ln 2

P k

− Rk ln 2 − 2
(θ∗k)

3 P k

dγ
r,k

= 0 (C.47)

Further, for finiteRk that does not scale with the SNRP k, in the high SNR regime,θ∗k

approximately satisfies

(θ∗k)
−3 2Rk/θ∗kRk ln 2 ' 2 P

2

k

/

d2γ
r,k (C.48)

Observe from (C.48) that the term(θ∗k)
−3 2Rk/θ∗k exponentially increases with decreas-

ing θk while the term on the right hand side of the equality only increases quadratically
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Figure C.3: Plot of the probability distributionp(θk) for a collinear geometry with
dr,k = .5 and different values of̄Pk.

with increasingP k for a fixeddr,k. Thus, with increasing SNR, note that the peak

centerθ∗k decreases only polynomially, i.e.,θ∗k converges to0 only asP
−2

k .

C.3.1 Upper and Lower Bounds

Sinceθk ∈ [0, 1], we can lower boundP (k)
o as

P (k)
o ≥ Pr

{

log

(

1 +
|Ad,k|2 P k

dγ
d,k

+
|Ad,r|2 Pr

dγ
d,r

)

< Rk

}

= Po,2×1 (C.49)

wherePo,2×1 is the outage probability of a2 × 1 MIMO channel. On the other hand,

for anyθk, P
(k)
o (θk) can be upper bounded as

P (k)
o (θk) ≤ Pr

{

θk log

(

1 +
|Ad,k|2 P k

dγ
d,k

)

< Rk

}

= Po,1(f) (C.50)

P (k)
o (θk) ≤ Pr

{

θk log

(

1 +
|Ad,k|2 P k

dγ
d,k

+
|Ad,r|2 P r

dγ
d,r

)

< Rk

}

= Po,2(f) (C.51)

Thus, averaging over allθk, we have

P (k)
o = EP (k)

o (θk) ≤ E min(Po,1(θk), Po,2(θk)) = P
(k)
UB (C.52)
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Without any loss of generality, we assume thatP k

/

dγ
d,k 6= P r

/

dγ
d,r for all k andθk.

As a result, the weighted sum of the i.i.d. complex GaussianAd,t, t ∈ K, simplifies to

a hypoexponentialdistribution, i.e., a distribution characterized by a weighted sum of

exponential distributions. Then, from Lemma C.2, we have

Po,1(θk) ≤
(2Rk/θk − 1)dγ

d,k

P k

(C.53)

Po,2(θk) ≤
(2Rk/θk − 1)2dγ

d,kd
γ
d,R

2P kP r

(C.54)

and thus the upper bound,P
(k)
UB, in (C.52) simplifies as

P
(k)
UB = E min

(

(2Rk/θk − 1)dγ
d,k

P k

,
(2Rk/θk − 1)2dγ

d,kd
γ
d,R

2P kP r

)

(C.55)

From (C.55), we see that for a fixedP k, Pr, anddj,k for all j, k, Po,2(θk) dominates for

smallθk while Po,1(θk) dominates asθk approaches1. Further, observe thatPo,2×1 =

Po,2(θk = 0) and thus (C.54) also provides an upper bound forPo,2×1.

In general, the expression in (C.55) is not easy to evaluate analytically. We exploit

the functional form ofp(θk) to develop an approximation forPUB for the case where

Rk does not scale with SNR, i.e., the multiplexing gain is0. Our approximation results

from simplifyingp(θk) as discrete distribution with two elementsθk = θ∗k andθk = 1.

We justify this simplification from the observations made earlier on the distribution

p(θk). Thus, we write

PUB ∼
(2Rk/θ

∗
k − 1)2dγ

d,kd
γ
d,r

2P kP ∗
r

· (1 − p(θk = 1)) +
(2Rk − 1)2dγ

d,kd
γ
r,k

P
2

k

(C.56)

≤
K(2R − 1)2dγ

d,kd
γ
d,r

2P
2

k

' KPo,2×1 (C.57)

whereθ
∗
k = 1 − θ∗k, P ∗

r = Pr/θ
∗
k, p(θk = 1) is given by (C.43), and

K =

(

(2R/(1−θ∗k) − 1)2P k

(2R − 1)2P ∗
r

+
2dγ

r,k

dγ
d,r

)

. (C.58)
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C.4 Two-hop Cooperative Network – Outage Analysis under DDF

Recall that the DDF outage probability for the two-hop cooperative network is

P (k)
o = Pr

(

Ic
2,DF < Rk

)

(C.59)

whereIc
2,DF is

Ic
2,DF (θk) = θk log

(

1 + |hd,k|2 P k

)

+ θk log

(

1 + |hd,k|2 P k +
∑

j∈Ck

|hd,j |2
P j

θk

)

(C.60)

andθk is

θk = min

(

1, max
j∈Ck

(

Rk

log
(

1 + |hj,k|2 P k

)

))

. (C.61)

As in Appendix C.3, we first derive the probability distribution p (θk). Expanding

hj,k asaj,k/d
γ/2
j,k , we see thatθk = 0 only if dj,k = 0 for all j ∈ Ck. In general, however,

the probability distribution ofθk is given as

p (θk) =







fc (θk, Rk) · gc (θk, Rk) 0 ≤ θk < 1

1 − exp
(−(2R−1)dγ

r,k

P k

)

θk = 1
(C.62)

where

fc (θk, Rk) = exp(
−2Rk/θk

(

∑

j∈Ck
dγ

j,k

)

P k

) · Rk ln 2 (C.63)

gc (θk, Rk) = exp(
Rk ln 2

θk
) ·

(

∑

j∈Ck
dγ

j,k

)

θ2
kP k

. (C.64)

Comparing (C.44) and (C.45) with (C.63) and (C.64) respectively, we see that the

two functions are the same when the distancedr,k in the half-duplex relay channel is

replaced by the sum of the distances between userk and every user inCk. Thus,p(θk)

exhibits the same functional form discussed in Appendix C.3.

C.4.1 Upper and Lower Bounds

For ease of exposition, we denote theLk − 1 nodes inCk asj2, j3, . . . , jL and write

Sk = Ck ∪{k} to denote the set of all transmitters transmitting in the fractionθk. From
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(C.59) and (C.60), we can lower boundP
(k)
o as

P (k)
o ≥ Pr

{

log

(

1 +
|Ad,k|2 P k

dγ
d,k

+
∑

j∈Ck

|Ad,j |2 P j

dγ
d,j

)

< Rk

}

= Po,Lk×1 (Rk) (C.65)

wherePo,Lk×1 (Rk) is the outage probability of aLk × 1 distributed MIMO channel

transmitting at a rateRk. Note that theith transmit antenna,i ∈ S, of this MIMO

channel is at a distancedd,i from the destination. As in Appendix C.3, we assume that

P k

/

dγ
d,k 6= P j

/(

dγ
d,jθk

)

for all k ∈ K, j ∈ Ck, andθk which enables us to simplify

the weighted sum of i.i.d exponential random variables in (C.65) as a hypoexponential

distribution. For a fixedRk, we upper boundP (k)
o as

P (k)
o = EP (k)

o (θk) ≤ E min(Po,1(θk), Po,2(θk)) (C.66)

where, using Lemma C.2 we write

Po,1(θk) = Pr

(

log

(

1 +
|Ad,k|2 P k

dγ
d,k

)

<
Rk

θk

)

(C.67)

≤
(2Rk/θk − 1)

(

∑

j∈Ck
dγ

j,k

)

P k

(C.68)

Po,2(θk) = Pr

(

log

(

1 +
|Ad,k|2 P k

dγ
d,k

+
∑

j∈Ck

|Ad,j |2 P j

dγ
d,jθk

)

<
Rk

θk

)

(C.69)

≤
(

2Rk − 1
)Lk (θk)

Lk−1

(Lk!)

(

∏

j∈Sk

dγ
d,j

P j

)

(C.70)

=

(

2Rk − 1
)Lk (θk)

Lk−1

(Lk!)
(

P k

)Lk

(

∏

j∈Sk

dγ
d,j

λj

)

(C.71)

with λj = P j/P k for all j.

Substituting (C.68) and (C.71) in (C.66), we thus write

P (k)
o ≤ PUB = E min

(

(2Rk/θk − 1)dγ
d,k

P k

,

(

2Rk − 1
)Lk (θk)

Lk−1

(Lk!)
(

P k

)Lk

∏

j∈Sk

dγ
d,j

λj

)

(C.72)

As in the outage analysis for the half-duplex relay channel,it is not easy to compute

PUB analytically. However, since the functional form ofp(θk) is the same that for the



152

half-duplex relay channel detailed in Appendix C.3, we similarly approximatep(θk)

by a discrete distribution with two elements,θk = θ∗k andθk = 1 where

θ∗k = arg max
θk

p (θk) . (C.73)

We thus have

PUB ≤

(

2Rk/θ
∗
k − 1

)Lk

(θk)
Lk−1

(Lk!)
(

P k

)Lk

∏

j∈Sk

dγ
d,j

λj

+
(2Rk − 1)2dγ

d,k

(

∑

j∈Ck
dγ

j,k

)

P
2

k

. (C.74)

C.5 Multi-hop Cooperative Network – Outage Analysis under DDF

Recall that the DDF outage probability for the multi-hop cooperative network is

P (k)
o = Pr

(

Ic
2,DF < Rk

)

(C.75)

whereIc
2,DF is

Ic
2,DF (θk) = θk,1 log

(

1 + |hd,k|2 P k

)

+

Lk
∑

l=2

θk,l log

(

1 +

l
∑

j=1

∣

∣hd,πk(j)

∣

∣

2 P πk(j)

θk,j

)

.

(C.76)

Recall that we writeπk (·) to denote a permutation onCk such that userπk (l) begins its

transmissions in the fractionθk,l, for all l = 2, 3, . . . , Lk. Recall further thatπk (1) =

k andπk (i : j) = {πk(i), πk(i + 1), . . . , πk(j)}. We choose the fractionθk,l small

enough to ensure that at least one node, denoted asπk (l + 1), decodes the message

from userk. Thus the fractionθk,l, for l = 1, 2, . . . , Lk − 1, is given as

θk,l =















min
j∈Ck

min

{

1,

⌈

Rk

log(1+|hm,j |2P k)

⌉}

l = 1

min
j∈C′

k(l)
min

{

1,

⌈

Rk−
Pl−1

m=1 θk,m log
“

1+
Pm

i=1|hj,πk(i)|2P πk(i)/θk,i

”

log
“

1+
Pl

i=1|hj,πk(i)|2P πk(i)/θk,i

”

⌉}

2 ≤ l ≤ Lk

(C.77)

whereLk = Lk − 1, θk,l is defined in (4.44) and

C′
k (l) = Ck\ {πk (i)}l

i=2 . (C.78)
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Finally, we have

θk,Lk
= 1 −

Lk−1
∑

l=1

θk,l. (C.79)

In general, computing the probability distribution ofp(θk,l) is not straightforward.

However, we present simple upper and lower bounds onP
(k)
o that require comput-

ing p(θk,l) for specific values ofθk,l. To this end, we make the following observations

on the distribution ofθk,l. Considerθk,1. From (C.77), we have

θk,1 = min
j∈Ck

min

{

1,

⌈

Rk

log
(

1 + |hj,k|2 P k

)

⌉}

(C.80)

Without evaluating the probability distribution ofθk,1, comparing (C.61) and (C.77),

we can see thatθk,1 is at most as large ofθk for the two-hop case and thus one can expect

theθ∗k,1 at which its distribution peaks is smaller than that for the two-hop cooperative

network. Further, one can computep(θk,1 = 1) as

p(θk,1)
∣

∣

θk,1=1 = Pr

(

min
j∈Ck

{

Rk

/

log
(

1 + |hj,k|2 P k

)}

≥ 1

)

(C.81)

=
∏

j∈Ck

{

1 − exp

(

−(2Rk − 1)dγ
j,k

P k

)}

(C.82)

≤





(2Rk − 1)Lk−1
(

∏

j∈Ck
dγ

j,k

)

P
Lk−1

k



 . (C.83)

One can similarly argue that, for alll > 1, the fractionθk,l is at most as large as the

two-hop fractionθk. This is because the nodeπk (l + 1) reliably decodes in the fraction

θk,l after it has collected sufficient energy from the transmissions of userk and the users

πk(m), for all 1 ≤ m ≤ l − 1. Further, one can boundθk,l as

θk,l ≤
{

min
j∈C′

k(l)
min

{

1,

⌈

Rk

log
“

1+
Pl

m=1|hj,πk(m)|2Pπk(m)/θk,m

”

⌉}

l > 1 (C.84)
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p (θk,l)
∣

∣

θk,l=1 ≤ Pr



 min
j∈C′

k(l)







Rk

log
(

1 +
∑l

m=1

∣

∣hj,πk(m)

∣

∣

2
P πk(m)

/

θk,m

)







≥ 1





(C.85)

≤ (2Rk − 1)(Lk−1)





∏

j∈C′
k(l)

l
∏

m=1

dγ
j,πk(m)θk,m

P πk(m)



 (C.86)

=
(2Rk − 1)(Lk−l)·l

P
(Lk−l)·l
k





∏

j∈C′
k(l)

l
∏

m=1

dγ
j,πk(m)θk,m

λπk(m)



 (C.87)

where (C.86) results from applying lemma (C.2) and the fact that the minimum in

(C.85) is taken over random variables that for allj are independent. Note that asl

increases,|C′
k (l)|, the cardinality ofC′

k (l), decreases and thus the productl ·
∣

∣C ′

k (l)
∣

∣

increases fromLk − 1 to a maximum ofL2
k/4 ((L2

k − 1) /4) for even (odd)Lk and

then decreases toLk − 1. Thus, the smallest power ofP k is Lk − 1. We will use this

property in developing an upper bound forP
(k)
o .

C.5.1 Upper and Lower Bounds

From (C.75) and (C.76), we lower boundP
(k)
o as

P (k)
o ≥ Pr

{

log

(

1 +

Lk
∑

j=1

∣

∣ad,πk(j)

∣

∣

2
P πk(j)

dγ
d,k

)

< Rk

}

= Po,Lk×1 (Rk) (C.88)

where, as before,Po,Lk×1 (Rk) is the outage probability of aLk × 1 distributed MIMO

channel transmitting at a rateRk. Further, as before, we assume thatP k

/

dγ
d,k 6=

P πk(l)

/(

dγ
d,jθk,l

)

for all θk,l ∈ [0, 1], k ∈ K, andj ∈ Ck. Then, using lemma C.2,

we can write the weighted sum of i.i.d exponential random variables in (C.88) as a

hypoexponential distribution. For a fixedRk, we upper boundP (k)
o as

P (k)
o = EP (k)

o (θk) ≤ E min(Po,1(θk), Po,2(θk), . . . , Po,Lk
(θk)) = E min

l∈K
(Po,l(θk))

(C.89)
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where, for alll = 1, 2, . . . , Lk, we have

Po,l(θk) = Pr

(

log

(

1 +

l
∑

j=1

∣

∣hd,πk(j)

∣

∣

2
P πk(j)

/

θk,j

)

<
Rk

θk,l

)

(C.90)

≤
(

2Rk/θk,l − 1
)l

(l!)
(

P k

)l

(

l
∏

j=1

dγ
d,πk(j)θk,j

λπk(j)

)

. (C.91)

Note that the bound in (C.91) follows from applying lemma C.2with λπk(j) = P πk(j)/P k

for all πk (j) ∈ Ck.

As with the previous outage analyses, here too we approximate the bounds by sim-

plifying p(θk,l) for all l = 1, 2, . . . , Lk − 1 as a discrete distribution taking valuesθ∗k,l

and1 whereθ∗k,l = arg maxθk,l
p (θk,l). Further, for the case whereθ∗k,l is small for all

l, we see that the exponential terms in (C.91) compare as

2
Rk/θ∗k,Lk < 2Rk/θ∗k,l for all 1 ≤ l ≤ Lk − 1 (C.92)

where

θ∗k,Lk
= 1 −

Lk−1
∑

l=1

θ∗k,l. (C.93)

Thus, we have

PUB ≤ Po,Lk
(θ∗k) +

Lk−1
∑

l=1

Po,l (1) · p (θk,l = 1) (C.94)

= Po,Lk
(θ∗k) + Po,1 (θk,1 = 1) · p (θk,l = 1) (C.95)

=

(

2Rk/θ
∗
k,Lk − 1

)Lk

(Lk!)
(

P k

)Lk

πk(Lk)
∏

j=πk(1)

dγ
d,jθ

∗
k,j

λj

+
(2Rk − 1)Lk

(

∏

j∈Ck
dγ

j,k

)

dγ
d,k

P
Lk

k

. (C.96)

where in (C.95) we used (C.87) and (C.91) to restrict attention to terms where the

exponent ofP k is less than or equal toLk and define

θ
∗
k,j =

Lk
∑

l=j

θ∗k,l. (C.97)

Thus, we see that for a cooperative multi-hop network, DDF achieves the maximum

diversity ofLk irrespective of the network geometry.
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Appendix D

Degraded Gaussian MARC : Concavity Properties

D.1 Concavity ofId,S

We recall the DF bounds in (5.17), for allS ⊆ K, as

RS ≤ Id,S = C











∑

k∈S
Pk

Nd
+

0

@1−
∑

k∈Sc

βk

1

APr

Nd

+2
∑

k∈S

√

(1 − αk) βk
Pk

Nd

Pr

Nd











. (D.1)

We show thatId,S is a concave function ofβS for a fixedβSc
. Observe that sinceβk

are power fractions, we have

∑

k∈K
βk ≤ 1. (D.2)

We fix the vectorβSc such that

∑

k∈Sc

βk = 1 − c (D.3)

∑

k∈S
βk ≤ c. (D.4)

wherec ∈ [0, 1). To verify the concavity ofId,S as a function ofβS , we assume that

αS 6= 1. We simplifyId,S in (D.1) subject to (D.3) as

Id,S =
1

2
log

(

K0 + 2
∑

k∈S
Kk

√

βk

)

(D.5)

where

K0 = 1 +

P

k∈S
Pk

Nd
+ Pr(1−c)

Nd

Kk =
√

(1 − αk)
Pk

Nd

Pr

Nd
k ∈ S.

(D.6)
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We now show thatId,S is a concave function ofβS by determining its gradient with

respect toβk for all k ∈ S. We write the gradient ofId,S as the vector

∇Id,S = [∂Id,S/∂βk]k∈S (D.7)

=
1

Ks

[

K1√
β1

K2√
β2

. . .
K|S|√

β|S|

]T

(D.8)

whereK0 andKk are defined in (D.6) and

Ks = 2

(

K0 + 2
∑

k∈S
Kk

√

βk

)

. (D.9)

We write the Hessian ofId,S as the matrix

∇2Id,S =
[

∂2Id,S/∂βk∂βm

]

∀k,m∈S (D.10)

=
−1

Ks
diag(v) − zzT (D.11)

where

z =
2

Ks
∇Id,S (D.12)

v =

[

K1

2β
3/2
1

K2

2β
3/2
2

. . .
K|S|

2β
3/2
|S|

]

. (D.13)

To show thatId,S is concave, we need to show that [74, 3.1.4]

xT∇2Id,Sx ≤ 0 for all x ∈ RK . (D.14)

Substituting (D.11) in (D.14), we have

xT∇2Id,Sx =
−1

Ks

∑

k∈S

(

x2
kKk

2β
3/2
k

)

−
(

xT · z
)2

(D.15)

≤ 0 (D.16)

where the inequality (D.16) follows from the non-negativity of Kk andβk for all k with

equality if and only ifx = 0.

We now determine aβS that maximizesId,S subject to (D.3). SinceId,S is a con-

tinuous concave function ofβS ∈ [0,∞)|S|, it is also concave over the convex region

in (D.4) and achieves its maximum at aβ∗
S where

∂Id,S

∂βk

∣

∣

∣

β∗
k

= 0 for all k ∈ S. (D.17)
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Using Lagrange multiplier rule, we find that aβ∗
S that maximizesId,S subject to (D.3)

has entries

β∗
k =

{

c(1−αk)Pk
P

k∈S
(1−αk)Pk

k ∈ S . (D.18)

Relaxing the constraint in (D.3) to (D.2), we write the first and second partial

derivates ofId,S with respect toβk, for all k ∈ Sc, as

∂Id,S
∂βk

=
−Pr/Nd

Ks
< 0 (D.19)

∂2I∗
d,S

∂α2
k

=
−2 (Pr/Nd)

2

K2
s

. (D.20)

whereKs is defined in (D.9). Thus, from (D.19) we see thatId,S decreases monotoni-

cally with βk for all k ∈ Sc. Further from (D.16) and (D.20) we conclude thatId,S is a

concave function ofβk for all k ∈ K.

Finally, one can similarly show that for a fixedβK, the first and second derivatives

of with respect toαk, for all k ∈ K, are

∂Id,S
∂αk

=

−Gk

(1−αk)3/2Ks
k ∈ S

0 k 6∈ S
(D.21)

∂2Id,S
∂α2

k

=

−3Gk

(1−αk)5/2Ks
− 2G2

k

(1−αk)3K2
s

< 0 k ∈ S

0 k 6∈ S
(D.22)

whereK0 andKs are defined in (D.6) and (D.9) respectively and

Gk =

√

βk
Pk

Nd

Pr

Nd
. (D.23)

Thus, we see thatId,S, for all S ⊆ K, is a concave function ofαk for all k ∈ K.

Rate Region for a fixedαK : For any choice of a non-zeroαK and aβK subject

to (D.2), the rate region satisfying (D.1) for allS is a polytope. For the case where

αK = 1 since there are no gains achieved from coherent combining in(D.1), we set

βK = 0 and obtain a polytope.

We next consider the case where whereαK 6= 1. Since there is at least onek

for which αk < 1, gains from coherent combining at the destination are maximized
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by choosingβK to satisfy (D.2) with equality. For a fixed ofαK, we then write the

rate region at the destination as a union over all polytopes,one for each choice ofβK

satisfying
K
∑

k=1

βk = 1. (D.24)

Observe that forβ∗
K with entries given by (D.18), the boundId,S is maximized. In Fig

D.1, we illustrate the rate region for a two-user degraded Gaussian MARC with the

SNRP1/Nd = P2/Nd chosen as−10 dB,α = (.5, .5), and five choices ofβK. Observe

that the maximum single-user rateR1 is achieved by settingβ1 to 1 though this value

does not maximizeR2 or R1 + R2. For all other(β1, β2) such as(.85, .15), asβ1

decreases andβ2 increases,R1 decreases whileR2 increases achieving its maximum

at β2 = 1. The bound on the sum rateR1 + R2 increases from(β1, β2) = (1, 0),

achieves its maximum at(β∗
1 , β

∗
2) = (.5, .5), and then decreases asβ2 approaches1.

The resulting region at the destination is then a union over all polytopes, each resulting

from a unique choice ofβK.

D.2 Br,S vs. γK

We show that the functionBr,S in (5.83) is a concave function ofγS for a fixedγSc
and

for all S ⊆ K. Recall the expression forBr,S as

Br,S = C











∑

k∈S

Pk

Nr

−

(

∑

k∈S

√
γkPk

)2

Nr

(

1 − ∑

k∈Sc

γk

)











(D.25)

where we assume that
∑

k∈Sc

γk = 1 − c < 1. (D.26)

Observe thatBr,S is maximized whenc = 1, i.e.,γk = 0 for all k ∈ S, and minimized

for c = 0. Further, comparingBr,S andId,S , one can see that for

γk =







Pk

/(
∑

k∈S Pk

)

k ∈ S
0 k ∈ Sc

(D.27)
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Br,S achieves its minimum, i.e.,Br,S = 0.

We let

x =

(

∑

k∈S

√

γkλk

)

(D.28)

where, as defined for DF case 5.4, we have

Pmax = maxk∈K Pk and λk = Pk/Pmax. (D.29)

Substituting (D.28) in the expression forBr,S in (D.25), we have

Br,S = C

(

∑

k∈S

Pk

Nr
− x2Pmax

Nrc

)

. (D.30)

DifferentiatingBr,S with respect tox we have

dBr,S
dx

=
−2Pmax

Nrc
·
(

1 +
∑

k∈S

Pk

Nr

− x2Pmax

Nrc

)−1

(D.31)

d2Br,S
dx2

=
−2Pmax

Nrc
·

(

1 +
∑

k∈S

Pk

Nr
+ x2Pmax

Nrc

)

(

1 +
∑

k∈S

Pk

Nr
− x2Pmax

Nrc

)2 (D.32)

< 0 (D.33)

where the strict inequality in (D.33) follows since all terms in (D.32) are positive. Thus,

we see thatBr,S is a concave function ofx.
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