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ABSTRACT OF THE DISSERTATION

Relay Cooperation in Multiaccess Networks

by Lalitha Sankar

Dissertation Director: Prof. Narayan Mandayam

Cooperationin communication networks results when terminals use theargy
and bandwidth resources to mutually enhance their trarssonis. Cooperation can be
induced in many ways and each approach entails a differatédff of power, band-
width, complexity, and costs to achieve spatial divers#ing characteristic of antenna
arrays. In this dissertation, we study a specific cooperatetwork - amultiaccess
relay channe(MARC) where cooperation is induced via a dedicated relagena a
network where multiple users communicate with one destinat

We extend the relaying strategiesdicode-and-forwar¢DF), compress-and- for-
ward (CF), andamplify-and-forward AF) to the MARC. Specifically, for DF we show
that real-time decoding at the destination usingliding-windowincurs a rate loss
relative to an offlinebackward decodingechnique. We develop arffset encoding
technique that improvesiding windowdecoding and achieves the corner points of the
backward decodingate region with significantly smaller delay.

Next we compare two approaches to inducing cooperation imniliancess chan-
nel. In one approach we allow the users to cooperate whilaenother we induce
cooperation via a relay when the users cannot or do not catgpetJsing the total
transmit and processing power consumed at all nodes as anetst, we compare

the DF and AF sum-rates and outage probabilities for the @tworks. Our results



show that cooperation is most desirable in the regime whereegsing power is sig-
nificantly smaller than the transmit power. We also show tekty cooperation is on
average more energy efficient than user cooperation.

Finally, we develop a capacity result for the MARC. The MAR€&dngs to a class
of multi-terminal networks whose capacity is, in generalt known. For a degraded
Gaussiank -user MARC, we usenax-min optimizationechniques to show that DF

achieves thd{-user sum-capacity.
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Chapter 1

Introduction

The growing demand for wireless applications is fuelingeegsh in the design and
development of a variety of wireless network architectusesying from wide-area
cellular to decentralized ad-hoc and low-power sensor odsv The limitation of

restricted power and bandwidth resources holds for alllessenetworks, regardless
of architecture. In [1], Telatar (and independently Foschnd Gans in [2]) showed
that adding multiple antennas to wireless transmittersaceivers can yield dramatic
gains in rate and reliability. However, restrictions inesend form factor of wireless

devices largely limit the practical applicability of thessults.

Cooperationis an alternative approach to this problem: cooperationlt®svhen
nodes in a network share their bandwidth and power resotocesitually enhance
their transmissions. This allows wireless devices coirsrhin size and processing
capabilities to exploit the broadcast nature of the wireleedium to achieve the spa-
tial diversity gains characteristic of multi-antenna ah@ls [3]. In multi-terminal net-
works, cooperation can be induced in many ways with diffeegmqproaches requiring
different tradeoffs of power, bandwidth, and economic veses to achieve a desired
fading diversity. In this thesis, we investigate one sugbrapch, namely that of induc-

ing cooperation using dedicated relay nodes.

1.1 Motivation

It is generally known that communications between a sodesgination pair can ben-
efit from cooperative forwarding by nodes overhearing taagmission [4]. A simple
model for such a communication network is the relay chammebduced and studied

by van der Meulen [5]. Two fundamental coding strategiedtierrelay channel were



developed by Cover and El Gamal [6] and are based on the ideghthrelay aids the
destination in decoding by transmitting a signal based oatwloverhears. These cod-
ing techniques have been applied to a variety of multi-teawireless networks [7,8],
and more recently, to quantify the rate and diversity bemefinode cooperation (see

e.g., [3,9-11], [12-16] and the references therein).

In their seminal work on the throughput of wireless ad hoowoeks [17], Gupta
and Kumar showed that in a network of homogeneous coopgratides the per node
throughput decreases (due to interference) with incrgasimber of nodes. They also
showed that information-theoretic relaying schemes [6] reaverse this behavior [18]
and thus provided added motivation for the information tilemmmunity to extend
the relaying strategies of [6] to a variety of multi-termlinatworks and channel mod-

els. For a detailed history and bibliography of cooperatimamunications see [4].

In the most general model of cooperation, some or all nodesnietwork share
their resources and some nodes called relays may be pumilyatied to aiding other
nodes. The former cooperative approach has been refereeis®r cooperatiofi3];
analogously, we can call the latter approaelay cooperation The choice between
the two models is significant because, in general, the nad@snetwork can vary
widely in their transmission and processing capabilitied Bndependent nodes may
not be willingly to share with other nodes their limited pova@d bandwidth resources
for forwarding and cooperation. In fact, it has been showanneconomic model
that cooperating users need to be offered incentives (ssiaficeeased throughput or
diversity) to share their resources voluntarily [19-21JheTuser cooperation model
may be better suited for special purpose homogeneous retwoch as those used in
military, sensor and monitoring applications; howeveerein such networks where
the network lifetime depends on the lifetime (battery reses) of the most connected
node, it has been shown [22] and demonstrated [23] that wigsg some nodes as

dedicated relay nodes can help preserve the lifetime ofsth@ transmit data.



Figure 1.1: An example of a three-layer hierarchical relagwork with source nodes
(SN), forwarding nodes (FN) and access points (AP).

1.2 Hierarchical Relay Cooperation

Motivated by the above arguments, in this thesis, we studyeaific relay coopera-
tion model, namely, the multiaccess relay channel (MARCEmhmultiple sources
transmit to a destination in the presence of a relay [24] . Careview the MARC as
a building block of a large-scaleierarchical relay networkwhere a layer of one or
more relay nodes enables cooperation between the layet@miong source and desti-
nation nodes (see Fig. 1.1). Examples of suniudti-tier communication network [25]
include hybrid wireless LAN/WAN networks and sensor netkgowhere cooperation
between user or sensor nodes is either undesirable or r&ibjfEdut an intermediate

relay node can be used to aid communication between theesoantl the destinations.

We present models for a discrete memoryless MARC and a GaubtARC. Be-
cause the MARC is a multiaccess generalization of the rdlapel [5, 6], the achiev-

able strategies developed for the relay channel extencetMkRC. In addition to the



cut-set outer bounds, we study the strategies of decoddéeawdrd (DF), compress-
and-forward (CF), partial decode-and-forward (PDF), amgléy-and-forward (AF)
[26—28]. We also present a memoryless model for a MARC wittal&duplexrelay

and extend the capacity theorems (inner and outer bounttsstohannel.

The DF rate for the relay channel can be achieved by a varietyanding/decoding
techniques. However, the DF rate region for the MARC dependbe decoding tech-
nique chosen at the destination. (Indeed, using an offliteydetensivebackward
decodingtechnique at the destination achieves a larger rate regiam & real-time
sliding-windowdecoding technique.) We presentafset encodingechnique that im-
proves the rate region achieved by sliding-window decodiamgi<-user multiaccess
channels. The technique offsets user transmissions bylook jper user and achieves
the corner points of thbackward decodingate region but with a significantly smaller

delay.

Cooperation can be induced in practice in many ways and gguioach may re-
quire a different tradeoff of power, bandwidth, processaryl economic resources. In
order to design practical networks that derive maximalgrentince gains from coop-
eration, it is necessary to understand the similaritiesdaffierences between the user
and relay cooperation models. We compare the performarsmuote cooperation in a
multiaccess network to that of using a wireless relay. Theér is modeled as a mul-
tiaccess channel with generalized feedback [7, Chap. 7{fantatter as a MARC. In
general, itis hard to quantify the costs associated witlvtleecooperative approaches.
We present a power-based cost metric to enable compariadrdetermine the energy

regimes where the two approaches to cooperation may betdksir

Using the total transmit and processing power consumed astanetric, we com-
pare the PDF and AF rates and the DF and AF outage probabftiti@n area-averaged
geometry. We show that both user and relay cooperation iggedficient only in the

regime where the processing power is negligible relativehéotransmit power. We



also show that relay cooperation is (on average) more ergfigient than user coop-
eration. Finally, using a geometry-inclusive outage asialywe show that for single
antenna nodes, the relay network is limited in diversity toaximum of2 while a K-
user cooperative network can achieve a maximuiii @it the cost of using the channel
K times. However, thé(-fold diversity gains diminishes when one accounts for the
processing costs of cooperation, i.e., the maximum diyepsedicted by a diversity-
multiplexing tradeoff analysis may not always be achiegablpractical SNR regimes
of interest without trading off power, delay, and complgxit

Finally, we develop a capacity result for the MARC. Coopeeahetworks belong
to a large class of multi-terminal networks whose capachigve been a long-standing
open problem in network information theory. In [6], Covedaal Gamal show that
DF achieves capacity for a degraded relay channel. For aded™MARC, unlike the
relay channel, applying the degradedness condition daesmplify the outer bounds
to match those for DF. Specifically for a degraded GaussiaiREAve use a max-min

optimization technique to show that DF achieveskhe&ser sum-capacity.

1.3 Outline of Dissertation

The rest of the dissertation is organized as follows. In @rap we present various
MARC models and their inner and outer bounds. In Chapter 3 ngegmt an off-
set encoding technique that improves sliding-window dewpavith DF for K-user
multiaccess channels. In 4, we compare the performanceuntes@ooperation in a
multiaccess network with that of one that uses a wirelesg/rdtinally, in Chapter 5,

we develop the sum-capacity of a degraded Gaussian MARC.



Chapter 2

Multiaccess Relay Channel: Capacity Theorems and
Cooperative Strategies

2.1 Introduction

The multiaccess relay channel (MARC) is a network wherers¢wusers communicate
with a single destination in the presence of a relay [24]. dRéyg, there has been
an increased focus on networks with one or more relays as Iméolewireless ad
hoc and sensor networks, see for e.g., [9, 10, 12, 13, 18] lamdefferences therein.
Successful deployment of any such network lies in its ghititsupport multiple users
simultaneously and not only one. We study the MARC as a speauifidel of a multi-

user relay network.

Several coding strategies for the relay channel [5, 6] ekteadily to the MARC
[10, 26]. For example, the strategy of [6, Theorem 1], novemftalleddecode-
and-forward (DF), has a relay that decodes user messages before fomgattem
to the destination [10, 26]. Similarly, the strategy in [iébrem 6], now often called
compress-and-forwar@CF), has the relay quantize its output symbols and trarttit
resulting quantization bits to the destination [26]. Fou&san channels, one can also
consider aramplify-and-forwardstrategy where the relay forwards a scaled version of

its output symbols to the destination [26].

In this chapter, we present models for a discrete memorgleda Gaussian MARC
with afull-duplexrelay, i.e., a relay that can transmit and receive simutiasly in the
same bandwidth. We also present a memoryless model for a MRECa half-duplex
relay and obtain the capacity theorems for this channel asa@lstforward extension
of those developed for the full-duplex case. We present @&eubuter bound on the

capacity region of the MARC and develop the rate regions fe6r@F, and AF. We also



present gartial decode-and-forwardPDF) strategy where the relay decodes only a
part of the messages from the sources. This strategy geaesr8IF and is particularly
useful when there may be costs associated with relay coieraVe also present a
mixed strategy that combines DF and CF as a generalizati¢®, dtheorem 7]. For
the Gaussian MARC, we focus on the line-of-sight and ergéatilng environments
and study the rate regions achieved by the different stiegeginally, we illustrate our

results for two example geometries.

2.2 Model and Preliminaries

2.2.1 Network Model

The K-user MARC hads sources, one relay, and one destination (see Fig. 2.1). The
sources emit the messagdés, k£ = 1,2,..., K, that are statistically independent and
take on values uniformly in the se{s,2,..., M;}. The channel is used times so

that the rate o#V, is Ry, = Bw,/ N bits per channel use whetgy, = log, M

bits. The channel inpuk,; from sourcek at timez, « = 1,2,..., N, is a function

of Wy, while the relay’s channel inpuY, ; is a causal function of its received signals
Y=t = (Y,1,Y9,...,Y,;1). The destination uses th¥ channel output&’}¥ to
decode thek’ messages agVy, Ws, ..., Wx). We write K = {1,2,..., K} for the

set of sources] = {1,2,..., K,r} for the set of transmitters, arld = {r,d} for

the set of receivers. We writ&s = {X, : k € S} forall S C K, §¢ to denote the

complement ofS in K, and|S]| for the cardinality ofS. The channel is time-invariant

and memoryless with the conditional probability distribat

(Y, yalric, 2,). (2.2)

The capacity regio@uarc is the closure of the set of rate tuplesy, , Rws,, - - ., Rw,)
for which the destination can, for sufficiently largg decode the< source messages

with an arbitrarily small positive error probability.
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Figure 2.1: AK-user multiaccess relay channel.

Dec »Sink

As further notation, we writd?s = >, <R and we use the vector notatian
for lengths. codewords of uset. We use the usual notation for entropy and mutual
information [29, 30] and take all logarithms to the base 2s bur rate units are
bits. We write random variables (e.g/;) with uppercase letters and their realizations
(e.g. wy) with the corresponding lowercase letters. We drop suptscan probability
distributions if the arguments are lowercase versions@féimdom variables, e.g., we
write (2.1) ap(y, yalrk, ).

For a Gaussian MARC (see Fig. 2.2), the received sigrialandY; are [24]

K
Y= (Z hr,k,iXk,i> +Z (2.2)

k=1

K
Yo, = (Z hd,k,iXk,i> + hariXei+ Za, (2.3)

k=1
whereZ, ; andZ,, are independent and identically distributed (i.i.d.) zerean, unit
variance circularly symmetric (proper) complex Gaussardom variables ankl,, . ;
is the channel gain between receiverand transmittek at timei. Unless otherwise
noted, we assume that a receiving nodeknows only its own channel gains, i.e.,
it knows h,,, ;.; for all < and k, but it does not knowh,,, . ; for anym’ # m. The

transmitted signals from souréeand the relay are constrained in power as

;E | Xpil> <nP, keT (2.4)
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(User 1>[Enc ]

W, X, "
User 2—>Enc 2

Figure 2.2: A two-user Gaussian MARC with a full-duplex sela

The models described above considarladuplexrelay, i.e., a relay that can trans-
mit and receive at the same time and in the same bandwidth. c@mealso model
practical constraints on the transmit-receive capaéditf a relay by considering a
MARC with a half-duplexrelay where the relay is in one of two modes, namksy,
ten(L) or transmit(T). We model a MARC with a half-duplex relay as a memoryless

channel with inputs;;, at sourcek, z,; = [z, ,;, m,] at the relay with alphabet
X, ={(L.0)}u({T} x &) (2.5)

and outputs)mi = [Ym,ir byi], m € D, whereM,; € {L,T} represents the relay’s
mode at timei and 4, ; is a channel gain vector with entriés, ;. ; for all k € 7,

k # m. As before, the channel is a time-invariant memoryless ringiden by (2.1).
We remark that the relay’s input, ; is typically a function of the modé/, ;. In
general, one could either considefixedduplexing scheme where thd, ; is known

at all nodes or @andomscheme where knowledge 01, ; is restricted to a subset of
nodes [31]. We assume thaf. ; is either knowra priori at all nodes or shared at the
appropriate time-instant with a negligible effect on thierar transmission costs. We
write § = Pr (M, = L) to denote the fraction of time the relay is in the listen mode,

i.e., receiving transmissions from the sources.
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Relay (FN

Figure 2.3: A two-user Gaussian MARC with a half-duplex yela

One can generalize the model to includdeep(S) state as well as cost constraints
in each mode and at all the nodes [31]. Finally, for a GauddiaRC, the half-duplex

condition simplifies as

> heiXpi | +Zri My;=1L
Yii=q \k#m (2.6)

0 M., =T
whereX, ; = 0 for M, , = L (see Fig. 2.3).

2.2.2 Fading Models

We model the channel gains, ; ; as

hm,k,i = il (27)

whered,, ;. is the distance between the" receiver and thé'" source,y is the path-
loss exponent, and,, ;. ; is a proper complex fading random variable. We assume that
the fading gaing,, ;. ; are known only at receiven. We consider the following fading

channels.

1. nofadingA,, ., = 1 for all m, k, 1.



11

2. ergodic fading where4,, ;. ; are jointly i.i.d zero-mean, unit variance proper,

complex Gaussian random variables for:all

We write h to denote the vector of fading gairfs, ,,,;, forallk € D, m € 7, k
# m, such that: is a realization for a given channel use of a jointly indepericnd

ergodic vector fading procegs.

Remark 2.1 The no fading model can be viewed as a simplification of a Rickan-
nel with a large Ricean factor, i.e., we assume the lineigitscomponent dominates
the fading model thereby simplifying the model to a patls-ldespendent Gaussian

channel.

2.3 Outer Bounds

An outer bound on the capacity region of a MARC is presentd@ihusing the cut-
set bounds in [30, Th. 14.10.1] as applied to the case of enlgnt sources. We

summarize the bounds below.

Proposition 2.2 The capacity regioluarc iS contained in the union of the set of rate

tuples(Ry, Rs, ..., Ry) that satisfy, for allS C I,

Rs < min (I(Xs; Y, Yy Xse X, U), [(XsX;; Ya| Xs:U)) (2.8)
where the union is over all distributions

p) - ([T, planlw)) - pla e, w) - ol e, 22). 2.9)

Remark 2.3 The time-sharing random variablé ensures that the region in (2.8) is
convex. One can apply Caratheodory’s theorem [32] to tKiglimensional convex

region to bound the cardinality df as|i/| < K + 1.

Remark 2.4 For the Gaussian channel, one can verify that Gaussian $iigganaxi-
mizes the outer bounds (see [6]). The bounds for the halfedugase are obtained by

conditioning the bounds in (2.8) oW, and including the factop(m..) in (2.9).
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2.4 Achievable Strategies

2.4.1 Decode-and-Forward Strategy

A DF code construction for the white Gaussian MARC is presgénh [24]. This
construction is extended to the d.m. MARC in [10] using regMarkov encoding at
the sources and relay abdckward decoding [7, p. 63t the destination. We detail the

encoding and decoding procedure in Chapter 3 and summhbgzate region below.

Proposition 2.5 The rate region for DF is the union of the set of rate tuglBs, Rs, . . .,

Ry ) that satisfy,

Rs < min (](XS, Y}|X3cvchrU), ](XSXT; Yd|X3cVScU)) forall S C K
(2.10)

where the union is over all distributions that factor as

p(u) - (H p(vlu)p(zi|vx, U)> - p(@r|ve, w) - p(Yr, YalzT). (2.11)

Proof: See Appendix B.1. [ |

We remark that the time-sharing random variableesnsures that the region of
Proposition 2.5 is convex. Further, the auxiliary randomalde V, enables coop-
eration between the relay and soutcdor all £. Finally, one can also use a real-time
sliding-windowdecoding technique at the destination to recover the cqroists of
the rate region achieved at the destination. This schema &igmificantly smaller de-
lay than backward decoding where the destination waitshereintire message from
all the sources before decoding. We develop this schemeail dteChapter 3.

The memoryless model presented in Section 2.2 for the hgdfet MARC allows
us to use the rate results developed for the memorylesddpllex MARC. Note further
that we consider &ixed duplexing scheme where the listen and transmit fractions at
the relayd and1 — 6 respectively are assumed knownpriori at all nodes where

0 =Pr(M,=1L)=1—-Pr(M,=T)andd € [0, 1]. Thus, one can obtain the DF rate
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bounds for a half-duplex MARC from Proposition 2.5 by cormatitng the bounds in

(2.10) over the half-duplex states of the relay as follows.

Corollary 2.6 The DF rate region for a half-duplex MARC is the union of thecfe
rate tuples(R;, R, . .., Ri) that satisfy

Rs < min(I(Xs; Y| XseVieX, M, U), I(XsX,; Y| XseVse M, U) forall S € K
(2.12)

where the union is over all distributions

plu) - pmy) - (TS ap (e, velusme) ) - plausmy) - plyr yaloc, @) (2.13)
such that the signaling at the relay satisfies (2.5yfore {L,T} and

0 M =1L
Vi = (2.14)
Xe M, =T.

Note that the relay decodes the messages from the sourgaa tmlistenfraction
6 and cooperates with the sources in ttasmitfractiond = 1 — 6.
Consider the Gaussian MARC with fixed channel gains. We whigesignal trans-

mitted by sourcé, for all £ € K, and the relay in each channel as

Xk = VB Vi + (1 — ) PiVio (2.15)
K

Xo =Y VBePVi 41/ BP.Vo (2.16)
k=1

whereV, Vi o, andV,., are independent and identically distributed (i.i.d) propem-
plex Gaussian random variables with zero mean and unitn@giand the power frac-

tionsay, B € [0, 1] such that

B=1-"1 b (2.17)

Note that in generaly, and . are complex. However, when the channel gains are
not known at the transmitters one can show that it sufficesestricto,, and g, to be

positive real numbers betweérand1 (see [33]).
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For the MARC, substituting (2.15) and (2.16) in (2.10), weda

Rs < max(,, 51K min (I;s,14s) forallS CK (2.18)
where

I,s=C

> el oszk> (2.19)

keS

]d,S = C ((1 — ﬁgc) |hd7,n|2 Pr + Z <|hd,k|2 Pk + 2\/akﬁkPkPr Re (hd,rh;;,k)>>

keS
(2.20)
wherea, = 1 — ay, Bse = D cge B @aNdC(z) = log(1 + z).
For an ergodic fading channel where the transmitted signgisrience all possible

fading states over a message block, the DF rates are bousded a

RS < max min (Efng, EId’S) (221)

{an.Br}is,
where the expectatidi is over the joint fading proceds wherel, s and/,; s are given
by (2.19) and (2.20) respectively. Further, one can usedtighat the transmitters do
not have knowledge of the channel state to show thato, = 5, = 0 maximize the
rate bounds in (2.19) and (2.20) respectively [33].
Finally, for the half-duplex MARC, the rate region is acheevby simplifying

(2.15) for the two modes as

VPVio M,.=1L

X, = RERO . (2.22)
VPV, M,=T

The relay’s signak,. is then set td for the listen fraction and to (2.16) for the transmit

fraction. We obtain the DF rate region by substituting (2&2d (2.16) in (2.12).

2.4.2 Compress-and-Forward Strategy

One can also consider a strategy where the relay comprasseeived signal as

in [6, Theorem 6]. The destination first decodes the compresgnal from the relay
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Block 1 Block 2 Block B Block B+1
User 1 1 (wr,1) (W p) 21(w1,B) (1)
User 2 252(?1)2,1) &'2(102,2) EQ(U)Z,B) &(1)
Z’F(l) 27( wT, 1) f_L'7-(UJr7B_1) E’l'<w7'7B>
Relay - - - -
9,(2:5,1) ﬂr(zr,mwm) SO A CAPRTAY 9,1, 5)

Figure 2.4: Block Markov encoding for CF and a two-user MARC.

and uses that in conjunction with its own received signaktoodle the source messages
[34]. Note that the received and compressed signals at thg carry messages from
all the sources.

The encoding is done as follows. Consider the probabilgyritiution

(HK p<xk)> P ('TT) ’ p(:&7"|x7‘7 y7‘) ‘p(ymydm’lﬁ xr)- (223)

k=1
For each usek, generate"f* codewordse, (wy), wy = 1,2,...,2"% by choosing
the lettersey; (wy), i = 1,2, ..., n, independently with distributiop(xz). Similarly,
generate™? codewords, (w,), w, = 1,2,...,2"% by choosing the letters, ;(w,)
independently with distributiop(x,.) for all i. For eachz,(w,) generate"+ code-
words g, (z.), 2, = 1,2, .. ., 2" py choosing the letterg, ;(z,, w,) independently
with distributionpy, . (| z..;(w;)) for all i wherep(y,|z,) is obtained from the dis-
tributionp(9.|y., =) as

p(irle) = > p(ex) p (Gelyr ) p (41, Yalzc, 7)) - (2.24)

TICHYr,Yd

Finally, we randomly partition the sét, 2, . . ., 2"/} into 2"/ subsets and index them
viaw,. The above code construction procedure is repeBtedl times, once for each
block, and the?” codebook is used in block b = 1,2,...,B + 1. Note that the

codebooks are independent across blocks and this factiBesphe error analysis [8,

35).
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A block Markov encoding strategy is employed where in block= 1,2, ..., B,
the k™" source transmits its independent messagg < [1,2"/%] via z (wy, ;) while
the relay transmitg, (w,;), w,, € [1,2"%], whereR, is the rate at which the relay
forwards the compressed messagg ; from the previous block (see Fig. 2.4). In
the same block, the relay also compresses its received $igaay, (2,5, wrp), zrp €

[1,2"%]. The resulting rate region is given by the following theorem

Theorem 2.7 Compress-and-forward yields a rate regi®y» given by the union of

the set of rate tuplegR;, Rs, ..., Rk), that satisfy

Rs < I(Xs; Y, Yy Xs X,U) forall S C K (2.25)

where the union is over all joint distributions

p(u) - (H p(%lﬂ)) (e Yrs Ty 1) - p(Ya, Yol 7) (2.26)

keT

and subject to the constraint
[(X,; Ya|U) > 1(Y,5 V| X, YaU). (2.27)

Proof: For a constant/, the proof involves a relatively straightforward gen-
eralization of the decoding procedure in [6, Thm. 6] to thdtiaccess problem of
decodingK users at the destination [30, 14.3]. The time-sharing randariableU

convexifies the rate region of Theorem 2.25. [ |

Remark 2.8 The constraint in (2.27) indicates that the rate achievaidéween the

relay and destination limits the fidelity of the compressgda.

Corollary 2.9 The CF rate region for a half-duplex relay is given by the vnad the
set of rate tuple$R;, Ry, ..., Rk), that satisfy

Rs < I(Xs; Y, Yy Xse X, M,U) forall S C K (2.28)
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where the union is over all distributions

plu) - plmy) - (T1, , plonlme,w)) - plarlme, ) - p(Glyes 2, w) - plgas v, )
(2.29)

and subject to the constraint
[(Xy; Ya| M,U) > 01(Y,; Y, |YaX, M, U). (2.30)

Consider the Gaussian MARC with fixed channel gains. We geéag@roper com-
plex Gaussian i.i.d. sequenc&s ~ CN (0, py.), for all k € T, wherep,, satisfies (2.4).

Each letter in the quantized codewgydis generated as

Y=Y+ Qn i=12...n (2.31)

whereQ,; ~ CN(0, D) is generated independentYf; andY;; for all i. Using (2.2),
(2.3), and (2.31), the constraint in (2.27) simplifies tol¢ithe lower bound on the

distortionD as

2

<E el i+ 1) <E |hax| P + 1) -

ke kex

kz;c hahy, i
(S

D > (2.32)
(|hd,r|2 Pr)
Finally, the bounds in (2.25) simplify as
2
<Z bk pk+D+1> <Z |hd,k‘Pk+1>_' > hakhy pk
Rs < log | =2 ] hes forall S C K.
(2.33)

We denote the region achieved by (2.33f&as-(p). Note that the minimum distortion

in (2.32) increases with increasirdg. This is due to the fact that the relay compresses
the signal from all users simultaneously. Note further thg2.33) the expression in
the numerator depends only on the signal power of the us&tshowever, the distor-
tion D in the denominator depends on the transmit power of all usets Thus, for

a fixed user and relay transmit signal-to-noise ratio (SNIR),bounds oR?s, for all

S, in (2.33) decreases as increasing number of sources titamisifiact, the maximum
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single-user rate for any source is achieved only when thairgng sources remain
‘silent’, i.e., do not transmit. Thus, to obtain the set df athievable CF rate tu-
plesRs_cr, one must consider all possible source power tuples(p., ps, . . ., px)

wherep,, satisfies (2.4) such that

Ra-cr = co <Up RCF(Z_?)) (2.34)

whereco(-) denotes the convex hull operation.

Remark 2.10 Note that sinceD depends on the transmit SNR at the sourégsis in
general not a convex function pfind thus, the rate region is a convex hull of the union

of all rate regions, where the union is over all

Remark 2.11 As (2.32) indicates, the distortiaD decreases as the SNR between the
relay and destinatior, (normalized by unit variance noise) increases. Note that as
P, increases, the CF strategy yields sum rates that approazhwb-antenna multiple-

access clustering capacity [10].

Finally, the rate region for the ergodic channel is obtaimgdveraging (2.33) over
all channel states subject to a fading averaged distortiqi2.32). We remark that
implicit in this averaging is the assumption that the dedton also knows the channel

gains at the relay.

The rate region for the ergodic channel is obtained by avega(?.33) over all
channel states subject to averaging the constraint in (@& the joint fading process
H. We remark that implicit in this averaging is the assumptiat the destination also
knows the channel gains at the relay and vice-versa. Fjria#ycode construction for
the full-duplex Gaussian MARC detailed above can be extémua straightforward

manner to the half-duplex case.
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Block 1 Block 2 Block B Block B+1
ll(wl,l.l,’wl,z,l,l) &"1(’11)1,1 ,2.,’w1.2,2.,w1,2,1) El(wl,l,& U71,2,E<,’U}1,2,B-1) 21(1,1,11)1,2,3)
User 1
!11(“’1 ,2,171) QJ(U’1,2,27U}1,2,1) !11(“’1,2.)3!“}1,2,1371) ﬁ1(1>w1 ,2,13)
(1) u(wi21) v (wr,2,8.1) u(w,2,)
o(wa11,un,2,,1) (w212, Wn,2.2,Wn,2,1) 2y (Ws,1,B,Wn,2,B,W22,B-1) 5(1,1,w2,8)
User 2
ﬂz(wz,z,l-,l) 112(702,2,237112,2,1) ﬂz(“’z,z.B:“’z,z,B-l) Q2(1 -,Uiz,z,B)
ﬂz(l) @(“’2,2,1) 92(11)2,2,371) 1)2(7“2,2,3)
Relay (1,1) z(wia1,w21) o | z(wg,pa,wn g, p) z,(w12,3,12 2,p)

Figure 2.5: Block Markov Encoding for the PDF strategy fowatuser MARC.

2.4.3 Partial Decode-and-Forward Strategy

One can generalize DF by limiting the relay to decode only @ii&o streams trans-
mitted by a source as in [6, theorem 7]. We refer to this gjsates apartial decode-
and-forward strategy [28, 31]; this strategy is also callednaltipath decode-and-
forwardto characterize the multipath nature of the data flow fronstheces [4, Chap.
4]. In general, it may seem desirable to use the relay nodewafd all messages from
a source. In practice, however, the costs associated with aselay node [21,36] may
limit their usage by the source nodes to transmitting daéasts with higher reliability
or QoS requirements.

We construct the codebooks at the sources and relay as ®olfdansider the prob-
ability distribution

(H p(%)ﬁ(%\%)ﬁ(fﬂd%)) P (@r|vic) - p(Yr, Yalzic, Tr)- (2.35)

k=1

For eachk, generate™?2 codewords, (s;), s, = 1,2,...,2"%2 by choosing the
lettersvy; (sx), ¢ = 1,2,...,n, independently with distributiop(v;). Similarly, for
everyuv(s;) generate" 2 codewordsy, (wy. 2, si), w2 = 1,2, ..., 2" 2, by choos-
ing the lettersy, ;(wy 2, s,) independently with distributiopg, v, ( - |vk,i(sx)) for all 7.

For everyq. (w2, 1), generate a length-relay codewordr; (wx,1, w2, sk), Wi, =
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1,2,...,2"%1 by choosing the letters, ; (wy 1, wy 2, sx) independently with probabil-
ity distributionpx, o, (- |qr,i(wk2, sx)) for all 7. Finally, generate one lengtheode-
wordz, (sq, Sg, ..., sk)foreachtuplésy,ss, ..., sk)bychoosing, (s, s2, ..., Sk)
independently with distributiopx, v, v,,..v, (- [v1i(51), - - ., vk.i(sk)) for all i. The
above code construction procedure is repedted 1 times, once for each block, and
the b™* codebook is used in blodk b = 1,2, ..., B + 1. Note that the codebooks are
independent across blocks and this fact simplifies the arralysis [8, 35].

A block Markov encoding strategy is employed where in block= 1,2, ..., B,
thek'™ source transmits its independent message streamse [1, 2"%1] andwy, o, €
[1, 2" 2] viazy, (wp, 1.5, W25, Wk 2s—1) While the relay transmits, (sq 5, So, - - -, Sip)-
The encoding is illustrated in Fig. 2.5 for a two-user MARG elach block, the relay
decodes the messages., for all k£, while the destination decod¢s, , w2). The
k™ source rate if;, = Ry, + Ry and we writeRs ;, = > resBiem, m = 1,2. We

use backward decoding at the destination to prove the faligtheorem.

Theorem 2.12 The rate region for the PDF strategy is the union of the setabdér
tuples(Ry, Rs, . .., R) that, for all non-empty se@, S withG C S C K, satisfy

Rso < 1(Qs; Y| Qs Vi X, U) (2.36)
Rs1 < I(Xs; Y| Xse VicQre X, U) (2.37)
Rs1+ Rgo < I(XsX,; Ya| XseQgeVgeU) (2.38)

where the union is over all input distributions of the form

K

p(u) - [Hp(vk,qk,xk\U)] - p(@r vk, u). (2.39)

k=1
Proof: In Appendix A, we first develop the rate bounds fér= 2 and use this

to demonstrate the generalization for arbitrafy [ |

Remark 2.13 The rate bounds for the half-duplex channel can be obtairyecbindi-

tioning the bounds in (2.36)-(2.38) on the relay’s transamtl receive modes.
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For a Gaussian MARC, we consider Gaussian signaling at thees® and relay.

We write

X =/ —ap1 — ar) PiVio + /o2 PiQr + /or 1 BV ke K (2.40)
K

Xr = Z \Y% ﬁkPrVk: + \/(1 - Z]le ﬁkz) Pr‘/r,O (241)
k=1

whereV}, o, Vi, and@)y, for all £ are i.i.d proper complex Gaussian random variables.
We first consider the case where the channel gains are fixeglc&@nsimplify the
rate bounds by substituting (2.40) and (2.41) in (2.363§2. Note that the signals
Vio for all k act as interference at the relay. In fact, for most geonsetfanterest
where the relay is closer to the destination than the souneesone can see that the
PDF bounds are maximized fag, ; + oy, » = 1 for all k; that is, PDF simplifies to DF.
However, PDF can achieve larger rates for the half-dupler @@ now the sources can
transmit directly to the destination in the relayransmitfraction, i.e., the sources set
ax1 + axo = 1in thed fraction anda;, = 0 in thel — @ fraction. We detail this
strategy in Chapter 4. Finally, one can achieve the rate d®tor the ergodic case by

averaging the fixed fading rate bounds over all channelstate

2.4.4 Mixed Strategy — PDF and CF

One can also combine the PDF and CF strategies as in [6, Thégrd he rate bounds
in [6, Theorem 7] are obtained using successive decodingcandalso be obtained
using sliding-window decoding. For the MARC, we combine tdehniques of back-
ward and sliding-window decoding at the destination to eahithe rate region for this
mixed strategy. Our motivation for doing so stems from the that the DF and PDF
rate bounds achieved by backward decoding are at leastges darsliding window
decoding as detailed in Chapter 3.
The encoding is done as follows. Consider the probabilgyritiution

K
(Hp(vk)p(qklvk)p(xquk)> - (zrvic) P (GrlYr, Tr, aic, v) P(Yr, Yal T, 7). (2.42)
k=1
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Block 1 Block 2 Block B Block B+1
z(wiig,w1,1) (w1 0,1 22,W012,1) 1 (wn1,8,W1,2,8,W12,51) (1,1, 2,8)
User 1
ﬂl(wl ,2,171) g.l(wl ,2,2:101,2,1) gl(w1,2,13~,w1,2,3-1) Q1(1,w1 ,2,13)
u(1) vi(wi21) (W 251) (w5
User 2 zz(wz,l,l,wz,z,l,l) 132(11}2,1,2,71)2,2,2,11)2,2,1) Ez(wz,l,y, wz,z,y,wzz,y-l) l?2(1,1,w2,2,13)
g2(w2,2,171) gZ(w2,2,2:w2,2,1) ﬂ2(w2,2,13~,w2,2,3-1) g2(1,w2,2,13)
(1) 22(702,2,1) Vo(W3,9,5.1) &(wz,z,zz)
Rel 13,-(1,1 ,1) L-(wr,l ,-w1,2,1,w2,2,1) Ir(wr,B-l,sz,B-l ,wz,z,m) L-(w,,B,wl ,2,3,102,2,3)
i 9. (21,1,1,1) G (220, 1,0, 5150555) 3 (2 5, W, 51y Who 51y Whs 1) 3, (1,0, 5, Wy 5 5y Wh, 5)

Figure 2.6: Block Markov encoding for the mixed PDF and Chtsigy for a two-user
MARC.

For eachk, generate™?2 codewordsy, (si), s, = 1,2,...,2" %2 by choosing the
lettersvy; (sx), ¢ = 1,2,...,n, independently with distributiop(v;). Similarly, for
everyuy,(sy) generate™fx.2 codewordsy, (wy.2, si), wr2 = 1,2, ..., 2" 2, by choos-
ing the letterse;, ; (ws 2, si,) independently with distributiopg, v, ( - |vk,i(sx)) for all 7.
Further, for everyy,(ws 2, sx) generate a length-relay codewordr, (w1, w2, sk),
w1 = 1,2,...,2" 1 by choosing the letters;, ; (wy 1, wy 2, sx) independently with
distributionpx, o, (- |gx,i(wr,2, s)) for all i. Generate one length-relay codeword
z,(w,.81,82,...,5K), w, = 1,2,...,2"% for each tuplg(si, s, ..., sx) by choos-
ing x,.;(wy, 51, S92, . . ., i) independently with probability distributignk. v, v,,.v, (- |
v1i(s1), ..., vki(sk)) for alli. Further, generate one Iengzﬁreodeworcl,gr(zr, Wy, S,
wis), 2 = 1,2,...,2"% foreach tuplex = (s1, 52, . . .,5x) andwg o = (wy 2, Wy o,
..., Wk2) by choosingy, ;(z., w,, wi 2, sk.2) for all i independently with distribution
P9,101.@or0m. X, U L @1i(Wi2), - oo i i(Wie2), @ (wy, sc)). Finally, we randomly par-

tition the se{1,2, ..., 2"} into 2"/ subsets and index them via.

A block Markov encoding strategy is employed where in block= 1,2, ..., B,

thek'™ source transmits its independent message streamse [1, 2"%1] andwy, o, €
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[1, 2"8%2] via 2 (w1 b, Wk 2.5, Wk 25—1) While the relay transmits, (w,.,, s1.5, S2.6, - - -
sk,») WhereR, is the rate at which the relay forwards the compressed messags
the index of the partition to which,,_, belongs (see Fig. 2.6). Finally, the relay also
compresses its received signaliasz, », wi 2, Sx.2)-

In block b, the relay decodes the messaggs ;, for all k. The destination first
decodeqw; 24, Waop, - - -, Wk 2p) iN block b using backward decoding starting from
block B + 1. After decoding allB + 1 blocks, the destination uses sliding-window
decoding to decode.;, b using blocks andb + 1. Thek™ source rate ig, = Ry, 1 +
Ry 2 and we writeRs , = >, o Rk.m, m = 1,2. We use backward decoding followed

by sliding-window decoding at the destination to prove théofving theorem.

Theorem 2.14 The rate region for the mixed PDF-CF strategy is the unionhef set
of rate tupleg Ry, Rs, . . ., Ri) that, for all non-empty setS withG C S C K, satisfy

Rso < 1(Qs;Yr|Qs Vi X, U) (2.43)
Rsa < I(QsVs; Y4|Qse VseU) (2.44)
Rs; < I(Xs; Y, Y| Xs-Qx Vi X, U) (2.45)

where the union is over all input distributions in (2.42) gadi to the constraint

I(X,; Y| QxVicU) > 1(Yy; Yo | QicVie X, YaU). (2.46)

Proof: The proof is a straightforward extension of the proofs foedtems 2.7
and 2.12. Thus, the bounds in (2.43) are obtained by decadinagt the relay in every
block while the bounds in (2.44) are obtained by decodirg at the destination using
backward decoding. This is followed by decoding in every block at the destination
using successive decoding [6, Theorem 6]. Combining theltreg bounds at the
destination with the bounds on the quantization rate atélagyryields the constraint
(2.46). Finally, the bounds in (2.45) result from decoding; at the destination using

Y, andY; in every block. m
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One can extend the code constructions for PDF and CF for tlhussgm case to
obtain the bounds for this case. Finally, the half-duplexruts are obtained by condi-

tioning (2.43)-(2.45) over the transmit and receive modékearelay.

2.4.5 Amplify-and-Forward Strategy

For a Gaussian MARC, one can also consider a strategy whemeldy amplifies its
received signal before forwarding it to the destinationug,ithe transmitted signal at
the relay in each time-symbol i§, ; = cY,.;_; where the constantresults from apply-
ing the power constraint at the relay in (2.4). The resulthgnnel at the destination
is a unit delay multiaccess inter-symbol interference)(t®lannel with the received
signal in each time instant given as
K K
Yoi= <Z hd,ka,i> + chq, (Z hr,ka:,i—1> +cZri1+ Zay (2.47)
k=1 k=1
For the case of fixed channel gains, the AF rate region is thaaty region of a unit-
memory ISI MAC in (2.47) and is given byraultiuser water-fillingsolution [37]. We
obtain the ergodic region by averaging this region over adigible channel instantia-
tions.

For a set ofi’ sources transmitting at powgy, the scale factoe is given as

P,
c— _ . (2.48)
1 + Zkzlhr,kpk

Observe that decreases with increasirig as the relay power is now shared over more

users. Further, since the rate bourilsfor all S at the destination depends onas
with the CF strategy, we consider all possible power tupliesdeveloping the AF rate

regionR 4. Thus, we write

Rar = co (URCV(£)> (2.49)

whereR v (p) is the capacity region of an ISI channel for sop@ndco (-) represents

the convex hull of the union of such regions over all possible
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For the half-duplex case, we considet 1/2. The signalg’;; andY,» in the two

fractions are given as

K
Yo1 = (Z Xk:,l) + Zqa (2.50)

k=1
K K

Yoo = (Z hd,ka,2> + chg, (Z hr,k‘Xk,l> +cZra+ Zao (2.51)
k=1 k=1

and result in a two-symbol multiaccess ISI channel. Thelvatends are given as [30,
10.5]

1
Rs < max 5 log (2.52)

T A{Qritr(Qr)<2Pi} ek

L+ H.QuH|
keS

where
h 0
H, = b (2.53)
Chd,rhr,k/cs hd,k’/cs
wherecy = /|hg,|c? + 1 andH,i is the conjugate transpose Hi, for all £ and 1, is

a2 x 2 identity matrix.

2.5 lllustration of Results

We illustrate our results for a two user MARC and the two exienggometries shown
in Fig. 2.7. While the two geometries chosen here illustthgecapacity achieving
behavior of the DF and CF strategies, they are also reflectitree typical performance
achieved by the various strategies considered here fortétneay placement of source
and relay nodes. Case 1 is a geometry with a symmetric posigoof the sources
with respect to the relay and destination while case 2 islenealr geometry with both
sources at the origin and the destination a unit distancg &em the origin. In both
cases, the relay moves along the line connecting the dastinaith the origin.

We plot the sum-rate in bits per channel use for each strategyfunction of the
relay’s distance from the origin. The noise normalizedsrait SNR at the sources and
relay is chosen a®; = P, = P, = 10. We present and analyze the results separately

for the no fading and ergodic fading model; to develop the ves@nt the results for
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Figure 2.7: Two example geometries.

an ergodic phase fading channel, i#,, ., = e/~ wheref,,  ; are i.i.d. uniformly
between—, 7) forallm € D, k € 7 and time-instants. For the following analysis
we use the free-space path loss exponesnt2 and evaluate all logarithms with respect

to base 2 so that the resulting rates are in units of bits panra#l use.

2.5.1 No Fading or Line-of-sight Model
MARC

The two user DF, CF, and AF sum-rates and the outer boundsopbBition 2.2 are
plotted in Figs. 2.8 and 2.9 for geometry 1 and 2 respectivBlgcall that the DF
and CF sum-rates for a Gaussian MARC are given by (2.18)3)2e3pectively. The
direct multiple-access sum-rate between the sources atuhalon is also plotted as
a straight-line since it is independent of the relay’s positThe plots also include the
optimal DF power fractiomv; = a, = « allocated by the sources to transmitting a new
message in (2.16) where the two fractions have the same waltihe maximum sum-
rate point for the symmetric geometries in cases 1 and 2. \ti¢ethato does not apply

to the CF and AF strategies where the relay does not decod®tinee messages.
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In Fig. 2.8, we observe that when the relay is closer to the¢irdgson, the CF
strategy approaches the upper bound achieving capacity thibeelay and destination
enjoy an error-free channel. This can be verified analyjiald results from the fact
the distortion in the quantized signal decreases as thenehaetween the relay and
destination becomes more reliable. In the limit, when tHayrand destination are
co-located, the destination has access to both channaltsutus achieving the upper

bound in (2.8).

The AF strategy performs only as well as the DF strategy wherrelay is very
close to the destination. The performance of the AF strasedgfers from the ampli-
fication of the received noise at the relay. Further as treyreloves away from the
destination, the advantage of a high-rate channel betweeretay and destination is
also lost resulting in the AF strategy falling below the dtreultiple-access sum-rate

that is achievable in the absence of the relay.

The DF strategy approaches the outer bounds when the refdyscally close
to the two sources. The resulting high rate channel betweenelay and the sources
forces maximum cooperation between the sources and the Tédiss is clear from the
optimal« curve in Figs. 2.8 and 2.9 where= 1 (no cooperation) results only when
the rate achieved by the sources and relay at the destirete@eds the maximum rate

achievable between the sources and relay.

For the collinear geometry considered in case 2, we obseove Fig. 2.9 that
DF approaches the upper bound when the relay is physicalbedb the two sources.
Finally, we note that the achievable rates for DF and CF agatgr than the direct
sum-rate when the relay is closer to the sources than thmdtsh even if it does not

physically lie between the sources and destination.
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Figure 2.10: Inner and outer bounds on the sumkate R, for the half-duplex MARC
of Case 1.

Half-Duplex MARC

The achievable sum-rate bounds for DF, PDF, CF, and AF anershroFig. 2.10 and
2.11 for Case 1 and Case 2 respectively. Also shown is the baotend on the sum-
rate obtained by conditioning the bounds in (2.8) on theyielhalf-duplex modes.
For the sake of simplicity and to make comparisons betweernCth DF, PDF and
AF strategies, we sét = 1 /2. Analogous to the full-duplex MARC, we consider

Gaussian signaling at the sources and relay for every girate

As expected, for both geometries the CF strategy approdbkeaspper bound as
the relay approaches the destination. Here too, the Clegyraixploits the correlation
between the received signals at the relay and destinatidricarthe case where the
relay is at the destination, the destination has reliabbessto both channel outputs

thus achieving capacity.

For case 2, we see that when the relay and sources are phys&al close that

the DF sum-rate approaches the outer bounds. The optiroaive in Figs. 2.10 and
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Figure 2.11: Innner and outer bounds on the sum fate- R, for the half—duplex
MARC of Case 2

2.11 measures the fraction of power allocated to a new messagach source in the
(1 — ) fraction for the PDF strategy. The sources do not cooperdterelay in the
CF and AF strategies while for the DF strategy,= o, = 1 since the sources do not
send a new message in thie— 6) fraction. Note that = 1/2 may not maximize the

sum-rate achieved by the DF or the PDF strategy.

2.5.2 Ergodic Phase Fading
MARC

In [10], the authors show that for an ergodic fading chanbél,achieves the sum-

capacity of a MARC when the relay lies in a region around the s such that

,ggdi_k + < kgdpk forall S C K. (2.54)

Further, they also showed that due to the lack of channe stiirmation at the trans-

mitters and a uniform phase-fading channel the ergodicaiypis maximized when
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Figure 2.12: Inner and outer bounds on the sum rater R, for the MARC and
half-duplex MARC of Case 2 under ergodic fading

the sources do not cooperate with the relay, ive.— 0 for all k.

Half-Duplex MARC

In an analogous manner, one can show that for a half-dupleR®ith fixed frac-
tionsd and1 — 6, the DF strategy achieves capacity when the relay lies irgeme

about the sources such that, for&liC I,

P P (1-0)
1 : r —k 1 . 2.55
(*ZU s (*Zcﬂ) @59

keS keS keS

The resulting rate region for the half-duplex MARC underaglig fading conditions is
then given by the set of rate tupléB;, Rs, . .. Rx) that satisfy

Rs < flog <1+Z%) +(1—9)10g<

kes bk

) forall S C K.
(2.56)

keSs ik
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Further, for anyd, one can extend the analysis in [10] to show that the PDFegfyat

achieves capacity when the relay lies in a region about theces such that

0
1+ &) ( L

0 (1-6)
<1+Z%) .<1+1§%) forall S C K.
S
(2.57)

This capacity achieving behavior of the DF and PDF strategytfe MARC and half-

H
+
=l
+
N/

=
~
L

[\

duplex MARC respectively under ergodic fading conditiossliearly demonstrated
in Fig. 2.12 for the collinear geometry of case 2. The widegeaof relay positions
betweer]—.9, .45] where the DF strategy achieves capacity for the MARC andéertw
[—.95, .45] for the half-duplex MARC clearly illustrates how clusteagithe sources and
relay helps achieve the ergodic capacity. Further, for gdéduplex MARC the DF
strategy also achieves capacity albeit over the smallgierfan 15, .15] where the relay

is very close to the sources.

Effect of Transmit SNR

One can similarly plot the DF, CF, and AF sum-rates for ddfervalues of transmit
SNR at the sources and relay. In general, for a fixed tranddit & the relay, reducing
the transmit SNR at the sources will reduce the maximum satesrachievable. On
the other hand reducing only the transmit SNR at the relayreduce the sum-rate
gains achieved by relaying relative to the MAC sum-capadiyrther, the AF sum-
rate decreases with decreasing transmit SNR at the sowreds doise amplification.
However, one can verify from the rate expressions in Se@idrthat the geometry-
dependent performance of DF and CF does not change withmiaB&R; i.e., DF

achieves or approaches capacity when the sources andalgarelclustered close to-
gether while CF does so when the relay is clustered closetddktination irrespective

independent of transmit SNR.
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2.6 Conclusions

We presented discrete and Gaussian memoryless modelsuthdaplex multiaccess
relay channel. We also presented a memoryless model for aGAM&ifth a half-duplex

relay. We extended the relaying strategies of DF, CF, and &&/€loped by Cover
and El Gamal for the relay channel [6] and studied their raggans for both the no
fading and ergodic fading channels. Finally, we illustdatke maximum sum-rates
achieved by DF, CF, AF, and PDF for two example geometriesdemaonstrated the
topology-dependent rate and capacity behavior for the dm@gand ergodic phase-

fading models.
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Chapter 3

Offset Encoding for Multiaccess Relay Channels

3.1 Introduction

For the classic relay channel, several block-Markov enapedind decoding techniques

achieve the DF rate in [6, Theorem 1] (see [10, Sec. I]):

e irregular encoding (different size codebooks at the source and ratejgucces-

sivedecoding [6, Theorem 1],

e regular encoding (same size codebooks at the source and relay}liatmly-

windowdecoding [8],

e regular encoding anblackward decodind7].

One can, in fact, use irregular encoding with any of the als®@ding methods.
The above techniques have all been generalized to muligde metworks [10, 18,
35, 38, 39]. For the MARC, however, the different DF decodmethods do not al-
ways yield the same rate region. For example, we show th&zad decoding can
give larger rates than sliding-window decoding (see al§944]). On the other hand,
sliding-window decoding decodes blocks of message bitsgatlar intervals before all
channel-symbol blocks are transmitted. This is usefulhd $liding window length
is much smaller than the backward decoding delay, themsfidiindow decoding is
preferable foistreamingapplications.

To compare the methods, suppose the destination uses bracéeeoding forB
message blocks transmitted ih+ 1 channel-symbol blocks. The decoding delay is
thenB + 1 channel-symbol blocks for the first message block, where e&sure delay

from the start of the block to the time the block is decodedr i@ain contribution is an
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Figure 3.1: AK-user multiaccess relay channel.

offset encodingechnique for sliding-window decoding that recovers theneo points
of the destination’s backward decoding rate regions witlelaydof X" + 1 channel-
symbol blocks for every message block. The total number ahobl-symbol blocks
required isB + K. Note thatK can be much smaller thaB, e.g., if the relay serves
only a small number of users at a time. For the non-corner daynpoints of the
backward decoding rate regions, we use a combination oétoffiscoding, no-offset
encoding, and/or time sharing between different offsebdimg methods. Note, how-
ever, that time-sharing increases decoding delay; rditthsp methods might perhaps

avoid this delay [42,43].

This correspondence is organized as follows. In Sectiomw8.present the MARC
model and summarize the DF random code construction of [pPeAdix A]. In Sec-
tion 3.3, we review the backward decoding rate region andotethe sliding-window
decoding rate region. The latter region is in general sméil@n the former. In Sec-
tion 3.4, we describe offset encoding and develop its rajmnewhen combined with

sliding-window decoding. Section 3.5 concludes the paper.
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Block 1 Block 2 Block 3 Block B Block B+1
Il(wm,l) 131(101,2,w1,1) E1(w1.3,’w1,2) El(wl.&wLB-l) ;”1(1,101.8)
User 1
21(1) ﬂ](wl‘l) ﬂl(wm) Ql(wl.m) Ql(wl,n)
p(wy1,1) Ty(Wa 9,2 1) 2(Wy,3,W32) Ty(Wy, , W, p 1) 2 (1,wyp)
User 2
22(1) ﬂz(wzl) ﬂz(wu) Q2(U12.B-1) Qz(wz,B)
Relay z(1,1) p(wy 1,Ws,1) 2wy, 2,105 ) ‘ ‘ (W1, p.1,Wa,5.1) ‘ 2,(wy 5, W, p)

Figure 3.2: Regular encoding for a two-user MARC assumirgétay decodes cor-
rectly.

3.2 Preliminaries

3.2.1 Model and Notation

The K-user MARC model is the same that as detailed in Chapter 2uisdr notation,
we write Rs = Y, Ry, [m,n| = {m,m +1,...,n}, and we use the vector notation
z,, for length+» codewords of uset. We use the usual notation for entropy and mutual
information [29, 30] and take all logarithms to the base 2w our rate units are bits.
We write random variables (e.@V) with uppercase letters and their realizations (e.g.

wy,) with the corresponding lowercase letters.

We assume familiarity of the reader with basic notions okiagrd decoding and

joint decoding as described in [7, 8, 10, 35, 40].

3.2.2 Random Code Construction

A DF code construction is presented in [10, Appendix A] andrexew it below.
This construction is common to all the decoding methodsidensd below and it uses
independent random variablés, £k = 1,2, ..., K, to help the sources cooperate with

the relay. Thé/, have finite alphabets.

Random Code Construction
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Consider the probability distribution

(H p(vk)p(m?fk)) - pa|uk). 3.1)

k=1

We use regular encoding. For edghgenerate™? codewords, (si), s, = 1,2, .. .,
278k py choosing the letters, ; (sx), ¢ = 1,2,...,n, independently with distribu-
tion p(vg). Similarly, for everyv,(s) generate2"f* codewordsz (wy, s), wy =
1,2,...,2"% by choosing the letters;, ;(wy, s,) independently with probability dis-
tribution px, v, (- |vki(sk)) for all 4. Finally, generate one length+elay codeword
2,(81, 82, ...,sk) foreach tuplésy, so, .. ., sk ) by choosinge, ;(s1, 2, . . ., sk ) inde-

pendently with distributiomx, v, v,...v, (- [v1,6(51), ..., vki(sKk)) for all 4.

The above code construction procedure is repeated 1 times, once for each
block, and the)"” codebook is used in block b = 1,2,...,B + 1. Note that the
codebooks are independent across blocks; this fact siegpttie error analysis [8, 35].
The encoding procedure of [10, Appendix A] proceeds as VidloWe change this

procedure in Sec. 3.4.
Regular Block Markov Encoding

Encoderk parsesw,, into B blocks wy, 1, wg 2, - .., wk,p, €ach havingn Ry, bits,
and transmits these messages oBe# 1 channel-symbol blocks as shown in Fig.
3.2 for K = 2. More generally, usek transmitsz,,(wy», wy5—1) in block b where
wgo = wi,p+1 = 1 forall k. The relay sends the codewatg(sy 4, o, - - -, Sk p) IN
block b wheres,;, is the relay’s estimate afy ;,—; from blockb — 1. We sets;,; = 1
for all k. We thus haveV = n(B + 1) and By, = nRyB so the overall rate of usér
is Ry, = Ry, - B /(B + 1) which approacheg,, for large B.
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Figure 3.3: Example of a rate region achieved by DF and baakdacoding for a
two-user MARC.

3.3 Decode-and-Forward

3.3.1 Backward Decoding

Consider 2-user MARC where the sources and the relay use the block-dwakcod-
ing method described above. The relay decodes the messdigbbyrif (see Appendix
B.1)

Ry < I(Xy; Y | XoW VLX) (3.2)
Ry < I(Xy; Y | Xi1 VLX) (3.3)
Ry 4+ Ry < I(X:1 X5, Y |[VIVRX,). (3.4)

The destination decodes the message blocks in reverseusiderits channel-symbol
bIOCkSyd,B+1’yd,B’ Yy The resulting destination rate bounds are (see Appendix
B.1)

Ry < I(X1X,; Yg| X5 Vs) (3.5)
Ry < I(XoX,; Yy X1 V1) (3.6)
Ri+ Ry < I[(X1X2X,:Y,). 3.7)

Fig. 3.3 shows an example of the rate region defined by (3.2)-( For aK-user

MARC, these bounds generalize as follows.
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Theorem 3.1 The capacity region of & -user MARC includes the union of the set of

rate tuples(R;, R, ..., Ri) that satisfy, for allS C I,

[(Xs: Y| Xse Ve X, U),
Rs < min (X3 Vo[ XseVie X U) (3.8)
I(XSXT; Yd|XScVScU)

where the union is over all distributions that factor as

pu) - (TS pees vilu) ) - plo o, w) - pyr, valoi, 22). (3.9)
Proof: See Appendix B.1. [ |

Remark 3.2 The time-sharing random variablé ensures that the region of Theorem

3.1 is convex. For simplicity, we will develop the theoryowefor a constant/ only.

Remark 3.3 The destination decodes the message blagks, wy 51, . . ., w1 With
delays 0of2, 3, ..., B + 1 channel-symbol blocks, respectively. Note tRainust be
large to ensure that the rate-loss factBy/(B + 1) due to block Markov encoding is

close tol.

3.3.2 Sliding-Window Decoding

Suppose the destination uses sliding-window decoding,the destination decodes
the message paftv, ,, wo ) transmitted in block by usingyq, andygp41. For exam-
ple, in Fig. 3.2, the destination decodes; >, w2 2) by usingyd’2 andgdvg. Observe
that (wy p+1, wep41) IS NOt known while decodin@uw, , w, ). One can check that the

bounds in (3.5)-(3.7) are replaced by

Ry < I(Xo; Yy XiViVa X, ) + I(Va X, Yo V1) (3.11)
Ri+ Ry < I(X1 XX, Yy). (3.12)

The analysis used to obtain (3.10)-(3.12) is similar to firasented in Appendix B.2
and is hence omitted. In brief, the tediX;; Yy X>V1V5.X, ) in (3.10) results fromyq,
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Block 1 Block 2 Block 3 Block K Block K+1
21(1111,1,1) El(ﬂ?1.2,ﬂ/1,1) il(wl,s,wm) EI(U)I,KJUL,K—I) El(wl.KHML,K)
User 1
M(l) l}l(wm) 111(101,2) ﬂl(’wl,K-l) El(wl,K)
22(171) Ez(wz,ul) &z(wzmwz,l) EZ(MQ,K—lawz,K—Z) @2(“&,1{7“’2,1{—1)
User 2
»(1) (1) w(ws,1) W (wy,k-2) vo(wa,k1)
EK(Ll) 21{(1,1) EK(Ll) EK(’U)K.ul) EK(U}K.ZNWKJ)
UserkK
vk(1) vk(1) vx(1) vk(1) wk(wk1)
Relay | z,(1,1,...,1) zo(wip,l,.01) | |z wg,wnn,. 1) | - | 20k, w2 k0, 1) || (W1, kW Ko WEL

Figure 3.4: Offset encoding for&-user MARC assuming the relay decodes correctly.

while the term/ (V1 X, ; Yy|V2) is due toya11. In fact, the same bounds result if one

increases the sliding window length to decode messagestframy past blocks, unless

this window includes bloclB + 1. The bounds (3.11) and (3.12) are obtained similarly.
We next compare (3.5)-(3.7) and (3.10)-(3.12). Obvioutig, bounds (3.7) and

(3.12) are the same. But consider the right-hand side of {8k expands as

I(X1X;; Ya| X5 V) = I(X1 V1 X, Ya| X5 Vs) (3.13)
= I(X1; Yg| X, ViV X,)
+ I(Vi X, Y| X, V5). (3.14)

where (3.13) follows from the Markov chaiv;, V2) — (X;, X, X,.) — Yy and (3.14)

from the chain rule for mutual information. We further have
I(ViX,; Ya| XoVa) = I(ViX,; XoYy|Va) (3.15)
> [(ViX,; Ya|Va) (3.16)
where (3.15) follows from the Markov chaii, — V; — (V;, X,.). Note that (3.16) holds
with equality if and only if
I(V1.X,; Xo|VaYy) = 0. (3.17)

Comparing (3.14) and (3.16) with (3.10), we see that thet+igind side of (3.5) is
at least the right-hand side of (3.10). By symmetry, thetrlggnd side of (3.6) is at
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least the right-hand side of (3.11). Hence, backward decpidi at least as good as
sliding-window decoding.

We show by example that backward decoding can be stricthgibttan sliding-
window decoding. Consider a MARC witfd), 1} inputs X, X5, and.X,. Suppose we

have
Y, =X+ X, (3.18)
Yo=X1+ X, (3.19)
where we use integer addition. Any DF rate region must beenctpacity region of
the user-to-relay multiaccess channel. This capacityoremi bits per channel use is
given by (see [30, p. 392])
Rl S 17 R2 S 1, R1 + R2 S 3/2 (320)

One can check that backward decoding achieves this lapgssible DF region with
independent and coin-tossing, Vs, X, X5, and X,. However, for sliding-window

decoding the bounds (3.2)-(3.4) and (3.10)-(3.12) are

Ry < H(X,|V)) (3.21)
Ry < min ( H(Xo|Va), I(VaX,:Ya|VA)) (3.22)

Suppose we desirB, = 1 so that (3.22) implies thaX, is coin-tossing and indepen-

dent of V5. For suchl; and X, the bound (3.23) implies
Ry + Ry < H(X; + X3|V1V3)
=14 H(X,|V})/2. (3.24)
We further have from (3.22) that
Ry < I(VaX,; Yy4|V1)
= H(X1 + X, |V1) — H(X1|W)

< log, 3 — H(Xy|Wh). (3.25)
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The combination of?, = 1, (3.24) and (3.25) gives
Ry < H(X1|V1)/2 < (logy(3) — 1)/2 =~ 0.292. (3.26)

The same bound results if we add a time-sharing random Variato all the entropies
in (3.21)-(3.23). Sliding-window decoding cannot therefachieve the backward de-
coding corner pointR;, R2) = (1/2,1).

For K > 2, the bounds (3.10)-(3.12) generalize to

RS S ](XS;Yd|X3cVSXT) —|—I(V3Xr;Yd|V3c) (327)

forall S C K. One can show that the bounds in (3.27) are in general marectee

than the corresponding destination bounds in (3.8) fofSatl .

3.4 Offset Encoding

To improve sliding-window decoding, we offset the messdgeks from theX sources
by one block per source. Letdenote a permutation (order) of the source indices, i.e.,
7= (m(1),7(2),...,7(K)) wheren(i) € K foralliand{n(i) :i=1,2,..., K} =
IC. We let userr (i) start transmitting in block, i.e., we setw,;), = 1forb < ¢
andb > B + i. The resulting message-to-codeword mappings with offsgéro
T = (1,2,..., K) are shown in Fig. 3.4. Observe that offset encoding uses K
channel-symbol blocks so the overall rate-loss factd? i§B + K).

The relay decodes at the end of each block as before, exapt.th, is now the

relay’s estimate ofv,;) ,—;. We thus require
Rs < I(Xs; Y| Xse Vi X,) (3.28)

for all S C K as in (3.8). In bloclb, the relay sends the codeward(sx ;) where
SKp = {Sk,b ke /C}
The destination uses a sliding window of length+ 1 to decode the message

blocks with the same index Hence, the combined encoding and decoding delay for
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every message block s + 1 channel-symbol blocks. We summarize the resulting rate

bounds below and give the performance analysis in Appead@c2and B.3.

3.4.1 Two Users with Joint Decoding

ConsiderK = 2 and suppose the offset ordersis= (1,2). Suppose the destination
decodesw; 5, wo ) jointly by usingy ,,, v, bit? andy, bio" The analysis in Appendix

B.2 shows that we can achieyB;, R,) satisfying

Ry < I(X1X,; Yy XoVa) (3.29)
Ry < I(Xyg; Yo[ViVa X)) 4+ 1(Va; Yy) (3.30)
Ri+ Ry < I(X1 X0X,5Yy). (3.31)

Note that (3.29) is the same as (3.5) but (3.30) is differearhf(3.6). The difference
arises because the destination does not kagw.; or w, ;o when decodinguvs ;, in
contrast with the situation of no offset discussed in Sec8@.2. We can show that

(3.6) is in general larger than (3.30) by expanding (3.65as (3.13) and (3.14))

I( X5 X, Yo Xa V1) = I(X5Va X, Ya | Xa V1) (3.32)
= [ (Xy; Y| XaV1 Vo X,)

+ I(Va X5 Yo X1 V1) (3.33)

where (3.32) follows from the Markov chaiiv;, 15) — (X1, X5, X,) — Y; and (3.33)
from the chain rule for mutual information. But the first makinformation term in

(3.33) satisfies

I(X2; Y| XaViVa X)) = I(Xo; X1 Ya[ViVRX,) (3.34)

> I(X; Ya|ViV2 X5) (3.35)
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where (3.34) follows from the Markov chaiki; — (V;, V5, X,) — X,. Similarly, the

second mutual information term in (3.33) satisfies

I(VaXo; Yal XiV4) 2 1(Vis Yal X, VA) (3.36)
— I(Va; X, Y2) (3.37)
> I(V; V) (3.38)

where (3.37) follows from the independence af;, V;) and V5. It thus seems that we
do not achieve all points in the backward decoding regiorweler, we next show that
we can obtain the corner points of the destination’s bact#twlacoding region.

There are several types of corner points depending on whttaeolytopes de-
fined by the relay bounds (3.2)-(3.4) and the destinatiomtey3.5)-(3.7) intersect.
We focus on the destination bounds because the relay boumtiseasame for both no-
offset and offset encoding. Note, however, that if the paps intersect as in Fig. 3.3,
then one of the corner points of the shaded region is not eecquint of the destina-
tion’s backward decoding region. To achieve such pointsirits out that we can use
either no-offset or offset encoding, as shown below. Akéxrely, we could time-share

between different offset orders, but this increases thediag delay.

Consider the corner point

(R1, Ry) = (I(X1 X, Yg| XoVa), I(XoVa; Ya)) (3.39)

labeled “r = (1,2)” in Fig. 3.5. We can achieve this point (ignoring the relaybds
(3.2)-(3.4)) provided that the sum of (3.29) and (3.30) ssleestrictive than (3.31).
But (3.31) expands as

R+ Ry < I(X, XX, Yy) (3.40)
= [(X1 X0V X5 YY) (3.41)

= 1(X 1 X, Ya| Xo Vo) + I (X Vo V). (3.42)
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where (3.41) follows from the Markov chaln — (X, X», X,.) — Y;. We further have

I(X5Va; Yy) = 1(Xo; Ya| Vo) + 1(Va; o) (3.43)
< (X9 ViX, Yy Vo) + 1(Va; Yy) (3.44)
= [(Xo; YylViVo X)) + I (Va3 Yy) (3.45)

where (3.45) follows from the Markov chaix, — V> — (V4, X,.). Thus, we achieve the
corner point under consideration. For the offset ordet (2, 1), we similarly obtain
the corner point labeledr = (2, 1)” in Fig. 3.5. The shaded region in Fig. 3.5 shows
the points achieved by no-offset encoding that are define(81)-(3.12). Interest-
ingly, the union of rate-pairs achieved by the three metljodsoffset encoding, offset
encoding withr = (1, 2), offset encoding withr = (2, 1)) is precisely the backward
decoding rate region. Alternatively, we can achieve the&kwacd decoding rates by
time-sharing between different offset orders, but thigeases delay. Rate-splitting
methods [42,43] might let one avoid such delays.

Finally, we remark that the above shows that offset encodmgoves sliding-
window decoding, since one now achieves the corner poinh@feixample in Sec-

tion 3.3.2.

3.4.2 K Users with Successive Decoding

We wish to show that offset encoding recovers the destinativackward decoding
corner points fork’ > 2. However, the generalization of (3.29)-(3.31) is unwiedahyl
gives limited insight. Instead, we use successive decadside the sliding window to
obtain the backward decoding corner points.

We begin by considering the set function (see (3.8))

I(XsX,; Yy XscVse), SCK,S#0D
f(S) = (3.46)
0, S=10
for some distribution satisfying (3.9) with a constant. We claim thdt - ) is submod-

ular [44, Ch. 44]. To see this, considarandk, in IC with &y # ks, k1 ¢ S, ko ¢ S,
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R2 A
/7‘[: (2,
FOX XY [ X V) b 4 No offset
F(X55 Yy | XMV, X, )< _~ (shaded region)
+1 (\/ZXr ;Yd I\/l]
r=(1,2
1 (X, Y, | X V,V,) Vel (1.2)
+1V,0Y,)
R,
OGS TXVVG) TG XY T X,)

. \ 4
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Figure 3.5: Rate region with sliding-window decoding anf$eff encoding.

and expand

F(SU{k}) + f(SU{ka})
= I(Xs Xk, Vi X0 Yal Xisup e Visurane)
+ I(Xs Xk, Vieo Xo5 Yal X (50 y)e Visutraye) (3.47)
= 1( Xk, Viy; Yal X (supry)e Visugre)
+ I(XsX,; Ya| Xs0Vse)

+ I (X5 X, Vi Xo Yal X (sUtahe Visugra)©) (3.48)

where (3.47) follows from the Markov chali — (X, X,) — Y, and (3.48) from the

chain rule for mutual information. We lower bound the firghten (3.48) as

H (X, Vi | X (sute e Visuge e )
— H (X, Vi | X (sUtr 1y Visugraye Ya)
= H (X, Vit | X (501 k1)@ VISULR1 k1))
— H (X, Viey | X stk 1) Visugraye Ya) (3.49)

> 1( Xk, Virs Yal X (sUger ke Visutin ke })©) (3.50)
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where (3.49) follows from the independence of th&., V) and (3.50) because condi-
tioning cannot increase entropy. The expression (3.50®atmlthe final term in (3.48)
is
T(X 50tk koy X3 Yal X (sUtky k) ViSUTEL 2 1)C) - (3.51)
Inserting (3.50) into (3.48), we have
F(S ULk} + f(SU{k}) = f(S) + f(S U{ky, k2}) (3.52)

for bothS # (0 andS = (. The set functionf( - ) is therefore submodular by [44,
Theorem 44.1, p. 767].

The above shows that the rate region defined by the destinadionds (see (3.8))
Rs < I(XsXy;Yg|XseVse), SCK (3.53)

is a polymatroid associated wiftt - ) (see [44, p. 767]). But the non-zero corner points

of this polymatroid are known to be given by (see [44, p. 777])

f{r), .. m(k)})

Regy =9 —f{m(1),....,7(k—=1)}), k</ (3.54)
0, k>
wherer is a permutation of the source indicés= 1,2,...,K,and/ =1,2,..., K.

For example, consider = (1,2, ..., K) for which (3.54) evaluates to

I(X1Xr; Yd\X[z,K]V[2,K])7 k=1
Ry = I(XpVi; Ya| Xpps1, ) Vierk)), 2 <k <{ (3.55)
0, k>/{

whereX k1 k] andVix 1 k) are considered to be constants.

We are mainly interested in the corner points oflthse polytopéefined by = K
in (3.54) (see [44, p. 767]) because the other corner poretachieved by discarding
message bits. The expression (3.54) shows that there apgifbase polytope corner

points, namely one point for eaeh
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Suppose the offset orderis= (1,2,..., K) as in Fig. 3.4. Consider the window

with the channel-symbol bloclqisd In this window, the destination

,1’%,2’ T ’yd,K—i-l'
successively decodesy 1, wx_11,. .., w11 by assuming that its past decoding steps
were successful. In Appendix B.3, we show that one can apprthee rate poinfz =

(Rl, RQ, R RK) with

(X, X, Yo X Var), k=1
R — (X4 4| Xp2,x1Vi2, k1) (3.56)
I(X Vi Yal X1, 61 Vikr1,67), 2< k<K

whereX k1 k) andVix 1 k) are considered to be constants. The codewords contribut-
ing to these rates are shown as shaded blocks in Fig. 3.4. hButates (3.56) are
precisely the rates in (3.55) far= K. Hence we achieve the desired corner point.
We can achieve the other corner points by changing the aifglet 7. Finally, we can
achieve the non-corner points by time-sharing betweerebfieders. An interesting
open problem is whether the union of rate points achievedinguall combinations of
offset orderings and no-offsets gives the backward degodite region (see Fig. 3.5).

If so, then there is no need to time share between offsetarder

3.5 Conclusions

We presented an offset encoding technique for DF that ingzrakie rate region of
sliding-window decoding. The technigue achieves the agromts of the destination’s
backward decoding rate region but avoids the excessivg detciated with backward
decoding. Offset encoding will clearly apply to other miéirminal problems [41, 45—
47].
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Chapter 4

User vs. Relay Cooperation in a Multiaccess Network

4.1 Introduction

Cooperation results when nodes in a network share their pang bandwidth re-
sources to mutually enhance their transmissions and ieagptCooperation can be
induced in several ways. In their seminal paperuser cooperationj3], Sendonaris
et al demonstrate that rate and diversity gains can be achieved atpair of users
in a wireless multiaccess channel (MAC) cooperate. Altelgaone can induce co-
operation by introducing a layer of dedicated relay nodewéen the sources (user)
and the destinations [28]. For example, in [9-13, 48] andréfierences therein, the
rates achieved between a source-destination pair usingromere wireless relays is

studied.

In this chapter, we compare two approaches to inducing catipa in a multi-
access channel comprised Bf sources and one destination. First, we allow source
nodes to forward data for each other and second, we introalugeeless relay node
when cooperation between the sources nodes is either ualolesor not possible. We
refer to networks employing the former approachuasr cooperative networkand
those employing the latter dgerarchical relay networksWe model the user cooper-
ative network as a multiaccess channel with generalizedbisek (MAC-GF) [7] and
the hierarchical relay network as a MARC [45]. We assumelsiagtenna nodes and
place half-duplexconstraints on the transmit-receive capabilities of alles Note
that this requires time-duplexing sources in the coopezatetwork but not in the re-
lay network [28,49]. However, to achieve a fair compariseeassume that the source
nodes in both networks time-duplex their transmissions.déleeloppartial decode-

and-forward (PDF) strategies, also calledultipath decode-and-forwar(MDF) [4],
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for both networks. As the name suggests, in PDF, the coapgnabde/relay decodes
the user messages before forwarding them to the destin&tidher, the sources also
send a additional message that is decoded only at the destinBlote that when the
sources do not transmit an additional message stream tcegtimaltion, PDF simpli-

fies to adecode-and-forwar@DF) strategy and thus our analysis encompasses DF as a
special case (see Appendix C.1). Further, for the user catipe network we present

a PDF strategy that allows an arbitrary number of half-dxplkgers to cooperate with
each other. For a MARC with time-duplexed sources, the PDétegfy simplifies

to that for a half-duplex relay channel [31]. Finally, we alsonsideramplify-and-
forward (AF) strategies for both networks where each cooperatinig oo relay scales

its received signal before forwarding it to the destination

There are important differences between user cooperatigieheerarchical relay
networks that are not easy to analyze from an informati@witétic point of view. For
example, in cooperative networks one likely needs econamsintives to induce co-
operation [21]. On the other hand, hierarchical networksiimfrastructure costs [36].
While incentives and infrastructure costs are importaainents that need to be con-
sidered in comparing the two networks, we use the total tnétresnd processing power
consumed in each network as a cost metric for our comparisdhss, in addition
to a transmit power, we also include in our costs pinecessing poweconsumed at
each node for both cooperative and individual transmissida this end, we present a
model for quantifying the processing power as a functiorhefttansmission rate, and
hence, the transmit signal-to-noise ratio (SNR). The matsa introduceprocessing
scale factorghat can be roughly characterized as the ratio of the enarglyrequired

for processing to that required for transmission. In [4, €3], the authors argue that

cooperation is beneficial in théohg-distancéregime where the energy costs of trans
mission offset the energy costs of reception. Thus, by atoog for both the transmit
and processing power (energy) costs, we identify the regjiniere cooperation is en-

ergy efficient and determine tloeoss-over SNRRndprocessing factothresholds that
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characterize the cooperative regime.

Cooperation in wireless networks has been shown to achiawve ¢n achievable
rates and fading diversity. However, the gains achievedrageneral a function of
the transmission parameters and network geometry. In ant éff generalize such
results, we present area-averageadomparison. Specifically, we consider a sector of
a circular area with the destination at the center and useomly distributed in the
sector. For the case of relay cooperation we fix the posititimeorelay. We remark that
this geometry encompasses a variety of centralized netarohitectures ranging from
wireless LAN and cellular to sensor networks. Further, dwaice of a sectorized area
is motivated by the desire to maximize rate and diversitypgéahat result from both
user cooperation between adjacent nodes and from usingyk seday in a circular
area. We present results for three kinds of wireless champoekls, namely, the no-
fading, the ergodic fading, and the quasi-static fading ehdo model line-of-sight,
fast-fading, and slow fading environments respectivelyr the first two models, we
compare the maximum sum-rates achieved by PDF and AF forraithorks using a
bits/Joule metric. We also compare these results with thecpacity achieved by a
MAC with time-duplexed sources and without user or relaypsyation. Our results
demonstrate the effect of processing power in cooperatidrage summarized by the

following three observations:

e User or relay cooperation using PDF is most desirable ingae where pro-
cessing power is negligible relative to transmit power. §,hwhile coopera-
tion does not achieve multiplexing gains [9, 14, 15], dengehased cooperative
schemes can be relevant in the regime where transmit powts dominate, i.e.,

in thelong-distance communicatiorgime [4, Chap. 6].

e For AF, a cooperative strategy with negligible processiogts, user coopera-
tion achieves negligible gains in rate and energy efficieetstive to the time-

duplexed MAC. Further, relaying is desirable relative tahboser cooperation
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and no cooperation in the regime where processing costeanearable to trans-
mit costs. This is because in this regime, the high procgssists at the users

helps offset the additional transmit costs at the relay.

e On average, relay cooperation is more energy efficient tls@n cooperation.
This is dominantly due to half-duplex nature of resourceng@oand bandwidth)

sharing in user cooperative networks.

In general, the ratio of processing to transmission powpedds on both the device
functionality and the application supported. Thus, forrshemge mobile environments
comprised of either energy constrained devices (such a®sgror devices supporting
high rate applications (such as laptops), it has been shbatrtie processing costs
dominate transmission costs [4,50,51]. On the other hamdrate cellular-like com-
munications are characterized by high transmission codSig:. results indicate that
different cooperative schemes are appropriate for netsvarikd devices operating in

the different processing vs. transmit power regimes.

To understand the maximum diversity gains achievable bywbecooperative ap-
proaches, we compare the outage performance of the two rietfos both DF and AF
as a function of the total SNR at all transmitting nodes. Wecdally consider the
dynamic DF (DDF) protocol where the cooperating nodes @yreboperate with the
transmitting users only after successfully decoding tresieived signals [14]. In gen-
eral, analytical expressions for outage probability artesiagy to develop. However, as
with multi-antenna networks [52], the benefits of coop@mtan be quantified via an
asymptotic diversity-multiplexing tradeoff analysiseséor e.g. [9,14,15,53]. In addi-
tion to the diversity-multiplexing tradeoff, one can algstohguish cooperative strate-
gies and their characteristic distributed architecturesaxcoding (SNR) gain§54]
that quantifies the network topology (quantified via disexdependent path-gains) and
coding scheme. To this end, we develop geometry-inclugipeuand lower bounds

on the outage probability for both networks under DDF and ABeometry-inclusive
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outage analysis is developed in [9, 54, 55] and [16] for tlyghIBNR and the low SNR
(wideband) regimes respectively. We here develop bouridg iggh SNR approxima-
tions and use numerical simulations to demonstrate theopppteness of the analysis
to the intermediate SNR regime.

For a fixed rate and for single antenna nodes, the diversitlgqprexing tradeoff
analysis for both DDF and AF shows that the maximum diveradiyievable for the
relay network, irrespective of the number of uskrss 2 [14,53,56]. On the other hand
in [14] the authors show that for specific cooperative sgiatethei -user cooperative
network can achieve a maximum diversity & Using a geometry-inclusive outage
analysis we show that the maximum diversity predicted byDMetradeoff analysis
may not always be achievable in practical SNR regimes ofestevithout trading off
delay and complexity. Finally, we present the outage resadta function of the total
power to demonstrate the energy costs of achieving a dedivetksity.

This chapter is organized as follows. In Section 4.2, wegmethe network and
channel models and develop a power-based cost metric. tro8dc3, we develop the
PDF, DF, and AF strategies for both networks. We present¢hie@able rate regions
for a non-fading and ergodic fading Gaussian channels audl@® the geometry-

inclusive outage probability analysis for a quasi-staditifig model.

4.2 Channel and Network Models

4.2.1 Network Model

Our networks consist of’ users (source nodes) numbered, ..., K and a destina-
tion noded. For the MARC there is one additional node, the relay no@ee Fig. 4.1).
The input and output alphabets of nokare X, and ), respectively. We impose a
half-duplexconstraint on every node, i.e., each node can be in one of vadeg]isten
(L) or transmit(T) (LoT). We writeXC = {1,2,..., K} for the set of users;s = {z,,
:meS} andRs = ) R, for S C K. For the MARC, we write7 = KU{ r}
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Relay (FN'

Dest—

Figure 4.1: A two-user Gaussian MARC.

for the set of transmitters.

Let X ; € X}, be the input of nodé at timei. We model the two wireless multiac-
cess networks under study as additive Gaussian noise deawitie fading. For such
channels, the output of node at time: is

( > hm,k,iXk,z’> +Zmi Mp,=1L

Y= k#m 4.1)

0 My, =T
where theZ,, ; are independent, proper, complex, zero-mean, unit vagigaussian
noise random variables\/,, ; is the half-duplex mode at node, andh,, ; is the
fading gain between transmittérand receiverm at timei. We assume that both
channels are usedtimes, i.e.;i = 1,2, ...,n. Note that for both networks as well as
the (non-cooperative) MACX,; = 0, i.e., My, = L, for all i. Further, for the MAC,
we also have’,; =0, i.e., M, ; = T, for all i and for allk € K. We assume that the

transmitted signals in both networks are constrained ingo@s
S E|Xpl> <nP, keT. (4.2)
i=1

We assume that the mode#;, ; for all &£ are either known universally to all nodes

at all times or shared, when needed, between all nodes wifligitde overhead. We
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Dest—

Figure 4.2: A two-user multiaccess channel with generdlfeedback.

also assume that the nodes can adjust the duration of thdes1to maximize a desired
performance metric. Finally, we remark that one can geizerghe model in (4.1) to

include a sleep state as well as cost constraints for eacle [Ba¢l

The capacity regiofyarc Of a K-user MARC is the closure of the set of rate
tuples(R;, Rs, . .., R ) for which the destination can, for sufficiently largg decode
the K source messages with an arbitrarily small positive errobability [24]. We
define the capacity regiadfyac.cr of the MAC-GF similarly. Finally, we use the usual
notation for entropy and mutual information [29, 30] andetald logarithms to the base
2 so that our rate units are bits. We write random variables (&) with uppercase
letters and their realizations (e.g.;) with the corresponding lowercase letters. We
drop subscripts on probability distributions if the arguntseare lowercase versions of
the random variables, e.g., we write the distributionf; asp(hy ;). We useh* to
denote the complex conjugate of a scalaand ' to denote the complex conjugate
transpose of a matri¥/. Finally, throughout the sequel we use the words user and

source interchangeably.
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4.2.2 Hierarchical Relay Network

We model the hierarchical relay network as a Gaussian MARE Wi+ 1 inputs X, ;,

k € T, and two outputs’; andYy; given by (4.1). Note that in this network the
sources do not cooperate and thug; = 0, for all £ € K. In general, all users in
a MARC can transmit simultaneously while the relay halfdgups its transmissions
[45] (see Fig. 4.1). However, for comparison purposes a$ ageto simplify the
exposition, we consider a time-duplexed model where eagitedransmits messages
over the channel for a fixed peri@tl= 1/ K of the total time. Further, the transmission
period of sourcé:, for all k, is sub-divided into two slots such that the relay listens in
first slot and transmits in the second slot. We denote theftiaogions for the two slots
asf, andf, = 1 — 6, for userk such that, = Pr(M, = L) = 1 — Pr (M, =T).
The time-duplexed two-hop scheme for the MARC is illustateFig. 4.3 for usee
whereC, = {r} denotes the set of nodes that cooperate with 29éfe remark that the
time-duplex multiaccess (TDMA) model considered here $ifiep the analysis for the
MARC to that for single-source relay channel and hencefeghefer to this model as
a TD-MARC. Finally, note that Fig. 4.3 also includes the simf schemes for a MAC
and a MAC with time-duplexed sources (TD-MAC).

4.2.3 Cooperative Network

We model the cooperative network as a Gaussian MAC-GF (sge £2). In [7],
Willems developed a cooperative strategy, now often reteto as PDF, for a two-
user MAC with cooperating sources. In general, there is abwoatorial explosion in
the number of ways one can duplé&xsources over their half-duplex states. In [45],
we present a scheme where Allusers cooperate with each other ovér- 1 slots.

In general, however, only a subset of sources with apprgpiiger-user channels can
benefit from cooperation. We now present two schemes tloat athch user to be aided

by an arbitrary number of users, up&a In both schemes the users time-duplex their



57

T T T T T T T T
TX: TX: TX: TX: TX: TX:
All Users| All Users ce All Users User 1 User 2 ce UserK
MAC TDMA-MAC
T T T T T T T T
TX: TX: TX: TX: TX: TX:

User 1 User 2 T UserK User 1 User 2 tee UserK
TX: 2 TX:2,C, C, =3, 4 or :)((2 | TX:. 2,3 TX:. 2,34 G =34
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Figure 4.3: Time-duplexed transmission schemes for the KARRe MAC-GF, and
the MAC.

transmissions such that each user transmits its messagea fixed period” = 1/ K
of the total available time. The two schemes differ in the naarthe period’ is further

sub-divided between thetransmitting and the cooperatiegs.

In the first scheme, we restrict cooperation tava-hop schemsuch that the period
over which uselk, for all k, transmits is sub-divided into two slots. In the first slot
only userk transmits while in the second slot both ugesnd the sef,. of users that
cooperate with usek transmit as shown in Fig. 4.3 for userandC, = {3,4}. We
remark that this scheme has the same number of hops as the Mé&i@he described
above except now one user at a time is aided by some set ofugbes, i.e.C, C K.
We writed,, and1 — 6,, to denote the time fractions associated with the first andrskc
slots of usek such tha¥, = Pr (M; = L) =1—Pr(M; =T)forall j € Cy.

The second scheme we consider isialti-hopscheme where we divide the total
transmission time for sourdeinto L, slots,1 < L, < K. Thus, in each time-slot,
except the first slot where only uskitransmits, one additional user cooperates in the

transmission until all,, users transmit in slaf,. We denote thé&” time fraction for
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userk asfy,, | = 1,2,..., L. Note thatL, = |Cx| — 1 whereC;, is the set of users
that cooperate with usér. The time-duplexed.,-hop scheme is demonstrated in Fig.
4.3 for user2 with L, = 3 andC, = {3,4}. We henceforth refer to this model as a
MAC-GF with time-duplexed sources or simply a TDMA MAC-GF.

Remark 4.1 Observe that the TDMA model described for the MARC is als@atwp
model withCy, = {r} for all .

Remark 4.2 We remark that for both networks under AF, we assume equgthestots

and consider a symbol-based slotted two-hop and multi-bbprae.

4.2.4 Cost Metric: Total Power

From (4.2) we see that the cooperative relay network hagiaddi power relative
to the other two networks due to an extra relay node. We irratp a measure of
fairness in our comparisons by using the total power conslilmgeeach network as the
cost metric. Further such a comparison also allows us toldevtke energy regimes
where cooperation is desirable.

We observe that in addition to a transmission power cost & rabg&b consumes
power in processing, i.e., encoding and decoding its tréssams and receptions re-
spectively. In addition to its own transmission and processosts, a node that relays
for others consumes additional power in encoding and dagqeiickets for others. We
account for this by introducing processing costs for bottoeing and decoding as a
function of the transmission and reception rates. To this @ define encoding and
decoding factors), andd, respectively and write the power required to process the

transmissions of nodgat nodek as
PP = PLY° + (eI (5) + el (7)) f(Ry) forallke T,jek  (4.3)

wherel™ () and g (j) are indicator functions that are setitd userk encodes and

decodes respectively for usgrP; ™ is the minimum processing power at ugethat
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in general depends on the device functionality and desigth faR;) is a function of
the transmission rat&; at user;j. Note thatP,” is the power consumed by node
in processing its own transmissions whit§’” is that required to cooperate with user
j and thus, by definition?;°c = P,*. The functionf modeling the processing cost
typically depends on the encoding and decoding schemesasseel!l as the device
functionality. For the Gaussian channel model considersée,hsince the rat&), is

proportional to the transmit SNR,,, we choosef as

f=1log(1+ P) forallk. (4.4)

Note that in general the rat®, depends on the cooperative scheme used. However,
we justify the choice off in (4.4) by observing that cooperative schemes, while en-
abling coherent combining gains, do not achieve multiplg>gains relative to non-
cooperative communications. Finally, we assume that tgrdgion in typical multi-
access networks such as cellular or many-to-one sensoonety{b7] has access to an
unlimited energy source and ignore its processing costenmpaiting the total power
consumed in the network.
We thus write the total power consumed at nadé € 7, as
P+ P+ Y. LGP kek
Py tot = JERIER (4.5)
P+ > L(5) P k=r
JjeK

where[;(j) is an indicator function that takes the valuéf node &£ cooperates with
nodej. The firstP” term corresponds to the power used to process its own message
while the second summation term accounts for the power hadeurs in cooperating
with all other source nodes. Observe that the relay nodeianlys processing costs

for those source nodes that it aids.

The total power consumed by all transmitting nodes in eathaoré& is given as

> Pt MAC-GF or MAC
Py =4 ** (4.6)

S Pt MARC.
keT
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We remark that for the AF strategy,” = P, + P/,* a cooperating node or the relay
does not expend power in processing (encoding and/or degpsignals for any user.

We write the power normalized rate in bits/s/Wattlfits per Joule) as

Repy = F% bits/Joule 4.7)

where P,; is the total power consumed by all transmitters involveddhieving the
rate R and is given by (4.6). We refer to the power normalized suta-aghieved by

a specific communication strategy asatgergy efficiencin bits per Joule. Thus, for a
K-user multiaccess network, the energy efficiency for a giggcansmission scheme

is given by the ratio of largedt, achieved by the scheme to the total consumed power
P, In (4.6). One can similarly compare the outage probabilftg onultiaccess net-
work as a function of?,; for different cooperative and non-cooperative commurocat

strategies.

4.2.5 Fading Models

We model the fading gains as

hm,k,i = il (48)

whered,, ;. is the distance between the" receiver and thé'" source;y is the path-
loss exponent, and,, . ; is a proper complex fading random variable. We assume that
the fading gair,, ;. ; is known only at receivem. We consider three kinds of fading

channels in this paper.
1. nofadingA,, ., = 1 for all m, k, 1.

2. ergodic Rayleigh fading wher&,, ;. ; are jointly independent and identically dis-
tributed (i.i.d) zero-mean, unit variance proper, comgkaussian random vari-

ables.

3. quasi-static Rayleigh fading wherg, ;. ; are jointly i.i.d zero-mean, unit vari-

ance proper, complex Gaussian random variables.
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We assume that the fading gains are independent of the titd@draignalsXy,
for all £ € 7 . Finally, without loss of generality, we assume that no twoes are

co-located.

4.3 Cooperative Strategies

We now develop the cooperative strategies of PDF and AF ®twlo networks. For
each network, we present the rate regions achieved by thetrategies for the no
fading and ergodic fading channel models. Finally, for thasi-static fading channel,

we present an outage probability analysis.

4.3.1 Partial- and Dynamic- Decode-and-Forward

In [6], Cover and El Gamal present an achievable strategy feingle-source relay
channel where the relay decodes the source messages hwfoaeding them to the
destination. This strategy, now often called decode-amadrd (DF), extends easily
to both a full-duplex [10, 58] and half-duplex MARC [28]. Nothat for half-duplex
channels, the cooperating node or relay decodes the meksagé¢he source in its
‘listel mode and forwards the decoded message intigsmsmit mode. The source
on the other hand transmits the same message in both modes.cadngeneralize
this construction by allowing the source to also transmitea message in the re-
lay’s ‘transmit mode. We refer to the resulting strategy as partial dectdforward

(PDF) (see [31, Sec. 3.3)).

MARC with Time-Duplexed Sources

For a MARC with time-duplexed sources the PDF strategy fehasser simplifies to
the PDF strategy for a single-source relay channel (see§&d., 3.3]). In Appendix

C.1, we develop the PDF rate bounds for a general singlessauulti-relay channel
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under a two-hop scheme. We specialize the bounds for thedupkexed MARC
below.

Achievable RatesThe rate bounds achieved by PDF for a Gaussian single-sourc
relay channel under a half-duplex constraint are developAgpendix C.1. We briefly
describe the code construction below. We use Gaussianlisigrs the sources and

relay such that in slat, in each use of the channel, ugetransmits

Vo PrpU, frac. 0
X, = k_k g _ _k (4.9)
VapPryQr + Va, PV, frac. o,
wheref, = Pr (M; = L), Uy, Q, andV}, are i.i.d circularly symmetric complex Gaus-
sian random variables with zero mean and unit varianceaangt 1 — o, and from

(4.2) for time-duplexed users we have

P, = KP, (4.10)

P, = P,/0,. (4.11)

Finally, the relay’s signal in its transmit fraction is

X, =/ P, V. (4.12)

From (4.9), we see that souréetransmits a new message \i& in both fractions
while allocating a fraction of its power to cooperating witke relay viaV,, in the
second fraction. In Appendix C.1, we show that when the cbbgains are fixed, the

rate Ry, is achievable when

Rk S (gnax) min (I{ (Gk, Oék) y Ig (Hk, Oék)) (413)
k Ok
where
I7 Ok, o) = Oy log (1 + |hr,k|2?k) + 6x log (1 + o |hd,k‘i?k) (4.14)

I3 (O, o) = O log (1 + |hayls Pr)

+ gk IOg (1 + |hd,kz|2 Fk + |hd,r|2 FT + 2Re (\/ akﬁkﬁrhd7kh2m))

(4.15)
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The sum-rate of the TD-MARC is then obtained as

1
R = - > Ry (4.16)
k=1
For the ergodic fading case we writg as
Ry, < max min (EI7 (0, ag), EL; (Ok, ax)) (4.17)

(Glmak)

where the expectation is over the joint fading distributiddote that we assume that
the channel state information (CSI) is only known at the inems. Thus, we can use
an analysis similar to that in ([33, Sec 4.2]) to show that= 1 maximizes the bounds
for this case, i.e., the sources and the relay do not ach@werent combining gains at
the destination.

Outage Probability For a quasi-static fading channel where the CSI is not avalil
able at the transmitters, an outage occurs when the ratentrdad falls below that
supported by the channel. Observe that to achieve the bgiatasity gains of & x 1
antenna array, it suffices to consider the DF strategyjmnéhe £*" slot, for all &, user
k and the relay use independent codebooks iffHeaction to retransmit the message
transmitted in th&, fraction. The resulting code construction for useimplifies as

\/ Oék?kUk frac. Gk

X, = (4.18)

Vi Oékﬁka frac. gk

while the relay transmits

whereU,, @i, andV,, are i.i.d circularly symmetric complex Gaussian random-var
ables with zero mean and unit variance. One can use the saimadees as in Ap-
pendix C.1 to show that the achievable rate for a particalstantiation of the channel

is bounded by

Ry, < min (17 (6,) . T3 (61)) (4.20)
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where

I7 (O, o) = O log (1 + |he i) Py) (4.21)

I (O, o) = O 1og (1 + |hayls Pr) + 0k log (1 + |hayl® Py + |has* Pr) . (4.22)

Specifically we focus on thdynamicDF protocol [14] where the relayistens
until it can successfully decodes the message from kisdihus, the fractiord,, is a

random variable defined as

0, = min [ 1, L — (4.23)
10g (1 + |hr,k| Pk)

where Ry, is the rate at which usér transmits. The outage probabilifyo(k) is then

given as

P®) = Pr (15 pp(6r) < Ry). (4.24)

wherel; - (0;) is
I;,DF(HIC) = Qk 10g (1 + |hd,kz|2ﬁkz) + gk IOg (1 + |hd,k|2ﬁkz + |hd7r|2ﬁ,n) (425)

In [14], the authors determine the diversity-multiplexingdeoff for a half-duplex re-
lay channel under DDF and show that DDF achieves the diyegsiins of a2 x 1
antenna array for small multiplexing gains. In Appendix ,G\@ develop upper and
lower bounds on the outage probability. For simplicitysssg largen, we relax the

fractional requirement oy, and derive the probability distribution éf as

—27% Ok d] Ryln2y 9y
exp(——=—25) - R In2 - exp(fel22) . b <@, < 1
p(Or) = p en (4.26)
1 — exp (& 6, = 1.
b (=) :

Observe that the discrete distribution for fractiofjals obtained by integrating (4.26)
over the appropriate range @f.
We use the functional form ¢f(6;,) to simplify the mixed distribution in (4.26) with

a discrete distribution with two elementg, and1 whered; is the half-duplex fraction
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at which its probability distributiom (6, ) is maximized. We use this simplification to
show thatP\" can be approximately bounded as
(2R - I)lekdlr

P,ox1 < Po(k) <K —
2P

~ KPO’2><1 (427)

whereP, . is the outage probability of 2 x 1 distributedMIMO channel whose""

antenna is at a distanck;, i« = k,r from the destination. Without loss of general-

ity, we assume that no two fading states have the same scibedai.e.,P;, / dlk #+

Py /dj, forall k andd,. Under this assumption, we can apply lemma C.2 from Ap-

pendix C.2 to upper bound boutt] 5, as

(2% — 1)*dj . dy,
2P,

Pyox1 <

(4.28)

and show thaf, »; asymptotically approaches the bound in (4.28) (see als® i
Finally, the coding gains factdk relating the bounds ofi" to the MIMO bounds is

(QR/(1_9;;) ~1)P, QdZ’k
K:( Gt (4.29)

whereP: = P,/ (1 —65), andp(6, = 1) is given by (4.26). We remark that for most
geometries of interest, i.e., those where the source i®cctosthe relay than to the
destinationf; << 1. We demonstrate this in Fig. C.3 for a collinear geometrjhwit
dar = 1 andd,, = 0.5. In this regime of interest, we also observe that the bounds o
P are relatively tight. Finally, throughout the sequel wamssP;, Jdy . # Py /d},

for all £ andf,. We justify this assumption ny noting that such an assumgtads in
general for arbitrary choices of node powets half-duplex fractiord,,, and a random
distribution of nodes over a fixed area.

Thus from (4.28) we see that for a fixed rate transmissionpteimum diversity
achieved by DDF i, as predicted by the diversity-multiplexing tradeoff foDB.
Additionally, the factorK upper bounds the multiplicative factacgding gain$ by
which P{* differs from the MIMO lower bounds. Observe that the boumdi27) get

tighter asd; , — 0, i.e., when usek and the relay form a cluster. Furth&rdecreases
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as P, increases and/af, ;, decreases; note that decreasihg also decrease®; as
shown in Appendix C.3 thereby revealing the optimal nodemgtaes for whichP
is closest to the MIMO bounds. We remark that these bound&iexguch behavior

observed via simulations in ( [49]) for a simple collineaogeetry.

Finally, we observe that for single-antenna sources antind¢ien, to achieve a

maximum diversity greater thahrequires a multi-antenna relay.

Time-Duplexed MAC-GF — Two-Hop Scheme

Achievable RatesWe consider the PDF strategy and develop the set of achHesvab
rates for this case. Recall that in the two-hop scheme, osdy iutransmits in the
first hop for a fraction of timé), while both usek and all the cooperating users@p
transmit in the remaining fractiofy,. Thus, for this case the code construction at the
transmitting user is the same as that for usar (4.9) for the time-duplexed MARC.

In its transmitting fractiord,,, the cooperating usegrtransmits
X; =1/P; 0,V forallj ey (4.30)
whereP,, for all k ¢ K satisfies (4.2) and is obtained as
P.=P,-K/(N,+1) (4.31)

where N, is the total number of users whose messages are decodedramdded by
userk. Note thatNV, < K — 1 and is not related td,, = |C;|. Comparing (4.10) and
(4.31), we see thaP, decreases when uskforwards data for an increasing number
of other users. Finally, in the transmit fractiép, userk splits its power between
cooperating with the users (i and transmitting a new message. In Appendix C.1, we
show that for the case of fixed channel gains, the achievatddzy, is

Ry, < max min (I7 (0k, o), I5 (0k, ) (4.32)

(ekva)
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where

I§ (O, ) = O ?é}:rkl (log (1 + |hjxl* Pr)) + Oxlog (1 + ay |har|” Pr) (4.33)

I2c (Ok, Oé) = Qk 10g (1 + |hd,kz|2ﬁk)
2
+0plog | 14 ay |hd7k\2?k +

V@ Pihar + > \/ Pi/ Oxhay

J€ECk

(4.34)

Note that forC,, = (), 6, = a;, = 1 maximizes (4.32) thereby simplifying (4.32) to the
the point-to-point capacity bounfl, < log (1 + \hd,kfﬁk).

The sum-rate of the MAC-GF with time-duplexed sources ig thigtained as

1
R = - > Ry (4.35)

Finally, we remark that the rates achieved over an ergodiafechannel are obtained
by averaging/{ andI$ over all channel fading states. Observe that due to lack &f CS
at the transmittersy;, = 0 for all £ for this case.

Outage Probability We study the maximum diversity gains achieved by consid-
ering the DF strategy, i.e., usét for all £, retransmits the same message in both
fractions. Note that due to lack of transmitter CSI, the codiestruction for this case
in contrast to that in (4.30), simplifies to using indeperidg@aussian random variables
at the user and the cooperating nodes. Here again we studyressD&egy where the
fraction is chosen such that every node in the&ebf cooperating nodes decodes

the message transmitted by ugeiThus, we have

0, = min | 1, max UL = . (4.36)
i€Ck | log (14 |hjul” Pr)

An outage occurs when the transmitted r&jeis larger than the rate bound achieved

at the destination. The resulting outage probability farisis

P®) = Pr (I pp < Ry) (4.37)
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wherels ;. is

I$ 5 (0y) = Oy log (1 + |hay|* Py) + 01 log (1 + Rkl P+ ) [hal? %) .

e (4.38)
Observe that fo#, — 1, the firstlog term in (4.38) dominates the outage probabil-
ity and thus we achieve a diversity approachinghich is the maximum achievable
when the source transmits directly to the destination. @notiher hand, a8, — 0,
I5 pr(01) is dominated by the secondg term in (4.38) and thus, the achievable di-
versity approaches,, the maximum diversity of &, x 1 distributedMIMO channel
whosei’" antennaj € S;, = C, U {k}, is at a distancé,; from the destination.

To the best of our knowledge, the diversity-multiplexingdeoff for this two-hop
scheme has not been evaluated. However, from (4.36) anl) (&8 see that irrespec-
tive of node geometry, one can choddg and henceP,, sufficiently large such tha,
is negligible. Thus, we can asymptotically approach thegeiprobability of &, x 1
MIMO channel wherd.;, = |Cx| + 1. In Appendix C.4, we derive an approximation to

Po(k) and show that

. Li s\ Li—1
(2 1) (7)) o @ =02 (Shee, )
] ) JEC' ]7k
Po,LkXISPO(k)S T Hﬂ+ 2 -

L) (PR)™ jes N P,

(4.39)
where); = P;/ Py forall j € Sy, 0; = arg maxy, p(6x), andd,, = 1—6;. Note that for
the case whergé, = 2, our analysis simplifies to the outage analysis for the dafitex
relay channel. We now consider the case whigre> 2 since this case suggests that
the two-hop cooperative network can potentially achievgdadiversity gains than the
time-duplexed relay network. Comparing the two terms ingammation in (C.74),
we see that the first term dominates only when

(Z %) <G (4.40)
jec. (
where(C, is a constant independent &f, and is obtained by substituting (4.40) in

(4.39) and equating the two terms in the summation. Thuscheeae the maximum
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diversity L;, we need to choosB, for all k£ large enough such that the finite distances
d;r for all j € C, satisfy (4.40). Alternately, for a fixed choice &f, for all £, we
require userk and its cooperating users (i to be clustered close enough to satisfy
(4.40).

Thus, we see that except when the inter-node distances éetgert and its co-
operating users austeredi.e., satisfy (4.40), the maximum diversity gain achieved
by DDF for a two-hop cooperative network does not exceeddhatsingle-antenna

relay network. We demonstrate this distance-dependemtviomhin Section 4.4.

Time-Duplexed MAC-GF — Multi-Hop Scheme

Achievable RatesAs with the other two cases, here too we consider the PDEeglra
and develop the set of achievable rates for this scheme.|IRleatin the multi-hop
scheme, following the first fractiofy, ; where only use& transmits, in each of the
fractionsd,;, | = 2,3, ..., Ly, one additional user cooperates in the transmission until

all L, users transmit in slat,. Note that,, ;, for all /, satisfy

Ly,
> =1 (4.41)
=1

Thus, for this case usértransmits

Vap PrpU, O, l=1,2,... Ly —1
X, = LUk k,l k (4.42)

V arPrQr + vV ap PiVj, gk,Lk-
Thus, usek transmits the same signal in the fidgst — 1 fractions until all thel,, — 1
users decode its message reliably. kgf-) be a permutation off, such that user
i, (1) begins its transmissions in the fractiéy;, for all | = 2,3, ..., L;. We further
definer, (1) = k andm, (i : j) = {m(i), me(i +1),...,m(j)}. The signalXy,

transmitted by uset;, (1) from 6, , onwards is

Xro) = \/%Vk for all . (1) € Cy (4.43)
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whereP;, for all k € K is given by (4.31) andy,, is the total transmission fraction of

userr (1), =1,2,..., L, and is given as

Ly, -1
Oi =Y Ohy=1-> b, (4.44)
j=1 j=1

Note that, as expected, the total transmission fractiongerk is 5,@71 =1 and
SOk =Pr(m () =T)=1—Pr(m (I)=L) foralll. (4.45)

We writed,, to denote the vector of time fractions with entrigsforall [ = 1,2, ..., L;.
In Appendix C.1, we show that for the case of fixed channelgydlire achievable rate

R;, for this scheme is

R < max maxmin (I (0, ), I5 (6, @) (4.46)
7k (2: L) (0),0)
where
2
’ Pry(m)
I¢ = 1 _7Tk m
1 (Qka le{ZIanLk} Z Ok j 108 mZ: 1),mp(m) ehm
+ O, log (1 + oy |hax|” Pr) (4.47)
I5 (0, @) = Op 1 log (1+ |hd,k|ipk) + Z Opilog | 1+ Z : hd]
= j=mp(1) VORI
. Wk(Lk) F 2
+ 0k, log | 1+ aglhasl’ Pe+| D y —Lhail |- (4.48)
j=mp(2) V7RI

Note that forC;, = 0, 0,1 = a, = 1 maximizes (4.32) thereby simplifying (4.32) to the
the point-to-point capacity bound;, < log (1 + |hd,k|2?k). As before, the sum-rate

of the MAC-GF with time-duplexed sources is then obtained as

1 K
== > Ry (4.49)
k=1

Finally, we remark that the rates achieved over an ergodiogachannel are obtained
by averaging/{ and IS over all channel fading states. Observe that due to lack &f CS

at the transmittersy;,, = 0 for all £ for this case.



71

Outage Probability We study the maximum diversity gains achieved by consider-
ing the DF strategy, i.e., we se}, = 1 such that usek retransmits the same message
in all fractions. However, due to lack of transmitter CSle ttode construction for
this case in contrast to that in (4.30), simplifies to usind.i.zero-mean unit variance
Gaussian random variables at both useand the cooperating nodes. Note that the
transmit power at uset, Py, is given by (4.31). Here again we consider the DDF strat-
egy. However, unlike the two-hop case where the choiag a8 dictated by the node
with the worst receive SNR, we now choose the fracipnsmall enough to ensure
that at least one node, denotedmag/ + 1), decodes the message from ukefThus

the fractiond,,;, forl =1,2,..., L, — 1, is given as

. . R
minmin<{ 1, | ——% =1
0 JECk { ’ ’710g<1+|hm7j|2pk)
kil — -1 m 25 o)
' . . Re=300 2y Ok 10g (1427 [Py ()| Py (i) / Ok -
min min < 1, - ( — = ) 2<I<L;
J€CL (1) 108 (14524 [y )] Py i) /O )

(4.50)
whereLy, = Ly, — 1,C, (1) = G\ {m (I)}._,, i.e., the minimization o8, in (4.50) is
over the set;, that results from excluding frordi;, the set of users chosen to transmit

in thel — 1 preceding fractions. Finally ., is

Opr, =1— Y Or. (4.51)

In general, computing the probability distribution pff; ;) is not straightforward.
However, in Appendix C.5 we show that it suffices to consigecsic values op (6, ;)
to obtain upper and lower bounds o).

An outage occurs when the transmitted r&fgs larger than the rate bound achieved

at the destination. The resulting outage probability farisis
P®) = Pr (I pp < Ry) (4.52)

wherels . is

Ly, 1 _
15 pp(0) = Ok 10g (1+ [hax* Pr) + D O log (1 + > him | fw)

1=2 j=1 Ori

(4.53)
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andd,,, is defined in (4.44). In general, it is not easy to obtain ddsem expressions
for the probability distribution ob;, ;, for all [. However, in Appendix C.5, we show

that for smallo; ,, 1 = 1,2, ..., Ly — 1, P is bounded as

7" Ly Li—1
2Rk/9k,Lk _ 1) o k y
Pyr.x1 < P® < ( — <L5’Lk) . %
(Li!) (Py) JESK Aj
(2 — 1)k (H c d77k> Ay
n e . (4.54)
Pk
where from lemma C.2 we show that
oRk _ Ly d
Popxi < ( ) IT-2 (4.55)

S — L. ]
(Lk') (Pk) F JESK )\J
and asymptotically approaches it. Thus, we see that DDFeaekia maximum diver-
sity of L, for a L,-hop cooperative network. However, achieving this ditgreomes

at a cost of increasing transmission and decoding delays.

4.3.2 Amplify-and-Forward

The cooperative strategy of amplify-and-forward is retéviar nodes that are limited
in processing capabilities. Thus, instead of decoding tleeeived signals, the coop-
erating node or relay, amplifies its received signal and éods the resulting amplified
signal to the destination. We first develop the achievaltésrand outage analysis for a
two-hop network where usét, for all £ € K, is aided by thd.,, — 1 users in the sef,.
Note that forL, = 2 andC,, = {r}, the analysis specializes to that for a time-duplexed
MARC. Without loss of generality, we considér = 1/2 for the two-hop scheme and
Oy =1/Lg, 1 =1,2,..., Ly, for the L,-hop scheme.

The AF outage analysis and diversity-multiplexing tradémf a half-duplex relay
channel was first studied in [9] under the assumption thasdliece and relay transmit
over orthogonal channels. The diversity-multiplexingderaff for the more general

choice of non-orthogonal signaling schemes at the sourdeeaay is studied in [14].
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For the same channel, the AF ergodic fading rate and outag®apility is studied
in [59] for both orthogonal and non-orthogonal signalingesmes at the source and the
relay. For akK -user multi-hop cooperative network, the authors in [14gent an AF
protocol that achieves the diversity-multiplexing traffed a £ x 1 MIMO channel.
Finally, in [54], Laneman develops a coding-gain and geoyreclusive AF outage
analysis for a half-duplex multi-relay channel for the caserthogonal signaling at

the source and cooperating relays.

For a half-duplex MARC, the AF rate region is presented in|.[28or a MARC
with time-duplexed users, the AF rate and outage analysiplgies to that for a half-
duplex relay channel. For a MAC-GF with time-duplexed useespresent an AF rate
and outage analysis for both the two-hop and the multi-hbpree. We also present a
simple AF protocol for the multi-hop scheme. For the ergatiiannel we assume that
the channel gains are the same in both fractions and thaestmdtion also knows the
fading gains at the cooperating nodes. Finally, we alsogotagoper and lower bounds
on the outage probability for both the two-hop and the migp scheme. Due to the
difficulty in obtaining abalytically precise outage exmsiess, we apply a geometry-
inclusive high SNR upper bounds developed in [55] and loveemia the outage by the

outage of an equivalent MIMO channel.

Two-hop User- and Relay-Cooperative Networks

Achievable RatesConsider the transmission of uskiin the £ time-slot (see Fig.
4.4). We first study the no fading case. The signials andY, » received at the desti-

nation in the first and second fractions respectively are

Yo1=hapXe1+ Zaa (4.56)

Yoo = hapXeo + <Zjeck hd,ij) + Za2 (4.57)
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Fraction g, =1/2 Fraction §, =1/2
TX: Userk TX: Userk
TX: Userrm (1)
TX: Userr, (2)

TX: Userr, L, )

Figure 4.4: Encoding scheme for a two-hop AF strategy.

whereX; , is the transmitted signal at nogen the second fraction and it depends on
Y1, its received signal in the first fraction via a scale factoas
Xj72 = CjY;"l =Cj (hj,ka,l + Zj71) . (458)
where
> 2P;
el = s
\hjkl” Pr+1

For ease of analysis, we write

C = \/ 1+ (Zjeck \cjhd,jﬁ) (4.60)

and simplify (4.56) and (4.57) as (see also [59])

(4.59)

Y, =HX, + 2, (4.61)
where
- T
Ya= Yy Yoo/ e (4.62)
- T
K}{; = _Xk,l X&g] (463)
- T
Zd = Zd,l <2jéck i_ihd’ijJ) + ch52:| (464)
and
N g 0
H= (4.65)

> Zhajhik har/cs .
j€Cx
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For the two-symbol channel in (4.61), we maximize the aciide rateR;, by choosing
X} as Gaussian distributed and subject to the power consing#h®). We thus achieve

all R, that satisfy [1, Sec. 3.1]

1
R;, < max ~log |l + HQ:H'|. (4.66)
Qu=B(X,, X}):tr(Q)<2Py, 2

Remark 4.3 The AF analysis for the half-duplex relay channel is obtdibg setting
Ck = {7’}

Remark 4.4 Note that the above analysis assumes that the destinati@udition to

knowinghg, andhg ; for all j € Cy, also knows the channel gainsy, for all ;.

Remark 4.5 One can also consider a relatively simpler orthogonal rélgyscheme
where usek transmits on an orthogonal channel to that used by xthe c@tipg users

in Cy, i.e., X » = 0. Note that the resulting AF rate will be smaller.

Finally for the ergodic fading case, the achievable rat@isioed as
Ry, < E% log |I + PLHHY| (4.67)

where the expectation is over all the jointly independedirfg processe$h; ,, }, for
alll € C, U{k},m=dorl € Cy, m = k. Note that due to lack of transmitter CSI the
bound in (4.67) is maximized when usetransmits i.i.d Gaussian signals in the two
fractions.

Outage AnalysisDue to a lack of CSI at the transmitters, we maximize the @utu
information, and hence minimize the outage probability,chposingXy ; and Xy -
as independent Gaussian signals [33]. We circumvent tiiewif in developing an
exact expression for the outage probabilRy,; by presenting high SNR upper and
lower bounds orP,,,;. Expanding (4.66) and ignoring fading terms to the fourtiveio

(see also [59]), we can write the outage probabihy; as

1 — 1 -
Pou = Pr | Slog | 1+ [haxl* Py <1 + C—) += 1D Z—Jhd,jhj,k < Ry

(4.68)
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where Ry, is the rate at which usér transmits. In general, an analytic expression for
P, is involved. However, one can lower bou),; by the outage probability of a
Ly x 1 distributed MIMO channel witl., — 1 antennas transmitting the same signal.

Thus, we have

2
P, > Pr (log <1+|hdk| Pk"’Pk}Z hd] ) <Rk) (469)
—Pr <log (1 + [haxl? Py + Py 1| ) < Rk) (4.70)
(27 —1)° dj

9P (S, 1) -

where (4.70) follows from the fact that the suij,, of complex Gaussian random
variablesh, ;, for all j, is also Gaussian distributed while (4.71) follows from ap-
plying lemma C.2 in the high SNR regime. The expressfon) ~ g(z) implies
lim, . f/g=1.

On the other hand, one can upper boufg by the outage probability of an or-
thogonal AF protocol withC;| = 1. The bounds for the latter network in the high SNR
regime are developed in [54] and we summarize them below as
(228 — 1) d],

2P.

Pout <

(4.72)

where

d' = max (], +dy ;) . (4.73)

J€ECk

Thus, we see that the maximum diversity achievable by a wwAF scheme in the
high SNR regime is at mogtand is independent of the number of cooperating users
in C. At the other extreme of the low SNR wideband regime, theastin [16] show
that for a half-duplex relay channel AF does not achieve tge BNR diversity gains

and propose an outage capacity achieangstyAF scheme.

Multi-hop Cooperative Network

We consider a simplé,-hop cooperative AF protocol where ugders aided by user

e (1),1 =1,2,..., Ly, in thel" fraction, i.e., user (1) forwards in the fractior;, ;
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Fraction 4, , Fraction g, , Fraction 6, ,, -, Fraction 6,
TX: Userk TX: Userk .. | TX:Userk TX: Userk
TX: TX: TX:
Userr, (1 Userm (., — 1) Userrm, L, )

Figure 4.5: AF encoding for usérin a K -user multi-hop cooperative network.

a scaled version of the signal it receives from usar the first fraction (see Fig. 4.5).
Note thatr, (1) = k andf,, = 1/L, for all [. We denote the received signal at the

destination in thé™ fraction asY;; and write

Yai = harxXeg + ham) Xepyya + Zag 1 =1,2,..., Ly (4.74)

where the signak,, ;); transmitted by user;, (/) in the!*" fraction depends on signal

Y., o)1 that it receives in the first fraction as

Xord = Crp) Ym0 = Crp() (Prp ) 6 Xk + Znp)1) (4.75)
and
2 Li Py
len|” = ol (4.76)
‘hwk(l),k‘ P, +1
Achievable RatedNe simplify (4.56) as
where
r T
Xd = _Yd,l Y;Lg/ 0/2 . Yd’g/ClLk] (478)
_ T
Xk = Xk71 Xk72 C ch,Lk:| (479)
Z,— -Zd RO ENCLINORRELE: S (L) My (L) Zo (Lg) 1 T2 L (4.80)
A 7 o - )
and

2
cg = \/1 —+ Cik(l) ‘hd,ﬂ'k(l)} foralll = 2,3,..., L (481)
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such that the entriés, ; of the matrixH, foralli,j = 1,2,..., Ly, are

Cr (i) P (i) e P (i) /€ T =1
hij = hay/¢; =] (4.82)
0 0.W.
For the L,-symbol vector channel in (4.77), we choasg as Gaussian distributed to

maximize the achievable rafe,. We thus achieve alk,, that satisfy

1
Ry, < max —log |1, + HQ,HT|. (4.83)
Qu=E(X,X}):tr(Q)<2Py, L

Remark 4.6 Due to a pre-log factor of / L, note that the above scheme is desirable
only when the rate gains are significant relative to direernsmission. Further, here
too we assume that the destination, in addition to knoviipgandh, ; for all j € Cy,

also knows the channel gaing, for all .

Remark 4.7 One can also consider an orthogonal relaying scheme wherekuand
the cooperating users iy, use orthogonal channels to transmit to the destination, i.e

Xk, =0,7=2,3,..., L (see [54]).
Finally for the ergodic fading case, the achievable rat@isioed as
1 _
Ry < E-—log |I1, + P .HH'| (4.84)
k

where the expectation is over all the jointly independedirfg processe$h; ,, }, for
all (I,m) such that € C, U{k}, m = dorl € C,, m = k. Note that due to lack of
CSIl the bounds in (4.84) are maximized when usdor all £, transmits i.i.d Gaussian
signals in the two fractions.

Outage AnalysisDue to a lack of CSI at the transmitters, we assume indepgnde
and identically distributed Gaussian signaling in eacltiom at userk. Then, for a
transmission ratée;, settingQ,, = P.I;, in (4.83), we write the outage probability
P,.: as

1 _
Py = Pr (L_ log |1, + PyHH'| < Rk> : (4.85)
k
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An expression forP,,; is not easy to evaluate analytically. However, we can lower
boundP,,; with the outage probability of &, x 1 distributed MIMO channel with

i.i.d Gaussian signaling across thg transmit antennas. Thus, we have

Py > Pr <1og (1 + | hasl’ Pe+ Py hZ,J) < Rk> (4.86)
JECk
(2% — )" T,
=1 %dm, )
~ o (4.87)
(Li!) Py

where (4.87) follows from applying lemma C.2 in the high SN#gime and the ap-

proximationf(x) ~ g(z) is in the sense of (x) /g(x) — 1 asx — oo [60]. On the
other hand, one can upper bouRg,; by the outage probability of an orthogonal AF
protocol where usek and its cooperating users transmit on orthogonal channels,
only userry, (1) transmits in the fractiofi, ;. A high SNR upper bound on the outage
probability of this orthogonal scheme is developed in [54] ave summarize it below

as

(20+ 1tk — 1)Lk dj g jec, (d3;+djy)
L\ P

Comparing (4.87) and (4.88), we see that thehop AF scheme can achieve a max-

P < (4.88)

imum diversity of L, in the high SNR regime at the expense of useepeating the
signal L, times. We remark however that in the SNR ranges where thantistfactors
in the numerator are comparable to the SNR in the denomiriatodiversity gains will
reduce. We demonstrate such an observation using numergats in the following

section.

4.4 |llustration of Results

We consider a planar geometry with the users distributedamauty in a sector of a
circle of unit radius and angle/3. We place the destination at the center of the circle,
denoted as the origin, and for the relay network, we placedas at(0.5,0) as shown
in Fig. 4.6. TheK users are distributed randomly over the sector excludirepd done

around the destination of radids3. We plot theK -user sum-rate of the relay and user
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Figure 4.6: Planar sector of a circle with the destinaticthatrigin andl 00 randomly
chosen locations for a two-user multiaccess network.

cooperative networks and include the sum-capacity of a TREMS a baseline for our
comparisons. We remark that the sum-rate optimization @b networks chooses a
cooperative strategy for user for all £, only when the rate achieved by cooperation

exceeds the TDMA rate for usér

For all networks, we compute the achievable rates for theadn§ channel and
outage probabilities for the quasi-static channel modslm@sng a random distribu-
tion of users and average the results over 100 such randararpénts. Further, for
the quasi-static fading channel, we also average the oyadmability over all time-

duplexed users. One can make similar comparisons for tlogleréading case too.

We assume that alk” users have the same transmit power constraint,fie= P,
for all £ € K. For the relay network we choose the relay’s transmit palter f P,
where the scale factgf takes the value8.5 and1. To compare the energy efficiency
of the networks, we compute the total transmit and procggsiver assuming that the

same processing factors for encoding and decodingyi.e=, d, = n and the baseline
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Sub-Plot 1 Sub-Plot 2

—=a— Coop. 2-hop —=a— Coop. 2-hop

81 Relay P =.5P, / b 8 Relay P =.5P,
2 — Relay Pr:P1 / P W — Relay Pr:P1
—+— TD-MAC

K=2
t | proc. factor n = .01

R*R, (bits/ch. use)
R +R, (bits/ch. use)
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Transmit SNR P1 (dB) Ptot (transmit+proc.) (dB)

Figure 4.7: Two user PDF sum-ral® + R, vs. P, (sub-plot 1) and vsP,,; (sub-plot
2) forn = .01.

processing poweF;’* = 0 for all k € 7 . For the following analysis we use the free-
space path loss exponent= 4. Finally, we compare the rate and outage performance
for n = .01,.5, and1, thereby modeling the extremes of the processing cost eegim
as well as a mid-point. For the quasi-static fading model,caesider a symmetric
transmission rate, i.e., all users transmit at a fixed Rate 0.25.

We present the rate and outage plots kor= 2 and K = 3 as a function of the
transmit SNRP; in dB, where the transmit SNR is the transmit poviizmormalizing
by the unit variance noise at the receivers. We also plotdteeand outage probability
as a function of the noise normalized total transmit and gssimg SNRP,; in dB
where P,; is given by (4.5) and (4.6). Fdk = 3, we compare the performance of

both the two-hop and three-hop cooperative schemes.

4.4.1 Achievable Rates: PDF

The first sub-plot in Fig. 4.7 compares the area-averageddebDrates?; + R, as a

function of P, for the user and relay cooperative network with that for tle MTAC.
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Figure 4.8: Two user PDF sum-ralg + Rs vS. P, for n = .5 (sub-plot 1) and) = 1
(sub-plot 2)
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Figure 4.9: Two user PDF energy efficienc§; + R») /P, in bits/Joule vs.P; for
n = .01 (sub-plot 1) .5 (sub-plot 2), andl (sub-plot 3).
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The plot shows that for the relay network modeled as a tingecked MARC, the
achievable sum-rate increases with increasing relay pawerthese rates are larger
than those achieved by the other three networks. Note futtila¢ the plot verifies the
known result that neither user nor relay cooperation aesiewltiplexing gains [9, 14].
However, this plot does not account for the additional poatehe relay. In sub-pld,
we plot R + R, as a function of?,; for n = .01. This plot shows that with increasing
relay power the rate gains achieved by cooperation is néitguft to overcome the
energy costs of cooperation. In fact, the plot shows thaitttreased rates achieved by
the relay network forf = 1 requires proportionately larger total power relative tatth
for f = .5. Further, from the two sub-plots in Fig. 4.8 one can see tlithtiwcreasing
7, 1.e., increasing processing power, while the rate gaimgesed by both kinds of
cooperative networks diminishes relative to the TD-MA& slum-rate performance of
the relay network degrades more gracefully than that fouiee cooperative network.
Thus, we see that in the low transmit SNR regime relaying thashieve gains, albeit
small, relative to the TD-MAC for, = 1, i.e., for the case where processing power is

comparable to the transmit power.

In Fig 4.9, we compare the energy efficiency of each netwotktsper Joule as a
function of the transmit SNR, in dB for n = 0.01, 0.5, and1 in sub-plotsl, 2, and
3 respectively. Recall that we model the energy efficiencyachenetwork as its sum-
rate normalized with respect to the total power. One carrlglearify that the energy
efficiency, irrespective af, of all the networks increases as the transmit SNR decreases
[61]. Further, for any,, as P, increases, the energy costs of cooperation dominate any
gains in sum-rate achieved by cooperation thus driving tleegy efficiency of the two
cooperative approaches below that of the TD-MAC. In otherdspone can identify
cross-ovetpowers for both cooperative networks above which it is epefficient to
abandon cooperation and transmit directly. Note that tte¢ p@wer range in each sub-
plot is chosen to ensure the same range of sum-rates. Caomgphé three sub-plots,

we see that with increasingthe total power required to achieve the same sum-rate
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Figure 4.10: Three user PDF sum-r&te+ R, + R3 vs. P; (sub-plot 1) and vsP,;
for n = .01 (sub-plot 2)
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Figure 4.11: Three-user PDF sum-rdte+ Ry + R3 vS. Py, for n = .5 (sub-plot 1)
andn = 1 (sub-plot 2)
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Figure 4.12: Three user PDF energy efficiefé&y + Ry + R3) /Piot VS. Py fOr n =
.01 (sub-plot 1) .5 (sub-plot 2) and1 (sub-plot 3).

increases. Further, gancreases fron01 to 1 the cross-over power decreases for both
kinds of cooperative networks. Note that for all three valaén, the cross-over SNR
for the user cooperative network is smaller than that forréi@y network. This is a
direct result of the fact that in the cooperative networkitbers also bear the additional
processing costs of cooperative encoding and decoding e continuity of the rate
expressions as a function of power, one can see that theyeeffigiency in general
decreases with increasingfor all networks as demonstrated by the lines connecting

the y-axis ticks from one sub-plot to another.

Next, we demonstrate the performance of the multi-hop cadpe scheme by
considering a three-user multiaccess network. In Fig. wd@ompare the achievable
three-user sum-rate; + R, + R3 as a function of bottP, andP,,;. The plots demon-
strate negligible gains between the two- and three-hopearatige schemes. Recall that
for the multi-hop case, we choose the Egtof users cooperating with uséras that
which maximizesk,. Thus, the rate gains from multi-hopping are typically liedi to
those users that are farther away from the destination tieathair cooperating users.

This in turn implies that with increasing the rate gains achieved by the distant users
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is offset by the reduction in rate experienced by the useseclto the destination as a
result of sharing their transmit power for cooperation.tker, comparing the rate gains
that result from relay cooperation in Figs. 4.7 and 4.10fo& 2 and K = 3 respec-
tively, we see that sharing the relay between more usergathees the cooperative
rate gains. These observations are further illustratedlnpdot 2 where we compare
the sum-rates as a function &f,;. This plot clearly shows that with increasirig,
the rate gains resulting from relay cooperation do not sfeeter than the processing
power costs thereby suggesting that it is efficient to empddtgy cooperation only in

the low transmit and processing power regime and for sidall

Finally, Fig. 4.12 demonstrates that relay and user cotiperare energy efficient
only in the low transmit and processing power regimes. Ih faocm Fig. 4.12 as well
as the continuity of the rate expressions one can show tkat #xists a processing
factorn, beyond which the energy efficiency curves for both user alag Eoperation
falls below that for TD-MAC, i.e., it is more energy efficietatdirectly transmit to the

destination than it is to cooperate.

4.4.2 Achievable Rates: AF

In Fig. 4.13 and 4.15 we compare the sum-rate and energyeeftigiof the relay and
user cooperative networks under AF. From the first sub-pidtig. 4.13 we see that
relay cooperation achieves rate gains as the transmit pdeaeases relative to the
TD-MAC sum-capacity; we note that the gains achieved by gseperation while
non-zero are relatively insignificant. The gains for bothwweks however are limited
to the relatively low SNR regime. Further, from sub-plot 2 gee that in this regime,
the transmission is also energy-efficient. A similar bebaid demonstrated foy = .5

andn = 1in Fig. 4.14.

Recall that since AF does not involve encoding or decodinghieycooperating
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Figure 4.13: Two user AF sum-rat& + R, vs. P, (sub-plot 1) and vsP,,; (sub-plot
2) forn = .01.
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Figure 4.14: Two user AF sum-raf& + R, vs. P, for n = .5 (sub-plot 1) and) = 1
(sub-plot 2)
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users, the energy costs of cooperation for the TD-MAC andiiee cooperative net-
work are the same while that for the relay network includesatiditional cost of trans-
mission at the relay, i.eL,.. This cost of relaying is demonstrated in the first sub-plot
of Fig. 4.15 where we see that the energy cost of relay tressams shadows the rate
gains achieved thus driving the energy efficiency of theyraktwork below that of the
user cooperative and the TD-MAC network. Howeverpascreases to05 and1 in
sub-plots2 and3 respectively we see that relaying is more energy-efficielative to
the other two networks in the low transmit SNR regime. Furttiee cross-over power
P, of the relay network also increases with increasingThis is due to the fact as
the processing factor increases, the fixed cost of trangmiasthe relay is dominated
by the increasing cost of processing (encoding) at the ugdras, while the energy
efficiency of all networks decreases with increasinghe effect ofP, reduces with in-
creasing) thus making relay cooperation more energy efficient in tig lprocessing
factor regime. One can make a similar comparison for a theegMAC and compare
the performance of the three-hop scheme. However, fronT)4one can see that with
increasingK the pre-log factot / L, for userk will quickly outweigh the logarithmic

rate gains.

4.4.3 Outage Probability: DDF

In Fig. 4.16 we compare the two user DDF outage probabihify,, of the two cooper-
ative networks and the TD-MAC as a function Bf in sub-plot 1 and as a function of
P, for n = 0.01 in sub-plot2. Recall thatP,,, is a average of the outage probability
of both users over all random user locations. As expectedsegehat both the relay
and the user cooperative network achieve a maximum diyes&it relative to the unit
diversity of the TD-MAC as seen from the slope of the outageesifor a fixed sym-
metric rateR = 0.25. Further sub-plot 1 also demonstrates a SNR gain achieved by
the relay network relative to the user cooperative netwbtkther as demonstrated in

sub-plot 2 and both sub-plots in Fig. 4.17 this SNR gain isdmmtinished even when
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Figure 4.15: Two user AF energy efficien€®, + Rs) /Pt VS. P for n = .01
(sub-plot 1) .5 (sub-plot 2) and1 (sub-plot 3).

we account for the energy costs of cooperation by ploting as a function of the to-
tal (transmit and processing) SNIR,;. Note further that accounting for the processing

costs translates the outage curves for all three networks.

We compare the outage probability of a three user MAC in g3 and 4.19. The
figures clearly validates our analysis that the two hop coatpe scheme on average
does not achieve the maximum diversity gains3of On the other hand, the slope
of P,, for the three-hop scheme approaches the maximum diverkitybut does
not achieve coding gains relative to the relay network. hemtaccounting for the
processing costs, we see that the diversity gains of thetoe scheme significantly
diminish with increasing processing facter In fact, with increasing) the two-hop
relay network demonstrates increased SNR gains relatithetdwo and three-hop

cooperative networks.

In Section 4.3.1 we showed that a two-higpuser cooperative network can achieve
the maximum diversity of{’ when all K" sources form a cluster. We demonstrate this in
Fig. 4.20 for a clustered geometry where the three useraadomly located in a circle

of radius0.1 and centered d0.7,0). We plot the outage probability averaged over the
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Figure 4.16: Two user DDF outage probabiliy,; vs. P, (sub-plot 1) and vsP,,; for
n = 0.01 (sub-plot 2).
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Figure 4.20: Two-hop three user DDF Outage Probabifity vs. P, (sub-plot 1) and
P, (sub-plot 2).

location of the three users and over 10 such random placeréttie users. We also
plot the outage when the clustering radius is increas@dtol he decrease in diversity
order from3 to 2 as the radius increases agree with our analysis and deratngie

need for user clustering to achieve a diversity orde} fafr the chosen SNR range.

4.4.4 Outage Probability: AF

In Figs. 4.21 and 4.22 we plot the two user AF outage proliglidr the cooperative
user and relay networks and compare them with that for thecooperative TD-MAC.
As predicted, we see that both kinds of cooperative netwackseve the same max-
imum diversity of2. However, from sub-plot 2 in Fig 4.21 and the two sub-plots in
Fig. 4.22 we see that the relay network achieves an averatisgcgain of3 dB rel-
ative to the user cooperative network. In Figs. 4.23 and w@4ompare the outage
probabilities of a three user cooperative, relay, and TD&h&twork. Observe that the
two-hop AF scheme only achieves a maximum diversity a$ shown in Section 4.3.2.

The three-hop scheme on the other hand achieves a maximansitivapproaching
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Figure 4.21: Two user AF outage probabili®y,; vs. P, (sub-plot 1) and vsPF,,; for
n = .01 (sub-plot 2).

3. However, it does not uniformly achieves coding gains n&tato the AF outage

probability 2-hop) achieved by the relay network.

4.4.5 Relay Position

We briefly discuss the effect of relay position on the rate@mdge performance of the
relay network. We presented numerical results for a fixealyrpbsition at at0.5, 0),
i,e, at half the sector radius and on the line bisecting tlogose A natural question
that arises is whether a different placement of the relay yrely different results. For
instance, given the uniform node distribution over a cicidector, more nodes are
likely to be closer to the circumference than to the center tanis placing the relay
at (1/4/2,0), i.e. at a radius that divides the area in half, may resultlarger rates
and smaller outage probabilities. In Figs. 4.25 and 4.26llwstiate the sum-rate and
energy efficiency respectively for this choice of relay fiosi. Comparing Fig. 4.7 and

4.25 we see that the rate gains achieved by the relay netelartikve to the cooperative
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Figure 4.24: Three user AF outage probabilRy,, vs. P, for n = 0.5 (sub-plot 1)
andn = 1 (sub-plot 2).
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Figure 4.26: Two user PDF energy efficiency; + Rs)/ P VS. P, for n = 0.01

(sub-plot 1),n = 0.5 (sub-plot 2), andy = 1 (sub-plot 3) for relay position fixed at
(0.707,0).

network diminish. Further, from Fig. 4.26 we see that botér w®operation and non-

cooperative time-duplexing are more energy efficient compation approaches than

relaying.

The larger rates achieved by placing the relay closer to @séirtation at0.5, 0)
than at(0.707,0) is due to the distance dependent fading gains seen by thgsrela
signal at the destination. While it is known that when thayes clustered close to the
sources DDF achieves or approaches the channel capacitypt@ehat the resulting
capacity is not the largest rate achieved over all relaytioos; the latter is achieved at

a point midway between the sources and relay as illustratgzBi, 31].

One can demonstrate a similar behavior for the AF schemeefféet on the DDF
outage probability is demonstrated in Fig. 4.27. Compawitg Fig. 4.16, we see that
the coding gains for the relay network reducesimB when the relay is moved farther
away from the destination. In practice, the relay positicmymeed to be chosen to

maximize the average achievable rates and diversity order.
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Figure 4.27: Two user DF outage probabiliB,; vs. P; (sub-plot 1) andP,,; for
n = 0.01 (sub-plot 2) for relay placed &60.707,0).

45 Conclusions

We compared the rate and diversity performance of user daglgeoperation in a mul-
tiaccess network. We chose the total transmit and proagpswer as a cost metric for
the comparison and developed a model for processing powes as a function of the
transmitted rate, and hence, transmitted power. We comsldetime-duplexed trans-
mission model for both cooperative networks and the MAC aexktbped a two-hop
scheme for both the relay and user cooperative network. ¥éepaesented a multi-hop
scheme for the user cooperative network for the case of pheiltboperating users. For
the cooperative strategies of PDF (DF for outage) and AF,eveldped the achievable
rate bounds as well as upper and lower bounds on the outalgalplity. We also pre-
sented numerical results for both the achievable rates atagje probability averaged
over random user locations within a circular sector. Ouunltesiemonstrated that due
to the processing (encoding and decoding) costs assowidgteBDF and DF, both user
and relay cooperative networks are energy efficient onlyéregime where transmit

costs dominate processing costs, i.e., ltirey distance communicatiomegime. On
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the other hand, AF is desirable for the relay network only mvtiee processing costs
are comparable to the transmit costs. Further, for bothegfies, we showed that us-
ing a relay is on average more energy efficient than user catipe. Finally, we also

showed that as a result of sharing fixed power and bandwidtiurees the gains from

either kind of cooperation decreases with increasing numbesers.

We also compared the diversity gains achieved by user aag oeloperation by
developing upper and lower bounds on the outage probalaiitypDF and AF. Our
analytical results, verified by numerical simulations,w&d that a two-hop relay net-
work can achieve a maximum diversity dffor both DDF and AF. A two-hop user
cooperative network aided by — 1 users achieves A-fold diversity gain only when
the cooperating users are physical proximal, i.e., clagterOn the other hand, the
K-hop scheme achieves a maximum diversity ordefgfhowever the cooperative
energy costs of this scheme make it unattractive relatitbé@-hop AF strategy for
the relay network; in fact thé&'-hop scheme is desirable only in the low processing
costs regime where it achieves coding gains relative toedlay metwork. We make
similar observations for AF except now a two-hop relay arel eeoperative network
only achieve a maximum diversity @f On the other hand, despite/afold diversity
increase, the performance of thehop scheme for the user cooperative network suf-
fers from increased energy costs and diminished codings gaithe high processing

costs regime relative to the outage performance of the redayork.

In conclusion, we see that cooperation is desirable onlynwthe energy costs
of cooperation are neglible compared to the total energyscoBurther, multi-hop
schemes for the user cooperative network that achieve iftgrgity are desirable in
practice only if the associated processing costs are nadilptve, i.e., in the regime
where they achieve positive coding gains relative to theyrahd non-cooperative net-
works. The simple processing cost model presented herereaphe effect of transmit
rate on processing power. One can also tailor this model pioitky include delay,

complexity, and device-specific processing costs. Finalhe can also compare the
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energy-efficiency and diversity performance of a wide \gragd cooperative schemes
ranging in complexity from a simple multi-hopping schemé#i® processing-intensive

compress-and-forward strategy over different SNR regimes
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Chapter 5

Sum-Capacity of Degraded Gaussian Multiaccess Relay
Channels

5.1 Introduction

Capacity results for relay channels are known only for a feecsl cases such as
the degraded relay channel [6] and its multi-relay geneatibn [35, 62], the semi-
deterministic relay channel [63], orthogonal relay chas{4, 65], the Gaussian relay
without delay channel [66, 67], and ergodic phase-faditayrehannels [68]. Specif-
ically, for the classic single-user relay channel [6] ardnitulti-relay generalization
[35], applying the degradedness condition simplifies theounds on the capacity
to coincide with the inner bounds achieved by DF. Applying ttegradedness condi-

tion for a MARC, however, does not result in such a simplifaat

For aK-user degraded Gaussian MARC, we use optimization tecbaitpushow
that DF achieves th& -user sum-capacity. We first obtain the larggstiser DF sum-
rate by maximizing the minimum of the sum-rates achievetiat¢lay and at the des-
tination. The maximization is over all possible source agldy power fractions that
achieve coherent combining gains at the destination. We24bke max-min optimiza-
tion problem using techniques analogous to the classicnaxiproblem in detection
theory [69, 11.C] and refer to the resulting sum-rate oplip@ver policy at each source

and the relay as max-min rule

One can obtain an outer bound on the capacity region of a MARSpbcializing
the cut-set bounds of [30, Th. 14.10.1] for the case of inddpet sources [28]. As
with DF, the outer bound on th€-user sum-rate is also obtained by taking a minimum

over two bounds where the first bound results from a cut witih ltiee relay and the
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Figure 5.1: A two-user Gaussian degraded MARC.

destination as receivers while the second bound results &r@ut with only the des-
tination as a receiver. For the degraded case the first baomalifes to using only
the relay’s signal; however, this bound is at least as laggth@ DF bound achieved
at the relay. The second outer bound on the other hand matueachieved by DF
at the destination. We show that the cut-set bound onitheser sum-rate can also
be maximized using max-min techniques and the resultingntbasithe same as that
achieved by DF. Finally, we show that the max-min rule for D§oamaximizes the
sum-rate outer bound.

This chapter is organized as follows. In Section 5.2 we mreaemodel for a
degraded Gaussian MARC. In Section 5.3 we review the cuiegetds on the capacity
region of a MARC. In Section 5.4 we determine the maximifmuser DF sum-rate.
We develop the converse in Section 5.5. Finally, in Secti@n we discuss the result

and conclude.

5.2 Channel Model and Preliminaries

A K-user degraded Gaussian MARC hAsuser (source) nodes, one relay node,
and one destination node (see Fig. 5.1). The sources emihéssages$Vy, k =
1,2,..., K, that are statistically independent and take on value®tmlf in the sets

{1,2,..., M}}. The channel is usedtimes so that the rate &%}, is R, = By/ n bits
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per channel use whem, = log, M bits. In each use of the channel, the input to the
channel from sourck is X, while the relay’s input isX,.. The channel outpufs. and

Yy, respectively, at the relay and the destination are

K
Y, =) Xp+2, (5.1)
k=1
K
Yo=Y Xp+ X, +Zy (5.2)
k=1
:Y;»‘FX,»—FZA (53)

where Z, and Z, are independent Gaussian random variables with zero-meén a

variancelN,. and N respectively such that the noise variance at the destmagio
Ny = N, + Na. (5.4)

We remark that we assume a relay that operates in a full-gupénner, i.e., it can
transmit and receive simultaneously in the same bandwiBtiither, its inputX, in
each channel use is a causal function of its outputs fromiquewchannel uses. We
write £ = {1, 2,..., K} for the set of sourceq, = K U {r} for the set of transmitters,
R = {r, d} for the set of receiversYs = { X : k € S} forall S C K, andS* to denote
the complement of in .

The transmitted signals from sourkend the relay have a per symbol power con-
straint

E|X,’<P, keT. (5.5)

One can equivalently express (5.3) as a Markov chain
(X1, Xo, ..., Xg) — (Y, X)) = Yy (5.6)

Finally, for K = 1, we note (5.6) simplifies to the degraded condition in [6)}.10
The capacity regiofly; 4 rc is the closure of the set of rate tupld®,, Ro, . .., Rx)
for which the destination can, for sufficiently largedecode the< source messages

with an arbitrarily small positive error probability. Asrther notation, we writd?s =
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Y reshi andYr = (Y., Y;). We write0 and1 to denote vectors whose entries are
all zero and one respectively ando denote ainit vector i.e., a vector with only one
non-zero entry that is set to unity. We use the usual notdtioentropy and mutual

information [29, 30] and take all logarithms to the base 2 our rate units are bits.

The degraded Gaussian MARC defined in (5.1)-(5.3kysically degradedhan-
nel, i.e., it has one independent observation at the reldyaatiegraded copy of that
observation at the destination. Except for a few cases, asithe broadcast channel,
physically degraded wireless channels have limited praktelevance. A degraded
model with perhaps more practical relevance ist@achastically degradeGaussian
MARC shown in Fig. 5.2 wheréZ! # Z, though they the same varianéé. For
example, a stochastically degraded Gaussian MARC may letasmodel multiac-
cess relay networks where the received signal strengthgragaed by path-loss. The
independence of! andZ, adds an additional degree of freedom to the channel obser-
vations at the relay and destination and thus, the capat#ystochastically degraded
Gaussian MARC is at least as large as its physically degradedterpart. The dif-
ference between a stochastically and a physically degr@dedsian MARC, however,
makes the converse obtained for the latter inapplicabldhformer. Thus, in addition
to solving a theoretical model, capacity results for thegitslly degraded Gaussian
MARC can provide insights into signaling schemes for theclséstically degraded

case.

5.3 Outer Bounds

An outer bound on the capacity region of a MARC is presentd@7husing the cut-
set bounds in [30, Th. 14.10.1] as applied to the case of emdgnt sources. We

summarize the bounds below.

Proposition 5.1 The capacity regiod,; 4 rc iS contained in the union of the set of rate
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Figure 5.2: A two-user stochastically degraded GaussiafRRIA

tuples(Ry, Rs, . .., Ry) that satisfy, for allS C I,

[(Xs: Yy, Y| Xse, X,, U),
Rs < min (Xsi ¥, YalXs ) (5.7)
I(Xs, Xy; Ya| Xse,U)

where the union is over all distributions
K
p(w) - (TT,_, planlw)) - plarlwc, w) - plye, yal, o).
Remark 5.2 The time-sharing random variablé ensures that the region in (5.7) is
convex. One can apply Caratheodory’s theorem [32] to tKiglimensional convex

region to bound the cardinality df as|u/| < K + 1.

5.4 Decode-and-Forward

A DF code construction is presented in [10, Appendix A] (dee fb8]) and we extend
it here for the degraded Gaussian MARC. The rate region aetiiey DF is presented

in [10,58, Appendix A] and we summarize the result below.

Proposition 5.3 The rate region for DF is the union of the set of rate tuglBs, R, . .

°

Ry) that satisfy, for allS C KC,

I(Xs: Y| X5 Vie X, U),
Rs < min (s Vo Xse Vi ) (5.8)
](XSXT; Yd|XScVScU)
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Figure 5.3: Five possible intersections®f andR, for a two-user Gaussian MARC.

where the union is over all distributions that factor as
plu) - (THCprlwp(aelon, w) - plarlve w) - plyr ydor).  (6.9)

Proof: See [58]. [ |

Remark 5.4 The time-sharing random variablé ensures that the region of Theorem

5.3 is convex.

Remark 5.5 We remark that independent random variablesk = 1,2,..., K, are

used in the code construction to help the sources coopeittdive relay.

For the degraded Gaussian MARC, we employ the following comestruction.
We generate zero-mean, unit variance, independent andadindistributed (i.i.d)

Gaussian random variablég, Vi, andV,,, for all £ € I, such that the channel
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inputs from sourcé and the relay are

Xe = Vo PVio + /(1 — ag) BV ke (5.10)
K K
X, =Y VBV + \/(1 - Z@) PV, (5.11)
k=1 =1
where
oy, € [0,1] andgy € [0, 1] for all k. (5.12)
We write
Qe = (Oél, a9, ..., CXK) (513)
Be= (81 Bo v Ba) (5.14)

and defind’ to be the set ofa, 3,.) that satisfy (5.12). Substituting (5.10) and (5.11)

in (5.8), for any choice of, andglc, we obtain

Rs < min <L~73 (o), las (g,c,@c)) forall S C K (5.15)

wherel, s andl, s, the bounds at the relay and destination respectively, are

Z%Pk)
kes

]r,S =C (516)

N,

> P (1— > m) P,
keS keSe
ILis=C Na T+ Ny (5.17)

#2350\ /( - i) B £

keS

andC(z) = 1 log(1+z). For afixed(ay, B,.), the DF rate bounds are given by (5.15).
Note that one can use the concavity of ibg function to show thaf, s for all S, is a
concave function ofy.. In Appendix D.1 we show thaf, s is a concave function of
ayx andg .. The DF rate regiorfR pr, achieved over alla,., 8,.) € I', is given by the

following theorem.
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Theorem 5.6 The DF rate regiorR p for a degraded Gaussian MARC is

Ror = | <R (ax) N Ry (%@C)) (5.18)

QICv_K

where the rate regio®;, t = r, d, is
Ri={(Ri,Ry,...,Rx):0< Rs < I;s}. (5.19)

Proof: The rate regiorR pr follows directly from Proposition 5.8 an the code

construction in (5.10)-(5.11). [ |
Corollary 5.7 The rate regiorfR px iS convex.

Proof: To show thatRr is convex, it suffices to show thdt s and , s, for

all S, are concave functions over the convex Beif (o, 3,.). This ie because the

By
concavity of/, s andl; s, for all S, ensures that a convex sum of any collection of rate
tuples inRpr also belongs tR pr, i.e., satisfies (5.19) far= r, d. The concavity of

I, s follows directly from the concavity of thivg function with respect te,. Finally,

in Appendix D.1, we show tha}; s is a concave function dfoy, QK). [ |

The regionR p in (5.18) is a union of the intersection of the regidRs and R,
achieved at the relay and destination respectively, wheremion is over alla;, @K)

e I'. SinceR pr Is convex, each point on the boundary®f, - is obtained by maxi-
mizing the weighted surh_, _,.uu Ry, over alll’, and for ally,;, > 0. Specifically, we
determine the optimal policyg;g,g;) that maximizes the sum-rafec whenu, = 1
for all k.

From (5.18), we see that every point on the boundarRef- results from the
intersection ofR, (a,.) andRq(ay, 3,.) for some(ay, 5,.). In Fig. 5.3, we illustrate
the five possible choices for the sum-rate resulting froni surcintersection for a two-
user MARC. Case$ and?2 result when no rate pair on the sum-rate plane achieved

at one receiver lies within or on the boundary of the rateargichieved at the other

receiver. On the other hand, casks 3b, and3c result when there is more than one
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Figure 5.4: lllustration of Cases 1, 2, and 3.

such rate pair. We now argue that it suffices to consider oades3a, 3b, and3c to
maximize the sum-rate. The argument uses the fact thatpfopa, the bounds, s
andl, s, for all S, are monotonically increasing and decreasing functi@spectively,
of a;-. Consider arjay, ay) that results in the rate region shown in Fig. 5.3 for Case
The sum-rate for this case is then givenB®y;* + k37 where R)'#* is the maximum
single-user rate achieved by ugeat receivert. From the monotonic behavior of the
rate bounds at the two receivers, one can find@na;) that increaseg?y’* while
decreasing?;'* sufficiently to effect a transition towards one of cases3b, or 3c.
Observe further that the sum-rate increases as a resulbassh Fig. 5.3. Similar
arguments can also be applied to the paji* and Ry’j* to increase the sum-rate.
Finally, one can also extend these arguments tditheser case to show that it suffices
to consider only the three cases where the rate tuples oruthgae plane achieved
at one receiver lie within or on the boundary of the rate negiohieved at the other

receiver. We henceforth enumerate cakesb, and3c as cases, 2, and3 respectively.

The largest bound on th€-user DF sum-rat&y is then given as

max min (L«,/c (ax), Lax (g’C’QK)) ) (5.20)

(g)C7é;C)EF
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The max-minproblem in (5.20) is a dual of the classmanimaxproblem in detection
theory [69, II.C]. This allows us to apply techniques usedtitain a minimax solution
to maximize the bounds in (5.20) over &, Q’C) in I" (see also [70]). We refer to a

sum-rate optimalac, 8,.) as anax-min rule Consider the function

T, B 0) = 0Lk (ax) + (1= 0) Lk <Q/c7ﬁ,c> ¢ €[0,1]. (5.21)

Observe that/ is linear iné ranging in value from/, x for § = 0to I, for 6 = 1.
Thus, the optimization in (5.20) is equivalent to maximgithe minimum of the two
end points of the line/ overI'. Maximizing J(ay., 8,..d) over(ax, 8,.), we obtain a
continuous convex function

V(6)= max J(ag,B..0) d€[0,1] (5.22)

(Q'C B ) €r

From (5.21) and (5.22), we see that for iy, 3,.), J(ay., 3, d) either lies strictly
below or is tangential t&’(5). The following proposition summarizes a well-known

solution to the max-min problem in (5.20) [70].

Proposition 5.8 (ay s+, 5, ;.) is @ max-min rule where
0 = in V(d). 5.23
arg min V(9) (5.23)

The maximum bound oRx, V' (6*), is completely determined by the following three

cases (see Fig. 5.4).

Case 1: 6" =0:V(6") = Lux(ax s B 5.) < Irnx(aps:) (5.24)
Case2: 6" =1:V(6*) = Lic(axs) < lax(xs B ) (5.25)
Case3: 0 < 0" <1:V(0") = Lclaxs) = lax(ags, By ;) (5.26)

We apply Proposition 5.8 to determine the maximum bouné&gnWe study each
case separately and determine the optimal power fractidhe aources and relay, i.e.,

the max-min rulgayc 5., 3, ;.), for each case.
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Case 1 6* = 0 : This case occurs when the maximum bound achievable at the
destination[dv,c(g,c,(;*,@m*) is smaller than the bound at the relBy (o s.). From
(5.17), we observe thall c(ax, 3,.) decreases monotonically with, for all £ and

achieves a maximum ai 5« = 0 of

Y Pi+ P 42> /B PP,

ke ke

N (5.27)

Lax(ap s By) =C

Further, since, « is a concave function q@c, from Appendix D.1 we see that it is

maximized by setting

K
c=) Bi=1 (5.28)
k=1
such that from (D.18) we have
Py
Bror = =———. (5.29)
* Zkelc By

Substitutinguc s« = 0 in (5.16), we obtain
I x(ags) =0 (5.30)

which contradicts the assumption in (5.24), thus making tiaise infeasible. The in-
feasibility of this case implies that the largest rate raedlmat is achievable at the desti-
nation cannot be enclosed within the region achieved atetlag.rNote that we did not

need to determingl*C to demonstrate the infeasibility of this case.

Case 2 §* = 1 : This case occurs when the maximum bound achievable at the
relay, I, x(c;-) is smaller than the bound at the destinatifgyt(g,c,é*,gm*). From
(5.16), we observe thdt x. increases monotonically withy, for all £ and achieves a
maximum at

Qs =1 (5.31)

of

Lclags) =C [ 2=—1. (5.32)
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Comparing (5.16) and (5.17) aj ;. = 1, we obtain the condition for this case as

>P. Y. P+ P

kek kek
< : 5.33
N, — Ny ( )

Expanding (5.33), we have, for a®yC K,
P Y P+P > P.(N;g—N,)

keS keS keS¢
< — 5.34
N, — Ny NyN, ( )
Z Pk: + Pr
keS
—_ 5.35
<= (5.35)

where (5.35) follows from (5.4). This implies that. ;. = 1 also maximizes the bound
on Rs for all S. The largest rate region achieved in this case is the sgtofR,, . . .,

Ry ) tuples that satisfy

> P
Rs < C | 2 forall S C K. (5.36)

Observe that fory 5. = 1, sourcek, for all £, does not allocate any power to transmit
V, and thus we do not achieve coherent combining gains at thadgsn. The op-
timal power policy at the relay is theby ;- = 0, i.e., the relay forwards the decoded
messages from all sources via a single codeword= V., in (5.11). Intuitively, one
expects this case to occur when the relay has a relatively $ignal-to-noise ratio
(SNR) at the destination. The condition in (5.33) confirms tbservation as

> gcpk (F -~ Fd) (5.37)
Case 3 Equal bounds casel) < §* < 1 : This case occurs when the maximum

rate bound achievable at the relay and destination areceést

Ik (o) = Lok (Q&m ﬁg*) (5.38)

The max-min solution for this case falls in one of two possitdtegories. The first is
the relatively straightforward case whetg ;. = 1 is the max-min rule that satisfies

(5.38). Observe that the maximum sum-rate achieved is the s& that in case 5.4.
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We now study the second and more interesting case whgge # 1. For ease of
notation, we drop from the subscript and write the max-min rule(ag., 5,.). From
(5.17), we see that fakc # 1, I, is maximized by agl*c with entries3, that, for all

k € K, satisfy
> B, =1 (5.39)

kel
In Appendix D.1 we show that, for a fixegc and for 3 subject to (5.39)/4« is a

concave function of that achieves a maximum at

5 = Shamen %7 ek (5.40)
0 o =1
The rate region at the destination for a fixed is then a union over albx subject
to (5.39) (see Fig. D.1). Observe that the optimal powertibac3, that the relay
allocates to cooperating with uskis proportional to the power allocated by ugetio
achieve coherent combining gains at the destination.
Thus, from (5.26) and (5.39), one can formulate the optitromgoroblem for this case

as
maximize I, («)

subjectto I, x (@) = Iyx (a, §) (5.41)

kel
Using Lagrange multipliers one can show that it suffices taster3, = 3, in the

maximization. Observe that since the optimkilis a function ofay, ]dx(%o@,*c)

simplifies to a function oty as

Zpk+Pr+2 E(l—CXZ)PkPT
kel ke

lix(ax, Be) =C N, . (5.42)

We further simplify/ i (o, gl*c) andI, k(o) as follows. We write

Prax = maxpex P, and Ay = Pi/ Pax. (5.43)

= [ (1—ap) M (5.44)
ke
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Using (5.43) and (5.44), we have

(Zpk) - q’CPmax
Lic(ge) = C | ~kEE ~ (5.45)
(ZPK’) +Pr+2q1CVPmaXPr
Lix(qe) = C | =& ¥ (5.46)
d

Observe that, i (gx) andl, k(gx) are monotonically increasing and decreasing func-
tions of ¢ and thus, the maximization in (5.41) simplifies to determgna ¢, such

that

Zpk_q%cpmax Zpk+Pr+2q1C\/PmaxPr
kel :kEIC

Nr Nd
We remark that the condition in (5.47) has the geometriapmégation that the bounds

(5.47)

on Ry are maximized when th& -user sum rate plane achieved at the relay is tangen-
tial to the concave sum-rate surface achieved at the déstireat its maximum value.

From (5.12), sincey, < 1 for all k, the condition for this case simplifies as

>P. > P+ P
ReK o kek

Nr o Nd

(5.48)

Strict inequality in (5.48) requires that < 1 for at least oné € K. To determine the

optimalaj., we write the solutions to the quadratic in (5.47) as
— K, + K} — (K, — K3) Ko

dr = e (5.49)
—K, — K} — (Ky(K) — K3 (K)) K,

QIC,2 —= 1 \/ 1 ( ]:(2 ( ) 3 ( )) 0 (5.50)

0

where
Ko = Phax /Nr (551)
K = \/PmaxPT/Nd (552)
. Zkelc Pk Pr

Ky (K) = TN, + N, (5.53)

P,
K3(K) = Lkerlk (5.54)

N,
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From (5.48), we have

K3(K) — K2(K) > 0. (5.55)

Using (5.55) in (5.49) and (5.50), we obtain a unique sofui@; > 0 sincegg» < 0.

The max-min rule for this case is then the dgt of a}. satisfying

Ag = {Q}E 2 (L—ap) A = QI2C,1} (5.56)

ke

and a uniquaﬁjC with entriesg; as in (5.40).The maximum achievable sum-rate for

this case is then obtained from (5.49) and (5.16) as

C ((z P, /Nr) — q,%JPmaX/NT) . (5.57)

kel
55 Converse

Consider the outer bounds in Proposition 5.1. For a degr&hdsian MARC we
apply (5.6), the Markov relationship — (X, X,) — (Y., Yy), and the fact that condi-

tioning does not increase entropy to simplify (5.7) as

I(XS; }/7‘|X7‘XSC)7
Rs < min forall S C K (5.58)
I<XSX7‘§ }/;l|XSC>

and a joint distribution

(Hp@k)) - p(wr k) - p(yr, yal ek, ). (5.59)

We write B, s and B, s to denote, respectively, the first and second boundgrn
(5.58).
Expanding the bounds aRy in (5.58), we have
Rs < min (h(Y,| X, Xse) — h(Z,), h(Yal Xse) — h(Za)). (5.60)
For a fixed covariance matrix of the input random variablgsand X, one can apply
a conditional entropy maximization theorem [71, Lemma 13How that
h(Y,|X, Xs:) (5.61)

h(Yal Xse) (5.62)
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are maximized by choosing the distribution in (5.59) astjgiGaussian.

Consider the bound®, s. ExpandingY,., we have

Evar( ) Xi| X, Xse)
Rs<C ( ’“ESN ) . (5.63)

For Gaussian signals, using chain rule, we have

 det(Ky0)
EUCET(%SX]JXTXSc) = m (564)
where
X
A _ ZmES k (565)
X,
B=[X] (5.66)
C = [Xs (5.67)
and for random vector¥” andY’, Kxy is
Kxiy = E |[(X - E (X]Y)) (X - E(X]Y))" (5.68)

where X7 is the transpose ak. Note that the expectatioR (X|Y') is with respect
to X for a fixed value oft” = y while the expectation outside the square brackets in
(5.68) is over all random variables. We use the fact ffiatand X s- are independent

to expand (5.64) as

E2 <ZXkXT,S)
Bvar () Xp| Xo Xse) = var(Y_ Xi) — hes (5.69)
kes kes P.s

whereX, s = (X, — E(X, | Xs.)) is a Gaussian random variable with variance

P.s = EX?s = Evar(X,|Xs:). (5.70)
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Substituting (5.69) in (5.63) and using (5.5) to boumna (X} ) for all k£, we obtain,

Z’UCL’/’Xk — —E2 (ZXang)
Rs < C keS ¥ keS (5.71)

(5) - (55

keS ’ keS
< . 72
c N (5.72)
We define, for alk € I,
Note that by definition,
v € [0,1] forall k. (5.74)
Using the independence af;, for all £ and (5.73), we write
E <ZX/€XT) > E (X Xy) = YoV wblr (5.75)
keS keS keS

Next we use (5.73) to evaluafé s. We start by considering the random variable
X, =X, — E(X,|Xk). (5.76)
Using (5.73) and the independencef for all &, we can write the variance of, as
EX? = Evar (X,|Xx) (5.77)
= (1 —7x) P (5.78)

where we used (5.68) to simplify (5.77) to (5.78). Contiquthus, we consider the
random variableX, = X, — F(X,|Xx_1). Using the independence &f, for all ,
we thus have
EX?=EX?— EE*(X,|Xk_1) (5.79)
= FEvar (X,| Xk 1Xk) (5.80)

= (1 =9v&x-1— &) P> (5.81)
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Generalizing this, we have

Evar(X,|Xs:) = (1 - > %) P, £7sP, foralSCK. (5.82)
keSe

Finally, we substitute (5.82) and (5.75) in (5.71) to sirfyplhe first bound as

,
¢ (Z %) > =1
keS ) keS¢
Rs < ; Q%WP’@) (5.83)
R S A
C kESNT Nr¥yge 0.w.
\

Observe that folX = 1, we havelV; = X, and~; = 1, and thus, (5.83) simplifies to
the first outer bound in [6, theorem 5]. Finally, from (5.8@hserve that, for all k,
satisfy

kZKvk <1 (5.84)
S

Consider the boun®, s in (5.58). Expandingd’; using (5.2), we have

Evar( ) Xy + X, | Xse)
keS
< :
Rs < C N, ) (5.85)
> (Pk +2F (X,gi;)) + Evar(X,| Xse)
B keS
- C N, (5.86)
Using (5.5), (5.82,) and (5.75), we simplify (5.86) as
> Py + 75 P42 VB Py
Rs < C | %8 7 hes . (5.87)
d

Observe that foki = 1, (5.87) simplifies to the second bound in [6, theorem 5].

Combining (5.83) and (5.87), we have

Rs < min (B, s, Bys) forallS C K (5.88)

whereB, s andB, s are the bounds in (5.83) and (5.87) respectively. Comp#&i8$)

and (5.16), we see th#, s in is, in general, not equal to the DF boufd. Further,
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B, s is not a concave function o_ﬁlc. However, in Appendix D.2, we show that for a
fixedy ., B;s is a concave function of .. On the other hand, as shown fys, one
can verify thatB, s in (5.87) is a concave function ¢fi, 5,.).

We obtain the outer bound rate regi®y s as follows. From (5.88) we see that
for any choice olec, the rate region is an intersection of the regions encloged b
the boundsB, s and B, s for all S. SinceB, s is not a concave function o_jf,c, one
must also consider all possible convex combinationgcofo obtainRop. For thek-
dimensional convex regioR o 5, we can apply Caratheodory’s theorem [32] to express
every rate tuplé Ry, R, ..., Rx) iIn Rop as a convex combination of at mast+ 1
rate tuples, where each rate tuple is obtained for a spetifice Oflzc' We denote
a collection of K” + 1 power fractions ag~, }x+1 such that the rate tuple achieved
by them™ vectorlgc"” is weighted by then' entry of the weight vector, for all

m € KU{K + 1}. Note that the entries of satisfy
St = 1. (5.89)
Finally, we denote the set of l= ({ZK}KH@ satisfying (5.74) and (5.89) 4%)5.

Theorem 5.9 The outer bound regioR 5 for a degraded Gaussian MARC is given

as

Ros= |J (Ri(QNR:(Q)) (5.90)

QEFOB

where the rate regioR?, j = r.d, is
R (¢) = {(Ri, Ro.... . R) 1 0< Rs < Bjs ()} (5.91)

and the bound3; s is obtained as

K+1

Bjs(¢) =) nmBjs (1,(Cm>) : (5.92)

The regionR o in (5.18) is a union of the intersection of the regigd® andR?’,

where the union is over all convex combinationg)gf SinceR o is convex, we obtain
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the boundary ofR oz by maximizing the weighted suin’, _ i R, over all—o 5 and
for all u;, > 0. Specifically, we determine the sum-ragg wheny, = 1 for all k.
Comparing (5.83) and (5.87), we see tliats and B, s are monotonically increasing
and decreasing functions respectivelyl%f for a fixedlsc. Then using arguments
similar to those used for DF we restrict our maximizationlgsia to the three cases in

Proposition 5.8 and write the largest outer bounds orithegser sum-raté? as

max min{B, x, Bax}- (5.93)
ZGFOB
From (5.83) and (5.87), we see thiat and B, x can be simplified as
Z Pk 2
P,
B=C |2 I e 5.94
x s (5.94)
> Py
P, 22/ Ppax P,
B _ ke Ir max< r 5.95
ik =C 77— (5.95)

where we define

2 VM (5.96)

k=1
and )., for all £, is defined in (D.29) as the ratio d?, t0 P, = maxgex Pe. In

Appendix D.2 we show thab, « is a concave function of. Further, one can similarly
verify that B,  is also a concave function ef Thus, the max-min problem in (5.93)
simplifies to

max min{ B, k¢ (z) , Bax ()} (5.97)

T

where the maximization is over al that result choosingy;, for all &, that satisfies

(5.74) and (5.84).

Remark 5.10 Note that in generalB, x is not a concave function %c' However,
from the dependence & ony,. in (5.83), we see that is suffices to limit the analysis

to a setl’,, of non-negativ%C that satisfy (5.94) and the constraipt, ., v < 1.

Remark 5.11 Note that one can defing, = (1 — ;) 35 for oy, € [0,1], B € [0, 1]
and ", Br < 1. Substituting this in (5.83) and (5.87), we habgc = I, while
B, x > I, x with equality forg3;, = 3} in (5.40).
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We now apply Proposition 5.8 to solve (5.97). Then, for ary [0, 1], we write

J? (x,0) = 6By () + (1 = 6) Ba (x) (5.98)

V(§) = max J” (x,0) (5.99)

and denoter®® as the max-min rule that minimizés®®(§) at 6*. We now study the

three cases and determin the max-min rule and the maximumatenm each case.
Case 4 6" =0 : Byx () < B, (z) : Since By is a concave function of

i, for all k, following steps similar to those in Appendix D.1, one canwlhat it is

maximized by

ob )
LB — st forallk e K. (5.100)

The maximum sum-rathJc(gO,Cb,g;b) is

S P+ P +2 | PP,
ob  Hob kek kek
Bax(ag, By) =C N . (5.101)

Observe that the resulting® is given as

= [\ (5.102)
ke

Finally, substituting:®® in (5.94), we obtain
B, xc(2?) = Brx() = 0 (5.103)

which contradicts the assumption of this case, thus makiisgcase infeasible.
Case 50" =1: B, x (z?) < Byx (=) : From (5.94), we see tha, . achieves
a maximum at:®® = 0 of

> P

Bix(a.B) =C | *— | - (5.104)

From (5.96) we see that® = 0 is achieved for_y(”cb = 0. The analysis from here on is

exactly the same as in DF for case 5.4 and the rate regionvachioy the outer bounds
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is the same aR - in case 5.4. Thus, we obtain the capacity region for this aasbe

set of(Ry, R, ..., Rk ) tuples that satisfy

> P

Rs < C [ 52 forall S C K. (5.105)

Finally, we remark that the condition under which the casmucxis the same as that
for DF case 5.4 and the subsequent observations hold herEudber;y, = 0 implies
that the the sum-rate optimal strategy involves indepetgignaling at the sources and
the relay.

Case 6 Equal bounds cased) < 6* < 1: B,k (") = Byx () : As in case
5.4, the max-min solution® for this case also falls in one of two possible categories.
The first is the relatively straightforward case where therats are equal for®® = 0,
i.e.,lolcb = (0 and the maximum sum-rate achieved is the same as that in case/é
now study the second and more interesting case wh@&rez 0. Observe that this
corresponds to the requirement tﬂ%’tlies on the simplex

> =1 (5.106)

kek

From (5.94) and (5.95), we see tatx () andB, i (x) are monotonically decreasing
and increasing functions afrespectively and thus intersect at most once over the range

of z. The optimal:®® then satisfies

2 D Pk) + P, + 220/ Ppax P,
C 2 ke D _ ()" Prnax _C (k:e/c
Nr Nr Nd

(5.107)

Observe that the condition in (5.107) is the same as that Foc&e 5.4, and thus, we

have

—-K K? — (Ky — K3) K
2 = gy = 1+ 1K0( 2 3) Ko (5.108)

where the constant&, K, K,, and K3 are as defined in (5.51)-(5.54) and; sat-

isfies the DF condition for case 5.4. The resulting max-miarabis then given by



(5.57). Thef/cb that achieves this maximum satisfies

For the definition

such that’ € [0, 1], B2 € [0, 1], for all k, and

(5.109) simplifies to

B = pgr={ XU-owh forall k € K.
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(5.109)

(5.110)

(5.111)

(5.112)

(5.113)

(5.114)

Thus, the set o&¢? that maximizeB, x = Bq is the same as the sdic of o} that

maximizes the DF sum-rate. This implies that the sgg@that maximize the sum-rate

outer bound for this case also contains those correlatiefficents that maximize the

DF bounds.

Thus, we've shown that the maximum-user sum-rate outer bounds, for each of

the two feasible cases that result from the max-min optitidinacan be achieved by

DF for a specific choice of the power fractions that the scuiered the relay allocate

to achieving cooperative (coherent combining) gains.
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5.5.1 Average Transmit Power Constraint

We determined the sum-capacity for a degraded Gaussian MARIEr a per symbol
transmit power constraint at the sources and relay. Onelsarcansider an average
power constraint at every transmitter. The achievabléegiyaremains unchanged; for
the converse we start with the convex sums of the outer baar{@s7) overn channel
uses. The boundB, s and B, s are now written as convex sums ovechannel uses
such thatBJ(.f,)C is the bound achieved in thi& channel use forall = 1,2,...,n. The
analysis in Section 5.4 can be applied to deveﬂiﬁi for eachi under the assumption
that the power transmitted in that channel use is subjeat varage constraint over
all n uses. Finally, we can use the concavityBﬁ) , j = r,d, as a function of a single
variablex; to simplify the bounds to those developed in Section 5.5,thnd, obtain

the same sum-capacity result.

5.6 Concluding Remarks

We determined the sum-capacity of a degraded Gaussian MER&@he inner bounds,
we considered the achievable strategy of DF and determireethtgest-user sum-
rate using max-min optimization techniques. For the ca®erve considered the cut-
set outer bounds for the case of independent sources aneéglloat the{-user sum-
rate outer bounds can also be maximized using max-min amion techniques. In
fact the max-min optimization for both the inner and outeuitds simplified to two

feasible cases.

We showed that both the inner and outer bounds ortheser sum-rate are a min-
imum of two bounds, one obtained usiFigand the other usiny,;; however, the inner
and outer bounds that ugé are not exactly the same. This difference is due to the
fact that the input distributions for the inner and outer taaiare different. In fact,
the input distribution for the inner bound uses auxiliangdam variabled/- to model

the correlation between the inputs at the sources and thg agld is more restrictive
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than the distribution for the outer bound. Despite thisattghce, the reason we achieve
sum-capacity is due to the form taken by the solutions fortweefeasible cases. The
maximum sume-rate for the first feasible case for both therimmel outer bound is
achieved when the sources and the relay do not allocate amgrpo achieving coher-
ent combining gains at the destination Thus, for this ciges 0, and the two bounds
match. In fact, the sum-capacity is the largest value thabthund achieved using.
takes and and corresponds to a geometry where the relay ledatisely high SNR
channel to the destination.

The largest sum-rate for the second case is achieved by nzaxgrthe bounds
at the relay and destination when they are equal. In genrathis caseV # 0,
i.e., a non-empty subset of sources and the relay allocatento achieve cooperative
combining gains at the destination. The largest DF sumisdben achieved by a relay
power policy that maximizes the cooperative gains achietelde destination, i.eX,
is a unique weighted sum &f, for all £ where the weight for eachis proportional to
the power allocated by souréeto cooperating with the relay. Further, the maximum
sum-rate admits several solutions for the power fractidios@ed at the sources for
cooperation subject to a constraint that results from theatg the two bounds on
the sum-rate. For the converse, we showed that the maximuaen baund on the
K-user sum-rate is the same as the maximum DF sum-rate. Weslatswed that
the outer bound is maximized by a set of source-relay crog®lation coefficients
(source and relay power fractions) subject to the same @nstas DF. Further, we
showed that a subset of such a set also maximizes the DF darangthus we achieve
the sum-capacity for this subset. Finally, since the DF méx+ule requires a unique
correlation betweerX, andVj., conditioning the outer bound that us€son X, alone

suffices to achieve the sum-capacity.
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Appendix A

Partial Decode-and-Forward: Coding Theorem

We derive the PDF rate bounds for discrete memoryless MARCs; 2, and back-
ward decoding. The random code construction and the eng@dendescribed in Sec-
tion 2.4.3 and we use (strongly) typical sequence decodzefine the set of typical
sequences of lengthwith respect ta andPx y () as

n(a,b|z,y)

T (X,Y) = {@, )

— Pxy (a, b)‘ < m} (A1)

n

wheren(a, bz, y) is the number of times the pdi, b) occurs in the sequence of pairs
(x1,11), (T2,Y2), - .. (zn, yn). X @and) are the alphabets of andY” with cardinalities

|X'| and|)|, respectively. We refer to [72, Ch. 2] for properties of seelyuences.

Encoding Consider block.

1. Sourcel transmitse, (wy 1, w1 2, W1 2,5-1) While source2 transmitse, (ws 1 4,

W2.2,bs w2,2,b—1) wherew; 50, w220, W11,8+1, W21,B+1, W12,5+1, aNdws 2 g1 are

set tol.

2. The relay transmits, (s 5, s25) Where(sy p, s2) is the message pair decoded at

the relay in blockb — 1).
Decoding

1. At the relay The relay decodeguw, s, wo25) in blockb, b = 1,2,..., B, by
usinggrb and by assuming that its message estimates in the previocisstdre

correct (see [6]). More precisely, the relay decodes by fig@i (@, 25, W22 5)



126

such that

(q,(W1,25, w125-1) 4, (W22, Wa,25-1), V1 (W1,25-1),
Va(W2,25-1), 2, (W1,2,5-1, w2,2,b—1),gr’b) S

T(Q1, Qo Vi, Vo, X, Y,). (A2)

We assume that the correct codewords are identified as bgigak since this
is a high probability event for large. With this assumption the relay makes
an error only if it identifies &1 25, Wa25) # (w124, w2 2,) that satisfies (A.2).
This error event can be further split into three disjoinberevents. The first
error event has @, o, # w2, andws o, = wo o) Satisfying (A.2). Using [10,

Lemma 1] and the union bound, the probability of this evesat is10st
9n(R1,2—1(Q1;Yr|Q2V1 V2 Xy )+6¢) (A.3)
Thus, for reliable decoding we set
Rio < 1(Qq; Y, |Q2ViVRX,). (A.4)

The second error event has 2, = wy 2, and aws o, # w2 Satisfying (A.2).

By symmetry to (A.4), we set
Ryo < I(Qq2; Y | Q1 VAV2X,). (A.5)

The third error event has@; 2, # w125 and aws 2, # w2, Satisfying (A.2).

We again use [10, Lemma 1] to bound the probability of thiswety

2”(R1,2+R2,2_I(Q1Q2§Y7"V1V2X7‘)+6E). (AG)
Reliable decoding thus requires

Ris+ Ryp < I(Q1Q2; Y |V1V2X,). (A.7)

. Atthe destinationThe destination collects all of it8+ 1 output blocks. Starting

from the last block, the destination decodes | i1, w21 411, W12, W2 24), b =
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B,B—1,...,1by usinggd bit and by assuming that its previously decoded
message estimates are correct (see [6]). More preciselgdstination decodes

by finding a(ws 1,p11, Wa,1,6+1, W1,2,6, Wa,2,5) SUCh that

(@1 (01,1,041, W1,2541, W1,25)s Lo (W2,1,b415 W2,26415 Wa,2.0) 4, (W1,2,0+1, Wi 20,
4, (Wa,2,51, W2.2.6), 01 (W1,20), Vo (W22), 2, (W12, W220), Yy 1)

S TE(N)(XlaX%Ql)QZv‘/17‘/27X1“7Yd)' (A8)

As before we assume that the correct codewords are idenéifideking typi-
cal. Specifically, fifteen kinds of errors occur in decodihg message tuple
(W1,1,p4+1, Wa1,641, W12, Wa,2p). We first consider the singleten error events, i.e.,
only one of the four messages is decoded incorrectly using) (AVe have four
such events, corresponding to eitligr ;1 # w1 p+1 OF Wo 1 p+1 F W21 p+1, OF
Wy 2p 7 Wiap, OF Weoyp # Wa2p. Using [10, Lemma 1] and the union bound,

we follow the same decoding steps as for the relay decoddoww that

Riy < I(X1:Y4|@Q1Q2ViV0X,) (A.9)
Ry < I(X3; Yo X10Q1@Q2V1V2 X, ) (A.10)
Rip < I(X1 X, Q1 V15 Yy | XoQ2 Vo X,) (A.11)

= ](Xer§ Yd|X2Q2V2) (A.12)
Roo < (X2 X,; Ya| X101 V1) (A.13)

ensures reliable communications where (A.12) and (A.13)Itérom the Markov
chain(Vy, Qx) — (X, X)) — (Y, Yy) for k = 1 and2 respectively. We next con-
sider the six error events where a pair of messages is dedodedaectly, i.e.,

the incorrect message pair satisfies (A.8). We use the urmondand [10,



128

Lemma 1] to show that reliable communications requires

Riq+ Roy < I(X1 Xy Ya|@Q1V1Q2V0X,) (A.14)
Ri1+ Rio < I(X1X,; Y| XoQ2V2) (A.15)
Ry1+ Rop < I(X1X0X,; Ya|Q1 V1) (A.16)
Ro1+ Rip < I(X1 X0 X, Yy|Q2V2) (A.17)
Roq1+ Rop < I( XX, Yy X1Q1 V1) (A.18)
Ryo+ Rop < I(X1X0X,; Ya) (A.19)

where the bounds (A.14)-(A.19) are obtained by boundingether probability

of the events

(W11,p41, Wa1,641) 7 (W1 1,641, Wa,1,6+1) (A.20)
(W1.1,p41, W12p) 7 (W11,641, W12p) (A.21)
(W11 p41, Wa,2) # (W11 p41, Wa,2p) (A.22)
(W21 p4+1, W1,2p) 7 (Wa1p41, W1 2p) (A.23)
(W21 p4+1, Wa2p) # (W21,p+1,Wa2p) and (A.24)

(W12, Wa25) 7 (W12, W2,2) (A.25)

respectively for the case when both messages in a pair acelegéncorrectly.
Note that (A.15) and (A.18), simplify to the bounds & and R, respectively.
Further, comparing (A.12) and (A.15), we see that the botmdhe case when
eitherw, 5, or the pair(ws 141, w1 25) are decoded incorrectly are the same.
One can similarly see that the bounds in (A.13) and (A.18) tbsult from in-
correctly decodingu, 2, and(ws 1 41, wa 2 5) respectively are also the same. For
the case where three of the four messagesin ,1, W2 1 p+1, W12, Wa,2p) are
decoded incorrectly, i.e., an incorrect triple satisfiesttipicality requirement in

(A.8), we obtain four possible error events. Using the sasmding steps as
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before, we can show that reliable communications requires

Rip+ Roy + Rip < I(X1 XX, Y5|Q2V2) (A.26)
Rig+ Roj + Rop < (X1 XX, Ya|Q1VA) (A.27)
Ri1+ Rig+ Roo < I(X1 XX, Ya) (A.28)
Roi+ Rig+ Roo < I(X1 XX, Ya) (A.29)

where the bounds (A.26)-(A.29) are obtained by boundingether probability

of the events

(U~)1,1,b+17 U~)2,1,b+17 1171,2,&;) 75 (wl,l,b+1, W2,1,b4+1, wl,z,b) (A-30)
(U~)1,1,b+17 U~)2,1,b+17 1172,2,&;) 75 (wl,l,b+1, W2,1,b4+1, w2,2,b) (A-31)
(01,1641, W1,2,p Wa,2) 7 (W11,541, W12, W2 2p) AN (A.32)
(W2,1,p+1, W1,2,p, Wa,2p) 7 (W21 p41, W126, W22p) (A.33)

respectively for the case where all three messages in & @ decoded in-
correctly. Comparing (A.26) and (A.17), we see that the losuior the case
when eitherw; 5, or the pair(wy 1441, w1 2,) are decoded incorrectly are the
same. A similar observation results from comparing (A.2¥) €A.16). Finally,
we consider the event where there exists a t4@le, 11, W1 541, W12, W2.2,)
satisfying (A.8) such that all four message are decodedriectly. Reliable

communications then require

Rii+ Rio+ Roy+ Roo = Ry + Ry < I(X1X2X,; Ya). (A.34)

Comparing (A.34) with (A.28) and (A.29), we again see thatadking a tuple
with wy, 5, yields the same bounds as decoding a tuple with both 41, wy 25)
for k = 1,2. One can generalize this observation for d@y> 2 ; thus, for any
disjoint A,G C K we haveR; 4 + R.g = R1_aug + Rag and hence it suffices

to consider set§ andg such thatgy C S.
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Finally, combining the bounds in (A.9)-(A.13), (A.14)-(1Q), (A.26)-(A.29), and
(A.34) the bounds simplify to those in (2.36)-(2.38). Thelgsis carries over in a
straightforward way to weakly-typical (or entropy-typicaequences [30, p. 51], the
addition of a time-sharing random varialdlegf30, p. 396], andx > 2.
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Appendix B
DF Rate Region: Coding Theorems

B.1 Backward Decoding Analysis

We derive the DF rate bounds for discrete memoryless MARCSs; 2, and backward
decoding. The random code construction and the encodindesm&ibed in Section
3.2.2 and we use (strongly) typical sequence decoders. e#faset of typical se-

quences of length with respect ta andPx y (-) as

n(a,blz,y)

T (X,Y) = {(Lg) : — Pxy (a,b)]| <

€
for all (a,b) and
EIEN (@)

n(a,blz,y) = 0if Pyy (a,b) =0}. (B.1)

wheren(a, b|z,y) is the number of times the pdi, b) occurs in the sequence of pairs
(x1,91), (T2, Y2), - .., (T, yn). X and) are the alphabets of andY with cardinalities
|X'| and|)|, respectively. We refer to [72, Ch. 2] for properties of seelyuences.

Decoding

1. At the relay The relay decode@u ;, wsy) in blockd, b =1,2,..., B, by using
y , and by assuming that its message estimates in the previotksizre correct

(see [6]). More precisely, the relay decodes by findiriga, w2 ;) such that

(21 (W1 p, W1 p—1), To(Wap, Wap—1), V1 (W1 p—1), Vo(Wap—1),

z, (-1, w2p-1),y, ) € TV (X1, X2, V1, V2, X, V). (B.2)

We assume that the correct codewords are identified as bgigak since this
is a high probability event for large. With this assumption the relay makes an

error only if it identifies a(iw, 5, Wap) # (w1, way) that satisfies (B.2). This
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error event can be further split into three disjoint erroer@g. The first error
event has ai, , # wq, andws, = w,yy, satisfying (B.2). Using [10, Lemma 1]

and the union bound, the probability of this event is at most

on(Ri—I(X1;Yr| X2ViVaXy)+6¢) (B.3)

Thus, for reliable decoding we set
Ry < I(Xy; Y, | Xo1 Vo X,). (B.4)

The second error event has , = w, , and aw,, # w,, satisfying (B.2). By

symmetry to (B.4), we set
Ry < I(Xy; Y, | Xi1 Vo X,). (B.5)

The third error event has@, , # w,;, and aw,;, # wo, satisfying (B.2). We

again use [10, Lemma 1] to bound the probability of this ewgnt

on(Ri+Ra—I(X1 X2, [ViVa X, ) +66) (B.6)

Reliable decoding thus requires

Ry + Ry < I(X1 X5, Y |VIVLX,). (B.7)

. Atthe destinationThe destination collects all of it8+ 1 output blocks. Starting
from the last block, the destination decodes , wo;), b = B, B —1,...,1 by
usinggwrl and by assuming that its previously decoded message estiagd
correct (see [6]). More precisely, the destination dectyddding a(w; p, w2 )

such that

(21 (W1 b1, W1p), Lo (Wapi1, Wap), 01 (W), Vo (Wp), L, (D10, W2p), Yy )

€ T (X1, Xy, Vi, Vo, X,, Yy). (B.8)

As before we assume that the correct codewords are iderdifiéeing typical.

Again, three kinds of error events can occur in decoding,, w» ;). Using [10,
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Lemma 1] and the union bound, we follow the same decodingsiegdor the

relay decoder to show that

Ry < I(X1X,; Ya| XoV2) (B.9)
Ry < I(X2X,; Yol X1 V1) (B.10)
R+ Ry < I(X1 X, X5;Yy) (B.11)

ensures reliable communications.

Combining (B.4), (B.5), (B.7), and (B.9)-(B.11), we have thounds (3.2)-(3.7).
The analysis carries over in a straightforward way to wedjgbycal (or entropy-typical)
sequences [30, p. 51], the addition of a time-sharing randamablelU [30, p. 396],
andK > 2.

B.2 Sliding-Window Joint Decoding Analysis

We derive the DF rate bounds féf = 2, offset encoding, and sliding-window decod-
ing. Without loss of generality, we consider the offset orde= (1,2). Section 3.2.2
describes the random code construction.

Encoding Consider block.

1. Sourcel transmitsg, (wy 4, w1 1) While source2 transmitsz, (ws p—1, wa p—2)

Wherewg,_l, W20, W1,0, W1,B+1: W1,B4+2; andwg,BH are set tal.

2. The relay transmits, (s; 5, s25) Where(sy p, s2) is the message pair decoded at

the relay in blockb — 1).
Decoding

1. At the relay The relay decoder error analysis is the same as that deddrib
Appendix B.1 up to changes in the message indices. We therk&ve the same

rate bounds (B.4), (B.5), and (B.7).
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2. At the destinationThe destination decodés), ;, w, ) by usingyd o Yy and
Yupio and by assuming that no errors were made up to bbo®kore precisely,

the destination decodes by findinga, ;, w, ) such that three events occur:

E (v (w1 p-1), Vo(wap—2), 1 (W1 p, W1 p—1), To(Wap—1,Wap_2),

(B.12)
Er(wl,b—bw2,b—2)7gd7b) € Te(n)(vla Vo, X1, Xo, X5, Yd)
Ey (v (W), Vo (W2p—1), To(Wap, w27b—1>7£r(u~)17b’w27b—1)’gd,b+1> (B.13)
e T (Vi, Vo, X3, X,., Y2)
53 . (yz(wlb)vgdb_,_z) c Te(n)(‘/z, Y'd) (814)

Note that the codebooks in different blocks are generatddpendently (see
Section 3.2.2) so the above three error events are indepefske [8, 35]).
As before, we consider three disjoint error events that caumoin decoding
(w1, wap). The first event has &, , # w;;, andwsy, = we, Satisfying (B.12)-
(B.14). We upper bound the probability of this error evenhg$10, Lemma 1]

and the union bound as

Z Pr (51 N 52 N 53)

Wy p AW b

= Y Pr(&)-Pr(&) Pr(&) (B.15)
W1,p7W1,b

< 2n(R1—I(X1;Yd|X2V1VQXT-)—I(ler;yd‘XQVQ)-i-lQe) (816)

_ 2TL(R1—I(Xer;Yd‘X2V2)+12E) (Bl?)

where we usedr (£5) < 1 for (B.16) and (3.13)-(3.14) for (B.17). Thus, we set
Ry < I(X1X,;Yq| XoVa). (B.18)

Consider next the case where;, = w ;, butws,;, # w, . The expression (B.15)

with the summation ovei,, # ws,, instead ofi, , # wi IS upper bounded as

2n(R2—I(X2;Yd|V1V2X7')_I(V2?Yd)+125) (Blg)
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where we usedr (£;) < 1. We thus require
Ry < I(Xo; Yg|ViVa X)) + I(Va; Ya). (B.20)

Finally, consider the case;; # wi;, andws;, # ws,. The expression (B.15)
with the summation now over bothy, , # w, , andw,, # w,, iS upper bounded

as
on(Ri+R2) | 9—nl(X1;Ya|X2ViVaXr)+nbe
. 2—nI(X2V1Xr§Yd‘V2)+n6E . 2_nI(V2;Yd)+n6€ (821)

— 2n(R1+R2—I(X1X2Xr§yd)+18e) (822)

where we have used the chain rule for mutual information bedvtarkov chain

(V1, Vo) — (X4, Xo, X)) — Y. For reliable decoding, we thus require

Rl + R2 < [(XngXr; Y;l) (823)

Combining (B.18), (B.20), and (B.23), we obtain (3.29)3@. Again, the analysis
carries over in a straightforward way to weakly-typical seces, the addition of a

time-sharing random variablé, and K > 2.

B.3 Sliding-Window Successive Decoding Analysis

We derive DF rate bounds fdt > 2, offset encoding, and sliding-window decoding.
We further focus on the message bloeks, with b = 1. However, the destination
decoder now performs successive rather than joint decowityout loss of generality,
we consider the offset order = (1,2,..., K). Section 3.2.2 describes the random
code construction, and the encoding and relay decodincharsame as in Appendix
B.2.

Decoding at the destinatiotConsider the window with the channel-symbol blocks
Yo Yoz Yarsr As explained in Section 3.4.2, the destination succelysde
codes in the reverse ordef; 1, wix_1 1, - . ., w11 (See the shaded blocks in Fig. 3.4 for
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the case# = K, k = 2, andk = 1). The destination further assumes that its past de-
coding steps were successful, and we perform our analyisting same assumption.

Fork = K,K —1,...,2, the destination finds @, such that two events occur:

Evk (W (Wr), Vg (1), Zpoyr gy (1, 1), 9, 10) € T Vi, Viesr. k1, X1,k Ya)
(B.24)

Eapt (2 (W, 1), vy gy (1)s Zppepr ey (1, 1),gd,k) e T (X, Vi, k1> X(e+1,57, Ya)
(B.25)

wherev;; (1) = {vi(1),vit1(1), ..., v;(1)} and similarly forz;; (1, 1) andyy (1) be-
low. As before, we assume that variables with vacuous indexare appropriate con-
stants, e.g., we assume that all the entrieg}gil,m are the same constavty | x.

The eventg, , and&, , are independent and we assume that the correct codewords
are identified as being typical. The destination thus makesrr only if it identifies
awg # w1 that satisfies both (B.24) and (B.25). We upper bound thegimtity of

this event using [10, Lemma 1] as

Z Pr (51 k) . Pr (52 k) < 2”(Rk_I(Xka§Yd|X[k+1,K]V[k+1,K])+125). (B.26)

W, 1 Wk, 1

Forl < k < K, we therefore require
Ry < I( X3 Vi, Yal Xiet1, 60 Vie41,x1) - (B.27)
Fork = 1, we addz, (-) to (B.24) and (B.25) as follows:

51,1 : (91(@1,1)7Q[Q,K](l)yip,[(](ly 1)7@»(“71,17 L. 1)7Qd72)

(B.28)
Te(n)<‘/17 WQ,K]? X[27K}7 XTu }/d>

82,1: <x1<u~)1 171> UIC(l) x[ZK}(L1)7£r<1717"'71)7gd71)
ET (X17V/C7X2K X?“v}/d)

(B.29)

The resulting bound is

Ry < I(X1 X, Ya| X2,k Vi2,k))- (B.30)
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For example, forl’ = 2 the two rate bounds are

Ry < I(X,Va;Yy) (B.31)

Ry < I(X1X,; Yy | XoVa) (B.32)

and one can approach the corner point (3.39). One can chatkhthabove analysis

generalizes td > 1.
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Appendix C
MARC and MAC-GF: Rate and Outage Derivations

C.1 PDF Rate Region for User and Relay Cooperative Networks

We derive the PDF rate bounds for both two-hop and multi-hap<Sian single-source

multi-relay channels using typical sequence decoding. Wensarize the typicality

definition for a collection of. random variable&X;, X, ..., X ) as follows [30, Chap
10, p. 384].

Definition C.1 The setd!™ of e-typical n-sequencesgr,, z,, . . ., x; ) With respect ta
andPx, x,...x, (-) is defined by

-1
A(n) (X17X27"'7XL):A£”):{(£17£27"'7£L): WIng(S)_H(S) <,

€

forall S C {Xl,Xg,. .. ,XL}}. (Cl)

We develop the rate bounds for ugeand writeC,, to denote the set of users that
act as relays for usér such thaiC,| = L, — 1. We assume that the total number of
channel uses for usérover all fractions, denoted as is sufficiently large to invoke
typicality arguments. Note that the number of channel usesfractiond, is simply

n#, where we assume thét is chosen such thaty,, is a positive integer.

C.1.1 Two-hop Scheme

Encoding We use Gaussian signaling at the sources and relay sucim tflat £ user

k transmits

(C.2)

X \/ Oék?kUk frac. Gk
k= — — _
VapPyQr + Va, PV, frac. 6,
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Fraction g, Fraction 6,
zk(wkl) T, (W 5, Wy )
T 2y (W)

L (3) (w, ,1)

Lr (L) (wk,l)

Figure C.1: Partial decode-and-forward encoding for a hwp-cooperative network.

where U, Q, andV, are independent and identically distributed (i.i.d) ciacly
symmetric complex Gaussian random variables with zero raadrunit variance and
o, = 1 — ay,. The powerP,, satisfies (4.2) and is defined for the MARC and MAC-GF,
respectively, in (4.10) and (4.31). Thus uganses the signals in (C.2) to transmit the
messagev, ; € {1,2,...,2"%1} in the fractiond; at a rateR; ;. In the fractiond,,
userk retransmitavy ; via V;, and also sends a new message € {1,2,...,2" %2}

at rateR;, » via (). Note thatw, » is only decoded by the destination.

Let 7, (-) be a permutation o6, such that usetr (/) begins its transmissions in
the fractiond,, for alll = 2,3, ..., L,. We further definer;, (1) = k andn (i : j) =
{me(3), (i + 1), ..., m(7)}. We remark that, unlike the multi-hop scheme, the order
of the user indexes if, does not affect the achievable rate for the two-hop scheme.
However, for ease of use, we use the same notation for bo#mseh Thus for the
two-hop scheme, user(l), for alll = 2,3,..., L, decodesu, ; in the fractioné

and retransmits it in fractiof, such that its transmitted signal,, ) Is

Xew = { 2V foralli=23,... L. (C.3)

The resulting encoding scheme is shown in Fig. C.1. Noteveatrite z,, to denote

a codeword transmitted by node

Decoding
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1. Atthe nodes ic;: The noder;, (1) decodesyy, ; in the fractiorg, by usingyﬂk(l).

More precisely, nodey, (/) decodes by finding @, ; such that
(2 (Br), ) € AT (X, Yey)- (C.4)
Using [30, Thrm. 14.2.3] and the union bound, the probahbditthis event is at
most
(B, 1 =011 (Xg;Yry (1)) +3€) (C.5)
For Gaussian signaling in (C.2) over a Gaussian chann&lbteldecoding then

requires [30, Th. 14.2.3]
Ry1 < O log (1 + }hnk(l),k\zﬂ> foralll =2.3,...,L,. (C.6)

2. At the destinationThe destination uses its received signals from both frasti
to jointly decode(wy, 1, wy 2). Focussing on the typical error events, we see that
the destination makes an error only if it identifie$@, 1, wx2) # (w1, Wk2)
using joint typical decoding. More precisely, the desimatecodes by finding

a(wy,1, Wg,2) such that two events occur:
€ (ey(na)y,) € A (X, Y0) (C.7)

52 : (£1 (wk’,la mk,?)) gﬂk(l) (wk’,l)a Ewk(z) (wk,l)a s 7£7rk(Lk)(wk’,l)7
né
y,) € Al k)(Xk,Xm(n,ka(z), o X (L) Ya)-

Note that the codebooks in different fractions are gendiatgependently so the

(C.8)

above two events are independent (see [8, 35]). We consides tisjoint error
events that can occur in decodi(@y. 1, wy 2). The first event has @y 1 # wy
andwy 2 = wy» satisfying (C.7)-(C.8). We upper bound the probability lukt

error event using [30, 14.3, p. 393] and the union bound as

Y Pr&nég) (C.9)
Wy, 1 Wk, 1
W, 17Wk,1

< 2"(Rk,1—9k1(X1;Yd)—5kI(X1Xck;Yd)+355k+369k) (C.11)
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where X, = {X;:1 € Cy}. Then from (C.2) and (C.3), for reliable decoding

we set
Rk,l < Gk log (1 + ‘hd,k|2?k) +

2
Le —
i) ¥5) /= P
0 log 1+Oé‘hd,k|2pk—|— (1_a>hd,k P+ E h’d,ﬂ'k(l) it )

1=2 O

(C.12)

The second error event has ha$a, = wy,; and awy, 2 # wy 2 satisfying (C.7)-

(C.8). We again use [30, 14.3, p. 393] to bound the probghilitthis event
by

2”(Rk,2—gkI(Xk;Yd\Xck)-i-ﬁégk)_ (C_lg)
Reliable decoding thus requires
Rk,g < gk log (1 + o |hd,k|2ﬁk) . (C.14)

Finally, consider the case;, ; # wy, 1 andwy, » # wy 2. The expression (C.9) with
the summation now over bothy, ; # wy; andwy 2 # wy 2 IS upper bounded as
Qn(Rk71+Rk72) . 9= nOI (Xp:Ya)+3e0yn

. 2—n€kI(X1;Yd)—n§kI(X1XCk;Yd)+3n69k+3ne§k (C.15)

For reliable decoding, we thus require

R1 < Gk log (1 + ‘hd,k‘2?k) +
2

Ly —

— — [— | P

9k 10g 1+ oy |hd,k|2 P, + akhd7k P+ Z hd,ﬂ'k(l) g—l . (C16)
1=2 k

Combining (C.12), (C.14), and (C.16), we have the bound32}4.(4.33), and
(4.34). Finally, for the case wheh = {r}, i.e., the time-duplexed MARC, we obtain
the boundsin (4.13), (4.14), and (4.15).
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C.1.2 Multi-hop Scheme

Encoding In this scheme, usértransmits

V ak?kaJ 8]67[,[ = 1,2,...,Lk —1

X, = _ _ B (C.17)
Vo PrQr + VagPiVir, O,
whereVy;, Qi, foralll = 1,2,..., L, are i.i.d zero-mean unit variance Gaussian

random variables. User transmits the message, ; € {1,2,...,2"%:1} over the
fractionsd,;, [ =1,2,..., L, — 1, atarateR, ;. Note that it uses independent signals
in each fraction to transmit the same message; as shown setheel this simplifies
the decoding analysis. In the fractiép;, , userk retransmitsuy ; via V;, 1, and also
sends a new message» € {1,2,...,2"%:2} at rateR;,» via Q.. Note thatwy , is
only decoded by the destination. Finally, usg(l), foralll = 2,3,..., L, decodes
wg1 in the fractiond;,; and retransmits it starting fro),; such that its transmitted

signal X, ;) (0x,;) in the fractiond;, ; is

Xy (Ons) =\ 2V forj =Li+1,..., L (C.18)

whereP,, for all k € K is given by (4.31) and,,, is the total transmission fraction of

userny (1) given as
B Ly -1
Ori=> Orj=1—> bh; (C.19)
j=l i=1

Fig. C.2 illustrates the multi-hop encoding scheme.

Decoding

1. At the nodes irC;: The nodery, () decodeswy,; upto the fractiord,;_, by
usinggml). More precisely, nodey, () decodes by finding @y ; such that the

following (I — 1) events occurs:

gj : (Ewk(l) (12)&1), Lre(2) (wk,l)u o () (wl@l)? yd) <

nB ; y
AE k’J)(Xmg(l)v Xﬂ'k(2)7 cee >X7Tk(l—1)’ Yd) J= 1’ 2’ o Tk (l N 1)



Fraction 8.,

Fraction 6, ,

Fraction 6, |, 4

Fraction6,

Zy, (wk,l)

Zy, (wk,Z' wk,l)

Zy, (wk,Z' wk,l)

%(wk,z’wk,l)

Ly (2) (w, ,1)

Ly (2) (w, ,1)

L (2) (w, ,1)

L (3) (w, ,1)

L (3) (w, ,1)

Lo (Le-1) (w, ,1)

Lo (L) (w, ,1)
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Lo (L) (wk,l)

Figure C.2: PDF encoding for &.-hop cooperative network.

Note that the source codebooks in different fractions anegged independently
so the abové — 1 events are independent (see [8, 35]). We upper bound the

probability of this error event using [30, 14.3, p. 393] ahd tinion bound as

-1
> Pr (ﬂ 5,) (C.20)
Wy 1 F Wk, 1 j=1
-1
= > [l (C.21)
Wg,1 7 Wk, 1 J=1
< 9B =351 O (X (1:5)3a) +3€)) (C.22)

For the signaling in (C.17), reliable decoding then recgiire

— 1 P7\' m
Ry < Zézll O,; log <1 + ‘Zﬁn:l P (0,750 (m) 52

ek,m

2
) 1=23,..., L
(C.23)

2. At the destination The destination uses its received signals from all fragtio
to jointly decode(wy, 1, wy 2). FOcussing on the typical error events, we see that
the destination makes an error only if it identifie$®, 1, Wx2) # (wg.1, Wk2)

using joint typical decoding. More precisely, the desimatecodes by finding
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a(wy,1, Wg,2) such that the followind.,, events occur:

£t (@), y,) € A" (X, Vo) (C.24)

Ei (2 (Wn1)s Zoy ) (Wha)s - -5 () (Wr1), Y,)
e AU (X, X2 Xans - s Xy Ya)o G =2,y L — 1
(C.25)
€Ly (&1(:3:,17 ?k72)7£ﬂk(2) (Wk,1), - s Ty (1) (Dr1)5 U,) (C.26)
€ Ac (X, Xnp(2)s Xrp(3)s -« + 3 X (1) Yal)-
As before, due to the independence of the codebooks in tferatit fractions
the abovel; events are independent. The decoding analysisf, wy ») can
be further broken down into three disjoint error events. Tils event has a
Wg1 # w1 and g2 = wy o satisfying (C.24)-(C.26). We upper bound the
probability of this error event using [30, 14.3, p. 393] ahd tinion bound as
Ly
> Pr (ﬂ 5j> (C.27)
j=1

Wy 1 F Wk, 1

Ly—1

= >  J] P (C.28)

Wy, 17wWg,1 J=1

< Qn(Rk,l—Zf:kl Okt (I (X7 (1:5);Ya) +3€)) (C.29)
For the signaling in (C.17), reliable decoding then recgiire

j JR—
P
ham (ot | 2 mk(m)
nlzz:l k( ) ekﬂn

The second error event has hag;a = wy, ; and awy, » # wy, » satisfying (C.24)-

(C.26). We again use [30, 14.3, p. 393] to bound the prolgofi this event

2
Ly
Rk,l < ZQM 10g 1+

J=1

(C.30)

by

on(Ri,2=0k, 1, 1(Xk:YalXcy ) 4660k, 1, ) (C.31)
Reliable decoding thus requires

Ryo < Oy p, log (14 a |hakl’ Pr) - (C.32)
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Finally, consider the case;, ; # wy; andwy 2 # wy 2. The expression (C.27)
with the summation now over botly, ; # wy, ; andwy » # wy, 2 iIs upper bounded

as

2”(Rk,1+Rk,2) . Q—H(Zfﬁl Ok, 1 (1 (X (1:5)5Ya)—3€)) (C.33)

For reliable decoding, we thus require

Li—1 2

l JR—
P

Ry < E O log [ 1+ § P,y (m) i
l:]. m=1 ’

Ly —

_ _ — P
O, log [ 1+ oy |has|” Pr + arhar\/ Pr+ E Pz (m) 5_1
\ O

m=2

_|_

2

(C.34)

Combining (C.30), (C.32), and (C.34), we obtain the bourd4q), (4.47), and
(4.48).

C.2 Hypoexponential Distribution

Consider a collection of independent identically disttézliunit mean exponential ran-
dom variableds;, | € £ = {1,2,..., L}. We denote a weighted sum &j, for all [,

as
L
H=> Eq. (C.35)
=1
We assume that the coefficierisare unique, i.e., no two coefficients are equal to each

other. The following lemma summarizes the probabilitymisttion of H [73, p. 11].

Lemma C.2 The random variablé/ has a hypoexponential distribution given as [73,

p. 11]

Ly Ge e p >0
pu (h) = ’ (C.36)

0 0..

where the constants,, for all /, are given as

1 L=1
C) = (C.37)

L L>1.
Hf:l,j;éz(cj_cl)
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The cumulative distribution function éf is bounded as

Fy(n) < L (C.38)

0 (Tl e)
C.3 Half-Duplex Relay Channel — DDF Outage Analysis
The outage probability for usértransmitting at a fixed rat&, is
P® =Pr (177 < Ry) (C.39)
where
127 = 6, 1og (1 + |hay|” Pr) + 0 log (1 + [hax|” Py, + |ha,|” Pr) (C.40)

whereP, = P, /0, and

0 = min | 1, B 5= . (C.41)
10g (1 + |hr,k| Pk)

Recall thath, ; = ay; /d’,jff whereaqy, ; is a circularly symmetric complex Gaussian
random variable with zero-mean and unit variangg; is the distance between nodes

k andj, andvy is the path-loss exponent. Th¢sk,j|2 is exponentially distributed as
Plhisl* = @) = dj je /% (C.42)

Substituting (C.42) in (C.41), we see tifat= 0 for d,, = 0, i.e., when usek and the
relay are co-located. Observe that for this case, (C.39Idigs to the outage bounds
of a2 x 1 MIMO channel.

In general, however), is a random variable and its probability distributipf®;.)
can be computed using (C.42) for ady, > 0. From (C.41) we see tha#, is a
mixed distribution with a discrete componentfat= 1. Using (C.42), we write the
probability distribution o, as

(C.43)

—@2B-1)d},

fr Ok, Ri) - gr (0, Ri) 0< 6, <1
p(ek) =
1 — exXp <T’> ek = 1
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where
_2Rk/9kd7k
fr (O, Ry) = eXP(TT’) Ry In2 (C.44)
k
RyIn2.  dl,
v (O, Ry) = e C.45
gr (Or, Ri) = exp( o )GEPk (C.45)

Observe that for finite SNR (6, = 1) is non-zero for alk,, > 0. Furtherp (6, = 1)

decreases witl?,, as

_(9Rk _ 1\ " Re _ 1\"
p(Or=1)= <1 — exp < (2 — 1)dr’k>> < w (C.46)

Py Py

We assume a unit variance white Gaussian noise, we herfceéber toP,, as the
transmit signal-to-noise ratio (SNR). Observe that for adi®},, the functionsf, and
g, are monotonically increasing and decreasing functiortg oAt 6, = 0, the doubly
exponential functioryf, dominates the product resulting ¢, = 0) = 0. Further, as
0, increases from, p(6;,) first increases due tf). and then decreases Asapproaches
a constant whilgy, continues to decrease. Note that thighat maximize(6;) de-
pend on bothi,;, and P,, for a fixed R;. Finally, for a fixedd, , ; decreases with
increasing transmit SNI®;,. This is because the functigiy increases at least as fast
asl/ (1 —2%/%q], /P,) while the functiong, only decreases at a rate proportional
to 1/ Py for any,. This causes both; and the width of the peak abofjt to decrease
with P;. This is demonstrated in Fig.C.3 for a collinear geometrthwij.,, = .5 and
dq1 = 1. We will exploit this behavior to obtain an approximationn&lly, we remark
that the maximun#;, < 1 can be obtained analytically by differentiating (C.43) and

satisfies
2R/0L R d?, In 2 )3 P

“hr 2 g — o0 T

Pk dr,k

Further, for finiteR?; that does not scale with the SNIR,, in the high SNR regime);

=0 (C.47)

approximately satisfies
(1) % 2Re/% R In2 ~ 2 P, / d%, (C.48)

Observe from (C.48) that the term;;)_?’ 21t:/%% exponentially increases with decreas-

ing 0, while the term on the right hand side of the equality only @ases quadratically



148

0.012 F ! ! B
SNR Pl =13dB
........... SNR F’1 =20dB
.00 p . SNRP, =40dB | |
P SNR P, =80dB
8 ] 1
2 0.008F :
2 Source k @ (0,0)
a Relay @ (.5,0)
= Dest. @ (1,0)
.‘é’ 0.006 Rate R, =1
2
3
g 0.004 - b
o N
o 1y
| Y
[}
i\
0.002} | ll '-\ b
1 Y
! \
i N s -
4 \s s
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

fraction

Figure C.3: Plot of the probability distribution(¢;) for a collinear geometry with
d,r = .5 and different values aF.

with increasingP;, for a fixed d,r. Thus, with increasing SNR, note that the peak

centerd; decreases only polynomially, i.#;, converges t® only as?f.

C.3.1 Upper and Lower Bounds

Sinced,, € [0, 1], we can lower bound”*) as

25 2
P# > pr {log <1 + [Ads|” P + [Ad Pr) < Rk} = Poox1 (C.49)

Y Y
dd,k dd,r

whereF, . is the outage probability of 2 x 1 MIMO channel. On the other hand,

for anyf, Pé“(ek) can be upper bounded as

AP P
P®(6;) < Pr {ek log (1 - %) < Rk} = Pou(f) (C.50)
d.k
_ AP P Ay, PP,
P®(6,) gPr{Hklog <1+| dé‘;' k| d(’ﬂ' ) <Rk} = P,5(f) (C.51)
d,k d,r

Thus, averaging over a., we have

P® = EP®(6,) < Emin(P,(6:), Pro(6r)) = P (C.52)

o
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Without any loss of generality, we assume tiat/d}, # P, /d;, for all k andé.
As a result, the weighted sum of the i.i.d. complex Gausdiant € K, simplifies to
a hypoexponentiatlistribution, i.e., a distribution characterized by a vy sum of

exponential distributions. Then, from Lemma C.2, we have

28k/% — 1)d)
P,1(6)) < ( = i (C.53)
k
(28w /0 — 1)2d;l/,k:d2l/7R

2P, P,

(C.54)

PO,Z(ek) S

and thus the upper bounﬂ’gg, in (C.52) simplifies as

(C.55)

(2Rk/9k _ 1)dlk (QR’“/é’“ — 1)2d3,kle
Py,

P = Emin ( - : TN
From (C.55), we see that for a fixéd),, P, andd; ;, for all j, k, P, »(6;) dominates for
smallé, while P, (6,) dominates a8, approaches. Further, observe thak, >, =
P, 5(0x = 0) and thus (C.54) also provides an upper bound4oy. ;.

In general, the expression in (C.55) is not easy to evaluabyacally. We exploit
the functional form ofp(6,) to develop an approximation fdr, z for the case where
Ry, does not scale with SNR, i.e., the multiplexing gaif.i©ur approximation results
from simplifyingp(6) as discrete distribution with two elememts= 6; andf, = 1.
We justify this simplification from the observations madeliea on the distribution
p(0x). Thus, we write
(2% — 123, dy,

2P, P*
_ K@M -1}, 4,
- oP"

(28 — 1)2d;§,kd§f,k

P,

Pup ~ (1= ploe = 1) + (C.56)

~ KP0,2><1 (C57)

wheref, = 1 — 6%, P* = P, /6., p(6, = 1) is given by (C.43), and

2R/(1—9*) —1)2P 2d”
K:<( Co P 20 (C.58)

(2% —1)2F; g
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C.4 Two-hop Cooperative Network — Outage Analysis under DDF

Recall that the DDF outage probability for the two-hop caapiee network is
P®) = Pr (I pp < Ry) (C.59)

wherels ;. is

_ _ P,
I$ pp(04) = Oy log (1 + |hay|* Py) + 01 log (1 + Rkl Pr+ Y [hal __ﬂ>

JECk O
(C.60)
andd,, is
. Ry,
0 = min | 1, max 5= . (C.61)
i€Cr \ log (1 + |hj,k| Pk)

As in Appendix C.3, we first derive the probability distrilmrt p (6;). Expanding
i k aSajvk/dj.,f, we see tha, = 0 onlyif d;, = 0 forall j € Ci. In general, however,

the probability distribution of, is given as

p(ek) = —(QR—l)d’y (062)
r.k
1—exp<7ﬁk ' ) 0, =1
where
Rk /6 <Zj€0k djk>
Je (B, Ri) = exp( » ) - Ry In 2 (C.63)
k
.
R;1In?2 (Zjeck dj,k)
e (Or, By) = : - C.64
9e (Ok, Ri) = exp( o ) 07T, (C.64)

Comparing (C.44) and (C.45) with (C.63) and (C.64) respebtj we see that the
two functions are the same when the distaidcein the half-duplex relay channel is
replaced by the sum of the distances between kised every user i@;. Thus,p(6y)

exhibits the same functional form discussed in Appendix C.3

C.4.1 Upper and Lower Bounds

For ease of exposition, we denote the — 1 nodes inCy, asjs, js ..., jr and write

Sy = C, U{k} to denote the set of all transmitters transmitting in thetfca 6. From
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(C.59) and (C.60), we can lower boury” as
Agp* P Ag;* P;
P® > Pr {log (1 Al Py > e d,jl , j) < R’f} = Po.xa (Ri) (C.65)

where P, 1, «1 (Ry) is the outage probability of &, x 1 distributed MIMO channel
transmitting at a rateé?;,. Note that thei’* transmit antenna;, € S, of this MIMO
channel is at a distanek ; from the destination. As in Appendix C.3, we assume that
Py /d}, # P; /(d},ygk) forall k € K, j € Ci, andé,, which enables us to simplify
the weighted sum of i.i.d exponential random variables 6§ as a hypoexponential

distribution. For a fixedz,, we upper bound\” as
P® =EP® (0,) < Emin(P,1(61), Poo(fi)) (C.66)

where, using Lemma C.2 we write

o —
P,1(0y) =Pr|log |1+ M < & (C.67)
’ d:iy’k 0
@/ —1) (¥, @
< ?< een %) (C.68)
k
_ | Aakl” Py |Aay|* P; Ry
Po,2(‘9k) = Pr (log <1 + W + Z W < g—k (C69)
’ JEC d,j
(2% — 1) (6" ( g )
< 1= (C.70)
(Li!) ies, Pi

e 1\ Lk Li—1 v

(Li!) (Plc)Lk JES, Aj
with \; = P,/ Py for all .
Substituting (C.68) and (C.71) in (C.66), we thus write

(2Rk/9k _ 1)d2l/,k: (2R;C . 1)Lk (8k>Lk_1 A

-~ Hﬂ> (C.72)

Pe L) (@)™ s N

P%®) < Pyp = Emin (

As in the outage analysis for the half-duplex relay chanibés, not easy to compute

Py analytically. However, since the functional form®,.) is the same that for the
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half-duplex relay channel detailed in Appendix C.3, we fanly approximatep(6y,)

by a discrete distribution with two elements,= 6; andd,, = 1 where
0; = arg max p (0r) - (C.73)

We thus have

- Ly _
<2Rk/6k - 1) O™ oy, (2% 1)), (Zjeck d?uk)
Pyp < — Lz )\— + P’ -7
(Li!) (Pr) jes, v Py

C.5 Multi-hop Cooperative Network — Outage Analysis under [DF

Recall that the DDF outage probability for the multi-hop pemtive network is
P®) = Pr (I pp < Ry) (C.75)

wherels ;. is

L l o
I5 () = O1 log (1 + [has]’ Pr) + Z O log <1 + 3 |ham|” ng@) .
- = * c.79)
Recall that we writer;, (-) to denote a permutation @h such that user, (1) begins its
transmissions in the fractiof, ;, forall ! = 2,3,..., L. Recall further thatr, (1) =
kandmy (i:j) = {m(i), m(i+1),...,m(j)}. We choose the fractiof,; small

enough to ensure that at least one node, denoted dst+ 1), decodes the message

from userk. Thus the fractiow,;, forl =1,2,..., L, — 1, is given as

min min q 1,

2 _
Rk—Zf;:ll91@,m10g<1+2?l1‘hj,7rk(i) Pﬂ-k(i)/ek,i> —
iccr (1 log (143 B,y (s 2sls Ly
jeCr () g i=1| g, ()

el (C.77)

whereL;, = L — 1, 0y, is defined in (4.44) and

Cp, (1) = C\ {m (i) }_, - (C.78)
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Finally, we have

Ly—1

Opr, =1— Y Or. (C.79)
=1

In general, computing the probability distribution pff; ;) is not straightforward.
However, we present simple upper and lower boundsPdi that require comput-
ing p(6y,;) for specific values o ;. To this end, we make the following observations

on the distribution of), ;. Conside;, ;. From (C.77), we have

fr1 = minmin < 1, B — (C.80)
J€ECk log (1 -+ |hj,k‘ Pk)

Without evaluating the probability distribution éf ;, comparing (C.61) and (C.77),
we can see thal, ; is at most as large o}, for the two-hop case and thus one can expect
thed; , at which its distribution peaks is smaller than that for the-hop cooperative

network. Further, one can compuyt@,, = 1) as

(01 o sms = Pr (min (Re flog (14 I P} 1) (€8

—(2B — 1\d?
pfa)

JE€Ck
(2f — 1)kt (Iljeckdgk>
< N (C.83)
Py

One can similarly argue that, for dll> 1, the fractiond,; is at most as large as the
two-hop fractiord,.. This is because the nodg (I + 1) reliably decodes in the fraction
0, after it has collected sufficient energy from the transmissof usek and the users

mr(m), forall 1 <m <[ — 1. Further, one can bourtt} , as

fr; <4 min minq 1, T W}l>1 C.84
Rl = { jEC,’C(l) { ’Vlog(1+2'lrrL_l|hj,7rk(7rL) 2P7rk(rn)/9k,rn) ( )
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. R
P (Oky) o1 < Pr min l i T — > 1
jec () log (1 + Zm:l ‘hj,ﬂk(m)‘ Prm) /9k7m>

(C.85)
Ldl o Oum
< (2 — 1) | (C.86)
jeck (i) m=1 g (m)
_ (@R T Lo O
R ¥ 3 (C.87)
Pk jGClg(l) m=1 7 (m)

where (C.86) results from applying lemma (C.2) and the faat the minimum in
(C.85) is taken over random variables that for alire independent. Note that &s
increases|C;, (1)|, the cardinality ofC;, (I), decreases and thus the productC, (1)
increases fron;, — 1 to @ maximum ofZ.? /4 ((L? — 1) /4) for even (odd)L;, and
then decreases tb, — 1. Thus, the smallest power &f;, is L, — 1. We will use this

property in developing an upper bound faf".

C.5.1 Upper and Lower Bounds

From (C.75) and (C.76), we lower boury”’ as

L
£ T (g P7r ]
Po(k) > Pr {log <1 + Z }ad’ k(j)} km) < sz} = P x1 (Ri) (C.88)

Y

where, as before?, 1, «1 (Rx) is the outage probability of &; x 1 distributed MIMO
channel transmitting at a rate,. Further, as before, we assume tlfa;/dg,k #*
ka(l)/(dgﬁw) for all 6, € [0,1], k € K, andj € Cx. Then, using lemma C.2,
we can write the weighted sum of i.i.d exponential randomaldes in (C.88) as a

hypoexponential distribution. For a fixeg},, we upper bound®® as

P =EPP(8;) < Emin(Po1(8y), Por(0y), - -, Po, (61)) = Emin(P,(6,))
S
(C.89)
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where, foralll = 1,2, ..., L;, we have

l
— — R
Pou(8y) = Pr <10g (1 + Z ‘hd,ﬂk(j)‘Z Pr) /9k7j> < ﬁ) (C.90)

i=1

IRk /Oky ! a0y
S ( _ l) d,m1(5) k.j ] (Cgl)
(1) (Py) Am(5)

Note that the bound in (C.91) follows from applying lemma ®ith \,, ;) = Px,(;)/Pr

=1

for all 74 (5) € Cy.

As with the previous outage analyses, here too we approgithatbounds by sim-
plifying p(6,) foralll = 1,2,..., L, — 1 as a discrete distribution taking valugs
and1 whered; , = arg maxy, , p (0x,). Further, for the case whet  is small for all

[, we see that the exponential terms in (C.91) compare as

2Rk/9)t,[,k < 2Rk/92,1 forall 1 S l S Lk —1 (092)
where
Li—1
O, =1— Y 6, (C.93)
=1
Thus, we have
Li—1
Pyp <P, (0;)+ Z Poy(1) - p(bey=1) (C.94)
=1
=Py, (0p) + Por (Ok1 =1)-p (g =1) (C.95)

Reflin, _ 1) w0 o 7 Re — 1)L Ti) d
() e g, @ ()

[

— \ L . —L;
(L) (Pe)™ oy Y Py’

(C.96)

where in (C.95) we used (C.87) and (C.91) to restrict atbento terms where the

exponent ofP;, is less than or equal tb, and define
Ly
Oy = Ois (C.97)
I=j

Thus, we see that for a cooperative multi-hop network, DDfiexes the maximum

diversity of L, irrespective of the network geometry.
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Appendix D
Degraded Gaussian MARC : Concavity Properties

D.1 Concavity of I s

We recall the DF bounds in (5.17), for &IC I, as

> P (1— > m) P,
keS keS¢
Rs <I;s=C Na T Na . (D.1)

423 \/(1 — ) Bl

keS

We show that/, s is a concave function q@s for a fixedgsc. Observe that sincg,

are power fractions, we have

> B <l (D.2)
kek
We fix the vector3 ., such that
d B=1-c (D.3)
keSe
d B<e (D.4)
keS

wherec € [0,1). To verify the concavity of/; s as a function ofjs, we assume that

as # 1. We simplify [, s in (D.1) subject to (D.3) as

Iys = %log (Ko +2) K, m) (D.5)

keS
where
> P
_ kES P.(1—c)
Ko=1+5—+2% (0.6)
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We now show that; s is a concave function ofs by determining its gradient with

respect tg3;, for all k € S. We write the gradient of, s as the vector

Vijs = [3Id73/8ﬂk]kes (D.7)
T
_ ko ok Ks| (D.8)
7| VE VE o Uae .

whereK, and K, are defined in (D.6) and

K,=2 (KO +2 ZK,M@) . (D.9)

keS
We write the Hessian af; s as the matrix

Vs = [82Id,8/aﬂkﬁﬁm}wg7mes (D.10)
-1 ..
= Kdlag(y) — 22" (D.11)
where
2
z2=—Vls (D.12)
_ | K K Kis|
v = 2ﬁf1/2 2532/2 Qﬁféf ) (D.13)

To show that/, s is concave, we need to show that [74, 3.1.4]

2"V2I 52 <0 forallz € R¥. (D.14)

Substituting (D.11) in (D.14), we have

-1 22K
T2 kLMK T 2
v Vijsx = —(z" -z (D.15)
sty () -

<0 (D.16)

where the inequality (D.16) follows from the non-negatiof K, andg; for all £ with
equality if and only ifz = 0.

We now determine @, that maximized, s subject to (D.3). Sincé, s is a con-
tinuous concave function gf . € [0, o0)!¥l, it is also concave over the convex region

in (D.4) and achieves its maximum atig where

ol o
55 . 0 forallk eS. (D.17)
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Using Lagrange multiplier rule, we find thati that maximized s subject to (D.3)

has entries

% c(l—ay) P
gk:{% kes . (D.18)

keS

Relaxing the constraint in (D.3) to (D.2), we write the firstdasecond partial

derivates of/; s with respect toj;, for all £ € S¢, as

dlys  —Po/N,g

S _ D.19
o - K, 0 (D.19)
Plis -2 (Pr/Nd)2
7 B Rt (D.20)

whereK; is defined in (D.9). Thus, from (D.19) we see tliat decreases monotoni-
cally with g, for all £ € S¢. Further from (D.16) and (D.20) we conclude tiigg is a
concave function ofy, forall & € K.

Finally, one can similarly show that for a fixgtt, the first and second derivatives

of with respect tay, for all k € K, are

el
Olis _ GCapirm, KES (D.21)
O 0 k¢S
—3Gy _ 2G%
321d2,5 _ (1—ap)?K,  (1-ox)’K2 <0 kes (D.22)
Oa;, 0 k&S

whereK, and K, are defined in (D.6) and (D.9) respectively and

b, P,
Gy, = ,/@EE. (D.23)

Thus, we see thd}; s, for all S C I, is a concave function af;, for all & € K.

Rate Region for a fixed, : For any choice of a non-zer@c and agx subject
to (D.2), the rate region satisfying (D.1) for &lis a polytope. For the case where
ax = 1 since there are no gains achieved from coherent combinifD.ib), we set
Bx = 0 and obtain a polytope.

We next consider the case where whese # 1. Since there is at least orie

for which oy, < 1, gains from coherent combining at the destination are miaeith
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by choosingji to satisfy (D.2) with equality. For a fixed efix, we then write the
rate region at the destination as a union over all polytopes,for each choice g«
satisfying

K

> Be=1 (D.24)

k=1

Observe that fogl*C with entries given by (D.18), the bourd s is maximized. In Fig
D.1, we illustrate the rate region for a two-user degradedsSian MARC with the
SNR P, /Ng = P»/Nq chosen as-10 dB, a = (.5, .5), and five choices ofc. Observe
that the maximum single-user rakg is achieved by setting; to 1 though this value
does not maximize?, or R; + R,. For all other(3;, 32) such as(.85,.15), as 3
decreases and, increasesfR; decreases whil&, increases achieving its maximum
at 5, = 1. The bound on the sum rat®, + R, increases fromgy, 52) = (1,0),
achieves its maximum 4dt3;, 55) = (.5,.5), and then decreases &s approaches.
The resulting region at the destination is then a union o@oéytopes, each resulting

from a unique choice ofi.

D.2 Bng VS. YK

We show that the functioB, s in (5.83) is a concave function gfs fora fixedlsc and

forall S C K. Recall the expression fds, s as

Bs=C| Y+~ <’“Esm) (D.25)

N;
keS Nr (1 o E ’Yk)

kese

where we assume that

d w=1l-c<l (D.26)
keSe
Observe thaB, s is maximized wher = 1, i.e.,y, = 0 for all £ € S, and minimized

for ¢ = 0. Further, comparing, s and/, s, one can see that for

e = Pk/(ZkeS Pk) keSS (D.27)

0 ke S¢
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Figure D.1: Rate region achieved at the destination for auser MARC andy; =

Qg = .D.
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B, s achieves its minimum, i.eB, s = 0.
We let

T = (E m) (D.28)

keS
where, as defined for DF case 5.4, we have

Prax = maxpex P, and Ay = Pi/ Pax. (D.29)

Substituting (D.28) in the expression fBr. s in (D.25), we have

Pk lszax)
B, :C< “h T Tmax ) (D.30)
S kESNT NTC
Differentiating B, s with respect tac we have
dBrS _2Pmax Pk x2Pmax -
= = -1 — — D.31
dx NTC ( o kgSNr NTC ) ( )
1 + & + $2Pmax)
d2Br$ _2Pmax < lc%SNT Nre
S : . (D.32)
dz? N,c p 2p
keS
<0 (D.33)

where the strictinequality in (D.33) follows since all tegin (D.32) are positive. Thus,

we see thaB, s is a concave function of.
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