
CHANGE IMPACT ANALYSIS FOR JAVA
PROGRAMS AND APPLICATIONS

BY XIAOXIA REN

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Barbara Gershon Ryder

and approved by

New Brunswick, New Jersey

October, 2007

ABSTRACT OF THE DISSERTATION

Change Impact Analysis for Java Programs and

Applications

by Xiaoxia Ren

Dissertation Director: Barbara Gershon Ryder

Small changes can have major and nonlocal effects in object oriented languages, due to

the extensive use of subtyping and dynamic dispatch. This makes it difficult to under-

stand value flow through a program and complicates life for maintenance programmers.

Change impact analysis provides feedback on the semantic impact of a set of program

changes.

The change impact analysis method presented in this thesis presumes the existence

of a suite of regression tests associated with a Java program and access to the orig-

inal and edited versions of the code. The primary goal of our research is to provide

programmers with tool support that can help them understand why a test is suddenly

failing after a long editing session by isolating the changes responsible for the failure.

The tool analyzes two versions of an application and decomposes their difference into a

set of atomic changes. Change impact is then reported in terms of affected tests whose

execution behavior may have been modified by the applied changes. For each affected

test, it also determines a set of affecting changes that were responsible for the test’s

modified behavior.

The first contribution of this thesis is the demonstration of the utility of the basic

ii

change impact analysis framework of [51], by implementing a proof-of-concept proto-

type, Chianti, and applying it to Daikon, for an experimental validation.

The second contribution is the definition and implementation of the dependences

between atomic changes. Extensive experiments show that our dependences can help

build the intermediate programs automatically in most cases.

Another contribution is the heuristics for ranking the atomic changes for fault lo-

calization. This thesis proposes a heuristic that ranks method changes that might have

affected a failed test, indicating the likelihood that they may have contributed to a

test failure. Our results indicate that when a failure is caused by a single method

change, our heuristic ranked the failure-inducing change as number 1 or number 2 of

all the method changes in 67% of the delegate tests (i.e., representatives of all failing

tests).

iii

Acknowledgements

I would like to thank my advisor, Professor Barbara Gershon Ryder, for her constant

support, unconditional help, and her belief in my abilities. She was always my mentor

and she taught me many things that influenced my professional and personal growth. I

am very grateful to all the PROLANGS members, and the PROLANGS reading group

members for providing interesting discussion and challenging and productive research

environment. I am also thankful to Dr. Frank Tip and Dr. Maxillian Stoerzer for their

help during my studies, and for many things I learned from them. I would like to thank

Michael Ernst and his research group at MIT for the use of their data.

I am deeply thankful to my dearest husband, Chen Fu, for his constant encourage-

ment, help and support, and for always having faith that I do a good job in my research

area.

iv

Dedication

This thesis is dedicated to my lovely daughters, Sophia and Arianna, for all the happi-

ness they brought to me.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . xi

List of Figures . xii

1. Introduction . 1

1.1. Software Maintenance . 1

1.2. Change Impact Analysis Overview . 1

1.3. Our Change Impact Analysis . 3

1.4. Contributions . 4

1.4.1. Chianti–the Prototype of Change Impact Analysis 5

1.4.2. Dependences between Atomic Changes 5

1.4.3. Heuristic Ranking of Edits . 6

1.5. Thesis Outline . 6

2. The Model of Change Impact Analysis for Java Programs 8

2.1. Overview of Approach . 8

2.1.1. Atomic Changes and Inter-dependences 9

2.1.2. Affected Tests . 12

2.1.3. Affecting Changes . 12

2.2. Formal Definitions of Affected Test and Affecting Changes 13

2.3. Atomic Changes . 15

2.3.1. Field and Initializer Changes . 16

vi

2.3.2. Method Changes . 17

2.3.3. Dynamic Dispatch Changes . 17

2.3.4. Class Changes . 18

2.3.5. Dependences . 19

2.4. Special Issues . 19

2.4.1. Overloading Methods . 19

2.4.2. Threads and Concurrency . 20

2.4.3. Exception Handling . 20

2.4.4. Anonymous Classes and Local Inner Classes 21

2.5. Limitations of the Model . 24

2.5.1. Changes to Compile-time Constants 24

2.5.2. Changes to Import Statements 25

3. Chianti– A Tool for Change Impact Analysis of Java Programs . . . 27

3.1. Prototype . 27

3.2. Evaluation . 31

3.2.1. Atomic Changes . 32

3.2.2. Affected Tests and Affecting Changes 35

3.2.3. Case Studies . 37

3.2.4. Chianti Performance . 39

4. Dependences between Atomic Changes 40

4.1. Overview of Approach for Locating Failure-Inducing Changes 41

4.1.1. The Example Program . 41

4.1.2. Locating Failure-Inducing Changes by Constructing Intermediate

Programs . 43

4.2. Structural Dependence . 44

4.2.1. Addition and deletion of Java elements 44

4.2.2. Changing a field type or method return type. 45

4.3. Declaration Dependence . 46

vii

4.3.1. Declaration-Usage of Java elements 46

4.3.2. Abstract method declarations and implementations 46

4.3.3. Necessary method declarations for a class 48

Overriding methods . 48

Necessary constructors . 49

4.4. Mapping Dependence . 50

4.4.1. Field/Initializer changes . 51

4.4.2. Field type or method return type changes 51

4.4.3. LC changes. 52

4.5. CTD Related Dependences . 53

4.5.1. Declaration Dependences . 54

Overriding Methods . 54

Constructors . 54

Necessary method changes . 56

4.5.2. Mapping Dependences . 57

Virtual Method Changes . 57

LC changes . 59

4.6. Limitations of Dependences . 59

4.6.1. Field Positions. 60

4.6.2. Value Changes. 61

5. An Application of the Change Dependence Graph 63

5.1. Constructing Intermediate Program Versions 63

5.2. Case Studies . 66

5.2.1. Daikon unit tests . 66

5.2.2. Eclipse jdt compiler unit tests . 68

5.2.3. Defining a Failure-inducing Change 70

6. Heuristics for Locating Test Failure Causes 72

6.1. Heuristics to Look for Failure Causes . 73

viii

6.1.1. An Informal Overview of the Approach 73

6.1.2. Heuristic . 76

6.1.3. Explore the changes . 78

6.2. Eclipse jdt Case Study . 80

6.2.1. Data Analysis . 82

Single failure-inducing change . 82

Multiple failure-inducing changes 86

Combination of failure-inducing changes 86

6.2.2. Comparison to Other Heuristics 87

6.2.3. Assessment . 90

6.2.4. Limitations . 91

6.2.5. Machine Learning Algorithms . 91

7. Related Work . 93

7.1. Change Impact Analysis Techniques . 93

7.2. Regression Test Selection . 96

7.3. Fault Localization . 98

7.3.1. Delta Debugging . 98

7.3.2. Program Slicing . 99

7.3.3. Other Techniques for Fault Localization 100

7.4. Techniques for Avoiding Recompilation 100

7.5. Techniques for Controlling and Understanding the Changes 102

8. Summary and Future Work . 104

8.1. Chianti–the Prototype of Change Impact Analysis 104

8.2. Dependences between Atomic Changes 106

8.3. Heuristic Ranking of Edits . 106

8.4. Future Work . 107

References . 109

ix

Vita . 115

x

List of Tables

2.1. Categories of atomic changes. 16

5.1. The sizes of case study data . 66

5.2. Applying Crisp on Daikon versions with failing tests 67

5.3. Applying Crisp on Eclipse jdt core versions with failing tests. 68

5.4. Test results of Eclipse jdt core 21Jan2003–22Jan2003 69

5.5. Comparison of the optimistic and pessimistic definitions 70

6.1. The properties and the scores of changes 73

6.2. The changes applied in each step and its corresponding outcomes 79

6.3. The summary of the version pairs of jdg.core 81

6.4. The variance of the ranks of failure-inducing changes 84

6.5. The distribution of the ranks of failure-inducing changes 85

xi

List of Figures

2.1. Example programs with 3 JUnit tests 10

2.2. Equations to obtain affected tests and affecting changes 14

2.3. Type hierarchy change example . 18

2.4. Addition of an overloaded method . 20

2.5. Addition of an anonymous class . 22

2.6. Changes to compile-time constants . 24

3.1. Chianti core architecture. 28

3.2. Snapshot of Chianti’s affecting changes view 29

3.3. Snapshot of Chianti’s changes by category view 30

3.4. Daikon growth statistics for the year 2002 32

3.5. Number and categorization of atomic changes for Daikon versions in 2002 33

3.6. Classification of atomic changes for each pair of versions 34

3.7. Percentage of affected tests for each of the Daikon versions. 35

3.8. Average percentage of affecting changes 36

3.9. Detailed analysis for Daikon interval 7/08/02—7/15/02 38

3.10. Detailed analysis for Daikon interval 1/21/02—1/28/02 39

4.1. Example program showing how Crisp works 42

4.2. Add method declaration to an interface 47

4.3. Changing abstract method declarations and implementations 48

4.4. Necessary method declarations for a new class 48

4.5. Necessary constructor declarations for a new class 49

4.6. Field type changes . 51

4.7. Addition of a new class results in LC changes 52

4.8. Type hierarchy changes requires addition of overriding methods 54

xii

4.9. Type hierarchy changes requires addition of constructors 55

4.10. Type declaration change results in other method changes 56

4.11. Type declaration change results in mapping dependences 58

4.12. The positions of an added field affects the compilability of a program . . 60

4.13. The value of an added field affects the compilability of a program 62

6.1. Example program to show the heuristic 74

6.2. Atomic changes for the example program 75

6.3. Call graph of the test in the edited program 75

6.4. The number of failed tests versus the average ranks of the failure-inducing

changes . 83

6.5. Scatter plot for ranks of two failure-inducing changes 88

6.6. Comparison of CS and PR heuristics . 89

xiii

1

Chapter 1

Introduction

1.1 Software Maintenance

Software evolves over time for many reasons: fixing bugs, enhancing to add new func-

tionality and new features, refactoring to improve the performance and other attributes,

adapting to new algorithms or to modified environments, etc. So changes to the software

are inevitable even if the system was developed ’right first time’.

Software maintenance is the most costly and difficult phase in the software life cycle.

Nowadays, software becomes larger and larger, with many components interacting with

each other, which complicates the maintenance task, a small change may cause the entire

system to fail. Furthermore, many legacy systems written 15-20 years ago are still in

service, and they have undergone many generations of changes. The maintainers are

rarely the original designer of the system and usually lack a complete understanding of

design and specifications of the program. As software evolves, the task of maintaining

it becomes more complex and more expensive. Software maintenance task has been

estimated to be more than 50% of the total software life cycle cost [24].

1.2 Change Impact Analysis Overview

One difficulty in software maintenance is to understand the maintained software system.

Object-oriented programming languages present many challenges for program under-

standing. The extensive use of subtyping and dynamic dispatch in object-oriented

programming languages make it difficult to understand value flow through a program.

Moreover, a seemingly small source code change can have unexpected and nonlocal

effects, which means it may ripple throughout the system to have major unintended

2

impact elsewhere. For example, adding a method to an existing class may affect the

dispatch behavior of virtual method calls throughout the program. Adding the creation

of an object may affect the behavior of virtual method calls that are not lexically near

the allocation site. This non-locality of change impact is qualitatively different and more

important for object-oriented programs than for imperative programs. For example, in

C programs a precise call graph can be derived from syntactic information alone, ex-

cept for the typically few calls through function pointers [38]. As a result, maintenance

programmers, who need to fix bugs or add enhancements to object-oriented systems

are often hesitant to make invasive changes because of the unforeseen effects that these

changes might have.

As a result, software developers need mechanisms to understand how a change to a

software system may affect the rest of the system. This process is called change impact

analysis [5, 35, 40, 51, 41, 43], which consists of a collection of techniques for deter-

mining the effects on the other components of the system of source code modifications.

Change impact analysis can help improving programmer productivity in several

ways. The impact analysis information can be used for planning changes, doing trade-

offs between changes, implementing changes, and tracing the effects of changes. If a

programmer knows the potential effects of changes before the changes are implemented,

it will be easy to perform changes more accurately and understand the consequences

of proposed software changes during development and maintenance. If there are many

candidate changes to satisfy the same changing requirement, the impact analysis infor-

mation can be used to evaluate the cost of each change (e.g., the scope of the effects of

the change, the possible security issues involved in the changes, and etc.) and allows a

programmer to do trade-offs between alternative changes.

Change impact analysis can also be used for selective regression testing by determin-

ing the sets of tests that need to be rerun after changes are made. Regression testing

is a software maintenance activity. It refers to the repetition of tests after changes to

confirm the fundamental functionalities of a program is unchanged except insofar as

required by the change. To save time and effort, only those tests that are affected by

the changes need to be rerun. Rerunning too many tests in the system will increase

3

the cost of testing, but rerunning too few tests in the system might adversely affect the

quality of the software. Change impact analysis can determine the set of tests affected

by the changes and thus needed to rerun.

Previous approaches for dynamic change impact analyses [35, 40, 41] are primarily

concerned with the problem of determining a subset of the methods in a program that

were affected by a given set of changes. That is, they first do a comparison of high-level

program representations such as control flow graphs (e.g., see [50]) or Java InterClass

Graphs [30], identifying the changes between two program versions, then find all or

some of the constructs of the program that are potentially affected by the code changes.

In summary, the change impact is evaluated by the impacted constructs of the source

code changes.

1.3 Our Change Impact Analysis

In contrast, our technique is based on the framework proposed in [51], which is con-

cerned with the problem of isolating a subset of the changes that affect a given test.

The change impact analysis method presented in this thesis presumes the existence of a

suite T of regression tests1 associated with a Java program, and access to the original

and edited versions of the code. Our analysis comprises the following steps:

1. A source code edit is analyzed to obtain a set of inter-dependent atomic changes

A, whose granularity is (roughly) at the method level. These atomic changes

include all possible effects of the edit on dynamic dispatch.

2. A call graph is constructed for each test in T . Our method can use either dynamic

call graphs that have been obtained by tracing the execution of the tests, or static

call graphs that have been constructed by a static analysis engine.2

3. For a given set T of regression tests, the analysis determines a subset T ′ of T

that is potentially affected by the changes in A, by correlating the changes in A

1 In the rest of this thesis, we will use the term “regression test” to refer both to unit tests often
used for validation after software changes and other sorts of regression tests.

2For all the data shown in the thesis, we use dynamic call graphs.

4

against the call graphs for the tests in T in the original version of the program.

4. For a given test ti ∈ T ′, the analysis can determine a subset A′ of A that contains

all the changes that may have affected the behavior of ti. This is accomplished by

constructing a call graph for ti in the edited version of the program, and correlating

that call graph with the changes in A.

As mentioned before, all of the impact analysis techniques previous to ours focus

on finding constructs of the program potentially affected by code changes. Our change

impact analysis aims to find a subset of the changes that impact a test whose behavior

has (potentially) changed. Our research can improve productivity by:

• reducing the amount of time and effort needed in running regression tests, by

determining that some tests are guaranteed not to be affected by a given set of

changes, and

• reducing the amount of time and effort spent in debugging, by determining a safe

approximation of the changes responsible for a given test’s failure [51, 49, 48],

and

• allowing programmers to experiment with different edits, observe the code frag-

ments that they affect, and use this information to determine which edit to select

and/or how to augment test suites [12, 45].

The primary goal of our research is to provide programmers with tool support that

can help them understand why a test is suddenly failing after a long editing session by

1) isolating the atomic changes responsible for the failing test; 2) ranking the atomic

changes that might have affected the failing test, indicating the likelihood that they may

have contributed to the test failure; and 3) facilitating the automatic construction of

the intermediate programs from user-selected atomic changes, further narrowing down

the failure causes by rerunning the failed tests on the intermediate programs.

1.4 Contributions

The work presented in this thesis makes the following contributions.

5

1.4.1 Chianti–the Prototype of Change Impact Analysis

The first contribution of this thesis is a demonstration of the utility of the basic change

impact analysis framework of [51], by implementing a proof-of-concept prototype,

Chianti. Chianti greatly extends the originally specified techniques [51] to handle the

entire Java language(J2SE 1.4), including such constructs as anonymous classes, ini-

tializers, and overloading. This entailed extending the model of atomic changes and

their inter-dependences. In addition, we present experimental validation of the utility

of change impact analysis by determining the percentages of affected tests and affect-

ing changes for 40 versions of Daikon [21, 22] in 2002. For the 39 sets of changes

between these versions, we found that, on average, 52% of the tests are potentially

affected. Moreover, for each potentially affected test, on average, only 3.95% of the

atomic changes affected it. This is a promising result with regard to the utility of our

technique for enhancing program understanding and debugging. In addition, Chianti

has been integrated closely with Eclipse [18], a widely used open-source development

environment for Java, to make it possible for programmers to use and further extend

the functionality of Chianti from Eclipse.

1.4.2 Dependences between Atomic Changes

The second contribution of this thesis is the definition and implementation of the no-

tion of dependences between atomic changes.3 Atomic changes have syntactic inter-

dependences which induce a partial ordering ≺ on them, with transitive closure �∗. C1

≺ C2 denotes that C1 is a prerequisite for C2. These dependences can be used to de-

termine that certain changes are guaranteed not to affect a given test, and to construct

syntactically valid intermediate versions of the program that contain some, but not all

atomic changes. Three kinds of dependences are defined between atomic changes to

ensure the compilability of the intermediate programs. Structural dependences capture

the necessary sequences that occur when new Java elements are added or deleted in

3Dependences were not explicitly described in [51]

6

a program. Declaration dependences capture all the necessary Java element declara-

tions that are required to create a valid intermediate version. Mapping dependences

are used to correlate all other kinds of changes to method-level changes so that Chianti

can calculate the affected tests and affecting changes correctly. Crisp [12, 13], built by

Ophelia Chesley, relies on this automated computation of underlying inter-dependences

between atomic changes to generate an intermediate program from user-specified atomic

changes. Extensive experiments show that our dependences can help build the inter-

mediate programs automatically in most cases [45, 11].

1.4.3 Heuristic Ranking of Edits

Another contribution of the thesis is a heuristic for ranking the atomic changes for fault

localization. We propose a heuristic to rank method changes that might have affected a

failing test, indicating the likelihood that they may have contributed to the test failure.

The heuristic is based on the number of ancestors and descendants of a method in the

test’s call graph, as well as the calling relationships between changed methods. Our

results indicate that when a failure is caused by a single method change, our heuristic

ranked the failure-inducing change within the top 2 over all the method changes in

67%(8 over 12) of the delegate tests (i.e., representatives of all failing tests). Even when

the failure is caused by some combination of the changes, rather than a single change,

our heuristic still helps.

1.5 Thesis Outline

The rest of this thesis is organized as follows. The general framework of change impact

analysis is presented in Chapter 2. The prototype tool of change impact analysis and

its evaluation is presented in Chapter 3. Chapter 4 describes the syntactic dependences

between atomic changes. Chapter 5 describes how these syntactic dependences are used

to help automatic construction of intermediate programs from user-specified atomic

changes. Chapter 6 presents a heuristic ranking of atomic changes in edits for fault

localization. Related work is discussed in Chapter 7. Chapter 8 presents a summary of

7

the thesis and directions for future work.

The refinement and extension of the model of atomic changes, the prototype tool

for change impact analysis and its evaluation were originally presented in [48, 47].

The data presented in the thesis are new collected, since we extended the model of

atomic changes and re-engineered the tool. The definition of the syntactic dependences

between atomic changes and its application to automatic construction of intermediate

programs were originally presented in [12, 45, 13]. The syntactic dependences were

extended in the thesis to accommodate the new model of atomic changes and allow

the automatic construction of intermediate programs in more complicated cases. The

heuristic ranking of atomic changes for fault localization was presented in [46].

8

Chapter 2

The Model of Change Impact Analysis for Java Programs

Regression tests are developed by programmers over time to confirm the fundamental

functionality of a program after it has been changed. After a long code editing session,

regression tests are executed to ensure that the updated program version works properly

with respect to previous releases. During this phase, any test that produces unexpected

results may indicate potential defects introduced by the edit that created the updated

version. When a test fails, a programmer is burdened with the task of searching through

the program for the source(s) of the failure. Moreover, a failure can be caused by non-

trivial combinations of changes.

One of the primary goals of our research is to provide programmers with tool support

that can help them understand why a test is suddenly failing after a long editing session

by isolating the changes responsible for the failure.

2.1 Overview of Approach

This section gives an informal overview of the change impact analysis methodology

originally presented in [51]. Our approach first determines, given two versions of a

program and a set of tests that execute parts of the program, the affected tests whose

behavior may have changed. Then, in a second step, for each test whose behavior was

affected, a set of affecting changes is determined that may have given rise to that test’s

changed behavior. Our method is conservative in the sense that the computed set of

affecting changes is guaranteed to contain at least every change that may have caused

changes to the test’s behavior.

9

We will use the example program of Figure 2.1(a) to illustrate our approach.1 Fig-

ure 2.1(a) depicts two versions of a simple program comprising classes A, B, and C. The

original version of the program consists of all the program text except for the 7 program

fragments shown in boxes; the edited version of the program consists of all the program

text including the program fragments shown in boxes. Associated with the program

are 3 tests, Tests.test1(), Tests.test2(), and Tests.test3().

2.1.1 Atomic Changes and Inter-dependences

Our change impact analysis relies on the computation of a set of atomic changes that

capture all source code modifications at a semantic level that is amenable to analysis.

We currently use a fairly coarse-grained model of atomic changes, where changes are

categorized as added classes (AC), deleted classes (DC), added methods (AM), deleted

methods (DM), changed methods (CM), added fields (AF), deleted fields (DF), and

lookup (i.e., dynamic dispatch) changes (LC).2

We also compute syntactic dependences between atomic changes. Intuitively, an

atomic change A1 is dependent on another atomic change A2 if applying A1 to the

original version of the program without also applying A2 results in a syntactically

invalid program (i.e., A2 is a prerequisite for A1). These dependences can be used

to determine that certain changes are guaranteed not to affect a given test, and to

construct syntactically valid intermediate versions of the program that contain some,

but not all atomic changes. If a set S of atomic changes is known to expose a bug,

then the knowledge that applying certain subsets of S does not lead to syntactically

valid programs, can be used to locate bugs more quickly. More details about different

categories of the syntactic dependences are discussed in Chapter 4.

Figure 2.1(b) shows the atomic changes that define the two versions of the example

program, numbered 1–13 for convenience. Each atomic change is shown as a box, where

the top half of the box shows the category of the atomic change (e.g., CM for changed

1This example was used in our previous paper [48]

2 There are a few more categories of atomic changes that are not relevant for the example under
consideration that will be presented in Section 2.3.

10

class A {
public A(){ }
public void foo(){ }

public int x;

}
class B extends A {

public B(){ }

public void foo(){ B.bar(); }

public static void bar(){ y = 17; }

public static int y;

}
class C extends A {

public C(){ }

public void foo(){ x = 18; }

public void baz(){ z = 19; }

public int z;

}

class Tests {
public static void test1(){
A a = new A();

a.foo();

}
public static void test2(){
A a = new B();

a.foo();

}
public static void test3(){
A a = new C();

a.foo();

}
}

(a)

AF

A.x

1

LC

C,C.foo()

5

LC

C,A.foo()

4

CM

C.foo()

2
AM

B.bar()

CM

B.foo()

AF

B.y

CM

B.bar()

6 8

7 9

AF

C.z

10

AM

C.baz()

11

CM

C.baz()

12

LC

C,C.baz()

13

AM

C.foo()

3

(b)

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B() B.foo()

A.A()

Tests.test3()

C.C() A.foo()

<A,A.foo()>

<B,A.foo()>

<C,A.foo()>

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B()

A.A()

Tests.test3()

C.C() C.foo()

<A,A.foo()>

<B,A.foo()>

B.foo()

B.bar()

<C,A.foo()>

(c) (d)

Figure 2.1: (a) Example program with 3 tests. Added code fragments are shown in
boxes. (b) Atomic changes for the example program, with their inter-dependences. (c)
Call graphs for the tests before the changes were applied. (d) Call graphs for the tests
after the changes were applied.

11

method), and the bottom half shows the method or field involved (for LC changes,

both the class and method involved are shown). An arrow from an atomic change A1

to an atomic change A2 indicates that A1 is dependent on A2.

Consider, for example, the addition of the call B.bar() in method B.foo(). This

source code change resulted in atomic change 8 in Figure 2.1(b). Observe that adding

this call would lead to a syntactically invalid program unless method B.bar() is also

added. Therefore, atomic change 8 is dependent on atomic change 6, which is an AM

change for method B.bar(). The observant reader may have noticed that there is

also a CM change for method B.bar() (atomic change 9). This is the case because

our method for deriving atomic changes decomposes the source code change of adding

method B.bar() into two steps: the addition of an empty method B.bar() (AM atomic

change 6 in the figure), and the insertion of the body of method B.bar() (CM atomic

change 9 in the figure), where the latter is dependent on the former. Observe that

addition of B.bar()’s body requires that field B.y be added to class B. Hence, there is a

dependence of atomic change 9 on AF atomic change 7, which represents the addition

of field B.y. Notice that our model of dependences between atomic changes correctly

captures the fact that adding the call to B.bar() to the body of B.foo() requires that

a method B.bar() is added, but not that field B.y is added.

The LC atomic change category models changes to the dynamic dispatch behavior

of instance methods. In particular, an LC change (Y,X.m()) models the fact that a

call to method X.m() on an object of type Y results in the selection of a different

method. Consider, for example, the addition of method C.foo() to the program of

Figure 2.1(a). As a result of this change, a call to A.foo() on an object of type C will

dispatch to C.foo() in the edited program, whereas it used to dispatch to A.foo() in

the original program. This change in dispatch behavior is captured by atomic change 4.

LC changes are also generated in situations where a dispatch relationship is added or

removed as a result of a source code change. For example, atomic changes 5 (defining

the behavior of a call to C.foo() on an object of type C) and 13 (defining the behavior

of a call to C.baz() on an object of type C) occur due to the addition of methods

C.foo() and C.baz(), respectively.

12

2.1.2 Affected Tests

In order to identify those tests that are affected by a set of atomic changes, we have

to construct a call graph for each test. The call graphs used in this thesis contain one

node for each method, and edges between nodes to reflect calling relationships between

methods. Our analysis can work with call graphs that have been constructed using

static analysis, or with call graphs that have been obtained by observing the actual

execution of the tests. In the experiments reported in this thesis, dynamic call graphs

are used.

Figure 2.1(c) shows the call graphs for the 3 tests test1, test2, and test3, before

the changes have been applied. In these call graphs, edges corresponding to dynamic

dispatch are labeled with a pair < T,M >, where T is the run-time type of the receiver

object, and M is the method shown as invoked at the call site.

A test is determined to be affected if its call graph (in the original version of the

program) either contains a node that corresponds to a changed method (CM) or deleted

method (DM) change, or if its call graph contains an edge that corresponds to a lookup

change (LC). Using the call graphs in Figure 2.1(c), it is easy to see that: (i) test1 is

not affected, (ii) test2 is affected because its call graph contains a node for B.foo(),

which corresponds to CM change 8, and (iii) test3 is affected because its call graph

contains an edge corresponding to a dispatch to method A.foo() on an object of type

C, which corresponds to LC change 4.

2.1.3 Affecting Changes

In order to compute the changes that affect a given affected test, we need to construct

a call graph for that test in the edited version of the program. These call graphs for

the tests are shown in Figure 2.1(d).3 The set of atomic changes that affect a given

affected test includes: (i) all atomic changes for added methods (AM) and changed

methods (CM) that correspond to a node in the call graph (in the edited program),

3 The call graph for test1 in the edited version of the program is not necessary for our analysis be-
cause test1 was not affected by any of the changes, and is included in the figure solely for completeness.

13

(ii) atomic changes in the lookup change (LC) category that correspond to an edge in

the call graph (in the edited program), and (iii) their transitively prerequisite atomic

changes.

As an example, we can compute the affecting changes for test2 as follows. Observe,

that the call graph for test2 in the edited version of the program contains methods

B.foo() and B.bar(). These nodes correspond to atomic changes 8 and 9 in Fig-

ure 2.1(b), respectively. Atomic change 8 requires atomic change 6, and atomic change

9 requires atomic changes 6 and 7. Therefore, the atomic changes affecting test2 are 6,

7, 8, and 9. Informally, this means that we can automatically determine that test2 is

affected by the addition of field B.y, the addition of method B.bar(), and the change

to method B.foo(), but not on any of the other source code changes! In other words,

we can safely rule out 9 of the 13 atomic changes as the potential source for test2’s

changed behavior.

To conclude our discussion of the example program of Figure 2.1, consider the

atomic changes 10, 11, 12, and 13 corresponding to the addition of field C.z and method

C.baz(), respectively. These atomic changes do not affect any of the tests, indicating

that additional tests are needed.

2.2 Formal Definitions of Affected Test and Affecting Changes

Figure 2.2 shows a a modified version of the equations in first presented in [51].4 We

will use them to more formally define how we find affected tests and their corresponding

affecting atomic changes, in general.

Assume the original program P is edited to yield program P ′, where both P and P ′

are syntactically correct and compilable. Associated with P is a set of tests T = t1,...,tn.

The call graph for test ti on the original program, called Gti , is described by a subset of

P ’s methods Nodes(P, ti) and a subset Edges(P, ti) of calling relationships between P ’s

methods. Likewise, Nodes(P ′, ti) and Edges(P ′, ti) form the call graph G′

ti
on the edited

program P ′. Here, a calling relationship is represented as D.n →B,X.m A.m, indicating

4 We change some equations to make them consistent with the representation of the call graph nodes
and edges.

14

possible control flow from method D.n to method A.m due to a virtual call to method

X.m on an object of type B, where type B must be a subtype of type A, and A must

be subtype of type X (i.e., B≤∗A≤∗X).5 In these definitions, we implicitly make the

usual assumptions [30], namely that execution of the program is deterministic and that

the library code used and the execution environment (e.g., JVM, operating system, the

contents of non-Java files and directories, etc.) itself remain unchanged.

AffectedTests(T ,A) =
{ ti | ti ∈ T , Nodes(P, ti) ∩ (CM ∪DM)) 6= ∅ } ∪
{ ti | ti ∈ T , n,A.m ∈ Nodes(P, ti),

D.n→B, X.mA.m ∈ Edges(P, ti),
〈B,X.m〉 ∈ LC, B<∗X }

AffectingChanges(t,A) =
{ a′ | a ∈ Nodes(P ′, t) ∩ (CM ∪ AM), a′ �∗ a } ∪
{ a′ | a ≡ 〈B,X.m〉 ∈ LC, B<∗X,

D.n→B, X.mA.m ∈ Edges(P ′, t),
for some n,A.m ∈ Nodes(P ′, t), a′ �∗ a }

Figure 2.2: Equations to obtain affected tests and affecting changes, where B≤∗A≤∗X.

AffectedTests(T ,A) is a subset of T containing only those tests whose behavior

may be affected by changes in A. This comprises any test that traverses a changed

method (CM) or deleted method (DM), as well as any test that contains a virtual

dispatch whose behavior may have changed. AffectingChanges(t,A) is a subset of the

changes in A that may affect the behavior of a specific test t. This includes all atomic

changes for added methods (AM) and changed methods (CM) that correspond to a

node in the call graph (in the edited program), as well as any dynamic dispatch change

that corresponds to an edge in the call graph (in the edited program), and all of their

transitively prerequisite atomic changes.

Note that in AffectingChanges(t,A) equation in Figure 2.2, we only focus on those

LC changes whose runtime receiver type is different from the declaring type of the static

method at call site (i.e., LC(B,X.m)(B<∗X), when comparing the dynamic dispatch

5
B<X means that type B is a direct descendant of type X; B≤X means that type B is a direct

descendant of type X, or B = X; B<
∗

X means that type B is a descendant of type X, and B 6= X;
B≤∗

X means that type B is a descendant of type X, or B = X.

15

changes with the calling edges in the call graph. The purpose of this restriction is

to minimize the set of affecting changes presented to the programmer. That is, we

ignore the change LC(B,X.m) with B = X (and thus B = A = X in the call graph).

Because in this case, the call D.n→B, X.mA.m becomes D.n→A, A.mA.m, the target

A.m must be a newly added method (AM) that results in the change LC(A,A.m),

which is already reported in the first part of the equations.

2.3 Atomic Changes

Our analysis assumes the existence of an original program P and a changed program P ′

derived from P . Both P and P are assumed to be syntactically correct and compilable.

As previously mentioned, a key aspect of our analysis is the step of uniquely decom-

posing a source code edit into a set of inter-dependent atomic changes, as defined in

Table 2.1. These have two important characteristics. First, their granularity matches

our analysis; Second, any source code edit can be broken up into a unique set of atomic

changes.

In the original formulation [51], several kinds of changes, (e.g., changes to access

rights of classes, methods, and fields, addition/deletion of comments, and changes to

the type hierarchy) were not modeled. Our analysis handles the full Java programming

language (J2SE 1.4), which necessitated modeling several constructs not considered in

the original framework [51], including abstract classes, interfaces, initializers,6nested

classes7 and visibility modifiers. Some of these constructs required the definition of

new atomic changes; others were handled by augmenting the interpretation of atomic

changes already defined. Table 2.1 lists the set of atomic changes, which includes the

original 8 categories [51] plus 9 new defined atomic changes (marked with *).

6 Instance initializers are blocks of executable code that may be used to initialize an instance when
it is created.

7A nested class is any class whose declaration occurs within the body of another class or interface.
Nested classes can be further classified into member classes, local classes and anonymous classes.

16

AF Add a field

DF Delete a field

*CFI Change definition of a instance field initializer

*CSFI Change definition of a static field initializer

*AI Add an empty instance initializer

*DI Delete an empty instance initializer

*CI Change definition of an instance initializer

*ASI Add an empty static initializer

*DSI Delete an empty static initializer

*CSI Change definition of an static initializer

AM Add an empty method

DM Delete an empty method

CM Change body of a method

LC Change virtual method lookup

AC Add an empty class

DC Delete an empty class

*CTD Change a type declaration

Table 2.1: Categories of atomic changes.

2.3.1 Field and Initializer Changes

AF and DF denote added and deleted fields respectively; similarly, AI and DI denote

the set of added and deleted instance initializers respectively; and ASI and DSI denote

the set of added and deleted static initializers, respectively. CI and CSI capture any

change to an instance or static initializer, respectively. CFI and CSFI capture any

change to an instance or static field, including (i) adding an initialization to a field,

(ii) deleting an initialization of a field, (iii) making changes to the initialized value of

a field, and (iv) making changes to a field modifier (e.g., changing a static field into a

non-static field).

Changes to initializer blocks and field initializers also have repercussions for con-

structors or static initializer methods of a class. Specifically, if changes are made to

initializers of instance fields or to instance initializer blocks of a class C, then there are

two cases: (i) if constructors have been explicitly defined for class C, then our analysis

will report a CM for each such constructor, (ii) otherwise, our analysis will report a

17

change to the implicitly declared method C.〈init〉() that is generated by the Java com-

piler to invoke the superclass’s constructor without any arguments. Similarly, the class

initializer C.〈clinit〉() is used to represent the method being changed when there are

changes to a static field (i.e., CSFI) or static initializer (i.e., CSI).

2.3.2 Method Changes

AM and DM denote sets of added and deleted of methods declarations, respectively.

Accommodating method access modifier changes from non-abstract to abstract or

vice versa, and non-public to public or vice versa, required extension of the original

definition of CM in [51]. In this thesis, CM comprises: (i) adding a body to a previously

abstract method, (ii) removing the body of a non-abstract method and making it

abstract, or (iii) making any number of statement-level changes inside a method body

or any method declaration changes (e.g., changing the access modifier from public to

private, adding a synchronized keyword or changing a throws clause).

Note that we decompose the source code change of adding a method A.m() into two

steps: the addition of an empty method AM(A.m()) and the insertion of the body of

method CM(A.m()), where the latter is dependent on the former.

2.3.3 Dynamic Dispatch Changes

LC represents changes in dynamic dispatch behavior that may be caused by various

kinds of source code changes (e.g., by the addition of methods, by the addition or dele-

tion of inheritance relations, or by changes to the access control modifiers of methods).

LC is defined as a set of pairs 〈Y,X.m()〉, indicating that the dynamic dispatch behav-

ior for a call to X.m() on an object with run-time type Y has changed. LC changes

can be classified as (i) newly added dynamic dispatch tuples (e.g., caused by declaring

a new class/interface or method), (ii) deleted dynamic dispatch tuples (e.g., caused by

deleting a class/interface or method), or (iii) dynamic dispatch tuples with changed

targets (e.g., caused by adding/deleting a method or changing the access control of a

class or method).

Changing a method’s access modifier may result in changes to the dynamic dispatch

18

in the program (i.e., LC changes). For example, there is no entry for private or static

methods in the dynamic dispatch map (because they are not dynamically dispatched),

but if a private method is changed into a public method, then an entry will be

added, generating an LC change that is dependent on the access control change, which

is represented as a CM. Another example is that making an abstract class C non-

abstract will result in LC changes; in the original dynamic dispatch map, there is no

entry with C as the run-time receiver type, but the new dispatch map will contain

such an entry. Additions and deletions of import statements may also affect dynamic

dispatch.

2.3.4 Class Changes

AC and DC denote added and deleted class/interface declarations, respectively. Pro-

grammers may also change the declaration of an existing class or interface, for example,

moving a class in a hierarchy, or changing the visibility of a class. CTD represents any

changes to the declaration of a class or an interface, including the type hierarchy changes

and changes to the modifier of the class or interface.8 Considering the example program

shown in Figure 2.3. In the original program, type C is declared as class C extends B,

but in the edited program, the declaration changes to class C extends A and all the

other type declarations remain the same. Our analysis reports CTD(C) to represent

this type declaration change of class C. Although the whole subtree rooted at class C is

moved, to keep the atomic changes clear and simple, our analysis won’t report CTD

changes for the subtypes of class C.

class A{ }
class B{ }
class C extends B{ }
class D extends C{ }

class A{ }
class B{ }

class C extends A{ }

class D extends C{ }

(a) (b)

Figure 2.3: Type Hierarchy change example

8 Currently, type declaration changes to anonymous and local inner classes are not implemented
since these changes occur very seldom.

19

2.3.5 Dependences

Atomic changes have inter-dependences which induce a partial ordering ≺ on a set of

them, with transitive closure �∗. Specifically, C1 ≺∗ C2 denotes that C1 is a prerequisite

for C2. This ordering determines a safe order in which atomic changes can be applied

to program P to obtain a syntactically correct edited version P ′′ which, if we apply

all the changes is P ′. Consider that one cannot extend a class X that does not yet

exist, by adding methods or fields to it (i.e., AC(X) ≺ AM(X.m()) and AC(X) ≺

AF(X.f)). These dependences are intuitive as they involve how new code is added or

deleted in the program. Other dependences are more subtle. For example, if we add a

new method C.m() and then add a call to C.m() in method D.n(), Our analysis will

report a dependence AM(C.m()) ≺ CM(D.n()). Figure 2.1(b) shows some examples of

dependences among atomic changes. More details about dependences will be discussed

in Chapter 4.

2.4 Special Issues

2.4.1 Overloading Methods

Overloading poses interesting issues for change impact analysis. Consider the intro-

duction of an overloaded method as shown in Figure 2.4 in which the added method

is shown in a box. Note that there are no textual edits in R.bar(), and further,

that there are no LC changes because all the methods are static. However, adding

method R.foo(Y) changes the behavior of the program because the call of R.foo(y)

in R.bar() resolves to R.foo(Y) instead of R.foo(X) [26] after the change, and affects

the call graph of Test.testBar(). Therefore, our analysis reports a CM change for

method R.bar() despite the fact that no textual changes occur within this method,9

and creates a dependence: AM(R.foo(Y)) ≺ CM(R.bar()).

To make our analysis safe in such cases, the algorithm for reporting such CM

changes is conservative. For each AM or DM: A.m(X1, ...,Xn), we first search for its

9 However, the abstract syntax tree for R.bar() will be different after applying the edit, as over-
loading is resolved at compile time.

20

related overloaded methods in the whole hierarchy tree of type A. Then estimate all

the possible callers of these overloaded methods,10 and report CM for these callers.

class R {
static void foo(X x){ }

static void foo(Y y){ }

static void bar(){
Y y = new Y();

R.foo(y);

}
}

class X { }
class Y extends X { }
class Test extends TestCase{
public void testBar(){

R.bar();

}
}

Figure 2.4: Addition of an overloaded method. The added method is shown in a box.

2.4.2 Threads and Concurrency

Threads do not pose significant challenges for our analysis. The addition/deletion

of synchronized blocks inside methods and the addition/deletion of synchronized

modifiers on methods are both modeled as CM changes. Threads do not present

significant issues for the construction of call graphs either, because the analysis discussed

in this thesis does not require knowledge about the particular thread that executes a

method. The only information that is required are the methods that have been executed

and the calling relationships between them. If dynamic call graphs are used, as is the

case in this thesis, this information can be captured by tracing the execution of the

tests. If flow-insensitive static analysis is used for constructing call graphs [49], the

only significant issue related to threads is to model the implicit calling relationship

between Thread.start() and Thread.run().

2.4.3 Exception Handling

Exception handling is not a significant issue in our analysis. Any addition or deletion

or statement-level changes to a try, catch or finally block will be reported as a

CM change. Similarly, changes to the throws clause in a method declaration are

10 In implementation, we use SearchEngine in Eclipse to find all the callers of the overloaded methods.

21

also captured as CM changes. Possible inter-procedural control flow introduced by

exception handling is expressed implicitly in the call graph; however, our change impact

analysis correctly captures effects of these exception-related code changes. For example,

if a method f() calls a method g(), which in turn calls a method h() and an exception

of type E is thrown in h() and caught in g() before the edit, but in f() after the edit,

then there will be CM changes for both g() and f() representing the addition and

deletion of the corresponding catch blocks. These CM changes will result in all tests

that execute either f() or g() to be identified as affected. Therefore, all possible effects

of this change are taken into account, even without the explicit representation of flow

of control due to exceptions in our call graphs.

2.4.4 Anonymous Classes and Local Inner Classes

The growth of the Java language has introduced many new concepts. These new features

bring additional facilities to programmers, but also introduce more difficulties for the

analysis. One engineering problem encountered during implementation resulted from

the absence of unique names for anonymous and local classes. In the Java virtual

machine, anonymous classes are represented as EnclosingClassName$〈num〉, where the

number assigned represents the lexical order of the anonymous class within its enclosing

class. For local inner classes, the situation is very similar. In the Java virtual machine,

local classes are represented as EnclosingClassName$〈num〉$LocalClassName. This

naming strategy guarantees that all the class names in a Java program are unique.

However, when we compare and analyze two related Java programs, we need to

establish a correspondence between classes and methods in each version to determine

the set of atomic changes. The approach used is a match-by-name strategy in which two

components in different programs match if they have the same name; however, when

there are changes to anonymous or local inner classes, this strategy requires further

consideration.

Figure 2.5 shows a simple program using anonymous classes with the code added

by the edit shown inside a box. In this program, method listJavaFiles(String)

lists all the Java files in a directory that is specified by its parameter. Anonymous

22

import java.io.*;

class Lister {

static void listClassFiles(String dir){
File f = new File(dir);

String[] list = f.list(

new FilenameFilter() { //anonymous class

boolean accept(File f, String s){
return s.endsWith(".class");

}
});

for(int i = 0; i < list.length; i++)

System.out.println(list[i]);

}

static void listJavaFiles(String dir){
File f = new File(dir);

String[] list = f.list(

new FilenameFilter() { //anonymous class

boolean accept(File f,String s){
return s.endsWith(".java");

}
});

for(int i = 0; i < list.length; i++)

System.out.println(list[i]);

}
}

Figure 2.5: Addition of an anonymous class. The added code fragments are shown
inside a box.

23

class Lister$1 implements interface java.io.FilenameFilter and is defined as part

of a method call expression. Now, assume that the program is edited and a method

listClassFiles(String) is added that lists all class files in a directory. This new

method declares another similar anonymous class. Now, in the edited version of the

program, the Java compiler will name this new anonymous class Lister$1 and the

previous anonymous class, formerly named Lister$1, will become Lister$2. Clearly,

the match-by-name strategy cannot be based on compiler-generated names because the

original anonymous class has different names before and after the edit.

To solve this problem, we use a new naming strategy that assigns each

class a unique internal name. For top-level classes or member classes, the in-

ternal name is the same as the class name. For anonymous classes and lo-

cal inner classes, the unique name consists of four parts: enclosingClassName,

enclosingElementName, selfSuperclassInterfacesName, sequenceNumber. In

this context: enclosingClassName is name of the nearest top level class or mem-

ber class in which it is defined, enclosingElementName may be a method signature,

a field name or an initializer number as appropriate for an anonymous or local class,

selfSuperclassInterfacesName is a combination of the class name (only for a local

class), superclass name and interface name, and sequenceNumber is used when more

than one anonymous class is defined in the same code block and they all inherit from

same type.

For the example in Figure 2.5, the unique internal name of the anony-

mous class in the original program is Lister$listJavaFiles(String)$java.io.-

FilenameFilter$1, while the unique internal name of the newly added anony-

mous class in the edited program is Lister$listClassFiles(String)$java.io.-

FilenameFilter$1. Similarly, the internal name of the original anonymous class in

the edited program is Lister$listJavaFiles(String)$java.io.FilenameFilter$1.

Notice that this original anonymous class whose compiler-generated names are

Lister$1 in the original program and Lister$2 in the edited program, has the same

unique internal name in both versions. With this new naming strategy, match-by-name

can identify anonymous and local inner classes and report atomic changes involving

24

them.11

2.5 Limitations of the Model

Our current atomic changes model has some limitations for obtaining the affected tests,

which means that in some special cases, our change impact analysis is not safe [50] in

the sense that it does not guarantee that the set of affected tests contains at least every

test whose behavior may have been affected.

2.5.1 Changes to Compile-time Constants

public interface I {
int START = 2; // change to START = 1; in the edited program

}
public class A implements I{

public void foo(){
int i = START;

bar(i);

}
void bar(int i){
switch(i){
case 1: throw new RuntimeException();

case 2: System.out.println(i);

break;

}
}

}
public class Test extends TestCase {

public void test1(){
new A().foo();

}
}

Figure 2.6: Changes to compile-time constants, our analysis fails to report affected test.

Consider the original example program in Figure 2.6. Suppose the programmer

changes the value of the field I.START from 2 to 1 in the edited program. Originally,

the test Test.test1() will print the value of I.START, but in the edited program, the

test will throw a RuntimeException() and fail. However, our analysis fails to report

11 This naming scheme can only fail when two anonymous classes occur within the same scope and
extend the same superclass. If this occurs due to an edit, however, our analysis generates a safe set of
atomic changes corresponding to the edit.

25

the test Test.test1() as affected.

In Jave, every field declaration in the body of an interface is implicitly public,

static, and final, even if such fields are not explicitly declared that way. Our analysis

will report a CSFI(I.START) to represent this change. According to the Java language

specification, references to compile-time constants must be resolved at compile time to a

copy of the compile-time constant value, so uses of such a field never cause initialization.

In the example, the reference to I.START in method A.foo() is a reference to a field

that is a compile-time constant; therefore, it does not cause interface I to be initialized.

As a consequence, our analysis won’t report change CSI(I.〈clinit〉()) in this case. Since

change CSFI(I.START) does not have a correlated method change, and our analysis

needs to compare the call graph with method changes to locate the affected tests, the

analysis fails to report this test as affected.

Even if we report the change CSI(I.〈clinit〉()) and correlate the CSFI(I.START)

change with it, our analysis would still fail to report the test as affected. The reason

is that the real call graph of Test.test1() does not include the call to the method

I.〈clinit〉().

The failure of the test in the edited program is caused by the value change to the

variable int i in method A.foo(), which refers to a compile-time constant I.START.12

But there is no syntactic dependence between this value change and the field initializer

change in interface I. To capture this affected test, we need to extend our change impact

analysis framework to model this kind of semantic dependence.

2.5.2 Changes to Import Statements

Suppose there are two library classes providing the same interfaces but different imple-

mentations, the programmer can change the import statements to use different libraries

in the original and edited programs , but leave all the other part of the code untouched.

In this case, a test’s behavior may be affected because of the usage of different libraries.

Whether we can detect the affected test or not depends on how the library class is used

12 Whether the compile-time constant is defined in an interface or in a class does not affect the
results.

26

in the program. If some user-defined type is a subtype of the imported library class,

when we compare the type hierarchy of two versions of the program, the changes to

import statements will be reflected as some dynamic dispatch changes. However, if the

library class is not extended, but just referred as the type of some variables or return

type of the methods, the type hierarchies in two different versions of the program will

remain the same and our analysis won’t report any atomic changes and thus fail to

detect the affected test.

27

Chapter 3

Chianti– A Tool for Change Impact Analysis of Java

Programs

To demonstrate the utility of the basic change impact analysis framework described

in Chapter 2, we designed and implemented a proof-of-concept prototype–Chianti, a

change impact analysis tool for Java program that has been integrated closely with

Eclipse [18], a widely used open-source development environment.

Later in this chapter, we describe its validation against the 2002 revision history

(taken from the developers’ CVS repository) of Daikon, a realistic Java system devel-

oped by M. Ernst et al. [21, 22]. Essentially, in this initial study we substituted CVS

updates obtained at intervals throughout the year for programmer edits, thus acquir-

ing enough data to make some initial conclusions about our approach. We present

both data measuring the overall effectiveness of the analysis and some case studies of

individual CVS updates.

3.1 Prototype

Chianti has been implemented in the context of the Java editor of Eclipse, a widely used

extensible open-source development environment for Java. Our tool is designed as a

group of Eclipse plugins, Chianti core, a launch configuration and a Chianti results view.

Chianti core is responsible for deriving a set of atomic changes from two versions of an

Eclipse project (i.e., Java program), which is achieved via a pairwise comparison of the

abstract syntax trees of the classes1 in the two project versions; and obtaining affected

1 While Eclipse provides functionality for comparing source files at a textual level, we found the
amount of information provided inadequate for our purposes. In particular, the class hierarchy infor-
mation provided by Eclipse 3.1 does not currently include anonymous and local classes.

28

CHIANTI

Original Program P Changed Program P’Set of Unit Tests

Atomic Change

Decoder

Atomic Changes

& Dependences

Call Graph Builder

Call Graphs of Tests in

P

Call Graphs of Tests

in P’

Change Impact

Analyzer
Affected Tests Affecting Changes

Figure 3.1: Chianti core architecture.

tests and their affecting changes by traversing the test’s call graph in the original and

edited programs. Figure 3.1 depicts Chianti core architecture. The launch configuration

plugin allows users to select the project versions to be analyzed, the set of tests associ-

ated with the project, and the call graphs to be used. This provides programmers the

flexibility of using call graphs generated by other tools as long as the call graph format

matches the interface Chianti requires. The Chianti results view plugin manages the

views that allow the user to visualize change impact information. The Chianti launch

configuration provides an extension point allowing different programmers to implement

their own preferred views for visualization.

Crisp is a tool for constructing intermediate versions of a Java program, which will

be described in detail in Chapter 5. Like Chianti, Crisp is built as an Eclipse plug-in.

Crisp shares the same launch configuration with Chianti, and calls the functionalities

provided by Chianti core to generate the atomic changes for two versions of a Java

program, as well as the affecting changes of an affected test. Crisp extends the Chianti

results view to allow a programmer to select certain affecting changes for an affected

29

test, and build an intermediate program based on the programmer’s selection.

Although Chianti is intended for interactive use, we have been testing the prototype

using successive CVS versions of a program. Thus, a typical scenario of a Chianti session

begins with the programmer extracting two versions of a project from a CVS version

control repository into the workspace. The programmer then starts the change impact

analysis launch configuration, and selects the two projects of interest as well as the

test suite associated with these projects. Currently, we allow tests that have a separate

main() routine and JUnit tests [32].

Figure 3.2: Snapshot of Chianti’s affecting changes view

In order to enable the reuse of analysis results, and to decouple the analysis from

GUI-related tasks, both atomic change information and call graphs are stored as XML

files. Chianti currently supports two mechanisms for obtaining the call graphs to be

used in the analysis. Users can use the Chianti built-in call graph builder to generate

the call graph automatically. In this case, Chianti will use jikesBT2 to instrument

2 jikes Bytecode Toolkit is a Java class library which enables Java programs to create, read, and write
binary Java class files, and to query and update a single high-level representation of the collection of
them, including relationships among them. This allows developing tools which report on what APIs the

30

Figure 3.3: Snapshot of Chianti’s changes by category view

the Java binary class file and then execute the instrumented code to obtain the test’s

dynamic call graph.3

In its previous versions, Chianti built static call graphs by invoking the Gnosis anal-

ysis engine4 to construct these [49]. Users needed to supply some additional information

relevant to this analysis engine (e.g., the choice of call graph construction algorithm to

be used and some policy settings for dealing with reflection). Now we have discontinued

this option for users.

In addition, users can point Chianti directly at an XML file representation of the

call graphs that are to be used, in order to enable the use of call graphs that have been

constructed by external tools.

classes use, reorder and change instructions, merge or extend classes, add customized instrumentation
(similar to profilers), analyze control and dataflow, etc.

3 We did not optimize the gathering of the dynamic call information; presently, the instrumented
tests run, on average, about 2 orders of magnitude more slowly than uninstrumented code, but we think
we can reduce this overhead significantly with some effort.

4 Gnosis is a static analysis framework that has been developed at IBM Research as a test-bed for
research on demand-driven and context-sensitive static analysis.

31

When the analysis results are available, a new view Chianti Results View will stack

on top of the outline view in the Java perspective. Since Chianti is expected to be

used during programming and debugging, we integrate it into existing Java perspective

rather than define a new perspective. The Chianti Results View provides users two

ways of traversing the analysis results.

• The affecting changes view shows all tests in a tree view. Each affected test can be

expanded to show its set of affecting changes and their prerequisites. Figure 3.2

shows a snapshot of this view; note how the prerequisite changes are shown. Each

atomic change is the root of a tree that can be expanded on demand to show

prerequisite changes. This quickly provides an idea of the different “threads’’ of

changes that have occurred.

• The atomic-changes-by-category view shows the different atomic changes of the

edit grouped by category. The atomic changes and dependences shown in this view

are not related to any specific tests, it just summarizes the results of comparison

of two versions of a Java program. Figure 3.3 shows a snapshot of this view.

Each of these user interface components is seamlessly integrated with the standard Java

editor in Eclipse (e.g., clicking on an atomic change in the affecting changes view opens

an editor on the associated program fragment).

3.2 Evaluation

The experiments5 with Chianti were performed on versions of the Daikon system by M.

Ernst et al. [21, 22], extracted from the developers’ CVS repository. The Daikon CVS

repository does not use version tags, so we partitioned the year-long version history

arbitrarily at week boundaries. All modifications checked in within a week were consid-

ered to be within one edit whose impact was to be determined. However, in cases where

no editing activity took place in a given week, we extended the interval by one week

5All the data shown in this section were obtained in March 2004, and at that time, atomic change
CTD was not defined yet in Chianti.

32

30

40

50

60

70

80

90

100

110

120

130

1/
7

1/
21 2/
4

2/
18 3/
4

3/
18 4/
1

4/
15

4/
29

5/
13

5/
27

6/
10

6/
25 7/
8

7/
22 8/
5

8/
19 9/
2

9/
16

9/
30

10
/1

4

10
/2

8

11
/1

1

11
/2

6

12
/9

12
/2

3

Date

o

f
K

L
O

C
, U

n
it

 T
es

ts

0

1000

2000

3000

4000

5000

6000

7000

8000

o

f
M

et
h

o
d

s,
 F

ie
ld

s,
 C

la
ss

es

of KLOC

of Unit Tests

of Methods

of Fields

of Classes

Figure 3.4: Daikon growth statistics for the year 2002

until it included changes. The data reported in this section covers the entire year 2002

(i.e., 52 weeks) of updates, during which there were 39 intervals with editing activity.

During the year under consideration, Daikon was actively being developed and in-

creased in size from 48K to 123K lines of code. More significant are the program-based

measures of growth, from 357 to 755 classes, 2878 to 7112 methods, and 937 to 2885

fields. The number of unit tests associated with Daikon grew from 40 to 62 during the

time period under consideration. Figure 3.4 shows in detail the growth curves over this

time period. Clearly, this is a moderate-sized application that experienced considerable

growth in size (and complexity) over the year 2002.

3.2.1 Atomic Changes

Figure 3.5(a) shows the number of atomic changes between each pair of versions. The

number of atomic changes per interval varies greatly between 1 and 11,698 during this

period, although only 11 edits involved more than 1,000 atomic changes. Section 3.2.3

gives more details about two specific intervals in our study. Investigation of the largest

edit revealed that during this week a parser was added to the system, which involved

the addition of 100+ classes. The largest edit represents a redesign step that altered

33

268

1471

2810

308

11698

1197

171

397

1006

212

116

300

29

214

350

5238

378

2344

1319

4

286

3

15

65

7

13

6095

153

1

163

635

40

2913

659

723

665

332

465

1747

1

10

100

1000

10000

100000

0
1
0
7
-0
1
1
4

0
1
1
4
-0
1
2
1

0
1
2
1
-0
1
2
8

0
1
2
8
-0
2
0
4

0
2
0
4
-0
2
1
1

0
2
1
1
-0
2
1
8

0
2
1
8
-0
2
2
5

0
2
2
5
-0
3
0
4

0
3
0
4
-0
3
1
1

0
3
1
1
-0
3
1
8

0
3
1
8
-0
4
0
1

0
4
0
1
-0
4
0
8

0
4
0
8
-0
4
1
5

0
4
1
5
-0
5
0
6

0
5
0
6
-0
5
2
7

0
5
2
7
-0
6
0
3

0
6
0
3
-0
6
1
0

0
6
1
0
-0
6
1
7

0
6
1
7
-0
6
2
5

0
6
2
5
-0
7
0
1

0
7
0
1
-0
7
0
8

0
7
0
8
-0
7
1
5

0
7
1
5
-0
7
2
2

0
7
2
2
-0
8
0
5

0
8
0
5
-0
8
1
9

0
8
1
9
-0
8
2
6

0
8
2
6
-0
9
0
2

0
9
0
2
-0
9
0
9

0
9
0
9
-0
9
1
6

0
9
1
6
-0
9
2
3

0
9
2
3
-0
9
3
0

0
9
3
0
-1
1
1
1

1
1
1
1
-1
1
1
9

1
1
1
9
-1
1
2
6

1
1
2
6
-1
2
0
2

1
2
0
2
-1
2
0
9

1
2
0
9
-1
2
1
6

1
2
1
6
-1
2
2
3

1
2
2
3
-1
2
3
0

(a)

1.05% 0.16%

12.36%

19.28%

2.19%
4.90%

0.73%
2.77%

0.55% 0.05% 0.14% 0.01%

55.82%

0%

10%

20%

30%

40%

50%

60%

ad
dC
la
ss

de
le
te
C
la
ss

ad
dM
et
ho
d

ch
an
ge
M
et
ho
d

de
le
te
M
et
ho
d

ad
dF
ie
ld

ch
an
ge
Fi
el
dI
ni
tia
liz
er

ch
an
ge
S
ta
tic
Fi
el
dI
ni
tia
liz
er

de
le
te
Fi
el
d

ad
dS
ta
tic
In
iti
al
iz
er

ch
an
ge
S
ta
tic
In
iti
al
iz
er

de
le
te
S
ta
tic
In
iti
al
iz
er

lo
ok
up
C
ha
ng
e

(b)

Figure 3.5: (a) Number of atomic changes between each pair of Daikon versions in
2002 (note the log scale). (b) Categorization of the atomic changes, aggregated over
all Daikon edits in 2002.

34

most of the system.

Figure 3.5(b) summarizes the relative percentages of kinds of atomic changes ob-

served during 2002. The height of each bar indicates the frequency of the correspond-

ing kind of atomic change; these values vary widely, by three orders of magnitude.

Three of our atomic change categories were not seen in this data, namely addInitial-

izer, changeInitializer and deleteInitializer. This is not surprising because, in Java,

instance initializers are only needed in the rare event that an anonymous class needs

to perform initialization actions that cannot be expressed using field initializers. In

non-anonymous classes, it is generally preferable to incorporate initialization code in

constructors or in field initializers. Note that the 0.01% value for deleteStaticInitializer

in the figure represents the 5 atomic changes of that type out of a total of over 44,000

changes for the entire year!

0%

20%

40%

60%

80%

100%

0
1
0

7
-0

1
1
4

0
1
1
4

-0
1
2
1

0
1
2

1
-0

1
2
8

0
1
2

8
-0

2
0
4

0
2
0

4
-0

2
1
1

0
2
1
1
-0

2
1
8

0
2
1

8
-0

2
2
5

0
2
2

5
-0

3
0
4

0
3
0

4
-0

3
1
1

0
3
1
1
-0

3
1
8

0
3
1

8
-0

4
0
1

0
4
0

1
-0

4
0
8

0
4
0

8
-0

4
1
5

0
4
1

5
-0

5
0
6

0
5
0

6
-0

5
2
7

0
5
2

7
-0

6
0
3

0
6
0

3
-0

6
1
0

0
6
1

0
-0

6
1
7

0
6
1

7
-0

6
2
5

0
6
2

5
-0

7
0
1

0
7
0

1
-0

7
0
8

0
7
0

8
-0

7
1
5

0
7
1

5
-0

7
2
2

0
7
2

2
-0

8
0
5

0
8
0

5
-0

8
1
9

0
8
1

9
-0

8
2
6

0
8
2

6
-0

9
0
2

0
9
0

2
-0

9
0
9

0
9
0

9
-0

9
1
6

0
9
1

6
-0

9
2
3

0
9
2

3
-0

9
3
0

0
9
3

0
-1

1
1
1

1
1
1
1
-1

1
1
9

1
1
1
9

-1
1
2
6

1
1
2
6
-1

2
0

2

1
2
0

2
-1

2
0
9

1
2
0

9
-1

2
1
6

1
2
1

6
-1

2
2
3

1
2
2

3
-1

2
3
0

lookup changes class changes method changes field changes

Figure 3.6: Classification of atomic changes for each pair of versions. Class changes
include AC and DC. Method changes include AM, CM, DM, ASI, DSI and CSI.
Field changes include AF, DF, CSFI and CFI.

Figure 3.6 shows the proportion of atomic changes per interval, grouped by the

program construct they affect, namely, classes, fields, methods and dynamic dispatch.

35

Clearly, the two most frequent groups of atomic changes are changes to dynamic dis-

patch (i.e., LC) and changes to methods (i.e., CM); their relative amounts vary over

the period.

3.2.2 Affected Tests and Affecting Changes

53%

80%

0%
2%

63%

89%

0%

68%

0%

61%

70%

0%

61%

52%

22%

27%

68%
65%

60%

44%

48%

76%

57%

0%

69%

77%

0%

63%

76%

63%

79%

68%

72%
72%

63%

67%
69%

57%

55%

58%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0
1
0
7
_
0
1
1
4

0
1
1
4
_
0
1
2
1

0
1
2
1
_
0
1
2
8

0
1
2
8
_
0
2
0
4

0
2
0
4
_
0
2
1
1

0
2
1
1
_
0
2
1
8

0
2
1
8
_
0
2
2
5

0
2
2
5
_
0
3
0
4

0
3
0
4
_
0
3
1
1

0
3
1
1
_
0
3
1
8

0
3
1
8
--0
4
0
1

0
4
0
1
--0
4
0
8

0
4
0
8
--0
4
1
5

0
4
1
5
--0
5
0
6

0
5
0
6
--0
5
2
7

0
5
2
7
--0
6
0
3

0
6
0
3
--0
6
1
0

0
6
1
0
--0
6
1
7

0
6
1
7
--0
6
2
5

0
6
2
5
--0
7
0
1

0
7
0
1
-0
7
0
8

0
7
0
8
-0
7
1
5

0
7
1
5
-0
7
2
2

0
7
2
2
-0
8
0
5

0
8
0
5
-0
8
1
9

0
8
1
9
-0
8
2
6

0
8
2
6
-0
9
0
2

0
9
0
2
-0
9
0
9

0
9
0
9
-0
9
1
6

0
9
1
6
-0
9
2
3

0
9
2
3
-0
9
3
0

0
9
3
0
-1
1
1
1

1
1
1
1
-1
1
1
9

1
1
1
9
-1
1
2
6

1
1
2
6
-1
2
0
2

1
2
0
2
-1
2
0
9

1
2
0
9
-1
2
1
6

1
2
1
6
-1
2
2
3

1
2
2
3
-1
2
3
0

A
v
e
ra
g
e

Percentage Affected Tests

Figure 3.7: Percentage of affected tests for each of the Daikon versions.

Figure 3.7 shows the percentage of affected tests for each of the Daikon versions.

On average, 52% of the tests are affected in each edit. Interestingly, there were several

intervals over which no tests were affected, although atomic changes did occur. For

example, there were no affected tests for the interval between 04/01/02 and 04/08/02,

despite the fact that there were 212 atomic changes during this time. Similarly, for the

interval between 8/26/02 and 9/02/02 there were 286 atomic changes, but no affected

tests. This means that the changed code for these intervals was not covered by any

of the tests! In principle, a change impact analysis tool could inform the user that

additional unit tests should be written when an observation of this kind is made.

Figure 3.8 shows the average percentage of affecting changes per affected test, for

36

9.54%

0.34%

2.58%

15.07%

10.34%

28.24%

2.94%

5.08%

73.53%

43.41%

3.82% 3.95%

0.38%

0.26%

8.33%

5.64%

3.60%

2.88%

1.95%

7.68%

8.81%

1.54%

3.84%

1.44%

12.67%

3.36%

5.90%

0.48%

1.96% 1.92%

33.16%

1.21%

1.29%

5.94%

0.10%

1.00%

10.00%

100.00%

0
1
0
7
_
0
1
1
4

0
1
1
4
_
0
1
2
1

0
1
2
1
_
0
1
2
8

0
1
2
8
_
0
2
0
4

0
2
0
4
_
0
2
1
1

0
2
1
1
_
0
2
1
8

0
2
1
8
_
0
2
2
5

0
2
2
5
_
0
3
0
4

0
3
0
4
_
0
3
1
1

0
3
1
1
_
0
3
1
8

0
3
1
8
--0
4
0
1

0
4
0
8
--0
4
1
5

0
4
1
5
--0
5
0
6

0
5
0
6
--0
5
2
7

0
5
2
7
--0
6
0
3

0
6
0
3
--0
6
1
0

0
6
1
0
--0
6
1
7

0
6
1
7
--0
6
2
5

0
6
2
5
--0
7
0
1

0
7
0
1
-0
7
0
8

0
7
0
8
-0
7
1
5

0
7
1
5
-0
7
2
2

0
7
2
2
-0
8
0
5

0
8
0
5
-0
8
1
9

0
8
1
9
-0
8
2
6

0
9
0
9
-0
9
1
6

0
9
1
6
-0
9
2
3

0
9
3
0
-1
1
1
1

1
1
1
1
-1
1
1
9

1
1
1
9
-1
1
2
6

1
2
0
2
-1
2
0
9

1
2
0
9
-1
2
1
6

1
2
2
3
-1
2
3
0

G
e
o
m
-m
e
a
n

Percentage Affecting Changes

Figure 3.8: Average percentage of affecting changes, per affected test, for each of the
Daikon versions. Note the logarithmic scale.

each of the Daikon versions. On average, only 3.95% of the atomic changes impact a

given affected test. This means that our technique has the potential of dramatically

reducing the amount of time required for debugging when a test produces an erroneous

result after an editing session.

By contrast, the study performed with Chianti using static call graphs for the same

Daikon data, yielded on average 56% affected tests and 3.7% affecting changes per

affected test [49].6 The closeness of these results to those reported in the present

thesis suggests that we should investigate the trade-offs associated with using static or

dynamic call graphs.

Our approach assumes that the test suite associated with a Java program offers good

coverage of the entire program. To verify this assumption, we used the JCoverage tool

(see www.jcoverage.com) to determine how many methods in Daikon were actually

6 Imprecision in the static call graphs resulted in the detection of extra affected tests that had
relatively small numbers of affecting changes. This skewed our averaging calculations to yield the
counterintuitive result that the affecting changes percentage obtained using static call graphs was lower
than the percentage obtained using the more precise dynamic call graphs.

37

exercised by its unit test suite. For each version of Daikon, we obtained the number of

methods covered by the associated tests and the total number of (source code) methods

in that version, yielding an average method coverage ratio. The overall average of these

ratios on the entire Daikon system is quite low at 21%. However, this number is skewed

by the fact that certain Daikon components have reasonable coverage (e.g., for the

utilMDE component we find an average coverage ratio over the year of 47%), whereas

other components (e.g., the jtb component) have virtually no coverage. Thus, while

our change impact analysis findings are promising, they would be more compelling with

a test suite offering better coverage of the system.

3.2.3 Case Studies

We conducted two detailed case studies to further investigate the possible applications

of Chianti as it is intended to be used, namely in interactive environments with short

time intervals between versions. To this end, we selected two one-week intervals from the

whole year’s data in which heavy editing activity occurred, and divided those intervals

into subintervals of one day each.

Case Study 1 The first interval we decided to explore further is the one for which we

found the highest percentage of affected tests. This occurred between versions 07/08/02

and 07/15/02, when 88.7% (55 out of 62) of the tests were affected. We partitioned

the version history of this interval into daily intervals so that we could obtain changes

with finer granularity. In cases where no editing activity took place between two days,

we extended the interval by one day, thus obtaining 5 intervals with editing activity.

Figure 3.9(a) shows the number of affected tests for each subinterval as well as the

number of affected tests for the original week-long interval (shown as the rightmost pair

of bars). Before partitioning, 55 of the 62 unit tests were affected tests, but smaller

numbers of affected tests, ranging from 1 to 53, were reported for each of the subintervals

(for example, in subinterval 07/10/02—07/11/02, there is only one affected test).

Figure 3.9(b) shows the total number of atomic changes and the average number

of affecting changes per affected test in each subinterval compared with the original

interval (again shown as the rightmost pair of bars). The use of smaller intervals

38

62 62 62 62 62 62

42

37

1

53

41

55

0

10

20

30

40

50

60

70

0708_0709 0709_0710 0710_0711 0711_0712 0712_0715 0708-0715

Total tests Affected Tests

(a) Number of affected tests on
large and smaller daily intervals.

25
15

87

327

4834 5238

7

2

7

15

64 68

1

10

100

1000

10000

0708_0709 0709_0710 0710_0711 0711_0712 0712_0715 0708_0715

Total Atomic Changes Affecting Changes on Average

(b)Number of atomic changes and
on average affecting changes on
large interval and smaller daily in-
tervals (note log scale)

Figure 3.9: Detailed analysis results for Daikon interval 7/08/02—7/15/02.

resulted in smaller numbers of atomic changes for each interval and also smaller numbers

of affecting changes per affected test; this makes the tracing of the effects of affecting

changes much easier. In addition, we found that 12 of the 55 affected tests for the

original, week-long interval were only affected in one of the smaller intervals, which

means that we can narrow down the range of affecting changes into a small set of

atomic changes for these 12 tests.

Case Study 2 The second interval we selected is the one with the highest average

number of affecting changes. This interval took place between versions 01/21/02 and

01/28/02, when 140 affecting changes occurred on average (ranging from 3 to 217)

for 32 affected tests. Similar to case study 1, we partitioned the original week-long

interval into several subintervals, obtaining 3 subintervals with editing activity. In

Figure 3.10(a) and (b) we can see similar results to those of case study 1, that is,

we obtained smaller numbers of atomic changes, affected tests and affecting changes

compared to the original week interval.

In both case studies, we found that the use of subintervals with smaller numbers

of affecting changes improved the ability of Chianti to help programmers with un-

derstanding the effects of an edit. Even in subintervals such as 01/21/02—01/25/02,

where the number of atomic changes and the average number of affecting changes are

large relative to the corresponding numbers for the original interval, Chianti can pro-

vide useful insights. For example, consider one test with a large number of affecting

39

42 42 42 42

32

1

22

32

0

5

10

15

20

25

30

35

40

45

0121_0125 0125_0127 0127_0128 0121-0128

Total tests Affected Tests

(a) Number of affected tests on
large and smaller daily intervals.

1046

5

463

1471

132

3

12

140

1

10

100

1000

10000

0121_0125 0125_0127 0127_0128 0121-0128

Total Atomic Changes Affecting Changes on Average

(b)Number of atomic changes and
on average affecting changes on
large interval and smaller daily in-
tervals (note log scale)

Figure 3.10: Detailed analysis results for Daikon interval 1/21/02—1/28/02.

changes: daikon.test.diff.DiffTester.testPpt4Ppt4 from subinterval 01/21/02—

01/25/02. The affecting changes for this test are: 67 CM changes, 67 AF changes, and

69 CSFI changes. Among the 67 CM changes, 65 of them are associated with static

initializers for some class. These, in turn, are dependent on 68 of the CSFIs, whose

own prerequisites are 66 of the AFs. A closer look revealed that all the added fields

have the same name, serialVersionUID, which is used to add serialization-related func-

tionality to Daikon. It is interesting to observe that Chianti was able to determine that

the changed behavior of this test was almost entirely due to this serialization-related

change, and that the other 800+ atomic changes that occurred during this interval did

not contribute to the test’s changed behavior.

3.2.4 Chianti Performance

The performance of Chianti has thus far not been our primary focus, however, we

have achieved acceptable performance for a prototype. Deriving atomic changes from

two successive versions of Daikon takes, on average, approximately 87 seconds [48].

Computing the set of affected tests for each version pair takes approximately 5 seconds

on average, and computing affecting changes takes on average approximately 1.2 seconds

per affected test. All measurements were taken on a Pentium 4 PC at 2.8Ghz with 1Gb

RAM.

40

Chapter 4

Dependences between Atomic Changes

Chapter 3 introduces our change impact analysis tool– Chianti, and how we obtain

the affected tests and affecting changes for a specific test. The experimental results

show that on average, the set of affecting changes of an affected test is small relative

to the total number of atomic changes. However, examining each of these changes and

pinpointing the few that induce the failure of a test is still a tedious task if performed

manually. For large applications, the parts of an edit are inter-related in many ways,

and there can be more than one subset of changes that the programmer considers as

failure-prone with respect to a specific test.

To further isolate relevant portions of an edit that directly cause the failure of a

regression test, we should allow the user to select the suspected changes and apply them

to the original program to create intermediate program versions. The resulting inter-

mediate programs can then be tested using the tests that failed earlier. Programmers

can ignore those changes that do not result in failure, and further examine and isolate

smaller sets of changes until they locate those that directly cause the failure. Our goal

is to provide programmers with a tool to aid in this process, in which the programmer

does not need to be concerned with the syntactic inter-relationships of the changes, nor

with manually editing any code.

Atomic changes have syntactic inter-dependences which induce a partial ordering ≺

on a set of them, with transitive closure �∗. C1 ≺ C2 denotes that C1 is a prerequisite

for C2, as we described in Chapter 2. Intuitively, an atomic change A1 is dependent on

another atomic change A2 if applying A1 to the original version of the program without

also applying A2 results in a syntactically invalid program (i.e., A2 is a prerequisite

for A1). These dependences can be used to construct syntactically valid intermediate

41

versions of the program that contain some, but not all of the atomic changes.

In our analysis, three kinds of dependences are defined between atomic changes, and

they are all syntactic dependences that must be satisfied to ensure compilability. In

this chapter, first we will show by example how to utilize the syntactic dependences to

construct intermediate programs to help locate the failure-inducing changes, then we

will discuss three kinds of dependences one by one in detail and the limitations of our

current dependence graph.

4.1 Overview of Approach for Locating Failure-Inducing Changes

4.1.1 The Example Program

We will use the example program of Figure 4.1 to illustrate the dependences and how we

locate the failure-inducing changes.1 Figure 4.1(a) shows two versions of the program.

The original version of the program consists of all program fragments except for those

shown in boxes; the edited version is obtained by adding all the boxed code fragments.

Each box is labeled with the numbers of the corresponding atomic changes.

Associated with the program are three JUnit tests [32], Tests.test1, Tests.test2,

and Tests.test3, which are shown in Figure 4.1(b). Note that it is assumed that these

tests will be used with both versions of the program.

Figure 4.1(c) shows the atomic changes corresponding to the two versions of the

example program, numbered 1 through 12 for convenience. An arrow from an atomic

change A1 to an atomic change A2 indicates that A1 is dependent on A2.

Figure 4.1 (d) shows the dynamic call graphs for the 3 tests test1, test2, and

test3, before the changes have been applied. We can easily decide that (i) test1 is not

affected and (ii) test2 and test3 are affected because their call graphs each contain a

node for B.foo(), which corresponds to CM atomic change 4.

Call graphs for the affected tests on the edited version of the program are shown

in Figure 4.1(e). Only call graphs for test2 and test3 are needed, since test1 is

not affected by any of the changes. We can compute the affecting changes for test3

1The example was first used in [45].

42

class A {
public int i, s, x 3;
public void foo(){ }
public void bar(){s=i+1;}

}
class B extends A {

public void foo(){

if (false) inc(); 4

s = i;
}

private void inc(){x++;} 1,2

}
class C extends B {

int y, s; 5,6

public void bar(){s++;} 9,10,11,12

private void set(){y=s;} 7,8

}

public class Tests extends TestCase {
public void test1(){

A a = new A();
a.foo(); a.bar();
Assert.assertTrue(a.s > a.i);

}
public void test2(){

A a = new B();
a.foo(); a.bar();
Assert.assertTrue(a.s > a.i);

}
public void test3(){

A a = new C();
a.foo(); a.bar();
Assert.assertTrue(a.s > a.i);

}
}

(a) (b)

AF AF AF

C,A.bar()

AM

B.inc() A.x C.y C.s

AM

C.bar()

LC

CM

B.foo()

CM

B.inc()

AM

C.set()

CM

C.set()

CM

C.bar()

LC

C,C.bar()

1 3 5 6 9 11

4 2 7 8 10 12

Structural Dependence

Declaration Dependence

Mapping Dependence

(c)
Tests.test1()

A.bar()

A.<init>()

A.foo()

A,A.bar()A,A.foo()

A.<init>()

Tests.test2()

A.bar()

B.<init>()

B.foo()

B,A.bar()B,A.foo()

B.<init>()

Tests.test3()

A.bar()

C.<init>()

B.foo()

C,A.bar() C,A.foo()

A.<init>()

A.<init>()

Tests.test2()

A.bar()

B.<init>()

B.foo()

B,A.bar() B,A.foo()

B.<init>()

Tests.test3()

C.bar()

C.<init>()

B.foo()

C,A.bar() C,A.foo()

A.<init>()

(d) (e)
class A {

public int i, s;
public void foo(){ }
public void bar(){s=i+1;}

public int x 3;

}
class B extends A {

public void foo(){

if (false) inc(); 4

s = i;
}

private void inc(){x++;} 1,2

}
class C extends B { }

class A {
public int i, s, x;
public void foo(){ }
public void bar(){s=i+1;}

}
class B extends A {

public void foo(){s=i;}
}
class C extends B {

int s; 6

public void bar(){s++;} 9,10,11,12

}

(f) (g)
Fig. 1. (a) Original and edited version of example program. The original program consists of all program fragments except

Figure 4.1: (a) Original and edited version of example program. (b) Tests associated with

the example of (a). (c) Atomic changes for the example program, with their inter-dependences.

(d) Call graphs for the tests in the original program version in (a). (e) Call graphs for the

tests in the edited program version in (a). (f) Intermediate program P1 after applying atomic

change 4 to the original program. (g) Intermediate program P2 after applying atomic changes

9, 10 to the original program.

43

as follows. Observe, that the call graph for test3 in Figure 4.1(e) contains methods

B.foo(), and C.bar(), and an edge labeled <C,A.bar()>. Node B.foo() corresponds

to atomic change 4, which is dependent on atomic change 1. Node C.bar() corresponds

to atomic change 10, which is dependent on atomic changes 6 and 9. Finally, the edge

labeled <C, A.bar()> corresponds to atomic change 11, which is also dependent on

atomic change 9. Consequently, test3 is affected by atomic changes 1, 4, 6, 9, 10 and

11. Similarly, test2 is affected by atomic changes 1 and 4.

4.1.2 Locating Failure-Inducing Changes by Constructing Intermedi-

ate Programs

The original program passed all the tests, but test3 failed in the edited version. As

Figure 4.1(c) shows, there are 12 atomic changes for the entire program and 6 of them

are considered affecting changes for test3. The question is: Which of those 6 changes

are the likely reason(s) for the test failure? From the set of affecting changes of a failed

test, a programmer may guess the likely reason(s) for the test failure and select those

suspected atomic changes. Then following the dependence graph, we can generate an

valid intermediate program which extends the original program with the selected atomic

changes as well as all the other necessary prerequisite atomic changes.

For test3, a programmer may first guess that the change to method B.foo() is the

reason for its failure. When she selects atomic change 4, following the dependence graph

shown in Figure 4.1(c), atomic change 1 (i.e., AM(B.inc())) should also be included in

the set to apply. In addition, to maintain the semantics of the program, we always

extend an AM change by adding the corresponding CM change for the same method

(if there is such a CM change) to generate the valid intermediate version. So atomic

change 2 (i.e., CM(B.inc())) and its prerequisite atomic change 3 (i.e., AF(A.x)) are

also added to the set to apply. Thus selecting atomic change 4 results in applying atomic

changes 1, 2, 3 and 4 to create the intermediate program P1 shown in Figure 4.1(f).

Notice that the affecting changes set of test3 does not include atomic change 2 and 3,

but we apply these two changes to make it possible to generate valid (i.e., compilable)

intermediate programs. Fortunately, since these augmented changes are not affecting

44

changes, they do not affect the test.

Note that programmers can select any affecting changes they want to inspect in any

order. The dependences among atomic changes guarantee the validity of the interme-

diate program which is independent of the program’s development history.

The programmer can now execute test3 against P1 and find that it succeeds. She

may then suspect that the newly added method C.bar() is the potential culprit in the

edit. She can rollback and restart from the beginning and obtain another intermediate

version P2 shown in Figure 4.1(g) by applying atomic changes 9. Re-executing test3

on P2 results in a failure, revealing that atomic changes 9, 10, 11 are failure-inducing

changes. Then the programmer can work on the intermediate version, which includes

fewer atomic changes than the edited version, and focus on method C.bar() to find the

exact reason that makes test3 fail. Note that since atomic change 11 is a consequence

of applying atomic change 9, it is also considered a failure-inducing change.

With the help of intermediate programs, a programmer can effectively pinpoint the 3

failure-inducing changes out of the 12 atomic changes in the edit. For large applications

where the edited version contains thousands of atomic changes, the benefits of having

tools to assist in the analysis and to locate relevant changes are undeniable.

4.2 Structural Dependence

Intuitively, structural dependences capture the necessary orderings that must occur

when new Java elements are added or deleted in a program.

4.2.1 Addition and deletion of Java elements

In our definition, all the adding changes (AC, AF, AM, AI and ASI) and deleting

changes (DC, DF, DM, DI and DSI) represent adding or deleting an empty element.

Generally, a new program element must be declared before making any changes to its

body. Similarly, the program element body must be cleared before deleting the element

itself. For example, if a programmer adds a new class C with some fields, methods and

member classes defined, then AC(C) is the structural prerequisite of all the AFs, AMs

45

and ACs inside class C. Similarly, a field must be added before making any changes

to its field initializer, and a method or an initializer must be declared before making

any changes to its body blocks. The dependence between atomic change 1 and atomic

change 2 in Figure 4.1(c) is a trivial example of structural dependence, represented as

AM(B.inc()) ≺structural CM(B.inc()).

By splitting the addition of the specification of an element from its implementation,

we allow Chianti to capture the minimal set of affecting changes. For example, the

affecting changes set of test2 in Figure 4.1 only includes CM(B.foo()) and its prerequi-

site AM(B.inc()), but not CM(B.inc()), since method B.inc() is not a node in the call

graph of test2 in the edited version, and therefore could not have affected its behavior.

Additional examples of structural dependences are the adding and deleting of anony-

mous classes and local inner classes which are usually defined inside a block (e.g., anony-

mous classes can be defined in the initializer of a field). The enclosing element must

be declared before adding the anonymous classes or local inner classes. For example, if

we add a new method C.foo() and define a local class LocalC inside its body, Chianti

reports a structural dependence AM(C.foo()) ≺structural AC(C1LocalC).

4.2.2 Changing a field type or method return type.

During software evolution, programmers may change the type of a field, for ex-

ample, from List to Map. Chianti decomposes this kind of change into a delete

field change(DF), an add new field change(AF), and a corresponding field initial-

izer change(CFI) (if the field has an initializer). Chianti also reports a structural

dependence: DF ≺structural AF . If a programmer wants to apply AF to the original

program, the corresponding DF also must be applied, thus guaranteeing that in the

intermediate version of the program, there is no duplicate field defined with the same

name but different field type. The dependence also defines the ordering of operations

in implementation. If these two changes are applied in the reverse order, after the AF

change is applied, the intermediate program includes two fields with the same name,

46

then it is not an easy job to apply the DF change.2 Similar dependences are reported

when the return type of a method is changed.

4.3 Declaration Dependence

Generally speaking, declaration dependences capture all the necessary Java element

declarations that are required to create a valid intermediate version. A simple exam-

ple is the dependence between atomic changes 1 and 4 in Figure 4.1(c), represented

as AM(B.inc()) ≺declaration CM(B.foo()), which means method B.foo() requires the

declaration of method B.inc() in order to compile in the edited version.

4.3.1 Declaration-Usage of Java elements

A program element must be declared before it is used. Similarly, a program element

can only be deleted when there is no longer any reference to it. In Figure 4.1(c), the

dependences between pairs of atomic changes (1, 4), (3, 2), (5, 8), (6, 8), (6, 10) all are

declaration dependences. Other examples of declaration dependence include: AC(A)

≺declaration AC(B), if type B is a subclass of class A; AC(A) ≺declaration AM(X.foo())

if type A is used as the return type or any parameter type of method X.foo(), or any

Exception subtypes thrown by method X.foo(); AC(A) ≺declaration CM(X.foo()) if

type A is used in the changed method X.foo() in the edited version; AC(A) ≺declaration

CTD(C) if in the edited program, type C is a subtype of type A. All the declaration

dependences shown in these examples are related to the addition of a type declaration,

And we can easily generalize these dependences to the additions of field and method

declarations.

4.3.2 Abstract method declarations and implementations

Another kind of declaration dependence is related to abstract methods. A method de-

clared abstract must be implemented in all the subclasses of an abstract class/interface.

2Ideally, these two fields can be distinguished by field types, but Crisp uses the standard function
provided by Eclipse and it can only locate the fields by their names.

47

Consider the example shown in Figure 4.2, the original program P defines an interface

I and class A implementing I. In the edited program P ′, we add a new declaration of

abstract method foo() into interface I, and class A provides the implementation of this

method foo(). Our analysis reports that AM(A.foo()) ≺declaration AM(I.foo()), which

means that the declaration of new method I.foo() depends on the method’s imple-

mentations in all of its subclasses (i.e., all the classes that implement I). Otherwise,

adding only method I.foo() to the original program P will result in an intermediate

program P ′′ which cannot compile.

interface I {

}

class A implements I {

}

interface I {

public void foo();

}
class A implements I {

public void foo(){...}

}

(a) P (b) P ′

Figure 4.2: Add method declaration to an interface (a) Original program P . (b)
Edited program P ′, the new added code is shown in boxes.

A similar dependence occurs when the programmer changes the modifier of a method

from abstract to non-abstract or vice versa. Consider the example program in Figure 4.3.

The original program P consists of an abstract class A declaring an abstract method

foo() and its subclass B implementing method foo(). In the edited program P ′,

method foo() is deleted from class B, and the abstract method foo() is changed to a

concrete method in class A. Chianti will report a declaration dependence: CM(A.foo())

≺declaration DM(B.foo()), which means that if the programmer wants to delete the

declaration of method B.foo(), CM(A.foo()) must also be applied, so that in the

intermediate version of the program, method foo() is actually implemented in class A;

otherwise class B cannot compile, since it extends class A but does not implement the

abstract method defined in class A.

48

abstract class A {
abstract void foo();

}

class B extends A {
public void foo(){ }

}

abstract class A {
void foo()

{// Do Something;}

}
class B extends A {
}

(a) P (b) P ′

Figure 4.3: Changing abstract method declarations and implementations. (a) Original
program P , the code to be deleted is underlined. (b) Edited program P ′, the new added
code is shown in boxes.

4.3.3 Necessary method declarations for a class

Usually we can declare an empty class without any members, but not always. In some

cases, we must add some necessary methods to make the class compile.

Overriding methods

abstract class A {
abstract public void foo();

}

class B extends A{ 1

public void foo(){ } 2,3

}

AM

B.foo()

AC
B

CM
B.foo()

21 3 Structural Dependence

Declaration Dependence

(a) Example program (b) Dependence graph

Figure 4.4: Necessary method declarations for a new class. (a) Original and edited
version of example program. The added class and method are shown in a box. Each box
is labeled with the numbers of the corresponding atomic changes. (b) Atomic changes
and their dependences

One case is when programmers declare a class which extends an abstract class or

implements an interface, then this new class cannot be empty, and must have some

overriding methods implemented. Consider the example program in Figure 4.4(a) (the

added code is shown in boxes). The original program consists of an abstract class

A and the edited program declares a new class B which extends class A and class B

overrides method A.foo(). As we discussed in section 4.2, two structural dependences

49

are reported: AC(B) ≺structural AM(B.foo()) ≺structural CM(B.foo()) However, these

dependences alone are not sufficient to guarantee a valid intermediate program. For

example, if only AC(B) is selected to apply to the original program, then we get an

intermediate program P ′′ that defines an empty class B which cannot compile since

no overriding method foo() is defined. Thus Chianti also reports a declaration de-

pendence: AM(B.foo()) ≺declaration AC(B). Figure 4.4(b) shows the dependence graph

between the atomic changes. We observe that the structural dependences and decla-

ration dependences between atomic change 1 and 2 form a cycle, which means that

these atomic changes are not separable, and must always be applied together to cre-

ate a valid intermediate program. If our analysis generates dependence cycles among

several atomic changes, no matter which atomic change in the cycle is selected by the

programmer, all the atomic changes in the cycle should be automatically collected and

applied to the original program to construct the valid intermediate program.

Necessary constructors

class A {
public A(Object o)...

}

class B extends A{
public B(Object o){

super(o);

...

}
}

AM

B.<init>(Object)

AC
B

CM
B.<init>(Object)

Structural Dependence

Declaration Dependence

(a) Example program (b) Dependence graph

Figure 4.5: Necessary constructor declarations for a new class. (a) Original and edited
version of example program. The added method is shown in a box. (b) Atomic changes
and their dependences

A similar declaration dependence occurs when the programmer declares a class B

which extends a superclass A that defines constructors with arguments but no default

(no-argument) constructor. Consider the example program shown in Figure 4.5. The

original program consists of a class A with constructor A(Object) defined and the

edited program declares a new class B which extends class A and class B defines a

50

constructor which calls method super(..) explicitly. In such cases, Chianti reports

a declaration dependence AM(B.B(Object)) ≺declaration AC(B), which means that to

declare the new class B, its constructor B(Object) must be added in the intermediate

program. This declaration dependence forms a cycle with the structural dependence

AC(B) ≺structural AM(B.B(Object)); this forces the intermediate program to always

include the corresponding constructors when the class is added and guarantees the

compilability of the intermediate program.

If there is more than one constructor with arguments defined in class B, our analysis

will report declaration dependences between adding each constructor and the addition

of the new class B. Although only one of the dependences is necessary to guarantee

the validity of the intermediate program, our analysis reports the dependences conser-

vatively because we did not find a good way of representing the relation that either

AM(B.m()) or AM(B.f()) is the prerequisite of AC(B), but not necessarily both.

4.4 Mapping Dependence

We also define mapping dependences which are used to correlate all other kinds of

changes to method-level changes so that Chianti can calculate the affected tests and

affecting changes correctly.

The dependences we have discussed so far are all explicit syntactic dependences

that are necessary to build the valid intermediate program. In contrast, a mapping

dependence is an implicit dependence that is introduced by our atomic change model.

As we showed in Section 4.1, our analysis is at method-level. Recall that to obtain the

affecting changes for a given affected test, Chianti constructs the test’s call graph in

the edited program, and checks for changed methods (CM) that correspond a node

in the call graph and lookup changes (LC) that correspond an edge in the call graph.

Therefore, all the other kinds of changes need to map to method changes (CM) or

lookup changes (LC); this gives rise to mapping dependences.

51

4.4.1 Field/Initializer changes

In a Java program, changes to initializer blocks and field initializers have repercus-

sions for the constructor or static initializer method of a class. Specifically, if changes

are made to instance field initializers or to instance initializer blocks of a class C,

then Chianti also reports a CM for each of class C’s explicitly defined constructors

or reports a CM for the implicitly declared default constructor C.〈init〉() and builds

mapping dependences between (field) initializer changes and the corresponding CM

changes. Similarly, if changes are made to static initialization blocks (CSI) or class

variables (CSFI) of class C, then mapping dependences are created between CSI or

CSFI changes and method change CM(C.〈clinit〉()).

4.4.2 Field type or method return type changes

class A {
int i, j;

public void foo(){
j = i;

...

println(j);

}
}

class A {
String i, j;

public void foo(){
j = i;

...

println(j);

}
}

class Test extends

TestCase {
public void testA(){

new A().foo();

}
}

(a) P (b) P ′ (c) Tests

DF

A.i

CM
A.foo()

AF
A.i

DF

A.j

AF
A.j

2

1

3

4 5

Structural Dependence

Mapping Dependence

(d) Dependence graph

Figure 4.6: Field type changes. (a) Original program P . (b) Edited program P ′. (c)
The test used in both P and P ′. (d) The dependence graph between changes.

As we discussed in Section 4.2, if the programmer changes the type of a field,

Chianti reports two atomic changes, DF and AF and a structural dependence DF

≺structural AF. In addition, Chianti also searches for all the methods, initializers and

52

field initializers that refer to this changed field and reports those as changed elements,

and creates the corresponding mapping dependences.

Considering the example program in Figure 4.6, in the original program, class A

declares two fields int i; and int j;, method foo() does some operations on these

two fields, and testA() calls method A.foo(). Running testA() on the original pro-

gram prints 0 as the output. In the edited program, the type of the field i and j

are both changed to String. The output of testA() changes to null instead of 0 in

the edited program, since the default value of a string is null. Chianti searches for

the uses of fields i and j in the original program, which is method A.foo() in this

example. Then Chianti reports a CM change to this method although there aren’t any

code changes to this method, and Chianti also creates mapping dependences: {AF(A.i),

AF(A.j)} ≺mapping CM(A.foo()) and CM(A.foo()) ≺mapping {DF(A.i), DF(A.j)} shown

in Figure 4.6.

Notice that these dependences form two dependence cycles, thus forcing all the five

changes to be applied together to obtain the intermediate version, no matter which

of the changes is selected by programmer. Otherwise, if no mapping dependences are

reported, and the programmer wants to apply AF(A.i) to the original program, then

the resulting intermediate program will report a compilation error for method A.foo(),

since a String can not be assigned to an int. This implies that all the changed fields

are forced to be changed at the same time if they are all used in the same method or

the same initializer block.

4.4.3 LC changes.

class A {
public void foo()...

}

class A {
public void foo();

}

class B extends A { }

(a) P (b) P ′

Figure 4.7: Addition of a new class results in LC changes. (a) Original program P .
(b) Edited program P ′, the new added code is shown in boxes.

53

LC changes model changes to the dynamic dispatch behavior of instance methods.

In particular, LC(Y,X.m()) models the fact that a call to method X.m() on an object

of run-time type Y results in the selection of a different method in the edited program.

Many source code changes can be mapped to LC changes.

Addition or deletion of an overriding method may result in LC changes. Consider

the example in Figure 4.1(a), a new overriding method bar() is added to class C in the

edited program P ′. Two mapping dependences are shown in Figure 4.1(c): AM(C.bar())

≺mapping LC(C, A.bar()) and AM(C.bar()) ≺mapping LC(C, C.bar()).

Addition or deletion of a class may also result in LC. Considering the example in

Figure 4.7, the original program P includes a class A which defines method A.foo().

The programmer adds a new "class B extends A" with empty members in the edited

program P ′. This edit results in an LC change LC(B, A.foo()), since in the original

program P , there is no dynamic lookup for run-time type B, while in the edited program

P ′, programmers can invoke a call to method A.foo() on an object of type B. Chianti

reports a mapping dependence: AC(B) ≺mapping LC(B,A.foo())3 to indicate that this

LC change is caused by the addition of class B.

Changing the access control of a method or changing the modifier of a class are other

sources of LC changes. For example, a private method is not dynamically dispatched,

but if we change the method’s modifier to public, then an entry for this method must

be added in the new dynamic dispatch map, and a mapping dependence between the

CM and LC changes is created. Similarly, making an abstract class C non-abstract,

also results in LC changes. In the original dynamic dispatch map, there is no entry

with C as the run-time receiver type, but the new dispatch map will contain such an

entry.

4.5 CTD Related Dependences

A type hierarchy change involves more complicated dependences with other atomic

changes and we will discuss these dependences in detail in this section.

3 Chianti also reports LC changes for other inherited methods from library classes, for example,
AC(B) ≺mapping LC(B, java.lang.Object.toString()).

54

4.5.1 Declaration Dependences

Overriding Methods

abstract class A {
abstract void foo();

}
class B {
}

abstract class A {
abstract void foo();

}
class B extends A{

void foo(){}

}

(a) P (b) P ′

Figure 4.8: Type hierarchy changes requires addition of overriding methods. (a)
Original program P . (b) Edited program P ′.

When a programmer changes a class declaration to extend an abstract class or

implement an interface, she has to implement all the abstract methods declared in the

abstract super class or interface to make the edited class compile. Consider the example

program in Figure 4.8. The original program consists of an abstract class A and the

edited program changes the declaration of class B which extends class A and class B

overrides method A.foo(). Chianti reports a declaration dependence: AM(B.foo())

≺declaration CTD(B). If the programmer wants to apply the type declaration change,

the overriding method must be added at the same time to guarantee the validity of the

intermediate program.

Similarly, if the original superclass of a CTD change is an abstract class or interface,

and if the programmer deletes the overriding methods in the edited program, we report

the CTD change as the declaration prerequisite of the DM changes. If the programmer

selects those DMs to apply to build the intermediate program, applying the type

declaration change at the same time guarantees the compilability of the intermediate

program.

Constructors

If the programmer changes a class declaration, the dependences between changes to

constructors and a CTD are more complicated. Considering the example shown in

55

class A { }
class B {

B(int i){ ... }
}
class C extends A {
}

class A { }
class B {

B(int i){ ... }
}
class C extends B{

public C(int i){
super(i);

...

}
}

}

(a) P (b) P ′

Figure 4.9: Type hierarchy changes requires addition of constructors. (a) Original
program P . (b) Edited program P ′.

Figure 4.9, in which the declaration of class C changes from class C extends A to

class C extends B. Class B defines a constructor B(int) but no default constructors

without parameters, and in the edited version, class C needs to explicitly define con-

structors (that have any kind of parameters or without parameters) which explicitly

call super(int). In this example, class C must define a constructor C(int) to make the

edited program compile. Our analysis reports AM(C.〈init〉(int)) ≺declaration CTD(C),

meaning that to change the class C’s type declaration, we have to define an explicit con-

structor to make the resulting intermediate program compile.

Similarly, if we wanted to restore the edited program back to the original in Figure

4.9, that is change the declaration of class C from class C extends B to class C

extends A, the constructor originally defined in class C needs to be deleted. Our

analysis will report declaration dependence CTD(C) ≺declaration DM(C.〈init〉(int)),

meaning that if the programmer wants to delete the definition of the constructor, she

has to change the declaration of class C as well. We also report declaration dependence

CM(C.〈init〉(int) ≺declaration CTD(C)), meaning that if the programmer wants to

change the declaration of class C, she has to change the definition of its constructor.

Otherwise, the constructor calls super(int), but in the edited program, there isn’t

A(int) defined in class A.

56

Necessary method changes

class A{
public String toString(){
return "A";

}
}
class B{
public String toString(){
return "B";

}
}
class C extends B{ }
class D extends C{ }
class R{
String foo(){
B o = new D();

return o.toString();

}
}

class A{
public String toString(){
return "A";

}
}
class B{

public String toString(){
return "B";

}
}

class C extends A{ }

class D extends C{ }
class R{

String foo(){

A o = new D();

return o.toString();

}
}

(a) (b)
class Test extend TestCase{

public void testfoo(){
Assert.assertTrue(new R().foo().equals("B"));

}
}

(c)

Figure 4.10: Type declaration change results in other method changes (a) Original
program. (b) Edited program. The edited code is shown in a box. (c) Tests correlated
to the example program

When a programmer makes changes to a type declaration that results in a type

hierarchy change, she may need to change the other part of the code to make the

edited program compile. Considering the example shown in Figure 4.10, in which

the declaration of class C changes from class C extends B to class C extends A.

To make the edited program compile, the programmer needs to make the change to

method R.foo() as shown in the box in Figure 4.10 (b). Chianti reports the dependence

CM(R.foo()) ≺declaration CTD(C).

On the other hand, if for some reason, the programmer wanted to apply atomic

57

change CM(R.foo()) to the original program to generate an intermediate program,

then atomic change CTD(C) must also be applied, otherwise, the resulting intermediate

program is invalid since the edited method R.foo() assumes that class D is a subtype

of class A, which is not true if we don’t apply atomic change CTD(C). For this reason,

we report dependences CTD(C) ≺declaration CM(R.foo()).

To generalize, we report CTD(C) ≺declaration CM(R.m()) and CM(R.m()) ≺declaration

CTD(C) if the edited method R.m() calls the constructor of class D or refers to class D

and D is a subtype of class C, or D = C. All the declaration dependences form a loop,

which means that all the changes in the loop have to be applied at the same time.

4.5.2 Mapping Dependences

Virtual Method Changes

It is possible for changes to the hierarchy to affect the behavior of a method, although

the code in the method is not changed. Considering the example program shown in

Figure 4.11, In the original program, type C is declared as class C extends B, but in

the edited program, the declaration changes to class C extends A and all the other

type declarations remain the same, that is, the whole subtree rooted at class C is moved

from subtree of class B to subtree of class A. Our analysis reports CTD(C) to represent

this type declaration change of class C.

In the original program, both testFoo() and testBar() pass. However, in the

edited program, testFoo() fails because R.foo() returns string ”A”, instead of string

”B”. Various constructs in Java such as instanceof, casts and exception catch blocks

test the run-time type of an object. If such a construct is used within a method and the

type lies in a different position in the hierarchy of the program before the edit and after

the edit, then the behavior of that method may be affected by this hierarchy change

(or restructuring). For this reason, testBar() throws a cast exception when object o

is casted to type B in method R.bar(). Both tests are affected by the type declaration

change to class C. To capture such affected tests correctly, we should find a way to map

CTD changes to some method level changes.

58

class A{
public String toString(){

return "A";

}
}
class B{
public String toString(){

return "B";

}
}
class C extends B{ }
class D extends C{ }
class R{
String foo(){

Object o = new D();

return o.toString();

}
String bar(){

Object o = new D();

return ((B)o).toString();

}
}

class A{
public String toString(){
return "A";

}
}
class B{

public String toString(){
return "B";

}
}

class C extends A{ }

class D extends C{ }
class R{

String foo(){
Object o = new D();

return o.toString();

}
String bar(){
Object o = new D();

return ((B)o).toString();

}
}

(a) (b)
class Test extend TestCase{

public void testFoo(){
Assert.assertTrue(new R().foo().equals("B"));

}
public void testBar(){
Assert.assertTrue(new R().bar().equals("B"));

}

(c)

Figure 4.11: Type declaration change results in mapping dependences (a) Original
program. (b) Edited program. The edited code is shown in a box. (c) Tests correlated
to the example program

59

If the programmer changes the type declaration of class C and results in a type

hierarchy change, the initialization task of the class is changed, since its superclass

or superinterface is changed. So our analysis reports CM changes to all constructors

defined in class C (or to the default constructor created by the compiler), and also

reports CTD(C) ≺mapping CM(C.〈init〉(...)) for all these constructors to represent the

dependences between CTD change and the virtual method changes to constructors. In

this example, CM(C.〈init〉()) is the change that causes both testFoo() and testBar()

fail.

LC changes

CTD changes may also result in LC changes. Considering the example pro-

gram shown in Figure 4.11, in the original program, we notice that for the call-

site o.toString() in method R.foo(), the static method signature at this call-

site is java.lang.Object.toString(), and the runtime type of object o reaching

this statement is type D, the target callee method is B.toString(). But in the

edited program, the target callee method changes to A.toString(), while the static

method signature and the runtime receiver type at the callsite remain the same

as in the original program. This target change is due to a dynamic method dis-

patch change LC(D, java.lang.Object.toString()), and the change to the type dec-

laration of class C causes the LC change, so we report a mapping dependence

CTD(C) ≺mapping LC(D, java.lang.Object.toString()). The other similar mapping de-

pendences to LC changes in this example program include: CTD(C) ≺mapping LC(C,

java.lang.Object.toString()); CTD(C) ≺mapping LC(C, B.toString()); CTD(C) ≺mapping

LC(D, B.toString()); CTD(C) ≺mapping LC(C, A.toString()); and CTD(C) ≺mapping

LC(D, A.toString()).

4.6 Limitations of Dependences

All the syntactic dependences discussed above are used for automatic construction

of intermediate program versions; however, we found that the dependences are not

60

complete, that is, we are missing some dependences that are necessary to guarantee the

validity of the intermediate program. This section discusses the details of the limitations

of the dependences in our framework.

4.6.1 Field Positions.

The atomic changes and dependences generated by Chianti do not include information

about the relative position of the change in the code. If an add change needs to be

applied to the original program, we have two choices: adding the new element at the

beginning or at the end of the class. In most cases, the position of the elements do not

affect the compilation of the program; however, in some end cases, putting fields in the

wrong position results in compilation errors in the intermediate program.

class A {
String a = "a";

String c = a;

}

class A {
String a = "a";

String b = a;

String c = b;

}

class A {

String b = a;

String a = "a";

String c = b;

}

class A {
String a = "a";

String c = b;

String b = a;

(a) (b) (c) (d)

Figure 4.12: The positions of an added field affects the compilability of a program.
(a) the original program P . (b) The edited program P ′. (c) the first intermediate
version P1 by putting the new added field at the beginning of a class. (d) the second
intermediate version P2 by putting the new added field at the end of a class

Consider the example program in Figure 4.12, (a) and (b) represent the original

and edited program respectively. The added field is shown in a box, and the changed

field is underlined. There are three field changes: 1). AF(A.b), 2). CFI(A.b) and 3).

CFI(A.c). Suppose the programmer wants to apply all three changes to new field b and

existing field c to the original program. If we add field b at the beginning of the class,

we obtain the intermediate program shown in Figure 4.12(c); it has a compilation error

for field b because it refers to field a that is not yet declared. If we add field b at the

end of the class, we get the intermediate program shown in Figure 4.12(d); this also

has compilation error for field c because it refers to field b which is not yet declared.

In implementation, Crisp always puts new added elements at the end of a class;

if this results in an invalid program, the programmer needs to manually change the

61

position of this field in the code. In our case studies, we found 1 case where a newly

added field referred to an existing field; it was safe to append the new field at the end of

the class since no other existing field referred to it. Note that all the tests in Daikon and

Eclipse jdt compiler case studies, the limitation of Crisp in locating exact field position

in the code did not hinder its effectiveness in locating the failure-inducing changes.

4.6.2 Value Changes.

The program behavior may depend on the values of some specific variables. In the

example shown in Figure 4.13, a programmer defines a set of options in interface Option,

and method A.foo() performs a different task based on the value of the obtained option.

The test in the original program passes and prints the selected option value. In the

edited program, a new field OPT2 = 1 is added to the interface and the programmer

change the value of OPT1 from 1 to 2. The test in the edited program fails and throws

a runtime exception. Chianti reports the following atomic changes and dependences:

CFI(Option.OPT1) represents the change to the value of field OPT1; AF(Option.OPT2)

≺structural CFI(Option.OPT2) represents the addition and initialization of field OPT2;

and declaration dependence AF(Option.OPT2) ≺declaration CM(A.foo()) meaning that

to make changes to method A.foo(), field Option.OPT2 must be declared.

If the programmer selects CM(A.foo()) to apply to the original program, its prereq-

uisite change AF(Option.OPT2) is also applied, and Crisp automatically applies the

field initializer change for this field CFI(Option.OPT2). This results in the intermediate

program shown in figure 4.13 (d). Because atomic change CFI(Option.OPT1) is not

applied, the intermediate program has a compilation error, since two case statements

share the same value (i.e., OPT1 and OPT2 are assigned the same value).

To solve this problem, we need to investigate more sophisticated dependences to

represent the possible semantic dependences between atomic changes.

62

public interface Option {
int OPT1 = 1;

}
public class A {
public void foo() {
int i = 1;

switch (i) {
case Option.OPT1:

System.out.println(i);

break;

}
}

}

public interface Option {
int OPT1 = 2;

int OPT2 = 1;

}
public class A {

public void foo() {
int i = 1;

switch (i) {
case Option.OPT1:

System.out.println(i);

break;

case Option.OPT2:

throw new RuntimeException("Error");

}
}

}

(a) (b)
public class Test extends TestCase {
public void test1(){
new A().foo();

}
}

public interface Option {
int OPT1 = 1;

int OPT2 = 1;

}
public class A {

public void foo() {
int i = 1;

switch (i) {
case Option.OPT1:

System.out.println(i);

break;

case Option.OPT2:

throw new RuntimeException("Error");

}
}

}

(c) (d)

Figure 4.13: The value of an added field affects the compilability of a program. (a) the
original program P . (b) The edited program P ′. (c) The test case. (d) the intermediate
program after applying change CM(A.foo())

63

Chapter 5

An Application of the Change Dependence Graph

The goal of the syntactic dependences discussed in Chapter 4 is to guarantee the validity

of the intermediate program versions. In this chapter, we first introduce Crisp, a tool

built by Ophelia Chesley to semi-automatically construct the intermediate programs

using the dependences graph. Then we present two case studies1 to show that in

most cases, our dependences graph help constructing valid intermediate programs and

locating the failure-inducing changes for the real world Java programs.

5.1 Constructing Intermediate Program Versions

As a companion tool to Chianti, Ophelia Chesley developed Crisp [12, 45, 13] to create

intermediate program versions based on programmer selections. Like Chianti, Crisp

is built as an Eclipse plug-in. Crisp takes as input the atomic changes generated by

Chianti core for two versions of a Java program, as well as the affecting changes of

an affected test. The major tasks that Crisp performs are (i) to gather and order

all the prerequisites of the affecting changes and to create their to-be-applied set and

present it, and (ii) to respond to a programmer’s selection of an affecting change(s) and

automatically build a syntactically correct intermediate program P1.

The Eclipse Plug-in Development [18] environment provides APIs for accessing the

abstract syntax trees of the original and the edited Java programs and for program-

matically manipulating the source code of Java class files. The abstract syntax trees

contain source locations of Java constructs and therefore ease the effort of pinpointing

1The case studies were published in [45]

64

the locations of all of these affecting changes. In order to accomplish the task of creat-

ing syntactically correct versions of program, there are several practical aspects of how

Crisp applies atomic changes.

The ultimate goal in Crisp is to create a compilable intermediate program for each

affecting change that the programmer selects. The three categories of dependences de-

fined in Chapter 4 are used by Crisp to collect all the necessary prerequisites to be

applied to the original program, and the to-be-applied set of a selected change. For

declaration and mapping dependences, the ordering of applying these changes is arbi-

trary as long as all the changes in the set are present in the final intermediate program.

For example, in Figure 4.1, AM(B.inc()) ≺declaration CM(B.foo()), the choice of which

of these two methods to apply first won’t affect the compilability of the intermediate

program.

However, certain orderings of structural dependences are critical to the process of

Crisp creating a valid intermediate version. The to-be-applied set is therefore partially

ordered. Within Crisp, structural dependences can be divided into two categories: (i)

pure structural dependences and (ii) buddy dependences.

Pure Structural Dependences. Most of the structural dependences belong to

this category and Crisp must handle the corresponding changes in order when con-

structing the intermediate version. For example, a member method or a member field

cannot be added or edited unless its newly added enclosing class has been added. Sim-

ilarly, a field needs to be deleted prior to the addition of a field with the same name,

yet different type.

Buddy Dependences. As mentioned before, Chianti decomposes some edits into

several atomic changes; for example, it distinguishes between an AM change and a

CM change to a newly added method in the edited version. Chianti also creates a

structural dependence between them indicating that the AM declaring the method,

should be applied before the CM creating the method body. However, in the context

of Crisp, presenting the AM and the CM as separate may be confusing to program-

mers, since they have to be applied together. Adding the method signature without its

65

body very often results in a syntax error due to a missing return statement. Further-

more, there is no compelling reason to test the re-execution of empty methods. Similar

circumstances apply to other changes as well. A programmer who writes String s =

‘‘abc’’ (identified by Chianti as an AF change and a CFI change) probably will not

be interested in testing the program that only declares the field (AF). We therefore

aggregate the following atomic changes into buddy pairs based on their semantics: (i)

add/changeMethod – add the method declaration and body; (ii) change/deleteMethod

– delete the method body and declaration; (iii) add/changeFieldInitializer – add a field

variable, its type, and its initial value; and (iv) change/deleteFieldInitializer – delete a

field variable, its type, and its initial value.

Intuitively, the atomic changes in a buddy pair are not only ordered, they are

inseparable. There are also buddy pairs for initializers and static initializers, but they

are not as common (i.e., in our experience) as those we listed here.

With buddy pairs, programmers will be able to select a change of interest, without

needing to understand the technical difference between an AM and a CM, when adding

a new method to the original program. Crisp combines the prerequisites of the two

individual atomic changes in the buddy pair and applies all of them at the same time.

This process, though necessary for the reasons given above, adds changes to the to-be-

applied set that are not necessarily affecting changes themselves (with respect to the test

being investigated). In Section 4.1, Figure 4.1(f) shows the result of the programmer

selecting CM(B.foo()). CM(B.foo()) has a prerequisite AM(B.inc()). Crisp combines

AM(B.inc()) and CM(B.inc()) into a buddy pair. Finally, AF(A.x) is included in the

to-be applied set because it is a prerequisite for CM(B.inc()), even though it is not an

affecting change for test3. Fortunately, those newly added atomic changes won’t affect

the result of the test, which means that those changes are only added for the purpose

of compilation. For example, CM(B.inc()) is not in the affecting changes set of test3,

and this method is not executed in the intermediate program.

66

Version Pairs KLOC Classes Methods Tests

Daikon Nov 11–19, 2002 78 581 6,017 62
Eclipse jdt compiler 2003 155 841 10,154 1,477
Eclipse jdt compiler 2004 191 965 12,834 5,023

Table 5.1: The sizes of case study data

5.2 Case Studies

The goal of the syntactic dependences is to guarantee the validity of the intermediate

program versions given any user-selected atomic changes to apply to the original pro-

gram. To evaluate the practicability, we conduct two case studies to check whether

our dependences graph help constructing valid intermediate programs and locating the

failure-inducing changes for the real world Java programs.

It was a challenge to identify appropriate test data for Crisp obtainable from a

real-world software project outside of our research group. For our purposes, we must

have access to a Java project which 1) is at least moderate size, since bugs in small

programs can be found easily using traditional debugging tools; 2) provides access to

all the source code and development history; 3) has comprehensive unit tests and/or

regression tests associated with the program including some that are failing tests.

In this section we present two case studies using CVS repository data from Daikon [21,

22] and Eclipse jdt compiler [18]. Table 5.1 shows a summary of them. We use eight

version pairs from Eclipse jdt compiler, and separate them into two parts, one for 2003

and one for 2004. The numbers shown in the table are average numbers over the version

pairs in the period. The KLOC is the number of thousands of lines of uncommented

code.

5.2.1 Daikon unit tests

In Chapter 3, we had extracted 52 weeks of Daikon [21, 22] source code from a CVS

repository for testing the effectiveness of Chianti (i.e., all year 2002 check-ins). We did

find some failures while executing these tests, however, those were always associated

with the initial introduction of the test or with existing tests that always fail. But in

67

our experiment, we want to locate the failure-inducing changes for some test; that is,

we need to find some test which passes in the previous version, but fails in the edited

version. So we chose a version pair and attempted to execute test suite version n against

source code version n + 1. This mimicked the situation where the editing of the new

version of the source code was complete, and the programmer was ready to execute the

existing test suite on the new code.

We found two tests, testMinus and testXor in package daikon.test.diff, that

executed successfully in the November 11th version, but failed in the edited version dated

November 19th. Crisp called the functionality provided in Chianti core to generate the

atomic changes for these two versions, to confirm that the two tests are in fact affected,

and to calculate their affecting changes. Then Crisp created the to-be-applied sets for

the affecting changes and presented them to the programmer. Our goal was to use

Crisp to locate the changes that had caused the failure of these tests.

The results are summarized in Table 5.2. Chianti calculates 6093 atomic changes

between these two versions of Daikon. For testXor, there are 35 affecting changes

and using Crisp we found 2 failure-inducing changes. Similarly, there are 34 affecting

changes for testMinus and with Crisp, we located 1 failure-inducing change. For both

tests, the to-be-applied sets are exactly the same as the affecting changes set.

Atomic Failing Affecting Changes Failure-inducing
changes tests changes explored changes

6093 testXor 35 20 2
testMinus 34 13 1

Table 5.2: Using Crisp for the Daikon versions Nov 11th and Nov 19th(2002).

Since we were not familiar with the source code of Daikon, we attempted to locate

the changes that caused test failure in a naive manner. The fact that there were only

34 or 35 affecting changes for each test made it simple to derive an approach. We added

changes with no prerequisites first, then those with one prerequisite, etc. During this

process, we rolled back to the original program after each change to apply the next

one. For test testMinus, we were able to locate an atomic change CM(daikon.diff.-

MinusVisitor.shouldAdd(..)) whose application to the original program caused failure.

68

Index Version Atomic Failing Avg. affecting Avg. failure-
pair changes tests changes inducing changes

1 31Mar2003–01Apr2003 370 1 42 1
2 13Aug2003–14Aug2003 101 3 1 1
3 10Apr2004–11Apr2004 146 46 37 1
4 16Nov2004–17Nov2004 465 4 15 1

5 21Jan2003–22Jan2003 724 7 151 3
6 22Jan2003–23Jan2003 723 2 6 1
7 14Feb2003–15Feb2003 762 2 11 2
8 24Jun2003–25Jun2003 156 1 3 1

Table 5.3: Applying Crisp on Eclipse jdt core versions with failing tests.

For test testXor, we located atomic change CM(daikon.diff.XorVisitor.shouldAddInv2(..))

that caused a failure.

In order to confirm our results, we applied all the changes except CM(..MinusVisitor.-

shouldAdd(..)) to the original program and re-executed test testMinus, which then suc-

ceeded. This showed that CM(MinusVisitor.shouldAdd(..)) was the only failure-inducing

change for test testMinus. However, for test testXor, the application of the com-

plementary changes set also resulted in test failure. We then continued our approach,

and found atomic change CM(daikon.diff.XorVisitor.shouldAddInv1(..)) to be another

failure-inducing change for test testXor. Neither CM(..XorVisiteor.shouldAddInv1(..))

nor CM(..XorVisitor.shouldAddInv2(..)) has prerequisites and they are independent of

each other. Checking the complementary changes without these two atomic changes

confirmed that these are the only failure-inducing changes for test testXor.

5.2.2 Eclipse jdt compiler unit tests

We performed our case study on an Eclipse plug-in project, org.eclipse.jdt.core.

jdt core is the plug-in that defines the core Java elements and API. This plug-in

includes an incremental Java compiler, a Java model that provides API for navigating

the Java element tree, and other packages. Several test plug-ins are associated with jdt

core and we chose the org.eclipse.jdt.core.tests.compiler plug-in to do the case

study because of its availability with the development history of jdt.core. In addition,

the tests in this plug-in are all JUnit tests.

69

Each nightly build of these two plug-ins from 2003 to 2005 was checked out, and con-

sidered as a version. We executed all the tests in the packages parser and regression

within the jdt.core.tests.compiler plug-in, attempting to find failing tests. We

succeeded in finding 4 version pairs that have successful test results in the original ver-

sion and failing tests in the next nightly build (edited) version, which are indexed 1 to

4 in Table 5.3. Then, we applied the same strategy as for the Daikon data by applying

version n tests to version n + 1 source code to induce failing tests, and found 4 more

version pairs in 2003 which are indexed 5 to 8 in Table 5.3.

Since most of these version pairs contain more than one failing test, each with various

numbers of affecting changes, we provide the averages over all failing tests per version

pair in Table 5.3. In addition, we selected one version pair with the highest number of

affecting changes for which we present further details of our findings in Table 5.4.

In the case study, we noticed that many of these failure-inducing changes cause

failures in multiple tests which have similar affecting changes sets. In Table 5.4,

AM(CompletionParser.consumeClassHeaderName()) causes four tests to fail. This suggests

that certain changes fall within the execution paths of related tests, and the timely

identification of specific failure-inducing changes could have a positive impact on the

development time frame.

of
Failed Affecting

Index Tests Changes Failure-inducing Changes

1 CompletionParserTest.testZA 1 142 CM CompletionParser.consumeEnterVariable()
2 CompletionParserTest.testV 1FGGUOO 1 146 AM/CM CompletionParser.
3 CompletionParserTest.testZ 1FGPF3D 1 146 consumeClassHeaderName()
4 DietCompletionTest.test16 146 LC(...codeassist.complete.CompletionParser,
5 DietCompletionTest.test17 146 ...compiler.Parser.consumeClassHeaderName())
6 CompletionParserTest.testDB 1FHSLDR 164 CM AssistParser.popElement(int)
7 CompletionParserTest.testHB 1FHSLDR 164 CM CompletionParser.consumeToken(int)

CM CompletionParser.
createSingleAssistNameReference(char[],long)

All tests are from package org.eclipse.jdt.core.tests.compiler.parser. The failure-inducing

changes of test 1 to 5 are from package org.eclipse.jdt.internal.codeassist.complete, as well

as the first two failure-inducing changes of test 6 and 7, the last failure-inducing change of test 6 and

7 is from package org.eclipse.jdt.internal.codeassist.impl.

Table 5.4: Details of test results for Eclipse jdt Compiler version pair 21 Jan 2003 – 22
Jan 2003. All tests in the same rectangle share the same failure-inducing changes.

70

Version Pair
Index 1 2 3 4 5 6 7 8

Optimistic 1 1 1 2 3 1 2 1

Pessimistic 4 1 2 5 22 1 3 1

Table 5.5: The comparison of the average numbers of failure-inducing changes of two
definitions on Eclipse jdt compiler.

From these two case studies, we demonstrated the potential use of Crisp in assisting

programmers to explore and locate failure-inducing changes for a regression test. On

average, 7% of all the atomic changes are affecting changes for each test; using Crisp

we further isolate the failure-inducing changes to 1 to 4 changes.

5.2.3 Defining a Failure-inducing Change

In the case study, we use the following definition to identify failure-inducing changes:

Let A be the affecting changes for a given test t. Form a minimal subset

A′ ⊆ A, such that applying A′ to the original program P results in an

intermediate program P1 on which test t fails, and applying all the changes

in A − A′ to the original program results in intermediate program P2 on

which test t does not fail. Then all the changes in A′ are failure-inducing

changes.

We refer to this definition as optimistic, because it only “counts” the changes that

actually make a test fail, not including their prerequisites. The figures in Tables 5.2

and 5.3 were derived using this optimistic definition. In our case study, only AMs,

CMs and LCs are reported as failure-inducing changes.

An alternative pessimistic definition is to include all the transitively prerequisite

changes derived from A′ as failure-inducing changes. For the case study on Daikon, since

all the failure-inducing CM changes do not have prerequisites, the difference between

the optimistic and pessimistic definitions does not affect the data reported. For the case

study on the Eclipse jdt compiler, many of the failure-inducing CM changes have other

AFs, ACs and AMs as prerequisites; thus, use of the pessimistic definition results in

considering more changes as failure-inducing. Table 5.5 shows the average number of

71

failure-inducing changes that would be reported in the Eclipse jdt compiler case study

for each of the two definitions. For version pairs 5, we notice a significant difference

between the two definitions.

It is important to investigate whether or not each prerequisite for a failure-inducing

change is ONLY a prerequisite for that change or is a prerequisite for other changes

as well. If a prerequisite is shared with other CM changes, then it is also necessary

for them, so we should not classify such a prerequisite as failure-inducing, as this may

divert attention from the real failure-inducing change(s). We checked the prerequisites

for each failure-inducing CM change in version pair 5 and found that about half of

the prerequisites occurred solely as prerequisites of the failure-inducing changes; the

other half were shared prerequisites with other non-failure-inducing changes. Given the

variations of these two definitions, we plan to collect more data and investigate further

the root causes of the failures.

72

Chapter 6

Heuristics for Locating Test Failure Causes

While the set of affecting changes of an affected test can be small relative to the total

number of atomic changes, examining each of these changes and pinpointing the few

that induce the failure of a test is a tedious task. For large applications, the parts of an

edit are inter-related in many ways. In some cases, the combination of some changes

results in the failure of a specific test, making it more difficult and time-consuming to

identify the failure causes.

In this chapter, we propose a heuristic that ranks the method changes affecting a

failing test, indicating the likelihood that they were responsible for the failure. The

basic idea of the heuristic is that if the programmer changes a method which has many

ancestors and descendants in the test’s call graph, and furthermore, if the caller and

callee in the call graph are changed at the same time, these changes are more likely to

introduce a failure. We also discuss other metrics on methods that may be used for

heuristics.

We conducted a case study with our heuristic to rank all the method changes in

Eclipse jdt core project, using the test suite from its compiler tests plug-in. To measure

the effectiveness of our heuristic, we use Crisp [45] to determine the actual failure-

inducing changes. Then we check how well we ranked the real failure-inducing changes

among all the method changes in the affecting changes. Ideally, we would like to see

the failure-inducing changes for a test always obtain the highest rankings. In the case

study, for the tests whose failure is caused by one changed method, our heuristic ranks

the failure-inducing change among the top 2 of all method changes for 67% such tests.

For failures caused by combinations of the changes, our heuristic helps in half of the

cases, in which the rankings we obtain are only one off from the ideal ranking.

73

We did the study in our change impact analysis framework, but our heuristic for

ranking the changes can be used in a more general setting. Suppose a Java program fails

unexpectedly, and the programmer can easily obtain a previous version of the program

that works. He first can collect all the changes between the two versions, and build a

call graph for the failed test in the edited version. Next, he can traverse the call graph

and collect the properties for ranking the changed methods. Note that calculating the

affecting changes for the failed program is not necessary; we can directly match the

nodes in the call graph with the edit changes. Those method changes not related to

the failed test won’t appear in the test’s call graph and will be ignored automatically.

6.1 Heuristics to Look for Failure Causes

6.1.1 An Informal Overview of the Approach

Change Changed # of # of # of Callee # of Caller
label Methods Des Anc Callees chgd? Callers chgd? Score

2 SAcnt.crtTrans(int,long) 1 3 1 no 2 yes 6
9 Acnt.deposit(long) 2 1 1 yes 1 no 4

10 Acnt.withdraw(long) 2 1 1 yes 1 no 4
8 Acnt.<init>() 0 2 0 no 1 no 2

11 Acnt.curBallance() 0 1 0 no 1 no 1

Table 6.1: The properties and the scores of CM changes for test Tests.testAcnt() in
the example program

We will use the example program of Figure 6.1 to illustrate how the heuristics

work. The program of Figure 6.1(a) depicts a simple program comprised of classes

Trans, Acnt and SAcnt, which represent Transaction, Account and Savings Account

respectively. Figure 6.1(b) shows an edited version of the program, where the changes

are shown underlined, labeled with the numbers of the corresponding atomic changes,

shown in Figure 6.2. Associated with the program is a JUnit [32] test, Tests.testAcnt,

which is shown in Figure 6.1(c). Note that it is assumed that the test will be used with

both versions of the program.

Figure 6.2 shows the atomic changes that define the edit of the example program.

74

public class Trans {
public static int DEPOSIT = 0;

public static int WITHDRAW = 1;

private Acnt acnt;

private int type;

private long amt;

public Trans(Acnt acnt, int t, long amt) {
this.acnt = acnt;

this.type = t;

this.amt = amt;

}
}
public class Acnt {
long balance = 0;

List ts = new LinkedList();

public void deposit(long amt) {
crtTrans(Trans.DEPOSIT, amt);

balance += amt;

}
public void withdraw(long amt) {

crtTrans(Trans.WITHDRAW, amt);

balance -= amt;

}
boolean crtTrans(int type, long amt) {

ts.add(new Trans(this, type, amt));

return true;

}
public long curBalance() {

return balance;

}
public Acnt() { }

}
public class SAcnt extends Acnt {
}

public class Trans {
public static int DEPOSIT = 0;

public static int WITHDRAW = 1;

private Acnt acnt;

private int type;

private long amt;

public Trans(Acnt acnt, int t,

long amt) {
this.acnt = acnt;

this.type = t;

this.amt = amt;

}
}
public class Acnt {
long balance = 0;

List ts = new LinkedList();

public void deposit(long amt) {
if (crtTrans(Trans.DEPOSIT, amt))9

balance += amt;

}
public void withdraw(long amt) {

if (crtTrans(Trans.WITHDRAW, amt))10

balance -= amt;

}
boolean crtTrans(int type, long amt) {

ts.add(new Trans(this, type, amt));

return true;

}
public long curBalance() {

assert (balance >= 0);11

return balance;

}
public Acnt() { no = ++index;8 }
private long no;6

static private long index;7

}
public class SAcnt extends Acnt {
boolean crtTrans(int type,

long amt)1,2,3,4 {

if (type==Trans.WITHDRAW &&

balance-amt<25)

return false;

ts.add(new Trans(this, type, amt));

return true;

}
private double iRate;5

}

(a)

public class Tests extends TestCase {
public void testAcnt(){

Acnt a = new SAcnt();

a.deposit(100);

a.withdraw(100);

Assert.assertEquals(a.curBallance(),0);

}
}

(c) (b)

Figure 6.1: (a) Original version of example program. (b) Edited version of example
program (underlining is used to show changed code fragments. (c) Tests associated
with the example of (a) and (b).

75

AF AF CM
Acnt.no Acnt.index Acnt.deposit(long)

CM
Acnt.withdraw(long)

CM
Acnt.<init>()

AM
SAcnt.crtTrans(int,long)

CM
Acnt.curBallance()

6 7 9

108

1 11
LC

SAcnt,SAcnt.crtTrans(int,long)

3

CM
SAcnt.crtTrans(int,long)

2
LC

SAcnt,Acnt.crtTrans(int,long)

4
AF

SAcnt.iRate

5

Figure 6.2: Atomic changes for the example program, with their inter-dependences

Tests.testAcnt()

SAcnt.<init>() Acnt.deposit(long) Acnt.withdraw(long) Acnt.curBallance()

SAcnt.crtTrans(int,long)

Trans.<init>(Acnt,int,long)

Acnt.<init>()

<SAcnt, Acnt.deposit()> <SAcnt, Acnt.withdraw()> <SAcnt, Acnt.curBallance()>

<SAcnt, Acnt.crtTrans()> <SAcnt, Acnt.crtTrans()>

Figure 6.3: Call graph of the Test.testAcnt() executed on edited program in Fig-
ure 6.1, dashed boxes indicate changed methods, and dashed arrows indicate changed
calling relationships between methods (lookup changes). Calls to the library methods
are not shown.

An arrow from an atomic change A1 to an atomic change A2 indicates that A1 is de-

pendent on A2. Recall that the syntactic dependences do not capture all semantic

dependences between changes. For example, there isn’t any syntactic dependence be-

tween changes to method Acnt.withdraw(long) (CM change 10) and the newly added

method SAcnt.crtTrans(int, long)(AM change 1); however, these changes have a

semantic dependence. Both changes affect the behavior of testAcnt(), and applying

either of them alone will not affect the successful test result, but applying both changes

to the original program causes the test to fail.

Test testSAcnt() fails in the edited program. Figure 6.3 shows the call graph for

the test in the edited program. We use dashed boxes to indicate changed methods (CM

changes), and dashed arrows indicate changed calling relationships between methods

(LC changes). The set of atomic changes that affect a given test includes: (i) all

changed methods (CM changes) that correspond to a node in the call graph in the

edited program, (ii) lookup changes (LC) that correspond to an edge in the call graph,

and (iii) their transitively prerequisite atomic changes.

For testAcnt(), category (i) includes changes 2, 8, 9, 10, 11 and category (ii)

76

includes change 4. From the dependence graph in Figure 6.2, it can be seen that

atomic changes 2 and 4 require atomic change 1, and atomic change 8 requires atomic

changes 6 and 7. Therefore, the affecting changes for testAcnt() are atomic changes

1, 2, 4, 6, 7, 8, 9, 10 and 11. The heuristic ranks the changes in category (i) when the

test has failed.

In this section, we present a heuristic ranking of the CM changes in the affecting

changes set, to indicate the likelihood they may have contributed to a test failure. Then

we explain possible ways of exploring the changes given the ranking to quickly pinpoint

the failure-inducing changes.

6.1.2 Heuristic

The heuristic is based on the hypothesis that those changed methods with large numbers

of ancestors and/or descendants in the call graph are more likely to be failure-prone

than other changed methods. For each node in the call graph of the test on the edited

program that corresponds to a CM, a score is assigned based on some properties we

collect. Then we sort all the CMs in descending order according to the score obtained

from the call graph, so that the change with the highest score gets the top ranking (i.e.,

number 1 is the highest rank). The higher its rank, the more likely it is that the CM

may have contributed to the test failure.

We collect several properties of a changed method, calculate a score from these

properties, and use the score as our heuristic. If a given node in the call graph of the

failed test is changed by the edit, we record the following information: (a) the number

of descendants (including all callees), (b) the number of ancestors (including all callers),

(c) the number of callees, (d) whether the callees include any node corresponding to

a changed method, and (e) the number of callers, (f) whether the callers include any

node corresponding to a changed method.

The score for each changed method is then calculated. First, the numbers of de-

scendants (a) and ancestors (b) are counted. Then we check property (d), whether the

callees include any node corresponding to a changed method. If so, the number of the

callees (c) is included in the score; otherwise, the number is ignored. The process for

77

properties (e) and (f) is similar.

If two methods with the caller-callee relationship are changed at the same time, they

may interact with each other and are more likely to be failure-prone, especially when

these changes were made by different developers. In such cases, we want to assign a

higher weight to these changed methods in the call graph. Suppose a method is changed

by the edit, and one or more of its callees are changed at the same time. We can count

the number of its changed callees and include the number in the score. However,

compared to the total number of descendants/ancestors, this number is usually much

smaller and has no effects on the final score for ranking. Since the changed callee(s) may

have side-effects on the sibling callgraph nodes, and thus introduce more complexity,

we chose to count the numbers of all the callees of the changed method whenever

some of the callees are changed. This number is usually bigger than the number of

changed callees and it does help balance the final ranking scores and avoids the use of

sophisticated weighting functions for the changed callees. Similar processing is applied

to the callers of the changed method. Note that the callees/callers of the changed

method are counted twice by our heuristic if some of the callees/callers are also changed.

Call graphs may include cycles, so that the ancestors and descendants are not always

disjoint sets. In determining the ranking of a changed method, we simply remove from

the set of descendants, the method nodes that already appear in the set of ancestors.

Thus, a specific method node is only counted once either as an ancestor or a descendant.

Similar processing is done for direct callers and callees in such situations.

For the example program shown in Figure 6.1, there are 5 CMs in the affecting

changes set of the test Tests.testAcnt(). Table 6.1 shows the properties and the

scores of the 5 CMs, ordered by their rankings. The first column lists the change labels

from Figure 6.2 for the changed methods shown in the second column. The third to

the eighth columns show the properties (a) to (f) discussed above. The last column is

the score obtained for the method, which is used for ranking.

In the above example, changed method SAcnt.crtTrans(int, long) has 1 descen-

dant and 3 ancestors. From Figure 6.3, we notice that its callee does not change but its

2 callers are both changed methods, so the score for the method is 1 descendant plus 3

78

ancestors and plus 0 callee and plus 2 callers, which is 6 according our heuristic.

6.1.3 Explore the changes

We use Crisp [45] to determine the actual failure-inducing changes. Given the change

rankings obtained in Section 6.1.2, there are several ways to explore the changes to

pinpoint the failure-inducing changes by using Crisp.

Accumulative Sequential Exploring. Since we believe that the ranks of the

CMs indicate the likelihood they may contribute to the failure of the test, the intu-

itive exploration strategy is to apply the CMs one by one in the ranking order (i.e.,

accumulatively) to the original program until the failure occurs. Then we undo all the

changes applied, and re-apply the last CM change (i.e. the mth CM change) to the

original program and check whether the failure still occurs. If the test still fails, then

the mth CM change is the failure-inducing change. Otherwise, we know that the failure

is caused by combinations of several CMs, and the mth CM change is one of them. In

such a case, we will treat the intermediate program, formed by the original program

plus the mth CM change, as the original program in the next run, remove this CM

change from the affecting changes set, and then repeat the above procedure. In each

run, we find one more element contributing to the failure of the test and the process

will finally terminate because the affecting changes set is finite.

Another possible sequential exploring option is to apply the changes to the original

program one by one, undoing the last change before applying the next one. But it is

not effective when the failure is caused by the combination of several method changes,

so we choose the accumulative sequential exploring in our experiment.

Divide-and-Conquer Exploring. This is similar to the idea used in delta-

debugging [65], but the division of the changes is not random. We evenly divide the

changes into two subsets in ranking order, with the higher ranked CMs in the first sub-

set, and the lower ranked CMs in the second subset. We always apply the first subset

to the original program first, and check whether the resulting intermediate program

results in test failure. If the test fails, then we repeat the procedure on the first subset;

otherwise, we try the second subset.

79

This procedure has three possible outcomes: 1) we find one CM change that results

in the test failure; 2) several combined changes cause failure, and they are in the same

subset (In this case, we need to confirm that this is the minimum group of failure-

inducing changes); 3) several combined changes cause failure, but they are in different

subsets, which means applying the combination of two subsets makes the test fail, but

neither of the subsets alone causes the failure. In such a case, we will extend the first

subset by adding the changes from the beginning of the second subset, one change

a time, until the test fails. Finally, we use accumulative sequential exploring on the

extended subset to find the failure-inducing changes.

After finding a group of failure-inducing changes F , the programmer still needs to

check whether these are the only changes that cause the test to fail. He can apply the

complement of these changes to the original program and run the test on the resulting

intermediate program1. If the test still fails, he should continue the above process on the

remaining changes and find all the failure-inducing changes. If the test succeeds, then

the complement set contains no failure-inducing changes. Note that applying only part

of the complement set may cause test failure because of possible semantic dependences

between changes in the complement set.

Accumulative Sequential Divide-and-Conquer
Steps Changes Outcome Changes Outcome

1 2 P 2, 9, 10 F
2 2, 9 P 2, 9 P
3 2, 9, 10 F 10 P
4 10 P 2, 10 F
5 2, 10 F 6, 7, 8, 9, 11 P
6 6, 7, 8, 9, 11 P

Table 6.2: The changes applied in each step using the two exploration strategies and
the outcomes of the intermediate programs in each step. Undo and re-apply steps are
not shown in the table.

Example. Table 6.2 shows the atomic changes examined in each step of the two

exploration strategies and the outcomes of the intermediate programs for the example in

1The complement set of F includes the all the affecting changes that are not in F and their
prerequisites.

80

Figure 6.1. The undo and re-apply steps are not shown in the table. Using accumulative

sequential exploring, we apply the CM changes 2, 9 and 10, and then observe the test

failure. Then, we undo all the changes, and then re-apply change 10, but the test

doesn’t fail. Now we know that the failure is caused by the combination of change 10

and one or both of the other two changes (changes 2 and 9). Next we apply atomic

change 2 accumulatively on atomic change 10 and the test fails. The final step is to

undo all the changes applied and apply their complement to the original program and

confirm that the complement does not result in a failure.

The divide-and-conquer strategy works in a different way. We apply the first subset

of the CM changes (changes 2, 9 and 10) and observe the test failure. Then, we

undo the changes, further subdivide the current subset into two parts, and re-apply

the first part (atomic changes 2 and 9), and observe that the test succeeds. Then we

try the second part of the changes (change 10), and the test still succeeds. So we must

extend the first part by adding a change from the second part. Since we already tried

the combination of atomic changes 2, 9, 10 in the first step, we use the accumulative

sequential exploring strategy on the extended subset. Finally, we locate atomic changes

2 and 10 as the failure-inducing changes. Again we need to check the complement to

make sure that we have found all the failure-inducing changes.

6.2 Eclipse jdt Case Study

We performed our case study on an Eclipse plug-in project, org.eclipse.jdt.core,

which has several associated test plug-ins. Several test plug-ins are associated with jdt

core and we chose the org.eclipse.jdt.core.tests.compiler plug-in to do the case

study because of its availability with the development history of jdt.core. In addition,

the tests in this plug-in are all JUnit tests.

Each nightly build of these two plug-ins from 2003 to 2005 was checked out, and con-

sidered as a version. We executed all the tests in the packages parser and regression

within the jdt.core.tests.compiler plug-in, attempting to find failing tests.

We succeeded in finding 3 version pairs with at least 6 affecting CM changes, that

81

of Atomic # of Failed Avg. # of Avg.
Index Version pairs Changes Tests Affecting Changes of CMs

1 1/21/2003–1/22/2003 724 7 (5, 2) 151 18
*2 3/31/2003–4/1/2003 371 1 (1, 0) 42 10
3 1/13/2004–1/14/2004 163 8 (8, 0) 74 42
4 2/17/2004–2/18/2004 2701 2 (2, 0) 63 23
5 3/4/2004–3/5/2004 68 240 (48, 192) 13 7

*6 4/10/2004–4/11/2004 146 46 (46, 0) 37 13
7 6/8/2004–6/9/2004 116 2 (2, 0) 12 9
8 6/9/2004–6/10/2004 719 2 (0, 2) 8 8
9 7/9/2004–7/10/2004 103 1 (1, 0) 16 8

10 7/21/2004–7/22/2004 163 7 (7, 0) 16 9
*11 11/16/2004–11/17/2004 465 1 (1, 0) 22 9
12 11/18/2004–11/19/2004 1784 2 (2, 0) 36 15
13 11/19/2004–11/20/2004 325 2 (2, 0) 153 32
14 11/29/2004–11/30/2004 234 1 (0, 1) 11 9

Table 6.3: The summary of the version pairs of jdt.core in Eclipse used in our case
study

have successful test results in the original version and failing tests in the next nightly

build (edited) version, which are indicated by a star in the index column in Table 6.3.

In order to simulate the development life cycle of the program, we chose a version pair

and attempted to execute test suite version n against source code version n + 1. This

mimicked the situation where the editing of the new version of the source code was

complete, and the programmer was ready to execute the existing test suite on the new

code. Using this strategy, we found more version pairs where some tests were successful

in version n but failed in version n + 1.

Then we ran Chianti to generate the atomic changes for each version pair, and

to calculate the affecting changes for each failed test. Some of the tests have small

sets of affecting changes and thus it is easy to locate the causes of failures. So for

our experiments, we ignored those tests with less than 6 CM changes in the affecting

changes set.

Finally we obtained 14 version pairs on which to conduct our case study, which is

summarized in Table 6.3. For the versions under consideration, the project increased

in size from 148K to 204K uncommented lines of source code and the number of JUnit

tests grew from 1069 to 5224 2. The second column in Table 6.3 lists the version pairs of

2The total number of JUnit tests depends on the Java version used in Eclipse; we used JDK1.4 in
the experiment.

82

the project jdt.core represented by their dates. The third column lists the number of

atomic changes for each version pair. The fourth column is the number of failed tests.

Some tests have a single failure-inducing change, which means that by applying one CM

to the original program, we generate the expected failure for the test. Some test failures

required multiple method changes. In parentheses in this column, we list a pair of

numbers, representing the number of tests with a single failure-inducing method change,

and the number of tests with multiple failure-inducing method changes, respectively.

The last two columns show the average number of affecting changes for each failed test

per version and the average number of CM changes among these affecting changes.

6.2.1 Data Analysis

Single failure-inducing change

Among the 14 version pairs, 10 of the version pairs have tests with a single failure-

inducing method change. In addition, for version pair 1, there are 7 failed tests in total,

5 of which have a single failure-inducing method change, while the other two tests were

failed by multiple combined method changes, and the failure-inducing changes for these

two groups do not intersect with each other.

Figure 6.4 shows the number of failed tests with at least 6 CM changes for these 11

version pairs. Each column represents the average number of affecting CM changes over

the failed tests. Note that for version pair 1, the numbers in the figure are different

from the numbers shown in Table 6.3, which include those tests failed by multiple

combined method changes. The lower bar in each column shows the average rank on

the failure-inducing changes (note the log scale on the numbers for the lefthand side

axis). Ideally, we would always rank the failure-inducing change as number 1, the top

rank. Generally, the higher the ranking, the less work to locate the failure-inducing

changes. The diamond-shaped dots connected by a line show the number (in the frame

box) of failed tests for each version pair (see the righthand side axis).

Versions details. Figure 6.4 shows that in 4 of 11 version pairs, we correctly ranked

the failure-inducing change as number 1 (i.e., version pair 2, 7, 9 and 11); in 3 of 11

83

17

10

42

23

13

9
8

9 9

15

32

1

4

2
1

5

1

2

1
2

19

4

221
7

122
8

1
5

46

1

10

100

1 2 3 4 6 7 9 10 11 12 13

Verion Pairs

A
v

g
 #

 o
f

C
M

 c
h

a
n

g
e

s
,
A

v
e

ra
g

e
 R

a
n

k
 o

f

F
a

il
u

re
-I

n
d

u
c

in
g

 C
h

a
n

g
e

s

0

30

60

90

120

N
u

m
b

e
r

o
f

F
a

il
e

d
 T

e
s

ts

Avg # of CM Changes Avg Rank of Failure-Inducing Changes Number of Failed Tests

Figure 6.4: The number of failed tests (with at least 6 affecting CM changes) versus
the average ranks of the failure-inducing changes (note the log scale).

version pairs, the failure-inducing change was ranked number 2 on average (i.e., version

pair 1, 3 and 10). For version pair 3, there are 74 affecting changes for the tests, and

42 of them are method changes; our heuristic successfully ranked the failure-inducing

change as number 2.

In version pair 12, we ranked the failure-inducing change as number 4 of all 15

method changes. Note that in version pairs 6, 12 and 13, we ranked the failure-inducing

change in the top log2n rank, where n is the number of CM changes in the affecting

changes set.

In version pair 4, the failure-inducing change was ranked as number 19 among 23

changes. After checking the details of the test, we found that this failure is caused by

a change to a static field initializer, thus resulting in a change to the class initializer

method 〈clinit〉(). Since this method is called only when the class is first loaded into

the system, it has no parent in the call graph and usually has few callees, so its score

is always low. Our heuristic doesn’t work well here. In fact, other research work in

fault localization [31, 3] also confirmed that it’s difficult to diagnose faults located in

the initialization code, even for small programs.

Variations. All the ranks we show above are averages across all the failing tests

84

Index Best Rank Worst Rank Median Rank

1 1 4 1
3 2 2 2
4 19 19 19
6 2 4 4
7 1 1 1

10 1 2 2
12 4 4 4
13 5 5 5

Table 6.4: The variance of the ranks of failure-inducing changes for the tests in each
version pair.

per version. For those version pairs with multiple failing tests, we are also interested in

the variations between the ranks of the failure-inducing changes. Table 6.4 shows the

best rank, the worst rank and the median rank of the failure-inducing change for each

version pair with more than one failing test. In 5 of the version pairs (version pair 3,

4, 7, 12 and 13), we assign the failure-inducing changes the same ranking for different

failing tests. Version pair 1 has the biggest variation. There are 5 failing tests with a

single failure-inducing change; for 4 of them, our heuristic ranks the failure-inducing

change as number 1 out of 17 CM changes, and in one test, we rank the failure-inducing

change as number 4 out of 15 CM changes.

For version pair 6, there are 46 failed tests in the edited version; all these tests share

the same failure-inducing change. In 12 of the failed tests, we ranked the failure-inducing

method change as number 2, and for the other 34 of the failed tests, the failure-inducing

change was ranked as number 4. For all the failed tests, two non-failure-inducing CM

changes obtain the same score as or very close to (i.e., the score difference less than

2) the failure-inducing CM change. These three method changes are always ranked

between 2 and 4. We checked other attributes of these three methods, and found that

the failure-inducing change method has more siblings than the other two methods in

the call graph (30 vs. 8,9). This may be a useful hint to prioritize the changes when

their scores are the same or very close.

Common failure-inducing changes in failing tests. Another interesting ques-

tion is whether different failing tests in a version pair share the same failure-inducing

85

changes. For the version pairs shown in Figure 6.4, all the failing tests, except one in

version pair 1, share the same failure-inducing change with the other tests in the same

version pair. In version pair 1, one test with the failure-inducing change ranked as 4

has a different failure-inducing change than the other 4 failing tests.

This implies that often we can start with one failing test, search for the failure-

inducing changes for this test, and after locating the them, run all the other failing

tests and check whether only the same set of changes make all fail. In this case, we can

avoid costly call graph collection for all the failed tests, thus saving programmer time

and effort in debugging.

Given our observations above, we hypothesize that many failed tests in the same

version pair share the same failure-inducing changes, and thus we don’t need to locate

the failure-inducing changes for these tests one by one. Therefore, instead of calculating

average rank per test, we developed a more realistic measure of how rank helps in the

debugging process. We represent each of these sets of tests with a delegate test; there

are 12 delegate tests for the 11 version pairs we discussed above, where version pair

1 includes 2 delegate tests and each of the other version pairs include 1 delegate test.

Table 6.5 shows the distribution of the ranks of the failure-inducing changes for the

delegate tests. In 6 of the cases, the failure-inducing change was ideally ranked as

number 1 out of 10 CM changes on average, and in 2 cases, the failure-inducing change

was ranked as number 2 out of 28 CM changes on average. In summary, our heuristic

ranked the failure-inducing change within the top 2 over all the CM changes for 67%

(8 out of 12) of the delegate tests.

Avg # of Rank of Failure- # of Delegate
changed methods inducing Change Tests

10 1 6
28 2 2
15 4 2
32 5 1
23 19 1

Table 6.5: The distribution of the ranks of the failure-inducing changes for the delegate
tests

86

Multiple failure-inducing changes

In version pair 1, two tests testHB 1FHSLDR and testDB 1FHSLDR defined in class

parser.CompletionParserTest failed in the edited version because of three combined

CM changes. Test testHB 1FHSLDR has 21 affecting CM changes, and the failure-

inducing changes are ranked as 2, 3, and 4, only one off from the ideal ranking. Similar

to what we observed in cases with a single failure-inducing change, these two tests

share the same failure-inducing changes set. We also confirmed that (i) any subset of

the changes doesn’t generate the expected failures for either test, and (ii) the comple-

ment of the changes doesn’t generate failure for the tests, either. For testDB 1FHSLDR,

the failure-inducing changes are ranked as 2,3, and 7 out of 21 affecting CM changes.

In version pair 8, two tests test078 and test077 defined in class regression.-

Compliance 1 4 failed in the edited program. Both failures are caused by two combined

CM changes, but the failure-inducing changes sets are not exactly the same; only one

common CM change is shared between them. test078’s failure-inducing changes are

ranked as 2 and 3 out of 7 affecting CM changes (one off from the ideal ranking) and

test077’s failure-inducing changes are ranked as 2 and 6 out of 8 affecting CM changes;

our heuristic doesn’t help as much here.

In summary, for the failures caused by combinations of changes, our heuristic helps

in half of the test cases; the rankings we obtain are only one off from the ideal rankings.

Combination of failure-inducing changes

The failure of one test in version pair 14, can be caused by each of three CM changes

separately. Our heuristic ranks the failure-inducing changes as 2, 4, and 5 out of 9 CM

changes respectively.

Version pair 5 has 240 failed tests in the edited program, and we divide them into

three groups by their failure-inducing changes. Twelve of them were failed by the change

to method jdt.internal.compiler.problem.ProblemReporter.computeSeverity(int), which

is ideally ranked as number 1 out of 7 CM changes. Thirty-six of them were failed by

87

the change to the initialization code jdt.internal.compiler.parser.JavadocParser. -

<init>(jdt.internal.compiler.parser.Parser), which is ranked as number 4 out of 6

CM changes. All the other 192 failed tests share the same affecting changes set (7 of

them are CM changes), and were failed by each of these method changes separately.

Figure 6.5 shows a scatter plot of the rankings for the failed tests in version pair

5. The X axis represents the rank of the failure-inducing change ProblemReporter.-

computeSeverity(int), and Y axis represents the rank of the failure-inducing change

JavadocParser.<init>(Parser). The size of each bubble reflects the number of same-

valued pairs it represents, which appears explicitly as a number next to the bubble.

Bubbles close to the (1,1) point are the most desirable values, that is the failure-inducing

changes were ranked close to 1. The bubbles on the X axis and Y axis represent those

tests with a single-failure-inducing change. For example, the bubble on the X axis repre-

sents the 12 tests failed by the method change ProblemReporter.computeSeverity(int),

which is ranked as number 1.

For those 192 tests failed by either method separately, these two methods obtain

different rankings in different tests. The biggest bubble in the graph represents 187 of

these, the change to method ProblemReporter.computeSeverity(int) was ranked as 1,

and the change to method JavadocParser.<init>(Parser) was ranked as 5. The ranks

of the failure-inducing changes for the other 5 tests are worse.

In summary, for this version pair, the failure-inducing change ProblemReporter.-

computerSeverity(int) was easy to locate, since in most cases, our heuristic ranks

this method change ideally, as number 1. However, the change to the initialization

code JavadocParser.<init>(Parser) is hard to locate (i.e., the rankings for this method

change are always very low). This is consistent with what we observed in version pair

4 and also was discussed by other research work in fault localization [31, 3]

6.2.2 Comparison to Other Heuristics

Our previous work [12, 45] presented an exploration strategy to locate the failure-

inducing changes. As mentioned in Chapter 4, syntactic dependences are calculated

between atomic changes to ensure the compilability of the intermediate programs. If

88

12

1

22187

36

-1

0

1

2

3

4

5

6

7

-1 0 1 2 3 4 5 6 7 8

Rank of ProblemReporter.computeSeverity(int)

R
a

n
k

 o
f

J
a

v
a

d
o

c
P

a
rs

e
r.

<
in

it
>

(P
a

rs
e

r)

Figure 6.5: Scatter plot for ranks of two failure-inducing changes for version pair 5.

a programmer wants to apply an atomic change to the original program, all of its

prerequisite changes must also be applied. The basic idea of this exploration strategy is

to define the complexity of an atomic change according to the number of its prerequisite

changes, and always to apply the simple atomic changes first, then the more complicated

changes (i.e., fewest prerequisites first).

Figure 6.6 shows the comparison of rankings of the failure-inducing changes by two

heuristics applied to each set of tests represented by a delegate test. We refer to the

heuristic presented in this paper as CS heuristic, since the ranking depends on the call-

ing structure of the method. We use PR to represent the exploration strategy presented

in [12, 45] since it is defined using the number of prerequisite changes. This figure only

shows the rank comparison for the tests with a single failure-inducing change. Be-

cause version pair 1 includes two groups of tests with different failure-inducing changes,

columns 1 and 1* represent these two groups, respectively. For each heuristic, Fig-

ure 6.6 shows the average ranking of the failure-inducing change, and marks the best

and worst rankings it can achieve.

As mentioned before, many tests share the same failure-inducing change, which

might be assigned different scores in distinct tests because of differences in calling

89

structures. In our experiment, the calling structures for the failed tests in the same

version pair are similar to each other, which explains why for the CS heuristic, there

is very seldom a difference between the best ranking and the worst ranking. The PR

strategy ranks the CM changes based on their number of prerequisites. However, many

CM changes share the same dependence complexity and thus cannot be distinguished

by the number of prerequisites. The figure shows that in 8 of the 12 pairs, the failure-

inducing change can’t be distinguished by PR from other affecting CM changes and

they share the same ranking. For example, in version pair 3, the failure-inducing change

has 1 prerequisite and is ranked as number 1, but 17 other affecting CM changes also

have 1 prerequisite and thus the same rank as the failure-inducing change. In such

cases, the programmer has to try those 18 CM changes randomly until the test fails.

In 10 of the 12 pairs, the CS ranking works better than the PR ranking on average.

Even for the best ranking the PR can achieve, CS performs no worse than PR in 9 of

the 12 pairs.

1

4

1
2

19

3

1 1 1 1

4
5

13
12

8

10
9 9

6

3

9 9

15

3

0

2

4

6

8

10

12

14

16

18

20

1 1* 2 3 4 6 7 9 10 11 12 13

Version Pairs

R
a
n

k
in

g
s
 o

f
F

a
il
u

re
-i

n
d

u
c
in

g
 C

h
a
n

g
e

Ranking of CS Ranking of PR

Figure 6.6: Comparison of CS and PR heuristics

Other factors affecting the ranking? Our proposed heuristic is very intuitive.

We also tried to assign weights to other properties of the changed method to rank the

CM changes. For example, we considered the number of siblings of the changed method,

whether the siblings have been changed or not, the number of fields accessed in each

90

method, the number of classes/interfaces referred to by each method, the number of

changed callers, callees, and siblings, the numbers of the different types of prerequisites

(e.g., class, field and method prerequisites) of the changed method. However, for the

data in our case study, those properties had no significant influence on the rankings.

Therefore we abandoned the use of these extra properties and kept the algorithm as

simple as possible.

We also are interested in the sensitivity of the heuristic to the current choice of

properties. We need to do more experiments to further explore these issues.

6.2.3 Assessment

We performed our case study on 14 version pairs of a real Java project, and observed

a good combination of single and multiple failure-inducing changes. For the tests with

a single failure-inducing change, our heuristic successfully ranked the failure-inducing

change as number 1 for 50% of the delegate tests. For most cases, we ranked the failure-

inducing change in top log2n, where n is the number of method changes in the affecting

changes set of the test. However, our heuristic didn’t work at all when the failure are

caused by the changes to the initializer code.

Generally, if a test failure is caused by several combined changes, there is no easy

way to pinpoint these changes. Our approach helps in several ways in this situation.

First, the change impact analysis from Chianti filters out the changes not related to the

failed test. Second, the dependences between atomic changes allow the programmer to

focus only on method changes that may cause the failure. Third, when the initializer

code is not involved in the failure of tests, the study shows that our heuristic helps

in half of the cases, in which the rankings we obtain are only one off from the ideal

rankings. This saves a programmer considerable time compared to trying all possible

combinations of the affecting changes.

When a programmer experiences a test failure, she has no idea whether it is caused

by a single change or some change combination. Since our heuristic generates useful

information in most cases, we recommend the programmer use the accumulative se-

quential exploring of the method changes according to our rankings at first. If, after

91

applying log2n method changes, she still can not generate the expected test failures,

which is a hint that our ranking algorithm doesn’t fit in such a case, she should consider

continuing with the divide-and-conquer exploring strategy to accelerate the process.

6.2.4 Limitations

In our heuristics, we only consider the CM changes, and ignore the LC changes. In

most cases, LC is a result of overriding a method, and thus the target of the dynamic

dispatch resolves to the newly added method. Since this implies a newly implemented

method, there is always an associated CM change. However, the LC change can also

be caused by deleting a method, in which case we may not generate this failure even

after we apply all the CM changes (i.e., if the LC change is the only failure-inducing

change). If we examine the complement of the applied changes, we finally could locate

the LC change, but not in an effective way. In our case study, this never happened,

because programmers usually delete methods very carefully, since they suspect that a

method may be used somewhere.

The other limitation is that we map all changes to method-level changes, and only

rank the CM changes. In some cases, if the programmer changes many static field

initializers, we will map them all to one class initializer change. In version pair 4, we

locate the CM(〈clinit〉()) as the failure inducing change; however, it represents more

than one static field initializer change. We need to continue applying changes in a finer

grained manner and finally locate the specific field changes that actually make the test

fail.

6.2.5 Machine Learning Algorithms

We tried several machine learning algorithms to help locate the failure-inducing changes;

however, they did not perform well in our case study for several reasons. Generally,

the more data available for training, the better the results that the machine learning

algorithms produce. We have only 14 version pairs in the study. The large number of

failing tests (322) doesn’t help too much because for each version pair, many of them

share the same affecting changes set and the same failure-inducing changes.

92

In addition, to use a supervised machine-learning algorithm, which fits in our study,

the accuracy of the learned function depends strongly on how the input object is repre-

sented. In our case, the difficulty came from the representation of the ranking; a binary

value was insufficient to sort the CM changes so that suspicious changes receive higher

rankings. We will gather more data and try other machine learning algorithms in the

future.

93

Chapter 7

Related Work

We distinguish five broad categories of related work in the community: (i) change im-

pact analysis techniques, (ii) regression test selection techniques, (iii) fault localization,

(iv) techniques for avoiding recompilation, and (v) techniques for controlling the way

changes are made and understanding the changes.

7.1 Change Impact Analysis Techniques

Previous research in change impact analysis has ranged from approaches relying com-

pletely on static information, including the analyses in [5, 36, 33], to approaches that

only utilize dynamic information, such as [35]. There also are some methods [40] that

use a combination of static and dynamic information. The method described in this

paper is a combined approach, in that it uses (i) static analysis for finding the set of

atomic changes comprising a program edit and (ii) dynamic call graphs to find the

affected tests and their affecting changes.

All previous impact analysis focuses on finding constructs of the program potentially

affected by code changes. In contrast, our change impact analysis aims to find a subset

of the changes that impact a test whose behavior has (potentially) changed. First, we

will discuss the previous static techniques, and then address the combined and dynamic

approaches.

An early form of change impact analysis used reachability on a call graph to measure

impact. This technique1 was presented by Bohner and Arnold [5] as “intuitively appeal-

ing” and “a starting point” for implementing change impact analysis tools. However,

1 This is only one of the static change impact analyses discussed.

94

applying the Bohner-Arnold technique is not only imprecise but also unsound, because,

by tracking only methods downstream from a changed method, it disregards callers of

that changed method that can also be affected.

Kung et al. [33] described various sorts of relationships between classes in an object

relation diagram (i.e., ORD), classified types of changes that can occur in an object-

oriented program, and presented a technique for determining change impact using the

transitive closure of these relationships. Some of our atomic change types partially

overlap with their class changes and class library changes.

More recently, Tonella’s impact analysis [59] determines if the computation per-

formed on a variable x affects the computation on another variable y using a number

of straightforward queries on a concept lattice that models the inclusion relationships

between a program’s decomposition (static) slices [25]. Tonella reports some metrics

of the computed lattices, but gives no assessment of the usefulness of his techniques.

A number of tools in the Year 2000 analysis domain [19, 44] use type inference to

determine the impact of a restricted set of changes (e.g., expanding the size of a date

field) and perform them if they can be shown to be semantics-preserving.

Thione et al. [56, 55] wish to find possible semantic interference introduced by

concurrent programmer insertions, deletions or modifications to code maintained with

a version control system. In this work, a semantic interference is characterized as a

change that breaks a def-use relation. Their unit of program change is a delta provided

by the version control system, with no notion of subdividing this delta into smaller units,

such as our atomic changes. Their analysis, which uses program slicing, is performed

at the statement level, not at the method level as in Chianti. No empirical experience

with the algorithm is given.

The CoverageImpact change impact analysis technique by Orso et al. [40] uses a

combined methodology, by correlating a forward static slice [58] with respect to a

changed program entity (i.e., a basic block or method) with execution data obtained

from instrumented applications. Each program entity change is thusly associated with

a set of possibly affected program entities. Finally, these sets are unioned to form the

full change impact set corresponding to the program edit.

95

There are a number of important differences between our work and that by Orso

et al.. First, we differ in the goals of the analysis. The method of Orso et al. [40] is

focused on finding those program entities that are possibly affected by a program edit.

In contrast, our method is focused on finding those changes that caused the behavioral

differences in a test whose behavior has changed. Second, the granularity of change

expressed in their technique is a program entity, which can vary from a basic block

to an entire method. In contrast, we use a richer domain of changes more familiar to

the programmer, by taking a program edit and decomposing it into interdependent,

atomic changes identified with the source code (e.g., add a class, delete a method, add

a field). Third, their technique is aimed at deployed code, in that they are interested in

obtaining user patterns of program execution. In contrast, our techniques are intended

for use during the earlier stages of software development, to give developers immediate

feedback on changes they make.

Law and Rothermel [35] present PathImpact, a dynamic impact analysis that is

based on whole-path profiling [34]. In this approach, if a procedure p is changed, any

procedure that is called after p, as well as any procedure that is on the call stack after

p returns, is included in the set of potentially impacted procedures. This technique

combines the use of a forward static slice [58] with respect to a changed program

entity (i.e., a basic block or method) with execution data obtained from instrumented

applications to find affected program entities. Although our analysis differs from that

of Law and Rothermel in its goals (i.e., finding affected program entities versus finding

changes affecting tests), both analyses use the same method-level granularity to describe

change impact.

A recent empirical comparison [41] of the dynamic impact analysis CoverageImpact

by Orso et al. [40] and PathImpact by Law and Rothermel [35] revealed that the latter

computes more precise impact sets than the former in many cases, but uses considerably

(7 to 30 times) more space to store execution data. Based on the reported performance

results, the practicality of PathImpact on programs that generate large execution traces

seems doubtful, whereas CoverageImpact [41] does appear to be practical, although it

can be significantly less precise. Another outcome of the study is that the relative

96

difference in precision between the two techniques varies considerably across (versions

of) programs, and also depends strongly on the locations of the changes.

Rajlich et al. [43, 29, 6] propose a methodology to handle incremental change in

object-oriented programs. Given a change request, a programmer needs to incorporate

the new concept in the code, which may alter existing class dependences. Intuitively,

incremental change propagation uses reachability on a class dependence graph to cal-

culate possibly affected classes “downstream” from a code change to the current under

edit. In contrast, our change impact analysis aims to find a subset of the changes to a

program that impact a test whose behavior has (potentially) changed.

Runtime software evolution is a way to make changes to a software system while

it is executing. Gustavsson [28] proposed a classification of runtime software changes

to help programmers understand such changes. This work addresses a different change

problem than our research.

7.2 Regression Test Selection

Selective regression testing2 aims at reducing the number of regression tests that must

be executed after a software change [50, 42]. These techniques typically determine the

entities in user code that are covered by a given test, and correlate these against those

that have undergone modification, to determine a minimal set of tests that are affected.

Several notions of coverage have been used. For example, TestTube [10] uses a notion

of module-level coverage, and DejaVu [50] uses a notion of statement-level coverage. The

emphasis in this work is mostly on reducing the cost of running regression tests, whereas

our interest is primarily in assisting programmers with understanding the impact of

program edits.

Bates and Horwitz [2] and Binkley [4] proposed fine-grained notions of program

coverage based on program dependence graphs and program slices, with the goal of

providing assistance with understanding the effects of program changes. In comparison

2 We use the term broadly here to indicate any methodology that tries to reduce the time needed
for regression testing after a program change, without missing any test that may be affected by that
change.

97

to our work, this work uses more costly static analysis based on (interprocedural)

program slicing and considers program changes at a lower-level of granularity, (e.g.,

changes in individual program statements).

Our technique for change impact analysis uses affected tests to indicate to the user

the functionality that has been affected by a program edit. Our analysis determines a

subset of those tests associated with a program which need to be rerun, but it does so in

a very different manner than previous selective regression testing approaches, because

the set of affected tests is determined without needing information about test execution

on both versions of the program.

Rothermel and Harrold [50] present a regression test selection technique that relies

on a simultaneous traversal of two program representations (control flow graphs (CFGs)

in [50]) to identify those program entities (edges in [50]) that represent differences in

program behavior. The technique then selects any modification-traversing test that is

traversing at least one such “dangerous” entity. This regression test selection technique

is safe in the sense that any test that may expose faults is guaranteed to be selected.

Harrold et al. [30] present a safe regression test selection technique for Java that

is an adaptation of the technique of Rothermel and Harrold [50]. In this work, Java

Interclass Graphs (JIGs) are used instead of control-flow graphs. JIGs extend CFGs in

several respects: Type and class hierarchy information is encoded in the names of decla-

ration nodes, a model of external (unanalyzed) code is used for incomplete applications,

calling relationships between methods are modeled using Class Hierarchy Analysis, and

additional nodes and edges are used for the modeling of exception handling constructs.

Unlike regression test selection techniques such as [50, 30], the method presented

in this thesis does not rely on a simultaneous traversal of two representations of the

program to find semantic differences. Instead, we determine affected tests by first

deriving from a source code edit a set of atomic changes, and then correlating those

changes with the nodes and edges in the call graphs for the tests in the original version of

the program. Investigating the cost/precision trade-offs between these two approaches

for finding tests that are affected by a set of changes is a topic for further research.

In the work by Elbaum et al. [20], a large suite of regression tests is assumed to

98

be available, and the objective is to select a subset of tests that meets certain (e.g.,

coverage) criteria, as well as an order in which to run these tests that maximizes the

rate of fault detection. The difference between two versions is used to determine the

selection of tests, but unlike our work, the techniques are to a large extent heuristics-

based, and may result in missing tests that expose faults.

The change impact analysis of [40] can be used to provide a method for selecting

a subset of regression tests to be rerun. First, all the tests that execute the changed

program entities are selected. Then, there is a check if the selected tests are adequate

for those program changes. Intuitively, an adequate test set T implies that every rela-

tionship between a program entity change and a corresponding affected entity is tested

by a test in T . In their approach, they can determine which affected entities are not

tested (if any). According to the authors, this is not a safe selective regression testing

technique, but it can be used by developers, for example, to prioritize test cases and

for test suite augmentation.

7.3 Fault Localization

7.3.1 Delta Debugging

In the work on delta debugging, the reason for a program failure is identified as a

set of differences between versions [65], inputs [67], thread schedules [14], or program

states [66, 15] that distinguish a successful program execution from a failing one. A set

of failure-inducing differences is determined by repeatedly applying different subsets

of the changes to the original program, and observing the outcome of executing the

resulting intermediate programs. By correlating the outcome of each execution (pass,

fail, or inconsistent), with the set of changes applied, one can narrow down the set of

changes responsible for the failure using efficient binary-search techniques.

In the examination of differences between program versions, both delta debugging

and our work aim at identifying failure-inducing changes; however, there are several

important differences between the two approaches. First, delta debugging searches the

entire set of changes to find the failure-inducing changes. In our approach, we first

99

obtain the set of affecting changes for a failed test with Chianti, and then generate the

intermediate versions of programs just from this small set of changes. By associating

each test with its corresponding affecting changes, a large set of uncorrelated changes

can be ignored, so that a programmer can focus on only those changes related to the

given test. This is extremely useful when the re-execution of the regression test suites

is costly. Second, delta debugging builds the intermediate versions by only using the

structural differences between successful and failing program executions (e.g., chang-

ing one line or one character to generate an intermediate program version) and it is

language-independent. Our model of dependences between atomic changes ensures that

Crisp only builds meaningful intermediate versions of Java programs, which reduces the

number of intermediate programs that need to be constructed. When a programmer

selects a set of interesting changes, Crisp automatically augments these changes with

all the prerequisites necessary to build a syntactically valid program version. Unlike

delta debugging which creates versions automatically, our approach is semi-automatic,

requiring programmer selection of the changes to be added. The two approaches may

complement each other. In principle, the use of a rich model of changes with interde-

pendences could improve the efficiency of delta debugging by reducing the number of

intermediate programs that are constructed/executed.

7.3.2 Program Slicing

Program slicing [58] has been suggested as a technique for localizing faults: Computing

a slice with respect to an incorrect value determines all statements that may have

contributed to that value, and will generally include the statement(s) that contain the

error. Since slices may become very large, techniques such as program dicing [37] have

been developed, where a slice with respect to an erroneous value is intersected with a

slice with respect to a correct value.

DeMillo et al. [16] suggest critical slicing as a technique to localize faults in a pro-

gram. A statement is critical if, without it program execution reaches the same failure

statement sF , but with different values for referenced variables. They report that their

100

technique is able to reduce relevant program size by around 64% and retain the failure-

inducing statement in 80% of the cases.

Bunus and Fritzson [7] suggest a semi-automatic debugging framework for equation-

based languages used to model physical systems. Their approach uses program slicing

and dicing on a combination of execution traces, dependence graphs and assertions to

help programmers find and correct bugs in an interactive debugging session.

Gupta et al. [27] uses delta debugging to simplify or isolate inputs that are failure-

inducing, and then uses forward and backward dynamic slices to suggest a set of state-

ments that could potentially contain the fault.

There are two major differences between our approach and slicing’s approach to

finding faults. Program slicing is a fine-grained analysis at the statement level that can

be used to inspect a failing program to help locate the cause of the failure. Our work

focuses on failures that occur due to a specific edit between program versions, and our

analysis is at the method level.

7.3.3 Other Techniques for Fault Localization

Stoerzer et al. [54] presented an approach for change classification that helps program-

mers identify the changes responsible for test failures. It proposed several change clas-

sifiers that associate the colors Red, Yellow, or Green with changes, according to the

likelihood that they were responsible for test failures. The major difference between

our heuristic and the change classification approach is that the change classifiers re-

quire obtaining all the affecting changes for all the affected tests in a test suite, while

our heuristic only requires affecting changes for the failed test. For the project in our

case study, there are thousands of tests in the test suite; thus, the heuristic approach

represents a time saving over change classification.

7.4 Techniques for Avoiding Recompilation

Existing techniques to avoid unnecessary recompilation use dependences between com-

pilation units of a program to calculate which other units (i.e., clients) might require

101

recompilation. This may be necessary, for example, if a specific compilation unit that

defines functions or types is changed. This calculation uses inter-unit dependences that

can be supplied by the programmer (i.e., as in the UNIX make [23]) or based on derived

syntactic or semantic relationships. These dependences, describing clients of changed

program constructs, are incomparable to the dependences used in Crisp, which capture

necessary additions to user-selected fine-grained changes required to form a minimal

syntactically valid edit, because each captures different information.

Here, we summarize briefly several approaches to avoiding recompilation as repre-

sentative of this research area. These techniques differ in their definitions of dependence

and the granularity of the compilation units used, (i.e., files, classes or modules [9, 39]).

The earliest work was smart recompilation by Tichy [57, 1] which defined depen-

dences between compilation units, induced by Pascal include files that contained global

constants and type definitions. Syntactic dependences were constructed between in-

clude files and those Pascal code files (i.e., ∗.p files) which contained references to the

include-defined constructs (e.g., types, constants). Tichy et al. [1] later compared sev-

eral smart recompilation approaches empirically to quantify their benefits on several

Ada programs, finding a savings of approximately 50% of the recompilation effort.

Burke and Torczon [8] described semantic dependences between procedures derived

from interprocedural dataflow information for Fortran programs. Their dependences

were calculated using the alias, side-effect, reference and constant-value information as-

sociated with each subroutine, assuming that this information might have been used to

enable optimizations during compilation. Their technique was capable of fine-grained

recompilation decisions on a procedure level. More recently, Dmitriev [17] used infor-

mation provided in Java class files to calculate syntactic dependences between program

constructs (e.g., fields, methods). His approach, called smart dependency checking, was

to aggregate these dependences in order to ascertain the clients of a class (i.e., classes

referencing members of another class). Thus, when the code for a class changes, its

client classes are marked for recompilation. This automates the creation of depen-

dences which can be used with make for Java programs.

102

7.5 Techniques for Controlling and Understanding the Changes

Palantir [52] is a tool that informs users of a configuration management system when

other users access the same modules and potentially create direct conflicts.

Lucas et al. [53] describes reuse contracts, a formalism to encapsulate design de-

cisions made when constructing an extensible class hierarchy. Problems in reuse are

avoided by checking proposed changes for consistency with a specified set of possible

operations on reuse contracts.

Xing et al. [61] presents UMLDiff, an algorithm for automatically detecting struc-

tural changes between the subsequent versions Java programs. The structural changes

are reported in terms of additions, removals, moves, renamings of packages, classes, in-

terfaces, fields and methods, as well as changes to their attributes. Then in their recent

work [60, 63, 62, 64], they present some applications of UMLDiff. For example, they

defined some queries in [62] to recognize the refactorings that occurred in the evolution

history of a software system; all the refactorings and change patterns are detected as

combinations of the basic change facts extracted by UMLDiff. Reference [60] shows

how they use the results of UMLDiff to perform three analyses (phasic, gamma and

optimal sequence matching analysis) to recognize a high-level abstraction of distinct

evolutionary phases and to identify class clusters with similar evolution trajectories.

They also propose a data-mining method for recovering hidden co-evolutions of system

classes based on their UMLDiff algorithm.

The main difference between our change impact analysis and their UMLDiff algo-

rithm is how the edit between subsequent versions is measured. UMLDiff measures the

differences between two subsequent versions by structural changes and ignores any pos-

sible syntactic dependences between these changes. In our framework, change impact

is measured by the affected tests and affecting changes for a given affected test. And

furthermore, we recognize the dependences between changes for automatic construc-

tion of the intermediate programs to help programmers pinpoint the failure-inducing

changes easily. Since UMLDiff algorithm ignores the dependences between changes, it

can’t be used for debugging purpose; instead, the application of their algorithm is for

103

understanding the evolution histories of a program. Part of our future works is to ana-

lyze our dependence graph of the atomic changes to recognize high-level design changes

and help understand the evolution of a program.

104

Chapter 8

Summary and Future Work

Change impact analysis consists of a collection of techniques for determining the effects

of source code modifications to improve programmer productivity. Previous approaches

to dynamic change impact analysis [35, 40, 41] are primarily concerned with the prob-

lem of determining a subset of the methods in a program that were affected by a given

set of changes. That is, they first do a pairwise comparison of high-level program rep-

resentations, identifying the changes between two program versions, then find all or

part of the constructs of the program that are potentially affected by the code changes.

Our technique is concerned with the problem of isolating a subset of the changes that

affect a given test. We developed a series of tools and algorithms to help programmers

reduce the amount of time and effort spent in debugging, by determining a safe ap-

proximation of the changes responsible for a given test’s failure, ranking the changes to

indicate the likelihood they may contribute the test’s failure, and allowing programmers

to experiment with different edits to locate the exact failure causes.

8.1 Chianti–the Prototype of Change Impact Analysis

We implemented a prototype – Chianti, to perform change impact analysis for Java pro-

grams (J2SE 1.4), extending the model of atomic changes and their inter-dependences

originally specified in [51].

We presented the experimental validation of the utility of change impact analysis

by determining the percentages of affected tests and affecting changes for 40 versions of

Daikon in 2002. Our empirical results show that after a program edit, on average the

set of affected tests is a bit more than half of all the possible tests (52%) and for each

affected test, the number of affecting changes is very small (3.95% of all atomic changes

105

in that edit). These findings suggest that our change impact analysis is a promising

technique for both program understanding and debugging.

The results of our change impact analysis can also indicate the quality of a given

test suite. A good test suite, when working together with software engineering tools

like Chianti, should help locate potential program problems as much as possible with

reasonable resources usage. In our case, it means more program coverage, less overlap

between tests and also smaller tests. These properties will be reflected in the result of

our change impact analysis. They will also directly affect the ability or efforts spent on

locating problems introduced in the program edit.

First, the test suite should cover the source code as much as possible, such that

changes made in the program always affect some tests. Otherwise the edited part of

the source code may not covered by any of the test in the given test suite, which limits

the ability to discover problems in this part of the program. For example, in the Daikon

case study, there were some intervals with atomic changes but none of the existing tests

was affected, which is a sign that more tests should be added to cover the edited part

of the code.

Second, we expect the overlap between tests in a test suite to be small. That is,

each test in the suite should cover a different part of the code. For example, the changes

within one component in a multi-component system, should only affect a subset of the

whole suite, instead of all the tests in the suite, which often takes long time to rerun.

Last but not least, each test in the test suite should only cover a small part of the

code, that is, the size of individual test should be small. This is related to human

efforts spent on fault localization. Once a test is affected by some changes and it

fails, our system will give the set of affecting changes as the candidates for future

investigation. For a specified affected test, we expect a small subset of all the atomic

changes are affecting changes, which means less effort will be spent on identifying

problematic changes.

106

8.2 Dependences between Atomic Changes

We defined and implemented (in Chianti) finding the dependences between atomic

changes. Atomic changes have syntactic inter-dependences which induce a partial or-

dering ≺ on a set of them, with transitive closure �∗. C1 � C2 denotes that C1 is a pre-

requisite for C2. Crisp [12, 45] relies on the automated computation of underlying inter-

dependences between atomic changes by Chianti to generate the intermediate program

from user-specified atomic changes. Three kinds of dependences are defined between

atomic changes to ensure the compilability of the intermediate programs. Structural

dependences capture the necessary sequences that occur when new Java elements are

added or deleted in a program. Declaration dependences capture all the necessary Java

element declarations that are required to create a valid intermediate version. Mapping

dependences are used to correlate all other kinds of changes to method-level changes

so that Chianti can calculate the affected tests and affecting changes correctly. To our

knowledge, this is the first such classification of edits of elements of an object-oriented

program.

We present initial experiences using Crisp in case studies on nine version pairs of

two moderate-sized Java programs, Daikon and the Eclipse jdt compiler. In these stud-

ies, although we were unfamiliar with these programs, we succeeded in automatically

building compilable intermediate programs given the user-selected atomic changes, and

in finding the failure-inducing changes for failing tests.

8.3 Heuristic Ranking of Edits

We also proposed a heuristic to rank the method changes for a failed test, indicating

the likelihood that they have contributed to a test failure. Our heuristic is based on the

number of ancestors and descendants of a method in the test call graph of the edited

program, as well as the calling relationships between changed methods. We evaluated

the effectiveness of the heuristic in 14 version pairs from Eclipse jdt compiler project.

In the case study, we successfully ranked the failure-inducing changes in top 2 in 67%

of the failed delegate tests whose failures are caused by a single method change. When

107

several method changes combined together cause a test to fail, the study shows that in

half of the cases, the rankings our heuristic obtains are only one off the ideal rankings.

Potentially, this ranking saves programmer from trying all possible combination of the

affecting changes. In addition, we also presented other alternative heuristics, discussed

why a machine learning technique doesn’t work in our case study, and reported the

possible ways to use our heuristic to help debugging in a more generalized setting.

8.4 Future Work

One direction for future work is to do an in-depth evaluation of the cost/precision

trade-offs involved in using smaller units of change, to better describe change impact to

a user, especially since we currently consider all changes to code within a method (i.e.,

CM) as one monolithic change. For example, we may distinguish between the changes

to the method declaration and the changes to the method body. This would give users

a better understanding about the interface changes and the implementation changes.

Further more, we may develop finer-grained changes inside a method body change,

allowing more sophisticated dataflow and control analysis inside the changed method,

thus providing users a clearer view of the change impact of the edit they made. With

the finer-grained changes model, we may be able to perform change impact analysis

for security checking analysis. For example, when a programmer changes a method, we

should determine the effect of this change on security-sensitive data.

Another possible direction of the future work is to investigate the completeness of the

inter-dependences between atomic changes. Currently, we are integrating Chianti, Crisp

and JUnit test framework to automate the entire process of finding failure-inducing

changes sets without the need for programmer intervention. Chianti is first run to

obtain the atomic changes and dependences, as well as the affecting changes for each

affected test. Then for each failed test, Crisp automatically applies some subset of the

affecting changes of the test to build intermediate programs on which the failed test

was rerun. The process is repeated until we locate a minimal set of the atomic changes

that cause the test to fail. The automation of the process requires the completeness

of the inter-dependences between atomic changes. Currently, because of the limitation

108

of our framework, users need to manually edit part of the Java source code in some

special cases.

We also plan to perform experimental comparison of different heuristics for rank-

ing the affecting changes. We have proposed change classifications to categorize the

atomic changes with respect to the tests they affect to indicate the likelihood that each

change may contribute to a test failure. We also tried heuristics based on the structure

of dependence graphs between changes to rank the affecting changes of a failed test.

The heuristic we proposed in chapter 6 is based on the calling context of the changed

methods. We plan to develop other change classifiers that, for example, take into ac-

count the frequency that a change affects a worsening test. We will do a comprehensive

comparison of different approaches for locating the failure-inducing changes, including

all the heuristics we have already used and random selection.

We are also interested in the application of change impact analysis for helping

program understanding by raising the abstraction level. We plan to work on the depen-

dence graph to find some patterns that combine several atomic changes to do certain

refactoring changes. We would like to present such information to users giving them a

higher level and clearer view about the edit.

109

References

[1] Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selective recompi-
lation and environment processing. ACM Transactions on Software Engineering
Methodology, 3(1):3–28, 1994.

[2] Samuel Bates and Susan Horwitz. Incremental program testing using program de-
pendence graphs. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 384–396, Charleston,
South Carolina, United States, 1993.

[3] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving test suites for
efficient fault localization. In ICSE ’06: Proceeding of the 28th international con-
ference on Software engineering, pages 82–91, Shanghai, China, May 2006.

[4] David Binkley. Semantics guided regression test cost reduction. IEEE Transaction
on Software Engineering, 23(8):498–516, August 1997.

[5] Shawn A. Bohner and Robert S. Arnold. An introduction to software change
impact analysis. In Shawn A. Bohner and Robert S. Arnold, editors, Software
Change Impact Analysis, pages 1–26. IEEE Computer Society Press, 1996.

[6] Jonathan Buckner, Joseph Buchta, Petrenko Maksym, and Vaclav Rajlich. Jrip-
ples: A tool for program comprehension during incremental change. In IWPC ’05:
Proceedings of the 13th International Workshop on Program Comprehension, pages
149–152, St. Louis, MO, May 2005.

[7] Peter Bunus and Peter Fritzson. Semi-automatic fault localization and behavior
verification for physical system simulation models. In ASE ’03: Proceedings of the
18th IEEE International Conference on Automated Software Engineering, pages
253–258, Montreal, Quebec, Canada, October 2003.

[8] Michael Burke and Linda Torczon. Interprocedural optimization: eliminating un-
necessary recompilation. ACM Transactions on Programming Languages and Sys-
tems, 15(3):367–399, 1993.

[9] Craig Chambers, Jeffrey Dean, and David Grove. A framework for selective re-
compilation in the presence of complex intermodule dependencies. In ICSE ’95:
Proceedings of the 17th international conference on Software engineering, pages
221–230, Seattle, Washington, United States, 1995.

[10] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. Testtube: a system
for selective regression testing. In ICSE ’94: Proceedings of the 16th international
conference on Software engineering, pages 211–220, Sorrento, Italy, 1994.

[11] Ophalia C. Chesley. Crisp - a fault localization tool for java programs. Master’s
thesis, Rutgers University, October 2007.

110

[12] Ophelia Chesley, Xiaoxia Ren, and Barbara G. Ryder. Crisp: A debugging tool
for Java programs. In ICSM ’05: Proceedings of the 21st IEEE International Con-
ference on Software Maintenance, pages 401–410, Budapest, Hungary, September
2005.

[13] Ophelia Chesley, Xiaoxia Ren, Barbara G. Ryder, and Frank Tip. Crisp - a fault
localization tool for java programs. In ICSE ’07: Proceeding of the 29th interna-
tional conference on Software engineering (demo session), Minneapolis, MN, USA,
May 2007.

[14] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread schedules.
In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis, pages 210–220, Roma, Italy, 2002.

[15] Holger Cleve and Andreas Zeller. Locating causes of program failures. In ICSE
’05: Proceeding of the 27th international conference on Software engineering, pages
342–351, St. Louis, Missouri, USA, May 2005.

[16] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Critical slicing for software
fault localization. In ISSTA ’96: Proceedings of the 1996 ACM SIGSOFT inter-
national symposium on Software testing and analysis, pages 121–134, San Diego,
California, United States, 1996.

[17] Mikhail Dmitriev. Language-specific make technology for the java programming
language. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 373–385,
Seattle, Washington, USA, 2002.

[18] The Eclipse IDE. http://www.eclipse.org/.

[19] Peter Harry Eidorff, Fritz Henglein, Christian Mossin, Henning Niss, Morten Heine
Sorensen, and Mads Tofte. Annodomini: from type theory to year 2000 conversion
tool. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 1–14, San Antonio, Texas, United
States, January 1999.

[20] Sebastian Elbaum, Praveen Kallakuri, Alexey G. Malishevsky, Gregg Rothermel,
and Satya Kanduri. Understanding the effects of changes on the cost-effectiveness
of regression testing techniques. Journal of Software Testing, Verification, and
Reliability, 12(2), 2003.

[21] Michael D. Ernst. Dynamically discovering likely program invariants. PhD thesis,
University of Washington, 2000.

[22] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynam-
ically discovering likely program invariants to support program evolution. IEEE
Transaction on Software Engineering, 27(2):1–25, February 2001.

[23] Stuart I. Feldman. Make-a program for maintaining computer programs. Software
- Practice and Experience, 9(4):255–65, 1979.

[24] John R. Foster. Cost Factors in Software Maintenance. PhD thesis, University of
Durham, Durham, UK., 1993.

111

[25] Keith Gallagher and James R. Lyle. Using program slicing in software mainte-
nance. IEEE Transaction on Software Engineering, 17, 1991.

[26] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification (Second Edition). Addison-Wesley, 2000.

[27] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty
code using failure-inducing chops. In ASE ’05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, pages 263–272, Long
Beach, CA, USA, 2005.

[28] Jens Gustavsson. A classification of unanticipated runtime software changes in
java. In ICSM ’03: Proceedings of the International Conference on Software Main-
tenance, pages 4–12, Amsterdam, The Netherlands, 2003.

[29] Steve Gwizdala, Yong Jiang, and Vaclav Rajlich. Jtracker - a tool for change prop-
agation in java. In CSMR ’03: Proceedings of the Seventh European Conference
on Software Maintenance and Reengineering, pages 223 – 229, Benevento, Italy,
2003.

[30] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. Re-
gression test selection for java software. In OOPSLA ’01: Proceedings of the 16th
ACM SIGPLAN conference on Object oriented programming, systems, languages,
and applications, pages 312–326, October 2001.

[31] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test infor-
mation to assist fault localization. In ICSE ’02: Proceedings of the 24th Interna-
tional Conference on Software Engineering, pages 467–477, 2002.

[32] Junit, testing resources for extreme programming. http://www.junit.org/.

[33] David Chenho Kung, Jerry Gao, Pei Hsia, F. Wen, Yasufumi Toyoshima, and Cris
Chen. Change impact identification in object oriented software maintenance. In
ICSM ’94: Proceedings of the International Conference on Software Maintenance,
pages 202–211, 1994.

[34] James R. Larus. Whole program paths. In PLDI ’99: Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design and implementation,
pages 259–269, Atlanta, Georgia, United States, May 1999.

[35] James Law and Gregg Rothermel. Whole program path-based dynamic impact
analysis. In ICSE ’03: Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 308–318, Portland, Oregon, May 2003.

[36] Michelle Lee, A. Jefferson Offutt, and Roger T. Alexander. Algorithmic analysis of
the impacts of changes to object-oriented software. In TOOLS ’00: Proceedings of
the Technology of Object-Oriented Languages and Systems (TOOLS 34’00), pages
61–70, Santa Barbara, CA, 2000.

[37] James R. Lyle and Mark Weiser. Automatic bug location by program slicing. In
Proceedings of the Second International Conference on Computers and Applica-
tions, pages 877–883, Beijing (Peking), China, 1987.

112

[38] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise call graphs for c
programs with function pointers. Automated Software Engg., 11(1):7–26, 2004.

[39] Hausi A Muller, Robert Hood, and Ken Kennedy. Efficient recompilation of module
interfaces in a software development environment. In SDE 2: Proceedings of the
second ACM SIGSOFT/SIGPLAN software engineering symposium on Practical
software development environments, pages 180–189, 1987.

[40] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold. Leveraging
field data for impact analysis and regression testing. In ESEC/FSE-11: Proceed-
ings of the 9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software engineering,
pages 128–137, Helsinki, Finland, September 2003.

[41] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and
Mary Jean Harrold. An empirical comparison of dynamic impact analysis algo-
rithms. In ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering, pages 491–500, Edinburgh, Scotland, 2004.

[42] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression testing
to large software systems. In Proceedings of the ACM SIGSOFT 12th Symposium
on the Foundations of Software Engineering (FSE 2004), pages 241–251, Newport
Beach, CA, USA, November 2004.

[43] Vaclav Rajlich and Prashant Gosavi. Incremental change in object-oriented pro-
gramming. IEEE Software, 21(4):62–69, 2004.

[44] G. Ramalingam, John Field, and Frank Tip. Aggregate structure identification
and its application to program analysis. In POPL ’99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 119–132, San Antonio, Texas, United States, January 1999.

[45] Xiaoxia Ren, Ophelia C. Chesley, and Barbara G. Ryder. Identifying failure causes
in java programs: An application of change impact analysis. IEEE Transaction on
Software Engineering, 32(9):718–732, September 2006.

[46] Xiaoxia Ren and Barbara G. Ryder. Heuristic ranking of java program edits for
fault localization. In ISSTA ’07: Proceedings of the 2007 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, London, United Kingdom,
July 2007.

[47] Xiaoxia Ren, Barbara G. Ryder, Maximilian Stoerzer, and Frank Tip. Chianti: a
change impact analysis tool for java programs. In ICSE ’05: Proceedings of the
27th international conference on Software engineering, pages 664–665, St. Louis,
MO, USA, May 2005.

[48] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.
Chianti: a tool for change impact analysis of java programs. In OOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 432–448, Vancouver, BC,
Canada, October 2004.

113

[49] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, Ophelia Chesley, and
Julian Dolby. Chianti: A prototype change impact analysis tool for Java. Tech-
nical Report DCS-TR-533, Rutgers University Department of Computer Science,
September 2003.

[50] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection
technique. ACM Transaction on Software Engineering and Methodology, 6(2):173–
210, April 1997.

[51] Barbara G. Ryder and Frank Tip. Change impact analysis for object-oriented
programs. In PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 46–53,
June 2001.

[52] Anita Sarma, Zahra Noroozi, and Andre van der Hoek. Palantir: Raising awareness
among configuration management workspaces. In ICSE ’03: Proceedings of the
25th International Conference on Software Engineering, pages 444–454, Portland,
Oregon, May 2003.

[53] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Reuse contracts:
managing the evolution of reusable assets. In OOPSLA ’96: Proceedings of the 11th
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 268–285, San Jose, California, United States, 1996.

[54] Maximilian Stoerzer, Barbara G. Ryder, Xiaoxia Ren, and Frank Tip. Finding
failure-inducing changes in java programs using change classification. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 57–68, Portland, Oregon, USA,
November 2006.

[55] G. Lorenzo Thione. Detecting semantic conflicts in parallel changes, December
2002. Masters Thesis, Department of Electrical and Computer Engineering, Uni-
versity of Texas, Austin.

[56] G. Lorenzo Thione and Dewayne E. Perry. Parallel changes: Detecting semantic
interference. Technical report, COMPSAC ’05. the 29th Annual International
Computer Software and Applications Conference, July 2005.

[57] Walter F. Tichy. Smart recompilation. ACM Transactions on Programming Lan-
guages and Systems, 8(3):273–291, 1986.

[58] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995.

[59] Paolo Tonella. Using a concept lattice of decomposition slices for program un-
derstanding and impact analysis. IEEE Transaction on Software Engineering,
29(6):495–509, 2003.

[60] Zhenchang Xing and Eleni Stroulia. Analyzing the evolutionary history of the logi-
cal design of object-oriented software. IEEE Transaction on Software Engineering,
31(10):850–868, 2005.

114

[61] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented
design differencing. In ASE ’05: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages 54–65, Long Beach, CA,
USA, November 2005.

[62] Zhenchang Xing and Eleni Stroulia. Refactoring detection based on umldiff change-
facts queries. In WCRE ’06: Proceedings of the 13th Working Conference on
Reverse Engineering (WCRE 2006), pages 263–274, Benevento, Italy, October
2006.

[63] Zhenchang Xing and Eleni Stroulia. Refactoring practice: How it is and how it
should be supported - an eclipse case study. In ICSM ’06: Proceedings of the
22nd IEEE International Conference on Software Maintenance, pages 458–468,
Philadelphia, Pennsylvania, USA, September 2006.

[64] Zhenchang Xing and Eleni Stroulia. Understanding the evolution and co-evolution
of classes in object-oriented systems. International Journal of Software Engineer-
ing and Knowledge Engineering, 16(1):23–52, 2006.

[65] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In
ESEC/FSE-7: Proceedings of the 7th European software engineering conference
held jointly with the 7th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 253–267, 1999.

[66] Andreas Zeller. Isolating cause-effect chains from computer programs. In SIG-
SOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium on Foun-
dations of software engineering, pages 1–10, Charleston, South Carolina, USA,
2002.

[67] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transaction on Software Engineering, 28(2):183–200, 2002.

115

Vita

Xiaoxia Ren

2007 Ph. D. in Computer Science, Rutgers University

2000 M.S. in Computer Science, Beijing University, China

1997 B.S. in Computer Science, Beijing University, China

2002-2007 Research assistant, Department of Computer Science, Rutgers University

2001-2002 Teaching assistant, Department of Computer Science, Rutgers University

2000-2001 IT specialist, IBM Global Service, IBM (China) Company Limited.

1997-2000 Research assistant, Department of Computer Science, Beijing University,
China

1998-1999 Teaching Assistant, Department of Computer Science, Beijing Univeristy,
China

2007 Xiaoxia Ren and Barbara G. Ryder. Heuristic Ranking of Java Program
Edits for Fault Localization. In Proceeding of the International Symposium
on Software Testing and Analysis, July 2007

2007 Ophelia C. Chesley, Xiaoxia Ren, Barbara G. Ryder, Frank Tip. Crisp
- A Fault Localization Tool for Java Programs. In Proceedings of the
29th International Conference on Software Engineering (Formal research
demonstrations session), MN, May 2007.

2006 Xiaoxia Ren, Ophelia C. Chesley, Barbara G. Ryder. Identifying Failure
Causes in Java Programs: an Application of Change Impact Analysis, In
IEEE Transactions on Software Engineering, 32(9), 2006.

2006 Maximilian Stoerzer, Barbara G. Ryder, Xiaoxia Ren, Frank Tip. Finding
Failure- Inducing Changes in Java Programs using Change Classification.
In Proceedings of the 14th SIGSOFT Conference on the Foundations of
Software Engineering, November 2006. (Nominated for best paper award)

2005 Ophelia Chesley, Xiaoxia Ren, Barbara Ryder. Crisp: A Debugging Tool
for Java Programs. In Proceedings of the 21st International Conference on
Software Maintenance, September 2005.

116

2005 Xiaoxia Ren, Barbara Ryder, Maximilian Stoerzer, Frank Tip. Chianti:
A Change Impact Analysis Tool for Java Programs. In Proceedings of the
27th International Conference on Software Engineering (Formal research
demonstrations session), May 2005.

2004 Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara Ryder, Ophelia Chesley. Chi-
anti: A Tool for Change Impact Analysis of Java Programs. In Proceedings
of the 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications October 2004.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Software Maintenance
	Change Impact Analysis Overview
	Our Change Impact Analysis
	Contributions
	Chianti, the Prototype of Change Impact Analysis
	Dependences between Atomic Changes
	Heuristic Ranking of Edits

	Thesis Outline

	The Model of Change Impact Analysis for Java Programs
	Overview of Approach
	Atomic Changes and Inter-dependences
	Affected Tests
	Affecting Changes

	Formal Definitions of Affected Test and Affecting Changes
	Atomic Changes
	Field and Initializer Changes
	Method Changes
	Dynamic Dispatch Changes
	Class Changes
	Dependences

	Special Issues
	Overloading Methods
	Threads and Concurrency
	Exception Handling
	Anonymous Classes and Local Inner Classes

	Limitations of the Model
	Changes to Compile-time Constants
	Changes to Import Statements

	Chianti -- A Tool for Change Impact Analysis of Java Programs
	Prototype
	Evaluation
	Atomic Changes
	Affected Tests and Affecting Changes
	Case Studies
	Chianti Performance

	Dependences between Atomic Changes
	Overview of Approach for Locating Failure-Inducing Changes
	The Example Program
	Locating Failure-Inducing Changes by Constructing Intermediate Programs

	Structural Dependence
	Addition and deletion of Java elements
	Changing a field type or method return type.

	Declaration Dependence
	Declaration-Usage of Java elements
	Abstract method declarations and implementations
	Necessary method declarations for a class
	Overriding methods
	Necessary constructors

	Mapping Dependence
	Field/Initializer changes
	Field type or method return type changes
	LC changes.

	CTD Related Dependences
	Declaration Dependences
	Overriding Methods
	Constructors
	Necessary method changes

	Mapping Dependences
	Virtual Method Changes
	LC changes

	Limitations of Dependences
	Field Positions.
	Value Changes.

	An Application of the Change Dependence Graph
	Constructing Intermediate Program Versions
	Case Studies
	Daikon unit tests
	Eclipse jdt compiler unit tests
	Defining a Failure-inducing Change

	Heuristics for Locating Test Failure Causes
	Heuristics to Look for Failure Causes
	An Informal Overview of the Approach
	Heuristic
	Explore the changes

	Eclipse jdt Case Study
	Data Analysis
	Single failure-inducing change
	Multiple failure-inducing changes
	Combination of failure-inducing changes

	Comparison to Other Heuristics
	Assessment
	Limitations
	Machine Learning Algorithms

	Related Work
	Change Impact Analysis Techniques
	Regression Test Selection
	Fault Localization
	Delta Debugging
	Program Slicing
	Other Techniques for Fault Localization

	Techniques for Avoiding Recompilation
	Techniques for Controlling and Understanding the Changes

	Summary and Future Work
	Chianti, the Prototype of Change Impact Analysis
	Dependences between Atomic Changes
	Heuristic Ranking of Edits
	Future Work

	References
	Vita

