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ABSTRACT OF THE DISSERTATION

Resource Allocation in

Coordinated and Un-coordinated Wireless Systems with Greedy or

Non-greedy Users

by Jasvinder Singh

Dissertation Director: Prof. Christopher Rose

In this thesis, we investigate wireless resource optimization problems arising in the context of

unlicensed bands. The first half of this thesis assumes a multiple access channel communica-

tion model (many transmitters talking to a single receiver), while the second halfassumes an

interference channel (a collection of multiple interfering transmitter-receiver pairs). The prob-

lems considered can further be classified based on the level of coordination available among

the devices, and based on the optimization objectives of the devices. The devices are either

greedy (they choose their actions to maximize their own utility), or are non-greedy (they choose

their actions to maximize/satisfy a common social objective). We investigate four resource op-

timization scenarios that encompass the possibilities of presence or absenceof coordination

infrastructure as well as the cases of greedy and non-greedy devices.

As an example of the greedy uncoordinated scenario, we consider application of interfer-

ence avoidance algorithms in generalized CDMA systems. We introduce variants of standard

interference avoidance procedures which produce more easily tracked incremental codewords,

and study the response of the system to abrupt changes in the background interference as might

be encountered in a practical system.

Next we consider a sensor network scenario where multiple sensors aretransmitting corre-

lated symbols to a common receiver, with an objective of minimizing the total mean square error

(TMSE) in the symbol estimates at the receiver. The source-channel separation theorem for the
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point to point case does not hold for this problem and the optimal communicationscheme is un-

known. We propose a CDMA based transmission scheme that exploits the correlation between

the sensors’ symbols and facilitates statistical cooperation among the sensors through the choice

of their codewords. We give an analytical characterization of the TMSE-minimizing codeword

set for this scheme, and compare its performance both with a separation-based scheme, and an

information-theoretic upper bound.

The second half of this thesis considers scheduling problems for interfering links where

each link employs an ON-OFF modulation scheme in each time slot. First we consider the case

of non-greedy interfering links and come up with a distributed scheduling solution that requires

no coordination among the links. We prove the convergence of our distributed scheduling al-

gorithm and compare its performance with centralized scheduling. After this,we consider the

case of greedy interfering links that coordinate with each other through amediating authority

called the “spectrum server”. Each link reports the set of links that interfere with it, based on

which the spectrum server constructs the interference graph and findsan optimal schedule for

the links (maximizing a certain global objective). Since the links are greedy, they will choose

their reports to maximize their individual utilities. We therefore investigate the following natu-

ral question: - ”Under what conditions is it realistic to assume that the links willsend truthful

reports?” and present some preliminary results.
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Chapter 1

Introduction

With the ever increasing diversity of scenarios and applications for whichwireless communi-

cation systems are being deployed, the problem of optimizing radio resources comes in various

forms. At one extreme, we might have very low power, low data rate sensordevices operating

in a wide-band regime [1]. In this scenario, a trivial solution to the problem of radio inter-

ference between devices could be to allocate orthogonal frequency bands to each device1 and

reduce the problem to the well studied point to point communication channel [2]. In that case,

a more important problem would be to use the battery power as efficiently as possible for prob-

ing and communicating over the uncertain channel [3]. On the other extreme,we might have a

high density of independent, but mutually interfering, high data rate links, for example, in the

unlicensed bands [4]. This scenario can be modeled as an interferencechannel. In this second

scenario, scalability of the spectrum coordination algorithm with device density is of utmost

importance and therefore we need solutions that are distributed and have very low protocol

overhead while having as high spectrum efficiency as possible. Another space of solution pos-

sibilities emerges for this scenario if we assume the presence of aSpectrum Server[5, 6] that

gathers locally observable information from devices in a region, processes it to form a global

view of the interference in the spectrum space, and dispatches advice to devices for reducing

interference. A third scenario might be an isolated network where multiple devices commu-

nicate with a common receiver (and potentially interfere with each other’s datastreams at the

receiver) but any external interference can be ignored. For example, uplink of a cellular system

after ignoring the out of the cell interference, or laptops equipped with wireless cards commu-

nicating with a single AP, or even sensors reporting their observations to a central authority.

Scenarios of this type are usually modeled as a multiple access channel.

In this thesis, we investigate wireless resource optimization problems arising in the context

1Though this might not be the optimal solution for some objective functions as will be seen in chapter 3.
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of unlicensed bands. The first half of this thesis assumes a multiple access channel communi-

cation model (many transmitters talking to a single receiver), while the second half assumes an

interference channel (a collection of multiple interfering transmitter-receiver pairs). The prob-

lems considered can further be classified based on the level of coordination available among

the links, and based on the optimization objectives of the links. The devices are either greedy

(they choose their actions to maximize their own utility), or are non-greedy (they choose their

actions to maximize/satisfy a common social objective). We investigate four resource optimiza-

tion scenarios that are given below along with examples of previous work for each scenario (see

also Figure 1.1).

1. Uncoordinated greedy (strategic) links, trying to maximize their individualutilities –

water-filling in Gaussian multiaccess or interference channel [7–9].

2. Uncoordinated non-greedy (truthful) links that honestly follow a set of spectrum eti-

quettes to enable coexistence – the 802.11 standard, spectrum etiquette protocols [10].

3. Coordinated non-greedy users who act under a centralized control. The centralized con-

troller dictates the spectrum usage of each user, either based on some global objective –

the Network Utility Maximization (NUM) framework [11].

4. Greedy users who find it mutually beneficial to coordinate, maybe directlyamong them-

selves, or through a mediator – users bid for spectrum by announcing their valuation of

spectrum to a centralizedspectrum server[12] and the spectrum server designs appro-

priate pricing mechanisms to ensure that each user bids truthfully [13,14].

In general, greedy and uncoordinated action by each device might lead to socially inef-

ficient resource allocation. However, Interference Avoidance (IA)algorithms present an ex-

ception in that, the greedy objective of maximizing SINR by each user matches the global

objective of system capacity maximization for generalized CDMA systems. Each user greedily

adapts his codeword in response to feedback from the receiver and can achieve the globally

optimal solution in a distributed way. In chapter 2 of this thesis, we investigate practical on-

line implementation of interference avoidance algorithms. We introduce variantsof standard

interference avoidance procedures which produce more easily tracked incremental codewords,
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and study the response of the system to abrupt changes in the background interference as might

be encountered in a practical system. This problem scenario can be classified as a (G,NC) or

(Greedy, Non-coordinated), since only a minimal coordination infrastructure (global feedback

from receiver) is assumed, and the users act greedily (to maximize their SNR).

In a CDMA system, the transmitter’s symbols are assumed to be independent ofeach other

and the work mentioned in chapter 2 maintains this assumption. However, there may be sce-

narios in which transmitters send correlated data to a receiver. For example, in the literature

for sensor networks [1], one readily comes across a scenario wheresensor nodes (analogous to

transmitters in CDMA) measure a common physical phenomenon and send their observations

(which are correlated) to a central repository. In Chapter 3, we consider such a sensor network

scenario where multiple sensors are transmitting correlated symbols to a common receiver, with

an objective to minimize the total mean square error (TMSE) in the symbol estimatesat the re-

ceiver. The source-channel separation theorem for the point to point case does not hold for this

problem and the optimal communication scheme is unknown [15]. We propose aCDMA based

transmission scheme that exploits the correlation between the sensors’ symbols and facilitates

statistical cooperation among the sensors through the choice of their codewords. We give an

analytical characterization of the TMSE-minimizing codeword set for this scheme, and com-

pare its performance both with a separation-based scheme, and an information-theoretic upper

bound. Due to the common global objective of the devices, and the centralized computation of

optimal signatures, this problem scenario can be classified as (NG, C).

The second half of this thesis considers scheduling problems for interfering links where

each link employs an ON-OFF modulation scheme in each time slot. In chapter 4, weconsider

the case of non-greedy links and come up with a distributed scheduling solution that requires no

coordination among the links (NG, NC). Then, in chapter 5, we look at a scenario where greedy

links coordinate with each other (G,C) through a mediating authority called the “spectrum

server” and investigate the issue of truthful reporting.

In the case of non-greedy interfering links considered in chapter 4, anactive link obtains

a data rate determined by the interference from other active links in the network. We consider

a random access scheme, each link decides to transmit in each time slot with certain probabil-

ity, and compare its achievable throughput region with the upper bound given by centralized
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Figure 1.1: Thesis Organization

scheduling. We then present a distributed implementation of the random access scheme that

achieves all feasible rate vectors in the throughput region. The distributed algorithm consists

of an iteration, where each link updates its transmission probability based onlyon its measured

throughput, and is provably convergent under certain conditions.

In chapter 6, for the case of greedy links, interference is modeled as a directional interfer-

ence graph with the links as vertices. An edge from vertex A to vertex B impliesthat link B can

transmit successfully only if link A is not transmitting. Each link reports its incomingedges (in-

terfering neighbors) to the server, based on which the server constructs the interference graph

and constructs an optimal schedule for the links (that maximizes a certain global objective).

Since the links are greedy, they will choose their reports to maximize their individual utilities.

We therefore investigate the following natural questions: - ”Under what conditions is it realistic

to assume that the links will send truthful reports? If the links have an incentive to lie, can we

design mechanisms and provide them with counter-incentives to enforce truthful reporting?”

We formulate this problem and present some preliminary results based on ourwork.
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Chapter 2

Distributed Incremental Interference Avoidance

The past decade has witnessed tremendous research activity in the areaof joint signature-

receiver optimization for single-cell Direct-Sequence Code Division MultipleAccess (DS-

CDMA) systems [16–22]. In a single cell system with a fixed number of users, one can imagine

solving the signature-receiver optimization problem off-line in a centralizedmanner at the re-

ceiver and feeding the optimal codewords back to the mobiles. However, this approach could

lead to onerous feedback bandwidth requirements [23–25], if the frequency of users joining or

leaving the network is high or the background interference changes rapidly. Therefore one must

take limitations on the feedback channel capacity into account and quantize the codewords ac-

cordingly. Reference [25] provides an asymptotic analysis of limited feedback channel capacity

and achievable SINR at the transmitters by considering a Random Vector Quantization (RVQ)

scheme for codeword feedback. Since RVQ has very high computationalcomplexity (codeword

search complexity at each mobile is exponential in the the number of feedbackbits), [25] also

considers a reduced rank scheme where codewords lie in a lower-dimensional space assumed

known both to the transmitters and the receiver.

In an unlicensed band where centralized control is absent or difficult toimplement, com-

puting and feeding back codewords to each individual user might not befeasible. In addition,

dynamically changing interference levels might impose strict robustness requirements on the

system that can only be satisfied by a distributed and on-line signature-receiver optimization

algorithm. The enabling technology for such a system solution would besoftware radios[26]

that promise to provideon the flycontrol over the modulation/demodulation schemes of the

transceivers.

Interference Avoidance (IA) is a class of algorithms [27], [22], [28], [21] that greedily

adapts the user codewords in response to feedback from the receiver and can achieve globally

optimal solution in a distributed way. The basic idea of IA is simple. Each user waveform is

represented as a linear combination of orthonormal basis functions which span the signal space.
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The set of real valued coefficients used to represent the waveform isa codewordand each user

changes its codeword greedily to improve SINR. We find it most useful to think in terms of the

inverse SINR, given by the Rayleigh quotient [29, pp. 253] as

χk =
s⊤k Rksk

s⊤k sk
(2.1)

whereRk is the interference plus noise covariance seen by codewordk at the receiver. Since

it is known that the Rayleigh quotient of a matrix is minimized by the “minimum eigenvector”

associated with the minimum eigenvalue, we can see thatχk will be maximized if codeword

sk is replaced by the minimum eigenvector ofRk. Moving toward a state where all codewords

are simultaneously minimum eigenvectors of their respective covariances is the overall goal

of IA – and one which is achieved by iterative application of a variety of codeword update

procedures [21,27,28].

However, as pointed out in [30], IA algorithms are unsuitable for direct on-line implemen-

tation because of either of the following assumptions.

a) As the signature sequences are updated, the receiver filters are changed to be the corre-

sponding matched filters instantaneously.

b) The iterations are run off-line only in terms of the signature sequences, and once the signa-

ture sequences converge to an optimum set, corresponding matched filters are deployed

as receivers.

Here we consider the scenario where users know their channels, the receiver covariance (or the

received vector) is broadcast by the receiver and users employ someIA procedure to improve

their codewords.

Since the receiver must adapt to codeword changes, and the only information the receiver

has are user transmissions, we note that IA algorithms such as the MMSE [21] or eigen al-

gorithm [28] can cause abrupt changes in codewords which might be difficult for receivers to

track without disruption of associated data streams. To minimize such disruptionwe introduce

the following two schemes which allow only incremental adjustments to codewords:

• Gradient Descent IA:codewords are adjusted to most rapidly reduce the inverseSINR.
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• Lagged IA: codewords are adjusted in the direction of the optimal codeword.

Based on these methods, we propose a simple structure for practical distributed IA. Overall, the

method is reminiscent of adaptive equalization and appears robust to reasonably abrupt changes

in the interference environment as well as the amount of broadcast feedback provided by the

transmitter.

2.1 System Model

We consider a system with block diagram as shown in FIGURE 2.1. Information symbols

modulate transmitted codewords and receivers use separate filters for each user to produce an

estimate of transmitted symbols for each user. Joint decoding isnot assumed. The receiver

has noa priori information about the transmitter codewords and starts with randomly selected

filter coefficients. The transmitters send a known training sequence with which the receiver

iteratively refines the receiver filters based on typical error minimization criteria. During the

training phase, the system equations are,

r(n) = S(n)b(n) + v(n) (2.2)

C(n + 1) = f [C(n), r(n),b(n)] (2.3)

where,n is the time index andS(n) = [s1(n), s2(n), , , sM (n)] is the codeword matrix[L×M ]

whose columns are the unit norm user codewords.C(n) = [c1(n), c2(n), . . . , cM (n)] is the

receiver filter matrix[L×M ] whose columns are receiver filters corresponding to the transmitter

codewords. r(n) is the received signal vector at the receiver[L × 1]. b(n) is the vector

containing symbols sent by each user[1 × M ]. v(n) is assumed zero mean and white with

covarianceKv(n, k) = N0I. f [·] is the receiver filter update scheme used.

After training, the receiver measures the received signal covarianceR and broadcasts it

to all users periodically. Alternately, the receiver could more frequently broadcast the received

vectorr(n) and let each user construct receiver covariance estimates. We assumethat each user

knows its channel, so the feedback can be used by the transmitters to steer transmitted code-

words toward higher SINR. The receiver decodes the symbols sent bythe users and continues

updatingC as it did during training but now assuming that the decoded symbols are correct.

This is exactly analogous to the operation of a typical adaptive equalizer [31].
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Figure 2.1: System Model

The system equations are,

r(n) = S(n)b(n) + v(n) (2.4)

b̂(n) = sgn[b̃(n)] = sgn[r(n)⊤C(n)] (2.5)

C(n + 1) = f [C(n), r(n),b(n)] (2.6)

whereb̃(n) is the soft estimate of the transmitted symbol vectorb(n) andb̂(n) is the corre-

sponding hard estimate. The received covariance is defined as

R(n) = E
[
r(n)r⊤(n)

]
(2.7)

and the covariance seen by a particular userk as

Rk(n) = R(n) − sk(n)sk(n)⊤ (2.8)

We need to estimateR(n) from time samplesr(n). If the received vector sequencer(n) were

stationary, then we could have replaced the ensemble averageE[·] above by the time average.

However, owing to the codeword updates,r(n) is no longer stationary, so an exponentially

weighted average

R̂(n) =
1

N

N∑

k=1

ξN−kr(k)r(k)⊤ (2.9)

seems more appropriate whereξ is a “forgetting factor” [32].

The above estimate can be computed recursively in the following manner

R̂(n) = (1 − ξ)R̂(n − 1) + ξr(n)r(n)⊤ (2.10)
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Likewise the individual userk covariance estimate is defined as

R̂k(n) = R̂(n) − sk(n)sk(n)⊤ (2.11)

Finally, the codeword update equation is

sk(n + 1) = g [sk(n),Rk(n)] k ∈ 1, 2, ..., M (2.12)

whereg[·] is the codeword steering scheme used at the transmitters.

2.2 Codeword Steering Schemes

Our aim is to provide schemes which make small performance-improving adjustments to the

codewords at each time step. Each user’s greedy performance objective is SINR maximization

or inverse SINR minimization. We consider the following two possible schemes.

2.2.1 Gradient Descent

The inverse SINR for thekth user is

χk =
s⊤k Rksk

s⊤k sk
(2.13)

and its gradient with respect to the codeword components{skj} is

∇χk =
2[s⊤k skRksk − (s⊤k Rksk)sk]

(s⊤k sk)2
(2.14)

Therefore, the iterationsk(n+1) = sk(n)− ν∇χk, with ν a suitably small constant, increases

SINR.

Now, even if we impose the unit power constraint onsk(n+1) by normalization, SINR still

increases because normalization does not change the value ofχk. So, our iteration becomes,

sk(n + 1) =
sk(n) − ν∇χk

‖sk(n) − ν∇χk‖
(2.15)

Now, since convergence is guaranteed if an algorithm decreases total squared correlation

(TSC) [22,27,28] where

TSC(n) = Trace
[
R(n)R(n)⊤

]
(2.16)
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we need to show that increasing SINR decreases TSC. Writing

R(n) = Rk(n) + sk(n)s⊤k (n) (2.17)

and noting that‖sk(n)‖ = ‖sk(n + 1)‖ = 1, it is easy to show [33] that

∆TSC= TSC(n + 1) − TSC(n) = 2∆χk ≤ 0 (2.18)

and the result follows.

Choice ofν dictates the rate at which the codewords change. Ideally we would like to chose

the largest possibleν which still allows the receiver to accurately track codewords. However,

convergence of gradient descent schemes requireν to be chosen sufficiently small. An im-

provement would be a convergence condition which did not depend on thestep sizeparameter

ν. Such a steering scheme is presented next.

2.2.2 Lagged IA

As seen previously, the optimal codeword for userk is given by the eigenvector corresponding

to the minimum eigenvalue of the channel interference matrixRk. Let us denote this eigenvec-

tor by s∗k. Assuming codewords of other users remain fixed, userk can increase its SINR by

steering its codeword towards∗k using the iteration

sk(n + 1) =
αsk(n) + mβs∗k∣∣αsk(n) + mβs∗k

∣∣ (2.19)

α, β ∈ ℜ+. We have definedm = sgn[ρk(n)] with ρk(n) = s⊤k (n)s∗k and note that|ρk(n)| ≤ 1

since|s∗k| = |sk(n)| = 1.

Equation (2.19) has a simple and intuitive geometric meaning:sk(n + 1) represents a step

towards the closest optimal codewordms∗k along the arc joiningms∗k andsk(n). That is,sk(n)

andms∗k share the same half plane. Formally, we have

Theorem 1 Userk’s SINR will increase under the iteration of equation (2.19) wheres∗k is a

minimum eigenvector ofRk.

Proof: Rk is a covariance matrix and therefore positive-semidefinite with orthonormal eigen-

vectors which span the signal space. Let[(λ1, x1), (λ2, x2), .., (λL, xL)] be the eigenvalues and
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eigenvectors ofRk such thatλ1 ≤ λ2 ≤ . . . ≤ λL (s∗k = x1). Thus

s⊤k (n)Rksk(n) ≥ (s∗k)
⊤Rks

∗
k = λ1 (2.20)

since|sk(n)| = |s∗k| = 1. The change in inverse SINR is

∆χk = s⊤k (n + 1)Rksk(n + 1) − s⊤k (n)Rksk(n)

=
(αsk(n)+mβs∗

k)
⊤

|αsk(n)+mβs∗
k| Rk

(αsk(n)+mβs∗
k)

|αsk(n)+mβs∗
k| − sk(n)⊤Rksk(n)

(2.21)

Let us useκ2 to denote

κ2 = |αsk(n) + mβs∗k|2 = α2 + β2 + 2αβ|ρ(n)| (2.22)

Then we can write

κ2∆χk = α2s⊤k (n)Rksk(n) − κ2sk(n)⊤Rksk(n)

+mαβsk(n)⊤Rks
∗
k + mαβs∗Tk Rksk(n) + β2s∗Tk Rks

∗
k

= (α2 − κ2)sk(n)⊤Rksk(n) + λ1(κ
2 − α2)

= (κ2 − α2)
(
λ1 − sk(n)⊤Rksk(n)

)

(2.23)

which forα, β > 0 is always less than or equal to zero by equation (2.22) and equation (2.20)

To ensure that codewords change incrementally we require|α| ≫ |β|. Increasing SINR implies

TSC decrease as noted in the previous section, so convergence is guaranteed.

Note that the above convergence results aredeterministicin nature i.e. they assume thatR

is exact rather than an estimate. A rigorous stochastic convergence proof would require taking

into account the closed loop nature of the system (due tor(n) feedback), and might possibly

be developed along the lines of [34].

Since the codeword steering schemes are to be implemented at the mobiles, computational

complexity is a very important issue. We note that the gradient descent iteration does not explic-

itly require calculation of the minimum eigenvector, and thus offers a computational advantage

over the lagged IA scheme. In order to make the lagged IA scheme computationally efficient,

we can use results from matrix perturbation theory [35]. Matrix perturbation theory allows

us to compute the effect of small perturbations in a matrix to the resulting perturbations in its

eigenvalues and eigenvectors without redoing the complete eigen-decomposition for the per-

turbed matrix. Specifically, letui0 andγi0 be theith eigenvector and eigenvalue of an[L × L]
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hermitian matrixA0 and letui1 andγi1 be the corresponding eigenvector and eigenvalue of a

perturbed hermitian matrixA1 = A0 + ξAp such thatξ << 1. Then the following first order

Taylor series approximation can be made

ui1 = ui0 + ξuip (2.24)

γi1 = γi0 + ξγip (2.25)

whereuip andγip are given by ( [36], see appendix),

γip = u⊤
i0Apui0 (2.26)

uip =

L∑

j=1

θjiuj0 (2.27)

where

θji = u⊤
j0uip =

−u⊤
j0Apuj0

(γj0 − γi0)
(2.28)

We are interested in efficiently computing the minimum eigenvector ofR̂k(n) in terms of

that ofR̂k(n − 1). Combining (2.10) and (2.11) gives

R̂k(n) = R̂k(n − 1) + ξ
(
r(n)r(n)⊤ − R̂k(n − 1) − sk(n − 1)sk(n − 1)⊤

)
(2.29)

+
(
sk(n − 1)sk(n − 1)⊤ − sk(n)sk(n)⊤

)
(2.30)

The above equation does not lend itself to a straightforward application of matrix perturbation

results, due to the presence of the termsk(n − 1)sk(n − 1)⊤ − sk(n)sk(n)⊤ 1. However, the

problem can be circumvented by estimatingR̂k(n) directly at thekth mobile, instead of first

estimatingR̂(n).

Lettingrk(n) = r(n) − bk(n)sk(n) we can write

Rk(n) = E
[
rk(n)rk(n)⊤

]
(2.31)

Mobile k computesrk(n) after receiving the feedback vectorr(n), and then estimateŝRk(n)

recursively in the following manner.

R̂k(n) = R̂k(n − 1) + ξ(rk(n)rk(n)⊤ − R̂k(n − 1)) (2.32)

1One must show that this term is of orderO(ξ) in order to apply the matrix perturbation results
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Now let [(λ1(n), x1(n)), (λ2(n), x2(n)), .., (λL(n), xL(n))] be the eigenvalues and eigenvec-

tors ofRk(n) such thatλ1(n) ≤ λ2(n) ≤ . . . ≤ λL(n) (s∗k = x1(n)). Then using (2.26), we

can write

xi(n) =

L∑

j=1

xi(n − 1)⊤
[
R̂k(n − 1) − rk(n)rk(n)⊤

]
xi(n − 1)

[λj(n − 1) − λi(n − 1)]
xi(n − 1) (2.33)

and

λi(n) = xi(n − 1)⊤
[
rk(n)rk(n)⊤ − R̂k(n − 1)

]
xi(n − 1) (2.34)

Substitutings∗k = x1(n) in (2.19), we find that the calculation of minimum eigenvector has

been replaced by simple multiplications and divisions and concomitantly reduced complexity.

2.3 The Receiver Filter

We consider adaptive formulations of three types of receiver filters – matched, linear MMSE,

and Decision Feedback MMSE. For the first two filters, we investigate two types of adaptive

algorithms [32]: LMS (Least Mean Squared) and RLS (Recursive Least Squares). The LMS,

or Least Mean Squared algorithm is an approximation of the steepest descent algorithm which

uses an instantaneous estimate of the gradient vector. The estimate of the gradient is based

on sample values of the received vector and an error signal. The algorithm iterates over each

coefficient in the filter, moving it in the direction of the approximated gradient.

On the other hand, RLS, or Recursive Least Squares is an exact algorithm in the sense that

at each time instant the filter coefficients are optimal for the given observations. It uses the

matrix inversion identity [32] to efficiently compute the optimal filter at timen in terms of the

optimal filter at time(n − 1) and the observations at timen. The RLS algorithm usesO(L2)

operations per iteration as opposed toO(L) used by LMS but has a faster convergence rate.

2.3.1 Matched Filter

For optimal codeword ensembles, the matched filter (ci = si) is the optimal linear receiver

[37]. The LMS filter update equation can be obtained by using gradient descent to minimize

E[e(n)2], where

e(n) = r(n) − C(n)b(n) (2.35)
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so that the filter update equation is

C(n + 1) = C(n) + µe(n)b(n)⊤ (2.36)

for some suitable constantµ. Note that after training, we useb(n) = b̂(n) and continue

updatingC in the same manner.

The RLS algorithm includes a forgetting factorξ that allows it to work for non-stationary

signals. The error squared term that has to be minimized after time instantn is given by

1
n

∑n
k=1 ξn−k|e(k)|2. The optimal filter aftern time instants is given by

C(n + 1) = Q(n)−1P(n) (2.37)

where

Q(n) =
n∑

k=1

ξn−kb(k)b(k)⊤ (2.38)

P(n) =
n∑

k=1

ξn−kr(k)b(k)⊤ (2.39)

SinceQ(n) = ξQ(n− 1) + b(n)b(n)⊤, using the matrix inversion identity [32] we can write

Q(n)−1 = ξ−1Q(n − 1)−1 − ξ−2Q(n − 1)−1b(n)b(n)⊤Q(n − 1)−1

(1 + ξ−1b(n)⊤Q(n − 1)−1b(n))
(2.40)

Also P(n) = ξP(n − 1) + r(n)b(n)⊤ and thereforeC(n + 1) can be computed efficiently.

2.3.2 Linear MMSE Filter

The MMSE filter for thekth user is defined as the vectorck which minimizesE[ek(n)2] where

ek(n) is now defined as,

ek(n) = bk(n) − r(n)⊤ck(n) (2.41)

Note that in the above equation,r(n)⊤ck(n) represents a soft estimate forbk(n) and hence

ek(n) is the symbol estimation error for userk. The LMS filter update equation in this case is

C(n + 1) = C(n) + µe(n)r(n) (2.42)

where,

e(n) = b(n) − r(n)⊤C(n) (2.43)
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Figure 2.2: Block diagram of multiuser decision-feedback detector.

After training, we useb(n) = b̂(n) = sgn[b̃(n)] and continue updatingC in the same manner.

The RLS update equations in this case are given by

Q(n)−1 = ξ−1Q(n − 1)−1 − ξ−2Q(n − 1)−1r(n)r(n)⊤Q(n − 1)−1

(1 + ξ−1r(n)⊤Q(n − 1)−1r(n))
(2.44)

P(n) = ξP(n − 1) + b(n)r(n)⊤ (2.45)

2.3.3 MMSE Decision Feedback Filter

Here we consider a decision feedback (DF) based parallel interference canceler [38]. The

general structure of a multiuser decision-feedback detector is given in FIGURE 2.2 which de-

scribes both successive and parallel interference cancellation as wellas more general detection

schemes [38]. The receiver consists of a feedforward filterF and a backward (feedback) filter

B which together represent filterC of our system model.

Since here the received powers for all users are equal, parellel interference cancellation

makes more intuitive sense than successive interference cancellation. For parallel operation, the

multiuser detector takes the form as shown in FIGURE 2.3 whereB is constrained to have all

zero diagonal elements [38]. Note thatF in FIGURE 2.2 corresponds to the productX(I +B)

in FIGURE 2.3. Tentative bit estimatesb1(n) are first obtained using the linear MMSE filter

i.e. b1(n) = r(n)⊤X(n) and then fed back to refine the estimates.

For the form shown in FIGURE 2.3, the LMS filter update equations can be found by using

gradient descent to minimizeE[e(n)2] wheree(n) is now defined as,

e(n) = b(n) − [F(n)r(n) − B(n)b1(n)] (2.46)
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Figure 2.3: Parallel DFD.

The feedforward filter update equation is,

F(n + 1) = F(n) + µF e(n)r(n)⊤ (2.47)

Thekth row of the backward filter is updated as follows.

Bki(n + 1) = Bki(n) − µBek(n)b1i(n) ∀i(i 6= k) (2.48)

The linear MMSE filterX can then be computed as,

X(n + 1) = (I + B(n + 1))−1F(n + 1) (2.49)

2.4 Numerical Results

2.4.1 Comparison of Receiver Structures

We first consider users with static randomly chosen codewords (no codeword adaptation) and

compare the performance of various receiver structures. FIGURE 2.4shows the BER vs SNR

curves for an underloaded system (4 users in12 dimensions) with three different receiver struc-

tures, namely, matched filter, linear MMSE and DF MMSE. FIGURE 2.5 repeatsthe same

experiment with an overloaded system (14 users in12 dimensions). Note that the same trans-

mitter codeword sets are used in all three receiver filter schemes. As might be expected for

unadapted codewords, MMSE filtering is superior to matched filtering since itmitigates the ef-

fects of any randomly high correlation between user codewords. DF MMSE outperforms linear

MMSE at high SNR’s but gives degraded performance at low SNR’s owning to poor initial bit
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Figure 2.4: Matched filter and MMSE filter comparison. BER vs SNR plot for 4staticusers in
12 dimensions.µ = 0.001, µF = 0.01, µB = 0.01.

estimates. Also, we note that the performance gain of DF MMSE over linear MMSE increases

as the system load (M
L ) is increased. These results are in agreement with those obtained in [38].

Since the linear MMSE filter provided uniformly good performance at low computational com-

plexity all subsequent experiments use the linear MMSE receiver filter structure.

2.4.2 Optimizing Codeword Steering

We consider an overloaded system (14 users in12 dimensions) and look at the codeword steer-

ing performance for both gradient descent and lagged IA. The choiceof ξ in equation (2.10)

depends on how fast the statistics of ther(n) process are changing. If the statistics are changing

very slowly and the process is almost stationary, then a small value ofξ should be used. We

heuristically pickξ as0.02 in our experiments. We seek minimum codeword convergence time

without incurring high BER at the receiver and chose a nominal value forSNR as20 dB since

we expect such systems to be interference rather than noise limited. The initialcodewords are

chosen randomly as before. We vary the steering step size control parameters (ν for gradient
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Figure 2.5: Matched filter and MMSE filter comparison. BER vs SNR plot for 14 staticusers
in 12 dimensions.µ = 0.001, µF = 0.01, µB = 0.01.

descent,α for lagged IA withβ fixed) and measure the BER while the codewords are being

adapted. If the steering step size is too large, receiver cannot track thecodewords which results

in a high BER. On the other hand, if the step size is too small, codewords converge very slowly

to their optimal values and high correlation leads to high BER during the finite measurement

window. Suitable steering step control parameters for this system were found to be in the range

10−3 < ν < 10−2 and40 < α < 300.

2.4.3 Abrupt Interference Insults

We also considered the effect of adding static interference (in the form of a new user codeword)

to the system after the user codewords have stabilized in a WBE set. First, weconsider an

underloaded system with4 users in12 dimensions. As before, theSNR for each user is chosen

to be20 dB. We used the following values for steering step control parameters: (ν = 0.005, α =

100, β = 1). FIGURE 2.6 shows the average inverse SIR variation with time. The first10000

bit intervals comprise the post training interval where transmitters are adapting their codewords



19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.1

0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 in
ve

rs
e 

S
IR

Variation of inverse SIR with time

ξ = 0
ξ = 0.98
exact R

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.1

0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 in
ve

rs
e 

S
IR

time (in symbol intervals)

ξ = 0
ξ = 0.98
exact R

Figure 2.6: Average inverse SIR variation for 4 users in 12 dimensions. New user added after
10000 bit intervals. top plot: gradient descent withν = 0.005. bottom plot: lagged IA
withα = 100, β = 1.

using IA. Since this is an underloaded system, we expect the inverse SIR value to become small

(nearly orthogonal user codewords). Att = 10001, a user with a random but subsequently

fixed codeword is introduced. Fromt = 10001 onward we see that IA reduces the average SIR

to near zero within500 symbol intervals for gradient descent and1000 symbol intervals for

lagged IA. FIGURE 2.6 also compares the performance for exact covariance feedback and for

estimates of different qualities (ξ = 0.02, 1). Note thatξ = 1 corresponds to an instantaneous

– and therefore highly volatile – estimate ie.R(n) = r(n)r(n)⊤.

FIGURE 2.7 shows the same plots for an overloaded system (14 users in 12dimensions).

For exactly known and average covariance before the introduction of static interference, the

average inverse SIR value is approximately0.1667 = 14−12
12 ), the theoretically optimal value

associated with a Welch bound equality codeword set (see [28]). The performance of the in-

stantaneous covariance feedback is slightly worse, but not unreasonable.

Adding sudden interference does not greatly increase the average SIR and more importantly,
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Figure 2.7: Average inverse SIR variation for 14 users in 12 dimensions.New user added after
10000 bit intervals. top plot: gradient descent withν = 0.005. bottom plot: lagged IA with
α = 100, β = 1.

does not greatly disrupt the data streams of other users – at least in as much as no retraining was

required, even with the imprecise instantaneous covariance. Following the interference insult,

the system quickly settles down to the theoretically minimum inverse SIR of15−12
12 = 0.25 in

the case of exact and averaged covariance feedback, and once again, performs a bit more poorly

for instantaneous covariance feedback.

We also plot the variance of inverse SIR among users vs time in FIGURE 2.8 which suggests

that codeword adaptation rapidly equalizes user SIRs and indirectly corroborates convergence

to approximately optimal codeword ensembles.

2.4.4 SINR Based Codeword Update

For standard iterative interference avoidance algorithms [21, 28], codeword update by userk

results in a lower TSC only ifRk does not change during the codeword update. If more than one

user updates codewords at the same time (synchronous update), then wecan say little analytic
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Figure 2.8: Variance of inverse SIR for 4 users in 12 dimensions. New user added after10000
bit intervals. top plot: gradient descent withν = 0.005. bottom plot: lagged IA withα =
100, β = 1.

about the resulting TSC. However in a truly uncoordinated and distributed implementation

of IA, users will probably update codewords whenever SINR falls below some threshold, and

multiple users might choose to update their codewords at the same time. Empirically we have

observed that under suchSINR based update, codeword steering with sufficiently small step

sizes leads to lower TSC – though not necessarily the optimum value – for randomly chosen

initial codewords. FIGURES 2.9, 2.10, 2.11 provide comparison between TSC convergence

rates (in the form of average inverse SIR variation with time) for single usercodeword update

and for SINR based codeword update. Note that the above-mentioned figures also illustrate the

issue of limited feedback channel capacity (to be discussed in the next section).

2.4.5 Feedback Channel Capacity Effects

All the prior experiments assume the availability of a perfect noiseless (infinitecapacity) feed-

back channel. In this experiment, we consider a noisy (finite capacity) feedback channel and
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empirically estimate the minimum feedback capacity required for good system performance.

The capacityCg of a channel with additive Gaussian noise is given by,

Cg =
1

2
log2(1 + SNR)bits (2.50)

Since a vectorr(n) is fed back, we can model the feedback channel as a set ofL identical

parallel channels, one for each dimension. Different noise levels result in different capacities

(bits per dimension, orbn for short) for these channels. The SNR for each dimension of the

vector feedback channel is given by,

SNR =
1
LE[r⊤r]]

Nf
=

M

LNf
(2.51)

where,Nf is the feedback channel noise power per dimension.

Figure 2.9 shows the behavior of an underloaded system (12 users in 24dimensions) for

different values of feedback capacity both for the case of single userupdate and SINR based

update. We can see that increasingb
n above1 does not confer much advantage in convergence

time. For the single user update case, convergence requires around2000 bit intervals. In the

SINR-based update scheme, each user updates its codeword if its SINR isbelow7 dB i.e.1 dB

below the maximum8 dB value which was chosen as the SNR for each user.2 We can see that

all users are able to achieve an SINR above7 dB after≈ 1000 bit intervals.

Figure 2.10 shows the corresponding plot for an overloaded system (16 users in 12 di-

mensions). Here also, we see that feedback of≈ 1 bit per received vector dimension seems

sufficient and convergence requires≈ 3000 iterations in the case of single user codeword up-

date. For obtaining the SIR based update plot, we set the minimum desired SINRthreshold

equal to6 dB (SNR for each user was chosen as20 dB which results in a maximum possible

SINR = 7.2636 corresponding to a WBE codeword set choice). Although the average inverse

SIR falls very sharply and reaches a steady state in less than500 iterations, the steady state

SINR for many users remains lower than6 dB since the codewords don’t seem to converge

(the average inverse SIR does not stabilize) as they did in the underloaded case. This fact is

verified by FIGURE 2.12 which shows the number of simultaneous user codeword updates as

a function of time.

2SNR was chosen as8 dB for comparisons with previous work considered in next section.
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Figure 2.9: Effect of varying feedback channel capacity on system performance for 12 users in
24 dimensions.SNR of each user =8 dB. The lagged IA scheme was used with parameters:
(α = 100, β = 1). SINR Threshold =7 dB. b

n = bits per dimension.

FIGURE 2.11 shows the inverse SIR plots for higher number of users, keeping the users

per dimension constant. The number of feedback bits required remains constant, however the

convergence time for the single user case increases with the number of users as expected. With

a constant steering step size, convergence time increases with the number of users since their

codewords have to be steered sequentially.

SINR based codeword update again reduces the average inverse SIRrapidly but is unable

to achieve the6 dB SINR condition for many users. Figure 2.12 shows the number of users

updating their codewords in each bit interval for SIR based update both for the underloaded

(M = 12, L = 24) and overloaded (M = 16, L = 12; M = 32, L = 24) scenarios. We

can conclude that in general if multiple users update their codewords simultaneously, the users

won’t be able to attain their desired SINR’s. One simple heuristic by which users can avoid such

semi-synchronous codeword updates is to wait for a random (geometrically distributed) number

of bit intervals before updating whenever a need for update arises. The parameter controlling
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Figure 2.10: Effect of varying capacity of the feedback channel on system performance for 16
users in 12 dimensions.SNR of each user =20 dB. The lagged IA scheme was used with
parameters: (α = 100, β = 1). SINR Threshold =6 dB. b

n = bits per dimension.

the geometric distribution can be chosen to achieve a compromise between the convergence

speed and steady state SINR value.

FIGURE 2.13 shows the average inverse SIR variation for an overloaded system (M =

16, L = 12) when the above mentioned heuristic is employed.

2.4.6 Prior Feedback Bounds

The problem of codeword optimization through the use of a limited bandwidth feedback chan-

nel has also been explored in [23, 25]. In [25], the receiver feedsback the optimal codeword

for each user after quantizing it toB bits. Random vector quantization (RVQ) gives the upper

bound on performance under a limited bandwidth constraint. [25] comparesthe performance

of quantized reduced-rank codeword optimization with RVQ and for an underloaded system,

shows the effect of varyingB on SIR improvement for a single user. On the other hand, [23]
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Figure 2.11: Effect of varying capacity of the feedback channel on system performance for 32
users in 24 dimensions.SNR of each user =20 dB. The lagged IA scheme was used with
parameters: (α = 100, β = 1). SINR Threshold =6 dB. b

n = bits per dimension.

treats the issue of codeword quantization emperically and presents performance results for uni-

form and non-uniform quantization. In this section, we compare the feedback capacity require-

ment of our scheme with those of [23,25].

For a system loadM/L of 0.5, the reduced-rank codeword optimization scheme in [25]

requires around1 bit per user per dimension to improve the SINR to7 dB, when the SNR

of each user is8 dB. Thus the total number of feedback bits required (NB) for reduced-rank

codeword optimization for the underloaded system we considered earlier (M = 12, L = 24) is

equal toM ×L = 288 bits. Results from [23] indicate that4− 5 bits per codeword dimension

per user are sufficient for near-optimal performance which gives a total feedback bit budget of

(NB = 4 × M × L = 1152). For our scheme,NB equalsT × L ×Cg where,T is the number

of bit intervals elapsed before the average SINR comes within1 dB of the optimal value,Cg is

the channel capacity per dimension in bits. FIGURE 2.9 shows the inverse SIR variation with

time for the underloaded system under consideration. An easy calculation shows that the above



26

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15
Number of synchronous updates vs time

0 500 1000 1500 2000 2500 3000 3500 4000
5

10

15

20

N
o.

 o
f s

yn
ch

ro
no

us
 u

pd
at

es

0 500 1000 1500 2000 2500 3000 3500 4000
26

28

30

32

time (bit intervals)

Figure 2.12: Variation of number of users simultaneously updating codewords in a bit interval
vs time. The three plots correspond to the underloaded (M = 12, L = 24) and overloaded
(M = 16, 32, L = 12, 24) systems considered earlier.

condition on average SINR is equivalent to saying that the average inverse SIR falls below

0.0486. From the figure,T ≈ 1000 for the SIR based update scheme if we chooseCg = 1.0

which givesNB ≈ 24000 bits.

The large difference in theNB values above stems from the fact that our scheme makes

only incremental changesin user codewords so that the receiver can track them, whereas in

[25], since the receiver already knows the optimal codewords, it can tolerate abrupt codeword

changes. Also, the results in [25] were derived for the asymptotic case where bothM andL

tend to∞ with M
L = 0.5.

In addition, use of RLS filters instead of the LMS filtering scheme used here would reduce

the number of required feedback bits. However, neither scheme, even incombination, is likely

to match the feedback performance of centralized schemes like the reduced-rank codeword

optimization [25].
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Figure 2.13: M = 32, L = 24. If every user waits for a random number (geometrically
distributed with parameterp = 1/8) of bit intervals before updating its codeword after the
need arises, then the steady state SINR can be improved dramatically (compare with previous
SINR based update for (M = 32, L = 24) when this heuristic was not used) with modest
increase in convergence time.SNR of each user =20 dB. The lagged IA scheme was used
with parameters: (α = 100, β = 1). SINR Threshold =6 dB. b/n = bits per dimension.

2.5 Conclusion and Discussion

We have analyzed and simulated distributed interference avoidance (IA) based on covariance

feedback broadcast from the receiver and incremental codeword changes by each user. The

feedback could be a covariance matrix estimate from the receiver, or a sequence of received

vectorsr(n) to allow estimates to be constructed by each transmitter. The receiver tracks

codeword changes by adapting the associated filters under a symbol error criterion. With per-

fect covariance feedback, the distributed method is equivalent in terms ofcodeword ensemble

performance to centralized methods where codewords are computed by thereceiver and dis-

tributed to transmitters. Lagged IA, however, shows a greater sensitivity than gradient descent

IA to covariance uncertainty.

We considered matched, MMSE and decision feedback (DF) codeword filters and found
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that the poor BER of the matched filter, especially as the number of active users was increased,

militated against its use. MMSE and decision feedback filters had comparable performance

with MMSE being better for lower SINR and DF better for higher SNR.

Our experiments with asynchronous (single user) codeword updates suggest that a global

feedback (broadcast) of1 bit per codeword dimension per bit interval is adequate for achieving

near optimal IA performance. This figure, multiplied by the total number of iterations before

convergence is declared, gives the total number of bits required for feedback and thereby a

rough measure of feedback performance. In practice, instead of doing single user codeword

updates, one can employ SINR based updates along with a geometric wait time heuristic (FIG-

URE 2.13), and cut down on the number of iterations required for convergence.

In contrast, centralized schemes seem to require much less feedback capacity [25]. So per-

haps distributed interference avoidance methods will be most useful in cases where centralized

methods cannot be implemented. However, also we note that the machinery used for both

codeword tracking and codeword update is strongly reminiscent of adaptive equalization for

which a large body of work and hardware methods exist. Thus, one couldimagine reaping the

sum/user capacity increases of interference avoidance in a closed loop fashion with minimal

development of new adaptive methods and hardware.

2.6 Appendix: proof of equation (2.26) (Eigenvalue/Eigenvector Update)

A1ui1 = γi1ui1 can be rewritten as

(A0 + ξAp) (ui0 + ξuip) = (γi0 + ξγip) (ui0 + ξuip) (2.52)

Ignoring theO(ξ2) terms and comparing constants and coefficients ofξ on both sides we

get

A0ui0 = γi0ui0 (2.53)

A0ui1 + A1ui0 = γi0ui1 + γi1ui0 (2.54)

Equation (2.53) does not provide any new information. Note that{ui0 : i = 1, . . . , L} is an

orthonormal set becauseA0 is Hermitian. Multiplying equation (2.54) byu⊤
j0 for j = 1, . . . , L

on the left, and observing thatu⊤
i0A0 = γi0u

⊤
i0, we obtain
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γi1 = u⊤
i0A1ui0 (2.55)

(γj0 − γi0)u
⊤
j0ui1 = −u⊤

j0A1ui0, j 6= i (2.56)

The eigenvalue/eigenvector update equations (2.26) can now be deduced from (2.55).
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Chapter 3

A CDMA based Scheme for Transmission of Correlated Gaussian

Symbols over a Gaussian Multiple Access Channel

Energy-efficient transmission of correlated data is one of the central problems in the design

of wireless sensor networks. For example, in a typical sensor network [1], a group of sensors

measure a common physical phenomenon and send their observations to a central repository.

Since sensors are generally assumed to be deployed in very large numbers, measurements from

spatially closer sensors will have a high degree of correlation. These sensor nodes usually have

a non–replenishable source of energy, therefore it is highly desirableto keep the transmission

powers at their minimum levels. Schemes that exploit the underlying correlationstructure of the

data in reducing the transmission power requirements are especially desirable. In this chapter,

we consider a CDMA (code-division-multiple-access) based transmissionscheme that exploits

the correlation structure of sources by facilitating statistical cooperation among the sensors.

The information-theoretic capacity of a single cell symbol synchronous white Gaussian

noise CDMA system was derived in [16] and it was shown that the capacityis a function of

the correlations between transmitter signature waveforms. For an averagepower constraint

on symbols of all transmitters, Masseyet al. [17] showed that the capacity maximizing code-

words for the single cell symbol synchronous system are same as the Welch Bound Equality

(WBE) sequences. Viswanathet al.[18] generalized the result to the case where the transmitter

power constraints are unequal. Further extensions include the colored noise case [19] and joint

optimizations of codeword/power levels for fading channels [39].

In a CDMA system, the transmitter’s symbols are assumed to be independent ofeach other

and all the work above maintains this assumption. In this chapter, we assume a sensor network

model where nodes observe correlated Gaussian symbols and make use of the correlation struc-

ture to design signature waveforms (codewords) to transmit their observations to a common re-

ceiver. We first formulate and analytically solve the problem of finding the optimal codewords

and power levels where optimality is defined as minimization of the TMSE (total mean squared
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error) in the reproduced observations at the receiver under a total power constraint. Then, we

consider the case of individual power constraints and give analytical solutions for certain spe-

cial cases. Following this, we characterize the performance of our transmission scheme in the

form of a Total power-TMSE tradeoff function. We compare the performance of our scheme

with an information theoretic outer bound, and with another separation basedscheme.

Throughout this chapter, the following notational guidelines will be used: Bold uppercase

letters are used for matrices, bold lowercase letters for vectors and lowercase letters for scalars.

Uppercase letters are also used to denote system constants e.g.M , the number of transmitters.

3.1 System Model

Let us assume that there areM sensor nodes (transmitters) and nodei observes a time sequence

of zero mean i.i.d. Gaussian symbolsbn
i = [bi(1), bi(2), . . . , bi(n)]. At time instantj, the

M symbols observed by the sensors,[b1(j), b2(j), . . . , bM (j)] have a covariance matrixB

with unit diagonal elements, which is the same for all time instancesj. At time instantn,

encoderi produces an outputxi(n) = fi(b
n
i ) = (fi1(b

n
i ), fi2(b

n
i ), . . . , fiL(bn

i )). Assuming a

finite dimensional signal space, the signature waveforms of transmitters canbe described asL-

dimensional vectors i.e.,xi(n) ∈ RL (Figure 3.1), andfij(b
n
i )’s are deterministic zero mean

functions. The average transmission power used by theith transmitter is given by

pi = lim
n→∞

1

n

n∑

j=1

E
[
‖xi(j)‖2

]
(3.1)

The received signal at time instantn is given by

y(n) =
M∑

i=1

xi(n) + z, (3.2)

wherez is a zero–mean Gaussian noise vector with covariance matrixσ2IL. The decoder

processes the received signalyn = {y(1),y(2), . . . ,y(n)} to produce symbol estimateŝbn =

{b̂n
1 , b̂n

2 , . . . , b̂n
M} such that̂bn

i = gi(y
n) . The average distortion in theith symbol is given

by

MSEi = lim
n→∞

1

n
E

[∥∥∥b̂n
i − bn

i

∥∥∥
2
]

(3.3)
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Figure 3.1: General Problem Setup:M sensor nodes measure correlated Gaussian symbols,
independently encode their symbols, and attempt to communicate them to a centralreceiver
through a Vector Gaussian Multiple Acces Channel.

Given a set of constraints on maximum values ofpi’s, finding out the values ofMSEi’s

that can be achieved for the general encoder-decoder structure given above is an open problem.

Reference [15] recently considered the scalar version of this problem(with individual power

constraints on transmitters) and showed that uncoded transmission is optimal ifthe power bud-

get is below a certain threshold. Another related open problem is the CEO problem [40] where

the sensors measure an independent noisy copy of the same signal and try to estimate the

value of this signal at the receiver. In this chapter, we impose a special structure on the en-

coders where each sensor node transmits symbols using unit–norm codewords of lengthL, i.e.

xi(n) =
√

pisibi(n) (Figure 3.1). Dropping the time indexn, (3.2) becomes,

y = SP
1

2 b + z, (3.4)

where

P : diag(p1, p2, . . . , pM )

pi : transmit power ofith transmitter

S : L × M matrix [s1, s2, . . . , sM ]

si L×1: L × 1 unit norm signature codeword ofith transmitter

b : Gaussian symbol vector∼ N (0,B)

z : zero–mean Gaussian noise with varianceσ2IL

B = E
[
bb⊤

]
is defined as the symbol correlation matrix normalized to unit norm diagonal

entries.
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Figure 3.2: CDMA based transmission scheme: Each sensor encodes its symbol by multiplying
it with a lengthL signature sequence of unit norm and scaling the encoder output to havepower
pi. The optimal decoder at the receiver (in terms of minimizing TMSE) turns out be a linear
MMSE filter.

Since the received vector is jointly Gaussian with the data symbols, the optimal decoder for

eachbi for minimum MSEi, turns out to be a linear receiver filter. Letci be the receiver filter

corresponding to theith transmitter, then the symbol estimate is given by

b̂i = y⊤ci. (3.5)

The mean square error (MSE) corresponding to theith transmitter is given by,

MSEi = E

[(
b̂i − bi

)2
]

, (3.6)

which allows us to define total MSE as

TMSE =
M∑

i=1

MSEi (3.7a)

=
M∑

i=1

c⊤i

(
SP

1

2 BP
1

2 S⊤ + σ2IL

)
ci + M − 2

M∑

i=1

c⊤i SP
1

2 E [bbi] (3.7b)

= Trace
[
C⊤SP

1

2 BP
1

2 S⊤C + σ2C⊤C − 2C⊤SP
1

2 B + IM

]
. (3.7c)
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Note that TMSE is the trace of the MSE matrix

E = E[(b̂ − b)(b̂ − b)⊤] (3.8a)

=
(
C⊤SP

1

2 BP
1

2 S⊤C + σ2C⊤C − 2C⊤SP
1

2 B + IM

)
. (3.8b)

3.2 Total power constraint: Optimal Transmitter Codewords, Power Levels and

Receiver Structure

Since the network lifetime of a sensor network is inversely proportional to thebattery powers of

the sensors, it is crucial to design transmission schemes that conserve battery power. Here we

consider a constraint on total transmission power used by the sensors. Physically, this problem

might correspond to a scenario where we are interested in deploying identical sensors in dense

groups such that all members in a group measure the same symbol value and use the same

codewords for transmission. Each group of sensors could then be seen as a single sensor whose

total transmission power would be equal to the aggregate power of sensors in the group. The

problem of finding the optimal number of sensors in each group would then translate to a power

allocation problem under a total power budget.

The optimization problem can be stated as follows,

min
S,P,C

TMSE (3.9a)

s.t. diag(S⊤S) = 1, Trace[P] = Ptot. (3.9b)

It is well–known [41] that the structure of the optimum linear receiver that minimizes the MSE

is the MMSE receiver. For this problem, the expression for the optimum receiver was obtained

by setting∂ (TMSE) /∂C |C=C⋆= 0. The solution is found to be

C⋆ =
(
SP

1

2 BP
1

2 S⊤ + σ2IL

)−1 (
SP

1

2 B
)

. (3.10)
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Substituting (3.10) in (3.7), the TMSE expression reduces to

TMSE = M − Trace

[
BP

1

2 S⊤
(
σ2IL + SP

1

2 BP
1

2 S⊤
)−1

SP
1

2 B

]
(3.11a)

= M − Trace


BP

1

2 S⊤

σ2



IL − SP

1

2 BP
1

2 S⊤

σ2
+

(
SP

1

2 BP
1

2 S⊤

σ2

)2

− · · ·



SP

1

2 B




(3.11b)

= σ2Trace

[(
σ2B−1 + P

1

2 S⊤SP
1

2

)−1
]

. (3.11c)

Note thatSP
1

2 BP
1

2 S⊤ is positive definite, which implies that
(
SP

1

2 BP
1

2 S⊤ + σ2IL

)
is in-

vertible. Also, it has been assumed in the above analysis thatB−1 exists. However, it will later

be argued that invertibility ofB is not necessary since it does not affect the structure of the

optimum codewords.

Now for finding the optimal codewords, assume thatL ≤ M . Later we show that for the

L > M case the optimal codewords can be found out in a manner similar to theL ≤ M case.

Let B = U1Σ1U
⊤
1 andA = SP

1

2 = U2Σ2V
⊤
2 whereΣ1 = diag(λ1, λ2, . . . , λM ) such that,

λ1 > λ2 > . . . > λM andΣ2 =
[
diag(µ1, µ2, . . . , µL),0L×(M−L)

]
.

Note thatS andP
1

2 can be obtained fromA as the normalized columns and norms of

columns ofA respectively.

Then the optimization problem (3.9) can be rewritten as,

min
A∈RL×M

Trace

[(
σ2B−1 + A⊤A

)−1
]

(3.12a)

s.t. tr(A⊤A) =
L∑

j=1

µ2
j = Ptot. (3.12b)

Lemma 1 If G andH aren × n Hermitian matrices, then

det(G + H) ≤ ∏n
i=1

(
λ[i](G) + λ[n+1−i](H)

)
where{λ[i](G)} is the ordered sequence of

eigenvalues.

Proof: Marshall and Olkin [42, Lemma 9.G.4].

Lemma 2 LetA be the set of allL × M matrices. For allA ∈ A, there exists̃A ∈ A such that

TMSE(Ã) ≤ TMSE(A) andÃ⊤Ã commutes withB.
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Proof: Define a functionθ(A) = det
(
σ2B−1 + A⊤A

)
. ChooseG = σ2B−1 andH =

A⊤A following a similar argument as in [19]. DefinẽA = AQ, whereQ is an orthogonal

matrix chosen so thatσ2B−1 andÃ⊤Ã commute and the eigenvector corresponding to the

ith largest eigenvalue ofσ2B−1 is the same as that corresponding to the(n + 1 − i)th largest

eigenvalue ofÃ⊤Ã. Note thatÃ ∈ A since tr(Ã⊤Ã) = tr
(
Q⊤A⊤AQ

)
= Ptot. Now

using Lemma 1,θ(Ã) ≥ θ(A). Sinceθ(A) is Schur–concave and TMSE is Schur–convex

in the eigenvalues of
(
σ2B−1 + A⊤A

)
(see Appendix 3.6.1), it follows that TMSE(Ã) ≤

TMSE(A). �

Lemma 2, combined with the fact that two matrices commute if and only if they share

the same eigenvectors [29], restricts the optimization space to that subset ofA for which the

conditionV2 = U1 holds. Note that the above condition is sufficient but not necessary. An

alternate proof that doesn’t use the concepts of majorization [42] (but ismore involved) can be

developed along the lines of [43].

SubstitutingV2 = U1 in (3.11a), the following two cases arise.

1. M ≥ L

TMSE = σ2Trace

[(
σ2U1Σ

−1
1 U⊤

1 + U1Σ
⊤
2 Σ2U

⊤
1

)−1
]

(3.13)

= σ2
L∑

i=1

1
σ2

λi
+ µ2

i

+
M∑

i=L+1

λi. (3.14)

The Lagrangian corresponding to the optimization problem (3.12) can be written as fol-

lows,

L
(
µ2

1, . . . , µ
2
L, β

)
= TMSE+ β

(
L∑

i=1

µ2
i − Ptot

)
.

Using Kuhn-Tucker conditions [44], this leads to the following optimal solution,

µi = max (0, α) , (3.15)

whereα is chosen such that
M∑

i=1

µ2
i = Ptot. (3.16)

2. M < L:

It can be verified that only the firstM µis need to be optimized, and the remaining

(L − M) eigenvalues may be set to zero for obtaining the optimal solution.
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Figure 3.3: Water-filling is achieved by distributing the sum of the eigenvaluesof A⊤A over
the eigenvalues ofB−1.

In other words, for anyM andL, the optimal solution corresponds to water-filling (Fig. 1)

the smallestK = min(L, M) eigenvalues ofB−1 with those ofA⊤A, and aligning the eigen-

vectors ofA⊤A andB as described in the proof of Lemma 2. Intuitively this corresponds to

allocating power along directions carrying maximum information aboutB.

The above analysis assumed thatB is invertible. However, the result holds even for a non–

invertible B since it can be made invertible by adding an infinitesimally small perturbation

matrix (while ensuring thatB is still a correlation matrix). As a result, previously non–zero

eigenvalues ofB−1 will suffer very little change, while the other eigenvalues (previously zero)

will now attain large finite values, but the corresponding dimensions will be avoided by the

water-filling solution [45].

3.2.1 Constructing the Optimal Sequences

From Section 3.2,A = SP
1

2 = U2Σ2V
⊤
2 . Equation (3.15) gives the structure ofΣ2 and

Lemma 2 gives the structure ofV2. Note that any orthogonal matrix can be chosen forU2 and

so there exists a whole class of signature sets. We illustrate the structure of optimal codewords
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with the following examples:

Example: Consider the case of when symbols from different transmitters are uncorrelated and
let L < M . ThenB = IM . The optimal codeword structure turns out to be,

V2 = IM (3.17)

Σ2 =

[
diag

(√
Ptot

L
,

√
Ptot

L
, · · · ,

√
Ptot

L

)
,0L×(M−L)

]
. (3.18)

SinceU2 can be chosen arbitrarily, the optimal codewords are given by,

A =

[√
Ptot

L
U2,0L×(M−L)

]
(3.19)

which means that TMSE can be minimized by letting only the first L transmitters transmit in
orthogonal channels with equal power. However it can be easily verified that if theM transmitters
are given equal power and the sequences are chosen as WBE sequences [17] i.e.SST = M

L
IL,

even then the same minimum TMSE can be obtained. This illustrates the fact that the conditions
given in this chapter for deriving optimal codewords aresufficient but not necessaryand there
can be other constructions of optimal codewords.

Example: Consider the case whenB has identical elements and hence rank(B) = 1. The
optimal solution would correspond to allM transmitters using identical codewords with equal
powers. An alternative approach based on separation principle would be to do source coding
first and then transmitting the compressed data. This approach suggests that only one transmitter
transmits with power equal toPtot. It can be easily verified that to achieve the same distortion,
our scheme would confer anM -fold power savings over the second scheme.

3.2.2 An Alternate Derivation of TMSE Minimizing Codewords/Power levels

Note that the TMSE expression depends only on the eigenvalues of the matrix
(
σ2B−1 + A⊤A

)
.

TMSE is a Schur–convex function of the eigenvalues of
(
σ2B−1 + A⊤A

)
(see Appendix 3.6.1).

Minimizing TMSE is equivalent to maximizingdet
(
σ2B−1 + A⊤A

)
, a Schur–concave func-

tion. Making use of the fact thatdet (I + AB) = det (I + BA), and expressingσ−2B =

G⊤G andX = A⊤A, we can write the following maximization problems that are equivalent

to TMSE minimization.

max
A

1

2
log
[
det
(
σ2IL + ABA⊤

)]
− L

2
log σ2 (3.20a)

s.t. Trace
[
A⊤A

]
= Ptot (3.20b)

A ≥ 0. (3.20c)
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The second optimization is given by,

max
X

log det
(
IM + GXG⊤

)
(3.21a)

s.t. Trace[X] = Ptot (3.21b)

X > 0. (3.21c)

The optimization problem (3.20) looks somewhat similar to the information theoretic sum ca-

pacity maximization problem for a white Gaussian synchronous CDMA system [16]. The

information theoretic optimal way of sending correlated data over a multiple access channel is

still unknown [46]. However for our scheme, if we aim to maximize the mutual information

between the transmitted symbol vector and the received signal, then we end up with the first

optimization problem given above.

The second optimization problem given above (3.21) is mathematically equivalent to the

problem obtained when one tries to maximize the capacity of a point to point system with par-

allel channels having correlated Gaussian noise [47]. This problem canbe solved analytically

to obtain the optimal codeword and power levels for our original TMSE minimization problem.

Recall thatB = U1Σ1U
⊤
1 , thereforeG = σ−1Σ

1/2
1

U⊤
1 . Let X̃ = U⊤

1 XU1, then (3.21) can

be re-written as

max
X̃

log det
(
IM + Σ

1/2
1

X̃Σ
1/2
1

)
(3.22a)

s.t. Trace
[
X̃
]

= Ptot (3.22b)

X̃ > 0. (3.22c)

Using Hadamard’s inequality [2, Theorem 16.8.2], one can see that choosingX̃ to be a diagonal

matrix is optimal. Rewriting the above problem in terms of diagonal elements ofX̃ and solving

using a Lagrangian multiplier, we get the same water-filling solution obtained earlier. Also, it

can be seen that left eigenvectors ofA (denoted byU2 earlier) can be chosen arbitrarily and an

optimal value ofV2 is U1.

3.2.3 Comparison of Optimal Codewords with Random/Orthogonal Codewords

Figures 3.4 – 3.7 illustrate the reduction in TMSE achieved by using optimal codewords and

power levels over random codewords and random power levels or orthogonal codewords with
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equal power levels. In order to better understand the effect of increasing correlation on the

reduction in TMSE, a special structure ofB (given below) is used in Figures 3.4 and 3.5.

B =




1 ρ · · · ρ

0 1 · · · ...
...

...
. . . ρ

ρ · · · ρ 1




(3.23)

In practice, the sensors will transmit at low powers to conserve battery and increase network

lifetime. It can be observed that the reduction in TMSE is more pronounced at 0 dB than at10

dB, thus emphasizing the importance of choosing codewords optimally.

Figures 3.6 and 3.7 repeat the above experiment with a generalB, and again one can observe



41

that optimal choice of codewords is more critical at lower values of SNR.

3.3 Individual Power Constraints

In physical scenarios where we do not have a very dense deploymentof sensors, it is often

more meaningful to consider individual power constraints on sensors’ transmissions when for-

mulating the TMSE minimization problem. For simplicity, lets just consider the case when

each sensor has an identical unit power constraint i.e.P = IM . The optimization problem can

then be written as,

min
S,C

TMSE (3.24a)

s.t. diag(S⊤S) = 1,P = IM. (3.24b)

The optimization of the receiver filters does not depend on the power constraints and the opti-

mum receiver filter in this case is same as that obtained for the total power constraint case and

is a linear MMSE filter. Substituting in the TMSE expression and simplifying gives

TMSE = σ2Trace

[(
σ2B−1 + S⊤S

)−1
]

. (3.25)

We can convert the above problem into a standard convex optimization problem that can be

efficiently solved using numerical techniques. Note that the TMSE expression depends only on

the eigenvalues of the matrix
(
σ2B−1 + S⊤S

)
. Let λ

(
σ2B−1 + S⊤S

)
be a set denoting the

vector of eigenvalues of the above matrix under the constraints given in (3.24). Then TMSE is

a Schur-convex function of the eigenvalues of
(
σ2B−1 + S⊤S

)
. Minimizing TMSE is same as

maximizing the following Schur-concave function:det
(
σ2B−1 + S⊤S

)
. Let σ−2B = G⊤G

andX = S⊤S, then the TMSE minimization problem under individual power constraints is

equivalent to the following problem,

min
X

− log det
(
IM + GXG⊤

)
(3.26a)

s.t. diag(X) = 1 (3.26b)

X > 0. (3.26c)

The log det problem in (3.26) is a well studied convex optimization problem [47] with no

known analytical solution. However, efficient numerical procedures based on interior point
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methods [47] can be used to solve this problem. We shall now describe some special cases for

which an analytical solution can be found.

The Lagrangian function corresponding to the optimization problem (3.26) can be written

down as

L (Ψ, λ) = − log det
(
IM + GXG⊤

)
− λ⊤diag(X) + Trace[XΨ] (3.27)

whereλ is a vector with non-negative components andΨ is a positive semidefinite matrix. The

associated Karush-Kuhn-Tucker (K.K.T.) conditions are given below

diag(λ⋆) = G⊤
(
IM + GX⋆G⊤

)
G + Ψ⋆ (3.28a)

X⋆ ≥ 0, diag(X⋆) = 1 (3.28b)

Ψ⋆ ≥ 0, λ⋆ ≥ 0, tr (X⋆Ψ⋆) = 0. (3.28c)

The above K.K.T. conditions don’t give much insight into the analytical solution. However, for

the special case whenX⋆ > 0 in the optimal solution, matrixΨ = 0, and the simplified K.K.T.

conditions allow us to find an analytical solution as shown below

diag(λ⋆) = G⊤
(
IM + GX⋆G⊤

)−1
G (3.29a)

X⋆ ≥ 0, diag(X⋆) = 1 (3.29b)

λ⋆ ≥ 0. (3.29c)

From the above conditions, we can conclude that

diag(λ⋆) =
(
GG⊤ + X⋆

)−1
(3.30)

or diag
(
λ⋆−1

)
=
(
σ2B−1 + X⋆

)
(3.31)

or X⋆(i, j) = − σ2B−1(i, j) if i 6= j. (3.32)

3.3.1 Analytical solution for M = 2

Let B = [1, ρ; ρ, 1] (W.L.O.G. assumeρ ≥ 0) ands⊤1 s2 = ρs. The TMSE expression can be

written as,

TMSE ==
1

σ2
Trace








1
1−ρ2 + 1

σ2

−ρ
1−ρ2 + ρs

σ2

−ρ
1−ρ2 + ρs

σ2

1
1−ρ2 + 1

σ2



−1




. (3.33)
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Then we need to minimize the above expression w.r.t.ρs.

Consider the following result from the theory of majorization [42, Lemma 9.C.1.c]:-

Lemma 3 Consider the partitioned Hermitian matrix given below

Hθ =


 H11 θH12

θH21 H22


 (3.34)

thenλ(Hθ1
) ≺ λ(Hθ2

) (3.35)

for 0 ≤ θ1 ≤ θ2 ≤ 1. (3.36)

where≺ is the majorization operator defined in Appendix 3.6.1. Since TMSE is a Schur-

convex function of the eigenvalues of
(
σ2B−1 + S⊤S

)
, the above lemma can be used to find

the optimal value ofρs. If ρσ2/(1 − ρ2) ≤ 1, thenρ⋆
s = ρσ2/(1 − ρ2), elseρ⋆

s = 1.

The minimum value of TMSE can be calculated as

TMSE⋆ =





2σ2(1−ρ2)
σ2+1−ρ2 if ρσ2

1−ρ2 ≤ 1

2(σ2+1−ρ2)
2(1+ρ)+σ2 otherwise.

(3.37)

It turns out that forM = 2, TMSE⋆, for the case of equal individual power constraints is the

same as that obtained under a total power constraint.

3.4 The total power-TMSE trade-off function

The performance limits of any scheme for the general problem consideredin this chapter can

be charaterized in the form of a total power-TMSE tradeoff region that corresponds to the set of

achievable(Ptot, TMSE) pairs for the problem. The total power-TMSE tradeoff function for

a scheme captures the TMSE achieved by that scheme for a given total power budget. Similar

tradeoff functions are considered in related work by Gastpar et al [48]. However, they consider

a CEO type problem where the distortion (TMSE) is not measured directly in theobservations

but in the data embedded in the observations. Also, [48] primarily focusseson the scaling

behavior (as number of sensors goes to infinity) of different transmission schemes while we are

considering only finite number of sensors and exact comparison betweenthe tradeoff functions

in this section.
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Our encoding scheme can be interpreted as uncoded transmission scheme over the Gaussian

vector channel with optimal power allocation over each channel and our results provide an

achievable inner bound on total power-total distortion (TMSE) trade-offregion for the above

problem. This inner bound is stated explicitly in the next section.

3.4.1 Inner Bound: Uncoded transmission over parallel channels with optimal

power allocation across channels

The achievable total power-TMSE trade-off for our scheme can be found by substituting the

optimal value ofSP
1

2 in the TMSE expression and is given below,

TMSE1 =
M∑

i=k+1

λi +
k2

SNR1 +
∑k

j=1
1
λj

, (3.38)

where{λ1, . . . , λM} are the eigenvalues ofB in decreasing order andk depends onPtot/σ2 in

a manner given by the expression below

k∑

i=1

(
1

λk
− 1

λi

)
≤ SNR1 ≤

k+1∑

i=1

(
1

λk+1
− 1

λi

)
. (3.39)

Let B = [1, ρ; ρ, 1] (W.L.O.G. assumeρ ≥ 0), then the above expression reduces to

TMSE1 =





1 − ρ + 1+ρ
1+(1+ρ)SNR1

if SNR1 ≤ 2ρ
1−ρ2

4(1−ρ2)
SNR1(1−ρ2)+2

otherwise.
(3.40)

Note that the TMSE1 expression given above for theM = 2 case suprisingly turns out to be

the same as that obtained with individual power constraints ofPtot/2 at each encoder.

3.4.2 Outer Bound: Point to point system

An outer bound on the TMSE-Power tradeoff can be derived by considering a point to point

system and applying the separation principle. The sensors jointly quantize their symbols and

transmit the bits cooperatively over the Gaussian vector MAC channel. Theouter bound can be

derived by equating the rate-distortion function [2, Chapter 13] for the source coding problem

with the capacity-cost function for the cooperative Gaussian vector MACchannel.



45

Rate-distortion for Correlated Gaussian Random Variables under the assumption of Joint

Encoding

Lemma 4 Let b ∼ N (0,B) be aM × 1 Gaussian vector and let the distortion measure be

d(b, b̂) = (b − b̂)⊤(b − b̂). Then the rate distortion function is given by

R(D) =
M∑

i=1

1

2
log

λi

Di

Di =





α, ifα < λi

λi, ifα ≥ λi



 .

where,λi’s are the eigenvalues ofB andα is choosen such that
∑M

i=1 Di = D.

• Proof: See Cover and Thomas [2, Theorem 13.3.3]

Cooperative Gaussian Multiacess Vector Channel Capacity

Let us define the Cooperative Gaussian nultiaccess vector channel asfollows

y =

M∑

i=1

xi + z

xi : L × 1, E

[
M∑

i=1

|xi|2
]
≤ Ptot

z ∼ N (0, σ2IL)

Then we can state the following lemma

Lemma 5 The sum capacity of a Cooperative Gaussian multiaccess vector channeldefined

above is given by,

M∑

i=1

Ri ≤
L

2
log

(
1 +

MPtot

Lσ2

)

• Proof: See Appendix (3.6.2).

Combining the above two results, we get

TMSE2 =
L∑

i=r+1

λi +
r(
∏r

i=1 λi)
1/r

(1 + MSNR2

L )L/r
(3.41)
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Figure 3.8: Separation based Scheme: Each sensor first quantizes a sequence of lengthn of its
symbols independently and then maps the quantized index to a Gaussian vectorfor transmission
over the Multiple Access Channel.

where,r depends on SNR2 = Ptot/σ2 as given below:

L

M

(
r∏

i=1

[
λi

λr

]1/L

− 1

)
≤ SNR2 ≤ L

M

(
r+1∏

i=1

[
λi

λr+1

]1/L

− 1

)
(3.42)

Example: Let B = [1, ρ; ρ, 1] (W.L.O.G. assumeρ ≥ 0), then the above expression reduces to

TMSE2 =





1 − ρ + 1+ρ
(1+SNR2)2

if SNR1 ≤
√

1+ρ
1−ρ

− 1

2
√

1−ρ2

1+SNR2

otherwise.
(3.43)

3.4.3 A Separation based scheme forM = 2 case

In this section, we apply the separation principle to theM = 2 case with the constraint of

having independent encoders at the sensors (Figure 3.8). We use a recent result by Wagner et

al [49] on the rate-distortion function for a bivariate Gaussian source using two independent

encoders and combine it with a bound on the capacity of the Gaussian vectorchannel with

correlated inputs.

Rate-distortion for Correlated Gaussian Random Variables under the assumption of In-

dependent Encoders

Wagner et al [49] recently solved the open problem of finding the rate-region for the quadratic

Gaussian two-terminal source coding problem . In their paper [49], theycharacterized the

complete achievable region{R1(D1, D2), R2(D1, D2)}, whereR1, R2 are the rates at which

two correlated Gaussian symbols (with covariance matrixB = [1, ρ; ρ, 1]) must be encoded so
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that they can be reproduced with mean squared distortionsD1, D2. For our purposes however,

using the expression for optimal trade-off betweenR = R1 + R2 andD = D1 + D2 turns out

to be sufficient. This point is elaborated in Appendix (3.6.3).

For the aboveB, if we substitute the optimal codewords and power levels for our scheme

in the expression of MSE matrix (3.8) and evaluate the diagonal elements, we find that for all

values ofPtot, D1 = D2. R(D) can be found by substitutingD1 = D2 = D/2 in the (3.63) as

elaborated in Appendix3.6.3. The result is

R(D) ≥ 1

2
log+

(
2(1 − ρ2)

D2

[
1 +

√
1 +

D2ρ2

(1 − ρ2)2

])
. (3.44)

Bounding the Capacity of the Gaussian Multiple Access Channel with Correlated Inputs

It is shown in Appendix (3.6.4) that an upper bound on the capacity is given by

1

2
log

(
1 +

Ptot(1 + ρ)

2σ2

)2

. (3.45)

Combining (3.45) and (3.44), we get the following outer bound on the achievable power-

distortion region,

SNR3 =
2

1 + ρ




√√√√√2(1 − ρ2)

TMSE3
2


1 +

√

1 +
TMSE3

2ρ2

(1 − ρ2)2


− 1


 . (3.46)

Solving for TMSE3 in terms of SNR3 we get

TMSE3 =
2

√(
1 + (1+ρ)

2 SNR3

)2
(1 − ρ2) + ρ2

(
1 + (1+ρ)

2 SNR3

)2 (3.47)

3.4.4 Performance Comparison

Low SNR case

Note that increasing SNR results in increasing values ofk andr in equations (3.38) and (3.41).

Consider the case when SNR is low enough to guaranteek = r = 1. To achieve the same

distortion TMSE1 = TMSE2 = D, the SNR required by the CDMA based scheme and the
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SNR corresponding to the outer bound are related as:

1 + λ1SNR1 = (1 +
MSNR2

L
)L

Using the approximation,(1 + x)n ≈ 1 + nx for smallx, we get:

SNR2

SNR1
≈ λ1

M
(3.48)

It is easy to see thatλ1 ∈ [1, M ], therefore

SNR2

SNR1
∈ [1/M, 1]

At low SNRs, the total power-TMSE function for the separation based scheme (3.47) can

be approximated as

TMSE3 = 1 − ρ2 +
1 + ρ2

1 + (1 + ρ)SNR3
(3.49)

Comparing (3.49) with (3.40) reveals that at low SNRs, SNR1 ≤ SNR3 for achieving the

same TMSE.

To get some numerical intuition into the difference of performance of the above schemes,

lets consider the following example:B = [1, 0.5; 0.5, 1]. The maximum value of TMSE is2

for this choice ofB, and the minimum is0. The eigenvalues of theB matrix are1.5 and0.5.

From (3.48), we can see that to achieve the same TMSE, the SNR required by our scheme

is within 1.25 dB 1 of that suggested by the outer bound. Using (3.49) and (3.43) one can

see that the difference in SNR’s required by the separation based scheme and our scheme is

a function of SNR. To get some quantitative idea of the SNR gap between the schemes, lets

arbritrarily assume a TMSE value of1.9. Solving equations (3.49) and (3.43) gives SNR1 =

0.04761 and SNR3 = 0.05797. Calculating the SNR gap in dB we find that our scheme

performs0.855 dB better than the separation based scheme. Though this is not a huge gain,one

should remember that (3.49) just gives an upper bound on the performance of the separation

based scheme and not the true performance. Therefore in reality, the gains might be higher.

Also, a fair comparison between our scheme and the separation based scheme should take into

account the system complexity in implementing these schemes. While the separationbased

110 log
10

�
2

1.5

�
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scheme requires quantizers, sophisticated source and channel coders and decoders, our scheme

is a essentially an un-coded transmission scheme and therefore should be much simpler to

implement in practice.

High SNR case

Now consider the case when SNR is high enough to guaranteek = r = L. For achieving the

same distortion TMSE1 = TMSE2 = D, SNR1 and SNR2 are related as:

SNR2 =
1

M
(

L∏

i=1

λi)
1/LSNR1 +

1

M
(

L∑

j=1

1

λj
)(

L∏

i=1

λi)
1/L − L

M

Choosing high enough SNRs will ensure that:

SNR2

SNR1
≈ 1

M
(

L∏

i=1

λi)
1/L

It can be easily shown that(
∏L

i=1 λi)
1/L ∈ (0, M

L ], therefore

SNR2

SNR1
∈ [0, 1/L]

At high SNRs, the total power-TMSE function for the separation based scheme (3.47) can

be approximated as

TMSE3 =
2
√

1 − ρ2

1 +
(

1+ρ
2

)
SNR3

(3.50)

By comparing equation (3.50) with equations (3.40) and (3.43), one can see that at high

SNRs,

SNR3 =

√
1 − ρ

1 + ρ
SNR1 =

2

1 + ρ
SNR2 (3.51)

At high SNR, (3.51) shows that the SNR gap between our scheme and the separation based

scheme is unbounded (asρ tends to1).

3.5 Conclusion and Discussion

This chapter proposed a CDMA based transmission scheme for the problemof transmitting

correlated Gaussian symbols over a Gaussian multiple access vector channel. The signature

sequences and receiver structure that minimize the total mean square error in the reproduced
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symbols at the receiver, for a given total power budget at the transmitters, were then derived

for this scheme. For the case of individual power constraints at the transmitters, the problem of

finding the optimal signature sequences can be formulated as a convex optimization problem,

which can be solved analytically only in certain special cases.

The performance of our scheme is then characterized in form of a total power-TMSE trade-

off function, and compared with an information-theoretic outer bound. Our CDMA based un-

coded transmission scheme is found to be always suboptimal compared to the outer bound at all

SNR’s. This is in contrast to a recent result for the scalar version of theproblem [15], where it is

shown that uncoded transmission is optimal below a threshold SNR. A separation based scheme

is also considered and it is observed that at low SNRs, our scheme’s performance is slightly

better than an upper bound on the performance of the separation based scheme. However, a

fair comparison between the schemes should take into account the implementationcomplex-

ity as well. While the separation based scheme requires quantizers, sophisticated source and

channel coders and decoders, our scheme is a essentially an un-coded transmission scheme and

therefore should be much simpler to implement in practice.

3.6 Appendix

3.6.1 Majorization: Definitions and Some Key Results

This section outlines certain mathematical relationships that are needed in obtaining the results

of this chapter. A detailed survey of these inequalities and their properties may be found in [42].

A brief but comprehensive tutorial is provided in [18]. In this section we reproduce some of

their definitions and results for convenience.

Definition 1 For anyx = (x1, x2, · · ·xn) ∈ ℜn,let

x[1] ≥ x[2] ≥ · · · ≥ x[n]

denote the components ofx in decreasing order, called the order statistics ofx
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Definition 2 Letx,y ∈ ℜn. Then,x is majorizedbyy (denoted byx ≺ y) if

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n − 1

and,
n∑

i=1

x[i] =

n∑

i=1

y[i].

Thus, majorization ofx by y suggests that the components ofx are “less spread out” or “more

nearly equal” than the components ofy.

An important example of majorization between two vectors is the following:

Example: For everyA ∈ ℜn such that
∑n

i=1 ai = 1,

(a1, a2, . . . , an) ≻
(

1

n
,
1

n
, · · · ,

1

n

)
.

Definition 3 A real–valued functionφ : ℜn → ℜ, defined on a setA ⊂ ℜn, is Schur-convex

onA if

x ≺ y onA ⇒ φ(x) ≤ φ(y).

The functionφ is strictly Schur-convex ifx ≺ y andx 6= y implies thatφ(x) < φ(y).

Also, the functionφ is Schur-concave if−φ is Schur-convex.

An important class of Schur-convex functions is the following:

Lemma 6 If g : ℜ → ℜ is convex, then the symmetric convex functionφ(x) =
∑n

i=1 g(xi) is

Schur-convex.

Proof: See [42].

Example: Trace
(
A−1

)
is Schur-convex in the eigenvalues of matrixA.

Example: log detA is Schur-concave in the eigenvalues of matrixA.

3.6.2 Cooperative Gaussian Multiacess Vector Channel Capacity

The cooperative capacity of a Gaussian multiaccess vector channel is given by

max
px1,x2,...,xM

(.)
I(x1,x2, . . . ,xM ;y) (3.52)



52

under the constraint

E

[
M∑

i=1

|xi|2
]
≤ Ptot (3.53)

The steps below follow from standard information-theoretic arguments [2, Chapter 2, 10].

I(x1,x2, . . . ,xM ;y) (3.54)

≤ h(x1,x2, . . . ,xM ,y) − h(y|x1,x2, . . . ,xM ) (3.55)

= h(x1,x2, . . . ,xM ,y) − L

2
log σ2 (3.56)

≤ 1

2
log det

[
E
[
(x1 + . . . + xM ) (x1 + . . . + xM )⊤

]
+ σ2IL

]
− L

2
log σ2 (3.57)

(3.58)

To find the capacity, we need to maximize

det
[
E{(x1 + . . . + xM ) (x1 + . . . + xM )⊤} + σ2IL

]
(3.59)

under the constraintE
[∑M

i=1 |xi|2
]
≤ Ptot. It is easy to verify that the determinant is max-

imized whenxij =
√

Ptot/(ML)vj for all i, j, such thatv1, v2, . . . , vL are zero mean i.i.d.

Gaussian random variables with unit variances. The capacity expression given in (5) follows

after substituting the maximizingxij ’s.

3.6.3 Bivariate Gaussian Rate-Distortion with IndependentEncoders

Reference [49] shows that the minimum rate pair(R1, R2) to independently encode the compo-

nents of a bivariate Gaussian source (with covarianceB = [1, ρ; ρ, 1]) with average distortions

(D1, D2) is given by

R1 ≥ 1

2
log+

[
1

D1

(
1 − ρ2 + ρ22−2R2

)]
(3.60)

R2 ≥ 1

2
log+

[
1

D2

(
1 − ρ2 + ρ22−2R1

)]
(3.61)

R1 + R2 ≥ 1

2
log+

[
(1 − ρ2)β(D1, D2)

2D1D2

]
(3.62)

wherelog+(x) = max(log(x), 0) and

β(D1, D2) = 1 +

√(
1 +

4ρ2D1D2

(1 − ρ2)2

)
. (3.63)
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For a given total distortionD, we are interested in finding the sum rateR(D) = (R1(D) +

R2(D)) required to acheieve that distortion. However, clearly the value ofR(D) depends on

how D is split into D1 andD2. For our CDMA based scheme, if we substitute the optimal

value ofSP1/2 into the MSE matrix (3.8) and evaluate the diagonal elements forM = 2 case,

we can show that for all values ofPtot, D1 = D2. For a givenD andρ, the value ofR(D)

can now be determined based on which of the three inequalities among (3.60),(3.61) or (3.62)

is active. ForB = [1, ρ; ρ, 1] andD1 = D2, one can argue based on symmetry that either

(3.62) is active and/or both (3.60) and (3.61) are active simultaneously. EquatingR1 = R2 in

the first two inequalities and solving givesR1(D) + R2(D) = log+

[
(1−ρ2)+

√
(1−ρ2)2+2ρ2D

D

]
.

Comparing with the R.H.S. of (3.62) gives

R(D) ≥max

[
1

2
log+

[
1

D1

(
1 − ρ2 + ρ22−2R2

)]
, (3.64)

1

2
log+

(
2(1 − ρ2)

D2

[
1 +

√
1 +

D2ρ2

(1 − ρ2)2

])]
(3.65)

We need to show that the second argument of themax(., .) function in (3.64) always dom-

inates the first term ifρ ∈ [0, 1] andD ∈ [0, 2]. Straightforward algebra shows that this is

equivalent to saying thath1(ρ, D) ≥ h2(ρ, D) for ρ ∈ [0, 1], D ∈ [0, 2], where

h1(ρ, D) = (1 − ρ2) +
√

(1 − ρ2)2 + ρ2D2 (3.66)

h2(ρ, D) = (1 − ρ2)2 + ρ2D + (1 − ρ2)
√

(1 − ρ2)2 + 2ρ2D (3.67)

Lemma 7 For ρ ∈ [0, 1] andD ∈ [0, 2], h1(ρ, D) ≥ h2(ρ, D).

Proof: It is easy to see that forρ ∈ [0, 1], h1(ρ, D) andh2(ρ, D) are convex and concave inD

respectively. Now consider the following function

h3(ρ, D) =
2(1 − ρ)2

1 + ρ2
+

2ρ2

1 + ρ2
D (3.68)

For a fixedρ ∈ [0, 1], h3(ρ, D) is a line inD which is a common tangent to bothh1(ρ, D) and

h2(ρ, D) at point(2, 2). Now a convex/concave function always lies above/below its tangent,

and the result follows.
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3.6.4 Bounding the Capacity of the Gaussian Multiple Access Vector Channel

with Correlated Inputs

The capacity in this case will be given by

max
px1,x2,...,xM

(.)
I(x1,x2, . . . ,xM ;y) (3.69)

under the constraints

E

[
M∑

i=1

|xi|2
]
≤ Ptot, (3.70)

xi = fi(b
n
i ),∀i ∈ [0, M ]. (3.71)

Proceeding in the same manner as the cooperative case in Appendix3.6.2, the problem boils

down to maximizing the determinant given in (3.59), however with the additional constraint

thatxi’s are outputs of independent encoders (xi = fi(b
n
i )). This constraint puts a limit on the

maximum correlation between anyxij andxmn. Proceeding as in [15] or [50], one can use

Witsenhausen’s lemma [51] and a well known result about the maximum correlation between

functions of random variables [52] to derive the following bound:

E[xijxmn] ≤ E[bibm], (3.72)

for all i, j, m, n ∈ [1, M ].

Using Hadamard’s inequality [2, Theorem 16.8.2], the determinant value for M = L =

2 can be bounded byE[(x11 + x21)
2]E[(x12 + x22)

2], which can further be bounded by

[Ptot/2(1 + ρ)]2 using (3.72).
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Chapter 4

Random Access for Variable Rate Links

Design of efficient multiple access schemes has been an active area of research for more than

four decades. Recently, advances in radio technology and spectrum policies have driven re-

search to build interference aware systems like “cognitive radios” [53].Earlier work [5] studies

the role of “spectrum servers” as centralized schedulers in devising fair and efficient sched-

ule for interfering links that are capable of varying their rates of transmission. Reference [54]

investigates the role of the spectrum server to schedule end-to-end flowsin a network of inter-

fering links. The above mentioned schemes involved centralized schedulingthat requires the

scheduler to know complete global information about the links. The informationcould be all

interference gains between each pair of links in the network. More often,the availability of

such global information requires a lot of overhead processing by the central entity. Hence, per-

fect centralized scheduling schemes act as a benchmark for imperfect scheduling schemes [55]

and decentralized or distributed multiple access schemes.

Distributed random access schemes, e.g., ALOHA have been widely used inpractical mul-

tiple access systems. The CSMA/CA schemes used in the IEEE 802.11 networks are very

popular, thanks to the ease of implementation and decentralized control of these random access

techniques. Of late, research effort has been directed towards analyzing the performance of

these random access schemes. Stability properties of random access schemes have been studied

in [56,57]. In [58,59], the authors propose distributed approachesfor fair random access. The

throughput characteristics of random access schemes have been studied in in [60,61]. A recent

work [62] characterizes the Pareto boundary of the network throughput region as the family of

solutions optimizing a weighted proportional fairness objective, parametrized by weights cho-

sen by the links. The authors also propose a distributed random access scheme to achieve a

desired point within the Pareto optimal boundary.

In this chapter, we consider a model in which links turn ON and OFF in each slot. The

rate obtained in a link depends on the interference from other active links.We characterize
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and compare the achievable throughput region of a centralized scheduling scheme with a prob-

abilistic random access scheme. In the centralized scheduling scheme, the scheduler provides

the fraction of time a set of links are on, in order to maximize an objective function. In the

probabilistic random access scheme, each link turns ON or OFF with a fixed probability cho-

sen independently of the other links in each slot. Section 4.2 defines the throughput region of

both schemes. A natural question arises:Are the set of rates that can be achieved in both cases

the same?. In section 4.3 we characterize the throughput regions of both schemes and identify

conditions under which they are the same. We derive analytic expressionsfor the rate regions

for a network with two links and provide an intuitive geometric explanation. In section 4.4 we

propose a distributed algorithm in which each link updates its probability of transmission based

on its current rate. This memoryless policy achieves any feasible point in the rate region of the

probabilistic random access scheme. The distributed algorithm is shown to converge under a

very loose PHY layer assumption on the devices that just requires that the rate achieved at any

link goes down strictly with increased interference.

4.1 System Model

Consider a wireless network withN nodes formingL logical links sharing a common spectrum.

The network can be represented as a directed graphG(V, E), where the nodes in the network

are represented by the set of verticesV of the graph and the links are represented by a set of

directed edgesE . Therefore, the cardinalities|V| = N and|E| = L. A directed edge from a

nodem to noden implies thatm wishes to communicate data to noden.

Define the set oftransmission modesT = {0, 1, . . . , M − 1}, whereM = 2L denotes the

number of possible transmission modes. Then themode activity vectortj of modej is a binary

vector, indicating the on-off activity of the links. Iftj = (t1j , t2j , . . . , tLj) is a mode activity

vector, then

tlj =





1, link l is active under transmission modej,

0, otherwise.
(4.1)

Figure 4.1 shows a representative network and Figure 4.2 shows particular transmission

mode for the set of links. Note that there areM possible transmission modes including the

mode in which all links are off. LetT = [tlj ] be the transmission mode matrix. Similarly, we
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1

2

3

4

5

Figure 4.1: Graph of network showing the nodes and directed links

can construct theL × M rate matrixCL = [clj ], whereclj is the rate obtained by linkl in

modej. By construction,tlj = 0 ⇒ clj = 0. We impose an additional constraint on the entries

of CL: any additional interference reduces the rate of an active link. In otherwords, ifLj is

the set of active links in modej andLj′ ⊂ Lj is the set of active links in modej′ 6= j, then

clj < clj′ for everyl ∈ Lj′ ∩ Lj .

Many systems with interfering links can be modeled using theCL described above, e.g.,

[5, 63]. The following two examples show the rate matrices for a network with two and three

links respectively. For simplicity, in Sections 4.2 and 4.3, we will assume that each link gets

a normalized rate of 1 unit, when it transmits in isolation. However, this assumptionis not

necessary in Section 4.4.

Example 1:C2 =


 0 1 0 α

0 0 1 β


 ,

Example 2:C3 =




0 1 0 a 0 c 0 g

0 0 1 b 0 0 e h

0 0 0 0 1 d f i




.

The conditions forC2 are

α, β < 1, (4.2)
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1

3

Figure 4.2: Graph of network showing transmission mode corresponding to(1 0 1 0)

and the conditions forC3

a, b, c, d, e, f < 1, (4.3)

g < a, c, (4.4)

h < b, e, (4.5)

i < d, f. (4.6)

4.2 Rate Regions

We define therate regionas the set of rate vectors that can be achieved by a multiple access

scheme. In this chapter, we compare the rate regions of a centralized scheduling scheme with a

probabilistic random access scheme.

4.2.1 Centralized scheduling

In this scheme, a schedule is the specified by fractions of time each transmission mode is active.

A centralized scheduler can be used to compute the the optimum time fractions of activity, to

maximize a certain utility function [5]. Letxj be the fraction of time that transmission mode
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j is active andrl be the average data rate of linkl. The average data rate in linkl is the time

average of the data rates of all the transmission modes that include linkl. Thus,

rl =
∑

j

cljxj , (4.7)

or in vector form,

r = CLx. (4.8)

Thus the rate region for the centralized scheduling scheme is given by

RS
L := {(r1, . . . , rL) : r = CLx,x ≥ 0,xT1 = 1}. (4.9)

Clearly, the regionRS
L is a polytope defined by its2L vertices which are given by the column

vectors ofCL.

4.2.2 Random Access Scheme

In this scheme, linkl transmits with a probabilitypl chosen independent of the other links in

the network. The rate region for the random access scheme is given by

RP
L := {(r1, . . . , rL) : r = CLx,x = f(p), 0 ≤ p ≤ 1} (4.10)

wheref : RL → R2L

is given by

f(p) =




(1 − p1)(1 − p2) . . . (1 − pL)

p1(1 − p2) . . . (1 − pL)

...

(1 − p1)p2 . . . pL

p1 . . . pL




. (4.11)

It is easy to see thatRP
L ⊆ RS

L. Also, sincef(·) is a continuous mapping, the set{x : x =

f(p), 0 ≤ p ≤ 1} must be a closed and continuous region and thereforeRP
L must also be closed

and continuous. Our aim will be to characterize the Pareto boundary ofRP
L and identifying the

conditions, if any, under whichRP
L ≡ RS

L. We first consider the following simple cases to

obtain insight about the shape of the rate regions.
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4.3 Characterization ofRP
L

4.3.1 L = 2

Using (4.10) and definition ofC2 from Example 1, the rates on two links are

r1 = p1(1 − p2) + αp1p2, (4.12)

r2 = (1 − p1)p2 + βp1p2. (4.13)

The above equations can be rewritten as

r1 = p2(p1α + (1 − p1).0) + (1 − p2)(p1.1 + (1 − p1).0), (4.14)

r2 = p2(p1β + (1 − p1).1) + (1 − p2)(p1.0 + (1 − p1).0). (4.15)

In vector form,


 r1

r2


 = p2


p1


 α

β


+ (1 − p1)


 0

1






+ (1 − p2)


p1


 1

0


+ (1 − p1)


 0

0




 (4.16)

The above representation of the rate vector, as a nested convex combination of the polytope

vertices, is useful in visualizing the rate regionRP
2 . We now consider two different cases.

Low Interference Case: α + β ≥ 1

Figure 4.3 showsRS
2 . Any point in the quadrilateralOABC can be achieved using centralized

scheduling. Notice that the vertices of the polytopeOABC are the columns ofC2. For a

given probability vectorp = [p1 p2]
T , the rate vectorr given by (4.16) is shown as pointF in

Figure 4.3. Asp1 varies between0 and1, pointsD andE completely trace the line segments

AB andOC respectively. Asp2 varies between0 and1, the pointF traverses the line segment

ED completely. Hence, it can be seen that by varyingp, the achieved rate regionRP
L is the

same asRS
L.
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r

A (0,1)

E

B

D

(0,0) (1,0) 1
r

2

D = (1-p1).A + p1.B 

E = (1-p1).O + p1.C 

F = (1-p2).E + p2.D 

F

O C

Figure 4.3:RS
L andRP

L for the caseα + β ≥ 1. RP
L ≡ RS

L and is given by the area enclosed
by OABC. B represents(α, β).

Analytically, we can write (derivation given in the Appendix 4.7)

RP
L =





(r1, r2) :

0 ≤ r1 ≤ α ⇒ 0 ≤ r2 ≤ α−(1−β)r1

α ,

α ≤ r1 ≤ 1 ⇒ 0 ≤ r2 ≤ β(1−r1)
1−α .





. (4.17)

High Interference Case: α + β < 1

In this case,RS
L is given by the triangle formed by pointsO, A andC in Figure 4.4. As in

the previous case, pointF in Figure 4.4 corresponds to the rate vectorr achieved for a given

p = [p1 p2]
T . If p1 = 1, the line segmentDE coincides withBC. As p1 varies from1 to 0,

DE moves fromBC to an intermediate positionHG to finally AO (for p1 = 0) tracing out

the regionRP
L as the area enclosed byOAHIC. Note that the boundaryAHIC of the region

is convex (verified from the analytical expression forRP
L in the appendix) and contains two

linear componentsAH andIC. The presence of linear componentAH can be geometrically

understood by observing that asDE moves fromHG to AO, endpointD always lies on the

linear segmentAH. In order to intuitively understand the presence ofIC, it helps to notice

that asp1 varies from1 to 0, J , the point of intersection ofDE andBC initially moves from

B towardsC, goes up to a certain pointI, and then moves back towardsB.

Note that we could also have expressed the rate equations as
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r

A (0,1)

E

B

D

(0,0) (1,0) 1
r

2
D = (1-p1).A + p1.B 

E = (1-p1).O + p1.C 

F = (1-p2).E + p2.D 

F

O CG

I

H

J

AH/AB = OG/OC

Figure 4.4:RS
L andRP

L for the case:α+β < 1. RS
L is given by the area enclosed byOAC and

RP
L is given by the area enclosed byOAHIC. B = (α, β). Note that the dotted and dashed

lines are just auxiliary constructions used for understanding the evolutionof the concave curve
AHIC (as elaborated in the previous paragraph).


 r1

r2


 = p1


p2


 α

β


+ (1 − p2)


 1

0






+ (1 − p1)


p2


 0

1


+ (1 − p2)


 0

0




 (4.18)

The above equations give an alternate equivalent way of looking at the region, where now

instead of linesAB andOC, we consider linesBC andAO.

The analytical characterization of the above region is given below (derivation given in the

Appendix 4.7)

RP
L =





(r1, r2) :

0 ≤ r1 ≤ α2

1−β ⇒ 0 ≤ r2 ≤ α−(1−β)r1

α ,

α2

1−β < r1 < 1 − β ⇒ 0 ≤ r2 ≤ (
√

(1−β)r1−1)2

1−α ,

1 − β ≤ r1 ≤ 1 ⇒ 0 ≤ r2 ≤ β(1−r1)
1−α .





. (4.19)
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4.3.2 L = 3

The analytical characterization of the rate region is cumbersome for the three dimensional

case because of the number of sub-cases that need to be considered.However, the geometric

intuition that we developed for the two link case can easily be extended to this case. Using the

definition ofC3, we can write the rate vectorr(p) in the following form:




r1

r2

r3




= p3





p2




p1




g

h

i




+ (1 − p1)




0

e

f







+ (1 − p2)




p1




c

0

d




+ (1 − p1)




0

0

1











+ (1 − p3)





p2




p1




a

b

0




+ (1 − p1)




0

1

0







+ (1 − p2)




p1




1

0

0




+ (1 − p1)




0

0

0











(4.20)

Figure 4.5 illustrates the nested convex combination structure given above,where point

N corresponds to the rate vectorr(p). Working with our geometric intuition, we make the

following claim (without proof):

Claim 1: RP
L ≡ RS

L ⇔ following conditions are satisfied:

• a + b ≥ 1, c + d ≥ 1, e + f ≥ 1.

• Points{(0, 0, 1), (c, 0, d), (g, h, i), (0, e, f)} are coplanar.

• Points{(1, 0, 0), (a, b, 0), (g, h, i), (c, 0, d)} are coplanar.

• Points{(0, 1, 0), (0, e, f), (g, h, i), (a, b, 0)} are coplanar.
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A (010)

C (100)

E (ab0)

J

D (0ef) H

B (001) I F (c0d)

O

K

L

M
G(ghi)

N

Figure 4.5: Visualizing the rate region for theL = 3 case
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4.4 Distributed Algorithm

In this section, we present a distributed random access algorithm to achieve a feasible point

in the rate regionRP
L for a network withL links. Each link updates its probability of trans-

mission based on the rate it achieves in the previous slot. We start by identifying a property

of the functionri(p) (Lemma 8) that is the key for proving the convergence of our distributed

algorithm.

The rateri(p) achieved by linki in the random access scheme can be written as

ri(p) =
M∑

j=1

cij

L∏

l=1

[tljpl + (1 − tlj)(1 − pl)] (4.21)

= pi

∑

j:tij=1

cij

∏

l 6=i

[tljpl + (1 − tlj)(1 − pl)] (4.22)

(4.23)

Let us define

gi(p−i) =
∑

j:tij=1

cij

∏

l 6=i

[tljpl + (1 − tlj)(1 − pl)] (4.24)

where

p−i = [p1, . . . , pi−1, pi+1, . . . , pL]T (4.25)

Thenri(p) can be written as

ri(p) = pigi(p−i) (4.26)

Lemma 8 gi(·) is a positive and strictly decreasing function ofpj for all j 6= i. Therefore,

ri(.) is a strictly increasing function ofpi and a strictly decreasing function ofpj for all j 6= i.

Proof See Appendix 4.8.

Now for each linki, consider the following iterative update ofpi(n) based on the current rate

ri(n) and the desired raterd
i . In practice the current rateri(n) is measured by averaging the

rates obtained over many slots.

pi(n + 1) =
rd
i

ri(n)
pi(n) (4.27)

Now we are ready to present the main result of this chapter that proves theconvergence of

our distributed algorithm given by iteration (4.27).
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Theorem 2 Given a feasible rate vectorrd ∈ RP
L , if all the links perform the above iteration

independently starting withp(0) = 0, then their iterations converge to a fixed point(p∗, r∗)

such thatr∗ = rd andp(n) ≤ 1 for all n.

Proof Using (4.26), we can rewrite (4.27) as

pi(n + 1) =
rd
i

gi(p−i(n))
(4.28)

Substitutingp(0) = 0 in the iteration, we getp(1) = rd and thereforep(1) ≥ p(0). Using

lemma 8 with the above fact, it follows thatp(2) ≥ p(1) and in generalp(n + 1) ≥ p(n)

for all n. Therefore, ifp(n) is bounded from above by1, asn increases, it must converge to a

fixed pointp∗ and the correspondingr∗ is then equal tord.

Now we prove that ifrd is feasible, thenp(n) remains bounded below1. Feasibility ofrd

means that there exists0 ≤ pd ≤ 1 such that

pd
i =

rd
i

gi(pd
−i(n))

(4.29)

By definition,pd ≥ p(0). Using (4.28) and (4.29), we can see thatpd ≥ p(1) and in general

pd ≥ p(n) for all n. Thereforep(n) must also remain bounded below1.

In case the users choose an infeasiblerd, the above iteration will lead to a situation where

somepi(n)’s exceed1. To avoid such infeasible conditions, we can modify the iteration to the

one given below.

pi(n + 1) = min

{
rd
i

ri(n)
pi(n), 1

}
(4.30)

The above iteration converges to the desired rate vectorrd if rd is feasible.

In case the users start with an infeasiblerd, we make some simple observations that are

stated below as Lemma 9. Letr1 denote the rate vector corresponding top = 1 and(p∗, r∗)

denote the probability and rate vectors obtained when the above iteration converges for alli.

Lemma 9 Assumerd is infeasible. Then for any linki, the following conditions hold true: (a)

rd
i > r1

i ⇒ r∗i ≥ r1
i , (b) rd

i ≤ r1
i ⇒ r∗i = rd

i . (c) If L = 2, thenrd > r1 ⇒ r∗ = r1.
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Proof (a) Clearly,p∗ ≤ 1. If p∗i = 1, thenr∗i = 1.gi(p
∗
−i) ≥ 1.gi(1) = r1

i (using Lemma 8).

If p∗i < 1, then using the convergence condition we get,p∗i = min{p∗i rd
i /r∗i , 1} = p∗i r

d
i /r∗i

which givesr∗i = rd
i > r1

i .

(b) We prove this by showing that for alln, min{pi(n)rd
i /ri(n), 1} = pi(n)rd

i /ri(n) which

implies (using proof of Theorem 2) thatr∗i = rd
i . To see thatpi(n)rd

i /ri(n) ≤ 1 for all n,

consider the following chain of inequalities using Lemma 8:

rd
i

ri(n)
pi(n) =

rd
i

gi(p−i(n))
≤ rd

i

gi(1)
≤ r1

i

gi(1)
= 1 (4.31)

(c) We want to show that ifrd is infeasible andrd > r1, thenp∗1 = p∗2 = 1. We prove this

by contradiction. It is not possible that bothp∗1 < 1 andp∗2 < 1 because this would then imply

thatrd was feasible. Without loss of generality assume thatp∗1 < 1 andp∗2 = 1. Then we can

write rd
1 = r1(p

∗
1, 1) ≤ r1(1, 1) = r1

1 < rd
1 (using Lemma 8) which is a contradiction.

4.5 Conclusion and Discussion

In this chapter, we compared the achievable throughput region of a probabilistic transmis-

sion scheme with that of centralized scheduling. We also presented a distributed algorithm

to achieve any feasible rate vector in the throughput region of the probabilistic transmission

scheme and proved its convergence. The algorithm is guaranteed to converge for any underly-

ing PHY layer that ensures that rate on a link goes down strictly as the interference increases.

Also, our distributed algorithm does not require any level of coordinationor information shar-

ing between the links. The only information exchange happens between the receiver of a link

and the corresponding transmitter, where the receiver computes the instantaneous link through-

put and feeds it back to the transmitter. The above properties of the algorithm make it attractive

for adoption in unlicensed band scenarios where centralized control is difficult to implement.

Also, since our algorithm allows the participating links to achieve any point in thefeasible rate

region, it could be used for guarantying different QoS levels for different users. This feature

of our algorithm could be seen as a distinct advantage over conventional802.11 based multi-

access schemes that don’t have any such provision for guarantying differing QoS levels across

users.
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4.6 Appendix

4.7 Derivation of the pareto-boundary of the rate region forL = 2 case

Let γ1 = 1 − α andγ2 = 1 − β. Then we can write (4.12) and (4.13) as,

r1 = p1(1 − γ1p2), (4.32)

r2 = p2(1 − γ2p1). (4.33)

The Pareto boundary of the rate region can be defined as the set of ratepairs(r1, r2) such that

at least one of them is non-zero and none of them can be increased without decreasing the other

component. This boundary can be obtained by maximizingr2 (or r1) for each value ofr1 (or

r2). The constraints are0 ≤ p1, p2 ≤ 1. If we substitutep1 = r1/(1 − γ1p2) in the expression

for r2, then constraints0 ≤ p1 ≤ 1 imply that

0 ≤ p2 ≤ min

{
1 − r1

γ1
, 1

}
.

Now, for a givenr1 ∈ [0, 1], we can findr2 that lies on the Pareto boundary by solving the

following optimization problem:

r2 = max
p2

(
p2 −

γ2p2r1

1 − γ1p2

)

subject to 0 ≤ p2 ≤ min

{
1 − r1

γ1
, 1

}
. (4.34)

Sincer2 = 0 at p2 = 0, the maximum occurs either at the boundary pointp2 = min{(1 −

r1)/γ1, 1} or at a point where the derivative of the above function w.r.t.p2 is zero. Setting the

derivativer′2(p2) = 0 givesp2 = (1 ± √
γ2r1)/γ1. One of these values is greater than1 and

can be discarded. For the other value ofp2 to be valid, we need

0 ≤ 1 −√
γ2r1

γ1
≤ min

{
1 − r1

γ1
, 1

}
,

which is satisfied only if(1 − γ1)
2/γ2 ≤ r1 ≤ γ2. Rewriting in terms ofα andβ,

α2

1 − β
≤ r1 ≤ 1 − β. (4.35)

We now consider the following two cases:
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4.7.1 Low Interference Case: α + β ≥ 1

In this case, the maximum value ofr2 always occurs at the boundary pointp2 = min{(1 −

r1)/(1 − α), 1}. The optimal value ofp2 that maximizesr2 is either(1 − r1)/(1 − α) or 1

depending on whetherr1 ≥ α or not. Substituting the maximizing value ofp2 in (4.34), we

obtain the rate region given by (4.17).

4.7.2 High Interference Case: α + β < 1

In this case, we have to consider separately the following ranges ofr1:

0 ≤ r1 ≤ α2

1 − β
,

α2

1 − β
< r1 < 1 − β,

1 − β ≤ r1 ≤ 1. (4.36)

The optimal values ofp2 corresponding to the above three ranges ofr1 are

p2 =

[
1,

1 −
√

(1 − β)r1

1 − α
,
1 − r1

1 − α

]
(4.37)

Substituting in (4.34), we obtain the rate region given by (4.19).

4.8 Proof of lemma 8

Positivity of gi(.) is evident from its definition. We must now show thatgi(.) is a strictly

decreasing function ofpk for all k 6= i. Computing the partial derivative ofgi w.r.t. pk we get

∂gi

∂pk
=
∑

j:tij=1

cij(2tkj − 1)
∏

l 6=i,l 6=k

[tljpl + (1 − tlj)(1 − pl)] (4.38)

In the above expression, the indexj counts all the transmission modes in whichtij = 1.

Lets denote this set byTi=1. The setTi=1 can be partitioned into two disjoint setsTi=1,k=1 and

Ti=1,k=0 depending on whether the linkk is active or not. Then for eachj ∈ Ti=1,k=1, there

exists a uniquej′ ∈ Ti=1,k=0 such thattlj = tlj′ for all l 6= k. Now noting thatj ∈ Ti=1,k=1

implies by definition that(2tkj − 1) = 1 and similarlyj′ ∈ Ti=1,k=0 implies that(2tkj′ − 1) =

−1, we can write [ 4.38] as
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∂gi

∂pk
=

∑

j∈Ti=1,k=1

(cij − cij′)
∏

l 6=il 6=k

[tljpl + (1 − tlj)(1 − pl)] (4.39)

Using the properties ofCL, we know thatcij < cij′ for all j ∈ Ti=1,k=1. Therefore the

above expression is negative and the result follows.
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Chapter 5

Greedy Users and Resource Allocation Advisory Services

In the previous chapters we considered a variety of resource allocationscenarios from fully

distributed independent users in chapter 2 to users with correlated information in chapter 3 to

distributed but not particularly greedy in chapter 4.

The work in chapter 4 in particular suggests a new twist to the greedy/strategic distributed

resource allocation problem. That is, the resource allocation process ofchapter 4 could be

carried out by a centralized mediating authority called thespectrum server[5, 6, 13, 54], that

receives local interference reports from the links, and instructs them on spectrum usage. The

actual performance figures and how users affect one another is considered public (and true)

information.

However, in a distributed system aided by a spectrum server but without aprovision for

“spectrum police” – a facility that measures mutual interference in an objective fashion and

reports it to the spectrum server – there could be motivation for users to lie about the levels

of interference they experience. For example, how much userA interferes with userB is

something that can only be measured by userB, it is not clear why userB will or will not

report a higher or lower interference value if there is some personal some benefit to doing

so. Thus, we could not resist at least formulating the problem and offering some preliminary

analysis on when greedy users might choose to report interference conditions truthfully or lie

through their teeth as part of a strategy to maximize their utilities.

5.1 System Model and Problem Statement

Consider a directed interference graphG(V, E) formed by a set ofM interfering links (source-

destination pairs).V = {1, 2, . . . , M} is the set of vertices, denoting the links, andE denotes

the set of edges among the vertices (|E| = M(M − 1)). Existence of an edge from vertexi

to vertexj indicates that transmission on linki renders any simultaneous transmission on link

j unsuccessful. Leteij = 0/1 be a binary variable indicating the presence or absence of edge
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from link i to link j. A set of links that can be simultaneously operated in a single time slot

(or channel) without causing interference between any two links constitutean independent set

(denoted byI = {i1, i2, . . . , i|I|}). For a given graphG(V, E), amaximalindependent setI is

a set such that its cardinality|I| is as large as possible.

5.1.1 Server Optimization Problem

Lets assume that the graph topologyG(V, E) is known at the server, and consider the following

optimization function at the server

max
x

M∑

i=1

wi(xi) (5.1)

wherewi()’s are concave, increasing functions, andxi is the time fraction for which linki is

ON. The feasible set of time fractions,x, can be characterized in terms of the time fractions for

which different independent sets are scheduled to be ON. Let{I1, . . . , IL} denote the collection

of all independent sets, andy = [y1, . . . , yL] be the corresponding time fractions for which they

are scheduled, then we can write the following constraints for the above optimization problem.

x = Ay (5.2)

y⊤1 = 1,y ≥ 0 (5.3)

whereA is anM × L binary matrix such thatA(i, j) = 1 if link i ∈ Ij , elseA(i, j) = 0.

Characterization of the Optimal Solution

The optimization problem given by (5.1) is a convex optimization problem and its optimal

solution can be found by first writing the corresponding Lagrangian function and then looking

at the K.K.T. conditions for optimality. Let us first rewriteA = [a1,a2, . . . ,aM ]⊤ so thatai

is theith row of matrixA. The time fraction for linki can now be written as,xi = a⊤
i y. The

Lagrangian function corresponding to problem (5.1) is then given by

L(y, λ, µ) =
M∑

i=1

wi

(
a⊤

i y
)

+ λ
(
y⊤1 − 1

)
+ µ⊤y (5.4)
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The K.K.T. conditions at the optimal point (y∗, λ∗, µ∗) can be found by taking derivatives

of the Lagrangian function w.r.t.y, λ, µ

∑

i∈Ij

[
∂wi

(
a⊤

i y∗
)

∂yj

]
+ λ∗ + µ∗

j = 0,∀j (5.5)

µ∗
jy

∗
j = 0,∀j (5.6)

λ∗
[
(y∗)⊤1 − 1

]
= 0 (5.7)

The above condition states that, for any independent setIj , eithery∗j = 0, i.e., no time

fraction is alloted to independent setIj , or

∑

i∈Ij

[
∂wi

(
a⊤

i y∗
)

∂yj

]
= −λ∗ (5.8)

i.e., the sum of derivatives of weight functions corresponding to all linksi ∈ Ij w.r.t. the time

fractiony∗j alloted to modej is a constant. This makes intuitive sense once one realizes that the

L.H.S. of equation (5.8) when multiplied by∆yj corresponds to the change in server’s objective

function value if the allocationy∗j is increased by a small value∆yj . Now, for any deviation

∆y = [∆y1, ∆y2, . . . ,∆yL] from y∗ s.t. ∆y⊤1 = 0, the value of the server optimization

function should not change. This leads to the above optimality conditions.

5.1.2 User Optimization Problem

We assume that each link is aware of the presence of the other(M − 1) links and can figure

out which all links are interfering with it, i.e., linki can determine the length(M − 1) binary

neighbor list,ei = {e1i, e2i, . . . , e(i−1)i, e(i+1)i, . . . , eMi}. Let êi denote the neighbor list

reported by linki to the spectrum server. Based on the reports sent by the links, the server

constructs a graph topologŷG(V, Ê), finds out the maximal independent sets{Î1, . . . , ÎL},

solves some global optimization problem, and conveys the optimal time fractions and schedule

to the links. Lets assume that each link derives zero utility when it is OFF or is being interfered

by some other link, and a positive utility when it is ON and not being interfered by anyone.

Lets partition and rearrange the independent sets as

{Î1, . . . , ÎL} = {Î1, . . . , Îl} ∪ {Îl+1, . . . , Îm} ∪ {Îm+1, . . . , ÎL} (5.9)
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such that 



i ∈ Îk, andeji = 0,∀j ∈ Îk k ≤ l

i ∈ Îk, and∃j ∈ Îk s.t. eji = 1 l < k ≤ m

i /∈ Îk, k > m





(5.10)

Let (x∗, y∗) be the solution of (5.1), then linki’s utility is given by

ui =
l∑

j=1

y∗j (5.11)

It can be seen from above that linki’s utility depends ony∗ which is computed by the

spectrum server based on the reported graph topology and its optimization objective. The only

way link i can influencey∗ is through the choice of̂ei. The main question explored in this

chapter is given below.

Truthful Reporting Problem Statement

Q: What is the optimal reporting strategy,̂ei, for link i for the server (5.1) and user (5.11)

objective functions given above, assuming that linki has access to its own incoming edge

vectorei and the reports sent by other links,êV−i
= (ê1, . . . , êi−1, êi+1, . . . , êM )? Are there

some conditions under whicĥei = ei?

5.2 Optimal Reporting Strategy for Some Special Server Objective Functions

5.2.1 Scheduling for maximizing weighted sum of time allocations of users

Lets consider a special case when the weight functions given in (5.1) are linear, i.e.,

wi(xi) = wixi,∀i (5.12)

Let
∑

i∈Ij
(wi) be the total weight associated with an independent setIj . Lets assume for

simplicity that each independent set has a unique value of total weight. Thencondition (5.5)

implies that the optimal solution to the server optimization problem is to schedule only the

independent set that has the maximum total weight. Lets call that independent set, the solution

independent set. Then we can make the following claim:
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Theorem 3 Truthful Reporting (̂ei = ei) is the dominant strategy for linki, ∀i = 1, 2, . . . , M ,

i.e. ui(ei, êV−i
) ≥ ui(êi, êV−i

) for all êi, for the server optimization problem given by (5.1)

and (5.12).

Proof: Given a truthful report̂ei = ei and a setF ⊆ V−i, we have to show that flipping bit̂eji

for all j ∈ F will not increaseui.

First note that the independent set computation only considers the presence or absence of

an edge between two vertices, and ignores the edge directions. Therefore, if êij = 1 for some

j ∈ V−i, i.e. link j has reported an incoming edge from linki, then the value of̂eji has no

influence on linki’s utility. So, we need to consider only those setsF for which êij = 0 for all

j ∈ F .

Lets now partition the setF asF = F0 ∪ F1, whereeji = 0 if j ∈ F0 andeji = 1 if

j ∈ F1. Flipping êji’s for j ∈ F0 will result in addition of false incoming edges to vertexi.

This can only push linki out of the solution independent set and will clearly reduceui. On the

other hand, flippinĝeji’s for j ∈ F1 might pushi into the solution independent set (sayI), but

in that case, there must exist a linkj ∈ F1 that also becomes a part of the same independent

set, because ifI containsi but excludes allj ∈ F1, then it must have been possible to construct

I earlier itself. Since all linksj ∈ F1 interfere with linki, scheduling any one of them in the

same independent set as linki will force ui to zero.

5.2.2 Scheduling for ensuring weighted proportional fairness across user time

allocations

Maximizing the weighted sum of time allocations of users can lead to an unfair time schedule

where links outside the solution independent set are never scheduled and get zero utilities. To

incorporate fairness in the time schedule produced by the spectrum server, one can choose the

following set of weight functions in the server optimization problem (5.1):

wi(xi) = wi log (xi) ,∀i (5.13)

This particular choice of weight functions corresponds to a notion of fairness called the

weighted proportional fairness[64]. We can now make the following claim for a network of

three (M = 3) interfering links:
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Figure 5.1: All possible topologies for a three link network.

Theorem 4 Truthful Reporting (̂ei = ei) is the dominant strategy for linki, ∀i = 1, 2, 3, i.e.

ui(ei, êV−i
) ≥ ui(êi, êV−i

) for all êi, for the server optimization problem given by (5.1) and

(5.13).

Proof: We will prove the above fact in a brute force manner by considering all possible topolo-

gies of a three link network. W.L.O.G. we will only look at the truthful reportingproblem

for link 1. Figure 5.1 lists all distinct topologies for a three link network. Note that sincethe

construction of independent sets ignores the directed nature of the links,therefore figure 5.1

shows only undirected graphs resulting from the directed graphs. There are23 = 8 possible

topologies that can be divided into groups A and B depending on the presence or absence of

an edge between link2 and link3. If links 2 and3 have reported no edge between them, then

varying link 1’s report will result in one of the topologies from group A to be constructed at

the server. Similarly if link2 and/or3 have reported an edge between them, then changing1’s

report will result in one of the topologies from group B to be constructed at the server. The

server optimization problem given by (5.1) and (5.13) is easy to solve for the topologies given
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in Figure 5.1, and the optimal time fractions for link1 (x∗
1) are shown in the same figure. The

figure also shows the maximal independent sets for each topology.

Lets first consider the topologies in group A. It can be verified that if link1 falsely reports

any present edges as missing, then he gets a zero utility. For example, ife21 = 0, e31 = 1 and

ê21 = 1, ê31 = 0, then link1 will be scheduled along with link3 and will get zero utility. Also,

if link 1 reports any additional edges which actually are not present, then he will get a lower

utility. For example, ife21 = 1, e31 = 0 andê21 = 1, ê31 = 1, then link1’s utility decreases

from w1/(w1 + w2) to w1/(w1 + w2 + w3).

Now consider the topologies in group B. In this case, if link1 falsely reports any present

edges as missing, then he will get a lower utility, which is not necessaily zero.For example,

if e21 = 1, e31 = 0 andê21 = 0, ê31 = 0, then link1 will be scheduled with link2 for a time

fraction ofw2/(w2 + w3) and with link3 for a time fraction ofw3/(w2 + w3). However since

link 2 actually interfers with link1, link 1’s net utility will just bew3/(w2 + w3) . Therefore

e21 = 1, e31 = 0 andê21 = 0, ê31 = 0 reduces link1’s utility from (w1 +w3)/(w1 +w2 +w3)

to w3/(w2 + w3). Also, if link 1 reports any additional edges which actually are not present,

then he will get a lower utility. For example, ife21 = 1, e31 = 0 and ê21 = 1, ê31 = 1, then

link 1’s utility decreases from(w1 + w3)/(w1 + w2 + w3) to w1/(w1 + w2 + w3).

It is possible to verify the truthful reporting property for a network with four links but the

exponential increase in the number of possible topologies makes the analysismore tedious.

We have verified the truthful reporting property for larger number of links using numerical

simulations and present the following conjecture:

Conjecture 5 Truthful Reporting (̂ei = ei) is the dominant strategy for linki, ∀i = 1, 2, . . . , M ,

i.e. ui(ei, êV−i
) ≥ ui(êi, êV−i

) for all êi, for the server optimization problem given by (5.1)

and (5.13).

5.3 Conclusion and Discussion

In this chapter, we considered the a model of greedy interfering links thatcoordinate with each

other through a mediating authority called the “spectrum server”. Each link reports the set of

links that interfere with it, based on which the spectrum server constructs the interference graph
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and finds an optimal schedule for the links (maximizing a certain global objective). Since the

links are greedy, they choose their reports to maximize their individual utilities.For certain user

utility functions and global objective functions considered at the spectrumserver, we showed

that the links will truthfully report their sets of interfering links. Finding out amore general set

of conditions under which the links report truthfully is part of future work. Another interesting

area of future work would be designing mechanisms [65, Chapter 2] for enforcing truthfulness

when links have an incentive to lie.
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Chapter 6

Conclusions and Future Work

The sheer number and diversity of wireless applications being developedand deployed in un-

licensed bands is increasing at a prolific rate. Due to the nature of wirelessmedium and the

lack of any enforcing body pushing for resource segregation between the unlicensed band tech-

nologies, development of resource management algorithms suitable for unlicensed bands is of

utmost importance. Interference avoidance is one promising direction alongwhich many such

resource management algorithms are geared, and one that has seen numerous interesting re-

search efforts by the community in the last decade or so [21,22,27,28].This thesis is a result of

our belief that theinterference avoidanceapproach is somewhat narrow in scope when trying

to deal with plethora of resource management problems in unlicensed bands. This is because

the terminterference avoidancepresumes that the interferer is someone who has to be avoided

because he can’t be expected to cooperate or coordinate, and one who is using the spectrum

resource in a way that maximizes his greedy objective, which is assumed to atcomplete odds

with the objective of the device being interfered. This infact is the true modelfor some resource

management problem settings in the unlicensed bands, but in no way gives the complete pic-

ture. For example, at least in today’s world, most wireless devices are mass manufactured, and

their spectrum usage intelligence is hard-coded by those manufacturers inthe form of etiquette

protocols that the devices must follow while operating in the unlicensed bands. Also, it is not

completely unimaginable for town municipalities to set up some coordination infrastructure to

aid spectrum management between mutually interested parties, say for doing centralized chan-

nel allocation for 802.11 links operated by residents in an apartment complex. Therefore the

wireless devices operating in unlicensed networks need not always be modeled asgreedy, and

the condition of completelack of coordinationbetween them could be too restrictive in certain

scenarios. A useful theoretical model for studying wireless resourceallocation in unlicensed

bands would be one that allows the possiblities of the devices beinggreedyor non-greedy, and

coordinationbeingpresentor absent, and helps study the overall performance as a function
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of say, the ratio of number of greedy versus non-greedy devices, and the degree of coordina-

tion available. This is quite a formidable task and one that we don’t undertakein this thesis.

Instead,in this thesis, as a precursor to this task, we have identified and analyzed four unli-

censed band scenarios where the underlying resource management problem can be modeled

with the four possible assumptions on the nature of devices (greedy/non-greedy) and level of

coordination (present/ absent or minimal).

In chapter 2, we analyzed and simulated distributed interference avoidance (IA) based on

covariance feedback broadcast from the receiver and incrementalcodeword changes by each

user. The feedback could be a covariance matrix estimate from the receiver, or a sequence of

received vectorsr(n) to allow estimates to be constructed by each transmitter. The receiver

tracks codeword changes by adapting the associated filters under a symbol error criterion. With

perfect covariance feedback, the distributed method is equivalent in terms of codeword ensem-

ble performance to centralized methods where codewords are computed bythe receiver and

conveyed to the transmitters.

In this scenario, each user acts on a greedy basis and the only coordination that is available

between them is the common knowledge of the received covariance matrix which is broadcasted

to them by the receiver. Note that we can call the periodic receiver broadcast as only aminimal

coordination requirement because it does not scale with the number of users and only depends

on the dimension of the signal space that they span.

Next, in chapter 3, we considered a model that is similar to the model of chapter2 in

that there are multiple transmitters and a single receiver, and the transmitters employ CDMA

type codewords for transmitting their data. However, the big difference now is that the target

application is that of sensors measuring a physical process in a field and transmitting to a central

repository. The symbols that need to be transmitted by the sensors therefore could be correlated

and since all the sensors are deployed by a single authority, it could be possible for the sensors

to operate in a coordinated way. We show that if the common objective of the sensors is to

jointly minimize the total mean square error, then the optimal codewords here areno longer

the same as those corresponding to the scenario of chapter 2. This illustrates the importance

of making the right assumptions on the device objectives and level of coordination available,

when considering problems in unlicensed bands.
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We further characterized the performance of our CDMA based transmission scheme in the

form of a total power-TMSE tradeoff function, and compared with an information-theoretic

outer bound. Our scheme, which can be viewed an uncoded transmission scheme with opti-

mal power allocations ovr parallel channels, is found to be always suboptimal compared to the

outer bound at all SNR’s. This is in contrast to a recent result for the scalar version of this

scheme [15], where it is shown that uncoded transmission is optimal below a threshold SNR.

We also considered a separation based scheme and showed that at low SNRs, our scheme’s

performance is slightly better than an upper bound on the performance of the separation based

scheme. However, a fair comparison between the schemes should take into account the im-

plementation complexity as well. While the separation based scheme requires quantizers, so-

phisticated source and channel coders and decoders, our scheme is aessentially an un-coded

transmission scheme and therefore should be much simpler to implement in practice.

In chapter 4, we considered the problem of scheduling interfering links and came up with

a distributed algorithm which requires absolutely no coordination between thelinks and al-

lows them to achieve their desired rates. It is assumed however that the linksfollow the algo-

rithm honestly and their actions are not dictated by pure greed. We first compared the achiev-

able throughput region of a simple probabilistic transmission scheme with that ofcentralized

scheduling. We then presented a distributed implementation of the probabilistic transmission

scheme which can achieve any feasible rate vector in the throughput region of the probabilistic

transmission scheme. We showed that the algorithm is guaranteed to converge for any underly-

ing PHY layer that ensures that rate on a link goes down strictly as the interference increases.

Our distributed algorithm does not require any level of coordination or information sharing be-

tween the links. The only information exchange happens between the receiver of a link and

the corresponding transmitter, where the receiver computes the instantaneous link throughput

and feeds it back to the transmitter. The above properties of the algorithm make it attractive

for adoption in unlicensed band scenarios where centralized control is difficult to implement.

Also, since our algorithm allows the participating links to achieve any point in thefeasible rate

region, it could be used for guarantying different QoS levels for different users. This feature

of our algorithm could be seen as a distinct advantage over conventional802.11 based multi-

access schemes that don’t have any such provision for guarantying differing QoS levels across
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users. There are several possible directions for future work here:-

1. We proved that the iteration defined by equation (4.27) converges to thedesired operating

point if we start from the all zero probability vector. Complete characterization of the

convergence/divergence conditions of the iteration for all starting pointsis part of future

work.

2. Finding out the running time complexity of the iteration (4.27) will be useful from a

practical point of view and is part of future work.

3. Iteration (4.27) assumes that each link can measure its instantaneous rateat the receiver

and use it to update its transmission probability. However, in practice the receiver has to

estimate this rate by measuring and averaging the throughput over a certain timeinterval.

For practical implementation of our distributed procedure, effects of the rate estimation

error on the iteration must be studied numerically and possibily a stochastic convergence

result along the lines of [34] could be developed.

4. The probabilistic transmission scheme considered in this chapter has the nice property

that absolutely no coordination is required among different links. Howeverthe flip side

of this benefit is that the achievable rate region could be strictly smaller than that achiev-

able through centralized scheduling. Going from chapter 2 to chapter 3, we observed

that allowing the possibility of correlation between the transmitted signature waveforms

helps in achieving a higher value of performance objective. Similarily in this case, if we

view the transmissions of any link over a sequence of time slots as its randomcodeword,

then maybe allowing correlation between these codewords can help us in enlarging the

achievable rate region. This observation is true and in fact if we can imposean arbitrary

joint probability distribution over the link transmissions, then we can achieve thecom-

plete rate region corresponding to the centralized scheduling scheme. Howto achieve

correlation between the link transmissions without loosing the benefit of requiring no

coordination among the links is then the main question. One promising approach inthis

direction (that is not explored in this thesis) is the introduction ofcommon randomnessin

the link transmissions, maybe through the broadcast of the result of a random experiment
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(say coin toss) by a coordinating authority. Each links combines this broadcast informa-

tion with result of its own independent random experiment decide whether totransmit

or not in a given time slot. This would increase the coordination requirements only by a

minimal amount. Infact, the same amount of coordination was required in the model in

chapter 2 where the receiver periodically broadcasts the covariance matrix or the received

vector.

The work in chapter 4 suggests a new twist to the greedy/strategic distributedresource al-

location problem. That is, the resource allocation process of chapter 4 could be carried out by a

centralized mediating authority called thespectrum server[5,6,13,54], that receives local inter-

ference reports from the links, and instructs them on spectrum usage. The actual performance

figures and how users affect one another is considered public (and true) information.

However, in a distributed system aided by a spectrum server but without aprovision for

“spectrum police” – a facility that measures mutual interference in an objective fashion and

reports it to the spectrum server – there could be motivation for users to lie about the levels of

interference they experience.

We explored this issue in chapter 5 by formulating a centralized scheduling problem with

greedy or strategic links. Each link reports the set of links that interfere with it, based on which

the spectrum server constructs the interference graph and finds an optimal schedule for the links

(maximizing a certain global objective). Since the links are greedy, they choose their reports

to maximize their individual utilities. For certain user utility functions and global objective

functions considered at the spectrum server, we showed that the links willtruthfully report

their sets of interfering links. Finding out a more general set of conditionsunder which the

links report truthfully is part of future work. Another interesting area offuture work would be

designing mechanisms [65] for enforcing truthfulness when links have anincentive to lie.
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