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ABSTRACT OF THE THESIS

Quantum Stochastic Communication with Photon-number

squeezed light

By Joshua Paramanandam

Thesis Director: Professor Michael A Parker

Squeezed states of light have found importance in quantum cryptography due to the no-

cloning theorem which prevents two states from being identical to each other. The quantum

state with quadrature operators X1 and X2 can be visualized as a point in phase space with

the center being 〈X1〉,〈X2〉 surrounded by an error region which satisfies the minimum

uncertainty product 〈ΔX2
1 〉〈ΔX2

2 〉 = 1/16. These states are intrinsically secure since one

needs to know which quadrature the measurement is to be made and any attempt to mea-

sure the wrong quadratures with arbitrary accuracy would disturb the message. Of course,

the eavesdropper cannot simultaneously measure both quadratures with infinite precision

for each. This thesis describes a method that not only encodes information in the ampli-

tudes of the quadratures alone but also in the uncertainty of those states. One example of

squeezed light is the number-phase squeezed state which satisfying the uncertainity relation

〈Δn2〉〈Δφ2〉 = 1/4. An implementation is demonstrated where the information is encoded

only in the photon number uncertainity and the phase variable is ignored.

The barrier regulation mechanisms such as macroscopic coulomb blockade in semicon-

ductor junction diodes are responsible for generating photon fluxes with penetration be-

low the standard quantum limit(shot noise level). The thesis describes a comprehensive

quantum mechanical Langevin model which details the various mechanisms responsible for
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producing photon number squeezing from the thermionic emission to the diffusion current

limits. Quantities such as the pump fluctuations and cross correlation spectral densities are

studied under constant current and constant voltage conditions. The research investigates

the generation of photon number squeezed light from high efficiency light emitting diodes.

A measurement setup for subshot noise is constructed and each stage is properly calibrated.

Experiments were performed to determine the squeezing spectra and Fanofactors for the

L2656 and the L9337 high efficiency LEDs. The L9337 produces a squeezing of 1.5dB below

the shot noise level over a bandwidth of 25Mhz, the largest known penetration at room

temperature. The quantum stochastic communicator is also demonstrated. The research

shows that the switching elements used in the modulation of the electrical bias which in

turn affect the regulation mechanisms do not affect the statistics of the emitted light under

certain conditions. The decoding of the time varying variances is achieved by using time

frequency analysis with the aid of the spectrum analyzer.
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Chapter 1

Introduction

1.1 Introduction

We start by asking the question ’Is it possible to communicate with noise?’. The neverending

quest for nanoscale devices and nanosignals, keeps lowering the signal to noise ratios. One

way to combat this is to reduce the noise, such as using squeezed fields for optical or RF

signals. But we could consider an alternative: ie. Use the noise itself as the signal. In fact,at

this point we may wonder: What is noise? The answer is very subjective. For example, a

person may enjoy listening to a certain type of music while others may find it distasteful and

noisy. We certainly can encode information in noise itself, and that is the sole purpose of

this thesis. However, this thesis approaches the problem from a quantum perspective, using

continuous distributions arising from natural sources such as optoelectronic devices, but the

same idea can be applied to any classical stochastic process produced using computers.

1.2 The concept of Stochastic Modulation

The premise of the stochastic modulation idea is that the set of statistical moments of

a random signal should be modulated independent of one another. The n’th statistical

moment of a random variable Z is defined as < zn > where Z takes on values z and

〈〉 represents the average with respect to a continuous or discrete probability distribution

P(z). The n=1 moment provides the mean. The central moments are defined by removing

the mean component of z and can be stated in general as

mn(z) =< (z − z)n > (1.1)
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The moments defined in Eq. (1.1) assume that the probability function is known a priori

at the transmitter end ie a random signal should be sculpted with these specified statistical

moments. For a process, whereby the values of z arrive as a sequence in time at a receiver,

the moments must be calculated based on the observed values. For example z = z(ti)

must represent a sequence of voltages generated by a computer every 0.1 nanoseconds. An

’estimator’ on the receiving side approximates the statistical moment by averaging over a

finite number of observed values. For a communications system, the finite time interval

might be attributed to the response time of the electronc circuits or to the number of values

a processor samples from the data stream to calculate these estimations. If N samples are

obtained the finite time moments are then estimated as

< z >≈ 1

N
ΣN

i=1zi < (z − z)n >≈ 1

N
ΣN

i=1(zi − z)n (1.2)

Of course as the number of samples N increases, the estimate becomes closer to the actual

statistical moments. However this is only true for ergodic processes where the underlying

probability distribution does not depend on time ie. p(z,t)=p(z,0) .The moments estimator

depends on the original modulation rate(the number of samples produced) and the averaging

time of the receiving electronic circuits or processors. The actual averaging of a computer

circuit follows a convolution integral and not necessarily a uniform average over a finite time

interval. Note that the stochastic modulator intentionally alters the probability distribution

in time, and for two different pulses it may be that p(z, t1) �= p(z, t2).However this is very

subjective to the receiver side and the concept of non-ergodicity needs furthur clarification.

For example consider N ensembles of random processes z(t) where each realization of one

ensemble carries the same statistical information. If we pick one element k of the ensemble

l ,the different time averages (k,l)z then coincide with the ensemble average (l) < z > . The

same applies to any other process say m(t) constructed from (l)z(t). This property defines

the ergodic nature of the random variable Z. for ensemble l. Now let us define a process z(t)

made up of realizations k and l from two ensembles whose finite time average is(k,1),(l,2)zT

. Now the ensemble average is defined as

<(k,1),(l,2) zT >=
1

T

∫ t+T/2

t−T/2
<(k,1),(l,2) zT > dt (1.3)
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Figure 1.1: (a)The random signal with variable finite time average and standard deviation
(b)A modulated average without affecting the standard deviation

When T is short enough that we capture the realization of the first ensemble, we have

<(k,1),(l,2) zT >=<(k,1) zT >=(1)< z > and the process is certainly ergodic with respect to

the first ensemble but when T encompasses both ensembles, we lose ergodicity.

Our first goal was to develop a macroscale version of the communicator where the signals

may be in volts and rely on man made distribution rather on the intrinisic distributions

of thermal noise or shot noise from resistors and diodes. This was done to verify that

the estimations could be performed in the time domain and as a testbed to validate our

ideas. In order to illustrate our ideas, we start by considering the simulation performed in

Fig.(1.1). It shows a sequence of random values generated by a computer at a rate of 1 value

every 0.1 nanosecond(the grey lines in the background) and the detected signal obtained

by estimating these random values(thick lines in the foreground). The detection circuits

uniformly average over a 10 nanosecond interval. The signal appears to be noise as evident

from the finite-time average (A) that fluctuates randomly about the expected value of 0.

However, the finite-time standard deviation (SD) shows a sequence of digital values (0101).

The rounding of the standard deviation SD near the transitions between 0 and 1 can be

attributed to the averaging of the detection circuits.

The random signal in Fig.(1.1a) is generated by two different probability distributions.

The distributions operate at different times from each other so that the total process cannot

be classified as ergodic. The two probability distributions for the figure differ only in the
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standard deviation. Distribution 1, which is active in the ranges 0-30 and 60-90 nanoseconds,

has probabilities of P (−50) = P (50) = 0.2 and P (−10) = P (10) = 0.3, while distribution

2, which is active at the other times, has probabilities of P (−50) = P (50) = 0.2 and

P (−40) = P (40) = 0.3 . A processor can generate arbitrary probability distributions P(z)

for random variable Z in real time using the well known relation P (z) = k( dz
dx )−1 where x

represents the values of the random variable X with uniform probability distribution and

the constant k ensures the probability P(z) integrates to unity . As an estimator, the finite-

time standard deviation in Fig.(1.1) shows that distribution 1 has a standard deviation of

approximately 30 while the second one has an approximate value of 45.

Modulation can also be impressed on the average without affecting the modulation

on the standard deviation. Typically most systems modulate the average and keep the

standard deviation as small as possible in order to provide a large signal-to-noise ratio; the

standard deviation usually characterizes the noise level. However, in this case the standard

deviation must be allowed to change since it also represents a signal. Figure (1.1b) shows

the signals detected by circuits that uniformly average over 150 nSec. The detected average

(A) and standard deviation (SD) appear relatively independent of each other. Normally,

slight bumps in the standard SD can appear near the transitions in the average A as a result

of the circuits performing a finite time average. In general, all of the statistical moments

can be independently modulated.

1.3 Why Quantum Noise?

This thesis deals primarily with nanoscale optical signals. The optical signal can in general

be a random variation of amplitude or phase. The noise from the optical sources has

magnitudes ranging from picoWatts to nanoWatts. The noise in these sources can be

modulated by properly electrically biasing the device or using an optical modulator. Let

us consider a single polarized electromagnetic field travelling along the z direction with an

electric field of the form

E(z, t) = −
√

hω

ε0V
(P cos(kz − ωt) + Q sin(kz − ωt)) (1.4)
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for the quadrature amplitudes P and Q where V denotes the photon modal volume and

hω represents the photon energy. When we perform repeated measurements of the electric

field, we obtain a range of P and Q values that fall within a region of phase space. The

points in phase space can be represented by the amplitude

|E| =
√

hω

ε0V

√
Q2 + P 2 (1.5)

and the phase space angle φ = tan−1(Q/P ) .The distance from origin to center of the ’circle’

represents the average electric field amplitude 〈|E|〉 and the angle to P-axis represents the

average phase < φ > of the wave. Any experimental setup would have to generate two types

of fluctuations:The first a minimum uncertainty state with uncertainty regions represented

by the product of the standard deviation of the two quadratures ie. ΔQΔP = 1/2.This type

of optical state is the coherent state which is represented by the state vector |α〉 and if we

reduce the uncertainity of one of the quadratures as well as simultaneously increasing the

conjugate quadrature such that the minimum uncertainty is preserved, we have the squeezed

state represented by |α, η〉.The complex quantity η represents the degree of squeezing and

has the property that |α, η〉 → |α〉 as η → 0.The squeezing parameter determines the degree

of assymetry of the ellipse or phase angle. The amplitude squeezed state has smaller ampli-

tude fluctuations and for certain cases smaller fluctuations in the photon number than the

standard quantum limit. The phase fluctuations are larger than that of the coherent state.

Other types of squeezed states are the phase squeezed states(where the phase fluctuations

are reduced and the quadrature squeezed states. There is another important state known

as photon number squeezed which is the essence of this thesis. This state is produced by

LEDs and multimode devices under spontaneous emission, where the photon emissions are

highly correlated. Studies of photon number squeezed light, ignore the conjugate phase

quadrature, focussing on only reducing the photon number variance to low levels.The phase

quadrature may be undefined or rather take any value in phase space with average 0. The

average of the photon number can also be modulated.The bias current to the optical device

controls the optical power and hence the average electrical field 〈|E|〉 or photon number. We

deal typically with mixed state density operators where instead of writing ρ = |α, η〉〈α, η|
,we express in terms of probabilities associated with an ensemble of such systems given by
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ρ =
∫

dαP (α)|α, η〉〈α, η| .The quantum mechanical aspects of squeezing in photodetected

light can be traced back the commutation relations of field operators and to the dynamics

of the matter field interaction in the semiconductor carriers.

Quantum states of light provide us the means to send secure information by using the

rules of quantum mechanics. The rules of quantum mechanics allows us to create a secure

channel that detects the presence of eavesdroppers. The very process of measurement leads

to collapse of the wavefunction causing it to be no longer measurable or to affect it in such

a way that the uncertainities of the state would reflect the measurement process. Hence

the fragile nature of nonclassical light states make it attractive in secure point to point

communication systems.

1.4 Thesis Overview

Fig. (1.3) describes the significance of each of the following 3 chapters in this thesis. The

central premise is a method of communication by modulating the quantum noise from

light emitting diodes(LEDs). The organization of chapters 2 to 4,follows a bottom to top

approach designed to answer the following questions:

1)What is shot/subshot noise and how does subshot noise arise in LEDs.

2)Demonstrate subshot noise experimentally and be assured that it is below the quantum

noise limit. ie. to show that the LED generates nonclassical(true quantum) light states.

3)To develop a method of controlling and modulating the statistics of emitted quantum
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light and to demonstrate the quantum stochastic communicator.

1. In Chapter 2, the theoretical models surrounding the LED and methods of controlling

the statistics of light from the device are outlined. We review the mechanisms respon-

sible for shot noise generation in light emitting diodes and the methods of suppressing

it. The noise model of the LED is sufficient to understand the subshot photon noise

generation for diffusion current based devices. However it is not sufficient to explain

devices that utilize the thermionic emission model such as double barrier hetero-

junctions. Since the experiments use both diffusion and thermionic emission limited

devices, we derive a general theory using quantum mechanical Langevin equations.

The theory re derives the already established photon Fanofactors from a quantum

mechanical basis. The central purpose is to obtain analytical results that will be used

later in experimental modeling. We also obtain expressions for pump fluctuations,

cross correlation of spectral densities and show that the Langevin analysis predicts

the same results as the noise equivalent model of the LED in the diffusion regime.

2. In Chapter 3, the experiments required to measure subshot noise in light emitting

diodes are devised. Each stage of the measurement chain is properly calibrated. As

a fiduciary, we start by studying the L2656 LED which has been well established

in the literature. However, most authors have ignored the concept of differential

efficiency and non-radiative processes which may affect squeezing. We fit our results

to theoretical models with very good accuracies at all frequencies. We also perform

such experiments for the L9337 LED.

3. Finally in chapter 4, we discuss the methods of stochastic modulation using quantum

light states from the L2656 and L9337 LEDs. A demodulation scheme is developed

that performs the decoding in the frequency domain. The idea relies on using the

spectrum analyzer to perform a time-frequency analysis of the quantum signals. In

order to perform variance modulation,we need to choose proper switching circuits.

This requires knowledge of the noise mechanisms in the switching elements with and

without the LED inserted. This affects the output spectral densities of light from the
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LED. Finally, the modulation circuit(ie. circuit to control the biasing conditions) is

combined with the time frequency decoder and the modulation of the average and

variance is simultaneously demonstrated using classical signals for the ac channel and

quantum signals for the noise channel.

4. Chapter 5 concludes our work where the achievements in this thesis are outlined along

with possible future research ideas.
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Chapter 2

Quantum Noise from Light emitting diodes

2.1 Introduction

In recent years, squeezed states have attracted great attention with many proposals for its

usage in quantum cryptography[2]. However, one would need to resort to nonlinear quantum

optical setups such as four wave mixing or second harmonic generation for generating such

states of light. They are expensive and difficult to setup and require very precise single

mode lasers as the pump source. These systems have demonstrated anywhere from 1-10dB

of penetration below the standard quantum limit[3]. Yamamoto and coworkers discovered

that amplitude squeezed states which has photon number uncertainty below the standard

quantum limit(shot noise level) could be generated easily with light from semiconductor

lasers[4]. These observations were made on laser diodes driven with high impedance constant

current sources and demonstrated that noise could indeed be suppressed below the shot

noise level. The explanation for this behavior relied on an electronic feedback mechanism

which was first proposed by Yamamoto for laser diodes[5] and later extended to LEDs by

Edwards[6]. Before this discovery, it was a long standing conclusion that the electron-

hole recombination noise in a semiconductor junction LED was characterized by the full

shot noise level and could not be changed and one paper went as far as to conclude that

the effect was only restricted to semiconductor lasers[7]. Our goal in this thesis is to

demonstrate a way of communicating using a nonclassical state of light. For this purpose,

we have chosen LEDs as it is easy to setup, and large degrees of squeezing have been

demonstrated which are comparable to the nonlinear setups. The LED form the crucial

transmitter section of our communicator and we would like to modulate the moments of the

quantum states such as the photon number average and variance. In order to manipulate
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the statistics of light from LEDs, it is essential that the LED source actually generates

subshot(squeezed) light. There have been examples in the literature[3] where experiments

falsely claim subshot characteristics but they are essentially nonlinearities. One way to

verify the experimental results is to fit it with well established theoretical models. The

experiments in the following chapters are performed using a semiconductor heterojunction

diode and a double heterojunction diode. We develop the theoretical models in this chapter

corresponding to these two structures and study the pump and photon noise characteristics

of these devices. Quantum light from semiconductor diodes are a part of the growing field of

semiconductor quantum optics. There are two parts to this problem: (a) An electronic part

which involves the carrier continuity equations and current flow in semiconductor junctions

and (b)quantum optical part for the photon generation through radiative recombination

by means of the light-matter interaction as well as the propagation of the photon states

through optical components introducing loss. We are interested in the noise spectra of

these electronic and optical processes(rather than their steady state dc quantities) as we

shall experimentally verify them in the following chapters. In this chapter we review the

mechanisms that are responsible for producing both subshot electrical junction current

and optical flux. The need to follow both the electric current and the photon flux is that

when the pump electron flows are quieted down, the electron statistics can be transferred

to the photons provided the recombination is instantaneous. For example, a shot noise

recombination current implies a shot noise limited photon flux.

This chapter deals with the theory of subshot noise from light emitting diodes. In

section 2.2, we try to answer the question as to what the nature of the electrical shot

noise is and how it arises in semiconductor systems. The most popular interpretation of

shot noise in pn diodes comes from the earlier thermionic emission vacuum diodes where

if one counts the random passage of carriers from one electrode to another it results in a

Poisson electron count distribution. Early authors have applied the same idea to the charge

transit across a pn junction diode and this idea has been referred to in recent papers[8]. Of

course this interpretation is only partly correct. The electron shot noise at the terminals

of the diode appears as it does for the Boltzmann conductors ie. due to the discreteness
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of electron motion in the bulk regions of the semiconductor. Nevertheless at low injection

currents the carrier transport across the depletion region does contribute to the shot noise

spectra and at moderate current regimes the current is primarily due to the recombination

processes taking place in the bulk. Our focus is only in the low and moderate current

injection regimes as they are the conditions under which the experiments are performed in

the following chapter. Shot noise suppression was not a new idea when it was first observed

in pn junction diodes. As early as the 70s,the vacuum tubes had already shown a small

degree of electron noise suppression due to the space charge and memory effects[9]. The

suppression from this system depends on the nature of applied bias, ie. constant voltage

or constant current. The same bias methods are relevant to pn junction diodes. Also most

textbooks[10] make the distinction between thermal and electrical shot noise stating their

corresponding formulas. However Landauer has shown[11] that in the quantum regime,

for ballistic transport problems and extremely small resistors(where the conductance is

quantized) there is no such distinction and both thermal and shot noise are extremes of a

more basic result which deals with the discreteness of an electronic charge. So the origin

of noise is due to the discrete nature of electrons and both shot and thermal(and even 1/f)

arise eventually from this electron motion. This is easily validated in classical Maxwell

Boltzmann conductors of finite resistance, where one can prove a rather strange equality:

2qI=4kT/R. In section 2.3 the origin of shot noise and PN junction diodes is due to random

processes taking place in the bulk regions of the diode which is contradictory to the random

passage of carriers across the depletion region as presented in most textbooks[10].

Subshot photon generation relies on the presence of a quiet pump, which is established

by means of a negative feedback mechanism. Section 2.4 illustrates this idea using the the

equivalent noise circuit of the diode. Such a circuit is sufficient to understand the regulation

mechanism and the suppressed recombination current but is inadequate when applied to

double heterojunction diodes with short active regions where the thermionic emission model

dictates the current flow mechanism. In order to explain the squeezing in the thermionic

emission regime, a Langevin model was proposed by Kobayashi et al[12] where they obtained

a general relationship that allowed one to characterize LED structures that operated from
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the diffusion to the thermionic emission limits. Such a theory extended earlier results

from Kim et al[13]and Fujisaki et al[14]. The most important contribution in [12] was the

ratio of the backward to forward pump rates which offered a simple way of representing

current mechanism from the diffusion limit (valid for long heterojunction diodes) to the

thermionic emission limit(valid for double heterojunction diodes). Typically most LED’s

are long diodes since the recombination lifetime is small as a result of heavy doping(eg. a

diode’s physical length could be as small as1μm and still be categorized as long diodes due

to its short minority carrier lifetime). Section 2.6 discusses the current mechanisms in both

these device structures as well as their relation to the Backward Pump(BP) model. The

BP model is later used in the quantum mechanical Langevin theory to derive important

relations for the photon flux Fanofactors as well as the squeezing bandwidth which are then

used to fit the experimental results of chapter 3.

2.2 Origin of Shot Noise

The electric current is defined microscopically as the transport of discrete units of electronic

charge(electrons or holes in semiconductors). If we can visualize the electrons regularly

spaced in time, then the current is quiet with no noise. Electrons traveling through the

semiconductor suffer inelastic collisions with the lattice (which result in loss of coherence),

Coulomb interactions between particles and other many body effects. All these are respon-

sible for current noise in the terminals of semiconductor devices. At the macroscopic level or

from an experimental point of view, we hardly observe these discrete units but we observe

current noise as a continuous quantity. In order to establish the current noise(in particular

the shot noise), we need to relate it to the discrete nature of electrons in devices. In the

following sections, we show the origin of shot noise is due to passage of carriers in the space

charge limited region.There are two important reasons why understanding noise in vacuum

diodes is important: (a)The early models of diode noise by Van-der-Ziel[15] extended the

analysis of vacuum tubes to semiconductor junctions. This is not entirely correct as was

later challenged by Buckingham[16, 17]and Robinson[18] who attributed it to entirely the

bulk regions. More recent observations show it to be a combination of both space charge
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effects and random events in the bulk region. (b)The constant voltage and constant current

modes affects the lifetimes of carrier transport and charging. These are directly applicable

to PN diodes where the nature of the bias controls the external charging lifetimes which in

turn allows one to observe either Poisson or sub-Poisson currents.

2.2.1 Shot Noise from a vacuum diode

One of the earliest observations of shot noise was measured in the thermionic emission

diode[18] where the random passage of carriers through the tube produced a Poissonian

current. Let us consider such a device which has two infinite plates separated by a distance

d. We assume there is no space charge for now, and any electron once it enters the vacuum

makes a complete transit without returning. If an electron is emitted from the cathode, the

instantaneous current measured in the external circuit according to Ramo’s theorem[18, 16]

is i(t) = qv(t)
d . Even though the electron emissions are discrete events, the current is a

continuous quantity as it depends on the time varying velocity. The random emission of

electrons from the cathode gives rise to an electric current which is a random pulse train

expressed as

i(t) = −e

K∑
k=1

F (t− tk) (2.1)

where tk is the time at which the k’th electron is emitted from the cathode(where the

emissions can be modeled as a Poisson process) and K is the total number of pulses in

a time duration T. The pulse F (t − tk) measured in the external circuit is the response

function and can be taken as a delta function if we assume the transit time of the electron

is negligible. We can use Campbell’s theorem[18] to find the mean as

〈I〉 =
e〈K〉

T

∫ ∞

−∞
F (t)dt (2.2)

and from Carson’s theorem[18] we obtain

Si(ω) = 2νq2|F (iω)|2 + 4πI2δ(ω) (2.3)

The first term reduces to 2qI when we assume the |F (iω)|2 = 1 which is the shot noise

spectral density and is characteristic of any device which at any point receives or sends a
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random pulse train of the form Eq. (2.1). The diode is connected to a voltage V through

a resistor Rs. There are two circuit time constants: τtr = d
v -transit time of carrier and

τRC = RSC-circuit relaxation time which determine the shape of the function F(t). We

assume that the velocity is a constant. In addition to the following two cases, particles

accelerated from 0 at the cathode by an electric field have non constant velocity and have

been treated in [19].

Case 1 : τtr << τRC

At t = 0−, the voltage at the anode is VA = V . After an electron transit, the cathode

loses a charge and the anode gains a charge immediately. The voltage at the anode is

VA(t = 0+) = V − q/C. An external circuit current flows in order to relax the circuit back

to the original voltage VA = V . Using Kirchoff’s law we can write

dVA

dt
= − VA

τRC
+

V

τRC
(2.4)

and obtain using the initial condition at t = 0+, VA(t) = V − q
C e−t/τRC . The current in the

external circuit is

i(t) =
V − VA

Rs
=

q

RSC
e−t/τRC (2.5)

We could have obtained the above results simply by understanding how a capacitor works

ie. the voltage rises with a circuit time constant and similarly current decays until the

voltage across the capacitor is constant after which there is no more flow of charge. The

response function in this case from Eqs. (2.1) and (3.29) is F (t) = 1
RSC e−t/τRC . Obtaining

the Fourier transform of F(t) and substituting it in Eq. (2.3) we obtain[19]

Si(ω) = 2qI
1

1 + ω2R2C2
+ 4πI2δ(ω) (2.6)

At low frequencies 0 < ω < 1/RC, we obtain Si(ω) = 2qI which is equivalent to the full

shot noise.

Case 2 : τtr >> τRC

When an electron is emitted from the cathode it induces a charge of -q on the anode.

However this is not an instantaneous process and the charge q builds up by τtr = d
v which
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is the time it takes to cross the diode. From Ramo’s theorem, this leads to a current in

the external circuit i(t) = qv
d . Note that i(t) is continuous since a current meter at the

anode plate will register a continuous value corresponding to the position of the electron

at various positions in the tube. This same current flows into the cathode to balance the

charge. Initially the surface charge on the cathode is -CV. After electron emission it becomes

-CV+q and at the same time it starts charging with the current from the anode. So the

surface charge on the cathode can be written as

QC(t) = −CV + q − qv

d
t 0 < t <

d

v
(2.7)

At t = d
v surface charge is restored to QC(t) = −CV . The response function in this case is

F (t) = q v
d . Converting F(t) to the Fourier Transform and using Eq. (2.3) we obtain[19]

Si(ω) = 2qI[sin c(ωd/2v)]2 + 4πν2δ(ω) (2.8)

At low frequencies 0 < ω < v/d, we can use the identity sinx
x = 1.Thus the current noise

spectral density of Eq. (2.8) reduces Si(ω) = 2qI which is once again the full shot noise.

Remarks

From the above two cases, we note that the current through the response function depends

on the slowest time constant. In the case of τtr � τRC we assume that when an electron

is in transit there are no further emissions. Then each transport is completely independent

of the other and we have a Poisson point process for which Eq. (2.1) is applicable. Hence

the rate of emission from the cathode is R � 1
τtr

. If R > 1
τtr

there will be more than

one electron in transit creating a space charge effect. The potential profile can be obtained

by solving the Poisson equation. Each particle will have to cross a potential barrier while

contributing to the potential themselves. There is now the probability that the electron

returns back to the cathode. Excess electron emission is followed by increasing barrier,

which leads to reduced emission in the next instant. In the long time scale the electron

emissions are regulated and this is the space charge suppression mechanism. However the

regulation mechanism does not greatly suppress the noise, and experimental results have

shown the noise current to be only 0.01dB below the shot noise level[9]
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In the case of τtr � τRC , the electron transport from the cathode to anode is instan-

taneous, but the voltage recovers very slowly at a time scale of τRC . In order to ensure

statistical independence the emission from the cathode must be on a longer time scale com-

pared to τRC ie. the rate of emission from the cathode is R � 1
τRC

. The emission rate

that depends on the voltage assumes that the electron emission events are completely inde-

pendent of each other. In other words, it is a Poisson point process. The rate of emission

depends on the voltage applied and is only fully recovered after a time τRC has elapsed. For

the case R > 1
τRC

, the slow recovery of the voltage would suppress the rate of subsequent

electron emission due to memory effects in the voltage. Both memory effects and space

charge suppression lead to subshot noise. When τtr � τRC the voltage recovers immedi-

ately and we call this the constant voltage case. The converse is considered as constant

current case. The same physics can be observed in pn junction diodes. The Johnson noise

from the resistor connected to the vacuum diode is neglected in the above analysis. It causes

the charge on the plates to fluctuate about its steady state and its effect is an important

contribution in the depletion region charging process and voltage fluctuation of pn diodes.

2.2.2 Noise from Maxwell-Boltzmann conductors

Next we consider the case of noise in Boltzmann conductors which is characterized by

thermal noise. The Brownian motion of charge carriers as they interact with the crystal

lattice leads to a fluctuating emf at the terminals. This random signal was first observed

by Johnson[20] who verified the now famous relation V 2
th = 4kTRB. This result was simul-

taneously developed by Nyquist[21] using a transmission line model which can be described

as a macroscopic (or thermodynamic) theory since it linked the macroscopic parameters of

the system such as the temperature T, resistance R and the fluctuating current (Ith) or

voltage(Vth) by using two laws from statistical mechanics: second law of thermodynamics

and the equipartition theorem. The derivation as such was valid only for a system where the

charge carriers approach thermal equilibrium through interaction with the crystal lattice.

However this macroscopic description can be quite deceiving as this leads us to believe that

thermal noise is quite different from shot noise. Consider a one dimensional conductor of
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length L with n average(a nonfluctuating quantity) charge carriers per unit length. The

shot noise current 〈i2〉 = 2qIΔν where q is the electronic charge and I is the dc current

and Δν is the bandwidth. The same expression can be written in particulate form using

I = q dn
dt = q n

τ which leads to

〈i2〉 = 2q2 dn

dt
Δν = 2〈q2〉AL

n

τ
Δν (2.9)

where A is the area of the semiconductor and τ is the mean free path. A carrier moving with

velocity v for a time t will contribute a fractional charge q(t) at the terminating electrodes

which is given by[11]

q(t) =
evt

L
(2.10)

In the thermionic diode, the noise was due to the random injection of charges and statistical

independence of these events. Also each event made a complete transit from one electrode

to another. In the case of the conductor, each carrier performs a free flight until a collision

with the lattice in which case the velocity becomes randomized which is also the source

of noise. This free flight is less than the length of the conductor and hence produces the

fractional charge. Since each collision randomizes the velocity and each such collision takes

place at random times, the charge q(t) is a doubly stochastic variable in both v and t

ie. the joint probability P (v, t) = P (v).P (t) since both velocity and time are statistically

independent variables. Eq. (2.9) can now be written as

〈i2〉 = 2
e2〈v2〉〈t2〉n

Lτ
Δν (2.11)

We need to obtain expressions for 〈v2〉 and 〈t2〉.The probability of a flight time between

t and t + dt is equal to zero collisions at times [0, t] and one collision in the time interval

[t, t+ dt] and can be written as the product of a Poisson and Bernoulli probability densities

given by

ρ(t)dt = p(0, t) ∗ p(1, dt) =
1

τ
e
−t
τ dt (2.12)

Using Eq.(2.12 ), we can obtain the second order moment in t as

〈t2〉 =

∫ ∞

0
t2ρ(t)dt = 2τ2 (2.13)
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In order to obtain a relation for the velocity fluctuations of an electron 〈v2〉, we resort to

the Langevin equation[22] which can written as

m
dv

dt
= −γv(t) + F (t) (2.14)

The above equation is quite general as it describes the one dimensional classical Brownian

motion of a particle of mass-m immersed in a liquid with temperature T. The degrees of

freedom for the particle are represented by the center of mass coordinate at time t which

is x(t) and its corresponding velocity v = dx
dt . It would be quite difficult to describe the

interaction of x(t) with the many degrees of freedom associated with the molecules of the

surrounding liquid. It would be easier to treat the surrounding liquid as a singular heat

reservoir(which includes the effects of the many degrees of freedom) at absolute temperature

T whose interaction with x(t) could be established as a net force Fnet. The decomposition

of Fnet into the two forces which constitute the two terms in the RHS of Eq. (2.14), requires

some clarification. Since we have aggregated the effects of the reservoir into a single Fnet,

we may expect it to depend on the position of many atoms which are in constant motion.

Hence Fnet is a rapidly varying function of time which changes in an irregular manner due

to the random motion associated with the atoms. We cannot specify a precise functional

dependence of Fnet on t, but we can give more information about it if the problem is studied

from a statistical standpoint. Hence, we must consider an ensemble of similarly prepared

systems, each of which consists of a particle and its surrounding medium governed by Eq.

(2.14). Since Fnet(t) is a random force, it follows that v(t) also fluctuates in time. The

solution for v(t) is no longer obtained by solving an ordinary differential equation but has

to be stated in terms of a probability distribution P (v, t, v0)- which governs the occurrence

of velocity v at time t given that v = v0 at t = 0. From statistical thermodynamics, we

know that the system should tend to a Maxwellian distribution of temperature T of the

surrounding liquid, ’independently’ of v0 in long time scales. This implies that any non-zero

initial velocity v �= 0 which may be produced by the presence of an external force, requires

the velocity to tend to the equilibrium value of v = 0 once the external force is removed. If

Fnet = 0, Eq. (2.14) then fails to predict this behavior of v(t) and hence the interaction force

Fnet must be affected by the motion of the particle such that it contains a slowly moving
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force, say Ffriction which is some function of v, tending to restore the particle to equilibrium.

Now Fnet(t) = Ffriction(v)+F (t) is decomposed into the slowly moving component and the

faster component which is independent of velocity. If v is not too large, we may expand

Ffriction(v) in a power series leading to Ffriction(v) = −γv1 where γ is also known as the

friction coefficient and we see that this force represents the dynamical friction experienced

by a particle which tends to reduce v(t) to zero as time increases. The frictional force

implies that the energy associated with the degrees of freedom of the particle is dissipated

to the other degrees of freedom associated with the reservoir. The concept of dissipation is

an important one, and exists only when we treat the particle and reservoir as two separate

systems. Once the particle loses energy to the reservoir, it is forever lost. This is different if

one were to construct a microscopic equation for the combined particle-surrounding liquid

system. In such a case, there are no frictional forces and hence no dissipation ie. the energy

has simply been transferred to the reservoir which is still the same system. The total energy

is conserved and if the arrow of time were reversed, the particles would retrace their paths

backward in time. Since we have separated the slower moving frictional component from the

net reservoir interaction force Fnet, we can say more about the properties of the remaining

fluctuating term F (t): (a)It is independent of v(t) and it drives v(t) in such a way that

〈v(t1)F (t2)〉 = 0 for t2 > t1.(b) F (t) is a a Gaussian random process which will has as many

positive as negative variations such that 〈F (t)〉 = 02. (c)It varies quite rapidly compared to

v(t) ie. there exists a time interval Δt such that the difference between v(t) and v(t + Δt)

is negligible whereas F (t) may undergo several fluctuations and no correlations between

F (t) and F (t′ = t + Δt) exists3. This implies that 〈F (t)F (t′)〉 = Dδ(t − t′) where D is

1One important assumption that we have made is that since Fnet is a random force, the velocity v(t) must
also fluctuate in time and must be decomposed as follows: v(t) = 〈v〉+ v′ ie. into a slow moving component
given by the ensemble average of the velocity 〈v(t)〉 and a faster moving component v′. The faster component
can be ignored since the mass of the particle is appreciable which leads to the approximation α〈v〉 ≈ αv.
This is important when taking the power series expansion of the velocity.

2The formal solution to the Langevin Equation of Eq.(2.14) is v − v0e
−t/τc = e−t/τc

� t

0
et′/τcF (t′)dt′.

Applying the ensemble average to the formal solution along with Property (b), we get〈v〉 = v0e
−t/τc .

The average velocity tends to zero in the long time scales which is the expected result in systems where
macroscopic frictional forces are commonplace.

3The function F (t) as well as its integral as seen in the RHS of the formal solution has only statistically
defined properties. Hence the solution of the Langevin equation is understood as specifying a probability
distribution P (v, t, v0) such that P (v, t, v0) = P (

� t

0
e(t′−t)/τcF (t′)dt′). Property (c), allows us to divide
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the strength of the Langevin noise force. These three conditions for F (t) are characteristics

held by Langevin equations in general and Eq. (2.14) may be considered as a prototype for

the expressions used to describe the junction voltage and carrier number fluctuations in pn

junction diodes which are encountered later on in this chapter.

We now return to the problem of the noise in a resistor, where the particle which is

described by the Langevin equation of Eq. (2.14), is the electron and the heat reservoir is

the lattice. Under zero applied bias(thermal equilibrium situation), the average drift velocity

is zero. Whenever the electron collides with the lattice, it acquires a non-zero momentum

which decays towards zero with a time constant τc = m
γ . This physics is described by the

Langevin equation, where the drift velocity is kicked by the rapidly moving Langevin noise

source F(t) (which is due to the interaction of the lattice with the electron) and represents

the fluctuation term and the resultant non-zero velocity which is damped at the same time

by the slow moving friction component which represents the dissipation term. Taking the

Fourier transform of Eq. (2.14) gives us

V (iω) =
F (iω)

(γ + iωm)
(2.15)

In order to determine the Langevin noise force |F (iω)2|, the equipartition theorem is used

where for thermal equilibrium, the mean energy of the particle

1

2
m〈v2〉 =

m

2

∫ ∞

0
SV (ω)dω =

kT

2
(2.16)

Taking the spectral density of Eq.(2.15) as SV (ω) = 〈V ∗(iω)V (iω)〉 and substituting it in

Eq.(2.16), we can obtain, |F (iω)2| = 4kTγ2/m. The voltage spectral density is then

SV (ω) =
4kT

m(1 + ω2τ2
c )

(2.17)

where τc = m
γ . Taking the Fourier transform of the zero time autocorrelation function of

Eq.(2.11), followed by substituting Eq.(2.13) and Eq.(2.17) in it, the power spectral density

the interval of time t over which the integration is performed into a large number of subintervals of dura-
tion Δt where the velocity or position of a Brownian particle can be treated as constants and only F (t)
is time varying. This assumption allows one to derive the solution[22] P (v, t, v0) = P (v − v0e

−t/τc) =�
m

2πkT (1−e−2t/τc )

�0.5

exp

�
−

m|v−v0e−t/τc |2

2πkT (1−e−2t/τc )

�
which leads to a Maxwellian distribution which is indepen-

dent of v0 when t →∞ as expected.
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of the current fluctuations becomes

SI(ω) =
A

L
e2nτSV (ω) = 4kT/R(ω) (2.18)

where R(ω) = L
A

(
m

e2nτ

)
(1 + ω2τ2

c ) is the frequency dependent resistance. The current fluc-

tuations power spectral density which is obtained by short-circuiting the terminals produce

the familiar Johnson noise result. Since Eq.(2.18) was obtained from the shot noise cur-

rent of Eq.(2.9), it tells us that there is no difference between the shot and thermal noise

quantities and each arise as a result of the discrete nature of electronic charge. This result

also allows one to argue that for any device, the origin of shot noise is not only due to the

random passage of carriers through the space charge region as analyzed for the thermionic

emission diode. In the case of the pn diode, the shot noise arises in the regions far away

from the space-charge region(in the bulk) due to small thermal induced electron motion or

through random generation or recombination events.

2.3 Shot Noise in PN Junction Diodes

This section discusses the minority carrier transport noise in a one dimensional asymmet-

rically doped heterojunction barrier diodes. The current noise of a pn heterojunction is

solved by combining the small signal Green’s function method of Van Vliet[23] with the dif-

fusive treatment of Buckingham[16],thereby consolidating the two approaches. The method

is quite general as it treats the processes occurring in the bulk material(away from the

depletion region) of the diode and is applicable irrespective of nature of the barrier, be it

either heterojunction or homojunction barrier diodes. Numerical solutions for the spatial

electron noise densities can be obtained by coupling the analytical Green’s function with

numerical drift-diffusion simulations and will allow us to study the noise processes in the

heterojunction type structures. We can analytically obtain either the voltage or the current

fluctuations at the terminals of the device. In order to obtain the current fluctuations, the

noise current generator connected to the terminals must be established and no potential

fluctuation is allowed on such a terminal which is set by a constant voltage source. This

condition will be referred from hereon as the constant voltage case. To obtain the voltage

fluctuations, the noise voltage generator is determined with no current fluctuations occur
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on this terminal and this condition is referred to as constant current case. Constant voltage

and constant current cases are two methods of bias which influenced the noise in thermionic

diodes and they have the similar interpretation in pn junction diodes.

The focus of noise is on single and double heterojunction diodes as these are the typical

light emitting diode structures which are dealt with experimentally in chapter 3, but exten-

sions to homojunctions is straightforward since we assume that the evaluation of the Green’s

function does not depend on the nature of the barrier. This assumption is true only for

constant voltage bias and is validated by numerical simulations performed on pn homojunc-

tions which show that the Green’s function tend to zero at the metallurgical junction[24].

Under constant current mode, recent analytical work on n+n homojunctions show that the

transfer impedance4 produces additional terms due to the coupling between the n+ and

n sides instead of just providing the standard bulk terms corresponding to these regions.

This implies that the junction exhibits a long term Coulombic interaction induced by space

charge at the junction which has a noise suppression effect. This effect is the space charge

suppression mechanism already seen earlier in the thermionic emission diode, and has been

referred to by Yamamoto[25] as the Macroscopic Coulomb Blockade effect with respect to

p+n junctions. In this section, the terminal current noise in a p+N heterojunction under

constant voltage mode is established. We do not obtain self-consistent expressions for the

Green’s functions under the constant current mode(as this still a topic under research) and

will not see if the junction effect is manifested as additional terms in the Green’s functions.

Instead, the extension to constant current case can be obtained by placing the diode noise

model obtained from the constant voltage case in a high impedance environment which is

determined by a large series resistance in series with the noise model of the diode. The

constant current case is the origin of subshot noise in these systems and will be the focus

4The propagation of a microscopic noise fluctuation to the device terminals is represented by the gradient
of the impedance function-Z(x) also known as the impedance field ∇Z. The spectral density of the voltage

fluctuations between the probing terminals under constant current operation is SV = A
� L

−L
|∇Z(x)|2K(x)dx

where K(x) is the noise source in slice x and the integration is over the device of length of 2L. In this
section we obtain the spectral density of the current fluctuation under constant voltage condition given by
a similar expressionSI = A

� L

−L
|∇G(x)|2K(x)dx where ∇G is the gradient of the Green’s function. Using

the expression for SI along with circuit analysis of equivalent noise model of the diode, we can obtain the
expression for SV .
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of Section 2.3.

The structure considered in the analysis is shown in Fig.(2.1) as an arbitrary(barrier is

irrelevant) pn junction with the depletion region width at xp + xn and the p and n neutral

regions having widths wp − xp and wn − xn. The following assumptions are made in the

analysis of the current noise: a)The low frequency spectra is obtained ignoring the cutoff

characteristics of the carrier lifetimes. b)The depletion approximation is used in obtaining

the Green functions ie. the depletion region has abrupt boundaries and the applied voltage is

contained within this region and the semiconductor is charge neutral outside the depletion

region. c)The analysis is performed at low to moderate injection conditions where the

junction current is expressed as the sum of the minority carrier diffusion current in the two

quasineutral regions of the diode. The injected carrier concentrations are much smaller than

the majority carrier concentrations which are approximated by their equilibrium values. The

depletion region generation-recombination current contribution is neglected. High injection

conditions where series resistance effects dominate with the presence of an electric field in

the quasi-neutral regions are not treated. d)Green function are obtained by small signal

methods based on a perturbation approach to arrive at stationary noise compact device

models(compact also means closed-form analytical models used in device design). The small

signal method requires linearizing the device equations about the steady state working point

and since both the continuity equation as well as the diffusion equation in the quasi-neutral

regions are already linear, the Green functions so obtained using these equations are also

linear.

Neglecting the electric field in the quasi-neutral regions, the electron continuity equation

written on the p side of the junction diode is

∂n′

∂t
= −n′

τn
+ Dn

∂2n′

∂x2
(2.19)

where n′(x, t) = n(x, t) − np0 is the excess electron density, np0 is the equilibrium elec-

tron density, Dn is the electric field independent diffusion constant and τn is the lifetime

of minority electrons. Only the electron noise is studied since a)we consider a p+N het-

erojunction where only the electrons contribute significantly to the current because of the

heterojunction barrier. This differs for the asymmetrically doped p+n homojunction where
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holes would form the majority of the current. b)The same result applies to hole noise on

the p side and can be obtained by replacing n, τn,Dn → p, τp,Dp. In order to evaluate the

stationary noise, a small signal analysis must be performed provided the noise perturbation

is small enough to warrant a linearized analysis. In order to obtain the frequency dependent

Green’s functions, we need to take the Fourier transform of Eq. (2.19), which leads to

d2n′(x, jω)

dx2
=

n′(x, jω)

L2
n

(2.20)

where L2
n = L2

0(
1

1+jωτn
) is the ac electron diffusion length and L0 is its dc quantity. Since the

terminal current is calculated from minority carrier diffusion currents at the two depletion

region edges x = xp and x = xn, one may assume that the terminal current noise is also due

to the random passage of carriers across the depletion region. This corpuscular treatment

was originated by Van-der Ziel[15] by using the thermionic emission diode model of Eq.(2.1),

but Faulkner and Buckingham[17] showed that the forward and backward carrier fluxes

crossing the junction provide a small contribution to the total terminal current noise, and

are unable to explain the measured shot noise results until the fluctuations taking place in

regions extending away from the junction are considered. The reason for the noise is due

to the relaxation mechanism which return the perturbed minority carriers to equilibrium.

The deviation of minority carriers from equilibrium near the junction causes a change in

the gradient of the carrier distribution at the edge of the depletion region, which in order

to relax to the steady state requires carriers to cross the junction giving rise to a flow

of charge around the circuit ie. the terminal current noise is calculated at the depletion

region edges as we do for the steady state currents but as a response to events taking place

away from the junction. A voltage source is applied across the terminals of the device

and the source resistance and the bulk resistance is assumed to be negligibly small when

compared with the differential resistance of the diode(constant voltage case). The constant

voltage bias fixes the quasi-Fermi levels at the levels set by the applied voltage-V and hence

the electron densities at x = −xp(edge of the depletion layer) in Fig. (2.1) are fixed at

np(−xp) = np0e
V/VT and the large recombination velocity at x = −wp(metal contact) sets

it at the equilibrium carrier density np(−wp) = np0. These are non-fluctuating quantities

and as a result, the electron distribution fluctuates only in the bulk between x = −xp and
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Figure 2.1: Description of the scalar short-circuit current Green ’s function. (a)The electron
Green’s function and (b)The hole Green’s function. xp and xn indicate the edges of the
depletion region and in and ip are the injected electron and hole scalar currents at x’.
i′W ,i′0,ic and i0p are the output current variations induced in response to the perturbations
by the scalar current sources.

x = −wp. In other words, the terminals are ’ac-shorted’ and the excess electron densities

at the edges of the bulk region should be zero for all frequencies save the dc component.

This leaves us with the boundary conditions

n′p(−xp, jω) = n′p(−wp, jω) = 0 (2.21)

The events in the bulk which arises due to action of discrete electronic charges set up fluc-

tuations in electron density which are rapidly relaxed by diffusive current flows in the entire

region in order to return the bulk to equilibrium. The relaxation currents are responsible

for violation of charge neutrality in this region which induce majority current flow in the ex-

ternal circuit and is the one that leads to the observed current noise in the external circuit.

The noise model can be obtained by following the Green’s function approach which has

a two step recipe ie. a)The microscopic noise sources are identified inside the device as a

function of the steady state working point and b)The noise sources are propagated to the

device terminals to evaluate the current noise generators.
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There are two microscopic noise sources responsible for the current noise of a constant-

voltage driven p+N heterojunction. One is due to the velocity fluctuation of electron

flow(diffusion noise) associated with the Brownian motion of charge carriers or electron-

phonon or electron-impurity scattering and the other is the carrier density fluctuation due

to transitions between bands and localized states leading to generation-recombination noise

of electrons. In this section, we consider only the generation-recombination and diffusion

noise in the neutral regions and ignore the noise generated in the depletion region. The

propagation of the microscopic noise sources is achieved through a Green’s function for each

of the carrier species ie. Gn(x,′ , ω) for electrons and Gp(x
′, ω) for holes. The frequency-

dependent ’scalar’ Green’s function G(x′, ω) can be considered as a current gain which is

defined as the ratio of the current variation induced(output variable) at the device anode(p

side ohmic contact-(x=W)) or at the edges of the depletion region(x=0) to the electron or

hole scalar current excitation(input variable) injected at x’ anywhere in the quasi-neutral

p+ or N regions.

The spectrum of the current noise generator is expressed as the sum of the diffusion and

GR spectra

SiT (ω) = Si,D(ω) + Si,GR(ω) (2.22)

where the expressions for the two terms in Eq.(2.22) are[26]

Si,D(ω) = A
∑

α=n,p

∫
Ω

KJα,Jα

∣∣∣∣∂Gα

∂x

∣∣∣∣
2

dx (2.23)

Si,GR(ω) = Aq2
∑

α,β=n,p

∫
Ω

Kγα,γβ
GαG∗βdx (2.24)

and the integration is carried out over the entire diode except the depletion regions .ie. Ω =

Ωp ∪ Ωn where the neutral regions are Ωp = [−wp,−xp] and Ωn = [xn, wn]. Here KJ,J and

Kγ,γ are the local noise sources due to diffusion and generation recombination noise. The

local noise sources can be obtained from the moments of the Fokker-Planck equations(see

[23] for a first principles derivation of these moments from the Master equation) and for the

case of diffusion noise, the local noise source for electrons is

KJn,Jn(x) = 4q2n(x)Dn (2.25)
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and the local noise source for generation-recombination noise is

Kγn,γn(x) = 2
np0 + np(x)

τn
(2.26)

Eqs.(2.23-2.24) can be obtained rigorously by adding scalar impulsive current source as a

forcing term in the linearized continuity equations[26]. Let us consider the electron Green’s

function Gn(x′, ω) =
i′W
in

. From Fig.(2.1a), the Kirchhoff’s current law(KCL) for a scalar

electron current injection at x = x′ where x′ ∈ Ωp gives i′W + in − i′0 = 0. On the other

hand for x′ ∈ Ωn, the electrons are majority carriers, and all of the injected current flows

through the ohmic contacts in wn and therefore i′W = 0. Hence

Gn(x′, ω) =

⎧⎨
⎩ 0 x′ ∈ Ωn

−1 + Gnp x′ ∈ Ωp

(2.27)

where Gnp =
i′0
i′W

. Consider Fig.(2.1b), the injection of holes in x′ ∈ Ωp, leads to a flow

through the ohmic contacts a x = −wp and from KCL we have ic = ip. For x′ ∈ Ωn, hole

injection in minority carrier region leads to i0p = ip. The hole Green’s function is defined

as

Gp(x
′, ω) =

ic
i0p

=

⎧⎨
⎩ Gpn x′ ∈ Ωn

1 x′ ∈ Ωp

(2.28)

where Gpn =
i0p

ip
. The choice of Green’s functions in Eq.(2.27) and Eq.(2.28) are the same

expressions used by Bonani et al[26]. Substituting Eq.(2.27) and Eq.(2.27) in Eq.(2.23) and

Eq.(2.24) gives us

Si,D = A

∫
Ωp

KJn,Jn(x)

∣∣∣∣∂Gnp

∂x

∣∣∣∣
2

dx + A

∫
Ωn

KJp,Jp(x)

∣∣∣∣∂Gpn

∂x

∣∣∣∣
2

dx (2.29)

Si,GR = Aq2

∫
Ωp

KJn,Jn(x)
∣∣Gnp

∣∣2 dx + Aq2

∫
Ωn

KJp,Jp(x) |Gpn |2 dx (2.30)

According to the Bonani model, the Green functions have been evaluated using the KCL

which may not be entirely correct. For example, according to Eq.(2.28), i0p = ip in the

n side. In fact, injection of a current source at x = x′ would establish a concentration

gradient, which would lead to different currents along the length of the diode and unless the

diode is short, using KCL to evaluate the Green’s function is not valid. We shall use the

Buckingham diffusion noise theory[16] to see if the choice of Green’s function in the Bonani
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model is correct. Since the noise is studied only in the neutral p+ region, we can redefine

x = xp as the origin of a new coordinate system and will consider the region from x = 0 to

x = W where W = wp − xp.

2.3.1 Generation Recombination Noise

When a generation or recombination event occurs, there is no violation of overall charge

neutrality between x=0 and x=W5. The majority charge carriers do not have relaxation

flows, but there is a perturbation in the minority carrier distribution which cause relaxation

flows away from the disturbance to return the system to equilibrium and is responsible for

a fraction of the total current noise. Let us consider an electron generation event for which

there is an instantaneous appearance or disappearance of an electron at x=x’. This causes

an instantaneous current of in(t) = −qδ(t) that flows from ’nowhere’ to the x=x’ plane in the

p+ region as shown in Fig.(2.2b). The initial and final perturbed electron distribution due

to this scalar current source inserted at x=x’ is shown also shown in the same figure. Solving

the Fourier transformed continuity equation of Eq.(2.20) using the boundary conditions of

Eq.(2.21) and n′(ω) = n′1 at x=x’, we obtain

n′(x, ω) =
n′1

ex′/L − e−x′/L
(ex/L − e−x/L) , 0 ≤ x ≤ x′ (2.31)

n′(x, ω) =
n′1

e(W−x′)/L − e−(W−x′)/L
(e(W−x)/L − e−(W−x)/L) , x′ ≤ x ≤ W (2.32)

The relaxation currents at x=x’+0 and x=x’-0 can be calculated from the diffusion equation

and we find the following currents

i′1(ω) = qDn
dn′(ω)

dx
|x=x′−0 = k1n

′
1 (2.33)

i′2(ω) = qDn
dn′(ω)

dx
|x=x′+0 = −k2n

′
1 (2.34)

where we the symbols k1 and k2 are defined as

k1 =
qDn

Ln
coth(

x′

Ln
) , k2 =

qDn

Ln
coth(

W − x′

Ln
) (2.35)

5The charge neutrality is initially observed when the generation or recombination processes produce or
remove an electron-hole pair. The holes being majority carriers do not produce concentration gradients
or diffusive current flows unlike the minority carrier distributions. After diffusive relaxations flows are
setup(almost instantly) charge neutrality is lost.
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Since we cannot have any accumulation of charge in the p region, we must maintain current

continuity at x=x’ which is given by the following jump conditions

i′1(ω)− i′2(ω) + in(ω) = i′1(ω)− i′2(ω)− q = 0 (2.36)

Relation with the KCL of Bonani. Substituting Eqs.(2.33) and (2.34) in Eq.(2.36), we can

obtain n′1 = q
k1+k2

. The relaxation currents evaluated at x=0 and x=W are

Gnp(x
′, ω) =

i′0(ω)

in(ω)
=

qDn

in(ω)

dn′(ω)

dx
|x=0 = − k0

k1 + k2
(2.37)

Gn(x′, ω) =
i′W (ω)

in(ω)
=

qDn

in(ω)

dn′(ω)

dx
|x=W = +

kW

k1 + k2
(2.38)

where k0 and kW are defined as

k0 =
qDn

Ln
cosech(

x′

Ln
) , kW =

qDn

Ln
cosech(

W − x′

Ln
) (2.39)

The external circuit current due to a single event is given as

i′T (ω) = i′0(ω)− i′W (ω) (2.40)

and defining the terminal current Green function as GnT
=

i′T
in

which from Eq.(2.40) gives

GnT
= Gnp −Gn (2.41)

The average number of generation rate in a small volume AΔx is given as γG =
np0AΔx

τn
and

the average recombination rate is γR = n(x)AΔx
τn

. Note that each generation and recombi-

nation event is uncorrelated, and so the total spectral density includes the sum of all such

events in the volume AΔx and can be written using Carsons theorem(Eq.(3.27))

ΔSi,GR(ω) = 2(γG + γR)|i′T (ω)|2

= 2(γG + γR)|in(ω)|2 |GnT
|2 (2.42)

The total external circuit fluctuation power spectral density Si,GR(ω) over the entire base

is obtained by integrating Eq. (2.42)

Si,GR(ω) = Aq2

∫ W

0

2(n(x) + np0)

τn

∣∣Gnp −Gn

∣∣2 dx (2.43)
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where Kγn,γn =
2(n(x)+np0)

τn
is the local noise spectral density of the generation recombination

noise. Comparing Eq.(2.43) with Eq.(2.30), the choice of Green’s function is different by

the presence of the additional term Gn. Substituting Eq.(2.37) and Eq.(2.38) in Eq.(2.43)

gives us

Si,GR(ω) =
2Aq2

τn

∫ W

0
[n(x) + np0]

∣∣∣∣k0 + kW

k1 + k2

∣∣∣∣
2

dx (2.44)

2.3.2 Thermal Diffusive Noise

The topic as it implies refers to thermal noise. But unlike a resistor where the electrons

were considered as the majority carriers we consider here the minority carriers in the bulk

region(electrons in the p base). The majority carriers by themselves still retain the thermal

noise component 4kTR. Otherwise the same mechanisms are in effect. A single electron due

to collision makes a transit of the mean free path lf and this results in an instantaneous

current qδ(t) at two positions x and x + lf . The electron densities due to this current are

perturbed as seen in Fig. (2.2a). We assume that current flows in the positive x direction

which implies that electron motion is negative. This sets up a diffusion current(relaxation

flows) in accordance with the equations of continuity to return the electron density to

steady state(ie. remove this charge). The ac boundary conditions are n′′(jω) = 0 at x=0

and n′′(jω) = n′1 at x = x′. Using the BCs we obtain the following electron concentration

n′′(x, jω) = n1
ex/Ln − e−x/:n

ex′/Ln − e−x′/Ln
(2.45)

The corresponding diffusion current is

i1(ω) = qDn
dn′

dx
|x=x′ =

qDn

Ln
coth

(
x′

Ln

)
= k1n1 (2.46)

We can similarly obtain for the other side using the BCs n′′(jω) = −n2 at x = x′ + lf and

n′′(jω) = 0 at x=W. The resultant current density is

i2(ω) = qDn
dn′′(jω)

dx
= −qDn

Ln
coth

(
x−W

Ln

)
n2 = −k2n2 (2.47)

Notice the negative sign, which implies the current is opposite to the direction of flow we

chose. However n′′2 is negative which gives the current a net positive flow. At x = x′ + 0
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and x = x′ + lf − 0 we can obtain the return currents using the same diffusion equations

ir1(ω) =
qDn

Ln sinh
(

lf
Ln

) (
−n′′1 cosh

(
lf
Ln

)
+ n′′2

)
(2.48)

Similarly we can define Ir2.In fact the return currents can be simplified since the mean free

path on the order of nm is less than the diffusion length lf � Ln in which case we obtain

ir1 = ir2 = −qDn

lf
(n1 − n′′2) (2.49)

If we replace lf by the width of the depletion region, we obtain the diffusion current for

charge carriers crossing the depletion region. In other words,within lf we have another

space charge region or at least devoid of any charge carriers as per our assumption. Since

there is no accumulation of charge throughout the bulk, we must have current continuity

at x′ and x′ + lf which can be written as

i′′1(ω) + i′′r1(ω) = −qδ(t) (2.50)

i′′2(ω) + i′′r2(ω) = −qδ(t) (2.51)

Substituting the results of the currents and simultaneously solving the equations we obtain

the expressions for the charge densities

n′′1(ω) = − lfk2

Dn(k1 + k2)
, n′′2(ω) = − lfk1

Dn(k1 + k2)
(2.52)

The circuit current which flows in the external circuit can be determined by the two relax-

ation currents which flow into the base ie. i0(ω) at x=0 and i′′W (ω) at x=W. Notice that

the continuity equation states that there is no violation of charge neutrality. However the

resulting relaxation flows which lead to outflow of carriers throughout the region cause the

charge imbalance and the violation of neutrality has to be compensated by the external

current flow which is made up of a majority carrier hole flow through the contacts and a

electron flow across the depletion region. The external circuit current at x=0 is carried

by many events of forward and backward injection(through diffusion or thermionic emis-

sion) and continuously charge and discharge the region.The same condition applies to holes

injected through the contacts. The violation of charge neutrality in the bulk p region is
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equal to the difference between the currents flowing at x=0 and x=W . This is the terminal

current that flows into the junction in response to internal events and is

i′′T (ω) = i′′0(ω)− i′′W (ω) (2.53)

where

i′′0(ω) =
lfk0k2

Dn(k1 + k2)
, i′′W (ω) =

lfkW k1

Dn(k1 + k2)
(2.54)

We note that i′′T is the Fourier transformed circuit current pulse due to a single electron

event. In fact we are closer to using Ramo’s theorem now and Eq. 2.3 . The average number

of thermal diffusive transits per second in a small volume is AΔx is

γT =
n(x)AΔx

τf
=

n(x)AΔx

l2f
Dn (2.55)

where we have used the Einstein relation for the mean free time between collisions τf =
l2f
Dn

and lf is the mean free path of the electron in the p region. Since each thermal event occurs

independently, this leads to a random pulse train from which the spectral density of current

fluctuations due to a small region Δx can be obtained using the Carson’s theorem from

Eq.(2.3) by replacing ν = γT and |FT (iω)2| = |iT (iω)2| and ignoring the dc component

which gives

ΔSi,D(x, ω) = 2γT |iT (ω)|2 =
4An(x)

Dn

∣∣∣∣k0k2 − kwk1

k1 + k2

∣∣∣∣Δx (2.56)

Note that the expression gives the spectral density of the terminal current which is

obtained from a single event multiplied by the total number of average events at each

point x of the semiconductor which is simply a dc carrier concentration n(x) which we can

easily obtain either by analytical or numerical means. The total current fluctuation spectral

density can be obtained by integrating this equation across the entire p region of the diode

as

Si,D(ω) =
4A

Dn

∫ W

0
n(x)

∣∣∣∣k0k2 − kwk1

k1 + k2

∣∣∣∣
2

dx (2.57)

The vector Green’s function for the diffusion noise can be obtained by comparing Eq.(2.57)

and Eq.(2.23) from which
∂GnT

∂x =
∂Gnp

∂x − ∂Gn
∂x = 1

qD
k0k2−kW k1

k1+k2
. The important point to

note is that this choice of Green’s functions differs from Eq.(2.42) used in the Bonani model.

The authors assume that the diode is long, in which case the second term does not have
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Figure 2.2: The initial current flow followed by the relaxation current flows for (a)a thermal
diffusion event and (b)generation process of a minority carrier.

an important contribution. This has been verified by the numerical simulation, but in the

case of short diodes, it is essential in setting the thermal noise contribution to zero.

The integrals of Eq.(2.57) and Eq.(2.44) contain various hyperbolic functions in the

form of k0, kW , k1 and k2 which are hard to integrate unless done numerically. To obtain

meaningful results we can consider two cases which are useful for the analysis of LEDs,

which is the short diode and the long diode. The total noise can be written as the sum of

Eq. (2.57) and Eq. (2.44)

SIT
(ω) = Si,GR(ω) + Si,D(ω)

=
4A

Dn

∫ W

0
n(x)|k0k2 − kwk1

k1 + k2
|2dx +

2ADnq2

L2
0

∫ W

0
[n(x) + np0]|k0 + kW

k1 + k2
|2dx(2.58)

Single Heterojunction Long Diode

For a long diode, the bulk p+ region thickness W is much longer than the diffusion length Ln

and the upper limit on the integrals can be replaced by infinity. The dc electron distribution

as obtained from the continuity equation is

n(x) = np0 + (np − np0)exp(−x/L0) (2.59)

and the remaining position dependent terms can be evaluated as follows:

|k0k2 − kwk1

k1 + k2
|2 ≈ qDn

Ln
exp(−2x/|Ln|) (2.60)
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|k0 + kW

k1 + k2
|2 ≈ exp(−2x/|Ln|) (2.61)

where we find that k2 ≈ 1, kW ≈ 0. Substituting these results in Eq. (2.58), and after

performing the integrations,we obtain the spectral density as

SiT (ω) =
4q2ADn

L0
(a2 + b2)[

np − np0

2a + 1
+

np0

2a
] +

2q2ADn

L0
[
np − np0

2a + 1
+

np0

a
] (2.62)

Taking the low frequency form(ωτn � 1) for which a=1,b=0 and L0 = L , we get the result,

SIT
(ω) =

4Aq2Dn

Ln
(
np − np0

3
+

np0

2
) +

4Aq2Dn

Ln
(
np − np0

6
+

np0

2
) (2.63)

At zero bias np = np0, and using the value of differential resistance at V=0 Rd = kT
eI(V =0) ,we

can simplify Eq. (2.63) as

SIT
(ω) =

4Aq2Dnnp0

Ln
=

4kT

Rd
(2.64)

The above expression is the Nyquist theorem for the thermal noise of resistor except

we replace the majority carrier resistance with minority carrier junction resistance. It may

seem reasonable to invoke Nyquist theorem, whenever the system is in thermal equilib-

rium. However if we consider the microscopic processes behind Eq.(2.64) , we look towards

Eq.(2.63) which shows that there are two equal contributions: from the thermal phonons

due to lattice vibrations which cause thermal diffusion noise and from the thermal photon

reservoirs which cause g-r noise.

For V > 0, Eq. (2.63) reduces to the form

SIT
=

2Aq2Dn

Ln
(np + np0) = 2q(I0 + 2Is) ≈ 2qI0 (2.65)

where I0 and IS are the forward and reverse saturation currents respectively. This is the

standard shot noise current flowing in the external circuit of the diode. Eq.(2.63) has been

obtained in the limit of low frequency and of course, the assumption that the diode is

long. In Appendix.A we have derived the compact frequency dependent device noise model

using the Buckingham’s theory which agrees with that obtained in [26], verifying that the

Green’s function method and Buckingham’s diffusion theory are the same when the term

Gn is omitted in the calculations.
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Figure 2.3: (a)Scalar Green’s function according to the Bonani model in Eqs.(2.27,2.28)
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Double Heterojunction Diode

An example of a double heterojunction diode is shown in Fig.(2.4). In such structures, the

p+ region thickness W is much smaller than the electron diffusion length which makes the

diode short. In reality, the diffusion currents are zero since the concentration throughout the

p+ region is np = np0 exp(qV/kT ) and there are no concentration gradients. The injected

current cannot diffuse towards the contacts because of the conduction band discontinuity at

p+P heterojunction. We can think of the junction current as electrons crosses an imaginary

plane between the conduction and valence bands by radiative or non-radiative processes. If

nc is the total number of carriers in the active region then I = enc
τn

where τn is the minority

carrier lifetime. Since the diode is small, we can make the following simplifications

k0k2

k1 + k2
=

kW k1

k1 + k2
≈ qDn

W

k0

k1 + k2
= 1− x′

W
,

kW

k1 + k2
=

x′

W
(2.66)

Using Eq.(2.66) in Eq.(2.54) the noise currents at x = 0 and x = W , due to the diffusion

noise is

i0(ω) = iW (ω) =
qlf
W

(2.67)

Since i0 and iW are identical and positively correlated, the external circuit current fluctua-

tions T = W − 0 is zero. The thermal diffusion noise does not cause a departure from charge

neutrality in the entire p+ region and hence does not induce external circuit current noise.

On the other hand, for g-r noise the currents

i0 = q(1− x;

W
) , iW = −q

x′

W
(2.68)

The terminal current is iT = i0 − iw = q. Each event of generation and recombination of

electrons results in independent current pulses of area q in the external circuit. The low

frequency spectra for the forward bias(V > 0) which is obtained by ignoring the generation

events(or np0) is obtained from Eq.(2.44) as

SIT
= 2

∫
np(x)

τn
|iT (ω)|2dx = 2e2 np

τn
= 2qI (2.69)

Hence the total shot noise arises completely from the generation-recombination mechanisms

in short base diodes.
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Numerical Analysis

In Fig.(2.3a), we have plotted the scalar Green’s function according to the Bonani model for

the case of short diodes and long diodes which agrees with the results in [24]. The terminal

Green’s function model according to Eq.(2.41) is plotted in Fig.(2.3b). The terminal Green’s

function agrees with our previous discussions for both long and short diodes. For the case

of short diode, a current injection of a single electronic charge anywhere in the p region

produces a terminal current of that electronic charge. Hence the Green’s function is one

throughout the diode. The spectral density using the Bonani model versus the terminal

Green function approach is plotted in Fig.(2.3c) for a symmetrical long diode with doping

NA = ND = 1016cm−3 with a length of 5μm for the p and n sides. The applied voltage is

0.5V and the lifetime employed is τp = τn = 1ns. Since this is a long diode, the difference

between the two models is small, since most of the noise appears in the vicinity of the

junction. For the short diode case, the Bonani model will neglect the contributions of those

events occuring close to the device terminals and will lead to a result which is smaller than

predicted by the terminal Green’s function model.

2.4 Subshot Noise in pn junction devices

The shot noise current flows into the junction of the diode from the external circuit in

response to internal events. The equivalent circuit for noise involves introducing this ex-

ternal current in parallel with the differential resistance of the diode. The noise equivalent

circuit is sufficient to explain the regulation mechanisms originally encountered in experi-

ments. In the early 90s, Edwards introduced the ’leaky reservoir’ model[6, 27, 28] in order

to explain the feedback as well as the noise suppression in the recombination current. He

treated the problem electrically by completely relying on the noise equivalent circuit of

the LED, and making the assertion that the photon number emitted is equivalent to the

carrier number in the active region. The model works quite well but only when describing

the moderate injection regime for heterojunction and homojunction based ’long’ diodes. In

the original paper[6], the regulation mechanism required only the storage of charge carriers

in the diffusion capacitance. Later on, Kim et al[13] showed the existence of a depletion
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current source which also shows the regulated electron emissions through junction voltage
modulation.

layer based regulation mechanism quite similar to the space charge mechanism of Fig.(2.4).

This required the presence of the depletion capacitance which can be added to the exist-

ing equivalent circuit to satisfy experimental observations. Along with the statistical point

process for carrier recombination, the process of photon emission-attenuation and photode-

tection leads to shot noise suppression. Subshot noise relies on the presence of a high

impedance current source which establishes a negative feedback and this can be described

by the noise equivalent circuit model of LED in Fig. (2.5) which has the following elements:

C = Cdiff + Cdep is the sum of diffusion and depletion capacitances, Rd = ( dI
dV )−1 is the

differential resistance , vsn is the shot noise voltage associated with Rd , RS is the source

resistance and vth is the thermal noise voltage associated with RS . Alternatively, we can

express all the noise sources in their Norton equivalents in which case isn = vsn
Rd

is the shot

noise current and ith = vth
Rs

. The bias current into the junction is Ib(t) = Ib + in(t), the

recombination current as I(t) = I + ijn(t), the diode junction voltage as V (t) = V + vjn(t)

.The circuit only shows the small signal or noise quantities. The shot noise and thermal

noise voltage have the relations v2
sn = 2qIR2

d and v2
th = 4kTRS . Applying nodal analysis to
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Figure 2.5: Noise equivalent circuit of light emitting diode for long base structures valid
under low to moderate injection conditions. The circuit shows the ohmic resistance RS ,
dynamic resistance Rd,total capacitance C,stored charge fluctuation q(t),junction voltage
fluctuation vjn(t) ,recombination current ijn junction current in and the noise generators
vsn and vth.

Fig. (2.5) , the current noise flowing through Rd can be written as

ijn(t) = −i(t) + in(t) (2.70)

where i(t) is the current flowing through the diffusion capacitance and in(t) is the current

flowing into the junction. Using Eq. (2.70), we can write an expression for the junction

voltage fluctuation as

C
dvjn

dt
=

(vsn − vjn)

Rd
+

(vth − vjn)

Rs
(2.71)

where i(t) = C
dvjn

dt . The above equation represents a simple low pass filter. Note that the

Thevenin equivalent form for the current sources have been used in obtaining Eq. (2.71) A

diode biased with a constant current source has very high source impedance ie. Rs � Rd,

which approximates Eq. (2.71) as
dvjn

dt =
(vsn−vjn)

RdC .The corresponding voltage transfer func-

tion can be written as
Vjn(iω)
Vsn(jω) = 1

1+sRdC . At low frequencies the Vjn(ω) ≈ Vsn(ω), which

implies junction voltage fluctuations vjn follows the shot noise fluctuations vsn. Beyond

the corner frequency fc = 1
RdC , the junction voltage noise decreases by 6dB/octave and is

strongly suppressed for frequencies f � fc where it no longer follows the shot noise fluctu-

ations. So at time scale t � RdC, a negative feedback mechanism works to suppress the

noise below the shot noise level. In state equation terms, the shot noise voltage fluctuation

is low pass filtered and fed back to the junction ie. at low frequencies the junction voltage

noise follows the shot noise so that the recombination current ijn =
vsn−vjn

Rd
is reduced. The

stored charge fluctuations in the active region q(t) determines the junction voltage fluctu-

ations through v(t) = q(t)
C which implies that any change or suppression of fluctuations in



40

v(t) in turn affects q(t) and the net recombination process. As the capacitive impedance

becomes large at low frequencies, there will be no current flow through this branch. The re-

combination current through the stored charge in the diffusion capacitance i = C dv
dt should

be nearly zero since the junction voltage follows the shot noise fluctuations but,we should

not forget the thermal noise in the external circuit which flows into the internal junction

deciding the recombination current as 〈i2〉 = 〈i2n〉 = 4kT/R. For large R the noise is suffi-

ciently suppressed. At high frequencies the opposite is true, where the capacitive impedance

shorts the shot noise generator and this internal junction noise cannot be extracted into the

external circuit to measure. The feedback is essentially broken for frequencies greater than

the cutoff of the low pass filter ie. fc > 1
RdC and the high frequency junction voltage fluc-

tuations vjn and charge recombination noise q(t) are both negligible and the recombination

current i(t) =
vsn−(vjn≈0)

Rd
reverts to the full shot noise level. Similar conditions exist for

the constant voltage case RS � Rd except in this case the corner frequency is fc = 1
RsC .

However we find that Vjn(ω) ≈ Vth(ω) which implies the junction noise is the thermal noise

of the external resistor and is quite small for all frequencies.

In general,we can establish the noise at low frequencies by removing the diffusion ca-

pacitance from the circuit model of Fig. (2.5). Hence,the external circuit current noise

and the recombination current noise flowing internally in the junction must be equal to one

another. The Fanofactor F can be used to define the degree of suppression/enhancement of

the recombination noise with respect to the shot noise spectral density and for the circuit

model without the capacitance, we have

Fp =
< v2

th > + < v2
sn >

(Rs + Rd)2 ∗ 2eI
(2.72)

For the case of high impedance and noting that the shot noise level is much larger than the

thermal noise which can be seen by 2qI = 2kT
rd
� 4kT

Rs
,the Fanofactor is

Fp =
4kT/Rs

2qI
= (

Rd

Rs
)2 � 1 (2.73)

The Fanofactors under constant voltage condition where Rd � Rs is Fp =
2qIR2

d

r2
d∗2qI

= 1 which

agrees with recombination current being shot noise limited. Note that the Fanofactors do

not express the noise measured at the photodetector but indicate the noise due to carrier
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recombination alone. The nature of biasing(constant current or voltage) does not provide

us with any new results that may differ with the conventional electrical noise quantities

obtained through nodal analysis of equivalent circuits or through numerical means(eg spice

simulations), but the nature of bias does affect the photon flux from pn junction diodes.

2.4.1 Photonic Noise

We make the assumption Cdiff � Cdep and assume that the overall capacitance C = Cdiff .

This is a valid assumption for the moderate injection levels. The reason for not includ-

ing Cdep is that the regulation mechanism that uses the depletion region follows a space

charge effect. The equivalent circuit model predicts the same results as the experiments

by including Cdep as a “fudge factor” into the circuit, but it does not provide the proper

physical pictures to explain the mechanism. Then in state variable terms, we can express

the junction voltage to the charge stored in Cdiff as v(t) = q(t)
C . Note that this is an impor-

tant relation since it states that one can measure the photon number of a quantum state

without disturbing it. In fact the junction voltage monitors the photon number and feeds it

back to reduce the fluctuation under high impedance bias conditions. Such non-destructive

measurements are known as quantum nondemolition measurements and have been exper-

imentally verified for semiconductor lasers[4]. Here RdCdiff = τ is the minority carrier

lifetime in the active region of the semiconductor. Rewriting Eq. (2.71) by rearranging

terms we obtain

dvjn

dt
= vjn(

1

RSC
+

1

RdC
) +

vsn

RdC
+

vth

RSC
(2.74)

dq

dt
= −q(

1

Rd
+

1

RS
) + fn(t) (2.75)

The above equation represents the charge carrier fluctuations in the recombination region

and with comparison with Eq. (2.14) resembles a Langevin equation with two relax-

ation(dissipation) terms and the stochastic thermal equilibrium forcing(fluctuation) terms

isn and ith where

< fn(t)2 >=< f2
sn > + < f2

th >= 2qI + 4kT/R (2.76)
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We can convert this into a optical rate equation by making the change q(t) = en(t) and

grouping external current iin and internal processes n(t), fsn(t) separately gives

dn

dt
=

in(t)

e
− n(t)

τ
+

fsn(t)

e
(2.77)

The first term describes the fluctuating rate at which the carriers are injected from the

external circuit through the depletion region into the active region. The second term de-

scribes the net recombination fluctuation events which by itself(by means of feedback) is the

response to the pump noise iin(t)
e and the intrinsic stochastic charge recombination process

represented by the Langevin term < f2
sn >= 2e2N

τ . The second and third term completely

describe the recombination noise of the active region. The same concepts of constant volt-

age and constant current are applicable here. In constant voltage case, the junction voltage

is pinned which implies the stored electron population is fixed at N(t)=N ie. dn
dt = n(t) = 0.

The charge carriers recombine randomly as a Poisson point process with mean lifetime τ

and we observe the full shot noise in the photon flux. Also since in(t) = fsn(t), the shot

noise can be observed in the external circuit.

In the constant current case, carrier population N(t) is allowed to fluctuate. If the

external junction current noise is suppressed ie. in(t) = 0, then dn
dt = −n(t)

τ + fsn(t)
e . The

corresponding spectral density can be obtained as

Si(ω) =
2eIω2τ2

1 + ω2τ2
(2.78)

This a high pass filter, where the noise at low frequencies is suppressed below the shot

noise. From the above equation we note the bandwidth to be B = 1
2πτ and is the same

as the ac modulation bandwidth of the diode which is incorrect. In actuality we need to

consider the depletion capacitance also which becomes more important at weak forward

bias and the exact bandwidth is B = 1
2π(RdCdep+RdCdiff ) and is the observed spectrum

from experiments. From a small signal standpoint, this may seem obvious,but note that

there must be a feedback mechanism in place when the depletion capacitance is included

as was the case of the diffusion capacitance. The presence of the depletion capacitance is

responsible for regulating the electron flow across the depletion region and is known as the

macroscopic Coulomb blockade effect.



43

Spontaneous emission is an intrinsically Poisson process with mean rate < Φ >= 〈N〉/τ
which is seen when we assume that the junction voltage V (t) = 〈V 〉 + v(t) , the charge

recombination Q(t) = 〈Q〉+ q(t) and the recombination number N(t) = 〈N〉+ n(t) are all

held constant. With feedback each of these variables are modulated by the low pass filtering

which leads to reduced current noise at frequencies within the feedback loop bandwidth

according to Eq. (2.78). Note that there is no optical feedback involved as in the case of

amplitude squeezed lasers. The time varying recombination(which is similar to the photon

flux and will be shown on a more theoretical basis later on) is a stochastic process given by

Φ(t) =
N

τ
+ fsn(t)/e =

〈N〉
τ

+
n

τ
+

isn
e

(2.79)

The second equality shows three terms which we state from left to right: a)the net recom-

bination rate characteristic of Poisson processes b)the feedback term determined by Eq.

(2.77) and gives the response to the stochastic fluctuations in the third term c)the shot

noise fluctuations. At constant voltage there is no fluctuation in the electron population

n(t) which leads to recombination noise(ie. without the average 〈N〉) being shot noise

limited. As RS � Rd,the carrier number n(t) follows the shot noise fluctuations and we

can set n
τ + isn

e = 0. This implies that the flux of photons is suppressed. But we should

remember that we are not controlling the spontaneous emission process which is itself a one

variable birth-death rate process[23] producing Poisson statistics. What we are affecting is

the carrier number and therefore the recombined photon emissions(that follow the carrier

statistics) which appear noiseless on time scales much larger than τ . Alternatively, one may

consider the following scenario, where the electron crosses the barrier instantly, whereas it

takes a longer time for the photons to recombine. In this case, the birth-death rate model

is valid. But typically LEDs have heavily doped active regions, where the recombination

lifetime is negligible and it is the pump lifetimes that dominate the problem.

2.4.2 Noise Spectral Densities

In section 3, we have seen that the external noise current spectral density SIT
is due to the

two processes of thermal diffusive transit of an electron due to collision with the lattice and

the generation-recombination of a minority carrier.This is infact the origin of shot noise
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in constant voltage driven pn junction diodes.Each random event due to these processes

sets up a perturbation in the minority carrier region, which in turn leads to relaxation

current flows in order to restore the steady state carrier distribution. The departure of

minority carrier densities at the depletion layer edge is a side effect of these events and

leads to the full shot noise level. For example, a sudden decrease in minority electrons nc in

the p-active region of a p+N heterojunction leads to an reduced recombination rate. The

junction voltage being a measure of the active number, also decreases instantly. Since the

voltage is to be held constant under constant voltage conditions, it is followed by excess

thermionic emission events from the wideband N layer to the p layer thus decreasing the

majority carrier electron density nN in the N layer. The departure of the electron den-

sity nN from the steady state leads to a replenishment of carriers by the majority carrier

current flow in the N region and subsequent flows in the external circuit. Note that even

though the junction voltage changes from the steady state value,it is immediately relaxed

by the external circuit within the RSC time constant which is much smaller than the in-

ternal generation-recombination time constant RdC. So we can see the junction voltage as

being unchanging or constant. A temporal increase of nc may cause increased backward

thermionic emission events causing nN to increase, followed by a relaxation to steady state

by a majority carrier flow in the opposite direction. Following each recombination event

which looses an electron hole pair, the external circuit injects carriers into the pn junction

in order to restore the steady state carrier density nc and the junction voltage Vj. The

external current noise is thus made of a series of relaxation pulses with the area under

each pulse equal to an electron. In this way, the carrier number and voltage recovers to

the steady state level before being the next generation/recombination event. In this way,

each event is independent of the other or does not have memory of the other event. If

the sink for recombination events is through radiative means, a Poisson point Process is

seen in the photon flux. The external circuit pulses are also shot noise limited, but it

must be pointed out that, the external circuit current is not the origin of the shot noise

in the photon flux but is instead the relaxation pulses produced in response to the Poisso-

nian recombination events which is internally generated in the bulk regions of the diode.
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↓ ←−←−←−←− Feedback 2 ←−←−←−←−←− ↑

nc(↓) ⇒ Vj(↓) ⇒ Iext(↑) ⇒ nN (↑) ⇒ Vj(↑) = Vj0 ⇒ nc(↑)

⇒ Vj(↑) ⇒ Iext(↓) ⇒ nN (↓) ⇒ Vj(↓) ⇒ Vj0

We illustrate above the constant voltage operations for two cycles where the first cycle

describes the response to the reduction in carrier number and the second cycle attempts to

increase the carrier number above the average rate. It may seem that a feedback mechanism

is in place but it essentially maintains nc and Vj at the steady state values of nc0 and Vj0.

It is possible that the feedback mechanism may produce squeezing at frequencies f < 1
RSC

which we have already noted earlier. Since the system had negligible source resistance,

the circuit relaxation mechanisms were carried out with negligible time delay which is why

we could include the external circuit current response in the feedback loop. Each random

event whether it be generation recombination or thermal diffusive was not stored in the

system memory and occurred independently of one another and this is the origin of shot

noise. Note that the system has memory through the storage of carrier concentrations in

the diffusion capacitance. If the carriers recombine instantly ie. if the diffusion capacitance

is removed from the feedback loop by negligible lifetimes for carriers, the memory effect

will cease to exist. In the constant voltage case, the near zero external series forms the sink

for shot noise process, bypassing the capacitor which is why we see the shot noise in the

external circuit.

In the constant current case, where the source resistance satisfies the condition Rs � 2Rd

, the electron density nN in the N layer which is modulated by the forward and backward

thermionic emission events is not removed immediately by the external circuit current.

When compared to the constant voltage case, the external circuit current is relatively fixed

but the junction voltage is allowed to fluctuate freely. When the carrier number for electrons

in the p region exceeds the average for some reason, the recombination rate also increases.

This causes an increased junction voltage and an increase in the thermionic emission events

crossing the barrier. The increase of thermionic emission events causes a decrease in the
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junction voltage as well as a decrease in the the electron density nN . Since the decrease in

both nN and Vj are not instantly eliminated by the external circuit relaxation currents, the

forward thermionic emission rate decreases followed by a reduction in the number of carriers

in the active region and the recombination rate. In other words, the deviation of the carrier

number from steady state due to the noise events is not eliminated by the external circuit

but is done so by the modification of the internal recombination rates which establishes

a self-feedback stabilization mechanism regulating the carrier recombinations in the long

time scale. Note that each generation-recombination event initiates an external relaxation

pulse. But since the time constant for the external relaxation RSC is much larger than the

internal carrier generation-recombination time constant RdC, the external relaxation pulses

are smoothed out. In other words, before a external pulse is allowed to die out, another

one is initiated and the sum series of these events appears to have an almost dc like quality.

Note that both the carrier number and junction voltage fluctuate at the shot noise level

whereas it was kept constant in the constant voltage case. The carrier recombination and

thus the photon flux is regulated producing a sub-Poisson process. Once again, the external

electric current carries the same statistics of the internally regulated photon process and is

not the origin of the sub-shot photon flux. The regulated external current noise can also

be explained from the equivalent circuit of Fig.(2.5), where we noted that under constant

current operation, the internal shot noise is not extracted into the external circuit and the

thermal noise current that flows is highly suppressed and very nearly zero. The two modes

of operation of the pn junction diode are shown in Fig.(2.6)

The so called ’leaky reservoir’ model which employs the equivalent circuit of Fig.(2.5),

provided a simple working of subshot noise from a pn junction diode with series resistance

RS connected to the voltage V. We shall now obtain more precise quantities for the spectral

densities by writing the the nodal equations using the Norton equivalent forms for the noise

sources. Here ith is the thermal current noise associated with RS and isn is the shot noise

current associated with Rd. The KCL for this noise equivalent circuit is then

ith + isn =
dvjn

dt
+

vjn

CRS
+

vjn

CRd
(2.80)
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Figure 2.6: The (a)Constant voltage operation and (b)Constant current operation a pn
junction diode

where C is the total capacitance and is the sum of the diffusion(Cdiff ) and depletion(Cdep

) capacitance. The above equation is a Langevin equation with the second term on the

right indicating the dissipation of of junction voltage vjn due to external circuit current

and the first term on the left as the corresponding external circuit fluctuation. The third

term on the right of Eq. (2.80) represents the dissipation of vjn due to carriers crossing the

depletion region(C = Cdep) and/or recombination of electrons(C = Cdiff ) and the second

term on the left represents the corresponding fluctuation of vjn due to the thermionic emis-

sion/recombination process. For the case of RS � Rd, the Langevin equation of Eq.(2.80)

becomes

dvjn

dt
= −γvjn + F (t) (2.81)

where γ = 1
CRd

is the damping constant and the Langevin noise term is F (t) = isn. This

formulation is quite similar to Eq.(2.14) and the stochastic trajectories traced by the charge

fluctuations(or the junction voltage fluctuations through vjn = q/C), the noise source F (t)

and the recombination current irec are plotted in Fig(2.7). For the case of γ = 1000 in

Fig.(2.7c), F (t) gives the junction voltage a kick, but the effect of this force is damped very

quickly to zero by the damping term due to the large value of the damping constant. In

this case, vjn essentially follows F (t) and the recombination noise given by irec =
vjn−vsn

Rd

is zero as indicated by the flat line. For the case of γ = 1 in Fig(2.7a), F (t) fluctuates
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Figure 2.7: Langevin description of damping with the diffusion capacitance and differential
resistance of a pn junction diode

vjn, but vjn does not recover immediately and the future F (t) will kick a vjn which has

a memory associated with the past value. The case of γ = 100 lies in between these two

cases. It should be mentioned that γ = 1 is unrealistic, since it implies Rd � RS which

is not the condition we started with. In general, for Rd � RS(or RS � Rd), we can

construct a Langevin equation with damping constant γ = 1
RSC (or γ = 1

RdC ) and noise

term F = ith(or F = isn) and the junction voltage always follows the Langevin force F (t)

whether it be thermal noise or shot noise limited. A complete expression for the spectral

densities(without approximations) can be obtained by Fourier transforming Eq.(2.80) and

rewriting it to obtain the junction voltage fluctuations

Vjn(ω) =
[Ith(ω) + Isn(ω)]Rd

1 + Rd
RS

+ iωCRd

(2.82)



49

The spectral density is obtained by calculating 〈V ∗n (ω)Vn(ω)〉and is

SVjn =
4kT
RS

R2
d + 2qIR2

d

(1 + Rd
RS

)2 + (ωCRd)2
(2.83)

In the case of constant voltage which is Rd � RS, we see that at low frequencies, the

junction voltage spectral density is thermal in nature

SVjn(ω) =
4kTRS + 2qIR2

s

1 + (ωCRS)2
≈ 4kTRS

1 + (ωCRS)2
(2.84)

As we remove the series resistance RS → 0, SVn(ω) → 0.In the case of constant current

operation, the junction spectral density is at the shot noise level. At very high frequencies,

both the constant current and voltage cases, show the same noiseless spectral densities. The

external junction current fluctuations are

in = ith − vjn

RS
(2.85)

Fourier transforming the above equations and substituting for Vjn(ω) we obtain

In(ω) = Ith(ω)− Vjn(ω)

Rs
=

Ith(ω)(iωCRs + Rs
Rd

)− Isn(ω)

1 + Rs
Rd

+ iωCRs

(2.86)

At low frequencies, Eq.(2.86) shows that In → −I which states that the current in the

external circuit is equal and opposite to the internal current noise generator. The internal

current source I represents the minority carrier noise current from the region between x = 0

and x = W in the p region(as seen in Section 2), whereas the external current generator

In represents the majority carrier flow through the metal contacts to restore the charge to

equilibrium in this region. The spectral density for current fluctuations using Eq.(2.86) is

expressed as

SIn(ω) = 〈I∗n(ω)In(ω)〉 =
2qIsn + [(RS

Rd
)2 + (ωRsC)2 4kT

RS
]

1 + (ωCRs)2
(2.87)

At constant current operation,we have the external current density is at thermal noise limit

given by SIn = 4kT
RS

almost independent of frequency. At constant voltage operation, the

current spectral density is at the shot noise level at low frequencies, and moves towards the

thermal level at higher frequencies.
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2.4.3 Macroscopic Coulomb Blockade

In section 3.2, we noted that the regulated emission of photons was due to the modification of

recombination rates(by negative feedback) of the charges stored in the diffusion capacitance.

But in section 3.1, we noted that the bandwidth for squeezing depended on the sum of the

depletion and diffusion capacitance. The thermionic emission diode produces a subshot noise

current by modification of the space charge region, which may indicate that such a similar

condition exists for the pn junction diode through its depletion capacitance. The terminal

current of a strongly biased pn diode is the difference between a forward and backward

injection current(which will be detailed in section 4). These currents are individually quite

large, but the difference current is the very small diffusion current used in diode analysis.

Due to the large forward injection current, Buckingham introduced the forward differential

resistance[16] rfi = kT
eIfi

in order to account for the voltage drop across the junction and

this resistance represents the relaxation mechanism by which equilibrium is restored after

a carrier crosses the depletion layer. This differential resistance is much smaller than the

differential resistance of the junction Rd simply because because of the much larger Ifi.

Since the crossing of carriers across the depletion layer is random, this leads to a Poissonian

injection events with shot noise given by 4kTrfi which is much smaller than than the

total shot noise of the diode 2kTRd produced by sum of the generation-recombination

and diffusion noise in the bulk of the diode. In other words,the noise due to carriers

crossing the depletion region is not the principal reason for the observed shot noise in the

macroscopic diffusion limit. However Imamaglo and Yamamoto pointed out that at very

low injection currents, the forward emission dominates and the injection of carriers across

the junction does provide a shot noise contribution, not at the external terminal current,

but in the emission of photons. Under high impedance conditions, the photon emission

was subPoissonian, which could only be explained by means of pump noise suppression ie.

the injection current induced junction voltage fluctuations worked to provide a negative

feedback to regulate the carrier injection rate as in the vacuum diodes of Section 2.1. The

central idea used was the Coulomb blockade, a term borrowed from mesoscopic junctions[29,

30], where a single electron crossing the junction prevents further electrons from crossing
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over, if the electron charging energy due to a single transit e2/Cdep is much larger than the

thermal energy kT . This regulates the electron injection process, but in the macroscopic

junction case, the junction voltage after each injection drops by e/Cdep, the depletion layer

charging energy is much smaller than kT and each microscopic event is unregulated and

completely random. The macroscopic junction voltage only drops after the injection of Ni

carriers to provide ΔVj = Nie
Cde[

. As a result, the forward current will on average decrease to a

factor exp(−eΔVj/kT ) = exp(−e2Ni/kTCdep) of its initial value. When e2Ni/kTCdep ≈ 1,

the collective regulation effect will be active for carrier number Ni =
kTCdep

e2 . Since the

mean injection rate is I/e, this establishes a time scale τteI/e = Ni on which the junction

voltage provides negative feedback to regulate the carrier injection rate and

τte =
kTCdep

e2
τ =

kTCdep

eI
= RdCdep (2.88)

When Ni electrons are injected, the charging energy is Nie
2/2Cdep is larger than kT (the

condition is now similar to the mesoscopic Coulomb blockade case) which leads to reduction

of junction voltage and raises the barrier against further injection. It results in antibunched

electrons on a time scale associated with τte which is known as the thermionic emission

time . As the injection current is lowered, τte increases, and may exceed the recombination

lifetime in which case there is negligible charge storage. Each injection event leads to an

instantaneous recombination, and the statistics of pump determines the subshot nature of

the photon flux. For measurement times smaller than τte, the negative feedback mechanism

is broken and we don’t observe subshot photon features, which is why the bandwidth of

suppression is upper limited at B = 1
2πτte

. Combining the two effects of thermionic emission

regulation and spontaneous emission regulation treated in Section 4.2, the total effective

squeezing bandwidth B = 1
2π(τte+τr)

2.5 Pump Current Mechanisms

From our discussion of depletion capacitance, we note that the junction physics plays an

important role in shot noise suppression and we are inclined to consider two types of junc-

tions ie. p+N heterojunction and a p+N double heterojunction based upon experiments

carried out in the following chapter. Each of these are popular examples of light emitting
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diodes. The p+ region is the active region where recombination takes place. The population

inversion is the total excess electron carrier density compared to the equilibrium value in the

active region. The electron reservoir serves as the pump which injects electrons across the

depletion region into the active region. In the case of the heterojunction barriers, the heavily

doped p regions have a smaller band gap(GaAs) than the n-type semiconductor(AlGaAs).

The current injection is primarily due to electrons because of the bandgap discontinuity

of ΔE which reduces hole injection. In the case of pn homojunctions,most of the junction

current is due to holes,we follow the electron injection process, effective mass.

2.5.1 From Thermionic emission to Diffusion

The important current conduction mechanisms are thermionic emission and diffusion. The

thermionic emission current density is given by the concentration of all electrons with energy

sufficient to cross the barrier from the N side to p side. Bethe derived this theory with two

important assumptions 1.The barrier height is much larger than kT and 2.even though

electrons are lost to the neighboring material at a very high rate, the electron distribution

still says Fermi or Maxwell like. The current density from AlGaAs to GaAs is given as[10, 31]

JN→p = (
m∗
h

)3
e

4π3

∫
vx,vy

dvxdvy

∫
vz>vz0

dvzvzf(v) (2.89)

where f(E) = exp(EF−Ec

kT )exp(−E−Ec
kT ) is the Boltzmann approximated Fermi-Dirac distri-

bution. If we assume that all the electrons above the conduction band have kinetic energy

then E − Ec = 1
2m(v2

x + v2
y + v2

z). Then f(v) = exp(EF n−Ec
kT )exp(−m(v2

x+v2
y+v2

z)

2kT ). Also

we assume that the minimum energy required by an electron to surmount the barrier is

1
2m ∗ v2

z0 = qV ′Jn ≈ q(Vbi − Va), where VJn is the amount of voltage dropped across the

N region. We approximate VJn to Vbi − Va since the p region is more heavily doped and

most of the voltage drops across the N region. The steady state forward injection of elec-

trons by thermionic emission from the widebandgap N region to the narrow gap p region(ie.

Ifi0 = IN→p) can be expressed as

Ifi0 =
ek2T 2m∗

2πh3
exp(

EFn − Ec − qVbi + qVa

kT
) (2.90)
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Using the relations for the conduction band density of states Nc = 2(2πm∗kT
h2 )3/2 and the

Richardson thermal velocity vRth =
√

kT
m∗2π we can simplify the above relation to

Ifi0 = evthNcexp(
EF − Ec − qVbi

kT
)exp(qVa/kT ) (2.91)

where A∗ is the Richardson constant and Vbi is the built in voltage given by From Eq.

(2.91) and using the Boltzmann relation for the electron concentration at the interface ie.

n(x = 0) = NCexp(EC(0)−EF n

kT ) where EC(0)−EFn = q(Vbi−Va)+ Ec(∞)−EFn we obtain

the much simpler relation

Ifi0 =
1

2
evthn(0) (2.92)

This above simple form implies all the electrons at the in the interface spill into the p-side

with a thermal velocity which contribute to current. The factor of 1/2 accounts from the

difference between the thermal and Richardson’s version of the thermal velocity. This can

be traced to Eq. (2.89) where we consider only positive velocities or rather the positive part

of the Maxwellian. This accounts for nN0/2 particles traversing the +x direction. Then

NCexp− (Ec(∞)−EF

kT )exp(−qVbi/kT ) = nN0exp(−qVbi/kT ) = np0.

Ifi0 =
1

2
evthnp0exp(qVa/kT ) (2.93)

At the edge of the depletion region at x=0(note that xp0 ≈ 0) the current density is n(0).

Since these electrons are distributed in a Maxwellian velocity distribution half of them can

return back to the N region.

Ibi0 =
1

2
evthn(0) (2.94)

The difference between the two currents should be the net current into the p region. If we

assume the typical result np(0) = np0exp(qVa/kT ) we would get a current of zero. This

implies that the value of n(0) should be different. Once the electrons are in the p-type

region they diffuse towards the contacts and are

Jdiff =
qDn

Ln
(np(0)− np0) (2.95)

We can set J = JN→p − Jp→N = Jdiff from which we find the value of np(0) to be

np(0) =
1

1 +
lf
Ln

np0(exp(qVa/kT ) +
lf
Ln

) (2.96)
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np(0) − np0 = 1

1+
vdiff
vRth

np0(exp(qVa/kT )− 1). The current can be written as

I0 = qvdiff
1

1 +
vdiff

vRth

np0(exp(qVa/kT )− 1) (2.97)

For vRth � vDiff , the electron current is by diffusion ie. electrons diffuse much slowly in

the neutral p regions compared to the rate of injection by thermionic emission and hence

diffusion is the rate limiting step. In the case vRth � vDiff ,the carriers diffuse or recombine

immediately and are able to follow the thermionic emission events. The current in this

case is by thermionic emission. This is seen in metal semiconductor structures due to short

dielectric relaxation time or in our case if the width of the base is made small compared to

the mean free path ie W ≈ lf or the diode base is short by having a negligible recombination

time(τ → 0). For pn heterojunctions the same arguments hold where the diffusion currents

can be obtained by noticing that

np0 = Xnn0exp(−qVbi/kT ) (2.98)

where X is the transmission coefficient of the electrons crossing the heterojunction interface.

Using this, the same steady state carrier concentration of a pn junction is applicable ie.

np(x) = np0 + (np − np0)e
−x/Ln and the diffusion current is obtained from Eq. (2.95).

The Langevin analysis which is to be discussed treats particularly the pn heterojunction

from the thermionic emission to diffusion regime. The regime in between the diffusion and

thermionic emission limits, are possible because of carrier hot electron effects and different

barrier structures. In order to account for them, the forward/backward pump model was

developed which relates the pump currents in between these two limits, to experimentally

observed quantities in typical photodetection experiments.

2.5.2 The forward/backward pump model

Fig.(2.8) describes the variables used in the description of the foward/backward pump model

for a double heterojunction diode. For light emitting diodes, the total current which is the

difference between the backward and forward thermionic emission currents is equivalent to
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Figure 2.8: The band-diagram of a typical double heterojunction LED under forward bias
condition. Here Vj is the applied bias, Pfi and Pbi denote the forward and backward pump
rates and nc/τr denotes carrier recombination in the active region.

the total recombination in the active region. The net current is

I0 = Ifi0 − Ibi0 = e(Pfi0 − Pbi0) = e

(
nc0

τr
+

nc0

τnr(nc0)

)
(2.99)

where nc0 =
∫

np(x)dx is the total minority carrier density in the entire active p region, τr

and τnr are the radiative and non-radiative lifetimes, Pfi0, Pbi0 correspond to the forward

and backward pump rates instead of their currents. The inclusion of non-radiative processes

affects the photodetection process the rough the efficiencies. The DC efficiency can be

defined as the ratio of current at photodetector IPD to the current flowing in the LED and

is

η0 =
IPD

IO
=

N0

P0
=

ηc(1/τr)

1/τr + 1/τnr
(2.100)

Here ηc is the finite collection efficiency which represents the photons lost in the photode-

tection process through beam splitter losses and coupling. The differential efficiency can

be defined as the differential ratio of the radiative recombination to the total recombina-

tion rate and may take on constant values.In other words,we can use the dc values itself

to calculate these quantities, since any change in the frequency population Δnc around the

dc value is followed by immediate reordering of the Fermi-Dirac distributions due to the

short time scale over which the reservoir of phonons interact with the electrons and holes.

In fact,Δnc follows quasi-steady state the steady state values and we can instead treat it
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as small perturbation of the dc steady steady state as Δnc0 without requiring a frequency

dependent solution. This approximation may be valid to about 100Mhz and is written as

ηd =
dIPD

dI0
=

dN

dP
=

ηc
d

dnc
(nc

τr
)|nc=nc0

d
dnc

(nc/τr(nc) + nc/τnr(nc))|nc=nc0

(2.101)

Introducing efficiencies, allows a simple way of including experimentally measurable quan-

tities into the definitions of the backward to forward pump rate ratio α0 as

α0 =
Ibi0

Ifi0
=

Pbi0

Pfi0
(2.102)

The current can then be written in terms of only the FP rate from Eq. (2.99) I0 =

(1− α0)Ifi0 which leads to

Ifi0 =
1

1− α0

enc0

τr
, Ibi0 =

α0

1− α0

enc0

τr
(2.103)

We can also define the differential ratio of BP to FP rates, which can be defined in the dc

limit as

αd =
dIbi0

dIfi0
=

dPbi0

dPfi0
(2.104)

The defined values of α0 and αd are valid irrespective of the presence of the nonradiative

processes. Electrons injected into the p region with energies in excess of the barrier height

are assumed to have fast energy relaxation times to quickly establish the Fermi-Dirac dis-

tribution of elevated temperature Te. Such short relaxation times justifies the independence

of the differential ratio αd with respect to frequency over the range of device operation. The

small signal change in forward or backward currents can be expressed on the basis of the

differential ratios as

ΔIfi0 =
1

1− αd

eΔnc0

τr
, ΔIbi0 =

αd

1− αd

eΔnc0

τr
(2.105)

The small signal changes are equivalent to fluctuations around the steady state and can be

applied equally to ac and noise problems. Due to the continuity of particle flow, the net

fluctuations in current can be obtained from Eq. (2.105) as

ΔI0 = ΔIfi0 −ΔIbi0 =
d

dnc0
(
nc0

τr
)Δnc0 =

eΔnc0

τr
(2.106)
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In obtaining the above equation, we have ignored non-radiative process and hence the

expression may be considered ideal. Including τnr we can obtain the FP current from Eqs.

(2.99) and (2.103) as

Ifi0 =
1

1− α0
(
nc0

τr
) +

nc0

τnr(nc0)
(2.107)

An important assumption we make in arriving at Eq. (2.107) is that the dc and small

signal values of the BP processes- Ibi0 and ΔIbi0 are proportional to the average and the

fluctuation of the electron population in the active regions and are considered independent

of the junction voltage fluctuations. Also the BP rates are valid regardless of the existence

of the non-radiative process which is why only Ifi0 given by Eq. (2.107) is a function

of τnr(nc0) whereas Ibi0 is given by Eq. (2.103). With the presence of the non-radiative

lifetimes, we can define an effective dc BP to FP rate from Eqs. (2.103) and (2.107) as

α0,eff =
Ibi0

Ifi0
=

α0

1 + (1− α0)
τr
τnr

=
α0

1 + (1− α0)(
ηc

η0
− 1)

(2.108)

The net change in fluctuation in current including the non-radiative processes are

ΔI0 = ΔIfi0 −ΔIbi0 =
d

dnc0
(
nc0

τr
+

nc0

τnr(nc0)
)Δnc0 =

ηc

ηd

Δnc0

τr
(2.109)

The forward current fluctuations are then expressed as

ΔIfi0 =
αd

1− αd

Δnc0

τr
+

ηc

ηd

Δnc0

τr
(2.110)

We can also define an effective differential BP to FP rate ratio at the dc limit using the

non-radiative non-ideality which leads to

αd,eff =
dPbi0

dPfi0
=

αd

1 + (1− αd)(
ηc

ηd
− 1)

(2.111)

Substituting these results,we can obtain a semi-qualitative expression for the dc currents as

I0 = Is(exp(
eVj0

nkT
)(1 − α0,eff (Vj0))− 1) (2.112)

where α0,eff can take values from 0 to 1. When α0,eff = 1, we obtain the diffusion case

where the forward and backward currents are large and equal to each other and the difference

current is the small diffusion current. When α0,eff = 0, we obtain the thermionic emission

case, where the forward electron current is large and the reverse electron current is very
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small as a result of the large barrier or bandgap discontinuity which prevents the reverse

electron flow. This implies that the diffusion current is one limit to the thermionic emission

current flows. The more exact analytical value of α0,eff can be proven by comparing Eq.

(2.112) with Eq. (2.97). The effective differential efficiency of an LED is defined as

rdj,eff = (
dI0

dVj
)−1 =

kT

eIfi0
(

1

1− α0,eff − kT
e

d
dVj0

α0,eff (Vj0)
)

=
kT

eI0

1− α0,eff

1− αd,eff
(2.113)

where we have used Ifi0 = 1
1−α0meff

I0 and defined αd,eff as

αd,eff = α0,eff (Vj0) +
nkT

eI0

dα0,eff (Vj0)

dVj0
(2.114)

where Eq. (2.114) has been shown to be equivalent to Eq.(2.111)[32]. We shall employ the

BP rates in the Langevin model treated in the following section.

2.6 Langevin Analysis of shot noise suppression in LEDs

Typically most semiconductor models utilize a semiclassical rate equation to determine the

time evolution of the total carrier density. For an LED where the gain is very small, we can

write

dN

dt
=

Jη

ed
−BNP +

n0

τr
− Δn

τnr
(2.115)

where the first term indicates the pumping process into the active region with current J

and d is the thickness of the active region,N = n0+Δn and P = p0+Δp are the active region

carrier concentration and Δn = Δp are the nonequilibrium excess carrier density of electrons

and holes generated by current.B is the bimolecular radiative recombination coefficient and

τnr is the non-radiative lifetime. The second term indicates the radiative recombination,

the third represents generation and the fourth represents the nonradiative channel. First

the equation can be written phenomenologically with additional terms such as gain for laser

oscillation added easily but it also represents the state equation for the total charge stored in

the diffusion capacitance under high bias and can be obtained using the circuit of Fig.(2.5) .

This recombination term may be simplified by the BNP = Bn0p0 + BΔn(n0 + p0 + Δn) =
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n0
τr

+ Δn
τr

where τr ≈ 1
Bp0

.

dΔn

dt
=

Jη

ed
− (n0 + Δn)

τr
+

n0

τr
− Δn

τnr
(2.116)

The simple equation may in itself be sufficient to describe the subshot characteristics(as we

did in the intuitive model) of photon flux provided we add the necessary Langevin forces.We

also need to decompose the current into the forward and backward pump process across the

semiconductor junction which in turn are effected by another semiclassical rate equation

involving the time evolution of junction voltage fluctuations. Usage of such semiclassical

equations are justified since there was no optical mechanisms responsible for generating

phase coherent light as in semiconductor lasers. This led Kim et al[33] to obtain the optical

noise spectra in the the macroscopic diffusion limit. The diode current in their analysis

was split into a current fluctuated by the junction voltage fluctuations and another which

is the Langevin or Markovian carrier injection process. The current flowing in the external

circuit was the junction charging current plus the net diffusion current. The analysis is also

applicable to the thermionic emission limit but the authors have made the assumption that

the forward and backward carrier lifetimes are negligible which automatically implies the

diffusion limit. The analysis was constrained to a long diode such that the difference between

the forward and backward currents result in the net diffusion current seen in homojunctions.

The pump process depends on the nature of the device structure. For example, the

diffusion model is applicable to homojunctions whereas in heterojunctions the thermionic

emission model is applicable. Recently Kobayashi et al investigated the current dependence

of squeezing bandwidth in a heterojunction LED and found that a low injection currents the

thermionic emission model was valid and at high injection currents, the diffusion model was

valid. In intermediate current regimes they found that could not be fit their experimental

data with either theories, since there would be some amount of backward carrier injection

causing a situation between the two models. By taking into account the ratio of the BP rate

to the FP pump rate,they were able to account for the experimental results for squeezing

bandwidth over the entire range of currents. Even though there is a barrier to prevent the

backward flow of carriers from the active region, the BP process cannot be prevented since

the injected electrons may not thermalize to the lower states because of band-tail states and
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hot carrier effects. Also in order to describe the pump process for a myriad of possible device

structures, the phenomenological ratio of the BP to FP processes(α0, αd) was introduced

in section 2. The case of αd = αd = 1 restores the diffusion limit and since the carriers

move across the junction quickly compared to the other time constants in the system, we

cannot make the distinction between recombination and forward injection since they are

strongly coupled with one bandwidth given by f3dB = 1
2π(τr+τte) .In the case of α0 = αd = 1

where the back current is zero and the forward current in non-negligible we reach the

thermionic emission limit where carrier injection and recombination are viewed as cascaded

processes. Another important point is that from a circuit perspective, the external circuit

current noise must be suppressed if the recombination noise is to be suppressed because any

current variations would affect the carrier number and the recombination rate. ie the low

frequency terminal current is related to the recombination in the absence of the capacitance

as I(t) = eN(t)
τ . When the external current noise is shot noise limited, it implies that the

photon flux emitter is also shot noise limited. However we saw earlier that the sub-shot(or

shot) external current noise is not the origin of the photon flux noise but the result of self-

regulated(or lack of) photon emission process. Suppression of the external terminal current

noise may be a necessary but not sufficient condition ,since the dynamics of the carrier

injection into the active region as well as recombination may affect the degree of shot noise

suppression. For example, even if the terminal current is highly suppressed, the junction

voltage fluctuations which are shot noise at low frequencies, become zero and pin the voltage

at higher frequencies leading to a shot noise photon flux. Another example is the generation

of sub-Poisson states from pn junction driven under constant voltage source[] .In this case

the sub-Poisson external circuit current cannot be assumed, and its the internal junction

dynamics responsible, in particular the non-linear microscopic relation between FP and BP

process that is responsible for squeezing.

Finally Fujisaki et al[14] studied the quantum noise of LEDs under low injection lev-

els.They treated the case of many photon modes excited in the cavity and found disagree-

ments with the simpler theories which claimed that Fph = 1− η + ηFdr. The reasoning was

that the non-radiative processes and carrier number dependence on lifetimes could affect
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the efficiencies such that the quantum efficiency η0 differs from the differential quantum

efficiency ηd . In the experiment carried out by, it has been reported that ηd > 2η0 under

low current conditions and the simpler theories are infact valid only in the case of high injec-

tions where η0 = ηd. The authors used the quantum mechanical Langevin equations(QLE)

to obtain the semiconductor and optical QLEs at low injection conditions. They did this

by extending the Chow,Koch and Sargent[34] analysis for the case where many photon

modes are present inside the cavity of the LED. However they did not include the effects

of pumping such as BP and FP processes seen in the semiclassical theories. Note that we

don’t distinguish between microscopic and semiclassical, since one deals with currents and

the other with particles. A quantum mechanical theory is also microscopic in description

but the equations of motion regarding the electron and photon number are strictly derived

from Heisenberg’s equation of motion. But for the QLE such as electron number, the pump

does not have a formal derivation, and has to be included phenomenologically since we are

using theα parameters.

In this section we closely follow the Chow,Koch and Sargent theory to derive an expres-

sion for the photon Fanofactor which includes the pump statistics, the efficiencies η0 and ηd

, the ratio of the BP to FP process α0 and αd as well as parameters related to multimod-

eness of the LEDs. The expression also agrees with the expressions given by semiclassical

theories under large injection conditions from the thermionic emission to the diffusion limit.

We investigate the squeezing dependence on bandwidth in these two limits as well squeez-

ing under constant voltage conditions using the nonlinear BP process and the extension

of cutoff frequency due to this process. The crosscorrelations between LED quantities are

also obtained in these limits. The photon Fanofactors are essential as they allow us to

verify the validity of the subshot noise experiments detailed in chapter 3. We shall now

discuss the Langevin formalism, which starts with the definition of the total Hamiltonian

which includes the contribution of the electron carriers(electrons and holes), the many-body

interactions among particles(Coulomb scattering), the dipole polarization, the field modes

inside the cavity, the reservoir of modes outside the cavity and the interaction between the
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reservoir and the cavity field modes.

Htotal = Hcarriers + Hmany−body + Hdipole + Hfield + Hbath + Hfield−bath (2.117)

The total Hamiltonian of Eq.(2.117) is derived in Appendix.A but the terms of interest are

Hcarriers =
∑

k

((
�

2k2

2me
+Eg0)c

†
kck+(

�
2k2

2mh
+ΔEch)d†−kd−k),Hdipole = �

∑
l,k

(g0
l,kalc

†
kd
†
−k+g
0

l,ka
†
l d−kck)

(2.118)

Hfield + Hbath + Hfield−bath =
∑

l

�Ωlalal +
∑

j

�ωjbjbj + �

∑
l,j

(μlja
†
l bj + μ∗ljb

†
jal) (2.119)

The variables appearing in the Hamiltonian are as follows: al is the annihilation operator

for mode l, Ωl is the field oscillation frequency for mode l, ck and d−k are the annihilation

operators for electrons and holes, Eg0 is the bandgap, me and mh are the electron and

hole effective mass, g0
l,k represents the coupling constant between the dipole and mode of

the field, bj is the annihilation operator for the reservoir modes and μlj is the coupling

constant describing the interaction between the modes of the bath and the field. The other

Hamiltonian terms, such as many body Hamiltonian, lead to complicated expansions in the

equations of motion such as four operator products whose effects can be explained by simple

handwaving. The Heisenberg equations of motion for any operator O which is part of this

entire system is

dO

dt
=

i

�
[Htotal, O] (2.120)

2.6.1 Semiconductor Bloch-Langevin Equations

The equation of motion for the dipole operator(which is also referred to as the spin-flip

or raising or lowering operator-since it removes an excited state |11〉 which represents the

presence of an electron-hole pair to the ground state |00〉) in the rotating frame σk(t) =

d−kck exp(iΩlt) is [34]

dσk

dt
= −ik − Ωl)σk − i

∑
l,k

glk[ckd−k, σk]al + [
dσk

dt
− dσk

dt
|HF ] (2.121)

where the renormalized transition energy is hωk which includes a density dependent con-

tribution from the many-body Hamiltonian and whose details are found in Chapter 4 of

Ref.[34]. The term in the bracket represents the effect of the Coulomb interaction which
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couples the two operator terms to four operator terms and dσk
dt |HF is the Hartree-Fock

contribution which is essentially the first two terms of Eq.(2.121). The net effect of the

terms within the square bracket is to to produce collision terms which result from the many

body interactions ie. dσk
dt |coll = dσk

dt − dσk
dt |HF . The following commutator is useful in and

represents in some sense the probability of filled valence and conduction band k state minus

the probability of an empty valence and conduction band states.

[ckd−k, d−kck] = nek + nhk − 1 (2.122)

Substituting Eq.(2.122) in Eq.(2.121), the equations of motion for dipole operator is

dσk

dt
= −ik − Ωl)σk + i

∑
l

glk(nek + nhk − 1)Al +
dσk

dt
|coll (2.123)

Similarly we can write an equation of motion for the electron number operator, where we

have added the pumping term Aek and the formal collision term which arises from the many

body Hamiltonian

dnek

dt
= Aek + i

∑
l

(g∗lkAlσk + H.C)− nek

τnr
+

dnek

dt
|coll (2.124)

Note that the coupling constant glk is renormalized from g0
lk defined in Eq.(2.118) as it

includes the effect of the many body Hamiltonian. Eq.(2.123) and Eq.(2.124) are the semi-

conductor Bloch equations and they reduce to the case of an undamped inhomogeneously

broadened two level Bloch equation(for a two level atom) when all the Coulomb potential

contributions are dropped. In Eq.(2.124), τnr is the non-radiative decay constant due to

capture by vacancies due to defects in the semiconductor and is an implicit function of the

total carrier density. The simplest approximation of the collision contribution in the polar-

ization equation of Eq.(2.123) describes the dipole dephasing which is dσk
dt = −γσk and the

net contribution of the intraband scattering is to return the electron and hole distribution

to equilibrium which leads to dnek
dt = −γ(nek−fek) where fek is the quasi-Fermi distribution

satisfying the condition Σkfek = Σknek = nc where nc which is the total particle density

is conserved. In fact, the intraband scattering part does not play a part in the equations

of motion for the total carrier density as it vanishes as seen by summing Eq.(2.124) for

all modes. The dipole interacts with the other carrier scattering reservoirs(such as phonon
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interactions) which could complicate the problem, but we can treat them by adding the

Langevin noise operator Fσ,k to Eq.(2.123). Similarly the electron number is fluctuated

by pump processes which are included as the Langevin operator Fek in Eq(2.124). The

resultant equations are the semiconductor Bloch-Langevin equations

dσk

dt
= −(γ + i(ωk − νl))σk + i

∑
l′

gl′k(nek + nhk − 1)Al′ + Fσk (2.125)

dnek

dt
= Aek + i

∑
l

(g∗lkAlσk + H.C)− nek

τnr
− γ(nek − fek) + Fek (2.126)

The rate of change in the carrier density and the electric field envelope vary very little in

the dipole lifetime 1/γ and hence the dipole operator can be eliminated from the field and

carrier density equation by using the quasi-equilibrium approximation which assumes that

it has reached steady state. The carrier density nc varies significantly only over relatively

long times such as the interband relaxation time. Multiplying Eq.(2.125) by the integrating

factors e(γ+i(ωk−νl)t) leads to

d(σke(γ+i(ωk−νl)t))

dt
=

∑
l

(igl,kAl(nek + nhk − 1) + Fσk)e(γ+i(ωk−νl)t) (2.127)

The above equation can be integrated to give

σk =

∫ t

−∞

∑
l

(igl,kAl(nek + nhk − 1) + Fσk)e
(γ+i(ωk−νl)(t−t′))dt′ (2.128)

We now take the rate-equation approximation by assuming that the carrier densities nek

,nhk and the mode amplitude Al are constant over the integration, can be evaluated at time

t and taken out of the integral. Next the integration is performed leading to two terms of

exponentials. We use the rotating wave approximation, where one of the terms is neglected

since it leads to a very large denominator. The final result is

σk ≈ iΣl′gl′k(nek + nhk − 1)Al′ + Fσk

(γ + i(ωk − νl))
(2.129)

The total carrier density nc =
∑

k nekis obtained from Eq.(2.124) as

dnc

dt
= P − nc

τnr
+ i

∑
k,l

(g∗lkAlσk + H.C) +
∑

k

Fek (2.130)

We shall return to simplify the above equation after we discuss the field Langevin equations

and define the noise operators.
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2.6.2 Field Langevin Equations

Each mode of the cavity inside the LED are coupled to the many modes of free space

through mirrors of finite transmission. The Langevin method simplifies the analysis by

considering that each mode is coupled to a reservoir which is essentially unperturbed by the

internal mode(also known as the system) dynamics. The reservoir(or bath) being large(due

to many available modes) has a very large bandwidth whereby it is responds much faster

than the system variable and is indifferent to the system changes. Using Eq.(2.120) , the

annihilation operator for the cavity system obeys the equation of motion,

dal

dt
=

i

�
[Htot, al] =

i

�
[Hdipole + Hfield−bath + Hfield, al] (2.131)

The total Hamiltonian is expanded to include only the dipole, field and field-bath coupling

terms since only these terms contain the mode operators of the field. Using the bosonic

commutator [a, a†] = 1 and an extended result [a†l al, al] = −al, the equations of motion can

be solved as

dal

dt
= −iΩlal − iΣjμl,jbj − iΣkgl,kd−kck (2.132)

Similarly, the equation of motion of the annihilation operator for the bath is obtained from

Eq.(2.120) as

dbj

dt
=

i

�
[Htot, bj ] =

i

�
[Hfield−bath + Hbath, bj ] (2.133)

The bath obeys the same commutation relations as the field system [bj, b
†
j ] = 1 and [bj , bj ] =

0. Using these properties in Eq.(2.133), we find

dbj

dt
= −iωjbj − iμ∗ljal (2.134)

Eq.(2.133) and Eq.(2.134) show that the system and the reservoir are linked by nature

of interaction Hamiltonian which create an infinite set of coupled Heisenberg equations of

motion. The coupled equations can be simplified by adiabatically eliminating the reservoir

variables-bj(t) by using a Wigner-Weisskopf approximation[35], thereby obtaining a modi-

fied equation of motion for the system variable al. Integrating Eq.(2.134) from t0 to t we

obtain

bj(t) = bj(t0)e
−iωj(t−t0) − i

∫ t

t0

μ∗l,jal(t
′)e−iωj(t−t′)dt′ (2.135)
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In the above equation, the first term on the right represents the solution of the Heisenberg

equation without the effects of the interaction Hamiltonian and thus describes the free

evolution of the bj(t). Note that this free evolution satisfies the commutation relation as

[bj(t), b
†
j(t)] = [bj(t0), b

†
j(t0)] which shows that equal time commutation relations remains

unchanged at all instants of time. The second term describes the perturbation of the free

evolving mode amplitudes by the modes inside the cavity, by altering the number of photon

in the modes of the reservoir as can be seen by its dependence on aj(t). Substituting

Eq.(2.135) in Eq.(2.132) gives us

dal

dt
= −iΩlal − i

∑
j

μl,jbj(0)e
−iωj t −

∑
j

∫ t

0
μ∗l,jμl,jal(t

′)e−iωj(t−t′)dt′ − i
∑

k

gl,kd−kck

(2.136)

The first term of Eq.(2.136) is the free evolution of the mode inside the cavity. The second

term indicates the fluctuations in the reservoir affecting the system. The third term gives

the radiation reaction which may be considered as a back-action from the reservoir on

the system. This can be inferred by noticing that both Eq.(2.135) and Eq.(2.136) have a

similar term. The system first polarizes the reservoir affecting the field modes as shown by

the second term Eq.(2.135). The net change of all the reservoir field modes in turn affect

the system inside the cavity according to second term of Eq.(2.136). We can move the

operator al into the Heisenberg interaction picture by removing the fast moving frequencies

associated with the various system Hamiltonians as

Al(t) = e
i
�
(Hfield+Hbath)t)ale

− i
�
(Hfield+Hbath)t)

= ei(ΣmΩma†mam)tale
−i(ΣmΩma†mam)t (2.137)

Eq.(2.137) can be solved by differentiating Al(t) leading to

dAl

dt
= iΩle

i(Ωla
†
l al)t(a†l al − ala

†
l )ale

−i(Ωla
†
l al)t = −iΩlAl (2.138)

This differential equation is easily solved to obtain

Al(t) = Al(0) exp(−iΩlt) = al exp(−iΩlt) (2.139)

where the equal time commutation relations [Al(t), A
†
l (t
′)] = δ(t − t′) are once again pre-

served. In essence, going into the interaction picture causes Al(t) to contain, the much
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slower time dependence of the interaction energy. Substituting Eq.(2.139) in Eq.(2.136)

and choosing t0 = 0 gives

dAl

dt
= −

∫ t

o

∑
j

|μl,j|2Al(t
′)e−i(ωj−Ωl)(t−t′)dt′ − i

∑
k

gl,kd−kck + Fl(t) (2.140)

where Fl(t) is the noise operator associated with damping the cavity mode l and is given

by

Fl(t) = −i
∑

j

μl,jbj(0)e
i(Ωl−ωj)t (2.141)

The noise operator contains all the mode frequencies of the reservoir and varies rapidly with

time, affecting the field system within the cavity. The first integral of Eq.(2.140) can be

simplified by interchanging the sum and integral and noting that[35]

lim
t→∞

∫ t

0
dτe−i(ω−ω0)τ = πδ(ω − ω0) + i

P

ω0 − ω
(2.142)

where P indicates the Cauchy principle value. In Eq.(2.140), we note that the t integration

is performed on a time scale commensurate with the inverse of the reservoir bandwidth.

Al(t) varies very little in this timescale allowing it to be taken out of the integral followed

by extending the limit of integration to infinity. We can then substitute Eq.(2.142) into

Eq.(2.140) as follows

∑
j

|μl,j|2Al(t
′) lim

t→∞

∫ t

0
e−i(ωj−Ωl)(t−t′)dt′ = π

∑
j

|μl,j|2Al(t
′)δ(ωj − Ωl) (2.143)

The Cauchy principal value is responsible for the Lamb shift in the harmonic oscillator[36]

but this frequency shift is small and has been neglected in Eq.(2.143). Next we replace the

sum over j in Eq.(2.143) with an integral which also introduces the density of states D(ω)

in the integrand which identifies the degree of degeneracy for each frequency. This step

followed by further simplification with the delta function which is given by

π

∫
|μl(ω)|2D(ω)Al(t)δ(ω − Ωl)dω = πD(Ωl)|μl(Ωl)|2Al(t) (2.144)

If the the decay constant is chosen as κl = 2πD(Ωl)|μl(Ωl)|2 , along with Eq.(2.141),

Eq.(2.140) becomes

dAl

dt
= −κl

2
Al − iΣkg

∗
lkσk + Fl(t) (2.145)
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Except for the second term, Eq.(2.145) resembles the classical Langevin equation of Eq.(2.14),

where the first term represents the drift term and the third term the stochastic forcing term

responsible for the fluctuations. We started with a coupled supersystem(system+reservoir)

given by Eqs.(2.132) and (2.134), decoupled the reservoir from the system by only including

its effects on the system which is to fluctuate and damp the modes inside the cavity. The

net effect of this process, is to lose precision which leads to noise. Unlike classical systems,

the presence of fluctuation termFl(t) is required in order to prevent the commutators from

decaying to zero. We can further simplify Eq.(2.145) by inserting the expression for the

spin flip operator obtained by the quasi-equilibrium approximation in Eq.(2.129) to give

dAl

dt
= −κl

2
Al +

∑
l′,k

g∗l,kgl′,k
nek + nhk − 1

γ + i(ωk − νl)
Al′ − i

∑
k

g∗lk
1

γ + i(ωk − νl)
Fσ,k + Fl (2.146)

For convenience, we define a fluctuation operator Fσ,l(t) associated with the carrier scatter-

ing reservoirs

Fσ,l = −i
∑

k

g∗lk
1

γ + i(ωk − νl)
Fσ,k (2.147)

which is associated with the coupling between the electron-hole dipoles and the fields inside

the cavity. Also we make the following expansion nek +nhk−1 = neknhk−(1−nek)(1−nhk).

Eq.(2.146) now becomes

dAl

dt
= −κl

2
Al +

∑
l′,k

g∗l,kgl′,k
neknhk

γ + i(ωk − νl)
Al′ −

∑
l′,k

g∗l,kgl′,k
(1− nek)(1− nhk)

γ + i(ωk − νl)
Al′ + Fσ,l + Fl

(2.148)

We can now determine the quantum Langevin equation for the photon number operator

nl = A†l Al using dnl
dt =

dA†l
dt Al + A†l

dAl
dt and Eq.(2.148) which gives us

dnl

dt
= −κlnl +

∑
k

|gl,k|2 2γneknhk

γ2 + (ωk − Ωl)2
A†l Al +

∑
k

|gl,k|2 2γ(1 − nek)(1− nhk)

γ2 + (ωk − Ωl)2
A†l Al′

+[F †σ,lAl + H.C] + [F †l Al + H.C] (2.149)

The spontaneous emission is noted as a consequence of vacuum fluctuations stimulating the

excited states to recombine. This should be readily explainable with the quantum theory.

In Appendix.A, we determine the spontaneous emission (or absorption) operator which

determines the emission rate of carriers into mode l(or absorption rate of photons from
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mode l) which are

Rsp,l =
∑

k

|gl,k|2 2γ

γ2 + (ωk − Ωl)2
neknhk (2.150)

Rabs,l =
∑

k

|gl,k|2 2γ

γ2 + (ωk − Ωl)2
(1− nek)(1− nhk) (2.151)

Using Eq.(2.150) and Eq.(2.151) in Eq.(2.149), we obtain Eq.(2.152) as

dnl

dt
= −κlnl + (Rsp,l + Rabs,l)nl + [F †σ,lAl + H.C] + [F †l Al + H.C] (2.152)

Next we add and subtract two terms, Rsp,l and κln̄(νl) which is followed by rearranging the

terms giving us

dnl

dt
= −(κl−Rsp,l+Rabs,l)nl+Rsp,l+κln̄(νl)+[F †σ,lAl+H.C−Rsp,l]+[F †l Al+H.C−κln̄(νl)]

(2.153)

We can now define the following fluctuation operators

Fr,l = F †σ,lAl + H.C −Rsp,l (2.154)

Fκ,l = F †l Al + H.C − κln̄(νl) (2.155)

where Fr,l is the noise operator associated with conversion of carriers to photons, and

Fκ,l is the noise operator associated with photons escaping the cavity. We note that

the noise operator Fr,l is present in equations for carrier number(Eq.(2.130) ) and pho-

ton number(Eq.(2.153)) but are negatively correlated which implies that any fluctuation

which leads to the loss of electrons in mode k is reflected in addition of photons to mode l.

The motivation behind adding and subtracting terms in Eq.(2.153) is to add these terms to

the noise operators Fr,l and Fκ,l such that the average of these noise operators(which will

be evaluated in the following section) evaluate to zero ie.〈Fr,l〉, 〈Fκ,l〉 = 0. Using Eq.(2.154)

and Eq.(2.155) along with the assumption Rsp,l, Rabs,l � κl in Eq.(2.153) affords us the

following compact representation.

dnl

dt
= −κlnl + Rsp,l + Fr,l + Fκ,l (2.156)

The condition Rsp,l, Rabs,l � κl is an important assumption for LEDs. This implies that

the rate at which photons leave the cavity is higher than the rate at which the photons
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are created inside the LED cavity. In fact, the steady state result of Eq.(2.156) is l)ss =

Rsp,l

κl
� 1, ie. the photon number in each mode is negligible. In order to verify that Rsp,l

is indeed smaller than κl, we note that Rsp,l depends on the coupling term |glk|2which is

proportional to 1/Vcavity(where Vcavity is the volume of the LED cavity and appears through

the electric field of a single photon) and the sum over the k modes Σk which is proportional

to the volume of the active region Vactive.. Hence we can write Rsp,l ∝ Vactive
Vcavity

. The active

region volume is the region where photons are generated. In the case of the LEDs, most

modes of the photons are not confined to the cavity region. In fact, these modes are not

separated from the modes of free space outside the cavity, since the transmission coefficient

of the mirrors is assumed to be maximum. The cavity volume can be redefined to be a

cube on which the detector’s surface is located. The volume of this cube is quite large and

since κl ∝ 1
(Vcavity)1/3 we can determine Rsp,l/κl � 1 which validates our assumption. At

this stage, we can also further simplify Eq.(2.130) by substituting Eq.(2.129) in Eq.(2.130),

followed by assuming that
∑

k Fek = FP + Fnr and finally using Eqs.(2.150,2.151,2.154) to

arrive at the equation of motion for the total carrier density in the active region.

dnc

dt
= P − nc

τr
− nc

τnr
+ FP + Fnr + Fr (2.157)

2.6.3 Noise Correlations

In order to determine the fluctuation spectra of the photon number noise, the noise corre-

lations among the various noise operators associated with the equations of motion must be

determined. These are Fr,l,Fκ,l in Eq.(2.156) and Fr,FP and Fnr in Eq.(2.164) respectively

which we refer to as the principal operators of the problem. Since the various reservoirs

are not related to each other, we assume that the correlations between different reservoir

noise operators are zero(eg. 〈F †l Fσk
〉 = 0). Also the correlation between different modes of

photon and wavenumbers of carriers can be neglected[35] which provides for

〈A†l Al′〉 = 〈nl〉δll′ , 〈σ†kσk′〉 = 〈neknhk′〉δkk′ , 〈σkσ†k′〉 = (1− nek)(1− nhk′)δkk′ (2.158)

For a general quantum mechanical Langevin equation Ȧμ = Dμ + Fμ with system operator

Aμ(t) coupled to an arbitrary Markovian reservoir Fμ, the diffusion coefficient satisfies the
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generalized Einstein relation

2〈Dμν〉 =
d

dt
〈AμAν〉 − 〈AμDν〉 − 〈DμAν〉 (2.159)

Eq.(2.159) comprises a quantum fluctuation dissipation theorem which relates the drift

component-Dμ,Dν with the diffusion coefficient Dμν . From the diffusion coefficient, the

noise operator correlation function is determined as

〈Fμ(t)F ν(t′)〉 = 2〈Dμν〉δ(t − t′) (2.160)

The general advantage of using Eq.(2.159 ) to determine Eq.(2.160) is that one does not need

to specify the noise operator Fμ. For example, the effect of the carrier scattering reservoirs

are included in the equation of motion for dipole operator in Eq.(2.125) as Fσ,k without

knowing its explicit form. Hence in order to determine 〈F †σk(t)Fσk
(t′)〉, we determine the

diffusion coefficient

2〈D
σ†kσk

〉 =
d

dt
〈σ†kσk〉+(γ+iωk−iνl)〈neknhk〉+(γ−iωk+iνl)〈neknhk〉 ≈ 2γ〈neknhk〉 (2.161)

where d
dt〈σ†kσk〉 = 〈dσ†k

dt σk〉+ 〈σ†k dσk
dt 〉 contains terms such as 〈F †σkσk〉 which are unknown at

this point, making the usage of 〈D
σ†kσk

〉 for finding noise correlations difficult. However for

this case, we can use the quasi-equilibrium approximation d
dt〈σ†kσk〉 ≈ 0 which allows for

the approximate result of Eq.(2.161). Substituting Eq.(2.161) in Eq.(2.160) gives us

〈F †σk
(t)Fσk′

(t′)〉 ≈ 2γ〈neknhk〉δkk′δ(t− t′) (2.162)

〈Fσk
(t)F †σk′

(t′)〉 ≈ 2γ〈(1 − nek)(1− nhk)〉δkk′δ(t − t′) (2.163)

We need to establish the correlations between the noise operators for Fσ,k and Fl since, the

principal noise operators are expressed in terms of them. We first start with the principal

operator Fr,l which requires evaluation of noise correlations

〈F †σ,l(t)Fσ,l(t
′)〉 =

∑
kk′

g∗lkglk′
1

γ − i(ωk −Ωl)

1

γ + i(ωk′ − Ωl)

〈
F †σ,k′Fσ,k

〉

=
∑

k

|glk|2 2γ

γ2 + (ωk − Ωl)2
〈neknhk〉 δ(t− t′)

= 〈Rsp,l〉δ(t− t′) (2.164)

〈Fσ,l(t)F
†
σ,l(t

′)〉 = 〈Rabs,l〉δ(t − t′) (2.165)
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where we have used Eq.(2.162) and Eq.(2.163) in obtaining the results. The average of

the noise fluctuations vanishes which motivated us to define Fr,l and Fκ,l according to

Eq.(2.154) and Eq.(2.155) which we can now verify. Consider the following noise operator-

system operator correlation function whose system operator can be expanded as

〈F †σ,l(t)Al(t
′)〉 = 〈F †σ,l(t)Al(t−Δt)〉+

∫ t

t−Δt
〈F †σ,l(t

′)
dAl(t

′)
dt

〉dt′

≈
∫ t

t−Δt
〈F †σ,l(t

′)
˙

Fσ,l(t′)〉dt′ =
1

2
〈Rsp,l〉 (2.166)

In the first equality of Eq.(2.166), the first term is zero, since a fluctuation in the future

cannot affect an operator in the past. Here Δt is a time interval which is shorter than the

decay time of the cavity mode t = 1/κ but much longer than the correlation time of the

reservoir. We encounter the correlation〈F †σ,l l(t
′)〉which is non-zero only at t = t′ and can be

ignored. The final result in Eq.(2.166) is obtained by substituting Eq.(2.164) followed by

an integration over half the delta function at t = t′ which leads to the factor of 1/2. We can

also evaluate the Hermitian conjugate similarly and establish that 〈F †σ,lAl + H.C〉 = 〈Rsp,l〉
and 〈Fr,l〉 = 0. On the other hand, for the case of an oscillator coupled to a reservoir

of oscillators, the precise form of Fl(t) is given by Eq.(2.141) and Eq.(2.159) need not be

applied. In this case

〈F †l Fl〉 = κl〈b†j(0)bj(0)〉δ(t − t′) = κlnth(νj)δ(t− t′) (2.167)

where the average number of photons per mode in the reservoir is given by a thermal

distribution nth(νj) = 1

e
�ωk
kT −1

. The motivation for the choice of the principal operator Fκ,l

in Eq.(2.155) is such that the average of the principal operator vanishes ie. 〈Fκ,l〉 = 0. This

can be seen by obtaining 〈F †l Al + H.C〉 = κl
¯n(νl) by the same methods used in evaluating

Eq.2.166 . The correlation function for principal operator Fr,l is

〈F †r,l(t)Fr,l(t
′)〉 = 〈F †σ,l(t)Fσ,l(t

′)〉〈Al(t)A
†
l (t
′)〉+ 〈A†l (t)Al(t

′)〉〈Fσ,l(t)F
†
σ,l(t

′)〉+ cross.terms

(2.168)

In Eq.(2.168), the cross terms have terms like 〈A†l A†l 〉 or κl〈Fr,l〉 and these are zero. Sub-

stituting Eq.(2.164) and Eq.(2.165) in Eq.(2.168), we obtain

〈F †r,l(t)Fr,l(t
′)〉 = [(〈Rsp,l〉+ 〈Rabs,l〉)〈nl〉+ 〈Rsp,l〉]δ(t − t′) ≈ 〈Rsp,l〉δ(t− t′) (2.169)
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We also establish in the following step that the correlation between the two noise operators

Fr,l and Fκ,m which are associated with the conversion of carriers to photons and escape

of photons from the cavity vanish since fluctuations in different reservoirs are typically

uncorrelated.

〈F †r,lFκ,m〉 = 〈Fσ,l〉 ∗ (Term1) + 〈F †σ,l〉 ∗ (Term2)−Rsp〈Fκ,m〉 = 0 (2.170)

where the averages of the noise operator 〈Fσ,l〉 = 〈F †σ,l〉 = 〈Fκ,m〉 = 0. The correlation

function of the principal operator Fκ,l is

〈F †κ,lFκ,l〉 = 〈(A†l Fl + H.c)(F †l Al + H.c)〉 = 0 (2.171)

The above result can be explained by simple handwaving. These are expectation values

of 4 operator products with terms like 〈A†l FlF
†
l Al〉. An exact solution can be obtained by

substituting for Al in a manner similar to Eq. (2.166), except we have double integrals

and summations. If we look past the integrals and summations, all the four terms take

the form 〈b†jbjb
†
jbj〉. These terms which are the averages of four operator products, can

be evaluated using the density matrix for the thermal distribution, but its simpler to use

Wick’s theorem[] where the operator products decompose as

〈n2
j〉 = 〈b†jbj〉〈b†jbj〉+ 〈b†jb†j〉〈bjbj〉+ 〈b†jbj〉〈bjb

†
j〉 = nth(νl)(1 + nth(νl)) (2.172)

Since we assume that there are no thermal photons at optical frequencies these correlations

in Eq.(2.172) are evaluated to zero. We now summarize the non-zero correlation functions

of the principal operators.

〈F †r,l(t)Fr,l′(t
′)〉 = 〈Rsp,l〉δll′δ(t − t′) =

〈
nc

τr,l

〉
δll′δ(t− t′) (2.173)

〈F †r (t)Fr(t
′)〉 =

∑
l

〈F †r,l(t)Fr,l(t
′)〉 =

〈
nc

τr

〉
δll′δ(t− t′) (2.174)

The correlation function for the principal operators associated with pump and non-radiative

processes FP , Fnr cannot be directly evaluated since ΣkFek = FP +Fnr has not been specified

precisely(we have to assume that 〈Fek〉 = 0) but we can use the generalized Einstein relation

of Eq.(2.159) to obtain the diffusion coefficient which leads to the noise correlation function



74

for Fek as 〈FekFek′〉 = (〈Pek(1− nek)〉+ 〈nek
τnr
〉)δkk′δ(t− t′). Summing over all modes we get

Σk〈FekFek〉 = (〈P 〉+ 〈 nc
τnr
〉)δ(t − t′) from which the following decompositions are valid

〈F †nr(t)Fnr(t
′)〉 =

〈
nc

τnr

〉
δ(t− t′) (2.175)

〈F †P (t)FP (t′)〉 = 〈P 〉δ(t − t′) (2.176)

2.6.4 Photon Number Noise with a c-number Pump

The total flux detected at the photodiode surface needs to be determined. In order to do

this, we must first relate the photon number inside the cavity to the photon flux outside

the cavity. The modes inside the cavity can be linked to the modes outside the cavity using

the input-output formalism first introduced by Gardiner[37]. The total number of photons

outside the cavity from mode ’l’ is obtained from the mode operator outside the cavity-Al,out

which is Vl = A†l,outAl,out. Then the relation between Vl and nl follows

Vl = κlnl − Fκ,l (2.177)

Here nl = A†l Al and Fκ,l = Fl/κ. Note that the cross terms lead to zero, since they are

uncorrelated. Next, the photon flux outside the cavity needs to be related to the total

photon number N detected at the photodetector(PD) surface. The photons outside the

cavity will be further subject to loss mechanisms, such as imperfect transmission, loss at

the PD surface and coupling of the LED to the PD through optical elements. These effects

can be suitably represented by introducing a beam splitter between the output of the cavity

and the input of the PD. Now, the relation between the mean flux at the detector surface

N0 and that of the average photon number V0 outside the cavity through the beam splitter

can be written as

N0 = 〈N〉 =
∑

l

θl〈Vl〉 = ηc〈V 〉 = ηcV0 (2.178)

where V = ΣlVl is the total photon flux from the cavity. Here θl is the coupling or transmis-

sion coefficient of mode ’l’ through the beam splitter. As all the modes are summed at the

PD, we obtain a photon number, whose average N0 is related to the total flux V0 through a

’net’ coupling efficiency ηc = N0
V0

which includes all the loss mechanisms represented by the
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beam splitter. As the average has been established, the mean photon number fluctuations

at the PD surface next needs to be determined. The PD detects Nl photons that pass

through the beam splitter as

Nl = θlVl + Fp,l (2.179)

Here Fp,l represents the additional partition noise introduced into the unused portion of

the beam splitter. Hence there are two components :(a) the attenuated photon flux outside

the cavity, which passes through one port of the beam splitter as given by term 1 of Eq.

(2.x) and (b) the vacuum fluctuations (that permeate all space and is present even under

no-light conditions) which enter into the second unused port of the beam splitter as given

by Fp,l. The vacuum fluctuations serve to introduce a stochasticity to the beam splitter

which randomly deletes the photons at its output with probability θl. The cross-correlation

associated with Fp,l can be determined from the number fluctuations in mode ’l’ obtained

from Eq. (2.179) using ΔNl = Nl − 〈Nl〉and calculating 〈ΔNlΔNl′〉 as

〈ΔNlΔNl′〉 = 〈NlNl′〉 − 〈Nl〉〈Nl′〉 = θl(1− θl)〈Vl〉δll′ (2.180)

where we have used 〈Nl〉 = θl〈Vl〉. Eq.(2.180) describes the fluctuation aspects and is the

noise correlation function for Fp,l

〈F †p,lFp,l〉 = θl(1− θl)〈Vl〉δll′δ(t− t′) (2.181)

The total spectral density of the photon number fluctuations at the PD(since the quantity

is to be observed on a spectrum analyzer) needs to be obtained. A relation between total

photon fluctuation and Vl can be obtained by linearizing Eq. (2.179), taking its Fourier

transform and adding all the modes to obtain

ΔN(ω) =
∑

l

θlΔVl(ω) +
∑

l

Fp,l(ω) (2.182)

where Nl(ω), Vl(ω) and Fp,l(ω) are the Fourier components of N(t), Vl(t) and Fp,l(t) re-

spectively. The flux correlation of N is obtained from Eq. (2.182) using 〈ΔN(ω)∗ΔN(ω)〉
as

〈|ΔN(ω)|2〉 = Σll′θlθl′〈ΔV ∗l (ω)ΔVl′〉+
∑
ll′

〈F †p,lFp,l〉+ 〈cross.terms〉 (2.183)
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The cross terms are of the form 〈ΔVl〉〈Vl〉 and since the average of the fluctuations is zero

these terms can be ignored. Hence the photon fluctuation spectral density can be obtained

as

〈|ΔN(ω)|2〉 =
∑
ll′

θlθl′〈ΔV ∗l ΔVl′〉+
∑

l

θl(1− θl)〈Vl〉 (2.184)

We adopt the small signal methods used in Ref.[38] for the radiative and non-radiative

lifetimes since they are dependent on the nonequilibrium carrier concentration nc. We

linearize them to order Δnc = nc − nc0 by performing a Taylor’s series expansion and for

the single mode lifetime

τr,l(nc) = τr,l(nc0) +
dτr,l(nc)

dnc
|nc=nc0Δnc (2.185)

We set Kr,l = −∂τr,l

∂nc
|nc=nc0

nc0
τrl,(nc0) which indicates the strength of the nonlinearity or the

sensitivity of the lifetime to the carrier number fluctuations and allows us to reexpress

Eq.(2.185) as

τr.l(nc) = τr,l0(1−Kr,l
Δnc

nc0
) (2.186)

The total effective radiative carrier lifetime is 1
τr

= Σl
1

τr,l
and performing a similar Taylor’s

series expansion on this variable we have

τr(nc) = τr0(1−Kr
Δnc

nc0
) (2.187)

The effect of the linearized lifetimes can be included in the equations of motion. For

example, the fluctuation in carrier density obtained by considering only the second term of

Eq.(2.164) (since it depends on the radiative lifetime) is

dΔnc

dt
=

dnc

dt
− d(nc)0

dt
→ nc

τr
− nc0

τr0
= Δnc

(1 + Kr,l)

τr0
=

Δnc

τ ′r
(2.188)

where we have used Eq.(2.188) to construct the redefined lifetime τ ′r. Note that there are

three lifetimes: the carrier dependent lifetime τr, the DC lifetime associated with steady

state τr0 and finally the redefined lifetime τ ′r which is expressed in terms of the DC lifetime

and the strength of the carrier fluctuations. From now on, we work with the redefined

lifetimes and for the nonradiative term in Eq.(2.164) and the second term in Eq.(2.156), we

can obtain similar definitions for the redefined lifetime as

τ ′r,l =
τr,l0

1 + Kr,l
, τ ′r =

τr0

1 + Kr
, τ ′nr =

τnr0

1−Kr
(2.189)
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The total effective lifetime can be expressed in terms of the radiative and the nonradiative

lifetime as

1

τ ′′
=

1

τ ′r
+

1

τ ′nr

(2.190)

Linearizing Eqs. (2.156),(2.164) and (2.177) in terms of Δnn = nc − nc0,Δnl = nl − nl0

and ΔVl = Vl − Vl0 and using Eqs. (2.189) and (2.190) in them leads to

dΔnc

dt
= ΔP − Δnc

τ ′′
+ Fp + Fr + Fnr (2.191)

dΔnl

dt
= −κlΔnl +

Δnc

τ ′r,l
+ Fκ,l + Fr,l (2.192)

ΔVl = κlΔnl − Fκ,l (2.193)

Taking the Fourier transforms of Eq. (2.191) and (2.192), followed by eliminating the carrier

number fluctuation Δnc(ω) from the expression for the photon number fluctuation inside

the cavity(Δnl(ω)) leads to

Δnl(ω) =
τ ′′

τr,l

(ΔP + Fp(ω) + Fr(ω) + Fnr(ω))

(1 + iωτ ′′)(κl + iω)
+

(Fκ,l(ω) + Fr,l(ω))

(κl + iω)
(2.194)

Similarly, taking the Fourier transform of Eq. (2.193), followed by substituting of Δnl(ω)

in the resultant equation gives

ΔVl(ω) =
τ ′′

τr,l

κl(ΔP (ω) + Fp(ω) + Fr(ω) + Fnr(ω))

(1 + iωτ ′′)(κl + iω)
+

κl(Fκ,l(ω) + Fr,l(ω))

(κl + iω)
− Fκ,l(ω)

(2.195)

We drop the ωfrom the noise operators with the assumption that we are referring from there

on to the Fourier transforms of the time domain operators. The cross correlation between

modes l and l’ of the photon flux fluctuation is obtained as

〈ΔV ∗l ΔVl′〉 =
τ ′′

τ ′r,l

τ ′′

τ ′r,l′
(〈|ΔPtot|2〉+ SFr + SFnr)

(1 + ω2τ ′′2)
+

τ ′′〈F ∗r (ω)Fr,l′(ω)〉
τ ′r,l(1− iωτ ′′)

+
τ ′′〈F †r,lr(ω)〉

τr,l′(1 + iωτ ′′)
+ 〈F †r,lr,l′(ω)〉+ coeff ∗ 〈Fκ,l(ω)X(ω)〉 (2.196)

where SFr = 〈|Fr|2〉 and SFnr = 〈|Fnr|2〉 which are the power spectral densities obtained

by taking the Fourier transform of Eq.(2.174) and Eq.(2.175). The total pump fluctuations

is grouped together as ΔPtot = ΔP + Fp and its spectral density can be greater or smaller

than 〈p(ω)|2〉 = 〈P 〉 depending on the modulation of the pump ΔP . X(ω) in Eq. (2.196)
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can be replaced by Fr,l, Fr or Fκ,l. In all these cases the correlations evaluate to zero. The

pump is included only as a c-number in these equations and represents the net forward

injection events. The pump can be either noiseless(ΔPtot = 0) or at the full shot noise level.

For the time being, we ignore the negative feedback mechanism that serves to suppress

the pump fluctuations below the shot noise level to establish the condition ΔPtot = 0.

The purpose is to obtain a general expression that studies the effects of non-radiative

mechanism ie. the presence of differential efficiencies and the nature of emission lifetimes on

the squeezing characteristics. The pump regulation when properly included, tends to change

only frequency dependent squeezing spectra but predicts the same result as the untreated

pump case at low frequencies. The reason for investigating the role of differential efficiencies,

is that the simple relations for the photon noise used in the early experimental observations

of subshot noise were not very accurate. This is validated in the squeezing spectra for the

LEDs in chapter 3. It is useful to redefine the correlation terms of Eq.(2.173-2.175) in terms

of the pump factorP . In order to do this, the equation relating the variables V0,P0 and N0

where N0 is the number of photons detected at the photodetector surface, V0 is the number

of photons emitted from the cavity and P0 is the number of electrons pumped into the

active region is given by Eq.(2.99) which can be written as N0
P0

= ηcnc0/τr0

nc0/τr0+nc0/τnr
= ηcV0

P0
from

which the following relations for the spectral densities can be inferred

SFr =
nc0

τr
=

η0

ηc
P0 , SFnr =

nc0

τnr
= (1− η0

ηc
)P0 (2.197)

Substituting Eq.(2.197) in Eq.(2.196) gives us

〈|ΔN(ω)|2〉 =
∑

l

θl(1− θl) 〈Vl〉+
∑
ll′

θlθl′{( τ ′′2

τ ′r,lτ
′
r,l′

〈|ΔPTot|2
〉

+ P0

(1 + ω2τ ′′2)
)−

(
τ ′′

τ ′r,l

∑
l

nc0

τr,l′0
(1− iωτ ′′)

δll′ +
τ ′′

τ ′r,l′

∑
l′

nc0

τr,l0(1− iωτ ′′)
δl′l) + 〈Vl〉 δll′}(2.198)

The above expression has many unknowns associated with the lifetime and carrier numbers

such as θl, τr,l, τr, τ
′′, nc0, VL,etc. We need to convert it to an experimental observable related

to parameters that can be extracted from measurements. As a first step we note that

d

dnc
(

nc

τr(nc)
)|nc=nc0 =

1

τr(nc0)
(1− nc0

τr(nc0)

∂τr

∂nc
) =

1

τr0
(1 + Kr) =

1

τ ′r
(2.199)

which allows us to re-express the differential efficiency(Eq.(2.101)) as
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ηd =
ηc(1/τ

′
r)

1/τ ′r + 1/τ ′nr

(2.200)

The total lifetime is then expressed in terms of the radiative lifetime using τ ′′ = ηd
ηc

τ ′r which

when substituted in Eq.(2.198) gives us

〈|ΔN(ω)|2〉 =
∑

l

θl 〈Vl〉+η2
d

∑
ll′

θlθl′
τ ′2r

η2
c τ
′
r,lτ

′
r,l′

〈|ΔPTot|2
〉

+ P0

(1 + ω2τ ′′2)
−2ηd

∑
l

τ ′rθ2
l

ηcτ ′r,lτr,l0

nc0

1 + ω2τ ′′2

(2.201)

The photon Fanofactors which are normalized to a calibrated shot noise level and detected

at the PD surface is Fph =
〈|ΔN(ω)|2〉

N0
and can be obtained in terms of the normalized pump

Fanofactors which are defined as Fp = 〈|ΔPtot|2〉
P0

= η 〈|ΔPtot|2〉
N0

. Eq.(2.201) now becomes

Fph(ω) = 1 +
η2

d

η
ξ1

Fp(ω) + 1

(1 + ω2τ ′′2)
− 2

ηdξ2

(1 + ω2τ ′′2)
(2.202)

where we have collected the remaining variables under ξ1 = Σll′θlθl′
τ ′rτ ′r

η2
cτ ′r,lτ

′
r,l′

and ξ2 =(
Σl

τ ′rθl

ηcτ ′r,l

)2
and we have used nc0

N0
= τr0

ηc
. Note that ξ1, ξ2 represent the multimode properties

of the cavity and are equal to each other when l = l′. Eq.(2.202) can be rearranged by

separating out the pump Fanofactors as

Fph(ω) = 1− 1

(1 + ω2τ ′′2)
η2

d

η
ξ1(

2ξ2η

ξ1ηd
− 1) +

η2
d

η
ξ1

Fp(ω)

(1 + ω2τ ′′2)
(2.203)

The photon Fanofactors obtained are a function of the normalized(and controllable) pump

fluctuations, the cutoff frequency 1/τ ′′ (where τ ′′ is the net lifetime of radiative and non-

radiative processes) and parameters which are related to cavity properties such as ξ1, ξ2 and

the electronic to optical conversion efficiencies including beam splitter loss through ηd, and

η0. We now discuss a few cases to illustrate Eq. (2.203)

Case 1:The low frequency limit of Eq. (2.203) can be obtained by setting ω = 0.

This case is generally applicable, irrespective of pump conditions(which is still untreated

at this point), since the pump serves to change the cutoff frequencies and along with the

recombination process is not a concern at lower frequencies. This allows us to obtain

Fph(0) = 1− η2
d

η0
ξ1(

2ξ2η0

ξ1ηd
− 1) +

η2
d

η0
ξ1Fp(0) (2.204)
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When the photons are emitted into each mode as well as detected homogeneously, ie. under

the same conditions for each mode. This leads to the conditions that θl = θm and Kr = Kr,l

which also sets ξ1 = ξ2. Eq. (2.204) further reduces to

Fph(0) = 1− η2
d

η0
(
2η0

ηd
− 1) +

η2
d

η0
Fp(0) (2.205)

Eq. (2.205) is valid for most macrojunction LEDs. The presence of ξ1 and ξ2 is valid for

microcavities where vacuum fluctuations influence the cavity emission and absorption rates.

When the non-radiative processes cease to exist and/or the carrier number dependence of

the lifetimes is zero, ie. τnr →∞ or Kr +Knr = 0, this leads to the condition ηd = η0, which

reduces Eq. (2.205) to the familiar Fanofactor expression obtained in early experiments[28]

Fph = 1− η0 + η0Fp (2.206)

When the pump currents are Poissonian, Fp = 1 and the detected photon Fanofactors are

also Poissonian ie. Fph = 1 . When Fp = 0 the photon Fanofactors are limited by the total

efficiency of the system as Fph = 1− η0. Any values of Fp in between 0 and 1 create values

such as Fph = 1− η0

c where c tends to ∞ as Fp → 1.

Case 2:Subpoisson light from cavity due to multimodedness of cavity: We assume that

there are no non-radiative processes ie. ηd = η0 which leads to

Fph = 1− η0ξ1(
2ξ2

ξ1
− 1) + η0ξ1Fp (2.207)

For Fp = 1, we have Fph = 1− 2η0(ξ1 − ξ2). If ξ1 − ξ2 = 1
2η0

then we can establish Fph = 0

even when the pump is Poissonian. For Fp = 0, we have Fph = 1 − η0(2ξ2 − ξ1) and we

see that to get Fph = 0 we need to set 2ξ2 − ξ1 = 1
η0

. Hence even when the pump noise

is zero, we can still see Poisson outputs and the Fp = 1 and Fp = 0 cases are completely

independent of one another. For eg. if we set ξ1 = 0.7 and ξ2 = 0.2 we have Fph = 1 − η0

for Fp = 1 but Fph = 1 + 0.3η0 for Fph = 0 which is clearly superPoisson.

Case 3:Nonradiative process: Now we shall see if subshot noise is possible from the

nonlinearity associated with the efficiencies. We assume homogeneous conditions ie. ξ1 =

ξ2 = 1. This leads to

Fph = 1− η2
d

η0
(
2η0

ηd
− 1) +

η2
d

η0
Fp (2.208)
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Figure 2.9: Photon Fanofactors for Poisson and Subpoisson pump noise considering the
effects of non-radiative mechanisms. Here ε0 = τr0

τnr0
. The three cases treated are a)Kr =

Knr = 0 b)Kr = Knr = 0.5 and Kr = Knr = −0.4

For Fp = 1 we have Fph = 1 − 2η2
d

η0
( η0

ηd
− 1). When η0

ηd
= 1 we have Poisson, for η0

ηd
> 1

superPoisson and for η0

ηd
< 1 subPoisson. For Fp = 0, we have Fph = 1− η2

d
η0

(2η0

ηd
− 1) where

we have η0

ηd
= 1/2 for Poisson and η0

ηd
> 1/2 for subPoisson and η0

ηd
< 1/2 for superPoisson.

Case 4:Finite frequency case: The frequency dependent photon Fanofactors of Eq.(2.203)

have been plotted in Fig.(2.9). Homogeneous emission conditions have been assumed and we

define ε0 = τr0
τnr0

. Figs.(2.9a,b,c) represent the three cases of Kr = Knr = 0, Kr = Knr = 0.5

and Kr = Knr = −0.4. The first two cases do not show the typical relationships between the

pump and emitted photons, ie. when the pump is Poisson the emitted photons are Poisson

or superPoisson and when the pump is suppressed, the emitted photons are subPoisson.

The third case of Kr + Knr < 0, corresponds to the situation where ηd < η0 which can be
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seen from Eq.(2.200) and Eq.(2.189). In this case, it is possible to achieve a subshot noise

even with a Poissonian pump.

2.6.5 Pumping mechanisms

So far we left the pump P (ω) untreated mainly because, when properly treated it serves

to either enhance or reduce the other lifetimes in the problem contributing to variations in

squeezing spectra as well as reducing the lower limit to the degree of pumping noise. For

example, treating a noiseless pump ΔP = 0 is not acceptable, and we can obtain more

precise relationships for it in terms of circuit time constants. One of the most straight

forward methods is to add P = ηJ
ed as in Eq.(2.116). Here η is the total charge carrier

injection efficiency, J is the current density and d is the thickness of the active region.

Another important assumption is that the pump electrons go through enough collisions

in the active region to maintain quasi Fermi-Dirac statistics. The current can be treated

similar to the Fermi golden rule transitions between two states,ie. we need one k state

empty in the active layer and another filled in the pump reservoir. This leads to[34]

Pek =
ηtrJ

edN0
fek0(1 − nek) (2.209)

where ηtr is the transport factor which indicates the efficiency with which the carrier makes

it into the active region and fek0 and N0 are the Fermi probability and total carrier densities

in the absence of an perturbation such as the electromagnetic field. The most important

thing to realize is that each quantum state which can be occupied by only one carrier

gets filled, Pek = 0. This is also known as pump blocking and only the higher energy

particles can enter the active region or if the existing carriers thermalize or recombine. The

total pump carrier rate is given as P = ΣkPek.This pumping method is popular in the

treatment of lasers but it is not strongly applicable to LEDs since the active region is not

in a state of inversion. Nevertheless, in high injection conditions it should be included.

We assume that most of the currents are in the low to moderate injection regime. We

may draw comparison to the backward flow of carriers which take place from the active

region to the pump reservoir and is seen at moderately high currents. This is a different

effect where the active region carriers do not recombine fast enough and have energies to
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Figure 2.10: The pump equivalent circuit model which describes the charging and discharg-
ing of the pn junction by the stochastic forward and backward injection currents

surmount the barrier in the reverse direction. Let us consider Fig.(2.10) where the junction

voltage Vj = Vbi− Va is the difference between the Fermi levels between the n and p side of

the junction.This is the voltage across the depletion layer capacitance Cdep . This circuit

diagram is different from the one of Fig.(2.5) which included the diffusion capacitance

and the noise terms. The difference stems from the fact that we have constructed a rate

equation for carrier densities in the active region as in Eq.(2.164) and this accounts for

the effect of recombination and generation through the diffusion capacitance. The pump

currents Ifi(t) and Ibi(t) charge and discharge the junction capacitance and hence this

circuit may be called a ’pump’ equivalent circuit. There are three mechanisms responsible

for changing the depletion layer width xn . : 1)The external circuit current which pushes

the electron cloud forward thus forward biasing the junction and decreasing xn until steady

state is reached. 2)The forward injection of carriers across Cdep which causes uncovering of

charges and increasing the space charge layer which leads to reverse bias and an increase

in xn. 3)The backward injection current which recovers the ionized charges and decreases

the depletion region width xn. One important assumption here is that Cdep = εoA
xn

is not

affected by the changes in xn and is assumed constant. This is true since current changes

don’t affect the capacitance as much as voltage changes which enjoys a 1/
√

Vj relationship.

These effects can be added together with appropriate signs to obtain the rate of change of

junction voltage.

Cdep

e

dVj

dt
=

Iext

e
− Pfi(t) + Pbi(t) (2.210)

This is the only expression which does not have a quantum mechanical underpinning but

nevertheless the electron FP rate Pfi and electron BP rate Pbi are treated as operators

similar to the pump term of Eq.(2.164). Since the injection process is stochastic, we can

split the FP and BP rates into two parts:an average rate which varies according to the
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time dependent junction voltage Vj(t) and stochastic part which is due to the random

carrier injection events and is reduced to zero when averaged ie. Pfi(t) → Pfi(Vj(t)) + Ffi

and Pbi(t) → Pbi(nc(t)) + eFbi Here Ffi and Fbi are the Langevin noise operators. The

external circuit current is expressed as Iext =
V−Vj

RS
. Since the resistor is a source of

thermal fluctuations of VRs =
√

4kTRs, we can define the ’current’ Langevin operator

associated with it as FrsI
= VRs/Rs with associated Markoffian correlation function <

F †rsIFrsI
>= 4kT

Rs
.This is the stochastic part of the external current which is Iext(t) →

V−Vj

Rs
+ eFrs.Substituting these relations in Eq.(2.210) we get

Cdep

e

dVj

dt
=

V − Vj

eRs
− Pfi(Vj) + Pbi(nc)− Ffi + Fbi + FrsI

(2.211)

Note that the FP and BP rates also give us the forward and backward currents Ifi(t) =

ePfi(t) and Ibi(t) = ePbi(t) flowing across the junction. In the steady state ie.setting
dVj

dt = 0

we obtain

V − Vj0

eRs
= Pfi(Vj0) + Pbi(nc0) (2.212)

where the subscript 0 indicates the steady state values.We can now linearize Eq.(2.211)

by expanding about its steady state values ie Vj = Vj0 + ΔVj and nc = nc0 + Δnc.We

substitute these relations in Eq.(2.211) taking into consideration Eq.(2.212) to obtain the

junction voltage fluctuation rate as

Cdep

e

dΔVj

dt
= −ΔVj

eRs
−ΔPfi + ΔPbi − Ffi + Fbi + FrsI

(2.213)

where ΔPfi = Pfi(Vj0 + ΔV )−Pfi(Vj0) and ΔPbi = Pbi(nc0 + Δnc)−Pfi(Vj0) .Taking the

Fourier transform of Eq.(2.213) and using FrsV
which is the voltage variant of the Langevin

force with Markoffian correlation < FrsV
FrsV

>= 4kTRs instead of FrsI
we obtain

ΔVj(ω) = − e

Cdep

τRC

1 + iωτRC
(ΔPfi + ΔPbi − Ffi + Fbi +

Cdep

eτRC
FrsV

) (2.214)

Eq.(2.214) can be now shown to satisfy the microscopic pulse description shown in Fig.(2.6).

When an electron crosses the depletion region at a random time ti,it creates +e at the n-

depletion region edge and -e in the active region and the sum FP rate is Pfi+Ffi = Σiδ(t−ti)

.Integrating this expression and using the integral definition u(x) =
∫ x
−∞ δ(t)dt∫

(Pfi(t) + Ffi(t))dt = Σiu(t− ti) (2.215)
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where u(t) is the unit step function.This gives us the total number of such pulses N in some

interval and resembles the typical Poisson staircase. Each FP event results in the in the

change of junction voltage by −e/Cdep.The FP events tend to bring in charges from the

external circuit with a time constant τRC = RSCdep in order to restore the junction to its

stead state value.The external current is made up of the same number of FP events given

by Iext = e
τRC

Σi exp[−(t− ti)/τRC ]u(t− ti).The pulses can be integrated as∫
Iextdt = e

∑
i

(1− e−(t−ti)/τRC )u(t− ti) (2.216)

Adding Eq.(2.215) and Eq.(2.216) we obtain the resultant junction voltage fluctuations

induced by the FP process and the subsequent recharging by the external circuit as

ΔVj1 =
−e

Cdep

∑
i

e−(t−ti)/τRC u(t− ti) (2.217)

Applying the Fourier transform to the above equation gives

ΔVj1(ω) = − e

Cdep

τRC

1 + iωτRC
Σe−iωti (2.218)

If we apply the Fourier transform to the FP rate and the Langevin term we see that

FT (Pfi + Ffi) = FT (Σiδ(t− ti)) = Σie
−iωti .This gives us

ΔVj1 = − e

Cdep

τRC

1 + iωτRC
(ΔPfi + Ffi) (2.219)

We can obtain a similar expression for the junction voltage fluctuations induced by the BP

rate and the Langevin force as

ΔVj2 =
e

Cdep

τRC

1 + iωτRC
(ΔPbi + Fbi) (2.220)

The last contribution is the thermal noise of RS which fluctuates the junction voltage.

This is seen as an additional noise component in the external circuit pulses that affects the

junction voltage even if there is no current and in thermal equilibrium. It can be written as

ΔVrs =
1

Cdep

∫
i(t)dt =

Frs

1 + iωτRC
(2.221)

Adding Eqs.(2.219-2.221) together we obtain the net junction voltage fluctuations caused

by the FP and BP rates, subsequent circuit responses and the thermal noise current of Rs

and we see that summed result shows us that the pulse description of Fig.(2.6) satisfies

Eq.(2.214) since they are similar.
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2.6.6 Field Langevin Equation under Homogeneous emission conditions

In typical macroscopic LEDs, we can make a few simplifying assumptions: The transmission

coefficients for each mode are equal and we can set θl = ηc. Also the radiative lifetime in

each mode is assumed to be the same ie. homogeneous emission conditions where each

photon is emitted and detected in the same manner which leads to ξ1 = ξ2 = 1. Summing

all the modes of photons inside the cavity ie.n = Σlnl , Eq.(2.156) then becomes

dn

dt
= −κn +

nc

τr
+ Fr + Fk (2.222)

where Fκ = ΣllFκ,l and Fr = ΣlFr,l and the decay constant κl for each mode is the same.

The total number of photons outside the cavity can be obtained by summing Eq.(2.177)

over all modes which leads to ΣlVl = V = κn−Fκ . Since ω � κ under typical experimental

conditions, we can assume Eq.(2.222) reaches steady state, ie. dn
dt = 0 which gives κn =

nc
τr

+ Fr + Fk from which V = nc
τr

+ Fr. Linearizing V , followed by taking the Fourier

transform gives us

ΔV (ω) =
Δnc(ω)

τr
+ Fr = ΣlΔVl(ω) (2.223)

where the last equality states that the total fluctuation is equal to the fluctuation in each

mode. However note that ΔV 2 �= ΣlΔV 2
l from which 〈ΔV †ΔV 〉 = Σll′〈ΔVlΔVl′〉. The

homogeneous emission conditions play an important part in writing the equation in this

form. Otherwise the multimoded-ness will stand out. Eq.(2.184) now becomes

〈|ΔN |2〉 = ηc(1− ηc)
∑

l

〈Vl〉+ η2
c 〈ΔV †ΔV 〉 (2.224)

In order to distinguish Eq.(2.224) from Eq.(2.184), we replace 〈|ΔN |2〉 = 〈ΔΦ†ΔΦ〉 which

is the spectral density of the flux at the photodetector due to all modes. Substituting the

first equality of Eq.(2.223) in Eq.(2.224) gives us

〈ΔΦ†ΔΦ〉 = ηc(1− ηc)
nc0

τr
+ η2

c (
Δn†cΔnc

τ2
r

+ 〈Δn†cFr〉+ 〈F †r Δnc〉+ 〈F †r Fr〉) (2.225)

The reason we arrived at Eq.(2.225) is two fold: a)For LED structures, the modes inside

and outside the cavity can be considered as continuous, allowing us to consider a cavity

as big as the cube on whose edges the detector is placed. This allows us to state that the
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radiative recombination rate nc0
τr

is the same as the photodetector current in a unity efficiency

detector. So we do not need to deal with the multimodedness of the cavity. b)We have

added another equation of motion to describe the junction voltage fluctuations, which in

turn modulates the pump rate. This requires us to solve rate of change of junction voltage

fluctuation, carrier number, photon number inside the cavity and finally photon number

outside the cavity which makes the problem more complex. By making the assumption

that photons inside are equal to photons outside the cavity, we do not need Eq.(2.177)

leaving only three equations to solve. We shall next obtain Eq.(2.225) by including the

pump regulation mechanisms such as the macroscopic Coulomb blockade and non-linear

backward pump processes.

2.6.7 Photon Number Noise with Regulated Current flows

The linearized small signal equation of motion for the carrier densities in Eq.(2.191) is

modified to include the effects of the FP and BP rates as discussed in Section.5.5 to give

dΔnc

dt
= ΔPfi −ΔPbi − Δnc

τ ′′
+ Ffi − Fbi + Fr + Fnr (2.226)

where the single c-number pump operator P has been replaced by operators which increase

and decrease the carrier densities of the active region by the process of forward(Pfi + Ffi)

and backward injection(Pbi + Fbi). Since the FP rate is modulated by the junction voltage

fluctuation, it is a function of Vj which allows us to write

ΔPfi =
dPfi(Vj)

dVj
|Vj=Vj0ΔVj =

Cdep

τfi
ΔVj (2.227)

where τfi = Cdep(
dIfi

dVj
)−1 is the forward injection time or the time taking a single carrier

to transit across the junction in the forward direction. The BP rate is assumed to depend

only on the carrier number at that instant of time(Note that nc is in turn dependent on the

junction voltage fluctuations) which allows us to write

ΔPbi =
dPbi(nc)

dnc
|nc=nc0Δnc =

Δnc

τbi
(2.228)
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where τbi = (dPbi(nc)
dnc

)−1 is the backward injection lifetime. Using the definitions of Eq.(2.227)

and Eq.(2.228) in Eq.(2.226) and Eq.(2.213), we obtain

dΔnc

dt
=

Cdep

τfi
ΔVj − Δnc

τbi
− Δnc

τ ′′
+ Ffi − Fbi + Fr + Fnr (2.229)

Cdep

e

dΔVj

dt
= −ΔVj

eRs
− Cdep

τfi
ΔVj +

Δnc

τbi
− Ffi + Fbi + FrsI

(2.230)

Taking the Fourier transform of the above equations we get

Cdep

e
ΔVj =

τfiτRC

τfi + τRC + iωτfiτRC
(
Δnc

τbi
− Ffi + Fbi + Frs) (2.231)

Δnc =
τ ′′τbi

τ ′′ + τbi + ıωτ ′′τbi
(
CdepΔVj

eτfi
− Fr + Ffi − Fbi) (2.232)

Solving the above two equations algebraically we get

CdepΔVj =
1

A + iB
(−τ ′′τfi

τbi
Fr − τfi(1 + iωτ ′′)(Ffi − Fbi) + τfi(1 + iωτ ′′ +

τ ′′

τbi
)FrsI

)(2.233)

Δnc =
1

A + iB
τ ′′(−(1 +

τfi

τRC
+ iωτfi)Fr + (

τfi

τRC
+ iωτfi)(Ffi − Fbi) +

Cdep

eτc
FrsV

)(2.234)

where

A = 1− ω2τ ′′τfi +
τfi

τRC
(1 +

τ ′′

τbi
) (2.235)

B = ω(τfi + τ ′′ +
τfiτ

′′

τbi
+

τfiτ
′′

τRC
) (2.236)

The spectral density of the photon flux is obtained by substituting Eq.(2.233) and Eq.(2.234)

in Eq.(2.225) to give

SΔΦ = ηcSFr −
η2

c

A2 + B2
[{2A(1 +

τfi

τRC
) + 2Bωτfi}SFr − {(1 +

τfi

τRC
)2 + ω2τ2

fi}SFr

−C2
dep

e2τ2
c

SFrs − {(
τfi

τRC
)2 + ω2τ2

fi}(SFfi
+ SFbi

)] (2.237)

where SFfi
and SFbi

are the spectral densities of the forward and backward processes which

are defined from Eq.(2.103) as SFfi
= 1

1−α0,eff
P0 and SFbi

=
α0,eff

1−α0,eff
P where the substi-

tution α0 → α0,eff has been made to include the effect of non-radiative processes. One

does not need Eq.(2.159) to arrive at the pump spectral densities. They can be obtained

by noting that the forward and backward events are shot noise process, and the spectral
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density of shot noise process is equal to the DC average value. The photon Fanofactor is

obtained from Eq.(2.237) as

Fph =
SΔΦ

η0P0
= 1− ηc

A2 + B2
[{2A(1 +

τfi

τRC
) + 2Bωτfi} − ηc

η0
[{(1 +

τfi

τRC
)2 + ω2τ2

fi}

+
1

(1− α0,eff )(1 − αd,eff )

2

n

Rs

Rd
+ {( τfi

τRC
)2 + ω2τ2

fi}
1 + α0,eff

1− αd,eff
]] (2.238)

Eq.(2.77) is the central equation in this chapter which describes the photon emission statis-

tics for a LED based upon the following time constantsτfi,τbi,τRC ,τr. The expression is

independent of the nature of the junction as the specific choice of a junction simply rede-

fines τfi and τbi For our homo/heterojunction case, the forward emission time is obtained

from Eq.(2.109) as τfi =
kTCdep

eIfi
=

kTCdep

eI)
(1 − α0,,eff ) = Cdeprdj,eff where rdj,eff has been

defined in Eq.(2.113). Also an expression for τbi can be obtained by comparing Eq.(2.228)

with Eq.(2.105) to obtain τbi = 1−αd
αd

τ ′r . Substituting τ ′′ = ηd
ηc

τr, τbi = 1−αd
αd

τr and choosing

r = τRC
τfi

, we can temper Eq.(2.238) to the form

Fph = 1− ηc

A′2 + B′2
[{2(1 − αd){A(1 + r) + 2BωτRC} − ηc

η0
(1− αd)

2[{(1 + r)2 + ω2τ2
RC}

+
1

(1− α0,eff )(1− αd,eff )

2

n

Rs

Rd
+ {1 + ω2τ2

RC}
1 + α0,eff

1− αd,eff
]] (2.239)

where

A′ =
ηc

ηd
(1− αd)(1 + r)− ω2τRCτr(1− αd) + αd (2.240)

B′ = (1− αd)(1 + r)ωτr +
ηc

ηd
(1− αd)ωτRC + αdωτRC (2.241)

Based on the modes of operation of the diode, we can study Eq.(2.238) under the following

cases:

a)High impedance conditions: Here Rd � Rs which leads to τte � τRC . We also assume

that there are no non-radiative process and Eq.(2.239) becomes

Fph = 1− ηc

1− 2ω2τ2
fi(

α0
1−α0

) + 2ω2αdτfiτte

1 + 2αd(ωτr)(ωτte) + (1− αd)2(ωτr)2(ωτte)2 + (ωτte)2 + (ωτr)2

= 1− ηc

1 + 2ω2τ2
te(1− αd)

(αd−α0)
1−α0

1 + 2αd(ωτr)(ωτte) + (1− αd)2(ωτr)2(ωτte)2 + (ωτte)2 + (ωτr)2
(2.242)
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where τfi = (1−α0)
kT

eILED
= (1−α0)τte,0. For the thermionic emission case(α0, αd → 1)

Eq.(2.242) gives

Fph = 1− ηc
1

(1 + ω2τ2
te)(1 + ω2τ2

r )
(2.243)

For the diffusion case, Eq.(2.242) gives

Fph = 1− ηc
1

1 + ω2(τte + τr)2
(2.244)

b) Constant Voltage conditions: Here Rd � RS which also implies τte � τRC . Eq.(2.239)

is now

Fph = 1−
2ηc(1− αd){ ηc

ηd
(1− αd) + αd} − η2

c
η0

(1− αd)
2 2

1−α0,eff

{ ηc

ηd
(1− αd) + αd}2 + (1− αd)2ω2τ2

r

(2.245)

Let us first consider the thermionic emission case(α0 = αd = 0)

Fph = 1−
2η2

d
η0
{η0

ηd
− 1}

1 + ω2 η2
d

η2
c
τ2
r

(2.246)

Eq.(2.246) agrees with Eq.(2.205) for the case Fp = 1. This similarity tells us that by

leaving the pump untreated, the Fanofactors obtained are for the thermionic emission case.

The pump being at the shot noise level translates to the shot noise for the photon flux as

expected for the constant voltage case. For the diffusive case of α0 = αd → 1, Eq.(2.245)

provides Fph ≈ 1. This may be explained as follows: In the case of thermionic emission, the

pump current does not include the backward recombination current and hence the radiative

processes. So the Fanofactors essentially decouple into the pump and radiative mechanisms

separately each of them Poisson processes. But since the recombination is instantaneous,

the pump shot noise process is the one observed in the photon flux. But in the case of

diffusion, the recombination and pump processes becomes tightly coupled. For example an

electron may return to the pump reservoir before recombining changing the simple Poisson

recombination statistics. We can however attempt to treat the problem by considering

three random processes which are all Poisson a)the forward pump b) the backward pump

and c)the recombination. The forward and backward pump events take place on the time

scales of τfi ≈ τbi = 0 compared to the radiative lifetime τr. This causes the forward and

backward current to monitor each each, reducing the net current noise and what is left is

the random recombination process. Hence the noise is Poissonian.
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Figure 2.11: Photon Fanofactors under constant voltage and constant current conditions
for the thermionic emission and the diffusion regime pump models. Constant current case
is reached when τRC � τte and the constant voltage case is true when τRC � τte is satisfied.

Now let us assume that there are no non-radiative processes which implies ηd = η0 = ηc.

Eq. (2.245 ) then gives us

Fph = 1− 2ηc(1− αd){αd−α0
1−α0

}
1 + (1− αd)2ω2τ2

t

(2.247)

From Eq.(2.247), we see that for thermionic emission or diffusion we end up with Fph ≈
1. For the condition αd > α0, we see that there is subshot behavior. We can obtain a

subPoisson case under constant voltage conditions itself. This is the regime of squeezing

due to the nonlinear backward pump model. This case is not studied in our experiments as it

creates a situation where both constant voltage and constant current produces subshot noise.

In the noise modulation experiments of chapter 4, it is a requirement to switch between

constant voltage and constant current modes and expect shot and subshot noise respectively.

This controls the variance of noise and is the essence of the stochastic communication

method. In Fig.(2.11), we plot the finite frequency photon Fanofactors of Eq.(2.238) for

the diffusion and thermionic emission case under constant voltage and constant current

operations. We see that the results of Fig.(2.11) agree with each of the simple cases discussed

above.
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2.6.8 Pump rate fluctuations

We would also like to determine the pump fluctuations independently of the detected

Fanofactors. The net current fluctuations can be rewritten as

ΔPfi(ω) = Pfi − Pfi0 = Pfi0
qΔVj

kT
(2.248)

The pump fluctuations can be obtain from the voltage fluctuations of Eq.(2.214) as

ΔPfi = − 1

τte,fi

τRC

1 + iωτRC
(ΔPfi + Ffi −ΔPbi − Fbi −

Cdep

eτRC
Frs) (2.249)

where τfi = kT
eIfi0

Cdep = (1−α0,eff ) kT
eI0

Cdep = (1−αd,eff )τte,eff . The net forward injection

process with the Langevin term gives

ΔPfi + Ffi =
Ffi(1 + iωτRC) + τRC

τfi
(ΔPbi + Fbi +

Cdep

eτRC
Frs)

1 + τRC
τfi

+ iωτRC
(2.250)

Similarly one can write an expression for the backward injection events as

ΔPbi + Fbi =
αd,eff

1− αd,eff

ηc

ηd

Δnc

τr
+ Fbi (2.251)

The net fluctuations can be obtained as ΔPnet = ΔPfi + Ffi −ΔPbi − Fbi from which

ΔPnet =
Ffi(1 + iωτRC) + r Cdel

eτRC
Frs − (1 + iωτRC)(

αd,eff

1−αd,eff

ηc

ηd

Δnc
τr

+ Fbi)

1 + r + iωτRC
(2.252)

where for simplicity r is the ratio τRC/τfi. We note that the above equation is dependent of

Δnc which is in turn coupled to two other equations. Substituting Eq.(2.234) in Eq.(2.252)

and grouping together the various terms we end up with the following result for the pump

fluctuations

ΔPnet =
1

(A + iB)(1 + r + iωτRC)
{[(A− α′) + i(B − ωα′τRC)]((1 + iωτRC)(Ffi + Fbi)

+Frs
rCdep

eτRC
) + α′(1 + r + iωτRC)(1 + iωτRC)(Fr + Fnr)} (2.253)

where α′ = αd,eff

(1−αd,eff )
ηc

ηd
(1−αd). We can calculate the spectral fluctuations as 〈ΔP †netΔPnet〉

and obtain the Fanofactor as Fp =
〈ΔP †netΔPnet〉

P0
.The resulting expression after substituting
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the necessary correlations are

Fp =
1

(A2 + B2)((1 + r)2 + ω2τ2
RC)

{((A− α′)2 + (B − ωα′τRC)2)(1 + ω2τ2
RC)

1 + α0,eff

1− α0,eff

+
1

(1− αd,eff )(1− α0,eff )

2Rs

nrdj,eff
) + α′2((1 + r)2 + ω2τ2

RC)(1 + ω2τ2
RC)} (2.254)

We shall consider only the low frequency case ie. ωτRC � 1, ωτr � 1 and ignore non-

radiative recombination which sets α0,eff = α0 and αd,eff = αd. For constant voltage case,

we obtain

Fp = (1− αd)
2 1 + α0

1− α0
+ α2

d (2.255)

The first term is due to the forward and backward emission processes and the second term

is due to recombination induced fluctuations. The reason why the recombination noise

affects the net pump noise is that the backward injection events are dependent on the

electron population in the active region Δnc and is affected by Fr which fluctuates the

carrier number due to recombination. If we assume the linear relationshipα0 = αd , we

have Fp = (1−α2
0)+α2

0 which is true for either thermionic emission or diffusion conditions.

For the case of diffusion(α0 = 1), the first part which is due to the forward and backward

injection events, is completely suppressed below the full shot noise by the linear correlation

between the forward and backward injections but the negative feedback caused by the

backward pump events is completely removed by the recombination induced noise. For the

thermionic emission case(α0 = 0), the recombination noise does not affect the pump since

the backward injection events do not exist. In [32], the researchers have found that the

nonlinear case αd > α0, provides a stronger negative feedback due to the BP process which

overcomes recombination induced noise producing a subshot pump even under constant

voltage conditions. Under constant current conditions, we see from Eq.(2.254), that under

thermionic emission or diffusion conditions the low frequency pump Fanofactor is

Fp ≈ (
τte

τRC
)2 (2.256)

and hence Fp � 1. This is the same result predicted by the simple equivalent circuit model

in Eq. (2.73).
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Figure 2.12: 3dB Squeezing bandwidth as a function of LED drive current for the pump
model evaluated from the thermionic emission to the diffusion limits.

2.6.9 Squeezing Bandwidth

The squeezing bandwidth is defined as the frequency at which the frequency dependent

Fanofactor is reduced by a factor of 2 compared to the Fanofactor at the dc frequency limit.

This can be calculated from Eq. (2.242) by setting

1− ηc

1 + 2ω2τ2
te(1− αd)

(αd−α0)
1−α0

1 + 2αd(ωτr)(ωτte) + (1− αd)2(ωτr)2(ωτte)2 + (ωτte)2 + (ωτr)2
= 1− ηc

2
(2.257)

The frequency ω which satisfies the above condition is the cutoff frequency of the squeez-

ing(subshot noise) and we can denote it as ω = ωc which is determined as

ωc =

√
1

2(1− αd)2τ2
r τ2

te

{
− (C) +

√
C2 + 4(1 − αd)2τ2

r τ2
te

}
(2.258)

where C = τ2
r + τ2

te + 2αdτrτte − 4 (1−αd)
(1−α0)(αd − α0)τ

2
te . In the case of the thermionic

emission limit obtained by setting αd,= α0 = 0, the cutoff frequency is given by

ωc =

√
1

2τ2
teτ

2
r

(
−(τ2

r + τ2
te) +

√
τ4
r + τ4

te + 6τ2
r τ2

te

)
(2.259)

In the case of the diffusion limit ie. αd = α0 = 1, we obtain the limit

ωc =
1

τte + τr
(2.260)
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which is the bandwidth predicted by the equivalent noise circuit model of the pn diode.

Fig.(2.12) plots the functional dependence of squeezing on the LED drive current which

is varied through the parameter τte = kTCdep/eI0 .The squeezing dependence is plotted

for three different constant values of 0,0.5 and 1 for α0 and αd but with the same values

for Cdep and drive currents. Kobayashi et al[12] have shown that as the drive current is

increased for a double barrier heterojunction diode, the experimental results start from

the thermionic emission limit, followed by gradual changes in α0, αd until it reached the

diffusion limit. In other words, the BP rates are functions of increasing drive current. So

in the case of homojunction and heterojunctions where diffusion is the current mechanism,

the injected electrons may easily go back whereas for heterojunction diodes at low current

levels, the presence of large barrier(conduction band discontinuity) prevents this backward

flow of electrons. Both these mechanisms affect the frequency dependent squeezing char-

acteristics as seen in Fig. (2.12). Also we can see that both the thermionic emission and

diffusion models predict the same cutoff frequency at high currents. In fact, this is a prob-

lem experimentally, as one needs to perform experiments at low drive currents to determine

the squeezing bandwidths in order to ascertain if the device falls within the thermionic

emission or diffusion model or in between. Note that even homojunction based diodes can

have thermionic emission if the diffusion velocity is much larger than the thermal velocity

vdiff � vRth according to Eq. (2.109). At the present, the BP parameter is dependent

on the electron population nc in the active region which is in turn affected by the carrier

dependent velocities.

2.6.10 Correlations between the fluctuation quantities

Correlation between junction voltage and carrier number

The normalized correlations between the junction voltage fluctuations and the carrier num-

ber are defined as

|Cn,v|2 =
〈Cdep

e Δn∗c(ω)ΔVj(ω)〉2
C2

dep

e2 〈Δn∗c(ω)Δnc(ω)〉〈ΔV ∗j (ω)ΔVj(ω)〉
(2.261)
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For the case of diffusion αd, α0 → 1, which leads to the following definitions

〈Cdep

e
Δn∗c(ω)ΔVj(ω)〉 =

τteτr

A2 + B2
(SFr + SFrs) , 〈Δn∗c(ω)Δn(ω)〉 =

τ2
r

A2 + B2
(SFr + SFrs)

〈C
2
dep

e2
ΔV ∗j (ω)ΔVj(ω)〉 =

τ2
te

A2 + B2
(SFr + SFrs)

which causes |Cn,v|2 = 1. In the case of the thermionic emission limit α0, αd → 1, which

leads to the following definitions

〈Cdep

e
Δn∗c(ω)ΔVj(ω)〉 = τteτr

A2+B2 (SFrs) , 〈Δn∗c(ω)Δn(ω)〉 =
τ2
r

A2 + B2
(SFr + SFrs)

〈C
2
dep

e2
ΔV ∗j (ω)ΔVj(ω)〉 =

τ2
te

A2 + B2
(SFfi

+ SFbi
+ SFrs)

which leads to |Cn,V |2 ≈ 1. What we see is that irrespective of the constant voltage

or constant current biasing conditions(irrespective of the value of τRC) or whether the

device has diffusion limited or thermionic emission limited current, the correlations between

junction voltage and carrier number approach unity. The reason behind this is that any

changes in carrier number due to forward and backward injection of carriers which move

rapidly back and forth across the junction with time constants τfi, τbi establishing the

correlation between the junction voltage and carrier number. Any recombination will cause

a reduction in carrier number and a corresponding decrease in the junction voltage of

e/Cdep which are directly correlated or can be seen by noting that the charge fluctuations

in the capacitor is related to voltage fluctuations ie.ΔQ = CΔV provided the capacitance

is constant.

Correlation between junction voltage and photon flux

The analytical relation for the correlation function between the junction voltage and pho-

ton flux has been obtained in [33] for the diffusion case. We shall describe the effects here

qualitatively. Irrespective of the bias conditions, there is near perfect correlation between

the carrier number and the junction voltage. The photon flux is related to the carrier

number by a coupling efficiency. If the efficiency is 1, then we will observe a perfect corre-

lation(correlation is 1) between the photons and the junction voltage. When the efficiency

is reduced, photons may be deleted but carriers are still emitted which is reflected in the
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junction voltage which then results in the loss of the correlation. The value of this correla-

tion coefficient is the same as the coupling efficiency at high frequencies(or short counting

times) since each each photon counted or not is equivalent to a junction voltage drop of

e/Cdep. Along with the decreasing coupling efficiency, if the measurement time is long, then

many photons may be emitted and detected, and this destroys the correlation between the

junction voltage and photon flux further.

2.6.11 Validity of the Equivalent circuit model in the diffusion limit

Finally, we shall now see if the Langevin model supports the small signal equivalent model

laid out in the intuitive description of noise in the beginning of the chapter as well the noise

spectral densities obtained when we discussed the Buckingham’s diffusion noise model, for

the simpler case of long diodes. We obtain the carrier spectral densities from Eq.(2.234) as

SΔnc = 〈Δn†cΔnc〉 =
1

A2 + B2
τ2
r ((1+

τfi

τRC
)2+ω2τ2

fi)SFr+((
τfi

τRC
)2+ω2τ2

fi)(SFfi
+SFbi

)+SFrsI
)

(2.262)

The forward injection current is modeled as a thermionic emission current from n-layer to

p-layer with an average which varies as a function of the time dependent junction voltage

and a stochastic random injection events with zero average. Using Eq.(2.93), with vth =
lf
τf

and Dn =
l2f
2τf

we obtain

Ifi(t) =
enp0DnA

lf
e

eVj (t)

kT + eFfi (2.263)

where lf is the electron mean free path and Dn =
l2f
2τf

. Since the thermal motion is random,

electrons at a distance of −lf from the edge of the junction, reach the edge of the junction

and cross back into the p region. The backward injection current as a function of its time

varying average and stochastic term evaluated at x = −lf is

Ibi(t) = eDn
dn

dx
|x=−lf =

eDnA

lf
[np0 +

N

ALn
e−lf /Ln] + eFbi (2.264)

In the previous sections, the diffusion model was established with the BP rates α0, αd = 1

but the total current in Eq.(2.112) became zero. This is not incorrect, but simply states,
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that the diffusion current is very small when compared to forward and backward injec-

tion currents where I0 = Ifi − Ibi is the difference between the average forward and

backward currents and can be verified to be the diffusion current equation of a diode

I0 = Is(exp(eVj/kT ) − 1). To complete the picture, the pn junction is connected to a

constant voltage source with a series resistor that carries voltage noise which is responsible

for the external terminal current

Iext(t) =
V − Vj

Rs
+ eFrs (2.265)

At steady state, the diffusion current balances the external current as V − Vj0/eRS =

Ifi(Vj0)−Ibi(nc0). Since the backward injection current depends on the carrier number nc0,

the backward lifetimes are redefined from the pump rates of Eq. (2.228) to currents using

Eq. (2.264) as

1

τbi
=

1

e

dIbi(N)

dN
|N=N0 =

Ibi(N0)

e(N0 + np0ALnelf /Ln)
(2.266)

Since the electron mean free path is much smaller than the diffusion length, at a high bias,

we obtain Ifi, Ibi � I0 which implies that the time constants τfi and τbi are the smallest

time constants in this problem which leads to the following condition τfi, τbi � τr, τte, τRC .

The currents expressed in terms of the LED diffusion current and the lifetimes are

Ifi(V0) = I(1 +
τr

τbi
) +

τr

τbi
I0 , Ibi(N0) ≈ τr

τbi
(I + I0) (2.267)

The spectral densities are redefined, according to the new pump or current definitions as

SFr =
2

e
(I + 2Io) =

2I

e
+

4kT

e2Rd0
, SFrs =

4kT

e2Rs
=

4(I + I0)

e

τte

τRC
(2.268)

SFfi
=

2Ifi(V0)

e
, SFbi

=
2Ibi(N0)

e
(2.269)

Substituting the various noise correlation terms in the obtained expression for the spectral

density we obtain

SΔn =
1

A2 + B2
τ2
r ((1 +

τfi

τRC
)2 + ω2τ2

fi)(
2I

e
+

4kT

e2Rd0
)

+((
τfi

τRC
)2 + ω2τ2

fi)(
2I

e
(1 +

2τr

τbi
) +

4

e

τr

τbi

kT

eRd0
) +

4(I + kT
eRd0

)

e

τte

τRC
) (2.270)
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Eq.(2.270) can be applied to a wide range of conditions, but since we are interested in the

diffusion limit case we set τfi, τbi → 0. Under strong bias conditions where I � I0 the above

equation is greatly simplified to

SΔn =
τ2
r

A′′2 + B′′2
(
2I

e
+

4kT

e2Rs
) (2.271)

where the denominator A′′2 + B′′2 = (1 + τte
τRC

)2 + ω2(τr + τte)
2.

Constant Current Case

In the constant current case τte � τRC and the denominator terms are A′′2 + B′′2 =

1 + ω2(τr + τte)
2. Eq.(2.271) now reduces to

SΔn =
τ2
r

2I
e

1 + ω2(τr + τte)2
(2.272)

The current noise can be obtained from the carrier spectral density by SΔI = e2ω2SΔn

which leads to

SΔI =
2eIω2τ2

r

1 + ω2R2
dC

2
(2.273)

where C = Cdiff + Cdep. Note that Eq.(2.273) represents the ’recombination’ current noise

which was obtained in Eq.(2.78) using the equivalent circuit model and not the external

circuit current noise of Eq.(2.87) Since I = Cdiff
dV
dt , the voltage spectral density across the

capacitance can be obtained asSΔV = 1
ω2C2

diff
SΔI from which

SΔV =
2eIR2

d

1 + ω2R2
dC

2
(2.274)

and agrees with the macroscopic theory of Eq.(2.83) under constant current case.

Constant Voltage Case

Under the constant voltage case, the series resistance is removed producing the condition

τte � τRC . The denominator terms then become A′′2 +B′′2 = ( τte
τRC

)2(1+ω2( τRC
τte

τr +τRC)2)

and Eq.(2.271) now reduces to

SΔn =
τ2
r

4kT
e2RS

( τRC
τte

)2

1 + ω2( τRC
τte

τr + τRC)2
(2.275)
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The current noise spectral density and voltage spectral density are obtained similar to

Eq.(2.273) and Eq.(2.274) to obtain

SΔI =
τ2
r 4kTω2 RS

R2
d

1 + ω2R2
SC2

, SΔV =
4kTRS

1 + ω2R2
SC2

(2.276)

which once again agrees with the macroscopic theory in the diffusion limit for long diodes.

External Circuit Fluctuations

Linearizing Eq.(2.265) followed by taking the Fourier transform provides the external circuit

current as

ΔIext = −ΔVj

RS
+ eFrs (2.277)

The external current spectral density is obtained from Eq.(2.277) using 〈ΔI∗extΔIext〉 as

SΔIext =
1

A2 + B2
{( τte

τRC
)2(2e(I + 2I0)) + (1 + ω2(τr + τte)

2)
4kT

Rs
} (2.278)

With a little simplification we see that at low frequencies.the above expression is equal to

the shot noise under constant voltage conditions and is at the thermal noise limit at the

constant voltage conditions. The origin of noise in the external circuit can be obtained

by recognizing which variables appear in Eq.(2.278). The forward and backward currents

introduce effective resistances kT
eIfi

, kT
eIbi

across the junction layer which is the related to the

time constants τfi =
kTCdep

eIfi
, τbi =

kTCdep

eIni
. Since the currents is so much larger than the

differential resistance kT
eI0

established by the diffusion currents, the junction voltage dropped

by forward(or backward injection) event are immediately relaxed by a backward(or forward)

injection rather by the current through the external circuit. This implies that the noise due

to stochastic injection events across the junction are not seen in the external circuit, and

all the noise comes from the recombination events in the active region as seen earlier in the

circuit analysis.
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2.7 Summary

The mechanisms responsible for subshot noise generation have been reviewed in this chap-

ter. Analytical expressions for the photon Fanofactors are obtained using the quantum

mechanical Langevin model. The theory obtains expressions from the thermionic emission

limit to the diffusion limit corresponding to a long base heterojunction and short active

region double heterojunction diodes since these structures are typical of LEDs used in the

following chapter. The Fanofactors for the pump have been determined as well as cross-

correlation spectral densities between junction voltage and carrier number as well as carrier

number and photon numbers. Finally we also show the validity of the Langevin model to

predict the same results as the simple equivalent noise model of the LED under moderate

injection conditions.
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Chapter 3

Experiments on Subshot Noise

3.1 Introduction

In recent years there have been numerous experiments that verified reduced intensity noise

in semiconductor laser diodes(LD) and LEDs. This suppression has so far been the largest

in LD with nearly 4.5dB below the SQL which has been demonstrated from pump noise

suppressed quantum well lasers[39]. LEDs, since they are thresholdless have an advantage

over the LD for generating low intensity subpoisson light since they have very high efficiency

compared to LD at low injection currents. The largest intensity squeezing reported so far is

3.1dB at 77K[40] and squeezing over the broadest frequency range of nearly 1.5Ghz[41] has

been reported using an integrated LED-Photodetector(PD) system with Be heavily doped

active region of 3.5 ∗ 10−19cm−3. The lowest current range over which squeezing has been

demonstrated runs in a few microamperes[42]. Also the ease in showing subshot characteris-

tics with LEDs have included them in many nonclassical light experiments such as quantum

non-demolition(QND) devices[43], optoelectronic amplifiers and quantum correlated light

beams using series and shunt coupled devices[44]. In each application requiring the genera-

tion of nonclassical light, the LEDs have to been operated under constant current operation

where the squeezing is essentially limited by two factors: 1)The response time of the pn

junction(also known as the thermionic emission time τte = RdCdep) which determines the

cutoff frequency for the pump noise suppression due to the macroscopic Coulomb blockade

effect and 2)The carrier lifetime τr which determines the cutoff frequency for suppression

of recombination noise. These issues have already been dealt with theoretically in chapter

2. It is important to note that the constant current biasing mechanism is not sufficient to

explain the subshot experimental results. For example having a high impedance constant
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current bias does not imply regulation of carriers across the depletion region into an active

region,since unlike a mesoscopic junction the carriers do not block the successive carrier

injection(single electron coulomb blockade). The random stochastic process of injection

cannot be suppressed just by quieting the pump. There must a collective coulomb block-

ade regulation which involves many carriers and takes place on a time scale of τte and for

observation times smaller than this value we would still observe shot noise irrespective of

high impedance pump suppression. If a LED does not regulate well, it will not demon-

strate squeezing and this is characteristic of low efficiency generic diodes. Hence we need

to use high efficiency heterojunction structures and this narrows the study of the optical

noise spectra to the L2656 LED which has been shown previously to produce a squeezing

of about 0.7dB[45] as well as the L9337 LED for which the results have not been previously

reported.

Our principle goal in this chapter is to construct a measurement setup to observe opti-

cal noise spectra of sub-Poisson light and to achieve maximal squeezing, with suppression

greater than 1dB over a frequency range of several Mhz at room temperature. The measured

photon Fanofactors play an integral role in the communication experiments of chapter 4. In

order to be sure that the shot noise suppression is valid, the measured spectral density of

the noise from the photodetector and the corresponding Fanofactors are fit to the analytical

expressions that have been developed in chapter 2. Section 3.2 details the thermal and elec-

trical shot noise measurements performed. The shot noise of the optical noise spectra will

have to surpass the electrical shot noise from the photodetector and the thermal noise from

the resistors in order to be displayed. Section 3.3 details the experimental setup to measure

shot and subshot noise spectra. Each stage of the setup, which includes the LED, photode-

tector, amplifier and the spectrum analyzer are calibrated and the parameters which may

affect subshot noise are studied. In Section 3.4, experiments are carried out to verify that

the optical noise spectra from the lamp are at the shot noise level. It is important that the

shot noise levels are well calibrated. Otherwise the degree of suppression for subshot noise

will not be established without the reference shot noise level and the measured Fanofactors

would be in error casting doubt on all experiments. In Section 3.5, the subshot experiments
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are performed for the L2656 and L9337 LEDs. Even though the noise spectra under high

impedance pump suppression and constant voltage bias conditions are well understood from

a theoretical point of view, experiments are performed to demonstrate the physics of these

biasing mechanisms. We also observe certain anomalous behavior in some experiments,

where the frequency dependent Fanofactors show increased squeezing at certain frequencies

instead of the expected low pass characteristic and provide possible explanations for this

behavior. The noise squeezing bandwidth as a function of drive current is also obtained.

This describes the maximum ’noise modulation’ bandwidth in the communication setup of

chapter 4.

3.2 Thermal and electrical shot noise Measurements

The first experiments we performed was to characterize the electrical thermal noise voltage

and shot noise current. The thermal noise is associated with the resistor and shot noise

appears as the photocurrent noise in the experimental setup used to measure subshot optical

spectra(which appears in the following section). It is important to make sure that the

subshot/shot optical noise is much larger than the electrical and thermal noise spectra

in order to be measured. The quantities measured in this section are integrated over a

certain bandwidth and did not deal with spectral densities(noise measured over 1Hz). In

order to measure the noise over a 1Hz resolution(such as the optical noise spectra for

subshot measurements), the experimental setup required a high gain, low noise amplifier

and a low noise spectrum analyzer, the choice of which became clearer once the electrical

noise measurements were completed and the lower limits of electrical noise quantities were

established.

Thermal noise is due to electron agitations which give rise to random voltage fluctuations

in the terminals. The particles perform random motion and suffer collisions in the lattice.

The velocity and the consequent current due to this particle motion is described by a

Langevin equation. We would now like to experimentally verify the variation of noise

voltage with resistance. The thermal noise formula can be obtained using the transmission

line method of Nyquist[21] which is an important quantity that can be measured. Consider
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two resistors of equal resistances R at temperature T connected by a transmission line of

characteristic impedance of R. Conductor 1 produces a current I equal to the emf due to

thermal agitation divided by the total resistance 2R. Power transferred to conductor 2 is this

current squared times the resistance. Because the two resistors are at the same temperature,

the second law of thermodynamics requires that the power flow in one direction is equal

to the power flow from the opposite direction. We may imagine this as a voltage wave

V = V0 exp i(kx− ωt) traveling with a velocity v = ω
kx

where kx = 2π
λ . By shorting the two

resistors and trapping the wave on the transmission line, we can obtain the power or the

energy transferred per second which Nyquist derived to be

P =
Energy

Length
∗ Length

T ime
=

L
v ∗ kT ∗B

L
∗ v = kTB (3.1)

The power transferred is the maximum noise power since the load is matched to the trans-

mission line(no losses). The circuit can be represented as a noise generator(voltage source)

connected to a resistor. The mean-square voltage amplitude at the destination resistor is

then V 2/R which gives

< V 2 >= 4kTRB (3.2)

It is important to note that when one resistor drives another noiseless resistor and the two

resistors are matched to each other, the net power developed is kT for a bandwidth of

1Hz. This is equal to -174dBm for T=293K where the dBm is decibels referred to 1mW

power. A measuring instrument with sensitivity to very small signals would measure this

value if we terminated its input with a 50Ω resistor but most instruments do not have such

sensitivity which is why we need good amplifiers which raise the noise to appreciable levels.

If the resistor is connected across the input of a high gain amplifier whose voltage gain as

a function of frequency is G(f), the mean square output voltage of the amplifier which is

the sum of resistor(R) and amplifier noise(A) is

< V 2
o (R + A) >= 4kTR

∫ ∞

0
|G(f)|2df+ < V 2

o (A) >= 4kTRG(0)2BN+ < V 2
o (A) > (3.3)

where Vo(A) is the amplifier noise referred to the output and BN = 1
G(0)2

∫∞
0 |G(f)|2df is

the effective noise bandwidth(ENB). For a simple first order low pass gain characteristic we

can evaluate ENB to be BN = 1.57f3dB .Normally, the bandwidth of a system(eg. amplifier)
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Figure 3.1: Experimental results for V 2 (obtain by correcting for amplifier noise and nor-
malizing to gain) versus resistance R. The solid line implements the theoretical equation
4kTRB where B is the fitting parameter used.

is defined as the difference between the half-power points (-3dB points). A -3dB reduction

corresponds to a loss of 50% of the power level or a voltage which is 0.707 that of the

voltage at the center frequency. Noise power however exists at all frequencies and is not only

constrained to the 3dB points. So ENB should be larger then the conventional bandwidth.

From the expression for BN we see that it is defined as the frequency span of a rectangular

shaped power gain curve equal in area to the area under the actual power gain versus

frequency curve. It is the area of the power gain curve divided by the peak amplitude of

the curve.

So the measurement procedure is as follows: Measure G(f) at a range of frequencies

and find the 3dB point. Then we measure < V 2
o (R + A) > using a true rms meter, and

then subtract away the noise of the amplifier. The measurement setup we constructed for

this purpose is as follows: The resistors and the differential amplifier were housed in a

metallic enclosure. The resistors were mounted on a rotary switch.By turns of the knob,

different resistances were placed at the input of the differential amplifier. The differential

amplifier output was fed to a oscilloscope as well as to a computer where measurements were

taken using Labview. The differential amplifier circuitry was soldered onto a printed circuit

board. By doing so,the leads were kept as short as possible in order to minimize problems
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of electrical interference and capacitance. Care was taken to keep the setup away from

magnetic sources such as the oscilloscope monitor. The amplifier we used was the AD625

instrumentation amplifier which was set for a gain of 1000 according to the formula[46]

G = 2RF
RG

+ 1 where RF ≈ 19kΩ and RG ≈ 39kΩ were chosen.We followed the datasheet

recommendation for the resistor choices since bandwidth, stability and output noise are

affected by them. With these settings, the output noise of the measurement setup was in

the millivolt range.

Before the measurements were taken, a calibration step was performed wherein a sinu-

soidal test signal in the range of 100mV to 1V from a function generator was fed into the

differential stage(set for a unity gain). The RMS output was measured on a oscilloscope.

Once this step was verified, for a fixed voltage on the function generator Vi, the frequency

was varied from 100Hz to 25Khz and the output voltage Vo was observed on the scope.The

gain can be found as G(f) = Vo
Vi

which over the frequency range was 1000. The 3dB point

was found to be 25kHz which agreed with the gain-bandwidth product of the amplifier.

The roll-off was around 15dB per decade which was less than the 20dB roll-off expected

of a single pole filter.If we assume it to approximately a single pole filter the ENB can

be calculated as BN = 39kHz Now we have both G(0) which is 1000 and BN . Finally

we connected the setup to the computer and the true rms voltages were measured using a

Virtual Instrument designed for making noise measurements in Labview.

The input of the differential amplifier was shorted and the noise contribution of the

amplifier stage was measured(〈V 2
rms〉) to be around 0.6mV. Next noise voltages of resistances

from a few ohms to 1MΩ were measured. Note that the datasheet[46] specified the input

capacitance of the differential amplifier as around 4pF . Together with the input resistance R

this forms a low pass filter with a cutoff frequency of ≈ 1
2πRC . For the maximum resistance

used which is 1MΩ, this cutoff is around 39.8Khz which is beyond the 3dB bandwidth

f3dB = 25kHz of the amplifier. If this is smaller we have to account for it in the gain

integral of Eq. (3.3) by modifying it as
∫∞
0

|G(f)|2
1+(ωRC)2

df . Since all contributions to the

measured RMS voltage are statistically uncorrelated, the amplifier and resistor noises add

in quadrature. The measurement of the Johnson noise without the amplifier noise was
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calculated as V 2
o (R) = V 2

o (R + A)− V 2
o (A). We obtained 1000 data points for each resistor

value and averaged them. The resultant points are plotted in Fig. (3.1). The points are

normalized to G(0)2.The solid line is the theoretical curve which was used to fit the data

and the fitting parameter used was the effective noise bandwidth-ENB.

There are a few points to notice. Conventionally, a low pass filter is used after the

amplifier stage to set the bandwidth[47]. Here we have used the amplifier response itself.

The National instruments data acquisition card(DAQ) used has a maximum sampling rate

of around 22kS/s which is another bandwidth limit. The original experiment was carried

out by setting the DAQ to 50kS/s and the Labview program did not produce any error

which was surprising. If the DAQ sampling rate was 50kS/s. the amplifier would serves

as a gain as well as an antialiasing prefilter to the DAQ card[48] and we could take the

ENB of 39kHz which we measured earlier. So the ENB in this regard will have to be

smaller(around 25kHz) , and we estimate it from the slope of the experimental data. When

the output from the amplifier is hooked up to the oscilloscope, we obtain a noise pattern

which is Gaussian distributed in voltage. This is seen in Fig. (3.2a) .This is characteristic

of all white noise including shot noise. The Gaussian character depends on the bandwidth

limit(around 20kHz) and resistance. In the oscilloscope,we observed a definite increase in 3σ

deviation of the Gaussian distribution as the resistances were increased from 10kΩ to 1MΩ.

Below this value the amplifier noise would swamp the readings and we were not able to

identify any variations. Also the type of meter used is very important. Voltmeters are peak

responding devices calibrated to show the rms values of a sine signal. So if Gaussian voltages

are to measured they are to be multiplied by 1.13[49].In our case we measured the voltages

by means of a Labview program which was in essence an integrating true rms voltmeter. We

had options to choose windows but we did not use them since we are dealing with broadband

noise[48]. There is another important difference between taking a peak measurement versus

rms values: An averaging voltmeter would result in zero voltage in an infinite integration

time,whereas the rms meter would measure a nonzero value.This is quite similar to sine

wave measurements where a single frequency would be squared and then averaged for the

rms. Noise may be considered as a number of sine wave power amplitudes(V 2) of different
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Figure 3.2: (a) Histogram of thermal noise for a 1MΩ source (b) PDF of shot noise ob-
tained from a thermionic noise vacuum diode. The solid line is the the theoretical Poisson
distribution obtained by fitting the average < n > to the data(points)

frequencies and the net square voltage can be obtained by adding them all up.

We notice that the datapoints in Fig. (3.1) show slight deviations from the theoretical

plot for values of 10kΩ and 15kΩ. This may be due to several factors. 1. The resistors used

are close to the noise of the amplifier stage. 2.The resistors may have excess noise(some of the

resistors used were carbon composition). 3. Insufficient averaging prompting measurement

of more datapoints. 4. From looking at Eq. (3.3) , a more exact procedure would be

to measure the gains to very large frequencies and integrating them using a numerical

procedure. However we do see that there is a linear relationship between the mean square

noise voltage and the resistance as expected and the effective noise bandwidth obtained by

fitting the theoretical curve to the datapoints is equal to 21kHz and is close to the ENB of

25kHz-39kHz dictated by the measurement setup.

We obtained Fig. (3.2a) by collecting about 8000 data points from a 1MΩ thermal source

which was fed into an oscilloscope virtual instrument in Labview. We divided the data into

bins and plotted the relative frequencies. The measurement shows us that thermal noise has

a Gaussian distribution as expected. Note that the histogram charts the peak-peak values.

The rms value < V 2
rms > which we measured in the above using the rms meter is essentially

the 1σ2 variance of the histogram. Typically for Gaussian limited noise,instantaneous values

like between 0 and σ 68% of the time and between 0 and 3σ 99.6% of the time[49]. Fig.

(3.2b) was obtained in the same way except we used a bandwidth limited noise source which
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housed a vacuum noise diode which is a good shot noise source. The instantaneous shot

noise diode current results in a Gaussian probability density function(pdf) which shows us

that the probability at any time for the current to lie between I and I + dI is p(I)dI. The

variance is the mean square shot noise current given as σ2 = 2qIdcΔf . The bandwidth of

the noise source was adjusted to be 10Khz and the voltage around 2Vrms through the front

panel controls. We measured the noise current using a Labview ammeter module. We were

measuring an integrated current I =
∫ t+T
t i(t)dt over the measurement time interval T set

by the DAQ and datapoints were continually obtained in intervals of T. Note that even

though the pdf of shot processes are actually Poisson, at large currents we can approximate

the curve to be Gaussian. We then normalized the currents to the electron number n by

the relation n = I
e . The electron number was divided into bins and the probability was

obtained after normalizing the relative frequency plot. The noise source produced 0 centered

values which resulted in < n >= 0. But from our understanding of shot noise, the mean

square noise current is proportional to the dc current. We fit the theoretical Poisson curve

p(n) = e−<n><n>n

n! to the above data by estimating < n > by trial and error . This method

of obtaining the pdf of shot noise is also a method of calibrating it precisely and has been

used to determine the optical shot/subshot noise of LEDs and feedback stabilized lasers[4].

We however use another method for the optical noise measurements, where we calculate

the noise powers from the photocurrents of the detector.

3.3 Experimental setup for subshot noise measurement

In the previous section we measured the rms voltage of thermal noise and verified its prob-

ability distribution. We could have obtained the shot noise rms current using the above

measurement setup,but there are a number of issues that prompted an alternate design:

1.We are more interested in the noise spectral densities(the power per hertz) and not

in an integrated current or voltage. In other words, a sound spectral analysis needs to be

performed, so we can compare noise levels relative to one another. The spectral densities

are often referred to as ’spot noise’.

2.The AD625 amplifier noise is quite large at 4nV/
√

Hz. This would ultimately limit
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the spot noise measured values.

3.The frequency range of measurement should be equal to the electrical modulation

bandwidth of the LEDs used ie. 100kHz to 40Mhz , which is beyond the range of the

thermal noise measuring system.

The experimental setup is shown in Fig. (3.3) .The heart of the subshot experiment

is the light emitting diodes which are the L2656 and L9337 from Hamamatsu. These are

high efficiency GaAlAs semiconductor heterojunction light emitters with a typical quantum

efficiencies of .22 and 0.32 photons-per electron respectively at a center wavelength of 890nm

specified at a forward current level of 50mA. We shall treat the L2656 as a pn homojunction

device since many papers have done the same and the differences between applying the

thermionic current or diffusion current model is usually imperceptible. The LEDs are

mounted on a faceplate attached to a movable post. The photodiodes used are S5107 and

S3997 which have large active area of 10*10 mm with specified internal quantum efficiencies

as high as 0.93 electrons per photon. The photodiodes as well as the load resistance RL

and battery are housed in a metal box which is in turn mounted on a post. The posts are

placed on a movable slide allowing us to adjust the distance between the LED-photodiode.

But usually we placed the LED and photodiode in a face-face configuration in order to

allow maximum light collection efficiency. The light from the photodiode is converted to

a voltage by means of the load resistance RL which could be switched between 50Ω and

5080Ω. The batteries used were originally 9V which were later switched to 24V. So some of

the initial experiments were done at low currents so as not to saturate the PD. If the PD got

saturated we could change RL to 50Ω and get a larger maximum photocurrent range given

approximately by VB
RL

where VB is the battery voltage but the gain would be reduced. The

maximum reverse voltage of these detectors is -50V. The photovoltage developed across RL

is amplified by a low noise 40dB gain Analog Modules(AM) 322-6 voltage amplifier whose

output is fed to a HP8568B spectrum analyzer(SA) which displays the noise power. This

SA is capable of measuring noise levels as low as -135dBm and has very good low frequency

drift,good stability, and accuracy. A GPIB driver was used to extract the data from the

spectrum analyzer onto a computer for further processing. A voltmeter or oscilloscope can
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be switched in place of the Analog Modules-Spectrum Analyzer(AM-SA) chain to read the

photovoltage for each measurement. We opted for a discrete component design where each

element can be modified easily. The LEDs could be switched in and out easily and for some

experiments such as the shot noise measurement the post could be replaced with another

fitted with a lamp.The LED,PD and amplifier stages were placed inside a shielded box with

external BNC connections to meters and current sources.

Lamp

0-2V
9V

PD1
RS

LED

PD2

RL

C Amplifier

SA

9 or 24V

DC

Figure 3.3: Overview of the experimental apparatus: By switching from resistor RS to

photodiode PD1 subpoisson and Poisson light can be produced which is detected by pho-

todiode PD2. The DC voltage is measured across RL with a multimeter and AC is passed

on to the amplifier and the spectrum analyzer(SA). PD1, RS and battery are housed in a

shielded box(as indicated by the dotted lines). The rest of the components(except the SA)

are housed in a RF cage.

The LED itself is driven by either a shot noise source(SNS) or a constant current

source(CCS) by means of a switch. The SNS consists of a lamp which illuminates a re-

verse biased photodiode which was from UDT sensors. Most of the current produced by

the SNS is due to optical power of the lamp and so the measured variance can be expressed

as < Δi2sn >= 2e < i > B. The goal of the experiment is to generate a light field which is

below the shot noise level.The need for the SNS is to generate a light field with Poissonian
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statistics from the LED. This is done in order to compare the shot noise level against other

measured fields. The Fanofactor of the noise from the SNS PD is given by Eq. (??) which

we rewrite here as

Fph = η0Fp + (1− η0) (3.4)

where η0 is the dc efficiency(the effect of differential efficiency as discussed in the previous

chapter is ignored for the time being) and Fp is the Fanofactor of the LED drive cur-

rent(This was referred to as the pump Fanofactor in the previous chapter and we either

infer this value from experimental results or relate it to experimental quantities). Typically

lamps have efficiency close to 0 and so Fph = 1 therefore approximating the shot noise

level. Alternatively, the same result could have been obtained by setting Fp = 1. This

PD in turn drives the LED which has the same Fanofactor relationship except now the

photodetector’s Fph is the Fp of the LED. So in general we have a series of optoelectronic

LED-detector stages, where the statistics is transferred from one stage to another using the

general expression[50] FM+1 = F1Πηi + (1−Πηi). For example,the case i=2, has led to the

construction of an approximate quantum non demolition device [44] provided the efficiencies

are close to 1. The CCS consists of a large series resistance RS and a 9V battery. As seen in

the previous chapter, the series resistance RS should be greater than the diode differential

resistance Rd in order to establish high impedance pump suppression conditions. The SNS

and CCS were housed together in a separate box and were connected to the shielded box

and to the LED inside it by means of short shielded coax cables. In addition, we used the

ILX Lightwave LDX3620(referred to as ILX from here on) low noise current source to set

the LED drive current to calibrated levels. In order to be assured that the experiments

outlined in this chapter are valid, each stage of the experimental setup discussed above will

need to calibrated and factors that may affect the squeezing results will be studied in the

following sections.

3.3.1 Spectrum Analyzer Calibration

The Spectrum Analyzer(SA) is the most important tool in our arsenal to measure noise and

it is important that the analyzer is properly calibrated and correction factors if any, should
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be included in all future extractions of data from the SA noise measurements. A classic

superheterodyne SA consists of a mixer stage, several IF filter stages with an effective center

frequency fIF , a log amp,an envelope detector and the video filters. The mixer is a nonlinear

device which receives as input the external signal of frequency(frequencies)fsig and the local

oscillator signal of frequency fLO and produces an output which includes the original signal

frequency fsig as well as the sum(fsig + fLO) and difference frequencies(fsig − fLO). If for

some reason, the signal frequency is below the LO by the IF frequency(fIF ) then one of the

mixing products will lie within the passband of the IF filter and would be detected. In other

words, there exists a tuning equation given by fsig = fLO − fIF which the signal frequency

satisfies. This is best described with an example. Let us introduce a sine wave of 500Mhz

into the SA with a tuning range of 0-1Ghz. Assume that the fIF is fixed at 3Ghz and a

ramp generator sweeps the frequency variable local oscillator fLO from fIF up to fIF +1Ghz

thus covering the entire tuning of 1Ghz. For the 500Mhz signal the LO frequency should

be fLO = fsig + fIF = 3.5Ghz. In other words when the local oscillator sweeps through

the frequency fLO = 3.5Ghz, the output from the mixer(fIF ) is at 3Ghz and is within

the passband of the IF filter and therefore registers a spike on the display. The signal

has been translated or upconverted to the IF frequency according to the superheterodyne

principle. The IF stage has the ability to resolve two nearby equal amplitude frequency

signals according to its resolution bandwidth(RBW) which is stated as the 3dB bandwidth

of the IF filter chain. The envelope detector converts the IF signal to video by following

the changes in the envelope of the IF signal ie. baseband signal and not the instantaneous

variation of the IF carrier itself. The video filter is a low pass filter that follows the envelope

detector. If the cutoff frequency or video bandwidth(VBW) is setup to be much less than

the RBW, then the video system no longer follows the rapid variations of the signal envelope

passing through the IF chain. In other words, the displayed signal will be smoothed out

and for noise in particular, the peak to peak variations are reduced(any sine wave present in

the noise remains unaffected). The noise levels themselves are unchanged since we use the

normal detection algorithm in the SA Labview program. The SA does not display all the

frequency points that it sweeps. It displays a small bandwidth of frequencies(also known
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as a bucket) as one point on the display. The normal or rose’n’fell detection algorithm

essentially displays the maximum value in its bucket if its an odd numbered data point

and minimum value if it is an even numbered data point and is the best choice for viewing

both signals and noise. If we had used the positive peak detection method(which displays

only the maximum value in each bucket) then for the case V BW < RBW ,changing the

video bandwidth would affect the average noise level. The normal detection method is seen

in Fig. (3.4a), where the RBW is kept constant but the VBW is varied from 10Khz to

3Hz. The noise levels are unchanged(characteristic of the rose’n’fell algorithm) whereas the

variance is reduced. The noise powers are obtained by connecting the amplifier and PD

combination without any input signal onto the photodetector. This implies that the noise

on the spectrum analyzer is the resistor noise of the load resistor RL of the PD paralleled

with the amplifiers internal resistance.

Even though the spectrum analyzer (SA) works well with ac signals, the main require-

ment is to display the spot noise quantities of the test signals accurately. When the SA

input is terminated with a 50Ω resistor, the noise indicated on the screen is nothing but the

SA’s own noise floor also known as the Display Averaged Noise Level or DANL. The DANL

is calibrated to reflect a fictitious noise level at the SA’s input in order to compare it with

the other noise signals inserted into the SA. This DANL is due to the shot noise amplified

through the various gain stages of the system and finally referred back to the 50Ω input. So

any noise signal we insert has to have a larger magnitude than the DANL to be displayed on

screen. Note that both the input noise as well as the DANL are affected by various stages

in the SA such as the attenuator, mixer, IF and video filter stages. Our attenuation was

set to auto. The lowest SNR can be obtained by setting 0dB attenuation. The RBW also

affects the sensitivity of the system. The DANL as well as the signal noise passes through

the IF bandwidth filters and the total noise power displayed is dependent on the effective

noise bandwidth(ENB) of these filters. For example,a signal of 10nV/
√

Hz, and a IF filter

of RBW≈ENB=30kHz, causes the SA to display(without corrections) an integrated noise

of 10nV/
√

Hz*
√

30kHz=1.732μV . Since the spot noise values are required for the experi-

ments, all the displayed noise measurements will be converted to 1Hz by effectively dividing
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by the RBW. Also when one changes from one RBW setting to another, the displayed

noise changes as 10 log
(

RBW2
RBW1

)
ie. the input is normalized to 1Hz followed by inserting it

into another RBW setting. Fig. (3.4b) illustrates the variation of RBW, with VBW kept

constant at 3Hz. When the RBW is changed from 3Khz to 10Khz, a change of 5.22dB is

expected but only 4.1dB is seen, which is an uncertainty of nearly 1.1dB. The inset of the

Fig. (3.4b) displays the noise over a wider frequency range and as the RBW is changed

from 10kHz to 100kHz an increase of 10dB is expected, but only 8.9dB is seen, which is once

again an uncertainty of 1.1dB. This uncertainty will affect the absolute noise measurements

if it is not properly accounted for as a correction factor. Most instruments typically have a

transfer function(defined as ratio of the output to input) which do not follow the datasheets

explicitly. This does not indicate that the measurements are incorrect, but rather the gains

in the system have changed(perhaps due to miscalibration). On the other hand, the spec-

trum analyzer(SA) perfectly reproduces a well calibrated sine wave at all frequencies with

no spurious responses. The SA produced a flat white noise characteristic over its entire

frequency range of 100Hz-1Ghz. A similar test done on amplifiers where one or more gain

stages were not working, produced a frequency varying spectrum with spurious responses

which indicated its nonlinear behavior. The SA was free from some observations. Our con-

clusion was that the SA worked perfectly, but was slightly miscalibrated. We have found

our absolute measurements to agree very well with the theoretical results once this 1.1dB

is accounted for in all our calculations. Section 3.5 which deals with subshot experiments,

relies on relative measurements(the ratio of one level to another). Relative measurements

do not require any correction since each level is affected the same and the net effect cancels

out.

So why does this 1.1dB uncertainty occur in the first place? Fig. (3.4b) indicates an

anomaly when the RBW is switched from 3Khz to 1Khz. We should expect a drop of

4.77dB but we notice only 1dB change. We believe that one of the IF gain stage or filter(in

particular the 1kHz RBW filter) may be miscalibrated. This may also be the reason for

the 1.1dB uncertainty in the other RBW settings and thus the gain change. Notice that

the 3kHz and 10kHz noise levels have the same rolloff characteristic whereas the 1kHz
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Figure 3.4: Spectra of the noise floor of setup in Fig. (3.3) measured with (a)Variation of
VBW with a constant RBW of 10Khz (b)Variation of RBW with a constant VBW of 3Hz
(c)Different span/center frequencies(start/stop frequencies) as a function of RBW

level seems to be flat at all frequencies similar to the DANL(The DANL actually has a 1/f

characteristic as seen in the spec sheets but the SA calibrates the output in such a way that

the noise looks flat on the display). The DANL from the data sheets is quoted at -112dBm

at 500khz for a RBW=1kHz but due to the SA miscalibration, the noise level level may

have shifted to -93dBm in Fig. (3.4b). So what is being measured may be the noise floor of

the SA, and the expected resistor noise level has sunk below the DANL. This would explain

why the 1kHz levels do not follow the 3kHz response at a constant difference. Most of the

measurements were done at RBW of 3kHz and above and so that this discrepancy would

not have to be dealt with.

Fig. (3.4c) show various measurements(performed individually on the SA and arranged

on the same plot) indicating the variation in noise levels as we adjust the span and center
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frequency settings. If we look at measurements 4 and 5, we notice that the noise powers at

100kHz are not the same. This can be explained as follows: The total span for measurement

4 is 9.9Mhz whereas for 5, it is 1.9Mhz. Given that the total number of datapoints taken is

1000, we obtain a frequency resolution of Δf = Span
1000 which is 9900Hz for 4 and 1900Hz for

5. The RBW has been set to 10Khz in both cases. So during the sweep of the LO past the

IF stage, the SA would give the most accurate readings when it sweeps for an integration

time of nearly 1/RBW or a noise power equivalent to this effective bandwidth. But for

the case of measurement 5, the SA needs to display a point on the screen around 2Khz

before it has a chance to sweep past the 10kHz filter therefore displaying a fraction of the

noise power expected. For measurement 4 on the other hand, the frequency resolution is

nearly the same as the RBW, so we would expect more accurate noise powers. In actuality

we should expect a 1/f dependence on the noise which is due to the LO tracing out the

IF filter shape, followed by the 1/f character of the DANL in the frequency range of 0-

1Mhz. In case of measurement 1 we set the start at 0Hz. The SA would obtain readouts

at 0, 45kHz, 90kHz and so on integrating the 1/f nature of its own DANL since it is much

larger than the noise of the resistor and PD combination. This would not affect relative

measurements(such as comparing one noise level to another) but absolute measurements

will be incorrect. The correct way is to set the start frequency to 1Mhz, thereby avoiding

this 1/f nature completely and we notice that it has constant difference from measurements

3,4 and 5.

What is displayed on the SA screen is not the input noise spectral density but rather

an integrated noise. As we have mentioned before we are more interested in the spot noise

quantities and in order to convert what is displayed on the SA plots which is in dBm to

dBmHz, three corrections need to applied [51, 52] which are as follows: 1.Under response

due to logscale envelope detection(+2.51dB) 2.Over response due to the ratio of ENB to

the -3dB bandwidth(-0.52dB) 3.Normalization to 1Hz bandwidth(−10 log RBW ). The net

effect of these contributions give us

Pexp(ω)dBmHz
= P (ω)dBm − 10 log(RBW ) + 1.99dB (3.5)

where PdBm is the spectral power displayed on SA screen and Pexp(ω)dBmHz
is the corrected
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spectral density normalized to 1 Hz. Using this formula, the measured noise power can be

related to the theoretical values. The noise marker feature of the SA makes these corrections

automatically. We were not able to extract the noise marker values directly because the

Labview drivers utilize the GPIB command KSA which essentially captures the complete

trace of dBm values. It is more difficult to obtain the spot noise powers as we have to

initialize the SA, followed by a complete sweep each time we need to extract the noise

power for a certain frequency component. Instead, we rely on making the conversions to

the dBm plots that we have acquired.

3.3.2 LED Characteristics

The LED IV characteristics are important for two main reasons:(a)For each measurement of

shot and subshot noise, the drive current to the LED is inferred from the PD photovoltage.

One way to ensure its accuracy is to perform IV tests with the setup of Fig. (3.3) which

also serves to calibrate the setup provided the IV results agree with the specifications in

the datasheet. There is no need to construct a separate IV measuring unit. (b)As we move

to higher current ranges, the existence of series resistance effects, could affect the subshot

noise spectra. So we need to set a boundary on the range of currents within which we

would be assured of our subshot results. In Fig. (5a) ,the IV curves for the L2656 LED

have been measured along with the squeezing measurements which was obtained as follows:

Using the constant current source and varying the resistance we were able to vary the

current according to the LED circuit equation IL = V−V:
RS

and since V is the fixed battery

voltage,VL can be obtained. Note that if a voltage had been applied across the diode and

the resulting current measured through a low impedance probe,we would get more error

because of the exponential dependence of the current on voltage. The drive current IL was

obtained by replacing the constant current source with the current from the ILX Lightwave

source and making sure that the same photovoltage was measured as using the constant

current source. This way we did not have to disturb the setup of the system. The solid

lines have been obtained by modeling the diode using pspice and the datasheet values. The

datasheets specify currents only in excess of 10mA and so the experimental values were
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used to fit the IV curves for lesser current values. The L9337 should have a very similar

structure to that of the L2656 which is seen by the values of ideality factor n=1.8 and

bulk series resistancers = 1.8Ω(In fact the L9337 is advertised as the replacement to the

L2656). The only source of measurement inaccuracy is the ILX current source which tends

to fluctuate by as much as ±0.03mA which could explain the deviation in the Fig. (3.5a)

from the solid lines. For example, the largest deviation is at 1.12V with an IL = 3.41mA.

If we set IL = 3.39mA, we would get V=1.2V which would agree with the solid curves. The

most important point to note is that we are working away from the high injection regime

where bulk series resistance effects start to arise. This is also the region of backward pump

processes which are responsible for squeezing under constant voltage condition[53]. Most

textbooks attribute the deviation from the ideal diode equation model to only the series

resistance[10] which is not true. For example, the total measured differential resistance is

given by rd,meas = rd0 + rback + rs where rback is the backward differential resistance(given

by Eq. (2.x)) and rd0 = nkT
qIL

is the standard differential resistance. At low temperatures,

the authors of[] found that rback which is a function of the BP process is nearly zero. Under

this condition rs can be estimated easily. At room temperature, we can extrapolate and

determine rs according to the resistivity-temperature dependence but in addition rback is

also present . The sum contributions will be the total resistance and not only the series

resistance. When we subtract away the determined rs from Vmeas we obtain a diode equation

which is still nonideal and is given by IL = ISexp(eVa/kT )(1 − α0(Vj)) . The ratio of this

IL to the ideal diode equation in the Fig. (3.5a) gives us the measure of the BP process

ie.1−α0(Vj). It is quite hard to estimate this quantity,since we need to determine rs which

is unknown unless we know the device geometry or perform low temperature measurements.

Because of the uncertainty of experiments under high injection conditions, the squeezing

experiments are restricted to current levels of less than 10mA. Since the nonlinear backward

pump processes would produce squeezing under constant voltage high injection current

conditions, it would lead to a situation where both constant voltage and constant current

bias methods produce the same subshot noise spectra, and hence the method of controlling

the statistics of light between shot and subshot levels(which is an integral part of this thesis)



121

Figure 3.5: (a)Measured IL − Vmeas characteristics of the L2656 LED which is compared
with the ideal diode equation IL = ISexp(qVj/nkT ) as well as the I − Vmeas curves ob-
tained through pspice device modeling for both L2656 and L9337 LEDs. b)Mean quan-
tum efficiency(η0) and differential quantum efficiency(ηd) measured for the L2656(1) and
L9337(2) LEDs.The DC operating point and tangent are shown for the L9337.

would be lost. The IV curves have also been used in the construction of LED spice models

for the L2656 and L9337 LEDs and these models have been used in the calculation of certain

quantities in chapter 4.

Efficiency is the most important parameter for a subshot experiment as seen in Eq.

(3.4) where it can destroy any subshot characteristics even though the pump noise may

be suppressed. Also the influence of non-radiative processes affect the squeezing results.

Efficiencies can easily be changed with detection geometry and in order to model the exper-

imental results accurately, a simple method is developed where the efficiency is measured

once so that it can be used for all measurements. The total dc efficiency of the LED-PD

system ie. η0 =
Ipd

IL
can be defined as

η0 =
ηc1(1\τr)

(1\τr + 1\τnr)
ηc2ηpd = ηintηc1ηc2ηpd (3.6)

where ηint is the internal recombination efficiency, ηc1 is the extraction efficiency from the

LED to the output mirror through the collimating lens and photons lost at the semiconductor-

air interface, ηc2 is the coupling efficiency from the between the output photons and the
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photodetector and ηpd is the conversion efficiency of the photodetector which is depen-

dent on the responsivity. We cannot measure ηint very easily, and so we rewrite the ef-

ficiency as η0 = ηLηc2ηpd where ηL = ηintηc1 is the total efficiency of the LED. LED

injection efficiencies have been assumed to be 1. The differential efficiency is defined as

ηd = ηc1ηc2ηpd
dηint

dNC
|Nc=NC0

where Nc is the electron population in the active region.In Fig.

(3.5b), we have plotted the efficiencies as a function of photocurrent for the two LEDs used

in our experiments. The differential efficiency has been calculated by taking the difference

between the neighboring data. To get smoother results, a linear regression was done on η0

followed by differentiation to obtain ηd. The efficiency plot obtained also coincides with

typical values obtained in the squeezing experiments.Usually it is very hard to fix η0 to

be the same as we move from experiment to experiment, but any changes are only in the

coupling efficiency as seen in Eq. (3.6). Hence the ratio ηd
η0

is independent of the coupling

parameter ηc and with the value of η0 for that typical run of the experiment, we can esti-

mate the fanofactors. Note that the efficiencies are frequency independent parameters(The

authors in [42] had originally assumed it to be otherwise). From the Fig. (3.5b) we note

that Ipd rises superlinearly with IL and becomes more linear as drive current increases and

eventually saturates. The LED saturation here is before the onset of detector saturation.

If we had perfect linearity, ηint could have been taken as 1 and we could have determined

ηc1. But this is not possible unless the device is cooled to low temperatures where the

non-radiative channels are closed.ηd is essentially this deviation from linear behavior and

characterizes the nonradiative processes. However ηc2 can be estimated easily. The S5107

detector used has a responsivity(S) of 0.7A/W at 890nm and produces a high efficiency of

ηpd = S hν
q = 0.97. The optical powers were measured using a calibrated Newport optical

power meter from which we could obtain ηL. The dc efficiencies η0 are determine from

Ipd and IL through face-face coupling between LED and PD. From these values estimated

ηc2 can be estimated. Some of these measurements have been shown in table (3.1). The

L2656 has a typical flux of 15mW at 50mA[54] which gives us an efficiency of 21.5%. In

the table. (3.1), at 20mA, the total efficiency is shown to be ηL = 21% which confirms the

accuracy of the power meter. This can be used as power input to the PD, from which the
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LED Current-IL LED Power-PL Photocurrent-Iph Efficiency
ηL =

PL
1.39IL

Efficiency
η0 =

Ipd

IL

5mA 1.236mW 0.7716mA 0.1778 0.1542

10mA 2.740mW 1.706mA 0.1971 0.1705

15mA 4.278mW Saturated 0.2051 -

20mA 5.838mW Saturated 0.21 -

10mA(LE) 1.195mW 0.561mA 0.0895 0.06525

20mA(LE) 2.630mW 1.22mA 0.0917 0.06445

Table 3.1: Experimental values of optical power PL and photocurrent Iph for the L2656.The
efficiencies ηL, η0 have been calculated for two similar LEDs where LE characterizes the LED
with low internal efficiency.

responsivity can be calculated asR =
Ipd

PL
= 0.62 ,a value smaller than the expected 0.7A/W.

This is nothing but the loss in coupling efficiency at the detector which is calculated to be

ηc2 = 0.89 and is quite high even without the aid of an integrating sphere. Such high ηc2 is

possible since the LED is outfitted with a collimating lens. Note that ηd
η0

takes on values as

large as 1.24 for the L2656, whereas it is close to 1.08 for the L9337. This implies that there

fewer nonradiative mechanisms in the L9337 thus increasing the efficiency. A typical flux at

50mA is 23mW[54] which gives an efficiency of 32.2% at a center wavelength of 870nm,which

is almost a decade larger than the L2656. The last two rows of table show results at 10mA

and 20mA drive currents where the LED efficiencies calculated are 8% and 9%. These

are efficiency measurements performed for a L2656 LED for which squeezing was observed

initially but had later vanished. If the efficiencies are inserted into the Fanofactor relation

of Eq. (3.4) under constant current conditions(Fp = 1), one should theoretically see some

squeezing but this is not the case. Since the coupling geometry was not drastically changed,

the loss of efficiency in this case is due to the LED which had have been operated previously

at peak currents of 80mA, causing joule heating and a decrease in internal efficiency. At

10mA, the total efficiency is 8% which is far below the 19% expected. This loss can be

traced back to the radiative processes and injection mechanisms which are responsible for

squeezing. Even though the LED was usable, squeezing was lost because the internal drive

fanofactors reverted to their Poisson states. This is an interesting conclusion,since it shows

that a constant current is not the only condition to establish squeezing.
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3.3.3 Photodetector Nonlinearity

The S5107 PD used in the experiments must show good linearity at all ranges of optical

powers used, since many experiments in the past have shown squeezing characteristics

only to be later attributed to the photodetector nonlinearities[3]. So it is important to

experimentally verify this nonlinearity and make sure it is at a minimum for the range

of photocurrents detected. An integrated optical power PL that is incident on the PD is

related to the photocurrent by P (I) = PL
Iph

= Gh(I) where h(I) is the nonlinearity function

of the detector with a certain response P (I) and G is a constant of the photodetection

process[?].The important assumption here is that at very low currents, the detector is

linear giving h(0)=1 and the response P (I) = G. Now define

f(I) =
dh(I)

dI
=

1

G

dP (I)

dI
(3.7)

where f(I) can be interpreted as the rate of change of the nonlinearity with photocurrent.

We can define the small signal ac quantities ΔP = pac and ΔI = iac as follows:

ΔP

ΔI
=

dP

dI
→ pac = Gf(I)iac(I) (3.8)

from which the function f(I) save for the extra constant of G is the inverse responsivity

function g(I) of the PD and is given as

f(I) =
1

g(I)
=

iac(0)

iac(I)
(3.9)

where the constant G has been removed by assuming that f(0)=1 and that gives G =

pac

iac(0)
which was substituted back in Eq.(3.8) to give Eq. (3.9). The above function was

experimentally determined using the ac-dc technique[55] which is carried out by inserting

two optical signals into the PD; 1) A small periodic optical square wave from the L2656

using a function generator having an amplitude of 0.7V in order to turn the LED on and a

zero OFF(LOW) amplitude and 2) A time invariant dc optical signal from a 650nm Luxeon

LED. The dc power is first set to zero ie P(0)=0 and the on amplitude of the ac photocurrent

iac(0) was measured to be around 0.024mA. Next the ac photocurrent was measured as a

function of the dc optical power with a lockin amplifier and the ratio iac(0)/iac(I) was

calculated from the lockin readings. The lockin is a phase sensitive detector similar in



125

operation to the SA except the mixer inputs are the signal and a square wave instead of

the sine wave from the LO as for the SA. The square wave reference voltage is fed into

the lockin as well as the LED in order to match its phase. The lockin ’locks’ on to a

frequency component or harmonic of the square wave in this case and downconverts and

amplifies it such that the output is a dc voltage with very small noise(In other words signal

to noise is large). The dc component of the photocurrent was obtained from a voltmeter

which measured J = I+ < iac(I) >from which I was obtained. For a square wave we have

< iac(I) >= γiac(I) where γ = 50% is the duty cycle of the square wave.

The inverse response function g(I) = iac(I)
iac(0)

has been plotted in Fig. (3.6) since this

is a measure of the responsivity of the system. The results are quite similar to relative

responsivity δ = R(I)
R(0)measured in [?]. In addition,a 3-6th order polynomial fitting procedure

was also performed to calculate the relative responsivity and the error uncertainties in our

measurements, but the results were not accurate, since we had taken only a few data points.

However g(I) by itself is a very good indicator and is more sensitive to the nonlinearity

variation than the responsivity[55]. We note that g(I) changes sublinearly about 1% from

0-1.5mA and at larger current detector saturation sets in. Actually iac(0) still has a small

time averaged dc voltage of 0.35V which the square wave rides on,but we assume it to be

negligible to the dc optical powers generated by the Luxeon LED. We can now see what

happens to noise if we interpret g(I) in small signal transfer terms: the slight change in

linearity can cause changes in the fanofactors. If we shine a coherent beam of light on the

PD for which the shot noise is dependent on the photocurrent , at larger photocurrents the

shot noise should be smaller than expected. So we should obtain F < 1. A 1% error as

the Fig. (3.6) dictates, is sufficient to cause 0.04dB change which is very small and can

be neglected. So for all purposes, we assume that the PD is linear. In fact, experimental

results have confirmed this PD to be linear to about 40mA photocurrent[13].

3.3.4 Amplifier Characteristics

The Analog Modules 322-6(AM) is our principal amplifier which provides the gain for

the detectors. The design specs for this amplifier(Appendix.X) cites a gain of 40.7dB
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Figure 3.6: Normalized function g(I) versus photocurrent Iph measured for the S5107 PD
in photoconductive mode along with the interpolated curve

with a noise as low as 316pV/
√

Hz. The exact conditions under which these parameters

were measured by the company were unknown. For example, at what frequency was the

measurement made, or was the amplifiers impedance matched for gain measurements. We

have measured the transfer function of the AM amplifier by feeding an input of -60dBm from

a HP 8660 signal generator(which has a frequency range of 1-2600Mhz) into the amplifier.

The difference between -60dBm and output measured on the SA gives us Fig. (3.7a). The

lab function generators(HP 8116A) could not be used as the output rolled off at 50Mhz.This

measurement strategy would seem quite obvious as we find out the ’system’ gain Kt =

Vo/Vi = DvAv where Dv is the voltage divider and Av is the voltage gain. But there is an

impedance mismatch between the 50Ω generator resistance and the 200Ω input resistance

of the AM. This input resistance is a physical resistor in parallel with the infinite input

impedance of a FET stage. The -60dBm reading of the signal generator is specified for a

50Ω load. So if we subtract the gain of the amplifier from the output of SA, we find the

power in dBm such that the source and load are matched. We don’t have to worry about

impedance mismatch. In fact if we plug in a 50Ω resistance into the mismatched amplifier

and subtract the gain we should measure around -174dBm(actually the noise power should

be higher if we consider the input impedance noise and the amplifier noise) according to the

maximum power transfer theorem. This -174dBm noise power is hard to measure using only
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Figure 3.7: (a)System gain Kt = Vo
Vi

measured for the Analog Modules 322-6 amplifier with
an input power of -60dBm (b)Noise equivalent circuit model of the entire measurement chain
including PD equivalent circuit, cable reactances and input impedance of the amplifier

the single AM stage, but this value has been observed by cascading 3 amplifier stages(which

will be discussed later in this section ).

On the other hand when we couple a photodiode to the input,we are more interested

in the shot noise of the photogenerated current. The load resistance is usually set at

5080Ω and the gain curves will not be valid if they are used as such. In such a case,we

calculate the shot noise voltage across the 200ohm resistor(V200) and find the output voltage

as Vo,rms = AvV200 .To find Av we used a 650kHz sine wave of 10mV peak voltage.The

oscope measured it at 11.25mV which was corroborated by the SA giving -35dBm which

can be verified using 10 ∗ log(11.25mV ∗0.5∗0.707
50∗1mW ) where 0.5 is the voltage divider ,0.707 is the

rms conversion factor ,and is divided by 50 to find power across 50ohm referred to 1mW.
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Thus 11.25mV actually represents V200 = 6.28mV at the 200ohm input impedance of the

amplifier. The output at the SA for this input 3.10dBm or is Vo,rms = 0.319V from which

Av = 50. At other frequencies Av rises slowly and the peaking at high frequency as seen

in the Fig. (3.7a) is probably due to the impedance mismatch and inductive behavior of

the cables. The only source of error in this calculation is the voltage divider at the input

which we have assumed based upon our understanding of the amplifier design. We also

note that the spec sheet does not state any capacitance at the input which could change

the voltage division picture. Also transmission line effects are neglected since we deal with

maximum frequencies of 40Mhz and our cables between PD and AM are quite short(< 1m)

ie. the transmission line can be treated as a wire. However, the noise spectra demonstrate

a frequency dependent behavior at higher frequencies(> 10Mhz) which we later attributed

to the reactances in these cables. This issue will be discussed when the optical noise spectra

of the L9337 LEDs are studied. In our shot noise experiments, we find that using a gain of

70(a difference of nearly 1.5dB) helped to get more accurate results, which could be because

of the SA miscalibration and the reactances of the cable. This value of 70 is equivalent to

the total gain from the signal input into the amplifier to that which is being displayed on

the SA screen. Hence the gain curves are used when we insert any 50ohm input source and

for the photodetector experiments, we choose Av = 70 to give us correct measurements.

Also we note that the gain reaches the manufacturer’s gain of 40.7dB only at frequencies

beyond 10Mhz which would affect Av as well. This would imply that the input noise voltage

is specified at the same frequency since it too is a function of gain ie. Eno
Kt

where Eno is the

output voltage noise.

The simplest way to determine the input noise of the AM(En) is to short the input(which

removes the 200ohms input impedance) and then measure the output. The output divided

by gain gives the En. Looking at the circuit diagram in Fig. (3.7b), the output noise is

given by

E2
no = A2

v(4kTRp + I2
nR2

p + E2
n) (3.10)

where Rp = R1 ‖ R2 = R1R2
R1+R2

. We neglect In since its value is quite small unless

Rp > 1kΩ at source[56]. Let us outline a few noise measurement cases:
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Case 1.The PD was connected to the AM and the noise was measured at 20Mhz which

led to -132dBm/
√

Hz(which can be seen in a few of subshot noise plots later on) whereas

the calculation using gain of Av = 70 as described above and Rp = 5080//200 = 192Ω

should give us a noise power of -125dBm , a difference of 7dB. The noise signal actually

rolls off which we have not accounted for. At low frequencies we would expect the resistor

to show full thermal noise but at high frequencies we have kT/C noise ie. the resistors

roll-off as
E2

t
1+(ωRC)2 leaving only the amplifier noise behind. Of course, there is still some

resistor noise which is why the result is still above the amplifier noise cited at 416nV/
√

Hz

Case 2.Terminating with a 50ohm resistor:The noise was -125.57dBm at 650Khz which

disagrees with the expected value by nearly a difference of 9dB. We may reason that the

sensitivity of the SA itself is close to this limit but the spec sheets show that this is not the

case[57]. Also there is the possibility that the SA is uncalibrated at low ranges or excess

noise being added in some input stage. 1/f noise is usually present at low frequencies but

most good amps based on FET designs have the corner frequency at couple of hundred

Hertz, well below the frequency of 650kHz. So we conclude that we cannot measure resistor

noise at low frequencies unless we have a larger amplification. At 10Mhz, we found a value

of -131dBmHz which is very close to the expected result of -131.8dBmHz with a gain of 70

and Rp = 40Ω. The first thought that one might have is that this looks like the SA noise

floor, but from our knowledge of the SA, the noise floor should theoretically be -148dBm

at the 1-1000Mhz range. So the value measured should be the correct result for the resistor

noise. Of course it is also specified that the SA measures noise accurately for signals 10dB

above the noise floor which the above value satisfies.

Case 3. Finally when terminated with a short the value remained around -136dBm

suggesting that the difference between 50ohm and input noise was smaller by 2dB. Going

backwards to the input this time by dividing by the gain we find around 0.506nV/
√

Hz. An

AM technician has measured this to be 0.416nV/
√

Hz. This is ultimately the resolution of

our experiments and often we deal with noise levels larger than this and we can apply the

10:1 rule ie. we can neglect the smaller of the two noise signals when the rms value of one

is 10 time the other.
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Case 4.When we open circuited the AM, we saw a increase of 5dB above the base noise

floor. Normally an open load implies that we are measuring In in the Eq. (3.10). But in

this case,we still have the 200ohm resistor which puts the value close to measurement 1

above.

Since we are working so close to the SA noise floor, one might wonder why not just

increase the amplification by chaining a number of such amplifier modules. Some of the

initial experiments coupled the AM with 2 Minicircuits 500ZLN voltage amplifiers with a

gain of 20dB each to create as many as three stage amplifier blocks with theoretical power

gains reaching 80dB. The NF of the 500ZLN minicircuit amplifier is around 2.9dB[58]. The

AM amplifier noise figure can be calculated from the measured input noise voltage density

as [59] NFAM = 10 ∗ log(
E2

200+(416pV/
√

Hz)2

E2
200

) = 0.22dB which is quite small compared with

the 500ZLN and hence it will have to be used as the first stage in the amplifier chain. The

total noise figure obtained by using the Friis formula[49] is NF=0.25 which is a small change

from the first stage NF ie. it implies that most of the noise of the measurement chain is from

the first stage only. In Fig. (3.8a), we note the power spectrum at -30dBm when the three

stage amplifier was terminated at the input with a 50Ω resistor. Using an input of -100dBm,

the measured gain at 10Mhz was 101.6dB. The noise of the 50Ω can be calculated using the

values from Fig. (3.8a) as -30dBm-101.6dB-44.77dB+1.99dB=-174.38dBm which is what

we expect for a resistor. The 44.77dB is due to a 30Khz RBW filter used and the 1.99dB

is the SA corrections as detailed earlier. This system gives similar values when terminated

with a PD with 50ohm load provided no voltage was applied. When we increased the reverse

bias to the PD,the noise levels went down as shown in Fig. (3.8b),something we could not

explain for this 3 amplifier measurement setup. In other words, the degree of reverse bias

set the noise floors at the SA and any light applied to the PD increased the noise level

proportionally from this noise floor. We also experienced issues regarding ground noise and

return paths in the system particularly when the photodetectors were connected. With

such large gain, the inputs were sensitive to how the amplifiers were placed in the shielded

box,wiring of cables and even movement of hands. For the above reasons, we decided to

use just the single stage AM amplifier for our shot/subshot measurements. We would be
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Figure 3.8: (a)Thermal Noise Power of a 50Ω resistor obtained with a 3 gain stage amplifier
chain (b)Dark current + 50Ω noise power for the PD reverse biased at 10V with the same
3 gain stage amplifier.

working quite close to the spectrum analyzer noise floor but we would be able to discern or

measure with sufficient accuracy at the range of current levels we used.

With the noise figure of the analog modules amplifier (AM) determined, the maximum

sensitivity limits can now be established in the form of system noise figure(NFsys) of the

AM-SA combination and the noise equivalent power(NEP) of the overall system ie. PD-AM-

SA combination. The noise figure of the AM-SA is essential so we know the fundamental

limits for the smallest photocurrent noise that can be detected on the spectrum analyzer.

When we connect a preamp to the SA, the noise levels either go up or remain unchanged.

For example,if they increase by at least 15dB, then the noise figure of the AM-SA system is

given by NFsys = NFpre −NFSA [52] where NFSA is the spectrum analyzer’s noise figure

and NFpre is the noise figure of the preamp. Our case is different in that the noise levels do

not change all that much when we connect the AM. For the SA, the DANL changes in the

100kHz-1Mhz range. So we choose to evaluate the system noise figure NFsys at 500-600kHz

since our shot noise measurements were performed at this frequency whereas the system

noise figure is constant in the range 1-1000Mhz range. Based on frequency range we can

define two noise figures.
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1.500kHz: From the spec sheets[57], we see that at 500kHz and an RBW=10kHz , the

DANL is -102dB. The NFSA can be calculated using the formula[52]

NFSA1 = DANL− 10 ∗ log(RBW )− kTBB=1 (3.11)

Here kT = −174dBmHz and we can estimate NFSA1 = 32. Now we need to calculate

NFAM + GAM −NFSA1 = 0.22 + 40 − 32 = 8.22dB and using the charts provided in [52]

we can determine NFsys1 to be at 0.4dB

2.1-1000Mhz: From the spec sheet, we see that at RBW=10kHz, DANL is -110dB.

Then NFSA2 = 24 and NFAM + GAM −NFSA1 = 16.2. From the chart in [52] ,we obtain

NFsys2 = 0.2dB.

The NFsys is usually specified to see how much above -174dBmHz we need the signal

noise to be in order to be displayed on screen. In the case of AM, even -174+NFsys2

gives -173.8 and so it should be able to measure the thermal noise of a 50 ohm resistor

which we have measured. The minicircuits 500LN preamp on the other hand provides a

NFsys = 8.2dB in the 1-1000Mhz range which is quite large when compared to the AM. So -

174+8.2=165.8dBmHz is the minimum noise it can measure. We initially tried to reproduce

results from[60] using the Luxeon LXHL-ND98 light emitter and the ZFL500LN amp but

we found that unless we drove our LEDs hard enough,we had a difficult time trying to

change the noise levels. Note that the DANL does not change at all and still remains at

-110dBm for RBW=10kHz. For example, with an input of -174dBm at the AM amplifier,

the output at the SA becomes −174dBm + GAM + 10 ∗ log(RBW ) = −110dBm and hence

equals the noise floor or DANL. Note that at 650kHz, the result is nearly identical to the

> 1Mhz range. But our measured results showed that noise levels were about 10dB higher

than expected.

Similar to the noise figure of the system, a noise equivalent power(NEP) can also

be defined as[61, 62] NEP = It
S where S = ηe

hν is the responsivity in A/W and It =√
2q(ID + Ib + IL) + 4kT

RL
is the total noise current for the detector without the amplifiers,

ID is the photodiode dark current noise, Ib is the noise due to background radiation, IL

is the photocurrent due to incident light and RL is the load resistance. NEP represents

the smallest optical noise power that we can measure with the present photodetector, AM
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Figure 3.9: (a)Noninverting Equivalent circuit noise model of the Analog Devices AD8009
opamp (b)Input and Output noise spectral densities of the circuit in (a) calculated using
pspice (c)Experimental noise power obtained for the unity gain opamp which is obtained
by amplifying using the Analog Modules 322-6 amplifier. A 50Ω terminated resistor noise
is also shown as reference.

amplifier and the spectrum analyzer combined. Generally NEP is defined for a PD which

is not connected to any additional stages. With the introduction of the amplifier, the total

current noise is then defined as It = In[63] (here In refers to the input current noise of

the amplifier) since the amplifier noise would then have to be the minimum value for an

equivalent optical power. For the PD-AM setup we cannot use the above relation exactly

since it is more amenable for current and transimpedance amplifiers where the input current

noise is much larger than the voltage noise component. So we calculate the NEP as the

signal power equal to noise at the infinite input impedance of the amplifier as follows

ηe

hν
NEP =

(
E2

n

R2
+ I2

n + I2
t

)1/2

(3.12)

Using a value of S = 072A/W for the S5107 PD and R=192Ω,and with the measured

En = 506pV/
√

Hz and It =
√

4kT
R = 9.28pA/

√
Hz ,the NEP is 13.39pW/

√
Hz. Most of
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the experiments have dc optical powers in the range of several mW and the photocurrent in

mA. For example, the smallest drive current(to the LED) in the subshot experiments was at

IL = 1.57mA which produced a photocurrent of 0.2066mA. The corresponding equivalent

noise power is 11.2pW/
√

Hz which is very close to the NEP. This is infact the smallest drive

current that can be used for the LEDs without the optical powers going below the noise

floor of the PD-AM-SA system. In fact if we addup the powers(the noise power at 1.57mA

LED drive current with the background noise) we should expect a 2.3dB rise from the NEP

but in our experiments the noise spectra increased by about 1.6dB from the noise floor at

600kHz which is quite reasonable considering the coupling efficiency is not maximum and

this would affect the responsivity.

Next we designed an AD8009 amplifier for the purpose of amplifying the average in the

stochastic modulation method. The AD8009 voltage amplifier was constructed using SMT

components on the evaluation boards supplied by Analog Devices. The design is a typical

non-inverting configuration. We set the gain to unity to perform noise measurements and

later changed the gain to 20 to give a bandwidth of around 50Mhz. The noise features can

be calculated from the formula[64] which can be obtained using the superposition theorem

from each source and then adding the square of them since each source is uncorrelated.

E2
no = (1 +

R2

R1
)2(E2

n1 + E2
n2 + E2

tp + I2
n2R

2
p) + (

R2

R1
)2(E2

R1
) + E2

R2
+ I2

n2R
2
2 (3.13)

In our calculations we have tabulated a noise ’budget’ in order to calculate the total

output noise which is essentially Eq (3.13). except the individual contributions are noted

and can be optimized.

The total noise at the output Eno can be obtained from taking the square root of

the sum of squares of column 4 in Table. (3.2). From which we get the noise as Eno =

21.208nV/
√

Hz. The fifth column represents the noise reflected back at the input of the

noninverting amplifier pin which is obtained by dividing column 4 by 1 + R2
R1

. The output

noise is further voltage divided by the 200//50ohm load of the AM and the AD8009 which

gives a E200 = 9.42nV/
√

Hz. If we use Av = 70 as defined above the noise power at the SA is

-110.6dBmHz .We measured noise powers at 10Mhz(using the noise marker feature) ranging

from -112.9 to -112.2dBm in a RBW of 1kHz to 10kHz whereas at 600Khz(where the gain
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of 70 is valid) we can see from Fig. (3.9c) ,the noise power using a RBW=1kHz is around

-110dBmHz .This is a difference of 0.6dB to the theoretical values. The same discrepancy

existed when we measured the thermal noise using this amplifier. If we had chosen a gain

of 75 instead, we would have measured -110.1dBmHz . Since all our measurements have

uncertainties of around 0.4-0.5dB, we may not be able to explain the variation from 70 to

75,a difference of nearly 0.3dB. The total input noise is obtained from column 5 of Table.

(3.2) to be 10.675nV/
√

Hz which is much larger than the AM input noise. The AD8009

requires the design of a properly shielded custom PCB board at Ghz frequencies. This

would eliminate the negative going spikes in the noise spectra of Fig. (3.9c). Since the

AD8009 showed good low noise input, it was used in tandem with the AM to amplify

square waves in our modulation experiments such that the input noise which is quite low

does not propagate and affect other noise levels in the measurement chain. For example, if

we use a T-connector to route a signal to both the oscope and the AM at the same time,

there is a return path for the noise from the scope which gets amplified by the AM. In such

cases, the AD8009 would be used as a low noise buffer with small amplification.

Noise Source Value(nV or

pA/
√

Hz)

Gain Multiplier Noise at

output(nV
√

Hz)

Noise at

input

R1=499Ω 2.83nV 1 2.83 1.415

R2=499Ω 2.83nV 1 2.83 1.415

Rp=8.33Ω 0.366nV 2 0.7324 0.366

En1 1.9nV 2 3.8 1.9@10Mhz

En2 1.9nV 2 3.8 1.9@10Mhz

In1 41pA 499Ω 20.45 10.229

In2 46pA 16.66Ω 0.766 0.383

Table 3.2: Noise contributions of the various noise sources in the calculation of the total

output noise voltage of the AD8009 non-inverting opamp

Also from the table we note that the noise is large primarily because of the In contri-

bution which could be reduced by lowering R2 resistor. So if we are to go to a gain of 20,
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and still preserve the same input noise approximately we should change R1 to 26Ω.We used

25Ω resistor to set the gain. From Fig. (3.9c) we see that the noise is white in nature but

there are certain negative peaks which seem to change the variance. When we measured

the noise powers, we used averaging features and these spikes did not appear. In other

words,if an averaging filter had been applied any spurious amplitude pickups would not

have disappeared. When we measured the noise, the AD8009 had no shielding which could

explain the pickup.The input/output terminators(SMB connectors) were not so tight and

the voltage of 5V was applied without any voltage regulation, only relying on supply bypass

capacitors.

3.3.5 Shielding

Our interest is in the device noise sources and in order to study them, we have to minimize

all external sources of interference(such as EMI from wireless phones, power supplies, and

light sources). For proper shielding, it is important to first identify the noise source, the

receiver and the coupling medium. First shielding can be used to confine noise to a small

region and prevent it from getting into a nearby critical circuit. Second, If noise is present

in the system, shields can be placed around the critical circuits. These shields can consist

of metal boxes or cables with shields around the conductors. We minimized the spurious

noise until the optical shot noise spectra could be clearly observed. Even though shielding

has a sound scientific basis, most of the time we felt as if we were chasing a naughty child

with a stick. In general it is a good rule to avoid loopy interconnections and minimize cross

overs. However there are common sources of interference noise which we can avoid using

shielding. The experiments reported in this thesis observed the following design rules to

reduce the ambient noise levels.

1.Capacitive Interference: Capacitive interference occurs when a fringing electric field

associated with a noise source is large enough to produce a displacement current in an

electric circuit. Consider an equivalent circuit made up of a noise source affecting a receiver

of impedance Z through the C defined above.Then the noise voltage at the receiver in the

electronic circuit is given as Von = Vn

1+ Zc
Z

where Vn is the noise voltage of the source and



137

Z is the effective impedance of the electronic circuit. From the above equation, it can be

seen that the magnitude of the noise voltage increases with the frequency of the source and

effective impedance Z. This effect is very critical when constructing systems that operate at

reduced power level(high values of Z), higher speed(implying faster frequencies) and higher

resolution(much less output noise permitted). When a shield is added, we have split the

equivalent circuit into two loops, where there is a noise current in loop 1 is proportional

to the driving voltage source Vn whereas in loop 2 , there is no current since there is no

driving source in that loop(ie. the shield has isolated the source). Hence the sensitive circuit

has been shielded from the noise source. In our system for example, we encountered this

problem between LED and PD face to face coupling. The LED metal plate carried noise

currents from the power supply which would capacitively infringe on the detector circuit.

We had constructed shielded twisted pair to connect the LED to the current source and

grounded the face plate, as well as the RF cage. Later when we covered with LED with

black tape, and increased the LED current, we noticed that the noise levels remained the

same at -76dBm for a 2 stage gain amplifier setting effectively removing the capacitive

coupling problem.

2 Magnetic Field Interference: Noise in the form of a magnetic field can induce a voltage

in another conductor due to mutual inductance. Its more difficult to prevent, since it can

penetrate conducting materials. For example, a shield constructed around a conductor

which is grounded has little effect on the magnetically induced voltage in that conductor.

As a magnetic field penetrates a shield its magnitude decreases exponentially. We can define

the skin depth of a shield as the depth of penetration required for the field to attenuated to

37% of its original magnitude(in air). Since skin depth decreases with increase in frequency,

high frequency magnetic noise is not that crucial and can be eliminated from the system

easily. The main problem, however is the 50-60Hz line frequency which is the principal

source of magnetically coupled noise at low frequency. We don’t have to worry too much

about 60Hz noise as the frequencies we work with are in excess of 1kHz. To avoid higher

frequency magnetic interference we use a few design rules:

a) Keep the receivers are far as possible from the source of interference.
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b) Use a twisted pair of wires for carrying the current that is the source of magnetic

field. If the currents in the two wires are equal and opposite the net field in any direction

will be zero. Alternatively, the shield of the cable can be made to carry the return current.

c) Since magnetically induced noise depends on area of the receiver loop, the induced

voltage can be reduced by either reducing the loop area or the orientation of the loop to

the field. This is quite similar to building a transformer where the flux linkage is increased

by adding more turns to the loop.

3. Conductive Interference: These arise from currents flowing in the ground system.

These currents arise from power systems, from reactive coupling and from radiation. The

resulting ground potential difference can couple into the signal paths. It is usually futile

to short out these potential differences. The two ground points of interest are the power

supply termination and the input lead termination. This ground potential difference is

usually referred to as common-mode. These were one of the greatest issues.

4. Electromagnetic field coupling: Fields from nearby transmitters are a source of

interference. These fields couple voltages into the input cable in the form of a common-

mode signal. The signal is proportional to loop area and the frequency. The loop area is

between the cable and the earth plane. Normally these signals are out of band and do not

appear as noise. They are troublesome because they can be rectified in the instrument and

appear as a DC offset.

5. Transfer Impedance: Current flowing in the shield can couple voltage to the conductor

pair in the cable. This is generally a high frequency phenomenon. For long lines, some form

of differential filtering may be needed to attenuate this form of coupling.

In Fig. (3.10a) we see that when the RF cage was opened we found a noise power of

-55dBm with the 2 stage amplifier setup and in Fig. (3.10b) the noise powers went down to

-60dBm. The interference in this case is an optical noise which is white in nature since it

raises the levels at all frequencies. There are also spikes at 4Mhz which is predominant with

the 3stage amplifier setup since with larger gains it is more sensitive to pickup. We were

able to minimize most of the noise sources but not eliminate it completely. For example

the monitors which were needed to extract the plots produced conductive interference at
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Figure 3.10: Noise power variations due to environmental and spurious optical noise ob-
tained with the shielded RF cage open or closed. The measured noise power is the known
PD2 darkcurrent+5080Ω resistor noise as well as spurious environmental RF and optical
noise obtained at a RBW=30kHz.

frequencies around 30-40Mhz. So during data extraction we had to turn off the monitors.

3.4 Optical Shot Noise Source Measurements

The spectrum analyzer displays the noise power P which is a measure of the fluctuations

of the photocurrent. Our goal is to obtain the frequency dependent Fanofactors given by

F (ω) = P (ω)
PQNL(ω) where PQNL is the shot noise limited optical power from the lamp to which

we choose to normalize the quantum noise. So we need to calibrate the shot noise level(SNL)

precisely which in turn determines if the light statistics are indeed Poissonian. If the levels

are super-Poisson for example,we will end up overestimating F or finding suppression when

there isn’t any. There are two ways to calibrate the SNL.

1.We focus a lamp source directly onto the PD and measure the noise power. If we know

the response and gain of the measurement chain we can calculate the shot noise theoretically
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and compare with the SA results. This method is straightforward and accuracies to 1dB

have been shown[3] .

2.Alternatively, we can estimate the slope of the power-voltage plots dV
dP , and can com-

pare with the theoretical estimates[65] . This method is similar to 1 where we need to know

the constants of the measurement chain,but its useful since if some element of the chain is

unknown we can determine its values.

Our choice of using a lamp which is a a thermal source needs some clarification since the

probability of finding n photons in a mode is given by a Bose-Einstein photon distribution

where the total number of photons in a mode is given by < nks >= 1
exp( hν

kT
)−1

≈ 10−3

for T=3000K[66]. Typical lamp photocurrents have much larger photon number than this

and so the average per mode photon number is valid only when we count photons in a

time less than the coherence time. The coherence time(Tc) for thermal light is extremely

short(less than 1ps) and most detectors are extremely slow and hence we will not measure

a Bose-Einstein statistical distribution. If we count all the modes together, the variance

is obtained as[66] < Δn2 >=< n > (1 + <n>
μ ) where < n >= Σksnks and μ is the total

number of modes. We can also set μ = td
Tc

where td is the measurement time and Tc is the

coherence time. The reasoning behind this is that the single mode< nks > is valid only

for times less than Tc and so if end up counting a number of modes< n > ,it should be

valid for several coherence times(ie.μTc) which is the detection interval. As μ → ∞,ie we

count a large number of modes making the photocurrent large, the variance approximates

a Poisson. We can see that if μ = 1,the variance reverts to the form 〈Δn2〉 = 〈n〉+ 〈n〉2 and

if < n >2≤< n >it still approximates a Poisson. So its very hard to get a thermal source

to show its true nature which is why laser sources are scattered off randomly distributed

scattering centers to create a pseudothermal source[67] .

When a LED or lamp of noise power P is incident on the PD, the quantum noise

photocurrent develops a voltage across the resistor Rp which is ΔV 2
Q = RpF (ω)(2 ηe

hν P ) where

F is the filter response factor due to the PD,cable reactances and (if any) spectrum analyzer

IF stage miscalibration. In addition there is a Johnson noise component ΔV 2
J = 4kTRpF (ω)

due to the parallel combination of resistors and E2
n which is the electronic noise which we
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have already discussed. Putting them together the noise at the input before amplification

is

ΔV 2
i = ΔV 2

Q + ΔV 2
J + E2

n (3.14)

The noise power at the SA in dBmHz is given as

Pth(ω)dBmHz
= 10 log(

A2
vΔV 2

Q

50 ∗ 10−3
) (3.15)

For a gain of 50 and RL = 192 we can simplify the above equation to get the theoretical

noise power as

Pth(ω)dBmHz
= −92.38 + 10 log(I) + 10 log F (ω) (3.16)

For simplicity in calculations,we have set ΔV 2
i ≈ ΔV 2

Q, using the 10:1 rule(neglect the

smaller noise component if one is 10 times the other). The shape of the response function

F (ω) can be seen from the electronic noise floor plots of Fig. (3.4b,c). Any noise will

be displaced from this value by a constant amount. For uniformity we perform all noise

power measurements at 500 and 650kHz using the noise marker feature of the SA. The

experiment was carried by shining the lamp on the PD and varying the light power by means

of ILX LDX-3620 current source thus changing the photocurrent. It is suggested that the

lamp be spectrally filtered to the center wavelength of the LED used in the experiments

ie 870 or 890nm±40nm since the response of the photodiodes are wavelength dependent[3]

. We used red optical filters but we observed no variation in the measured noise. We

also used a regulated power supply for the lamp which did not make a difference on the

noise characteristics like it does for the LED. The spectrum of the noise power versus

current is shown in Fig. (3.11a). The 50ohm resistor noise is also quite similar to the noise

measurement obtained when the PD is coupled to the AM without light, which questions

its validity since we should be observing a 192Ω(200 ‖ 5080) resistor noise. This is the

-125dBm noise we discussed earlier for 50ohms except these measurements are at 3kHz

RBW. We see that the photocurrents produce a relatively flat characteristic indicating its

’white’ness. Actually there is a filter response F (ω) present in the noise spectra which can

be observed in a larger frequency range. Since most of the signals are at least 10dB above

the noise floor(-93dB) we can use Eq. (3.16) to calculate the noise powers at the spectrum

analyzer without too much error.
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Figure 3.11: (a)Noise powers of the mean photocurrent for a red-filtered white light(from a
lamp) incident on the PD which is observed at a RBW of 3kHz. (b)Noise spectral densities
normalized to 1Hz(points) as well as linear regression(solid line) obtained as a function of
photocurrent.The linear fit gives us the filter response function F (ω) at 650kHz.

We now demonstrate the validity of the equations . We set F=1 ie no filter response

since we need to obtain this value. We obtained the experimental noise powers using the

noise marker feature of the SA. It is best to use the SA noise marker feature whenever

absolute measurements are required since there will be always be some error between it and

reading the plots of Fig. (3.11a) using Eq. (3.5) because of the assumptions regarding the

noise correction factor.

1. For Ipd = 3.927mA, we obtain Pexp(650kHz)dBmHz
= −113.45dBmHz . The theo-

retical result gives us Pth(650kHz)dBmHz
= −116.33dBmHz a difference of nearly 2.88dB.

This leads to F being defined as 1.4. Alternatively we could have just chosen a gain of 70 to

get the right results ignoring the filter response. Either way, we end up having a consistent

measure of shot noise.

2. For Ipd = 2.946mA, we obtain Pexp(650kHz)dBmHz
= −114.82dBmHz . The theo-

retical result gives us Pth(650kHz)dBmHz
= −117.58dBmHz a difference of nearly 2.76dB

which gives an F of 1.37.

The above measurements have been performed for 16 data points at the 500 and 650kHz

frequencies and there is a consistent difference of 2.8dBm in all of them. A linear fit has

been done which estimates F to be approximately 1.4. This can be seen in Fig. (3.11b)

where we have plotted the currents versus voltage spectral densities. One might doubt
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this measurement strategy of calibrating the shot noise level since we have an unknown

parameter. So we might need further tests to show that the source is indeed Poissonian.

Fig. (3.11b) shows that the noise powers is a linear function of photocurrent as expected.

This is by itself taken as a sufficient test for Poissonity since if there are two uncorrelated

noise sources at the same frequency, they would add in quadrature causing deviation from

linearity. The electronic noise is constant independent of optical power and if the noise

is say quantum limited the variation is 0.5 times the optical shot noise[3] . Now if we

assume that F=1, then the 2.8dB discrepancy has to accounted for. When we measured

the dc photocurrents, the load resistance was 5080ohms. When we connected the AM for

noise measurements, load resistance dropped to 200ohms. This would increase the reverse

bias across the diode given by V − Vph = Vt ln(
Sφφe

ID
) where the photocurrent is given by

iph = Sφφe. But in typical PDs, the application of reverse bias does change the responsivity

slightly due to improved charge collection efficiency in the photodiode[61] which is usually

observed from the slope of the IV curves in the third quadrant. If we need to account for the

discrepancy, the responsivity would have to change by a factor of almost 2 which seems less

likely. So the response function F seems to be the most likely culprit. We also repeated the

above measurements for the LED driven by the SNS and found the same linearity results

at 500kHz when compared to the lamp driving the PD therefore calibrating the SNS to the

shot noise level. So whenever we need to get an absolute measure of noise , we would read

off 650kHz noise markers compute the noise levels with a total gain of 70(Av ∗ F ) and we

would be assured of computing the SNL.

Another important test for Poissonity is the Fanofactor relation. Consider the inset of

Fig. (3.12) where the variation of efficiency has been plotted against current. The minimum

to maximum suffers a change of less than 0.01 and so if we approximate the efficiency as

nearly 0 and plug in this η0 in Eq. (3.4), it gives us seemingly correct results(ie. Fph ≈ 1)

but its usage is highly misleading. For example we may ask the question:does a lamp

distinguish between the constant current or constant voltage case? If we set Fp = 1(CV)

then Fph = 1 and if we set Fp = 0(CC) then Fph = 1 − η0 ≈ 1. Eq. (3.26) has been

constructed specifically to link the variance from LED to PD(in some sense using stochastic



144

Figure 3.12: Noise power from the photocurrent obtained for the lamp(which is also rep-
resentative of the LED driven by the SNS) as a function of current-current conversion
efficiency. The points give the measured values whereas the straight line represents the
average. The inset of the figure represents the efficiency of the lamp as a function of drive
current.

ideas) but it does not have a solid quantum mechanical underpinning. In fact it has an

electronic part Fp as well as an optical part Fph. Consider a coherent beam of light(say

from a laser) passing incident on a PD which includes loss modeled as a beam splitter with

efficiency η. The output light of the beamsplitter has a mean equal to variance given by

< n >=< Δn2 >= η|α|2, where |α|2 is the average number of photons in the coherent

state |α〉. This implies that coherent states which are Poissonian remain so after beam-

splitting. The detected photon Fanofactor becomes Fph = <Δn2>
<n> = 1 which is independent

of the efficiency for any bias current and efficiency(not only 0). The lamp is indeed not a

coherent state but the statistics are Poissonian which would make the Fanofactor definition

Fph valid. So whether we use the lamp or SNS ,the measured noise on the SA should remain

unchanged when we vary the efficiency. Fig. (3.12) shows the measured optical shot noise

spectral density which was performed by keeping the photocurrent fixed as we varied the

efficiency.

The efficiency was changed by increasing the distance between the lamp and PD and

the driving current was adjusted to give the same photocurrent for all the measurements.
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The efficiency was determined as the ratio of driving current to the photocurrent. This

differs from the inset of Fig. (3.12) since there we have kept the distance constant and

varied the drive current. The lamp current was changed from 197mA to 312mA keeping the

photovoltage fixed at 7V(ie 1.379mA photocurrent). The efficiencies varied from 0.0069 to

0.0044 but the noise powers remained the same at approximately -117.98dBmHz or 8.127 ∗
10−14V 2/Hz indicating the light statistics are indeed Poissonian. The same experiment has

been verified using the LED driven using the SNS, except in this case Eq. (3.26) is valid

and Fd = 1 defined above is taken as the drive Fanofactor Fp.

When we place a battery of around 1.5V(assuming the battery has negligible voltage

noise) across the diode(CV), we should see shot noise on the SA. But the same shot noise

can be observed using our SNS where the PD inside the SNS(PD1 of Fig. (3.3)) has been

calibrated to the shot noise level which in turn ’noise’ modulates the LED in such a way

that the output remains at a Poisson level. This method produces a Poisson photon flux

similar to the CV case and hence the SNS and CV must share some similarities. Consider

an equivalent circuit diagram of two back to back diodes(PD-LED), except we shall replace

the equivalent circuit of the PD with a Poisson current source. From Eq. (2.77) which we

rewrite here

dn

dt
=

i(t)

e
− n(t)

τ
+ isn(t) (3.17)

where i(t) is external circuit current, which is set to i(t) = −isn(t). This leaves dn
dt =

−n(t)
τ which we can equate to 0. In other words the number fluctuations are constant and

don’t change at least at the time scales we are interested in. This implies that the junction

voltage does not change and the SNS is a CV source.

Since we have established the lamp as a shot noise source, we can compare it against

other noise levels in Fig. (3.13). Fig. (3.13a) shows that whether we drive the lamp with

a Lightwave current source or voltage source the noise levels remain fixed. This is true

since the lamps do not modulate well unlike the LEDs which register huge changes based

upon the type of supply. Fig. (3.13b) shows our initial experiments where we drove the

LED using the photocurrent obtained from a red Luxeon LED driven by a noisy voltage

source.We compare the level with the LED driven by a ILX current source. The goal of this
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Figure 3.13: Optical noise spectra for (a)Lamp driven by voltage and current sources
(b)650nm Luxeon LED driven with a noisy source (c)Attenuated spectra from Luxeon
LED (d)L2656 driven by ILX current source and (d)Generic laser driven by ILX current
source

experiment was to show that if we do not have a reference shot noise source such as the

lamp, we could interpret the upper level as being shot noise and the lower level as being

subshot since it was driven with an ILX ’constant’ current source. In Fig. (3.13c) ,we note

that the Luxeon driven with a ILX current source through a resistance of 330Ω at 23.25mA

to produce a photovoltage of 3.49V which produces a noise level greater than the shot noise

level of the lamp. This contradicts experiments done in [60] where they have observed 1.5dB

squeezing with at mid-frequencies. We also tried the same experiment using a battery and

1K resistor to produce a Vph = 3.15V . The lamp was driven at 192.27mA to produce the
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same photovoltage and once again the Luxeon showed super-Poisson characteristics. In Fig.

(3.13d) we drive the LED with a current source and compare it with a Luxeon driven by a

constant voltage of 3V. This shows a situation where the L2656 is at a noise level higher than

the Luxeon which is shown to be supershot itself. This proves than the ILX current source

generates a super-Poisson characteristic with the L2656 LED. Finally we compare the lamp

with a laser source and we see nearly 20dB difference and at lower frequencies(not shown)

the noise increases a great deal due to the relaxation oscillation. This is much larger than

the noise produced in the L2656 LED with the ILX current source. It is well known that

lasers driven well beyond saturation produce a coherent state, but in this case unless we use

an intensity noise eater[3], and also suppress the mode partition mechanisms it would be

difficult to produce subshot noise. But it should be noted that one of the largest amplitude

noise reduction(nearly 75% below the SNL) have been predicted to occur in the feedback

loop of a negative feedback semiconductor laser and nearly 10dB intensity squeezing has

been demonstrated[4].

3.5 SubShot Noise experiments

3.5.1 Verification of High-impedance Pump suppression mechanism

Now we are in a position to carry out the subshot noise measurements, since the shot

noise level(SNL) is known. This is accomplished by using a constant current source(CCS)

which in our case is a 9V battery connected through a large series resistance much larger

than the differential resistance of the LED. The noise current of the CCS should be well

below the shot noise limit ie. Fp = 0 which leads the output Fanofactors to be defined as

Fph = 1 − η0 ie. Fph is limited by the dc efficiency η0 of the LEDs. So we should expect

variances less than the SNL. But first we shall demonstrate the concept of high impedance

pump suppression. At low frequencies the diffusion capacitance can be removed from the

equivalent noise circuit of Fig. (2.5) leaving behind a simple circuit with shot noise, thermal

noise sources and two resistors Rs and Rd. The recombination current can be determined

as i =
vth+vsn+vps

Rs+Rd
where we have included the power supply noise vps which we do not know
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and varies from supply to supply.The Fanofactors can be written as

Fp =
< i2 >

2qI
=

(< v2
th > + < v2

sn > + < v2
ps >)

(Rs + Rd)22qI
=

(4kTRs + 2kTRd+ < v2
ps >)

(Rs + Rd)22qI
(3.18)

Case 1. When we apply a constant voltage; we see from Eq. (3.18) that as 2Rs � Rd ,the

Fanofactors become Fp(CV ) =
2kTRd+<v2

ps>

R2
d∗(2qI)

=
<v2

sn>+<v2
ps>

<v2
sn>

and if we assume < v2
ps >�<

v2
sn >,the output noise is much above the SNL governed only by the noise of the voltage

supply. If we set vps = 0, the junction voltage fluctuations are almost nonexistent and

output light is at the full shot noise level as seen in chapter 2.

Case 2. When we increase the series resistance Rs such that Rs � Rd, then the Fanofac-

tors become Fp(CC) =
4kTRs+<v2

ps>

R2
s∗2qI =

4kT/Rs+<v2
ps>/R2

s

2eI =
<i2th>+<i2ps>

<i2sn> . If we assume that

vps � vth,then Fp(CC) =
<v2

ps>/R2
s

2eIR2
d
∗R2

d =
<v2

ps>

<v2
sn>

∗ R2
d

R2
S

= FCV ∗ R2
d

R2
S
. This tells us that the as

the series resistance increases, the supply voltage noise is suppressed from the CV case and

as RS →∞, we can completely suppress the power supply noise. Now if we set vth � vps,

then we recover the condition Fp = 4kT/Rs

2eI [6] which is always much less than 1.

In order to demonstrate high impedance pump suppression we could first determine the

SNL based on the calibration method, then use various series resistances and determine the

output noise level. For large series resistance, the recombination noise would be suppressed.

Note that the current noise could be suppressed all the way to 0 as in case 2 for large series

resistance but the light is suppressed by less than a dB because of the limited efficiencies

involved as can be seen from by substituting the Fp obtained above in Fph. So in order to

simulate the effect of pump suppression, the power supply voltage noise is useful since for

Rs > Rd it establishes a recombination current given by

< i2 >=< i2th > +(< i2sn > + < i2ps >)(
Rd

RS
)2 (3.19)

The purpose of the voltage noise is to increase the noise level from the standard shot

noise level (which can be seen from the Eq. (3.19)) so that the effect of pump suppression

can be demonstrated over several dB. We can consider this enhanced noise as a simulated

shot noise level which will be suppressed as we increase the series resistance. Otherwise it

would be very hard to notice the pump suppression effect. For example if we use a ’quiet’

voltage source, we will not be guaranteed a SNL(case 1), since the effect of contact and bulk
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resistance of the diode could well exceed the differential resistance causing the suppression

to be already in effect.

Fig. (3.14a) shows us the noise levels for the various power supplies used in the experi-

ment. The L2656 LED was driven with the following sources: 1. A current of 7.64mA from

the ILX current source 2. A battery of 9V with a series resistance of 110ohms and 3.A HP

6236B power supply at 1.2V. For all these sources, the photovoltage at the multimeter was

1.52V(which indicates the same average optical power) and the coupling geometries were

fixed. The noise levels from both the ILX current source and the HP power supply vary by

5-10dB when compared with the battery noise levels. We tried the experiment by running

the ILX off the AC mains as well as using internal batteries. For both cases, the noise was

above the battery levels at low frequency which is quite surprising since the ILX is adver-

tised as an ’ultra-low’ noise current source.We can see that the ILX generates harmonics

when driven off the ac mains(these harmonics disappeared when the ILX was driven with

a battery) and these harmonics are attenuated which may either be the response of the

ILX itself or the modulation bandwidth of the LED which is less than 600kHz. We note

that the ILX is usable as a source at frequencies greater than 800kHz since it reaches the

battery noise levels. The HP supplies are normally noisy and when we used capacitors at

the output terminals the noise levels went down. From the Fig. (3.14a) we see that the HP

noise levels are almost white in nature and so they can be added in quadrature with the shot

noise levels to verify the pump suppression effect. Also they do not modulate and roll off at

frequencies less than 600kHz which suggests that noise does not respond to the modulation

bandwidth of the LED and the rolloff of the ILX is due to stray pickup harmonics(which

are sensitive to modulation bandwidth).

In Fig. (3.14b,c), we demonstrate the pump suppression effect for both the L2656 and

the Luxeon light emitters. First we describe the effect of pump suppression for the L2656

LED shown in Fig. (3.14b). For all experiments, the DC photovoltage was set at 1.93V

by adjusting the supply voltage from the HP unit. This was done so that the photon rate

was the same for all cases. Then using resistors from 10Ω to 1.5kΩ we noted the noise

levels. The flat noise level with no spikes can be considered as a reference that other levels
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Figure 3.14: (a)Optical Noise spectra for the L2656 with different bias sources.The reference
low noise source is the battery. (b) and (c) show high impedance pump suppression effect
for the L2656 and for the Luxeon LED as function of series resistance RS . Experiments
were performed at a RBW of 100Khz(a,b) and 30Khz(c) with a VBW of 3Hz.

should tend towards(as they are being suppressed) and has been obtained by driving the

LED with a resistor and battery source. We have only depicted the low impedance values

since for resistances greater than 110Ω we noted no difference in the levels from that of the

reference level. The photocurrent for all experiments is at 0.379mA(1.93V/5080Ω) which

at 650kHz gives us a calculated shot noise level of -75.55dBm which is slightly above -

76.5dBm obtained using the 47ohm resistor and the reference in Fig. (3.14b). The DC

voltage gives us about -69.5dBm at 300kHz. At 10ohms we get -74.5dBm , a difference

of nearly 10dB which can be obtained approximately as PdBm(DC) − 10 log R. As the

resistance increases to 22 ohms, we see -75.5dBm(≈ −69.5− 10 log 22). This shows us that

the power supply voltage noise is being suppressed by a factor of R and if vps = 0 it would

also suppress the shot noise. We also see that the noise levels do not go down arbitrarily as
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R increases and the levels merge with the reference. For example at 47ohms should give us

−69.5dBm − 10 log 47 = −86.22dBm which should be 5dB below the reference. Instead it

can be seen from Fig. (3.14b) that the noise level does not go below the reference level. This

can be seen by calculating Fp. For the DC voltage case we obtain an Fph = 4.07 and for a

typical efficiency of η0 = 0.18 we can obtain Fp = 17.77. When we insert a resistance of 10Ω

we note an Fp = 2.516 which implies that the pump Fanofactors are being suppressed. For

22Ω we can obtain Fph = 0.901 which implies that the noise is being suppressed below the

shot noise level, which also implies that the drive Fanofactor is suppressed ie. Fp = 0.453.

At larger resistance values since Fp is nearly 0 which implies that we are observing full

subshot noise.

Similar results are seen for the Luxeon light emitters in Fig. (3.14c). The experiment

was performed using a dc voltage of 2.15V from the HP supply and calibrating the dc

photovoltage at 8.91V. Later, resistances of 10,47 and 300 ohms were inserted keeping the

photovoltage constant by adjusting the dc voltage. The coupling efficiency was as high as

30% but the emitter is red and not tuned to the peak spectral wavelength of the PD. So

we can expect loss and degradation of squeezing.The SNL calculated for a photocurrent

of 1.75mA is -74.13dBm. Note that the RBW used for this experiment is 30kHz. At low

frequency we see the 10ohm resistance registers a change of almost 10dB as expected. The

Fanofactors calculated for the DC case is Fph = 6.5 which is larger than the Fanofactors

obtained for the L2656 .This may be attributed to the power supply noise which is dependent

on the applied voltage. The reference level in this case is around -76.5dBm which is smaller

than the shot noise level. This is rather surprising since when we compared the level of the

Luxeon to a lamp in Fig. (3.13c) and we found the Luxeon level to be slightly higher. We

have confirmed this source to be super-Poisson using other power supplies. This type of

error can be eliminated if we place both the shot and subshot plots on the same figure to

facilitate easier comparison. We will do so in all future experiments since we are interested

in calculating the Fanofactors which are dependent on the relative values.
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Figure 3.15: Optical noise spectra and Fanofactors of the photon fluxes from the L2656
LED obtained at (a,b)IL = 1.92mA (c,d)IL = 6.53mA (e) IL = 8.08mA and (f) IL =
9.81mA. The Fanofactors were fit to the theoretical diffusion model(solid lines) which were
obtained using Eq.(3.21) with various correction factors C to fit to the data better to F.The
Fanofactor obtained with C=1 line has been shown for reference.The model parameters
used are Cdep = 0.1μF and τr = 250ns.
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3.5.2 Squeezing Results for the L2656 LED

Next we detail the results of our squeezing experiments for the L2656 which was done over

a range of 1.57mA to 7mA LED drive current for a total photovoltage of 1-8V(just before

photodetector saturation for a 9V supply). In each plot, the upper trace is the SNL and

lower trace denotes the degree of squeezing from the SNL which is typically from 0.2-1.5dB

in our experiments. The noise floor has also been included for comparison. Fig. (3.15a,b)

shows the results at a LED drive current of 1.92mA with a photocurrent of 0.24mA or a

total efficiency of 0.125. The calculated shot noise at a RBW=30kHz is -82.8dBm which is

close to the -83.1dBm seen at 600kHz in the Fig. (3.15a). We note that the photocurrent is

quite small since the power changes only by 2dB from the noise floor which is the reason we

were not able to carry out the experiment at lower LED currents. The lowest currents in

which squeezing has been obtained using this LED is approximately 5μA at a power levels of

several μW [42]. Since smaller LED currents result in lower LED emission efficiency ηLED,

the degree of squeezing also decreases and eventually we would reach the SNL. This can be

seen for the case of the low injection LED drive current of 1.92mA in Fig. (3.15a) where the

subshot noise is only 0.2dB below the shot noise level at 200kHz and merges early with the

shot noise level at a frequency of around 600kHz(Note that for this figure, this is not 3dB

point for squeezing). Statistically, this is explained as follows: The injection current has a

high efficiency even at very low current levels. However the recombination rate or probability

decreases with lower injection current. In other words the probability of emission ηLED(τ)

of an photon after electron injection becomes lower where τ is the observation time. The

response of the LED deteriorates as f = 1
τ is lowered and squeezing as well as modulation

is pushed down to lower frequencies.This however should not be construed as squeezing

cannot take place at lower current levels. The thermionic emission regulation process is

still in effect albeit it requires larger observation times(smaller frequencies) and if we can

increase the efficiency of the LED at low currents we should still see squeezing. Since we

are restricted by device technology,this has still not been shown for macrojunctions at low

currents. Fig. (3.15b) gives us the normalized noise level or Fanofactor which has been

calculated from Fig. (3.15a) as the ratio of subshot trace to the shot trace after subtracting
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the thermal noise from each trace which can be expressed as

F =
10Subshot/10 − 10F loor/10

10Shot/10 − 10F loor/10
(3.20)

This ratio should be independent of the detection system parameters such as frequency

response and amplifier gain since the traces follow each other. For the remainder of this

chapter, F denotes the measured Fanofactors whereas the theoretical Fanofactors are written

with subscripts. In Fig. (3.15a) we see that at low frequencies particularly from 0-100kHz,

there appears to be little or no squeezing. This is due to the spectrum analyzer response.

In order to get accurate results we have set the starting point of Fanofactor calculation

at 100kHz,but we will have some error since it underestimates the squeezing. The DC

values of F can be obtained by extrapolating from a low frequency point just before the

Fanofactors start to rolloff(which in this case is 200kHz) to dc. If the squeezing took place

over a larger frequency range, we could have made the assumption that the squeezing

at 200kHz is the same as the dc since the response should be in some sense a low pass

filter and some papers have used this method. If we use this assumption we find from

the Fig. (3.15b) that F(200kHz)=0.85 which is somewhat close to the theoretical value of

Fph = 1 − η0 = 0.875(we have got very accurate results at higher currents with differences

of less than 0.01) which would have agreed well. However we note a discrepancy when we

plot the theoretical frequency dependent Fanofactors in the diffusion limit given by the Eq.

(??) which is rewritten along with an additional component C as

Fph(ω) = 1− η0C

1 + ω2(τte + τr)2
(3.21)

where we have assumed C ∝ (ηd
η0

)2 is a correction factor motivated by a similar factor

appearing for the thermionic emission model which will be used for the L9337 LED later

on. Also this correction factor gives better agreements between theory and experiment.

The thermionic emission lifetime is defined as τte =
kTCdep

eI . The theoretical plots have

been obtained by fitting Eq. (3.21) to the center of the variance in F. In order to be

as accurate as possible, we start the fit from Fig. (3.15d) which is the normalized noise

levels calculated from Fig. (3.15c). At a high current value of 6.53mA, τte � τr and so

Fph(ω) ≈ 1− η0C
1+ω2τ2

r
. As for the recombination lifetime τr, the datasheets do not state this
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parameter but other papers have measured different values ranging from 600kHz to 1Mhz[44]

. When we measured this value by finding the 3dB point using AC modulating the LED

from the current source, we found a frequency of approximately 600kHz(265ns). Note that

this 3dB point depends on the extrinsic lifetime given by the RSCdep product which could

limit the modulation speeds below the intrinsic carrier lifetime τr. The datasheet specify

a rise time of tr = 0.45μs at a current of 50mA. Using tr = 2.2(τr +
1.4∗10−4TCdep

ILED
)[68] we

get τr ≈ 204ns. So to get a good fit, we need to set the bounds of τr from 204ns to 265ns.

At 6.53mA and choosing τr = 250ns we found a close fit to F at high frequencies. Notice

that the line does not fit well at low frequencies when using the diffusion model without

the correction factor. If we assume C=1, then we will have to change Cdep or τr to get a

better fit. But at high injection Cdep should not matter unless it is made larger in which

case it would cause discrepancies at low injections(A 0.01μF change is sufficient to cause

drastic variations).Also τr can only be varied between the bounds.Otherwise it would also

cause very large discrepancies. The only logical reason is to account for the deviation in

C. This discrepancy has been noticed by other authors[42] , which they reasoned using the

small signal transfer idea ie. As ηd > η0 the transfer rate of an AC signal is larger than

a DC component and so the ratio of fluctuation
〈
Δn2

〉
to the mean can be greater than

1, which would imply that the Poisson source is actually super-Poisson. However, ηd is a

parameter associated with the LED, and it becomes a concern only when we are driving

the LED using the SNS. We have verified that the SNL is nearly the same when we use a

lamp directly(where ηd is not a concern since it is nearly 0), but even 0.1-0.2dB difference

is sufficient to cause great variations in the Fanofactors. But super-Poissonity of the SNS

which is quite small is insufficient to explain the correction factor C. So we reason that the

subshot noise is also much more than expected from the simple formula Fph(0) = 1 − η0.

However it serves as a good approximation for us since our results agree with it very well

at 200kHz which can be seen in the Fig. (3.15d).

At low injection levels, τte � τr and so we obtain Fph(ω) = 1− η0C

1+ω2(
kTCdep
eILED

)2
where Cdep

is a fitting parameter which we estimate to have a value of 0.1μF . We cannot accurately

determine Cdep experimentally because the measured capacitance is the sum of both the
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diffusion and depletion capacitances at moderate voltage. After the fit,the only variable in

the model is the drive current ILED. We have verified the model for ILED ranging from

1.5mA to 9mA and found good agreements. Fig. (15e,f) shows an example of Fph(ω) at a

currents of 8.08mA and 9.81mA. In the Fanofactor figures, the correction factor have been

estimated to be 1.5, 1.3, 1.1 and 1.09 respectively. We notice that the correction factor

C tends to 1. This can be seen since ηd
η0
∝ √C gives us ηd ∝ .199 for IL = 8.08mA and

ηd ∝ .20 for IL = 9.81mA. This is less than the values shown in Fig. (3.5b) which is

around 0.21 , but we see that the ratio ηd
η0

follows the general shape of the curve. At higher

currents we see that the efficiency η0 becomes more linear from 4-9mA and then saturates

from 10-16mA(Note that this is not the photodetector saturation). So slope of ηd
η0

should

decrease and be equal to 1 in the linear region and should tend to 0 in the saturation and

this is what we observe for C as IL increases. We can now see if the correction C gives us

the correct DC fanofactors according to Eq. (??) which we rewrite here

Fph(0) = 1− 2η0

(
ηd

η0

)
+ η0

(
ηd

η0

)2

(1 + Fdr(0)) (3.22)

If we assume a Poissonian drive current Fp = 1 we see that Fph(0) = 1−2η0

(
ηd
η0

)
+η0

(
ηd
η0

)2

and for ηd
η0

> 1 which is typical of our experiments, the optical noise is super-Poissonian.

This is true only when the SNS is driving the LED and not when the lamp itself is used

as the shot source. So the Fanofactor definition itself has to be renormalized to account

for this new supershot noise as Fnorm(0) =
<Δn2>Subshgot

<Δn2>Supershot
=

Fph(0)Fdr=0

Fph(0)Fdr=1
. This gives us the

relation

Fnorm(0) =
1− 2η0

(
ηd
η0

)
+ η0

(
ηd
η0

)2

1− 2η0

(
ηd
η0

)
+ 2η0

(
ηd
η0

)2 (3.23)

which can be compared with the experimental results obtained by taking the extrapolated

curves from the frequency dependent Fanofactor with the appropriate correction. For exam-

ple, in Fig. (3.5b) we see that η0 = 0.17 and ηd/η0 = 1.2 which gives us Fnorm(0) = 0.7736

which agrees with the Fanofactor at 100kHz. We have assumed that the value at 100khz

is the same as the dc value since the curves level off at this point . We have computed

Fnorm(0) for certain drive currents along with the standard definition Fph(0) = 1 − η0 in

Table. (3.3) and we see that Eq. (3.23) (except for 5.72mA which shows the largest error)
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Drive current
IL(mA)

η0
ηd
η0

Fph(0) = 1− η0 Fnorm(0)
(Theory)

F (0)
(Experiment)

1.92mA 0.125 1.264 0.875 0.815 0.815

6.73mA 0.17 1.20 0.83 0.7736 0.78

4.16mA 0.168 1.205 0.831 0.776 0.78

5.72mA 0.180 1.19 0.82 0.764 0.776

8.08mA 0.191 1.157 0.809 0.76 0.76

Table 3.3: The experimental results of η0,ηd which are used to compute F according to Eq.
(3.23) are compared with the experimental results for varying drive currents.

predicts the correct results as expected. To the best of our knowledge most of the results

in the literature for the L2656 have not employed this correction and are thus misleading.

Fig. (3.15a&c) have each been averaged differently. For each trace we used a VBW=1Hz

with a sweep time of several minutes. For the case of 1.9mA we took three averages and

for 6.53mA we took 3-6 averages. As we know the variance goes to zero as the number of

averages increases according to σ2

N . When we compared 3 trace averaging for high and low

currents, we found that lower currents have a larger variance in F. This is seen from Fig.

(3.5a) , where the shot and subshot noise have only a 0.2dB difference and the levels are only

less than 2dB above the thermal floor. The 10:1 rule cannot be used. The larger variance

can be imagined as follows: Imagine we are subtracting a random value from two Gaussians

which overlap a little. The resultant number has a much larger variance shared by the two

pdfs. When the levels are further apart particularly at large currents we find that smaller

averaging results in reasonable accuracy. For example, Figs. (3.15e,f) had no averaging

done besides the video filter. Also when we perform trace averaging, the traces could shift

between each measurements due to slight setup changes. For example, a typical run at say

8.08mA would see a photovoltage of 7.84V before the measurement and 7.81V after. A

single run is typically 2-3minutes. But for 6 averages,we need the keep this photovoltage

constant over several 10s of minutes and there might be non-negligible drift. One solution

is to use TE coolers on these devices. A better option is to use cryogenic methods, but

there are issues regarding the coupling of the LED with the PD. We performed a simple

test to determine how much drift we would encounter by measuring the photovoltage over

time which we summarize in Table (3.4). For the case of the lamp,the shot noise current
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Figure 3.16: (a)Optical noise spectra for the L2656 with reduced coupling efficiency of η0 =
2%.The SNL has been obtained by driving the LED with the SNS (b)Experimental(points)
and theoretical(solid line) Fanofactors as function of coupling efficiency (η0) (c)Optical Noise
spectra for the L2656 driven under a Constant Voltage bias of 1.26V

changes from 24.106pA/
√

Hz to 24pA/
√

Hz at 20 minutes which is only a difference of

0.02dB. So errors in noise powers due to drift are very negligible. The decrease in current

for the lamps may be attributed to a change in responsivity due to heating up of the active

area whereas for the LED, it is more likely that the battery discharges over time causing the

current decrease. This is because the center wavelength of the LED lies in a range where

the temperature coefficient of the PD is effectively zero.

Time(minutes) Lamp photocurrent(mA) LED photocurrent(mA)

0 1.816mA 1.309mA

10 1.811mA 1.295mA

20 1.799mA 1.289mA

Table 3.4: Photocurrent drift with time when driven by the shot and subshot sources
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Looking at Fig. (3.15a) we see that the subshot is about 0.8dB squeezing below the

SNL whereas it is 0.2dB in Fig. (3.15c). At 1.9mA the efficiency is around 0.125 which

should translate to at least 0.5dB which we do not see. This is because the thermal floors

have masked out the expected squeezing. At 300kHz we find the thermal noise is -84.5dBm

which is 13.31μV . The subshot and shot noise spectral densities are (16.38μ)2V 2/Hz and

(16.76μ)2V 2/Hz . If we calculate the ratio directly we see F = (16.38μ)2

(16.76μ)2
= 0.95 → 0.2dB.

But when we subtract away the thermal noise from these values we get F = 0.87 → 0.56dB

as expected. Note that at 6.53mA we see 0.7dB. Most papers specify the degree of squeezing

as the difference between SNL and the subshot levels since their amplification is quite large

to satisfy the 10:1 rule and some others do not. We cannot do so and need to include

the thermal noise corrections. Finally in passing, we note that the SNL at 650kHz for the

6.53mA case can be obtained from the photocurrent of 1.07mA which puts it at -119dBm

whereas the experimental result is -118.51dBm, a difference of 0.49dB.

Fig. (3.16a) was obtained by reducing the efficiency of the LED by moving it away

from the detector but keeping the photocurrent constant. As expected the subshot noise

moves towards the SNL. Fig. (3.16b) plots the variation of F versus efficiency. The first

and last points are SNL(η0 = 0.006) and subshot level(η0 = 0.19) which we obtained from

Fig. (3.16a). Note that the subshot is around 0.9dB below the SNL. When the efficiency is

reduced to η0 = 0.0198 we note that F is not at the SNL but rather .2dB below it leaving a

value of F=0.95. This is a discrepancy of nearly 0.03 from the theoretical result expected(ie

1-0.0198=.9802). However notice that the variance of F would itself allow us to put the

result closer with theory. However we refrain from doing so and use only the center of the

variance as the reference. The remaining two values obtained were at 0.45dB(η0 = .12) and

0.8dB(η0 = .16) below the SNL. We can obtain only a few resolvable datapoints in this

experiment unless we can increase the degree of squeezing. For example, we had difficulty

resolving a 0.04 efficiency datapoint from a 0.0198 since the noise levels would merge. More

averaging may be required to produce better results. The same LED has been demonstrated

to produce squeezing upto 1.5dB(efficiencies reaching 30%) at temperatures of 77K. Under

these conditions F varies over a larger range and better fits to the theoretical value have
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been obtained[27] . Also we should not raise any concern over ηd in this experiment, since

we are primarily adjusting the coupling efficiency(ηc) where η0 = ηcηLED just as we did for

the shot noise experiments. So the more general Fanofactor relation given by Eq. (3.5) is

in effect. The thermal noise has not been subtracted from the above results which should

cause an error of 20-23% since the levels are only 6dB from the noise floor. We see closer fits

without the correction results implying that the theoretical Fanofactor relation may actually

be smaller validating the correction required. The most important point to note is that the

Fanofactors decrease with ηo (or rather ηc) linearly. We have seen results in the literature

where the theory underestimated the experimental points consistently[45] and also results

where they agreed with minimal error[27]. The authors in these papers had used Eq. (3.5)

for all their measurements which we have seen to be incorrect. So in summary, the sources

of error that can cause F to be in error are 1.The SNL is actually super-Poisson which

implies F is larger than expected. 2.No thermal correction has been assumed which implies

a smaller F than expected. 3.The low frequency at which F is measured is not a measure

of F(dc). We will start the experiments with the L9337 LED with these issues in mind.

3.5.3 Approximate Constant Voltage conditions

In Fig. (3.16c), we demonstrate the constant voltage operation of the LED. Ideally this

would include a zero noise voltage source across the diode. This is not possible(unless

we can obtain a battery source which puts out 1.5V at 10-20mA current) but we might

imagine that the same effect can be reproduced by adding a large capacitor in parallel with

the LED in the existing circuit. The series resistance restricts the current and after 5 RC

time constants we would expect a voltage to be developed across the capacitor which would

then pin the junction voltage. We have used two capacitors at 0.1mF and 0.01mF to realize

this effect and both of them show similar results. Note that we are not able to distinguish

between the shot and CV plots in figure. There may a slight degree of suppression from

200-400kHz. At smaller capacitance values, we do see squeezing which can be explained

if we consider the internal junction dynamics coexisting with the RC charging time. The

experiment was carried at a photovoltage of 3.22V(0.63mA) with IL = 3.705mA. First when
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we include no capacitance,we see only capacitance of the junction which is 0.1μF . This leads

to τRC = 180μs at a source resistance of RS = 1.8k and τte =
kTCdep

eIL
= 0.7μs. Thus we have

constant current condition ie. τRC > τte. CV is ideally defined as RS → 0 which would

put τRC � τte. When we placed the capacitance across the junction we are artificially

enhancing the junction capacitance to Cdep ≈ 0.1mF . So now we obtain τRC = 0.18s and

τte = 0.70ms and we still see constant current condition. But there is negligible squeezing

as seen in the plots.As Cdep has been made very large, the frequency cutoff given by 1
2πτte

decreases which in this case is around 1kHz. Since the plot has been obtained from 100kHz

and above, the squeezing has not been noticed. A very large capacitance would push the

3dB to zero frequency whereas setting RS = 0 would be ideal CV operation. Even though

the two methods are different the end result is the same ie we reach the shot noise level.

Recent experiments have used the capacitor method to achieve a constant voltage in order

to study squeezing that happens under CV model[53]. This is the backward pump model

which has not been studied in this thesis.

3.5.4 Issues with frequency dependent squeezing characteristics

The squeezing experiments were repeated with the L9337 which is a higher efficiency het-

erojunction device where the diffusion model is not valid at least at the currents we are

working with. Fig. (3.17a) shows our initial experiments obtained by changing the LED

but using the same general setup as Fig. (3.3). From here on, we choose to work with the

relative measurements(ratio of two noise levels) instead of the absolute measurements of the

noise level. The experiment was carried at a drive current IL = 5.96mA and the photovolt-

age obtained was 8V(1.57mA) for an expected Fanofactor of Fph = 0.73 or a squeezing of

1.32dB below the SNL. At 1Mhz we see 1.3dB but we have not accounted for the thermal

noise yet which may put it at much larger values. We see as we move to larger frequen-

cies the squeezing increases or rather the SNL seems to increase followed by a merging of

levels. The inset describes the squeezing in the frequency range from 5-6Mhz and we see a

squeezing of nearly 1.7dB which is a quite a large deviation. This would imply the LED has

an frequency dependent efficiency of nearly 32% at 5-6Mhz.However the LED is rated for a
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Figure 3.17: (a)Squeezing spectra for the L9337 LED highlighting the super-Poissonity at
mid-frequencies when driven with the SNS (b)The overestimated Fanofactors for the low
injection case of Vph =2V and high injection case of Vph =8V .The solid lines are the
smoothing filters applied. (c)Shot noise spectra for the cases of 1.L2656 driven with SNS,
2.Reduced coupling efficiency(< 1%) and 3.Changing the PD1 from UDT to S3994 in the
SNS. For each of these cases, the subshot noise as well as lamp noise spectra have been
plotted.
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modulation bandwidth of around 25-40Mhz whereas the squeezing disappears at 10Mhz. So

efficiency is not the issue here. In Fig. (3.17b) the Fanofactors for Vph = 2V (IL = 1.75mA)

and Vph = 8V have been plotted. The origin of the plot is 1Mhz and we can obtain the dc

value of F at this frequency since the squeezing takes place over a larger frequency range

and we don’t have rolloff until about 10Mhz in these plots. We see that F(1Mhz) is around

0.7(1.54dB) for 2V and 0.68(1.67dB) for 8V. There is a sizable error since the theoretical

results predict 0.78(1.076dB) and 0.736(1.33dB) respectively. The shot noise source could

be actually be super-Poisson in this case which we need to prove. What should be a flat

response shows peaking in the Fanofactors around 3-8Mhz. This cannot be due to the mea-

surement chain since, the levels track each other and the normalized levels should not carry

any of the frequency response of the chain. Sometimes we notice an interference at lower

frequencies(which we can see in the thermal trace of figure), but this is at a fixed signal

strength whereas the peaking depends on the current. On a sidenote, the interference can

easily be removed by interpolating between neighboring points. Nonlinearity which depends

on the optical power is also not an issue here, since both shot and subshot are at the same

optical power produced by the same LED. Also in typical squeezing experiments, at low

injection currents, the levels merge at much earlier frequencies. Here we see that in both

low(2V) and high injection(8V), the Fanofactor rolls off within the same frequency range

indicating that it is a problem with the LED and not the measurement chain. Fig. (3.17c)

essentially tracks down the problem to the SNS. In Fig. (3.17c1) ,we perform the compar-

ison between SNS driving the LED and a lamp driving the PD directly. First we notice

that SNS produces an error of nearly 0.2dB at 1Mhz when compared to the lamp(which

we have shown to be a true Poisson source). At midfrequencies of 2-8Mhz it rises atleast

0.4dB above the lamp and rolls off around 10Mhz whereas the lamp does not rolloff. The

subshot plot has been included for comparison. The vertical scale is arbitrary as we are not

interested in quantitative answers. In Fig. (3.17c2) , we perform the comparison between

the lamp driving the PD and an LED moved far away from the PD such that the coupling

efficiency is < 1%. We note that the levels are indistinguishable. This is as expected since

when the efficiency of the LED is reduced, the levels should return back to the SNL as we
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have seen earlier for the L2656. Also there is no rolloff at 10Mhz. This tells us that the

culprit is the SNS and is reasonable since we considered it only as a Poisson current source

and not as an equivalent circuit of a diode connected through cables to another diode. This

definitely affects the frequency response which can be explained as follows: The PD gen-

erates a current given by Idc + ipoisson.The Poisson current falls off with the response of

the PD-LED combination and at a certain frequency the PD becomes a constant current

source which generates a subshot level at the LED. We would like to make this response

’go away’ and so if we are interested in accuracy we have to use the LED to calibrate the

SNL against itself by lowering the efficiency instead of relying on the SNS. Nevertheless, we

find that at lower frequencies(500kHz-1Mhz) and particularly at moderate current levels,

the SNS is still a viable alternative to moving the LED far away and the SNS and the lamp

agree quite well. This fact has been used in our noise modulation experiments. As a final

check, we replaced the detector in the SNS from the UDT model to the Hamamatsu S3994

and observed the noise characteristics of Fig. (3.17c3) . We can see that the response is the

problem as the new detector causes the peaking to be more easily recognizable. Also the

levels merge now at 16Mhz. When we compare with the LED level with the lamp direct, we

see that an error nearly 0.4dB at 5Mhz which is quite large. We may question the validity

of the SNL in the L2656 experiments based on our observations for the L9337. Note that

the Fanofactors are forced to merge at the same frequency range in Fig. (3.17b)(around

10Mhz) for both low and high injection, whereas for the L2656, the response is different for

each case as seen in Fig. (3.15b) (low injection) and Fig. (3.15d) (high injection). Also if

we assume the SNL is super-Poisson, we should see a consistent error above the subshot

level in Fig. (3.15a,c) and the levels should not merge unless its restricted by the frequency

response. From this we conclude that for the L2656 the subshot levels merge with the SNL

as required whereas in Fig. (3.17a), the SNL merges with the subshot level.

The bandwidth limiting mechanisms of pin detectors are 1)Diffusion time of carriers

which is usually made small by placing the junction close to the surface 2)Transit time

across the depletion region τd 3)RC product τRC of terminal capacitance Cdep of the PD and

load resistance RL. Since we use large area photodiodes(100mm2), the junction capacitance
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Figure 3.18: Electrical Response characteristics of photodiode-amplifier configuration
(a)Optical Noise spectra of S5107 PD compared with a generic low responsivity PD
(b)Optical Noise Spectra of S5107 and S3994 PDs (c) Electrical transfer function according
to Eq: for S5107 and S3994 PD where the fitting parameters L = 0.15μH and CC = 150pF
have been used. The inset shows the experimental noise spectra from 1-3Mhz and the solid
lines depict the theoretical model.

should be high and the bandwidth will be limited by a combination of the RC product and

transit time. The S5107 PD has a quoted 3dB bandwidth of 10Mhz at RL = 50Ω and

reverse bias VR = 10V with a Cdep ≈ 150pF . With the parameters of RL and Cdep,we

should be able to calculate the cutoff frequency theoretically as[62]

f3dB =
0.35√

τ2
d + τ2

RC

=
0.35√

( d2

μVR
)2 + (2.2RLCdep)2

(3.24)

If we ignore the drift time, the cutoff will be 20Mhz which suggests that the drift time has to

be factored in. This is around 30.7ns which is the slower time scale when compared to the

RC of 16.8ns. Now if we change the resistance to 192Ω, because of adding the amplifier, we

can assume that the reverse bias does not change too much and the drift time is constant.
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With this the RC becomes 4 times larger or 67.2ns and we should expect a cutoff of around

5Mhz. In fact, the bandwidth will be predominantly RC limited for a certain frequency

range after which it is τd limited. If we include the cable reactances we end up with a

transfer function obtained as voltage across the RI = 200Ω resistor to the root sum of

squares of all current noise components which can be obtained from Fig. (3.7b) as

H(ω) =
V200

It
=

RDRI

RD(1 + sCCRI) + RI(1 + sCDRD) + sL(1 + sCDRD)(1 + sCCRI)

(3.25)

The above equation does not include En which we shall handle separately but its different

from Eq. (3.7) in that it neglects drift as per the assumption that the bandwidths are RC

limited. If we set L ≈ 0 and CCRI � CDRD then we can expect a 20dB per decade rolloff

until the next pole gets activated. Inclusion of L creates a transfer function peaking to take

place at higher frequencies. Increasing CC affects the rolloff rate of the first pole since RICC

gets closer to RDCD and the magnitude of the peaking as well. L and CC affect the frequency

at which resonance takes place. The low pass filter and peaking characteristics are seen in

Figs. (3.18a) and (3.18b). In Fig. (3.18a) we have determined the optical noise spectra for

two different S5107 detectors by varying the cable types. Note that the degree of squeezing

is similar in both curves at approximately 1dB at low frequency. The midfrequency still

shows the error since we used the SNS but we are more interested in the response. Even

though the two detectors are the same, the low frequency pole has shifted up for the case

of η0 = 26% which is why it rolls off slower when compared to the case of η0 = 25%.All the

PDs were driven such that they produced the same photovoltage, and so the noise power

at 1Mhz is similar for the two cases. We have also plotted the case of a generic PD which

has a low responsivity. Even though the LED is driven at a larger current(to produce the

same photovoltage) which also implies a larger squeezing, the efficiency is restricted by the

PD which is around 17% and hence the degree of squeezing is reduced. The 3dB of the

first pole occurs at low frequencies which is why the 1Mhz noise power does not agree with

the other two. The noise floors for each of the PDs have also been included and we notice

the same frequency response according to Eq. (3.25). Particularly interesting is the noise

floor characteristic at around 20Mhz where all the curves join. All the noise sources have
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a frequency dependent response except En which is at the input of the amplifier. So its

reasonable than It drops below En leaving behind only this voltage noise component. At

20Mhz we measure -132.1dBm which when we refer to the input gives us 0.79nV/
√

Hz

which is less than a 50Ω resistor noise but still larger than the En = 0.506nV/
√

Hz we

measured earlier. This may be because a portion of the 200Ω input resistor noise(which

was not included in the above response function) adds up with En. In Fig. (3.18b) the

noise spectra for two different PDs are shown. The S3994 has a Cdep = 40pF which should

shift the first pole to larger frequency which is what we observe when we compare with

the Cdep ≈ 100pF (at reverse bias of 20V) of the S5107 detector. The grey lines indicate

the same experiment carried out with improper shielding which we believe may be due

to conductive interference due to the monitor or power supply. The S3994 spectra show

incorrect squeezing at higher frequencies because of this interference.

In Fig. (3.18c) we have plotted Eq. (3.25) for the parameters RD = 5080Ω, CD = 120pF ,

L = .15μH , CC = 150p and RI = 200Ω. These curves have been fitted to the spectrum

of the Vph = 4.16V photovoltage case which is detailed in Fig. (3.19a). Here L and CC

were the only unknown fitting parameters used and CD was estimated from the datasheet

and its value lies between 90 and 150pF(between VR = 10V and VR = 24V ) but we found

120pF to be a closer fit. The cable used was approximately 1foot which should put the

capacitance at 10pF[?] but we have found a much larger value to be a better fit. Also we

have used a lumped parameter model instead of the expected distributed parameter which

is another source of uncertainty. But we have obtained reasonable results with the circuit

model of Fig. (3.7b). As seen in Fig. (3.18c), changing the capacitance from 120pF to

50pF affects the low pass response, but it does not shift the peaking to lower frequency as

it does in Fig. (3.18b). This is because the cables used were different for each of the PDs.

The inset of the Fig. (3.18c) shows the squeezing spectra from 100kHz to 3Mhz and we

see that the 3dB cutoff frequency is at 3Mhz. The solid line is Eq. (3.25) with the above

fitting parameters.We notice that at low frequencies the SNL agrees well with the plot but

the SSL level agrees well only at larger frequencies. We believe that this is an artifact of

the SA, since the SNL and SSL should follow each with a difference of 1dB which is also the
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difference between the two solid lines. Also at 650kHz we see from the solid line it differs by

0.1dB from 100khz(or about 0.5dB if we use the noise powers) but this is not sufficient to

explain the 2.8dB difference we saw for the optical shot noise. Hence the response function

F (ω) we obtained there must be primarily due to the SA miscalibration. The dotted lines

in the Fig. (3.18c) indicate the difference between a)1Mhz and 10Mhz which is around

9.18dB b)10Mhz and 25Mhz is 5.5dB and c)10 Mhz and 45Mhz is 0.8dB. These differences

were used to obtain the fitting parameters to fit to the noise spectra plots approximately.

Figure 3.19: (a) and (b) shows the squeezing spectra and computed fanofactors(without
the noise floor correction) for the driving current of IL = 3.27mA. (c)Squeezing spectra
obtained for a driving current of IL = 2.43mA.The inset depicts the constant Fanofactor
over a range of 1-10Mhz. (d)The Fanofactors for the low injection current(IL = 1.35mA)
versus high injection(IL = 3.13mA) cases.The solid line in the fanofactors depicts the result
of a smoothing filter.

Fig. (3.19a) shows the squeezing spectra for IL = 3.2mA . Notice that the nonlinear

increase at midfrequency is absent since we have used a LED moved far away from the
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PD keeping the efficiencies to < 1% which makes it as a shot noise source. Using this

method however, restricts the range of drive currents that can be used. For example, for

an IL = 4.49mA the photovoltage obtained was 6V giving us an η0 = 26.3%. To create a

SNS we have to move the LED such that η0 ≈ 1% and so the LED has to be driven with

IL = 118mA which is beyond the maximum rating(80mA) of the LED. And if we drive

the LED at high currents for too long, the LEDs lose their efficiency and squeezing and

we saw such a case earlier. So we restricted our experiments to photovoltages of 4.5V with

efficiencies of < 1.5% and maximum drive currents of 36mA. Next we see that from we

have a difference of 1)8.2dB from 1-10Mhz and 2)1dB from 10-45Mhz. We find an error

from 10-25Mhz where we see 2dB but according to Eq. (3.25) we find 5dB. This may be

due to the other noise components which are present and not accounted in Eq.(3.25) or the

usage of the lumped parameter model for the transmission line. However the qualitative

features(low pass filtering and peaking) have been traced out in these plots. The degree

of squeezing is around 1dB at low frequency and appears to rolloff around 23Mhz and

eventually disappears around 40Mhz. In Fig. (3.19b) we have computed the Fanofactor

from Fig. (3.19a). The cutoff frequency is found to be the frequency where F = 1− η0

2 and

in this case lies beyond 45Mhz. The maximum cutoff for the L9337 LED is rated at 40Mhz

which is beyond that obtained. This is an error which can be recognized by looking at Fig.

(3.19a). We see that the SNL and SSL traces start to rolloff towards the noise floor around

15Mhz even though they maintain the same frequency response. This may be because of

the drift time which is another bandwidth limiting mechanism which can be included in

the photocurrent itself which then becomes frequency dependent(ie. I(ω)). We performed

the following correction to the noise floor: First we find the difference between the SSL

and the noise floor(which is constant at low frequencies) and note the frequency where the

difference changes. At this frequency onwards we recalculate the noise floors such that they

are at a constant difference from the SSL. This way we have ’tricked’ the detector into

ignoring its own bandwidth limiting mechanism. The reason we can use this method is that

the Fanofactor calculation subtracts away a noise floor term according to equation and we

have not modified the shot or subshot noise levels themselves. This constant noise floor is
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a function of frequency response when there is no light and is primarily the 5080Ω resistor

noise, and when we add the light, the photocurrent+resistor noise are expected to follow

the same response. Hence by correcting the resistor noise by noting the constant difference

and then subtracting it away, we will have the correct photocurrent noise. In Fig. (3.19c)

the optical noise spectra for IL = 2.43mA has been plotted. The inset of Fig. (3.19c) shows

a Fanofactor of 0.77 which is close to the calculated Fanofactor of 0.76. We notice than from

1-10Mhz the fanofactors are constant,something we could not observe for the L2656. There

the 100Khz was taken as the dc point, but in this case we can take 1-10Mhz as representative

of the dc point since the Fanofactor frequency characteristic tends to 1 only at frequencies

greater than 10Mhz. In Fig. (3.19d) we have plotted the fanofactors for the low injection

current of IL = 1.33mA(which is the minimum distinguishable noise power from the noise

floor in this experiment) and for high injection of IL = 3.13mA. As we mentioned earlier

the variance of F for smaller current is larger since it is close to the noise floor. At the

low current the calculated Fanofactor is F=0.782 whereas the experimental result is 0.78

and for the high injection the calculated Fanofactor is F=0.75 and the experimental result

if 0.76. We have not included the differential efficiency in these calculations since they are

quite small, but nevertheless they may cause a finite error which is not discernable with the

present experiment.

3.5.5 Squeezing Results for the L9337 LED

For the L9337 LEDs in the low injection regime, particularly where the backward pump

process can be neglected(αd , α0 ≈ 0) the carrier injection process is predominantly due to

thermionic emission with the frequency dependent Fanofactors given by[69]

Fph(ω) = 1− ηd

ηd
η0
− 2

(
ηd
η0
− 1

)
[1 + (ωτte)

2]

[1 + (ωτte)2][1 + (ωτr)2]
(3.26)

For the drive currents varying 0.5 to 3.5mA we find that ηd
η0

varies from 1.06 to 1.09 and

without incurring too much error we have set it to 1. So the above expression reduces to

the much simpler Eq. (2.244) which we rewrite here as

Fph(ω) = 1− η0
1

[1 + (ωτte)2][1 + (ωτr)2]
(3.27)
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Fig. (3.20) shows the experimental Fanofactors obtained for IL = 1.54, 2.01, 2.17 and

2.61mA respectively. In each of these cases, the dc Fanofactors have been illustrated with

the straight line that passes from around 5Mhz to 0 and except for the 1.54mA case we see

good agreements between experiment and theory . Note that the curves move upward at

lower frequencies. This is because of the SA response which we saw earlier for the L2656.

The solid lines are the theoretical models according to Eq. (3.21) and Eq. (3.27) which are

used to fit the data. For the case of the diffusion model we have set C=1 since the differential

efficiency is quite close to the dc efficiencies. The model parameters can have been obtained

in the same way for the L2656 except in this case we could not measure the cutoff frequency

since the detection bandwidth of our PDs were very small(less than 10Mhz) putting our

results at a cutoff 1Mhz which is clearly incorrect and can be seen just by noticing that

we have squeezing over a much larger range than 10Mhz. The datasheet specifies a cutoff

of 25Mhz or τr = 6.36ns which is what we used to fit the curves. The remaining element

is Cdep which we measured to be 52.4pF using a LCR meter. Using this to calculate the

thermionic emission time for IL = 2.01mA we see that τte = 0.667ns which is much smaller

than τr.In other words the thermionic emission cutoff is fte = 240Mhz almost ten times

larger than the radiative cutoff and hence squeezing is spontaneous emission limited. We

cannot use the lower current levels to obtain Cdep as we did for the L2656 since it seems that

we already working in a high current regime. Higher currents reduce this τte further. If we

try to lower the currents to try and fit Cdep, we will hit the noise floor of the amplifier. On

a side note we can calculate the total recombination time(including nonradiative processes)

by τrec = τr
ηd
η0

which is approximately 7.46ns. We notice that the model parameters fit

quite well and the difference between the diffusion and thermionic emission model is quite

subjective. To us, the thermionic emission model sees a better fit if we use either the center

of the Fanofactor variance or the smoothed curve as reference.

Fig. (3.20e) plots the squeezing bandwidth versus driving current. The linear dashed

line is the thermionic emission lifetime which is also dependent of current according to

kTCdep

eI and illustrates the region where the macroscopic Coulomb blockade effects works.

The horizontal dotted line is the radiative cutoff frequency of 23Mhz. The experimental
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Figure 3.20: Spectral Fanofactors of the photon fluxes from the L9337 LED obtained
at (a)IL = 1.54mA(b)IL = 2.01mA (c) IL = 2.17mA and (d) IL = 2.61mA. The
Fanofactors were fit to the theoretical diffusion model and thermionic emission model(solid
lines) which were obtained using Eq.(3.21)(C=1) and Eq.(3.27) with the model parameters
Cdep = 52.4pF and τr = 6.36ns. The center dark line represents a smoothing filter applied
to the raw data. (e) Pump current dependence of the squeezing bandwidth. The solid lines
indicate the theoretical diffusion model and thermionic emission models. Model parameters
for the diffusion model is Cdep = 60pF and τr = 7ns and the thermionic emission model is
Cdep = 50pF and τr = 7.3ns.
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points have been obtained from the Fanofactors by first noting the dc values and finding

the cutoff frequency at which the Fanofactors have dropped by half. The theoretical curves

have been obtained by plotting the diffusion model equation from Eq.(2.243)

fDiff−3db =
1

2π(
kTCdep

eIL
+ τr)

(3.28)

where we have used Cdep = 60pF and τr = 7ns. We also compute thermionic emission

model for 3dB bandwidth given by Eq.(3.17) which we rewrite here

fTE−3dB =
1

2π

√
1

2τ2
teτ

2
r

{
− (

τ2
r + τ2

te

)
+

√
τ4
r + τ4

te + 6τ2
r τ2

te

}
(3.29)

The model parameters in this case were Cdep = 50pF and τr = 7.3ns. We note that

as we in the low current regime the squeezing bandwidth increases whether we use the TE

or diffusion model. In the high current regime the squeezing bandwidth approaches the

constant value limited by τr. Our experimental points all lie in this range. We we able to

fit our results better to the diffusion model which is quite surprising since we noted that

the L9337 being a heterojunction device should satisfy the TE model. We can see why

just by noting that different model parameters have been used compared to the ones in

Fig. (3.20a-d). This is because the experimental points were obtained using the smoothed

curve, and there is a certain degree of error in interpreting its results. Also we cannot really

categorize the squeezing bandwidth model until we have low injection current values which

is unattainable with the present experimental setup. So in conclusion, both the TE and

diffusion model seems to work well. The fit to the diffusion model should not be confused

with the high injection current regime in the heterojunction where the backward pump

process α0, αd → 1 in which case the diffusion model given by Eq. (3.21) is once again

valid. Also we note that the variance of the Fanofactors have been obtained at an VBW of

1Hz with further averaging done. The end result has a bit quantization look to it rather

than the continuous form of Fig. (3.15). This is the highest level of averaging that we can

achieve.
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3.6 Summary

We summarize the important contribution of this chapter. A setup has been constructed to

observe the subshot noise of light. Each element of this setup has been calibrated to make

the errors as small as possible. The maximum uncertainty of the absolute measurements

performing using this setup is around 1dB .The L2656 LED which has been previously

studied has been re-investigated and accurate results have been determined. We have noted

discrepancies with previous results which had ignored the role of the differential efficiency

and have fit the results to theoretical models quite well. The concepts of high impedance

pump suppression even though it have been well understood theoretically have not been

experimentally demonstrated until now. We also see that the junction capacitance plays an

important role in the constant voltage setup and introducing the large capacitor seeks to

redefine the total capacitance of the junction which also affects the squeezing bandwidth.

We have fitted the results of L9337 to both the TE and diffusion theoretical models and

determined the pump current dependence on bandwidth. We were unable to determine

which model fit better since our experiments were done at the high injection current regime.

We have demonstrated maximum squeezing of nearly 1.5dB over the frequency range of 1-

25Mhz. We believe that the degree of squeezing(at the time of performing this experiment)

is one of the largest reported at room temperature. The experiments have shown that the

light coming from the L2656 and L9337 LEDs are at the subshot noise level as postulated

by the diffusion and thermionic emission Fanofactor models proving that these LEDs can

be used as nonclassical light sources in quantum communication experiments.
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Chapter 4

Quantum Stochastic Modulation

4.1 Introduction

Squeezed optical fields have generated considerable interest due to the possibility of reducing

the quantum uncertainty in one dynamical variable (at the expense of enhanced uncertainty

in the conjugate variable) in order to improve measurement accuracy. Classical methods of

optical transmission achieve, as a lower limit, a Poisson distributed photon-number char-

acteristic of the single-mode coherent state |α(t) >= ΣNαN (t)|N > with variance σ2
N = N̄

(shot-noise level). It has been anticipated [70] that subshot noise light (σ2
N < N̄ ) with

photon-number fluctuations smaller than the standard quantum limit would produce ultra-

low-noise communication systems although practical ones have not been constructed. We

have demonstrated that semiconductor light emitting diodes (LEDs) conveniently and in-

expensively produce subshot light by means of the mechanisms for high-impedance pump-

noise suppression. These states can be easily detected by semiconductor photodiodes. We

demonstrate in this chapter, a novel quantum-level stochastic communicator that modulates

both the average photon number N̄(t) (optical power) and the uncertainty in the photon

number (variance) as two independent binary channels. The stochastic communicator pro-

duces random signals based on a controllable intrinsic probability distribution in contrast

to the chaotic optical signals generated from lasers [71]. In principle, a stochastic commu-

nicator could be constructed that superposes M different (but fixed) Fock states to obtain

M-1 independent statistical moments. The transmitter would then independently modulate

the probability amplitudes to produce M-1 independent channels. However, LEDs already

produce superposed number states that can be electronically controlled without using ex-

ternal optical modulators. Those optical states behave similar to the number-squeezed light
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and approach the fragile Fock states in the limit of infinite squeezing(unlike the amplitude

squeezed states). The noise becomes a useful signal by making it a controllable nonstation-

ary process σ2
N (t). However, the optical states can link the variance to the average such

as for the Poisson distribution; this adds another source of nonstationarity and implies the

two channels are not necessarily orthogonal. The technique presented here uses small mod-

ulation amplitude for the “average” signal so that it has negligible impact on the variance.

The modulator section transmits the light over a low-loss medium to the highly efficient

photodetector. The receiver recreates the two signals from the joint time-and-frequency

(JTF) [72] information.

The modulation of noise principle has already outlined in chapter 1, but if we translate

the idea into a quantum optics perspective, we see that the transmitter section of the sta-

tistical communicator uses the interaction potential V̂ created within the LED to produce a

superposed optical field represented by the density operator ρ̂ . Let the symbol v represent

a parameter associated with the pn junction that controls the degree of number squeez-

ing such as the impedance of the drive electronics and the Coulomb blockade mechanism.

Suppose an external driving circuit provides slow binary modulation to the parameter v to

switch between sub-Poisson and Poisson statistics so that v(t) = ΣmΩm(t)vm, where m is

“even” for subshot and “odd” for shot. The function Ωm(t) equals 1 for t ∈ ((m−1)T,mT )

and zero otherwise, and it yields the relation ΩmΩn = Ωmδmn. The interaction potential

can then be subdivided approximately as V̂ (t) = ΣmΩm(t)V̂m, where V̂m = V̂ (vm).The

equation of motion ∂tρ̂ = [V̂ , ρ̂]/i�(interaction representation) indicates that the density

operator decomposes as ρ̂(t) = ΣmΩm(t)ρ̂m , where V̂m produces the stationary field ρ̂m.

The field ρ̂ therefore moves between the two stationary processes. The communicator trans-

mits the variance signal σ2
N (t) =< (N − N̄)2 > , where each process m has the Fanofactor

Fm = σ2
N (vm)/N̄m and the same average N̄ . Any time dependence in the average and

its consequential linkage with the variance can be eliminated by using F(t) as the signal

rather than the variance alone. The transmitter and receiver rely on the Fanofactor to

predict changes in the squeezing level as the signal moves between system components. A

component such as a reflecting interface introduces partition noise since the photons will be
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transmitted across the interface according to a binomial distribution with the single-photon

transmittal probability p. Assuming highly efficient optical coupling and photodetection,

and given that the transmitted photon number N(t) has a specific probability distribution

at any particular time, the photon arrivals at the photodetector must have a nearly identical

distribution as should the photocarriers comprising the photocurrent I(t). The Fanofactor

F(t) for the optical state therefore transfers to the photocarriers and directly produces the

time-varying spectral density S(ω, t) = 2eF (t)Idc where Idc is the dc photocurrent.

In chapter 1, we developed the concept of stochastic modulation and an implementation

using classical signals has been included in Appendix.B . The decoding of the stochas-

tic modulation was restricted to the time domain since it is effective for the ’hand-made’

probability distributions used. Anticipating the usage of naturally arising photon number

probability distributions such as the Bose-Einstein distribution for thermal light or Poisson

distributions for coherent states, we introduce the idea of decoding in the frequency do-

main using the spectrum analyzer as a joint time-frequency analysis tool. This method is

discussed in section 4.2. In section 4.3, we study the various methods of electronically mod-

ulating the noise since the optical modulation methods are quite lossy. We have performed

theoretical studies for noise arising in the BJTs and MOSFETs and how it would affect the

optical noise of LEDs connected to its terminals. We have been experimentally successful

in producing shot and subshot noise with both of these devices connected to the LEDs, but

the theoretical formulation of the BJT falls short of explaining the optical noise spectra

seen in deep saturation, whereas the MOSFETs are shown to introduce very little change

to the shot/subshot noise produced by LEDs, provided certain conditions are met. This is

why we choose the MOSFETs for the final design of the quantum stochastic communicator,

which consists of a switching circuit built of 3 such devices. After we study the switching

aspects of the circuit, we demonstrate the complete system working with the average(AC)

modulation and noise modulation channels together in section 4.4.
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4.2 Time Frequency Analysis using the spectrum analyzer

A pulse amplitude modulation would require a cyclostationary(CS) description of the pro-

cess s(t) = Σnanu(t − nT ) at the receiver where {an} are a sequence of WSS random

variables, and u(t-nT) is the step function. The signal s(t) in turn modulates the shot noise

and if periodic square wave are assumed ie. an = −an−1, it leads to a CS shot noise process

n(t). On the other hand, if the Fanofactor is controlled in time, the photocurrent from

the photodiode(as seen in the previous chapter) is a constant DC current and the noise is

given by F (t)2qIdc, where F(t) is the modulated Fanofactor which changes the statistics of

the distribution periodically ie. the probability P (x1, t1) = P (x1, t1 + nT ) where T is the

period of F(t). Since the mean is constant with time, the noise modulation scheme does

not fit under the CS category exactly. When both the average signal-s(t) and the noise

signals-n(t) are modulated, nonstationary noise(the noise is referred to as cyclostationary

when the signal is periodic and nonstationary otherwise) arises due to a)shot noise associ-

ated with signal modulation s(t) as well as b)modulating a random signal x(t) separately.

In this chapter, our goal is to construct a general signal s(t)+n(t) where the signal and noise

modulation can be carried out independently of one another and separately detected. The

shot noise current of the diode - i2sh = 2qIdc is time varying if Idc → I(t) ie. it changes with

a large signal excitation through I(t). For simplicity we restrict ourselves to periodic signals

and assume that the mechanisms for noise generation in the photon flux and photocurrent

generation are sufficiently fast compared to the modulation frequency, the noise sources can

be modeled as a slowly amplitude modulated noise source (CS processes).

The detection of cyclostationary noise requires the spectrum analyzer(receiver) to be

configured to read the time varying nature of the power spectral density. The important

elements of the SA are the local oscillator(LO), the mixer stage,the resolution bandwidth

filter and video bandwidth filter and the parameters associated with these elements which

are sweep time, RBW and VBW which play the role of a time base control to display the

modulated spectral densities in time. The equivalent building blocks shown in Fig.(4.1) are

two mixer stages and a narrow bandpass filter. The first mixer stage is representative of the

way the CS process is generated by modulated noise sources. A white noise source n1(t)
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with unit spectral density Sn1(ω) = 1 is modulated by the locally time varying operating

point f(t) . The output n2(t) is a CS process shaped in time t with spectral density

Sn2(ω) = f2Sn1(ω) = f2. Alternatively the mixer can be represented by a time varying

transfer function and this represents the modulated signal path for a white stationary noise

as input whose output is once again the CS process n2(t). The second mixer stage represents

the SA circuitry where the inputs are the filtered(without ac modulation) photodetected

light n2(t) and the LO signals and the output n(t) is resolved by the RBW. In general, a

process n(t) is referred to as cyclostationary when the mean and the autocorrelation function

are periodic in time ie. Rn,n(t + τ + T, t + T ) = Rn,n(t + τ, t). Here the t, τ dependence

requires a two dimensional Fourier transform to obtain the spectral density, but if we can

time average the the spectral density of a cyclostationary process S(ω, t) over a period T,

we obtain

1

T

∫ T/2

−T/2
S(ω, t)dt =

1

T

∫ T/2

−T/2

∫ ∞

−∞
Rn,n(t + τ/2, t− τ/2) exp(−iωτ)dτdt (4.1)

where we have used the time symmetric variant of the autocorrelation function. Inter-

changing the integrals and using the time periodic nature of the autocorrelation function,

we have a time averaged power spectral density given by

S(ω) =

∫ ∞

−∞
Rn,n(τ) exp(−iωτ)dτ (4.2)

A random time shifted process n(t) = n(t−θ) where θ is a uniformly distributed random

variable in the interval [0,T] converts a cyclostationary process into a stationary process

with autocorrelation given by Rn,n(τ) =< n(t + τ)n(t) >= 1
T

∫ T
0 R(t + τ, t)dt validating

the use of Eq. (4.2). In other words if a uniformly distributed random time variable

jitters the signal n(t) randomly by one cycle, the output loses all phase information and

the spectral density S(ω, t) becomes the time averaged power spectral density S(ω). Ex: If

the cyclostationary process n(t) is applied to a system which does not track the variation

of power spectral density with time, the phase information is lost. Most receivers require

synchronizing pulses or timing information to obtain the exact phase of the signal which

requires an exact description of CS processes. This is true for the signal s(t) and if we

time average the signal spectral density Ss(ω, t) we lose the timing information which can
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be extracted from the received CS signals. So we divide the signal for example by a power

splitter and use the averaging characteristics of the spectrum analyzer to study only the

noise spectral densities. In general,the noise modulation at an operating point I(t) is given

as

S1(ω, t) = F (ω(I), t)Sn(ω, t) (4.3)

where F (ω(I), t) is the modulation function or Fanofactor where ω(I) denotes the depen-

dence of squeezing bandwidth on bias current as in Fig. (3.20f) and Sn(ω, t) is the power

spectral density of the noise that depends on s(t). A spectrum analyzer(SA) can be config-

ured to read S1(ω, t) provided it satisfies certain sweep time constraints which are dependent

on the modulation frequency of the incoming signal. Since our goal is to use the SA to de-

code the time varying noise which appears due F (ω(I), t), we first need to remove the

sensitivity of the receiver to the intrinsic signal noise variations due to s(t) and make it sen-

sitive to the controlled noise variations imposed on n(t). One way to achieve this is If the

noise modulation is performed at a much smaller frequency than the ac signal modulation,

the SA would obtain the time averaged spectral density as

S2(ω, t) =
1

T

∫ T/2

−T/2
F (ω(I), t)Sn(ω, t)dt = F (ω(I), t)Sn(ω) (4.4)

The SA is inherently a time averaging device where Eq. (4.4) can be implemented thereby

making it sensitive to only the noise modulation and not the average modulation. Modulation

of output noise can be described as a multiplication in the time domain or convolution in

the frequency domain ie

n2(ω) =

∫ ∞

−∞
f(ω − ω′)n1(ω

′)dω′ (4.5)

where we can imagine for a periodic signal f(t) = Σnfn exp(jnω0t)→ f(ω) = ΣnfnδT (ω −
nω0) of natural frequency ω0 , the white noise at the input n1(t) is replicated around each

harmonic for f(t).The same is true for arbitrary PSD Sn1(ω) as copies appears at ω + kω0

and are weighted by the strength of the harmonic f (n) .The output of mixer is

n2(ω) =

∫ ∞

−∞

∑
n

fnδT (ω − ω′ − nω0)n1(ω
′)dω′ =

∑
n

fnn1(ω − nω0) (4.6)

We have relied on the fact that δT is a finite delta function and T is large enough to
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Figure 4.1: (a)The detection of cyclostationary processes by means of a spectrum ana-
lyzer (b)The finite time power spectral density G(T, f) (c)The equivalent input signal de-
scription of Sn2(ω, t) and the corresponding time varying signal amplitudes along the line
ω ∝ t(marked by circles) is plotted on the spectrum analyzer.

apply the singular property of delta functions. The corresponding PSD is also expressed as

a convolution of the spectral density at the input with f2 and is obtained from Eq. (4.6) as

< n2(ω1)n
∗
2(ω2) > =

∫ ∞

−∞
f(ω1 − ω′)f∗(ω2 − ω′)Sn(ω′)dω′

=
∑
m,n

f (n)f (m)δT (ω1 − ω2 + (m− n)ω0) (4.7)

= 2πq
∑
n

InδT (ω1 − ω2 + nω0) (4.8)

where Σnf (n)f (n+k) = Ik is the harmonic of f2 = I(t). Because of the translated and

replicated copies of the same PSD, noise separated by kω0 are in general correlated. Hence
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for a general nonstationary process we have < n2(ω1)n
∗
2(ω2) >= qI(ω1 − ω2). For the case

of for ω1 = ω2 the time averaged PSD is

< n2(ω)2 >= qI(0) = qI(t) (4.9)

So in general,the spectrum can be written as the Fourier components of the time varying

PSD S
(k)
n (ω) where the k’th cyclic spectrum is the correlation between frequency compo-

nents separated by kω0 given by each term in the summation of Eq. (4.8) and the zero’th

order is the time averaged PSD given by Eq. (4.9). n2(t) undergoes the same periodic

modulation with the LO at the SA mixer stage to produce CS process n(t). The output

of mixer 2 has two cycle frequencies ω0 and ω1(where ω1 is the frequency of the periodic

LO signal of mixer 2) and if the ratio ω0/ω1 is a rational number, n(t) can be viewed with

cycle frequency equal to greatest common divisor of ω0 and ω1[73]. In fact, frequencies of

n(t) at ω + kω1 are ’folded’ onto ω as seen in Fig. (4.1a). Simply adding these noise powers

is incorrect since they are correlated which can be demonstrated as follows: Let there exist

a common frequency ω0 such that ω1 = nω0 and ω2 = mω0 such the ratio ω1/ω2 = n/m is

a rational number. In this case mω1 = nω2 and the harmonics of ω2 which are folded onto

ω are kmω1 which are themselves correlated from the previous mixing process. So when

we add the noise powers we must consider the cross terms also. On the other hand if the

ratio is not a rational number, there is no way we can shift ω1 and have it equal ω2. We

can then assume that n2(t) is stationary process input to the second mixer stage without

significant error. Another way to simplify the problem is to consider m or n to be large as

is the case of our signal and LO frequencies of the SA. If m→∞ and n is small and finite,

the harmonics created due to mixing in stage 2 are far apart from ω and its amplitude is

quite small to contribute to the power spectrum and hence only a minor error is incurred

by adding the correlated components. Similarly for n →∞, the same idea applies. Finally,

the time averaged PSD can be used to describe the noise process n(t) since the RBW filter

can be adjusted to have a bandwidth less than ω0/2 such that only the noise sideband ω

is selected and the correlated components as well the signal harmonic is suppressed(ie. the

output noise is stationary since any two frequencies ω′ and ω′′ will be uncorrelated). As

an example consider Fig.(4.1a), where we see that for a center frequency ω0 and bandpass
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filter of bandwidth ω0 around ω0, we capture the stationary and second order cyclic spec-

tra component S(2)(ω) only. If the bandwidth is replaced with ω0/2, only one frequency

component is captured and the resulting process is stationary with no cyclic components.

The RBW filter has a Gaussian shape but if we can consider the ENB as a rectangular

bandpass with the above bandwidths, the SA displays the integrated spectrum within this

ENB as a single point on the display. Whether the integrated noise is calculated with or

without correlations, the output looks white in nature and is modulated by the slower noise

modulation factor F (ω, t). To illustrate this, consider the SA which displays a spectrum

with signal harmonics and correlated components S(ω) at time t1. This spectrum is later

updated at time t2 to display the value of F (ω, t2)S(ω). ie the switching process itself is

not captured by the SA. The alternative possibility is to keep the LO fixed(a span of say

1Hz around the desired frequency) and track the variations of this frequency with time but

it is much harder to do so.

Let us see a much simpler problem which will illustrate the modulation or translation

of frequency idea as well as the finite time integration of noise as against the convolution

idea presented before. Consider a WSS non-ergodic noise process

n2(t) =
∑
n

An(t) exp(j2πfnt) (4.10)

to be demodulated at the mixer stage. Here fn = n/T . The LO signal is g(t) = Ac cos(ωLOt)

where Ac is the amplitude of this carrier and the output is

n(t) = n2(t).g(t) = Ac

∑
n

An exp(j2πfnt). cos(2πfLOt) (4.11)

The finite time Fourier transform of the noise spectrum n(t) is determined as

N(T, f) =
Ac

2

∑
n

An{sinc[(fLO + fn − f)T ] + sinc[(fLO − fn + f)T ]} (4.12)

We notice that the modulation has shifted the frequency fn − f by ±fLO.The power spec-

trum of the signal can be calculated based on the assumption that the different frequency

amplitudes are uncorrelated ie.< AnAm >= 0 and < A2
n >= S(ωn)Δω. This leads to

G(T, f) =
〈|N(T, f)|2〉

T
=

A2
cT

4

∑
n

S(ωn)Δω{sinc[(fLO+fn−f)T ]+sinc[(fLO−fn+f)T ]}2

(4.13)
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Note that the concept of finite time Fourier transforms can be used to define the role of the

RBW after the mixing stage. In other words, the RBW filter can be suitably selected to

have long integration times, to cause changes in the displayed spectrum and in this limit, the

spectrum is defined as G(∞, f) = ltT→∞
<|N(T,f)|2>

T . If we take one of the sidebands as the

signal to be detected ie. the signal frequency to be detected- fsig = fn , the SA will display it

on screen only if it passes under the passband of the RBW centered at fIF = fLO−fsig. For

a particular signal frequency and time T, Eq.(4.13) is plotted in Fig.(4.1b). Note that the

SA sweeps the LO between the start and stop frequencies as specified in the span settings

which leads to time dependent local oscillator frequency fLO = fLO(t). Eq. (4.10) is a

simplification of the more general harmonic series representation(HSR) used to define a CS

process[74] with the associated definition

An(t) =

∫ ∞

−∞
w(t− τ)x(τ) exp(−j2πfnτ)dτ (4.14)

where w(t − τ) = sin(π(t−τ)/T )
π(t−τ) . We skip the details of the calculation which can be found

in Ref.[74], but the power spectrum is obtained by taking a 2D Fourier transform of the

autocorrelation function Rx,x(t, s) using Eq.(4.14) which leads to

Rx,x(t1, t2) =
∑
m,n

Rm,n(t1, t2) exp

(
j2π(mt1 − nt2)

T

)
(4.15)

The corresponding spectral density is

Sx,x(ω1, ω2) =
∑
m,n

Rm,n(f − m

T
)δ

(
ω1 − ω2 +

(m + n)

T

)
(4.16)

where we have defined Rm,n(t1, t2) = 〈A∗m(t1)An(t2)〉. Our interest though is the frequency

domain representation of this HSR which divides x(t) into bands of width 1/T so that the

n’th component of An(t) exp(j2πnt/T ) is the output of an ideal one-sided bandpass filter

with input x(t) and transfer function which is the Fourier transform of w(t) as

W (t) =

⎧⎨
⎩ 1,

∣∣f − p
T

∣∣ ≤ 1
2T

0, otherwise
(4.17)

Each term An(∗) is the centered version of the n’th component An(∗) exp(j2πp ∗ /T ) to

the frequency band [-1/2T,1/2T]. In essence the CS process is decomposed into a set of
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jointly WSS bandlimited process ie. the terms {An} are jointly WSS if and only if x(t) is

CS[74]. This bandlimited-ness extends to the spectrum of our noise signal n(t) in Eq.(4.11)

at least for the case in which it is stationary. Looking back to Eq.(4.13) , we see that the

delta functions can be defined as the limit of a sequence of ordinary functions and one such

example[49] is δ(x) = ltT→∞ T
π sinc2(Tx). This implies that in the limit of large T, the

delta function picks out an element of the spectral ’fence’ S(ωn) at f = fn − fLO as the

output spectrum(we set Ac = 2 to normalize the spectrum). We notice this in Fig.(4.1b)

ie. as we increase T, it moves towards a delta function. We have not discussed (besides

the qualitative description of Fig.4.1a) the output spectrum obtained when two mixing

steps are performed on a stationary input signal. There are two reasons for this: 1)The

SA displays a time averaged PSD and with appropriate filtering, a description of sideband

correlations is not required. 2)The mixer carrier frequency is usually much larger than the

signal modulation frequencies which is a filtering in disguise. So in the extreme case, we may

need to deal with only one mixing step which is the first stage in Fig.(4.1a). Alternatively,

we can state the problem in much simpler terms: The SA performs a Fourier transform

of the input cyclostationary signal and by our analysis this spectrum is modified by the

presence of the second mixer stage. In fact, in the presence of stationary input the output

spectrum after the second mixer stage is cyclostationary and based on sweep time settings,

we should see the time varying spectrum S(ω, t) displayed. But from our experiments with

the spectrum analyzer in the previous chapter, we notice that irrespective of sweep time

and bandwidth parameters, the spectrum is not time varying when the input is stationary

noise and this is because of the large(¿3Ghz) local oscillator modulation frequencies used.

The second issue is that we might opt to track one of the bandlimited spectral elements say

S(ω1, t) with time by tuning the LO to a certain frequency, but the RBW filter must be

set to 1Hz which would increase the ST drastically. So in general we select a span where

the LO sweeps from the start and stop frequencies and this way we are not plotting the

time varying nature of the PSD that we need, but rather S(ω) over some time. In other

words,each point displayed represents a frequency range and although we don’t think of time

when performing a spectral analysis, each point is displayed over a time interval. By using
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the equivalence between time and frequency as well as the property that noise is primarily

white(both shot and subshot), we propose to use the sweeping of frequencies to plot the

time varying PSD at some frequency ω1 by the assumption that S(ω1, t) = S(ω = t) for

all ω. This in turn leads to an equivalent input signal representation for the SA which is

detailed as follows.

The SA does not perform an FFT, but rather uses the envelope detector to follow the

variations of the IF stage which in turn gives us the spectrum. For example when the LO is

tuned to one of the spectral components of the signal, the output of the IF stage is a steady

sine wave and the envelope detector output is a DC component which in turn controls the

deflection plates of the display and if we can envision noise as equal power sine waves for all

frequencies, the envelope detector will be flat across the frequency range. Without having to

describe the envelope detection stage(which is just another mixing and filtering process), we

can equivalently describe the entire detection process(including the RBW) with an FFT with

the help of windows and then use it to plot the time varying densities numerically.We see that

ST defines directly how much time is spent to perform a complete frequency measurement.

We can imagine this as equivalent to a FFT performed on a window of width ST is placed

over the input signal. Of course, there are obvious differences with the SA operations such as

1)LO can be tuned to start and stop at any frequency whereas FFT algorithm typically gives

us a set of frequencies over the sampling frequency [− fs

2 , fs

2 ]. 2)The windows select a subset

of the total signal samples which further restricts the frequency range. If a signal harmonic

is present then this is equivalent to multiplying the impulse with the Fourier transform of

the window which is a sinc function. Note that when we use an N point FFT where N is

greater than the size of the window say M, the remaining N-M points are filled with zeros.

Each bucket element can itself be considered as a window. The windows can be moved over

the signal in time(the short time Fourier transform) also known as the sliding window or we

can take non-overlapping windows. There is no great difference between the two, but the

SA processes the signal for a certain integrating time given by the time to put data into a

bucket and then it processes the next bucket. So non-overlapping window would be a more

exact description of the SA. But in the numerical methods used for generating macroscale
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signals we cannot generate a large number of random number samples(approx 10ˆ5 samples

is generated in several minutes in MATLAB) to properly represent noise without issues of

periodicity and processing speed cropping up. These samples are then transmitted and in

such applications the sliding window idea is more applicable to obtain a running average

and running standard deviation. The implementation of the macroscale communicator can

be found in Appendix.B.

Note that the signal harmonics are still present in PSD , but they don’t show up in our

experiments as the modulation is performed below the lower cutoff frequency of the amplifier

bandpass filter. If the harmonics are present, the frequency ω of the noise floor inbetween

the harmonics should be selected. The simpler method is to consider a signal modulation

s(t) which is quite small(in mV range) which produces a shot noise current of 2qI(t) ≈ 2qI0

which leads to Sn(ω, t) ≈ Sn(ω). The time varying PSD due to noise modulation can be

written as S3(ω, t) = F (ω(I), t)Sn(ω).We adopt this method in our experiments. However

when S3(ω, t) is input to a filter with sufficiently long integration time, the resultant spectral

density is an average over the Fanofactor period S3(ω) = F (ω(I))Sn(ω) which leads to an

average supershot white spectrum which we have verified in experiments. Since this case

ignores the periodic statistical properties of the noise signals as well its timing information,

it is of little importance and will not be dealt with.

We now determine the minimum pulse width Tmin of S3(ω, t) that can be displayed on

the SA. We choose to define this factor as the smallest time required for two neighboring

’bucket’ elements to maintain the typical up-down motion of the spectrum for a modulated

shot noise process. In order to realistically use the SA as a decoder, we may need to consider

a value which atleast 10 times this minimum which will be seen in the experiments to follow.

The IF filters(which are typically four pole synchronous tuned filters) must need time to

charge and discharge and if the mixing product is swept past too fast there will be a shift in

both amplitude and frequency accuracy. Note that the amplitude inaccuracy is not really

important for noise type signals, and the SA can be run in manual mode with uncalibrated

settings ie.we can set RBW and sweep time(ST) settings independently. We however run

the SA in AUTO mode for which the three parameters RBW,ST and VBW are coupled so
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that we can make use of the following calculations.The time that the mixing terms stay in

the passband is proportional to RBW and inversely proportional to the ST according to

[52]

dtRB =
RBW

SP/ST
(4.18)

If we assume that the passband is Gaussian given by H(f) = exp(−π (f−f0)2

σ2 ) where

f is the frequency relative to the center f0 and σ is the variance. The RBW is typically

defined as the 3dB bandwidth of H(f) which we can use to obtain a relation for σ. At

f − f0 = RBW/2, the value of the H(f) = 0.5. This leads to σ = 1.06RBW . Note that

the corresponding time domain response is also Gaussian given by h(t) = σ exp(−πσ2t2).

At t=0, we see that h(t) = σ which is the maximum amplitude that h(t) can assume. We

are interested in the time taken to charge and discharge this Gaussian filter ie. time to rise

from 1/100 of its maximum value (ie. σ) to the maximum and back. When h(t) = 0.01σ,we

have 0.01σ = σ exp(−πσ2t20.01). This gives 2t0.01 = 2.42/σ = 2.3/RBW . HP specifies a

value of 2.5 instead since the IF filters used in practice are not ideally Gaussian. Here 2t0.01

is nothing but the amount of time a signal spends in the passband of the filter that is dtRB

in Eq.(4.18) from which we can obtain a relation from sweep time(ST) according to

ST =
2.5 ∗ SP

(RBW )2
(4.19)

The time spent in the IF stage in Eq.(4.18) can itself be taken as Tmin,provided that there

is no following stages in the SA. Since we display the data in the SA display over a finite

number of points(buckets), we are further restricted over both time and frequency. The

data from the IF stage is placed into these buckets and a sample is taken from each bucket

to be displayed. Each bucket contains a sample corresponding to a frequency and time

interval determined by the following equations

Δf =
SP

N − 1
, Δt =

ST

N − 1
(4.20)

which leads to Δt being the fundamental limit for the minimum pulse width in our receiver.

We can obtain greater accuracy by either increasing the span or decreasing the sweep time,

since more number of samples are taken in either case.To illustrate the role of buckets

and Eq.(4.20) consider the following case of RBW < Δf : For a span of 100Mhz and 100
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Figure 4.2: Minimum noise pulse width Tmin as a function of span .The fixed parameters
are resolution bandwidth(RBW), video bandwidth(VBW) and number of samples N.

datapoints to be displayed on screen each element corresponds to a point over 1Mhz span.

Sample detection algorithm would obtain the center point in this span. Eg: A 10.5Mhz sine

signal would be properly displayed in the span of 10-11Mhz. If the mixing product does not

happen to be at the center of the IF when the sample is taken it will not displayed. This

issue does not matter in the case of noise.

If we can somehow use the all the data within a bucket in the averaging mode of the SA,

instead of a single point we may be able to reduce the fluctuations in the spectrum. Instead

each point in the bucket equals the input noise integrated over the effective noise bandwidth

and is the same even for the case of RBW > Δf . In order to catch the noise modulations,

we need to mindful of the following: 1)A large RBW allows faster modulation speeds but

also raises the DANL of the SA which makes detection of subshot noise difficult. 2) Span

also affects sweep time and if increasing RBW does not follow the noise modulations, span

can be reduced as an alternative but we loose some accuracy which is not of great concern.

3)If we cannot follow the noise modulations by adjusting the above parameters, the SA

produces an integrated spectrum of both shot and subshot spectras and in such cases we

reduce the modulation speeds. Most our experiments are restricted to less than 50Hz due to

this fact but if we use DSP processors instead we can perform several FFTs over a window



190

and average the signal very fast which in turn will allow faster modulation speeds. Further

work using Analog Devices DSP chip is in progress at Nanolab group at Rutgers, with time

based decoding methods akin to the classical stochastic modulator in Appendix.B already

implemented.

We rely on the analog low pass filter video bandwidth filter after the envelope detector

stage which performs a realtime filtering(time moving average) of the fast moving amplitudes

during the sweep. The VBW filter becomes active only when the cutoff of the filter is smaller

than the RBW and the ST also increases inversely with the VBW. If we assume that the

VBW filter is another Gaussian, the time taken to charge and discharge is the same as the

RBW filter and is given 2t0.01 = 2.5/V BW . This is now the same as Eq.(4.18) which

allows us to obtain an expression for the sweep time as

ST =
2.5 ∗ SP

RBW ∗ V BW
(4.21)

We have plotted Tmin versus the only freely controllable parameter which is the span or

the start and stop frequencies in Fig.(4.2). The RBW or VBW take fixed values and

rise progressively in 1,3,10 factors. The case V BW > RBW has not been shown as no

experiments use this setting, but it has the lowest Tmin possible for a certain RBW setting.

The traces are instantly swept, but with no averaging we cannot distinguish the relative

squeezing levels. Each of the lines are linear, and we see that for a certain decreasing the

number of samples N or increasing the VBW causes Tmin to become larger. As we decrease

either RBW or VBW and increase SP, the ST increases which affects the number of cycles

of noise modulation displayed on screen. For example, if at a sweep time of 10secs, four

cycles were displayed, cutting it to 5 secs would halve the number of cycles on screen. Since

as we mentioned that VBW and RBW are rather fixed parameters, the SP may be taken

as the time base control quite similar to the oscilloscope.

Fig.(4.3a) shows the case of shot noise modulation. The experiment was performed by

connecting a function generator to a tungsten filament lamp and feeding a square wave

of amplitude 760mV with an offset of 7.3V. The lamp was modulated at a frequency of

100mHz. The lamp could be modulated to a maximum frequency of only 10Hz beyond which

it would produce a constant intensity. As we showed in the previous chapter, irrespective
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Figure 4.3: (a)Shot Noise Modulation experiment describing the time varying optical spec-
tra S1(ω, t) = F.Sn(ω, t) where F=1 always (b)Shot and subshot spectra obtained with an
RBW = 10Khz but with low averaging of V BW = 30Hz. The solid dark lines indicate
the negative exponential smoothing filter.

of having a noisy supply such as the function generator in this case, the light from the

lamp is still shot noise limited. The dc photovoltages for the two shot noise levels were at

3.01V and 5.74V. We see in the figure that the shot noise levels during modulation agree

with the calibrated shot noise levels over the entire frequency range of 100kHz-1Mhz. The

square wave of 100mHz corresponds a pulse ON time of 5secs. Considering the following

parameters used:span=900Khz ,the VBW=3Hz ,the RBW=10Khz,N=1000, we can find

Tmin from Fig.(4.2) to be 0.075secs which also implies that the maximum frequency of the

square wave should be around 6Hz in order to see the modulation. Otherwise the signal

would be averaged and a net noise would be displayed along the Fourier transform of the

switching waveform and any transients. From the plot, we see that the duration the pulse

is ON corresponds to a frequency interval of Δf = 65Khz. This corresponds to N1=72
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sample points from which we can obtain the total ON time in the SA as Tmin ∗ N1 =

0.075 ∗ 72 = 5.4secs which is quite close to 5secs. In fact we have overestimated Δf which

could be the source of error. Note that the difference between the two levels is around 1.7dB

would allows us to clearly distinguish between the two levels as well as the pulse duration.

When the difference becomes smaller(for example ¡1dB as was was seen in some squeezing

experiments) both pulse width and resolution of levels become harder. We also point out

this time varying spectra is an example of S1(ω, t) of Eq.(4.3) where F (ω(I), t) = 1. In

Fig.(4.3b) we see a squeezing experiment carried under a higher VBW of 30Hz. With

such low averaging, we cannot distinguish between the levels, and observing the switching

becomes less reliable. This is typical in most communication systems where the the SNR is

so small that the probability distributions between the two levels overlap causing false bit

triggers. We have also shown the effects of smoothing filter applied to the raw data whereby

we can ¿0.4dB of squeezing. So in order to carry reliable modulation experiments, VBW

should be set to less than 10Hz. Changing the RBW did not seem to make much difference

as it is the averaging in question. Reducing VBW as we have seen, increases sweep time

and Tmin and restricts the modulation frequencies. In Fig.(4.3c), we see the case where the

signal is modulated at a large frequency wherein the spectrum analyzer produces a Fourier

transform of the square pulse.

4.3 Design of Quantum Stochastic Modulator

Using the same methodology as the macroscopic(classical) communicator , we would like

to switch between two quantum noise signals. The simplest way to do this is to switch

between two sources: one calibrated at the quantum noise limit(shot noise level) and another

at the sub-shot level. We can imagine focusing these two sources onto the detector and

switching between them through a switch element which could be either a BJT or a FET

device. The switch element in turn should not affect the statistics of the emitted light

drastically(ie. it could easily raise the noise level above the SNL) and therefore we must

know the noise properties of these devices beforehand. In the inset of Fig.(4.4) we show one

such implementation idea. The data acquisition(DAQ) module from National instruments
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can serve as a function generator to provide ac modulation to the sources modulating the

average. The two output lines of the DAQ, analog outputs(AO) 0 and 1 are connected

to the LED and lamp respectively which are in turn focused onto the photodetector. The

AO lines can both be calibrated such that the lamp and LED can both be set at the

same photovoltage and we can switch between the AO lines selecting either the LED or

the lamp for the noise modulation. There are three issues why this simple scheme did not

work 1)The lamp draws current in excess of 300mA or a voltage of 2.5-3V. The DAQ card

was able to produce voltage from 0-10V but not the amperage required. 2)In Fig.(4.4) we

show the optical spectra of an L2656 LED driven the NI-DAQ card with a high impedance

10k. Even though such a resistance is sufficient to reduce the power supply noise in most

cases, we see that at frequencies from 100-550kHz the noise levels exceed the SNL from the

lamp by atleast 0.4dB and there are undesired harmonics. At frequencies above 600kHz

squeezing disappears as is seen with the case of the the power supply driving the LED

through the same resistance. These two issues itself make the DAQ card inappropriate for

this experiment and we have to look for other design choices.3)Notice that the LED and

lamp are to focused onto the same detector. Since the LED needs to be maintained in a

face coupled configuration covering the detector, it would make it harder to focus the lamp

for it to establish the same photovoltages as per the LED. This may be a simple mechanical

constraint but we could not find a solution at the time.

We next tried using discrete electronic components directly driving a single LED.Even

though we used many design choices(most of them by trial and error), we were restricted

to a few that worked which will be described here. The central premise of subshot noise

measurement is that the intensity fluctuations in the emitted light is a direct probe of the

statistical fluctuations in the electron-hole recombination rate which in turn requires a high

impedance suppression mechanism or pump noise suppression. Connecting a switch to the

LED modifies the pump noise suppression mechanism and can be seen(or solved) in two

ways:

1.By finding the spectral density of voltage or current fluctuations of the complete

equivalent noise model which includes the switching element and the LED together and
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Figure 4.4: Comparison of optical spectra with LED driven with DAQ,shot and sub-shot
noise sources.The inset shows a simple switching design using NI DAQ

2.Define an equivalent net impedance while looking back from the LED. If this impedance

is greater than the differential resistance of the LED we will have satisfied the constraints

of high impedance suppression. But this method(to us) is not theoretically sound, but has

worked for most of the configurations used.

Note that the switch simply replaces the manual SPST switch which we used in the

previous chapter and in order to design a successful modulator we have used the following

prescription: a)Does the introduction of the switch allow us to generate a calibrated SSL and

SNL level individually? If yes then b)Use this switch to construct a circuit, to modulate

between these two sources c)Add the ac signal modulation as a separate channel taking

care that it does not affect the statistics or adds switching noise. There are 3 methods of

directly controlling the noise level using a single LED,all of which we have experimentally

demonstrated in chapter 3:

1.Optical Switching: Controlling the efficiency is a simple way to switch between SNL

and SSL, and can be carried out by using acousto-optic modulation(AO-cell) or by using OD

filters with variable attenuation inserted in an optical chopper. An even simpler mechanical

way is to mount the LED on a movable base, and by moving it close and further away we

could control η0. The main disadvantage with these methods is that efficiency is already

very small in most experiments, and trying to calibrate the setup to produce SSL with
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additional optical elements in between the LED and PD would surely introduce partition

noise and would produce SNL instead. At the present stage, it is not even possible to

couple the light into a fiber unless we have much larger squeezing, and optoelectronic LED-

PD-LED repeaters will have to be used over very small distances to recreate the quantum

states.

2.Capacitive Switching: We had already established the difference between constant

voltage and constant current. We then tried the configuration where the transistor was

connected to the capacitor. By switching it on, the current would flow through the capacitor,

forming the Constant voltage(CV) case which would raise it to the shot noise level. When

the transistor was off, the high impedance formed would establish the Constant current case

required for subshot operation.

3.Direct Modulation: In this method, a BJT or a MOSFET can be used to switch an

LED between SNL and SSL cases. This method does away with some of the problems

with capacitive switching such as slow modulation speeds, but we need to know the noise

mechanisms of the switch itself which influences the photon noise of the LED. We shall now

focus on capacitive switching and direct modulation schemes in greater detail.

4.3.1 Capacitive Switching

The capacitive switching principle is shown in the circuit diagram of Fig.(4.5a). The switch

which could be a transistor or a MOSFET connects or disconnects the capacitor from the

circuit. This in turn modulates the optical spectra between the shot level when the capacitor

is inserted and the subshot levels when it is removed. At the same time, a signal source

such as a function generator with an offset can be connected through RS to the LED in

order to perform the ac modulation. In order to establish shot noise levels, the capacitors

should be quite large(around 1mF-10uF). But with the introduction of these large capacitors

and the presence of R = rd + rs (where rs is the internal diode series resistance and rd

is the differential resistance) introduces a RC low pass filter into the problem and 3dB

frequency is drastically reduced from the original modulation frequency.For example with

a diode capacitance of C = 100nF , and R=5ohms, the 3db point is fc = 1
2πRC = 318Khz.
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Figure 4.5: (a)Design of a capacitive switching circuit (b)Switching waveforms for MOSFET
and AC switching (c)Optical spectra of true subshot noise compared with subshot spectra
obtained by using a Capacitor with 5Ω in series

When we introduce a capacitor of 1mF parallel to the diode, the internal capacitance can

be neglected and the 3dB cutoff frequency is now 31.8Hz. Note that the extrinsic time

constant RC which determines the ac bandwidth is slightly different from the internal

diode thermionic emission time constant RdC or the recombination lifetime both of which

determine the squeezing bandwidth. If the diode series resistance is negligible, then the ac

modulation is governed by rd(Cdep + Cdiff ) ≈ rdCdiff which is approximately the radiative

lifetime in moderate diffusion regime. The radiative lifetime predominantly depends on

the doping levels and under these conditions both ac and noise modulation bandwidths

may coincide. Let us now describe the switching processes taking place for a transient

analysis perspective. Two square wave generators VSW and VS are applied to the switch

and the LED independently with the assumption that the duration of the on time of the



197

switchTon,SW is much larger than the time period of the square wave modulation to the

LED. This establishes our requirement that the frequency of noise modulation is much

smaller than the ac modulation.

Let us assume for the time being that VS produces a steady dc voltage of 10V. When

the switch is off, the voltage across the capacitor VC is zero and the LED has a voltage

V0 = 1.245V across it. When the switch is first turned on, a voltage across the capacitor has

to be developed which can be written as VC(t) = VLED(1 − e−t/RC). This effect is seen in

the numerical simulation performed in Fig.(4.5b) where at time t=1secs when the switch is

turned on, voltage across the LED is first pulled to zero followed by the exponential increase

to VLED again. When the switch is turned off at t=3secs, the voltage does not discharge

but remains pinned to VLED. In Fig.(4.5b),we show the case when VS is modulated between

9 and 10volts when the switch is on. The voltage across the capacitor can be written as

VC(t) = VI + (VF − VI)(1 − e−t/RC) (4.22)

. where VI is the voltage across the LED at time t=0 corresponding to VS = 9V and VF = V0

is the final voltage which corresponds to VS = 10. We can easily test the validity of Eq.(4.22)

with the numerical results. For the case of TON,S = 0.1s, we see that VF = 1.245V and

VI = 1.236V . At t = τ , we can obtain VC(t) = 1.247s. This corresponds to t=7.947ms. Now

we can estimate the RC time constant as τ = RC = t

ln

�
1

1−(VC (t)−V)/VF−V0)

� . Substituting the

values with C = 1mF , we find R=8.16Ω. This agrees exactly with the sum of rs = 1.88Ω

and rd = 6.28Ω. We also point out that this method is very useful to experimentally

determine the value of the series resistance, from the dc characteristics alone. As RC

product decreases when the capacitor is removed, the rise time increases and the LED

follows the square wave shape of the supply VS . So as we alternate between shot and

subshot modulation, we switch between two ac modulation bandwidths where only the

slowest of signal frequencies are allowed to pass during the shot noise period of duration

TON,SW . This also causes another issue which can be seen the dashed curves of Fig.(4.5b),

where the faster modulation frequencies have smaller peak-peak swings since the capacitor

is not allowed to fully charge and discharge.
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Fig.(4.5c) shows the noise spectra for the L9337 LED with the upper plot indicat-

ing (a)capacitor in parallel with a small resistance in series and the lower plot indicating

(b)When the switch is opened producing a subshot level. For the switching element,we first

tried to use a Cadmium sulphide light dependent resistor since it has a large impedance

when no light shines on it. Shining light on the LDR decreases the resistance but it was

still large enough that high impedance pump suppression eliminated all signs of squeezing.

We replaced the LDR with various resistors and found that even a 5ohm resistor produced

subshot levels which we observe in Fig.(4.5c) to be quite close to the true subshot level

obtained without the capacitor. Unless we could establish a nearly 0 resistance, it is very

hard to produce shot noise levels using the capacitive method. Using a capacitor establishes

an approximate constant voltage condition and since the L9337 is a heterojunction device

based on the thermionic emission model, it is quite possible to observe squeezing under con-

stant voltage conditions. If we measure the relative difference between the two smoothed

curves, we find a result of 0.25dB at around 290kHz .Considering that the L9337 is capable

of 1-1.5dB squeezing, this clearly shows that the upper plot is not at the true shot noise

level. Most switches introduce some finite resistance, but we found the IRF510 to work well

because of its low on resistance(approx 0.5ohms). The 2N2222 BJT and 4066 switch were

also tried with small success since these elements introduced large resistances. Because of

insufficient squeezing,slow ac modulations and sudden bandwidth changes between shot and

subshot pulse durations, we were forced to look for an alternate design.

4.3.2 Direct Modulation with BJT

Switching mechanism of the transistor: The transistor is operated as a switch with the

LED as a collector load. The low voltage Vi ≈ 0.7V is sufficient to cause the BJT to be in

the cutoff region with a negligible base current according to the equation iB = Vi−VBE
RB

.The

LED is off since collector current ic = 0.For an input voltage Vi > 0.7V it is sufficient to

place the BJT in linear active or saturation region where ic ≤ βib. As the BE junction

is forward biased the collector current can be obtained using KVL around CE circuit as

ic = VCC−VLED−VCE
RC

. Hence we can operate the BJT in the cutoff region for Vi < VBE
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and linear active region VBE < Vi < VBE + RB
VCC−VLED−VCE,sat

βRC
and saturation regions

according to Vi ≥ VBE + RB
VCC−VLED−VCE,sat

βRC
where in the saturation region we have

VCE,sat ≈ VBE
2 . Another option is to use the LED as an emitter load. The goal is not to

simply turn the LED on and off but to switch between the two quantum states ie. SNL

and SSL. In order to do so, the collector or emitter current shot noise should be suppressed

and should be able to assume a range of drive Fanofactors from 0 to 1. Another issue we

wish to sidestep is the modulation aspects of noise in BJTs. This is within the realm of

small signal large signal (SSLS) analysis and is still an open topic of research. As before

we assume that the signal period is sufficiently long that noise characteristics during the

transient periods such as on time,off time and storage time are unimportant.

+
−

+
−

L2656-CE Mode

Emitter Follower

ish

9V

9V

RB=1k

1k

SW1

SW2

C

Figure 4.6: (a)Circuit Diagrams for transistor in open circuit base/closed base setups in CE

and CC configurations (b)Load line of L2656 with numerical Ic − Vce characteristics of the

2N2222 transistor

SIE
(ω) = 4qIE(

GE(ω)

GE(0)
− 1/2) ≈ 2qIE , SIC

(ω) = 2qIC (4.23)

where GE(ω) is the conductance of the emitter base junction and at low frequencies,

GE ≈ GE(0) which leads to the forward biased emitter current showing full shot noise

whereas the reverse biased collector current features full shot noise at all frequencies. The

correlation between the emitter and collector terminal fluctuations ΓCE can be obtained
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from the cross-correlation spectral densities SCE [16] as

SCE(ω) = −2qIC
αSGE

α0SGE0
(4.24)

ΓCE =
SCE(ω)

[SIC
(ω)SIE

(ω)]1/2
≈ −√α0 (4.25)

In most modern transistors(at least in the linear active region) the common-base current

gain α0 → 1 over much of the frequency range. This implies that the collector and emitter

current fluctuations are negatively correlated ie. An electron increase in the collector current

is due to an electron decrease in the emitter current. In fact the base can be modeled as a

linear beam splitter and we shall do so in the following analysis. From Eq.(4.23) it would

seem reasonable that the small signal equivalent noise model of the BJT should include two

current noise generators iesn from the emitter to base and icsn from collector to base. Notice

that even though the collector features full shot noise at all frequencies, icsn is correlated

with the emitter current and so it should not be included. But when α0 → 0 as β → 0 the

transistor is placed in deep saturation but Eq.(4.23) is still valid. It would seem then the

collector current noise generator icsn would have to be included. Also in order to prevent

clipping and distortion when the BJT is used as an amplifier, the small signal models(eg. the

hybrid-π model) are themselves only valid in the linear active region[75] or more precisely

the linear region between cutoff and saturation in the voltage transfer characteristics.We

shall revisit these issues later but first let us obtain the Fanofactors of the collector current

in the linear active region.

FanoFactors for the hybrid-π,Van-Der Ziel T model and the Grey-Meyer model

We would like to obtain the output noise current fluctuations or the Fanofactor of the

common emitter configurations (as the common collector or common base configurations can

be obtained from simple rearranging of the CE circuit model). Typically this is done by using

the superposition theorem by finding the square of the output noise current due to each noise

source present in the small signal equivalent model and adding them up. The goal in this

section is to show the hybrid-π model of Fig.(4.7a) which includes a hypothetical collector
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shot noise current always(not shown in figure) and the amplification of the base terminal

shot noise is flawed in analyzing the output noise current and it is infact the T model of

Van-derZiel in Fig.(4.7b) which includes a fraction of the base-emitter shot noise and an

additive partition noise component which is valid. In fact the above assertion has already

been claimed and proved experimentally by Edwards[1] by advocating the T model, but we

shall do the same theoretically. Before we start. let us state some assumptions: Since we

are interested in lifetimes smaller than the transit time across the base as well as thermionic

emission lifetime(ie. the base emitter junction follows the same junction dynamics of the pn

diode) we ignore the parameters associated with the base width modulation effect Cμ and

feedback resistance rμ on the basis that they appear in high frequency models. Losing these

feedback elements limits the application of the equivalent circuit to frequencies less than

fβ = fT√
β

where fβ is the frequency at which the magnitude of the frequency dependent

gain |β(jω)| reduces by 3dB from its dc value and fT is the transition frequency where

|β(jω)| = 1and is a measure of the maximum useful frequency for the transistor to be used

as an amplifier. The output resistance r0 = VA
IC

for an Early Voltage of around 100V and

collector current of 1mA is is quite large at 100kΩ and so its effect can also be neglected

in calculating the output voltage spectral density when the load resistance is smaller. We

can also neglect its effect when obtaining the collector current which changes with vce as

follows ic = βIb + vCE
r0

≈ βib. These assumptions are incorporated into the hybrid-π and

the T-models in Fig.(4.7). First let us compare the output noise currents of the two models

and the junction voltage fluctuation obtained for the π model using nodal analysis at the

node B’ is

vjn =
ibsn − ith

1
rπ

+ 1
RS+rb

+ sCπ
(4.26)

where ith is the thermal noise current flowing into the base, rb is the ohmic resistance

of the lightly doped base region between the external base contact and the active base

region,Rs is the source resistance(not shown in Fig.(4.7a)) but can be accommodated in rb

as an overall resistance looking backwards from the base terminal) , ibsn is the base shot

noise current and rπ is the base emitter dynamic resistance and Cπ = Cb + Cje is the sum

of the base charging capacitance and emitter-base depletion layer capacitance. Applying
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high impedance pump suppression ie. Rs + rb � rd, the emitter is short circuited and the

base is open circuited which leads to ith → 0. This leads to

vjn =
ibsn

1
rπ

+ sCπ
=

ibsnrπ

1 + sCπrπ
(4.27)

The noise current flowing across the dynamic resistance rπ is obtained by first converting

the Norton equivalent of ibsn − rπ to the Thevenin equivalent vbsn − rπ and then obtaining

the noise current that flows through rπ.

ib =
vbsn − vjn

rπ
=

ibsnsCπrπ

1 + sCπrπ
(4.28)

If we make the following πto T model transformation rπ = (β + 1)re and 1 − α = 1
1+β

the collector current obtained is

ic = βib =
βibsnsCπre

(1− α) + sCπre
(4.29)

The output noise current obtained using the π-model when compared with Van Der-

Ziel T noise model under the same open base-grounded emitter configuration(which will

be determined later) as far as the collector shot noise is concerned(ie. partition noise is

neglected for the time) is given by

ic = αie =
αiesnsCπre

(1− α) + sCπre
(4.30)

The above expression is also known as open base-shorted emitter configuration as the

base terminal has a high impedance in series with it and the emitter is grounded. In order

for the Eqs.(4.29 and 4.30) to yield the same result we requireαiesn = βibsn or rather by

squaring both sides it shows that the two models are equivalent only we have the following

equality α = β which is clearly incorrect. This shows that the hybrid-π model and the T

model are not equivalent to each other unless the we doubt transformation of rπ = kT
qIB

to

re = kT
qIE

or we redefine the base shot noise current as ibsn → 1√
1+β

ibsn. Finally we would

like to state the Grey and Meyer (GM) result[75] where the collector terminal is always set

at the full shot noise level and the base current noise is calculated incorrectly as

ib =
ZRS

Z + RS
ibsn ≈ ibsnrπ

1 + sCπrπ
(4.31)
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where Z = rπ// 1
sCπ

.The above expression employs the same hybrid-π model of Fig.(4.7a)

in order to obtain the result, but it deviates from Eq.(4.28) which we obtained using nodal

analysis. This is because the base-emitter shot noise was not associated only with the

differential resistance but with the net impedance Z. This model in addition includes a full

shot noise current at the collector terminal and hence the total noise as predicted by the

GM model is given as

ic =
βibsn

1 + sCπrπ
+ icsn (4.32)

The GM model suggests that the collector current noise must be at least equal to the

full shot noise whereas the hybrid-π and the T model indicate otherwise. Also the hybrid-

π model and T model show that the collector shot noise can be suppressed under high

impedance conditions and tend to the full shot noise level at large frequencies for the T model

and approximately β times the full shot noise for the hybrid-π model. In order to choose

the correct model, it must hold up to the scrutiny of current noise under constant voltage

conditions. Most textbooks indicate[75] that the base current noise in the hybrid-π model

consists of charges crossing from the base to emitter(IEn), a recombination current in the

base(Irec) and charges crossing from base to collector(ICn ) and is known as the macroscopic

description of base shot noise which claims that all these elements are individual random

processes leading to a sum shot noise process which is 2q(IEn + Irec + ICn). The exact

microscopic formulation however is quite different and shows us that the two processes,

generation-recombination and diffusion noise in the base leads to shot noise in both the

emitter and collector terminals according to Eq.(4.23) and the base terminal noise must be

composed of those elements . Taking the Fourier transform of the terminal base current

IB = IE− IC and finding its spectral density < I∗B(ω)IB(ω) >= SIB
by using Eq.(4.23) and

Eq.(4.24) we have

SIB
= SIe + SIC

+ 2Re(SCE(ω)) = 2qIC(
1

β
+

2GE − (αsYE + α∗sY ∗E)

α0sGE0
− 2

(1− α0s)

α0s
) (4.33)

At low frequencies the base current spectral density is approximately 2qIC/β . These

expressions are valid only under constant voltage conditions ie. the junction voltage is

pinned and the corresponding fluctuations in the minority carrier densities at the boundaries

of the base are fixed(no noise) which is p(0) = p(WB) = 0. So it would be reasonable that
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the πmodel should reproduce the results of Eq.(4.23) at the collector terminal and 2qIB at

the base terminal under constant voltage conditions for the model to be valid. The base-

emitter circuit at low frequencies where the capacitor offers infinite impedance leads to the

following base current (which can be extracted into the external base circuit)

< i2b >=
< v2

bsn > + < v2
b >

(rπ + rb)2
≈ 2qIB (4.34)

The assumption made in Eq.(4.34) in arriving at 2qIB is that rb is quite small(which

is not altogether true as it has values from 50-200Ω and is a function of current at high

injection levels). If we proceed with this, the collector terminal should read i2c = β2qIC

which is as we have stated earlier and violates Eq.(4.23) whereas the base terminal is

correctly determined as per the constant voltage conditions. Next we check the T model

and under constant voltage conditions. This can be seen from Fig.(4.7b) where the emitter

and base are grounded. Assuming rc, rb are not present and at low frequency Cπ offers a

high impedance, the internal shot noise source ie = iesn can be extracted into the external

circuit validating Eq.(4.23). The collector current obtained neglecting the partition noise

component since α ≈ 1 in linear active region leads to ic = αie ≈ iesn validating the collector

current noise spectral density of Eq.(4.23) . Thus the T model is the correct choice.

The following numerical plots are obtained using the parameters obtained from the

2N2222A datasheet[76] which was used to define the BJT model in Spice in order to obtain

the small signal quantities for the linear-active and saturation regions using the modified

Gummel-Poon model. From the IC − VBE curve of the datasheet, we obtain VBE = 0.7V

at IC = 20mA and choosing an ideality factor of η = 1, and using the formula IC =

IS [exp(VBE/ηkT ) − 1]the saturation current is IS = .33fA. The DC gain βdc(hFE in the

datasheet) is specified at 150mA to be from a minimum of 100 to a maximum of 300. We

take the geometrical mean of 173. The gain is a widely fluctuating parameter even among

various transistor samples.The emitter-base depletion capacitance is specified as Cje = 25pF

at a reverse bias of VEB = 0.5V . The zero bias capacitance can be obtained simply using

Cje0 = Cje(1 + VEB
ψ0E

)1/3 to be 30pF with a built in potential ψ0E = 0.75V . Similarly the

zero bias collector base capacitance is obtained to be Cμ0 = 19.4pF using the data that

Cμ = 8pF at VCB = 10V and ψ0C = 0.75V . The output resistance r0 at VCE = 10V
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Figure 4.7: (a) Grey and Meyer hybrid-π Bipolar transistor model (b)Van-derZiel-Chenette
T bipolar transistor model

and IC = 10m,A is 8.3 ∗ 103Ω which gives an early voltage of VA = r0IC = 83.3V . The

most important parameter is perhaps the transit time across the base region which can

be obtained from the transition frequency which is fT = 300Mhz or τT = 530.5ps at

IC = 20mA and VCE = 20V . The transition time is related to the base transit time τF as

τT = τF + 1
gm

(Cje + Cμ). We can find the corresponding Cje = 25pF and Cμ = 6.5pF at

VEB = 0.7V and VCB = 19.3V which in turn gives τF = 489.8ps. The total capacitance

is Cπ = Cje + Cb where Cb = gmτF is the base charging capacitance.The reverse transit

time is taken as approximately τR = 10τF = 4.9ns. The rest of the parameters which

determine second order effects such as high injection current,base width modulation,contact

resistances,etc use the conventional model parameters(from the library EVAL.LIB) present

in SPICE.

T model with partition noise

Edwards[1] has claimed that both the base shot noise and the collector shot noise are

unphysical quantities associated with and we have proven so in the previous section. Now

we shall use the circuit diagram of Fig.(4.7b) which illustrates the Van Der Ziel-Chenette
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Figure 4.8: (a)Electrical Fanofactors of grounded base-open emitter Power BJT from
[1](b)Comparison of Fanofactors for the hybrid-π, T and GM Models

model[77] obtained by adding an emf eesn in series with the emitter or iesn in parallel as

we have done and a current generator ip in parallel with the collector. The generator iesn

and ip are generally correlated which can be shown to be a byproduct of the partition noise

mechanism due to the iesn − ic correlation of Eq.(4.24). The total collector current noise is

i2c = α2i2e + i2p.The partition noise current in the T model at low frequencies is written as??

i2p = 2eIE(αdc(1− αdc) + (α0 − αdc)
2) ≈ 2e(1 − αdc)IC (4.35)

where the last equality in Eq.(4.35) is due to the fact that (α0 − αdc) � 1 and can be

neglected.Typically transistors have α0, αdc ≈ 1 which removes this partition noise compo-

nent. From Eq.(4.35) , the collector shot noise may be thought of as the output of a beam

splitter with efficiency α ≤ 1 where the input is the emitter current and the partitioning

process is the loss of carriers due to transit in the base We can informally arrive at expres-

sions for icand ip by using the Bernoulli selection process on a Poisson statistics[19] . The

collector particle number variance is given as

Δm2 = α2Δn2 + α(1 − α)n (4.36)

Here Δn2 is the variance in particle number of the emitter current and n is the average.

Multiplying by e2and dividing by the observation time scaleΔt2(not uncertainty) we obtain

e2Δm2

Δt2
= α2 e2Δn2

Δt2
+ α(1 − α)

e2n

Δt2
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2eicB = α22eieB + α(1 − α)2eieB (4.37)

Using the relations en
Δt = ie and the fact that the collector and emitter are shot noise

limited currents ie. Δm2 = m,Δn2 = n and the observation time is the reciprocal of twice

the bandwidth-B we have obtained Eq.(4.37) from which we can infer Eq. (4.35). Now we

shall calculate the collector terminal Fanofactor for 3 possible configurations of the T model

obtained by either opening or shorting the emitter and base terminals. When a terminal is

left open, we place a high impedance(eg. a constant current supply) source in its place and

when the terminal is shorted it implies a low impedance source such as a constant voltage

supply.

1.Shorted emitter-Shorted base configuration: Grounding the base and emitter termi-

nals,and writing KCL at node E for the T model of figure(neglecting r0), we arrive at the

junction voltage fluctuation as

vjn =
αie + ip + vesn

re
+ vbn

rb

( 1
re

+ 1
rb

+ sCe)
(4.38)

The emitter current which flows through the dynamic emitter resistance re is obtained

as

ie =
vjn − vesn

re
=

αie + ip + vbn
rb
− iesn( re

rb
+ sCere)

1 + re
rb

+ sCere
(4.39)

Note that the both sides of the equality have an ie component. This is a feedback process

that corrects the emitter fluctuations from the output collector fluctuations. Collecting

terms the net emitter current is

ie =
ip + vbn

rb
− iesn(δ + jγ)

(1− α + δ) + jγ
(4.40)

where we have set δ = re
rb

and γ = ωCere for notational simplicity.The total collector

current noise which is the sum of the shot noise component and the partition noise is

expressed as

ic = αie + ip =
αvbn

rb
− αiesn(δ + jγ)

(1− α + δ) + jγ
+

αip
(1− α + δ) + jγ

+ ip (4.41)

The noise spectral density at the collector is calculated as < i2c >=< |i∗c ic| > and we see

that the two noise sources vbn and iesn are uncorrelated and can be added in quadrature.
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The partition noise component however < |i∗pip| > leads to a cross term of the form 2α|(1−
α + δ) + jγ| and the final equation can be written as

< i2c >=
α2 < i2esn > (δ2 + γ2) + α2 v2

bn

r2
b

(1− α + δ)2 + γ2
+ < i2p >

(α +
√

(1− α + δ)2 + γ2)2

(1− α + δ)2 + γ2
(4.42)

At low frequencies, the collector current noise density is given as

< i2cn >=
α2 < i2esn > δ2 + α2 v2

bn

r2
b

(1− α + δ)2
+

(1− α)(1 + δ)2 < icsn >2

(1− α + δ)2 + γ2
(4.43)

We see that as α ≈ 1, the low frequency collector current noise tends to the full shot

noise. This is the same result as predicted by Buckingham’s diffusion theory for noise as per

Eq.(4.23) where the emitter base and the collector base are biased in the constant voltage

regime. When α < 1, then the noise current tends to be slightly larger than the shot

noise level. As we move to higher frequencies, it once again approaches the SNL. Thermal

noise due to the base resistance is very significant since there are no source resistances and

associated thermal noise with the supplies.

2. Shorted Emitter-Open Base: The collector current noise density can be obtained by

making the base resistance very large(open circuited), thus treating it as a high impedance

constant current generator,in effect removing its thermal noise contribution(along with any

resistances associated with the supply).Setting rb, δ →∞ in Eq.(4.43) gives us

< i2c >=
α2 < i2esn > γ2

(1− α)2 + γ2
+ < i2p >

(α +
√

(1− α)2 + γ2)2

(1− α)2 + γ2
(4.44)

At low frequencies, as α ≈ 1 the partition noise component is zero and collector noise

is at the full SNL of the emitter. This result is the same as expected and is independent of

the type of bias(constant current or voltage). When α �= 1, the collector noise raises above

the SNL and is given as< i2c >=< i2csn > 1
1−α ≈ β < i2csn >ie. the collector current noise

is β times the full shot noise of the collector current . At higher frequencies, the first and

second terms in equation reduce as < i2c >≈ α < i2csn > +(1 − α) < i2csn > ie. it reverts

back to the SNL as in case 1.

3.Open Emitter-Shorted/Open Base: In this case, the emitter noise current is zero

according to the high impedance suppression scheme. Only the internal shot noise generator
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iesn supplies the loop current and as in the case of the pn diode, it cannot be measured at the

output emitter terminal. Also the emitter noise current has a high-pass filter characteristic

and is suppressed below the shot noise at low frequencies according to

ie =
vesn

(re + 1
sCe

)
=

iesnγ

1 + jγ
(4.45)

As the frequency rises ie tends towards the SNL since the diffusion capacitance Ce

removes the negative feedback loop and the regulation mechanism is lost ie, the emitter

current keeps up with the shot noise fluctuations which happens on very short observation

timescales.

ic = αie + ip →< i2c >=
α2 < i2esn > γ2

1 + γ2
+ (1− α) < i2csn > (4.46)

At low frequencies, the current noise spectral density which is primarily due to the

partition noise component(as it is in the other two cases) is given by < i2c >= (1 − α) <

i2csn >= 1
β < i2csn > , ie. the partition noise component has been suppressed by β below

the full shot noise collector current. This is the only case where we can expect a subshot

behavior for the collector current. So if we need to switch an LED on and off with subshot

drive current, the BJT has to be operated in the open emitter configuration. The small

signal parameters in Table.(4.1) are used to calculate the Fanofactors by normalizing the

collector current spectral density to the shot noise spectral density. In Fig.(4.9a) ,we have

plotted the Fanofactors of the grounded base-grounded emitter configuration without the

v2
bn/r2

b term. This term by itself would raise the noise level and would dominate F, but if by

reducing rb (this parameter can only be changed during fabrication process) ,we can make

it smaller than other elements of term-1 in Eq.(4.43). The effect of term-2 which represents

the partition noise component is negligible here. Term1 by itself is subshot (approx F=0.9)

at smaller frequencies but raises to the shot level at higher frequencies and the reason why

the curves exhibit F > 1, is because of the partition term addition. For a fixed IB = 10μA,

and decreasing VCE we see that F decreases. This is because as VCE decreases IC decreases

causing α to decrease which reduces the amount of subshot noise transferred from emitter to

collector. The partition noise component increases as 1−α and for VCE = 1V it is larger than

VCE = 10V . The sum total of these components causes the Fanofactor for the VCE = 10V

case to be larger than the VCE = 1V case. On the other hand,for IB = 1μA, changing
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Figure 4.9: Numerical Fanofactors for the three cases of (a)grounded base-grounded emitter
(b)open base-grounded emitter and (c)grounded base-open emitter configurations

VCE from 10V to 0.1V increases F. Once again the partition noise term increases from

10V to 1V and the subshot term decreases but the increase in partition noise component is

sufficient to raise F for VCE = 1V above that of VCE = 10V . Note that by changing VCE,F

changes by as small as 0.002 which is nearly impossible to experimentally verify and for

all purposes, we can say that the collector current generates only the base thermal current

with F > 1 at low frequencies and the shot noise current with F=1 at higher frequencies.

Fig.(4.9b) plots the Fanofactors for the open base-grounded configuration. Here the emitter

shot noise is completely suppressed at low frequencies and F is given by the partition noise

component of term-2 in Eq.(4.44). If we assume that (αac − αdc)
2 is negligible then the

partition noise is< i2p >≈ 2qIEαdc(1− αdc). The Fanofactor at low frequencies can then be

obtained as F ≈ 1−αdc
(1−αac)2

. By substituting the values of αac, αdc from Table.(4.1) we see

that F decreases from 209 to 186 and then increases to 268 as we reduce VCE from 10V to
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0.1V. In Fig.(4.9c) ,the Fanofactor is almost completely dependent on term-1 of Eq.(4.46)

with the partition noise component negligible and at low frequencies F ≈ 0 and at high

frequencies it is F ≈ α2
ac

αdc
≈ 1.The method of biasing obtained by fixing the base current IB

and varying VCE may appear strange particularly to the grounded emitter-grounded base

configuration which is equivalent to saying that a constant voltage source applied to the

base emitter junction. Spice does not make such distinctions and in fixing IB we also fix

VBE and vice-versa, until we move into saturation. If we apply a constant voltage VBE

and decrease VCE when the transistor is in saturation, the previously constant base current

increases from its value in the linear active region. The small signal parameters are also

completely valid in saturation and can be added straightforwardly to the T-model as we

shall see in the next section.

VCE(V ) IB βdc Cπ rπ βac

10V 10μA 173 64.1pF 2.85 ∗ 103Ω 190

1 10μA 154 61.1pF 2.85 ∗ 103Ω 169

0.1 10μA 93.3 51.5pF 4.38 ∗ 103Ω 158

10 1μA 131 36.8pF 2.97 ∗ 104Ω 150

1 1μA 117 36.6pF 2.97 ∗ 104Ω 134

0.1 1μA 77.6 35.8pF 4.12 ∗ 104Ω 124

Table 4.1: Small Signal parameters used in the calculations of Fanofactors for the three
configurations plotted in Fig:

Noise Model Under Saturation

If we are to switch a transistor between cutoff and saturation, we need to make sure that

the above models are valid in the saturation region. We now see if the the T model can

be used to predict noise in saturation.We neglect quasi-saturation region where when the

collector current is high enough ,it forward biases the junction causing saturation to occur

when it is supposedly linear active. We also neglect any base pushout effects where the

collector epilayer is reclaimed as part of the base which causes affects the transition fre-

quency. The analysis is ideal, ie we neglect the collector base and emitter base depletion

region recombination noise and the currents are given by the Shockley diffusion model. The

transistor is assumed to be n++p+n which allows us to construct the emitter and collector
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current carried only by minority carrier electrons in the base region whose carrier profile is

written as[10]

n(x) = np0 + (n(0) − np0)(
sinh(W−x

L )

sinh W
L

) + (n(W )− np0)
sinh x

L

sinh W
L

= n(0)− (n(0) − n(W ))(
x′

W
) (4.47)

where the second equality uses the assumption that W � L.Using the same methodology

as the junction diodes, the emitter current spectral density and collector current spectral

density are each composed of two integrals one dealing with the diffusion component and

the other with the generation recombination term each setting up relaxation current flows

followed by a net charge imbalance over the entire base region.In the transistor the collector

junction maintains the boundary condition but the majority carriers are supplied from the

base contact to neutralize the potentials in the base region whereas in the diode the metal

contact provided both these functions. The minority carrier fluctuations at the the x=0

and x = W edges of the base(where W is the edge of the base-collector depletion region

under zero bias) are written as[49]

SIE
=

4A

D

∫ W

0
n(x)| k0k2

k1 + k2
|2dx +

2q2A

τr

∫ W

0
(n(x) + np0)| k0

k1 + k2
|2dx (4.48)

SIC
=

4A

D

∫ W

0
n(x)| k1kW

k1 + k2
|2dx +

2q2A

τr

∫ W

0
(n(x) + np0)| kW

k1 + k2
|2dx (4.49)

where k0, k1, k2, kW are the same hyperbolic functions defined in chapter 2 and τn is

the minority carrier lifetime. Under the low frequency condition ωτn � 1 which leads to

W � |Ln| ≈ L0 (where Ln and L0 are the ac and dc diffusion lengths) we have

k0k2

k1 + k2
=

kW k1

k1 + k2
≈ qDn

W
(4.50)

k0

k1 + k2
≈ 1− x′

W
,

kW

k1 + k2
≈ x′

W
(4.51)

Substituting in Eq.(4.50,4.51) and Eq.(4.47) in Eq.(4.48,4.49), we obtain

SIE
=

2q2ADn

W
(n(0) + n(W )) +

2q2AW

τn
(
n(0)

4
+

n(W )

12
) (4.52)

SIC
=

2q2ADn

W
(n(0) + n(W )) +

2q2AW

τn
(
n(0)

12
+

n(W )

4
) (4.53)
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Setting τn =
L2

0
Dn

and comparing the coefficients of each of the terms, we see that 2q2ADn
W
W 2 �

2q2ADn
W
L2

)

and so we can neglect the second term in the above two equations. In modern

gain transistors, the effect of recombination in the base is small, the emitter and collector

fluctuations are primarily due to thermal fluctuations of minority carriers. The emitter

diffusion current can be expressed as IE = IEp + IEn ≈ IEn since the emitter is more heav-

ily doped than the base and the current due to holes crossing from base to emitter IEp is

negligible. The collector current is IC = ICp + ICn where in saturation where both the hole

and electron currents are non-negligible. The base current is the sum of the recombination

current(Irec),hole current from base to emitter(IEp) and collector(ICp ). These currents are

obtained by solving the diffusion equation[10] using Eq.(4.47) as

IE ≈ IEn =
qADn

W
(n(0)− n(W )) (4.54)

IC =
qADn

W
(n(0)− n(W ))− qADpCpoC

LpC
exp(

qVBC

kT
− 1) (4.55)

IB =
qAW

2τn
(n(0) + n(W )) +

qADpEpoE

LpE
exp(

qVBE

kT
− 1)− qADpCpoC

LpC
exp(

qVBC

kT
− 1)(4.56)

where we see that the electron collector current(first term) of Eq.(4.55) evaluated from

the diffusion equation at x=W is the same as the emitter current ie. ICn = IEn implying

negligible recombination.We can then define the transit time for a minority carrier across

the base in saturation as

τB =
QB

ICn

= τB0
n(0) + n(W )

n(0)− n(W )
(4.57)

where τB0 = W 2

2Dn
is the base transit time in the linear active region where W is the thickness

of the base. Then the emitter and collector spectral density of Eq.(4.52) and Eq.(4.53) with

the help of Eq.(4.57) becomes

SIE
= SIc = 2qIE

n(0) + n(W )

n(0)− n(W )
= 2qIE

τB

τB0
(4.58)

According to the above equation, we see that as we move deeper into saturation, the

electron collector current decreases,and the shot noise increases or equivalently, the increase

in shot noise is due to the minority carriers which take a long time to cross the base. Note

that we have ignored noise at the bulk collector region which has to be included as move into



214

saturation but is still small compared to the enhanced noise calculated in the base region at

the x=0 and W planes. The above shot noise source is placed in parallel with the emitter

admittance(which includes the resistance and diffusion capacitance) along with a circuit

embedding procedure which includes the depletion region capacitance and parasitics.This

is the same procedure followed for constructing the noise model of the diode.

Next we ask if the small signal parameters seen in the T-model are valid in ’light’

saturation which would also determine the bandwidth dependence on subshot noise. Using

Eq.(4.55) ,we can obtain the transconductance as

gm =
∂IC

∂VBE
+

∂IC

∂VBC
=

qIC

kT
(4.59)

From the linear active to the saturation region, we see that gm is proportional to the collector

terminal current IC .The small signal dynamic resistance of the BE junction in saturation

does not take the form kT/qIB and we can see this from Eq.(4.56) that

rπ = (
∂IB

∂VBE
)−1 ≈ kT

q
((

qAWnp0

2τn
+

qADpEp0E

LpE
) exp(

qVBE

kT
))−1 (4.60)

From Eq.(4.60) we see that fixing VBE also fixes rπ. As we move deeper into saturation

by reducing VCE ,the electron distribution n(W ) increases with increasing base-collector

forward bias but n(0) remains constant because of fixed VBE . This in turn increases IB but

rπ remains the same. We can however write rπ = kT/qIBAct where IBAct is the current

in the active region for a certain VBE . Since IBAct is always smaller than IB, the actual

rπ > kT
qIB

. We have verified gm quantitatively through numerical simulations with minimal

error but we can only qualitatively explain rπ since we don’t know IBAct.For example,the

2N2222 with the biasing values IB = 10μA, VCE = 0.1V gave a current of IC = .933mA

with gm = 3.61 ∗ 10−2mho and for the case of IB = 10μA, VCE = 0.11V , IC = 1.07mA and

gm = 4.11 ∗ 10−2mho. We see that both these cases agree with Eq.(4.59). rπ on the other

hand varied for both these tests since VBE varied as we changed VCE.But with VBE fixed

at 0.645V and adjusting VCE we found rπ = 4.3 ∗ 103Ω to be also fixed which validates

Eq.(4.60). At a certain point, there would no collection of electrons by the collector causing

the noise to be entirely due to the partition noise component.

As we saw in the beginning of this section,there are two biasing equations for the LED
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obtained by writing the KVL first at the BE and CE terminals and their parameters are

important in determining the 3dB response of squeezing.

1. We can fix IB to be a constant, by solving the BE KVL assuming the BE junction

is on(0.7V). Next we can modify either RC or VCC which would in turn affect the load line

causing the transistor to be placed in saturation or active regions which in turn determines

both IC and VCE based on the intersection of the load line with the IC−VCE characteristics .

When RC = 0, we are led to the absence of the loadline by keeping, the CE voltage constant

which in turn fixes IC . This is the condition under which the small signal gain β is defined.

If we had a load, vCE as well as iC is allowed to fluctuate to any modulation in the base

current iB .

2.We keep VCE constant, changing IB by changing VBB or RB . This in turn changes IC

but keeping β relatively unchanged if it is in the linear active region. The above two cases

can be studied in spice by using a current source at the input and voltage source at the

output of the BJT and extracting their small signal parameters which can then be used to

plot the three T model configurations.

The circuit of Fig.(4.6a) was designed to be switched from saturation to cutoff. The base-

emitter circuit was setup to turn the transistor on, with a current of 9−0.75
1k = 8.25mA.The

collector current was set to be around 7.7mA by fixing a limiting resistor of 1k to the

LED and adjusting the VCC . This is also the drive current to the LED which leads to

VLED ≈ 1.2V and VCE ≈ 0.1V . We can see that this is well into saturation with βdc < 1.

Fig.(4.6b) plots the IC−VCE characteristics from Spice which also validates these parameters

by plotting the LED+RC load-line onto these curves and finding the values at the Q-point.

Spectral Density Fluctuations in the LED

The above section obtained the collector current noise which is now the drive current for

the LED which also determines Fdr. The LED can be connected as a load in the common

emitter or collector mode. If Fdr ≈ 0 then we know that the LED would generate subshot

noise. To analyze this behavior we have to obtain the internal junction voltage fluctuation.

If the noise voltage density is at the full shot noise level then the recombination current
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noise is below the shot noise level.

1.Common Emitter Configuration: The equivalent circuit of the diode is connected to

the collector terminal and we use the following notations: isn is the internal diode shot

noise generator, rd is the diode dynamic resistance and Cd is the total capacitance. The

junction voltage fluctuation at the collector terminal is

Vn(ω)(sCd +
1

rd
) = isn − ic (4.61)

SVn(ω) =
2qICr2

d+ < i2c > r2
d

1 + ω2C2
dr2

d

(4.62)

The above expression is actually independent of any current limiting resistors RS placed

between the LED and the supply VCC . This can be seen by superposition where the collector

current source and the diode shot noise generator are opened and the thermal noise from

RS does not contribute to the junction voltage fluctuation. Note that the collector current

source can be opened since it can be treated as an independent source in this problem. If

the collector terminal noise is completely suppressed < i2c >= 0, the voltage spectral density

is shot noise limited at low frequencies. This of course implies that the photon flux noise is

completely suppressed.The recombination current spectral density at low frequencies which

is obtained by removing the capacitor Cd is given as

irec =
Vn − vsn

rd
→ SIrec ≈< i2c > (4.63)

2.Emitter Follower Configuration: When we connect the LED to the emitter terminal

the voltage applied across it is the difference between the voltage applied at the base minus

the base-emitter voltage VBE . Even if the collector current varies a small amount, VBE

is approximately constant which makes it a good constant voltage scheme. To obtain the

spectral density we used the hybrid-π model to construct the nodal equations since it is

simpler. But since we showed that the model is flawed in predicting the collector noise

we make the following transformation ibsn → ibsn√
β

as we stated earlier, which preserves the

T − π noise model transformations. Also the analysis is valid only in the active region,

otherwise the partition noise component needs to be included and we have not found a way

to incorporate it into the hybrid-π model yet. The junction voltage fluctuation at the E
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terminal is

Vn(ω) =
−ibsn + isn

( 1
rd

+ 1
rπ

+ gm + s(Cd + Cπ))
(4.64)

Since the emitter current flows through the LED, the diode parameters isn ,rd and Cd

should be dependent on it.The diode junction voltage spectral density is obtained as

SVn(ω) =

1
β 2qIBr2

d + 2qIEr2
d

(1 + rd
rπ

+ gmrd)2 + (ω(Cd + Cπ)rd)2
(4.65)

Since IB � IE ,, the low frequency fluctuation is approximately SVn(ω)/r2
d = 1

42qIE ie.

it is a quarter of the full shot noise. Since the junction voltage fluctuations are slightly

suppressed, we can expect a small degrees of squeezing and when the fluctuations are

completely suppressed at high frequencies, we can expect full shot noise in the photon flux.

Analysis and Experiment

Since the collector current is approximately independent of base current in the saturation

region with the LED load line which implies that the transistor is operating in the region

of forced beta. Fig.(4.10a) shows a transistor connected in common emitter configuration.

As derived in Eq.(4.63) , the LED photon noise is suppressed as it is shown below the shot

noise from a calibrated lamp source. Fig.(4.10b) shows the case of an LED connected in an

emitter follower configuration. It would seem that irrespective of when a constant current

or constant voltage source is applied to the base-emitter terminals, the output is always

shot noise limited. This is different from that of Eq.(4.65) which predicts a slight degree of

suppression. It may be possible that the suppression cannot be determined with the present

setup. However, we also noted in Eq.(4.58), that the transistor biased in deep saturation,

the terminal noise currents increase by the base transit time which may be quite large. We

should therefore expect supershot noise, which is clearly not observed. However, the linear

active models seem to provide the correct answers, which is surprising. More experiments

are needed to understand the transistor noise in deep saturation, which is why we chose

MOSFETs as switching elements in our modulation experiments.
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Figure 4.10: (a)Observed optical spectra for transistor in the CE deep saturation com-
pared to shot noise obtained by driving with lamp. (b)Observed spectra for transistor with
open/closed base in deep saturation

4.3.3 Direct Modulation with MOSFET

One of the main advantages of using the MOSFET instead of the BJT as a switch is due to

the simplicity of the noise models involved. The MOSFET promises an ON resistance of less

than an ohm, which when placed in series with a high impedance connected to the drain and

a LED connected to the source should produce squeezing, ie. we can imagine the MOSFET

as a non-linear resistor whose only effect is to introduce an additional negligible channel

resistance which can be added without affecting the statistics of the emitted flux from the

LED. We employ for our experiments, the IRF-510 and IRF-120 which are N-channel power

MOSFETs. We quickly state the dc characteristics of the MOSFET. When it is in cutoff

the gate to source voltage VGS < VT where VT is the threshold voltage. When VGS > VT , a

thin inversion layer of electrons(conducting channel) is formed from source to drain in the

p-type substrate. The current that flows from drain to source is still zero since we have to

apply a voltage from drain to source VDS which sets up an electric field causing electrons

to move from source to drain. When VDS increases and approaches VDS = VGS − VT , then

we may set VDS = VSAT where the channel has been pinched on the drain side causing no

further increase in current. When VDS > VSAT , the current increases very little and the

pinch off region moves towards the left. There are two regions in the channel: one where

the electrons are accelerated and one at pinch off where the electric field is so large that
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the velocity reaches saturation. The proposed circuit connection of the LED is shown in

Fig .along with its output ID − VDS characteristics. One thing we notice is that when the

LED is driven with drain currents of even several hundred mA(which is more than it can

handle) the VDS is still in mV and transistor remains in the triode or non-linear region.

The saturation voltage which are in volts(not shown), produce currents in amperes and so

the associated equations and physics with saturation can be neglected. The drain current

is given by the well known relation

ID =
kpW

2L
[2(VGS − VT )VDS − V 2

DS ] ,whereVDS < VSAT (4.66)

where kp = μnCox is the transconductance parameter,μn is the electron surface mobil-

ity which is less than the mobility in the bulk due to surface states and Cox is the oxide

capacitance. There is a discrepancy between Eq with numerical results of Fig. For exam-

ple,with an applied VDS = 2.9mV , we can calculate a current of 25mA whereas the figure

shows us only 5mA.This is because we have neglected the voltage drops across the drain

and source ohmic resistances RD and RS. The true drain-source voltage can be obtained

asVDS = ID(RD + RS)− VD′S′ where VD′S′ is the external drain-source voltage. The VDS

calculated with the correction is 0.5mV which when substituted in Eq leads to the current

of 5mA in Fig. These dc corrections are also incorporated into the transconductance and

channel conductance calculations.

Noise Analysis

To substantiate our initial claim, we first obtain a worst case estimate of the amount of

the drain current noise by performing a nodal analysis on noise model of the MOSFET

along with the equivalent circuit of the LED shown in Fig.(4.11a). Important small signal

parameters are the channel conductance

gds =
∂ID

∂VDS
|VGS

=
kpW

L
(VGS − VT − VDS) (4.67)

and the transconductance which is defined as

gm =
∂ID

∂VGS
|VDS

=
kpW

L
VDS (4.68)



220

Cgs

Rs

Vth

Cd rd Isn

rds
GmVgs

RD

Ith

G

S

D In1

+
−

+
−

Vgg

Vdd
Rs

RD

LED

In2

id

(a)

(b)

Figure 4.11: (a)Small signal noise model and large signal model of MOSFET (b)ID − VDS

characteristics of MOSFET in ohmic or triode region

Fig.(4.11a-b) shows the small signal equivalent of the dc circuit of Fig.(4.11a-a) . The

small signal model has the following noise elements : ithwhich is the thermal noise associated

with RD, id is the drain current noise which is the sum of flicker and resistive channel

components, isn is the internal shot noise of the LED and vth is the thermal noise of the

source resistor RS . rds is the channel resistance which can be obtained from Eq.(4.67)

as rds = 1
gds

. The current generator gmvgs can be obtained by impressing a small signal

voltage vi on VGS in Eq.(4.67) and removing the dc component. The resultant ac current

is id = kW
L viVDS = gmvi where gm has been obtained in Eq.4.68). In the BJT case, we

first obtained the collector Fanofactors followed by junction ’voltage’ spectral fluctuations

of the LED. For the MOSFET, we derive the drain terminal ’current’ fluctuations from

in1 seen in Fig.(4.11a). Unlike the BJT where we had two back to back junctions which

included partition noise mechanisms and the requisite inclusion of the feedback resistance

rμ in saturation, here we have here only a resistive channel rds. We make the assumptions

to keep the problem tractable:

1. The gate to drain capacitance can be neglected since it is only relevant at high

frequencies.

2.We even drop Cgs since we are interested in low frequencies where the input impedance
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is approximately large. The thermal current from vth flows through through Cgs at higher

frequencies contributing to the current in2 at the source terminal but it is such a small

component if RS is quite large. Also at low frequencies, the inclusion of the resistor RS

causes a portion of vth to be dropped across vgs( which can be obtained by performing a

KVL as vth = vgs + vb where vb is the voltage fluctuation at the LED) but this step is

not altogether necessary as we can make the resistance value low in order to eliminate its

thermal noise effect, but of course the thermal current noise contribution to in2 increases.

Finally, we can neglect calculating the noise at the input vgs from vth since its amplified

component gmvgs is quite small. For example, from Fig.(4.11b) we see for a drain current

of 2mA, VDS ≈ 1mV which leads to gm = 64 ∗ 10−5A./V .

3.We keep the junction+diffusion capacitance of the the LED Cd intact at low frequen-

cies, since the internal regulation mechanism depends on its presence.

4.The gate leakage current is usually very small and can be neglected. For example

typical value of .1pA would lead to a shot noise of 0.18fA/
√

Hz whereas a 1mA drain

current would lead to a LED shot noise of.

5.The drain ohmic resistance of around 20mΩ can be absorbed into RD whereas the

source ohmic resistance RS which is 0.45Ω has been neglected in the small signal model.

However they are important elements used in the calculation of gm and rds.

Let us define the voltage at drain terminal as va and that at the source terminal as vb.

Writing the KCL at the corresponding nodes we obtain

Node D: va(
1

RD
+

1

rds
)− vb

rds
= (ith + id − gmvgs) (4.69)

Node S:
va

rds
− vb(

1

rds
+

1

Z
) = −isn − gmvgs (4.70)

where Z = rd//
1

sCd
= rd

1+sCdrd
.Solving the above two equations, we can obtain va as

follows

va =
isn − gmvgs

rds
Z + (ith + id)(1 + rds

Z )

( 1
RD

+ rds
RDZ + 1

Z )
(4.71)

The terminal current noise entering D is then computed as in1 = ith − va
RD

which leads

to

in1 =
ith(RD

Z )− isn + gmvgs
rds
Z − id(1 + rds

Z )

1 + rds
Z + RD

Z

(4.72)



222

Since we assumed that negligible current from the gate flows into the source, the above

in1 is also equal to in2 flowing into the LED terminal at node S. Since each of the noise

sources are uncorrelated the spectral density can be obtained as

Sin1 =

4kT
RD

[(RD
rd

)2 + ω2C2
dR2

D] + 2qID + SId
[(1 + rds

rd
)2 + ω2C2

dr2
ds] + (gmvgs)

2[( rds
rd

)2 + ω2C2
dr2

ds]

(1 + RD
rd

+ rds
rd

)2 + ω2(CdRD + Cdrds)2

(4.73)

If we assume that the drain current spectra and the channel conductance as negligible

ie.SId
= rds = 0, we obtain Eq.(2.87) which is the expression for the external current spectral

density of an LED driven with a high impedance source. For the IRF-510 MOSFET, the

measured on resistance is as low as 0.5Ω. The spectral density SId
is unknown at this point

and we shall obtain a simple analytical expression for it using the methodology employed

in [78]. The thermal fluctuations in the channel of the MOSFET can be expressed as

SId1
= 4kT

μn

L2
QN (4.74)

where QN is the total inversion layer charge. This expression is valid when the carrier

temperature is equal to the lattice temperature and temperature effects become important

only when we deal with hot carriers. The drain current in strong inversion is due to the

drift of carriers which is written as

ID = WQI(y)v(y) (4.75)

whereQI(y) is the induced electron charge in the channel per unit area and v(y) is the

position dependent carrier drift velocity given by

v(y) =
μnE(y)

1 + E(y)
EC

≈ μnE(y) (4.76)

In Eq.(4.76) we have neglected short channel effects since in the triode region, the average

electric field is VDS/L . Since VDS is small and L is large, the average field is much smaller

than the critical field EC which reduces the denominator to unity. The electric field can be

obtained from Eq.(4.75) and Eq.(4.76) as

E =
dV

dy
=

Id

WQI(y)μn
(4.77)
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The total inversion layer charge can be obtained by integrating QI over the entire channel

length

QN =

∫ L

0
WQI(y)dy =

∫ VDS

0
WQI(y)(

dV

dy
)−1dV

=
W 2μn

ID

∫ VDS

0
QI(y)2dV (4.78)

The inversion layer charge at y can be expressed as[75]

QI(y) = Cox[VGS − VT − V (y)] (4.79)

where V (y)is the surface potential along the channel at a distance y from the source

and is equal to VDS at y=L. Substituting Eq.(4.79) in Eq.(4.78) and using the resultant

expression in Eq.(4.74) gives us the following drain current spectral density

SId1
=

4kTW 2μ2
nC2

ox

IDL2
[(VGS − VT )2VDS − (VGS − VT )V 2

DS +
V 3

DS

3
] (4.80)

The above expression is valid only for long channel devices and is a simplification of

analysis done in [78] which applies to a wider range of devices. The MOSFET also has

1/f noise which occurs due the trapping and detrapping of carriers in the gate oxide or

the boundary between the Si and SiO2 interface. This noise increases with the density of

surface states and can be expressed as[49]

SIf
=

2πKF IAF
D

ωCoxL2
(4.81)

where KF is the flicker noise coefficient and AF is a constant usually taken as 1. The

total drain spectral density is SId
= SIf

+ SId1
which is then used in Eq.(4.73) to obtain

the external circuit current density. The parameters used to obtain the numerical results

are obtained from the LEVEL-3 Spice model are tabulated in Table.(4.2). In Fig.(4.12a)

we have plotted the total spectral density of Eq.(4.73) for the case of varying drain current

with a constant drain load resistance RD and supply voltage VGS. We have also plotted

the contribution of each of the noise components to the total spectral density. For exam-

ple,the term 2qI indicates the second term of Eq.(4.73) along with the frequency dependent

factors in the numerator and denominator. Even though the 2qID ’term’ is the smallest
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component,in reality, the shot noise 2qID itself is much larger than the thermal component

ie. 2qID → 2kT
Rd

� 4kT
RS

for RD � Rd. As the drain current decreases,almost all the con-

tribution to SIN1
is from the drain current noise SId

and if we can make its effect smaller

compared to the shot noise 2qID, we may be able to produce subshot light. (ie. 2kT
Rd

� SId
).

However this condition is not true as we see for the low current of 2mA, where the drain

component is larger than even 4kT/RD and is almost the total contribution to SIN!1
. The

drain noise is comparable to shot noise level in which case we may observe supershot be-

havior. When the drain current is increased, shot noise increases whereas the drain current

noise decreases and becomes smaller compared it. In that case, the total noise is due to only

the thermal component 4kT/RD and we will observe suppression. It may be surprising that

we are predicting the output flux from the external circuit current density but SIN1
also

represents approximately the internal recombination current density,which can be shown by

finding the junction voltage fluctuations at Va and then the current as irec = Va−vsn
rd

. The

low frequency approximation by removing Cd and by assuming RD � rds and RD � rd,

gives us

SIrec =
4kT

RD
+ 2qID(

rd

RD
)2 + SId

(
rd + rds

RD

)
(4.82)

The first term of Eq.(4.82) is much larger than the second but the main problem is the third

term and even under large RD,SId
can be made large that the net term-3 equals shot noise.

However if RD → ∞, we see that the recombination current is completely suppressed. In

Fig.(4.12b), we show the effect of increasing RD, keeping the gate source voltage constant

at 8.8V as well as the drain current at 3mA. At 10kΩ, we see that the noise equals the

thermal component only with shot and drain component much lower. As the resistance is

decreased to 1kΩ, the total noise is still approximately thermal, but we see SId
term coming

closer. Finally at RD = 1Ω, we establish the constant voltage case, where the thermal noise

component is smaller than the shot noise component at lower frequencies as expected for a

diode. However, the drain current noise component dominates over the other components

and equals the total noise. Note that in all cases, the thermal noise is relatively flat at all

frequencies, whereas the shot and drain current noise rolloff with the cutoff frequency of

the diode. In Fig.(4.12a) ,at frequencies above 1Mhz,we see that the thermal noise is the
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total noise irrespective of biasing conditions because of this drain current noise rolls off .

Parameters Values

Oxide thickness tox 100nm

Surface mobility μn 600cm2/V − s

Transconductance parameter kp = μnCox 20.68μA/V 2

Channel dimensions-W/L 0.64/2μ=0.32*10ˆ6

Threshold voltage VT 3.697V

Flicker noise coefficient KF 3.6*10ˆ-30 Coulomb2/V s

1/f Drain current constantAF 1

Table 4.2: MOSFET model parameters used in the calculation of the drain current noise
and the external terminal noise of the LED.

In Fig.(4.12c), we show the case for the total noise for varying gate-source voltage VGS

, with the drain current held constant at 3mA and the load resistance at RD = 1kΩ. The

thermal noise current is shown as reference. For increasing gate to source voltage, the drain

noise SId
increases.This also causes the total noise which is completely dependent on it to

increase. So to summarize, in order to expect subshot noise, we should work with large

RD, large drain currents and preferably small gate to source voltages. Since it is possible to

produce subshot noise from LED with the MOSFET inserted, the next question would be if

shot noise is possible. Looking back to Fig.(4.11a), we see that the current noise flowing into

the drain In1 can be replaced by a photodiode based shot noise generator where I2
n1 = 2qI.

This implies that shot noise current flows into the diode since In1 = In2. The junction

voltages fluctuations are suppressed and the recombination is at the shot noise level. In

Fig.(4.12d) , we show the experimental results for the IRF120 MOSFET. The experiment

was performed by first inserting the MOSFET in between the LED and the shot and subshot

sources, and observing the corresponding traces. Next the MOSFET was removed and the

traces were recorded. The optical spectra before and after insertion were compared to see if

the MOSFET generated any additional noise. Our original experiment was performed with

the IRF510 whose parameters we used in our analysis. But we observed a peaking effect ie.

supershot noise for both shot and subshot spectra around 1Mhz with a width of about 1Mhz,

and the spectra resumed its normal behavior for the rest of the frequencies. The analysis

shown in Fig.(4.12a) indicates that the drain current is capable of producing supershot noise

but it does not explain why the squeezing could be observed from 2Mhz onwards,since the
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varied. (d) LED optical noise spectra using the IRF120 MOSFET

rolloff of the drain current density should be beyond the cutoff bandwidth of the L9337 at

around 25Mhz. When we replaced the IRF510 with the IRF120 (which has on resistances as

low as 0.25Ω) we observed both shot and subshot spectra agreed with the calibrated levels

and we use this MOSFET hereon. The drive current to the LED is around 3.19mA which is

powered by a supply of 9V through 2.45kΩ resistor with gate voltages ranging from 5V-10V

for this experiment. The inset of Fig.(4.12d) shows the optical spectra which agrees with

the calibrated levels and the Fanofactor agrees approximately with the relation 1−η = 0.76.

The useful range beyond which we have negligible squeezing is 19.6Mhz. We have shown in

chapter 3 that this LED is capable of larger bandwidths at higher drive currents.
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Switching

Since we have now verified that the MOSFET does not affect the statistics of the emitter

light when it is inserted into the circuit for both the shot and subshot sources, we can design

a circuit that switches between the two sources. Much experimentation was done and we

finally arrived at a design that worked which is shown in Fig.(4.13a). The basic principle

is to connect one MOSFET to the shot noise source and one to the subshot source and

switch between them alternately. The MOSFET M1 is connected to the photodiode which

produces the shot noise of current 5.8mA at the source terminal S1 and the MOSFET M2

is connected through a high resistance R to a voltage of 7V at the drain terminal D2 to

provide high impedance suppression and subshot noise. Note that the drain current in M1

flows from source to drain in an inverted fashion. Typically MOSFETs have an intrinsic

diode due to its construction. In an enhancement type NMOS device, the p-channel and

the n-drift layer combine to provide this diode. Reverse drain current cannot be blocked

as the body is shorted to the source providing a high current path through the diode.The

MOSFET symbol shows this diode connected from source to drain and can be seen in

Fig.(4.13a). Finally source S1 of M1 is connected to drain D3 of M3 which is grounded.

The NOR gate used here essentially performed the NOT function. Initially both M1 and

M2 are off. During the first half period of the square wave, M1 is switched on, followed

by shot noise to LED and in the second half-period M1 is turned off and M2 is turned on

along with M3.

As we switch between the two MOSFETs, the currents should be held constant and

ideally we can expect a near flat line. But in reality the switching process introduces

transients and in some cases are quite large to cause the photodetector voltage to reach

saturation. We have to remember that the spectrum analyzer is rated for +30dBm or 7V

and transients on this scale can damage the front end stages of the SA. We show typical

observations of the voltage at the output photodetector in Fig.(4.13b) for designs that were

not satisfactory. In Fig.(4.13b), case (a) shows the existence of a spike only in between the

subshot and shot pulses.In (b)we show the same except that the shot noise current has been

increased and the levels are no longer equal and the duration of the spike has become longer.
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Figure 4.13: (a)Schematic for average and variance modulation using MOSFETs. M1,M2
and M3 represent the MOSFETs. The 7V battery with the 1k resistor represents the
constant current source and the 5.8mA current source represents the shot noise from a
photodiode. (b)Experimental Observations of the switching characteristics of the setup
when switched between the shot and subshot pulses.

These experiments were observations of setup in Fig.(4.13a) without M3. It was reasoned

that the shot ’current’ source was primarily the problem and by replacing it with the ILX

current source, we observed the same behavior. One possible explanation for the detector

saturation was that when M1 was turned off, it caused a high impedance of nearly 4MΩ

to be developed. The photocurrent being blocked would end up flowing into the shot noise

generator photodiode’s own impedance effectively self-biasing itself causing a larger current

to flow. When M1 is turned on, this current flows into the LED which in produced the 16V

saturation voltage(at the time of performing this experiment) followed by the discharge

with the time constant given by RC of the photodiode impedance and other resistances

along the circuit. When the shot noise current was increased, there was the predictable

change in levels, but note that the spike appears to be clipped and the duration time of

the spike also increased.By adjusting the load resistor of the photodetector from 5.08kΩ to

50ohms, and thus changing the gain, we could observe spike in its entirety. The increase in

duration is due to the time taken to discharge from its maximum current value(which has

increased from case-a) with the same discharge time constant as in case-a. Case-c shows

us a situation where the photovoltage levels were offset by a certain amount even when the

shot and subshot sources were calibrated to produce the same LED current. Increase in

the shot noise current caused both the shot and subshot photovoltages to increase. This
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experiment was once again performed without M3 but with the terminals of M1 reversed.

Adding M3 caused the glitches to disappear and using the circuit diagram of Fig.(4.13a)

seemed to be the only possible option. The spikes due to the switching process themselves

did not disappear and in such cases, the BJTs were better since they provided well rounded

pulses. Since it is not a simple task to analytically study the working of Fig.(4.13a) we

defer to a numerical simulation of the switching process which is shown in Fig.(4.14). The

pulse voltage sources to the MOSFETs M1,M2,M3 had pulse widths of 5ms with rise and

fall times of 200μs. We now analyze the following 3 cases:

Figure 4.14: Transient analysis of MOSFETs (a)properly connected according to Fig
(b)Source and Drain terminals of M1 inverted (c)M3 Removed

(a)In Fig.(4.14a), we show the transient analysis of the circuit diagram in Fig.(4.13a)

.First let us assume that M1 is turned on with 10V applied to the G1 and M2 and M3

are off with 0V at G2 and G3. Since M1 is on,the current of 5.8mA flows to the LED
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setting a voltage of VLED = 1.2177V . From the I-V characteristics we can see that for

5.8mA,VDS1 = −2.8mV . Note that VDS1 is negative because the current flows from source

to drain. Since S1 and D1 are at the same potential as VLED, the gate-source voltage at M2

is VGS2 = −VLED = −1.2177V . In order to find the gate-source voltage at M1,we can write

a KVL around the gate-source of M1 and M2 as −10 + VGD1 + VSG2 = 0 which gives us

VGD1 = 8.78V . We can find VGS1 = VGD1+VDS1 = 8.78−2.8mV ≈ 8.78V . Since no current

flows through M2, its drain to source voltage can be obtained as VDS2 = 7−VLED = 5.78V .

These values are approximately the same as the numerical results from 5 to 5.2ms shown

in Fig.(4.14a). From 5.2 to 5.4ms , we see the transient period during which M1 starts

to switch off and M2 starts to turn on. VGS2 starts increasing from -1.2177V and when it

cross the threshold voltage VT = 3.7V , the channel is formed in the MOSFET, followed by

current flow.Around the same time(or slightly earlier) M3 also turns on causing the current

of 5.8mA to flow through it causing VDS3 = 2.8mV . Since there is no current flow to the

LED,VLED is 0. Now we have a condition where both M1 and M2 are turned on at the

same time.VDS2 drops from its high value of 5.7V to 7mV which indicates a drain current

of nearly 15mA flowing through M2. This 15mA current bypasses the LED and flows from

drain to source of M1 causing VDS1 to be positive for a small duration.The sum of 15mA

and 5.8mA current is sunk at M3. Next when VGS1 drops below the threshold voltage,M1

is turned off. Because of the high impedance,no current flows through M1 and almost

all of the current flows through the LED. We can imagine everything upwards from S2 is

the load and the voltage starts to build across this load until the LED turns on drawing

current and finally reaches 1.217V. Between the time M2 is turned on and M1 is turned off,

VDS1 is continuously decreasing from 7mV and after M1 is turned off,it remains constant at

2.89mV causing a drain current of 5.8mA. The voltages around the circuit from 5.4ms and

above(duration of subshot pulse width=5ms) can be obtained the same way as during the

shot case. Since the VLED is at the same potential as D1, VDS1 = VLED − VDS3 ≈ 1.214V .

Since G1 is at 0, this leads to VGD1 = −1.217V and the gate to source voltage of M1

can be obtained as VGS1 = VDS1 + VGD1 = −3mV . The gate to source voltage of M2 is

VGS2 = VG2 − VS2 = 10− 1.217 = 8.78V .
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(b)Fig.(4.14b) shows the transient analysis for the same circuit in Fig,(4.13a), except the

drain and source terminals of M1 have now been reversed. We see that the mechanisms are

the same for the shot noise pulse duration and a portion of the crossover from 5.2 to 5.3ms as

that of case a. The only difference is that VDS1 = 2.89mV is now positive since the current

flows from drain to source. Above 5.3ms, the M1 and M2 are both on at the same time and

M3 is also on sinking 5.8mA causing VDS3 = 2.8mV . When VGS1 goes below threshold, it

turns off M1,essentially blocking current and the voltage across the load looking upwards

from S2 increases. When it reaches around 631mV from S2 to ground(which is also the

voltage across LED), the body drain diode connected from source to drain terminals of M1

turns on first before the LED thus drawing current. At the same time, the current drawn

through this diode is sunk at M3 which now has VDS3 ≈ 6mV . Note that at this point

VDS1 = VDS3 − VLED = 6mV − 631mV = −625mV and since source is more positive with

respect to the drain the diode is forward biased. Since the LED voltage is less than the

turn-on voltage of nearly 1.2V,it will not draw current and will always be off. If we increase

the supply voltage,say from 7 to 20V, the voltage across the LED will change very little.

(c)Finally we remove M3 from the circuit in Fig.(4.13a) and perform the transient anal-

ysis which is shown in Fig.(4.14c). We notice that both M1 and M2 turn off and on around

the same time. Since there is no M3 to short the current of 5.8mA it flows through the body

drain diode forward biasing it causing a drain source voltage of VDS1 = −622mV . This

current drives the LED along with the current from M2 and the net current approximately

twice of 5.8mA. So even when we match the sources to produce the same LED current levels

with each MOSFET individually(source or drain connected to ground), when we include

them in the complete circuit, the levels would not match up. Increasing the current from

5.8mA to 10mA would produce a net current of 15.8mA during the subshot pulse.

Both the shot and subshot currents drawn into the LED can be easily controlled and

made equal to each other. In the case of subshot pulse, we can adjust the supply voltage

from the power supply and for the case of shot noise current, we can change the photocurrent

by adjusting the light intensity from the lamp. In Fig.(4.15a) we show the current flowing

into the LED corresponding to Fig.(4.14a). We notice that both shot and subshot pulses
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Figure 4.15: LED drive currents for the various switch configurations

are equal and the transient spikes are quite small. There is a period of time where the LED

is off, as is seen in the negative going spikes. This can be minimized if we use a switching

source which has fast rise times such as a microprocessor. Figs.(4.15b-c) show the cases

corresponding to Fig.(4.14b and c), where the current does not flow into the LED during

the subshot pulse and when the current is doubled into the LED. We have observed the

current doubling case in our experiments but our observations indicate that the doubling

occurs during the shot pulse. We are not sure why this occurs at this point. Finally

in Fig.(4.15d), we show the case where M3 is removed and M1’s terminals are reversed.

We have not studied this model using transient analysis, but this is seen as the source

of spiking problems in Fig.(4.13b). In this case, the current levels are the same between

the shot and subshot pulses, but we notice a current of approximately 35mA which may

be sufficient to cause photodetector saturation. In the end, we see that the circuit design

in Fig.(4.13a) gives us the best solution ie. equal levels and small switching transients.

We have attempted to use capacitors(for example-snubber circuits) to slow down the rapid
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turn-on of the MOSFETs, with some success, but have made no indepth study. Also, the

actual experiments are carried at pulse widths of seconds, and the switching transients will

not be important in spectral analysis,since the SA is configured as a time frequency device

with sweep times larger than pulse width of a shot or subshot pulse.

4.4 Results

The entire experimental setup is shown in Fig.(4.16a) where the entire setup is placed in a

metal enclosure to shield against environmental RF and optical noise.The RFSA and oscope

are connected externally to this shield. The transmitter used is the Hamamatsu L9337 LED

(L2) since it has the largest squeezing and ac modulation bandwidth of 40Mhz. A signal

source (SIG) modulates the variance by switching LED L2 between a high-impedance bias

source R1 = 2.45kΩ and a shot-noise source using two power field effective transistors

(FETs) Q1 and Q2 (IRFD 120); A low-noise voltage supply powers the lamp that loosely

couples to a silicon photodetector D1. The signal source modulates the average photon-

number by modulating the bias current to both the shot source LED L1 and subshot source

resistor R1. The amplitude of the modulation is maintained at 20 mV peak-to-peak, which

does not affect the power spectral density of the shot and subshot noise. Optoisolators

(not shown) were employed to reduce ground noise. Also the shorting FET(not shown

in Fig) discussed previously is placed across detector D1 to inhibit the detector self-bias

(saturation) and thereby prevent large current transients during switching. The modulator

transmits the optical signal through free space with high-efficiency coupling so as not to

alter the beam statistics. The receiver uses a Hamamatsu S5107 photodetector D2 with 95%

conversion efficiency at 870 nm. As a check,an estimate of the photocurrent Fano factor

F=0.78 was found by supplying a constant bias current of 1.5 mA to the LED (Fdr = 0)

and measuring the terminal-to- terminal efficiency of 22%. The 1.5 mA is the smallest LED

bias used in the experiments and provides a well defined average rate of photon arrivals

at the photodetector of 2.2 ∗ 1015/s. Photodetector D2 which develops a signal across

resistor R2 = 5.08kΩ is reversed biased by 24 V and the incident photon rate maintains the

photodetector in the linear regime away from the dark current (10 nA) and saturation (5
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mA for these experiments). A minicircuits power splitter routes a portion of the signal to

the RFSA through an Analog Modules, Inc. lownoise amplifier A1 (model 322-6 with 40

dB gain); the ac coupling and gain bandwidth of the amplifier help to filter out the low-

frequency average signal. An HP 54111D digital oscilloscope displays the average signal

and the swept-based HP 8568B RFSA displays the noise power. A personal computer (PC)

can be used to save the data to file. The RF SA can display both the temporal t and

frequency content of the variance signal since its internal circuitry scans the signal through

a filter in a manner that mimics the action of the JTF window. By suitable choice of sweep

rate, the frequency scale displays the combined time-frequency content of the noise power

spectrum. The RF SA should be set to scan a range of frequencies that is small compared

with that over which the noise signal has any change with frequency. Any modulation

in the probability of the random signal appears on the RF SA as a time resolved signal.

For the demonstration of the stochastic communicator, it is necessary to ensure the LED

actually operates between the Poisson and sub-Poisson levels characteristic of the coherent

and number-squeezed states, respectively. The lamp T1 is the Poisson calibration source

since the photon emission is uncorrelated and they arrive independently at loosely coupled

photodetector D1. The lamp and its optical coupling had efficiency less than 0.06% so

that the Fano factor had a value of F � 1 to indicate the Poisson emission from the lamp.

Fig.(4.16b) shows the timing waveforms applied to the MOSFETs in order to perform ac and

noise modulation simultaneously. The observed photovoltage waveforms at the detectors

are also detailed.

In Fig.(4.17), we attempt to determine if the subshot and shot characteristics can be

determined from the time domain. The noise voltage waveforms were obtained from the

photodetector connected to the amplifier and the HP54111D oscilloscope. Data was ob-

tained at the sampling rates of 1MSPS and 25MSPS. The off pulse corresponds to shot

noise and the on pulse corresponds to subshot noise. The data was tabulated as a his-

togram and the standard deviation was obtained. From the results, we were not able to

infer with great accuracy whether the input was shot or subshot noise. So an eavesdropper

using the time domain signals, will need to do much processing before he is able to discern
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the signals. Also, this leads to attenuation of the signals which can be easily detected by

the intended receiver.

Fig.(4.18) shows only the variance modulation with both the L2656 and L9337 LEDs.

The level separation is characteristic of the degree of squeezing of these LEDs. It is easy to

verify that the frequency span of one pulse corresponds to the pulse duration in the time

domain using the method described towards the end of Section 4.2. For the L9337 case, we

see the existence of a false bit. This may be because of the spectrum analyzer unable to cope

with the variations of the signal and it has retained some charge in its internal capacitors.

The other possibility is that there is a sudden spike in the dc levels of the average signals,

perhaps due to sudden changes in the LED-detector geometry.

The signal generator Fig.(4.16a) generates two binary signals (square waves) with dif-

ferent frequencies to represent two input channels. The modulation of the average optical

signal shown in Fig.(4.17a) has a frequency of 10 Hz, while the optical variance signal shown

in Fig.(4.17c) has a frequency of 1 Hz. The modulation frequency was limited by the char-

acteristics of the RFSA chosen for the experiments, but it should be remembered that the

squeezing bandwidth for the LED ultimately determines the modulation bandwidth for the

variance channel of the stochastic modulator. The figure clearly shows that the receiver

can distinguish between the two channels and that they appear to be essentially orthog-

onal. The modulation of the average appears skewed (with malformed bit levels) since it

has a frequency lower than the lower cutoff frequency of the amplifier. The noise signal in

Fig.(4.17c) is obtained with the RF SA having settings of 10 kHz for the resolution band-

width, 3 Hz for the video bandwidth, and 4 ms for the sweep time. The oscilloscope trace

in Fig.(4.17b) shows the temporal behavior of a random signal from LED L2 with only the

variance modulation present; the signal was amplified at a bandwidth limitation of 5 MHz.

It should be noted that there is no discernible distinction between those regions with shot

or subshot modulation which thereby boosts communication security.
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4.5 Summary

In conclusion,we speculate that the stochastic communicator possibly has applications to

secure optical communications especially for F → 0 (the Fock state limit, single mode).

A tap on the optical medium that introduces partition noise would tend to collapse the

squeezed-state probability distribution to the coherent-state Poisson limit. The collapse

reduces the likelihood of an eavesdropper receiving any variance other than that of the

Poisson limit. The receiver can detect the tap by monitoring the noise level. Quantum non-

demolition measurements provide an accurate measurement of the number uncertainty [15],

but the measurement introduces phase uncertainty which can also be monitored. The com-

municator potentially resists interference with discrete multifrequency transmitters, since

each bit level for the variance contains a continuous range of frequency components. In

conclusion, we have demonstrated a novel communicator that exploits statistical degrees of

freedom for optical signals. The communicator modulates the probability distribution for

the production of random photon emission events from a natural source. The demonstration

shows that both the average and the variance can be modulated as two independent com-

munication channels. These channels can be made orthogonal by detecting the Fano factor

rather than the variance for the second channel. The statistics can be potentially modu-

lated over the squeezing bandwidth of 22 MHz for the L9337 at room temperature. The

stochastic communicator can use amplitude squeezed states from lasers by independently

modulating the displacement and squeezing operators. Upon the advent of a synthesizer for

arbitrary Fock states and their quantum superposition, the stochastic communicator would

be capable of sustaining a larger number of channels; the variance could range from sub- to

super-Poisson with macroscale magnitude.
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Figure 4.16: (a)The block diagram of the quantum stochastic communicator. (b)Timing
diagram indicating voltages applied to MOSFETs M1,M2,M3 as well as the photovoltages
observed for noise and AC modulation.
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Figure 4.17: Time and Probability distribution for shot and subshot data at 5 and 25
Megasamples per second

Figure 4.18: Variance Modulation between shot and subshot noise with (a)L2656 LED and
(b)L9337 LED
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Figure 4.19: (a)The detected average signal (b)The random signal with only variance mod-
ulation and (c)The detected variance signal in the frequency domain. The smooth curve
represents the moving average with an averaging time of approximately 100ms.
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Chapter 5

Conclusions

The subshot noise suppression in the photon flux has been treated from a quantum me-

chanical perspective in Chapter 2. The pump fluctuations are treated classically but are

nevertheless microscopic processes. The Fanofactors are calculated for the photon noise

under constant voltage and constant current conditions from the diffusion to thermionic

emission regime and the correlations between the junction voltage fluctuation and the car-

rier number, as well the photon number have also been studied. Most theories have neglected

the photon number equations of motion within the cavity. This is made possible only under

homogeneous emission conditions where the carrier number fluctuations are equal to the

photon number fluctuations outside the cavity.

Next,we have validated the theory with several experiments in shot noise suppression

using LEDs. One of the most important parts is to validate each section of the measurement

chain. This calibration stage is very important. The nonlinearity of the photodetector or

LED has led other researchers to falsely conclude that squeezing was present when there

was none. We have obtained good agreements with theory when we deal with relative noise

levels. For absolute levels, we have an error of 1dB which may be due to spectrum analyzer

miscalibration. The L2656 LED has been re-investigated, with models fit to theory. We have

also accounted for the non-radiative processes which have been neglected in previous works

with this LED. We have also performed subshot experiments with the L9337 LED which

has been previously unreported. We have achieved a squeezing of nearly 1.5dB at room

temperature which we believe to be the largest degree of suppression at room temperature.

The stochastic communication idea has been developed for both the classical macroscale

and the quantum nanoscale signals. We have studied the noise aspects of each of the

switching elements and its influence on the squeezing optical spectra of the LEDs. There
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are certain concepts still not very clear such as the transistor noise in deep saturation. We

have successfully demonstrated the two channel modulation scheme of 10Hz AC modulation

and 1Hz noise modulation. The noise modulation has been decoded with the novel idea

of configuring the spectrum analyzer as a time frequency analyzer. We believe that the

ideas can be easily extended to other types of nonclassical states generated by parametric

amplifiers and semiconductor lasers. In the ideal case, the photon number squeezed state will

tend to the Fock states with zero variance of photon number. Such states are extremely

hard to produce and last for very short times. In the absence of a complete error free

communication,we believe that stochastic based modulation/communication methods would

offer convenient alternatives.
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Appendix A

A.1 Compact Noise Model of PN Junction Devices

The total correlation spectrum of current noise in the external circuit is expressed as the

sum of the diffusion and GR spectra

SIT
(ω) = S′IT

(ω) + S′′IT
(ω)

=
4A

D

∫ W

0
p(x)

∣∣∣∣k0k2 − kwk1

k1 + k2

∣∣∣∣
2

dx +
2ADnq2

L2
0

∫ W

0
[p(x) + pn0]

∣∣∣∣k0 + kW

k1 + k2

∣∣∣∣
2

dx(A.1)

We first consider the diffusion noise spectra which is the first term of Eq.(A.1). Also the

analysis is performed on the n-side of the pn diode where holes are the minority carriers

with the DC carrier distribution pn(x) = pno + (p(0) − pn0)
sinh W−x′

L0

sinh W
L0

. Also we assume the

diode base is long so that kwk1
k1+k2

≈ 0. The same expressions are valid for the n side also, by

appropriate change of variables such as pn → np. The diffusion current noise spectra is

S′IT
=

4A

D

∫ W

0

(
pn0 +

(p(0)− pn0) sinh(W − x′)/L0

sin h(W/L0)

) ∣∣∣∣∣
qD
L csc h(x′/L) coth(W − x′)/L
coth(x′/L) + coth(W − x′)/L

∣∣∣∣∣
2

dx′

(A.2)

where L = L0/(a + jb) is the frequency dependent diffusion length, a + jb =
√

1 + jωτ and

τ is the minority carrier lifetime. We outline a few steps in the solution of Eq.(A.2), by

considering only the p(0) term for which the spectral density is

Sp0
IT

=
4q2A(a2 + b2)

L0

p(0)

sinh y

∫ W

0
sinh((W−x′)/L0)

∣∣∣∣∣cosh(W
L ) cosh(x′

L )− sinh(W
L ) sinh(x′

L )

sinh(W
L )

∣∣∣∣∣
2

dx′

(A.3)

where y = W/L0. Furthur simplification of Eq.(A.3) leads to

=
4q2A(a2 + b2)

L0

p(0)

sinh y

∫ W

0
sinh(y − x′

L0
)

∣∣∣∣∣cosh 2a(y − x′

L0
)− cos 2b(y − x′

L0
)

cosh(2ay)− cos(2by)

∣∣∣∣∣
2

dx (A.4)
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The above equation can be integrated to give the first four terms of the following equation.

The last two terms are due to the pn0 components.

SIT
= 4q2A

D

L0

a2 + b2

cosh(2ay)− cos(2by)

{
p(0)

sinh y

[
cosh(2ay) cosh y − 1

1− (2a)2
− 2a sinh(2ay) sinh y

1− (2a)2
+

cos(2by) cosh y − 1

1− (2jb)2
+

2b sin(2by) sinh y

1− (2jb)2

]
+ pn0

[
sinh(2ay)

2a
+

sin(2by)

2b

]}
(A.5)

Similary the spectral density of the GR noise can be obtained as

S′′IT
= 2q2A

D

L0

1

cosh(2ay)− cos(2by)

{
p(0)

sinh y

[
cosh(2ay) cosh y − 1

1− (2a)2
− 2a sinh(2ay) sinh y

1− (2a)2
+(A.6)

cos(2by) cosh y − 1

1− (2jb)2
+

2b sin(2by) sinh y

1− (2jb)2

]
+ 2pn0

[
sinh(2ay)

2a
− sin(2by)

2b

]}

Eqs.(A.5) and (A.6) agree with those obtained in Ref.[26], except that the same results have

been obtained using Buckingham’s diffusion theory.

A.2 The Renormalized Many Body Hamiltonian for the LED system

The basis states in the Fock space are |{nk} > where {nk} = nk1, nk2, ...nkn are the occu-

pation numbers of the k states. If ak can be defined as the annhilation operator,then we

can define

ak|nk1, nk2, ...0, ...nkn >= (−1)Σ
k−1
i=1 ni |nk1, nk2, ...0, ...nkn > (A.7)

In the second quantization representation the electron wave function in the r representation

ψ(r) = Σkφkszcksz is replaced by the corresponding field operator

ψ(r) = Σλ,k,szφλksz(r)aλksz (A.8)

where φλksz is the single particle eigenfunction of an electron in the semiconductor and

λ is the band and a†λksz
is the electron creation operator.From Eq.(A.7), we can see that

the fermionic creation and annihilation operators satisfy the anticommutation principles

which are a consequence of the Pauli exclusion principle that states that no two fermions

can occupy any one state. The anticommutation relations which are defined as [A,B]+ =

AB + BA can be obtained for the case of the electron operators as

[aλksz , aλ′k′s′z ]+ = [a†λksz
, a†λ′k′s′z ]+ = 0 (A.9)

[aλksz , a
†
λ′k′s′z

]+ = δλλ′δkk′δszs′z (A.10)
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If the eigenstates |1λksz > and |0λksz > represent k-states that contain 1 or no electrons

respetively, then the following are also true

a |0λksz〉 = a†λksz
|1λksz〉 = 0 (A.11)

a†λksz
aλksz |nλksz〉 = n |nλksz〉 (A.12)

The first equation represents the fact that we cannot remove electrons from an unfilled state

and also since electrons are not bosons and follow the Pauli-exclusion principle, we cannot

add to an already filled state. The second describes the number operator a†λksz
aλksz whose

satisfies the eigenvalue equation with corresponding eigenstates |1λksz > and |0λksz >.We

assume that the energy band structure follows a parabolic two-band model and hence we

can define the hole creation operator as d†−k,−sz
= avksz .The definition is motivated by the

correspondance between the annihilation of a valence band electron with given momentum

and spin and the creation of a hole with opposite momentum and spin. Also to keep

the notation compact, we absorb the spin into the k variable from hereon. In the same

way,the hole annihilation operator can be defined as d−k = a†vksz
. For the electrons in the

condutction band,the creation and annihilation operators are defined as c†k = a†cksz
and

ck = acksz . This notation is quite useful in representing for example,the recombination or

generation mechanisms which involve simulataneous creation or annihilation of an electron

hole pair. According to Eq.(A.12), the electron number operator in the valence band can

be now expressed as a†vksz
avksz = d−kd

†
−k = 1 − d†−kd−k and similarly the electron number

in the conduction band is a†cksz
acksz = c†kck. We can now obtain the Hamiltonian for N

non-interacting particles in the second quantized representation as

Hcarriers =

∫
d3r1

∫
d3r2...

∫
d3rNψ†(rN )...ψ†(r1)

∑
N

p2
n

2me
ψ(r1)...ψ(r2)ψ(r1) (A.13)

Here p2
n

2me
represents the kinetic energy of an electron and is an operator in the first

quantized representation. Substituting Eq.(A.8) in Eq.(A.13) and using the free particle

wavefunction φ(r) = 1√
V

exp(ik.r) we obtain

Hcarriers =
∑
ksz

(Ecka
†
cksz

acksz + Evka
†
vksz

avksz) (A.14)
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where Eck = h2k2

2mc
+ Eg0 and Evk = h2k2

2mv
is the kinetic energy of an electron and hole in

the conduction and valence bands respectively. Here mc and mv are the effective masses of

electrons in the conduction band and valence bands and Eg0 is the bare band gap energy.

Converting into the electron and hole operators we obtain

Hcarriers =
∑

k

((
h2k2

2mc
+ Eg0)c

†
kck +

h2k2

2mv
(1− d†−kd−k) (A.15)

=
∑

k

((
h2k2

2me
+ Eg0)c

†
kck +

h2k2

2mh
d†−kd−k) (A.16)

where we have neglected the constant term in Eq.(A.16) and introduced the concept of hole

effective mass which is the negative mass of an electron in the valence band ie. mh = −mv

. This assignment allows us the notion of a particle known as the hole that is introdued

when an electron is removed from the valence band and moves opposite to the direction

of an electron. When the Coulomb interactions among the N particles are considered,

the construction of the second quantized representation for the many body Hamiltonian is

obtained as

Hmany−body =
1

2

∫
d3r1

∫
d3r2...

∫
d3rNψ†(rN )...ψ†(r1)V (r)ψ(r1)...ψ(r2)ψ(rN ) (A.17)

where V (r) =
∑
i,j
i�=j

e2

εb|ri−rj | is the Coulomb potential energy. Using Eq.(A.8) in Eq.(A.17)

gives us

Hmany−body =
1

2V 2

∫
d3ri

∫
d3rj

∑
kk′

a†k′ak exp(i(k − k′).ri)
∑

q

Vq exp(iq.(ri − rj))

∗
∑
kk′

a†k′ak exp(i(k − k′).rj)

where the following Fourier transformations 1
V

∫
d3ri exp(i(k−k′+q) = δk′,k+q and 1

V

∫
d3ri exp(i(k−

k′ + q) = δk,k′−q transform the above equation as

Hmany−body =
1

2

∑
Vqa

†
k+qaka

†
k′−qak′ − 1

2

∑
a†kakVq (A.18)

Eq.(A.18) has so far only considered only one band, and so the summation needs to be

extended over the conduction and valence bands. This is followed by normal ordering the
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creation and destruction operators using the anticommutation relation to get

Hmany−body =
1

2

∑
k,k′,q
q �=0

Vq(a
†
c,k+qa

†
c,k′−qac,k′ac,k+a†v,k+qav,k′−qav,k′av,k+2a†c,k+qa

†
v,k′−qav,k′ac,k)

(A.19)

where Vq = 1
V

∫
d3r exp(−iq.r)V (r) = 4πe2

εbV q2 is the Fourier transform of the Coulomb

potential energy V(r).

Hmany−body =
∑

k

Vqd
†
−kd−k +

1

2

∑
k,k′,q
q �=0

Vq(c
†
k+qc

†
k′−qck′ck + d†k+qd

†
k′−qdk′dk − 2c†k+qd

†
k′−qdk′ck)

(A.20)

We can absorb the first term into the free carrier Hamiltonian which gives us the hole energy

asEhk = h2k2

2mh
= −Evk +

∑
q 
=0 Vq.

Ehk = −Evk +
∑
q 
=0

Vq +
∑
q 
=0

(Vsq − Vq)

=
h2k2

2mh
+ ΔEch (A.21)

The total Hamiltonian for the semiconductor system can be written as

HE = Σk((
h2k2

2me
+ Eg0)c

†
kck + (

h2k2

2mh
+ ΔEch)d†−kd−k)

+
1

2

∑
k,k′,q
q �=0

Vq(c
†
k+qc

†
k′−qck′ck + d†k+qd

†
k′−qdk′dk − 2c†k+qd

†
k′−qdk′ck) (A.22)

At this point the transition frequency can be written as

hωk =
h2k2

2me
+ Eg0 +

h2k2

2mh
+ ΔEch =

�
2k2

2mr
+ Eg0 + ΔEch (A.23)

Next we obtain the dipole Hamiltonian by first expanding the the dipole operator as

er = e

1∑
n,m=0

〈nn, k| r |mm,k〉 |nn, k〉 〈mm,k|

= e(〈00, k| r |11, k〉 |00, k〉 〈11, k| + 〈11, k| r |00, k〉 |11, k〉 〈00, k|

= d12σk + d21σ
†
k (A.24)

where we have written the final expression in terms of the dipole matrix elements d12 =

d

21 and the raising and lowering operators(or pseudo-spin operators from the context of
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magnetic transitions in spin-1/2 systems) can be defined by recognizing that the two states

|11, k〉 and |00, k〉 are equivalent to the states of the a two level atom

σk = |00, k〉 〈11, k| ≡ d−kck (A.25)

σ†k = |11, k〉 〈00, k| ≡ c†kd−k (A.26)

We have assumed the diagonal terms of the dipole moment are zero which can be written

as

〈00, k| r |00, k〉 = 〈11, k| r |11, k〉 = 0 (A.27)

since energy eigenstates of a wavefunction φnk(r) with a well defined parity has diagonal

elements that vanish. This is true since |φnk(r)|2 is a symmetric function and r is antisym-

metric and the net integratand is antisymmetric which can be written as

〈nn, k| r |nn, k〉 =

∫
d3r|φnk(r)|2r = 0 (A.28)

The single mode of an the radiation field in a cavity from a collection of such fields can be

written in the second quantization as

E(z, t)l = iE0,lu(z)(al − a†l ) (A.29)

where E0,l =
√

hνl
2ε0V is the electric field of a single ’photon’. The dipole-field interaction

hamiltonian is

Hl,k = −erkEl(z, t) = −E0,li(d12σk + d21σ
†
k)(al − a†l ) (A.30)

The total interaction hamiltonian including all the k states and the l modes can be written

as

Hdipole = −ih(gl,kσ†k exp(iξ) + g

l,kσk exp(−iξ))(al − a†l ) (A.31)

where gl,k =
|d12,k .u(z)|

�
E0,l.When we choose a phase of π/2 and the mode function is u(z) =

sin(kz) we obtain

Hl,k = �(gl,kσ
†
k − gl,kσk)(al − a†l ) (A.32)

= �(gl,kalσ
†
k + g


l,ka
†
l σk) (A.33)

Note that we have omitted the terms σa and σ†a† since they violate energy conservation.

Here σ†a† implies simultaneous creation of a electron-hole pair as well as the addition of a
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photon to the field and σa implies the annhilation of e-h pair as well as the removal of a

photon from the excitation field. The total interaction hamiltonian adding together all the

k states of the electronic system and the l modes of the radiation field, gives us

Hdipole = �

∑
l,k

(gl,kalc
†
kd
†
−k + g


l,ka
†
l d−kck) (A.34)

The field system is modelled as a collection of oscillators with each of frequency Ωl and the

unperturbed hamiltonian of such system is

Hfield =
∑

l

�Ωlalal (A.35)

The bath is also a collection of oscillators each of frequency ωj and the unperturbed hamil-

tonian of the reservoir is

Hbath =
∑

j

�ωjbjbj (A.36)

Each oscillator or mode within the cavity is coupled to all the modes of the reservoir

outside through the coupling coupling constant μlj.The total system(field)-reservoir(bath)

interaction energy in the rotating wave approximation is obtained by summing over all

modes within the cavity and is expressed as

Hfield−bath = ΣlHfield−bath,l = �

∑
l,j

(μlja
†
l bj + μ∗ljb

†
jal) (A.37)

The total Hamiltonian of the entire system can be written as

Htotal = Hcarriers + Hmany−body + Hdipole + Hfield + Hbath + Hfield−bath (A.38)

There are other terms which may be included such as the multimode phonons and the

Frolich Hamiltonian which describes the longitudinal acoustic phonon interaction with car-

riers. Such terms can be avoided by properly accounting for their effects (for example the

equilibration of the lattice and electron termperatures) in the equations of motion.

A.3 Spontaneous Emission Operator

The spontaneous emission is noted as a consequence of vacuum fluctuations stimulating the

exciting the excited states to recombine. This should be readily explainable with the quan-

tum theory. We can describe the process as annihilation of an electron-hole pair followed
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by creation of a photon and so we need to construct the equations of motion for a†l d−kck

which is

d

dt
a†l d−kck =

i

�
[Hdipole + Hcarriers + Hfield + Hfield−bath, a†l d−kck] (A.39)

We can evaluate three of these commutators individually and obtain [Hfield−bath, a†l d−kck] =

0, [Hcarriers+Hfield, a
†
l d−kck] = (−iωk+Ωl)a

†
l d−kck .The last commutator [Hdipole, a

†
l d−kck]

involves the following commutation relation

[a†l d−kck, c
†
kd†−kal] = a†l al[(1− d†−kd−k)(1− c†kck)− c†kckd

†
−kd−k]− c†kckd

†
−kd−k

= a†l al[(1− nhk)(1 − nek)− neknhk]− neknhk

The equation of motion for the operator a†l d−kck is obtained from the Heisenburg equation

of motion as

d

dt
a†l dkck = −[γ + i(ωk −Ωl)]a

†
l d−kck + i

∑
k

gl,k(a
†
l al[(1−nhk)(1−nek)−neknhk]−neknhk)

(A.40)

Since spontaneous emission is a slow process compared to the carrier-carrier scattering rates,

the above equation can be solved in steady state leading to

〈
a†l d−kc−k

〉
=

i
∑

k

〈
gl,k(a

†
l al[(1− nhk)(1− nek)− neknhk]− neknhk)

〉
γ + i(ωk − Ωl)

(A.41)

To see how the excited state operator < neknhk > decays, we write another equation of

motion

d

dt
< neknhk >= −[i

∑
l,k

g

l,k < a†l d−kck > +adj] (A.42)

Inserting Eq.(A.41) in Eq.(A.42), we obtain

d

dt
< neknhk >= −

∑
k

|gl,k|2
2γ

〈
(a†l al[(1− nhk)(1− nek)− neknhk]− neknhk)

〉
γ2 + (ωk − Ωl)2

(A.43)

For a state with no photons, the expectation value < a†l al >= 0. This leads to the following

decay of excited state as

d

dt
< neknhk >vaccum= −

∑
k

|gl,k|2 2γ 〈neknhk〉
γ2 + (ωk − Ωl)2

(A.44)
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Looking at Eq.(A.44),we see the term resembles the radiative recombination rate as Rsp,k =

Bknp where n ≡ nek and p ≡ nhk with the spontaneous recombination coefficient given by

Bk = |gl,k|2 2γ

γ2 + (ωk − Ωl)2
≈ 1

4πε0

4ω3
k|d12|2n3

3�c3
(A.45)

The last equality(which we will not derive here) is the well known Wigner-Weisskopf spon-

taneous emission coefficient for a semiconductor of refractive index n. The first and second

terms in Eq.(A.41) imply stimulated absorption and emission respectively. Since we assume

that stimulated emission is extremely small,we can neglect it. However we can include the

absorption term since it is included as the intrinsic generation of carriers in the semicon-

ductor material.

A.4 Code for evaluation of noise spectral densities

The input to this program comes from Adept, a 1D numerical Poisson equation solver,

which establishes the steady state carrier densities.

clear all;

%obtain carrier concentrations from file:format carrV

%[labels,x1,conc]=readColData(’carr9V.txt’,3,0);

%load(’carr9V.txt’)

%p = conc(:,1);

%n = conc(:,2);

%x1 = carr9V(:,1);

%p = carr9V(:,2);

%n = carr9V(:,3);

format long;

[x1,p,n]=textread(’carr9V.txt’,’%f %f %f’);

x1 = x1 .* 10ˆ-6; %Convert to micron width

%First obtain green functions for long diode

taur = 10ˆ-9;

f = 10*10ˆ3;
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omega = 2*pi*f;

Na=10ˆ16; %pp0

Nd=10ˆ16; %nn0

ni=10ˆ10;

np0=niˆ2/Nd;

pn0=niˆ2/Na;

mup = 490;

mun = 1390; % specified in cm2/V-s

Dp = mup*26*10ˆ-3*10ˆ-4; % Converted to meters

Dn = mun*26*10ˆ-3*10ˆ-4;

W = 10*10ˆ-6; %Total thickness

wn = 5*10ˆ-6; %Thickness of n type material

wp = 5*10ˆ-6; %Thickness of p type material

Nx = 200; %Mesh number

%x1 = [0:W/200:W];

A = 1*10ˆ-6; %Area of device - mˆ2

Lp = (Dp*taur/(1+i*omega*taur))ˆ.5;

Ln = (Dn*taur/(1+i*omega*taur))ˆ.5;

x=10ˆ-15; % Really small number instead of 0 to prevent NaN

q = 1.6*10ˆ-19;

%Depletion region widths for symetrically doped pn junction

%Calculate depletion region width and xp and xn first

Vbi=25.84*10ˆ-3*log(Na*Nd/niˆ2);

Va =0.5; %Applied voltage

Wdepl=sqrt((2*11.8*8.854*10ˆ-14*(Na+Nd)*(Vbi-Va))/(1.6*10ˆ-19*Na*Nd))*10ˆ-2;

%Theoretical Depletion region widths

xp = W/2-Wdepl/2;

xn = W/2+Wdepl/2;
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%Find numerical approximations

for ind=1:Nx/2

if abs(xp-x1(ind))¡0.00200*10ˆ-6

xpindex=ind;

break;

end

end

for ind=Nx/2+1:Nx

if abs(xn-x1(ind))¡0.00200*10ˆ-6

xnindex=ind;

break;

end

end

%First Calculate Scalar green functions for the p side

for m=1:Nx/2

% Calculate Hole Green functions Gp first

% First for x¡wp in the p region Gpp

Gp(m)=1;

x=wp-x1(m); %Change from wp to xp

k0 = csch((x)/Ln); % The x here ranges positive from 0 to W where W=wp-xp.

% The reason for positive x is in the derivation of the green functions.

% Here x=-xp is 0 and x=-wp is W.

k1 = coth((x)/Ln);

k2 = coth((wp-x)/Ln); %Change from wp to xp

kw = csch((wp-x)/Ln);

Gn(m)=-k0/(k1+k2);

Gnw2(m)=kw/(k1+k2); %keep backup to obtain imag components

Gpt(m)=0;
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VGp(m) = 0;

VGn(m) = k0.*k2./(k1+k2).*(1/Lp); %Vector green function in p for electrons

%From xpindex to wp allow diffusion noise to go to zero smoothly

%Kdiff(m) = n(m)*Gn(m);

Kdiff(m)=4*qˆ2*A*Dn*n(m)*(VGn(m)*conj(VGn(m)));

Kgr(m)=qˆ2*A*2*(n(m)+np0)/taur*Gn(m)*conj(Gn(m));

end

%Recalculate noise in p-side of depletion region

slope1=(Kdiff(xpindex)-0)/(x1(xpindex)-wp);

slope2=(Kgr(xpindex)-0)/(x1(xpindex)-wp);

for m=xpindex:Nx/2

Kdiff(m)=slope1*(x1(m)-x1(xpindex))+Kdiff(xpindex);

Kgr(m)=slope2*(x1(m)-x1(xpindex))+Kgr(xpindex);

end

x1(Nx/2+1)=wp+10ˆ-15; %Reinit to very small value

%Gn=Gn(end:-1:1);

Gnw = 1+Gn;

Gnt = abs(Gn - Gnw2);

%For n-side part

for m=Nx/2+1:Nx

x=x1(m)-wp;

k0 = csch((x)/Lp);

k1 = coth((x)/Lp);

k2 = coth((wp-x)/Lp);

kw = csch((wp-x)/Lp);

Gp(m) = k0/(k1+k2); % Notation is green function for holes-p in the n region -1 is to

junction

Gpw(m) = kw/(k1+k2); % 2 indicates to terminal
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Gnw(m) = 0;

Gnt(m) = 0;

%Gn1(m)=0;

%Remember above are green scalar functions used in computation of GR noise

%Gnp = -sinh((wp+x)/Ln)/sinh((wp-xp)/Ln);

%Gpn = sinh((wn-x)/Lp)/sinh((wn-xn)/Lp);

VGp(m) = k0.*k2./(k1+k2).*(1/Lp);

VGn(m) = 0;

%VGpn2 = k1.*kw./(k1+k2).*(1/Lp);

%x=x+increment

Kdiff(m)= 4*qˆ2*A*Dp*p(m)*(VGp(m)*conj(VGp(m)));

Kgr(m) = qˆ2*A*2*(p(m)+pn0)/taur*Gp(m)*conj(Gp(m));

end

Gpt = abs(Gpw-Gp);

%Recalculate noise in n-side of depletion region

slope1=(0-Kdiff(xnindex))/(wn-x1(xnindex));

slope2=(0-Kgr(xnindex))/(wn-x1(xnindex));

for m=(Nx/2):xnindex

Kdiff(m)=slope1*(x1(m)-x1(xnindex))+Kdiff(xnindex);

Kgr(m)=slope2*(x1(m)-x1(xnindex))+Kgr(xnindex);

end

xdata=[wp+Wdepl/2,wp+Wdepl/2];

ydata=[0,10ˆ11];

%plot(x1,Kdiff,x1,Kgr);

%plot(x1(1:xpindex+1),imag(Gn(1:xpindex+1)),x1(xnindex:Nx),imag(Gp(xnindex:Nx)));

%plot(x1,real(Gn),x1,real(Gp));

%plot(x1,-(Gp),x1,Gnw,x1,Gnt,x1,Gpt,x1,Gpw);

plot(x1,Gp,x1,Gpw);
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Appendix B

Classical Stochastic Communicator

B.1 Hardware Setup

The processor consists of an Atmel Mega32 using a 14.7456 MHz crystal. The processor

has 32k bytes of flash memory for programs, 1k of internal RAM and 1k of EPROM. The

processor executes most instructions in 1 clock cycle. The processor has four 8-bit digital IO

ports that can also be assigned alternate functions for analog to digital conversion, timers

and triggers and serial communications as necessary. The example transmitter uses Bascom

basic for implementing the algorithm. The circuit diagram for the prototype transmitter

appears in Fig.(B.1a) where the Atmel Mega32 serves as the signal processor. A 14.7456

MHz crystal provides the clock signal. The chip is programmed in compiled Bascom basic

using a 25 pin parallel port from a computer. The figure shows the pin connections in the

parallel cable for programming. The software supports software defined serial ports on any

of the digital IO pins. However, some applications can make better use of the buffer registers

associated with the built-in UART. In this case, inverters must be used as indicated for lines

R and T in the figure. Port C on the Atmel processor provides an 8-bit digital output signal.

Each byte from port C represents a random number generated by the software. The resistor

network next to the Atmel chip (R2R network) provides the digital to analog conversion

(ADC). The voltage from the R2R network can range from 0 to approximately 3.3 volts in

256 steps. The AD 625 opamp was used as an output buffer.

The receiver circuit preferably uses a fast signal processor rather than discrete com-

ponents. The processor can easily perform averages and calculate the incoming moments.

Fig.(B.1b) illustrates a receiver circuit suitable for extracting a modulated average (AVE)

and a quantity proportional to the standard deviation (SD). The random signal is received
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Figure B.1: Hardware realization of the classical stochastic modulator. (a)Microprocessor
realization of the transmitter.The letter ’g’ refers to “chassis” ground (b)Receiver for de-
modulating random signals using discrete components.

by instrumentation amplifier #1 (analog devices AD625). The capacitor in the 10k-0.2

charges to the average value of the input signal. AD625 #2 removes removes the modu-

lated average from the signal and AD625 #3 buffers the modulated average. The schottky

diodes with approximately 0.1 volt turn-on voltages charge the parallel RC combinations.

The difference in voltages across the capacitors provides a measure of the standard devi-

ation, which appears on the output of AD625 #4. The circuit extracts a signal SD that

does not agree with the standard deviation, which requires the sum of a voltages squared.

In general, the components (such as analog multipliers) necessary to raise variables to the

n’th power add significant complexity to the circuit. Without the proper multiplication, the

quantities related to standard deviation and skew will not be independent of one another.

The transmitter signal processor has an algorithm to generate random signals with sta-

tistical moments controlled by input data. The number of input channels matches the

number of modulated statistical moments. The transmitter processor constructs the out-

put signal using a digital to analog convert (DAC). The receiver circuit detects the signal

and converts the signal into a digital signal using an analog to digital converter (ADC).

A fast signal processor(not shown) then performs calculations to extract the modulated

moments and therefore the channel data. The transmission medium consists of an electrical

transmission line although it could well be an optical fiber or free space.
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B.2 Results

The algorithm for the transmitter processor is indepedent of the type of receiver used.

The overall concept consists of reading the input data from 3 channels, determining the

three statistical moments of average, variance and skew, then calculating and transmiting a

sequence of random numbers over the duration of the data bits consistent with the statistical

distribution determined by the average, variance and skew. The channels contain binary

data consisting of a sequence of 0s and 1s representing 0 and 5 volts. The test system stores

8 bits of data for channel 1, 8 bits for channel 2, and 8 bits for channel 3. The actual system

would encode the bits as they arrive rather than store them in memory. The test system

uses two characteristic times. The pulse width (PW) time refers to the duration during

which a random number remains valid. The term pulse width reflects the appearance of

the random number when viewed on an oscilloscope after the digital to analog converter

DAC. The second time is the bit time which refers to the length of time that a data bit

remains valid. During the bit time, multiple random numbers will be generated consistent

with a probability distribution determined by the present data bits in the three channels.

The algorithm implemented is as follows

1. Initialize the PW for each bit and the random number generator

2. Obtain the data bits from channel C1,C2,C3

3. If C1=0 then set Ave=AVE0 else Ave=AVE1.

If C2=0 then choose Var=VAR0 else Var=VAR1.

If C3=0 then choose Skew=SKW0 else Skew=SKW1

4. Generate random number based upon probability distributions from step 3. This is

sent to the the DAC

5. If PW is reached then goto step 2 else send another random number.

Note that the signal processor must generate or store up to 8 different distributions. The

three bits in the three data channels determine the presently active distribution. A random
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Figure B.2: Observed waveforms from the stochastic communicator. The waveforms are
obtained by switching between 8 stored distributions in the microprocessor to produce time
varying mean,standard deviation and skew each independent of one another.

number generator produces a random number consistent with the active probability distri-

bution. A timer built into the signal processor ensures that the random number remains

active for the the PW time (usually 2 to 5 microseconds for the Atmel Mega32 processor

operating at 14.7456 MHz). During the PW time, an 8-bit DAC (an R2R ladder network

in this case), sends the data over a wire to the receiver. The prototype system produces a

random voltage at the output of the DAC and holds it for approximately 5-10 microseconds.

These amplitude bursts may be compared to the shot noise like pulses but of different am-

plitudes and since the waveforms are observed on the millisecond scale they have noise like

appearance. Fig.(B.2a) show the oscilloscope plots for three cases of (1) modulated average

but constant variance and skew, (2) modulated variance but constant average and skew, and

(3) modulated skew but constant average and variance. Fig.(B.2b) shows oscilloscope wave-

form of the signal for the binary modulation where starting from top we see 1)the average

with constant variance and skew 2) the standard deviation varying but average constant,

3)the time varying skew and finally 4) all the three moments taking values independent of

one another.
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