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ABSTRACT OF THE THESIS 

 
Drowsiness Detection While Driving using Fractal analysis and Wavelet Transform 

By Prachi Parikh 

 

Thesis Director:  
Dr. Evangelia Micheli-Tzanakou 

 

 

 The EEG signal plays a key role as a nondestructive testing method in the 

diagnosis and functional determination of the brain. EEG recordings represent changes in 

alertness, arousal, sleep and cognition. Boredom, fatigue and monotony of a task may 

induce drowsiness that leads to a decrease in alertness. This can have serious 

consequences in tasks involving constant vigilance and control such as driving.  In the 

current study, EEG signals are recorded using a car simulator and analyzed using Fractal 

analysis and Wavelet Transform. It is observed that there is an increase in the alpha 

frequencies in the latter stages of driving indicating a state of drowsiness. The analysis 

techniques used provide results quickly, which is essential to provide instant feedback. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Drowsy Driving 

 According to the National Sleep Foundation's 2005 Sleep in America poll [1], 

60% of adult drivers, about 168 million people, say they have driven a vehicle while 

feeling drowsy in the past year, and more than one-third, (37% or 103 million people), 

have actually fallen asleep at the wheel. 13% of the 103 million people say they have 

nodded off at the wheel at least once a month. Four percent of the drivers, approximately 

eleven million, admit they have had an accident or near accident because they dozed off 

or were too tired to drive.  

 The 2004 AAA Foundation for Traffic Safety Internet survey [2] reported that 

nine out of every ten North American police officers have stopped a driver who they 

believed was drunk, but turned out to be drowsy. The National Highway Traffic Safety 

Administration [3] estimates that up to 100,000 police-reported crashes annually involve 

drowsiness or fatigue as a principal causal factor. Several drowsy driving incidents have 

resulted in jail sentences for the driver. Multi-million dollar settlements have been 

awarded to families of crash victims as a result of lawsuits filed against individuals as 

well as businesses whose employees were involved in drowsy driving crashes.  

 Drowsiness causes impaired reaction time, judgment and vision [32]. This leads 

to decreased performance, vigilance and motivation. To summarize, drowsy driving 

crashes can result in high personal and economic costs. 
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1.2 The Electroencephalogram 

The Electroencephalogram (EEG) is the electrical pattern record on the surface of 

the brain formed by the aggregate of synchronized neural activities from millions of 

neurons acting together. It can be roughly defined as the mean electrical activity of the 

brain in different sites of the head. The EEG is recorded from electrodes placed in 

standard positions on the scalp, and has typical amplitude of 2-100 microvolts (μV) and a 

frequency spectrum from 0.1 to 60 Hz.  Figure 1.1 shows a sample EEG waveform [4]. 

 

Fig. 1.1 Sample EEG [4] 

Most of the activity occurs within the following frequency bands; delta (0.5 - 4 

Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-22 Hz) and gamma (30-40 Hz). The EEG 

activity in particular frequency bands is often correlated with particular cognitive states. 

Delta is the frequency range up to 4 Hz and is often associated with the very 

young and certain encephalopathies and underlying lesions. It is seen in deep sleep. 

Theta is the frequency range from 4 Hz to 8 Hz and is associated with drowsiness, 

childhood, adolescence and young adulthood. This EEG frequency can sometimes be 

produced by hyperventilation. Theta waves can be seen during hypnagogic states such as 

trances, hypnosis, deep daydreams, lucid dreaming and light sleep and the preconscious 

state just upon waking, and just before falling asleep.  
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Alpha (Berger's wave) is the frequency range from 8 Hz to 13 Hz. It is the 

characteristic of a relaxed, alert state of consciousness and is present by the age of two 

years. Alpha rhythms are best detected with the eyes closed. Alpha attenuates with 

drowsiness and open eyes, and is best seen over the occipital (visual) cortex.  

Beta is the frequency range above 13 Hz and below 25 Hz. Low amplitude beta 

with multiple and varying frequencies is often associated with active, busy or anxious 

thinking and active concentration. Rhythmic beta with a dominant set of frequencies is 

associated with various pathologies and drug effects.  

Gamma waves have a frequency range of between 30 and 40 Hz. Gamma rhythms 

appear to be involved in higher mental activity, including perception and consciousness. 

 

1.3 EEG and Driving 

The EEG signal plays a key role as a nondestructive testing method in the 

diagnosis and functional determination of the brain [5]. EEG recordings represent 

changes in alertness, arousal, sleep and cognition. Boredom, fatigue and monotony of a 

task may induce drowsiness that leads to a decrease in alertness. This can have serious 

consequences in tasks involving constant vigilance and control. Alertness is a 

physiological variable that can be measured. A single principal component of EEG 

variance has been shown to be linearly related to minute-scale changes in detection 

performance [6]. The EEG variations arise from simultaneous changes in brain 

mechanisms controlling central arousal and alertness. The one to one relationship 

between changes in performance and the EEG spectrum during drowsiness make it 

possible to have practical methods based on the EEG to estimate alertness in real time. 
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1.4  Various Studies of Alertness 

 Alertness is one of the most important functions in determining the performance 

of an individual. Studies have incorporated subjective and objective measures of 

alertness. Terán-Santos, et al conducted a case-control study of the relation between sleep 

apnea and the risk of traffic accidents [7]. The study considered 102 subjects who were 

drivers that had been involved in traffic accidents due to fatigue. These subjects 

completed questionnaires related to feelings of drowsiness based on the Epworth 

Sleepiness Scale [24]. Statistical analysis of the surveys and recordings from 

polysomnography determined the results of the study. 

 Experiments have been conducted by introducing an alertness maintenance device 

in a driving simulator [16]. Self-rating and eye-closures were examined and it was 

determined that the introduction of such a device helped decrease the bouts of 

drowsiness. 

Jansen and Dawant [14] have designed a knowledge-based system that uses an 

object-oriented approach for EEG analysis. Specific waveforms and sleep stages are 

represented by frames with slots describing the properties (the morphological and spatio-

temporal information) of the named object. Each frame has its own signal processing 

module. A detection module identifies the particular EEG feature and then initiates the 

corresponding signal processing module.  

 Image Processing of eye movements has also been used as an analysis technique 

to monitor awakening levels [9]. The subject was asked to drive a car for an hour on a 

test course during which the EEG and eye movements were recorded using a CCD 

camera attached to the driver’s cap.  The onset of drowsiness has been related to the 



 5 

 

appearance of grouped alpha waves in the EEG [10].  It was observed that there was an 

increase in the eye movement with the appearance of grouped alpha waves. 

 The Fourier Transform (FT) [35] has been the traditional method of analysis of 

signals. It involves averaging all the spectra of the signals using the FT, calculating the 

percentage of total power, and evaluating the relative differences. 

 The spectral shape of brain activity has also been used to classify different stages 

of human alertness [11]. The C3 channel (the location in the left hemisphere on the 

midline nearest to the central part of the cerebral cortex) was sampled at 100 Hz. The 

relationship between the EEG power spectra was measured using the Welch method [34], 

and wakefulness was determined. The classification was made every 10 seconds. A trend 

appeared when the spectrum was extracted over this period and this was assumed to be a 

suitable time interval for an alarm signal to be given if the individual’s alertness level 

was insufficient. It was observed that when the brain activity decreases, the EEG 

spectrum was dominant in the alpha band (8 to 13 Hz). 

Levendowski, et al [8] recorded EEG and Electrooculogram (EOG) in a 12-hour 

overnight study on subjects that were awakened from partial sleep deprivation. They used 

a discriminant function analysis (DFA) model, known as B-Alert System, to classify one 

second EEG epochs. This classification was designed to provide real-time drowsiness 

detection.  

 Schier [12] used a driving simulator to record the EEG from P3, P4, F3, F4 

electrodes. Hanning window was applied to data segments of 1.28 seconds to compute 

the power spectra. It was observed that there was greater alpha activity in the later stages 

of driving, confirming the hypothesis that with increasing driving time retaining a 

constant level of alertness is rare. 
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 At times, alpha activity cannot be detected easily by visual inspection in the first 

stages of decreasing vigilance. Tietze [13] has suggested a rationale that defines signals 

with amplitude higher than a predefined limit as “alpha events”. Fourier filtering in 

combination with an overlap-add method was used to calculate the amplitude of the 

peaks and the critical amplitude was determined to be twice the value of the mean.  

Kirk and Lacourse [20] found that just by examining the spectral pattern of the 

EEG it is not clear that all frequencies contribute equal information. They performed 

Principal Component Analysis (PCA) on the time series of the spectral patterns to extract 

the frequencies with the largest amount of information. PCA involves a mathematical 

procedure that transforms a number of correlated variables into a smaller number of 

uncorrelated variables called “principal components” [37]. The first principal component 

accounts for as much of the variability in the data as possible, and each succeeding 

component accounts for as much of the remaining variability as possible. Thus PCA is a 

way to identify the patterns in data and highlights the similarities and differences. This 

has been used with an adaptive neural network to take into account the non-stationary 

property of the EEG signal [36]. 

Santana-Diaz et al [17] recorded the lateral position, steering wheel angle and 

vehicle speed, among other sensors while 10 subjects drove on a closed circuit. Mean and 

variance analysis was carried out to investigate the existence of quantitative difference 

between fatigue and normal driver behaviors. Principal Component Analysis was then 

used to eliminate redundancy and correlate the initial and new values.  

The research by Makeig and Jung [18] investigated the feasibility of estimating 

the fluctuations in an operator’s global level of alertness, using non-invasive 

multichannel EEG data in real-time. The subjects were asked to respond to visual and 
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auditory targets. EEG data were recorded and the power spectrum time series was 

calculated. The change in response was compared to the EEG spectrum using a cluster 

analysis program based on the centroid method. The Xerion neural network simulator 

[33] was trained for error estimation. The authors observed that once the network was 

trained, the system could successfully measure the alertness level using spontaneous EEG 

signals. 

 The Backpropagation algorithm has also been used for the classification of 

features extracted from the EEG [19]. The analysis is based on the existence of 

characteristic waves in the signal. It also included contextual analysis that rejects 

ambiguity and involves coherence analysis. 

 Khalifa et al [21] have designed a portable device for alertness detection that uses 

the Fast Fourier Transform to analyze the signals. The EEG was acquired on magnetic 

cassettes using the Holter System. Further classification was done using Kohonen 

artificial neural networks [45]. There was a negative correlation between scores of 

vigilance and the percentage of the delta band in the EEG. There was a positive 

correlation between the percentage of the other bands and the score of vigilance. 

 The Fourier Transform has been used extensively in signal processing. However, 

it does not give any information on the time at which a frequency component occurs. 

Hence it is best suited for stationary periodic functions. The short-time Fourier Transform 

(STFT) has been developed to overcome the disadvantages of the Fourier Transform. A 

moving window is applied to the signal and the Fourier Transform is applied to the signal 

within the window as the window is moved. This decomposes the signal into a set of 

frequency bands at any given time.  However the STFT also has its limitations, such as its 

time-frequency resolution capability, which is due to the uncertainty principle. Low 
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frequencies can be hardly depicted with short windows, whereas short pulses can only 

poorly be localized in time with long windows. This could be a disadvantage since some 

real signals have long duration low frequencies and short duration high frequencies. 

These signals can be better described by a transform that has a high frequency and low 

time resolution at low frequencies and a low frequency and high time resolution at high 

frequencies.  

The EEG is a non-stationary signal and for its analysis, it is essential to determine 

its behavior at any moment. Multiresolution analysis [46] decomposes a signal into a 

smoothed version of the original signal and a set of detailed information at different 

scales. This enables us to extract the regularity of a singularity that characterizes the 

signal’s behavior at that point. In the Wavelet Transform [46], the wavelet defines the 

bandpass filter that determines the detailed information. Associated with the wavelet is a 

smoothing function, which defines the complementary low pass filter. 

To summarize, the Wavelet Transform has 3 features: Multiresolution, constant 

relative bandwidth i.e. time-width of the wavelet is adaptive to the frequency, and the 

ability to indicate if the signal is localized in the time domain or the frequency domain. 

Yamaguchi [23] did a comparative study of normal and epileptic EEG records 

using Fourier Transform and Continuous Wavelet Transform. Daubechies wavelet of 

order 8 was used. It was observed that the local low frequency components in each EEG 

record were clearly depicted by the Wavelet Transform but not with Fourier Transform. 

Wavelet Analysis of EEG data in rats after drug exposure gave a good prediction 

of the Central Nervous System dysfunction [22]. The mother wavelet chosen was the 

Morlet since it has a Gaussian window that provides the best time-frequency localization 

in terms of the uncertainty principle. A thresholding technique was applied to the wavelet 
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coefficients and an accumulator was setup to determine consecutive occurrences of a 

particular frequency. 

Yoong and Shengxun [29] used the Discrete Wavelet Transform to analyze EEG 

and found that different frequencies could be represented on different scales. Thus the 

features of the wavelet transform in each scale can represent the state of the EEG signal. 

Wavelet Transform has been mainly used to date to differentiate between normal 

and epileptic EEG signals [23, 27]. It has also been used to study the effects of certain 

drugs [22], detect a psychiatric disorder like Alzheimer’s, and detect the G-LOC 

phenomena in pilots which is the loss of consciousness due to large acceleration forces 

[27]. Analysis has also been used to detect spikes during Sleep Stages. 

Idogiwa et al [28] recorded EEG of two subjects in response to a visual task. 

Using Wavelet Analysis they concluded that alpha activity becomes a dominant feature 

of the EEG after some time while doing monotonous work like driving. 

Alertness level detection has been examined using the analysis of EEG signals by 

wavelet transform, and classification using Artificial Neural Networks [26]. EEG signals 

were decomposed into the frequency sub-bands using wavelet transform. A set of 

statistical features - mean, average power and standard deviation were extracted from the 

sub-bands to represent the distribution of wavelet coefficients. These statistical features 

were used as an input to an ANN with three discrete outputs: alert, drowsy and asleep. 

The error back-propagation neural network was selected as a classifier to discriminate the 

alertness level of a subject.  

Mendoza et al [15] have presented a methodology based on Statistics, Wavelets 

and Support Vector Machines to perform a Driver’s Impairment analysis whose goal was 

to supervise and diagnose in real time the vigilance state of car drivers. Drivers drove 
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twice a day, with attached electrodes to record their EEG and EOG activity. At the same 

time, signals coming from the onboard sensors were recorded, and the scene in the 

cockpit and the environment of the vehicle were filmed. The variables from these 

recordings were used to compute a group of synthetic variables using Wavelet Analysis. 

The Haar wavelet was the mother wavelet used in this case. The coefficients obtained 

were then used to calculate the probability density function (PDF). The PDF was used to 

determine the vigilance state of the driver. 

  Until now, quantitative computerized EEG signal analysis has been based mainly 

on linear theory [38]. In recent years, there have been a lot of developments in nonlinear 

dynamics and deterministic chaos theory. These new techniques aid the extraction of 

additional information from EEG. This may increase the sensitivity of 

electrophysiological methods used for the analysis of EEG. 

 Pereda, et al [39] compared the differences between the EEG in the two 

hemispheres of nine healthy human subjects during different stages of sleep. The features 

used for comparison were the harmonic power spectral density within the EEG main 

spectral bands [34], the fractal dimension [47] and the correlation dimension [48].  The 

fractal dimensions calculated were able to provide information about the interhemispheric 

differences in human EEG during slow wave sleep, where spectral analysis could not. 

 Bullmore [40] et al used fractal analysis to analyze EEG during epileptic seizures. 

The method achieves data reduction without undue loss of diagnostically important 

information in the primary signal. 

 Studies have been carried out wherein the fractal dimension of EEG signals at 

different levels of handgrip forces was measured [41]. The fractal dimensions were 
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computed using the Katz algorithm [42], Sevcik’s method [44] and Higuchi’s algorithm 

[43]. 

Driver alertness monitoring has been designed to detect when the driver's ability 

has become impaired, whether from inattention, drowsiness, or intoxication [32]. A 

simple system may merely sound an alarm. More complex systems could include 

warnings of impending collisions or that the vehicle is straying from the roadway.  

In some systems, an infrared camera detects eye motion and computes trends that 

track driver vigilance [16]. Other methods monitor driver performance using lane-marker 

cameras to detect a wandering vehicle [15]. 

Schier and Gorman have designed a portable device to record the changes in 

spontaneous EEG during a driving task [30]. Two channels of EEG are recorded, 

amplified and then transferred to a portable computer using a microcontroller. 

A Drowsy-Driver Detection and Warning System prototype has been designed 

that measures PERCLOS, the proportion of time that a driver’s eyes are closed over a 

specified interval, and provides warning sounds accordingly [31]. 

Currently, in the United States road shoulder rumble strips are being promoted as 

an effective countermeasure for drowsy driving [3]. Rumble strips are raised or grooved 

patterns constructed on, or in travel lane and shoulder pavements. The texture of rumble 

strips is different from the road surface. Vehicle tires passing over them produce a sudden 

rumbling sound and cause the vehicle to vibrate. Road agencies use rumble strips to warn 

motorists of an upcoming change that may require them to act.  

 However, rumble strips have their own limitations. They may give drivers a false 

sense of security about driving while sleepy. The strips are useful as alerting devices, but 

they will not protect drivers who continue to drive while drowsy. Being awakened by 
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driving over a rumble strip is a warning to change sleep and driving behaviors for safety. 

The strips are not a technological quick fix for sleepy drivers. 

 

1.5 Statement of objective 

 Numerous attempts have been undertaken to quantify and interpret the EEG. The 

ability of human subjects to sustain their initial level of performance during visual 

monitoring tasks in a low-arousal environment is limited. In this thesis, a realistic, 

simulator (with a steering wheel and foot pedals) will be used in combination with a 

computerized driving software (Need for Speed). The EEGs of 10 participants are 

recorded while subjects are driving. Previous studies [13] have shown that event-related 

responses in the alpha range are best defined in the occipital locations. The EEG is 

recorded primarily from these locations.  The EEG recordings are then analyzed using 

Wavelet Transform and Fractal analysis.  

Chapter 2 describes the materials and gives an overview of the methods used in 

this study. Chapter 3 summarizes the results obtained using Fractal analysis, and Chapter 

4 reviews the results obtained using Wavelet Transform. Chapter 5 provides the 

discussions and suggestion for further work. Appendix A is a copy of the subject consent 

form. Appendix B and C provide the results of all subjects using Fractal analysis and 

Wavelet Transform respectively.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Subjects 
 

Nine male and 1 female volunteers with normal or corrected-to-normal vision and 

no known neurophysiological impairments participated in this study [49]. The subjects 

were asked to come at the end of their day’s work for the experiment. They were asked to 

try and remain relaxed throughout the recording. This would avoid any unwanted signals 

due to clenching of hands, teeth or any other stress. A written consent form [Appendix A] 

was given to each subject to read and sign before participating in the study. Two of the 

ten subjects did the experiment twice on different days at different times for variability 

purposes. 

 

2.2 Equipment 

A simulator environment was designed [50]. It consisted of Microsoft’s 

Sidewinder Force Feedback Racing Wheel that has foot pedals. This wheel is used in 

combination with computerized driving software (Need for Speed Hot Pursuit III, 

Electronic Arts 1998). The conditions while driving including the road turns and the 

surroundings make up the driving circuit. The driving course chosen for all subjects was 

identical. An LCD display placed at a distance of 90cm from the driver presented an 'in-

car’ view. Fig.2.1 shows the screen as seen by the subject using the simulator. 
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2.3 Driving Task 

Subjects completed four laps of the course and their EEG was recorded during all 

laps. After the course was over, it was replayed and subjects were asked to simply 

observe the laps with their hands on the steering wheel and having minimum movement. 

The replay task was executed in accordance with the intake versus rejection model of Ray 

and Cole [52]. According to this model, alpha activity should increase when changing 

from a largely intake task (driving) to a mixed intake/rejection task (watching the replay). 

The lap time was obtained from the software at the completion of the course.  

 

 

 

Fig. 2.1 Simulator Screen 

 

2.4 Subject Preparation 

A lot of experiments involving driver vigilance and alertness monitoring recorded 

the EEG signal from all channels. Kirk and Lacourse sampled four channels of data for 

their study on vigilance monitoring [51]. They were the EEG signals from O1-O2, EOG, 

stimulus marker and subject’s response.  
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The EEG was recorded from the sites F3 and Oz with respect to Cz, and C3 with 

respect to O1 using an electrode cap. The bipolar EEG signal was selected as the primary 

predictive data because of the presence of alpha waves in the visual cortex during 

drowsiness and sleep [51]. 

 Channel locations were selected as likely to contain independent alertness 

information on the basis of previous studies [66]. The electrode cap was designed using 

the 10-20 International System of Electrode Placement (Figures 2.2 and 2.3).  

 

Fig. 2.2 10-20 The International System of Electrode Placement - Top View [17] 
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Fig. 2.3 10-20 The International System of Electrode Placement – Side View [65] 

 

 For accurate electrode mapping, it was ensured that the Cz electrode on the cap 

was exactly midway between the nasion and Inion, and also midway between the left and 

right earlobes. The scalp area was prepared by light abrasion and application of a 

conductive gel to reduce impedance. The final impedance was less than 3 kΩ for each 

electrode. The electrode cap was attached to the Grass Model 12 Neurodata Acquisition 

System containing 6 AC amplifiers set to an amplification of 100,000x, 0.3 Hz high pass 

and 300Hz low pass filters. The amplified and pre-filtered signals were sent from the 

Grass Model 12 to a Biopac Model MP100 data acquisition device. The Biopac was used 

to record the EEG signals at a sampling frequency of 312.5 Hz. Figure 2.4 below shows 

the schematic representation of the experimental setup. 
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Figure 2.4 Schematic of the Multi-Stimuli VEP Presentation System (MSVPres) and acquisition system 
including system interconnections and synchronization lines. 

 
Special precautions have been taken to minimize noise in the data during the 

experiments. The subjects were required neither to move their head or body nor to have 

eye blinking or teeth biting when performing the handgrips. 

Figure 2.5 is an example of the signal recorded by Biopac, and viewed and saved 

using the Acknowledge software. 
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Fig 2.5 Example of signal recorded by Biopac 

 

2.5 Analysis  

The data were saved in the proprietary ACQ file format and later resaved as tab-

delimited text files which can be easily imported into other programs such as Microsoft 

Excel. The main part of the analysis was accomplished using MATLAB 6.1 with a script 

file to automatically load the data from the text files, perform the analytical calculations 

and write the results to another text file.  The script also automatically generated JPG 

files of the plots of the coefficients and their standard deviations. All statistics were saved 

to a file for use in Excel and for further analysis. 
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2.6 Wavelet Analysis 

 A signal can be expressed as the sum of a series of sines and cosines as per the 

Fourier theory [53].  Fourier Transform provides only frequency solution and no time 

resolution. In most biomedical applications, there is interest in the localized complex 

phenomena superposed on the periodic signals as well as the background noise [54]. 

Because of its drawbacks, Fourier analysis is not well suited for analysis of localized 

phenomena.   

 The short time Fourier Transform (STFT) [55] was designed for analysis when 

both time and frequency localization were required. The STFT enables the time 

localization of a particular sinusoidal frequency; however it is limited by the application 

of Heisenberg’s uncertainty principle applied to signal processing [56]. This implies that 

it is impossible to know the exact frequency and time of occurrence of a particular signal 

frequency [57]. 

 S. Mallat [58] proposed a new solution for the multiresolution representation of 

images and this was effectively applied to signal processing as well. This method is 

known as Wavelet Transform. 

 The Wavelet Analysis uses a fully scalable modulated window that is shifted 

along the signal to calculate the spectrum along every position [57].  This process is 

repeated multiple times with a shorter window in each cycle. The end result will be a 

collection of time-frequency representations of the signal with different resolutions. 

 Figure 2.6 below gives a high-level block diagram of the process. The Scale is 

defined as the inverse of frequency. 
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Fig. 2.6 Block Diagram for Wavelet Analysis [11] 

 

 The mathematical representation [57] of the Wavelet Transform is give as 

follows: 

 
 

where * denotes complex conjugation. This equation shows how a function f(t) is 

decomposed into a set of basis functions , called the wavelets. The variables s and 

, scale and translation, are the new dimensions after the wavelet transform. 

The wavelets are generated from a single basic wavelet  by scaling and translation: 

 

where s is the scale factor, is the translation factor and the factor s-1/2 is for energy 

normalization across the different scales. 

 The decomposition coefficients computed using the Continuous Wavelet 

Transform have a lot of redundant information and are large in number. To avoid this 

issue, the Discrete Wavelet Transform was developed, the algorithm of which makes it 
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extremely fast to compute coefficients without losing the significant details of the signal. 

This DWT can be mathematically represented [57] as follows: 

 

where j and k are integers and s0 > 1 is a fixed dilation step. The translation factor 0 

depends on the dilation step. 

Continuous Wavelet Transform is easier to read since its redundancy reinforces 

the traits and makes the information more visible [59]. This is especially helpful in EEG 

analysis since it is the subtle differences that need to be interpreted easily. 

 Santana Diaz et al [60] measured the lateral position, steering wheel angle and 

vehicle speed while the driver was in motion. These variables were then processed using 

the Haar, Symmlet and cubic B-Spline wavelets. The Haar wavelet analysis was 

determined to be the best for road bend detection, the Symmlet for noise filtering and the 

B-Spline wavelet to determine the ruptures in the signal.  These values along with the 

EEG analysis and the self report provided by the driver were used to determine the 

alertness of the driver. 

Quadratic Spline Wavelets were first used to study pattern-reversal visual evoked 

potentials (PRVEPs) collected from normal and demented subjects by Ademoglu, 

Micheli-Tzanakou, et al [56].  Quiroga and Schurrmann [61] used the quadratic B-Spline 

wavelet to analyze the VEP recordings from subjects in response to a checkerboard 

pattern used as stimulus.  The statistical analysis to compare the coefficients was done 

using Analysis Of Variance (ANOVA).  They concluded that even-related alpha 

oscillations were better determined using this method. 
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2.7 Fractal Analysis 

“A fractal is a shape made of parts similar to the whole in some way” [62]. Fractal 

dimensions are the measure of the self-similarity of signals. Mathematically, the fractal 

dimension can be defined as follows [63]: 

 

 

 
Fractal dimensions can be calculated using various methods. 

Katz’s Fractal Dimension (FD) [42] is derived directly from the waveform. The 

FD of a curve can be defined as: 

)(
)(

dLog
LLogD = , 

where L is the total length of the curve or sum of distances between successive points, 

and d is the diameter estimated as the distance between the first point of the sequence and 

the point of the sequence that provides the farthest distance. Mathematically, d can be 

expressed as: 

d= max (distance (1,i)) 

Considering the distance between each point of the sequence and the first, point i is the 

one that maximizes the distance with respect to the first point. The average distance 

between successive points a’ is calculated and used as a normalizing factor. Katz’s FD is 

calculated as: 

)'/(
)'/(
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Another approach used is calculating the Box dimension [66]. Suppose that there 

a number of boxes of equal length r.  N(r) is the number of such boxes that covers the 

object whose FD is to be calculated. These boxes each have area rn, and they are scaled 

by a factor of 1/ rn . If the object is a square of length s, N(r) can be determined as 

follows: 

 

Since s2 is a constant, it can be denoted by C: 

 

Solving for n yields:  

 

n is the dimension of the object. Since C is a constant, it can be ignored. Taking the limit 

of this formula as r approaches 0, the formula for box dimension is: 

 

 Regularization dimension [66] is defined in the following way: One first 

computes smoother and smoother versions of the original signal, obtained through 

convolutions with a kernel. When the original signal is fractal, its graph has infinite 
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length, while all regularized versions have finite length. When the smoothing parameter 

tends to 0, the smoothened version tends to the original signal, and its length will to tend 

to infinity. The regularization dimension measures the speed with which the convergence 

takes place. 

 

2.8 EEG Analysis 

 EEG analysis was done using the wavelet function and the Wavelet Toolbox that 

are a part of MATLAB 6.1. The mother wavelets used were Daubechies wavelet of order 

4 and the frequency B-spline wavelet. 

 INRIA [65] have developed a Matlab based Software that does Fractal Analysis. 

This toolbox is known as FracLab. Regularization dimensions of the EEG signals were 

calculated using the functions provided by this toolbox.
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CHAPTER 3 

RESULTS OF FRACTAL ANALYSIS 

The frequency content of signals from C3-O1 and Cz-Oz were similar. Hence, only 

the results from Cz-Oz are reported here. The EEG signals for each subject were filtered 

by an FIR filter using the Kaiser-Bessel window [49]. An FIR filter was used since it 

handles low frequency features much more efficiently. The signals were filtered in four 

different ways as follows: 

1) Containing all frequencies 

2) Containing only alpha frequency (8-13 Hz) 

3) Containing only delta frequency (0.5-4 Hz) 

4) Excluding alpha frequency 

The sampling frequency of the recorded EEG is 312.5Hz. In order to reduce redundancy 

and for better processing time, each signal was divided into windows of 512 points 

(1.6384 seconds). There was an overlap of 10% between adjacent windows in order to 

avoid edge effect.  Regularization dimension [66] was calculated for each of these 

windows and the values plotted as shown in the following figures.  

Figures 3.1 to 3.4 below represent the average of the regularization dimensions of 

all subjects for the different sets of data.  Figure 3.1 has the EEG signal containing all 

frequencies. It is observed that the plots for the two different periods are different and on 

an average, the amplitude of the fractal dimensions in the final period increase by 0.35% 

as compared to the initial period. 
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Figure 3.1 

Figure 3.2 below shows the difference in the alpha frequency amplitudes in the 

initial and final periods. There is an average increase of 0.28% in the amplitude of the 

dimensions when between the two periods. Thus the major increase in amplitude is due to 

the alpha frequencies. 

 

 

 

 

 

 

 

 

Figure 3.2 

Figure 3.3 below plots the dimensions of the signal containing only delta 

frequencies. There is some differentiation between the two plots and the average increase 
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in amplitude is 0.07% in the final period as compared to the initial period. Thus delta 

frequencies are present in the state of drowsiness. 

 

 

 

 

 

 

 

 

 

Fig 3.3 

Plot of Regularization Dimension of  EEG filtered signal 
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1.0000

1.0100

1.0200

1.0300

1.0400

1.0500

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

Time window; 1 time window= 512 points= 1.6384 seconds

Fr
ac

ta
l D

im
en

si
on

Initial Period
Final Period

 

Fig 3.4 

Figure 3.4 above has the all frequencies excluding alpha, and it is observed that 

there is no clear demarcation between the awake and drowsy periods. In fact, the average 
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amplitude increase is about 0.07%, same as the amplitude change in delta frequencies. 

This confirms that alpha frequencies get affected the most with the change in alertness. 

 Figures 3.5-3.12 below represent the analysis of 2 subjects. The graphs for the 

remaining subjects will be found in Appendix B.   

Subject 1 
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Subject 1 

Plot of Regularization Dimension of filtered EEG signal 
excluding alpha frequencies
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Fig 3.7 
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Fig 3.8 
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Subject 2 

Plot of Regularization Dimension of  EEG signal containing 
all frequencies 
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Fig 3.9 
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Fig 3.10 
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Subject 2 
 

Plot of Regularization Dimension of filtered EEG signal 
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Fig 3.11 
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Fig 3.12 
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Further statistical analysis is done on the results. The standard error of the mean is 

often used as the most appropriate measure of error/variance in a set of data [67]. It is 

defined as the standard deviation divided by the square root of the number of samples. 

Table 3.1 below provides a summary of the standard errors for the different sets of data 

extracted from the EEG signals of each subject. “Initial” denotes the signal during the 

first 232.7295 seconds and “final” represents the signal in the last 232.7295 seconds. 

From table 3.1, it is observed that the standard errors of the mean for the initial 

and final periods do not overlap. This indicates that the difference in the two sets of data 

for each subject for a particular frequency is statistically significant. 

To further confirm this hypothesis, a two-sided t-test [67] is used to analyze the 

two sets of data for each subject. The null hypothesis is "means are equal". The 

alternative hypothesis is “means are not equal”. The significance level of a statistical 

hypothesis test is a fixed probability of wrongly rejecting the null hypothesis, if it is in 

fact true. The significance level chosen for this study is 5% or 0.05 [67].  The t-test 

calculated the variables P, CI and t statistic. P is the probability of observing the given 

result by chance given that the null hypothesis is true. Small values of P cast doubt on the 

validity of the null hypothesis. CI is the confidence interval that gives an estimated range 

of values, which is likely to include an unknown parameter, the estimated range being 

calculated from a given set of sample data. Confidence limits are the lower and upper 

boundaries of a confidence interval, that is, the values that define the range of a 

confidence interval. The t statistic is a measure of how extreme a statistical estimate is. 

This statistic is computed by subtracting the hypothesized value, which is the standard 

deviation of the sample, from the statistical estimate and then dividing by the estimated 

standard error. 
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Subjects All Frequencies Only Alpha Excluding Alpha Only Delta 
  Initial Final Initial Final Initial Final Initial Final 
Subject 1 0.00093941 0.00157182 0.00029182 0.00066737 0.00083704 0.00114934 0.00016349 0.00041643
Subject 2 Trial1 0.00036511 0.00073509 0.00011922 0.00011811 0.00030116 0.00028255 0.00009483 0.0001031
Subject 2 Trial2 0.00038953 0.00101203 0.00013409 0.00038245 0.00032549 0.00074796 0.00009472 0.00022572
Subject 3 0.00045521 0.00119385 0.00017452 0.00046505 0.00036041 0.000868 0.00012656 0.00029612
Subject 4 0.00027993 0.00040184 0.00009202 0.00010353 0.00024777 0.00038692 0.00007421 0.00008038
Subject 5 0.00051193 0.00082434 0.00015836 0.0001926 0.00044192 0.00086011 0.00011972 0.00014842
Subject 6 0.00082969 0.00073509 0.00021201 0.00026178 0.00075857 0.00098917 0.00016155 0.00016537
Subject 7 0.00046348 0.00181481 0.00015306 0.00063943 0.00036218 0.00137922 0.00012579 0.00039788
Subject 8 0.00056762 0.00054231 0.00013638 0.00014518 0.00054487 0.00090503 0.00039788 0.0001138
Subject 9 Trial1 0.00036689 0.00061167 0.00012952 0.00061167 0.00061167 0.00045025 0.00061167 0.00015255
Subject 9 Trial2 0.00096498 0.00071651 0.00011449 0.00026928 0.00098046 0.0005406 0.00008701 0.00016498
Subject 10 0.00036895 0.00019301 0.00009828 0.00009799 0.0003377 0.00023273 0.000082 0.0000823

 
 

Table 3.1 
Comparison of Standard Error of Fractal dimensions
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It is observed that the null hypothesis is rejected in 76.9% of the subjects in the 

EEG data containing all frequencies [Table 3.2], 92.3% of the subjects in the EEG data 

containing only the alpha frequencies [Table 3.3], 92.3% of the subjects in the EEG data 

excluding the alpha frequencies [Table 3.4], and 84.6% of the subjects in the EEG data 

containing only the delta frequencies [Table 3.5].    

The probability value is assumed reasonable when the t-statistic is close to zero.  

It is not large enough when the t-statistic is a large positive (>1) and is too large when the 

t-statistic is a large negative (<-1). It is observed that where the null hypothesis is true, 

the t-statistic is close to zero. This indicates that the calculated probability of the two sets 

of data being similar is correct. In the majority of cases where the null hypothesis has 

been rejected, the t-statistic is a large negative (<-1). This shows that the calculated 

probability has been exaggerated and the actual probability of the two sets of data being 

similar is much lower. 

        The regularization fractal dimension is able to distinguish between the different 

states of alertness in EEG data. 
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Table 3.2 
Ttest results for EEG data containing all frequencies 

 Reject Null Hypothesis Probability
Confidence Interval (Lower 
Boundary) 

Confidence 
Interval 
(Upper 
Boundary) Tstat df 

Subject 1 1 0.00000000 -0.01684706 -0.00963816 -7.23186600 282
Subject 2 Trial1 0 0.07777824 -0.00016271 0.00306851 1.77017600 282
Subject 2 Trial2 1 0.00000000 0.00784626 0.01211539 9.20392900 282
Subject 3 1 0.00000000 0.00584979 0.01087983 6.54682200 282
Subject 4 1 0.00000000 -0.00552593 -0.00359794 -9.31518100 282
Subject 5 1 0.00000000 -0.00946507 -0.00564492 -7.78572300 282
Subject 6 0 0.66365600 -0.00266451 0.00169940 -0.43532990 282
Subject 7 0 0.23067970 -0.00593687 0.00143702 -1.20120500 282
Subject 8 1 0.00000000 0.01366556 0.01675614 19.37582000 282
Subject 9 Trial1 1 0.00000000 -0.01393415 -0.01112615 -17.56731000 282
Subject 9 Trial2 1 0.00000000 -0.01207523 -0.00734354 -8.07833500 282
Subject 10 1 0.00000000 0.02208001 0.02371923 54.99664000 282
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Table 3.3 
Ttest results for EEG data containing alpha frequencies 

  Reject Null Hypothesis Probability
Confidence Interval (Lower 
Boundary) 

Confidence 
Interval 
(Upper 
Boundary) Tstat df 

Subject 1 1 0.00000000 -0.00776216 -0.00489463 -8.68825400 282
Subject 2 Trial1 1 0.00003599 -0.00103502 -0.00037434 -4.19898100 282
Subject 2 Trial2 0 0.65996900 -0.00097625 0.00061926 -0.44042190 282
Subject 3 1 0.00575584 -0.00235991 -0.00040444 -2.78264200 282
Subject 4 1 0.00000009 -0.00103173 -0.00048641 -5.47999000 282
Subject 5 1 0.00925005 -0.00114428 -0.00016265 -2.62072500 282
Subject 6 1 0.00000000 -0.00439056 -0.00306437 -11.06510000 282
Subject 7 1 0.00005424 -0.00398950 -0.00140105 -4.09931000 282
Subject 8 1 0.00000000 0.00106839 0.00185257 7.33203000 282
Subject 9 Trial1 1 0.00000000 -0.01970828 -0.01842816 -58.64165000 282
Subject 9 Trial2 1 0.00000000 -0.00440648 -0.00325454 -13.09093000 282
Subject 10 1 0.00002131 0.00032686 0.00087322 4.32359500 282
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Table 3.4 
Ttest results for EEG data excluding alpha frequencies 

 
 
 
 
 
 
 
 
 
 
 
 
 

  Reject Null Hypothesis Probability
Confidence Interval (Lower 
Boundary) 

Confidence 
Interval 
(Upper 
Boundary) Tstat Df 

Subject 1 1 0.00000001 -0.01130626 -0.00570875 -5.98347500 282
Subject 2 Trial1 1 0.00000013 -0.00305025 -0.00142454 -5.41807200 282
Subject 2 Trial2 1 0.00000000 0.01029106 0.01350238 14.58443000 282
Subject 3 1 0.00000000 0.00948423 0.01318425 12.05963000 282
Subject 4 1 0.00000000 -0.00532120 -0.00351242 -9.61321500 282
Subject 5 1 0.00000000 -0.01004952 -0.00624265 -8.42414900 282
Subject 6 1 0.00000000 -0.02584545 -0.02093800 -18.76517000 282
Subject 7 0 0.70739460 -0.00227113 0.00334272 0.37573750 282
Subject 8 1 0.01804643 -0.00459210 -0.00043328 -2.37856000 282
Subject 9 Trial1 1 0.00000000 -0.01052172 -0.00839300 -17.49024000 282
Subject 9 Trial2 1 0.00000000 -0.00923939 -0.00483164 -6.28382900 282
Subject 10 1 0.00000000 0.00621683 0.00783144 17.12656000 282
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  Reject Null Hypothesis Probability
Confidence Interval (Lower 
Boundary) 

Confidence 
Interval 
(Upper 
Boundary) Tstat df 

Subject 1 1 0.00000000 -0.00461337 -0.00285213 -8.34365100 282
Subject 2 Trial1 1 0.00000000 -0.00199507 -0.00144359 -12.27366000 282
Subject 2 Trial2 1 0.00000000 -0.00200650 -0.00104280 -6.22839300 282
Subject 3 1 0.04688367 -0.00127672 -0.00000892 -1.99610800 282
Subject 4 1 0.00099023 -0.00057944 -0.00014876 -3.32820400 282
Subject 5 0 0.13211460 -0.00066332 0.00008738 -1.51019000 282
Subject 6 1 0.00000000 -0.00231949 -0.00140937 -8.06478300 282
Subject 7 1 0.00041284 -0.00231297 -0.00067016 -3.57437600 282
Subject 8 0 0.42384930 -0.00048315 0.00114606 0.80092510 282
Subject 9 Trial1 1 0.00000000 -0.00282941 -0.00213177 -13.99802000 282
Subject 9 Trial2 1 0.00000000 -0.00254980 -0.00181549 -11.70167000 282
Subject 10 1 0.00058795 0.00017522 0.00063261 3.47656000 282

 
Table 3.5 

Ttest results for EEG data containing delta frequencies 
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CHAPTER 4 

RESULTS OF WAVELET TRANSFORM 

The frequency content of signals from C3-O1 and Cz-Oz were similar. Hence, 

only the results from Cz-Oz are reported here. Fig.4.1 shows the color-coded wavelet 

coefficients of two signals from the same subject. 

 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.1.  

Wavelet Coefficients from Scales 8 to 28. 
 

 
  The first signal (top left) is taken from the latter part of the cycle while driving 

and the second signal (top right) is taken from the corresponding part of the cycle during 

observation with no movement. Scales 8 to 28 depict the maximum variations in the 

signal amplitude. These scales represent frequencies from 6.975 Hz to 13.95 Hz. The 

lighter the color, the higher is the absolute magnitude of the wavelet coefficient and this 

represents higher amplitude of that particular frequency of the signal.  As seen, the 

wavelet coefficients are of higher magnitude in the last 500 points of the second signal. 
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Fig.4.2  

Wavelet Coefficients at various levels of detail 
 
 

  Fig.4.2 shows the details of the wavelet coefficients at different powers of 2. The 

first signal (top left) is taken from the latter part of the cycle while driving and the second 

signal (top right) is taken from the corresponding part of the cycle during observation 

with no movement. Presence of alpha waves is very evident at levels 4 and 5. Similar 

results have been observed for all subjects. They were also observed in both recordings of 

the subjects who did the experiment twice. In general, there were a large number of alpha 

waves in the latter parts of the driving cycle during observation with no- movement. The 

same inferences are made when observing the wavelet coefficients of the average EEG 

signal of all subjects (Fig 4.3 and Fig 4.4).  
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Fig. 4.3.  
Wavelet Coefficients from Scales 8 to 28 for the averaged EEG signal  

 
 
 

 

 
 
 

Fig.4.4  
Wavelet Coefficients at various levels of detail for the averaged EEG signal 
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To ensure that the signals did not contain very high amount of 60hz signal, Fourier 

Transform was done using the ACQ software. It was observed that an insignificant 

amount of this frequency was present in the recorded data. Fig 4.5 is the plot for one set 

of data. 

 
 

Figure 4.5 
Plot of Fourier Transform 

 
Figures 4.6 and 4.7 below plot the Fourier transform of the averaged EEG signal 

in the initial and final periods. Micheli-Tzanakou and Pavlopoulos [69] have used the 

phase characteristics of the power spectrum as a criterion for distinguishing between 

normal and abnormal Visual Evoked Potentials (VEP). They showed that the phase 

spectrum of a VEP has a certain periodicity in the 0- to 40-Hz region and were able to 

determine the range of the period that characterizes normal and abnormal populations. 

Thus an experimental method for objectively examining any kind of VEP waveforms was 

established.  
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Similarly, in this study the two plots were compared for their periodicity wherein; 

the peaks above 50 degrees in the 0-80Hz range were counted. It is observed that the 

periodicity in both periods is similar (97 for initial period and 99 for final period). When 

analyzed for only the alpha frequencies the periodicity was the same for both periods (6 

for initial period and 6 for final period). This reinforces our observations that Fourier 

Transform is not a suitable analysis technique for the problem in this study. 

 

 

 

 

 

 

 

Figure 4.6 

Figure 4.7 

Fourier Transform in the Initial Period
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Figure 4.8 below, provides the comparison of standard deviations of the wavelet 

coefficients using different wavelets. Each signal was divided into windows of 1024 

points (3.2768 seconds). There was an overlap of 10% between adjacent windows in 

order to avoid edge effects.  The wavelet coefficients were calculated using Matlab and 

standard deviation of the coefficients obtained using different wavelets were plotted. 

Daubechies and Symlet wavelets did not filter the signal for noise effectively before 

analysis and it will be observed that this caused a shift in the amplitude of the wavelet 

coefficients. This increases the chances of error. B-spline wavelets provide the best 

indication and hence, they have been used for the analysis of all subjects. 

 

Fig 4.8 
Comparison of Coefficients using Different Wavelets 
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 Figures 4.9 to 4.12 provide the plots for the wavelet coefficients of three subjects. 

Subject 2 was requested to come on different days at different times. This was to avoid 

selection bias while analyzing the signals. Trial 1 was conducted at the start of the day 

whereas Trial 2 was conducted at the end of the day. It is observed that the difference in 

amplitudes of the wavelet coefficients is more pronounced in Trial 2.  The plots for the 

remaining subjects will be found in Appendix C. The time windows are of 1.6384 

seconds. 
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Subject 2-Trial 1 
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Fig 4.10 
 
 

Subject 2- Trial 2 
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Fig 4.11 
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Subject 3 
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Fig 4.12 

 
Fig. 4.13 gives the average of the standard deviation when calculated across all 

subjects. It is observed that the standard deviation is on an average 95.59% higher in the 

final period indicating the increased presence of alpha waves during the latter driving 

stages.  
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Table 4.1 below provides a summary of the standard errors for the two sets of data 

extracted from the EEG signals (Cz-Oz) of each subject. “Initial” denotes the signal 

during the first 232.7295 seconds and “final” represents the signal in the last 232.7295 

seconds. 

Subjects All Frequencies 
  Initial Final 
Subject 1 0.0000000000335500 0.0000000001356864 
Subject 2 Trial1 0.0000000000095956 0.0000000000425839 
Subject 2 Trial2 0.0000000000139065 0.0000000001008122 
Subject 3 0.0000000000160894 0.0000000000879784 
Subject 4 0.0000000000061353 0.0000000000089000 
Subject 5 0.0000000000188965 0.0000000000234886 
Subject 6 0.0000000000087998 0.0000000000425839 
Subject 7 0.0000000000076737 0.0000000000672184 
Subject 8 0.0000000000088896 0.0000000000100078 
Subject 9 Trial1 0.0000000000108688 0.0000000000294674 
Subject 9 Trial2 0.0000000000069589 0.0000000000409784 
Subject 10 0.0000000000047087 0.0000000000011612 
Average 0.0000000000040517 0.0000000000179009 

 
Table 4.1 

 
Standard Error for data extracted from EEG Signal 

 

A two-sided t-test is used to analyze the two sets of data for each subject (Table 4.2). The 

null hypothesis is "means are equal". The alternative hypothesis is “means are not equal”. 

The significance level chosen is 5% or 0.05 [67].  It is observed that the null hypothesis is 

rejected in 76.9% of the subjects in the EEG data. 

        The probability value is assumed reasonable when the t-statistic is close to zero.  It 

is not large enough when the t-statistic is large positive (greater than 1) and is too large 

when the t-statistic is large negative (less than –1). It is observed that where the null 

hypothesis is true, the t-statistic is close to zero. This indicates that the calculated 

probability of the two sets of data being similar is correct. In the majority of cases where 
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the null hypothesis has been rejected, the t-statistic is a large negative. This shows that 

the calculated probability has been exaggerated and the actual probability of the two sets 

of data being similar is much lower. 

Wavelet transform is a visually effective tool to observe the change in frequency 

of a non-stationary signal like EEG.  

Various states of EEG signal correspond to different representation of information 

in each scale. The features of the waveform in each scale using the wavelet transform can 

reflect the states of the EEG signal. So, a new analysis tool for signal feature acquisition, 

automatic discrimination, false wave elimination and automatic analysis is provided. 

Continuous Wavelet Analysis is often easier to interpret, since its redundancy tends to 

reinforce the traits and makes all the information more visible. This is especially true of 

very subtle information. Thus, the analysis gains in “readability” and in ease of 

interpretation. Thus we can use wavelet transform to distinguish between the different 

states of alertness in EEG data.
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  Reject Null 
Hypothesis

Probability Confidence Interval 
(Lower Boundary) 

Confidence Interval 
(Upper Boundary) 

tstat df 

Subject 1 1 3E-12 -1.2933E-09 -7.4304E-10 -7.284494 282
Subject 2 Trial1 0 0.1184036 -1.543E-10 1.755E-11 -1.566284 282
Subject 2 Trial2 1 4.31588E-05 -6.2317E-10 -2.2253E-10 -4.155063 282
Subject 3 1 7.5813E-08 -6.6999E-10 -3.1789E-10 -5.522718 282
Subject 4 1 0.007515835 -5.038E-11 -7.83E-12 -2.692514 282
Subject 5 0 0.2256957 -9.594E-11 2.274E-11 -1.214178 282
Subject 6 1 0.000220556 -2.4834E-10 -7.716E-11 -3.742761 282
Subject 7 1 3.791E-09 -5.4485E-10 -2.785E-10 -6.084934 282
Subject 8 0 0.1626453 -7.61E-12 4.509E-11 1.39989 282
Subject 9 Trial1 1 0 -4.2643E-10 -3.0278E-10 -11.60874 282
Subject 9 Trial2 1 0 -4.7637E-10 -3.1274E-10 -9.492511 282
Subject 10 1 0 9.185E-11 1.1095E-10 20.90805 282

 

Table 4.2 
 

Ttest results for EEG data after Wavelet Transform 
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CHAPTER 5 

DISCUSSION AND FURTHER WORK 

The EEG signal can be viewed as one generated by a self-organized, chaotic, 

nonlinear, dynamical system governed by deterministic evolution equations and 

perturbed by noisy perturbations [5].  It has been observed that there is an increase of 

slow alpha activity on the EEG when cerebrum activity goes down because of less 

tension or because of a tendency to drowsiness [32].  

Experimentally, it has been found that for a driver on the highway, it is easy to 

become drowsy in about 40 minutes [28]. In the current study, EEG signals were 

recorded while subjects were driving for 40 minutes and then while they were observing 

their driving course for the same amount of time in the same seating position without 

actually driving. Fractal analysis and Wavelet Transform were used to analyze the 

signals. Two of the subjects were requested to come on different days and at different 

times of the day. This was done in order to show that at different times of the day the 

signals obtained where different. Trial 1 was conducted at the start of the day whereas 

Trial 2 was conducted at the end of the day. It is observed that the difference in 

amplitudes of the fractal dimensions and wavelet coefficients is more pronounced in Trial 

2, i.e. the latter part of the day, since during that part of the day, the subjects were more 

tired.   

Wavelet transform is a visually effective tool to observe the change in frequency 

of a non-stationary signal like EEG. It is observed that the standard deviation is on an 

average 95.59% higher in the later driving stages indicating the increased presence of 

alpha waves. Continuous Wavelet Analysis is also easier to interpret, since its 

redundancy tends to reinforce the significant characteristics of the signal and makes all 
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the information more visible. This is especially true of very subtle information. The 

analysis gains in “readability” and in ease of interpretation. Thus we can use wavelet 

transform to distinguish between the different states of alertness in EEG data. 

The regularization fractal dimension is able to distinguish between the different 

states of alertness in EEG data.  When the entire EEG signal is analyzed, the average 

increase in amplitude of the dimension is 0.35% and it is in the latter driving period. 

Amplitude of alpha frequencies increases by 0.28% and that of the delta frequencies 

increase by 0.07%. Thus the major increase in amplitude is due to the alpha frequencies. 

Previous studies have determined that there is an anterior-posterior gradient in the 

EEG, proving that alpha rhythm is less represented in the frontal region [64].Accardo et 

al recorded the EEG signals from four normal subjects and two subjects with generalized 

epilepsy. All recordings were carried out on wakeful subjects with open or closed eyes. 

The signals were analyzed using Higuchi’s algorithm. They observed that the fractal 

dimension with the eyes closed was larger than the value of the fractal dimension with 

the eyes open. Also, the presence of alpha frequencies was greater in the signal recorded 

with closed eyes. It is thus possible to conjecture that a bioelectrical activity characterized 

by the increased presence of rhythmic waves at an unwanted time (such as the alpha 

rhythm on the onset of drowsiness) represents a situation with high chaotic behavior 

producing higher values of the fractal dimension. The reduced value of the fractal 

dimension during regular activity, when alpha is not present, indicated that the brain 

network acts as a less chaotic system. 

Two-sided t-test was done on the results obtained by both methods. One set was 

the result obtained for the EEG signal recorded in the initial period and the second set 

was the signal recorded in the latter period. The null hypothesis was "means are equal". 
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The alternative hypothesis was “means are not equal”. It is observed that the null 

hypothesis is rejected in 76.9% of the subjects in the results of the EEG data obtained by 

both techniques. 

While driving, an individual tends to get drowsier as time passes and this is very 

clearly depicted from the increasing amplitude of the alpha frequencies. The increase in 

amplitude is observed using wavelet transform and fractal analysis. The time required to 

analyze the signal was 7 seconds for wavelet analysis and 10 seconds for fractal analysis. 

This is an important factor while considering instant feedback to alert the driver in order 

to avoid possible mishaps. In the future, this analysis can be used to monitor driver 

alertness and physical condition and to provide instantaneous response for the driver’s 

awareness and accident prevention. 

The Fractal results show that alpha and to some extent delta waves are the ones 

contributing towards drowsiness. However, in the current study these frequencies had to 

be separated for accurate analysis. Since analysis of the signal needs to be instant and 

accurate, a real-time filtering technique such as Fourier transform [35] will need to be 

incorporated. Combining fractal dimension changes to spectral parameters could increase 

the sensitivity of real time detection of the onset of drowsiness. Alternatively, there could 

be techniques such as Hjorth parameters [68], Artificial Neural Networks [45], Higuchi’s 

algorithm [43] that would provide results in real-time without the need for filtering. 

The possible feedback mechanisms that could be installed as a result of the 

detection could be an audio alarm or an electric buzzer. The reaction provided by the 

system needs to be instantaneous to avoid the possibility of accidents. 

As described in the methods section, a cap with electrode placements as per the 

10-20 electrode system was used to record the EEG signals. Based on this, a cap is 
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required to be designed taking into consideration its cosmetic appearance in order to 

appease to users for regular use. Also the cap will need to be able to be insensitive to the 

diverse resistances provided by different users to the electrodes. The drawback of this 

system could be the reluctance on the part of the users to regularly and correctly wear the 

cap to capture the signals as per the 10-20 electrode system.  

As for the needed instrumentation, the analysis carried out in this study was done 

using a desktop with the Pentium 4 microprocessor. This is a standard processor available 

in most standard computers. However the analysis was done post-recording. . The time 

required to analyze the signal was 7 seconds for wavelet analysis and 10 seconds for 

fractal analysis. Real-time processing and analysis will require more advanced hardware 

to decrease the time required for feedback. 

In the current study, there are no assumptions made regarding the noise generated 

by the surroundings and the electrical components of the car while driving. The 

recordings were carried out in a closed room where all external noise was filtered out. In 

future studies, this will be an important factor for practical applications of the techniques 

considered in this study. 

Other applications of drowsiness detection can be for workers in factories and for 

air traffic controllers where it is extremely essential to be vigilant at all times. Here too, 

an important consideration will be the constant hum generated by the machines along 

with the environmental noise. Hence filters will be required to be used to nullify the 

effect of the unwanted frequencies. 

To summarize, in the current study, EEG recordings were done while subjects 

were driving in a simulated environment. The recorded signals were analyzed using 

Fractal analysis and Wavelet Transform. There is an increased presence of alpha 
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frequencies with the onset of drowsiness. While the techniques used were successful in 

detecting the presence of these alpha waves, further studies need to be done to study the 

effect of external noises while driving and to improve the techniques in order to decrease 

the time required to provide analysis. 
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APPENDIX A 

SUBJECT CONSENT FORM
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 APPENDIX B 

FRACTAL ANALYSIS: REMAINING SUBJECTS 
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Subject 2: Trial 2 
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Subject 3 
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Subject 3 
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Subject 4 
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Subject 4 
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Subject 5 
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Subject 5 
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Subject 6 
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Subject 6 
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Subject 7 
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Subject 7 
 

Plot of Regularization Dimension of filtered EEG signal 
excluding alpha frequencies

1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

Time window; 1 time window= 512 points= 1.6384 seconds

Fr
ac

ta
l D

im
en

si
on

Initial Period
Final Period

 
 
 

Plot of Regularization Dimension of filtered EEG signal 
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Subject 8 
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Subject 8 
 

Plot of Regularization Dimension of filtered EEG signal 
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Subject 9: Trial 1 
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Subject 9: Trial 2 
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Subject 9: Trial 2 
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APPENDIX C 

WAVELET TRANSFORM: REMAINING SUBJECTS 
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Subject 9- Trial 2 
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