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ABSTRACT OF THE THESIS

Model-Based Image Segmentation in Medical Applications

by Zhen Qian

Thesis Director: Dimitris N. Metaxas

Image segmentation is an essential and indispensable step in medical image analysis. It

partitions the image into meaningful anatomic or pathological structures. Because med-

ical image segmentation needs high level medical and anatomic knowledge, model-based

segmentation methods are highly desirable. In this thesis, we will first give a short sur-

vey of current approaches of medical image segmentation. Then we specifically develop

appearance and shape models for different segmentation tasks. These models are either

obtained from visual observation and prior human expertise, or from certain automatic

machine learning methods. In this thesis, two model-based image segmentation algo-

rithms are developed for 3D MR colonography and 2D cardiac tagged MRI. For 3D MR

colonography, we manually build the shape and intensity model. For 2D tagged MRI,

we learn the shape and local appearance model from a training set. In each application,

besides the models, we give complete details in solving the segmentation problems, such

as how we correct the MR image intensity inhomogeneity and how we automatically

initialize the segmentation. Both model-based methods perform well on real medical

image data.
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Chapter 1

Introduction

1.1 Motivation

Image segmentation is a classic problem in computer vision. It is a process that par-

titions the image pixels into meaningful groups so that we can achieve a compact

representation of the image [1]. Segmentation is usually performed based on many fac-

tors, such as intensity, color, or texture similarities, pixel continuity, and higher level

knowledge about the objects model.

Image segmentation has many applications in the biomedical field. Medical imaging

has become an important part in health care nowadays. X-rays, ultrasound, computer

tomography (CT) and magnetic resonance (MR) images have been routine diagnostic

methods that are performed in hospitals and clinics. See Figure 1.1 for some examples.

A notable trend of medical imaging is its integrations with the state-of-art computer

techniques. Computers are used to not only display, store, transfer, and manage med-

ical image data, but also help doctors with image reading and analysis. Computer

aided detection and diagnosis play important roles in lowering doctor’s workload and

increasing diagnostic accuracy. Therefore medical image analysis have become a keen

research topic in image processing and computer vision.

In medical image analysis, image segmentation is an essential and indispensable

step for many anatomy and pathology studies. Medical image segmentation can help

clinicians 1, differentiate and visualize organs and tissues; 2, measure and compare the

size of tissue or pathologies; and 3, plan surgery and other treatments. For example, in

cardiac images, the accurate segmentation of the left ventricle endocardium is critical for

estimating the ejection fraction, which is an important indicator of cardiac function. In

colonography, segmentation is needed for 3D lumen reconstruction and polyp detection
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(a) (b) (c)

Figure 1.1: (a) is an ultrasound breast image. The lesions are darker than the normal
tissue. (b) is a CT image of a rat’s vertebra. We can see calcium get highlighted in CT
modality. (c) is a cardiac MR image. We find the heart sits in a complex background
which consists of many other anatomical structures.

and size-measurement, which are critical for early colon cancer screening.

1.2 Problem Statement

Medical image segmentation distinguishes itself from conventional image segmentation

tasks in the following aspects.

First, medical imaging techniques have limitations in fully revealing the clinical

relevant information of the anatomy. In many cases, the tissue or organ of interest is

difficult to be separated from its surroundings, when they share similar intensity levels

with the other tissues, and their boundaries lack strong edge or ridge information. For

example, CT technique is weak at imaging soft tissues. It cannot differentiae grey and

white matters well in neural tissues.

Second, many imaging modalities, such as ultrasound and PET, generate very noisy

and blurred images due to their intrinsic imaging mechanisms. At the same time,

for patients’ better acceptance, radiologists tend to lower radiation doses and shorten

acquisition time on CT and MRI, which also results in low SNR images. In some special

imaging techniques, such as tagged cardiac MRI, artificial markers or tags are added

into the images, which may even make the segmentation tasks more difficult.

Third, besides of the image information, higher level knowledge of anatomy and
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pathology is critical for medical image segmentation. Usually medical image has com-

plex appearance due to the complicated anatomic structures. Medical expertise is

required to understand and interpret the image, so that the segmentation algorithms

could meet the clinicians’ needs. Segmentation results should always be validated by

clinicians as well.

This Master’s thesis focuses on model-based image segmentation tasks in medical

applications. We will first give a brief survey of current medical image segmenta-

tion methods. Then we will focus on two medical image segmentation tasks: 3D MR

colonography segmentation and 2D cardiac tagged MR image segmentation. Since

medical image segmentation has the previously stated characteristics, the segmenta-

tion methods need to be specific with respect to different problems. We will develop

two model-based segmentation methods. One is a 3D shape modeling and tracking

method for MR colonography, and the other is a 2D shape and local appearance mod-

eling method for cardiac tagged MRI. These case-specific methods are more adaptive

to certain medical applications.

1.3 Thesis Outline

The thesis is presented in four parts. The first part reviews the recent advances of

image segmentation methods in medical applications (Chapter 2). In the second part

we develop a 3D shape modeling and tracking approach for segmentation in tube-shaped

structures. An implementation in colonography is given (Chapter 3). In the third part,

we develop a shape and local appearance modeling method. An implementation in

cardiac tagged MRI is given (Chapter 4). In the fourth part, we have a discussion and

conclude this thesis (Chapter 5).

The thesis is organized as follows:

Chapter 1. Introduction: The background, motivation and structure of the

thesis are provided.

Chapter 2. Related Work on Medical Image Segmentation: A survey of

related medical image segmentation methods will be given, such as manual, threshold,
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shape model based, edge based, region based and hybrid segmentation.

Chapter 3. 3D Colonography Segmentation: A model-based 3D segmentation

method for MR colonography will be given.

Chapter 4. Segmentation in Cardiac Tagged MRI: A model-based 2D seg-

mentation method for cardiac tagged MRI will be provided.

Chapter 5. Discussion and Conclusion: We will give a discussion and conclude

this thesis.
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Chapter 2

Related Work on Medical Image Segmentation

2.1 Manual Segmentation

Manual segmentation requests a user to manually trace the desired boundaries. Usually

certain relevant hardware and software supporting user interactions are needed. It is a

basic, but still very commonly used technique in medical image analysis. In many situ-

ations, manual segmentation is indispensable, especially when the current segmentation

algorithms cannot reach the satisfied results. Also for machine learning purposes, the

training data are often obtained from manual segmentation.

The pro of manual method is that the user can make full use of his or her medical

knowledge. If we trust the user’s expertise, then the manual results should be the most

reliable. Actually in many cases, experts’ results are treated as the ground truth. But

on the other hand, manual segmentation is very time consuming. And the manual

results tend to be inconsistent across different users. To solve this, averaging several

users’ results are encouraged.

To speed up the manual segmentation, a handy user interface is essential. We have

developed a user interaction system that enables the user to freely move the points on

the boundaries. A post-processing procedure to smooth the user defined boundary is

optional. See figure 2.1 for an example of the manual user interface [2].

2.2 Threshold Methods

If the intensity level of the foreground objects are very distinctive with that of the back-

ground, threshold techniques could be a good choice for image segmentation. Threshold
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Figure 2.1: A manual interface is designed to let user interactively trace the cardiac
boundaries.

methods make decisions by partitioning the image histogram into several parts. Pix-

els that fall in a certain intensity range are classified into the same group. The main

drawback of this method is that only intensity histogram is used, but spatial informa-

tion is ignored. Thus morphological operations are usually needed to post-process the

segmentation results of threshold methods. See figure 2.2 for an example.

2.3 Shape Constraints

Shape constraint is of special importance in medical applications, where prior knowl-

edge of the anatomy is needed to help constrain the evolution of the segmentation

process. Such as the morphological operations described in the previous section, shape

constraints keep the desired topological structures and trim the boundaries.

Deformable models [3] are physics-based models that are capable of controlling

the geometry and smoothness of the segmented boundaries, and allowing significant

variabilities of the biological structures. In deformable model formulations, two energy

terms are considered to evolve the contour. The external energy term is obtained from

the image information, such as intensity level and intensity gradient. The internal

energy term is from the contour smoothness. Lower energy corresponds to smaller

curvature and smaller change in curvature. Thus deformable model segmentation is
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(a) (b) (c)

(d)

Figure 2.2: Threshold methods. (a) is the input CT image. (b) is the binary image
after thresholds. (c) is the refined results after morphological operations. (d) is the 3D
reconstructed results of a rat’s vertebra.

formulated as an energy minimization problem.

Snake [4] is one of the most popular deformable models, which is usually used in

2D piecewise continuous and smooth contour segmentation. In Snake algorithm, the

contour is presented as a parameterized curve with a fixed topology.

Levelset [5] is another important deformable model. It implicitly represents shape

as the zero level of a levelset function: the boundaries are embedded in a higher dimen-

sional space. Then the higher dimensional levelset function is evolved rather than the

boundary itself. In this way, levelset achieves flexible topological changes.

In many shape analysis methods, high dimensional shape space is projected onto

lower dimension. Active Shape Model (ASM) [6] uses principle component analysis to

linearly model shape variations. A new shape can be represented as the mean shape

plus a linear combination of the principle components.
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(a) (b)

Figure 2.3: (a) is a CT image of the lungs. (b) is the obtained from a Canny edge
detector.

2.4 Edge Based Methods

Edge is usually formulated as intensity gradient. It is a good indicator of the boundary

locations when edges are prominent in the image. For instance, Canny edge detec-

tor [7] is a multi-stage algorithm that detects the zero-crossings of the second direc-

tional derivative of the smoothed image. See figure. 2.3 for an example. For very noisy

and blurred images, edge based methods are prone to error.

In deformable models, the main limitation of edge-based image force is that edge

is a local image descriptor. When the curve is far away from the edge, there is no or

little image force to attract or push it. To solve this problem, balloon force or gradient

vector flow (GVF) [8] techniques can be applied. GVF essentially defuses the gradient

field of the input image so that the edge forces can reach farther.

2.5 Region Based Methods

Region based methods partition the image into connected regions that contain pixels of

similar intensity. It tries to minimize the intensity difference inside each segmented re-

gions and maximize the intensity difference in between regions. For instance, MRF [9]

and fuzzy affinity [10] are two region based methods. Both methods combine inten-

sity similarity and pixel connectedness to form a more complex region segmentation
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(a) (b) (c)

Figure 2.4: Fuzzy affinity segmentation. (a) is a chest MR image. The endocardium
of the left ventricle needs segmentation. (b) is the binary results of the fuzzy affinity
algorithm. (c) is the segmentation results refined by a 2D Snake.

Figure 2.5: Metamorphs segmentation of breast lesion in an ultrasound image.

rule. See figure. 2.4 for a deformable model segmentation example using fuzzy affinity

technique.

2.6 Hybrid Methods

Since both edge and region based methods have limitations, it is desirable to develop

hybrid methods that combines them. Metamorphs [11] is a deformable model using

both edge and region information. The edge term is embedded in a distance map

function, and the region term is represented as a probability density function. The

shape evolves to minimize both energy terms on a free form deformation grids. See

figure 2.5 for an example.
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Chapter 3

3D Colonography Segmentation

3.1 Background of MR Colonography

MR colonography is a new technology for the accurate detection of colonic polyps [12].

This technology is less painful for patients than conventional colonoscopy, which leads

to better patient participation in screening programs of colorectal cancer. MR colonog-

raphy is also considered safer than CT colonography, because MR imaging has not

radiations. But MR images have higher noise levels and lower resolutions than CT im-

ages, which makes the tasks of image postprocessing and image analysis more difficult.

There are two main technologies for MR colonography [13]. One is bright lumen

colonography, which needs bowel cleansing. The other one is dark lumen colonography,

which doesn’t need bowel cleansing and has better patient acceptance. However this

dark lumen technique has higher noise level. See figure 3.1 (b, c) for two image samples.

We are trying to segment the colon in 3D MR scan of human abdomen. Our

segmentation results should facilitate the following polyps detection and classification

tasks. This segmentation method should work for both bright and dark colonography

cases.

There are some previous work which was based on multi-resolution region growing.

It worked well on bright lumen images. However for dark lumen images, because of the

spurious edges and the inconsistent intensity levels in both the dark lumen area and

the other abdomen organs, it has limitations.

In our method, we are trying to develop a model-based segmentation method. We

designed a tube-shaped shape model to direct the segmentation and tracking. Voxel
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(a) (b) (c)

Figure 3.1: (a) Illustration of the tracking method over the human colon. (b) Bright
lumen colonography. (c) Dark lumen colonography.

intensities and intensity gradients in the local region are the main image forces con-

sidered. Before the segmentation begins, a seed point in the lumen area needs to be

selected manually. Then we try to fit a initial cylinder (tube) model for this seed posi-

tion in an initialization step. Then the initialized model should be able to grow in both

directions and track over the colon, allowing possible tuning of the parameters of the

shape model. See figure 3.1 (a) for an illustration of the scheme.

The shape model is designed as a bendable cylinder, which is controlled by 5 pa-

rameters: dx, dy for the translation, r for the radius, and φx, φz for the rotation angles.

The bending angles are determined by the differences of the rotation angles dφx, dφz

from two consecutive steps.

3.2 Preprocessing: Inhomogeneity Correction

Intensity inhomogeneity is a common problem in MR imaging. Inhomogeneity cor-

rection increases the image readability and helps the segmentation. There are many

literatures on this topic [14, 15]. Many of these methods are computationally demand-

ing, e.g., in [14] their method requires about 1 minute for a 2D MR image. Since our

data is fully 3D, which usually consists of more than 70 2D slices, these methods are

computational infeasible.

Here we implemented a simpler and faster inhomogeneity correction method [16],
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Figure 3.2: The histogram of the input 3D MR image. i0 is the intensity threshold to
determine whether a voxel belongs to the foreground or the background.

whose results are not perfect but can greatly help the following segmentation.

For simplicity, we assume the MR image only consists of two layers: the foreground

and the background. First the intensity values I(x, y, z) of the input 3D image are

linearly scaled to the range of [0− 127]. Then its histogram H is calculated as:

H(i) =
∑
x,y,z

h(x, y, z), for 0 ≤ i ≤ 127 (3.1)

where,

h(x, y, z) =
{ 1, when i− 0.5 ≤ I(x, y, z) < i+ 0.5

0, otherwise
(3.2)

From H’s first derivative H ′, we find the first index i0 such that H ′(i0) > 0 as the

threshold value. For a voxel (x, y, z) in the MR image, if I(x, y, z) > i0 then we classify

it as a foreground voxel, otherwise we classify it as a background voxel.

For all the foreground voxels, we find their median intensity value Mf . Then we can

construct a foreground image If by replacing all the intensity values of the background

voxels by Mf :

If (x, y, z) =
{

Mf , if I(x, y, z) ∈ [0, i0]

I(x, y, z), otherwise
(3.3)

The foreground image If is blurred to Ib by convolving with a 3D Gaussian kernel,
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1)

2)
(a) (b)

Figure 3.3: (1a) is the 3D view of the original input image. (1b) is the foreground
image If . (2a) is the Gaussian blurred foreground image. (2b) is the inhomogeneity
corrected image Ib. Image is down-sampled in (1a), (1b), and (2a) to achieve faster
implementation.

whose standard deviation σ is experimentally set to one third of the image size in the

X − Y plane. For example, for a 512× 512× 72-sized 3D image, we set σ = 170. Then

the inhomogeneity corrected image Ic is derived by normalizing the input I with the

blurred foreground Ib:

Ic(x, y, z) = I(x, y, z)/Ib(x, y, z) (3.4)

The computation of this MR image inhomogeneity correction method is fast. We
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implement this method on a P4 2.8G workstation using MatLab 6.5. For a 512×512×72-

sized 3D image, it takes less than 10s.

3.3 Segmentation Initialization

In the initialization step we will find the radius and orientation of the local colon

segment at some seed point positions. For current implementation, these seed points

are manually placed in the lumen area (in future work, we will try to find the seed points

with an automatic method). And because the dark lumen case is more difficult, in this

work, we are more focusing on the segmentation of dark lumen MR colonography. Since

in the initialization step, we don’t have much prior knowledge of the colon’s size and

orientation, we prefer to choose the seed points at where it has better image quality and

simpler colon structure to make the initialization easier. For example, we will choose

areas where the dark lumen has very low and relatively homogenous intensities, and

where the local colon segment has a very small curvature.

Then we will fit a tube-shaped models with the local image. The fitting process is

done in a multi-resolution way to make the computation faster.

As shown in Fig. 3.4, suppose we have a local colon segment illustrated as a cylinder,

and o is the manually picked seed point. Then along the x, y and z coordinates, we

find the lengths Lx, Ly and Lz of the segments whose intensities are below a certain

threshold. The threshold is set experimentally in our algorithm. But for dark lumen

MRI after intensity inhomogeneity correction, this threshold doesn’t vary much. For

example, when the image intensity is re-scaled to the range of [0, 1.5], a threshold value

of 0.1 works for most of the image data that we tested.

The manually selected seed point o usually doesn’t locate at the geometrical center

of the colon. We leave out the coordinate who has the biggest L, e.g., in Fig. 3.4(b),

Lx, and iteratively look for the center along the other two coordinates, as shown in

Fig. 3.4(c), to find the geometrical center o′. Note that since this method only uses

the 1D profiles, the computation is very fast. However this method is sensitive to

noise. This is why we mentioned that the seed point needs to be carefully chosen in
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(a) (b) (c)

Figure 3.4: (a) A local colon segment illustrated as the cylinder with a seed point o
inside. (b) The coordinates lengths inside the colon are illustrated as Lx, Ly and Lz.
(c) Iteratively centering in y and z directions to find the new center o′.

the beginning of this section.

After we get the geometrical center o′ and the new Lx
′, Ly

′ and Lz
′, we can estimate

the radius and orientation of the local colon segment. The radius r and rotation angles

φx, φz are illustrated in Fig. 3.5(a). Hence r is derived by:

r =

√√√√ 2
1

(Lx′
2

)2
+ 1

(
Ly ′
2

)2
+ 1

(Lz ′
2

)2

(3.5)

And φx, φz are:

φx = ±asin
(

2r
Lz

′

)
(3.6)

φz = ±asin

2
√
r2 − (Lx

′

2 )2 · cos2(φx)

Lx
′ · sin(φx)

 (3.7)

Both φx and φz can be either positive and negative. Hence there are 4 possible

configurations of the orientation angles.

We design the tube-shaped model based on the intensity profile of the colon image.

As shown in Fig. 3.5(b), which is the slice view of a tube-shaped model, we set the

intensities of the voxels inside the tube model positive, and the voxels outside negative.

Thus when we fit the model onto the image, we only need to do template matching and

search for the lowest dot production value of the model and the local image.
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(a) (b)

(c) (d)

Figure 3.5: (a) The tube-shaped model is determined by 3 parameters, r, φx and φz.
(b) The slice view of a model which is rotated by φx and φz. (c) The structure of the
un-rotated tube model. (d) The intensity values of a cross section plane. Only half of
the plane is drawn to show the intensity values along the center line.
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For normalization purpose, the summation of the intensity value of each voxel in

the tube-shaped model need to be zero. Therefore we design the model as following.

For a un-rotated model, whose long axis is parallel to the z coordinate, as shown in

Fig. 3.5(c), the intensity value along the z direction is modeled as a Gaussian with the

standard deviation experimentally set to equal r, which means we put more importance

on the tube’s center area. If we keep the intensity summation in the cross section to be

zero, then we can make the intensity summation of the whole volume be zero. Hence

we model the voxel’s intensity value i in the cross section plane as two Beta functions

w.r.t. its Euclidian distance d to the center axis:

i(d) =
{
β1 · ( d−r

rwall
)a1−1 · (1− d−r

rwall
)b1−1, when d > r and d < r + rwall

β2 · ( r−d
2r )a2−1 · (1− r−d

2r )b2−1, when d ≤ r
(3.8)

where,

β1 = 1
r·rwall·B(a1,b1)+r2

wall·B(a1+1,b1)

β2 = 1
r2·B(a2,b2)−4r2·FB(0.5;a2+1,a2)·B(a2+1,b2)

(3.9)

Where B(a, b) is a Beta function, FB(x; a, b) is a cumulative Beta function, and Γ(x)

is the Gamma function:

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

FB(x; a, b) = 1
B(a,b)x

a−1(1− x)b−1

Γ(x) =
∫∞
0 tx−1e−tdt

(3.10)

Here we use rwall, (a1, b1) and (a2, b2) to control the curve shape of the intensity

profile along the center line of the cross section. As shown in Fig. 3.5(d), rwall is set to

approximate the thickness of the colon wall, i.e., the width of the curve that is below

zero. And (a1, b1) and (a2, b2) are experimentally set to a1 = 2, b1 = 5, a2 = 1.5, and

b2 = 1.5.

From Equations 3.5,3.6,3.7, we test the four sets of rotation angles and find the

best match. Then near this set of parameters r, φx and φz we exhaustively search for
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Figure 3.6: The red tube is the initial fitting of the local colon segment.

the optimal parameter set. This search is done in multi-resolutions to achieve faster

implementation. See Fig. 3.6 for an initialization result.

3.4 Segmentation via Tracking

After the initialization, we start to track from the initial model from the both ends of

the cylinder. There are 5 tunable parameters during the tracking: dr for the tube’s

radius change, dφx and dφz for the tube’s orientation changes, and dx, dy for the center

point’s translations within the plane of the colon cross section.

Note that dφx and dφz are rotation angles in the local coordinates. In the global

coordinates, the newer orientation angles φ′x and φ′z are derived by:

φ′x = acos (−sin(φx)cos(dφz)sin(dφx) + cos(φx)cos(dφx))

φ′z = atan
(

cos(φz)sin(dφz)sin(dφx)+sin(φz)cos(φx)cos(dφz)sin(dφx)+sin(φz)sin(φx)cos(dφx)
−sin(φz)sin(dφz)sin(dφx)+cos(φz)cos(φx)cos(dφz)sin(dφx)+cos(φz)sin(φx)cos(dφx)

)
+ k

(3.11)

Where:
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k =
{
π, when −sin(φz)sin(dφz)sin(dφx)+cos(φz)cos(φx)cos(dφz)sin(dφx)+cos(φz)sin(φx)cos(dφx)

sin(φ′x) < 0

0. otherwise

(3.12)

Also note that (dx, dy) are not the translations in the global coordinates. The global

translation [dx′, dy′, dz′] can be derived by:


dx′

dy′

dz′

 =




1 0 0

0 cos(φ′x) −sin(φ′x)

0 sin(φ′x) cos(φ′x)

 ·


cos(φ′z) −sin(φ′z) 0

sin(φ′z) cos(φ′z) 0

0 0 1




T

·


dx

dy

0


(3.13)

3.4.1 Tracking Templates Design

The tracking template is similar with the tube-shaped model we used in the initialization

step. However, we add two more features to the model to make it more robust for noisy

images and in those highly curved colon regions.

First, we make the template bendable. As shown in Fig. 3.7(a), in the local coordi-

nate, the step size s and rotation angle dφx determine the curvature of the template.

The curvature radius R is set as:

R =
s

sin(dφx)
(3.14)

And as shown in Fig. 3.7(b), the bending orientation φb is determined as:

φb =
(

acos
(
cos(φx)− cos(dφx)cos(φ′x)

sin(dφx)sin(φ′x)

)
+ k

)
· p (3.15)

where,

k =
{
π, when dφx < 0, s > 0 or dφx > 0, s < 0

0, otherwise
(3.16)

and,
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(a) (b)

Figure 3.7: (a) The curvature of the bending tube is determined by dφx. (b) The
orientation of the bending is determined by Equation 3.15.

p =
{ −1, when dφz < 0

1, otherwise
(3.17)

Second, we separate the tube-shaped model into two independent templates, the

edge term and the intensity term. We also discretize the edge term into several sets

of 1D profiles. Thus we don’t need to consider the normalization problem as in the

previous model.

Edge Term

And as shown in Fig. 3.8(a), on the cross section of the tube model, the edge template

is discretized into 8 1D profiles that are angularly evenly spaced. And as shown in

Fig. 3.8(b), along the axis of the tube, it is also discretized into a set of cross section

planes. The angular range of the plane position is experimentally determined by [−1.3 ·

r/R, 1.3 · r/R], where R is the curvature radius from Equation 3.14.

The 1D profile is set as the combination of two edge detectors, as shown in Fig. 3.8(c),

which is the summation of two Gaussians’ derivative.

Intensity Term

The intensity term is set similar as a non-negative form of the model in the initialization

step. For a voxel at position (x, y, z) in an un-rotated template, we set:
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(a) (b)

(c)

Figure 3.8: (a) A cross section view of the edge template. (b) A axis view of the edge
template. (c) The 1D profile is matching with the edge detectors.

c = y · cos(dφz) + x · sin(dφz) (3.18)

α = atan(
z

R− c
) (3.19)

Then the distance from this voxel to the nearby tube axis is:

d =
√

((Rcos(α)−R)sin(dφz) + x)2 + ((Rcos(α)−R)cos(dφz) + y)2 + (z −Rsin(α))2

(3.20)

And the intensity of this voxel in the template is defined as:

i(d) =
β2( r−d

2r )a2−1(1− r−d
2r )b2−1

√
2πr

e
−α2R2

2r2 (3.21)

See Fig. 3.9 for an example of the intensity template.

3.4.2 Tracking via Sampling

The goal of tracking is to find the best set of parameters step by step while the model

grows. We have tried using several conventional optimization algorithms, such as the
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Figure 3.9: A slice view of the intensity template.

simplex method and the gradient descent method, to search for the best set of parame-

ters. But these optimization methods are not very robust and tend to get stuck in local

minima, which often leads to leakage. Another problem of these optimization methods

is that although the parameters from the previous step in the tracking process gives a

good initialization for the current step, it is still difficult to predefine and constrain the

parameters’ range.

Thus we tried a sampling approach. Based on the parameter values from the pre-

vious step, we predefine a set of distributions of the possible parameter changes, then

randomly sample from these distributions.

The distributions correlate closely to the step size s. If s is small, we can make the

distribution range narrower, because with smaller s, the colon’s shape and orientation

have less variations.

Among the 5 tunable parameters, dr, dφx, dx, and dy can be modeled as Gaussian

distributions. Their standard deviations will be smaller if we use smaller s.

The other parameter dφz is randomly selected in the range of [0, 2π], which means

it is independent with the value of s.

Since we have two separated terms, the edge term and the intensity term, we have

to properly combine them. We tested the two terms’ changing rates on a phantom

image, and find the energy function of the edge term changes 50 to 100 times faster

than the intensity term. Thus we approximately set the rate k = 70. Suppose Ei and

Ee are energy values from the intensity and edge terms, and we want to minimize the
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Figure 3.10: A result of the tracking method in two view angles. The colon portion we
segmented is the right hand side part of a patient’s colon.

both energies. Then the combined energy function is set as:

E = ek(Ei−Eip) + eEe−Eep (3.22)

where Eip and Eep are the energy values from the previous step. The combined

energy value E gives a performance measurement of the tracking. If E keeps less than

or equal 2, we can say the tracking process is not getting worse.

Since random sampling is not efficient, we try to iteratively shift the sampling center

and narrower the distribution range if E is less than a certain threshold. In this way

our sampling method converges much faster.

3.5 Experimental Results

We have tried our method on several image data. With bigger step size, e.g., s = r/3,

our method works well at smooth colon regions. When we choose smaller step size,

e.g., s = r/8, our method can tracking well in the highly curved sigmoid colon region.

However smaller step size increases the computational load.

See Fig. 3.10 for some example results. We can see that our tracking method

successfully tracks the colon in those highly curved area, such as the sigmoid colon

region, whose geometry is highly complicated, and where non-model based segmentation

method tends to have error connections and error colon pathways. See Fig. 3.11 . We

draw the center line of the sigmoid colon from our tracking method, which is correct.
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Figure 3.11: The center line extracted from our tracking results in the sigmoid colon
region.

We can find the centerline has high curvatures and an irregular path way. Conventional

method may leak through the colon wall and get a wrong pathway.
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Chapter 4

Segmentation in Cardiac Tagged MRI

4.1 Background of Cardiac Tagged MRI

Cardiac tagged magnetic resonance imaging(MRI) is a well known technique for non-

invasively visualizing the detailed motion of myocardium throughout the heart cycle.

The tagged MRI technique generates a set of equally spaced parallel tagging lines

within the myocardium as temporary markers at end-diastole by spatial modulation of

the magnetization. Then the dark-colored tagging lines will persist for a short period of

time in the myocardium and deform with the underlying tissue during the cardiac cycle

in vivo, which provides the detailed myocardial motion information. See figure 4.1 for

some examples.

This technique has the potential of early diagnosis and quantitative analysis of

various kinds of heart diseases and malfunction. However, before it can be used in the

routine clinical evaluations, an imperative but challenging task is to automatically find

the boundaries of the epicardium and the endocardium.

Segmentation in tagged MRI is difficult for several reasons. First, the boundaries are

often obscured or corrupted by the nearby tagging lines, which makes the conventional

edge-based segmentation method infeasible. Second, tagged MRI tends to increase the

intensity contrast between the tagged and un-tagged tissues at the price of lowering

the contrast between the myocardium and the blood. At the same time, the intensity

of the myocardium and blood vary during the cardiac cycle due to the tagging lines

fading in the myocardium and being flushed away in the blood. Third, due to the short

acquisition time, the tagged MR images have a relatively high level of noise. These

factors make conventional region-based segmentation techniques impractical. The last

and the most important reason is that, from the clinicians’ point of view, or for the
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Figure 4.1: Two sample images of cardiac tagged MRI.

purpose of 3D modeling, the accurate segmentation based solely on the MR image is

usually not possible. For instance, for conventional clinical practice, the endocardial

boundary should exclude the papillary muscles for the purpose of easier analysis. How-

ever, in the MR images, the papillary muscles are often apparently connected with the

endocardium and cannot be separated if only the image information is used. Thus the

prior shape knowledge is needed to improve the results of automated segmentation.

There have been many efforts to achieve tagged MRI segmentation. In [17] gray

scale morphological operations were used to find non-tagged blood filled regions. Then

they used thresholding and active contour methods to find the boundaries. In [18] a

learning method with a coupled shape and intensity statistical model was proposed.

In [2] Gabor filtering was used to remove the tagging lines before the segmentation.

These methods work in some cases. However they are still imperfect: morphological

operations are sensitive to image noise, intensity statistical model cannot capture the

complex local texture features, and filtering methods blur the boundaries and decrease

the segmentation accuracy.

In this work, in order to address the difficulties stated above, we propose a novel

and fully automatic segmentation method based on three learning frameworks: 1. An

rotation invariant shape model is used as the prior heart shape model; 2. A set of local

boundary criteria are learned by Adaboost at landmark points of the shape model using

the appearance features in the nearby local regions. These criteria give the probability
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of the local region’s center point being on the boundary, and force their corresponding

landmark points to move toward the direction of the highest probability regions. 3. An

Adaboost detection method is used to initialize the segmentation’s location, orientation

and scale. The second component is the most essential contribution of our method. We

abandon the usual edge or region-based methods because of the complicated boundary

and region appearance in the tagged MRI. It is not feasible to designate one or a few

edge or region rules to solve the complicated segmentation task. Instead we try to use

all possible information, such as the edges, the ridges, and the breaking points of tagging

lines, to form a complex rule. It is apparent that at different locations on the heart

boundary, this complex rule must be different too. It is impractical to manually set

up each of these complex rules. Therefore, we introduce Adaboost, a popular learning

scheme, to learn a set of rules at each landmark point on the shape model. The first and

the second frameworks are tightly coupled. The shape model deforms by the forces from

the Framework 2 while controlled and smoothed by the Framework 1. To achieve fully

automatic segmentation, in Framework 3 the detection method automatically provides

an approximate position and size of the heart to initialize the segmentation step.

The remainder of this paper is organized as follows: in Section 4.2, we present

the rotation invariant shape model of Framework 1. In Section 4.3, we give the local

appearance modeling method of Framework 2. In In Section 4.4, we briefly introduce

the heart detection technique of Framework 3. In Section 4.5 we give some details of

our experiments and show some encouraging experimental results.

4.2 Rotation Invariant Shape Modeling

Many shape modeling methods use a linear combination of the component vectors to

represent the possible variations given the input training shapes. For example, active

shape model and active appearance model were first introduced by T. F. Cootes and C.

J. In their ASM algorithm [6], a statistic shape model is set up based on the principle

component analysis (PCA) of a set of training data. PCA method uses a small set of

principle components to represent a large data set. And a shape can be reconstructed by

a linear combination of the mean shape and a weighted sum of the principle components.
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There are also some other shape modeling methods such as independent component

analysis (ICA) and factor analysis (FA) which are basically similar to the PCA method.

However, all these methods have limitations. In practice, the input training data may

not align well and are usually subjected to random transformations, such as translation,

rotation, and scaling. In these cases, if we directly apply the above shape modeling

methods to the unaligned training data, the results will be severely blurred and the

useful structure may be likely ignored. At the same time, although we can align the

shapes before training by doing translation and scaling, it is still difficult to avoid

other kinds of transformations, such as rotation and shearing. Actually if rotation and

shearing exist, the scaling step may even produce error.

B. Frey and N. Jojic proposed the transformed component analysis (TCA) method

in 1999 [19]. They set up a mixture model to jointly estimate the image components

and the spatial transformations, such as translation, scaling, rotation and shearing.

Motivated by this translation invariant component analysis algorithm for images and

videos, we formulate a rotation invariant component analyzer for the shape vectors,

because in most medical image cases, rotation distortion is a common phenomenon and

difficult to eliminate.

Since the shape of the mid portion of the heart in short axis (SA) images is consistent

and topologically fixed (one left ventricle (LV) and one right ventricle (RV)), it is

reasonable to implement an active shape model [6] to represent the desired boundary

contours.

We acquired two image data sets each from two normal subjects, using two slightly

different imaging techniques. The data sets were acquired in the short axis plane.

There are two sets of tagging line orientations (0◦ and 90◦, or −45◦ and 45◦) and slightly

different tag spacings. Each data set included images acquired at phases through systole

into early diastole, and at positions along the axis of the LV, from near the apex to

near the base, but without topological changes. An expert was asked to segment the

epicardium (Epi), the left ventricle (LV) endocardium and the right ventricle (RV)

endocardium from the datasets. In total we obtained 220 sets (each set includes one

LV, one RV, and one Epi) of segmented contours to use as the training data.
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Segmented contours were centered and scaled to a uniform size. Landmark points

were placed automatically by finding key points with specific geometric characteristics.

As shown in Figure 4.2, the black points are the key points, which were determined

by the curvatures and positions along the contours. For instance, P1 and P2 are the

highest curvature points of the RV; P7 and P8 are on opposite sides of the center axis of

the LV. Then, fixed numbers of other points are equally placed in between. In this way,

the landmark points were registered to the corresponding locations on the contours.

Here, we used 50 points to represent the shape.

The shape of the mid portion of the heart in short axis images is not significantly

varying and topologically fixed (one LV and one RV). Therefore it is reasonable to imple-

ment a linear subspace shape model to represent prior shape knowledge and constrain

the shape variations during the myocardial wall tracking process. This is particularly

desirable in tagged cardiac MRI images. Due to the noisy and complex nature of

tagged MR images, without the use of prior knowledge, accurate boundary tracking

based solely on the MR images is usually not possible. We use the expert’s manual

contours as the training input. We use a set of points to describe a shape. That is, in

each input image, we choose a set of landmark points on the object contours to repre-

sent the object’s shape. These landmark points should be consistently located from one

input image to another. In practice, this landmark choosing process would be very time

consuming. I used an automatic method to allocate these points. The manual contours

are first centered and transformed to the same scale. Then a few feature points are

selected automatically using geometry features such as maximum curvature, and all the

other landmark points are chosen automatically by equally spacing them between fea-

ture points. In this application, the SA contours are automatically discretized into 50

ordered landmark points. Then the coordinates of the 50 landmark points are reshaped

to a 100-element vector X, where,

X = (x1, y1, x2, y2, ..., x50, y50)T (4.1)

Given s training examples, we generate s such vectors xj . Then we perform TCA on

these vectors.



30

Figure 4.2: The illustration of the automatic method used to place the landmark points.

Allowing possible rotation transformations, X can be approximately represented by

R ·(µ+Pb), where R is a rotation matrix, µ is the mean shape, P is the shape variation

components matrix, and b is the component parameter vector, which determines a

subspace representation of the shape X.

We adapt the same graphic model (see Fig. 4.3) of TCA [19]. This is a probability

model that jointly estimates the rotation matrix R and the component model P and b

via an EM approach. Assume Z is a latent shape determined by the mean shape and

the component parameters. Then we assume the following Gaussian distributions:

p(b) = N (b; 0, I)

p(Z|b) = N (Z;µ+ Pb,Φ)

p(X|l, Z) = N (X,RlZ,Ψ)

(4.2)

where I is the identity covariance matrix, and Φ, Ψ are two diagonal covariance

matrices. The goal of the EM algorithm is to maximize the joint distribution over the

training shape, the rotation angle, the latent shape and the component model. Based

on the graphic model depicted in Fig. 4.3, we get:

p(X, l, Z, b) = p(b)P (l)p(Z|b)p(X|l, Z)

= P (l)N (b; 0, I)N (Z;µ+ Pb,Φ)N (X,RlZ,Ψ)
(4.3)
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A transformed component analyzer (TCA) is a probability model that jointly es-

timates the spatial transformations and the components model [19]. The set of com-

ponents vectors are transformed in different ways to eliminate transformation effects

before they are linearly summed up to model the input shape. Below is a graphic model

of TCA.

Figure 4.3: The graphic model of our method.

In the graph above, b is the component activities and forms a subspace representa-

tion of the input shape. b should be independent and initialized to be a Gaussian with

equal standard deviations:

p(b) = N (b; 0, I) (4.4)

where I is the identity covariance matrix. Obviously, it is also a diagonal matrix

which means b is independent. Modulating b will change the parameters of the linear

combination of different components, thus to change the output shape z. z is a latent

shape produced by combining the components linearly using a ”factor loading matrix”

P , plus a mean shape µ and a independent Gaussian noise Ψ. Ψ is a diagonal covariance

matrix, which means the noise at each landmark point is independent.

p(Z|b) = N (Z;µ+ Pb,Φ) (4.5)

Then we think about the latent shape z to be further transformed by a transforma-

tion l to obtain the observed shape x. Although continuous-valued rotation angles are

more preferable, they will introduce complicated integrals into the EM algorithm that
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appears in the later section. Thus we assume all the transformations are discrete. For

instance, in our case, we assume the possible rotation angles vary from −30◦ to 30◦,

and the variation step is 1◦, thus we get altogether 61 possible rotation angles, i.e., 61

rotation matrices. These angles are discrete. To increase accuracy, we may decrease

the angle step, but this will also lead to more computation. Let l ∈ {1, 2, 3, . . . , 61}

index the set of 61 rotation angles represented by the matrices R1, R2, . . . , R61. And

Rl is given by:

Rl =



cos(θl) − sin(θl) 0 . . . 0

sin(θl) cos(θl) 0 . . . 0

0 0
. . . 0 0

0 . . . 0 cos(θl) − sin(θl)

0 . . . 0 sin(θl) cos(θl)


(4.6)

The probability density of the shape vector X for the shape corresponding to trans-

formation l and latent shape z is

p(X|l, Z) = N (X,RlZ,Ψ) (4.7)

where I is a diagonal covariance matrix that specifies the noise on the observed shape

landmarks. Each of the transformations l has a prior probability P (l) = pl = 1/L .

This prior probability may be updated later.

The joint distribution over the observed shape, the transformation index, the latent

shape, and the component activity is:

p(X, l, Z, b) = p(b)P (l)p(Z|b)p(X|l, Z)

= P (l)N (b; 0, I)N (Z;µ+ Pb,Φ)N (X,RlZ,Ψ)
(4.8)

4.2.1 Inferring hidden variables

For a given observed shape, we would like to know what kind of transformation makes

it as the observed shape. And it is also useful to know overall how well the components

combination matches the observed shape. We call the first as the ”responsibility” of
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the transformation and the second as the ”likelihood” of the shape. The responsibilities

are the posterior probabilities of the transformation indices, that is:

P (l|X) = p(X,l)
p(X)

p(X) =
∑L

l=1 p(X, l)
(4.9)

where p(X) is the likelihood. To computer the above two terms, we can first obtain

p(X, l) by integrating p(X, l, Z, b) over Z and b:

P (X|l) =
∫
Z

∫
b dZdbp(X, l, z, b)

= plN (X;Rlµ,Rl(PP ′ + Φ)R′
l + Ψ)

= pl
∏L

i=1N (Xi;Rlµ,Rl(PP ′ + Φ)R′
l + Ψ)

(4.10)

For a given shape X, the posterior distribution over the component activities is

given by:

p(b|x) =
L∑

l=1

p(b|X, l)P (l|X) (4.11)

Given the transformation l and X, the expectation of b is:

E[b|X, l] = βlP
′Φ−1[ΩlR

′
lΨ

−1X − (I − ΩlΦ−1)µ] (4.12)

where:

Ωl = cov(Z|X, b, l) = (Φ−1 +R′
lΨ

−1Rl)−1

βl = (I + P ′Φ−1P − P ′Φ−1ΩlΦ−1P
(4.13)

4.2.2 EM Algorithm

In the expectation step, the sufficient statistics required in the maximization step are

computed. For each l , we compute:

E[Z|X, l] = µ+ ΩlR
′
lΨ

−1(Xl −Rlµ) + ΩlΨ−1PβlP
′Φ−1R′

lΨ
−1(Xl −Rlµ) (4.14)
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where Xt means tth input training shape, t ∈ 1...s . And the following expectation

is also computed:

E[Z − Pb|Xt] =
L∑

l=1

P (l|Xt)(E[Z|Xt, l]− PE[b|Xt, l]) (4.15)

and

E[(Z − µ) ◦ (Z − µ)|Xt, l] = (E[Z|Xt, l]− µ) ◦ (E[Z|Xt, l]− µ)

+diag(Ωl) + diag(ΩlΦ−1PβlP
′Φ−1Ωl)

(4.16)

E[(Z − µ)b′|Xt, l] = (E[Z|Xt, l]− µ)E[b|Xt, l]′ + ΩlΦ−1Pβl (4.17)

are computed to obtain following expectations, where a ◦ b means the element-wise

product of a and b:

E[(Z − µ− Pb) ◦ (Z − µ− Pb)|Xt] =
∑L

l=1 P (l|xt) · {E[(Z − µ) ◦ (Z − µ)|Xt, l]

+diag(PβlP
′)− 2diag(PE[(Z − µ)b′|Xt, l]′ + (PE[b|Xt, l]) ◦ (PE[b|Xt, l])}

(4.18)

E[(Xt −RlZ) ◦ (Xt −RlZ)|Xt] =
∑L

l=1 P (l|Xt)·

{(Xt −RlE[Z|Xt, l]) ◦ (Xt −RlE[Z|Xt, l])

+diag(RlΩlR
′
l) + diag(RlΩΦ−1PβlP

′Φ−1ΩlR
′
l)}

(4.19)

E[(Z − µ)b′|Xt] =
L∑

l=1

P (l|Xt)E[(Z − µ)b′|Xt, l] (4.20)

E[bb′|Xt] =
L∑

l=1

P (l|Xt)(βl + E[b|Xt, l]E[b|Xt, l]′) (4.21)

In maximization step, following parameters are updated as:

µ̃ =
1
s

s∑
t=1

E[Z − Pb|Xt] (4.22)

Φ̃ = diag(
1
s

s∑
t=1

E[(Z − µ− Pb) ◦ (Z − µ− Pb)|Xt]) (4.23)
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Ψ̃ = diag(
1
s

s∑
t=1

E[(Xt −RlZ) ◦ (Xt −RlZ)|Xt]) (4.24)

P̃ =
1
s

s∑
t=1

E[(Z − µ)b′|Xt] · (
1
s

s∑
t=1

E[(bb′|Xt])−1 (4.25)

pl =
1
s

s∑
t=1

P (l = 1|Xt) (4.26)

4.2.3 Experiments and results

This algorithm is first implemented in a simple test. In this toy implementation, the

input data have 20 training shape, which have different orientations and two different

shapes, one is a triangle and the other is a hexagon:

Figure 4.4: A set of training shapes of the simple test.

Figure 4.6 is a set of training shapes of the simple test. We applied both PCA

and TCA to this data set, and get following results, left side is the result of PCA and
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the right one is of TCA. we can find TCA method can eliminate the effect brought by

rotation, and capture the more interesting structure information.

Figure 4.5: results of PCA(left) and TCA(right). The red shape is the mean shape, the
blue and green are mean shape plue or minus a certain amount of the main component.

Then we applied this rotation invariant shape modeling method to some real heart

shape data, which I arterially added some rotation distortion to so that make the results

more obvious. The following is the input training data set. They are translated and

scaled before the training process. We can find they have different orientations:

Figure 4.6: The input heart shape training data.

Again, PCA results are used to compare with the results of the rotation invariant
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shape model. For a training set of totally 42 different shapes, each shape described

by 50 landmark points, and the possible rotation matrix consists of totally 61 possible

rotation matrixes, the computation time of the rotation invariant method is about 10

minutes.

(a) (b)

Figure 4.7: (a) is the result of PCA; (b) is from TCA. The red curves are the mean
shape, and the green and blue are mean shape plus or minus a small amount of a certain
component vector. Here the main 4 components are displayed for the 2 methods. We
can find in PCA, the 1st component partially describes the variation of rotations. At
the same time, we find the 4th component of PCA has also a variation of rotations.
This illustrates that the PCA result is corrupted by the orientation variations. However
in TCA, we can find the results have no orientation variations and the shape variation
information are captured well and not blurred.

Here are some more results in figure 4.8.

We also generate some simulated heart shapes from PCA and TCA in figure 4.9.

The TCA method jointly learns components from data and normalizes for transfor-

mations. It especially works well in the data set that is not aligned well before training,

which may introduce blurred or less interesting components in conventional PCA or FA

methods, because PCA and FA methods are sensitive to the initialization of the input

training data.

After we find the image forces at each landmark point, from section 4.3, the rotation

invariant shape model evolves iteratively. In each iteration, the model deforms under

the influence of the image forces to a new location; the image forces are then calculated
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(a) (b)

Figure 4.8: Component analysis using PCA and TCA. Left is PCA, right is TCA.

at the new locations before the next iteration.
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(a)

(b)

Figure 4.9: Simulated results of PCA and TCA. We can find in PCA, the simulated
shapes have orientation variations, while the TCA results have the same orientation.



40

4.3 Local Appearance Modeling Through Adaboost

There has been some previous research on linear shape model segmentation methods

based on local features modeling. In [20], a statistical analysis was performed, which

used sequential feature forward and backward selection to find the set of optimal local

features. In [21], an EM algorithm was used to select Gabor wavelet-based local features.

In [22], an Adaboost learning method was proposed to find the optimal edge features.

In our method, similarly using Adaboost, the rotation invariant shape model deforms

based on a more complex rule, which is learned from the local appearance, not only of

the edges, but also ridges and tagging line breakpoints.

4.3.1 Feature Design

To capture the local appearance characteristics, we designed three different kinds of

steerable filters. We use the derivatives of a 2D Gaussian to capture the edges, we

use the second order derivatives of a 2D Gaussian to capture the ridges, and we use

half-reversed 2D Gabor filters to capture the tagging line breakpoints.

Assume G = G((x−x0) cos(θ), (y−y0) sin(θ), σx, σy) is an asymmetric 2D Gaussian,

with effective widths σx and σy, a translation of (x0, y0) and a rotation of θ. We set

the derivative of G to have the same orientation as G:

G′ = Gx cos(θ) +Gy sin(θ) (4.27)

The second derivative of a Gaussian can be approximated as the difference of two

Gaussians with different σ. We fix σx as the long axis of the 2D Gaussians, and set

σy2 > σy1. Thus:

G′′ = G(σy1)−G(σy2) (4.28)

In the previous two equations, we set x0 = 0, and tune y0, θ, σx, σy, σy1 and σy2 to

generate the desired filters.

The half-reversed 2D Gabor filters are defined as a 2D sine wave multiplied with
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Figure 4.10: The first derivatives of Gaussian used for edge detection.

the 2D derivative of a Gaussian:

F = G′(x, y) · R{e−j[φ+2π(Ux+V y)]} (4.29)

where G′ is the derivative of a 2D Gaussian. U and V are the frequencies of the 2D sine

wave, ψ = arctan(V/U) is the orientation angle of the sine wave, and φ is the phase

shift. We set x0 = 0, σx = σy = σ,−45◦ ≤ ψ − θ ≤ 45◦, and tune y0, θ, σ, φ, U and V

to generate the desired filters.

For a 15x15 sized window, we designed 1840 filters in total. See Figure 4.10, 4.11, 4.12

for some sample filters.

4.3.2 Adaboost Learning

In the learning section, each training image is scaled proportionally to the scaling of

its contours. At each landmark point of the contours, a small window (15x15) around

it was cut out as a positive appearance training sample for this particular landmark

point. Then along the normal of the contour, on each side of the point, we cut out

two 15x15-sized windows as negative appearance training samples for this particular

landmark point. Thus for each training image, at a particular landmark point, we

got one positive sample and four negative samples (shown in Figure 4.13(a).) We also

randomly selected a few common negative samples outside the heart or inside the blood
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Figure 4.11: The second derivatives of Gaussian used for ridge detection.

area, which are suitable for every landmark point. For image contrast consistency, every

sample was histogram equalized.

The function of the Adaboost algorithm [23, 24] is to classify the positive training

samples from the negative ones by selecting a small number of important features from

a huge potential feature set and creating a weighted combination of them to use as an

accurate strong classifier. During the boosting process, each iteration selects one feature

from the total potential features pool, and combines it (with an appropriate weight)

with the existing classifier that was obtained in the previous iterations. After many

iterations, the weighted combination of the selected important features can become a

strong classifier with high accuracy. The output of the strong classifier is the weighted

summation of the outputs of each of its each selected features, or, the weak classifiers:

F = Σtαtht(x) (4.30)

where α are the weights of weak classifiers, and h are the outputs of the weak classifiers.

We call F the boundary criterion. When F > 0, Adaboost classifies the point as

being on the boundary. When F < 0, the point is classified as off boundary. Even

when the strong classifier consists of a large number of individual features, Adaboost

encounters relatively few overfitting problems [25]. We divided the whole sample set

into one training set and one testing set. The function of the testing set is critical. It
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Figure 4.12: The half-reversed Gabor filters used for tag line breakpoint detection.

gives a performance measure and a confidence level that tells us how much we should

trust its classification result. Figures 4.14 4.15 shows the learning error curve versus

the boosting iteration numbers at two selected landmark points. Remarkably, every

landmark point i has its own α, h and Fi.

4.3.3 Segmentation

In the segmentation stage, we first select a initial location and scale, and then overlay

the mean shape X̄, which is obtained from the linear shape model, onto the task image.

In section 4.4 we describe an automatic initialization method.

At a selected landmark point i on the shape model, we select several equally spaced

points along the normal of the contour on both sides of i, and use their F values to

examine the corresponding windows centered on these points. In [25], a logistic function

was suggested to estimate the relative boundary probabilities:

Pr(y = +1|x) =
eF (x)

eF (x) + e−F (x)
(4.31)

We find a point j whose test window has the highest probability of being on the heart

boundary. Thus an image force ~f should push the current landmark point i toward j.

Recall that, as discussed in the previous subsection, Adaboost gives the errors of the
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Figure 4.13: The method of setting the training data. The solid box is the positive
sample around the landmark points. The four dash-line boxes along the normal are
the negative samples. This way of setting the negative samples is chosen to make the
classifier more adaptive to the particular landmark position.

testing data ei. We define the confidence rate as:

ci = ln
1
ei

; (4.32)

Intuitively, when ci is big, we trust its classification and increase the image force ~f ,

and vice versa. Thus we define the image force at landmark point i as:

~f = µ · [~x(j)− ~x(i)] · c(i)
||~x(j)− ~x(i)||2

(4.33)

where µ is a scale as a small step size.

The detail algorithm to update the parameters of the linear shape model with the

image force ~f can be found in [6].
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Figure 4.14: The training error (solid lines) and testing error (dash lines) of a landmark
point on the LV versus Adaboost iteration times. Note how the training and testing
error decrease as Adaboost iterates.

4.4 Automatic Initialization

Detection of the organ of interest in a medical image is often the first step of many

medical image processing tasks. When we are dealing with medical image processing

tasks, such as segmentation, registration, and tracking, first of all, we need to know

where the interested organ locates and how much areas the organ covers. Usually this

detection task is done manually by human experts clicking on the organ location or

cropping out the region of interest.

To achieve automatic initialization for the following segmentation, our goal is to

automatically detect the heart in the tagged MRI images. A closely related problem is

face detection. We find face detection problem shares many similarities with our heart

detection task. Usually there are a lot of variations among different faces, which come

from different facial appearance, lighting, expression, etc. While in heart detection,

we also have the same challenges: the heart has different tag pattern, shape, position,

rotation, phase, etc. We can adopt the ideas from the face detection technique.
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Figure 4.15: The training error (solid lines) and testing error (dash lines) of a landmark
point on the Epi versus Adaboost iteration times. Note how the training and testing
error decrease as Adaboost iterates. Also note the testing error of the LV landmark
point is higher than this Epi landmark point: we are more confident of landmark point
this Epi landmark point’s classification result.

There are many existing face-detecting work. [26, 27] were using correlation-

templates-based methods. [28] used view-based eigenspaces to reduce the high dimen-

sional vector space of all possible face patterns to a low dimensional linear subspace.

[29] modeled a deformable templates. Sung, at el [30] generated two distribution models

of ’face-pattern’ and ’non-face-pattern’ from a set of training examples. The classifier

is based on the difference feature vector which is computed between the local image

pattern and the distribution-based model. Papageorgiou [31] set up an over-completed

Haar wavelet representation of the object class. Then they reduced the dimension and

select the most important features. They trained a support vector machine as the final

classifier. Viola and Jones [32] used Adaboost method on an over-completed Haar-like

features to generate an accurate strong classifier from a set of weak classifiers. They

also implemented a cascade detection method to achieve high computation speed. Here

we adopted Viola and Jones’s Adaboost learning framework, because human’s prior
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knowledge tends to add bias constraints on the detection model, and we hope the algo-

rithm totally learn its rules from the training data without any a priori. Furthermore,

their implementation is accurate and relatively fast.

As mentioned in the previous section, Adaboost algorithm [23] selects a small num-

ber of important features from a huge feature set and generates an accurate strong

classifier. During the boosting process, each iteration selects one feature from the total

potential features, and weighted combines it with the existing classifier that obtained in

the previous iterations. After many iterations, the weighted combination of the selected

important features turns to be a strong classifier with high accuracy.

4.4.1 Features

The similar Haar wavelet function in Viola’s paper are used as features of the weak

classifiers, as seen in Fig. 4.16. The filtered result of a feature is by convolving the

input image with the feature window. These rectangle features have many advantages.

First, they are able to encode ad-hoc domain knowledge that is difficult to learn using

pixel-based features. Second, they can be computed very fast using Integral Image,

which is much faster than convolution.

Figure 4.16: Example features. They are two-rectangle and four-rectangle features with
different orientations. The white-colored pixels equal 1, the black-colored pixels equal
-1, and the gray equal 0. Totally there are 62208 features in a (24x24) sized image.

The Integral Image at pixel x, y is the summation of the pixels above and to the left

of x, y, including x, y itself in the original input image, as seen in Fig. 4.17, 4.18:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (4.34)
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Where ii is the integral image and i is the original image.

Figure 4.17: An illustration of integral image. Sum within rectangle D = ii4 + ii1 −
ii2 − ii3.

Figure 4.18: A feature example, whose filtered result = ii5 + ii1− ii2− ii4− (ii6 + ii2−
ii3 − ii5).

4.4.2 The Attentional Cascade Detection

In the detection process, the input image is divided to a huge number of sub-images,

e.g., a 192x192 sized image is divided to more than 120,000 sub-images. If each sub-

images goes through the strong classifier, which consists of hundreds or thousands of

weak classifiers, the computation is expensive. Alternatively, I used attentional cascade

technique. This technique is based on three facts: 1st, the first few features in the strong

classifier have relatively lower classifying error; 2nd, we can lower the threshold of the
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weak classifier to achieve a very low false negative rate at the expense of an increased

false positive rate; 3rd, most of the sub-images don’t contain any heart. (Actually there

should be only one optimal detection). Thus by using the first few weak classifiers, we

can reject most of the sub-images, which saves a lot of time. Figure 4.19 is an example

of the attentional cascade algorithm.

Figure 4.19: Five cascade stages with a total number of 100 features are used. At the
first stage which consists of only one feature, 124915 out of 127020 candidate sub-images
are rejected. At the second stage, 1865 sub-images are rejected, and so on. Finally in a
certain image we have total 44 detections. The highest boosting result is chosen as the
final detection. We can see during the first two stages, most sub-images are rejected,
which makes the computation faster.

4.4.3 Experiments and Results

In the experiment, the training data consist of 297 heart images and 459 non-heart

images; the testing data consist of 41 heart images and 321 non-heart images. All

images are resized to 24x24 pixels and rotated to a same angle. Image intensities and

contrasts are normalized. Figure 4.20 is a random sample from the heart training set.

The first few features Adaboost chooses are meaningful and easy to interpret. As

shown in figure 4.21, the first five features mostly represent the boundary information

of the heart, because the intensity inside the heart region varies too much and has no

obvious patterns. Figure 4.22, 4.23 and 4.24 are a comparison of the error of the weak

classifier, and the error of the strong classifier performing on the training data and the

testing data.

After the final stage of the attentional cascade, the final detector usually produces
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Figure 4.20: A random sample of the heart training set.

1 2 3

4 5 A training image

Figure 4.21: The first five features Adaboost selects comparing with a training image.
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Figure 4.22: This figure shows the error of the weak classifier that Adaboost selects at
each boosting round. The error increases non-monotonously as the distribution of the
training examples become more difficult to classify.

Figure 4.23: This figure shows the error of the strong classifier on the training data.
The error drops to zero after five rounds.
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Figure 4.24: This figure shows the error of the strong classifier on the testing data.
The testing error continues to decrease after the training error approaches zero, which
means more iterations leads to larger margin and higher accuracy.

a number of detections, because this strong classifier is insensitive to small changes in

translation and scale. However, as we know, there can be only one heart in a image. So

in the case of multiple detections, we have to discard most of the detections and keep

only one that we are most confident in. We select the detection with the highest boosting

result, which means it has the maximum margin and Adaboost is most confident that

it is a heart. Figure 4.25 shows some of our detection results. The blue boxes are the

multiple detections. The yellow box is the final detection.

The face detection algorithm using Adaboost works quite well in our heart detection

task. For the (41 positive + 321 negative)-sized testing data, our detector achieves a

zero error rate.
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Figure 4.25: Four detection results. The first one shows that it has multiple detections
and the yellow box is the final detection. The second and the third only show the final
detections. The forth image shows detections at different rotation angles. The final
detection is the rotated box which are most similar with the training data.



54

4.5 Results and Validation

We applied our segmentation method to two data sets, one from the same subject and

with the same imaging settings as the training data, and the other a novel data from

a different subject and with slightly different imaging settings. Each task image was

scaled to contain a 80x80-pixel-sized heart before the segmentation. Each segmentation

took 30 iterations to converge. Our experiment was coded in Matlab 6.5 and run on

a PC with dual Xeon 3.0G CPUs and 2G memory. The whole learning process took

about 20 hours. The segmentation process of one heart took 120 seconds on average.

See Figure 4.26 for representative results.

For validation, we used the manual segmentation contours as the ground truth for

the first data set. For the second data set, since we don’t have indenpendent manual

contours, we used cross validation, because we know that at the same position and

phase, the heart shapes in the vertical-tagged and horizontal-tagged images should be

similar. We denote the ground truth contours as T and our segmentation contours as

S. We defined the average error distance as D̄error = meansi∈S(min||T − si||2)). Sim-

ilarly the cross distance is defined as D̄cross = meansvertical
i ∈Svertical(min||Shorizontal −

svertical
i ||2)). In a 80x80 pixel-sized heart, the average error distances between the auto-

matically segmented contours and the contours manually segmented by the expert were:

D̄error(LV ) = 1.12 pixels, D̄error(RV ) = 1.11 pixels, D̄error(Epi) = 0.98 pixels. In the

second dataset, the cross distances are: D̄cross(LV ) = 2.39 pixels, D̄cross(RV ) = 1.40

pixels, D̄cross(Epi) = 1.94 pixels. The cross distance arises in part from underlying mis-

registration between the (separately acquired) horizontal and vertical images. Thus, the

true discrepancy due to the segmentation should be smaller.
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1)

2)

3)
. (a) (b) (c) (d) (e)

Figure 4.26: The first row of images comes from the the first dataset. The solid contours
are from our automatic segmentation method; the dashed contours are manual. Notice
that the papillary muscles in LV are excluded from the endocardium. The second
and third rows are from the second dataset. Manual contours are not available for this
dataset, so we compare our segmentation results between the the horizontal and vertical
tagged images that are at same position and phase. Qualitatively, the contours are quite
consistent, allowing for possible misregistration between the nominally corresponding
image sets. In (2a), (2c) and (2e) the dashed contours are the initialization shapes,
while the final contours are solid. Although the initialization is fay away from the
target, the shape model moves and converges well to the target.
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Chapter 5

Conclusion

5.1 Discussion

Because medical image segmentation needs high level medical and anatomic knowledge,

model-based segmentation methods are highly desirable. In this thesis, we first give a

short survey of current approaches of medical image segmentation. Then we specifically

develop appearance and shape models for two different segmentation tasks, of which

one is 3D MR colonography and the other is 2D cardiac tagged MRI. These models

are either obtained from visual observation and prior human expertise, or from certain

automatic machine learning methods. For 3D MR colonography, we manually build a

flexible tube-shaped shape model and an intensity model that combines both edge and

region information. The 3D segmentation is formulated in a non-parametric tracking

framework. For 2D tagged MRI, we learn the shape and local appearance model from

a training set. This shape model is a linear rotation invariant model, on which each

control point has its own local appearance model. This appearance model is learned

from an Adaboost process, which integrates many features. In each application, besides

the models, we also give complete details in solving the segmentation problems, such

as how we correct the MR image intensity inhomogeneity and how we automatically

initialize the segmentation.

From the experimental results, we find that both model-based methods perform well

on real medical image data. They are robust for noisy images. However they also have

limitations.

For the 3D colonography segmentation, the shape of the colon sometimes is too

complicated for a tube-shaped model, or even a bendable tube-shaped model to repre-

sent. Our current method has difficulties when the colon’s shape changes rapidly. From
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this point of view, the shape model may put too much constraints to the segmentation.

In the future work, we could make this shape model more flexible and thus relax the

shape constraints.

In the 2D cardiac tagged MRI segmentation, the size of training data set is critical

for the segmentation performance, since all the models are obtained from learning. We

find that if the segmentation method is applied to images at phases or positions that

are not represented in the training data, the segmentation process tends to get stuck in

local minima. Thus the training data need to be of sufficient size to cover all possible

variations that may be encountered in practice.

5.2 Possible Future Work

We find in both applications, a main limitation of model-based segmentation meth-

ods is their inflexibility. Models tends to constrain the segmentation by certain prior

knowledge. But when new image data come in, because of biological diversity, it is

dangerous to strictly rely on the old model. There are several possible way to solve this

problem in the future work. First, we can try make a better model, which can more

precisely describe the anatomic structure. For manual parameterized model design, we

may add more parameters. For learning approaches, we may increase the training size,

or choose more complicated shape model, such as nonlinear manifold model. Second,

we can improve the learning scheme. When new data come in, the learning approach

should be able to augment them to form a new better model. Third, we may add some

noise to the model to make it more flexible.
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