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ABSTRACT OF THE DISSERTATION
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Dissertation Director:

Shanmugavelayutham Muthukrishnan

With the growth in popularity and complexity of streaming applications, there is a rising

need for sophisticated analyses of massive high speed data generated by such applications.

Such analyses often need to be performed in near real-time, using limited system resources.

Under such conditions, it is very important to find an appropriate balance between the

efficiency of processing and the accuracy of the produced results. A common technique is

to filter the stream with suitable conditions so that the resulting data size is manageable,

and the analyses are still accurate.

The work presented by this thesis focuses on a number of complex filtering techniques

that are of interest in data steam processing in general and in network traffic monitoring in

particular. These techniques allow the analyst to define a filtering condition that is more

appropriate for the particular query at hand than the simpler random uniform sampling.

First, we propose a single operator which captures a common thread of evaluation of

sampling queries and can be specialized to implement a wide variety of quite sophisticated

stream sampling algorithms within an operational data stream management system and

scale in performance to line speeds. Additionally, we propose a solution for flow sampling

mechanism, which integrates the logic of flow aggregation as well as flow sampling into
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one procedure that works directly on IP traffic.

Next, we introduce the notion of the inverse distribution for massive data streams, and

present algorithms that draw a uniform sample from the inverse distribution in the presence

of inserts and deletes to the stream; such a sample can be used for a variety of summariza-

tion and filtering/mining tasks.

Another contribution of this thesis is the development of a filter join operator, which

makes it feasible to evaluate a common type of join query that searches for records match-

ing dynamic criteria on high speed data streams, in an efficient, stable and accurate manner.

We also present analyses of query transformations which expose the filter join operator in

conventional query join.

Finally, we study the problem of matching regular expression that can span multiple data

records in a data stream in the presence of stream quality problems, such as duplicates and

out-of-order records; we present a number of algorithms that can match regular expressions

over multiple data stream records without stream reassembly, by maintaining partial state

of the data in the stream.

The ideas presented in this thesis are motivated by actual practical problems that arise

in data stream processing, and are further validated by the presented experimental studies.
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Chapter 1

1 Introduction

1.1 Data Streams and Data Stream Management Systems

Traditional data base management systems (DBMSs) are widely used in applications that

require persistent storage for large volumes of data. The data is viewed and processed as an

unordered set of records1 which remain valid until explicitly modified or deleted. Queries

posed on data are executed in a timely manner and reflect the state of the database at the

time of execution. DBMSs offer their users consistent, persistent and recoverable data

storage, a set of well defined operators and a highly optimized query processing engine for

efficient management of transactions over the maintained data set.

With the general increase of data rates and volumes in different areas of information

technology a new type of applications had emerged in which large volumes of data are be-

ing continuously generated in real time, taking the form of an ordered, unbounded sequence

of items, or adata stream. Such applications include financial data analyses [98, 41, 6],

sensor networks [82, 30, 14, 100], IP network monitoring [50, 51, 52, 120], phone records

log processing [49] and others. At the same time these applications often require sophis-

ticated processing capabilities for continuous monitoring of the input stream in order to

detect changes or find interesting patterns over the data in a timely manner.
1We use terms record, item or tuple interchangeably throughout the thesis.
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In more general terms, data streams can be characterized by the following:

• A data stream is potentially unbounded in size.

• The data is being generated continuously in real time.

• The data is generated sequentially as a stream. It is most often ordered by the timestamp

assigned to each of the arriving records implicitly (by arrival time) or explicitly (by

generation time).

• Typically, the volume of the data is very large, and the rates are high and irregular. For

example, storing one day’s worth of IP network traffic flows in the AT&T IP backbone

alone may require as much as 2.5TB [7].

In addition to the above characteristics of data streams, a large number of streaming ap-

plications require near real-time sophisticated analyses, as discussed in detail in section 1.2.

The data stream characteristics are clearly very different from those assumed for data

stored in traditional DBMSs and thus make traditional DBMSs ill-suited for efficient im-

plementation of many data stream processing applications. New data processing techniques

are required to monitor and analyze massive volumes of data streams in real-time.

The emergence of stream-based applications has gaven rise to Data Stream Management

Systems (DSMSs), which aim to provide data stream management and processing capabil-

ities similar to traditional data processing, while dealing with the novel requirements posed

by high-speed data streams:

• DSMSs are append-only data-systems, which means that the newly arriving data

stream records are continuously pushed into the system. Traditional DBMSs, on the

other hand, deal with unordered data sets, and rely on random or repeated access to

individual data records.

• DSMS queries arepersistent (continuous) queries[123] (discussed in detail in sec-

tion 2.1.3) that produce query results continuously over the lifetime of a stream. They

are issued once and can remain active over a long period of time. In contrast, a DBMS

deals with queries that are computed once, with query results reflecting the current

state of the database.



3

• The volume, rate and high dimensionality [107] of the data arriving in a stream makes

the data challenging to store. For instance, the potential number of combinations of

values of the source and destionation IP addresses alone of IP network packets is264.

Consequently, a DSMS strives to compute the results by storing only a small portion

of the original stream at any point of the computational process, or its approximate

data summary structures (synopses) [21], such as samples [127, 15, 61, 102, 70],

sketches [17, 63, 46], histograms [86, 112] and wavelets [35, 73], which often allow

a good approximation of a number of stream characteristics.

• Due to performance and storage constraints, the input data being processed is not

available for random access from disk or memory, but rather needs to be processed

and analyzed as it arrives. This makes it infeasible to reevaluate a streaming query

at a later time. In contrast, relational query results can be recomputed at any time so

long as the data is present in DBMS.

• Timely processing of data is another critical requirement of many data stream appli-

cations, e.g. fraud detection in financial industry, anomalous behavior and intrusion

detection in IP network monitoring, etc. The results of this type of analyses often need

to be reported instantaneously, without delays introduced by the offline processing.

• Stream arrival rates can fluctuate drastically thus making it irregular and bursty in

nature, and the query workload may change accordingly. For example, during a dis-

tributed denial of service (DDoS) attack on an IP network, the rate of the incoming

stream may reach over500, 000 packets per second [104]. It is critical for DSMS to be

stable under those adversarial conditions and to provide the user with the meaningful

feedback.

In recent years both industry and academia have developed a number of DSMSs to

process and analyze data streams. These include Aurora/Borealis [12, 13, 26], STREAM [19,

18, 106], Nile [16, 81], NiagaraCQ [41], TelegraphCQ [36], Tribeca [120] and others.

Commercial systems, such as IPMON [2] and CMON, Streambase [5], Gemfire Real-time

Events [4], are being used for monitoring of financial trading applications, telecommuni-

cation applications. Gigascope [50, 51, 52] is another commercial DSMS developed and
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used at AT&T for high-speed IP network monitoring. Some of the contributions of this

work were implemented and evaluated in the setting of the Gigascope system.

The balance between efficiency of processing and accuracy of results for the tasks be-

ing evaluated is one of the biggest challenges of data stream processing. The question

then becomes: how can we reduce the volume of the stream to a manageable size without

compromising the accuracy?

1.2 Problem Statement

As the complexity of applications dealing with data streams grows, so does the complexity

of the queries DSMSs should be able to deal with. Such queries might include detection

and analyses of extreme events in the traffic and fraud detection (e.g. sudden increase in

trading volume in a stock market application, unusual credit card transactions), intrusion

detection [10, 59] (e.g. DDoS attacks [91, 103, 104], worms and viruses in IP network

monitoring [93, 119, 109]), traffic outliers [132] (e.g. generation of statistics for network

provisioning and service level agreements), network application identification using appli-

cation specific signatures [116, 131, 55] (e.g. P2P file sharing applications), etc. Processing

of such tasks often involves evaluation of a number of complex aggregations, joins, match-

ing of various regular expressions, generation of data synopses. Even formulating these

tasks in terms of DSMS queries is sometimes not trivial, which in turn may make it diffi-

cult to generate an efficient query evaluation plan, and thus hinder performance.

With all these complexities, these tasks still require real-time responses, which puts

considerable constraints on the per-item processing time. They also demand accuracy of

results, which by itself is a significant challenge when dealing with high-speed, large vol-

ume infinite streams with potentially unpredictable behavior patterns. The challenge be-

comes even more formidable due to the fact that query evaluation needs to take place in

bounded space while dealing with unbounded streams over potentially very large domains

of multiple attributes [107].

It is therefore natural that many queries on data streams translate to some form of the

reduction of the initial amount of data in the stream. Conceptually, while observing an
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infinite stream of data, we would like to be able to look at each of its items and quantify

whether the item is of interest and should be stored for further evaluation. To this end, a

number of data stream filtering techniques were developed in order to reduce the volume

of the data being analyzed:

One type of filtering can be referred to asimplicit (described in detail in section 2.3.1); it

is done by the system in order to keep it stable under adversary conditions. In the literature

this technique is widely referred to as random or semanticload shedding. It is usually done

by performing uniform random sampling of the stream at different levels of query hierar-

chy [121, 23, 113]. This type of filtering doesn’t take into consideration the query semantic

and thus might have implications of the correctness of the query results. To improve this

situation, window-aware load shedding [122] and per-group semantic sampling [90] were

recently proposed.

In many cases the complexity of the query being issued, or the nature of the query itself,

call for use of customized filtering conditions. To distinguish these from the automatic, im-

plicit filtering described above, we will refer to this type of filtering, when the filtering con-

dition is specified by the procedure itself, asexplicit (described in detail in section 2.3.2).

We include in this category stream sampling algorithms [61, 102, 70], techniques for fast

regular expression matching [94, 131], sketch-based filtering [28] and others. The main

goal of explicit filtering is to provide the flexibility of being able to specify the filtering

conditions that best fit the problem being analyzed.

1.3 Summary of Contributions

This work focuses on development of a number of explicit filtering techniques that reduce

the initial load of the incoming data to a manageable size in a controlled manner according

to a procedure specific filtering condition, and provide meaningful and accurate (in some

cases within desired error bounds) results to a number of important queries of interest in

data stream processing. More precisely, we can categorize the contributions of this thesis

according to different types of filtering conditions:
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1. Filtering condition of a stream item is independent of other items of the same stream

or any other data stream.The most common example of such filtering is stream sampling,

when each item is filtered out with a certain probability and the remaining items form the

desired sample. The contributions of this thesis that fall under this category are as follows:

• A single data stream sampling operator:Generation of a stream sample is one of

the widely used filtering techniques in data stream analyses, when only a small por-

tion of the stream is being saved for further analyses. The past few years have seen the

design of many effective stream sampling methods for estimating specific aggregates

such as quantiles [76], heavy hitters [102], distinct counts [70], subset-sums [61], set

resemblance and rarity [54], as well as generic sampling such as fixed-size reservoir

sampling [127], adaptive geometric sampling [25, 83], etc. This dissertation devel-

ops a single operator which can be specialized to implement a wide variety of quite

sophisticated stream sampling algorithms within an operational data stream manage-

ment system and scale in performance to line speeds. We perform an experimental

study by implementing the sampling operator in the Gigascope DSMS. We use this

implementation to present a detailed study of one of the stream sampling algorithms

of great interest to IP network management, namely subset-sum sampling [61] that is

operationally used for performance monitoring in AT&T’s IP backbone and for cus-

tomer reports. We show that the new operator is a simple and flexible tool for early

data reduction of the stream that imposes only a small CPU overhead and scales to

line speeds. This work was published in theProceedings of the 2005 ACM SIGMOD

International Conference on Management of Data[88].

• Summarizing and mining inverse distributions on data streams via dynamic in-

verse sampling: Many of the existing methods for summarizing and mining data

streams, including those mentioned in the previous paragraph, focus on the forward

distributionf(x), for example the number of occurrences ofx in the data stream of

integer values. In contrast, this work formulates summarization and mining problems

on the inverse distributionf−1(i), which is the number of items that appeari times

in the stream. We introduce the notion of the inverse distribution for massive data
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streams, and presents algorithms that draw a uniform sample from the inverse distrib-

ution over the stream which can be used for a variety of summarization tasks (such as

building quantiles or equidepth histograms) and filtering/mining (anomaly detection

such as finding heavy hitters, measuring the number of rare items), all with prov-

able guarantees on quality of approximations and time/space used by our streaming

methods. We also complement our analytical and algorithmic results by presenting an

experimental study of the methods over network data streams. This work was pub-

lished inProceedings of the 2005 International Conference on Very Large Data Bases

(VLDB) [48].

2. Filtering condition of a stream item is dependent on items from another stream of data.

A characteristic example of this analysis is evaluation of various types of joins of a number

of data streams. In this class of problems this thesis presents the following contribution:

• Filter join operator: A large class of queries on data streams search for records

matching dynamic criteria, filtering out the rest of the records. For example, a net-

work analyst might want to collect all records in a network flow that start with a

suspicious signature; or a financial analyst might want to track trading records of a

financial instrument following a suspicious trade. Evaluating these queries requires

a join, which might be too expensive to implement on a very high speed stream. In

this work, we propose the filter join operator, which makes it feasible to evaluate a

common type of join query on high speed data streams in an efficient, stable and ac-

curate manner. The filter join has an inexpensive evaluation algorithm and can be

pushed to the data sources in the case of self-join. We provide a relational character-

ization of the filter join, and a collection of query transformations which can expose

the filter join component(s) of a conventional join. We implement approximate filter

join algorithms in the Gigascope DSMS and find order-of-magnitude performance im-

provements when compared to equivalent queries implemented using a conventional

join. This work is submitted to theThe International Conference on Data Engineering

(ICDE) 2008[114].

3. Filtering condition of a stream item is dependent on other items of the same stream:
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• Regular expression matching on out-of-order streams:This work studies the prob-

lem of filtering data stream in the presence of data-quality problems, such as dupli-

cates and out-of-order records [99, 56], when the filtering condition is specified in

the form of a regular expression. This is a well motivated problem in managing IP

networks where regular expressions are signatures that have to be matched against the

contents of flows (a set of records sharing identical values on a specified number of

record attributes) to detect intrusions, worms or viruses, applications and protocols.

Prior work either matched regular expressions against the data segments on individual

packets or reassembled the entire flow to match the regular expression using standard

methods. Instead, we have proposed streaming algorithms that can be run in software

that match regular expressions across segments even in the presence of out-of-order

packets and duplicates by carefully optimizing the state maintained on partial flows.

Our experimental study with real data shows that the algorithms are successful in lim-

iting the memory used and are efficient. This work was published inProceedings of

the International Conference on Data Engineering (ICDE) 2007[115].

1.4 Thesis Organization

The reminder of this thesis is organized as follows: Chapter 2 presents a general overview

of the aspects of data streams relevant to this thesis.

Chapter 3 introduces a single data stream sampling operator developed to incorporate a

wide variety of sophisticated stream sampling algorithms into an data stream management

system.

Chapter 4 introduces the notion of inverse distribution for massive data streams, and

present algorithms that draw a uniform sample from the inverse distribution over the stream,

which can be used for a variety of summarization and filtering problems on data streams.

Chapter 5 presents a filter join operator, which makes it feasible to evaluate a common

type of join query on high speed data streams in an efficient, stable and accurate manner.

Chapter 6 introduces a number of algorithms that filter the stream by matching the spec-

ified regular expressions across multiple data segments in presence of out-of-order packets
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and duplicates.

Chapter 7 offers concluding remarks and discussion of future work.
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Chapter 2

2 Background

This chapter reviews some concepts and issues of data stream processing relevant to this

thesis. Section 2.1 provides an overview of streaming models, window specification and

persistent queries processing. Section 2.2 focuses on IP network data stream processing,

since the work presented by this thesis, although relevant for various types of data streams,

was initially developed in the context of network monitoring application. Section 2.3 re-

views a number of filtering techniques currently used in data stream processing, including

load-shedding techniques, summary data structures and others.

2.1 Overview of Data Streams

2.1.1 Data Stream Models

As it was discussed in section 1.1, data streams are potentially infinite, continuously gen-

erated sequences of items that typically arrive at DSMS with high irregular speeds, and

comprise very large volumes of data. More formally, a data stream can be defined as fol-

lows [73, 107]:

Definition 1. Input streama1, a2, a3, . . . arrives sequentially, item by item, and describes

an underlyingsignal A, when in the simplest caseA is a one-dimensional functionA :

[0 . . . (N − 1)]→ Z+.

The stream can describe the underlying signal in various ways, resulting in a number of
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different data stream models [73, 107]:

• Unordered cash registermodel - individual items of the stream are domain values that

arrive in no particular order and without any pre-processing.

• Ordered cash registermodel - individual items of the stream are not pre-processed

and arrive in the increasing (or decreasing) order of the domain values (e.g. in the

order of the timestamp attribute values).

• Unordered aggregatemodel - individual items of the stream that belong to the same

domain arrive in a pre-processed (range values) format in no particular order.

• Ordered aggregatemodel - individual items of the stream arrive in a pre-processed

form and in the order of the domain values.

In addition to this classification, the cash register model distinguishes betweencontigu-

ousandnon-contiguousdomain values of the arriving stream items.

2.1.2 Window Specification

Compared to one-time queries in convectional DBMS’s, persistent queries differ signifi-

cantly in their semantics. Since persistent queries are evaluated on potentially unbounded

streams of data and the state of the data is not known in advance, query results depend on

a set of records available during query evaluation process. The most naı̈ve implementation

of many useful operators, such as aggregation or join, would require maintaining the entire

stream history in order to produce the exact result. This, however, is obviously impracti-

cal. Moreover, for efficiency it is necessary to retain the streaming data being processed

in memory rather than on slow, larger storage, which limits the amount of streaming data

available during evaluation. Additionally, the majority of real world streaming applications

regard as relevant only the most recent data, rather than the entire past history of the stream.

All these considerations gave rise to variouswindow based models, when at any instant

a window specifies a finite set of the most recent records from the infinite data stream which

is used to evaluate a steaming query and produce results that correspond to the time period

spanned by the window.
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The structure of the window has the following distinctive properties [111]:

• upper bound- the timestamp of the most recent item of the window.

• lower bound- the timestamp of the oldest item in the window.

• size- can be expressed either in a number of records or as a temporal interval spanning

window contents.

• mode of adjustment- determines how a window changes its state over time with the

arrival of new items.

Further, a window can be categorized depending on definition of its scope as follows:

• Physical window: defined in terms of the number of records within the window

bounds.

– count-based sliding: this type of window includes the most recentN items of

the stream, while continuously expiring the old items as the new arrive.

– count-based tumbling: in this case the stream is divided into non-overlapping

partitions ofN records each, and only the data that is contained within the current

partition is kept for processing.

– partitioned: to apply this type of window, the stream records are first partitioned

into a number of substreams according to values of grouping attributes. The union

of the most recentN values from each partition defines a window.

• Logical window: defined in terms of monotonically increasing (or decreasing) at-

tribute(s) of the data stream records (usually values of the timestamp attribute).

– landmark (agglomerative): one variation of this type is when the lower bound

of the window is fixed at a specific time instant, i.e. the window identifies a

certain starting landmark in the stream and processes records from that point

with evolution of time. In another variation only the upper bound of the window

can be fixed to a future time instant.
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– fixed-band: the window is defined by combining both of the landmark window

variants, fixing the upper and lower bounds according to a band window function,

which allows to express arbitrary time intervals (“bands”).

– time-based sliding: this is the most commonly used type of windows over data

streams, defined in terms of time units. The window stores only those items of

the stream that have arrived in the lastT time units and continuously expires the

old items as the new arrive (T here is the size of the window).

– time-based tumbling: similarly to the count-based tumbling window definition,

the stream is now divided into non-overlapping partitions of fixed time intervals.

A new window is created as soon as the old one ceases to exist.

• Punctuation-based: this model uses special annotations embedded in data stream,

sometimes referred to aspunctuations, to signify the end of the currently processed

window [124].

Window based models are the most commonly used approach to limiting the scope of

the input data over which the query is being evaluated. An alternative model is thetime-

decay model[42, 43, 57], also referred to asfading, where each of the items is discounted

by a scaling, non-decreasing with time factor, such as exponential and polynomial decays.

2.1.3 Persistent Queries

Queries evaluated against unbounded stream of data are calledcontinuousor persistent:

they are issued once and run continuously as the items of the stream continue to arrive [24,

123].

A streaming query is calledmonotonicif its results do not shrink over the time of

execution. More formally, ifQ is a persistent query at timet1, thenQ is monotonic if

Q(t1) ⊆ Q(t2) for all t1 ≤ t2. For example, queries that contain a simple selection pred-

icate are monotonic, since the newly arrived tuple either satisfies the predicate and is thus

added to the set of the output tuples, or doesn’t satisfy the predicate and thus has no effect

on the output.
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A streaming query is calledblockingif it is unable to produce the first tuple of its output

until it has seen its entire input [21]. Thus aggregation (SUM, COUNT, AVG, MAX, etc.)

sorting and joins operators are blocking operators, whereas selections and projections are

non-blocking. Consider, for instance, calculating MAX of the values of a data stream.

Since data stream is unbounded in size, the MAX aggregate will never see its entire input

and therefore will never be able to produce any output. The following general techniques

are commonly used to make blocking operators suitable to the data stream computation

model [21, 74]:

• limiting the scope: the scope of the operator is restricted to a finite set of data from

the stream by imposing windows [111] or augmenting data stream with punctua-

tions [124], where the finite data set size is small enough to fit into memory. Thus, for

example, Symmetric Nested Loop Join(SNLJ) [79] maintains state of the tuples from

the most current window, rather than the state of the entire data stream.

• incremental evaluation: streaming operators can incrementally update the results of

the query with every newly arriving tuple. For example, AVG (average) aggregate can

be computed by incrementally maintaining the cumulative sum and item count [97].

Similarly, when computing MAX (maximum) of values of the stream, the maximal

value seen so far can be maintained at each step of the query processing.

2.2 IP Network Data Stream Monitoring

In streaming applications large volumes of data are being continuously generated in real

time, taking the form of an ordered, unbounded sequence of items. In this section, we

look in greater detail at IP network monitoring applications, since the work presented in

this thesis was initially developed for this type of analyses.

On the Internet, data is being transmitted by packet switching using the Internet Protocol

(IP). It is of crucial importance to such organizations as Internet service providers (ISPs) to

be able to analyze traffic patterns, relationships between networks, network problems etc.

Tasks in this area include tracking bandwidth usage statistics for traffic engineering and

network provisioning, routing system analyses, billing, detection of suspicious activities,
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equipment failures, denial-of-service attacks, fraudulent behaviors, and others. This is

typically accomplished by monitoring and analyzing the traffic generated by the network.

IP network traffic is basically a data stream that consists of a IP network packets, each

containing a number of components [3]:

• header- contains instructions about the data carried by the packet.

• payload - also called thebodyor data of a packet. This is the actual data that the

packet is delivering to the destination.

• trailer - sometimes called thefooter, typically contains a couple of bits that signify

the end of the packet. It may also have some type of error checking.

A stream of such network packets can be monitored and analyzed at a number of lev-

els [72]. At thepacket level, certain fields of the protocol headers are particularly useful

for data analyses purposes. In the IP, these are the length of a packet in bytes, transport

protocol, source and destination IP addresses. In the TCP header, such useful fields include

source and destination port numbers, packet sequence number, acknowledgment number,

ACK/SYN/FIN/RST flags and others.

At theflow levelanalyses, we look atflows- groups of packets with the same source and

destination IP addresses and port numbers, where each consecutive packet is not separated

by more than a certain duration. Analyses at this level is widely used by network operators,

and has been shown to be effective both as a useful research tool and as a practical approach

to network usage measurements, detection of suspicious traffic patterns etc.

Some interesting queries on IP traffic logs may include:

• Which TCP connections transmitted more thanN bytes of data?

• List the number of bytes and the number of packets forK most frequent destination

IP addresses per source IP address.

• How many duplicate sequence numbers occurred per TCP connection over the last

minute?

• What are the source IP addresses involved in more thanK TCP connections?
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• How many flows consist of a single IP packet?

• What is the median, 95th percentile, 98th percentile, and 99th percentile of TCP round

trip times?

• Collect detailed flow statistics and every minute, returnM samples in such a way as

to preserve subset sums on flow size [61].

2.3 Data Stream Filtering

Due to the nature of data streams, streamfiltering is one of the most useful and practical

approaches to efficient stream evaluation, whether it is done implicitly by the system to

guarantee the stability of the stream processing under overload conditions, or explicitly by

the evaluating procedure. In this section we will review some of the filtering techniques

commonly used in data stream processing.

2.3.1 Implicit Filtering in Data Stream Management Systems

Data Stream Management Systems cope with the high rates and the bursty nature of streams

in a number ways in order to guarantee stability under heavy loads. Some of them employ

variousload-sheddingtechniques which reduce the load by processing only a fraction of

the items from the stream and discarding others without any processing.

The Aurora DSMS employsrandomandsemanticload shedding techniques [121] to

deal with the unpredictable nature of data streams, where semantic load shedding makes

use of tuple utility computed based on quality-of-service (QoS) parameters. Intuitively, the

system drops tuples that are believed to be less important for stream evaluation that others.

QoS of the system is captured by a number functions: latency graph, which specifies the

utility of a tuple as a function of tuple propagation through the query plan; value-based

graph, which specifies which values of the output are more important than others; and loss-

tolerance graph, which describes how sensitive the application is to approximate answers.

The work proposes a number of heuristics for determining when, where and how much

load to shed with the minimal loss of utility.
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The load-shedding mechanism in STREAM [23] DSMS places random sampling op-

erators at various points of the query plan, which uniformly sample the stream, while the

sampling rate is dynamically adjusted with respect to the operator selectivity and arriving

rate of the data. The objective of this approach is to shed the load while minimizing neg-

ative impact on accuracy of query results. It is clear that the strategy of dropping tuples

at the early stages of the query plan makes the process of query evaluation more efficient

for subsequent operators in the plan. However in case when multiple queries share parts

of their plans, the question of where to shed load becomes more complex, since the above

strategy might have different effect on results of different queries. This work proposes

an algorithm for optimal placement of sampling operators in multi-query plans involving

windowed aggregates.

Tuples dropped by the load shedding mechanism in the TelegraphCQ DSMS [113] are

collected by the Data Triage components into data synopses and are later combined with

the standard query results in order to better capture the properties of the entire input. This

mechanism attempts to increase the accuracy of the query results in cases when the load-

shedding is necessary for the system to maintain stable operational state. However, data

synopses are usually very specialized to the evaluation of a particular stream characteris-

tic and cannot provide valid information to all possible query operators. This makes the

proposed load-shedding mechanism effective only for certain type of queries.

All the stream filtering techniques mentioned above reduce load by performing ran-

dom uniform sampling of items of the stream. Although this type of filtering effectively

reduces the amount of data to be processed and hence stabilizes the stream processing sys-

tem, it might have negative implications on the accuracy of query results. Recent work on

window-aware load shedding[122] addresses this problem in the context of sliding win-

dow aggregation queries. To guarantee that the result of the query is a subset of the correct

output, the work proposes a “window drop” operator that can drop the entire window of tu-

ples, rather than performing a per-tuple sampling. The work is limited to aggregate queries

on sliding windows and is not easily applicable to arbitrary streaming queries.

Another load shedding technique,query-aware semantic sampling[90], was recently
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developed in Gigascope DSMS [50, 51, 52]. For every query in a given set of queries

this technique automatically infers whether the query should use uniform per-tuple sam-

pling or per-group sampling, depending on the type of aggregate used by the query. Thus

queries containing loss-sensitive aggregates, such as OR, Min, Max, Count of duplicates

are subjected to per-group sampling to guarantee semantically correct output.

2.3.2 Explicit Filtering of Data Streams

As it was mentioned previously, the implicit filtering techniques may often have a negative

impact on a variety of data streams analyses problems, such as, for example, computation

of sketches and samples of distinct items for estimation of quantiles, heavy hitters and other

properties of a stream. Other problems in this category include estimation of IP network

flow sizes, detection of most prevalent substrings in the network for worm signature gen-

eration and others. In such cases it is therefore more appropriate to include the filtering

conditions that best fit the query being issued as part of the query procedure itself.

Below we give some more detailed examples of such explicit filtering procedures on

data streams.

Fine-grained estimation of network traffic (flows) volume is very important in various

network analysis tasks. The work presented in [61] offers a solution by proposing the

threshold samplingalgorithm that generates a sample of stream items with guarantees on

estimated flow sizes. At each step of sample generation, the procedure maintains a value of

a threshold, which is compared to the size of the item, and the decision is made on whether

the item of the stream should be filtered out or retained in the sample. Depending on the

version of the algorithm, the threshold value can remain constant throughout the process or

be dynamically adjusted to ensure the size of produced sample.

Due to the nature of this sampling algorithm, with a number of various parameters, such

as a number of items in the final sample, item size, threshold value, count of items larger

than the threshold value, etc., playing a role in how the procedure is executed and what

results it produces, its results would be seriously compromised if it was to be evaluated on

a stream which was a product of random load shedding. On the other hand, because of

the specificity of this sampling algorithm it would be infeasible to attempt to incorporate it
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implicitly in a DSMS.

In [28] the authors propose a technique of filtering out a fraction of stream items based

on “norm” of the stream seen in the process of generation of CM sketch [46]. This tech-

nique aims at improving the update time of stream items with the norm-aware procedure,

more sophisticated than uniform random sampling. The technique guarantees accuracy of

the results and can be used for a number of stream processing problems, such as summa-

rization, heavy hitters and self-join size estimate. The type of filtering described by this

work can be applied to IP packet headers as well as to packet payloads, which are typically

several tens of factors larger in size than the headers and hence require longer computing

time.

Another interesting problem where filtering is performed at the level of packet content

is identification of network traffic associated with different network applications using ap-

plication signatures, where signature is typically described in terms of regular expression.

In [116] authors identify applications signatures for a number of P2P file sharing appli-

cations, such as Gnutella, eDonkey, BitTorrent, DirectConnect and Kazaa, by examining

available documentation and packet-level traces. Then the signatures are used as filters and

compared against packet payloads in order to efficiently and accurately identify traffic of

desired applications.

The above examples demostrate that the filtering condition can take different forms

when analyzing various stream characteristics. Making such filtering procedures efficient

while producing accurate results on high speed data streams is an important objective. The

work presented by this thesis adresses a number of such problems.



20

Chapter 3

3 Sampling Algorithms in a Stream Operator

Stream sampling is one of the most common filtering techniques on data streams, with

the result of the procedure execution being asample- a small-sized subset of the items

from the stream representative of a certain characteristic (or a number of characteristics)

of the input. The research community has developed a rich literature on stream sampling

algorithms with many of these algorithms providing better properties than conventional

random sampling. In this chapter, we abstract the stream sampling process and design a

new stream sample operator. We show how it can be used to implement a wide variety

of algorithms that perform sampling and sampling-based aggregations. Also, we show

how to implement the operator in Gigascope [50, 51, 52] - a high-speed stream database

specialized for IP network monitoring applications. As an example study, we apply the

operator within such an enhanced Gigascope to perform threshold sampling (also referred

to as subset-sum sampling), which is of great interest for IP network management. We

evaluate this implementation on a live, high speed internet traffic data stream and find that

(a) the operator is a flexible, versatile addition to Gigascope suitable for algorithm tuning

and engineering, and (b) the operator imposes only a small evaluation overhead. This is

the first operational implementation we know of, for a wide variety of stream sampling

algorithms at line speed within a data stream management system.
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3.1 Introduction

The body of work that focuses on sampling methods for data streams includes algorithms

for approximation of quantiles [76], heavy hitters [102], set resemblance [54], count dis-

tinct [70], and so on. Sampling has a rich history in statistics, with several variants: sam-

pling with/without replacement, biased sampling, fixed or variable size sampling etc. There

is also extensive use of sampling in databases with many modified methods such as strat-

ified, congressional [15], outliner or distance-based sampling etc. [118]. Sampling in the

context of data streams shares some common aspects with sampling in statistics and data-

bases, but has additional constraints. In stream sampling, typically one is interested in

sampling in one pass over a high speed data that cannot be stored at its matching rate. As a

result, when an item repeats on the stream, it is difficult to sample based on whether or not

it has been seen before. So, even uniform sampling of thedistinct items in the data stream

is tricky. Further, one may need to obtain fixed-sized sample when the size of the stream is

unknown. Finally, stream input has many attributes and items are often “weighted” and it

is difficult to ensure that the sample has desirable properties - such as it captures the heavy

hitters or sub-range aggregates - accurately for various subset combinations of attributes

and cumulative weights on these combinations. The past few years have seen the design of

many effective stream sampling methods for estimating specific aggregates such as quan-

tiles [76], heavy hitters [102], distinct counts [70], subset-sums [61], set resemblance and

rarity [54] etc. as well as generic sampling such as fixed-size reservoir sampling [127],

adaptive geometric sampling [25, 83], etc.

The focus of this work is not to design new stream sampling methods. Instead, we ad-

dress the problem of how these widely varied and quite sophisticated filtering methods can

be implemented within an operational data stream management system and scale in per-

formance to line speeds in IP network monitoring applications. The problem we address

in this work is to incorporate approximate streaming algorithms into a DSMS, specifically

sampling-based algorithms.

Possible Approaches:There are several approaches to doing this integration, which we
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discuss here:

The first approach is to incorporate the different sampling algorithms directly into the

DSMS kernel, and make the option of using them available to the user through several key-

words. This approach is attractive when the special techniques being incorporated into the

database engine are mature, for example data mining keywords in SQL Server 2005 [11],

windowing keywords in SQL 99 [77], and so on. However, stream sampling algorithms

is an active research area with new techniques being continually developed. Incorporat-

ing new techniques into the kernel is cumbersome and does not promote experimentation.

In addition, the query language is burdened with a keyword explosion. Aurora incorpo-

rates a DROP operator, which performs random sampling to shed load [33]; STREAM also

provides operator-level sampling via a SAMPLE keyword [106].

The second approach is to implement individual stream sampling algorithms with User

Defined Aggregate (UDAF) Functions. This approach was explored in [44] for one of the

methods, namely, approximating heavy hitter frequency counts by sampling [102]. While

the UDAF approach is useful for obtaining point values (e.g., the median packet length), it

is cumbersome at best for obtaining set values. For example, to obtain set of destination IP

addresses responsible for at least 1% of traffic using the UDAF approach, we could write

a query with 100 references to the heavy hitters UDAF (one for each of the possible 100

heavy hitters) in the SELECT clause,pivot [78] the result to get the set value, and filter out

invalid values. While set results are not inherently better than point results, many appli-

cations require set results as their input. In addition, some algorithms, such as subset-sum

sampling [61] are better expressed as a sampling query. ATLaS [128] is a system in which

a UDAF is specified in SQL. Its set-oriented nature makes set-valued return results possi-

ble. As will be evident later, our operator is in some ways a highly structured version of an

ATLaS UDAF. The structure we impose enables the simple expression of many algorithms,

and a highly efficient evaluation process.

The third and related approach is to provide for User Defined Operators (UDOs), which

consume input streams and produce output streams, one for each of the stream sampling

methods. Some DSMSs provide a mechanism to incorporate UDOs, including Gigas-
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cope [50, 51, 52] and Aurora/Borealis [12, 13, 26]. Aurora is built as a system of inter-

connecting operators, and by nature supports UDOs. Gigascope has special facilities for

incorporating UDOs into a query set. However, writing and supporting a DSMS operator

is a difficult and error-prone task and does not scale with the number of different stream

sampling methods of interest. Our discussions with the Gigascope users indicate that few

ODOs had been written, and only as a last resort.

Our Approach: The approach we take in this work is to develop asingleoperator, which

can be specialized to implement a wide variety of stream sampling algorithms. The ad-

vantage of this approach is that it encourages experimentation and development of new

streaming algorithms and their rapid deployment for practical applications. The functions,

which support the streaming algorithm using the operator for different problems, can be

written by the algorithmic expert, following a simple API. The developer is not burdened

with the details of kernel integration or stream operator development. Our contributions

are as follows:

• We abstract an operator construct and define its semantics.We show that this generic

operator can be used to implement wide variety of stream sampling algorithms in-

cluding the reservoir sampling [127], subset-sum sampling [61], min-wise hash sam-

pling [54], heavy hitter algorithm [102], and many others.

• We show how to implement the generic operator in a data stream management system

(DSMS). The sample operator is invoked using special keywords in a grouping and

aggregation query. We detail an efficient templatized implementation of the sample

operator. These constructs, as well as STATEFUL functions we introduce, may be of

independent interest in conventional data warehouse DBMSs because of their ability

to support approximation queries.

• We perform an experimental study by implementing our sampling operator in the Gi-

gascope DSMS.We use this implementation to present a detailed study of one of

the stream sampling algorithms of great interest to IP network management, namely,

subset-sum sampling [61] that is operationally used for performance monitoring in
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AT&T’s IP backbone and for customer reports. To demonstrate the flexibility of the

proposed sampling operator we implement two variations of the subset-sum sampling

- packet based and flow based. The latter implementation is more stable and thus

more resistant to rapid network changes. It allows us to create very informative flow

samples on streams of network data. Our implementation works at line speed and is

now part of the Gigascope release; it shows that the computational and memory over-

head is very small. In addition, our experience with real data revealed its burstyness

and led to a small fix in the subset-sum stream sampling algorithm that substantially

improved its performance. The ability to do such easy tuning and engineering is one

of the attractions of our approach.

Our operator is specifically targeted at stream sampling algorithms and can be used to

implement scores of them. In this work, we have chosen to focus on four representatives:

reservoir sampling for standard fixed-size sampling on streams, heavy hitter algorithm from

the database community, min-wise hash sampling from the algorithms community and

subset-sum sampling from the networking community. We believe our work is the first

to operational implementation we know of, for a widely variety of stream sampling algo-

rithms at line speed within a DSMS.

Map: In Section 3.2, we discuss related work. In Section 3.3, we provide an overview

of the Gigascope DSMS. In Section 3.4, we present an overview of the four stream sam-

pling methods above and describe their common framework. In Section 3.5, we present our

operator and show how it can be used generically to implement different stream sampling

algorithms. In Section 3.6 we discuss STATEFUL functions, SUPERGROUPs and show

how to implement our operator in Gigascope. In Section 3.7, we present our experimental

study. Conclusions are in Section 3.8.

3.2 Related Work

Sampling has an extensive history in statistics and relational databases. We focus on stream

sampling. As mentioned earlier, a number of specific sampling algorithms have been de-
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signed for quantiles [76], heavy hitters [102], distinct counts [70], subset-sums [61], set

resemblance and rarity [54], geometric sampling for range counting [25] and adaptive sam-

pling for convex hulls [83], etc. Many of these have been implemented and tested on rea-

sonable streams, but few, to the best of our knowledge, on IP network line speeds at which

packets are forwarded. In [44], the authors implemented the heavy hitters’ algorithm [102]

as a UDAF in line speed. In [61] the threshhold sampling method is implemented at IP

flow speeds and not at packet speeds; flows are several orders of magnitude aggregated

from packet streams.

There are a number of DSMSs being developed: Aurora [12, 13, 26], STREAM [19,

18, 106], Gigascope [50, 51, 52], TelegraphCQ [36], NiagaraCQ [41], etc. Many of them

support random sampling, including the DROP operator of Aurora, the SAMPLE keyword

in STREAM, and sampling functions in Gigascope. Still, these are uniform sampling op-

erators. We do not know of prior work on these systems that systematically implemented a

variety of sophisticated stream sampling methods.

3.3 Gigascope

Gigascope is a DSMS that has special architecture for performing analysis on high speed

data streams [50, 51, 52]. Since our experimental results use Gigascope, we discuss some

relevant aspects of its architecture in this section.

Gigascope is a stream-only database which does not support stored relations or contin-

uous queries. This restriction implies that there are no explicit time windows which are

critical for evaluation of blocking operators, like aggregation and join. Instead, each tuple

of the data stream is labelled with monotonically increasing timestamp. Gigascope uses the

timestamp and the results of query analysis to determine when the blocking operator needs

to be unblocked. Thus for instance, Gigascope requires in an aggregation query that at least

one of the group-by attributes to have monotonically increasing values. When the value of

this attribute changes, all existing groups are sent flushed. This process effectively defines

epochsfor data aggregation. Similarly, when performing a symmetric hash join on data

streams, the join window is changed when the timestamp label of a tuple changes. In cases
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Figure 1: Gigascope architecture: LFTA is a low level query, HFTA is a high level query.

when two joining data streams have significantly different rate, Gigascope uses heartbeat

mechanism to unblock one of the streams [89].

Gigascope has a two-level query architecture, where the low level is used for data re-

duction and the high level performs more complex analysis (see Figure 1). This approach

allows the system to keep up with high speed streams in a controlled manner, in contrast

to a various load shedding techniques used by other DSMSs [23, 121, 113]. Query nodes

which are fed by a source data stream (e.g. packets sniffed from network interface) are

calledlow level queriesor LFTAs, while all other query nodes are calledhigh level queries

or HFTAs. Data from a high speed data stream is first placed into a ring buffer, and low-

level queries read records directly from the ring buffer (thus saving a large data copying

cost). Significant data reduction performed by LFTAs makes it possible to copy the fil-

tered data stream to the HFTA level of query architecture for more complex processing.

The low level queries are intended to be very fast and lightweight data reduction queries.

This architecture allows Gigascope to defer expensive processing until data reaches high

level of architecture, which makes processing fast and minimizes buffer requirements. De-

pending on capabilities of the NIC, some or all of the low query processing can be pushed

farther down into the NIC itself. Choosing the most effective strategy for query processing

is a challenging optimization problem, the goal of which is to maximize the data reduc-

tion without overloading LFTAs that might cause packet drops leading to incomplete query

results.
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3.4 Stream Sampling Algorithms

Recall that while approximate stream algorithms can be implemented as UDAFs, they re-

turn point values rather than set values. That is, to return sampless1, s2, . . . , sk associated

with groupG, they return data in a schema such as(G, S1, S2, . . . , Sn) rather than as(G, S).

When we considered the problem of incorporating stream sampling algorithms which re-

turn set results into a DSMS, we observed that a large class of these algorithms has a similar

control structure. In this section, we survey a representative selection of stream algorithms

to illustrate their common structure

3.4.1 Reservoir Sampling

The reservoir sampling algorithm [127] solves the problem of selecting a random sample

of sizen from a pool ofN records, where the value ofN is unknown. LetT be a tolerance

parameter, where10 < T < 40; t denote the number of data records processed so far. The

current set of candidates for the final sample is stored in the arrayC. The basic idea of

reservoir sampling algorithm can be described as follows:

Within each time window:

• Make first n data records candidates for the sample by saving them into reservoir of

size(T ∗ n).

• Process the rest of the record within the time window in the following manner:

– At each iteration generate an independent random variableϕ(n, t).

– Skip over the nextϕ data records.

– Make the next data record a candidate by replacing one at random. The index of

the record being replaced is(n∗random()), whererandom() is random number

generator that returns a real number in the unit interval.

• If the current number of candidates exceedsn records, randomly choosen samples

out of the reservoir of candidates.

An independent random variableϕ can be generated in several ways. The fastest version

of the algorithm generatesϕ in constant time, on the average, by a modification of von
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Neumann’s rejection-acceptance method and runs in average timeO(n(1 + log(N/n))),

which is optimal, up to a constant factor.

3.4.2 Heavy Hitters

Theheavy hittersproblem is to find the elements in a data stream that account for at leastε

fraction of the all tuples. A fast and simple heavy hitters algorithm was proposed by Manku

and Motwani [102]. Letfe be the true frequency of elemente in the stream. The incoming

stream is conceptually divided into buckets of widthw = d1/εe transactions each, whereε

is an error bound. Buckets are labeled with bucket id starting from 1. The current bucket id

is calculated asbcurrent = dN/we, whereN is current length of the stream. The algorithm

also uses a parameters (support): for all collections of transactions, an itemsetX ⊆ I,

whereI is universe of all items, is said to have supports if X occurs as a subset in at least

a fraction s of all transactions. The data structureD is a set of entries of the form(e, f, ∆)

wheree is an element in the stream,f is an integer representing its estimated frequency,

and∆ is the maximum possible error inf . Initially D is empty. The algorithm works as

follows:

• For every new elemente check whether it exists inD. If so, increment its frequency

f by 1. Otherwise create a new entry inD of the form(e, 1, bcurrent − 1).

• At the boundary of every bucket iterate over all elements ofD. An element(e, f, ∆)

is deleted iff + ∆ ≤ bcurrent.

• When a user requests a list of items with thresholds, we output those entries where

f ≥ (s− ε)N .

The algorithm is simple and uses at most1
ε
log(εN) space. Although the output is approxi-

mate, the error is guaranteed not to exceedε, in the sense that iffe ≥ s the algorithm will

return elemente, and iffe < s− ε, the algorithm will not returne.

3.4.3 Min-Hash Computation

Theresemblance,ρ, of two setsA andB is the size of their intersection divided by the size

of their union:
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ρ(A, B) =| A ∩B | / | A ∪B |

A min-hash signature[32] is a compressed representation of a set from which one can

approximate the resemblance of two sets. Lethi(a) be a hash function. The signature of

setA, S(A), is:

si(A) = min(hi(a) | a ∈ A)

S(A) = (si(A), . . . sn(A))

If S(A) andS(B) are two min-hash signatures, then

ρ̂(A, B) =
∑n

i=1 I(si(A), si(B))

WhereI(x, y) is the indicator function, returning 1 ifx = y and 0 otherwise. While

any given elementsi(A) can be easily computed in an SQL query, a signature typically

contains 100 or more elements, making its expression in SQL quite cumbersome. However,

a substitute for the minimum ofN hash functions is theN minimum values of a single hash

function [32]. In [54], the authors use min-hash to sample uniformly from the set of distinct

elements in the stream and use it to estimate rarity (the ratio of the number of items that

appear once in the stream to the number of distinct items) as well as set similarity between

two windowed streams.

3.4.4 Subset-Sum Sampling

Estimation of sums of sizes of objects sharing a common set of properties is of a particular

interest for the network management community. In this context thethreshold sampling

(also referred to assubset-sum sampling) algorithm provides a better estimate than random

sampling. Like reservoir sampling, the subset-sum sampling can produce fixed size results.

Unlike reservoir sampling, subset-sum sampling provides guarantees on sums of a measure

attribute.

The subset-sum sampling algorithm [61] collects a sampleS of tuples fromR in such

a way that we can accurately estimate sums from the sample. We phrase the algorithm in

database language by assuming that the schema ofR is (C, x), whereC is an attribute we

use for subset selection (the ”color” of a tuple) andx is the measure attribute. Then

E[
∑

(t.x | t ∈ S ∧ t.C = c)] =
∑

(t.x | t ∈ R ∧ t.C = c)

Furthermore, the variance of the subset sum overS is within a factorz (defined below) of
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the subset sum overR.

In the basic subset-sum sampling algorithm, the user sets a thresholdz, which deter-

mines the sample size. Each tuplet is sampled with probabilityp(x) = min{1, t.x/z}.

In particular, the algorithm uses acounter, initialized to zero, and works in the following

manner:

• For every new tuplet, check whethert.x > z. If yes, sample the tuple. Otherwise,

add value of the t.x to the small flow counter.

• If tuple was not sampled, check whethercounter > z. If yes, subtractz from counter

and sample the tuple, settingt.x to z. Otherwise discard the tuple.

The idea behind this algorithm is that tuples with large values oft.x contribute the largest

amount to a sum. Therefore all large tuples are sampled; however small tuples cannot be

discarded without biasing some subset-sum. The algorithm samples one small tuple every

time the combined weight of the small tuples exceedsz. To estimate the sum, the measure

t.x of the sampled small tuple is adjusted toz, since it represents a weight of thresholdz:

t.x = max{t.x, z}.

The result of the algorithm described above is a sample of arbitrary size, which intro-

duces an element of unpredictability. In many cases we would like a sample of a particular

size, say 1000 samples regardless of the distribution oft.x or the size ofR. The second

version of the algorithm (dynamic subset-sum sampling) will produce a consistent number

of sampled tuples. The user specifies the desired sample sizeN and an initial value of the

thresholdz. In addition to small tuples count (count ), the algorithm tracks the number of

tuples sampled so far (sample count ). The algorithm works in the following manner:

• Collect samples according to the basic subset-sum sampling algorithm, keeping a

count of the number of sampled tuples insample count .

• If sample count > γ ∗N (e.g.,γ = 2), estimate a new value ofz which will result in

N tuples. SubsampleS using basic subset-sum sampling and the new value ofz, and

continue with basic subset-sum sampling.

• When all tuples fromR have been processed, ifsample count > N then adjustz and
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subsampleS using basic subset-sum sampling.

When applied to a data stream, subset-sum sampling occurs in successive time windows. In

this case, an initial threshold can be estimated for the new time window using the threshold

from the old time window, adjusting its value to obtain an estimatedN samples during the

new time window.

The authors of [61] suggest a variety of strategies for adjustingz. In our implementation,

we used theaggressiveversion of thez threshold adjustment (z-threshold,| S |-currently

maintained number of samples,M -desired number of samples,B-number of samples for

which sample size> threshold):

If 0 ≤ |S| ≤M , thenznew = zold(|S|/M)

If |S| ≥M , thenznew = zold((max{|S| −B, 1})/(M −B))

3.4.5 Summary

We observe that these stream sampling algorithms are quite sophisticated, and far from

“pick each item with some probability” that one expects from uniform sampling. They

also solve very different problems and each has found many applications. Still they follow

a common pattern. First a number of items are collected from the original data stream

according to a certain criteria, and perhaps with aggregation in the case of duplicates. If

a condition on the sample is triggered (e.g., the sample is too large), a cleaning phase is

triggered and the size of the sample is reduced according to another criteria. This sequence

can be repeated several times until the border of the time window is reached and the sample

is output. This framework fits each of the summarized algorithms as follows:

• Subset-Sum sampling: Sample records according to the basic subset-sum sampling

algorithm. Trigger the cleaning phase whencount sample > γ ∗ N . In the cleaning

phase, adjustz and subsample.

• Heavy hitters: Count the frequency of occurrence for every distinct sample. Trig-

ger the cleaning phase everyw input tuples. In the cleaning phase, delete samples

according to the defined rules.
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• Min-hash: Sample a hash value whenever it is within the smallestN of hash values

seen thus far. Trigger the cleaning phase when the number of samples exceedsγ ∗N .

In the cleaning phase, remove the hash values larger than theN th smallest value seen

thus far.

• Reservoir sampling: repeatedly generateϕ, skip that number of records, and select

the next record for the reservoir. Trigger the cleaning phase when the sample size

exceeds(T ∗ n). In the cleaning phase, randomly choosen records from the reservoir

to keep and delete the rest.

The common framework above inspires our operator in the next section.

3.5 The Sampling Operator

From the discussion above, we derive a number of common characteristics for the sampling

algorithms in question:

• A “global” state structure.

• A loose predicate for admitting a tuple to the sample.

• A predicate which triggers a sample cleaning phase.

• A predicate for removing samples during the cleaning phase.

• A finishing-off predicate.

The process of sampling is in some ways similar to that of aggregation, as they both collect

and output sets of tuples which are representative of the input. Accordingly, our textual

representation of the sampling operator is based on the textual representation of aggrega-

tion:

SELECT<select expression list>

FROM <stream>

WHERE<predicate>

GROUP BY<group-by variables definition list>

[SUPERGROUP<group-by variable list> ]

[HAVING <predicate> ]
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CLEANING WHEN <predicate>

CLEANING BY <predicate>

The “global” state structure stores the control variables of the sampling algorithm. For ex-

ample, in the Manku-Motwani algorithm [102] the state stores variables such as the count

of tuples processed since the last cleaning phase and the number of cleaning phases that

have been triggered. Since we might wish to obtain a sample on a group-wise basis (e.g.,

for each source IP address, report the destination IP addresses accounting for at least 10%

of the total packets sent from the source IP), we associate the sampling state withsuper-

groups, and samples with the groups in a supergroup. The variables in the SUPERGROUP

clause must be a subset of group-by variables defined in the GROUP BY clause (thus, su-

pergroups are a specialization of grouping sets [77]). By default, the supergroup is ALL.

Along with sampling state variables, the supergroup can compute superaggregates (aggre-

gates of the supergroup rather than the group). One example of a useful superaggregate is

count distinct$() , which returns the number of distinct groups in a supergroup (we use

the$ to denote that an aggregate is associated with the supergroup rather than the group).

More concretely, the semantics of a sampling query is as follows:

• When a tuple is received, evaluate the WHERE clause. If the WHERE clause evalu-

ates to false, discard the tuple.

• Else if the condition of the WHERE clause evaluates toTRUEthen

– Create and initialize a new supergroup and a new superaggregate structure if

needed, otherwise update the existing superaggregates (if any).

– Create and initialize a new group and a new aggregate structure if needed, other-

wise update the existing aggregates (if any).

– Evaluate the CLEANINGWHEN clause.

– If the CLEANING WHEN predicate isTRUE

∗ Apply CLEANING BY clause to every group.

∗ If the condition of CLEANINGBY clause evaluates toFALSE

· Remove group from the group table, and update any superaggregate
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• When the sampling window is finished,

– Evaluate the HAVING clause on every group.

– If the condition in the HAVING clause is satisfied, then the group is sampled,

else discard the group.

That completes the description of the operator. The discussion thus far is independent of

any specific DSMS.

3.6 The Operator in Gigascope

In this section, we discuss how sampling operator interacts with a specific DSMS, namely

Gigascope, and is realized in it.

3.6.1 Sampling Operator in Gigascope

The sampling operator in previous section brings up certain details within Gigascope. For

example, in the Gigascope DSMS, the sampling window ends whenever any ordered group-

by variable changes value, so the sampling operator will produce output once every time

window. As a corollary, all ordered group-by variables are part of the supergroup. Also,

in some algorithms, e.g., dynamic subset-sum sampling, initial values of a state in a new

time window are derived from the state of the old time window. Our implementation of the

sampling operator supports this at superaggregate structure initialization time by checking

if a supergroup with the same non-ordered group-by variables existed in the previous time

window. If so, all states in the new superaggregate are initialized by a function which

accepts the equivalent state from the old time window.

For an example, the following Gigascope query expresses the dynamic subset-sum sam-

pling algorithm which collects 100 samples:

SELECTuts, srcIP, destIP, UMAX(sum(len),ssthreshold())

FROM TCP

WHEREssample(len,100) = TRUE

GROUP BYtime/20 as tb, srcIP, destIP, uts

HAVING ssfinal clean( sum(len), count distinct$( * )) = TRUE
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CLEANING WHEN ssdo clean(count distinct$( * )) = TRUE

CLEANING BY ssclean with(sum(len)) = TRUE

whereUMAX(val1, val2) is a function which returns the maximum of the two values, and

uts is a nanosecond granularity timestamp (with its timestamp-ness cast away) used to

make each tuple its own group.

Thesshthreshold(), ssample(), ssfinal clean(), ssdo clean() and

ssclean with() functions arestateful functions, which we discuss in the next section.

To complete the description of the sample operator, we need to discuss some working

details, which we do in the context of our implementation in Gigascope.

3.6.2 Stateful Functions

To implement some of the algorithms, a number of functions need to access the same global

state throughout the execution. For this reason, we call those functionsstateful. Typically,

a collection of functions will share the samestatestructure. Stateful functions are very

similar to UDAFs, but with the following differences:

• They can produce output a number of times during the execution.

• The state can be modified only when the functions that share the state are referenced.

A state is declared as follows:

STATE<type> <name> ;

The declaration of stateful functions ties the function to the state it shares:

SFUN<type>[modifiers]<state name><function name>(<param list>)

In case of subset-sum sampling algorithm:

STATEchar[50] subsetsum sampling state ;

SFUN int subsetsum sampling state ssample(int,CONST int) ;

SFUN int subsetsum sampling state ssfinal clean(int, int) ;

SFUN int subsetsum sampling state ssdo clean(int) ;

SFUN int subsetsum sampling state ssclean with(int) ;

SFUN int subsetsum sampling state ssthreshold() ;

When the query references a new supergroup, the space for the SFUN state is allocated in

the superaggregate structure. The state is initialized with its associated initialization func-
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tion. For example, the prototype of the state initialization function in our implementation

of the sampling operator is:

void sfun state init <state name>(<pointer to memory for the state>,

<pointer to old state, or NULL>);

Stateful functions are implicitly passed a pointer to their associated state. In our implemen-

tation, the prototype of the stateful functions has the following form:

<return type> <name>(void * s, <param list>);

wheres is the pointer to the state. In the case of our subset-sum sampling implementation,

some of the functions that we added to the Gigascope runtime library are:

void sfun state init subsetsum sampling state( void * n, void * o);

int ssample(void * s, int len, int sample size);

3.6.3 Groups and Supergroups

As discussed earlier, very often there is a need to reference global aggregates, or super-

groups. For instance, in subset-sum sampling the cleaning phase is triggered when the

number of groups exceeds the threshold (it’s important to notice that in the subset-sum sam-

pling implementation every packet needs to be distinctly unique, thus every group consists

of a single packet). Another example of the query that uses supergroups is the min-hash

problem, when we would like to computek min-hash destination IP addresses per source

IP address; and hence we need a superaggregare which returns the kth smallest value.

There is a difference between regular aggregation and global (super) aggregation. To

be able to maintain superaggregate, we need to maintain group aggregate of the same type.

When a new group is added or deleted (as a result of the cleaning phase), we need to update

the supergroup aggregate by adding or subtracting the group aggregate value. One of the

useful superaggregates iscount distinct$() which reports the number of groups in the

supergroup.

3.6.4 Sampling Operator Implementation

Our implementation of the sampling operator maintains three types of hash tables: one for

the groups, one for the supergroups and an additional table that keeps track of all groups
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for every supergroup:

• Group table: key- set of group-by variables;value- structure that maintains group

aggregates.

• Supergroup table: key- set of supergroup variables not including ordered variables

(when no supergroup is specified, the key is associated with a single time window);

value- structure that maintains state(s) associated with the supergroup, and any su-

peraggregates.

• Supergroup-Group table: key- set of supergroup variables (when no supergroup is

specified, the key is associated with a single time window);value- list of all groups

in this supergroup.

Note that the key of the supergroup table is always a subset of elements that represent the

key of the group table.

We actually maintain two supergroup hash tables - “old” and “new”. The “old” super-

group hash table maintains all the supergroups that were sampled in the previous window.

The evaluation process can be summarized as follows:

• When a tuple is received, compute the key for the supergroup table using group-by

variables.

• If at the border of the window, callfinal init() function for the states in the new

supergroup table (to signal to the state that the time window is finished) and apply

HAVING clause to every group of the new group hash-table. Clear the group table, the

old supergroup table, and the supergroup-group table, and move the new supergroup

table to the old supergroup table.

• If the supergroup of the newly arrived tuple exists in the new supergroup table, then

apply WHERE condition to the tuple. If the condition evaluates toTRUE, update su-

peraggregates of the supergroup, else start processing next tuple.

• If the supergroup doesn’t exist in the new supergroup table, check whether the super-

group with the same key exists in the old supergroup table. If so, initialize the state of
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the new supergroup by usingstate init() function, passing a pointer to the old state

as the second argument. If the supergroup is entirely new, pass aNULL as the second

argument. Create a new supergroup in new hash table. Apply WHERE condition to

the tuple. If the condition evaluates toTRUE, update superaggregates.

• Compute key for the group table using group-by variables.

• If the group with this key exists in the new group hash-table, update group aggregates.

• If the group doesn’t exist, create a new group and new aggregates of the group. Add

the key of the group to the supergroups’ entry in the supergroup-group table.

• Apply the CLEANING WHEN condition to the supergroup state. If the condition

evaluates toTRUE, trigger the cleaning phase by applying CLEANING BY clause on

every group that belong to the current supergroup (i.e., using the supergroup-group

hash-table). If the condition evaluates toFALSE, then delete the group from the group

hash-table and remove its key from the supergroup’s supergroup-group table.

• Stateful functions that appear in SELECT clause will be evaluated last, when the

output tuple is created.

3.6.5 Evaluation Example

Let us consider an example of the subset-sum sampling algorithm. The global structure

of the algorithm uses a number of parameters, such as the value of the thresholdz, the

counter of small packetscount , the counter of large packetsbcount , value of the cleaning

thresholdγ, etc. The evaluation process of the query that expresses the algorithm is as

follows:

• When the tuple is received, callssample() function:

The loose predicate for admitting a tuple to the sample is the basic subset-sum sam-

pling predicate using the current value ofz. If the function returns false, then the pred-

icate condition had failed and we start processing next tuple. If the function returns

true, process the tuple by creating (or updating) appropriate entries for supergroup,

group and supergroup-group hash tables.
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• Call ssdo clean() function:

The cleaning phase is triggered when the current sample size exceeds the threshold of

the number of samples that can be maintained by currently processed supergroup. If

the function returns false, the condition is not met and we start processing next tuple.

Otherwise,z is adjusted and the cleaning phase is triggered.

• Call ssclean with() function on every group of currently processed supergroup. The

current sample is cleaned by applying the new value of threshold for the size of the

data record and deleting those records which don’t meet the cleaning condition. The

cleaning condition states that if the size of the data record is smaller than the value

of the threshold before the most recent adjustment (z prev ), thenz prev will replace

size of the record during the cleaning phase.

• Call ssfinal clean() at the border of every window. If the number of samples still

exceeds the desired size of the final sample, do the final subsampling. This function

implements the final cleaning condition which is identical to the cleaning condition

implemented inssclean with() function. If the function call returns false, the group

is evicted from the hash table. Otherwise, the group is sampled and the output tuple

is created.

3.6.6 Query Example

Although we have focused on the dynamic subset-sum sampling implementation, in this

section we show how the other three algorithms from our representative four can be imple-

mented using the generic sampling operator.

Query for Heavy Hitters Algorithm: This query will report the 100 most common source

addresses within a time window of 1 minute. The functioncurrent bucket() returns

id of current bucket. The aggregatefirst() returns the first value that was returned by

current bucket() function within the current time window. The functionlocal count( N )

incrementscurrent bucket and returns true once everyN calls.

SELECTtb, srcIP, sum(len), count( * )
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FROM TCP

GROUPBY time/60 as tb, srcIP

CLEANING WHEN local count(100) = TRUE

CLEANING BY count( * ) < (current bucket()- first(current bucket())

Query for Min-Hash Computation: This query will report 100 min-hash values of des-

tination IP addresses per source IP address. This query does not make use of stateful

functions but instead relies on thecount distinct$( * ) and the

Kth smallest value$(HX,100) superaggregates(Kth smallest value(x, n) returns the

nth smallest value ofx).

SELECTtb, srcIP, HX

FROM TCP

WHEREHX <= Kth smallest value$(HX, 100)

GROUPBY time/60 as tb, srcIP, H(destIP) as HX

SUPERGROUP BYtb, srcIP

HAVING HX <= Kth smallest value$(HX,100)

CLEANING WHEN count distinct$( * ) >= 100

CLEANING BY HX <= Kth smallest value$(HX, 100)

Query for Reservoir Sampling Algorithm: This query will return 100 random samples

per time window of 1 minute. The functionrsample(100) implements the sampling con-

dition by returning true for those tuples that should be saved in the reservoir of candidate

tuples, and returning false for those that are skipped over. The functionrsdo clean()

returns true when the number of candidates (count distinct$() ) exceeds the threshold

value of Tn, and returns false otherwise. The functionsrsclean with() and

rsfinal clean() randomly subsample n final samples the reservoir of candidates:

SELECTtb, srcIP, destIP

FROM TCP

WHERErsample(100) = TRUE

GROUPBY time/60 as tb, srcIP, destIP
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HAVING rsfinal clean() = TRUE

CLEANING WHEN rsdo clean(count distinct$()) = TRUE

CLEANING BY rsclean with() = TRUE

3.6.7 Flow Sampling

The following example demonstrates the flexibility of the sampling operator. In network

traffic analysis it is often useful to perform network measurements using flow statistics

rather than packet statistics, since flows offer a considerable compression of information

over packet headers. The straightforward implementation of this approach in terms of the

stream sampling operator can be expressed as a set of queries, where basic flow aggregation

is performed as a first query, and the result is fed to a higher level sampling query. (Note

that the high level query is the sampling query described previously in section 3.6.1).

DEFINEquery name ’psample’ ;

SELECTtb, srcIP, destIP, totalBytes,

packetCnt, UMAX(packetCnt, ssthreshold())

FROM source

WHEREssample(packetCnt, 100) = TRUE

GROUP BYtb,srcIP, destIP, totalBytes, packetCnt

HAVING ssfinal clean(packetCnt) = TRUE

CLEANING WHEN ssdo clean()= TRUE

CLEANING BY ssclean with(packetCnt) = TRUE ;

DEFINEquery name ’source’ ;

SELECTtb , srcIP, destIP, COUNT( * ) as packetCnt,

SUM(len) as totalBytes

FROM TCP

GROUP BYtime/60 as tb, srcIP, destIP

In the example, the source query is a low-level query that performs aggregation of flows

over the time window of 1 minute. The output of the query is fed to the high-levelpsample

sampling query, which performs flow sampling. The query outputs 100 samples per time

window.

However, this implementation exhibited difficulties under certain network conditions,
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in particular when there are a large number of small flows consisting of only a few packets

(e.g. during DDOS attacks). Under these conditions, the flow aggregation query requires an

enormous number of groups (corresponding to the enormous number of flows), exhausts

the available memory, and fails. One way of fixing this problem would be to emulate

the sampling process performed by CISCO routers and uniformly sample 1 out of 500

packets at the flow aggregation query (i.e. at the query source). While this approach allows

monitoring of the DDoS attacks, it doesn’t provide a sufficiently informative flow sample

for their analysis.

To overcome this problem we have developed the approach of integrating sampling

and flow aggregation and doing them simultaneously on the traffic at the packet level. At

the high level, this involves integrating the logic of different sampling algorithms into the

semantics of a flow aggregation engine. In databases, there is a well-established principle

that selection is “pushed” to the lowest level in the query processors. Our approach may be

seen as an instantiation of this principle to data stream management systems in general and

to network traffic analysis in particular. This is not only a sound and efficient flow sampling

mechanism in general; we believe that this is the only scalable approach to flow sampling

at adverse conditions. The key trick is that small flows can be quickly sampled and purged

from the group table. The new sampled flows query is a more stable implementation that

is resistant to rapid network changes.

We demonstrate our approach using an example. We modified the implementation of

the subset-sum sampling algorithm by integrating flow aggregation with sampling into a

single query processing phase. HereP is the set of conditions which indicate that the flow

is closed:

DEFINEquery name ’fsample’ ;

SELECTtb, srcIP, destIP, COUNT( * ),UMAX(sum(len),ssthreshold())

FROM source

WHEREflow ssample(100) = TRUE

GROUP BYtime/60 as tb, srcIP, destIP

HAVING flow ssfinal clean(P) = TRUE

CLEANING WHEN flow ssdo clean(max$(time)) = TRUE

CLEANING BY flow ssclean with(P) = TRUE ;
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DEFINEquery name ’source’ ;

SELECTtime, srcIP, destIP, len

FROM TCP

Note that in the above set of queries, the low-level query does not do any aggregation and

only performs preliminary projection of the incoming data stream. The high-level sampling

query uses a new set of stateful functions and is evaluated by the stream sampling operator

in the following manner:

• When a tuple is received, evaluate the WHERE clause. Callflow ssample() , which

always returnsTRUEand admits all incoming tuples into the sample without perform-

ing any preliminary filtering. As a result, the group table now collects and maintains

flow statistics, each group representing a distinct flow of data. The function also pro-

vides the algorithm with the information about the size of the desired sample.

• Evaluate the CLEANING WHEN clause. Callflow ssdo clean() . This function im-

plements two phases of query evaluation - the counting phase and the cleaning phase.

The counting phase is triggered every second. During this phase we count the number

of “closed” flows which are currently in the group table. The count of “closed” flows

is used to trigger the cleaning phase. The cleaning phase is triggered when the cur-

rent number of “closed” flows, which was obtained during the most recent counting

phase, exceeds the threshold for the number of samples. If the function returnsFALSE,

neither of the two conditions is met and we proceed to the next tuple.

• Evaluate the CLEANING BY clause whenever CLEANING WHEN returnedTRUE.

Call flow ssclean with(P) function, whereP is a set of conditions which indicate

whether a flow is closed. For instance, a flow can be considered closed if we have re-

ceivedFINISH or RESETor there was no packet from this flow within last 5 seconds:

flow ssclean with( (Or Aggr(finish)|Or Aggr(reset)),5)

If the function is called during the counting phase,P is applied to every group to de-

termine whether the group is closed. The counter of closed flows that are not evicted

from the group hash table is incremented accordingly. The function always returns
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TRUEduring the counting phase When the function is called during the cleaning phase,

the current set of closed flows is subsampled by applying to each group the newly es-

timated value of the threshold for the size of the tuple and deleting those groups which

do not meet the cleaning condition. The function returnsTRUEif the group satisfies

the condition.

• The HAVING clause is evaluated only when the sampling window is closed. At that

point all flows are considered closed. Callflow ssfinal clean(P) , which performs

the final subsampling of the current sample only if the size of the current sample

exceeds the desired size. If the function returnsFALSE, the group is evicted from the

hash table. Otherwise, the group is sampled.

• SELECT is applied to every sampled group while it is being output as the answer to

the query. This implementation of the algorithm allows creating very informative flow

samples on streams of network data. In addition, the implementation is able to handle

heavy loads and is resistant to rapid network changes.

This implementation of the algorithm allows creating very informative flow samples on

streams of network data. In addition, the implementation is able to handle heavy loads and

is resistant to rapid network changes.

3.7 Experimental Study

We implemented the sampling operator in the Gigascope DSMS in order to experiment with

the feasibility and performance of the operator. The Gigascope implementers also provided

us with access to several network data streams. We implemented not only the operator, but

also amended the parser and query analyzer to instantiate the sampling operator from a

query with the textual representation described in Section 3.5.

In our experiments, we focus on the dynamic subset-sum sampling algorithm. The

dynamic subset-sum sampling algorithm is used extensively in the AT&T network perfor-

mance monitoring infrastructure [61], and consequently this algorithm is well understood

by the Gigascope developers. In addition, the Gigascope developers indicted that dynamic
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subset-sum sampling is a good first algorithm because of the demand for its use. Our im-

plementation of dynamic subset-sum sampling follows the description given in Section 3.5.

We had two network feeds available for experiments. The first is the network connection

to our research center. This data stream produces a moderate 5,000 to 15,000 packets per

second, with a rate that is highly variable. The second network feed is a data center tap,

producing moderately high speed 100,000 packets per second (about 400 Mbits/sec). This

data feed is highly aggregated, and hence has a much lower variability in its data rate

than the first. When testing accuracy, we generally use the first data feed because its high

variability will tend to emphasize estimation problems. When testing performance, we

generally use the second data feed because its low variability and high data rate make

measurements much more consistent. For our experiments we used an inexpensive dual

2.8 GHz processor server.

3.7.1 Accuracy

We measured the accuracy of the dynamic subset-sum sampling algorithm by running two

query sets simultaneously. One computed the sum of packet lengths during successive

20 second intervals, and the other applied dynamic subset-sum sampling to collect 10,000

samples of packets, then computed the sum of (subset-sum sample adjusted) packet lengths

for each time interval. We found that on many of the time intervals, the dynamic subset-

sum sampling algorithm is inaccurate. This property is illustrated in Figure 2, where the

aggregate result is labeledactual and the dynamic subset-sum sampling result is labeled

estimated (non-relaxed) .

The problem lies in the threshold update procedure discussed in 3.4.4. The load during

the next interval is estimated to be the load during this interval; if the load drops sharply,

dynamic subset-sum sampling collects too few samples and underestimates the sum.

To correct this problem, we made a minor adjustment to the dynamic subset-sum sam-

pling so that it will estimate that the load in the next time period is a fraction1/f of the

load during this interval. We call this the relaxed version. In Figure 2 we usef = 10 and

the relaxed estimates match the actual sum very closely for all time periods. The relaxed

algorithm works well because the cleaning phases readily adapt the threshold upward to
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Figure 2: Accuracy of summation of subset-sum sampling

the appropriate value.

Another illustration of the problem with non-relaxed subset-sum sampling is shown

in Figure 3 (a). The relaxed algorithm occasionally over-samples, while the non-relaxed

algorithm frequently under-samples causing an underestimation.
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Figure 3: Relaxed vs. Nonrelaxed: (a) Actual number of samples produced per period with the requested
sample size of 10000. (b) Number of cleaning phases per period.

The cost of the relaxed algorithm is that the cleaning phase is invoked more frequently.

Figure 3 (b) shows the number of cleaning phases for the relaxed and non-relaxed dynamic

subset-sum sampling algorithms during the experiment. The first interval was very short (as

can also be seen from the other charts). In the second interval, both algorithms used a large

number of cleaning phases to identify the appropriate threshold; afterwards the number of

cleaning phases stabilized at a low level. The relaxed algorithm consistently used about 4

cleaning phases, as compared to 1 for the non-relaxed algorithm. If the cost of the cleaning

phase is small (which we explore in the next section), using the relaxed algorithm incurs
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only a small overhead.

We repeated these experiments to collect 100 and 10,000 samples per period, and ob-

tained nearly identical results (a user will collect a larger or smaller number of samples

depending on storage costs and the degree of subsetting during analysis).

3.7.2 Performance

To evaluate the CPU overhead of running adaptive subset-sum sampling using our sam-

pling operator, we ran both the relaxed and the non-relaxed dynamic subset-sum sampling

algorithms on the high speed link (100,000 packets/sec), as the CPU utilization of these

queries on the moderate speed link is too low to measure accurately. For a comparison, we

also ran basic subset-sum sampling using a user-defined function in a selection operator. A

comparison of the CPU usage for each of these algorithms is shown in Figure 4 (a). Even

when processing 100,000+ packets/sec and producing large outputs, the dynamic subset-

sum sampling algorithm implemented using the sampling operator uses only a small frac-

tion of a CPU (two CPUs are available at the server). Compared to the selection query

(basic subset-sum sampling), the sampling operator uses only about 3% to 5% additional

CPU load. The cost of the additional cleaning phases to support relaxed subset-sum sam-

pling can be seen in this chart.

However the overhead is small, at most about 2% of CPU for this experiment. How-

ever, there is a problem with this implementation of dynamic subset-sum sampling. Recall

that there are two types of queries nodes in the Gigascope architecture: low level queries

which read from the network interface, and high level queries which read from Gigascope-

managed query streams. The low-level queries nodes are simple data reduction operators.

Currently only selection and (partial) aggregation are supported. Therefore we need to run

a low-level selection query to feed the subset-sum sampling queries. In the run of experi-

ments shown in Figure 4 (a), evaluating the low-level query required about 60% of a CPU,

due to the cost of memory copies.

Fortunately, it is possible to evaluate part of a subset-sum sampling query at the low-

level query. We modified the low-level selection query to have it perform basic subset-sum

sampling with a threshold1/10th the level used by the dynamic subset-sum sampling al-
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Figure 4: Performance analysis

gorithm when it returns 10,000 samples per interval. The low-level query load dropped to

about 4% of a CPU. In addition, the dynamic subset-sum sampling CPU load dropped sig-

nificantly, as shown in Figure 4 (b). We ran additional experiments regarding the setting of

γ (the trigger to initiate a cleaning phase). Increasing (decreasing)γ decreases (increases)

the number of times cleaning is done, but increases (decreases) its cost. We found little

dependence of CPU load onγ.

3.7.3 Flexibility

We ran a set of experiments to measure the memory usage of the alternative queries for

computing a given sized sample of flows over a 1 minute interval. We used a Gigascope

installation consisting of a dual 2.8Ghz processor server with 4 Gbytes of RAM, with two

Gigabit Ethernet interfaces connected to a live network feed from a data center tap. Each

of the Gigeths carries about 100,000+ packets/sec.

For a given number of desired flow samples (10,000, 50,000, and 100,000) we ran a set

of queries consisting of the flow+sample query (fsample), and the flow computation, then

sampling query (psample). Both of the queries were described in detail in section 3.6.7. We

modified thepsamplequery to first randomly sample the packets, with sampling rates of

100% (no sampling), 20%, 10%, and 2%. To adjust the input rate, we ran experiments with

data from one of the interfaces (1 stream) and from both (2 streams). For a given number

of output flow samples and input streams, we ran all of the sampling queries simultane-

ously; hence these results all reflect the same conditions. The six sets of experiments were
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Figure 5: Flow sampling memory usage: (a) One stream (110 packets per second). (b) Two streams (210
packets per second).

all run within a short period of time, so they executed under similar though not identical

conditions. The memory usage results are shown in Figures 5.

These results show that computing the sampled flows directly (fsample) significantly

reduces memory usage as compared to computing flows, then sampling (psample1.0). To

obtain an equivalent reduction in memory usage by packet sampling, we need to use a

packet sampling rate of 10% or less, rendering individual flows unsuitable for analysis. If

the rate of sampling is too low, thepsamplequery cannot deliver the desired number of

flows. For example, thepsample0.02 query given a single stream input could only deliver

about 70,000 flows per minute (the memory usage of thepsample0.02 curves level out for

this reason).

The fsamplequery imposes a moderate maximum CPU overhead: 42% of one CPU

for the fsamplequery run under two streams and collecting 100,000 flows per minute,

as compared to 33% for thepsample0.01 query run under the same conditions. Packet

sampling does significantly reduce the CPU utilization of thepsamplequery. However,

since we are able to run five simultaneous sampling queries on a high speed data stream,

CPU use does not seem to be a significant issue.

3.8 Conclusions

Query sets which make use of very high speed data streams must often use approximate

data reduction strategies to provide complex statistics while keeping up with the offered
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data load. A useful approximation technique is sampling, which reduces the data set into

a much smaller and yet representative result. Typical sampling methods are often quite

simple: sample each item with some probability, say p. But in streaming context, even

uniform sampling from distinct elements on the stream is a challenge. Over the past few

years, researchers have proposed very sophisticated sampling algorithms on streams for

a variety of problems. Rather than propose new stream sampling methods, we have fo-

cused on how to implement the many intricate sampling methods in the literature. Our

approach has been to abstract and propose a new stream operator for evaluating sophisti-

cated sampling algorithms, on a data stream. This operator is powerful enough to evaluate

many widely different stream sampling algorithms including subset-sum sampling (from

networking), reservoir sampling (from databases), min-hash sampling (from theoretical

algorithms), etc., as well as sampling-based aggregation algorithms such as the Manku-

Motwani heavy hitters’ algorithm, and many more. We urge the readers to try modeling

other stream sampling algorithms via our stream operator to appreciate its flexibility and

generality. Some of our ongoing work consists of cascading one type of stream sampling

inside a different type of stream sampling group.

We implemented the sampling operator in the Gigascope DSMS, and implemented dy-

namic subset-sum sampling on top of that. We made a performance evaluation of dynamic

subset-sum sampling on both highly variable and high speed data streams. We found that:

• The accuracy of the dynamic subset-sum sampling algorithm can be greatly improved

by relaxing the threshold between time windows. This was re-engineering that was a

result of experience with the real system.

• The sampling operator imposes only a small CPU overhead, as compared to a simple

selection operator. We can readily scale subset-sum sampling to much higher data

rates.

• By performing part of the subset-sum sampling at the low level query, we can collect

a 1% subset-sum sample on a high speed data stream using less than 6% of a CPU.

Obtaining the best performance from a DSMS such as Gigascope requires a significant

amount of early data reduction at the low-level queries. The method for doing this will
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depend on the approximation algorithm. For example, the Manku-Motwani heavy hitters

algorithm would be best supported by aggregation at the low-level queries. We have not

explored operator transforms in this work, but we have gained valuable query optimization

tips during our experimental study.

The significance of our results is that we have developed a simple way in which sophis-

ticated streaming algorithms that returns set results can be integrated into a query system.

The supporting UDAFs and functions need only follow a simple API. Once written, the user

has the power of the query language to explore new combinations. This ease of experimen-

tation allowed us to find the simple upgrade of subset-sum sampling which so improved its

accuracy. The relaxed version of subset-sum sampling, along with the sampling operator,

has been incorporated into the release version of Gigascope. This implementation is the

first one that we know of in an operational DSMS which can handle line speeds.

Our success stems from our observation that a large class of sampling algorithms have

an essentially simple communication structure, namely between individual samples and a

sample summary only. We have focused on this core aspect of sampling algorithms. We

note that it is quite possible to derive sampling-based algorithms that operate on the sam-

ples in more complex ways and therefore require a far more complex communication struc-

ture. An excellent example is a more-holistic sampling algorithm such as the Greenwald-

Khanna quantile algorithm [76]. Thecompressphase of this algorithm merges adjacent

samples, and thus requires inter-sample communication. This algorithm (expressed as a

UDAF in [44]) and others which may have such computations on samples built into them,

are best expressed using a stream UDAF on top of the sampling operator we have devel-

oped here. In contrast, all sampling algorithms that work on a per-sample tuple basis can

be implemented using our sampling operator.

In addition to capturing capturing a common thread of evaluation of a large variety of

sampling algorithms, our sampling operator is able to maintain information about groups

and supergroups in terms of aggregates and superaggregates required for implementation

and statistical analysis of a sampling algorithm. We believe that this, along with state-

ful functions, gives the user the level of flexibility required for implementation and cus-
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tomization of various sampling-related algorithms. Our work with subset-sum sampling

demonstrated this, but we provide another example.

Paradoxically, existing methods to sample flows - 1 in X sample from packets and then

aggregate flows, or aggregate into flows and then sample the output - fail when they are

most needed, i.e., at times of adverse traffic conditions such as network attacks. We have

proposed a solution by integrating the logic of flow aggregation as well as flow sampling

into one procedure that works directly on the IP packet data stream. Our solution works at

more than 200k+ packets per second, with only moderate load on the CPU and outperforms

existing methods. Our approach is not only an efficient way to sample from flows, but may

also be the only viable way during adverse traffic conditions when the number of flows

increases tremendously. Also, the general principle of “pushing selection operators” to low

level in stream processing is likely to find other applications in IP network data analysis.
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Chapter 4

4 Summarizing and Mining Inverse Distributions on Data Streams

via Dynamic Inverse Sampling

Emerging data stream management systems approach the challenge of massive data dis-

tributions which arrive at high speeds while there is only small storage by summarizing

and mining the distributions using samples (see chapter 3 for an overview of sampling al-

gorithms) or sketches. However, data distributions can be “viewed” in different ways. A

data stream of integer values can be viewed either as theforwarddistributionf(x), i.e., the

number of occurrences ofx in the stream, or as its inverse,f−1(i), which is the number of

items that appeari times. While both such “views” are equivalent in stored data systems,

they may be significantly different over data streams that entail approximations. In other

words, samples and sketches developed for the forward distribution may be ineffective for

summarizing or mining the inverse distribution. Yet, many applications such as IP traffic

monitoring naturally rely on filtering methods that require mining inverse distributions.

In this chapter we formalize the problems of managing and mining inverse distributions

and show provable differences between summarizing the forward distribution vs the inverse

distribution. We present filtering methods for summarizing and mining inverse distributions

of data streams: they rely on a novel technique to maintain a dynamic sample over the

stream with provable guarantees which can be used for variety of summarization tasks

(building quantiles or equidepth histograms) and mining (anomaly detection: finding heavy

hitters, and measuring the number of rare items), all with provable guarantees on quality of
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approximations and time/space used by our streaming methods. We also complement our

analytical and algorithmic results by presenting an experimental study of the methods over

network data streams.

4.1 Introduction

DSMSs approach the task of handling and mining massive data streams bysummarizing

the streams in small space. These summaries may be various “samples” (selection of sub-

sets of items by sampling with or without replacement, weighted sampling, deterministic

sampling, etc) or “sketches” (inner product or aggregate of subsets of items using differ-

ent hash functions that compactly describe the subsets in each inner product). Sampling

and sketching solutions have been designed for a number of tasks such as finding heavy

hitters, change detection, quantiling, histogramming, etc. (See recent surveys and tuto-

rials [107, 67, 21] etc.) For most of these tasks, a precise answer is not paramount and

also impossible to obtain within the limited space and time constraints of DSMSs. There-

fore, workable approximations are necessary and indeed suffice in these applications. As

a result, samples or sketches have proved to be a suitable fit in DSMSs since they provide

accuracy guarantees and have small footprint. Both sampling and sketching are used in

Gigascope [44] and CMON2.

The departure of our work from extant literature emerges from our experience with IP

traffic stream analysis: input streams can be “viewed” in different ways, and the summaries

built to manage and mine one “view” may differ significantly from those used for another.

4.1.1 Motivating Example: Forward and Inverse Views

We will expose the phenomenon of different “views” of the input data stream using an

example drawn from the IP traffic analysis case. Consider the IP traffic on a link as packet

p representing(ip, sp) pairs whereip is the source IP address andsp is the size of the packet

(there are other attributes of IP traffic on the link—destination IP addresses, port numbers,

payload or content—but for exposition, we focus on these attributes).
2http://www.ipmon.sprint.com
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Problem A. Which IP address sent the most bytes? That is, findi such that
∑

p|ip=i sp

is maximum.

Problem B. What is the most common volume of traffic sent by an IP address? That is,

find traffic volumeW such that|{i|W =
∑

p|ip=i sp}| is maximum.3

Both Problem A and B arise naturally in IP traffic analysis. Problem A is a simplification

of the problem of finding the “elephant flows” [62]. Problem B is related to estimating the

number of “mice” (small flows) and is a generalization of the problem of estimating the

number of flows with small number of packets [54]. “Port scanning” attacks, which probe

a large number of ports looking for vulnerabilities by trying to open connections on each

port have low volume per flow, but show up as smallW ’s in Problem B.

For Problem A, there are many known solutions using samples [102] or sketches [45],

and these solutions have even been tested in live DSMSs on IP traffic [44]. In contrast, we

are not aware of any solutions for Problem B with strong guarantees.

4.1.2 Formalizing Different Views

We formalize the problems as follows:

• Problem A deals with theforward distribution, that is, we work onf [0 . . . U ] where

f(x) is the number of bytes sent by IP addressx. Each new packet(ip, sp) results in

f [ip]← f [ip] + sp. We ask what is thex for whichf [x] is the largest.

• Problem B deals with theinversedistribution, that is, we work onf−1[0 . . . K] where

each new packet(ip, sp) results inf−1[f [ip]] ← f−1[f [ip]] − 1 and f−1[f [ip] + sp] ←

f−1[f [ip] + sp] + 1. We ask whichi gives the largestf−1(i).

For conventional DBMSs where the input can be stored, both viewsf andf−1 are equiv-

alent. For example, both can be expressed as nested SQL queries. For Problem A:

SELECTsrcIP
FROM R
GROUP BYsrcIP
HAVING sum(bytes) = max(

3This can be thought of as determining the popular bandwidth requirement for hosts. In more detail, one may group bandwidth into
ranges of volume 1—2KB, 2—3KB, etc. and ask this question on such ranges rather than precise volumes.
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SELECTsum(bytes)
FROM R
GROUP BYsrcIP )

and Problem B:

SELECTS
FROM (

SELECTsum(bytes) as S
FROM R
GROUP BYsrcIP)

GROUP BYS
HAVING count(S) = max(

SELECTcount(K)
FROM (

SELECTsum(bytes) as K
FROM R
GROUP BYsrcIP)

GROUP BYK)

So, if the data is stored, we can derive either. However, in DSMSs where we maintain only

a summary of the data,f andf−1 can not be readily derived, and operating on one from the

input data stream is fundamentally different from operating on the other. Of course, sum-

maries ofbothf andf−1 are of interest since they give an idea of traffic size distribution in

two, quite different ways. Similarly, miningf andf−1 for changes or anomalies will show

quite different phenomena. However, much of extant literature has developed methods for

summarizing and miningf , but not much is known for summarizing and miningf−1.

Methods that have been successful in mining the forward distribution do not obviously

apply to f−1. Consider maintaining the popular AMS [17] sketch onf−1 on the data

stream. Each new packet modifiesf−1; because its AMS sketch is based onprecisely

knowingf [ip], it is provably impossible to know allip’s in a small space streaming setting.

In other words, each new packet changes the “domain” itself in a way we can not track

in small space over the stream. Hence, sketch methods that rely on knowing the precise

domain value of each new update such as the AMS sketch and all its variations fail directly.

4.1.3 Our Contributions

Our contribution is to introduce the problems of summarizing and mining the inverse dis-

tribution, and proposing solutions in full generality for them. More precisely:
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1. We formalize the problems of summarizing and mining the inverse data distribution on

data streams. We have given intuition why samples and sketches developed for the forward

distribution does not solve the inverse distribution problems. We go on to prove concrete

lower bounds that separate the performance of algorithms for problems on forward vs.

inverse distribution on data streams, no matter what techniques are used.

2. We present a general summary for the inverse distribution based ondynamic inverse sam-

pling and an algorithm to maintain such samples dynamically, in presence ofboth inserts

and deletes, with provable guarantee. No such dynamic sampling method was previously

known. Using such samples, we present algorithms with provable guarantees for a number

of inverse distributions problems including heavy hitters, range queries, quantiles, etc.

3. We complement our analytical and algorithmic results by a thorough implementation

study on real data and show that our methods are both practical and effective.

Our approach extends to a variety of scenarios, and smoothly handles continuous dis-

tributions, fractional counts, working on the sum or difference of two distributions and so

on.

Map. The rest of the chapter is laid out as follows. In Section 4.2, we define the inverse

distribution and the mining tasks of interest over it, then prove lower bounds on problems in

the inverse distribution. In Section 4.3 we introduce our Dynamic Inverse Sampling method

for insertions only streams, and extend it to insert and delete streams in Section 4.4. This

is applied to tracking properties of the Inverse Distribution in Section 4.5. Our experimen-

tal evaluation is in Section 4.6, with prior work discussed in Section 4.7 and concluding

remarks in Section 4.8.

4.2 The Inverse Distribution

Let f be a discrete distribution over a large setX, with the semantics thatf(x ∈ X) = i

means that itemx occursi times. LetN =
∑

x∈X f(x), the total number of items, and

D = |{x|f(x) > 0}|, the number of distinct items. The inverse distribution is defined as

follows:
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Figure 6: Example distribution, shaded to indicate items with the same count. (a) Forward distributionf
where items have counts{1, 5, 2, 0, 1, 3, 3, 1, 0} (b) Inverse distribution,f−1. (c) Cumulative inverse distrib-
ution,F−1.

Definition 2. The inverse distribution, f−1(i) gives the fraction of items fromX whose

count isi. That is,f−1(i) = |{x|x ∈ X, f(x) = i, i 6= 0}|/D.4

Thecumulative inverse distribution, F−1(i) is defined as
∑

j≥i f
−1(j).5

For clarity and simplicity, we assume thatf is a discrete, integer valued distribution, but

generalizations to continuous or real valued distributions follow naturally. An example is

shown in Figure 6. From this figure, it can be seen thatN =
∑

i if
−1(i)D =

∑
i F

−1(i)D.

4.2.1 Queries on the Inverse Distribution

Queries on the inverse distribution give a variety of information about the distribution itself.

We define the following queries on the inverse distribution:

• Point Querieson the inverse distribution are, giveni, to returnf−1(i). This corresponds

to finding the fraction of items that occurred exactlyi times. For example, findingf−1(1)

over a stream of network flows corresponds to finding flows consisting of a single packet

— possible indication of a probing attack iff−1(1) is large. This quantity is sometimes

known as therarity of the distribution.

•Range Querieson the inverse distribution generalize point queries and given a range[j, k]

return
∑k

i=j f−1(i) = F−1(j)−F−1(k + 1). Thus in a database of transactions, one could

ask “what percentage of items sold between 10 and 20 units last month” by computing the

Inverse Range Query[10, 20] over the appropriate relation.

• Inverse Heavy Hittersapplies the notion of Heavy Hitters (frequent items) to the inverse
4This definition forcesf−1(0) = 0 so that

P
i f−1(i) = 1.

5This definition computes the cumulative distribution of items with countsi or above, noti or below, which is equal to1− F−1(i).
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distribution. Given a fractionφ, an Inverse Heavy Hitters Query must return{i|f−1(i) >

φ}. That is, which are the item counts that occur most frequently?

• Inverse Quantilestakes a fractionφ and returns theφ-quantile of the inverse distribution.

That is, return thei such thatF−1(i − 1) > φ, F−1(i) ≤ φ. This allows to pose queries

such as, over a stream of connections, what is the median number of connections made by

consumers.

4.2.2 Computational Challenge

All the queries we have defined can be answered exactly by taking the original distribution

and performing sorting and scanning passes over it. However, we seek solutions that can

answer queries on high speed data streams, consisting of an arbitrary mix of insertions and

deletions. Deletions arise in many traditional database settings, where records are inserted

and deleted; they also occur in the network scenarios we have discussed as flows begin and

end. Hence our solutions must consume only small space (much smaller than the number

of updates, and also smaller than the size of the domain|X|). We analyze the complexity

of answering these queries rapidly and using only small space, by allowing approximation

and probabilistic methods. In general, several computations over the inverse distribution

are strictly harder than their counterparts over the original distribution. We demonstrate

this for both exact and approximate query answering:

Lemma 1. Fixed point queriesare point queries where the point is given ahead of the data.

Fixed point queries can be answered exactly on the original distribution using constant

space (by simply counting the number of times the given item occurs). They require space

linear in the number of items,|X| to compute on the inverse distribution. A probabilistic,

relative error approximation still requires linear space.

Proof. We show that answering fixed point queries on the inverse distribution require linear

space in general. We focus on the case when the query is to find the number of items

that occur two times. We reduce to the problem of testing whether a pair of bit strings

are disjoint. Take two bit strings of length|X|. For each bitstring, construct a stream

of values containing the set of locations where the bitstring is 1, and pass these streams
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to the proposed algorithm. We see that there if there is an intersection between the two

bit strings then some value must occur twice (once in each stream); however, if no value

occurs twice then the bit strings must be disjoint. The communication complexity of the

disjointness problem isΩ(|X|) [96]; a standard reduction shows that this implies anΩ(|X|)

space bound for our streaming algorithm: imagine running the algorithm on the first stream

and then sending the memory contents to another player, who then runs the algorithm on

the second stream. If the algorithm correctly computes the number of items that occur two

times then it solves the disjointness problem, and therefore the size of the communication

(and hence the space required) is linear in the length of the bit strings, ie.Ω(|X|). This

holds under probabilistic setting. Even if we allow a relative approximation guarantee, then

we must still be able to distinguish between the case where the number of items with count

two is zero, and more than zero. This corresponds to the case that the bit strings are disjoint,

and the case that they intersect. �

Lemma 2. The number of distinct values in the original distribution,F0(f) can be approx-

imated up to a fixed error with constant probability inO(1) space. However, the number of

distinct values in the inverse distributionF0(f
−1), requires linear space to approximate to

a constant factor.

Proof. We use the same reduction from the disjointness problem to show the hardness of

this problem. On our bitstring example, if the two bit strings are disjoint then the number

of distinct values in the inverse distribution is one (all items have frequency one); but if

they are not disjoint then the number of distinct items is two (we can add a unique item to

ensure this). If we can approximate the number of distinct items with relative error less than

a third, then we can distinguish the two cases, and hence even a probabilistic approximation

of the number of distinct items requires at least linear space. �

We seek good approximations for the queries we have defined over the inverse distri-

bution, with strong guarantees of the quality. To do this, we develop a new technique,

Dynamic Inverse Sampling, which effectively samples uniformly from the inverse distribu-

tion, as the original distribution is modified by insert and delete transactions. We will show

how using this sample can give good estimators for the queries over the inverse distribution.
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There are two challenges in this approach. First, maintaining random samples in the

presence of inserts and deletes in one-pass is quite challenging. All known methods resort

to rescanning the past relation for populating the sample when it dwindles under deletes.

In order to make our goals feasible, we must disallow the “adversarial” strategy that asks

for a sample from the inverse distribution and then deletes the sampled items, and repeats.

Clearly, such a strategy can force any sampling method that uses sublinear space to end

up with an empty sample. We are able to prove strong guarantees on our dynamic inverse

sampling algorithm under the standard assumption in probabilistic algorithms that the ran-

domization (coin tosses) our algorithm uses is not known to the adversary. The adversary

may not use the output of queries to affect the stream of updates (equivalently, we assume

that the updates are specified in advance). The second challenge is that as we show below,

existing techniques of sampling from the original distribution, and sketch summarization,

fail to answer our queries; this emphasizes the importance of sampling from the inverse

distribution.

Lemma 3. A uniform sample from the forward distribution based on probing records is

insufficient to answer queries on the inverse distribution.

Proof Sketch.Consider the distribution where one item occursN − k times, andk items

occur once each, for some constantk, e.g. k = 2. Unless the sample of items is linear in

N , it is unlikely to draw any of thek items which occur once, and so cannot distinguish

this distribution from one where one item occursN times. But in the first distribution,

f−1(1) = 1 − 1/(k + 1), whereas in the second it is 0. To correctly distinguish between

these two cases, a very large sample is required. �

Lemma 4. A sketch synopsis of the forward distribution is insufficient to answer queries

on the inverse distribution.

Proof Sketch.Queries to sketch data structures, such as the AMS sketch [17], estimate the

count of individual items with additive error related to theL2 norm of the distribution. To

guarantee accurate answers to queries on the inverse distribution, this error must be very

small, requiring the sketch to be at least linear inD (number of distinct values). �
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4.3 Dynamic Inverse Sampling: Insertions

Our methods to answer queries on the inverse distribution rely on a technique that we call

“Dynamic Inverse Sampling” (DIS). The goal of this technique is to process a sequence

of insertions and deletions and then be able to draw samples uniformly from the inverse

distribution. Each sample is drawn with replacement, and returns a pair uniformly from the

set of{(i, x)|x ∈ X, f−1(x) = i}. The size of this set isD, the number of distinct items in

X, and so the probability of returning any pair is1
D

.

In order to simplify the exposition, we introduce our dynamic inverse sampling method

when the input consists of insertions only. This shows the main structure of the algorithm.

In subsequent sections, we will show how to generalize this to our main case of interest,

where the input can consist of an arbitrary sequence of insertions and deletions.

4.3.1 Data Structure and Update Procedure

We first describe the main structure, which draws a pair(i, x) from the inverse distribu-

tion. We later analyze how many independent copies of this data structure are required

to guarantee a sample of sufficiently large size. At a high level, the procedure works by

hashing the items to levels such that the likelihood of being hashed to levell is exponen-

tially decreasing inl. So at some levell ≈ log D there is a high probability that only one

item hashes there, and we recover this item and its count as the sampled count. In order

to prove correctness, we will have to show that this item is selected uniformly, and that

there is at least constant probability that there is a level that has a unique item for us to

return. Throughout, we assume thatX = [0 . . . m− 1] for somem such that anyx ∈ X is

represented in a single machine word; our approach naturally generalizes to other settings

but we focus on this case for simplicity.

Data Structure. Our data structure takes two parameters: (1) a ratio0 < r < 1 which is

used to partition the input items (2)M , the range of the hash function used to determine

where items are stored within the data structure. We fix values for these parameters based

on our analysis. The size of the data structure is proportional toL = log1/r M . We keep

three arrays of lengthL: item, which stores items from the input;count, which stores
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item counts; and boolean flagsuniq. We initialize the array of counts to zero. We keep a

hash functionh which maps from[1 . . . m] to [1 . . . M ]. For the purposes of the analysis,

we requireh to be (strongly) universal. Such hash functions are very fast to compute and

require only a constant amount of space [34].

Update process. For each insertion of an itemx, we use the hash functionh to determine

where in the data structure it belongs. Fromh, we define

hl(x) = bh(x)/(rl ∗M)c

l(x) = l ⇐⇒ hl(x) = 0, hl+1(x) 6= 0.

The valuel(x) determines the place wherex is stored in the data structure (it is the greatest

l such thathl(x) = 0). Observe thatl(x) can be computed in constant time by solving

hl(x) = l, which setsl(x) = dlog1/r(M/h(x))e. We inspectcount[l(x)]: if it is zero,

then no item is stored there, and so we setitem[l(x)] = x, and setuniq[l(x)] = true. If

count[l(x)] is not zero, we inspectitem[l(x)]. If item[l(x)] 6= x, then we have acollision,

and we setuniq[l(x)] = false. Lastly, in all cases we incrementcount[l(x)].

Output process. In order to output an item from the data structure, we search the data

structure. We describe two variations, one with guaranteed bounds, and a second, “greedy”

approach that extracts as many samples as possible from the data structure. Begin by setting

l = L. If count[l] is not zero, then we inspectuniq[l]: if it is true then we output the pair

(count[l], item[l]). If uniq[l] is false , then we do not output an item, since we do not

have an accurate count for the item. Else,count[l] is zero, so we decrementl and repeat the

process. In the basic output routine, we halt as soon as we find a level wherecount[l] > 0;

in the “greedy” version, we process every level. The output routine scans the whole data

structure, so the time to run the output process isO(L).

Observe that one outcome is that no item is output from the data structure. In our analy-

sis, we will show that for appropriate settings of the parametersr andM , the probability

of this outcome is most a constant,p < 1. So by sufficiently many repetitions of this data

structure with different hash functionsh, we can guarantee high probability of returning a

sample of the required size.

Example. We consider the following example sequence of insertions of items:
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Time Level 1 Level 2 Level 3
Step item count uniq item count uniq item count uniq
1. 4 1 T 0 0 T 0 0 T
2. 4 1 T 7 1 T 0 0 T
3. 4 2 T 7 1 T 0 0 T
4. 4 3 F 7 1 T 0 0 T
5. 4 3 F 7 2 F 0 0 T
6. 4 4 F 7 2 F 0 0 T
7. 4 4 F 7 2 F 2 1 T
8. 4 5 F 7 2 F 2 1 T
9. 4 6 F 7 2 F 2 1 T
10. 4 6 F 7 2 F 2 2 T

Figure 7: Example of state of data structure at each time step on sample input

Input: 4, 7, 4, 1, 3, 4, 2, 6, 4, 2

Suppose these hash to levels in an instance of our data structure as follows:

x 1 2 3 4 5 6 7 8

l(x) 1 3 2 1 1 1 2 1

Figure 7 shows the state of the data structure after each update. For each level we indicate

whether there is a unique item at that level that can be recovered as the sampled value.

Observe that at timesteps 5 and 6, no such item can be found, but at all other times we can

recover a sampled item: at time 1 we return (1,4); between time 2 and 4 we would return

(2,7), from time 7 to time 9 we would return item (1,2) and lastly at time 10 we return

(2,2). The greedy output routine would also return item4 at times 2 and 3.

4.3.2 Analysis

We show that the Dynamic Inverse Sampling returns uniform samples from the inverse

distribution. First, we show that provided a unique item is found at some level then it is

drawn uniformly from the set of items with non-zero counts. The main technical result

is given in Lemma 6, which shows that there is at least a constant probability that such

an item exists after our hashing procedure. Lastly, we show that repeating this procedure

several times over will draw a sample (with replacement) of the desired size.

Lemma 5. If a pair (i, x) is returned from the output procedure,x is selected uniformly

from the inverse distribution andf(x) = i.
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Proof. Firstly, we observe that if we return a pair(i, x), then indeedf(x) = i, since we

have counted the number of occurrences ofx exactly. To show thatx is drawn uniformly,

we rely on the universal properties of the hash functions. The strong universality property

of h(x) means

Pr[h(x) = a ∧ h(y) = b] = 1
M2

Applying this tohl(x) gives:

Pr[hl(x) = a ∧ hl(y) = b] = Pr[bh(x)
rlM
c = a ∧ bh(y)

rlM
c = b] = rlM∗rlM

M2 = r2l

Thus,hl(x) is also strongly universal overr−l. Hence (over choices ofh), Pr[hl(x) = 0] =

rl, and this is independent ofx. �

Lemma 6. Over random choices ofh, there is constant probability of the output process

returning a pair(i, x).

Proof. Let D denote the number of distinct items at output time, and letBl = 1/rl. The

function hl maps onto values0 . . . Bl − 1. From the previous lemma,hl is 2-universal

onto this set. LetXl denote the number of distinct items observed that satisfyhl(x) = 0.

E(Xl) = D/Bl, andVar(Xl) ≤ E(Xl), using the pairwise-independence ofhl.

Consider the levell such thatα/r ≤ D/Bl ≤ α/r2 for an appropriate scaling constant

α > r. We analyze the number of items that satisfyhl = 0, and show that there is constant

probability that this is small. By the Chebyshev inequality,

Pr[|E(Xl)−Xl| ≥ E(Xl)] ≤ Var(Xl)/E(Xl)
2 ≤ 1/E(Xl) = Bl/D ≤ r/α.

We use this expression to analyze the probability thatXl is either 1 or 2. The event|E(Xl)−

Xl| ≥ E(Xl) occurs only ifXl ≤ 0 or if Xl ≥ 2E(Xl). We setE(Xl) = 3/2, which fixes

r =
√

2α/3. Because2E(Xl) ≤ 3, andXl takes on only integer values,|E(Xl) − Xl| <

E(Xl)⇒ Xl ∈ {1, 2}. Hence,Pr[Xl 6∈ {1, 2}] ≤ r
α

=
√

2/3α. This is a constant provided

2/3 < α < 3/2 (since both this probability andr must be less than1).

If Xl = 1, then there is one item,x, stored at levell or above, and we can easily identify

this item and its count. However, ifXl = 2, it is possible that both items (say,x andy), are

stored at the same level, and we are unable to find the identity of either of them. Assuming
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Xl = 2, we bound the probability that bothx andy are stored at the same level. Using the

universality ofhl again,

Pr[l(x) ≥ l + a|l(x) ≥ l] = ra]⇒

Pr[l(x) = l + a|l(x) ≥ l] = ra − ra+1 = ra(1− r)⇒

Pr[l(x) = l(y)|l(x), l(y) ≥ l] =
l∑

a=0

(ra(1− r))2 +
1

r2L
,

sincePr[h(x) = h(y) = 0] = 1
M2 = (r−l)2. Then:

(1− r)2

l∑
a=0

(r2)a +
1

r2L
≤ (1− r)2

1− r2
=

1− r

1 + r

This relies on the fact that ther2L term is dominated by the residue of the infinite sum,

which is true ifM is chosen sufficiently large. This is achieved providedM = Ω(m), so

we setM = 2m.

Using the Markov inequality,Pr[Xl ≥ 2] ≤ E(Xl)
2
≤ r

2α
. SoPr[Xl = 2 ∧ l(x) = l(y)] ≤

r(1−r)
2α(1+r)

, using (4.3.2).

The probability,p, that the output process does not return a pair (if there are not one or

two items at levell or below, or the two items are mapped to the same level) is

p = Pr[(|Xl − E(Xl)| > E(Xl)) ∨ (Xl = 2 ∧ l(x) = l(y))]

= r
α

+ r(1−r)
2α(1+r)

= r
2α

2(1+r)+(1−r)
1+r

= 1
3r

3+r
1+r

Which follows since we have setα = 3r2/2. Our constraints onr andα are thatr and

all probabilities should be strictly less than 1. For concreteness, we setα = 1, and find

p = 3
√

3+
√

2
2
√

3+3
√

2
= 0.8577 . . . Thus there is constant probability that the output function will

return a pair. �

Having setr =
√

2/3 andM = 2m, the size of the data structure is therefore

O(log1/r M) = O(log m). This gives constant probability at least1 − p of extracting a

sampled item from the data structure. By keepinglog(1/δ)/ log(1/p) independent copies

of the data structure the failure probability is reduced to arbitrarily smallδ. If we require

a sample of sizek and we keepk/(1 − p) copies of the data structure, we recoverk items

in expectation. In general we need a stronger guarantee on the number of items returned.
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Figure 8: Dynamic Inverse Sampling Data Structure: hash functionl maps itemx to a level wherecount,
sum and collision detection information are updated.

For smallk, we can just keepk log(k/δ)/ log(1/p) copies of the data structure: each group

of log(k/δ)/ log(1/p) guarantees probability of1 − δ/k of returning a sample, so overall,

there is probability of1 − δ of gettingk samples. Asymptotically, the cost isO(k log k)

copies. For largerk we can give tighter guarantees, using Chernoff bounds:

Lemma 7. Let ε =
√

2 log 1/δ
k

. If k ≥ 8 log 1/δ and we keepK = (1 + 2ε)k/(1− p) copies

of the data structure, then with probability at least1 − δ we are able to recover at leastk

samples.

Based on the above results, our main theorem follows.

Theorem 1. We can maintainO(k) independent copies of DIS inO(k log m) space, and

guarantee with high probability to return a uniform sample of sizek from the inverse

distribution. Each insertion operation takes timeO(k); extracting the sample takes time

O(k log m).

4.4 Dynamic Inverse Sampling: Deletions

In generalizing the data structure to handle deletions, we will perform updates so each

deletion precisely counteracts the effect of a previous insertion of the same item, leaving

the data structure as if both the deletion and corresponding insertion had never happened.

To do this, we make both insertion and deletionlinear operations on the data structure,

which do not inspect the contents of the data structure but rather have the effect ofadding

onor subtracting offquantities to various counters, independent of their current values. The
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Procedureupdate(x,tt)
Input : Itemx, tt=insert/delete
1. h = h(x);
2. if (tt= insert)then
3. a = +1
4. elsea = −1;
5. l = dlog(M/h)/ log(1/r)e;
6. sum[l] = sum[l] + x ∗ a;
7. count[l] = count[l] + a;
8. collision-update(x, a);

Procedurequery(gr)
Input : gr flag for greedy output
Output : Samples fromf−1

1. for l = L downto 0 do
2. if count[l] > 0 then
3. x = sum[l]/count[l];
4. if ((bxc = x) and
5. (collision-test())then
6. output (count[l], x);
7. if (!gr) then break;

Figure 9: Pseudo-code for the dynamic inverse sampling

correctness of this approach then follows immediately from the commutativity of addition

and subtraction.

We keep the basic format of the data structure, but make some modifications to how we

treat it. Firstly, we replace theitem array with an arraysum initialized to zero, which will

store the sum of item identifiers (which we treat as integers). We also replaceuniq with

a very small (few bytes in size) “collision detection” data structure, which we will discuss

in the next section. The collision detection data structure maintains a distribution of items

(which is a subset of the original distribution) under insertions and deletions, and can be

queried to find whether there is one distinct item in the distribution or more than one.

Update process.For each insertion of an itemx, we computel(x) as before. We increment

count[l(x)], and setsum[l(x)] ← sum[l(x)] + x. We update the collision detection struc-

ture withx. For a deletion, we decrementcount[l(x)] and setsum[l(x)]← sum[l(x)]− x,

and delete a copy ofx from the collision detection structure. Observe that a deletion ofx

precisely cancels out the effect of a prior insertion ofx.

Output process. In order to output an item from the data structure, we search the data

structure in a similar way to before, by searching levelsl from L down to0. If count[l] is

not zero, then we try to extract an item from the sample. Suppose thatx is the only item

that is stored at this level in the data structure. Thenx can be recovered assum[l]/count[l].

However, we need to be sure thatx is the only item stored at this level. So we make use

of the collision detection data structure to tell us (either deterministically or with some

probability of error) whether there is only one distinct item stored here, or more than one.

The structure of our data structure is shown in Figure 8, and pseudo-code for insert and
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Figure 10: Deterministic collision detection: to insert 13 (represented as ab = 5 bit integer) we write
132 = 01101, and so incrementc[1, 1], c[2, 0], c[3, 1], c[4, 1], c[5, 0], corresponding to the 1, 2, 4, 8 and 16
bits.
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Figure 11: Probabilistic collision detection: to insert 13, witht = 3 hash functions, computeg1(13) = 1,
g2(13) = 0, g3(13) = 0 and so incrementc[1, 1], c[2, 0], c[3, 0].

query operations is given in Figure 9. The cost per update is now dominated by the cost of

updating the collision detection mechanism, since the rest of the update can be completed

in constant time.

4.4.1 Collision Detection

We require a data structure that can be updated in the presence of insertions and deletions

of items so that at query time, we can distinguish between the following two events for

a given level: (a) a single item occurs at that level one or more times; or (b) there are a

mixture of items at that level. One check we can make is to see thatcount[l] dividessum[l]

exactly: if not, then case (b) must hold. But this is not sufficient: if we observesum[l] = 20

andcount[l] = 2, the input can be any pair of items that sum to 20, not necessarily two

copies of item10 . To avoid outputting items that did not occur in the input we define three

approaches, which trade off speed, space and accuracy.

Deterministic. Suppose|X| = m = 2b so eachx ∈ X is represented as ab bit integer.

We can keep2b countersc[j, k] indexed byj = 1 . . . b andk ∈ {0, 1}. Every time we

see an insertion ofx, we increment the counts one count for each value ofj: we add

one toc[j, bit(j, x)], wherebit(j, x) returns thejth bit of the binary representation ofx.

Symmetrically, for a deletion ofx, we decrement the corresponding counts. At output,

we can tell whether there is exactly one item or more than one item stored: if and only if

there is one item in the bucket, then for allj exactly one ofc[j, 0] andc[j, 1] is non-zero.

The space required isO(b) counters, and the time to process each update is alsoO(b). An
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Proceduredeterministic-update(x, val)
Input : Itemx, val=+1/-1 for insert/delete
1. for j = 1 to b do
2. bit = x&1
3. c[j, bit] = c[j, bit] + val;
4. x = x� 1;

Procedureprobabilistic-update(x, val)
Input : Itemx, val =+1/-1 for insert/delete
1. for j = 1 to t do
2. bit = gj(x);
3. c[j, bit] = c[j, bit] + val;

Procedureheuristic-update(x, val)
Input : Itemx, val=+1/-1 for insert/delete
1. for j = 1 to q do
2. sumg[j] = sumg[j] + val ∗ gj(x);

Proceduredeterministic-collision-test()
Output : true if no collision elsefalse
1. for j = 1 to b do
2. if c[j, 0] 6= 0 and c[j, 1] 6= 0 then
3. return false;
4. return true;

Procedureprobabilistic-collision-test()
Output : true if no collision, elsefalse
1. for j = 1 to t do
2. if c[j, 0] 6= 0 and c[j, 1] 6= 0 then
3. return false;
4. return true;

Procedureheuristic-collision-test()
Output : true if no collision elsefalse
1. for j = 1 to q do
2. if gj(sum/count) ∗ count

6= sumg[j] then
3. return false;
4. return true;

Figure 12: Pseudo-code for the different collision detection mechanisms.

example update is shown in Figure 10.

Probabilistic. The deterministic approach requires a lot of space for large values ofb. We

can trade a small probability of error for reduced space. A natural first approach is to use an

approximate counter capable of processing insertions and deletions [63]. Such algorithms

guarantee1± ε-factor approximation to the number of distinct elements with probability at

least1− δ using spaceO( 1
ε2

log m log 1/δ). Settingε < 1/3, the algorithm can distinguish

between 1 item and 2 or more items, in spaceO(log m log 1/δ). But this space cost is still

large.

Instead, a similar method to the deterministic approach uses hashing to give a probabilis-

tic test for collisions. We drawt hash functions,g1 . . . gt which map items uniformly onto

{0, 1}, and use a set oft× 2 countersc[j, k]. For every insertion, we incrementc[j, gj(x)],

and decrement the same counter for a deletion. We apply the same test as in the determin-

istic case. If for anyj, c[j, 0] 6= 0 andc[j, 1] 6= 0, then there is more than one distinct item

in the bucket. The probability of wrongly declaring a single distinct item in the bucket is at

most2−t. The space used isO(t) counters, and it takesO(t) time per update. An example
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update is shown in Figure 11.

Heuristic. The previous method may still consume too much space. A simple heuristic

gives faster updates and few errors in practice (we make no formal claims about the error

probability here). We computeq new hash functionsgj[x] mapping itemsx onto0 . . . m

and track the summation ofg(x) assumg[j, l(x)]. For every insertion of an item, we add

g(x) to sumg[j, l(x)], and for every deletion, we subtractg(x) from sumg[j, l(x)]. At

query time, we extractx from the bucket assum[l]/count[l]. If x is the only distinct item

in the bucket, thensumg[j, l] = gj(x) ∗ count[l] for all j. We can check this condition

and reject if it is not satisfied by any hash. The space required for the heuristic collision

detection mechanism isO(q) counters per level, andO(q) time per update.

In all three cases, the collision detection data structures are updated by summing positive

and negative values, without examining the contents of the counters. Therefore arbitrary

combinations of insertions and deletions can be handled by them. Pseudo-code for the three

different collision detection methods is shown in Figure 12. The analysis of Lemma 6 can

be applied again, leading to:

Theorem 2. Using O(k log m) space, we can maintainO(k) dynamic inverse sampling

data structures to process a sequence of insertions and deletions and that guarantee with

high probability to return a uniform sample from the inverse distribution of sizek. Each

update operation takes timeO(k); extracting the sample takes timeO(k log m).

4.4.2 Extensions

We have discussed insertion and deletion of single items. We now observe other ways in

which our data structures can be manipulated:

Sliding Window. In many settings, we only want to draw a sample from a recent history

of an (insertions-only) stream. The sliding window model [53] specifies that only the most

recentW updates (or updates that occurred withinW time units) should be considered, for

some fixed value ofW . WhenW is too large to buffer the most recentW updates, we

can apply a variation of our technique. For each updatex, we overwrite the current item

stored at levell(x). We can modify the deterministic and probabilistic collision detection
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mechanisms so that instead of incrementing a counter, we overwrite the current contents

with the timestampof the new itemx. At output time, we check the collision detection

mechanism to see if there has been any collision within the lastW time units: if there is one

unique item, then for each pair of counters, exactly one will store a timestamp from within

the lastW time units. Hence, we can use this modified version of the data structure to draw

an itemx uniformly from the inverse distribution over the sliding window. However, this

does not give us a value fori; and to give the exact value ofi is impossible without using

Ω(W ) space. Instead, we can use the counting techniques of [53] to approximate the value

of i for x, which gives a doubly-approximate answer to queries on the inverse distribution.

Multiple insertions or deletions. We have considered the case where a single item arrives

or departs at a time. We can easily generalize this to handle arbitrarily many copies of a

single item by appropriate scaling of the counts that we add or subtract.

Fractional and negative item counts.Our analysis does not require the counts of items

to be positive integers, hence we can allow counts to become negative and fractional. The

interpretation of the sample values returned is that these are selected uniformly from the

set of items whose count is non-zero.

Unioning and Differencing of summaries. We can combine two summaries that were

created with the same parameters and hash functions by summing the values in their cor-

responding counters. The result is exactly identical to the result if all updates had been

processed by a single summary structure. Hence, the algorithm can easily be carried out

in a distributed fashion over a variety of streams, and then the summaries merged to allow

investigation of the inverse distribution of the union of all the streams. Similarly, we can

compute the difference of two summaries by subtracting corresponding counters; scale all

counts by a scalar value; and so on.

4.5 Inverse Distribution Queries

We now show how to use a sample drawn by the Dynamic Inverse Sampling algorithm to

answer queries on the inverse distribution.
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Figure 13: Evaluating number of hash functions required for the probabilistic collision detection.

Theorem 3. Given a sample from the inverse distribution of sizeO( 1
ε2

log 1
δ
), we can an-

swer Inverse Point Queries with additive error less thanε with probability at least1− δ.

Proof. Let S be the sample drawn from by Dynamic Inverse Sampling, which is a multiset

of pairs. We approximatef−1(i) with |{(i,x)∈S}|
|S| . To analyze this estimator, we set up an

indicator variable for each sample inS. LetYj = 1 if the jth sample inS is a pair(i, x), and

Yj = 0 if the jth sample is a pair(i′, x′) for i′ 6= i. Since each sample is drawn uniformly,

Pr[Yj = 1] = {x|f(x) = i}/D = f−1(i). So the estimate is correct in expectation. By

applying the Hoeffding inequality to
∑

j Yj/|S|, we getPr[|
∑

j Yj/|S| − f−1(i)| ≤ ε] ≥

1− δ, as required. �

Corollary 1. Given a sample from the inverse distribution of sizeO( 1
ε2

log 1
δ
), we can an-

swer Inverse Range Queries and queries to the cumulative inverse distribution with additive

error less thanε with probability at least1− δ.

Proof. For an inverse range query[j, k], our estimator is|{(i,x)∈S,j≤i≤k}|
|S| . A similar proof to

the above shows that this estimator is correct in expectation, and withinε with probability

at least1− δ. Queries to the cumulative inverse distribution can be reduced to open-ended

inverse range queries[i,∞], and so the same bounds apply. �

Corollary 2. Given a sample from the inverse distribution of sizeO( 1
ε2

log 1
δ
), Inverse heavy

hitters can be answered with additive errorε with probability at least1− δ.
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Figure 14: Returned Sample Size: (a) Number of samples returned by the different inverse sampling methods
as a function of desired sample size. (b) Number of samples returned by the different inverse sampling
methods as a function of deletion frequency.

Proof. In order to answer inverse heavy hitter queries, we compute our estimate off−1(i)

for eachi that is in the sample, and output those for which|{(i,x)∈S}|
|S| ≥ φ. By the above

theorem, for eachi that is output, there isε error in the estimate with probability1− δ, and

so we guarantee (with this probability) that everyi that is output satisfiesf−1(i) > φ − ε.

Similarly, since everyi that does not appear in the sample is approximated byf−1(i) = 0,

we conclude that with the same probability, every item withf−1(i) > φ + ε is output. �

Corollary 3. Given a sample from the inverse distribution of sizeO( 1
ε2

log 1
δ
), Inverse quan-

tiles queries can be answered with additive errorε with probability at least1− δ.

Proof. For Inverse Quantile Queries, we compute the estimate ofF−1(i) for all i in the

sample. Observe that this estimate gives a decreasing function asi increases. We output

the (unique)i such that the estimate ofF−1(i− 1) > φ andF−1(i) ≤ φ. By the guarantees

on cumulative inverse distribution queries, we have (with probability1 − δ) the i that is

output hasφ− ε ≤ F−1(i) ≤ φ + ε. �

4.6 Experimental Study

We implemented our Dynamic Inverse Sampling algorithm, and evaluated it on large sets

of network data drawn from HTTP log files from the 1998 World Cup Web Site (stored

in the Internet Traffic Archive [8]), as well as on a large synthetic data set of randomly

generated distinct values. Each log file consists of several million log records. We used
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Figure 15: Sample quality (range query): (a) Accuracy of sampling methods on inverse range query (linear
scale). (b) Accuracy of sampling methods on inverse range query (logarithmic scale).

the size attribute (number of bytes in the response) of the records and the client ID attribute

as our target attributes in the data set. The size attribute takes on a wide range of values

(from zero bytes to several megabytes), while the range of values for the client ID attribute

is more limited with each value of the range occurring more frequently in the data set. Our

synthetic data set contains 5 million randomly generated distinct items. To give a data set

with a large number of deletions, we built a dynamic transaction set by inserting all the

records and then deleting a fraction of these. Since one cannot predict which records will

survive the deletions, it gives a challenging test for our methods.

For comparison, we implemented the Distinct Sampling method [70, 69] augmented

to handle deletions since this can be used to draw a sample from the inverse distribution

under insertions only streams (see the discussion in Section 4.7). The algorithms were

implemented in C and were run on a 2.4GHz processor desktop computer.

Collision Detection Experiments. We compared the different collision detection mech-

anisms for the Dynamic Inverse Sampling (DIS). We ran the algorithm over a data set

consisting of insertions only, and counted the number of times that the approximate meth-

ods reported no collision (at any level in the data structure), when the deterministic method

(correctly) indicated that there was a collision.

We tested the probabilistic collision detection mechanism by gradually increasing the

number of hash functions from 1 to 40. The results are shown in Figure 13; it can be

observed that the total number of errors over all levels in all data structures drops to 0 when
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Collision Hash Space Time
Detection Functions Factor Cost
None — — 96s
Deterministic — 32 132s
Heuristic q = 1 1 119s
Heuristic q = 2 2 140s
Heuristic q = 3 3 162s
Probabilistic t = 5 5 165s
Probabilistic t = 10 10 225s

Table 1: Timing results and space/time tradeoff for different collision detection methods. ‘Space factor’
denotes relative space cost of each method.

we use 9 or more hash functions. The heuristic collision detection mechanism was run

with the number of hash functions ranging from 1 to 5. With one hash function, there were

3 collision detection errors on a dataset of 1.3 million records. There were no collision

detection errors with two or more hash functions.

We compared the time cost of all three methods to process a total of 260 million updates

to the data structures. Timing results are showing in Table 1. They show that our method

is capable of processing several million updates per second (for comparison, our imple-

mentation of Distinct sampling was faster still, processing 9 million items/second). We

see that the Deterministic method is quite fast, since it requires no additional hash function

computation. But it still requires space forlog m counters. With two hash functions, an

undetected collision under the heuristic method is very unlikely, and this requires only two

additional counters per level, plus two hash functions per copy of the DIS structure. This
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gives a good trade-off of time against space used. For the remainder of our experiments, we

worked with the deterministic method only, knowing that for suitable settings ofq andt we

would get identical results using the heuristic or probabilistic collision detection methods.

Returned Sample Size.We compared the size of sample returned by the different methods

over the datasets we used in our experiments. We ran our experiments on the client ID

attribute of the HTTP log data. Each network dataset generated a sequence of insertion and

deletion transactions, with over 3 million operations in total for each dataset. We measured

the actual sample size returned by the algorithms after processing all the insertions and

deletions, when50% of the inserted records were deleted. The results for other network

datasets were similar; we show a representative plot in Figure 14 (a). For the desired sample

size of 100, the distinct sampling (“Distinct”) technique returned a sample of about45%

of the desired size. When the desired sample size was increased to 1000, the size of the

sample was only30% of the desired size. These results support our claim that this approach

has difficulty with handling a large number of delete operations.

The Dynamic Inverse Sampling algorithm (DIS) returned a sample of almost 100% of

the desired size for all sample sizes (for instance, fork = 1000 it returned 998 samples

when there were 1% deletions, 981 samples at 10%, 970 for 20% and 955 for 50%) which

indicates that in practice the probability of obtaining at least one sampled record from

each dynamic inverse sampling structure is close to 1. Using the greedy output routine

(GDIS) which extracts all possible sample records from every dynamic structure, returned

approximately five items from each data structure. Both variations of the Dynamic Inverse

Sampling method are not affected by the order and amount of insert and delete operations.

Next we investigate the dependency between the size of the sample returned by the

methods and the fraction of deletions in the data set. We ran our experiment on the syn-

thetic data set of distinct items, when the desired sample size is 1000. The results are

shown in Figure 16. For a data set with a large number of deletions, the distinct sampling

technique performs poorly. When80% of the inserted records were deleted from the sam-

pling structure, the sample size was about12% of the desired sample size. As the number

of deletions approaches the number of insertions the sample size returned by the distinct
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sampling algorithm decreases linearly. When the number of deleted records was increased

to 99% of the number of insertions, the resulting size of the sample was less than1% of

the desired sample size. The Dynamic Inverse Sampling algorithm was stable under any

number of deletions and returned a sample (with replacement) of size almost100% of the

desired size.

Sample Quality. Lastly, we measured how well the obtained sample represented the sam-

pled dataset. To calculate this estimate, we posed a series of inverse range queriesF−1(i)

on the samples (to compute the fraction of records with size greater thani), and compared

it to the exact value of this query computed offline. Figure 15 shows experiments on two

different network datasets fori = 1000, the first on a linear scale and the second on a

log scale. In Figure 15 (a), we see that both the regular and the greedy output procedure

give very low error for small sample sizes — in particular, the greedy procedure achieves

close to zero error for as sample size as small as 15. This shows that this output function

seems to do very well in practice. In contrast, for very small sample sizes, Distinct sam-

pling is unable to return any sample at all. In Figure 15 (b), we see that GDIS consistently

outperforms Distinct sampling, by up to an order of magnitude, making it the method of

choice.

Another set of experiments was performed on the network data set with over 4 million

records by posing a series of inverse quantile queries on the samples using the client ID

attribute of the records. In particular, we estimated the median (to findi thatF−1(i− 1) >

0.5, F−1(i) ≤ 0.5) of the inverse distribution using the resulting sample, and measured

how far the true position of the returned itemi was from 0.5. Figure 16 shows the results of

the experiment (“quality error” is computed as2|F−1(i)− 0.5|). We can see that for small

desired sample sizes (under 100), the distinct sampling algorithm does not have a large

enough sample to give any results. The algorithm’s error of median estimation becomes

sufficiently small only when the desired sample size is about 350 or higher. In contrast, both

versions of the dynamic sampling algorithm are much more accurate in their estimation of

the median value even for small sample sizes.
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4.7 Related Work

The research community has developed a rich literature on applications of random sampling

algorithms in databases and data streams. One of the most common and well studied ap-

plications of sampling in large data warehouse environments is to provide fast approximate

answers to complex aggregation queries based on statistical summaries which are created

and maintained using various sampling techniques [110, 68, 71]. Random sampling is a

standard technique for constructing approximate summary statistics, such as histograms,

for query optimization and query planning purposes [71, 39]. Random sampling is widely

used for distinct-values estimators [70, 69, 37] which play an important part in network

monitoring and online aggregation systems.

In today’s database systems random sampling is routinely used for a variety of purposes.

Microsoft SQL Server 2000 uses sampling to build and maintain histograms which provide

various statistics for the query optimizer to choose the most efficient plan for retrieving and

processing data. Statistics are maintained by re-sampling column values whenever substan-

tial update activity has occurred6. The Oracle database system uses “dynamic sampling” to

improve server performance by determining more accurate selectivity and cardinality esti-

mates, which allow the optimizer to produce better performance plans. Oracle determines

at compile time whether a query would benefit from dynamic sampling. If so, a recursive

SQL statement is issued to scan a small random sample of the table’s blocks to estimate

predicate selectivities.7 Thus, while commercial DBMSs need dynamic sampling, they

resort to rescanning or re-sampling from stored databases, and therefore, do not work in

one pass.

A number of studies address the problem of query optimization by exploiting workload

information [66, 38, 110]. The goal is to sample from theoutputof relational operators and

queries such as union, difference, and join, etc. These approaches typically use additional

statistics such as indexes to weight the sampling toward records which contribute more to

the result of the query. A number of general techniques are known for sampling uniformly

from relations, we now summarize the most relevant to our study.
6http://msdn.microsoft.com/library/en-us/dnsql2k/html/statquery.asp
7http://www.dba-oracle.com/art dbazine oracle10g dynamic sampling hint.htm
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Algorithm Type Method Deletions Random
Reservoir Sampling [127] Fwd WoR No Full
Backing Sample [71] Fwd WoR Few Full
Weighted Sampling [40] Fwd WR No Full
Concise Sampling [68] Fwd CF No Full
Count Sampling [68] Fwd CF Few Full
Minwise-hashing [54] Inv WR No 1

ε -wise
Distinct Sampling [70, 69] Inv CF Few Pairwise
Dynamic Inverse Inv CF, Yes Pairwise

Sampling (here) WR

Figure 17: Key features of existing sampling methods.

The well known and widely used technique, reservoir sampling, was introduced by Vit-

ter in [127]. The algorithm solves the problem of selecting a random sample of sizen

from a pool ofN records, where the value ofN is unknown. The reservoir is initially

filled with the firstn records. Each subsequent record is included in the reservoir (and a

currently stored record randomly evicted) with appropriately chosen probability to ensure

that, overall, the probability of any record surviving in the reservoir is uniform.

The backing sample [71] approach is an extension of the reservoir sampling method,

used for incremental maintenance of approximate histograms. This approach attempts to

maintain a random sample of a relation undergoing updates. Delete operations are handled

by removing the record from the sample, if it is in the sample. The result is a uniform

random sample, but in the presence of a large number of deletions, the sample size can

become arbitrarily small. In [71], if the sample size drops below a certain threshold, the

relation must be rescanned and the sample is repopulated.

One of the important applications of sampling in database systems is optimization of

queries that involve join operations on relations. In [39] the authors describe a number

of techniques that use a weighted sampling method to improve efficiency of the query by

avoiding the need to compute the full join. In weighted sampling each element is sampled

with probability proportional to its weight; for joins, these weights correspond to the fre-

quency of the item in the other relation. Hence although the approach takes one pass over

relations, it requires certain statistics to be available. The application is not concerned with

deletions and so these are not discussed.

The study presented in [68] describes two new sampling summary statistics, concise
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samples and counting samples, which provide highly accurate approximate answers to the

“most frequently occurring values” queries in warehousing environment and can be incre-

mentally maintained regardless of data distribution. A concise sample is a uniform random

sample of the data set such that values appearing more than once in the sample are repre-

sented as< value, count > pair. A newly selected record is added to the sample S with

probability p (initially, p = 1). When the sample exceeds the space allocated for it,p is

decreased and the sampled points are sub-sampled to give the probability of a record re-

maining in the sample to be equal to the newp. Counting samples are a variation of concise

samples in which the counts are used to keep track ofall occurrencesof a value inserted

into the relation since the value was selected for the sample. When the threshold is reached,

a biased coin is flipped for each value in the counting sample, decrementing the count on

each flip of tails until either the count reaches zero, or heads is flipped. The advantage of

counting samples over concise samples is that they can handle deletions, by decrementing

the count of the record if it is in the sample. However, in the presence of many deletions

to the data, the counting sample can significantly shrink in size, compromising accuracy of

the results.

Estimating the number of distinct values for some target attribute is yet another well-

studied problem [39, 37, 85, 80] where a uniform random sample of the data is used to

provide a fast approximate answer to distinct values queries. In [70, 69] the authors present

a distinct sampling approach that collects a specially tailored sample over the distinct values

that can be incrementally maintained. The algorithm uses a hash function to deterministi-

cally toss a coin for each record, so that identical records obtain the same outcome. Hence

the probability that records are kept is uniform over the number of distinct records. The

hash function maps records onto1 . . . log N whereN is a bound on the number of distinct

values, which is called the “die-level” of the record. The probability of mapping to die-

level l is approximately2−l. All records mapping to levelL or higher are retained in the

distinct sample; if the size of the sample grows larger than the available space thenL is in-

cremented, and the sample is pruned of all records mapping to less than the currentL. The

result is that each distinct record is retained in the final sample with uniform probability.
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Our focus is on providing a uniform sample of the inverse distribution which can be used

to approximate queries on the inverse distribution. Despite the many works on sampling

in databases, there is very little work that directly applies to inverse distributions. Follow-

ing [40] sampling methods broadly fall into three categories: sampling With Replacement

(WR), Without Replacement (WoR), and coin flipping (CF)8. All the sampling methods we

consider can be classified with one or more of these labels. In addition, two other factors

are relevant to our focus:

Processing of Deletions.Existing methods either do not handle deletions (that is, it is

unclear how to process a deletion and still retain a uniform sample), or can handle only a

limited number of deletions: the result is still a uniform sample, but in the presences of

many deletions, the size of the sample shrinks to zero.

Amount of Randomness Required.Early works assume “truly random” numbers, but more

recent work considers what strength of randomness is needed.k-wise random hash func-

tions guarantee that anyk items collide under the hash function with independent proba-

bility [105], and such functions are efficient to compute and store for smallk (eg pairwise

hash functions withk = 2 [34]).

We summarize the relevant sampling techniques that can draw a sample from a stream

of updates in Figure 17. We classify them on which distribution they sample from —

the forward distribution (fwd) or the inverse distribution (inv); deletion handling; and the

randomness required. Although many algorithms maintain a uniform random sample of

data items of the forward distribution in the presence of insertions, none handle a significant

number of deletions to the data set while guaranteeing a sample of a certain size.

There is a limited prior work that relates to inverse distributions. Some existing tech-

niques can be used to create a sample from the inverse distribution on insert-only streams.

The Distinct Sampling technique of Gibbonset al. [70, 69] draws a sample based on a

coin-tossing procedure using a pairwise-independent hash function on item values. This

effectively draws a uniform sample from the inverse distribution, which we can use to an-

swer queries on the inverse distribution, as discussed in Section 4.5. As with all other

existing sampling methods, deletions can deplete the sample, and it is not possible to re-
8Where the sample size is not fixed but rather each item is chosen to be in the sample with some probabilityp.
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cover a sufficiently large sample—in our streaming scenario, backtracking on the past data

for a rescan is simply not possible.

An alternative approach is to make use of Min-wise hash functions, which sample uni-

formly from the set of items seen. These were applied in [54] in order to estimate rarity,

the number of items which occur exactly once. This is preciselyf−1(1), and more gen-

erally the sample obtained by the procedure obtained there can be used to build a sample

of the inverse distribution. Again, deletions were not considered; one can apply a “best

effort” approach by decrementing the counts of deleted items in the sample until these fall

to zero—but it is not possible to give worst case bounds on the size of the sample stored.

Work on estimating the cardinality of set expressions over data streams [65] uses a similar

data structure to the one we propose here, and with some amount of modifications can be

used to draw a sample from the inverse distribution. However, this is not the goal of that

work, and the given analysis requires hash functions that are at leastlog 1/ε-wise inde-

pendent. Here, we show that for the purpose of sampling from the inverse distribution, a

simpler structure is sufficient, with only pairwise independence. Similar results have been

recently obtained by Indyk, and Frahling and Sohler [64]

4.8 Conclusions

Many of the existing methods for summarizing and mining data streams focus on the for-

ward distribution. In contrast, we formulate summarization and mining problems on the

inverse distribution. We introduced the notion of the inverse distribution for massive data

streams, and gave algorithms that draw uniform samples from the inverse distribution when

the data stream consists of insertions only, as well as insertions and deletions. With a sam-

ple of sizeO( 1
ε2

), we can answer a variety of summarization and mining tasks on the inverse

distribution up to an additive approximation ofε. These are the first such results known for

managing inverse distributions on data streams. In our experiments we saw that the meth-

ods we propose can process massive data streams of updates at very high rates, and answer

queries on the inverse distribution with high accuracy.
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Chapter 5

5 Filter-Join Operator

A common type of filtering query in data streams that identifies “interesting” tuples and

filters out the rest requires ajoin for its evaluation. For example, a network analyst might

want to collect all records in a network flow that start with a suspicious signature, and a

financial analyst might want to track trading records of a financial instrument following a

suspicious trade. However, evaluation of join on high speed data streams might bee very

expensive.

In this chapter, we propose thefilter join operator, which makes it feasible to evaluate

a common type of join query on high speed data streams in an efficient, stable and accu-

rate manner. The filter join has an inexpensive evaluation algorithm and can be pushed to

the data sources in the case of self-joins. We provide a relational characterization of the

filter join, and a collection of query transformations which can expose the filter join com-

ponent(s) of a conventional join. We implement approximate filter join algorithms in the

Gigascope Data Stream Management System (DSMS), and find order-of-magnitude per-

formance improvements when compared to equivalent queries implemented using a con-

ventional join.

5.1 Introduction

The applications of filtering queries that identify “interesting” records for reporting or more

intensive analysis can be found in various domains:
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• In the network traffic analysis domain, the “interesting” packets might be ones be-

longing to the same TCP flow and matching a signature of a malicious application.

The collected packets could later be used for collecting statistics, closer examination

of the packet payloads and other types of real-time analysis.

• A financial analyst monitoring securities trading could define as “interesting” an event

of detecting a suspicious trading pattern, such as sudden increase in trading volume

of a particular security. The analyst could then be interested in collecting the data

on all subsequent activities related to the security for intensive analysis, for arbitrage

possibilities.

• In a data stream from security video cameras, an event of interest could be a sudden

or anomalous movement by an object in view, which would trigger capture of all

succeeding frames that contain that object for subsequent human analysis.

The most natural approach to evaluating queries of this class is to perform a self-join

on the data stream. In the general case of a join query, we have two data streams,S and

R, and a set of attributes which define the join key. In a self-join we duplicate our original

data stream into two streams on which a join is performed. For example, when collecting

packets belonging to a suspicious TCP flow, the streamS is used to identify the beginning

of a flow, and the streamR is used to identify the rest of the packets, which may include

either all packets from the flow or only those matching a particular pattern of interest.

However, even if we manage to formulate our inquiry as a join query, executing it on

high speed data streams can be very expensive, since it requires that two possibly high

volume streams be brought together in an operator and time-synchronized, potentially re-

quiring a large amount of buffering. A self-join query may be less resource intensive, since

only one stream needs to be brought to the operator and no synchronization is needed.

However, even a self-join in its full generality still remains a resource intensive operation

on high speed data stream, as it involves keeping track of a large number of records that

expire over time. As a result, it is often the case that neither join nor self-join queries can be

evaluated under adversarial conditions in an efficient and stable manner without sacrificing

accuracy of the query results.
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Rather than employing such measures as load-shedding as is commonly the case nowa-

days when dealing which high-speed streams, we inspected our target applications more

closely and observed that they do not require a full-blown self-join operator. In fact, these

problems can be described as self-join problems that adhere to the following pattern of

evaluation:

1. Mark a record of a stream as a beginning of a sequence of records of interest

2. Evaluate certain conditions on every subsequent record of interest, and

3. Output only those records of a marked sequence that satisfy the condition.

It is clear that, in addition to solving the queries we described earlier, this pattern of

evaluation applies to a large class of similar problems in various domains. While being a

specific case of a join operator on two data streams, this particular pattern of evaluation

can also be regarded as a filtering procedure which, in contrast with a join or a self-join,

can have an inexpensive implementation since its semantics are those of a set membership.

We therefore abstract this idea and introduce a join operator which we refer to asfilter join

(FJ). We can then use a filter join to answer the class of queries we described above on high

speed data streams in an efficient, stable and accurate manner.

Our contributions are as follows:

• We introduce a new filter-join operator and discuss its applications in data stream

processing. In many cases, the filter join can be considered an inexpensive predicate

and pushed to the leaf of the query plan.

• We provide a relational definition of the filter join operator and its semantics. We

also show various query transformations that expose filter joins in conventional join

queries.

• We design and implement approximate filter-join algorithms in Gigascope DSMS us-

ing two different data structures.

• We test and measure the performance of our filter-join algorithms on live network

traffic and show that the operator is robust and produces accurate query results.
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The rest of the chapter is organized as follows. In Section 5.2 we discuss the large body

of work on joins, in particular, on data streams and how they differ from our filter-joins. In

Section 5.3, we define our filter-join operator using a relational expression. In Section 5.4

we discuss query transformations that expose filter-joins in queries with conventional joins.

In Section 5.5 we introduce a cost model for filter join evaluation. In Section 5.6 we discuss

algorithms for implementing filter-joins with approximate set membership data structures.

In Section 5.7, we present detailed experimental study of our filter-join implementations

with live network traffic. We use for our analysis Gigascope DSMS (described in sec-

tion 3.3); its architecture and target application of network traffic analysis nicely fit our

study of filter-joins for early data reduction in processing data streams.

5.2 Related Work

Data streams in general, and joins in general, are well-researched areas. In this section we

will focus only on work that is related to evaluating joins on data streams.

While joins are very important for data stream analysis, their computation is resource-

intensive and conceptually requires maintaining an unbounded state for each item in the

infinite data stream. To make the computation of the join feasible on data streams, its

semantics are usually changed to restrict the number of tuples participating in a join to

a bounded-size window that slides over the input stream. The window boundaries can

be defined in terms of time units, number of tuples or punctuation marks [22, 124]. Al-

though restricting the amount of data participating in a join operation reduces the resource

requirements, the join computation might still exceed resource availability. One of the

characteristics of a data stream is itsburstiness, i.e. the amount of data that arrives to the

data analysis center at any point of time can vary greatly. When the window is large and

the CPU can keep up with the processing, the main memory might be too small to maintain

all the relevant tuples in-memory, thus significantly slowing down the system. Even when

the window is reasonably small, the CPU might not be fast enough to process all incoming

tuples, which might cause either a system failure or might reduce the accuracy of the results

by dropping some of the tuples. In order to balance between these tradeoffs, DSMS’s em-
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ploy various load shedding techniques [121, 23, 113] , multilevel architectures [50, 51, 52],

as well as data processing algorithms and data structures [130, 129, 125, 79, 75, 126, 29]

that make it possible for a system to operate within these constraints.

Join algorithms have been studied extensively in the context of data streams. The sym-

metric hash join (SHJ) [130, 129] was originally designed to allow a high degree of pipelin-

ing in parallel database systems. However, SHJ requires in-memory hash tables for both

of its inputs during the query evaluation. Thus, the ability of SHJ to sustain large inputs

is severely limited. To rectify this situation, XJoin [125] was introduced, which provided

an efficient way to spill overflowing inputs to disk and later join them to produce the final

query output. In [87] authors present a way of adapting SHJ into hybrid hash join, when-

ever inputs are too large to fit in memory. The approaches in [125, 87] access disk in cases

of large inputs, which is prohibitively expensive when handling high speed data streams

and is not feasible if instant query results are required.

A symmetric nested loops join (SNLJ) [79] was proposed for online aggregation. Eval-

uation of this join requires for each tuple of a stream to scan the entire hash table of another

stream in order to produce join tuples. This operation makes per-tuple processing very slow

and inefficient when operating on high speed data streams. SHJ was extended to the binary

sliding window join (BSWJ) [92], and that work also introduced a cost model for each op-

erator as a function of individual stream arrival rates. This work showed that asymmetric

join processing has advantages if the arrival rates of the two joining streams differ. How-

ever, it uses combination of hash join and nested loop join to construct BWSJ, thus making

this approach subject to the same inefficiencies as mentioned above. Other works on joins

for data streams include multi-join processing on a number of data sources [75, 126].

SemiJoin [27] and BloomJoin [31] were developed for distributed query processing in

an attempt to minimize the amount of data transmitted over the network. For relationsR

andS that are stored at different sites and are being joined on a set of attributeskey (i.e.

R ./key S), SemiJoin works as follows: (1) ComputePR = πkey(R) at the site that stores

R. (2) SendPR to the site ofS and computePS = PR ./key S. (3) TransferPS to the

site ofR and compute the final joinR ./key PS. BloomJoin transmits Bloom filters [29]
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rather than join attribute values. A Bloom filter is generally smaller than the projected join

attributes and therefore often results in lower network overhead and join cost at the joining

site. Due to hash collisions in the filter, BloomJoin can be viewed as a lossy variation of the

SemiJoin. The filter join presented in this work could be viewed as a special case of these

two techniques: just as in filter join, both SemiJoin and BloomJoin aim at making the initial

data reduction before executing the join operation. However, the work on SemiJoin and

BloomJoin does not address or analyze the query semantics and the query transformations

for efficient execution of the join on high speed data streams.

The join operator has been implemented in various Data Stream Management Systems.

Aurora [13] has a windowed binary join operator that can join streams as well as stored

relations. To deal with the unpredictable nature of data streams, Aurora employs random

and semantic load shedding techniques, dropping tuples at various locations of the sys-

tem during query processing in cases of system overloads. The binary join operator in

STREAM [19] maintains synopsis for each of the joining streams. To process continuous

queries over data streams in an adaptive manner, STREAM also employs load shedding

techniques [23]. During the query execution the data stream is uniformly sampled at vari-

ous points of the query plan, while the sampling rate is dynamically adjusted with respect

to the operator selectivity and arriving rate of the data. TelegraphCQ [36] is another DSMS

that implements a traditional symmetric join operator using state modules and adaptive

routing modules by maintaining hash indexes on both relations. When the speed of the

data streams exceeds the capacity of the state modules, the system uses triage queues to

collect the dropped tuples and eventually uses synopses to capture their approximate prop-

erties [113]. All of the aforementioned load shedding techniques, although effectively

reducing the amount of data to be processed, have negative implications on accuracy of

query results.

Unlike the perviously discussed DSMSs, in order to process data streams in a controlled

manner Gigascope [50, 51, 52] uses a multilevel architecture (details in section 3.3) instead

of load shedding techniques. The low level works as a filter for the incoming high-speed

data streams performing significant early data reduction, and the filtered data is sent to the
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higher levels where more sophisticated data analysis is performed. Similarly to the previ-

ously mentioned DSMSs, Gigascope has a high level SHJ operator that requires significant

data reduction at the low level of the system architecture to keep up with the rate of the

incoming stream. This work presents a new filter join operator that works directly on high-

speed streams requiring little, if any, input data reduction but achieving high data reduction

in its output.

5.3 Filter Join

A large class of network data stream analysis queries require following a certain pattern

of evaluation, where first the beginning of a flow is marked, and then every subsequent

packet of the flow is evaluated on a desired condition and only those packets that satisfy

the condition are passed through for further analysis. In particular, we will now consider

two motivating IP network data analysis problems and demonstrate how they are solved

using the described pattern of evaluation:

Problem 1: Find flows in which the payload of HTTP response packets contains links

to audio or video files. Output only packets of those flows that satisfy the condition.

In order to solve this problem, we need to find and mark the first packet of an HTTP

response message. Then we need to examine all the subsequent packets of the response for

the presence of links to audio or video files.

Problem 2: Find flows of Gnutella P2P file sharing application in which the payload of

a response packets contains a signature of a particular virus. Output only packets of those

flows that satisfy the condition.

In this problem we first need to find and mark the first packet that belongs to a response of

the Gnutella, and then examine all the subsequent packets of the flow for presence of the

specified virus signature in the payload of a packet.
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The solutions to both of the above problems require performing a self-join on the incom-

ing data stream. However, when we deal with high-speed network data streams, performing

such self-join query is prohibitively resource intensive, so we need an alternative approach.

What we propose is looking at the problem from a slightly different angle. We are asked

to find and output packets that satisfy a certain condition; in other words, this is a data

reduction, or data filtering, problem: we are asked to filter out the rest of the packets of a

flow. We refer to this particular unidirectional case of a traditional hash join operation as a

filter join, and we formally define its general case as follows:

Definition 3. Let R and S be two data streams,A be a set of attributes associated with

every tupletR ∈ R and tS ∈ S, Akey ⊆ A be a set of join attributes, andat ∈ A a

monotonic increasing attribute. Letc be a positive integer. Afilter join of the two streams is

a subset ofR defined by{tR ∈ R|∃tS∈S tR.Akey = tS.Akey and tR.at ≥ tS.at and tR.at ≤

tS.at + c and tR follows tS}.

The motivation for this definition is two-fold. First, this definition of the filter join

matches the needs of our example queries described earlier, as well as of other queries of

the similar nature in various analysis domains. In both our sample queries we want to find

tuples in a stream that have been marked as “interesting” — HTTP response message in

the first example and Gnutella response message in the second. Second, it has an efficient

implementation. We only need to store tuples ofS to perform the join; tuples ofR are

streamed out if there is a matching tuple ofS. In most cases,S will be much smaller than

R, minimizing the memory footprint size. If the join is a self-join, then no tuple buffering

is required to synchronizeR andS.

With this definition of filter join we can now define a new operator FILTER JOIN that

follows the self-filtering pattern of evaluation we described above. This new operator helps

us formulate a query for the audio/video links search problem stated above as follows:

Query 1:

SELECTR.time, R.srcIP, R.destIP, R.srcPort, R.destPort,

R.sequence number, R.ack number, str regex match(’.(aac|ac3|aif|
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aiff|asf|avi|divx|dv|m1v|m2p|m2v|mov|moov|mpa|mpg|mpeg|mp1|mp2|

mp3|mp4|mpv|ogg|ogm|omf|qt|rm|ram|swf|vob|wav|wma|wmv)’,

R.TCP data) as header

FILTER JOINTCP as R, TCP as S

WHERER.srcIP = S.srcIP AND R.destIP = S.destIP AND

R.srcPort = S.srcPort AND

R.destPort = S.destPort AND

R.protocol = 6 AND

S.protocol = 6 AND

R.data length <> 0 AND

S.data length <> 0 AND

str starts with(’HTTP’, S.TCP data) AND

str regex match(’.(aac|ac3|aif|aiff|asf|avi|divx|dv|m1v|m2p|m2v|

mov|moov|mpa|mpg|mpeg|mp1|mp2|mp3|mp4|mpv|ogg|ogm|omf|qt|rm|ram|

swf|vob|wav|wma|wmv)’, R.TCP data) AND

R.time ≤ S.time + 10

The first four conditions of the WHERE clause of the query above specify the join key

attributes, while the next four predicates define the two joining streamsR andS. Query 1

finds all packets inS that start with a string “HTTP”. It also matches the regular expres-

sion specified as an argument to thestr regex match() function to every packet of

R, thus ensuring that the payload contains at least one reference to a file with a known

audio or video file extension. Note that the regular expression starts with an implicit “.*”,

which specifies that the desired file extension can be matched anywhere within the packet.

The last condition of the query specifies the liveliness of theS tuples: in this example,

the tuples expire after10 seconds of their arrival. Thestr regex match predicate is

expensive, we would prefer to evaluate it on the minimum possible size set of tuples. A

valuable optimization is to first perform the inexpensive filter join, and then perform the

expensivestr regex match predicate.
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Similarly, we can formulate a query for the second problem of finding a virus signature

in traffic of Gnutella application:

Query 2:

SELECTR.time, R.srcIP, R.destIP, R.srcPort,R.destPort,

R.sequence number,R.ack number,

str regex match(’virus signature’,R.TCP data) as header

FILTER JOINTCP as R, TCP as S

WHERER.srcIP = S.srcIP AND

R.destIP = S.destIP AND

R.srcPort = S.srcPort AND

R.destPort = S.destPort AND

R.protocol = 6 AND

S.protocol = 6 AND

R.data length <> 0 AND

S.data length <> 0 AND

str starts with(’GNUTELLA’, S.TCP data) AND

str regex match(’virus signature’,R.TCP data) AND

R.time ≤ S.time + 180

When a server in the Gnutella network establishes connection to another server in the

network, the response contains the message “GNUTELLA OK\n\n”. Thus the function

str match with tries to match the stringGNUTELLAat the beginning of a packet in

order to identify the first packet of a flow. The stringvirus signature that is passed

as an argument to the functionstr regex match should be substituted by the desired

signature of the virus being tracked. The above query tries to match “virussignature” to

all of the subsequent packets of the flow appearing within 3 minutes of the connection

establishment.

Query 3 below outlines the general form of a join query on two relations (streams)R
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andS; in the query,f() andg() are two predicates on a join key attributes of a record,

Pcmp stands for complex predicate,Pch andPe stand for cheap and expensive predicates

respectively, andPt signifies predicate on temporal attributes of a record. In this query,

time is a monotonic increasing attribute that defines the tuple’s timestamp,A is a set of all

tuple attributes(time, a1, a2, ...an) andAkey is a subset ofA that contains only attributes

(ai, ai+1, ...aj) that constitute the join key:

Query 3:

SELECTR.time, R.a 1, R.a 2, ..., R.a n,

S.time, S.a 1, S.a 2, ..., S.a n

JOINTCP1 as R, TCP 2 as S

WHERE

Join key predicates

f(R) = g(S) AND

Complex predicates on both relations

Pcmp(R,S) AND

Cheap single relational predicates

Pch (R) and P ch (S) AND

Expensive single relational predicates

Pe(R) and P e(S) AND

Predicates on temporal attributes

Pt (R.time, S.time)

The initial join key predicates in the WHERE clause of the query can be as simple as

defining equality of the two join attributes, e.g.R.ai = S.ai. They may also be expressed

as a function applied to any or all of the join attributes of a tuple. The complex predicates

on both relations might include predicates likeR.a1 > S.a1+1. Single relational predicates

are often cheap to evaluate; they might be similar toR.a1 = constant. In other cases they

might be more expensive to evaluate, for example invoking expensive functions such as
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Figure 18: (a) Symmetric hash join on two data streams from two different data sources in Gigascope. (b)
Filter join + symmetric hash join on two data streams from two different data sources (c) Filter join on a
single data stream

regular expression matching. The last condition of the query on temporal attributes might

look like R.time IN [S.time, S.time + c] or R.time ≤ S.time + c wherec is some con-

stant that defines the lifetime of a tuple; we provide more details on predicates on temporal

attributes in section 5.4.3.

Query 3 joins two data streams that have two different data sourcesTCP1 andTCP2 and

can be fully evaluated by symmetric join operator at HFTA level of Gigascope. Figure 18(a)

shows the query plan of that scenario. The number of tuples that would have to be copied

from LFTA to HFTA in order to evaluate the query can be very large, considering that each

of the data streams may produce tens or even hundreds of thousands of tuples per second.

This query plan is likely to be expensive due to both the join and the tuple copying costs.

If possible, a better execution plan would be the one shown in Figure 18(b), when both

streams go through filter join at LFTA and a significantly reduced amount of traffic is

channelled to HFTA for completion of the query evaluation. However, in practice it is often

possible to further optimize the query plan and make the query evaluation more efficient

based on certain additional information about the data source. For example, if we know

that bothS andR have the same data source, it is possible to complete the query evaluation

using only the filter join operator at LFTA level of Gigascope. Figure 18(c) shows the

possible query evaluation plan for this case. Pushing a filter join as close as possible to

the data source is a critical optimization since doing so minimizes data movement in the

DSMS.

The core of the filter join is a set membership test, where elements expire from the set
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over time. While there are many possible implementations, Figure 19 shows a general

schema for filter join query evaluation. When a tuple arrives, it is first evaluated on the

cheap single-relational predicate specified by the query. If it does not satisfy the conditions,

the tuple is discarded. When a tuple from theS stream passes the filtering predicate, it is

hashed into the data summary structure. If the arriving tuple belongs to theR relation,

the hashed value of its join attributes is compared with the tuple ofS that has an identical

hash key within the data structure, if such exists. If a matchingS tuple is found, the tuples

are evaluated on the expensive single-relational and complex predicates. When all of the

conditions are satisfied, the output tuple is produced.

Given a join such as Query 3, how can we determine if it can be evaluated using a filter

join? The conditions are:

1. No attributes ofS appear in the select clause, except forS.time.

2. Pcmp(R,S) is empty (i.e. has the value TRUE).

3. The predicate of the temporal attribute is of the formR.time IN [S.time, S.time+ c],

and either

(a) R.time andS.time are strictly increasing, or

(b) There is a predicate equivalent to “R follows S”.
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To complete the definition of the filter join operator, we define the following set of as-

sumptions used in filter join query evaluation:

Tuple Ordering : We assume that the arriving tuples have synchronized timestamps. When

evaluating filter join of the two streamsR andS, we consider a tuple fromR to be a valid

candidate for filter join only if its timestamp is greater than the timestamp of the tuple from

S. Thus tuples fromS stream can be in advance of tuples from theR stream, however

tuples fromR streams are never in advance of the tuples fromS stream. More formally,

S.time ≤ R.time, if and only if R arrived afterS. In the case of a self-join, this syn-

chronization is automatic, otherwise we assume that there is a module which performs any

necessary buffering before tuples are processed by the filter join.

Distinct tuples: In the presence of many tuples fromS with identical join key attributes and

valid timestamps, one possible approach would be to store all such tuples ofS in the data

summary structure and iterate through this list for every arrivingR tuple with the match-

ing hash value. However, this approach could require a considerable amount of memory

to maintain tuples fromS and would potentially be too slow and unable to keep up with

high-speed data streams. Therefore we only store tuples ofS with distinct key values in

the data summary structure. In other words, queries that perform filter join have an implicit

DISTINCT in their SELECT clause and only distinct join tuples are produced in the output.

5.4 Query Transformations

With the definition of filter join given in the previous section, we now explore under which

conditions a query can be executed with a filter join operator and define a number of query

transformations that can take advantage of filter join at the lower level of a query plan while

performing the rest of the data analysis at the higher level.

5.4.1 Referencing Tuple Attributes

In order to achieve better performance, the amount of memory used by the filter join op-

erator must be reasonably small. Therefore, our data summary maintains only a restricted
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set ofS tuple attributes, which includes all of the attributes that constitute the join key,

a ∈ Akey, and the timestamp of a tupleS.time.

The fact that we maintain only a restricted set of attributes for tuples fromS makes the

query processing more involved when the query references attributes other than the join

key attributes or the time attribute ofS tuples in its SELECT clause. Such cases require a

query decomposition, when part of the query is processed at the filter join and is completed

with another conventional join.

Query 4:

SELECTS.a j+1

JOINR, S

WHEREf(R) = g(S) AND

Pch (R) and P ch (S) AND

Pe(R) AND

Pt (R.time, S.time)

This query cannot be processed efficiently at LFTA level, since the SELECT clause con-

tains a reference to an attribute which is not a part of the restricted set of attributes ofS

maintained by data summary structure. In order to process this query efficiently, we need

to decompose it. One possibility for the decomposition is as follows:

Query 5.1, HFTA:

SELECTS.a j+1

JOINR source as R, S source as S

WHEREf(R) = g(S) AND

Pt (R.time, S.time)
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Query 5.2, LFTA: Query 5.3, LFTA:

DEFINEquery name Rsource DEFINEquery name S source

SELECTtime, a i , a i+1 ,..., a j SELECTtime, a i , a i+1 ,..., a j , a j+1

FROM R FROM S

WHEREPch (R) AND Pe(R) WHEREPch (S)

This query set performs the join of the two streams at the HFTA level, and the only process-

ing that is done at LFTA is simple SELECT filtering. The query plan of this query set is

shown in Figure 20(a). However, it is likely that this decomposition is not going to be

sufficiently efficient on high-speed streams; as we mentioned before, we’d like to push the

join operation as far down the system architecture as possible. A better way of splitting the

query is as follows:

Query 6.1, HFTA:

SELECTS.a j+1

JOINR source as R, S source as S

WHEREf(R) = g(S)

Query 6.2, LFTA: Query 6.3, LFTA:

DEFINEquery name Rsource DEFINEquery name S source

SELECTtime, a i , a i+1 ,..., a j SELECTtime, a i , a i+1 ,..., a j , a j+1

FILTER JOINR, S FROM S

WHEREf(R) = g(S) AND

Pch (R) and P ch (S) AND

Pe(R) AND

Pt (R.time, S.time)

This decomposition performs filter join at LFTA level and symmetric hash join at HFTA

which outputs the desired value of theS.aj+1 attribute. If Ssource is highly selective

(which is often the case in practice), evaluating Query 5.1 is a low-cost operation.

The decomposition examples described above deal with the case where the SELECT

clause of the query references an attributeS.aj+1 that is not a temporal attribute or a part

of the join key. In cases where such attribute is referenced by any of the single relational
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Figure 20: Query Plans

predicates, the query can be evaluated at LFTA level without any decomposition, since the

value ofS.aj+1 is known at the time ofS tuple processing and has no dependency on any

of the attributes ofR.

When a non-temporal, non-join key attribute is referenced in complex predicates on

both relations, query evaluation becomes more complex and may also require decompo-

sition. Let’s consider the following predicate:R.ai > S.aj. This predicate references

theaj attribute ofS, which belongs to the set of the join key attributes (S.aj ∈ S.Akey).

When evaluating a query with this predicate, the value ofS.aj can be retrieved from the

data summary structure, and the predicate can be evaluated at the LFTA level before the

output tuple is produced. On the other hand, if the predicate isR.aj+1 > S.aj+2 where

S.aj+2 /∈ S.Akey, the query needs to be decomposed as follows:

Query 7.1, HFTA:

SELECTS.a j+2

JOINR source as R, S source as S

WHEREf(R) = g(S) AND

Pcmp(R,S)
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Query 7.2, LFTA: Query 7.3, LFTA:

DEFINEquery name Rsource DEFINEquery name S source

SELECTtime, a i , a i+1 , ..., a j SELECTtime, a i , a i+1 , ..., a j , a j+2

FILTER JOINR, S FROM S

WHEREf(R) = g(S) AND

Pch (R) and P ch (S) AND

Pe(R) and P e(S) AND

Pt (R.time, S.time)

Query plans for the decomposed query sets 6 and 7 are shown in Figure 20(b).

To generalize the query transformation analysis above, a query has to satisfy the follow-

ing condition to be executed by filter join operator:

The only attributes ofS that can appear in the SELECT clause of the query or as a part

of its complex predicates on both relations, are either the attributesS.a ∈ S.Akey that

constitute the join key of the query, or the temporal attribute(s).

5.4.2 Expensive Single Relational Predicates

The cost of performing an expensive single-relational predicate can be substantial, as we

show in the experimental section of the chapter. When a query contains bothPe(R) and

Pe(S), in the general case of query execution using filter join operator, the two predicates

would be evaluated on every tuple produced by the join. This evaluation can significantly

increase the per-tuple time processing. Since we expect the output of a filter join to be

much smaller than the input, we push the evaluation of the expensive predicates after the

join. Our filter-join operator in Figure 19 has a module for evaluatingPe(R) (Gigascope

uses this kind of heavy operator to minimize data movement). To optimize the processing

of Pe(S), we can push the evaluation ofPe(S) up the query evaluation plan, thus making

the query evaluation faster. If, for example, the evaluation ofPe(S) requires knowing the

value of attributeS.aj+1 /∈ Akey, the query transformation becomes similar to query set7:

Query 8.1, HFTA:
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SELECT S.a j+2

JOINR source as R, S source as S

WHEREf(R) = g(S) AND

Pcmp(R,S) AND

Pe(S)

Query 8.2, LFTA: Query 8.3, LFTA:

DEFINEquery name Rsource DEFINEquery name S source

SELECTtime, a i , a i+2 , ..., a j SELECTtime, a i , a i+2 , ..., a j , a j+2

FILTER JOINR, S FROM S

WHEREf(R) = g(S) AND

Pch (R) and P ch (S) AND

Pe(R) AND

Pt (R.time, S.time)

To summarize the above, a query has to satisfy the following condition to be executed

by filter join operator:

A filer join query may not contain any expensive single relational predicatesPe(S) of S;

all such predicates are pushed up in the query evaluation plan.

5.4.3 Predicates on Temporal Attributes

The last condition of the WHERE clause defined by Query 3 in section 5.3 is a predicate

on a temporal attribute of the two streams. Such a predicate bounds the range of tuples that

can be potentially joined. For example, the predicateR.time in [S.time, S.time + c] joins

only those tuples ofR that arrive withinc seconds of the last seen tuple fromS. Queries

with such a predicate can be fully evaluated by the filter join operator by requiring the

filter join procedure to consider only those tuples ofS in the data summary structure for

which S.time ≤ R.time, whereR.time is the timestamp of the currently processed tuple

of streamR.

Another example of predicates on temporal attributes that can be fully evaluated in a

very similar manner by the filter join operator includeR.time in [S.time+c1, S.time+c2]
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wherec1 > 0 andc2 > 0 are constants such thatc1 < c2.

A temporal predicate can also be of the formR.time in [S.time− c, S.time + c]. This

case is different from the ones we’ve just discussed, since now we want to capture all tuples

of R such that they appear within±c seconds of the matching tuple fromS. To evaluate

a query with such predicate, we again need to split it between the two levels of Gigascope

architecture:

Query 9.1, HFTA:

MERGER.time:S.time

FROM after as R, before as S

Query 9.2, LFTA: Query 9.3, LFTA:

DEFINEquery name after DEFINEquery name before

SELECTR.time, R.a i , R.a i+1 , ..., R.a j SELECTR.time, R.a i , R.a i+1 , ..., R.a j

FILTER JOINR, S FILTER JOINS, R

WHEREf(R) = g(S) AND WHEREf(R) = g(S) AND

Pch (R) and P ch (S) AND Pch (R) and P ch (S) AND

Pe(R) AND Pe(R) AND

R.time in [S.time, S.time + c ] S.time in [R.time, R.time + c ]

The query plan for this set of queries is shown in Figure 20(c). The query “after ” (9.2)

takes care of the[S.time, S.time + c] part of the predicate time interval, while the query

“before ” (9.3) captures tuples ofR that fall into the[S.time − c, S.time] part of the

time interval by transforming the predicate into the formS.time in [R.time, R.time + c]

acceptable by the filter join operator. The two streams of tuples are later merged together

at HFTA level of query processing.

To formalize the above analysis, a query must satisfy the following condition in order

to be executable by the filter join operator:

The temporal predicate that defines the liveliness of tuples fromS can only refer to time

intervals starting with the most recently seenS.time. In other words, the time interval such

predicate describes must be of a form equivalent to[S.time, S.time + c] wherec > 0.
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In conclusion, the filer join query has the following general form:

Query 10:

SELECTR.time, R.a 1, R.a 2, ..., R.a n,

S.time, S.a i , S.a i+1 , ..., S.a j

FILTER JOINTCP as R, TCP as S

WHEREf(R) = g(S) AND

Pch (R) and P ch (S) AND

Pe(R) AND

Pt (R.time, S.time)

5.5 Cost Model

In order to determine when the query transformations presented in Section 5.4 are ben-

eficial, we develop a simple cost model using the two alternative plans in Figure 21 as

an example. Our cost model has two components, the datatransmissioncostT and the

processingcostP . We’ll assume that the input rate is 1, and that the selectivities ofS and

R areSS andSR respectively, whereSS ≤ 1 andSR ≤ 1.

Since both FJ and SHJ are hash joins, we can estimate their cost as the the sum of their

input and output rates. Further, since FJ is one-sided while SHJ is symmetric, the per-tuple
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cost of SHJ isK times the per-tuple cost of FJ, for some appropriate value ofK (probably

between 1 and 2). Therefore we can derive the following:

PSHJ = K(SS + 1 + SR) (1)

PSHJ FJ = (SS + 1 + SR) + K(SS + 2SR) (2)

TheσS andFJ operators can execute as low-level query nodes in Gigascope, while the

SHJ operator must execute as a high-level query node, necessitating a data transfer to the

SHJ. Therefore we can derive

TSHJ = SS + 1 (3)

TSHJ FJ = SS + SR (4)

Clearly,TSHJ is always larger thanTSHJ FJ , and is significantly larger ifSR is small.

Data transfer costs are often the bottleneck in Gigascope, and hence the filter join plan

is usually the best one. However, let us also consider the processing costs. For most

reasonable values ofSS andSR, the filter join plan has a lower cost than the non-filter

join plan. To see this, let us determine the value ofK for which both plans have equal

processing cost. By solvingPSHJ = PSHJ FJ for K, we get:

K =
SS + 1 + SR

1− SR

(5)

We plotK for different values ofSS andSR in Figure 22. Even whenK = 1.3, the filter

join plan will have equal or lower processing cost than the symmetric hash join planSS and

SR are 0.1 or smaller. Therefore, if the filter join will actually do a significant amount of

filtering, it is better than the symmetric hash join plan.

5.6 Implementation

As we emphasized earlier, in order for the filter join operation to be efficient it is essen-

tial that it consumes a limited amount of memory and that the per-tuple time processing

is small. The filter-join can be implemented using a conventional hash join with excel-
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lent efficiency. However, an advantage of the simple semantics of the filter join (i.e., set

membership) is that it readily lends itself toapproximatealgorithms.

In this work, we explore two approximate filter join algorithms, one with negative errors

but no positive errors (using a fixed-size hash table) and another with positive errors but

no negative errors (using Bloom filters). Negative errors are acceptable in many cases, and

positive errors can often be filtered out at the later stages of processing. Also, a technical re-

striction in Gigascope makes chained hash tables difficult (but not impossible) to implement

— query operators at the LFTA level are not supposed to use dynamic memory allocation.

Therefore we concentrate on the more interesting approximate implementations.

5.6.1 Hash table

We implemented the first version of the filter join procedure with a hash table used as

the data summary structure, where the hash key is the set of the join attributes of a tuple

S.Akey, and the value is the arriving time of the tupleS.time. The table structure is shown

in Figure 23. We emphasize that since memory reallocation is an expensive operation

strongly discouraged at the LFTA levels, the size of the hash table has to be known at the

initialization, and therefore the join key attributes must only contain either numeric value

attributes or constant size string attributes.

The algorithm uses a second chance probing mechanism in case of hash table insertion
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collisions: whenever the slot of the hash table if occupied by a valid tuple that has a different

set of join key attributes than the one being processed, the next slot of the table is probed

for insertion. If that slot is also occupied with a valid tuples, we experimented with two

different approaches (the results of our experiments are described later on):

1. Evict the oldest tuple from the two slots considered for insertion, insert the current

tuple in its place

2. Drop the current tuple and proceed to the next tuple

The complete procedure of the algorithms is as follows: LetSc be the tuple ofS being

currently processed, and letSh be a tuple ofS previously inserted into the hash table.

On the arrival of Sc :

if ( Sc satisfies Pch (S c ) ) then

slot = hash(S c .A key )

if ( slot has valid Sh and Sh.key == Sc .key ) then

Sh.time = Sc .time

else if ( slot contains invalid Sh) then

replace Sh with Sc in slot

else if ( slot is empty) then

insert Sc into slot

else use approach (1) or (2) for collision handling

On the arrival of R:

if ( R satisfies Pch (R) ) then
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slot = hash(R.A key )

if ( slot contains valid Sh and Sh.A key == R.A key ) then

if ( R satisfies Pe(R) ) then

return R

This implementation of filter join is prone to producingfalse negatives, i.e. tuples ofR

andS that were not joined due to hash collisions. However, there are no false positives.

5.6.2 Bloom filter

The other version of the filter join procedure was implemented using a set of Bloom fil-

ters [29]. Each Bloom filter is of sizen bits, and corresponds to a single time unit of

the liveliness time interval ofS. In other words, ifB is the set of Bloom filters, and the

temporal predicate isR.time in [S.time, S.time + c], there would bec filters in B, i.e.

|B| = c. To preserve cache locality and ensure efficient memory access, we arranged all

of the Bloom filters into a single bit array in which allith bits of the filters are grouped

together, as demonstrated on Figure 24.

A setH of hash functions is used to set bits in the Bloom filter which corresponds to

the time unit of each arriving tuple fromS. The hash key is the set of the join attributes

S.Akey, and the value of the hash functions is the bit index[0 . . . n − 1]. When a tuple

from S is inserted, the hash function values are calculated and the appropriate bits in the

corresponding Bloom filter are set, as shown on Figure 25.

When a tuple fromR arrives, we calculate the corresponding Bloom filter bit numbers

and check whether the same bits are set in any of the Bloom filters, in which case (if all

other conditions are met) an output tuple is produced.

The Bloom filters are used in a circular manner: with the arrival of the first tuplet

(whether it belongs toS or R) in a new time unit, the Bloom filter with the index [bf =

t.time mod|B|] is first zeroed out, and then the bits corresponding to the tuple are set.

The detailed pseudo code for handlingS andR tuples is as follows:

On the arrival of S:
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Figure 24: Bloom filters data structure for improved cache locality,B = 3

bf = S.time mod |B|

zero out Bloom filter Bbf

if ( S satisfies Pch (S) ) then

for each Hi do

SET BIT( Bbf , Hi (S.A key ) )

On the arrival of R:

bf = R.time mod |B|

zero out Bloom filter Bbf

if ( R satisfies Pch (R) ) then

for each Bi do

for each Hj do

if (IS SET(Bi , Hj (R.A key ) )) then

count set++

else

count set = 0

break

if ( count set == |H| ) then

found = 1

count set = 0

break

else

count set = 0

if ( found == 1) then
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if ( R satisfies Pe(R) ) then

return R

Due to the nature of the data structure used, the algorithm is prone to producingfalse posi-

tives(but no false negatives) when an output tuple is created as a result of two different join

key sets setting the same bit within a Bloom filter, i.e.Hi(S.Akey1) = Hj(S.Akey2). This

could be remedied, and in fact may even be considered an advantage over having false neg-

atives as in the case of hash table implementation, when filter join is used as a preliminary

filtering procedure whose results are fed into a more sophisticated, heavy-weight analysis

at the higher level of query processing.

5.7 Experimental Study

We implemented and tested the filter join operator in the Gigascope DSMS. Gigascope

provided us with the ability to experiment with various data structures, configurations of

the algorithm parameters as well as with access to high-speed network data feeds. We

tested the performance of the operator on a data center network traffic feed which produced

moderately high speed traffic of about60, 000 packets per second (about 250 Mbits/sec).

For all experiments, we used an inexpensive dual 2.8 GHz Intel Pentium Xeon processor

server.

We chose to evaluate filter join by running Query 1 described in detail in section 5.3,

since we are likely to have a large amount of data in the stream matching the predicates

specified by the query, making it closer to the worst case scenario in terms of traffic load.
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SHJ-R1 SHJ-R1 SHJ-R1 SHJ-R2 SHJ-R2 FJ-HT FJ-HT FJ-BF FJ-BF
40% smpl 40% smpl, 5% smpl no no

no regex regex
regex

HFTA 99% 80% 29% 11% 0.05% 0.05% 4.9% 0.05% 6.9%

LFTA 11% 6.8% 6.8% 99% 8% 65% 7.9% 80% 10.5%

Table 2: CPU utilization statistics for symmetric hash join and filter join queries.

5.7.1 Performance

To evaluate CPU utilization of the algorithm, we ran Query 1 (section 5.3) with the hash

table and Bloom filter implementations, and compared it with the symmetric hash join

operator implemented at the HFTA level of Gigascope. This query performs CPU inten-

sive processing, performing a regular expression match for every packet in every HTTP

response flow. We ran a simple aggregation query at HFTA level that counts the number of

tuples produced by filter join at the lower level.

We collected the following statistics about the traffic used in our experiments: approxi-

mately10, 000 out of initial 60, 000 packets satisfied the filter join conditions before regular

expression evaluation, and about3, 000 of them passed the regular expression predicate re-

sulting in an output tuple.

We performed the experiment for a range of hash table and Bloom filter sizes, and we

found that there was no significant difference in CPU utilization with respect to the size of

the data structure used.

We compared the CPU utilization numbers obtained for the filter join operator with two

sets of queries performing symmetric hash join at HFTA and regular expression matching

at either HFTA or LFTA levels (the actual queries are not presented here due to space

constraints):

• Query set SHJ-R1 performed the symmetric hash join and the regular expression

matching at the HFTA level;

• Query set SHJ-R2 performed regular expression matching on tuples ofR stream at

LFTA level, and symmetric hash join ofS andR at HFTA.

The comparison of CPU utilization numbers is shown in Table 2. We can see that
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queries SHJ-R1 and SHJ-R2 utilize over100% of a single CPU on a dual CPU machine,

when combining the two levels of query plan. During the evaluation of SHJ-R1, the low

level query performs a simple SELECT on a number of tuple attributes; the tuple is then

passed to the higher level of the architecture for further processing which includes CPU

intensive regular expression matching procedure. The amount of data that needs to be

copied and the CPU intensive processing at HFTA cause high CPU consumption. Under

these conditions the system was unable to handle the rate of the incoming data stream, and

it was forced to drop tuples and produce inaccurate results while overloading the server’s

CPU. Query SHJ-R2 attempted to perform regular expression matching on every tuple of

R causing almost a100% CPU utilization at LFTA alone, and did not produce any results

at all due to system overload.

In an attempt to stabilize the symmetric hash join queries we introduced data reduction

by sampling a fraction of flows from the incomingR andS data streams. SHJ-R1 became

stable only after filtering out about60% of the incoming flows, while SHJ-R2 started to

produce results in a stable manner only after reducing the number of flows to about5% of

the original traffic. CPU utilization numbers for these two experiments are also shown in

Table 2.

In contrast, both the hash table (FJ-HT) and the Bloom filter (FJ-BF) implementations

of the filter join operator resulted in a stable execution of the query that contained regular

expression matching, without any preliminary data reduction and producing meaningful

results at high speeds. To measure CPU utilization of the filter join operation only, we

removed the regular expression matching evaluation. Table 2 shows that CPU utilization

of the Bloom filter implementation resulted in the cumulative17.4% on both query eval-

uation levels and was4.6% higher than that of the hash table implementation with12.8%

CPU utilization. This increase was due to the operation of cleaning the Bloom filters at

every advance of the time unit. However, both filter join implementations use far less CPU

time than the SHJ-R1 algorithm without regular expression matching, which consumes a

combined 90% utilization when scaled to a 100% sample.
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5.7.2 Accuracy

To measure the accuracy of the algorithms and make it possible for the system to run a

number of queries simultaneously, we removed the regular expression evaluation predicate

and considered the results of the filter join operation itself. We measured the accuracy of

the algorithms by comparing the results to those of a hash table implementation that used a

large enough hash table to eliminate collisions and thus produce exact results. We counted

the number of tuples produced by the query for every10 second time interval, and then

calculated the average error rate over a number of10 second time intervals for each of the

implementations as follows: lettext be the number of join tuples produced by the exact

filter join query, and lettapx be the number of join tuples produced by an approximate

implementation; thenerror rate= |text−tapx|∗100

text
.

During the experiments we observed that the number ofS tuples needed to be main-

tained in the data summary structure within a period of10 seconds was about15, 000. For

the hash table implementation we ran queries with the hash table size of5, 000, 10, 000,

20, 000, 40, 000 and80, 000, using the two collision handling techniques described in sec-

tion 5.6.1. To make it comparable with the Bloom filter implementation, the cumulative

size of all Bloom filters used by the algorithm was made to be equal to the corresponding

version of the hash table implementation. We also tried different amounts of hash functions

used by the Bloom filter algorithm, using|H| of 2, 3, 4 and5. We observed however that the
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number of hash function did not seem to have a significant effect on the resulting number

of join tuples, and thus the analysis presented in Figure 26 shows the accuracy results for

H = 3. Figure 27 shows the results of the query execution with hash table size of40, 000.

It can be seen from these graphs that the Bloom filter algorithm produces a large number

of false positives (about20%). We can also observe that the hash table version of filter join

that drops the new tuple on collision (HT-C2) is significantly less accurate than the one that

evicts the oldest tuple from the hash table and inserts the current one in its place (HT-C1).

HT-C1 is the most accurate implementation of the filter join algorithm, resulting in only

0.14% less tuples than the exact version, while using a reasonably small size of the hash

table of40, 000 entries.

5.8 Conclusions

A large class of queries on data streams search for records matching a dynamic criteria.

While a relational expression of this kind of query involves a join, these queries can use

a faster evaluation algorithm because they are essentially set membership queries. In this

work, we propose thefilter join operator to enable the use of the fast algorithm. Although

being a unidirectional case of the traditional hash join, the presented filter join benefits

from having an efficient implementation that allows early data reduction of high speed data

streams, which is crucial under adversarial conditions.
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In this work we have provided a relational expression of the filter join operator; we

provided query transformations which expose filter join operator(s) in conventional join

queries; we described and implemented two approximate filter join algorithms, one with

positive errors and one with negative errors; we presented cost models that clearly demon-

strate the advantage of filter join over the traditional symmetric hash join; finally, we have

tested and measured our implementations on live traffic streams.

We find that the filter joins provide order-of-magnitude performance improvements

when compared to using a regular hash join. A significant contributor to the performance

improvement is the early data reduction achieved by pushing the filter join down to the data

source. Further, the query we used in our experiments is a difficult case for the filter join,

since a large fraction of the stream records pass the filter. Other common uses of a filter

join (finding DNS, RTP, or worm flows in network traffic stream analysis) have much more

selective filters.

The filer join operator has been implemented in the Gigascope DSMS, and is now part of

the production version of the system. It is being actively used in IP network data analysis,

and its usefulness for evaluation of queries similar to those presented in this work is being

shown in practice.
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Chapter 6

6 Regular Expression Matching on Out-of-Order Streams

In data streams, the data normally possesses certain attributes that can be used to define

order over the stream elements. However, it is often the case that the data is received out

of order, which presents a serious challenge and requires maintaining the state of partial

streams for computing order-sensitive queries over such data streams.

A particular instance of this problem is data stream filtering using regular expressions,

it is important in such applications as network traffic identification using application sig-

natures. The existing work in this field either simplifies the problem by matching at a

single data segment, or reassembles segments in the correct order before applying the reg-

ular expression. Neither approach is satisfactory: valid signatures can span multiple data

segments, but reassembly is very resource intensive.

We present an efficient algorithm for regular expression matching on streams with out-

of-order data, while maintaining a small state and without complete stream reconstruction.

We have implemented three versions of the algorithm - sequential, parallel and mixed -

and show by experimental study on real network traffic data that the algorithms are highly

effective in matching regular expressions on IP packet streams.

6.1 Introduction

Much as in databases, data streams can havedata qualityproblems. This may take the

form of a duplicate item as is common in practical databases. More characteristically, data



117

streams may be out of order [101]. In data streams, the data normally possesses certain

attributes that can be used to define order over the stream elements. Let us consider two

distinct examples:

• The stream of IP packets seen at a network monitor is ordered by time seen and may

be loosely ordered based on time sent. However, often the data is received out of order.

Consider TCP, a well-known network protocol which guarantees reliable and in-order

delivery of data from sender to receiver. In TCP the original message is reconstructed

by using the sequence number of the packet payload, which is the offset of the packet’s

data segment within the originally transmitted message. Due to various transmission

delays and network failures, packets might be lost or arrive not in the order they were

originally sent. TCP handles those cases with a packet retransmission procedure,

which often results in multiple copies of the same packet at the receiver.

• Consider a network of sensors. Due to resource constraints sensors send data when

they can, and not necessarily at periodic intervals. Further, for reasons of robust-

ness against loss, sensors often retransmit the same information. Also, the network

connecting the sensors use multiple length path for collecting data. Consequently,

duplication, out-of-orderness and latency are common in time series data from sen-

sors, and stream management systems that monitor such data have to use order and

duplicate insensitive analysis techniques [108, 47].

In the past few years, a number of techniques have been developed for processing and

mining data streams Data quality issues such as the ones above present a serious problem

for DSMSs because even simple queries on data streams with data quality problems become

challenging. For example, computing the average size of distinct packets in a TCP stream

now requires one to keep thestateof the partial stream seen on the link to identify the

duplicate packets. The challenge is further exacerbated when one deals with sophisticated

streaming queries and the suite of data quality problems includes out-of-order items.

The task we address in this work is a sophisticated query — matching a signature that is

regular expression — on an out-of-order stream with duplicates. The motivating problem

is as follows.
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Motivating Problem. Consider the IP network monitoring application. The TCP protocol

sends the contentc1 · · · cn to be transferred from the source to the destination in smaller-

sized payloads. This involves repacketingci · · · cj as needed. The set of all packets that is

involved in this transfer form aflow. The problem we study is to determine which flow,

if any, has contentc1 · · · cn that matches a profile. The profile is specified as aregular

expression. For example, a profile for identifying the flow that comprises a download from

the popular Kazaa service isˆ(GET |HTTP). * [xX]-[Kk][Aa][Zz][Aa][Aa] —the content

should begin with eitherGETor HTTP, followed by any series of characters (‘.*’) before the

appearance ofx-kazaa (case-insensitive).

If the stringc1 · · · cn is given altogether, there are well-known methods for matching

the regular expression to it that involve traversing the automaton derived from the regu-

lar expression, with the string. However, our problem is that we are provided the string

in small-sized segments from the payload of various packets that comprise the flow. Any

given regular expression has to be matched across these segments. Further, due to mech-

anisms inherent in TCP, the content may arrive out of order or there may be duplicates

and packets with overlapping contents. Considering this, matching the regular expression

againstc1 · · · cn becomes a serious challenge.

Analysis of network packet contents such as in the problem above at high speeds is

crucial to network security and network monitoring applications. It is often required to

match the payload of the packet or a number of packets within a stream with a given set

of patterns which characterize different applications [116], viruses or worms [10, 93, 109],

protocols, etc. For example, it was possible in the past to classify applications based on port

numbers, but it has become more and more problematic as applications and protocols have

become more sophisticated [60]. Hence, a significant amount of work has been done in the

past few years on using signatures to identify different applications [116]. Now the patterns

which identify them (such as in the Kazaa example above) often constitute not just an

explicit string, but rather a regular expression due to their expressive power and flexibility.

Developing these regular expression profiles has its own challenges: a polymorphic worm

is hard to characterize since it changes its payload in successive infection attempts.
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The problem of application identification is solved in practice in one of two ways.

1. Restrict the regular expression and use simple profiles that will match a segment found

inside asinglepacket. This approach severely limits the applicability of the problem

because even simple profiles such as the one above for Kazaa often has to be matched

across multiple data segments (i.e. multiple packets).

2. Reassemble all the segments of the flow into the content stringc1 . . . cn and use the

well-known regular expression matching methods. The difficulty is that full reassem-

bly of the content is prohibitively resource intensive. [58] points out that existing

intrusion detection systems become highly inefficient while maintaining the full state

of all open connections. To be practical, existing systems perform random load shed-

ding which is not ultimately accurate or effective in finding intrusions

We have described the regular matching problem for IP traffic streams, and this will be

the running motivation throughout. The same problem however arises in time series moni-

toring and other applications over out-of-order and duplicated data streams, in sensor data

streams, email and text streams, and elsewhere. �

In this work, we address the problem of matching a regular expression over real world

streams. Our contributions are as follows:

• We formalize the problem of regular expression matching over a data stream with data

quality problems such as out-of-order and duplicate items.

• We present an algorithm for regular expression matching without reassembling the

entire stream. The algorithm maintains potential start and end states for each stream

segment in tracing the finite state automaton that represents the regular expression.

The states are pruned as needed so the algorithm maintains only a limited memory.

We introduce the concept of “equivalent states” and present three variations of the

algorithm depending on how they are identified and pruned.

• We perform a detailed experimental study of our algorithm with real networking data

and show that the algorithm is highly effective in matching regular expressions against
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TCP flows of IP packets. Our algorithms achieve over 100:1 compression over meth-

ods that reassemble the TCP flows, with comparable running time. Our method makes

the regular expression matching task eminently practical on live streams.

6.2 Regular Expressions and Application Signatures

A regular expression is a powerful language to describe a set of strings. In standard regular

expressions, starting with the alphabet symbols, we compose a set of strings using the fol-

lowing operators and metacharacters: “|” - alternation, “.” - any character, “*” - matches

the preceding character zero or more times, “+’ matches one or more times,“?” matches

zero or one times, “ˆ” and “$” match the beginning and the end of the string respectively.

It is typical to further enhance the language with ranges of characters (“[a-z]”) or sets of

characters (“[ABC]”). In what follows, we give a few examples of application signatures

that are used in network monitoring applications.

Gnutella p2p protocol signature [116]:

ˆ(GNUTELLA|(GET|HTTP). * (X-Gnutella |((Server: |User-Agent:)[ \t] * (LimeWire |

BearShare |Gnucleus |Morpheus |XoloX|gtk-gnutella |Mutella |MyNapster |Qtella |

AquaLime |NapShare |Comback|PHEX|SwapNut |FreeWire |Openext |Toadnode |Shareaza))))

This regular expression is a signature forGnutellaP2P network protocol, and can be used

to detectGnutelladata downloads . It is read as follows:

• The first string following the TCP/IP header isGNUTELLA, GETor HTTP.

• If the first string isGETor HTTP, it can be followed by one or more arbitrary charac-

ters, followed byX-Gnutella . The stringsGETor HTTPcan also be followed by any

number of arbitrary characters, followed by eitherServer: or User-Agent: headers,

followed by a number of TAB symbols, followed by one of the strings from the list

LimeWire , BearShare , etc.

KazaaP2P protocol signature [116]:

ˆ(GET |HTTP). * [xX]-[Kk][Aa][Zz][Aa][Aa] This regular expression is designed to iden-

tify KazaaP2P network downloads [116]. It requires that the data following the TCP/IP
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header starts with eitherGETor HTTP, followed by an arbitrary string withX-Kazaa appear-

ing anywhere in it.

Yahoo traffic [1]:

ˆ(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt]. * \xc0 \x80 This regular expression appears

in the open source collection of application signatures included with the l7-filter system [1]

and identifies Yahoo traffic. It matches any packet payload that starts withymsg, ypns or

yhoo followed by seven or fewer arbitrary characters, then followed by a letterl, w or t

and some arbitrary characters of any length, and finally the ASCII lettersC0 and80 in the

hexadecimal form.

Counter Strike game traffic [131]:

cs. * dl.www.counter-strike.net This rule is also mentioned in [131] and used to detect

packets of a an online game “Counter Strike”. The expression will match any packet that

contains a stringcs followed by zero or more arbitrary characters, followed by

dl.www.counter-strike.net .

HTTP request:

((OPTIONS |GET|HEAD|POST|PUT|DELETE|TRACE|CONNECT)[ ]+[ - ∼]+[ ]+HTTP/1.[01]([

- ∼]+ \r \n)+ \r \n) This regular expression can be used for extraction of HTTP request

headers. It matches any packet payload that starts with the key wordsOPTIONS, GET, etc.,

followed by one or more space, followed by one or more printable ASCII characters, fol-

lowed by one or more spaces, followed byHTTP/1.1 or HTTP/1.0 , followed by one or more

lines with one or more printable ASCII characters (\r \n signify ’carriage return’ and ’line

feed’ at the end of a line), and ending with an empty line.

HTTP response: (HTTP/1.[01][ ]+[0-5][0-1][0-9]([ - ∼]+ \r \n)+ \r \n) This reg-

ular expression can be used for extraction of HTTP response headers. It matches any packet

payload that starts withHTTP/1.1 or HTTP/1.0 , followed by one or more spaces, followed
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by a3 digit HTTP response code, with the first digit between0 and5, the second either0

or 1, and the third between0 and9.

6.3 Formal description of our problem

We define the problem in the context of TCP flow analysis, but it can be similarly defined

for other applications, including text and sensor data analysis.

A stream corresponding to a single TCP flow consists of a number of individual network

packets, each packet containing the protocol header and the data segment. Say the data to

be transmitted isc1, . . . , cn. Whenn exceeds certain packet size limit, the data is split

among multiple packets, and each packet is transmitted independently. The stream seen

by a network monitor consists of datasegmentsd1, d2, ..., di, ..., where each segmentdi

represents a portion of the original data being transmitted. A segmentdi = csi
· · · cei

is

described by thestart offsetsi andend offsetei within the original data. The length of

segmentdi is li = ei − si + 1. We definedj as thepredecessorof di if si = ej + 1 and

anddj as thesuccessorof di. On the receiving end, the received data segments need to

be reassembled in the correct order, so that the original message can be reconstructed. We

useDm to refer to a reassembled portion (sometimes refereed to as “partial flow”) of the

original datacSm · · · cEm.

Due to the nature of computer networks, there can be a number of anomalies in the way

the stream segments arrive at the receiver. For a newly arriving data segmentdi, and the

reassembled data portionDm, we have the following anomalies:

Duplicates and Overlaps: The TCP protocol guarantees reliable information delivery.

If receipt of a packet is not acknowledged within a certain period of time, the packet is

retransmitted, possibly more than once, until the acknowledgement is received. This can

lead to the same data segment being received more than one time on the receiving end.

Duplicates can occur in a number of ways:

1. si ≥ Sm andei ≤ Em, i.e. Dm wholly containsdi.

2. si ≤ Sm andei ≥ Em, i.e. di wholly containsDm.

3. si < Sm andei ≥ Sm andei < Em, i.e. start ofDm overlaps with the end ofdi.
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4. si > Sm andsi ≤ Em andei > Em start ofdi overlaps with the end ofDm.

Out of order packets: Due to various delays in the network communication, packets may

arrive out of order, so that for a newly arriving data segmentdi and the reassembled data

portionDm, there can be a case thatei < Sm or thatsi > Em+1.

Given the situation above, a regular expressionR and the contentc = c1 · · · cn, our

problem is to determine ifc matchedR, given the series of packetsdi’s.

6.4 Overview of Our Algorithms

In our problem described earlier, a stringc is presented as a series of packet segments

d1, d2, .... Matching eachdi againstR will be incorrect when the matching string spans

more than one packet. Collecting all thedi’s, reassembling them intoc and matchingR

using the basic algorithm would require waiting until all data segments of the flow are

received, and is therefore slow; it is also resource-intensive.

A more efficient solution would be to match the regular expression with portions of the

data received thus far reassembled into “partial flows” and wait until a decision (match/no

match) is reached. This would be ideal if the reassembled partial flow represented a prefix

of c. However, the fact that some of the data arrives out of order effectively fragments the

reassembled data into a number of partial flowsDm’s.

A simplistic approach to dealing with fragmented data would be to store all out-of-order

partial flows, until they can be merged with the reassembled portion of the original data that

represents a prefix ofc. The major disadvantage of this approach, to which we refer in the

rest of the chapter asbuffering, is that the size of those disconnected partial flows can be

quite large and to maintain them in memory during the matching process can be very costly,

as we shell see in the experimental section 6.7.

If we wish to not store the partial flows, we need to simulate the DFA on theDm’s.

In order to do this for partial flows which are not a prefix ofc, we need to know which

state in the DFA to start the simulation from. Our key idea is very simple: to simulate the

DFA on Dm’s with all potential beginning states forDm in the DFA (which in the worst

case could be all non-accepting states of the automaton). This will lead to a number of
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potential end states for eachDm. We hope to extract savings in this “state” we store by

merging partial flows when possible, pruning the potential beginning states forDm and

further exploiting the structure of “equivalence classes” of states reached by simulating the

DFA from different begin states.

Our algorithm implements this approach and optimizes the state saved and the execu-

tion time. We present three algorithms: asequentialalgorithm, aparallel algorithm that

aggressively collapses equivalent states (defined later) and amixedalgorithm that tries to

balance the tradeoffs.

As an aside, notice that given a regular expression it is possible to construct an NFA

(nondeterministic finite automaton) with fewer states than the corresponding DFA, which

could reduce the state maintained. However, the number of state to state transitions in NFA

is significantly larger and it is much more expensive to traverse. Since our focus is on

real time analysis, we preferred the DFA-based method which has better update cost per

packet. So, we present our results only for the DFA representation, but our algorithms and

the concept of equivalent states we use to prune, can be easily generalized to NFAs.

6.5 The Sequential Algorithm

The algorithm maintains the information about the received partial flows in the form of a

linked listR of objectsD1, D2, ..., Di, ..., Dn . EachDi = (Si, Ei, Li) describes a reassem-

bled partial flow, and contains the following:

• (Si, Ei) - the starting and ending offset of the reassembled data within the original

data transmitted within the flow.

• Li - a linked list of pairs(qs, qe) describing the starting and ending states of paths

within the automaton representing the regular expression that can be traversed with

the data corresponding toDi.

Figure 28(a) demonstrates a single objectDi of the listR. Each pair of states(qs, qe) in

the listLi of the objectDi is such thatqe = δ(qs, Di).

At various stages of the algorithm we will attempt to find partial flows that either precede

or succeed the newly arrived segment in the original data, and merge them into one list
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(a) (b)

qs1 qe1
Di

qs2 qe2
Di

qs3 qe3
Di

qs1

qe1

Di

qs2 Di

qs3 qe3
Di

Figure 28: Structure of the objectDi for (a) the sequential and (b) the parallel version of the algorithm

entry. If, as a result, we obtain two entriesDi andDi+1 in the list such thatDi precedes

Di+1 in the original data, we will merge them into one entry as well.

6.5.1 Traversing DFA

As part of the algorithm, we will need to traverse the automaton representing the regular

expression with the data contained in the currently processed data segmentd, beginning

from a given stateqi within the automaton. The automaton traversal stops when an accept-

ing state is reached, the end of the data is reached, or when there’s no transition on the

current data character from the current automaton state.

The return value of the traversal process is a pair of states(qs, qe), designating the start-

ing and ending states of the path traversed, as well as flags indicating whether theqs is

the starting state of the automaton, and whetherqe is an accepting state. The process can

also return a null value if there is no useful path that can be traversed with the given input,

which can happen in one of the two cases:

• we reach a state during the traversal process from which there is no transition with the

next data character, or

• both the beginning and ending state of the traversal process is the starting state of the

automaton.

As an example, consider the DFA shown in Figure 29 for the regular expression

ˆ(GET |HEAD|POST). * HTTP. This regular expression is a simplified version of the regular

expression for HTTP request message described in section 6.2.

If the contents of the first packet received is‘GET’ and we run this string though the

automaton starting at state 1, the pair of states that will be recorded is (1, 4). If the next

packet of the stream contains‘HTTP/1.1’ and we run it through the automaton starting



126

2 3 4

5 6 7 8

13

14

15 16 171

9 10 11 12

G

E T

H

H

P

E A D

O S T

T
T

P

H

H
HH

H

�
-H

�
-H

�
-H

�
-H

�
-H,P

�
-H,T

�
-T

Figure 29: DFA for ”ˆ(GET|HEAD|POST).*HTTP”

from the state (4), the pair of states that will be recorded for this data segment is (4,17).

The two pairs are merged resulting into the pair (1,17) where 1 is the starting state of the

automaton and 17 is an accepting state.

6.5.2 Detecting Start of the Flow

The algorithm begins withR empty. The beginning of a flow is detected by inspecting

the value of the SYN (synchronize) bit in the TCP header of the arriving packets, with

1 signifying the flow start. When processing the first packet of the flow, we distinguish

between two types of regular expressions: those that start with the starting anchor ‘ˆ’ and

require the first packet to match starting from the starting state of the automaton, and those

that start with ‘.*’ and imply that the regular expression can be matched anywhere within

the flow.

Thus the first data segmentd1 = (s1, e1) of the flow is processed as follows:

Traverse the DFA beginning from the starting state of the automaton. If the regular expres-

sion starts with ‘ˆ’:

• If the traversal process returned null, we label the flow as “not matching”, and no

further processing is done on the flow’s data.

• If the traversal process returned a pair of states(qs, qe), with qs marked as the starting

state of the automaton, create a new entryD1 = (s1, e1, L1) in R, whereL1 contains

the pair(qs, qe).

If the regular expression does not start with ‘ˆ’:

• If the traversal process returned null, createD1 = (s1, e1, < empty list >) in R.

• If the traversal process returned a pair of states(qs, qe), with qs marked as the starting
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Figure 30: Merging (a) pairs of states of the predecessor and the successor (sequential version) (b) equiva-
lence classes of the predecessor and the successor (parallel version)

state of the DFA, create a new entryD1 = (s1, e1, L1) in R, whereL1 contains the

pair (qs, qe), and proceed to the next data segment.

6.5.3 Processing Subsequent Segments

Any other data segmentdi = (si, ei), si > 1, is processed as follows. For each objectDm

in list R:

Duplicate handling:

• If di is fully contained inDm, ignoredi and proceed to the next segment.

• If Dm is fully contained indi, deleteDm from R.

• If di andDm partially overlap, chop off the overlapping section ofdi by adjusting its

(si, ei) offsets accordingly. Formally, eithersi = Em + 1 or ei = Sm − 1 depending

on whetherSm is smaller thansi or otherwise.

Predecessor processing:Let Dp = (Sp, Ep, Lp) be a predecessor ofdi, i.e. Ep = si − 1.

If Lp is not empty, for each pair(qs, qe) in Lp:

• Traverse the DFA withdi starting atqe.

• If the traversal returns a pair(qe, qe1), delete the pair(qs, qe) from Lp, store the pair

(qs, qe1) in Lp and updateEp = ei.
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# Data Segment Reassembled Pairs of States inLi Notes
Segment

di = (si, ei) Di = (Si, Ei) (qs, qe)
1 ’G’ = (0, 0) D1 = (0, 0) (1,2) first data segment of the flow
3 ’T’ = (2, 2) D2 = (2, 2) (3,4)(11,12)(13,15) data segment arrives out-of-order

(15,16)(4,14)(8,14)
(12,14)(14,14)(16,14)

4 ’ file.html ’=(3,13) D1 = (0, 0) (1,2)
D2 = (2, 13) (3,14)(11,14)(13,14) after merging the data segment

(15,14)(4,14)(8,14) with its predecessorD2 = (2, 2)
(12,14)(14,14)(16,14)

2 ’E’ = (1, 1) D1 = (0, 1) (1,3) the missing data segment arrives:
after merging it with its
predecessorD1 = (0, 0)

D1 = (0, 13) (1,14) after mergingD1 = (0, 1) with its
D2 = (2, 13) successor into a
single partial flow

5 ’HTTP/1.0’=(14,21) D1 = (0, 21) (1,17) declare amatch since1 is the
starting state of DFA and17 is a
final accepting state

Table 3: Using the sequential algorithm to match the regular expression"ˆ(GET |HEAD|POST). * HTTP"
(see Figure 29) to a flow containing the data ’GET file.html HTTP/1.0’ split into 5 data segments: ’G’, ’E’,
’T’, ’ file.html ’, ’HTTP/1.0’.

• If the traversal returns null, delete(qs, qe) from Lp. If this rendersLp empty, label the

current flow as ”not matching”

If Lp is empty:

• Traverse the automaton withdi beginning at the automaton’s start state.

• If the traversal returns a pair(qs, qe), insert the pair(qs, qe) in Lp, and updateEp = ei.

• If the traversal returns null, updateEp = ei; Lp remains empty.

If there is no predecessor fordi in R:

• Create a new entryDp = (Sp = si, Ep = ei, Lp =< empty list >) in R.

• Traverse the automaton withdi starting at every non-accepting state, and insert all

non-null pairs returned by the traversal process inLp.

Successor Processing:At the end of predecessor processing part of the algorithm, we have

either mergeddi in an existingDp, or created a newDp for the newly arrived segment. At

this stage of the algorithm we check whetherDp has a successor inR.
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# Data Segment Reassembled Equivalence classes inLi Notes
Data Segment

di = (si, ei) Di = (Si, Ei) (li, qei)
1 ’G’ = (0, 0) D1 = (0, 0) (1,2) 1st data segment

of the flow
3 ’T’ = (2, 2) D2 = (2, 2) (3,4)(11,12)(13,15)(15,16) data segment arrives out

((4,8,12,14,16),14) of order
4 ’ file.html ’=(3,13) D1 = (0, 0) (1,2)

D2 = (2, 13) ((3,4,8,11,12,13,14,15,16),14)after merging the data
segment with its
predecessorD2 = (2, 2)

2 ’E’ = (1, 1) D1 = (0, 1) (1,3) the missing data segment
arrives: after merging it
with its predecessor
D1 = (0, 0)

D1 = (0, 13) (1,14) after mergingD1 = (0, 1)
with its successor
D2 = (2, 13) into a single
partial flow

5 ’HTTP/1.0’=(14,21) D1 = (0, 21) (1,17) declare amatch since1 is
the starting state of DFA
and17 is an accepting
state

Table 4: Using the parallel algorithm to match the regular expression‘‘ˆ(GET |HEAD|POST). * HTTP’’
(see Figure 29) to a flow containing the data’GET file.html HTTP/1.0’ split into 5 data segments:
’G’, ’E’, ’T’, ’ file.html ’, ’HTTP/1.0’ .

If a successorDs = (Ss, Es, Ls), such thatSs = Ep + 1, is found (else, proceed to the next

arriving data segment):

• If both Lp andLs are non-empty, updateSs = Sp, mergeLp into Ls and deleteDp

from R.

• If Ls is empty, updateSs = Sp, mergeLp into Ls and deleteDp from R.

• If Lp is empty, updateSs = Sp and deleteDp.

The merging procedure of the lists is as follows:

• For any pair of states(qsp, qep) in Lp, if qep is an accepting state, copy(qsp, qep) to Ls

• For each pair of states(qss, qes) in Ls, not including those just copied fromLp:

If there is a pair(qsp, qep) in Lp such thatqep = qss, delete(qss, qes) from Ls and insert

(qsp, qes) to Ls. Else delete(qss, qes) from Ls.

Match detection: At any step of the algorithm, if a pair of states(qs, qe) such thatqs is the
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starting state of the automaton andqe is an accepting state is found in any of the L lists,

label the flow as matching the regular expression.

Figure 30(a) shows an example of the merging procedure outlined above, and Table 3

demonstrates how the algorithm works on a very simple example.

6.6 The Parallel Algorithm

In the algorithm description above, that if we find no predecessor for the newly arrived

data segment, we traverse the automaton with the segment, starting at each non-accepting

state. This can be a performance bottleneck since the automaton can have a large number

of states. In addition, the traversal process can result in a large number of pairs(qs, qe), and

a significant number of those pairs can be duplicates(qs1 = qs2 andqe1 = qe2) stored in the

different lists, or pairs with different starting states but identical ending states(qs1 6= qs2

andqe1 = qe2).

Definition 4. An equivalence classis a list of automaton state pairs that have different

starting states but identical ending state, and is described asQ = (ls, qe), wherels is a list

of starting states(qs1, qs2, ..., qsk).

In the example from Table 3, after traversing DFA with the content of packet3 we have

5 pairs of states with identical ending state14. The notion of equivalence classes allows

us to replace those5 pairs with a single equivalence class with the list of starting states

(4, 8, 12, 14, 16) and the ending state14.

Thus, we improve the sequential algorithm by storing automaton state equivalence classes

instead of state pairs. This would entail several changes as shown below.

6.6.1 Data Structure

For each elementDi of the listR we maintain the following information:(Si, Ei) - the start-

ing and ending offset of the reassembled data within the original data transmitted within

the flow; Li - the list of equivalence classes, describing the starting and ending states of

paths within the automaton representing the regular expression that can be traversed with

the data corresponding toDi.
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Figure 28(b) demonstrates a single objectDi of the listR. Each entry in the listLi of

the objectDi is an equivalence classQ = (ls, qe) such that for eachqs ∈ ls, qe = δ(qs, Di).

6.6.2 Traversing DFA

Given a list of automaton states and a data segmentdi containing charactersx1x2...xn:

1. Attempt to make a transition from each of the statesqj with the first characterx1.

Store all pairs of states(qj, qk), whereqk = δ(qj, x1), in a temporary list.

2. Find all pairs in the list with identical end states, delete them from the list and re-

place them with the corresponding equivalence class. As a result, we obtain a list of

equivalence classesQ1 = (ls1, qe1), Q2 = (ls2, qe2), ...,with |lsi| ≥ 1.

3. For eachQi, attempt to make a transitionδ(qei, x2) unlessqei is a final accepting state.

If such transition exists, updateQi = (lsi, δ(qei, x2)). Repeat the equivalence class

merging procedure.

4. Repeat steps (2) and (3) until one of the following:

• No new transition can be made on the nextxi.

• End of the data segmentdi is reached. Return the resulting list of equivalence

classes.

• An equivalence classQi is obtained such that one of the states inlsi is the start

state of the automaton, andqei is a final accepting state. Label the flow as a match

of the regular expression.

6.6.3 Processing Data Segments

The procedure (both dealing with the first segment of the flow and the subsequent seg-

ments) is mostly identical to the sequential version of the algorithm, storing equivalence

classes instead of pairs of states. The important difference in the parallel version is in the

predecessor handling part of the algorithm, when the segmentdi arrives out of order:

Predecessor Processing:If there is no predecessor fordi in R, create a new entryDp =

(Sp = si, Ep = ei, Lp =< empty list >) in R; Traverse the automaton using the modified
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traversal procedure, withdi and the list of all non-accepting states as an input. If the flow

is not declared “matching”, store the returned list of equivalence classes inLp. A similar

optimization can be applied for the case when a predecessor is found, but|Lp| is large.

Successor Processing:We need to revise the merging procedure of two non-emptyL lists

when a successor is found. Here is a succinct description of the changes in the algorithm.

At the end of predecessor processing part of the algorithm, we have either merged the

newly arrived segmentdi in an existing partial flowDp, or created a newDp based ondi.

If a successorDs = (Ss, Es, Ls), such thatSs = Ep + 1, is found inR, and|Lp| > 0 and

|Ls| > 0, we merge the predecessor and the successor into one partial flow by updating

Ss = Sp, mergingLp into Ls and deletingDp from R. The merge procedure of theL lists

works as follows:

• For each equivalence class in the successorQj = (lsj
= (qsj1, qsj2, ), qej) ∈ Ls, find

all predecessor equivalence classes that end at one of the starting states inQj, that is

Qk = (lsk, qek) ∈ Lp such thatqek ∈ lsj. Merge such classes intoLs: for each such

Qk, deleteqek from lsj, and mergelsk to lsj. DeleteQk from Lp.

• For eachQj in Ls, delete all such starting states inlsj that do not match any of the

ending states in any of the predecessor equivalence classes.

• If there is a successor equivalence classQj ∈ Ls and a predecessor equivalence class

Qk ∈ Lp such that they both end at the same accepting stateqej = qek, replace the

starting listlsj with the preceding class starting listlsk. DeleteQk from Lp.

• If, after completing all previous steps, there is an equivalence classQk ∈ Lp such that

it ends at a final accepting state, copy it toLs and delete it fromLp.

Figure 30(b) shows an example of the merging procedure outlined above and Table 4

demonstrates how the algorithm works on the example from the previous section. The

packet processing described in Table 3 now changes as follows: after processing packet

3, a number of state pairs with the end state14 is replaced by a single equivalence class

((4, 8, 12, 14, 16), 14). Similarly, after processing packet4, D2 contains a single equiva-

lence class((3, 4, 8, 11, 12, 13, 14, 15, 16), 14).
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6.6.4 The Mixed Version

The parallel version of the algorithm significantly reduces the amount of states that needs

to be maintained at each step of the algorithm. However, the structure that maintains the

states - a list of equivalence class objects - is now more complex, and therefore the overhead

of accessing and updating an equivalence class in the list is more significant. To achieve a

better tradeoff, we have developed a simple hybrid that integrates both the sequential and

the parallel versions of the algorithm. The mixed algorithm will still take advantage of the

equivalence classes while improving the parallel algorithm’s overall performance.

• For any out of order data segmentdi, run the parallel version of the algorithm fork

steps, processingk first characters indi and obtaining a list of equivalence classes.

• Run the sequential version of the algorithm with the remaining characters indi, start-

ing from every equivalence class’ ending stateqe .

In this approach, we assume that running the parallel version of the algorithm for the

first k input characters will yield a limited amount of equivalence classes, thus reducing the

amount of states starting from which we apply the sequential version of the algorithm.

6.7 Experimental Study

6.7.1 Out-of-order Packets: Statistics

The algorithm we developed aims at dealing with out-of-order data segments and strives to

minimize the amount of space used to store the information about partial flows with min-

imal CPU overhead. To demonstrate that the buffering approach described in section 6.4

may be prohibitively expensive, our first experiment attempted to estimate the memory re-

quirements for buffering. We collected a set of283, 139 distinct TCP flows (4, 154, 108

packets in total). The set contained1, 439 out-of-order packets, for which we calculated

the size and the number of the partial flows needed to be stored until they are merged with

the prefix partial flow.

The results on figures 31 (a) and 31 (b) show that the maximal number of buffered partial

flows observed is9 consisting of46, 920 bytes. We also observe that the largest buffered
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partial flow is of size63, 090 bytes, which is a quite significant amount of memory to be

used during the matching process. Average size of the buffered partial flows was7, 860

bytes.
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Figure 31: Statistics of buffered partial flows: (a) Number of buffered partial flows to maintain while waiting
for the arrival of an out-of-order segment. (b) Size of the buffered partial flows (in bytes) to maintain while
waiting for the arrival of an out-of-order segment.

6.7.2 Comparing Algorithms

In order to compare the three versions, we collected a set of data from our research center’s

network connection sent in TCP packets with either the source or the destination port80,

with the total of5, 565 data segments. We simplified the study by supporting only a limited

subset of regular expression language, and by simply replacing every occurrence of ’.*’

with a set of all supported characters. We have not invested significant efforts in DFA

minimization; neither have we concentrated on the optimization of the automaton data

structures and related code. With these optimizations performance of our algorithms will

be still better he reasoning behind this decision was that even with the extensive research

done in the area of DFA minimization and optimization, the amount of states in automata

representing complex regular expressions is still very large. Therefore the questions we

focused on in the presented work are those of initial evaluation and comparison of the

three versions of the proposed algorithm. The objectives of automata minimization and

optimization are being pursued in further study of this subject.

We tested our implementation on four regular expressions, chosen in part to match some

of the data segments in the two data segment sets we worked with:
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Seq Par Mix Mix Mix Mix Mix Mix Mix
k = 1 k = 2 k = 3 k = 4 k = 10 k = 100 k = 200

Regex 1 1:00 1:30 0:04 0:04 0:04 0:05 0:06 0:16 0:25
Regex 2 2:26 1:32 0:05 0:05 0:06 0:06 0:07 0:20 0:30
Regex 3 19:18 9:23 0:19 0:17 0:17 0:18 0:21 1:30 2:44
Regex 4 20:00 9:25 0:19 0:16 0:17 0:17 0:21 1:30 2:52

Table 5: Out-of-order DFA traversal time of the different versions of the algorithm (in minutes and seconds).

Regex 1: ˆHTTP/1.[01]. * [0-5][0-1][0-9] - match an HTTP response message.

Regex 2: ˆ(OPTIONS |GET|HEAD|POST|PUT|DELETE|TRACE|CONNECT).* HTTP/1.[01] - an

HTTP request message.

Regex 3: HTTP/1.[01]. * User-Agent: Mozilla/[45].0 - messages generated by

Mozilla versions 4.0 or 5.0.

Regex 4: HTTP/1.[01]Host:. * google.co.uk - messages with the Host header matching

google.co.uk .

It is important to notice that the last two regular expressions start with the implicit ’.*’

and have another ’.*’ in the middle.

The DFA’s built for each of these regular expressions contained109, 134, 214 and212

states respectively. There were451 data segments within the data set that matched the first

regular expression,454 that matched the second,356 the third and119 the forth.

The timing experiments described below were performed on a2.8GHz processor server.

6.7.3 Out-of-order DFA Traversal Time

In this experiment we compare the running time of the out-of-order traversal procedure

of the three versions of the algorithm, when traversing the DFA for each of the regular

expressions as if every data segment of the set had arrived out-of-order. The motivation

behind the test is that the out-of-order traversal procedure is the bottleneck of the algorithm

and the algorithm with the minimal out-of-order traversal time is the most efficient one.

For the mixed version, we ran it with different values ofk in order to find its optimal value.

The results are presented in Table 5. The results for values ofk from 1 through10 are also

plotted in Figure 32.
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Figure 32: Running time of the out-of-order traversal procedure of the mixed version for various values ofk.

The results demonstrate that the parallel version of the algorithm outperforms the se-

quential version by more than50%, and that the mixed version is exceedingly faster than

the sequential or the parallel for any value ofk we used, withk = 1 yielding the best results

for the two regular expressions with the starting anchor and a single ’.*’, andk = 2 or 3

for the two regular expressions that contained two ’.*’s. We observe that as we increase the

value ofk, the traversal time grows as well. Thus the optimal value ofk roughly equals the

number of ’.*’s within the regular expression being matched.

6.7.4 Size of the Equivalence Classes

To investigate the convergence rate of the number of equivalence classes we need to main-

tain on each step of the parallel version of the DFA traversal procedure for an out-of-order

packet, we collected this statistics while matching the data segment set with each of the

four regular expressions.

The graph on Figure 33 (a) shows the average number of equivalence classes at every

step of the automaton traversal procedure. It can be seen that the number drops from hun-

dreds to one or two, with the convergence rate for regular expressions starting with ’.*’

being slightly slower. Again, we can see that the average number of equivalence classes

roughly equivalent to a number of ’.*’s within a regular expression. The graph on Fig-

ure 33 (b) shows the maximal number of equivalence classes at each iteration. The number

drops from hundreds to at most10 after the first iteration and to at most4 after the second

iteration. These results confirm the observation from the previous experiment thatk = 1
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(a) Average number of equivalence classes.
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(b) Maximal number of equivalence classes.

Figure 33: Convergence rate of equivalence classes

yields the best results in the mixed version of the algorithm for regular expressions with the

starting anchor, andk = 2 or 3 for regular expressions starting with ’.*’.

It is important to note that since each partial flow contains at least one equivalence class,

the number of equivalence classes that needs to be maintained at each step of the algorithm

can be thought of as corresponding to the number of partial flows that the algorithm main-

tains at each step. We can therefore see from the experiment above that the average number

of maintained partial flows is very low.

6.7.5 Rate of Data Processing

In order to estimate the rate at which the different versions of the algorithm can process

data and to calculate the maximal number of partial flows during the matching process

of a flow, we collected a large set of data from14, 142 flows with 193, 412 number of

packets in total. We ran the data on the four regular expressions described in section 6.7.2,

with 3, 624, 3, 644, 3, 568 and66 flows matching the four regular expressions respectively.

To make a rough comparison of the three versions of the algorithm with the simplistic

buffering version that maintains partial out-of-order flows in memory, we reconstructed the

original message of each flow into a single data segment and ran it through the matching

process as well. The results of the experiment are presented in Table 6

The results show that the mixed version gives by far the best results. It is slower than

the buffering algorithm, however the difference is not significant, considering that in our

experiment we did not take into account the cost of partial flows reassembly. It is clear,

however, that the mixed version has significant advantage over buffering in the amount of
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Seq Par Mix Mix Mix Buff
k = 1 k = 2 k = 3

Regex 1 0:04 0:02 0:01 0:01 0:01 0:01
Regex 2 0:47 0:03 0:01 0:01 0:01 0:01
Regex 3 1:39:26 5:07 2:23 2:23 2:23 1:47
Regex 4 1:37:57 5:08 2:26 2:26 2:26 1:49

Table 6: Time of regular expression matching (in hours, minutes and seconds) on a data set of14, 142 flows
consisting of193, 412 packets.

memory needed to process out-of-order packets. We discuss a method for further memory

use reduction next.

6.7.6 Memory Requirements

The motivation for this work is to avoid the need to store the payloads of out-of-order

segments. However to do so, we need to store a summary of the state-to-state transitions

after processing a packet. So, we need to quantify this space overhead.

We have two options for storing the state-to-state transition summaries. LetS be the

number of states in the DFA, andE be the (expected) number of equivalence classes left

after processing a packet.

1. Assuming no more than216 DFA states, we can store an array ofS short integers,

indicating the ending state for each start state. This approach requires2S bytes.

2. Since there are usually very few equivalence classes after processing a packet, we can

try a different approach. For each equivalence class, we can record the ending state,

and a bitmap of the starting states in the equivalence class. This approach requires

E(2 + dS/8e) bytes.

Option 2 is better than option one as long asE < 16, which is true for all but the most

complex regular expressions. After processing a packet, regex’s 1 and 2 had an average of

1.1 equivalence classes, while regex’s 3 and 4 had an average of 2.1 equivalence classes.

Using109, 134, 214 and212 states for the four regex’s respectively, we obtain memory re-

quirements of 16, 19, 61, and 61 bytes, respectively. Using the average size of the buffered

partial flows obtained in the experiment from Section7.1 (7, 860 bytes) we achieve a space

reduction of more than 130 to 1 over the naive buffering approach. Actual savings will
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be considerable higher, since we can use a single summary to represent an out-of-order

segment, which consists of several consecutive out-of-order segments.

6.8 Related Work

Matching regular expressions to strings is a classical area of study from the beginnings of

Computer Science and has applications in parsers and text editors. The theory of regular

expressions and their relationship to automata can be found in textbooks [84]. In particular,

the algorithms for converting a regular expression to a DFA and its minimization is in [84].

A number of the most recent studies introduces an even more compact representation for

regular expressions, called the Delayed Input DFA(D2FA) [94] and Content Addressed

Delayed Input DFA(CD2FA) [95].

Application of regular expressions as signatures in monitoring IP contents is recent.

In [116], authors studied various networking protocols and applications in depth to deter-

mine suitable signatures for them. They did not solve the problem of matching signatures

across segments. We have used their application signatures in this study. Snort [10] is

an intrusion-detection application that has a compiled list of several regular expression

signatures to match attacks and intrusions. Snort systems use Perl Compatible Regular

Expressions (pcre) [9] for regular expression matching which is performed on reassem-

bled packet streams. In networking community, there is significant amount of work on

matching regular expression signatures to IP packet streams, using specialized hardware

like FPGAs [117, 20, 55]. Even these systems rely on full TCP reassembly. There is added

focus on matching multiple regular expressions, but the focus has been on grouping multi-

ple regular expressions to eliminate common states [131]. We are not aware of any Snort

systems or specialized hardware solutions in networking that matches regular expression

signatures within the network in presence of out-of-order packets on the stream, without

reassembly.

In [99] the effect of out-of-order packets on window aggregation queries have been

studied. The issues of data quality problems with IP packet streams, ie., out-of-order and

duplicate packets, are well-known. A recent work [56] presented statistics on the occur-
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rences of this phenomena, that matches our experience with real data.

6.9 Conclusions

We studied the problem of matching a regular expression to a data stream in presence of

data quality problems such as duplicates and out-of-order packets. This is a well-motivated

problem in managing IP networks where regular expressions are signatures that have to be

matched against the contents of flows to detect intrusions, worms or viruses, applications

and protocols. Prior work either matched regular expressions against the data segments on

individual packets (which misses regular expressions that match across the segments) or

reassembled the entire flow to match the regular expression using standard methods (which

is highly resource -intensive). In fact, in networking, prior work has involved solving this

problem in specialized hardware. Instead, we have proposed streaming algorithms that

can be run in software that match regular expressions across segments even in presence of

out-of-order packets and duplicates by carefully optimizing the state maintained on partial

flows. Our experimental study with real data shows that the algorithms are successful in

limiting the memory used and are efficient. These algorithms are more generally applicable

for other data streams that produce duplicated or out-of-order data such as time series in

sensor networks and tex streams.

The ending anchor “$” is analogous to the starting anchor and forces the match of the

end of the regular expression to the end of the string and is not common in regular expres-

sions applied to IP network monitoring. Support for it on data streams would require the

ability to detect the end of the flow, which is a nontrivial task. We can accomplish that by

using the heartbeat mechanism [89], but it is beyond the scope or need of the motivation

for the work here.
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Chapter 7

7 Concluding Remarks and Future Work

7.1 Summary of Contributions

With the growth in popularity and complexity of streaming applications, there’s a rising

need for more sophisticated analyses of massive high speed data generated by such appli-

cations. Such analyses often needs to be performed in near real-time, using limited system

resources. Under such conditions, it is very important to find appropriate balance between

the efficiency of processing and the accuracy of the produced results. A common technique

is to filter the stream with suitable conditions so that the resulting data size is manageable,

and the analyses are still accurate.

The work presented in this thesis focused on a number of complex filtering techniques

that are of interest in data steam processing in general and in network traffic monitoring in

particular. These techniques allow the analyst to define a filtering condition that is going

to be more appropriate for the particular query at hand than the simpler random uniform

sampling.

Data stream sampling is one of the widely used filtering techniques and in chapter 3

we design a single streaming operator which can be specialized for a wide variety of so-

phisticated stream sampling algorithms. The operator was implemented and tested in the

Gigascope DSMS. It imposes only a small CPU overhead compared to a simple selection

operator and scales in performance to line speeds. The significance of this contribution is
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that this operator is a simple way in which sophisticated streaming algorithms that return

set values can be integrated in to the query processing system. In addition to capturing a

common thread of query evaluation, the operator is quite elaborate and is able to maintain

information about groups, supergroups, aggregates and superaggregates, which gives the

analyst the level of flexibility required for implementation and customization of various

stream sampling algorithms.

Additionally, we have proposed a solution for flow sampling mechanism, which inte-

grates the logic of flow aggregation as well as flow sampling into one procedure that works

directly on the IP traffic. This solution works at speeds of more than 200k+ packets per

second with only moderate load on the CPU and may also be the only viable way during

adverse traffic conditions when the number of flows increases significantly.

The sampling algorithms described in chapter 3 offer solutions for evaluation of various

properties of data streams in terms of forward distribution. In contrast, in chapter 4 we in-

troduced and formalized the notion of the inverse distribution for massive data streams. The

main contribution of this work is a novel technique that draws and dynamically maintains

a uniform sample of items in the presence of not only insertions, but also deletions, with

provable guarantees. Such sample can provide solution to a number of inverse distribution

problems, such as heavy hitters, quantiles and range queries. In more general terms, this

filtering technique provide a different insight on into various aspects of data streams than

techniques that work with forward distributions.

A common type of query on data streams that searches for records matching a dynamic

involves a self-join, which might be hard to evaluate in an efficient and stable manner un-

der adversary conditions without significantly compromising accuracy of the results. In

chapter 5 we addressed this problem by introducing a filter join operator which, unlike

conventional join and self-join, has inexpensive implementation, and can be used to an-

swer this class of filtering queries. We also presented analyses of query transformations

which expose the filter join operator in conventional query join. We implemented the oper-

ator in Gigascope DSMS, tested it on live network streams and found order-of-magnitude

performance improvements when compared to traditional hash join.
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Finally, in chapter 6 we studied the problem of matching regular expression that spans

multiple data records in a data stream in the presence of duplicates and out-of-order records.

Prior work in this area only addresses this problem by either matching regular expressions

against data that fits into a single record, reassembling the entire message before matching,

or by utliizing specialized hardware. We presented a number of algorithms that can match

regular expressions over multiple data stream items without reassembly, by maintaining

partial state of the data in the stream. Our experimental study showed that the algorithms

are efficient, achieving a high compression of active state by comparison to other methods

that reassemble the entire message, while being comparable the running time.

7.2 Directions for Future Research

Work presented by this thesis can be further extended as follows:

• Pushing down the sampling operator: In the study presented in chapter 3, the sam-

pling operator is placed at the higher level of processing, while the initial simple

filtering of the data is performed at the lower level. This is done because the opera-

tions performed by the sampling procedure can be quite elaborate and very expensive

to evaluate on every imcoming record of a high speed data stream. However, it’s

worthwhile researching whether it is possible to push a part of the sampling proce-

dure evaluation into the lower levels of processing. To answer this question, more

extensive study is required in understanding sampling procedures and their common

pattern of evaluation.

• Other types of algorithms with sampling framework: The operator presented in

chapter 3 was developed to handle a large class of data stream sampling algorithms

that follow a particular common pattern of evaluation. An interesting question is - are

there other types of algorihtms that would fit into the presented sampling framework

or framework similar to that?

• Complex queries on inverse distribution: The study of inverse distribution pre-

sented by this thesis shows generation of a sample of distinct items, which can be used

in answering a number of inverse distribution queries, including heavy hitters, range
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queries and quantiles. However, it remains open to answer more complex queries over

inverse distribution, such as computing frequency moments or detecting anomalies.

• Forward distribution with insertions and deletions: A fundamental question that

arises is to design algorithms to maintain a uniform sample of theforwarddistribution

underboth insertions and deletions over data streams or show that this is impossible

- as noted in the chapter 4, no existing algorithms guarantee to return a non-empty

sample in this setting.

• Extending filter join to full join : The filter join procedure described in chapter 5

was developed with the assumption that all flow records appear on a single link and

therefore no tuple synchronization is necessary. One natural continuation of this work

is to extend filter join procedure to a full join of two independent streams. In the latter

scenario a more complex procedure for tuple synchronization is required.

• Optimization of regular expression matching: Work described in chapter 6 focused

on the development of an efficient procedure of DFA traversal and state maintenance,

however no effort was invested in other optimizations of the procedure. For instance,

it would be interesting to explore integration of newly proposed compact DFAs, such

asD2FA [94] (Delayed Input DFA) orCD2FA [95] (Content Addressed Delayed

Input DFA) with the algorithms described by this thesis.
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