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ABSTRACT OF THE DISSERTATION

Quantum walks and ground state problems

by Peter Courtland Richter

Dissertation Director: Mario Szegedy

Since the appearance of Shor’s factoring algorithm in 1994, the search for novel quantum

computer algorithms has proved surprisingly difficult. Two design approaches that have

yielded some progress are quantum walks and adiabatic computing. The former has

been shown to speed up algorithms whose complexity is related to the classical hitting

time of a symmetric Markov chain, and there is evidence that the latter speeds up

simulated annealing algorithms for computing ground states of classical Hamiltonians.

In this thesis, we look into the possibility of obtaining a quantum speedup for the

mixing time of a symmetric Markov chain. We prove that by subjecting a quantum walk

to a small amount of decoherence (typically the adversary of a quantum computer), it

can be forced to mix to the correct stationary distribution, often considerably faster than

its classical counterpart. A more general theorem to this effect would imply quantum

speedups for a variety of approximation algorithms for #P-complete problems.

We conclude with some observations on adiabatic computing – a time-dependent

generalization of the quantum walk framework – and the problem of estimating the

ground state energy of a quantum Hamiltonian with local spin interactions.
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Chapter 0

Introduction

Quantum computing is an interdisciplinary area of research spanning physics, computer

science, and mathematics. It is concerned with two fundamental questions:

1. Can a scalable computer be built using quantum bits and logic gates?

2. What problems would become more tractable on such a computer?

The former is of interest to physicists who view the challenge of building a quantum

computer as a test for engineering and controlling large-scale quantum systems. The

latter preoccupies computer scientists studying quantum algorithms and complexity and

is the subject of this thesis.

Thus far, only three types of computational problems have been shown to be solvable

more efficiently on a quantum computer than on a classical computer. The first of these

is algebraic and number-theoretic problems – most prominently, the integer factorization

and discrete logarithm problems, for which Peter Shor discovered efficient quantum

algorithms in 1994 [98]. Both problems are believed to be intractable on a classical

computer; in fact, the security of most encrypted electronic communications in use

today relies on precisely this assumption.

The second is combinatorial search problems. Lov Grover proved in 1996 that brute-

force quantum search of a database of N items can be accomplished using only O(
√
N)

queries [52]. A simple extension of Grover’s algorithm called amplitude amplification

boosts the success probability of a randomized search algorithm to 0.99 from any ε > 0

by running it only O(
√

1/ε) times [28]. Each of these quantum algorithms is optimal

and quadratically better than the best classical algorithm [25].

The third is simulation of quantum systems. Physicists typically identify a quantum

system by its Hamiltonian, the Hermitian operator that drives Schrödinger’s equation.
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In a system consisting of n locally interacting particles with 2 or more spin states each,

the Hamiltonian has a succinct (polynomial-size) matrix representation but the system

state is described by an exponential-size vector. Richard Feynman suggested in 1982

[48] that a quantum computer could be used to simulate the dynamics of such a system

efficiently. Since then, a line of research [44, 108, 33, 7, 32, 27] has confirmed this

possibility and produced a considerable algorithmic framework surrounding Feynman’s

original idea.

The lack of orthogonal breakthroughs in the field has spurred researchers to extend

these quantum algorithms to paradigms or meta-algorithms and to identify the most

general classes of problems they can efficiently solve. Kitaev [67] showed how to use

phase estimation, an extension of Shor’s algorithm, to solve the more general Abelian

hidden subgroup problem. Ambainis [16] showed that quantum walks – the quantum ana-

logues of classical Markov chains – can solve element distinctness and other structured

search problems more elegantly and efficiently than Grover’s algorithm or amplitude

amplification. Farhi et al. [44] proposed simulating the adiabatic dynamics of a time-

dependent spin Hamiltonian in order to compute its ground state – the eigenvector

whose eigenvalue is smallest – more efficiently than randomized local search strategies

like simulated annealing.

The extension of Grover’s algorithm to quantum walk algorithms, beginning with

Ambainis’ algorithm for the element distinctness problem, has proved particularly fruit-

ful. Random walks are widely used in classical search (“hitting”) algorithms and sam-

pling (“mixing”) algorithms, and researchers suspected prior to Ambainis’ discovery

that quantum walks might speed up these algorithms. Nayak et al. [81, 17] and

Aharonov et al. [4] were the first to investigate whether quantum walks might speed

up classical mixing algorithms, but their results were inconclusive: though quantum

walks “mix” more quickly than their classical counterparts on one-dimensional cycles,

their behavior on more complex graphs (likely to appear in algorithmic applications like

approximate counting [41, 57, 58, 59]) is less obvious. On the other hand, Ambainis

[16] and other researchers [75, 30, 73, 19] have found that quantum walks do in many

cases speed up classical hitting algorithms.
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Is it the case then that while quantum walks can speed up hitting algorithms, they

cannot speed up mixing algorithms? In the author’s opinion, there is sufficient reason to

believe that this prospect is unlikely. Nevertheless, the quantum speedup of a classical

mixing algorithm has yet to be demonstrated.

Overview of the dissertation. This thesis is focused on quantum walks and their

algorithmic applications to search and sampling problems and on quantum ground state

problems like the local Hamiltonian and their solution by adiabatic algorithms.

Our primary original contribution is a definition and analysis of the “quantum mix-

ing time.” We motivate this concept by introducing first the “quantum hitting time.”

A Markov chain is a sequence of random variables distributed according to {P tq}∞t=1,

where q is an initial probability distribution on the “states” [N ] := {0, 1, . . . , N − 1}

and P is an N × N stochastic matrix of random “state transitions” [N ] → [N ]. We

frequently use the term “Markov chain” when referring to P as well. Suppose that

a subset M ⊆ [N ] of the states is “marked,” and let the hitting time hu denote the

expected time to transit to a marked state for the first time when starting from the

uniform distribution q = u. Local search algorithms often reduce to this random

search process, in which case their complexity is strongly related to the hitting time

[13, 96]. Building on the work of several other researchers [109, 97, 16, 20], Szegedy [105]

showed that if P (the matrix) is symmetric, there is a natural quantum walk W with

coefficients derived from those of P whose quantum hitting time (the expected time for

W to detect whether or not |M | > 0) is no more than O(
√
hu). This generalizes both

Grover’s algorithm [52] and amplitude amplification [28], and it can be used to solve

several structured search problems – including element distinctness – faster than any

classical algorithm or (apparently) any quantum algorithm based only on amplitude

amplification [75, 30, 73, 19].

If we run the Markov chain {P tq}∞t=1 from an initial state x ∈ [n] without stopping

at a marked state (or equivalently, if we let |M | = 0), it converges to its stationary

(equilibrium) distribution π. The time required for P tq to become ε-close to π (in

`1 distance) is the mixing time τx. Many Markov chain Monte Carlo algorithms –
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most famously, approximation algorithms for #P-complete problems like evaluating

the permanent of a nonnegative matrix [59] or the volume of a convex body [41] –

reduce to this random process for (approximate) sampling from π, and their complexity

is fundamentally tied to the mixing time. In practice, τx is often estimated by the

inequality [11, 40, 99]

δ−1 ≤ τx ≤ δ−1 log 1/π(x) (1)

where δ is the spectral gap of P – the difference between its two largest eigenvalues (in

magnitude). But suppose that P is the (symmetric) simple random walk on a regular

graph G = (V,E), in which case π = u is the uniform distribution and log 1/π(x) =

logN . It can be shown [103] that the diameter d(G) (the largest distance between any

two vertices in G) is only:

O(
√
δ−1 logN) (2)

The diameter is an obvious lower bound on the complexity of sampling uniformly at

random from the vertices of G from a worst-case initial vertex x, so it is natural to ask:

Is there is a sampling process with complexity (2) rather than (1)?

We prove that the answer is yes when G is the d-dimensional torus Z
d
n for any n ≥ 2

and d ≥ 1. This process is a decoherent quantum walk – i.e., a quantum walk sub-

jected at random to repeated external measurements. Ironically, decoherence is widely

acknowledged to be the chief physical obstacle to the implementation of a quantum

computer. Kendon and Tregenna [65] first demonstrated in numerical experiments that

decoherence can (even in small amounts) force a quantum walk to converge to the uni-

form distribution quite rapidly. On the other hand, Aharonov et al. [4] proved that

the standard quantum walk on a regular graph G not subject to decoherence – which

propagates more quickly than its classical random walk counterpart [81, 17, 4] – tends

not to “converge” to the uniform distribution except in rare instances. We formulate

a new notion of the quantum mixing time of a decoherent quantum walk derived from

a classical Markov chain P , and we prove (a) that it is finite (i.e., that the limiting

distribution is always uniform) if P is symmetric, (b) that it is robust (i.e., essentially

invariant) under any “reasonable” model of decoherence, and (c) that it beats the up-

per bound (2) when P is the simple random walk on the torus Z
d
n, indicating that
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the “uniform mixing” property of decoherent quantum walks observed by Kendon and

Tregenna [65] can be combined with the “fast propagation” property of Aharanov et

al. [4] to yield a quantum speedup of the classical mixing time. A more general the-

orem to this effect (extended to the class of so-called reversible Markov chains) would

imply quantum speedups for a variety of approximation algorithms for #P-complete

problems.

Our secondary contributions are as follows. First, we extend Szegedy’s quantum

speedup of the classical hitting time [105] (in slightly weaker form) from the class of

symmetric Markov chains to the class of reversible Markov chains. More precisely, we

show that the quantum hitting time of a reversible Markov chain P is at most

O(
√

1/(1 − ||PM ||)) (3)

where PM is the leaking walk matrix obtained from P by deleting all rows and columns

indexed by the marked states M . Magniez et al. [74] showed using an elegant algorithm

that the weaker upper bound

O(
√

1/(δε)) (4)

holds, where ε :=
∑

x∈M π(x) is the fraction of marked states weighted according to the

stationary distribution π of P . This shows (in a common but not universal simplification

of the underlying cost model) that Szegedy’s algorithm remains faster, for example, on

“low-dimensional” reversible Markov chains.

Second, we present some new observations on the the complexity of the local Hamil-

tonian problem – estimating the ground state energy of a spin Hamiltonian specified

by its local interaction terms – and its connection to the adiabatic computing frame-

work. We prove that the local Hamiltonian problem drops from QMA-complete to

BQP-complete if we are promised that the Hamiltonian has a “low-energy” state whose

“overlap” (inner product) with an efficiently computable quantum state is large (inverse-

polynomial size). BQP is the class of decision problems computable by efficient quan-

tum algorithms (the quantum analogue of the determistic and randomized complexity

classes P and BPP) and QMA is the class of decision problems verifiable, or checkable,
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by efficient quantum algorithms (the quantum analogue of the classical nondetermin-

istic classes NP and MA). Our BQP-completeness proof requires little modification to

Kitaev’s proof [68] that the ordinary local Hamiltonian problem is QMA-complete, but

it has the desirable property of producing a ground state isolated from its excited states

by a large spectral gap and relates conceptually to perturbation theory calculations and

adiabatic algorithm design.

The outline of this thesis is as follows. In Part I, we introduce the standard quantum

circuit model of a quantum computer and present quantum algorithms for the integer

factorization and quantum simulation problems. Along the way, we review the discrete-

time (product of unitaries) and continuous-time (Hamiltonian) descriptions of quantum

mechanics and the basic framework of computational complexity. The textbooks by

Nielsen and Chuang [82] and Kitaev, Shen, and Vyalyi [68] are excellent resources for

additional background on quantum computing.

In Part II (the major one), we review Grover’s algorithm and amplitude amplifi-

cation (the starting points for the study of quantum walks), show how to construct

quantum walks from classical random walks, prove that quantum walks can speed up

the classical hitting time (and in turn, several search algorithms), and then prove that

they can speed up the classical mixing time as well. Part II includes material from

the author’s short survey articles [92, 89] and original work of the author published in

[91, 90].

In Part III, we turn our attention from quantum walks to quantum ground state

problems. We explain the framework of adiabatic computing and a present a few

adiabatic algorithms, and we review and offer some new observations on the closely

related local Hamiltonian problem. This is the subject of the author’s ongoing work,

some of which is detailed in the final chapter.



Part I

Fundamentals of quantum

computing

7
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Chapter 1

Quantum circuits

In this chapter, we review the basic principles of discrete-time quantum mechanics and

theoretical computer science, then introduce the quantum circuit model. For illustra-

tion, we present Kitaev’s quantum circuit for phase estimation and show how it solves

the factoring problem.

1.1 Discrete-time quantum mechanics

The evolution of a closed quantum system is governed by a unitary process acting on

a complex vector, or wavefunction. Mathematically, a parallel can be drawn to the

classical scenario in which a probability distribution is acted on by a stochastic process.

However, the physical interpretations are very different.

1.1.1 Postulates of quantum mechanics

The following postulates are fundamental to quantum mechanics – see e.g., Neilsen and

Chuang [82].

Quantum states. Let S be the set of all possible classical states of an isolated

physical system – for example, the configurations of a collection of particles or the

settings of a computer memory. We shall assume that N := |S| < ∞ except where

indicated otherwise. Denote by HS , or simply H, the N -dimensional complex Hilbert

space generated by the classical basis CS of elementary column vectors with coordinates

indexed by the elements of S. The first postulate of quantum mechanics characterizes

the states of the quantum system with classical states S.

Postulate 1.1 A quantum state, or wavefunction, is a vector |ψ〉 ∈ H with 〈ψ|ψ〉 = 1.
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Here |·〉 is Dirac’s notation. It is used widely in quantum mechanics to denote a column

vector |ψ〉, its conjugate transpose 〈ψ|, and the inner and outer products 〈ψ|φ〉 and

|ψ〉〈φ| of two vectors.

If x ∈ S, we use |x〉 to denote the elementary vector from CS associated with x. The

amplitude αx of a wavefunction |ψ〉 at x is the inner product αx = 〈x|ψ〉. A quantum

amplitude αx is related to a classical probability in that |αx|2 gives the probability of

finding |ψ〉 in the state x if it is measured (or observed) in the classical basis.1 However,

a wavefunction |ψ〉 with nonzero amplitudes αx and αy is in neither classical state x nor

classical state y prior to this observation, but rather a superposition of both states. And

unlike probabilities, amplitudes can undergo interference, or destructive cancellation –

a phenomenon exploited widely by quantum algorithms.

Unitary evolution. The second postulate of quantum mechanics states that the

evolution of a closed quantum system is a unitary process.

Postulate 1.2 The time evolution U of a closed quantum system from t to t′ is unitary.

An operator U : H → H is unitary if it satisfies U−1 = U †, where † is the conjugate

transpose. By the spectral theorem of linear algebra, U has a spectral decomposition

{λj , |φj〉} where λj = eiθj and the |φj〉 form an orthonormal basis of H. Geometrically,

a unitary transformation is a change of basis between two orthonormal bases.

Each of the N ! permutation matrices P : HS → HS is unitary. So is the Fourier

transform Fn : HBn → HBn , which is given by

Fn : |x〉 7→
∑

y∈Bn

e
2πix·y

2n |y〉 (1.1)

where x ∈ Bn is an n-bit string and B := {0, 1} is a classical bit. Permutation matrices

and Fourier transforms are ubiquitous in quantum computing.

Projective measurement. When a previously isolated quantum system interacts

with its environment, its evolution is no longer unitary. This interaction is called

measurement. The most basic type of measurement is projective.

1The concept of quantum measurement will be more fully explained shortly.
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Postulate 1.3 Projective measurement of a wavefunction |ψ〉 is performed with respect

to a Hermitian operator or observable H =
∑

k mkPk, where the mk are distinct real

values and the Pk form a complete system of orthogonal projectors. If |ψ〉 is measured

with respect to H, then with probability pk = 〈ψ|Pk|ψ〉, the result of the measurement

is the outcome mk and the collapse of |ψ〉 to the state
√

1/pk · Pk|ψ〉.

An operator H : H → H is Hermitian if H = H †. By the spectral theorem, H has a

spectral decomposition {λj , |φj〉} where the λj are real and the |φj〉 form an orthonormal

basis of H. The expression H =
∑

k mkPk is just the spectral decomposition, with

Pk =
∑

j:λj=mk
|φj〉〈φj |.

If H has distinct eigenvalues, then mk = λk and Pk = |φk〉〈φk|, and the result of the

measurement is a collapse of |ψ〉 to the eigenstate |φk〉 with probability pk = |〈φk|ψ〉|2.

Measurement in the classical basis is obtained by choosing H to be diagonal so that its

eigenstates are classical states.

Composite systems. The final postulate of quantum mechanics stipulates how a

composite quantum system is described by its component systems. Let ⊗ denote the

tensor product operation.

Postulate 1.4 If the states |φ〉 ∈ H and |φ′〉 ∈ H′ describe two quantum systems in

isolation, then the state |φ〉 ⊗ |φ′〉 ∈ H ⊗H′ describes their composition.

For brevity, we often write |φ〉|φ′〉, |φ, φ′〉, or |φφ′〉 in place of |φ〉 ⊗ |φ′〉.

A quantum computer memory B⊗n = H{0,1}n is a composite system whose compo-

nents are qubits B := HB. This does not mean that every state of a quantum computer

is expressible as a tensor product of one-qubit states: the state 1√
2
(|00〉 + |11〉) ∈ B⊗2

is a simple counterexample. Such states are entangled. Like interference, entanglement

is a critical resource in quantum algorithms.

1.1.2 The density matrix formalism

The aforementioned postulates are sufficient to describe the evolution of any pure quan-

tum state |ψ〉 from its creation to its collapse. But in practice, we must be prepared
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to deal with mixed quantum states specified by ensembles {pj , |ψj〉}, where pj is the

probability that the quantum state is |ψj〉. Mixed states are encountered when inter-

leaving quantum measurements or classical stochastic processes with unitary quantum

processes. They are described elegantly by the density matrix formalism of quantum

mechanics.

Density matrices. Let {pj , |ψj〉} be the ensemble of a mixed quantum state.

Definition 1.5 The density matrix ρ of {pj , |ψj〉} is ρ :=
∑

j pj|φj〉〈φj |.

Denote by L(H) the space of linear operators H → H. Clearly, a density matrix is an

element of L(H) which is Hermitian positive semidefinite with trace one. Conversely,

it follows from the spectral theorem that any positive Hermitian semidefinite operator

with trace one is the density matrix of a mixed quantum state. The map from ensem-

bles to density matrices is not injective; however, it is fairly simple to show that two

ensembles map to the same density matrix if and only if they are indistinguishable by

any quantum measurement.

A rank-one density matrix ρ = |ψ〉〈ψ| ∈ L(H) describes a pure quantum state

|ψ〉 ∈ H. The density matrix ρ ∈ L(H) of a classical distribution p is diagonal with

ρjj = pj. Two density matrices ρ, ρ′ are composed by taking the tensor product ρ⊗ ρ′.

Quantum transformations. A general (non-unitary) quantum process is a linear

map L(H) → L(H′) between operator spaces, or a superoperator. In particular, it maps

density matrices from L(H) to density matrices from L(H′).

Definition 1.6 A quantum transformation T : L(H) → L(H′) is a superoperator that

is trace-preserving and completely positive.

A superoperator T : L(H) → L(H′) is trace-preserving if tr(T (ρ)) = tr(ρ) for every ρ ∈

L(H) and completely positive if T ⊗ In maps the set of Hermitian positive semidefinite

operators to itself for every n ≥ 1.

Unitary evolution U is represented by the quantum transformation T : ρ 7→ UρU †.

Projective measurement H =
∑

k mkPk of the density matrix ρ yields with probability
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pk = tr(ρPk) the outcome mk and the density matrix 1
pk

· PkρPk.

1.2 Classical and quantum circuits

Both classical and quantum algorithms can be described by circuits. A circuit computes

a function of its input by applying a sequence of logic gates. A unitary quantum gate

can take as input a superposition of classical inputs and generate as output another

superposition. Whether circuits built from quantum gates are more powerful than those

built from classical gates is the central problem of quantum complexity theory.

1.2.1 Computational complexity

Before discussing quantum circuits, we briefly review some aspects of computational

complexity to establish context. The textbooks of Papadimitriou [85] and Arora and

Barak [22] are excellent resources for additional background.

Algorithms and computability. An algorithm is (loosely) a finite set of instruc-

tions, or program, for computing a function f : B
∗ → B

∗. A function for which an

algorithm exists is called computable. Informally, a Turing machine Tf executes an

algorithm for a function f using a finite-state automaton (processor) which reads an

input x from a worktape (memory), performs calculations using the worktape as scratch

space, and writes the output f(x) to the worktape. The widely accepted Church-Turing

thesis underpinning computer science postulates that any algorithm can be realized by

a Turing machine:

Postulate 1.7 For any computable function f , there exists a Turing machine Tf com-

puting f .

A family of circuits C = {Cn : B
n → B

∗}n≥1 composed of AND, OR, and NOT gates

also computes a function f : B
∗ → B

∗ – in fact, any function f can be computed by a

circuit family. But this does not mean that every function is computable. To qualify

as an algorithm, a circuit family must be uniform: there must exist a Turing machine

TC which computes on input 1n a description of the circuit Cn.
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Efficiency and complexity. An algorithm is of little practical use unless it executes

quickly. We say that an algorithm computing a function f : B
∗ → B

∗ has time com-

plexity t : N → R if the algorithm terminates within t(n) steps on any input x ∈ B
n.

When measuring time complexity (or any other function), we write t(n) = O(s(n)) if

there is a constant c such that t(n) ≤ c · s(n) for n sufficiently large. Moreover, we

write t(n) = Ω(s(n)) if s(n) = O(t(n)), and t(n) = Θ(s(n)) if t(n) = O(s(n)) and

t(n) = Ω(s(n)). The complexity class P consists of those predicates (or decision prob-

lems) f : B
∗ → B having an efficient algorithm – i.e., one whose time complexity is

bounded above by a fixed polynomial pf (n). Equivalently, a predicate is in P if the

Turing machine TC computing its uniform circuit family C is efficient. Predicates in P

are considered to have efficient (deterministic) algorithms.

A probabilistic Turing machine (or randomized algorithm) for a function f : B
∗ → B

∗

computes a function g : B
n+k → B

∗ of an input x ∈ B
n to f and k uniformly distributed

random bits r such that Er[g(x, r) = f(x)] ≥ 2/3 for every x, where E[·] denotes the

expected value. The complexity class BPP consists of those predicates f : B
∗ → B

having an efficient randomized algorithm – i.e., one whose time complexity is bounded

above by a fixed polynomial pf (n). BPP trivially contains P. Bernstein and Vazirani

[26] assert that modern computational complexity (as of 1993) rests on the following

strengthening of the Church-Turing thesis:

Postulate 1.8 Any algorithmic process can be simulated efficiently on a probabilistic

Turing machine.

Here efficient means with polynomial slowdown. Thus, it makes sense to think of BPP

as representing the class of tractable problems.2

Suppose that a predicate is efficiently verifiable in the following sense: There is an

algorithm (called a verifier) computing f : B
∗ → B in time polynomial in n provided it

is given a witness (i.e., a hint) w(x) ∈ B
k in addition to the input x ∈ B

n. This predicate

is said to be in the complexity class NP. Clearly P ⊆ NP, but it is strongly believed that

P 6= NP – i.e., that a predicate which is efficiently verifiable is not necessarily efficiently

2Surprisingly, there is strong evidence that P = BPP – but this is beyond the scope of this thesis.
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computable. NP has complete problems, or predicates that are not in P unless P =

NP. If we allow the verifier to be a randomized algorithm, we obtain the class MA.

Note that BPP ⊆ MA and NP ⊆ MA. See Figure 1.1 for a diagram showing all of the

complexity classes referenced in this thesis and their containment relationships.

NP

P

PP, #P

QMA

BQP MA

BPP

Figure 1.1: Known inclusions among classical and quantum complexity classes.

1.2.2 Quantum circuits and BQP

An n-qubit quantum circuit Un : B⊗n → B⊗n is composed of local unitary gates rather

than AND, OR, and NOT gates. Like any unitary transformation, a quantum circuit

must be invertible, so we typically depict it using parallel wires without the fan-in of

classical circuit diagrams. Just as AND, OR, and NOT (or just NAND) form a universal

gate set for classical circuits, there are small sets of local unitary operators that form

universal gate sets for quantum circuits [68]. However, universal in the latter case

means that for every unitary operator U : B⊗n → B⊗n (of which there is a continuum)

and every ε > 0, a quantum circuit U ′ can be constructed satisfying:

||U − U ′||2 ≤ ε (1.2)
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The Solovay-Kitaev theorem gives an upper bound of O(log4 ε−1) elementary gates on

the size of U ′.

A quantum algorithm is a family of quantum circuits whose description can be

generated uniformly by a (classical) Turing machine.3 We say that a quantum circuit

family {Un}n≥1 computes a function f : B
∗ → B

∗ if the value f(x) is observed with

probability at least 2/3 when Un is applied to the classical state |x〉 with x ∈ B
n.

The complexity class BQP consists of those predicates f : B
∗ → B having an efficient

quantum algorithm – i.e., one whose time complexity is bounded above by a fixed

polynomial pf (n). Bernstein and Vazirani [26] showed that BPP ⊆ BQP.

Let us see a few simple but important examples of quantum circuits:

Reversible classical gates. An oracle is (loosely) a black-box subroutine that re-

turns the value f(x) of a predicate f : B
n → B when queried with the input x. The

query complexity of an algorithm querying an oracle is the number of times the oracle

is queried. The XOR oracle Xf : B⊗n ⊗ B → B⊗n ⊗ B given by

Xf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉, (1.3)

where ⊕ is the XOR operation, is a reversible (unitary) classical oracle gate. So is the

Toffoli gate T : B⊗3 → B⊗3 implementing the permutation

T : |a〉|b〉|c〉 7→ |a〉|b〉|c ⊕ ab〉. (1.4)

Bennett [24] showed that the Toffoli gate is universal for reversible classical circuits,

which are as powerful as circuits with fan-in. Every reversible classical circuit is a

permutation on the set of classical basis states.

One-qubit quantum gates. A phase shifter R(θ) : B → B implements the transfor-

mation:

R(θ) :





1 0

0 eiθ



 (1.5)

3Bernstein and Vazirani [26] first defined a quantum algorithm in terms of a quantum Turing ma-

chine, but Yao [110] later showed that this simpler definition is equivalent.
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The Hadamard gate H : B → B implements the Fourier transform F1 : B → B on a

single bit:

H :
1√
2





1 1

1 −1



 (1.6)

Using the Hadamard gate and the classical XOR oracle gate (along with a single aux-

iliary qubit), we can build the phase-flip oracle Of : B⊗n → B⊗n given by:

Of : |x〉 7→ (−1)f(x)|x〉 (1.7)

Indeed, Xf : |x〉( |0〉−|1〉√
2

) 7→ (−1)f(x)|x〉( |0〉−|1〉√
2

). Together, the Hadamard and Toffoli

gates form a universal gate set for quantum circuits.

Gates with quantum control. If U : B⊗n → B⊗n is a unitary gate, the controlled-U

gate Λ(U) : B ⊗ B⊗n → B ⊗B⊗n is the operator:

Λ(U) : |c〉|ψ〉 7→ |c〉U c|ψ〉 (1.8)

A measuring operator V : H ⊗ H′ → H ⊗ H′ generalizes this idea as follows: Let

Uj : H → H be a collection of unitary operators and Pj : H′ → H′ be a complete

system of orthogonal projectors. Then the unitary operator

V =
∑

j

Pj ⊗ Uj (1.9)

is called a measuring operator. The controlled-U gate is recovered by choosing P0 =

|0〉〈0|, P1 = |1〉〈1|, U0 = I, and U1 = U .

The quantum Fourier transform. The n-qubit Fourier transform (1.1) can be

expressed in the tensor product form

|x1〉|x2〉 · · · |xn〉 7→ |γn〉 · · · |γ2〉|γ1〉 (1.10)

where x = x1x2 · · · xn ∈ B
n and:

|γk〉 =
1√
2
(|0〉 + e2πi(0.xk ···xn)|1〉) (1.11)

It is not hard to see that up to a reverse-ordering of the n qubits, this is precisely the

map computed by the quantum circuit depicted in Figure 1.2, in which boxes labeled H
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and Rk denote Hadamard and R(2π/2k) gates, respectively, and vertical lines indicate

quantum control on the auxiliary qubit.

H R2 Rn

H Rn−1

H

x

x

x

1

2

n γ

γ

γ

n

2

1

Figure 1.2: Quantum circuit for the n-qubit Fourier transform.

1.3 Phase estimation and factoring

Phase estimation is a powerful and widely applicable procedure for obtaining informa-

tion about the eigenvalues of a unitary operator. Here we present the quantum circuit

for phase estimation and show how it can be used on a reversible classical circuit to

solve the factoring problem. Later we will use it to estimate the eigenvalues of more

general unitary operators.

1.3.1 The phase estimation procedure

Let U : B⊗n → B⊗n be a unitary operator with spectrum {e2πiθk , |φk〉}. Generalizing

Kitaev [67], Cleve et al. [38] show:

Theorem 1.9 There is a uniform quantum circuit

Q(U) : |0m〉|φk〉 7→ |θ̄k〉|φk〉, (1.12)

accessing the black-box operators U,U 2, . . . , U 2m−1
such that: (a) if θk can be expressed

exactly using an n-bit binary expansion, then |θ̄k〉 will yield precisely this value when

measured in the classical basis, and (b) if not, then measuring |θ̄k〉 still yields the best

m-bit approximation to θk with probability at least 4/π2.

Proof: The quantum circuit is depicted in Figure 1.3. The box labeled F −1
n denotes

the inverse Fourier transform – i.e., the quantum circuit from Figure 1.2 run in reverse.
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U2 0

H

U U2 21 n−1

H

H

φk

0

0

0

kφ

θkFn
−1

Figure 1.3: Quantum circuit for the phase estimation procedure.

By inspection, the first half of the circuit obtained by excluding F −1
n maps the all-zero

state |0n〉 to the tensor product state:

1√
2n

(|0〉 + e2πi2n−1θk |1〉)(|0〉 + e2πi2n−2θk |1〉)(|0〉 + e2πi20θk |1〉) (1.13)

If θk has an n-bit binary expansion 0.x1x2 · · · xn, then 2jθk = 0.xj+1 · · · xn, in which

case (1.13) simplifies to the right hand side of (1.10). This is mapped by F −1
n to the

state |θ̄k〉 = |x〉, proving claim (a). We prove claim (b) as in [38]. Suppose that

x
2n = 0.x1x2 · · · xn is the best n-bit estimate of θk, and let δ ∈ [− 1

2n+1 ,
1

2n+1 ] be the

difference |θk − 1
2n |. Rewrite (1.13) as 1√

2n

∑2n−1
y=0 e2πiθky|y〉. This state is mapped by

F−1
n to the state:

|θ̄k〉 =
1√
2n

2n−1
∑

z=0

2n−1
∑

y=0

e
−2πizy

2n e2πiθky|z〉 =
1√
2n

2n−1
∑

z=0

2n−1
∑

y=0

e
2πi(x−z)y

2n e2πiδy |z〉 (1.14)

The amplitude 〈θ̄k|x〉 is the geometric series

1

2n

2n−1
∑

y=0

(e2πiδ)y =
1

2n

(

1 − (e2πiδ)2
m

1 − e2πiδ

)

(1.15)

A few easy calculations show the observation probability |〈θ̄k|x〉|2 is at most 4/π2.

1.3.2 Factoring is in BQP

Once we have phase estimation in our arsenal, it is a relatively quick task to show that

the factoring problem is in BQP. So let us do this now.
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The factoring problem is to decompose an n-bit integer N into its prime factors.

Both the predicate “Is there a prime factor less than m?” and its negation are in NP,

which suggests that it is not NP-complete. Moreover, testing N for primality can be

done in P [3]. Nevertheless, simply factoring the product of two large primes seems to

be a computationally intractable problem.

The order finding problem. A problem closely related to factoring (as we shall see

shortly) is order finding. The problem is to find the minimum positive integer r for

which ar mod N = 1, where N is an n-bit number and a < N is coprime to N .

Theorem 1.10 The order finding problem is in BQP.

Proof: Define the permutation:

U : |x〉 7→ |ax mod N〉 (1.16)

If the order of a mod N is r, then the spectrum {λk, |φk〉} of U is:

λk = e2πik/r |φk〉 =
1√
r

r−1
∑

j=0

e−2πikj/r|aj mod N〉 (1.17)

The algorithm is as follows: Prepare the classical state |1〉 = 1√
r

∑r−1
k=0 |λk〉, apply

the phase estimation procedure to U , and measure the first register. By estimating

several random eigenvalues of U to within 1/2r2, we can recover the fraction k/r –

whose simplified denominator is a factor of r – using the classical method of continued

fractions. To obtain this degree of precision using phase estimation, we need to construct

the unitary operators U 2j

for j = 0, 1, . . . , O(log r) = O(n). Fortunately, this modular

exponentiation can be done efficiently (with j multiplications) by repeating squaring.

Reducing factoring to order finding. There is an efficient randomized reduction

from the factoring problem to the order finding problem [78].

Theorem 1.11 There is a polynomial-time randomized reduction from factoring to

order finding.



20

Proof: To factor N odd, generate a number x uniformly at random modulo N and

find its order r. Consider that:

(xr/2 − 1)(xr/2 + 1) = xr − 1 = 0 mod N (1.18)

If r is even and xr/2 6= −1 mod N , then the greatest common divisor of (xr/2 − 1) and

N – which is efficiently computable by Euclid’s algorithm – is a nontrivial divisor of N .

In particular, if N has at least two distinct odd prime factors, then for at least half of

the numbers x modulo N , r is even and xr/2 6= −1 mod N .

Therefore, the factoring problem is in BQP. If factoring is as hard as we suspect for

classical computers, then it seems that quantum computers (if physically constructible)

are more powerful than classical computers – in particular, that BPP 6= BQP, violating

Postulate 1.8.
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Chapter 2

Quantum Hamiltonians

Quantum mechanics is traditionally formulated in continuous time using the Hamilto-

nian framework. We use this chapter to review two basic concepts relevant to quantum

computing – Schrödinger’s equation and the adiabatic theorem – and to show how a

quantum computer can be used to simulate or estimate the ground state energy of a

quantum Hamiltonian.

2.1 Continuous-time quantum mechanics

Postulate 1.2 states that a closed quantum system evolves by a unitary process, but it

does not specify how such a process is generated in continuous time. This is our present

task.

2.1.1 Schrödinger’s equation

Erwin Schrödinger proposed in 1925 the following equation governing the dynamics of

pure quantum states:

~
d

dt
|ψ(t)〉 = −iH(t)|ψ(t)〉 (2.1)

Let us assume that Planck’s constant ~ = 1 in the underlying physical units. As long

as the Hamiltonian H is a Hermitian operator, the process is unitary (and vice versa).

In particular, if H is time-independent then Schrödinger’s equation is easily solved:

|ψ(t)〉 = e−iHt|ψ(0)〉 (2.2)

The time-dependent version is rarely this easy, although many clever techniques have

been developed for special cases. One such technique, the adiabatic theorem, will be

discussed shortly.
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The Hamiltonian is more than just the driver of Schrödinger’s equation. It is also

an observable (recall Postulate 1.3) – in particular, it is the energy observable. The

minimum eigenvalue λ1 of H is the ground state energy, and an eigenvector of λ1 is

a ground state. If λ1 is a repeated eigenvalue, then the subspace of ground states is

degenerate. An eigenvector of λj > λ1 is an excited state. We define the spectral gap of

H by minj 6=1 λj −λ1, and the spectral gap above the ground space by minj:λj 6=λ1 λj −λ1.

A classical Hamiltonian is one whose off-diagonal elements are zero, so its eigenstates

are classical states.

2.1.2 The adiabatic theorem

The original adiabatic theorem of quantum mechanics, proved by Max Born and V.A.

Fock in 1928, says the following:

A quantum system remains in its ground state if perturbed slowly enough by

a Hamiltonian with nonzero spectral gap.

Let H(s) be a time-dependent Hamiltonian (the “adiabatic path”) parametrized by

s ∈ [0, 1], and denote by |φ(s)〉 and δ(s) its ground state and spectral gap, respectively.

Let |ψ(s)〉 be the system state and τ(s) be the delay schedule, or the rate (in real time)

at which H(s) is applied to |ψ(s)〉. Reparametrized, Schrödinger’s equation reads:

d

ds
|ψ(s)〉 = −iτ(s)H(s)|ψ(s)〉 (2.3)

In particular, the Hamiltonian H(s) evolves fromH(0) to H(1) in time
∫ 1
s=0 τ(s)ds. The

folklore quantitative version of the adiabatic theorem (specifying what “slowly enough”

means) says the following.

Theorem 2.1 If |ψ(0)〉 = |φ(0)〉, then |ψ(1)〉 ≈ |φ(1)〉 provided that:

τ(s) ≈ || d
dsH(s)||
δ(s)2

(2.4)

Reichardt [86] proved the following rigorous formulation of Theorem 2.1 for all k ≥ 1.

τ(s) = O

(

max1≤l≤k+1 ||( d
ds )lH(s)||1+1/k

δ(s)2+1/k

)

(2.5)



23

In particular, for the linear adiabatic path H(s) := (1− s)H0 + sH1 a delay schedule of

τ(s) = O

( ||H1 −H0||1+ε

δ(s)2+ε

)

(2.6)

works for any ε > 0. Ambainis and Regev [21] proved a weaker statement than Re-

ichardt’s using different techniques.

2.2 Simulating Hamiltonian dynamics

The idea of using quantum computers to simulate quantum Hamiltonian dynamics

goes back to Feynman [48]. Quantum simulation algorithms have been given by Farhi

et al. [44], van Dam et al. [108], Childs et al. [33], Aharonov and Ta-Shma [7], and

Childs [32]. Here we summarize a recent algorithm of Berry et al. [27] for simulating

time-independent Hamiltonian dynamics.

Let H : H → H be a time-independent Hamiltonian. We wish to simulate H for

time t – i.e., to approximate U = e−iHt by a quantum circuit U ′ with precision ε in the

sense of (1.2). Let H have dimension at most 2n, so its states can be represented using

n qubits. We use n as the parameter with respect to which efficiency is measured – i.e.,

the simulation algorithm is efficient if and only if its time complexity is polynomial in

n, ε−1, and τ := ||H||t.

Let H be such that each column has at most d nonzero entries. If d is polynomial

in n, we say that H is sparse. We shall assume that the nonzero entries of a column

H(·, j) are accessed by querying an oracle with the column label j.1 Let log∗ denote

the iterated logarithm. Berry et al. [27] prove the following.

Theorem 2.2 For any integer k ≥ 1, there exists a uniform quantum circuit U ′ ap-

proximating U = e−iHt for t = τ/||H|| with query complexity:

O((log∗ n)d252k(d2τ)1+1/2k/ε1/2k) (2.7)

Proof: The details are considerable, but the high-level ideas are not hard to convey.

First, it is shown thatH can be decomposed into a sum ofm = 6d2 “local” Hamiltonians

1We can think of this oracle as generating an adjacency list representation of H.
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Hj, each with at most one nonzero entry per column. Each e−iHj t can be simulated

using two queries to Hj [33], and each query to Hj can be simulated by O(log∗ n) queries

to H.2

The problem is thus reduced to simulating the Hamiltonian H =
∑m

j=1Hj by the

local termsHj. This is nontrivial because eHj+Hk 6= eHjeHk unlessHj andHk commute.

The insight of [27] is to use the higher order Suzuki recursion

S2k(λ) = [S2k−2(pkλ)]2S2k−2((1 − 4pk)λ)[S2k−2(pkλ)]2 (2.8)

where S2 is the basic Lie-Trotter formula used to approximate
∑m

j=1Hj by interleaving

the Hj in a round-robin fashion:

S2(λ) =
m
∏

j=1

eHjλ/2
1
∏

j′=m

eHj′λ/2 (2.9)

In particular, they show that

||e−i
Pm

j=1 Hj t − [S2k(−it/r)]r|| ≤ ε (2.10)

provided that we choose r = d4 · 5k−1/2(mτ)1+1/2k/ε1/2ke. The total number of expo-

nentials e−iHj t/r needed for the simulation is at most

2m5k−1r ≤ 2m52k(mτ)1+1/2k/ε1/2k (2.11)

and the theorem follows.

A simple corollary is that H is efficiently simulable if it is sparse [7].

Suppose instead that we wish to simulate time-dependent dynamics along the linear

adiabatic path H(s) = (1 − s)H0 + sH1, s ∈ [0, 1]. If H0 and H1 are efficiently

simulable, then so is the entire path H(s) [44, 108, 7]. The idea is to approximate

H(s) as a sequence of Hamiltonians H(s1),H(s2), . . . ,H(sm), then to simulate the

time-independent dynamics of each of the H(sj) using Theorem 2.2.

2If we wish to measure time complexity rather than query complexity, then an additional factor
O(n log∗ n) is necessary here [27].
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2.3 Estimating the ground state energy

We can use phase estimation (Theorem 1.9) and Hamiltonian simulation (Theorem 2.2)

to verify that a sparse Hamiltonian has ground state energy below some threshold, given

a copy of the ground state as a (quantum) witness.

Theorem 2.3 There is an efficient quantum algorithm verifying that a sparse Hamil-

tonian H of dimension at most 2n and spectral norm polynomial in n has ground state

energy at most a, where a is specified to O(log n) bits of precision.

Proof: Since H is sparse, it is efficiently simulable to time t = τ/||H|| polynomial

in n. In particular, there are efficient quantum circuits approximating the unitary

evolutions eiH2j

for each j = 0, 1, . . . , s = O(log n). Thus, given an eigenstate of eiH ,

the corresponding eigenvalue can be computed efficiently to O(log n) bits of precision

using phase estimation. By rescaling H if necessary, we may assume that its spectrum

{λk, |φk〉} satisfies π/2 ≤ λk ≤ π/2. Then the spectrum {eiλk , |φk〉} of eiH preserves

the order of eigenvalues of H (mapping them from the real line to the unit circle), and

the ground state |φ1〉 of H is a witness that the phase of the corresponding eigenvalue

eiλ1 of eiH (i.e., the ground state energy λ1 of H) is at most a.

It is not necessary for the witness |ξ〉 to be the ground state |φ1〉, only “near” a “low-

energy” state in the following sense: there should exist a state |ψ〉 of energy at most a

such that the quantity |〈ψ|ξ〉|2 is at least inverse-polynomial in n.
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Chapter 3

Quantum search algorithms

The study of quantum walk algorithms begins with Grover’s algorithm and amplitude

amplification. While these are not quantum walk algorithms strictly speaking, they

can be interpreted as such. In this chapter, we review these two algorithms and their

applications.

3.1 Grover’s algorithm

Grover’s search algorithm [52] locates a marked item from a database of N items using

O(
√
N) quantum queries to the database. It is trivial to prove that a classical ran-

domized algorithm can do no better than Θ(N). Next to Shor’s factoring algorithm,

Grover’s algorithm is the most well-known quantum algorithm. Though its quantum

speedup is not exponential like Shor’s, its applications are more numerous.

3.1.1 The quantum search framework

Grover’s algorithm solves the search problem.

Definition 3.1 Given oracle access to a predicate f : B
n → B, the search problem is

to find an x ∈ f−1(1) if one exists. The corresponding decision problem is to determine

whether |f−1(1)| > 0.

We may assume that f is presented to us by the phase flip oracle (1.7), which we rewrite

as:

Of = I − 2
∑

x∈f−1(1)

|x〉〈x|. (3.1)
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Let N = 2n. Define the uniform superposition |u〉 ∈ B⊗n by

|u〉 :=
1√
N

∑

x∈Bn

|x〉 (3.2)

and the Grover diffusion operator G : B⊗n → B⊗n by

G := 2|u〉〈u| − I. (3.3)

Both |u〉 and G are easily constructed:

|u〉 = H⊗n|0n〉 G = H⊗n(2|0n〉〈0n| − I)H⊗n (3.4)

Grover’s algorithm is the circuit

(GOf )k|u〉 (3.5)

for k appropriately chosen. The proof that this solves the search problem with k =

O(
√
N) is simple and elegant.

3.1.2 Proof of the quadratic search speedup

Let M = |f−1(1)|. We show:

Theorem 3.2 If M > 0, then Grover’s algorithm finds an x ∈ f−1(1) using O(
√

N/M )

quantum queries.

Proof: Define the following orthogonal states:

|α〉 :=
1√

N −M

∑

x∈f−1(0)

|x〉 |β〉 :=
1√
M

∑

x∈f−1(1)

|x〉 (3.6)

Let L := span{|α〉, |β〉}. It is easy to check that L is an invariant space for both G and

Of , and that |u〉 ∈ L. Therefore, the action of Grover’s algorithm lies entirely within

the two-dimensional subspace L. Geometrically, G|L and Of |L are reflections about the

vectors |u〉 and |α〉. The product of two reflections is a rotation by twice the angle θ

between the reflection axes (see Figure 3.1), so GOf |L is a rotation by:

2θ = 2 cos−1〈α|u〉 = 2 sin−1〈β|u〉 = 2 sin−1
√

M/N (3.7)

For M � N , 2 sin−1
√

M/N ≈ 2
√

M/N . It follows that the state (GOf )k|u〉 has

constant inner product with |β〉 for k := d π
4

√

N/Me.
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Figure 3.1: The product of two reflections in Grover’s algorithm.

The quadratic search speedup of Grover’s algorithm matches the lower bound proved

earlier by Bennett et al. [25]. Thus, there is no efficient “brute-force” quantum algo-

rithm for solving NP-complete problems.

Note that the eigenvalues e±2iθ of GOf |L reveal the number of solutions M to the

search problem. Using phase estimation, we can approximate M more efficiently than

possible classically [82].

3.2 Amplitude amplification

Suppose we have a classical randomized algorithm Rf computing a predicate f : B
n → B

with one-sided error, meaning that Rf outputs 0 with certainty if x ∈ f−1(0) and 1

with success probability at least ε > 0 if x ∈ f−1(1). By repeating Rf O(1/ε) times and

outputting 1 if and only if any of the trials do, we can obtain an algorithm computing

f with success probability at least 2/3.

Now suppose we have a quantum algorithm Af : Bk → Bk computing f with one-

sided error and success probability ε. Brassard et al. [28] show:

Theorem 3.3 There is a quantum algorithm computing f with success probability at
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least 2/3 that queries Af O(1/
√
ε) times.

Proof: Assume for simplicity that Af maps the input register |x〉 and the (initially

zero) work register |0k−n〉 to the state

Af |x〉|0k−n〉 = cos θx|ψx,0〉|0〉 + sin θx|ψx,1〉|1〉 (3.8)

whose final qubit contains the “answer” to f(x) – in particular, sin2 θx is ε if f(x) = 1

and 0 if f(x) = 0. Define the reflection operators

G′ = Af (2|x, 0k−n〉〈x, 0k−n| − I)A−1
f O′ = I − 2|ψx,1, 1〉〈ψx,1, 1| (3.9)

as analogues of the Grover diffusion operator (3.3) and the phase flip oracle (3.1),

respectively. The amplitude amplification circuit is given by:

(G′O′)k|x, 0k−n〉 (3.10)

The analysis is similar to that of Grover’s algorithm. The algorithm is confined to

the two-dimensional subspace L := span{|ψx,0, 0〉, |ψx,1, 1〉}, and G′|L and O′|L are

reflections about the axes Af |x, 0k−n〉 and |ψx,0, 0〉, respectively. Since these axes are

separated by an angle θx, G
′O′|L is a rotation by

2θx = 2 sin−1 √ε (3.11)

which for ε� 1 is approximately 2
√
ε. It follows that the state (G′0′)k|x, 0k−n〉 outputs

1 in the answer register with constant probability for k = d π
4

√

1/εe.

Høyer et al. [54] show that the success probabilities of quantum algorithms with

two-sided error can also be amplified more efficiently than possible classically. The

proof is more intricate than for one-sided error.

3.3 Algorithmic applications

Applications of Grover’s algorithm and amplitude amplification in quantum algorithms

are ubiquitous. We highlight just a few.
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Constraint satisfaction. In a constraint satisfaction problem we are given n vari-

ables {xi}, each of which can take any value from [d], and m constraints (or clauses)

{cj}, each involving at most k of the n variables. The goal is to find an assignment

{xi} ∈ [d]n that simultaneously satisfies all m constraints. A well-known example is

3-SAT, where d = 2, k = 3, and the clauses are Boolean formulae composed of logical

OR and negation operations. Most constraint satisfaction problems (including 3-SAT)

are NP-complete. Grover’s algorithm can be used to search for a satisfying assignment

with a quadratic speedup over classical brute-force search through the space of assign-

ments. However, brute-force search is not the optimal classical algorithm: Schöning

[96] gave a randomized algorithm that in polynomial time finds a satisfying assign-

ment with probability Ω(1/(d(1 − 1/k))n). Using amplitude amplification rather than

classical probability amplification, we can speed up Schöning’s algorithm quadratically

(Ambainis [15]).

Element distinctness. The element distinctness problem is to determine whether

the elements {x1, x2, . . . , xn} are distinct, or equivalently to decide whether a function

on n variables is injective, using queries of the form “What is the value of xi?” The

classical query complexity is Θ(n). Aaronson and Shi [2] showed that the quantum query

complexity is Ω(n2/3). Burhman et al. [29] gave the following quantum algorithm using

O(n3/4) queries. Select a subset S ⊆ [n] of size
√
n uniformly at random and query each

xi for i ∈ S, outputting “not distinct” if any two are equal. Then use Grover’s algorithm

to search for an index j /∈ S such that some i ∈ S satisfies xi = xj, outputting “not

distinct” if one is found. This algorithm uses O(
√
N) queries to either output “not

distinct” or determine that the elements of S are distinct with each other and with

[n]\S. Since S has at least a 1/
√
n chance of intersecting any pair xi = xj if one exists,

repeating the algorithm O(n1/4) times using amplitude amplification yields an O(n3/4)

algorithm for element distinctness.

Triangle finding. The triangle finding problem is to decide whether an n-vertex m-

edge graph G = (V,E) contains a triangle (clique of size three) using queries of the
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form “Are vertices u and v connected by an edge?” The classical query complexity is

Θ(n2). Searching the space of all potential triangles {(u, v), (v, w), (w, u) : u, v, w ∈ V }

by Grover’s algorithm uses O(n3/2) queries. Burhman et al. [29] gave the following

algorithm which is more efficient if G is sparse – i.e., if m = o(n).1 Use Grover’s

algorithm to find (a) an edge (u, v) ∈ E followed by (b) a vertex w ∈ V such that

{u, v, w} is a triangle. The costs of steps (a) and (b) are O(
√

n2/m) and O(
√
n) queries,

respectively. IfG contains a triangle ∆, then step (a) will find an edge (u, v) from ∆ with

probability Ω(1/m), and step (b) will find the third vertex with constant probability.

By repeating the steps O(
√
m) times using amplitude amplification, a triangle is found

with constant probability. The total cost in queries is O(
√
m(
√

n2/m+
√
n)) = O(n+

√
nm). Szegedy [104] gave a more involved algorithm based on amplitude amplification

improving this to Õ(n10/7).2 For details, see the short survey [89].

Matrix product verification. The matrix product verification problem is to deter-

mine whether three n× n matrices A, B, C satisfy AB = C using (adjacency matrix)

queries of the form “What is the value of A(i, j)?” The classical time complexity is

Θ(n2) by Freivalds’ algorithm [50]: check whether A(Bx) = Cx for a random vector

x and output “equal” or “not equal” based on whether the test passes or fails. Am-

bainis et al. [18] used this idea to give the following quantum algorithm with query

complexity O(n7/4). Select a subset of column indices S ⊆ [n] of size
√
n uniformly at

random. Compute y = B|Sx and z = C|Sx for a random vector x of length
√
n, and

use Grover’s algorithm to search for a j such that (Ay)j 6= zj . Both of these steps can

be done using O(n3/2) queries. This gives a verification test with success probability

1/
√
n, so repeating it O(n1/4) times gives an algorithm succeeding with constant prob-

ability in O(n7/4) queries. A lower bound of Ω(n3/2) queries can be proved by reducing

the matrix verification problem to Boolean formula evaluation [18].

1Recall that f(n) = o(g(n)) if f(n) = O(g(n)) but f(n) 6= Θ(g(n)).

2The notation Õ(·) is used instead of O(·) to suppress a constant number of logarithmic factors.
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Chapter 4

Markov chains and quantum walks

A Markov chain is a stochastic process with time-independent dynamics. The funda-

mental theorem of Markov chains tells us that an ergodic Markov chain converges to a

unique stationary (equilibrium) distribution π. Interpreted in the setting of statistical

physics where it is postulated that all microstates of a closed system at equilibrium

are equally likely – i.e., that π is the (maximum-entropy1) uniform distribution – the

fundamental theorem is equivalent to the second law of thermodynamics:

The entropy of an isolated system tends to a maximum.

In contrast, a unitary process with time-independent dynamics, or quantum walk, can-

not converge to a fixed wavefunction. The complex behavior of quantum walks is

already apparent in one dimension: Figure 4.1 superimposes plots of the probability

distributions induced by the one-dimensional random and quantum walks. In this chap-

ter, we review the theory of classical Markov chains and their algorithmic applications,

then begin the theory of quantum walks by presenting the standard quantum walk

constructions.

4.1 A quick review of Markov chains

There are many technical concepts in the basic theory of Markov chains, several of

which play a role in the transition from Markov chains to quantum walks. We review

them here. For more information on Markov chain theory, see Lovász [71] or Aldous

and Fill [12].

1Recall that the entropy of a distribution p is H(p) := −
P

x∈S
p(x) log p(x). In particular, the

uniform distribution has entropy log |S|.
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Figure 4.1: The behavior of random vs. quantum walks in one dimension.

4.1.1 Definitions and simple examples

Let S be a countable set of states. Unless otherwise stated, we take N := |S| <

∞. An S × S matrix P is a transition probability matrix if it is column-stochastic;

i.e., if each of its columns is a distribution (probability vector), or equivalently, if it

preserves l1 norm of nonnegative vectors. Let q be a distribution on S. The sequence

of random variables (Xt)t∈[0..∞) distributed according to P tq is a discrete-time Markov

chain. More frequently, we use the term Markov chain to refer to any valid transition

probability matrix P , without specifying q. The family of random variables (Yt)t∈[0,∞)

distributed according to e−Qtq is a continuous-time Markov chain with transition rate

matrix Q := I − P .

Random walks on graphs and groups. We can think of any Markov chain as a

random walk on a graph or digraph. The simple random walk on a graph G = (V,E)

is the Markov chain P = A∆−1, where A is the adjacency matrix of G and ∆ is

the diagonal matrix of vertex degrees. We call G the graph underlying P . If G is

a (nonnegatively) weighted graph, we define the random walk on G by P = A∆−1

but with A now the weighted adjacency matrix of G and ∆ the diagonal matrix with
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∆(x, x) =
∑

y A(y, x). If G is a digraph, the same construction again yields a Markov

chain, and any Markov chain can be realized this way. However, we will see shortly

that a nice spectral relation between A and P exists for walks on graphs but not on

digraphs.

A well-studied class of Markov chains is random walks on groups. LetX = {g1, . . . , gd}

be a set of distinct generators for some finite group H. The Markov chain with state

space H whose transitions from an element x ∈ H are x→ xgi with probability 1/d is

denoted by H[X]. We interpret H[X] as a random walk on the Cayley graph Γ(H,X),

which is undirected if and only if gi ∈ X ⇔ g−1
i ∈ X. Often X is clear from context

and we refer only to the simple random walk on H. Examples include the infinite line

H = Z with X = {±1}, the hypercube H = Z
n
2 with X = {ei : 1 ≤ i ≤ n}, and the

torus H = Z
d
n with X = {±ei : 1 ≤ i ≤ d}.

Irreducibility and reversibility. A stationary distribution π for a Markov chain P is

a probability vector satisfying Pπ = π. The Perron-Frobenius Theorem for nonnegative

matrices guarantees the existence of a stationary distribution for any finite Markov

chain. Moreover, uniqueness and strict positivity of the stationary distribution are

guaranteed if P is irreducible; i.e., if the digraph G underlying P is strongly connected.

The stationary distribution for the random walk on a graph G = (V,E) is given by

π(x) = d(x)/2|E|, where d(x) is the degree of x ∈ V .

Let P be a Markov chain and π > 0 be a distribution satisfying the detailed balance

condition P (y, x)π(x) = P (x, y)π(y); or equivalently, suppose that the matrix

M(P ) :=
√
R
−1
P
√
R where R := diag(π) (4.1)

is symmetric. Then P is reversible – from π (necessarily its stationary distribution),

it appears the same run forward or backward in time.2 Moreover, the fact that it is

similar to a real symmetric matrix implies that it has a complete system of orthogonal

eigenvectors {vk}N
k=1 and real eigenvectors 1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ −1. For

example, a Markov chain P that is symmetric (i.e., P equals its transpose) is reversible

2This notion of reversibility is not to be confused with the reversibility property of unitary processes.
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with uniform stationary stationary distribution and satisfies M(P ) = P .3 The random

walk on a weighted graph from earlier is also reversible; in fact, any reversible Markov

chain can be realized as the random walk on a weighted graph.

A particularly famous example of a reversible Markov chain is the Metropolis process.

Suppose we wish to sample from an arbitrary distribution π > 0 on a set S and are able

to construct a single irreducible Markov chain P on S. When S is a set of combinatorial

objects (e.g., microstates in statistical physics or data structures in computer science),

one typically obtains P by a local update rule (e.g., change a single spin or flip a single

edge), called the Glauber dynamics in statistical physics. We obtain the Metropolis

process P ′ using P as follows: at each state x ∈ S, select an adjacent state y with

probability P (y, x) and move to y with probability min{1, P (x,y)
P (y,x) ·

π(y)
π(x)}; otherwise, stay

put. We will see some applications of the Metropolis process in the next section.

4.1.2 Mixing and hitting times

The two Markov chain parameters most crucial to algorithmic applications are the

mixing time and the hitting time.

Ergodic Markov chains. Under what circumstances does an irreducible Markov

chain converge to its stationary distribution π from any initial distribution? Equiv-

alently, when does it approach the limit matrix P∞ := [ππ · · · π]? In the case of a

continuous-time Markov chain, the answer is always:

e−Qt =

∞
∑

s=0

e−tts

s!
P s → P∞ as t→ ∞ (4.2)

if and only if P = I −Q is irreducible. In the discrete time case, the convergence P t →

P∞ is guaranteed provided that P is aperiodic; i.e., the lengths of all closed walks in

the graph G underlying P must be mutually coprime. If G is undirected, P is aperiodic

precisely when G is non-bipartite. A Markov chain which is both irreducible and

aperiodic is ergodic. The asymptotic behavior of an ergodic Markov chain is summarized

by the fundamental theorem of Markov chains:

3A symmetric Markov chain appears the same run forward or backward in time from any distribution,
not just π.
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Theorem 4.1 If P is an ergodic Markov chain, then it has a unique stationary distri-

bution π, and P t → P∞ as t→ ∞.

The speed at which an ergodic Markov chain P converges from an initial distribution

ex concentrated at x ∈ S to its stationary distribution π is captured by the mixing time

τx := min{t : ||P tex − π||1 ≤ 1/e} (4.3)

where || · ||1 is the l1 vector norm. The maximum mixing time over all initial states (or

equivalently, distributions) is

τ := max
x

τx = min{t : ||P t − P∞||1 ≤ 1/e} (4.4)

where || · ||1 is the l1 matrix norm. The parameter 1/e is somewhat arbitrary, in that

we can change it to any ε > 0 provided we multiply the mixing time by O(log 1/ε).

The mixing time of a reversible Markov chain with spectrum {λk, vk}N
k=1 is closely

related to its spectral gap δ := 1 − λ, where λ := max{λ2, |λN |} [11, 40, 99]:

Theorem 4.2 Let P be a reversible, ergodic Markov chain with stationary distribution

π and spectral gap δ. Then its mixing time satisfies (a) τx ≤ δ−1 (log 1/π(x) + log 2e),

and (b) τ ≥ 1
2 |λ|δ−1.

Often the spectral gap of a Markov chain can be estimated indirectly, for example by

bounding its conductance (a geometric parameter of the chain) or the congestion of a

multicommodity flow on the chain [99]. Occasionally it can be estimated directly: For

example, the simple random walk on the periodic lattice (torus) Z
d
n is diagonalizable

as {1
d

∑d
j=1 cos(

2πkj

n ), 1√
nd

∑

x e
i2πk·x

n |x〉}, so its spectral gap is Θ( 1
dn2 ).

Absorbing Markov chains. A Markov chain P is called absorbing if (a) the set

M = {x ∈ S : P (x, x) = 1} is nonempty and (b) any y ∈ S can reach M by a directed

walk in the graph underlying P . The states of M are absorbing and those of S \M

are transient. From any initial distribution, an absorbing Markov chain converges to

a distribution with no support on the transient states. Define the leaking walk matrix

PM by deleting from P the rows and columns indexed by M . The reader may wish
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to verify that the convergence property just mentioned is equivalent to the following

property of the leaking walk matrix:

Theorem 4.3 Let P be an absorbing Markov chain with leaking walk matrix PM . Then

P t
M tends to the all-zero matrix as t→ ∞.

An absorbing Markov chain P ′ is obtained from an ergodic Markov chain P by

marking a set of states M ⊆ S; i.e., by replacing the transitions from each state x ∈M

with the idle transition P (x, x) = 1. If q is an initial distribution on S, qM is obtained

from q by deleting the entries indexed by M , and j is the column vector of ones, then

the hitting time

hq :=
∞
∑

t=0

||P t
MqM ||1 = j†(I − PM )−1qM (4.5)

is the expected time for P ′ to reach M . One can show:

Theorem 4.4 Let P be a symmetric, ergodic Markov chain with uniform stationary

distribution u and spectral gap δ. Let P ′ be the absorbing Markov chain formed by fixing

a set of absorbing states M ⊆ S with |M | = εN . Then the hitting time of P ′ satisfies

hu ≤ 1/(1 − ||PM ||2) ≤ 1/(δε).

The first inequality follows easily from Theorem 4.3 and the second inequality is shown

in [105].

4.2 Applications of Markov chains

For many computational problems, the most efficient, elegant, or practical solution is a

randomized algorithm that simulates a Markov chain. We describe four such problems.

The textbooks of Motwani and Raghavan [80] and Jerrum [56] contain many more

examples.

4.2.1 Local search algorithms

A local search algorithm explores the set of candidate solutions to a problem using local

transitions based on myopic decision-making.
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Graph reachability. Among the earliest Markov chain applications in computational

complexity was the randomized logarithmic-space algorithm of Aleliunas et al. [13] for

the graph reachability problem: given a graph G = (V,E) and two vertices s, t ∈ V ,

decide whether s and t lie in the same connected component. The algorithm is almost

trivial: run the simple random walk on G from s for 2|V ||E| steps, and output true

if and only if t is reached. Since the current vertex label and the walk step count fit

into logarithmic-size registers, the algorithm uses only logarithmic space. If s and t

do not lie in the same connected component, the random walk never reaches t and the

output is correct with probability one. Otherwise, a simple hitting time calculation

shows that the random walk reaches t with probability at least 1/2. Until Reingold’s

recent breakthrough [87], it was not known how to solve the graph reachability problem

in logarithmic space deterministically.

Constraint satisfaction. Markov chain algorithms are among the fastest algorithms

known for solving constraint satisfaction problems. Consider the k-satisfiability (k-

SAT) problem: given an n-variable Boolean formula φ with m conjunctive clauses

(constraints) on k variables each, decide whether φ has an assignment satisfying all

clauses simultaneously.

For k = 2, Papadimitriou [84] proposed the following algorithm for finding a satis-

fying assignment. Pick an initial assignment x = x1x2 · · · xn, and repeat the following

T times: if x does not satisfy φ, then select an unsatisfied clause, pick one of the two

variables in the clause uniformly at random, and flip its value in the assignment x. If

there is a satisfying assignment y = y1y2 · · · yn, the algorithm’s progress in discovering

y is modeled by a random walk on the line {0, 1, . . . , n}: the walk state is i if the

Hamming distance between x and y is i, and each step either increases or decreases the

walk state by one. In particular, it increases with probability at least 1/2 since at least

one of the two literals in a clause not satisfied by x must be flipped in y. Therefore,

within T = O(n2) steps (the hitting time of the simple random walk on the line), the

walk reaches state n and the algorithm finds y.

Papadimitriou’s algorithm is not the fastest for solving the k-satisfiability problem
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with k = 2: there is a linear-time deterministic algorithm due to Aspvall et al. [23].

However, Schöning [96] showed that a similar algorithm is among the fastest for solving

the (NP-complete) k-satisfiability problem with k ≥ 3. The key observation is that

running Papadimitriou’s algorithm for only T = 3n steps reaches y with probability at

least 1/(2(1 − 1
k ))n. Hence, repeating the algorithm O((2(1 − 1

k ))n) times is enough to

find y with probability at least 1/2.

4.2.2 Simulated annealing and MCMC sampling

Simulated annealing and Markov chain Monte Carlo (MCMC) sampling are general

methods for optimizing a function over and generating a random sample from a finite

set, respectively. We motivate them using two examples from Sinclair [100].

Combinatorial optimization. Simulated annealing [66] is a Markov chain Monte

Carlo method for solving combinatorial optimization problems (e.g., finding a minimum-

energy configuration in statistical physics or a minimum-cost subset in computer sci-

ence). The idea is as follows: Suppose we want to minimize the function f(x) over

x ∈ S. For example, to find a perfect matching we consider f(x) = −|x|, where S is

the set of matchings in a graph and |x| is the size of the matching x ∈ S. Connect the

states S by any ergodic Markov chain P (e.g., a simple random walk), and define the

Gibbs distribution

π(x) :=
1

Z(λ)
λ−f(x) (4.6)

on the set x ∈ S, where λ ≥ 0 is the activity and the normalizing factor Z(λ) =
∑

x∈S λ
−f(x) is the partition function. The idea of simulated annealing is that by run-

ning the Metropolis process while gradually increasing λ from one to infinity – or rather,

to a large finite value – we skew its stationary distribution π (initially uniform) toward

states x ∈ S of globally minimal energy. Note that we can compute the Metropolis

transition probabilities P (x,y)
P (y,x) ·

π(y)
π(x) = P (x,y)

P (y,x) · λf(x)−f(y) efficiently without evaluating

the partition function Z at λ, which is key because this problem is #P-complete.4

4A problem is in #P if it counts the number of witnesses to an NP problem.
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Approximate counting. The partition function Z and its derivatives reveal the

thermodynamic (macroscopic) properties of a system, so the fact that it is typically

#P-complete to evaluate is unfortunate. We may nevertheless be able to evaluate

Z efficiently to within a factor 1 + ε in polynomial time, for any fixed ε > 0, using

a randomized algorithm. This idea is called approximate counting, and it is solved

by polynomial-time reduction to the problem of approximate sampling, or generating a

random sample distributed very close to a target distribution [56]. Markov chain Monte

Carlo (MCMC) sampling is the standard method for solving the approximate sampling

problem. The MCMC paradigm is used to approximately evaluate the partition function

of a monomer-dimer covering or ferromagnetic Ising system [57, 58], the permanent of

a nonnegative matrix [59], and the volume of a convex body [41]. We illustrate the

algorithm for monomer-dimer coverings.

Suppose we are given as input a graph G = (V,E) and a positive value λ. Let Sk

be the set of all k-matchings in G, where a k-matching is a k-subset of edges which are

vertex-disjoint. A pair of vertices connected by an edge in the matching is a dimer; an

isolated vertex is a monomer. Define the Gibbs distribution π on the set x ∈ S := ∪kSk

with f(x) = −|x|. Our computational task is to approximately evaluate the partition

function Z(λ).

Write Z(λ) as a telescoping product

Z(λ) =
Z(λr)

Z(λr−1)
× Z(λr−1)

Z(λr−2)
× · · · × Z(λ1)

Z(λ0)
× Z(λ0) (4.7)

for some sequence λ = λr > λr−1 > · · · > λ1 > λ0 = 0. Then Z(λ0) = 1 and

Z(λi+1)/Z(λi) = Ex←πi
[(λi+1/λi)

|x|], where πi is the Gibbs distribution corresponding

to λi. It can be shown that r need not be very large to guarantee that the expectation

values Ex←πi
[(λi+1/λi)

|x|] are bounded and well-estimated using relatively few samples

from the distributions πi. Thus we have reduced the problem of approximating Z(λ)

efficiently to the problem of sampling efficiently from the Gibbs distribution πi.
5

The sampling problem is solved by running the Metropolis process: at state x ∈ Sk,

select an edge e = (u, v) ∈ E uniformly at random and (a) if e /∈ x and x′ := x ∪ {e} ∈

5This is essentially the same trick used in the simulated annealing algorithm.
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Sk+1, goto y := x′; (b) if e /∈ x and x′ := x∪{e} /∈ Sk+1, goto the unique y ∈ Sk obtained

from x′ by removing the edge that conflicts with e; or (c) if e ∈ x, goto y := x \ {e} ∈

Sk−1 with probability πi(y)/πi(x) = 1/λi. Jerrum and Sinclair [57] showed that the

spectral gap of this Markov chain is Ω(λ3
i |V ||E|). By Theorem 4.2, the mixing time τx

is O(λ3
i |E||V | log 1/πi(x)). A maximum matching x has πi(x) ≥ 1/N ≥ 1/2|E|, so by

starting the Markov chain at a maximum matching (which we can find in polynomial

time), we can mix in O(λ3
i |E|2|V |) steps.

4.3 Discrete-time quantum walks

A discrete-time quantum walk is a unitary process {U t|ψ〉}, or more frequently the

unitary operator U generating this process. Of particular relevance in algorithmic

applications are those U whose coefficients are derived naturally and efficiently from a

corresponding classical Markov chain P – e.g., with the same locality structure as U

[9]. This turns out to be possible only if we are willing to let U operate on the Hilbert

space generated by the state transitions (directed edges) of P rather than the states

themselves [76, 77].6 We describe the standard recipe for “quantizing” a Markov chain

this way. For additional background on quantum walks, see the surveys of Ambainis

[14], Kempe [61], and Kendon [64].

The Grover walk. The Grover walk was invented by Watrous [109] as a quantization

of the simple random walk on a regular graph to show that quantum logspace machines

can simulate their classical counterparts. It has since found application in numerous

quantum algorithms. The idea of the walk is to apply the Grover diffusion operator

(3.3) locally as a substitute for the classical state transitions.

To illustrate, consider first the following classical procedure for simulating the simple

random walk on a d-regular graph G = (V,E) on N vertices. Assume that G is labeled;

i.e., the edges leaving each vertex (or equivalently, the neighboring vertices) are labeled

from 1 to d in some arbitrary (but fixed) way, so we can refer unambiguously to the ith

6For example, there is no unitary matrix with tridiagonal nonzero structure, so there is no discrete-
time quantum walk U : HZ → HZ on the line Z.
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neighbor (denoted xi) of a vertex x.

1: Pick a uniformly-distributed label r from [d].

2: If the current vertex is x, change it to xr.

This procedure uses two registers: a coin (edge label) register, which is overwritten

by each coin flip C ′, and a state (vertex) register, which is overwritten by each state

transition S ′. Algebraically:

C ′ : |x〉|r〉 7→ 1

d

∑

r′∈[d]

|x〉|r′〉 S′ : |x〉|r〉 7→ |xr〉|r〉 (4.8)

In order to quantize this classical procedure, it is natural to replace the classical

diffusion C ′ on the coin register by the Grover diffusion:7

C : |x〉|r〉 7→ −|x〉|r〉 +
2√
d

∑

r′∈[d]

|x〉|r′〉 (4.9)

This changes the stochastic coin flip C ′ to a unitary coin flip C. The state transition

operator S ′ is unitary (in fact, a permutation) if and only if G is consistently labeled

[53]; i.e., if the edges entering (as well as those leaving) each vertex are assigned unique

labels from [d]. Every undirected graph has a consistent labeling, but it can be hard to

compute locally.8 Hence, we replace S by the rotation map [88]:

S : |x〉|i〉 7→ |y〉|j〉 where yj = xi (4.10)

For any undirected graph G, the rotation map S is a permutation. As we will see later,

another key property of S (which will aid its analysis and in a sense confirm it as the

“best” choice to use with the Grover coin flip) is that it is an involution (i.e., S 2 is the

identity). Thus, we define the Grover walk by

W := SC (4.11)

Notice that the uniform superposition

|u〉 :=
1√
dN

∑

x,r

|x〉|r〉 (4.12)

is a fixed point of W .

7Other quantum coin flips are possible, for example the Hadamard and DFT operators [61].

8It is not known whether a consistent labeling can be computed in logspace. Even when it is trivial
to compute (e.g., when G is a Cayley graph) it can perform rather poorly [20].
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The Szegedy walk. A generalization of the Grover walk to arbitrary Markov chains

was obtained by Szegedy [105]. The idea is to replace each classical random walk

transition from state x, selected from the distribution px = P (·, x), with a reflection

about the vector |px〉 :=
∑

y∈S
√

P (y, x)|y〉. When P is the simple random walk on a

regular graph, this reduces to the Grover walk.

Let us modify our classical procedure for simulating the random walk on a d-regular

graph G = (V,E) so that it works for general Markov chains. It will be convenient for

us to modify the coin register to hold the label of any possible vertex from V , rather

than a label from [d] of an outgoing edge (or neighboring vertex). That is, we keep

track of each edge (transition) by its two endpoints rather than by one endpoint and

an edge label.9 With this change, our classical random walk simulation becomes:

1’: If the current vertex is x, pick a px-distributed vertex y.

2’: Exchange the vertices x and y.

Contrast this general random walk simulation with the simple random walk simulation

from earlier: Step 1’ is the new “coin flip” C ′ generating a neighboring vertex label

according to the specified transition probabilities P (y, x), and Step 2’ is the new “state

transition” S ′ obtained by using the rotation map with labels from V rather than [d].

Algebraically:

C ′ :=
∑

x

|x〉〈x| ⊗ [pxpx · · · px] S′ :=
∑

x,y

|y, x〉〈x, y| (4.13)

Since Step 2’ ensures that the “coin” (neighboring vertex) and “state” (current vertex)

registers are treated symmetrically, we could equally well refer to them instead as the

left vertex and right vertex registers.10

The natural quantization of the coin flip C ′ is a reflection C about the subspace

L := span{|x〉|px〉}:

C :=
∑

x

|x〉〈x| ⊗ (2|px〉〈px| − I) (4.14)

9Note that we could have expressed the Grover walk this way; in fact, Watrous [109] did so.

10In [105], this walk is interpreted as a “bipartite walk” taking place on the “double-cover” graph
G′ = (V ′, E′) with “left” and “right” vertices V ′ := {xR, xL : x ∈ V } and edges E′ := {(xR, yL) :
(x, y) ∈ E}.
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We use the state transition operator S = S ′ in the quantum as well as the classical case.

Since S is an involution it is self-inverse, and we can express two consecutive quantum

walk steps as:

WP := RL′RL where RL := C and RL′ := SCS = SCS−1 (4.15)

This fact is crucial to the behavior and analysis of the quantum walk, for a simple

reason: like Grover’s search operator [52], WP is the product of two reflections, RL

(about subspace L) and RL′ (about subspace L′ := span{S|x〉|px〉} = span{|px〉|x〉}. To

highlight this significance, we refer to the two-step walk operatorWP as the quantization

of the classical Markov chain P [105].

Spectrum of the walk operator. The spectrum of WP is expressed concisely by

its discriminant, the Gram matrix

D(P ) := A†B =
∑

x,y∈S

√

P (x, y)P (y, x)|x〉〈y| (4.16)

of subspaces L and L′, where A : |x〉 7→ |x〉|px〉 and B = SA. In particular, if P is

reversible then D(P ) is the (symmetric) matrix (4.1). The relationship between the

discriminant D(P ) and the spectrum of WP is revealed by the following theorem [105]:

Theorem 4.5 Let {λk = cos θk}l
k=1 be the singular values of D(P ) lying in the open

interval (0, 1) and {vk, wk}l
k=1 be the corresponding left/right singular vector pairs.

Then WP has l nontrivial invariant subspaces {Lk}l
k=1 (excluding those with eigenvalues

±1), each of which is two-dimensional, and the spectrum of WP inside Lk is:

{e±2iθk , Awk − e±iθkBvk} (4.17)

Proof: By definition, any singular vector pair (vk, wk) of D(P ) with singular value λk

must satisfy:

D(P )vk = λkwk D(P )†wk = λkvk (4.18)

It is easy to check that all singular values are at most one, so we can write λk = cos θk

for θk ∈ [0, π
2 ] where θk is the angle between Awk and Bvk. Moreover, each of the

(at most) two-dimensional subspaces Lk = span{Bvk, Awk} is an invariant subspace of
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WP on which WP acts as a reflection about the axes Bvk and Awk – i.e., as a rotation

in Lk by the angle 2θk. If cos θk ∈ (0, 1), then Lk is exactly two-dimensional and the

spectrum of Lk is as indicated above. If cos θk = 1, then Lk lies in L∩L′ and WP acts

as the identity. If cos θk = 0, then Lk lies in either L ∩ L′⊥ or L⊥ ∩ L′ and WP acts as

−I. We call the direct sum of all these subspaces Lk the busy subspace. Its dimension

is at most 2N . On the idle subspace L⊥ ∩ L′⊥, whose dimension is at least N 2 − 2N ,

WP acts as the identity.

In particular, if P is reversible with stationary distribution π, then the eigenvector

|π̃〉 :=
∑

x

√

π(x)|x〉|px〉 =
∑

x

√

π(x)|px〉|x〉 (4.19)

of WP is a fixed point.

4.4 Continuous-time quantum walks

The continuous-time quantum walk {e−iHt|ψ〉} generated by a time-independent Hamil-

tonian H merits special focus beyond that of its discrete-time counterpart. This is

because the precise relationship between discrete-time and continuous-time quantum

walks, unlike that of their classical counterparts, is not well understood.

The Farhi/Gutmann and Aharonov/Ta-Shma walks. Obtaining a natural quan-

tization of the simple random walk on a graph is an easier proposition in continuous

time than in discrete time. Farhi and Gutmann [46, 35] noted that the Laplacian matrix

L := ∆−A of a graph G = (V,E) is symmetric and can therefore be used as a natural

walk Hamiltonian on G. This construction was used to speed up classical random walk

search procedures on binary decision trees [46] and other highly symmetric graphs [35].

The latter result was extended by Childs et al. [33] to an efficient quantum algorithm

for an oracle problem that has no efficient classical algorithm. This was the first oracle

separation of BQP and BPP that did not use the quantum Fourier transform.

Aharonov and Ta-Shma [7] observed that the matrix

HP := I −M(P ) = I −D(P ) (4.20)
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can be used as a natural walk Hamiltonian for a reversible Markov chain, where M(P )

is the matrix (4.1) and D(P ) is the discriminant (4.16). Their walk reduces to the

Farhi/Gutmann walk when P is the simple random walk on a regular graph. It is easy

to see that the ground state of the Aharonov/Ta-Shma walk Hamiltonian is:

|π〉 :=
∑

x

√

π(x)|x〉 (4.21)

If we can somehow generate this ground state, we can measure it and output a random

sample from the classical distribution π. Aharonov and Ta-Shma showed how to do

this efficiently for a large class of Metropolis processes, including those used in MCMC

approximate counting algorithms. Note that if the ratios π(y)
π(x) are not efficiently com-

putable, then neither are the coefficients of the Aharonov/Ta-Shma walk Hamiltonian,

whereas those of Szegedy’s walk operator (4.15) remain efficiently computable.

Spectrum of the walk Hamiltonian. Even more transparently than for the Szegedy

walk, the spectrum of the Aharonov/Ta-Shma walk is determined by the discriminant

D(P ) – and in turn, by P itself. Indeed, it is trivial to prove:

Theorem 4.6 Let P be a reversible Markov chain with spectrum {λk, vk}. Then the

walk Hamiltonian H = I −D(P ) has spectrum {1 − λk,
√
R
−1
vk}.

Here R is defined as in (4.1). In particular, the spectral gap of H is the same as that

of P .

See Table 4.1 for a brief summary of the walk constructions we have just covered.

Walk type Operator Eigenvalues

Discrete-time random P {λk}
Continuous-time random e−Q, Q = I − P {e−(1−λk)}
Discrete-time quantum W 2

P , WP = RL′RL [109, 105] {e±2i cos−1 λk} [105]

Continuous-time quantum e−iHP , HP = I −D(P ) [46, 7] {e−i(1−λk)} [7]

Table 4.1: Random vs. quantum walks in discrete and continuous time.
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Simulating the walk Hamiltonian. Suppose we design an algorithm that uses a

continuous-time quantum walk. How do we simulate the walk by a quantum circuit?

This issue was first addressed by Childs et al. [33] to translate their continuous-time

quantum walk “algorithm” into an efficient quantum circuit.

First, recall how the classical continuous-time random walk e−Lt = e−(I−P )t can

be simulated by its discrete-time counterpart P . Write the continuous-time walk as a

power series:

e−(I−P )t =
∞
∑

s=0

e−tts

s!
P s (4.22)

From this expression one can see that continuous-time walk of length t is nothing more

than the discrete-time walk P of length s, where s is Poisson-distributed with mean t.

From this observation, an exact simulation is immediate.

Right away we see that in the quantum case, this approach to simulation breaks

down. Although the continuous-time quantum walk can be expressed as a power series

e−iHt =

∞
∑

s=0

e−t(it)s

s!
Hs (4.23)

it is not clear how this helps us since { e−t(it)s

s! }∞s=0 is not an l2-normalized wavefunction

whose coefficients we could use as walk-length “amplitudes” and (more devastatingly)

H is not a unitary operator which we could apply in discrete time. It appears that we

cannot use a power series decomposition as the basis for a simulation.

Instead, we use the simulation method of Theorem 2.2, which uses the Lie-Trotter

and Suzuki (approximate) product decompositions. Since most walk Hamiltonians are

sparse, the slowdown introduced by the simulation is minimal.
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Chapter 5

Quantum speedup of hitting algorithms

A hitting algorithm is a randomized algorithm whose complexity is related to the hitting

time of a Markov chain. Randomized local search algorithms like Schöning’s are typical

examples. Some of these algorithms become more efficient when the Markov chain is

replaced by a quantum walk. This discovery has prompted the definition of quantum

hitting time and the study of how it relates to its classical counterpart.

5.1 Ambainis’ algorithm

Recall from Chapter 3 that the element distinctness problem has quantum query com-

plexity Ω(n2/3) [2], and that Burhman et al. [29] gave a quantum algorithm based on

amplitude amplification using O(n3/4) queries. Ambainis [16] showed that a matching

upper bound of O(n2/3) queries is achievable by an algorithm that performs a quantum

walk. This was the first major algorithmic application of quantum walks and remains

among the most important.

5.1.1 Random walk algorithm for element distinctness

Consider the following classical algorithm for solving the element distinctness problem.

First, select a subset of r variables from {x1, x2, . . . , xn} uniformly at random. Then,

simulate a random walk on the Johnson graph J(r, n) whose vertices are the r-size

subsets of {x1, x2, . . . , xn} and whose edges connect two subsets if and only if they

differ by a single variable. After each walk step, check the current r-subset to see if it

contains two variables mapping to the same value. If no such collision is found, output

“distinct”; otherwise, output “not distinct.”
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This nontrivial algorithm does as well as brute-force search, which is already optimal.

More importantly, its analysis parallels that of Ambainis’ quantum algorithm.

Theorem 5.1 Using the simple random walk on the Johnson graph J(r, n), the element

distinctness problem can be solved with O(r + n2/r) queries.

Proof: If the variables {x1, x2, . . . , xn} are not distinct, then the fraction of r-subsets

with at least one collision is at least:

ε =

(

n− 2

r − 2

)

/

(

n

r

)

= Θ(r2/n2) (5.1)

Moreover, the spectral gap δ of the random walk on J(r, n) is n
(n−r)r [69], which for

r < n
2 is Θ(1/r). By Theorem 4.4, the hitting time of the random walk is at most:

1

δε
= O(n2/r) (5.2)

Since the setup cost S of selecting the initial r-subset is r queries, the update cost U

from each walk step is one query (to swap in the new variable), and the checking cost

U to determine whether the current r-subset has a collision is zero new queries, the

overall cost in queries is

S +
1

δε
(U + C) = O(r + n2/r) (5.3)

and the theorem is proved.

As long as r = Ω(n), the algorithm uses O(n) queries.

5.1.2 Quantum walk algorithm for element distinctness

The key insight of Ambainis [16] is that the operator W
√

r, where W is the Grover walk

(4.11) on the Johnson graph J(r, n), works almost as effectively for quantum search as

the Grover diffusion operator (3.3). The reason is that the uniform initial state (4.12)

is a fixed point of W
√

r, and all other eigenvalues of W
√

r (in the search algorithm’s

busy subspace) are bounded away from one.
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Lemma 5.2 Let H be an m-dimensional Hilbert space and {|ψ1〉, . . . , |ψm〉} be a basis

for H. Let |ψstart〉, |ψgood〉 ∈ H have real amplitudes and inner product 〈ψgood|ψstart〉 =

α. Let U1, U2 be unitary operators H → H such that (i) U1 (the “oracle”) is a re-

flection about |ψgood〉, and (ii) U2 (the “diffusion”) is a real-valued matrix in the basis

{|ψ1〉, . . . , |ψm〉}, has |ψstart〉 as a fixed point, and has every other eigenvalue eiθ satis-

fying θ ∈ [ε, 2π − ε] where ε > 0 is a fixed constant. Then there exists t = O(1/α) such

that 〈ψgood|(U2U1)
t|ψstart〉 = Ω(1).

The proof [16] is more involved than that of Grover’s algorithm (Theorem 3.2), which

is the special case in which H = L, m = 2, |φgood〉 = |β〉, φstart = |u〉, α = Θ(1/
√
N),

U1 = 2|α〉〈α| − I, and U2 = 2|u〉〈u| − I.

Ambainis used Lemma 5.2 to prove the following.

Theorem 5.3 Using the Grover walk on the Johnson graph J(r, n), the element dis-

tinctness problem can be solved with O(r + n/
√
r) queries.

Proof: The idea is as follows. The algorithm is exactly as in Lemma 5.2, with U1 equal

to the phase-flip oracle on the “marked” r-subsets containing at least one collision and

U2 equal to the operator W
√

r. The entire algorithm stays within a 5-dimensional

subspace H, and the 4 eigenvalues of W
√

r inside H∩ |u〉⊥ – which are related to those

of the simple random walk on J(r, n) by Theorem 4.5 – are bounded away from one. A

simple check shows that α =
√
ε, where ε is the fraction of marked r-subsets given in

(5.1). So the total cost in queries is

S +
1√
ε
(
√
r · U + C) = O(r + n/

√
r) (5.4)

proving the theorem.

Setting r = n2/3 gives an algorithm using O(n2/3) queries.

5.2 Szegedy’s algorithm

Inspired by Ambainis’ algorithm for element distinctness, Szegedy [105] defined the

quantization (4.15) of a Markov chain and showed that its quantum hitting time is at

most the square root of the hitting time of its classical counterpart.
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5.2.1 The quantum hitting time

Ambainis’ algorithm solves the following “spatial search” problem1 for the special case

in which P is the simple random walk on the Johnson graph J(r, n) and f is the

predicate that identifies marked r-subsets.

Definition 5.4 Given oracle access to a V × V Markov chain P and a predicate f :

V → B, the spatial search problem is to find a vertex v ∈ f−1(1) if one exists – with

the stipulation that between successive queries u and v to f , P must be queried along a

path from u to v in the digraph G = (V,E) underlying P . The corresponding decision

problem is to determine whether |f−1(1)| > 0.

There is an update cost U for querying P (i.e., for obtaining the nonzero coefficients

of a column P (·, x)) and a checking cost C for querying f . As in Ambainis’ algorithm,

we may also consider a setup cost S for auxiliary operations such as preprocessing.

There are several ways to solve the spatial search problem. The simplest is by simu-

lating a random walk on P , whose cost U is given by the classical hitting time. Shenvi

et al. [97] gave the first quantum walk algorithm for the spatial search problem (on the

hypercube). Aaronson and Ambainis [1] gave a quantum algorithm for spatial search

using nested application of Grover search. Ambainis et al. [20] gave a quantum walk

algorithm for spatial search on the torus Z
d
n outperforming the algorithm of Aaronson

and Ambainis in low dimensions.

Szegedy [105] generalized the quantum walk algorithms of [97, 16, 20] as follows.

Suppose that P is symmetric. Let

P ′ :=





PM 0

P ′′ I



 (5.5)

be the absorbing Markov chain obtained from P by marking the states v ∈ f−1(1), and

let WP ′ be its quantization (4.15). Szegedy’s algorithm prepares a single qubit control

register in the state 1√
2
(|0〉+ |1〉) and a walk register in the (uniform) superposition |π̃〉

1Our definition of the spatial search problem is inspired by, but different than, that of Aaronson and
Ambainis [1].
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(4.19), then applies W t
P ′ with quantum control, creating the state:

1

2
|0〉(|π̃〉 +W t

P ′ |π̃〉) +
1

2
|1〉(|π̃〉 −W t

P ′ |π̃〉) (5.6)

Measuring the control register yields the value 0 with certainty if there are no marked

states, since in this caseWP ′ = WP so |π̃〉 is a fixed point ofWP ′ . If t is chosen uniformly

at random from [0..T ], a simple calculation shows that this same measurement yields

the value 1 with probability at least 1
8 if the fraction ε of marked states is less than 1

2

and T is chosen so that:

Et[||W t
P ′ |π̃〉 − |π̃〉||22] ≥ ε (5.7)

The minimum T satisfying (5.7) is the quantum hitting time.2

5.2.2 Proof of the quadratic hitting time speedup

Szegedy [105] showed that the quantum hitting time is at most the square root of the

classical hitting time. The following lemma plays a key role in the proof.

Lemma 5.5 Let P be any Markov chain and WP be its quantization. Let z =
∑

k νkzk

be the decomposition of a unit vector z into unit vectors zk from each of the two-

dimensional invariant spaces Lk in Theorem 4.5. If T ≥ 100
∑

k ν
2
k/θk, then:

Et[〈z|W t
P |z〉] ≤

1

2
(5.8)

The intuition is that within each subspace Lk, it takes t = Θ(1/θk) steps to fully rotate

and cause cancellation. Using Lemma 5.5, Szegedy [105] proved the following.

Theorem 5.6 Let P be a symmetric, ergodic Markov chain and let hu be its hitting

from the uniform distribution u to the marked set M . Then the quantum hitting time

is O(
√
hu).

Proof: Suppose first that P is reversible – later we will focus on the special case where

it is symmetric. Then the discriminant of P ′ is

D(P ′) =





√
RM

−1
PM

√
RM 0

0 I



 (5.9)

2This definition is not to be confused with the notion of quantum hitting time between two correlated
vertices in a highly symmetric graph – e.g., antipodes of a hypercube [60].
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where RM is the restriction of R (4.1) to those rows and columns indexed by elements

of V \ M . In particular, D(P ′) is symmetric, so its left/right singular vector pairs

(vk, wk) are eigenvectors vk = wk, and Theorem 4.5 implies that WP ′ has the nontrivial

normalized eigenvectors:

(I − e±iθkS)Avk√
1 − 2 cos θk

(5.10)

Decompose |π̃〉 into its projections

|π̃M 〉 =
∑

x∈M

√

π(x)|x〉|px〉 |π̃V \M 〉 =
∑

x/∈M

√

π(x)|x〉|px〉 (5.11)

on the the marked and unmarked states, respectively. The latter can be expressed as

|π̃V \M 〉 =
∑

k

νkAvk (5.12)

where each Avk is a unit vector in Lk and νk =
∑

x/∈M

√

π(x)vk(x). We assume that

the (weighted) fraction ε :=
∑

x∈M π(x) of marked states is at most 1
2 , otherwise the

search problem is trivial. Apply Lemma 5.5 to the unit vector z = 1√
1−ε

|π̃V \M 〉 for

T =
100

1 − ε

∑

k

ν2
k

√

1

1 − λk
≥ 100

1 − ε

∑

k

ν2
k/θk (5.13)

where the inequality follows from the fact that θk ≥ sin θk ≥
√

1 − cos θk. We conclude

that:

Et[||W t
P ′ |π̃〉 − |π̃〉||22] = Et[2 − 2〈π̃|W t

P ′ |π̃〉] ≥ 1 − ε (5.14)

So the quantum hitting time is at most T . Since P is reversible, PM has the same

eigenvalues as D(P ′) restricted to V \M , so we can bound T by:

T ≤ 200

√

1

1 − maxk λk
≤ 200

√

1

1 − ||PM || (5.15)

If P is symmetric, we can do even better: Since
∑

k ν
2
k ≤ 1,

T ≤ 200

√

∑

k

ν2
k

1

1 − λk
(5.16)

and since π is the uniform distribution u, νk is the inner product of vk with the (`2-

normalized) uniform n-vector |u〉. By comparison with expression (4.5),

T ≤ 200
√

hu (5.17)

proving the theorem.
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Unlike its classical counterpart, the quantum hitting time is not an upper bound on

the time to find a marked state – only to detect if one exists. However, it is sometimes the

case that the walk register outputs a marked state with reasonable probability. Using

the fact that (5.15) tightly bounds the quantum hitting time when P is state-transitive

and |M | = 1, Szegedy [105] shows:

Theorem 5.7 Suppose that P is state-transitive and |M | = 1. Then the walk register

outputs a marked state with probability Ω(N/hu) after O(
√
hu) steps.

Amplitude amplification can be used to recover the search upper bounds of Ambainis

et al. [20] on the d-dimensional torus.

Theorem 5.6 can be used to solve the element distinctness problem as efficiently as

Ambainis’ algorithm. Indeed, the quantum hitting time on the Johnson graph J(r, n)

is at most
√

1

δε
= O(n/

√
r) (5.18)

where ε is the fraction of marked states and δ is the spectral gap of J(r, n) as in (5.2).

So the total cost in queries is

S +
1√
δε

(U + C) = O(r + n/
√
r) (5.19)

which is identical to (5.4).

5.3 The MNRS algorithm

Notice that after every walk step, Szegedy’s algorithm checks the current state to see

if it is marked. On the other hand, Ambainis’ algorithm performs this check only once

every
√
r steps. Since the checking cost C is zero in the element distinctness application,

the algorithms perform similarly. But in other applications with different costs S, U ,

and C to balance, the distinction is important. Magniez et al. [74] show that Szegedy’s

walk operator WP can be used to gave a quantum algorithm (which we shall refer to

as the MNRS algorithm) whose cost balance

S +
1√
ε
(

1√
δ
U + C) (5.20)



56

is as good as that of Ambainis’ algorithm. The key insight is to interleave the checking

step with a global reflection about the initial vector |π̃〉 (using phase estimation on WP ),

rather than a local reflection about the vector |px〉 as in Szegedy’s algorithm.

Theorem 5.8 Let P be a reversible, ergodic Markov chain with stationary distribution

π and spectral gap δ. Let M , the set of marked states, satisfy ε :=
∑

x∈M π(x) > 0.

Then there is a quantum algorithm solving the spatial search problem with cost (5.20).

Moreover, the algorithm outputs a marked state with probability Ω(1).

Proof: The phase gap ∆(P ) := mink:θk>0 2θk of Szegedy’s walk operator WP satisfies

∆(P ) = Ω(
√
δ) (5.21)

by inspection of (5.13). So at a cost of 1
∆(P )U = 1√

δ
U , we can generate the operators

W 2j

P for j = 0, 1, . . . , s = O(log ∆(P )) and use phase estimation (Theorem 1.9) to

distinguish the eigenvector |π̃〉 (whose eigenvalue has phase θk = 0) from any other

eigenvector (whose eigenvalue has phase satisfying |θk| ≥ ∆(P )). By “distinguish,” we

mean that the output of the phase register is almost certainly zero on input |π̃〉 and

almost certainly nonzero when the input is any other eigenvector. This allows us to

implement an (approximate) reflection about |π̃〉:

R := Q(WP )(2|0s〉〈0s| − I)Q(WP )−1 ≈ 2|π̃〉〈π̃| − I (5.22)

Define the superposition of marked states

|µ〉 :=
1√
ε

∑

x∈M

√

π(x)|x〉|px〉 (5.23)

and let O be the operator that flips the phase of any marked state. Inside the subspace

L := span{|π̃〉, |µ〉}, O is the reflection about |µ〉⊥. Modulo several details, we can use

Lemma 5.2 with H = L, m = 2, |φgood〉 = |µ〉, |φstart〉 = |π̃〉, U1 = O, U2 = R, and

α = 〈µ|π̃〉 = sin−1 √ε ≈
√
ε (5.24)

to conclude that (RO)k finds a marked state for k = O(1/
√
ε). Since each iteration RO

has a cost of 1√
δ
U + C, the total cost is as indicated in (5.20).
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The principal proof detail we have omitted is the use of amplitude amplification (specif-

ically, the version of Høyer et al. [54] that handles two-sided error) to minimize the

accumulation of errors from approximate (imperfect) reflection.

If we do not know ε a priori, it suffices to run the algorithm using a lower bound ε ′

on ε should the latter be nonzero. In particular, we can use the lower bound

ε′ :=
1√
π∗

(5.25)

where π∗ := minx π(x).

The MNRS algorithm can sometimes underperform Szegedy’s algorithm. For ex-

ample, when C ≈ U and hu � 1/(δε) – which is the case when P is the simple random

walk on the two-dimensional torus – Szegedy’s algorithm is significantly more efficient

(and probably optimal). More generally, Szegedy’s algorithm performs better when C

is not much larger than U and the quantum hitting time T satisfies

T ≈
√

1

1 − ||PM || �
√

1

δε
(5.26)

by inspection of (5.15). This statement is true for any reversible Markov chain.

We summarize the quantum search methods we have seen thus far in Table 5.1.

Search method First reflection Second reflection

Grover [52] I − 2
∑

x∈f−1(1) |x〉〈x| 2
∑

x∈Bn |x〉〈x| − I

Amp. Amp. [28] I − 2|ψx,1, 1〉〈ψx,1, 1| Af (2|x, 0k−n〉〈x, 0k−n| − I)A−1
f

Ambainis [16] I − 2
∑

x∈f−1(1) |x〉〈x| W
√

r

Szegedy [105] C =
∑

x |x〉〈x| ⊗ (2|px〉〈px| − I) SCS−1

MNRS [74] I − 2
∑

x∈f−1(1) |x〉〈x| Q(WP )(2|0s〉〈0s| − I)Q(WP )−1

Table 5.1: Quantum search via the product of two reflections.

5.4 Algorithmic applications

We concluded Chapter 3 with a few applications of Grover’s algorithm and amplitude

amplification. Already we have seen that Ambainis’ quantum walk algorithm solves the

element distinctness problem optimally. Here we mention the success of quantum walk

algorithms in solving a few other search problems.
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Triangle finding. Magniez, Santha, and Szegedy [75] improved the Õ(n10/7) quan-

tum query algorithm of Szegedy [105] to an Õ(n13/10) algorithm using quantum walks.

The algorithm works by reduction to the graph collision problem: decide if there exists

an edge (u, v) ∈ E of a fixed graph G = (V,E) on r vertices satisfying f(u) = f(v) = 1

for a predicate f . Ambainis’ algorithm can be extended from element distinctness to

solve the graph collision problem in Õ(r2/3) queries to f .

The algorithm of [75] finds a triangle in a graph G = (V,E) on n vertices as follows.

First, it selects an initial subset A ⊆ V of size r at random and determines G|A for a

setup cost of S = r2 queries. Then it performs a quantum walk on the Johnson graph

of all r-subsets of V , alternating between checking and update steps. The checking

step runs the graph collision subroutine on G|A with the oracle fw(v) = 1 if and only

if (v, w) ∈ E, where w ∈ V is fixed. This finds a triangle {u, v, w} with (u, v) ∈ G|A, if

there is one. This is repeated O(
√
n) times using amplitude amplification to find any

triangle with two vertices in G|A. The total checking cost C then is at most Õ(r2/3)

queries (for finding a graph collision) times O(
√
n) queries. The cost U of an update

step is r queries to update G|A to G|A′ , where A′ differs from A by one vertex. It

follows from (5.1) and (5.4) that triangle finding can be solved with cost:

S +
1√
ε
(
√
r · U + C) = Õ(r2 +

n

r
(
√
r · r + r2/3√n)) (5.27)

This expression is optimized to Õ(n13/10) by setting r = n2/3. Using the MNRS al-

gorithm one can bring this down to O(n13/10) [74]. Childs and Eisenberg gave an

algorithm for finding k-cliques and more general subsets of vertices [34]. See the short

survey [89] for details.

Matrix product verification. Ambainis’ algorithm can be applied to matrix prod-

uct verification to give a quantum algorithm using O(n5/3) queries and Θ(n2) time,

which already improves the upper bound of Ambainis et al. [18]. Burhman and Špalek

[30] give an algorithm using O(n5/3) time and queries by performing Szegedy’s walk on

the product of two Johnson graphs – one (R) for the row subsets of A and another (S)

for the column subsets of B. At each walk step, random vectors p and q are chosen and
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the identity

(p|RA|R) · (B|Sq|S) = p|R · (C|R,S · q|S) (5.28)

is verified using amplitude amplification to locate an inconsistency if there is one. See

[30] for details.

Group commutativity testing. In the group commutativity testing problem, we

are given a black-box group specified by its k generators and are to decide if the group

is commutative using queries of the form “What is the product of group elements g

and h?” The classical query complexity is Θ(k) group operations. Magniez and Nayak

[73] gave an (essentially optimal) Õ(k2/3) quantum query algorithm by walking on the

product of two graphs whose vertices are (ordered) l-tuples of distinct generators and

whose transition probabilities are nonzero only where the l-tuples at two endpoints

differ in at most one coordinate.

Boolean formula evaluation. Let φ be a Boolean formula (circuit) composed of

AND, OR, and NOT (or without loss of generality, only NAND) gates and n input bits

{x1, x2, . . . , xn}. We would like to determine whether φ evaluates to 0 or 1 using as few

queries as possible of the form “What is the value of input xi?”

Let T be the tree whose branching models the fan-in of φ. At one extreme, φ could

be the OR function on all n inputs, which is equivalent to the search problem – with

classical query complexity Θ(n) and quantum query complexity Θ(
√
n) – and T has

branching factor n and depth 1. At the other extreme, φ could be defined by a complete

balanced binary tree T (branching factor 2 and depth log n) with alternating levels of

AND and OR gates. A clever classical randomized algorithm solves this instance in

O(n0.753) queries [94, 95], but for quite some time no quantum algorithm was known

to perform better – nor was a lower bound better than Ω(
√
n) known.

Using a technique from scattering theory, Farhi, Goldstone, and Gutmann [43]

showed that a continuous-time quantum walk on T (augmented with a few cleverly

chosen additional edges) can be used to evaluate φ in time O(n
√

log n). Ambainis et al.

[19] have obtained discrete-time quantum algorithms using O(
√
n) queries when T is at
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least “approximately balanced” and O(n
1
2
+o(1)) queries for any φ by preprocessing T

to “rebalance” it. This nearly proves that the square of the quantum query complexity

of a formula φ is a lower bound on the formula size, a question raised by Laplante, Lee,

and Szegedy [70].
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Chapter 6

Quantum speedup of mixing algorithms

A mixing algorithm is a randomized algorithm whose complexity is related to the mixing

time of a Markov chain. Most approximation algorithms for #P-complete problems are

mixing algorithms that use Markov chain Monte Carlo (MCMC) sampling. A natural

question is whether these algorithms can be made more efficient by replacing the Markov

chain with a quantum walk. This question, unlike the corresponding question for hitting

algorithms, remains unanswered. However, there has been some progress toward a

reasonable definition of quantum mixing time that is in some cases significantly smaller

than its classical counterpart.

6.1 MCMC sampling redux

Let us define the following problem common to MCMC sampling methods like the

monomer-dimer covering algorithm from Chapter 4.

Definition 6.1 Given a start vertex s ∈ V and oracle access to a V ×V Markov chain

P with stationary distribution π, the spatial sampling problem is to output a random

vertex v distributed ε-close to π in total variation distance – with the stipulation that P

must be queried along a path from s to v in the digraph G = (V,E) underlying P .

Unlike the spatial search problem, there is no checking cost C – only an update cost

U for querying P (·, x), and potentially also a setup cost S for preprocessing. MCMC

methods exploit a tradeoff in which the setup cost (usually associated with building a

simple data structure or initial configuration) and the update cost (for perturbing the

data structure or configuration to a very similar one) are both quite small, and the

number of updates T is small enough for the algorithm to be considered efficient. By
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simulating a random walk on P from initial state x, this number T is bounded from

above by the mixing time τx (4.3). In turn, τx is often estimated using the inequality

(4.2)

δ−1 ≤ τx ≤ δ−1 log 1/π(x) (6.1)

where δ is the spectral gap of P .

Although this inequality is tight with respect to δ, it is somewhat unsatisfactory

in the following sense. Let P be the simple random walk on a regular graph G on N

vertices. It can be shown [103] that the diameter d of G satisfies:

d(G) = O(
√
δ−1 logN) (6.2)

Clearly, d(G) is a lower bound on the number of updates needed to solve the spatial

sampling problem for P from a worst-case start vertex s ∈ V . But (6.1) shows that

simulating a random walk on P does significantly worse than this. For example, consider

the simple case in which P is the simple random walk on a line: its spectral gap is

δ = Θ( 1
N2 ), so the random walk on P samples from (close to) its uniform distribution

only after Θ(N 2) walk steps.

Fundamentally, the random walk’s performance bottleneck in solving the spatial

sampling problem is its Gaussian width. After t steps, most of the probability mass

is supported on only the middle Θ(
√
t) vertices of the line. What we would like is an

algorithm that spreads mass nearly uniformly across Θ(t) vertices after t steps. More

generally, we would like an algorithm for the spatial sampling problem on a regular

graph requiring only

T = O(
√
δ−1 logN) (6.3)

updates. Chen, Lovász, and Pak [31] achieved some progress toward this end by lifting

P to a faster-mixing Markov chain P ′, but their algorithm requires both knowledge of

the chain’s global structure and its use in solving an NP-complete network flow problem

to find low-congestion paths along which to “route” probability mass efficiently. A more

promising idea that has received attention in recent years is replacing P by a quantum

walk.
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6.2 The quantum mixing time?

Figure 4.1 compares the behavior of random and quantum walks on the one-dimensional

infinite line. In continuous time, a distribution pt initally concentrated at the origin

propagates by the simple random walk P according to

pt(x) = e−(I−P )tp0 = e−2tIx(2t) ≈ 1√
4πt

exp(−x2/4t) (6.4)

where Ix is the modified Bessel function of order x and the latter expression is a Gaus-

sian of width
√

2t. Using P as the Hamiltonian for a continuous-time quantum walk, a

wavefunction |ψt〉 initially concentrated at the origin spreads as

〈x|ψt〉 = e−iP t(−i)|x|J|x|(2t) (6.5)

where J|x| is a Bessel function of order |x|. For |x| � 1 the quantity |J|x|(t)| is (a)

exponentially small in |x| for t < (1− ε) · |x| and (b) of order |x|−1/2 for t > (1 + ε) · |x|

(Childs [32]). So in fact, the two “peaks” of |〈x|ψt〉|2 in Figure 4.1 are exponentially

thin, and the more important property of |ψt〉 is that its amplitude is spread almost

entirely and nearly uniformly over the interval between the two peaks. Nayak et al.

[81, 17] showed that the discrete-time Hadamard walk on the line also puts amplitude

Ω(1/
√
t) on the vertices within an interval of length Θ(t) around the origin at time t.

Nayak et al. [81, 17] and Aharonov et al. [4] were the first to investigate whether

quantum walks might speed up classical mixing processes. Nayak et al. [81, 17] showed

that the spreading property of the Hadamard walk on the cycle ZN yields a notion

of quantum mixing time which is Θ(N) in contrast to the classical Θ(N 2). Aharonov

et al. [4] proved an O(N logN) upper bound for the Hadamard walk on the cycle

using a different notion of quantum mixing time. Moore and Russell [79] showed that

the continuous-time Farhi/Gutmann walk and the discrete-time Grover walk on the

hypercube Z
d
2 both mix in time O(d) as opposed to O(d log d) classically. The Grover

walk also seems to mix quickly on the torus Z
2
n, although this has not been verified

analytically [55, 106, 72].

Absence of an ergodic theorem. Let U be a discrete-time quantum walk operator,

or let U = e−iH where H is a continuous-time quantum walk Hamiltonian, and define
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the N ×N stochastic matrix

Pt(y, x) := |〈y|U t|x〉|2 (6.6)

induced by starting the quantum walk from a classical state, running it for time t, and

measuring the walk register in the classical basis.1 A key observation of Aharonov et

al. [4] is that while Pt does not converge to a limit (due to the underlying unitary

dynamics), its time average does: if U is a unitary operator and ωT is the uniform

distribution on [0..T ], then the following limit exists.

Π := lim
T→∞

Et←ωT
[Pt] (6.7)

However, it is typically the case that the quantum walk generated by a Markov chain

P with stationary distribution π satisfies

Π 6= [ππ · · · π] = P∞ (6.8)

even though in the classical case we have P t → P∞ as in (4.2). Moreover, the columns

of Π are not identical, so the limiting distribution of the time-averaged quantum walk

depends on the initial state. Even when P is symmetric (so that π is the uniform

distribution u), we rarely have an ergodic theorem (time-space average) Π = [uu · · · u]:

Aharonov et al. [4] were able to prove this equality only for quantum walks U on Cayley

graphs of Abelian groups in which U has distinct eigenvalues. Gerhardt and Watrous

[51] showed that

||Π − [uu · · · u]||1 ≥ 2

n
− 2

n · n!

(

2n− 2

n− 1

)

(6.9)

for a continuous-time quantum walk on the symmetric group Sn, and Moore and Russell

[79] showed that there exists an ε > 0 such that

||Π − [uu · · · u]||1 ≥ ε (6.10)

for a continuous-time quantum walk on the hypercube Z
d
2. Even more pathological are

the Farhi/Gutmann and Grover walks on the complete graph KN , for which Π has

diagonal elements ≈ 1 − 1
N and off-diagonal elements ≈ 1

N .

1If the walk is discrete-time and requires a second register, we consider its effect on a single register.
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Lower bound arguments. One way to force the quantum walk to converge to π is

to use a walk operator which depends on the initial state. For example, if we run the

MNRS algorithm in reverse – using the initial state |x〉 as the “marked” state – and

measure the output state ≈ |π̃〉, we obtain a mixing algorithm with cost

T = O(1/
√

δπ(x)) (6.11)

whose dependence on δ is precisely what we seek. Unfortunately, the dependence on

π(x) is prohibitively costly. The prospects for using quantum hitting procedures as

mixing procedures in this manner are severely limited by the Ω(
√
N) quantum search

lower bound of Bernstein et al. [25], which is typically beaten handily by the standard

classical mixing procedure.

Aharanov et al. [4] proved lower bounds for several notions of quantum mixing time

in terms of the conductance of the underlying Markov chain, a geometric parameter

quadratically related to the spectral gap. However, their lower bounds do not rule out

the possibility of an upper bound of the form (6.3) on the quantum mixing time. In

particular, their lower bound for non-unitary quantum walks is relatively weak2 – which

brings us to the subject of decoherent quantum walks.

6.3 Decoherent quantum walks

Evidence in favor of a quantum speedup of the form (6.3) for the spatial sampling

problem is presented in [91, 90] using quantum walks that decohere under repeated

randomized measurements. Decoherence (in small amounts) was first identified as a

way to improve spreading and mixing properties in numerical experiments performed by

Kendon and Tregenna [65] and in analytical estimates by Fedichkin et al. [47, 101, 102].

On the other hand, high rates of decoherence in quantum walks have been shown to

degrade mixing properties substantially by the quantum Zeno effect (Alagic and Russell

[10]). For an excellent survey of these and other aspects of decoherent quantum walks,

see Kendon [64].

2The lower bound of Aharonov et al. [4] for non-unitary quantum walks applies to the quantum
“sampling time,” which is in general a larger quantity than the quantum mixing time.
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6.3.1 A quantum walk algorithm that mixes

Henceforth, we shall use 〈U,ωT 〉 and 〈H,ωT 〉 to denote the discrete-time quantum

walk (with unitary walk operator U) and the continuous-time quantum walk (with

walk Hamiltonian H). Here ωT is the measurement rule – a T -parametrized family of

probability mass (or density) functions on [0,∞) characterizing the (random) time at

which a total measurement of the walk is performed in the classical basis.

We show that under a very mild condition on ωT , the T ′-repeated continuous-time

Aharonov/Ta-Shma walk (4.20) 〈HP , ωT 〉 derived from a symmetric Markov chain P

converges to the uniform limit P∞ = [uu · · · u] [91, 90].3 In particular, any reason-

able (“smooth”) measurement rule ωT – whether chosen by design or used to model

decoherence – can be expected to satisfy the condition. Thus, decoherent quantum

walks (which are non-unitary) circumvent the barrier to uniform-mixing identified by

Aharonov et al. [4].

First we prove a variant of Theorem 3.4 in Aharonov et al. [4].

Lemma 6.2 Let P be a symmetric Markov chain and ωT be a family of distributions

satisfying Et←ωT
[eiθt] → 0 as T → ∞ for any θ 6= 0. In the limit T → ∞, the stochastic

matrix P̂T := Et→ωT
[Pt] (6.7) generated by the quantum walk 〈HP , ωT 〉 approaches the

matrix Π with entries

Π(y, x) :=
∑

j

∣

∣

∑

k∈Cj

〈y|φk〉〈φk|x〉
∣

∣

2
(6.12)

where {λk, |φk〉} is the spectrum of P and {Cj} is the partition of these indices k

obtained by grouping together the k with identical λk.

Proof: Decomposing the quantum walk along spectral components gives us:

P̂T (y, x) = Et←ωT
[|
∑

k

〈y|φk〉〈φk|x〉eiλkt|2] (6.13)

Writing | · |2 as a product of complex conjugates, the right hand side becomes:

EωT
[(
∑

k

〈y|φk〉〈φk|x〉)(
∑

l

〈φl|y〉〈x|φl〉)ei(λk−λl)t] (6.14)

3Though repeatedly measured quantum walks generate mixed states, our analysis is simplest without
the use of density matrices.
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By linearity of expectation, this is equivalent to:

(
∑

k

〈y|φk〉〈φk|x〉)(
∑

l

〈φl|y〉〈x|φl〉)EωT
[ei(λk−λl)t] (6.15)

Now by assumption, EωT
[ei(λk−λl)t] vanishes as T → ∞ for all λk 6= λl, so we have

P̂T (y, x) →
∑

k

〈y|φk〉〈φk|x〉(
∑

l:θl=θk

〈φk|y〉〈x|φk〉)

=
∑

j

|
∑

k∈Cj

〈y|φk〉〈φk|x〉|2 = Π(y, x) (6.16)

in the limit T → ∞.

Using Lemma 6.2, we prove that the T ′-repeated quantum walk solves the spatial

sampling problem for symmetric P using a finite number of updates [90].

Theorem 6.3 Let P be a symmetric, irreducible Markov chain and ωT be a family of

distributions satisfying Et←ωT
[eiθt] → 0 as T → ∞ for any θ 6= 0. For T sufficiently

large (but fixed), the T ′-repeated quantum walk 〈HP , ωT 〉 generates a Markov chain

(P̂T )T
′

approaching [uu · · · u] in the limit T ′ → ∞.

Proof: We need to show that for T sufficiently large, the Markov chain P̂T is ergodic

with uniform stationary distribution.

That the uniform distribution is stationary is clear: each of the Pt(y, x) := |〈y|eiP t|x〉|2

has uniform stationary distribution since the uniform classical state is invariant under

unitary quantum operations and under total measurement of the system; thus, any

probabilistic combination P̂T of them has uniform stationary distribution.

To show that P̂T is ergodic for all sufficiently large T , it is sufficient (by Lemma 6.2)

to prove that Π is ergodic. (The latter implies the former because the ergodic matrices

form an open subset of the set of stochastic matrices.) Why is Π ergodic? Because the

1-eigenspace of P is precisely the space spanned by u, so it follows from Lemma 6.2

(by consideration of only this nondegenerate eigenspace in the expression (6.12)) that

Π(y, x) ≥ 1/N 2 for every x, y.

In fact, each of the Pt (and so P̂T and Π as well) is symmetric.4 To see this, write

4Π is also positive semidefinite: it is the Gram matrix of {fs} with fs(kl) := 〈s|φk〉〈φl|s〉 if λk = λl,
0 otherwise.
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out the Taylor series for eiP t and note that every positive integer power P k is symmetric

(since P 2(x, y) =
∑

z P (x, z) ·P (z, y) =
∑

z P (y, z) ·P (z, x) = P 2(y, x)). This property

will be quite useful in the next subsection: it will allow us to use Theorem 4.2 to relate

the spectral gap and the mixing time of P̂T .

6.3.2 Robustness of the quantum mixing time

Theorem 6.3 showed that just about any measurement (or decoherence) rule ωT can

be expected to force the T ′-repeated quantum walk 〈HP , ωT 〉 to mix to the uniform

distribution if P is symmetric. In any algorithmic application, we would like to know

which ωT converges fastest. We settle this question by showing that “most” ωT (those

which are at least somewhat “smooth”) are at least approximately equivalent. Hence,

the notion of quantum mixing time is robust for a decoherent quantum walk – essentially

independent of ωT .

We illustrate this result using two concrete measurement rules ωT that fall into this

(approximate) equivalence class: the uniform distribution µ̄T := 1
T χ[0,T ], where χ is the

characteristic function, and the exponential distribution µ̃T (t) := 1
T e
−t/T . The uniform

distribution is the measurement rule typically used in the computer science literature

[4, 79, 51], since it corresponds most naturally to an algorithm. The exponential dis-

tribution is the measurement rule typically used in the physics literature [65, 10, 47],

since it describes the interarrival time between measurements in a Poisson process with

rate λ = 1/T . The proof of (approximate) equivalence applies more generally to any

two measurement rules with finite expectation and significant overlap for most T .

Let P be a symmetric Markov chain. Let P̄T := Et←µ̄T
[Pt] and P̃T := Et←µ̃T

[Pt] be

the stochastic matrices (6.7) generated by the quantum walks 〈HP , µ̄T 〉 and 〈HP , µ̃T 〉,

respectively, and let δ̄T and δ̃T be their respective spectral gaps.

Lemma 6.4 For any k ≥ 1, we have the inequality:

e−1δ̄T ≤ δ̃T ≤ k(1 − e−k) · δ̄kT + 2e−k (6.17)

Proof: Suppose we want to simulate P̄T by P̃T . Scaling the distribution µ̄T by α := 1/e

allows us to “fit it inside” the distribution µ̃T (i.e., e−1µ̄T ≤ µ̃T pointwise), so we can



69

express µ̃T as the probabilistic combination αµ̄T + (1−α)ν for some distribution ν, so

that

P̃T = Et←µ̃T
[Pt] = αEµ̄T

[Pt] + (1 − α)Eν [Pt]

= αP̄T + (1 − α)Q (6.18)

where Q is stochastic with uniform stationary distribution. It follows that

||P̃T |u⊥ ||2 ≤ 1/e||P̄T |u⊥ ||2 + (1 − 1/e)||Q|u⊥ ||2 (6.19)

which implies that δ̃T ≥ 1/e · δ̄T since ||Q|u⊥ ||2 ≤ 1.

Suppose we want to simulate P̃T by P̄kT . Then the basic approach is the same, but

since the support of µ̃T is not compact we have to be careful. Scaling the distribution

µ̃T by β := 1/k allows us to fit it inside the distribution µ̄kT up to the point t = kT ,

and the probability mass in µ̃T past t = kT is only Prt←µ̃T
[t > kT ] = e−k. So we can

write

µ̃T = (1 − e−k) · µ̃head
T + e−k · µ̃tail

T (6.20)

where µ̃head
T and µ̃tail

T are the conditional distributions of µ̃T such that t ≤ kT and

t > kT , respectively; thus,

P̃T = (1 − e−k) · P̃ head
T + e−k · P̃ tail

T (6.21)

where P̃ head
T and P̃ tail

T are the expectations of Pt with respect to µ̃head
T and µ̃tail

T , re-

spectively. Since we can fit µ̃head
T inside µ̄kT if we scale it by 1/k, we can write

P̄kT =
1

k
P̃ head

T + (1 − 1

k
)Q (6.22)

where Q is stochastic with uniform stationary distribution. The above equations yield:

P̄kT =
1

k(1 − e−k)
(P̃T − e−kP̃ tail

T ) + (1 − 1

k
)Q (6.23)

From the triangle inequality, ||P̄kT |u⊥ ||2 is at most:

||P̃T |u⊥ ||2 + e−k||P̃ tail
T |u⊥ ||2

k(1 − e−k)
+ (1 − 1

k
)||Q|u⊥ ||2 (6.24)

Rearranging terms and simplifying, we have

(1 − ||P̃T |u⊥ ||2) − 2e−k

k(1 − e−k)
≤ 1 − ||P̄kT |u⊥ ||2 (6.25)

from which the lemma follows.
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Say that the T ′-repeated quantum walk threshold-mixes if the Markov chain (P̂T )T
′

it generates mixes (to the uniform distribution, in this case) in time O(1). If the T ′-

repeated quantum walk of length T threshold-mixes, then it solves the spatial sampling

problem using O(T · T ′) updates. The following theorem is shown in [90]:

Theorem 6.5 If the T ′-repeated quantum walk 〈HP , µ̄T 〉 threshold-mixes, then the

T ′ · O(logN)-repeated quantum walk 〈HP , µ̃T 〉 threshold-mixes. Conversely, if the T ′-

repeated quantum walk 〈HP , µ̃T 〉 threshold-mixes, then the T ′ ·O(log T ′ logN)-repeated

quantum walk 〈HP , µ̄T ·O(log T ′)〉 threshold-mixes.

Proof: To see (a), note that our assumption implies that P̄T mixes in time T ′. There-

fore, δ̄T = Ω(1/T ′) by Theorem 4.2, and from Lemma 6.4 it follows that δ̃T = Ω(1/T ′).

Applying Theorem 4.2 again, we obtain for P̃T a mixing time of O(T ′ logN).

The proof of (b) is almost as straightforward. Our assumption implies that P̃T

mixes in time T ′, so δ̃T = Ω(1/T ′) by Theorem 4.2. Set k to be the smallest integer for

which δ̃T ≥ 3e−k; in particular, k = Θ(log δ̃−1
T ) = O(log T ′). By Lemma 6.4:

δ̄kT ≥ 1

k(1 − e−k)
(δ̃T − 2e−k) ≥ 1

k(1 − e−k)
(e−k) (6.26)

Asymptotically, the right hand side is:

Θ

(

δ̃T

log δ̃−1
T

)

= Θ

(

1

T ′ log T ′

)

(6.27)

Applying Theorem 4.2 again, we obtain for P̄kT a mixing time of O(T ′ log T ′ logN).

6.4 Quantum mixing on the torus

We turn our attention now to the special case in which P is the simple random walk

on the d-dimensional periodic lattice (torus) Z
d
n. First we prove an approximate ergodic

theorem for the continuous-time quantum walk 〈HP , µ̄T 〉: its time-average limit (the

distribution Π(·, x)) is approximately equivalent to its space-average (the uniform dis-

tribution). Thus, it converges to the same limit as its classical counterpart. Then we

prove a quantum speedup for the mixing time. More precisely, we show that the T ′-

repeated quantum walk solves the spatial sampling problem using T · T ′ = O(nd log d)
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update queries – beating the upper bound (6.3) – whereas the classical random walk

simulation uses O(n2d log d) update queries.

6.4.1 An approximate ergodic theorem

Let Π be the stochastic matrix (6.7) generated by the quantum walk 〈HP , µ̄T 〉 on the

torus Z
d
p in the limit T → ∞, where p > 4d is prime. We show that every matrix entry

of Π is bounded from below by Ω(1/pd) [91]. Among other things, this implies (by

Propositions 6.9, 6.10) that Π mixes in time O(1).

First we bound the eigenvalue multiplicities of P .

Lemma 6.6 Let P be the simple random walk on Z
d
p with d ≥ 1 fixed and p > 4d

prime. Then each of the Cj in Theorem 6.2 consists of all l ∈ Z
d
p equivalent to a single

k ∈ Z
d
p up to permutation and signing of the coordinates.

Proof: Let ω = e2πi/p. Suppose λk = λl and l is not equivalent to k. Then the

vanishing sum
d
∑

j=1

ωkj + ω−kj − ωlj − ω−lj = 0 (6.28)

is not simply 2d vanishing sums of length two ωkj −ωkj , ω−kj −ω−kj over j : 1 ≤ j ≤ d.

Observe that if we cannot decompose the above sum into length-two vanishing sums

in precisely this way, then we cannot do so at all (since ωkj + α = 0 ⇒ α = −ωkj is a

2pth root of unity but not a pth root of unity). Hence there exists a minimal vanishing

sum of length m (3 ≤ m ≤ 4d) of roots of unity ζi (without loss of generality, we may

assume ζ1 = 1) of common order r = p. By Theorem 5 of Conway and Jones [39],
∑

s prime: s|r(s− 2) ≤ m− 2; so we have p− 2 ≤ 4d− 2.

Next we prove a lemma which will be used to bound an exponential sum from below.

Lemma 6.7 For any y ∈ Z
d
n, there are Ω(n) different x ∈ Zn satisfying xyi mod n ∈

[−n/8d, n/8d] for all i : 1 ≤ i ≤ d.

Proof: Consider the map f : Zn → Z
d
n given by x 7→ (xy1, . . . , xyd). Thinking of Z

d
n as

being divided into subgrids of side length n/m (with one of them, H0, centered at 0),
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it is clear that one such subgrid (call it H) must contain at least n/md of the points in

the image of f . Let x′y be any of the image points in H. Then there are at least n/md

different x for which (x− x′)yi ∈ [−n/m, n/m] for all i. Let m = 8d; then there are at

least n/(8d)d such x.

Finally we establish the main theorem [91].

Theorem 6.8 Let P be the simple random walk on Z
d
p with d ≥ 1 fixed, p prime, and

N = pd. Then each entry of Π is bounded below by Ω(1/N).

Proof: Label the spectrum of P using indices k ∈ Z
d
p as follows:

λk :=
1

d

d
∑

j=1

cos(2πkj/p) |φk〉 :=
1√
N

∑

x∈Zd
p

e2πik·x/p|x〉 (6.29)

Since Z
d
p is vertex-transitive, it suffices to show that Π(y, 0) = Ω(1/N); or, from Theo-

rem 6.2:
∑

j

|
∑

k∈Cj

e2πik·y/p|2 = Ω(N) (6.30)

This is a consequence of the preceding two lemmas: by Lemma 6.7, at least (p/(8d)d)d =

Ω(N) of the k ∈ Z
d
p are such that: (i) kjyi mod p ∈ [−p/8d, p/8d] ∀i, j, thus (ii) l · y :=

∑

i liyi mod p ∈ [−p/8, p/8] for all l equivalent to k up to permutation and signing of

the coordinates. So by Lemma 6.6, which in particular shows that |Cj | ≤ 2dd! for all j,

it follows that (p/(8d)d)d/2dd! = Ω(N) of the Cj give a sum of at least 1.

6.4.2 Quantum speedup of the mixing time

The simple random walk P on the torus Z
d
n has spectral gap δ = Θ( 1

dn2 ) and mixing

time Θ(n2d log d). This stays under the target upper bound (6.3) only when Z
d
n is quite

high-dimensional: in particular, when d is roughly of order n2 or larger. That the low-

dimensional case is a bottleneck is unsurprising considering the discussion immediately

preceding (6.3).

We show that the T ′-repeated quantum walk 〈HP , µ̄T 〉 mixes in time O(1) for T =

O(dn) and T ′ = O(log d), for a “quantum mixing time” of T · T ′ = O(nd log d) [90].
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This beats the target upper bound (6.3), and for d = 1 it proves a conjecture of Kendon

and Tregenna [65] based on numerical experiments.5 For d ≥ 1, it extends the results

of Fedichkin et al. [47, 101, 102] by confirming O(n) and O(d log d) scaling (suggested

by their analytical estimates and numerical experiments in regimes of both high and

low decoherence) of the fastest-mixing walk, which they conjectured to be decoherent

(repeatedly measured) rather than unitary (once measured).

Previously, mixing speedups were known only for the unitary quantum walks of

Nayak et al. [81, 17] and Aharonov et al. [4] (on the cycle) and of Moore and Russell

[79] (on the hypercube). (See Table 6.1.) Thus, our result shows that introducing a

small amount of decoherence to a quantum walk can simultaneously force convergence to

the uniform distribution while preserving a quantum mixing speedup, an advantageous

combination for algorithmic applications.6

Graph Spectral estimate (6.3) Random walk Quantum walk

Zn O(n log n) O(n2) O(n) [81, 17, 4]

Z
d
n O(d

√
dn log n) O(n2d log d) O(nd log d) [90]

Z
d
2 O(d

√
d) O(d log d) O(d) [79]

Table 6.1: Known mixing upper bounds for random vs. quantum walks.

First we need to establish a few properties of Markov chains. Define the maximum

pairwise column distance of a Markov chain P by:

d′(P ) := max
x,x′

||P (·, x) − P (·, x′)||1 (6.31)

It is related to the matrix `1 distance

d(P ) := ||P − P∞||1 (6.32)

5In fact this is not quite true: Kendon and Tregenna [65] conjectured this for the discrete-time
Hadamard walk. We prove it for both walks.

6Alagic and Russell [10] exhibit a decoherent quantum walk on the hypercube which converges to
the uniform distribution and preserves the quantum mixing speedup proven by Moore and Russell [79],
but in contrast to our work, it is their single (carefully chosen) final measurement that forces uniform
convergence, not the decoherence itself (which only adds “noise” that if small enough does not destroy
the speedup).
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(assuming P is irreducible) by the inequality

1

2
d(P ) ≤ d′(P ) ≤ d(P ) (6.33)

and it has the submultiplicativity property [12]:

d′(P t+t′) ≤ d′(P )t+t′ (6.34)

The next two propositions can be used to estimate the mixing time of P given a common

lower bound on most of the entries in each column.

Proposition 6.9 If d′(P ) ≤ α < 1, then d(P t) ≤ ε for some t = O(log ε−1/ log α−1).

Proof: If d′(P ) ≤ α, then the rightmost inequality of

d(P t) ≤ 2d′(P t) ≤ 2d′(P )t ≤ ε (6.35)

holds provided that t is small enough so that:

t log 1/d′(P ) ≤ log 2/ε (6.36)

In particular, this holds for t = O(log ε−1/ log α−1).

To prove that P mixes in time O(1), it suffices to show that d′(P ) is at most some

constant less than one. A sufficient condition for this property to hold is the following:

Proposition 6.10 Suppose β > 1
2 and γ > 0. If P is N × N and has at least βN

entries in each column bounded below by γ/N , then d′(P ) ≤ 1 − γ(1 − 2(1 − β)) < 1.

Proof: Recall that for any two distributions p and q we have 1
2 ||p − q||1 = 1 −

∑

k min{pk, qk}. It follows that:

d′(P ) ≤ 1 − (1 − 2(1 − β))N · γ
N

= 1 − γ(1 − 2(1 − β)). (6.37)

which proves the claim.

Define the point distribution δT (t) := δ(t − T ) where δ is the delta function, the

(discrete-time) uniform distribution ν̄T := 1
T χ[0..T−1], and the geometric distribution
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ν̃T (t) := 1
T (1 − 1

T )t – the discrete-time (Bernoulli interarrival) counterpart to the ex-

ponential (Poission interarrival) distribution µ̃T . The following lemma shows that a

decoherent quantum walk using any of these measurement rules mixes quickly on the

cycle Zn.

Lemma 6.11 Let P be the simple random walk on Zn, the cycle on n ≥ 2 vertices.

The continuous-time quantum walks 〈HP , ωT 〉 with ω ∈ {δ, µ̄, µ̃} threshold-mix for any

T ∈ I := [ 23 · n
2 ,

n
2 ], and the Hadamard walks 〈UHad, ωT 〉 with ω ∈ {ν̄, ν̃} threshold-mix

for any T ∈ J := [ 23 · n√
2
, n√

2
].

Proof: Consider first the continuous-time walk. To prove that it threshold-mixes with

any of the measurement rules ω ∈ {δ, µ̄, µ̃} for any T ∈ I, it suffices by Proposition

6.9 to show that for every t ∈ I ′ := [35 · n
2 ,

4
5 · n

2 ], d′(Pt) is bounded below one by

a positive constant, where Pt is the Markov chain generated with measurement rule

ω = δ. Indeed, this easily implies that d′(P̄T ) and d′(P̃T ) are bounded below one by

a smaller positive constant, where P̄T and P̃T are the Markov chains generated with

measurement ω = µ̄ and ω = µ̃, respectively.

Let |φt〉 and |ψt〉 be the wavefunctions at time t for the continuous-time walks on

Z and Zn, respectively, starting from the origin (without loss of generality, since Z and

Zn are vertex-transitive). Then for each ȳ ∈ Zn we have:

〈ȳ|ψt〉 =
∑

y≡ȳ mod n

〈y|φt〉 (6.38)

Refer back to the estimates (a) and (b) of (6.5). For every t < 4
5 · n

2 , estimate (a)

implies that the only term in the above summand that is non-negligible is the 〈y|φt〉

with |y| < n
2 (call it ŷ and note that ȳ ↔ ŷ is a 1-1 correspondence), so we can use

estimate (b) to conclude that up to a negligible correction

|〈ȳ|ψt〉| ≈ |〈ŷ|φt〉| = Θ(1/
√
n) (6.39)

for every |ŷ| � 1 and t > (1 + ε) · |ŷ|. In particular, the nearly 3
5n different ȳ with

1 � |ŷ| ≤ 3
5 · n

2 satisfy |〈ȳ|ψt〉| = Ω(1/
√
n), and therefore Pt(ȳ, 0̄) = Ω(1/n), for every

t ∈ I ′. So by Proposition 6.10, d′(Pt) is bounded below one by a positive constant.
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In the case of the Hadamard walk (see [81, 17, 4] for its definition), the wavefunction

is no longer characterized by Bessel functions, but it retains the same essential asymp-

totic spreading behavior as its continuous-time counterpart [81, 17], and the argument

above works with little modification. A caveat is the emergence of a parity problem: if

n is even, then Zn is bipartite and the wavefunction is supported only on vertices of the

same parity at each integer timestep. Hence the Hadamard walk with ω = δ threshold-

mixes only on vertices of the same parity, but with time-averaged measurement ω = ν̄

or ω = ν̃ parity is broken and threshold-mixing occurs on the entire vertex set.

Although the argument above relies on the asymptotic behavior of the wavefunction

as n→ ∞, this is clearly the difficult case: if n is bounded, then it suffices to show only

that there exists a time (or a pair of consecutive timesteps, in the case of the Hadamard

walk) in which the wavefunction is supported on at least 2/3 of the vertices.

For the Hadamard walk with ω = ν̃, Lemma 6.11 resolves a conjecture of Kendon and

Tregenna [65] based on numerical experiments.

Let Gd denote the dth (Cartesian) power of a graph G. Examples are the d-

dimensional standard lattice (the dth power of a line) and the d-dimensional periodic

lattice (the dth power of a cycle). Let P and P ′ be the simple random walks on G and

Gd, respectively. The following theorem shows how to extend a threshold-mixing result

from HP to HP ′ [90].

Theorem 6.12 Suppose the continuous-time quantum walk 〈HP , δT 〉 threshold-mixes.

Then the O(log d)-repeated quantum walk 〈HP ′ , δdT 〉 threshold-mixes.

Proof: The Hamiltonian H ′ = P ′ is related to the Hamiltonian H = P by the identity:

H ′ =
1

d

d
∑

j=1

I⊗(j−1) ⊗H ⊗ I⊗(d−j) (6.40)

Since H ′ commutes with the identity I, which can introduce at most a global phase

factor to the system, the Markov chain P ′t generated by the walk 〈HP ′ , δt〉 is the dth

tensor power of the Markov chain Pt/d generated by the walk 〈HP , δt/d〉. By assumption,

d′(PT ) ≤ α for some constant α < 1. By Proposition 6.9, we can choose T ′ = O(log d)
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to ensure that:

d(P T ′

T ) ≤ d(P T ′

T ) ≤ 1

6d2
(6.41)

Then at least n d
√

2/3 entries in each column of P T ′

T are bounded below by 1−1/2d
n ,

otherwise we would have the contradiction

d(P T ′

T ) = 1 −
∑

y

min{P T ′

T (y, x),
1

n
}

> (1 − d
√

2/3)
1

2d
≥ 1

6d2
(6.42)

where the first equation uses the identity 1
2 ||p− q||1 = 1 −∑k min{pk, qk} for distribu-

tions p and q, and the last inequality uses simple algebra along with the fact that for

any d ≥ 1:

(1 − 1/3

d
)d ≥ 2

3
(6.43)

Since (P ′Td)
T ′

= (P T ′

T )⊗d, at least (n d
√

2/3)d = 2
3n

d of the entries in each column of

(P ′Td)
T ′

are bounded below by ( 1−1/2d
n )d ≥ 1

2nd . It follows from Proposition 6.10 that

(P ′Td)
T ′

threshold-mixes in time O(1).

We have the following corollary for the dth power Z
d
n of the cycle Zn.

Corollary 6.13 Let P ′ be the simple random walk on Z
d
n, the d-dimensional torus

with n ≥ 2 vertices per side. The O(log d)-repeated continuous-time quantum walk

〈HP ′ , ωnd/2〉 with ω ∈ {δ, µ̄, µ̃} threshold-mixes.

Proof: Combining Lemma 6.11 with Theorem 6.12, we conclude that 〈Uct(P (Zd
n)), δT 〉

threshold-mixes for any T ∈ [ 2
3 · nd

2 ,
nd
2 ]. It is easy to see (cf. Lemma 6.11) that this is

sufficient to imply the stated corollary not only for the measurement ω = δ but also for

the time-averaged measurements µ̄ and µ̃.

Theorem 2.2 implies the quantum walk Hamiltonian HP (which is sparse) can be

simulated efficiently by a quantum circuit – in particular, without destroying the quan-

tum speedup over the classical mixing time. Nevertheless, one wonders whether the

discrete-time Grover walk WP mixes just as well as HP . There is some positive evi-

dence for the torus Z
2
n [55, 106, 72] and a proof for the hypercube Z

n
2 [79].
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Chapter 7

Adiabatic quantum computing

Many of the quantum walk algorithms we have seen heretofore can be recast naturally

as time-independent quantum procedures for finding the ground state |x∗〉 of a classical

Hamiltonian with diagonal entries 〈x|H|x〉 = f(x), where f : B
n → R and x∗ :=

argmin f(x). Recall that simulated annealing solves this same problem using a time-

dependent classical procedure. An adiabatic (or quantum annealing) algorithm finds the

ground state of a quantum Hamiltonian using a time-dependent quantum procedure. As

one might expect, this is a powerful algorithmic technique – so much so, in fact, that

any quantum circuit can be simulated efficiently by an adiabatic algorithm. Thus, an

“adiabatic quantum computer” is no weaker than one built from quantum circuits.

7.1 Simulated annealing redux

Recall from Chapter 4 the simulated annealing algorithm. We are given a classical

(diagonal) Hamiltonian H : B
n → B

n whose ground state energy

λ∗ := min
x∈Bn

〈x|H|x〉 (7.1)

we want to compute. Let |x∗〉 be a classical ground state. If we reparametrize the

Metropolis process by its inverse temperature β = lnλ (where λ is its activity), then it

converges to the Gibbs distribution

π(x) =
1

Z(β)
〈x|e−βH |x〉 (7.2)

whose numerator is the Boltzmann factor and whose denominator is the partition func-

tion:

Z(β) = tr(e−βH) (7.3)



80

Physically, π(x) is the probability that the system, in equilibrium and at temperature

T = 1/β, will be found in the classical state |x〉. At high temperatures (T → ∞), π(x)

is approximately uniform; at low temperatures (T → 0), it freezes to the ground state

|x∗〉 of H.1 The simulated annealing algorithm starts at any classical state |x〉 and runs

the Metropolis process while gradually lowering the temperature according to a cooling

schedule. Using perturbation theory, it can be shown that the algorithm outputs the

state |x∗〉 with high probability if the cooling schedule is sufficiently gradual.

7.2 Adiabatic algorithms for search and 3-SAT

A quantum adiabatic algorithm [44] interpolates between two fixed Hamiltonians along

an adiabatic path H(s), much like the cooling schedule in classical simulated annealing.

Theorem 2.1 guarantees that the algorithm will maintain the ground state |φ(s)〉 ofH(s)

if it proceeds sufficiently slowly relative to the spectral gap of H(s). There is evidence

that quantum adiabatic algorithms can sometimes “tunnel through” energy barriers

surrounding local minima more quickly that classical simulated annealing algorithms

can cross them [42].

The adiabatic computing framework was developed by Farhi et al. [44], who gave

the following algorithm for the 3-satisfiability (3-SAT) problem from Chapter 4. Let

H1 : B
n → B

n be the classical Hamiltonian in which 〈x|H1|x〉 gives the number of clauses

violated in the Boolean formula ξ by the variable assignment x = x1x2 · · · xn ∈ B
n. This

is the problem Hamiltonian. It is a local Hamiltonian in that it can be expressed in the

bitwise product form

H1 =
m
∑

j=1

HCj
⊗ I[n]\Cj

(7.4)

where Cj ⊆ [n] contains the indices of the three bits in clause j, HCj
: B

3 → B
3 is the

Hamiltonian acting on the bits in clause j whose diagonal entry 〈xi, xi′ , xi′′ |H|xi, xi′ , xi′′〉

is 1 if the partial assignment xi, xi′ , xi′′ violates clause Cj (and 0 otherwise), and I[n]\Cj

is the identity operator acting on the bits not in clause j. If there is a unique assignment

1That it does not concentrate entirely on |x∗〉 unless T = 0 is essentially the third law of
thermodynamics.
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x∗ satisfying ξ, then the unique ground state of H1 is |x∗〉. Let the initial Hamiltonian

H0 : B⊗n → B⊗n be given by

H0 =
m
∑

j=1

H ′Cj
⊗ I[n]\Cj

(7.5)

where H ′Cj
is a sum of three single-qubit Hamiltonians H ′{i}, H

′
{i′}, H

′
{i′′} acting on the

bits xi, xi′ , xi′′ by

H ′{i} =
1

2





1 −1

−1 1



 (7.6)

in the classical basis. Its unique ground state is the uniform superposition |u〉 =

1√
2n

∑

x∈Bn |x〉 = H⊗n|0n〉, which is easily preparable.

Farhi et al. [44] suggest that there is an adiabatic algorithm H(s) := (1−s)H0+sH1

with an efficient delay schedule τ(s) (2.4) – i.e., polynomial in n – that solves some 3-

SAT instances thought to be hard for classical algorithms. A proof to this effect would

require bounding the spectral gap of H(s) (by Theorem 2.1), but techniques for doing

so are quite limited.

There is at least one example of an adiabatic algorithm whose efficiency we can

prove. Roland and Cerf [93] and van Dam et al. [108] designed an adiabatic algorithm

for the search problem and proved that it achieves the same quantum speedup as

Grover’s algorithm. Using the initial and problem Hamiltonians

H0 := H⊗n(I − |0n〉〈0n|)H⊗n H1 := I − |x∗〉〈x∗| (7.7)

where x∗ is the unique solution f−1(1) of a predicate f : B
n → B, they show:

Theorem 7.1 There is an adiabatic algorithm H(s) = (1 − s)H0 + sH1 computing x∗

in time O(
√

2n).

Proof: To estimate the required delay schedule τ(s), we need to bound the spectral

gap δ(s). The algorithm, like Grover’s, acts within a two-dimensional subspace spanned

by the initial ground state |u〉 = H⊗|0n〉 and the final ground state |x∗〉. A simple

calculation [108] shows that the spectral gap inside this subspace is:

δ(s) =

√

2n + 4(2n − 1)(s2 − s)

2n
(7.8)
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Applying Theorem 2.1, we find that the total time

∫ 1

s=0

ds

g(s)2
= 2n tan−1

√
2n − 1√

2n − 1
= O(

√
2n) (7.9)

is indeed achievable.

The continuous-time walk algorithm e−i(H0+H1)t often performs as well as the adi-

abatic algorithm H(s) = (1 − s)H0 + sH1. For example, Grover’s search speedup can

be reproduced [45], as can several discrete-time quantum walk speedups [37, 36].

7.3 Universality of adiabatic quantum computing

In the adiabatic algorithms for search and 3-SAT, the problem Hamiltonian is classical

and the initial Hamiltonian is diagonal in an efficiently constructible (e.g., Hadamard)

basis. From the remarks following Theorem 2.2, it follows that these adiabatic algo-

rithms are efficiently simulable by quantum circuits. What about the converse: Can

any quantum circuit be implemented efficiently as an adiabatic algorithm with local

Hamiltonians? Aharonov et al. [8] showed the answer is yes. The problem Hamiltonian

in their algorithm is a clever one borrowed from Kitaev [68].

7.3.1 Kitaev’s Hamiltonian

Kitaev defined the following reduction from a quantum circuit U to a time-independent

local Hamiltonian H.2 Let U = UL · · ·U1 be the n-qubit circuit, each gate of which

acts on at most two qubits. Define the Hamiltonian H on n circuit qubits and L clock

qubits by

H := Hinput +Hprop +Hclock (7.10)

where

Hinput :=

n
∑

i=1

|¬xi〉〈¬xi|i ⊗ |0〉〈0|1 (7.11)

2Kitaev credits the idea of considering such a reduction to Feynman [49].
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is the input term,

Hprop :=

L
∑

l=1

I ⊗ |100〉〈100|l−1,l,l+1 − Ul ⊗ |110〉〈100|l−1,l,l+1

−U †l ⊗ |100〉〈110|l−1,l,l+1 + I ⊗ |110〉〈110|l−1,l,l+1 (7.12)

is the propagator term, and

Hclock := I ⊗
L
∑

l=1

|01〉〈01|l,l+1 (7.13)

is the (unary) clock term. The first and second halves of each tensor product refer to the

circuit and clock qubits, respectively, and the notation |a〉〈a|i denotes the projection

onto the subspace in which the ith qubit is |a〉. The purpose of the Hamiltonian is to

assign an energy penalty to any quantum state encoding an incorrect circuit state or

state transition on input x, so that only the correct circuit is encoded in its ground

state. Note that H is 5-local (cf. (8.4)) since each local term involves at most one

2-local gate Ul and at most one 3-local clock penalty.

The following lemma is abstracted from Aharonov et al. [8].

Lemma 7.2 The ground state of H (with eigenvalue zero) is the history state

|η〉 :=
1√
L+ 1

L
∑

l=0

Ul · · ·U1|x〉 ⊗ |1l0L−l〉 (7.14)

and the spectral gap is Θ(1/L2).

Proof: That |η〉 lies in the nullspace is easy to check. The eigenvalue zero is the

smallest, as all terms are positive semidefinite. It remains to estimate the spectral gap.

Let S denote the subspace of dimension (L+1)·2n spanned by all legal clock states –

i.e., all clock states of the form |1l0L−l〉, representing time step l in unary. Note that S

is invariant under H and so H = S ⊕S⊥ and we can analyze the spectrum within these

two subspaces. Note that all eigenvalues of H|S⊥ are at least one since Hclock penalizes

illegal clock states by this amount and all other terms are positive semidefinite.

Next we show that incorrect inputs are also sufficiently penalized. Write S as the

direct sum of 2n orthogonal subspaces S0, . . . ,S2n−1 where Sy is the L+ 1 dimensional
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subspace spanned by the vectors Ul · · ·U1|y〉 ⊗ |1l0L−l〉. Then each eigenvalue of H|Sy

for y 6= x is at least one, since at least one input bit is penalized and all other terms are

positive semidefinite. Last we show that incorrect transitions are sufficiently penalized;

i.e., the spectral gap of H|Sx = Hprop|Sx is Θ(1/L2). This can be seen by changing the

basis of Hprop by the measuring operator

W =
L
∑

l=0

UL · · ·U1 ⊗ |1l0L−l〉〈1l0L−l| (7.15)

to yield the matrix

W †HpropW = I ⊗ T (7.16)

where T is the (L+1)×(L+1) tridiagonal matrix with principal diagonal ( 1
2 , 1, 1, . . . , 1,

1
2)

and non-principal diagonals (− 1
2 ,−1

2 , . . . ,− 1
2 ). The matrix P = I − T is that of a ran-

dom walk on a line, whose spectral gap below one is Θ(1/L2). Thus, this is the spectral

gap of T above zero.

7.3.2 5-local adiabatic quantum computing

Aharonov et al. [8] showed that a polynomial-size quantum circuit computation can be

realized as an efficient adiabatic algorithm using 3-local qubit interactions. We present

the somewhat simpler 5-local case.

The following lemma is proved in Kitaev et al. [68].

Lemma 7.3 Let H1,H2 be Hamiltonians with ground spaces L1,L2, ground state en-

ergies a1, a2, and spectral gaps at least Λ above L1,L2. Then the ground state energy

of H1 +H2 is at least

a1 + a2 + 2Λ sin2(θ/2) (7.17)

where θ is the angle between L1 and L2.

We now sketch the proof of Aharonov et al. [8]. Note that the algorithm’s output

state |ψ1〉 is “close enough” to the circuit’s output state U |x〉: The correct output can

be found by repeating the procedure O(1/L) times until the state |1L〉 is observed in

the clock register, then returning the contents of the the circuit register.
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Theorem 7.4 Given a quantum circuit U on n qubits with L two-qubit gates, there is

an adiabatic algorithm H(s) := (1 − s)H0 + sH1 where H(s) : B⊗(n+L) → B⊗(n+L) is

a 5-local Hamiltonian whose input state is |ψ0〉 = |x, 0L〉, whose output |ψ1〉 satisfies

|〈ψ1|U |x, 0L〉|2 = Θ(1/L), and whose running time is polynomial in L.

Proof: We want to show that we can adiabatically efficiently generate a state of large

overlap with the final state of a polynomial-size quantum circuit using Kitaev’s 5-local

Hamiltonian. Specifically, set H0 = Hinput +Hclockinit +Hclock, where

Hclockinit := I ⊗ |1〉〈1|1 (7.18)

is a clock initialization term that ensures the clock’s state starts out |0L〉. Now set the

problem Hamiltonian H1 to Kitaev’s Hamiltonian.

Clearly, the ground state of H0 (with eigenvalue zero) is |x〉 ⊗ |0L〉. By similar

arguments as in Lemma 7.2, we have the direct sum decompositions of the whole space

into S⊕S⊥ and the subspace S into S0, . . . ,S2n−1, with the eigenvalues of H outside Sx

at least one. H0|Sx = Hclockinit|Sx is represented by the diagonal matrix with diagonal

(0, 1, 1, . . . , 1). Thus, the ground state is unique and has a spectral gap of one.

By Lemma 7.2, H1 has the history state |η〉 as its unique ground state, with eigen-

value zero and spectral gap Ω(1/L2).

That the spectral gap of H(s) for any s ∈ [0, 1] is Ω(1/L3) is argued as follows.

First, note that the spectral gap of H|Sx(s) is Ω(1/L2). This is because, as [8] show:

(i) for s < 1/3, it is close enough to H0|Sx (whose spectral gap is one) for us to show

a lower bound of 1/3 on the spectral gap using Gerschgorin’s theorem; and, (ii) for

s ≥ 1/3, it is close enough to H1|Sx = Hprop|Sx to obtain a lower bound of Ω(1/L2) by

applying Markov chain techniques.

Now let us extend the lower bound on the spectral gap of H(s) from the subspace

Sx to the entire space. Since the ground state energy of HS(s) is at most 1/2 (as one

can easily check) and the eigenvalues of H|S⊥(s) are at least one, it suffices to show

that the spectral gap of HS(s) is at least Ω(1/L3). We note that

H|Sy(s) = H|Sx(s) +Hinput|Sy (7.19)
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and apply Lemma 7.3 above. The spectral gap of H|Sx(s) above its ground space is

Ω(1/L2) as we showed before. The matrix of Hinput|Sy for y 6= x is all zeros except for

the top left corner entry which equals the Hamming distance between x and y, so the

spectral gap above its ground space is at least one. Moreover, one can show [8] that

the angle θ between the two ground spaces satisfies cos θ ≤ 1− 1/L. Therefore, Lemma

7.3 implies that the ground state energy of H|Sy(s) is higher than that of H|Sx(s) by

at least Ω(1/L3).

Since the history state |η〉 satisfies |〈η|U |x, 0L〉|2 = 1/L, the theorem follows.

Theorem 7.4 was improved to 3-local qubit interactions and to 2-local 6-state spin in-

teractions on the two-dimensional planar lattice by Aharonov et al. [8], to 2-local qubit

interactions by Kempe et al. [62], to 2-local qubits interactions on the two-dimensional

planar lattice by Oliveira and Terhal [83], and to 2-local 9-state spin interactions on

the one-dimensional line by Aharonov et al. [5].

In light of the remarks concluding the previous subsection, one wonders whether

adiabatic continuous-time evolution is truly necessary to simulate the quantum circuit

efficiently. More precisely, does the time-independent evolution e−i(H0+H1)t also gener-

ate a state of large overlap with the ground state of Kitaev’s Hamiltonian? This is an

open question.
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Chapter 8

The local Hamiltonian problem

The local Hamiltonian problem (LH-MIN) is to estimate the ground state energy of

an n-qubit Hamiltonian given its decomposition into local interactions. It is a central

problem of computational physics and a natural generalization of the maximum k-

satisfiability problem (MAX-k-SAT). Kitaev showed that LH-MIN is complete for the

complexity class QMA, the generalization of NP obtained by allowing the witness and

verifier to be quantum. By looking at natural restrictions of LH-MIN, we can obtain

complete problems for several complexity classes inside QMA and potentially arrive at

a better understanding of their computational power.

8.1 Spin glasses and MAX-2-SAT

In classical statistical physics, a spin glass is an n-spin system exhibiting frustration: it

has many excited states of locally minimal energy just above that of the ground state.

A typical spin glass has the classical Hamiltonian

H = −
∑

(i,j)∈E

H{i,j} ⊗ I[n]\{i,j} −
∑

i∈V

H{i} ⊗ I[n]\{i} (8.1)

acting locally on a graph G = (V,E) connecting the spins x = x1x2 · · · xn ∈ B
n, where

〈xi, xj |H{i,j}|xi, xj〉 = (−1)xi+xjJij (8.2)

is determined by the interaction strength Jij and

〈xi|H{i}|xi〉 = Bi (8.3)

is the external field. In the simple model proposed by Ernst Ising in 1925, Jij = J and

Bi = B are constant, so the ground state is either |0n〉 or |1n〉 (i.e., all of the spins are
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“aligned”) and the ground state energy is simple to calculate. But if we specify arbitrary

Jij and Bi as input, deciding whether the ground state energy is above or below some

threshold is NP-complete. This remains true even whenG is the two-dimensional planar

lattice. Indeed, MAX-2-SAT is almost a special case of this problem (requiring only

slightly more general interaction terms) and can easily be reduced to it in polynomial

time. Estimating the ground state energy of an arbitrary 2-local classical Hamiltonian

on n spins does include MAX-2-SAT as a special case.

8.2 The computational complexity of LH-MIN

A k-local quantum Hamiltonian has the form

H =
∑

e∈E

He ⊗ IV \e (8.4)

where G = (V,E) is a hypergraph whose vertices are n-state “qudits” (generalizing

qubits, which have n = 2) and whose hyperedges are k-subsets of qudits. The local

Hamiltonian problem (LH-MIN) is to estimate the ground state energy of H to O(log n)

bits of precision. LH-MIN is clearly NP-hard, but it does not seem to be NP-complete.

It turns out that LH-MIN is QMA-complete, where QMA is a natural generalization of

NP to the quantum setting.

8.2.1 The complexity class QMA

A promise problem is a partial function f : B
∗ → B. Inputs not in f−1(0) ∪ f−1(1)

are “undefined” and an algorithm computing f may behave arbitrarily on these inputs.

QMA [68] is the following class of promise problems.

Definition 8.1 A promise problem f : B
∗ → B is in QMA if there exists a BQP verifier

V and a polynomial p such that:

x ∈ f−1(1) ⇒ ∃|ξ〉 ∈ B⊗p(|x|) : Pr[V (x, |ξ〉) = 1] ≥ 1 − ε (8.5)

x ∈ f−1(0) ⇒ ∀|ξ〉 ∈ B⊗p(|x|) : Pr[V (x, |ξ〉) = 1] ≤ ε (8.6)

Here the expression Pr[V (x, |ξ〉) = 1] denotes the probability that the verifier accepts on

input x with witness |ξ〉. The classes NP and MA are obtained if the (quantum witness,
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BQP verifier) pair is replace by (classical witness, BPP verifier) and (classical witness,

P verifier), respectively. As in the classical setting, the definition remains equivalent if

the completeness parameter 1− ε and the soundness parameter ε are replaced by values

from [12 + 1/p′(|x|), 1 − 1/p′(|x|)] and [1/p′(|x|), 1
2 − 1/p′(|x|)], respectively, where p′ is

any fixed polynomial.

Clearly QMA contains both BQP and MA, and it is known that QMA ⊆ PP.1 Not

much else is known about QMA. Is it weakened if we require perfect completeness? Is it

weakened if we require the witness |ξ〉 to be a classical state? Is it self-reducible in that

a witness |ξ〉 can be computed efficently for any input f−1(1) using queries to an oracle

deciding f? For a survey of these and many other aspects of QMA, see the survey of

Aharonov and Naveh [6].

8.2.2 LH-MIN is QMA-complete

A precise definition of the local Hamiltonian problem is as follows.

Definition 8.2 Given an n-qudit k-local Hamiltonian H whose ground state energy is

promised to be at most a or at least b > a, where b− a is at least inverse-polynomial in

n, the local Hamiltonian problem (LH-MIN) is to decide which of these two possibilities

is the case.

If k = O(1), then H has at most polynomially many local terms in n. We assume that

each local term is specified by polynomially many bits and has operator norm bounded

polynomially.

Kitaev [68] used the Hamiltonian (7.10) to show that LH-MIN is QMA-complete.

Theorem 8.3 The n-qubit 5-local Hamiltonian problem is QMA-complete.

Proof: Theorem 2.3 implies that the problem is in QMA. It remains to show that it

is hard for QMA.

1A problem is in PP if there is an NP verifier that decides it correctly a majority of the time, but
not a clear majority as with BPP. PP contains NP and has power similar to that of #P.
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Let V (x, |ξ〉) = UL · · ·U1|x, ξ〉 be the verifier circuit. Let H ′ be Kitaev’s Hamiltonian

(7.10), modified by adding a second input register for the witness |ξ〉 (but not penalizing

any state |ξ〉 by Hinput) and by adding to H ′ an output term

Houtput := |0〉〈0|1 ⊗ |1L〉〈1L| (8.7)

to penalize the rejection of input |x〉 with witness |ξ〉.

Completeness is relatively easy to show. If input x with witness |ξ〉 is accepted by

the circuit with probability 1− ε, then the history state |η〉 = 1√
L+1

∑L
l=0 Ul · · ·U1|x, ξ〉

lies in the nullspace of every term but Houtput and it follows that 〈η|H|η〉 ≤ ε.

Soundness is more complicated. We will invoke Lemma 7.3 with H1 = Hinput +

Houtput and H2 = Hprop. The ground state energy lower bound will carry over to the

entirety of H ′ (including Hclock) because the subspace spanned by all legal clock states

is invariant under H ′ and the eigenvalues in the complement of this subspace are at

least one due to penalty terms.

Since H1 is a sum of commuting projectors, the spectral gap above its ground space

is at least one. Moreover, we computed the spectral gap of H2 above zero earlier: it is

Θ(1/L2). So it remains only to show that the angle between the two ground spaces is

large. It is a technical exercise (see [68] for proof) that this angle has sin2 θ ≥ 1−√ε
L+1 .

This result was improved to 3-local qubit interactions by Kempe and Regev [63], to

2-local qubit interactions by Kempe et al. [62], to 2-local qubit interactions on the two-

dimensional planar lattice by Oliveira and Terhal [83], and to 2-local 12-state qudit

interactions on the one-dimensional line by Aharonov et al. [5]. At a glance, the final

result is somewhat surprising since the corresponding maximum constraint satisfaction

(MAX-CSP) problem is solvable in polynomial time.

8.3 Some observations and open problems

Many fundamental questions about the local Hamiltonian problem – and its connection

to complexity classes and to adiabatic computing – remain unresolved. Here we consider

a selection of them.
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A BQP-complete restriction of LH-MIN. In practice, a good estimate for the

ground state energy of a complicated Hamiltonian H ′ can sometimes be obtained by

identifying a low-energy state |φ′〉 of a nearby Hamiltonian H ′ and refining it to a low-

energy state |φ〉 ofH using perturbation theory. In the computational setting, adiabatic

algorithms have this same flavor. So does the remark following Theorem 2.3: If we know

(i.e., can efficiently compute) a state |ξ〉 having large overlap with a low-energy state

– i.e., one such that |〈ψ|ξ〉|2 is at least inverse-polynomial for some state |ψ〉 of energy

at most a – then we can estimate the ground state energy efficiently. It turns out that

this promise problem is complete for BQP:

Theorem 8.4 With the additional promise that there there exists an efficiently com-

putable state whose overlap with a low-energy state is large, LH-MIN is BQP-complete.

Proof: The hardness proof follows by modifying Kitaev’s Hamiltonian (7.10) to a

Hamiltonian H ′ which includes the additional output term Houtput (8.7). If x is ac-

cepted by the circuit with probability 1 − ε, then the history state |η〉 (7.14) is a good

approximation to the ground state of H ′; in particular, its energy is at most ε. If

not, then a lower bound can be shown on the ground state energy of H ′ by the same

argument as in Theorem 8.3.

By trivial modification of Lemma 7.2, the ground state of H ′ is unique and the spectral

gap of H ′ is at least inverse-polynomial in the circuit length L. Since the circuit history

state |η〉 is a good approximation to the ground state, we can recover it efficiently by

applying the algorithm in Theorem 2.3 to H ′ using the trivially preparable input state

|x〉 ⊗ |0L〉 as the witness.

Hamiltonians with large spectral gaps. What is the complexity of computing the

ground state – or at least solving LH-MIN – for a Hamiltonian whose spectral gap is

“large”?2 There is a well-studied analogue of this question in the classical setting: How

hard is it to find the assignment satisfying a SAT formula if it is promised to be unique?3

2Note that if we can compute witnesses (low-energy states) for an LH-MIN instance promised to
have large spectral gap, then we can compute its ground state.

3The spectral gap here is the number of clauses violated by the best non-satisfying assignment.
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The Valiant-Vazirani [107] isolation technique randomly reduces any satisfiable SAT

formula to one that is uniquely satisfiable (with high probability) in polynomial time.

Thus, “unique” SAT is not solvable in polynomial time unless NP problems have efficient

randomized algorithms. Since similar statements can be proven for “unique” k-SAT,

it is unlikely that LH-MIN can be solved efficiently even if the spectral gap is large.

It is not hard to envision how a reduction isolating the ground state of an arbitrary

instance of LH-MIN might work – using randomly-chosen energy penalty terms – but

the technical hurdles seem considerable.

It is plausible nonetheless that the one-dimensional version of LH-MIN is efficiently

solvable if the spectral gap is large. Like the other direct reductions from QMA to

LH-MIN (e.g., Theorem 8.3), the one-dimensional reduction of Aharanov et al. [5]

does not produce a spectral gap. Computational physicists seem to believe that the

one-dimensional case is easier with a spectral gap than without4 – although many also

believed that the one-dimensional problem was easy even without a spectral gap, which

turned out to be incorrect. It is tempting to try to design an adiabatic algorithm for

this problem since the problem Hamiltonian H1 is already supplied, but identifying

an “easy” class of initial Hamiltonians connected to H1 by an efficient adiabatic path

seems to be a major challenge even in one dimension.

Quantum statistical mechanics. Recall from Chapter 1 that a mixed quantum

state {pj, |ψj〉} can be represented by a density matrix. The Gibbs density matrix

e−βH

Z(β)
(8.8)

describes the (statistical) thermal equilibrium at temperature T = 1/β of a quantum

system whose Hamiltonian is H and whose partition function is:

Z(β) = tr(e−βH) (8.9)

What is the complexity of sampling from the state of a quantum system in thermal

equilibrium whose Hamiltonian is local? It is at least QMA-hard, since the problem

4The reason is that a large spectral gap typically suppresses long-range correlations in the ground
state.
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at zero temperature reduces to computing the ground state of H. How hard is it to

evaluate (or at least estimate) the partition function? It is at least as hard to evaluate

as the partition function of a classical Hamiltonian, which is #P-complete. What about

approximation? Table 8.1 summarizes what we know about the complexity of these and

several other problems we have considered.

Problem Classical version Quantum version

Ground state energy, 1D P QMA-complete [5]
Partition function, 1D P ???

Ground state energy, ≥2D NP-complete QMA-complete [68, 63, 62, 83]
Partition function, ≥2D #P-complete ???

Table 8.1: The complexity of ground state and partition function problems.
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