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ABSTRACT OF THE DISSERTATION

First-principles calculation of dynamical properties of insulators in
finite electric fields and anomalous Hall conductivity of feromagnets

based on Berry phase approach

by Xinjie Wang

Dissertation Director: Professor David Vanderbilt

We present first-principles methods for calculating twdiddt types of physical quantities within
the framework of density functional theory: the responsmerties of an insulator to finite electric
fields, and the anomalous Hall conductivity of a ferromagnBoth of the methods are closely
related to the same ingredient, namely the Berry phase, mej€ic phase acquired by a quantum
system transporting in parameter space. We develop gauggant formulations in which the

random phases of Bloch functions produced by numericalbsutines are irrelevant.

First, we provide linear-response methods for calculaghgnon frequencies, Born effective
charge tensors and dielectric tensors for insulators irptesence of a finite electric field. The
starting point is a variational total-energy functionattwa field-coupling term that represents the
effect of the electric field. This total-energy functional éxpanded with respect to both small
atomic displacements and electric fields within the frantéwaf density-functional perturbation
theory. The linear responses of field-polarized Bloch fiomst to atomic displacements and electric

fields are obtained by minimizing the second-order derxieatiof the total-energy functional. The



desired second-order tensors are then constructed frase th@timized first-order field-polarized
Bloch functions.

Next, an efficient first-principles approach for computihg anomalous Hall conductivity is
described. The intrinsic anomalous Hall conductivity irrdenagnets depends on subtle spin-orbit-
induced effects in the electronic structure, and reedninitio studies found that it was necessary
to sample the Brillouin zone at millions of k-points to corye the calculation. We start out by per-
forming a conventional electronic-structure calculatiocluding spin-orbit coupling on a uniform
and relatively coarse k-point mesh. From the resulting Blsiates, maximally localized Wannier
functions are constructed which reproduce #einitio states up to the Fermi level. With inex-
pensive Fourier and unitary transformations the quaatibfeinterest are interpolated onto a dense
k-point mesh and used to evaluate the anomalous Hall comifycs a Brillouin-zone integral.
The present scheme, which also avoids the cumbersome sionmaer all unoccupied states in
the Kubo formula, is applied to bcc Fe, giving excellent agnent with conventional, less efficient
first-principles calculations.

Finally, we consider anotheb-initio approach for computing the anomalous Hall conductivity
based on Haldane’s Fermi-surface formulation. Workinghia Wannier representation, the Bril-
louin zone is sampled on a large number of equally spacediglastices oriented normal to the
total magnetization. On each slice, we find the intersestiminthe Fermi surface sheets with the
slice by standard contour methods, organize these intod skised loops, and compute the Berry
phase of the Bloch states as they are transported arourel ltggss. The anomalous Hall conduc-

tivity is proportional to the sum of the Berry phases of all thops on all the slices.
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Chapter 1
Introduction

1.1 Response properties of an insulator

The response properties of an insulator to atomic displaotsn homogeneous electric fields, or
both of these perturbations include the phonon force-emtshatrix, the dielectric tensor, and the
Born effective charge tensor. These tensors, defined asdelmivatives of the total energy, are
among the most extensively studied properties of an inmul&honon properties are very helpful
to explain the occurrence of peaks in Raman and infraredrgeopy [1], and to identify structure
instability and the resulting phase transition [2]. Digtiecproperties are of fundamental and practi-
cal interest. In theory, many models have been developealtalate dielectric constants of various
materials, and in practice, highdielectric materials have critical applications in negfgration
high-performance integrated circuits. The Born effectibarge is important in determining the
response to an electric field. It provides a transparentigdor understanding and modeling how

atoms respond to an applied electric field.

The early theoretical models for calculating phonon proeginvolved development of empir-
ical interatomic potentials and the parameter fitting toegikpental phonon spectra. Valence-force-
field models [3, 4], bond charge models [5] and shell moddlsui examples. As the result of the
complexity of atomic interactions, these models usuallyehzomplicated parameter dependence,

low accuracy and poor transferability.

The Born effective charge and the dielectric constant acedl@mentary responses of an insu-

lator to electric fields. The electrostatic potential of arfogeneous electric field is linear in space



and unbounded from below, which breaks the translatiomahsgtry. Previous methods circumvent
this problem by treating electric fields as perturbationd parforming calculations in the slowly-
varying limit of periodically-varying fields [7]. The mainrawback of these methods is that they
only work when the reference unperturbed system has a vagistectric field.

Density-functional theory provides a powerful framewook performing calculations on real-
istic materials. Within this framework, density-functadrperturbation theory has been developed
by several authors [8, 9, 10] to facilitate response calmria. The response properties can now be
calculated very conveniently at high accuracy without g&mpirical parameters.

Recently, the effect of finite electric fields attracted bibioretical and practical attention. The
tuning of the response properties of an insulator by apglfimte electric fields is of importance in
a variety of practical applications in electronics, suclicascapacitors and oscillators. It is highly
desirable to develop a theoretical approach for calcuatsponse properties of a periodic system

in the presence of finite electric fields.

1.2 Anomalous Hall effect

In 1880, Edwin R. Hall discovered the ordinary Hall effeatdgust one year later he discovered
anomalous Hall effect [11, 12]. In non-ferromagnets, it @lvknown that the flow of electrons in a
perpendicular magnetic field is affected by the Lorentzdoidowever, in ferromagnets such as Fe,
Ni and Co, a Hall current is still present even in the absefieenobagnetic field. Since the magnetic
field is not necessary, this effect is called the anomaloubkdffact (AHE).

In addition to simple ferromagnetic metals, many other sypaterials of different crystal struc-
tures have been found to exhibit AHE, such as SrR(p@rovskite structure) [13], Cug3e, (spinel
structure) [14], diluted magnetic semiconductors [158 amon. The AHE has become a useful tool

to characterize and investigate magnetic properties af#saale systems. Its fundamental physics



as well as potential technical applications in memory deviand sensors motivate intensive theo-

retical and experimental studies.

Unlike the ordinary Hall effect, the AHE is strongly relatamthe spin-orbit coupling of elec-
trons. Itis not produced by the internal field associateth wiagnetization. Historically, the mecha-
nism of the AHE has been controversial for many years. Theren distinct approaches to explain
the AHE. Karplus and Luttinger first showed that it can aris@ perfect crystal as a result of the
spin-orbit interaction of polarized conduction electrgh6]. Later, two alternative mechanisms,
skew scattering [17] and side-jump scattering [18], wemppsed by Smit and Berger, respectively.
In skew scattering, the spin-orbit interaction gives riseah asymmetric scattering cross section
even if the defect potential is symmetric, and in side-jurtgttering it causes the scattered electron
to acquire an extra transverse translation after the stajtevent. These two mechanisms involve
scattering from impurities or phonons, while the Karplusgtlnger contribution is a scattering-free

band-structure effect.

In recent years, new insights into the Karplus-Luttingentdbution have been obtained by
several authors, who reexamined it in the modern languageiwy phases. The terfa,, (k) in the
equations below was recognized as the Berry curvature oBlbeh states in reciprocal space, a
guantity which had previously appeared in the theory of titeger quantum Hall effect, and which

is also closely related to the Berry-phase theory of paddion.

1.3 Berry phase

In 1984, M.V. Berry introduced a geometric phasé(©) acquired by a quantum system in an
eigenstate adiabatically transporting along a closed paih parameter space [19]. Here, the

parameter space is simply a set of values on which Hamilomégends. Consider the Hamiltonian



H(R) as a function of parameteB = {a, as, ...}. The Berry phase is defined as

(€)= i ;i (n(R)|Vrn(R)) - dR . (1.1)

where Vg means that the derivative is with respectRg and|n(R)) is the eigenstate off (R)
satisfying

H(R)[n(R)) = En|n(R)) .

It is worth to note that while the Berry phasg(C) itself is gauge-invariant (a change of wave
functions of the formn(R)) — €?®)|n(R)) is called a gauge transformation), the inner product

(n(R)|Vrn(R)) is notgauge-invariant, i.e., adding’® to |n(R.))
(n(R)e” "W |Vg|e"®n(R)) = (n(R)|VRn(R)) + iVRI(R) .
In general Vg 6(R) is not zero. However, its integral is zero, that is
72 VrOR)IR =0,

which clearly shows the,,(C') gauge-invariant.

If C lies close to a degeneracy Hf(R), the Berry phase takes a particularly simple and mean-
ingful form as described below. Consider a degeneracy tlahies only two states. The Hamilto-

nian near this degeneracy can generally be describe®by 2Hermitian matrix
H=(X-0,+Y 0,4+ 7 0,)+K -0y

whereo, ,, . are Pauli matricesy is the unit matrix, and\, Y, Z, K are real coefficients. IX, Y, Z

are viewed as coordinates in a 3-dimensional sfigdbe Berry phase is given by
Ly
1£(C) = F5C)

whereC’ in F-space is the image af' in R and Q(C") is the solid angle subtended I8y in

F-space.



In our work, the parameterB are the three Cartesian components of the reciprocal vkgtor
and|n(R)) is the periodic part of Bloch functiohu,). For practical calculations, one normally
works on a discretize#-mesh. The integration in Eq. (1.1) can then be performed theg:-mesh
[20], using

J-1

Y (C) =Imln H (Ure;nl Ui 1n) 1.2)
§=0

wherelm means imaginary part andindicates the discretized consecutivgoints on the closed
pathC. Itis straightforward to verify that whesi — oo, Eq. (1.2) goes back to its continuous form
in Eq. (1.1). Itis also easy to confirm that Eq. (1.2) is indefEnt of the arbitrary phasé’(¥): both
(ux;n| and|ux,,) appear in Eq. (1.2), so the arbitrary phase cancels out.

In the past twenty years, Berry phases have been found tdesattiemselves in many solid-
state physics observables such as the Aharonov-Bohm ¢ff@f;t electronic polarization [20],
anomalous Hall conductivity [21] and quantum Hall effec2][20ur work is related to the elec-

tronic polarization and anomalous Hall conductivity.

1.4 Outline of the present work

The present work is devoted to developing first-principlethrads for calculating response proper-
ties of an insulator to external perturbations in finite #ledields, and efficienaib-initio methods
for the computing anomalous Hall effect of ferromagnets.

Chapter 2 describes the theoretical basis for our studiydimy density-functional theory and
density-functional perturbation theory. In addition te fandamental theories, approximations that
are necessary to carry out practical applications and sorperiant numerical algorithms are also
discussed in this chapter.

In Chapter 3, we present a perturbative method for calogattsponse properties of an insu-

lator in the presence of a finite electric field. We expand #tianal total-energy functional with



a field-coupling term that represents the effect of the atefield with respect to small atomic dis-
placements and electric fields within the framework of dgrfsinctional perturbation theory. The
first-order response of field-polarized Bloch functionsli¢ained by minimizing the second-order
derivatives of the total-energy functional. We implemérd method in thé\Bl NI T code and per-

form illustrative calculations of the field-dependent pborirequencies for 111-V semiconductors.

In Chapter 4, we report an efficient first-principles apptofmr computing the anomalous Hall
conductivity. This approach has three steps: (1) a corvealtielectronic-structure calculation is
performed including spin-orbit coupling on a uniform anthtigely coarsek-point mesh; (2) from
the resulting Bloch states, maximally-localized Wannigrdtions are constructed which reproduce
the ab-initio states up to the Fermi level; (3) the quantities of interestimerpolated onto a dense
k-point mesh and used to evaluate the anomalous Hall coniyctis a Brillouin-zone integral.
The present scheme, which also avoids the cumbersome sionraéer all unoccupied states in
the Kubo formula, is applied to bcc Fe, giving excellent agnent with conventional, less efficient
first-principles calculations. Remarkably, we find thatatt@0% of the effect can be recovered by
keeping a set of terms depending only on the Hamiltonianimelkements, not on matrix elements

of the position operator.

In Chapter 5, we present ab-initio approach for computing the anomalous Hall conductivity
by converting the integral over the Fermi sea into a moreiefficintegral on the Fermi surface
only. First, a conventional electronic-structure caltiolais performed with spin-orbit interaction
included. Maximally-localized Wannier functions are themstructed by a post-processing step in
order to convert tha@b-initio electronic structure around the Fermi level into a tighmeling-like
form. Working in the Wannier representation, the Brillozione is sampled on a large number of
equally spaced parallel slices oriented normal to the totadnetization. On each slice, we find the

intersections of the Fermi-surface sheets with the slicgtéydard contour methods, organize these



into a set of closed loops, and compute the Berry phases &ltud states as they are transported
around these loops. The anomalous Hall conductivity isgntignal to the sum of the Berry phases

of all the loops on all the slices. lllustrative calculasoare performed for Fe, Co and Ni.



Chapter 2

First-principles methods

In this chapter, the fundamental theory of our first-pritesptools for calculating electronic struc-
tures of a system is introduced. Since its birth [23, 24] sitgrfunctional theory (DFT) has became
a most powerful, widely-used theoretical tool for inveatigg properties of various materials. The
basic idea of DFT is that it exactly maps an electron manyyhaddctron problem onto an equiva-
lent non-interacting single-electron problem, keepirggagbmplexity of the problem in an unknown
functional. Mathematically, DFT exactly transforms thenydody Schroedinger equation 2V

degrees of freedom into an equivalent set of Schroedinkgieuations o8 degrees of freedom.

2.1 Density-functional theory

2.1.1 Hohenberg-Kohn theorem

There had been many attempts to express the total energgtehsyin terms of the electron charge
density. The real breakthrough came in 1964. In that yeaneHberg and Kohn proposed an exact
formal variational principle of the ground state of an intmganeous interacting electron gas in
an external potential. The charge density) is the basic variable. They proved the existence of
a universal functional of densit§/'[n(r)] which is independent of the external potenti&t), such
that the minimum value of the total ener@y= [ v(r)n(r)dr+ F[n(r)] is equal to the ground-state

energy of the system.

For the non-degenerate ground stafe,) is a unique functional of(r) up to a constant poten-

tial. Sincewv(r) fixes the Hamiltonian, the full many-body ground state is igjue functional of the



charge density:(r).
If the form of the universal functiondl’[n(r)] were known, the true ground-state energy can be

obtained by minimizing the total energy functional

B= / o(r)n(r)dr + Fln(r)] 2.1)

with respect to a three-dimensional density functidn).

2.1.2 Kohn-Sham equation

The exact form of the functiondl[n(r)] is unknown. Approximation method have been developed.
In 1965, Kohn and Sham developed a set of self-consisterdtiens including correlation effects.

The Kohn-Sham equation can be derived by applying the \@mitprinciple to the Kohn-Sham

energy functional

E = /U(r)n(r)dr + F[n(r)] . (2.2)
It is obvious that the universal function&l[n(r)] includes the classical Coulomb energy

Fn(r)] = E/Mdrdr’ + G[n(r)] , (2.3)

2 |r — 1|
whereG|n(r)] is a universal functional consisting of the kinetic ener§pan-interacting electrons
and the exchange-correlation energy

Gln(r)] = Tln(r)] + Ezc[n(r)] - (2.4)

Under the constraints of én(r)dr = 0, the stationary property is

/ Sn(r) {v v / |:f2/|dr’ + 5?%;” + Eﬂgi?g ) } dr=0. (2.5)

This is equivalent to solving the following Sc¢idinger-like partial differential equation,

2m

272
[—h v +veff<r>} $ilr) = () (2.6)
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wherem is the mass of electron,s¢(r) is an effective andocal potential,«;(r) is theith Kohn-
Sham orbital, and; is the eigenvalue ofth Kohn-Sham orbital. The effective potentil;/(r),

the most important component in the KS equation, is definddllasvs:

Vepp(r) = o(r) +vn(r) + vge(r) (2.7)
o(r) = _El:\r—ZIR[\ (2.8)
on(r) = /dr":‘(_‘?,’ (2.9)
Vpe(r) = 5(%(5;] (2.10)
) = > i)l (2.12)

In an intuitive picture, the KS equation describes an etectnoving in an effective potential pro-
duced by other electrons. It is worth noting that the densigtains the contribution from the
electron itself. Thus the electron seems to interact walfitas shown ing(r) andv,.(r) terms.

The point is that if the exchange energy is treated exactyirl@ahe Hartree-Fock equation), the
self-interaction is canceled out in the Hartree term andhange term. Unfortunately, in the most
popular local-density approximation (LDA), the cancedlatis not exact. The proper treatment of
the self-interaction correction is an important but diffiathallenge that is the subject of current

research. In this thesis, we shall restrict ourselves tdiwgrwith the LDA only.

2.1.3 Approximations for exchange-correlation energy

In Hohenberg and Kohn's paper, they considered the case lof\dysvarying charge density. If

n(r) is sufficiently slowly varying, the exchange-correlatioresgy functional can be approximated

by

Erdln(r)] = [ niryet (o). (2.12)
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wheree,.(n) is the exchange-correlation energy per electron of a umifelectron gas of density
n(r). This approximation is called the local-density approxioma(LDA). It becomes exact in two
limiting cases: the slowly varying casg/ry << 1, or the high-density casg/ay << 1, where
rs = (3/4mn)'/3 is the Wigner-Seitz radius ang is a typical length over which charge density
changes considerably. Despite the fact that neither dondg well satisfied for most real materials,
this simple approximation turned out to be very successfpractical calculation of metals, alloys
and semiconductors.

In the local spin-density approximation (LSDA), the spitnib coupling effect is ignored and
thus the spin degrees of freedoms are decoupled from thialspadrdinates, that is the (x 2)
Hamiltonian matrix is diagonal in spin space (the spin-umponent of the spinor wavefunction is

decoupled from the spin-down component). The Kohn-Shamggrianctional is then written as

EE A g ] = [ denengny) (2.13)
where
n(r) = n(r)+n(r), (2.14)
ni(r) = Dl @F, (2.15)
ny(r) = irw}<r>12- (2.16)

In comparison with the LDA, the generalized gradient appnation (GGA) [25, 26, 27] makes use
of both charge density and its gradienVn, improving total energies, atomization energies and

structural energy differences. The GGA exchange-coioglanergy functional takes the form
EﬁGA[nT,nl] = /drf(nT,nl,VnT,an) . (2.17)

In our study of bce Fe, the GGA gives the correct ground-staitecture whereas the LDA gives the

wrong result.
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The Kohn-Sham method can easily be extended to treat spinemupling. The treatment of
spin degrees of freedom requires spinor wavefunctions. OWE is then expressed in terms of a

2 x 2 density matrix

n(r) _ nll(r) nlg(r)

noa1 (I‘) 992 (I‘)

The electron density is given by the tracendf). The exchange-correlation energy becomes [28],

EEPAf(r)] = / A(r) - €geli(r), m(r)dr

wheree,.[n(r), m(r)] is the exchanged-correlation energy functional of spilaiced homoge-
neous electron gas with charge densify) = n11(r) + no2(r) and magnetization density(r) =

|n4(r) — n_(r)|. Here,n,(r) andn_(r) are the eigenvalues of the matrixr).

2.1.4 Plane-wave pseudopotential approach

To facilitate solving the Kohn-Sham equations, good basistions must be used. The most com-
monly used basis functions are plane waves. The Bloch thestates that the Bloch function of
bandn atk takes the form

Uk = €U (r) . (2.18)

In the plane-wave basis, the cell-periodic park can be expanded as

unk(r) = Z an(G)eiG.r ) (219)
G

whereG runs over reciprocal lattice vectors. The summation &¥es infinite, but in practice it
is truncated to include only plane waves with kinetic eresgimaller than some cutoff energy, i.e.,
%|k + G|? < Ey. It should be kept in mind that the truncated sef Gf}'s varies with wave
vectork. For example, the inner product between two wave functiefns$uy. sx) is computed on

the common set of G}'s of k andk + dk.
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As a result of its delocalized nature, the plane-wave bagsist efficient for expanding localized
core states. In order to use a considerably smaller numbplaog waves, the pseudopotential
approximation has been intensively developed by many asif2®, 30, 31, 32]. The basic idea
of the pseudopotential approximation is to remove the caerens from the Kohn-Sham orbitals
and replace them and the bare ionic potential by a smootherdpgotential which acts on the
corresponding pseudo wavefunctions. In practice, thequgmiential has two parts, the long-range

local part and a short-range nonlocal part, i.e.,

Upp = vlocal(r) + Z ‘lm>vnonlocal,l(r) <lm’ (220)

Ilm

where thglm) are spherical harmonics anghjocal,i(r) is the nonlocal pseudopotential for angular
momentum.

The pseudopotential approach has been extended to inghimd@rbit coupling by taking the
solutions of a fully relativistic radial atomic Dirac-likequation as the reference all-electron wave
functions. The nonlocal part of such a pseudopotentialis a2 matrix of operators acting on spinor

wave functions. In a simplified form, it looks like

vr?oﬁnlocal = Z fn’Y1?><Yn5’ )
n

whereY,* are projector functions and, 3 are spin indices.

2.1.5 Solving the Kohn-Sham equation by minimizing the totbenergy

Sincevs¢(r) in Eq. (2.6) depends on the charge densify) which is then computed from the
Kohn-Sham orbitalg);, the Kohn-Sham equation should be solved self-consigtehgpically, one
starts from a trial charge densit/”)(r) and then calculates the effective potent@?f(r). In the
next step, the Kohn-Sham Hamiltonian matfx | g x+q’ in the plane-wave basis is diagonalized

to obtain orbitalsy{" (r). From these orbitals, a new charge densit}y) (r) is computed. This
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procedure repeats until the total-energy difference betrerationi and: + 1 is smaller than a
predetermined tolerance. In practice, the number of plamewin the basis set is of the order from
102 to 10* per atom. In this range, iterative diagonalizing methodshsas the conjugate-gradient

(CG) method are more efficient than direct methods.

2.2 Berry-phase polarization and finite electric fields

The development of first-principles methods for treatirgeffect of an electric field in a periodic
system has been impeded by the presence of the electrgstétiatial € - r in the Hamiltonian.
This potential is linear in real space and unbounded frorovinednd thus is incompatible with
periodic boundary conditions. The electronic bandstmechecomes ill-defined after application of
a potential of this kind. Many attempts have been made tocovee this difficulty. For example,
linear-response approaches have been used to treat thecelietd as a perturbation [8, 7]. It
is possible to formulate these approaches so that only fhéiagfonal elements of the position

operator

(el = L L TlYn)

€m — €n
which remain well defined, are needed, thus allowing for tideutation of Born effective charges,
dielectric constants, etc. Since it is a perturbative agghpa finite electric field cannot be intro-

duced.

2.2.1 Berry-phase polarization

According to the modern theory of polarization [20], thectlenic contribution to the macroscopic

polarization is given by

. M
ief
P = .
e = gy 2 L, o Vi) (221)
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wheree is the charge of an electron & 0), f=2 for spin degeneracy/ is the number of occupied
bands,uy,, are the cell-periodic Bloch functions, and the integralusrahe Brillouin zone (BZ).
Making the transition to a discretized k-point mesh, this ba written, following Eq. (1.2), in a

form
NG

a;
Priac = % 200 2 0 Z ImIn H det Sk, ki ;14 (2.22)
=1

that is amenable to practical calculations. In this expoasgor each lattice direction associated
with primitive lattice vector,;, the BZ is sampled bWY) strings of k-points, each withV; points

spanning along the reciprocal lattice vector conjugate; t@and

(S )mn = (Ui tnir) (2.23)

are the overlap matrices between cell-periodic Bloch vsctt neighboring locations along the
string. Because Egs. (2.21-2.22) can be expressed in terBerny phases, this is sometimes

referred to as the “Berry-phase theory” of polarization.

2.2.2 Finite electric field

Recently, a total-energy method for treating insulatonsdnzero electric fields has been proposed
[33, 34]. In this approach, an electric enthalpy functioisadlefined as a sum of the usual Kohn-
Sham energy and ah- P term expressing the linear coupling of the electric field® polarization

P:

F[R7 1/}; 5] = EKS[R; ¢] - QE : Pmac[w] . (224)

The enthalpy functional is minimized with respect to fielolgrized Bloch states, and the informa-
tion on the response to the electric field is contained inghmstimized Bloch states. Using this
approach, it is possible to carry out calculations of dymanéffective charges, dielectric suscep-

tibilities, piezoelectric constants, etc., using finiifetence methods [33, 34]. It would also be
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possible to study properties of phononsgat= 0, but can be extended to phononsga## 0 only

with difficulty by using supercell methods that are restritto highly commensuratgvectors.

2.3 Density-functional perturbation theory (DFPT)

2.3.1 Non-self-consistent approach

A large variety of physical properties of solids are basedhenlattice-dynamical properties, such
as infrared and Raman spectra, ferroelectric transititi@smal expansions and superconductivity.
Density-functional perturbation theory provides a powkend accurate theoretical tool for cal-
culating phonon frequencies, dielectric constants, Béfetctve charges and piezoelectric tensors
which are second derivatives of the total energy with resfpeatomic displacements, electric field,
and cell size and shape.

DFPT can be viewed as a combination of DFT and perturbatiearth Consider a small per-
turbation characterized by a parametapplied to the Kohn-Sham potential. Expanding the Kohn-

Sham potential in terms of gives

Verp(r,A) = vg})f(r) + )\fué})f(r) + ... (2.25)

Due to the perturbation, the Kohn-Sham orbitals and KoharShnergies can also be expanded in

terms of\ as

vie,N) = 90 ) + a0 ()., (2.26)

6(N) = 24 ae (2.27)

Inserting the expansions of s(r, A), ¥;(r, A) ande; () into Eq. (2.6) and keeping only the first
term yields

w20
oy T Vefs

0 =" o) = [0 - o0 2.28)
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which is known as the Sternheimer equation [35]. Multiptyloth sides of Eq. (2.28) by (r)]*

and integrating over the unit cell, we have

e = ()l () [ (1)) (2.29)
Similarly, we can obtain
0) 0)
(1) o <¢z ’ effWJ > (0
i) = ; RPN [;”) - (2.30)

The drawback of the above equation is the summation ovetaddlss This requires the computation

of all eigenvalues and eigenstates of the Hamiltonian matitich is not efficient at all.

2.3.2 Self-consistent and variational approach

To avoid the drawback mentioned above, one can solve E@)(Q)ngl) (r) self-consistently under

the constraints,
W,,0)y _
(; ;) =0. (2.31)
All zero-order quantities in Eq. (2.28) are calculated imatte. The first-order charge density can

be computed from

— 9Re Z b () (r (2.32)

The first-order charge density in turn can be used to cahsu%ﬁf(r)
Instead of solving the self-consistent equations, onedcask the variational method to ob-
tain the first-order wavefunctionﬁz(l)(r) [8, 9, 10]. Similar to the expansion of the potential and

wavefunctions, the total energy can be expanded in termsasf
E*=EO + EOX+ BN 4 . (2.33)

The first-order termE() is usually vanishing, while the second-order term depemdg an the

zero-order and the first-order wavefunctions as a consegquehthe “2n+1” theorem [36]. The
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first-order wavefunctions are obtained by minimizing theosel-order energy,
E® = min E@[©) 0], (2.34)

In fact, the solutions\" (r) of Eq. (2.28) is identical to that from Eq. (2.34).
In the next chapter, this approach will be developed furthed applied to the cases in the

presence of finite electric fields.
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Chapter 3

DFPT in the presence of finite electric fields

The understanding of ferroelectric and piezoelectric nte whose physics is dominated by soft
phonon modes, has benefited greatly from the availabilifirgtfprinciples methods for calculating
phonon properties. In general, these methods can be aasgifo two main types, the direct or
frozen-phonon approach [37, 38] and the linear-respongmaph [10, 9]. In the former approach,
the properties of phonons at commensurate wavevectorbtimed from supercell calculations of
forces or total-energy changes between between equitibaind distorted structures. In the latter
approach, based on density-functional perturbation thé@FPT), expressions are derived for the
second derivatives of the total energy with respect to atalisiplacements, and these are calculated
by solving a Sternheimer equation [10] or by using minini@atmethods [9, 8]. Compared to
the direct approach, the linear-response approach hagtempadvantages in that time-consuming
supercell calculations are avoided and phonons of arpitk@vevector can be treated with a cost
that is independent of wavevector. However, existing limeaponse methods work only at zero

electric field.

The development of first-principles methods for treating dffect of an electric field in a
periodic system has been impeded by the presence of theoskatic potentiat - r in the Hamilto-
nian. This potential is linear in real space and unboundam frelow, and thus is incompatible with
periodic boundary conditions. The electronic bandstmechecomes ill-defined after application of
a potential of this kind. Many attempts have been made tocowvee this difficulty. For example,

linear-response approaches have been used to treat tivicdietd as a perturbation [8, 7]. It is
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possible to formulate these approaches so that only thdiadienal elements of the position op-
erator, which remain well defined, are needed, thus alloanghe calculation of Born effective
charges, dielectric constants, etc. Since it is a pertandapproach, a finite electric field cannot be

introduced.

Recently, a total-energy method for treating insulatoradnzero electric fields has been pro-
posed [33, 34]. In this approach, an electric enthalpy fonet is defined as a sum of the usual
Kohn-Sham energy and ah- P term expressing the linear coupling of the electric fieldhe t
polarizationP. The enthalpy functional is minimized with respect to fiplolarized Bloch states,
and the information on the response to the electric fieldrisained in these optimized Bloch states.
Using this approach, it is possible to carry out calculaiohdynamical effective charges, dielectric
susceptibilities, piezoelectric constants, etc., usinigefidifference methods [33, 34]. It would also
be possible to use it to study phonon properties in finitetetefield, but with the aforementioned

limitations (large supercells, commensurate wavevertirte direct approach.

In this work, we build upon these recent developments by sigWwow to extend the linear-
response methods so that they can be applied to the finiteefisle. That is, we formulate DFPT
for the case in which the unperturbed system is an insulatarfinite electric field. Focusing on
the case of phonon perturbations, we derive a tractable gtatipnal scheme and demonstrate its
effectiveness by carrying out calculations of phonon pridge of polar semiconductors in finite

electric fields.
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3.1 Linear response methods for calculating phonon frequeties, dielectric tensor

and Born effective charge tensor in finite electric fields.

3.1.1 Effect of electric field on phonon frequencies

Exact theory

We work in the framework of a classical zero-temperaturempef lattice dynamics, so that quan-
tum zero-point and thermal anharmonic effects are negledtethis context, the phonon frequen-
cies of a crystalline insulator depend upon an applied idgfatld in three ways: (i) via the variation
of the equilibrium lattice vectors (i.e., strain) with ajgpul field; (ii) via the changes in the equilib-
rium atomic coordinates, even at fixed strain; and (iii) Via thanges in the electronic wavefunc-
tions, even at fixed atomic coordinates and strain. Effectgpe (i) (essentially, piezoelectric and
electrostrictive effects) are beyond the scope of the pteserk, but are relatively easy to include
if needed. This can be done by computing the relaxed strabe sts a function of electric field
using the approach of Ref. [33], and then computing the phdremuencies in finite electric field
for these relaxed structures using the methods given héexefore, in the remainder of the paper,
the lattice vectors are assumed to be independent of eldietidl unless otherwise stated, and we

will focus on effects of type (ii) (“lattice effects”) and e (iii) (“electronic effects”).

In order to separate these two types of effects, we first whigechange in phonon frequency

resulting from the application of the electric field as

Aw(q; &) = w(q; Re, &) — w(q; Ry, 0), (3.1)

wherew(q; R, £) is the phonon frequency extracted from the second derevafithe total energy
of Eq. (2.24) with respect to the phonon amplitude of the moflevavevectorq, evaluated at

displaced coordinateR. and with electrons experiencing electric fi€ldAlso, R¢ are the relaxed
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atomic coordinates at electric fief§ while R are the relaxed atomic coordinates at zero electric

field. Then Eq. (3.1) can be decomposed as

Aw(q; &) = Awel(q; €) + Awion(q; €) (3.2)

where the electronic part of the response is defined to be

Awel(q; &) = w(q; Ry, &) —w(q; Ro, 0) (3.3)

and the lattice (or “ionic”) part of the response is definetieo

Awion(q; €) = w(q; Re, £) —w(q; Ro, ). (3.4)

In other words, the electronic contribution reflects theuiafice of the electric field on the wave-
functions, and thereby on the force-constant matrix, batuated at the zero-field equilibrium co-
ordinates. By contrast, the ionic contribution reflectsatiditional frequency shift that results from
the field-induced ionic displacements.

The finite-electric-field approach of Refs. [33]-[34] prdes the methodology needed to com-
pute the relaxed coordinat®, and the electronic states, at finite electric fi€ldThe remainder
of this work is devoted to developing and testing the teaesgfor computing(q; R, £) for given
q, R, and€&, needed for the evaluation of Eq. (3.1). We shall also ussetineethods to calculate
the various quantities needed to perform the decompoditidigs. (3.2-3.4), so that we can also

present results foAw, andAw,, separately in Sec. 3.5.

Approximate theory

Our approach above is essentially an exact one, in which&E#) {s evaluated by computing all
needed quantities at finite electric field. However, we wiloacompare our approach with an

approximate scheme that has been developed in the literawer the last few years [39, 40, 41, 42],
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in which the electronic contribution is neglected and thigda contribution is approximated in such
a way that the finite-electric-field approach of Refs. [33}][is not needed.

This approximate theory can be formulated by starting with dpproximate electric enthalpy
functional [39]

F[R; €] = EQR] - 0¢ - PO R, (3.5)

mac

whereEI(?g [R] is thezero-fieldground-state Kohn-Sham energy at coordinﬂeandPES&c is the
correspondingero-fieldelectronic polarization. In the presence of an appliedtetefield £, the
equilibrium coordinates that minimize Eq. (3.5) satisfg fbrce-balance equation

=L 70 .- (3.6)

wherez©® = QdpP¥). /dR. is the zero-fielddynamical effective charge tensor. That is, the sole
effect of the electric field is to make an extra contributiorttie atomic forces that determine the
relaxed displacements; the electrons themselves do nel’ ‘lee electric field except indirectly
through these displacements. In Ref. [39], it was shown tthiattheory amounts to treating the
coupling of the electric field to the electronic degrees eéftfom in linear order only, while treating
the coupling to the lattice degrees of freedom to all ord&usch a theory has been shown to give
good accuracy in cases where the polarization is dominatedfb polar phonon modes, but not in
systems in which the electronic and lattice polarizatiomsceamparable [39, 40, 41, 42, 43].

In this approximate theory, the effect of the electric fietdtbe lattice dielectric properties [42]
and phonon frequencies [41] comes about through the fieldeied atomic displacements. Thus, in

the notation of Egs. (3.1-3.4), the frequency shift (retatb zero field) is
Awlon(q;€) = w(a; R, 0) — w(q; Ro, 0) (3.7)

in this approximation, wher® is the equilibrium position according to Eq. (3.6). We wilake

comparisons between the ex@¢ and the approximatR’, and the corresponding frequency shifts
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Awion(q, £) andAw!  (q,€) later in Sec. 3.5.

3.1.2 Background and definitions

We start from the electric enthalpy functional [33]
F[R; ;€] = Exs[R; ] — Q€ - Prac[¥], (3.8)

whereFEkg has the same form as the usual Kohn-Sham energy functiottas mbsence of an elec-
tric field. Here( is the cell volumeP,,,. is the macroscopic polarizatio8,is the homogeneous
electric field,R are the atomic positions, angare the field-polarized Bloch functions. Note that
P.... has both ionic and electronic contributions. The formenig®plicit function ofR, while the
latter is an implicit function oR. through the Bloch functions, which also depend on the at@oic
sitions. When an electric field is present, a local minimurthaf functional describes a long-lived
metastable state of the system rather than a true grourad(stdeed, a true ground state does not

exist in finite electric field) [33].

3.1.3 Perturbation expansion of the electric enthalpy funtonal

We consider an expansion of the properties of the systenrimstef small displacements of the
atoms away from their equilibrium positions, resulting mnges in the charge density, wavefunc-
tions, total energy, etc. We will be more precise about thHinitien of A shortly. We adopt a

notation in which the perturbed physical quantities areaexied in powers of as
QM) = QO + QW +22Q® + X3Q® 4 ... (3.9)

whereQ™ = (1/n!)d"Q/d\". The immediate dependence upon atomic coordinates isghrou
the external potentialex(\), which has no electric-field dependence and thus dependsagmo-

dinates and pseudopotentials in the same way as in the eddlazfise. The changes in electronic
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wavefunctions, charge density, etc. can then be regardeeiag induced by the changesuigy; .

3.2 Phonon perturbation with zero q wavevector
The nuclear positions can be expressed as
Rm/ =t,+ du + bm/a (310)

wheret,, is a lattice vectord, is a basis vector within the unit cell, ahg,, is the instantaneous
displacement of atom in cell n. We consider in this section a phonon of wavevegjoe 0, so
that the perturbation does not change the periodicity ofctigstal, and the perturbed wavefunc-
tions satisfy the same periodic boundary condition as tipexiarbed ones. To be more precise, we
choose one sublatticeand one Cartesian directianand letb,,,, = A (independent ofi), so that
we are effectively moving one sublattice in one directiorilevkvhile freezing all other sublattice
displacements. Since the electric enthalpy functionalgf(E.24) is variational with respect to the
field-polarized Bloch functions under the constraints dhonormality, a constrained variational
principle exists for the second-order derivative of thiadiional with respect to atomic displace-
ments [36]. In particular, the correct first-order perttdlvmvefunctionsz/zfil){ can be obtained by

minimizing the second-order expansion of the total enerijly espect to atomic displacements,

[wmk’ ] = Iilln <EKS[1/}mk’ w 1)]
) ©))
—QPmaC[z/zmk, (N 8> , (3.12)
subject to the constraints
(Wilt) =0 (3.12)

(wherem andn run over occupied states). The fact that only zero-orderfiastdorder wavefunc-

tions appear in Eq. (3.11) is a consequence of the-12theorem.”[36]
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Recalling thaqqukb is the first-order wavefunction response to a small reallaigment\ of

basis atom along Cartesian direction, we can expand the external potential as

Vet (1) = V5 (1) + 000 o (1A + 002 o (DA% + . (3.13)

where
a0 = 2 G 3.14)
vt vl Zaaz;’;t : (3.15)

nrvo

etc. From this we shall construct the second-order enétdy of Eq. (3.11), which has to be
minimized in order to finquglb. The minimized value of'® gives, as a byproduct, the diagonal
element of the force-constant matrix associated with dphent . Once thdz/ng have been
computed for alb«, the off-diagonal elements of the force-constant matrixlwa calculated using

a version of then + 1 theorem as will be described in Sec. 3.2.2.

3.2.1 Discretized k mesh

In practice, we always work on a discretized mesh of k-ppentsl we have to take into account the
orthogonality constraints among wavefunctions at a givgoikt on the mesh. Here, we are fol-
lowing the “perturbation expansion after discretizatigREAD) approach introduced in Ref. [44].
That is, we write down the energy functional in its discretiZorm, and then consistently derive
perturbation theory from this energy functional. IntromhgcLagrange multipliers\y ,,,, to enforce

the orthonormality constraints

where ), are the Bloch wavefunctions, and lettidg be the number of k-points, the effective

total-energy functional of Eg. (2.24) can be written as

F = Fks + Fgp + FLm (3.17)



27

whereFks = Exs, Fpp = —QPnac - £, andF1,; are the Kohn-Sham, Berry-phase, and Lagrange-

multiplier terms, respectively. The first and last of thesegiven by

occ

FKS = N ;@/MHT + cht|¢nk> + Ech [’I’L], (318)
and
Fiv=—= Z Ak mn ((Vrmk | Vnk) — Omn), (3.19)
kmn

whereN is the number of k-points in the BZ. As for the Berry-phasentaeve modify the notation

of Eq. (2.22) slightly to write this as

hyEa + S D (3.20)

=1 N
where

Dy = ImIndet Sy (3.21)

andg; is the reciprocal lattice mesh vector in lattice directio(iThat is,k andk + g; are neighbor-
ing k-points in one of thé\ff) strings of k-points running in the reciprocal lattice difen conjugate

to a;.) Recall that the matrix of Bloch overlaps was defined in RRJ).

We now expand all quantities in orders of the perturbatiogm, &(\) = A© +AAM £ \2A ) 1

., etc. Similarly, we expan@dige (A) = S\, + ASS) + 2251, + . where

Slgl)’,mn = <u7(7(7),%(‘u51112’>+< mk’unk’>’ (322)
o = GO + )
G @29

and we also define

Qi = S (3.24)
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to be the inverse of the zero-ordér matrix. Applying the2n + 1 theorem to Eq. (3.17), the

variational second-order derivative of the total-enengyctional is

F@ = 58+ F& + 7% (3.25)
where
1
B = 3 [ + oQ + 0Bl
k,m
+(WklvSa o) | + Blln] . (3.26)
2) ef =& a; 2)

Fgp = __WZ ING ZDk,k—ng’ (3.27)

i=1 1 k

2
F() _

In the Berry-phase term, Eq. (3.27), we use the approach Df[#RH to obtain the expansion of

In detSys with respect to the perturbation. It then follows that
D&, = imTr [292) Q. — S8 Q1S Q] (3.29)

whereS®), S andQ are regarded a6 x L matrices {. is the number of occupied bands), ma-
trix products are implied, and Tr is a matrix trace runningrothe occupied bands. Finally, in the
Lagrange-multiplier term, Eqg. (3.28), a contributinﬁ%zm(wsl){]z/ng — dmn) has been dropped

from Eq. (3.28) because the zero-order wavefunctions, iwhaéve been calculated in advance, al-
ways satisfy the orthonormality constraimtﬁgl){wgi{)) = dmn- Moreover, the zero-order Lagrange
multipliers are made diagonal by a rotation among zerofondevefunctions at each k point, and

the first-order wavefunctions are made orthogonal to the-aelter ones at each iterative step, so
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that Eq. (3.28) simplifies further to become just

F2 = —epuc(@ ) jwll)y . (3.30)

Here, we have restored the notatigp, = Al({oznm for the diagonal zero-order Lagrange multipliers.

3.2.2 Conjugate-gradient minimization

The second-order expansion of the electric enthalpy fanatiin Eq. (3.25) is minimized with
respect to the first-order wavefunctions using a “band-dnyeld conjugate-gradient algorithm [8,
45]. For a given poink and bandm, the steepest-descent direction at iteratjois |(,.k ;) =
oF® /(') |, where F®) is given by Egs. (3.26-3.27) and (3.30). The derivativesif and

FS\){ are straightforward; the new element in the presence ofeatra field is the term

OB Zef £ i
= (IDmkk+g:) — [Pk k—g;) (3.31)
O(u] Z N e )
where

In this equationjuf(l,)> and\ul({o,)> ufif{&, m = 1,L), and

vector-matrix and matrix-matrix products of dimensibrare implied inside the parentheses. The
standard procedure translates the steepest-desceriiotisg¢,,,i ;) into preconditioned conjugate-
gradient search directiong,,x ;). An improved wavefunction for iteration+ 1 is then obtained
by letting

a1 = [ ) + Olmic) (3.33)
whered is a real number to be determined. Since #hgependence of (?)(6) is quadratic, the
minimum of F(?) along the conjugate-gradient direction is easily deteeahito be

1 dF® <d2F<2>

-1
Omin = —5 —— . 3.34
2 do 6:0> (339
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Construction of the force-constant matrix

To calculate phonon frequencies, we have to construct tise-ftonstant matrix

0’F
Do g= =———. 3.35
0 ORyaOR,5 (3.35)
Each diagonal elemesdt, 5,5 has already been obtained by minimizing #€&) in Eq. (3.25) for
the corresponding perturbatigis. The off-diagonal elements,, ,, 53 can also be determined using

only the first-order wavefunctions%{ 8 using the (non-variational) expression

20 ZOCC ©) 1. (1)
q>l/o¢ = 753
" (2m)3 /BZ <<umk|UOXt’”a * UHXC Va| mk uﬁ>
+<u£2%< U(()x?c Va,u,@‘ mk>> dk + - EéIZ)ZC va,us (336)
wherevéxl va = = OQVext/ORyq €tc.

3.3 Phonon perturbation with nonzero wavevector

In the case of a phonon of arbitrary waveveajpthe displacements of the atoms are essentially of
the formb,,,.. = A exp(iq-t,), whereX is a complex number. However, a perturbation of this form

does not lead by itself to a Hermitian perturbation of the lit@mian. This is unacceptable, because

we want the second-order energy to remain real, so that heatraightforwardly minimized. Thus,

we follow the approach of Ref. [8] and take the displacem&ntse
bpva = ATt 4 \* et (3.37)

leading to

Vet (t) = o) 4 A0l (1) F AV o (T)

() + X gy

2
+ )‘2 ) extua —-q,— q(r)

Vext ,va,q,q

+ o) (r) + XA (r)

Vext vo,q,—q ext,va,—q,q

T (3.38)
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where
Mext (T)  Lia.
vﬁil,m,iq(r) = Wmeiqt” : (3.39)
0 vex ; ,
U((:iz,ua,:l:q,:l:q(r) Vext (T) etiatn jtiatm ’ (3.40)

- nm aijaaRmya
etc. Similarly, the field-dependent Bloch wavefunctiaihgnd enthalpy functional’ can also be

expanded in terms of and its hermitian conjugate as

Yonie(r) = B (r) + AL () + Xl (1) + (3.41)
and

FlE] = 2FOE]+ FPE] + »FYe
+ A2FEQE + 200 FD (€]

+ 2P g (3.42)

—q,—q

The first-order wavefunctions in response to a perturbatitimwavevectoiq have translational

properties

Vgt + R) = VR (1) (3.43)

that differ from those of the zero-order wavefunctions
YO+ R) = By (1) (3.44)

As a result, we cannot simply work in terms of perturbed Blagafictions or use the usual Berry-
phase expression in terms of strings of Bloch functionsoAits contrast to the=0 case, in which
only one set of first-order wavefunctions was needed, we resd o solve for two set$£rlbl){7 +q
corresponding to the non-Hermitian perturbation at wasteray and its Hermitian conjugate at

wavevector—q [8].
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We now proceed to write out the second-order energy furetiit?) [wmk7¢mk g €], cor-

responding to the sum of the quadratic terms in Eq. (3.42),mmimize it simultaneously with

respect taj'!) mk.q andz/zmk —q

First, making the same decomposition as in Eq. (3.25), wetfiatithe Kohn-Sham part is

R = 5

where

2®  _

—q.9

Note that termS)E((127()3l and E(_zc)L_q

(3.45)

[wmk7 wmk q] [wmka wmk q] )

1) )

mk,q

( mk,q’voxt,k—i-q,k—l—q‘u

BZ

1) >

< mk q| ch k+q,k+q|umk,q

1) (1)
+< Uk q|Uext k+q.,k + UHxC,k+q,k|umk>

(1) | (1) )

+< ‘vext k k+q + vch,k,k-ﬁ-q umk,q

o) il (>>>dk+ ~EY . (3.46)

vanish, essentially because such terms transform likeinbert

tions of wavevector:-2q which, except wheq equals a reciprocal lattice vector, are inconsistent

with crystal periodicity and thus cannot appear in the enesgression. (IRq is equal to a recip-

rocal lattice vectorE((f?ql and E(_Zgl _q

still vanish, as can be shown using time-reversal symmetry.

Second, we consider the Berry-phase coupling term. Thamesd of this term is rather subtle

because, as mentioned above, the perturbed wavefunctenswa admixtures of parts with period-

icity as in Eqg. (3.43) and as in Eq. (3.44), so that the usualyBghase formula for the polarization

[20] cannot be used. A different approach is needed now ierai@ express the polarization in

terms of the perturbed wavefunctions. For this purpose, amsider a virtual supercell in which

the wavevectork andq would be commensurate, and make use of the definition intextily

Resta [46] specialized to the non-interacting case. Thaildedf this treatment are deferred to the
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Appendix, but the results can be written in the relativeiplie form

> D2 (i) (3.47)

k

2 ef
F]é): 271'2

i=1

E-a;
N

where
2 1,1 1,0
Dl(( )(g) =Tr [Sl((,k—)ngk—i-g k Sl(< k—?—g q
S(o 1)

XQk-l-g—q,k q~k— qk+ng+gk] (3.48)

with Qyk given by Eq. (3.24) and the superscript notatigti) = 95715 /9(\*)*d\!. From

Egs. (2.23) and (3.43), we can write these explicitly as

SO = W QleEr i)
(e _gleTET IO (3.49)
0,1 0) | —igr (1
St = (W) )
+<¢$f{7qle‘ig'rl¢,§2/> : (3.50)
Sl((llé’lj’nn = <’11Z)m q| _Zgrh/}nk/ >
+<¢fik _qle —’grrwnk, o - (3.51)

Third, the treatment of the Lagrange-multiplier term iaigthtforward; in analogy with Eq. (3.30),

we obtain
5 _ ey 350

If we look closely at Eq. (3.48), we see that the second tewaives not simply pairs of k-points
separated by the mesh vecggrutquartetsof k-points, as illustrated in Fig. 3.1. Reading from left
to right in the second term of Eq. (3.48), the k-point labetskg thenk + g — q, thenk — q, then

k + g, and finally back td. This is the loop illustrated in Fig. 3.1. Each dark arrowresents a



34

(@) (b)

k+g k+g

o

k k

Figure 3.1: Pattern of couplings between k-points arismég) the first term, and (b) the second
term, of Eq. (3.48). Reciprocal vectqris the phonon wavevector, whifgis a primitive vector of
the k-point mesh (indicated by thin horizontal and vertloads).

matrix element ofs(1:9), §(0.1) or Q; the gray arrow indicates the phongrvector. These loops
arise because there are two kinds of coupling between Kgeitering into the present theory. First,
even in the absence of the phonon perturbation, waveveatarsighboring k-points separated by
mesh vectog are coupled by thé& - P term in the energy functional. Second, the phonon introsluce
a perturbation at wavevectqr It is the interplay between these two types of inter-k-poupling
that is responsible for the appearance of these four-poaqtd in the expression fd?]f).

The implementation of the conjugate-gradient minimizatadgorithm proceeds in a manner
very similar to that outlined in Sec. 3.2.2. Naively, one Voluave to work simultaneously with the

two search-direction vectors

k) = OF@ /0l I,

Cnke—q) = OF® /o)

mk,—q| ’

(3.53)

whereuSLz{ 1q are the periodic parts apﬁi{{ +q However, minimizing the second-order energy

F®) with respect to two sets of first-order wavefunctians 1o would double the computational
cost and would involve substantial restructuring of ergttomputer codes. We can avoid this by

using the fact that the second-order energy is invarianeutiche reversal to eliminate one set of
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first-order wavefunction@fllk) q in favor of the other set/;fllk) q following the approach given in

Ref. [8]. Specifically, the two sets of first-order wavefuaos are related by

) = ety i(r) (3.54)
P = eyl @), (3.55)

wheref,, is an arbitrary phase independentrofThe arbitrary phasé,,. cancels out in the expres-
sion of F? since every term iF(?) is independent of the phase of the first-order wavefunctions
Thus, we choosé,,, = 0 for simplicity and write the second-order energy functionaerms of

wavefunctions),x 4 only.

The minimization procedure now proceeds in a manner sinilahe zero-wavevector case,
except that the calculation of the Berry-phase part ingb@me vector-matrix-matrix products as
in Eq. (3.32), but circulating around three of the sides efltop in Fig. 3.1. Sincé&'(®) remains in a
quadratic form, the minimum df ) is again easily searched along the conjugate-gradienttiire
Wavefunctions are updated over k-points one after anotiret,the first-order wavefunctions are
updated. This procedure continues until the self-congigietential is converged. Once the first-
order responses of wavefunctions are obtained, the dihgteraents of the dynamical matrix are
obtained by evaluating"(®), and the off-diagonal elements are obtained from a strfaiird

generalization of Eq. (3.36),

20 [ N~ (0,0 W
(I)VQ,MB = W/BZ%:<<umk‘vext,l/a,k,k+q’umk,uﬁ,q>

0) .. (1) 1)
+ <umk |UHxC,1/a,k,k+q|umk,u,B,q>

0 2 0
+<u,;2<rvéxi,w\ugi>)dk

L@

S Btk - (3.56)
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3.4 Electric field perturbation

We start from the electric enthalpy functional [44, 33]
F[R; ;€] = Exs[R;y] — Q€ - PlY], (3.57)

whereR, £, Q2 andP are, respectively, the atomic coordinates, the electiid, fiee cell volume, and
the macroscopic polarizatiofk g is Kohn-Sham energy functional at zero electric field, aodét
units are used throughout. After minimizing this functibrihe field-polarized Bloch functiong
may be regarded as depending implicitly on the electric #&ldur treatment of this functional
will parallel the treatment given in Sec. 3.3.

In the present case, we take the electric figlth consist of two parts, a finite paft®) and a
small variationd&. In the following, we consider the perturbation expansiéthe functional in

Eq. (2.24) with respect to the small variatiéfi under the orthonormality constraints

The wave functions are to be relaxed, subject to these eomistyin such a way as to minimize the

electric enthalpy functional
F = Fxs + Fgp + Fium » (3.59)

whereFks = Exks is the Kohn-Sham energy (as it would be calculatefl at0), Fgp = —Q& - P
contains the coupling of the Berry-phase polarizafidio the electric field, and the constraint is

implemented by the inclusion of the Lagrange-multipligrmédn ;. The first and last of these terms

are given by

Fxs = N, %j:(l/fnk\T + Vext|tnk) + Etixc[n] (3.60)
and

Fiss =~ 3 M (k) — ) 3.61)

k,mn
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where f is the spin degeneracy (normalfiz2), N, is the number ok-points, andAy ,,,, is the
matrix of Lagrange multipliers. In a notation similar to tltd Sec. 3.2, the second term may be

written as
ef £ a
L3583 Do @52)

Herea; are the three primitive real-space lattice vectors, andribsh of NV, k-points is defined
by mesh vectorg; = bz-/N(i) whereb; is the reciprocal lattice vector dual t§. Thus, N, =
NONRNG) and we also definéff) = N;,;/N@ as the number of-point strings running in

directioni. Finally,

Dy = ImIndet Sy (3.63)

where the overlap matrix is defined as
(Skk’)mn = <umk’unk’> . (364)

In order to obtain the desired response properties, we na@h i expand the finite-field en-
thalpy functionalFis up to second order in the electric field. We shall assume fontbment that
the electric field is applied in Cartesian directiononly. The expansion ofkg with respect to
atomic displacements was already obtained in Sec. 3.2, lendxpansion with respect to electric
field can be carried through in a very similar way. Indeed stheond-order expansions Bfs and
F1 can essentially be transcribed from Sec. 3.2 with the fidéiowave functions with respect to

displacement replaced here by the first-order wave fungtrath respect to electric field, giving

1 0% Fxks
2 9E2

67

f oce ga ga
k

n=

2
e

—_

+EGEe (3.65)
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and

occ

f « «
FIE%\/)[ = _m Z Af(o,zm <uik|uik> . (3.66)
k,n

As in Sec. 3.2, terms that can be eliminated by use of the-f 1 theorem” (e.g.(u53%|T +

vm|u£32>) have been dropped. The the first-order wave functions are

a|unkj>
uss ) = 3. (3.67)

and the second-orddty, are

9*Exy
Ega ga — XC . 3 . 68
Hxe 20E,0E, (3.68)

In these and subsequent equations, the partial derivatideste that thestructural coordinatesR
are being held fixed (while, however, thave functionsu,,) are allowed to vary).

The second-order expansion Bfp with respect to electric field requires somewhat more care.

We find
@ _ lazFBP
BP9 pg2
. QP(E-P)
2 o0&z
= —Q(&, P £ . plalay (3.69)

whereé,, is the unit vector along Cartesian directian The first term in the last line of Eq. (3.69)
is special to the case of the electric-field perturbationjerthe second term can be derived in close
correspondence to the case of displacement perturbatiddsd. 3.2. The first-order variation Bf

with field &, is

3
g(x _ ef ai (1)
P =5 Z ) > Diicrg (3.70)

and its second-order variation is

ef a;
PSQSQ = _471'9 1. Z Dl(jl)(-i-gi ’ (371)
1 k
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where
D0k vg, = IMTr [S0 1y Qucrgon] (3.72)
and
DA, = |mﬁ[2sfjl+gic2k+gi,k

1 1
B 1({,l)(+giQk+gi7kS]({,l)(+gi Qk+gi7k] . (373)

In these equations, ‘Tr’ indicates a trace of the bracketattimover band indices, ang, SM and

S are defined with respect to the series expansion of the qveririx via
S (Ea) = SO + EaSh + E2S), + .. (3.74)
and
Que = SO, (3.75)

The first- and second-order expansions of the overlap mtakixthe form

1 0 0
S = (6l + () uly) (3.76)

and

S o = (W55 Uiy (3.77)

In the last equation above, terms li mkg ]ufﬁb have again been dropped by virtue of tRe -1

theorem.”

3.4.1 First-order wave functions with respect to electricfield perturbation

The second-order term in the expansion of the energy fumattigiven by the sunk® = F1(<25) +

F) + F2) of the expressions in Egs. (3.65), (3.69), and (3.66) reiséy; is minimized with
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respect to the first-order wave functioh&n@ using standard conjugate-gradient methods. The

steepest-descent direction is obtained from the gradfeht? with respect to(uii , whose contri-

butions take the form

SF f O\ | e,  OEEEe
—> = v |[\T I 3.78
5u785(* Nk ( +U6(Et) |unk> + 5Ui‘f{* ) ( )
SF) ief o~ EO - a
Ea* = - Z i ( ‘ka,k+gi> - ‘ka,k—gi> )
5unk 47 pt NJ(_)
ief < & - A
Ir Z N (Dikcicres) = Dimkck—g,) ) »
i=1 1
(3.79)
and
SR o
— . = v EklUnk) 3.80
Here
kak/ = <|ui‘7>Qk/k - |u1(3)>Qk’kSI((1k)/Qk’k>m s (381)
Dmkk/ = (’ul(g)>Qk'k>m 5 (382)

and efflz is the diagonal zero-order matrix of Lagrange multiplie€@anvergence of the conjugate-

gradient procedure yields a set of first-order wave funstjnﬁ@. These then become the essential

ingredients for constructing the dielectric and Born cleaansors as discussed below.

3.4.2 Dielectric permittivity tensor

The dielectric permittivity tensor can be written as

€ap = Oap + 4TXap (3.83)
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where the electric susceptibility tensgss at afinite electric field is defined as

1 9*F(&)
Xof = T Q8E, 088 | c—g(0)
_ 8& =e, P% . (3.84)
9Es |e—e©

The derivativeP%s of the polarization with respect to electric field is alreaglyen by Eq. (3.70).
Since the first-order wave functiofig ;) have already been obtained in Sec. 3.4.1, it is straightfor-
ward to evaluate Eq. (3.84) and thus obtain the polarizgkald permittivity.

The dielectric responses above are the static responsgmiteniwith atomic coordinates frozen.
That is, they correspond to the dielectric response thatdioeimeasured at frequencies low com-
pared to electronic frequencies but high compared to amgriedi-active phonon modes. The true
static susceptibility could be computed by including thitida displacements (and, if appropriate,

the piezoelectric strains) using, e.g., the methods of [R&F.

3.4.3 Born effective charge tensor

The electronic contribution to the Born effective chargeste at finite electric field takes the form

O2F(£)
z* = —— . 3.85
K,a3 agaaﬂi’ﬁ £—g® ( )

This expression can be calculated equivalently in two diffie ways. First, introducing the force

fra = —0F(£)/07,  acting on atom in directione, it can be written as

. Of
ra8 = b (3.86)
Using the Hellmann-Feynman theorem, the expression fdiotioe is given as
fap = Z > (T + v fuly)) (3.87)
k n=1
and taking an additional derivative with respect to eledigld yields
.: af — Z Z T + Ue:pt)TmB ‘ufﬁ@ . (388)

k n=1
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This has essentially the same form as Eq. (43) in Ref. [9]epixthat here the zero-order wave

functions are already polarized by the preexisting finiexgic field.

Alternatively, Eq. (3.85) can be computed as the derivativehe polarization with respect to

the displacement,

o = =06, - P70 . (3.89)

HereP7~5 takes a form very similar to that of Eq. (3.70), except thatfilst-order changd&iﬁ)
in the wave functions in response to an electric field areama by the corresponding changes
|u;’i{’f> in response to a sublattice displacement. The computafitimedu *?) has already been

nk;

described in detail in Sec. 3.2.

The computation of the first-order derivatives of the wawecfions is typically the most time-
consuming step of the linear-response calculation. Thezefor a complicated unit cell with many
atomsM per cell, the computation of the three derivative$) will be much cheaper than that of
the 3M derivatives|u™-4), and the method of Eq. (3.88) will therefore be significarfégter than
the method of Eq. (3.89). In the special case that the displaat derivative$u™#) have already
been computed for some other reason (e.g., for the purposengbuting the phonon frequencies
in finite field), the use of the latter method may be advantagedn any case, a comparison of
the two methods should provide a useful check on the intaroasistency of the theory and its

computational implementation.
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3.5 Test calculations for Ill-V semiconductors

3.5.1 Phonon frequencies

In order to test our method, we have carried out calculatmihe frequency shifts induced by
electric fields in two ll-V semiconductors, AlAs and GaAs.eWave chosen these two materi-
als because they are well-studied systems both experittyeatal theoretically, and because the
symmetry allows some phonon mode frequencies to shift dipesith electric field while others
shift quadratically. Since our main purpose is to check tterhal consistency of our theoretical
approach, we focus on making comparisons between the shiftalated using our new linear-
response method and those calculated using standarddifigeence methods. Moreover, as men-
tioned at the start of Sec. 3.1.1, we have chosen to neglecigels in phonon frequencies that
enter through the electric-field induced strains (pieztigkeand electrostrictive effects), and we do
this consistently in both the linear-response and finiffexdince calculations. For this reason, our

results are not immediately suitable for comparison withegknental measurements.

Our calculations are carried out using a plane-wave pseatdofial approach to density-functional
theory. We use the ABINIT code package [48], which incorpesahe finite electric field method
of Souzaet al. [33] for the ground-state and frozen-phonon calculationinite electric field. We
then carried out the linear-response calculations withrsime of the code that we have modified to

implement the linear-response formulas of the previousmec

The details of the calculations are as follows. We use TiertiMartins norm-conserving pseu-
dopotentials [49], the Teter Pade parameterization [SQheflocal-density approximation, and a
plane-wave cutoff of 16 Hartree. A ¥10x10 Monkhorst-Pack [51] k-point sampling was used,
and we chose lattice constants of 10862nd 10.30A for AlAs and GaAs, respectively. The crystals

are oriented so that the vect@r/2)(1, 1, 1) points from a Ga or Al atom to an As atom.
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Table 3.1: Calculated frequency shifts, in thpinduced by an electric field df.14 x 10% V/m
applied alongr in GaAs and AlAs (This field is larger than the breakdown fields@As 1.8 x
107 V/m). ‘FD’ are the results of finite-difference (frozen-ptam) calculations in which atoms
are displaced by hand and restoring forces are calculateitk R’ refers to the use of the linear-
response developed here. The L and X points af2mata)(1,1, 1) and(27/a)(1, 0, 0) respectively.

GaAs AlAs

Mode FD LR FD LR
roil -3.856 —3.856 —-5941 -—-5.941
ro2! -—0.282 —-0.281 —0.300 —0.299
r 031 3.548 3.548 5.647 5.647
LLO 2.701 2.703 4.282 4.282
LTO1 —-3.749 —-3.749 -5.663 —5.663

L TO2 0.567 0.564 0.952 0.952
XLO 0.050 0.050 —0.243 -0.243
XTO1 —-3.953 —-3.953 —-6.083 —6.083
XTO2 3.753 3.753 5.919 5.919

Table 3.1 shows the changes in phonon frequencies restritimgan electric field applied along
a Cartesian direction at several high-symmetry g-pointSaks and AlAs. Both the electronic and
ionic contributions, Egs. (3.3-3.4), are included. We fiedaxed the atomic coordinates in the
finite electric field until the maximum force on any atom wassléhanl0~% Hartree/Bohr. We then
carried out the linear-response calculation, and in aaditio check the internal consistency of our
linear-response method, we carried out a correspondirglesibn using a finite-difference frozen-
phonon approach. For the latter, the atoms were displacadding to the normal modes obtained
from our linear-response calculation, with the largespldisement being 0.0025 Bohr. (Because
the electric field lowers the symmetry, the symmetry-reduset of k-points is not the same as in
the absence of the electric field.) The agreement betwedimitedifferent approach and the new
linear-response implementation can be seen to be excelihtthe small differences visible for
some modes being attributable to truncation in the finiffxdince formula and the finite density of

the k-point mesh.

In Table 3.2, we decompose the frequency shifts into theicontributionAw;,, (q; £) and the
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electronic contributiomw,)(q; £) defined by Egs. (3.4) and (3.3), respectively, calculatéuube
linear-response approach. Itis clear that the largestibatibns are ionic in origin. For example,
the large, roughly equal and opposite shifts of the O1 and ©8em atl” arise from the ionic
terms. However, there are special cases (e.g., @2ad LO at X) for which the ionic contribution
happens to be small, so that the electronic contributioonsgarable in magnitude.

The pattern of ionic splittings appearinglattan be understood as follows. Because the non-
analytic long-range Coulomb contribution is not includtéth three optical modes Atare initially
degenerate with frequencyy in the unperturbed lattice. A first-order electric field ajeninduces
a first-order relative displacement of the two sublattices, also along By symmetry considera-

tions, the perturbed dynamical matrix is given, up to quiécliader inu,, as

14 pu? 0 0
D) = w? 0 1+vu?  kug . (3.90)
0 KUy 1+vu?

The off-diagonalx term arises from thev,,. coupling in the expansion of the total energy in
displacements; this is the only third-order term allowedmmetry. The, andv terms arise from
fourth-order couplings of the fort,,,, and E,,,, respectively. The eigenvalues of this matrix
are proportional td + pu? and1 + ku, + vu?. Thus, two of the modes should be perturbed at
first order in the field-induced displacements with a pattédrequal and opposite frequency shifts,
while all three modes should have smaller shifts arisingiftbe quadratic terms. This is just what
is observed in the pattern of frequency shifts shown in T&e (The symmetry of the pattern
of electronic splittings is the same, but it turns out that timear shift is much smaller in this
case, so that for the chosen electric field, the linear andratia contributions to the electronic
frequency shift have similar magnitudes.) A similar analysn be used to understand the patterns

of frequency shifts at thé and X points.
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Table 3.2: Same as in Table 3.1, but with the frequency sthiftemposed into ionic and electronic
contributions as defined in Egs. (3.4) and (3.3) respegtivel

GaAs AlAs

lon Elec. lon Elec.
roi! -3.659 -0.198 —5.684 —0.257
ro2! -0.146 -0.135 —-0.123 —-0.177
ros! 3.655 —-0.107 5.589 0.058
LLO 2341 0.362 3.633 0.649
LTO1 —-3.486 —-0.262 —5.628 —0.034
L TO2 1.181 —0.617 1.658 —0.707
X LO 0.122 —0.073 —0.033 —0.209
XTO1 —-3.411 —-0.543 —5.658 —0.424
XTO2 338 0.365 5609 0.310
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Figure 3.2: Frequency shifts induced by an electric field.&#%10° V/m alongz in AlAs, plotted
alongT to L. Filled and open symbols indicate the total skt + Awi,, and the electronic
contributionAw,; respectively.
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We have also plotted, in Fig. 3.2, the calculated total feemy shiftAwq(q) + Awion(q) and
its electronic contributiom\w,(q) along the line fronT" to L for the case of AlAs. (The ‘LO’ and
‘TO’ symmetry labels are not strictly appropriate here heseathe electric field along mixes the
mode eigenvectors; the notation indicates the mode thaltdvbeuarrived at by turning off the field.)
In contrast to the results presented in Tables 3.1-3.2rédugiéncies &t in Fig. 3.2 were computed
by including the long-range non-analytic Coulomb conttiitmu for ¢ || (111) in order to extend the
curves tog = 0. (Because the direct linear-response calculation of timauhjcal effective charge
and dielectric susceptibility tensors had not yet beenldpeel and implemented in the presence of
a finite electric field, the needed tensor elements were cteday finite differences.) It is clearly
evident that the electronic terms remain much smaller tharanic ones for all three optical modes

over the entire branch ig-space.

Returning now to the comparison between our exact theoryeof $.1.1 and the approximate
theory of Sec. 3.1.1, we compare the equilibrium positiomd phonon frequencies predicted by
these theories in Table 3.3. Recall tiiatis calculated in the approximate theory by using Eq. (3.6).
Using this force, the ion coordinates were again relaxedttemance ofl0—% (Hartree/Bohr) on
the forces. It can be seen that is predicted quite well by the approximate theory, with esrof

only ~2%, confirming that the displacements can be calculateddd gocuracy using a linearized

Table 3.3: Comparison of ionic displacements and frequshys at thel point in GaAs as com-
puted by the approximate and exact approaches of Sec. 31d.3.4.1 respectively, again for an
electric field of5.14 x 108 V/m alongz. Rg is the induced displacement of the cation sublattice
alongz, and theAw;,, are ionic contributions to the frequency shifts as defineddgn(3.4).

Re Awion(L) (Cm_l)
(103A) LO TO1 TO2
GaAs Approx. 5.07 2.63 —-3.89 1.37
Exact 4.95 2.34 —-3.49 1.8
AlAs  Approx. 5.69 3.75 —-5.66 1.65
Exact 5.62 3.63 —5.63 1.66
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theory for this magnitude of electric field. The changes m phonon frequencies resulting from
these displacements (evaluated at zero and non-zero fiethdcapproximate and exact theories
respectively) are listed in the remaining columns of Tab& 3The discrepancies in the phonon
frequencies are now somewhat larger, approaching 15% ire s@ses. This indicates that the
approximate theory is able to give a moderately good desmmnipf the phonon frequency shifts of
GaAs in this field range, but the exact theory is needed faurate predictions. (Also, recall that
the approximate theory does not provide any estimate fogldwtronic contributions, which are not

included in Table 3.3.)

Finally, we illustrate our ability to calculate the nonlarefield dependence of the phonon fre-
guencies by presenting the calculated optiEgboint phonon frequencies of AlAs in Fig. 3.3 as
a function of electric field along. These are again the results of our exact theory, obtained by
including both ionic and electronic contributions. The thW® modes are degenerate at zero field,
as they should be. All three modes show a linear componentitiminates their behavior in this
range of fields. However, a quadratic component is also lglesident, illustrating the ability of

the present approach to describe such nonlinear behavior.

3.5.2 Born effective charge and dielectric constant

In order to check our method, we have performed test calonkbn two prototypical Ill-V semi-
conductors, AlAs and GaAs, for which the electronic conitidn to the polarization is typically
comparable to the ionic contribution [43]. The calculatisncarried out using the planewave-
pseudopotential method based on density-functional yheibh local-density approximation (LDA).
We use Troullier-Martins norm-conserving pseudopotén{id9] in which the3d states on the Ga
and As atoms are treated as core states. (The omission cérfiesge3d states from the valence

on the Ga atom may limit the accuracy of the Ga pseudopotesgiaewhat.) Al6 x 16 x 16
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Figure 3.3: Frequencies of LO and TO moded.ah AlAs as a function of electric field (where
103 a.u. =5.14x 10® V/m) applied along:. The symbols have the same interpretation as in Fig. 3.2.

Table 3.4: Calculated electronic dielectric constants i#sfand GaAs at zero field, and changes
resulting from an electric field df.08 x 10® V/m along the [100] direction. ‘LR’ and ‘FD’ denote
the results of linear-response [Eq. (3.84)] and finiteaddhce calculations, respectively.

€0 A€x23 A€ol A€xo33
AlAs LR 9.681 0.039 0.027 0.013
FD 9.681 0.040 0.027 0.013
GaAs LR 13.315 0.202 0.211 0.104
FD 13.319 0.203 0.207 0.098

Monkhorst-Pack mesh is used for thgpoint sampling. More computational details can be found

in Sec. 3.2.

The calculation of the dielectric permittivity tensor ame tBorn effective charge tensor is car-
ried out in three steps. First, a ground-state calculatidimi¢e electric field is performed using the
Berry-phase approach [33] implemented in A& NI T code, and the field-polarized Bloch func-
tions are stored for the later linear response calculat®etond, the linear response calculation is
carried out to obtain the first-order response of Bloch fiamst Third, the matrix elements of the

dielectric and Born effective charge tensors are compusatjuthese first-order responses.
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The first column of Table 3.4 shows the calculated electrdigtectric constants of AlAs and
GaAs at zero electric field, and the remaining ones show timzero changes in the dielectric
tensor elements after the application of an electric & of 3.08 x 10% V/m along the [100]
direction. The results obtained with the linear-resporg@@ach of Eq. (3.84) are compared with
those calculated by finite differences. In the latter caskrizations are computed at several values
of the electric field in steps &.08 x 10° V/m, and the dielectric tensor is calculated using a finite-
difference version of Eq. (3.84). It can be seen that theeagemt between the linear-response and
the finite-difference results is excellent, demonstratimg internal consistency between the two

approaches.

In Table 3.5 we present similar results for the cation Bofeaive charges of the same two
materials, first at zero field and then again under applioatioa field of£(© of 3.08 x 10° V/m
along the [100] direction. The linear-response resultsevedatained using Eq. (3.88), but we also
computed the corresponding values using Eqg. (3.89) andifagreement between the two linear-
response approaches with a maximum fractional error smbb@10~° for all values reported. For
the finite-difference comparison, the polarizations weymputed at several values of the atomic
displacements in steps of 19 Bohr and the Born charge tensors were calculated using a-finit
difference version of Eq. (3.89). It can again be seen theeagent between the linear-response and

the finite-difference results is excellent.

We emphasize that the valuesat., and AZ* reported in Tables 3.4 and 3.5 are purely elec-
tronic or “frozen-ion” ones — that is, the sublattice diggments that would be induced by a truly
static electric fieldS(®) are not included. The results with ionic relaxations aresgnéed in Table
3.6. Itis evident that ionic relaxations have neglegibfeas on the diagonal elements of dielectric
tensors but moderate effects on the off-diagonal elemdwis.Born effective charge tensors, the

effects of ionic relaxations are obvious for both diagoma aff-diagonal elements.
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Table 3.5: Calculated cation Born effective charges of Advsl GaAs at zero field, and changes
resulting from an electric field ¢f.08 x 10® V/m along the [100] direction. ‘LR’ and ‘FD’ denote
the results of linear-response [Eq. (3.88)] and finiteeddéhce calculations, respectively.

z* AZ3, AZ7 AZ3,
(x1073)  (x1073) (x1073)

AlAs LR 2.110 17.23  -0.06 -0.13
FD 2.110 17.22 -0.05 -0.11
GaAs LR 2.186 52.88 —-3.42 -3.17
FD 2.186 5283 —-3.36 -3.14

Table 3.6: Calculated changes in electronic dielectricstamts and cation Born effective charges of

AlAs and GaAs resulting from an electric field of 3.680° V/m along the [100] direction. Here
ions are fullyrelaxedto the electric field.

AlAs GaAs
A€o 23 0.024 0.145
A€xo 11 0.027 0.209
A€o 33 0.013 0.101

AZ3(x1073) 1597  53.16
AZ{(x1073) —1.405 —1.653
AZ3(x1073) —0.431 —1.836

The values ofe,, and Z* reported in Tables 3.4 and 3.5 are in good agreement withr othe
theoretical values in the literature [52, 53, 54] and witpe&xment. The symmetry is such that the
applied electric field along breaks the degeneracy between the diagonal elementse«f thied 7 *

tensors so thaty, 11 # €x0,22 = €x0,33 ANAZT, # Z3, = Z35, and introduces non-zero off-diagonal

E|ement$w723 = €0,32 andZ§3 = Z§2

Symmetry considerations also imply that -3 and Z3; should appear to first order i),
while Aeq 11, Aeso,33, AZT;, and AZ3; should be quadratic ig(@ . This is confirmed by our
numerical calculations. Indeed, by repeating calculatitee those shown in Tables 3.4 and 3.5 for
several values o (?) and fitting to obtain the coefficients of the linear and quiddependence, we

can extract information about the nonlinear dielectripogse and the Raman tensor. The second-
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Table 3.7: Values of second-order dielectric susceptybilnd Raman matrix elements in AlAs, as
defined by Egs. (3.91) and (3.93) respectively, comparehl pyvitvious theory and experiment.

X2 (M) |atol (R?)

Present work 62 8.0
Theory} Ref. [33] 64

Theory? Ref. [55] 70 8.5

Theory} Ref. [56] 79 9.0

Theory? Ref. [57] 7.4

Experiment, Ref [58] 7820

and third-order nonlinear dielectric tensors are defined as

@ 1 0Py 1 0xa3

= _ == 3.91
X123 = 5 9g08; ~ 2 98, (3.91)
and

3 _10°P_19xu 3.92
X1111—6 85{’ G 8812 ) (3.92)

while the Raman polarizability tensor is defined by

2

0°fa 0y (3.93)

WO = Be08; 08,

wheref is the force on the cation sublattice induced by the elefiigld. In practice, we calculate

X23, X11, and Z3, for a series of finite electric fields oriented along thaxis with values of ()

ranging from zero t¢.14 x 108V/m in increments of one-fifth of the maximum value. Fittitgse
(3)

data to a polynomial i€(® then gives the values of(%, y\3);, andaro. Note thataro can

alternatively be expressed as

aTo = Q aaf_zlg (394)

wherer is a cation sublattice displacement apg is computed at zero field. We have also com-
putedaro by fitting to a series of calculations of this type, and findreal ofaro that agree with

those obtained from Eq. (3.93) within3%.
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The results for thqg)3 andarg values as computed from Egs. (3.91) and (3.93) are presiented
Table 3.7 for AlAs, together with some previous theoretarad experimental values for comparison.
In view of the fact that the calculation of higher-order tenslements tends to be delicate, the
agreement is generally quite good. In particular, Veitheal.e[55] have shown (see their Fig. 1)
that the results fobgg)g can be quite sensitive to the method of discretizatio-space and the
fineness of thé&-point mesh. For GaAs we fin;glg)3 = 293 pm/V andapo = —24.1 A2 (which is
close to the value in Ref. [57]), but these numbers are oftmmeble accuracy because of our use
of a Ga pseudopotential that does not include3iesemicore orbitals in the valence. We obtain
3, values of 3.90 and 33:810~11 esu for AlAs and GaAs, respectively. We are not aware of
previous theoretical values Qﬁ)n with which to compare; this quantity is beyond the reach ef th
“2n + 1” theorem using first-order wave function responses onlgl, smis difficult to compute by

pure DFPT methods. Experimental values ranging from 3.8tol0~!! esu for GaAs [59] can be

found in the literature.

The discrepancies noted above between theory and theadretween theory and experiment,
may have many possible causes. In addition to some of the wtatignal and convergence issues
mentioned above, the adequacy of the LDA approximatioff issalso a serious question. Because
the LDA tends to underestimate gaps, some authors havelattla so-called “scissors correction”
in order to widen the gap artificially; this tends to decretts® magnitude of response tensors
[60]. On the experimental side, the difficulty in obtainingproducible results is surely also an
issue. Nevertheless, we emphasize thatrétative accuracy of the values reported in Tables |
and I, which were done under tBamecomputational conditions (same pseudopotentiaigpint
meshes, etc.), demonstrates the correctness of our neerffidid linear-response formulation and

the internal consistency of the computational framewogk tie employ.
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3.6 Summary and discussion

We have developed a method for computing the phonon fregeen€an insulator in the presence
of a homogeneous, static electric field. The extension o$itiefunctional perturbation theory to
this case has been accomplished by carrying out a carefahsign of the field-dependent energy
functional Exg + Q2€ - P, whereP is the Berry-phase polarization, with respect to phononesod
both atg = 0 and at arbitrary,. In the general case of nonzerpthere is a subtle interplay between
the couplings between neighboring k-points introducechieyedectric field and the further-neighbor
couplings introduced by the-vector, so that terms arise that require the evaluatiorowf-$ided
loops in k-space. However, with the judicious use of timeereal symmetry, the needed evaluations

can be reduced to a form that is not difficult to implement iregisting DFPT code.

We have carried out test calculations on two IlI-V semicardts, AlAs and GaAs, in order
to test the correctness of our implementation. A comparafathe results of linear-response and
finite-difference calculations shows excellent agreentéuos validating our approach. We also de-
compose the frequency shifts into “lattice” and “electadrgontributions and quantify these, and
we find that the lattice contributions (i.e., those resgltirom induced displacements in the refer-
ence equilibrium structure) are usually, but not alwaysnithant. We also evaluated the accuracy
of an approximate method for computing the lattice contidsy in which only zero-field inputs are
needed. We found that this approximate approach gives amam description, but that the full

method is needed for an accurate calculation.

Our linear-response method has the same advantagesiadtathe finite-difference approach,
as in zero electric field. Even for a phonorabur approach is more direct and simplifies the calcu-

lation of the phonon frequencies. However, its real adwgmta realized for phonons at arbitrary
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because the frequency can still be obtained efficiently faoralculation on a single unit cell with-
out the need for imposing commensurability of frgector and computing the mode frequencies
for the corresponding supercell. We also emphasize thantthod is not limited to infinitesimal
electric fields. We thus expect the method will prove broadtgful for the study of linear and
nonlinear effects of electric bias on the lattice vibraibproperties of insulating materials.

We have also developed a linear-response method for cangpdiglectric constants and Born
effective charges in the presence dirite electric field. We have demonstrated the reliability of
our approach by implementing it in the context of #l NI T code package[48] and performing
test calculations on two IlI-V semiconductors, AlAs and Ga&Ve have confirmed that the results
calculated using the new linear-response approach aréstamswith those obtained from finite-
difference calculations carried out within the same frawmw In general, our results are also in
good agreement with other theoretical calculations and &tperiment.

A major advantage of the present approach is that, unlikeedingentional long-wave linear-
response method,[8] it can be applied to obtain respons®ieiin finite electric field. While it
is possible to obtain similar information from a set of firitéference calculations carried out for
some chosen set of applied electric fields, the linear-respapproach is more direct, and it avoids
the troublesome truncation errors that may arise in a fififference approach. In the future, it
may be of interest to extend the finite-field DFPT treatmentjust to phonon perturbations and
electric-field perturbations , but also to other pertudiadi such as those associated with strain or
chemical composition. Taken together, these developnshotsld allow for much greater flexibility
in the calculation of materials properties of insulatorslemelectrical bias and facilitate the study

of higher-order nonlinear dielectric properties.
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Chapter 4

Ab-initio calculation of the anomalous Hall conductivity by Wannier

interpolation

The Hall resistivity of a ferromagnet depends not only onrttegnetic induction, but also on the
magnetization; the latter dependence is known as the anomtlall effect (AHE) [61]. The AHE is
used for investigating surface magnetism, and its poteotiinvestigating nanoscale magnetism, as
well as for magnetic sensors and memory devices applicatisibeing considered [62]. Theoretical
investigations of the AHE have undergone a revival in regeats, and have also led to the proposal

for a spin counterpart, the spin Hall effect, which has sqbeatly been realized experimentally.

The first theoretical model of the AHE was put forth by Karpdursl Luttinger [16], who showed
that it can arise in a perfect crystal as a result of the spiit-tnteraction of polarized conduction
electrons. Later, two alternative mechanisms, skew soat§63] and side jump scattering [18],
were proposed by Smit and Berger respectively. In skewestradt the spin-orbit interaction gives
rise to an asymmetric scattering cross section even if tfectipotential is symmetric, and in side-
jump scattering it causes the scattered electron to acqnimextra transverse translation after the
scattering event. These two mechanisms involve scattérimy impurities or phonons, while the
Karplus-Luttinger contribution is a scattering-free bstndcture effect. The different contributions
to the AHE are critically reviewed in Ref. [64]. Perhaps hesman intuitive physical picture was
lacking, the Karplus-Luttinger theory was strongly digaltin the early literature. Attempts at

estimating its magnitude on the basis of realistic bandsira calculations were also rare [65].

In recent years, new insights into the Karplus-Luttingentdbution have been obtained by

several authors [66, 67, 68, 15, 69], who reexamined it imtloelern language of Berry’s phases.
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The term€,, (k) in the equations below was recognized as the Berry curvafutee Bloch states
in reciprocal space, a quantity which had previously apmbar the theory of the integer quantum
Hall effect [22], and also closely related to the Berry-ghéiseory of polarization [20]. The dc
anomalous Hall conductivity (AHC) is simply given as thelBriin zone (BZ) integral of the Berry

curvature weighted by the occupation factor of each state,

2 dk
oy = —% Zn: /B @ Fu(K) Q2 (K) (4.1)

whereo,, = —0o,, is the antisymmetric part of the conductivity. While thisidze derived in several
ways, it is perhaps most intuitively understood from the istassical point of view, in which the

group velocity of an electron wavepacket in banis [70, 67]

10

= k x Q,(k) . (4.2)

The second term, often overlooked in elementary textbookatens, is known as the “anomalous
velocity.” The expression for the current density then aegua new terne f,, (k) k x Q, (k) which,
with k = —eE/h, leads to Eq. (4.1).

Recently, first-principles calculations of Eq. (4.1) weeeried out for the ferromagnetic per-
ovskite SrRu@ by Fanget al. [13], and for a transition metal, bcc Fe, by Yabal. [21] In both
cases the calculated values compared well with experirheata, lending credibility to the intrin-
sic mechanism. The most striking feature of these calaulatis the strong and rapid variation of
the Berry curvature ik-space. In particular, there are sharp peaks and valleyla@gpwhere two
energy bands are split by the spin-orbit coupling acrosd-treni level. In order to converge the
integral, the Berry curvature has to be evaluated overaniliof k-points in the Brillouin zone. In
the previous work this was done via a Kubo formula involvingrge number of unoccupied states;
the computational cost was very high, even for bcc Fe, with one atom in the unit cell.

In this chapter, we present an efficient method for computiveggintrinsic AHC. Unlike the
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conventional approach, it does not require carrying outlaafarinitio calculation for every:-point
where the Berry curvature needs to be evaluated. The aahasalitio calculation is performed
on a much coarsek-point grid. By a post-processing step, the resulting Blstdtes below and
immediately above the Fermi level are then mapped onto lavedilized Wannier-functions. In this
representation it is then possible to interpolate the Beutyature onto any desirdepoint with

very little computational effort and essentially no lossao€uracy.

4.1 Definitions and background

The key ingredient in the theory of the intrinsic anomalowadl Effect is the Berry curvatur®,, (k),

defined as

Q(k) = V x A, (k) | (4.3)

whereA,, is the Berry connection,

A (k) = i(unk| Vi|unk) - (4.4)

The integral of the Berry curvature over a surface bounded tlpsed path ik-space is the Berry
phase of that path [19]. In what follows it will be useful toitgrthe Berry curvature as a second-rank

antisymmetric tensor:

Qn,“{(k) = €apy Qn,aﬁ(k) ’ (4-5)
B OUnk | Ounk
U (K) = —2Tm o, ) (4.6)

where the Greek letters indicate Cartesian coordinatgs, is Levi-Civita tensor and.,,,. are the
cell-periodic Bloch functions.

With this notation we rewrite the quantity we wish to eva@dtq. (4.1), as

Qapk) , 4.7)
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where we have introduced thetal Berry curvature

Z fn naﬁ ) (48)

Direct evaluation of Eq. (4.6) poses a number of practicfiilcdities related to the presence fof
derivatives of Bloch states, as will be discussed in the sestion. In previous work [13, 21] these
were circumvented by recasting Eq. (4.6) as a Kubo formuba 2&2], where thek-derivatives are

replaced by sums over states:

_ Unm,a( ) Umn B(k
o0 = 22 2, (G ) =l 9

wherew, (k) = &,1/h and the matrix elements of the Cartesian velocity operatprs (i/1)[H, 74

are given by [71]

OH (k) ‘umk> , (4.10)

1
Unm,a(k) = <wnk|ﬁa|¢mk> = ﬁ <unk ke

whereH (k) = e~** HekT The merit of Eq. (4.9) lies in its practical implementatioma finitek-
grid using only the wavefunctions at a singtgoint. As is usually the case for such linear-response
formulas, sums over pairs of occupied states can be avoidi 7" = 0 version of Egs. (4.8-4.9)

for the total Berry curvature,

Qs QImZZ 1:5”‘ ) Veo (k) (4.11)

_wv ))2 ’

wherev and ¢ subscripts denote valence (occupied) and conduction ¢uipsed) bands, respec-

tively. However, the evaluation of this formula requires tumbersome summation over unoccu-
pied states. Even if practical calculations truncate thersation to some extent, the computation
could be time-consuming. Moreover, the time required toudate the matrix elements of the ve-

locity operator in Eq. (4.9) or (4.11) is not negligible.
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4.2 Evaluation of the Berry curvature by Wannier interpolation

In view of the above-mentioned drawbacks of the Kubo fornfiatgractical calculations, it would
be highly desirable to have a numerical scheme based on ¢hgdometric formula” (4.6), in
terms of the occupied states only. The difficulties in impdating that formula arise from the-
derivatives therein. Since in practice one always replde=8rillouin zone integration by a discrete
summation, an obvious approach would be to use a finiterdiffee representation of the derivatives
on thek-point grid. However, this requires some care: a straighifiod discretization will yield
results which depend on the choice of phases of the Bloabsstaten though Eq. (4.6) is in principle
invariant under such “diagonal gauge transformations.t Pptoblem becomes more acute in the
presence of band crossings and avoided crossings, bedeusé is not clear which two states at
neighboring grid points should be taken as “partners” in isefidifferences expression. (Moreover,
since the system is a metal, ‘Bt = 0 the occupation can be different at neighboriagoints.)
Successful numerical strategies for dealing with problefthis nature have been developed in
the context of the Berry-phase theory of polarization ofiiatrs, and a workable finite-difference

scheme which combines those ideas with Wannier interpolasi sketched in Appendix B.

We present here a different, more powerful strategy that mdes on a Wannier representa-
tion of the low-energy electronic structure. We will shovattlit is possible to express the needed
derivatives analytically in terms of the Wannier functipas that no finite-difference evaluation of
a derivative is needed in principle. The use of Wannier fionst allows us to achieve this while
still avoiding the summation over all empty states whichegyp in the Kubo formula as a result of

applying conventionak - p perturbation theory.



61

30 [

N
o

Energy (eV)
)

Inner window

Figure 4.1: Band structure of bcc Fe with spin-orbit couplincluded. Solid lines: original band
structure from a conventional first-principles calculati®otted lines: Wannier-interpolated band
structure. The zero of energy is the Fermi level.

Figure 4.2: Wannier-interpolated bands of bcc Fe albrg. The bands are colorcoded according
to the value of the spin projectioft.) : red for spin-up and blue for spin-down. The energies are
given in eV and the Fermi level is at 0 eV. The vertical daslmeklindicate k points on the ab initio
mesh used for constructing the WFs.
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4.2.1 Wannier representation

We begin by using the approach of Souza, Marzari, and Vaitgt®] to construct a set of Wannier
functions (WFs) for the metallic system of interest. Fowiasors, one normally considers a set of
WFs that span precisely the space of occupied Bloch stater®, Kince we have a metallic system
and we want to have well-localized WFs, we choose a numberles \Afger than the numbeé¥)

of occupied states at arky, and only insist that the space spanned by the WFs shoulddiechs

a subset, the space of the occupied states, plus the firstrfgity estates. Thus, these partially-
occupied WFs will serve here as a kind of “exact tight-bilgdasis” that can be used as a compact

representation of the low-energy electronic structurédnefrhetal.

This is illustrated in Fig. 4.1, where the bandstructure @f Be is shown. The details of the
calculations will be presented later in Sec. 4.3. The saiiglsl show the fulb-initio bandstructure,
while the dashed lines show the bands obtained within theni®anepresentation usinty/ = 18
WFs per cell (nine of each spin; see Sec. 4.3.2). In the mathB@f. [72], one specifies an energy
Ein lying somewhat above the Fermi enerfly, and insists on finding a set of WFs spanning all
theab-initio states in an energy window up I9,;,. In the calculation of Fig. 4.1 we chodg,;, ~
18 eV, and it is evident that there is an essentially perfeccmbetween the fullyab-initio and the
Wannier-represented bands up to, but not abéyg,. Clearly, a Wannier-based calculation of any
property of the occupied manifold, such as the intrinsic Alduld be in excellent agreement with

a directab-initio evaluation, provided thadt, is set abover;.

The Wannier-based method can even reproduce more fine ligalcfeatures as shown in
Fig. 4.2. In order to capture the change of the spin of Bloaictions near Fermi surface, the
energy bands are colorcoded according to the value of timepspjection(S.). At several points
alongT'-H, one state mixes with the crossing state to form an avoidessing. The value ofS.)

changes rapidly when going through the avoided crossinggchwimplys that the derivative of
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Bloch functions with respect té could be orders of magnitude larger near these crossings tha
other regions.

We shall assume that we ha¢ WFs per unit cell denoted aRn), wheren = 1,..., M and
R labels the unit cell. We shall also assume that the BloahAiilactions given by the phased sum
of WFs

W) = 37 R Ry (4.12)
R

span the actual Bloch eigenstategy) of interest & = 1, ..., Ny) at eachk (clearly M must be

> Ny everywhere in the BZ). It follow that, if we construct tié x A Hamiltonian matrix
H () = (g | () ) (4.13)
and diagonalize it by finding al/ x M unitary rotation matriXJ (k) such that
Ut k) HW) (x)U (k) = H® (k) (4.14)

where ) (k) = Sfi)%m, thenggl? will be identical to the true,, for all occupied bands. The

corresponding Bloch states,
[ull) = > VU (K), (4.15)

will also be identical to the true eigenstatesy) for £ < E. (In the scheme of Ref. [72], these
properties will actually hold for energies up K,;,.) However, the band energies and Bloch states
will not generally match the true ones at the energies higher #han as shown in Fig. 4.1. We
thus use the superscript ‘H’ to distinguish the projectelddmnergiessfﬁ) and eigenvector@f?)
from the true oneg,, and|u,x), keeping in mind that this distinction is only significanttime
higher-energy unoccupied regiofi & Eyiy,) of the projected bandstructure.

The unitary rotation of states expressed by the mdfiik) is often referred to as a “gauge

transformation,” and we shall adopt this terminology hénée shall refer to the Wannier-derived
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Bloch-like state$u;¥)> as belonging to the Wannier (W) gauge, while the eigenstafg(%) of the
projected bandstructure are said to belong to the Hamidlto(i) gauge.

Quantities such as the Berry connectidn (k) of Eq. (4.4) and the Berry curvatufe, ,3(k)
of Eq. (4.6) clearly depend upon the gauge in which they apeesssed. (The curvature is actually
invariant under the subset of gauge transformations of thgodal formU,,,,(k) = e!®nk§,,,,,
which is also the remaining gauge freedom within the Hamiéto gauge.) The quantity that we
wish to calculate, Eq. (4.8), is most naturally expressatierHamiltonian gauge, where it takes the

form
M
Qus) = > full) QM (k) . (4.16)
n=1

HereQSBﬁ(k) is given by Eq. (4.6) withu,x) — |u£i)>. It is permissible to make this substitution
because the projected bandstructure matches the true oa#t fmcupied states. In practice one
may take for the occupation factgy, (k) = 6(Er — £,k ) (as done in the present work), or introduce
a small thermal smearing.

Our strategy now is to see how the right-hand side of Eq. j4ch6é be obtained by starting
with quantities that are defined and computed first in the \idaingauge and then transformed
into the Hamiltonian gauge. The resulting scheme can beedeas a generalized Slater-Koster
interpolation, which takes advantage of the smoothnesgssipace of the Wannier-gauge objects, a

direct consequence of the short range of the Wannier oshitakal space.

4.2.2 Gauge transformations

Because the gauge transformation of Eq. (4.15) involvestarymotation among several bands, itis
useful to introduce generalizations of the quantities is.E4.4) and (4.6) having two band indices

instead of one. Thus, we define

Anm,a(k) = Z<un|aaum> (4-17)
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and

Qnm,aﬁ(k) = aowAnm,,B - a,BAnm,a

= (Oatn|0pUm) — 1(05un|Oatm) , (4.18)

where every object in each of these equations should centlistcarry either a (W) or (H) label.
(We have now suppressed tkesubscripts and introduced the notatidn = 0/0k, for concise-

ness.) In this notation, Eq. (4.16) becomes

M
Qus) = full) QW (k) . (4.19)
n=1

Note that wher(2,3 appears without a (W) or (H) superscript, as on the left-hsidé of this
equation, it denotes the total Berry curvature on the laftehside of Eq. (4.16).

The matrix representation of an ordinary operator such egitimiltonian or the velocity can
be transformed from the Wannier to the Hamiltonian gaugeviae-versa, just by operating on
the left and right byt (k) andU (k), as in Eq. (4.14); such a matrix is called “gauge-covartiant.
Unfortunately, the matrix objects in Egs. (4.17—4.18) aregauge-covariant, because they involve

k-derivatives acting on the Bloch states. For example, #&stifarward calculation shows that
AW — gt AWMU 1 iUt o,U (4.20)

where each object is al x M matrix and matrix products are implied throughout. For gver
matrix objectO, we define
o —ytoWy (4.21)
so that, by definition®"™ = @) only for gauge-covariant objects.
The derivatived, U may be obtained from ordinary perturbation theory. We adopbtation

in which ||¢,,,)) is them-th M-component column vector of matriX, so that({(¢, || H™) | ¢.) =

En 6nm; the stylized bra-ket notation is used to emphasize thatatbjlike H™) and ¢, ) are
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M x M matrices and\/-component vectors, i.e., operators and state vectorittitiht-binding
space” defined by the WFs, not in the original Hilbert spaegtuPbation theory with respect to the
parametek takes the form
|| He || on
gy = 3 BN o) 4.22)
g _ g
l#n n l

whereH\W) = 9, HW). In matrix notation this can be written

0aUnn = Y Uni Djp, = (UDS) (4.23)
l
where
Hoo oo
DM = (UT0.U)nm (4.24)
0 if n=m

anng;I,z o= (UTHC(YW)U)”m according to Eq. (4.21). Note that whilg, 3 and A, are Hermitian
in the band indicesD" is instead antihermitian. The gauge choice implicit in Hds22) and
(4.24) is{(pn |0atn) = (UT0,U)nn = 0 (this is the so-called “parallel transport” gauge).

Using Eq. (4.23), Eqg. (4.20) becomes

AW =M (4.25)
and the derivative of Eq. (4.15) becomes
|0 ult) Zya uWNU,, +Z\u )DI . (4.26)

Plugging the latter into Eq. (4.18), we finally obtain, afeiew manipulations, the matrix equation

_H —
— o) — p®, 2]

«

H)
Q.5

+[DY, AN — i, phy . (4.27)
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The band-diagonal elemermﬁ)aﬁ(k) then need to be inserted into Eq. (4.19).

Eg. (4.27) can also be derived from Eq. (4.25), by combintngjth the first line of Eq. (4.18):

o

H —(H .
M = 9, 45" — 9548 — i DM, DV, (4.28)

where we have usea'cﬂaaU)TaﬁU = —z’D&H)DéH). Invoking Eq. (4.21) we find

OuAy’ =054, = — [DID.AGY)+ (DY AL
+ UN0.45Y — 9540 (4.29)

The last term on the right—hand—sideﬂ_gé), and thus we recover Eq. (4.27).

4.2.3 Discussion

We expect, based on Eq. (4.9), that the largest contribaitiothe AHC will come from regions of
k-space where there are small energy splittings betweensh@mdexample, near spin-orbit-split
avoided crossings) [13]. In the present formulation, thisgive rise to small energy denominators
in Eq. (4.24), leading to very Iarg@&H) values in those regions. These large and spiky contribsition
will then propagate into4&H) and Qgé), WhereasA(W) and Qgﬁv), and aIsoA(H) and Qgé), will
remain with their typically smaller values. Thus, thesekgmiontributions will be present in the
second and third terms, and especially in the fourth terngqf(4.27). The contributions of these
various terms are illustrated for the case of bcc Fe in Sdcl 4and we show there that the last term
typically makes by far the dominant contribution, followleylthe second and third terms, and then

by the first term.

The dominant fourth term can be recast in the form of a Kubmtda as

(bl S pm (Sm I HE |6
OPP . — _91 .
R N

The following differences between this equation and the Kubo formula, Eq. (4.9), should how-

(4.30)

ever be kept in mind. First, the summation in Eq. (4.30) itrieted to theM -band projected band
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structure. Second, above,;, the projected bandstructure deviates from the origaminitio one.
Third, even belowE;,, where they do match exactly, the “effective tight-bindiegjocity matrix
elements” appearing in Eq. (4.30) differ from the true orgigsen by Eq. (4.10). (The relation

between them is particularly simple for energies beltyy,,

o) = L e gy 70D (4.31)

nm,o B nm,a B nm,o’

and follows from combining the identity [71,,,, o = #(¥y, |0a|¥m)/ (wWm — wy,), valid form # n,
with Egs. (4.24-4.25).) All these differences are howewercdy compensated by the previous
three terms in Eq. (4.27). We emphasize that all terms ingbattion are defined strictly within

the projected space spanned by the Wannier functions.

We note in passing that it is possible to rewrite Eq. (4.273unh a way that the large spiky
contributions are isolated into a single term. This altéveaformulation, which turns out to be

related to a gauge-covariant curvature tensor, will berilese in Appendix A.

4.2.4 Sum over occupied bands

In the above, we have proposed to evaluaf%)aﬁ from Eq. (4.27) and then insert it into the band
sum, Eq. (4.19), in order to compute the AHC. However, thigrapch has the shortcoming that

small splittings (avoided crossings) between a pafragiupiedbandsn andm lead to large values of

H)

D,ﬁm@, and thus to large but canceling contributions to the AHCiogrfrom Q(H)

nn,

(H)
mm,a3*

op @nde?

Here, we rewrite the total Berry curvature (4.19) in such & that the cancellation is explicit.

Inserting Eq. (4.27) into Eq. (4.19) and interchanging dyniabelsn < m in certain terms,
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we obtain

Qaﬁ(k) = anana,B
+ Z(fm f) (D) oAt

—p® AW L ipH p®) ) (4.32)

nm,[3*-mn nm,a~"mn,f3

The factors of f,,, — f,,) insure that terms arising from pairs of fully occupied staj&e no contri-
bution. Thus, the result of this reformulation is that indisal terms in Eq. (4.32) have large spiky
contributions only when avoided crossings or near-de@enes occur across the Fermi energy. This
approach is therefore preferable from the point of view ahetical stability, and it is the one that
we have implemented in the current work.

As expected from the discussion in Sec. 4.2.3 and shownifatec. 4.4.2, the dominant term

in Eqg. (4.32) is the last one,

= Z fa) D) DI (4.33)

or, in a more explicitly Kubo-like form,
(H)  7(H)
0P =i (o) % | (4.3
In the zero-temperature limit, the latter can easily be aast a form like Eq. (4.30), but with
a double sum running over occupied bandand unoccupied bands, very reminiscent of the
original Kubo formula in Eq. (4.11).

We remark tha(1/n)H ) », coincides with the “effective tight-binding velocity o@eor” of
Ref. [73]. This is an approximate tight-binding velocityesator. Comparison with Eq. (4.31) and
Eq. (4.39) below shows that it is lacking the contributionisiak involve matrix elements of the

position operator between the WFs [74]. We now recognizedgn(&22) the standard result from

k - p pertubation theory, but in terms of the approximate monmargperator. Using that equation,
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Eq. (4.30) can be cast as the tight-binding-space analog|.o4Eb),

QP05 = —2Im (O bk )| 0sbnk) - (4.35)

This allows to rewrite Eq. (4.34) in a form that closely resbss the total Berry curvature, Eq. (4.16):

a,@ - Z fn Qn al (436)

4.2.5 Evaluation of the Wannier-gauge matrices

Eq. (4.32) is our primary result. To review, recall that tlisa condensed notation expressing the
M x M matrix Qﬁlaﬁ(k) in terms of the matnce@im)b op(k), etc. The basic ingredients needed
are the four matriced (W), C(YW), A&W), andﬂgg) at a givenk. Diagonalization of the first of
them yields the energy eigenvalues needed to find the odoogactors f,,. It also provides the
gauge transformatiof which is then used to construﬂg ) ZgH), andﬁgé) from the other three
objects via Eq. (4.21). FinallyT"" is inserted into Eq. (4.24) to obtaib ", and all terms in
Eq. (4.32) are evaluated.
In this section we explain how to obtain the matri¢gs") (k), W (k), AW (k) andﬂgﬁv) (k)

at an arbitrary poink for use in the subsequent calculations described above.

Fourier transform expressions

The four needed quantities can be expressed as follows:

HW (k) =Y ™ (on|HRm), (4.37)
R
7N (k Z R iR, (On|H|Rm), (4.38)

nma

AW ( Z e® R (0n|ry|Rm), (4.39)
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nm,o

A k) = > ™R (iR (Onfis|Rm)
R

—iRy (On\fa\Rm>> . (4.40)

(The notation|0n) refers to thern’th WF in the home unit celR = 0.) Eq. (4.37) follows by
combining Egs. (4.12) and (4.13), while Eq. (4.39) followsdombining Eqgs. (4.12) and (4.17).
Egs. (4.38) and (4.40) are then obtained from (4.37) and®J4B8ing H;m,o = OaHpm and
Eq. (4.18), respectively.

It is remarkable that the only real-space matrix elemeras éine required between WFs are
those of the four operatot and#, (o« = z, y, andz). Because the WFs are strongly localized,
these matrix elements are expected to decay rapidly as dnruf lattice vectoR, so that only a
modest number of them need to be computed and stored onceraaitl ICollectively, they define
our “exact tight-binding model” and suffice to allow subsenucalculation of all needed quantities.
Furthermore, the short range of these matrix elements Irspa&e insures that the Wannier-gauge
guantities on the left-hand sides of Egs. (4.37—4.40) vélsmooth functions dk, thus justifying
the earlier discussion in which it was argued that thesectbjghould have no rapid variation or
enhancement ikk-space regions where avoided crossings occur. (Recalbticdt large, rapidly-
varying contributions only appear in tie®) matrices and in quantities that depend upon them.)
It should however be kept in mind that Eq. (4.32) is not writtrectly in terms of the smooth
guantities (4.37—4.40), but rather in terms of those gtiaatiransformed according to Eq. (4.21).
The resulting objects are not smooth, since the matitetange rapidly wittk. However, even

while not smooth, they remain small.

Evaluation of real-space matrix elements

We conclude this section by discussing the calculation@fihdamental matrix elemeni@n| H |Rimn)

and(0n|r,|Rm). There are several ways in which these could be computedhancthoice could
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well vary from one implementation to another. One posgibilvould be to construct the WFs in
real space, say on a real-space grid, and then to computeaimétbhian and position-operator
matrix elements directly on that grid. In the context of aeddat uses a real-space basis (e.g.,
localized orbitals or grids), this might be the best choiewever, in the context of plane-wave
methods it is usually more convenient to work in reciprogealce if possible. This is in the spirit of
the Wannier-function construction scheme [75, 72], whformulated as a post-processing step
after a conventionalb-initio calculation carried out on a uniforkpoint grid. (In the following we
will use the symbod to denote the points of thiab-initio mesh, to distinguish them from arbitrary
or interpolation-grid points denoted lky)

The end result of the Wannier-construction step faféloch-like functions|u£f§1’)> at eachq.

The WFs are obtained from them via a discrete Fourier tramsfo
1 —iq-(R—1 W
[Rn) =+ 3 iR, (0 (4.41)
9 q

This expression follows from inverting Eq. (4.12). If thé initio mesh containsV, x N, x N,
points, the resulting WFs are really periodic functionsravesupercell of dimensions x L x L,
whereL = N,a anda is the lattice constant of the unit cell. The idea then is toosie L large
enough that the rapid decay of the localized WFs occurs orale secuch smaller thah. This
ensures that the matrix elemei®s:| H |Rm) and(0On|#,|Rm) between a pair of WFs separated by
more thanZ /2 are negligible, so that further refinement of #izinitio mesh will have a negligible
impact on the accuracy of Wannier-interpolated quantitile particular, the interpolated band
structure, Fig. 4.1, is able to reproduce tiny features efftil bandstructure, such as spin-orbit-
induced avoided crossings, even if they occur on a lengile stach smaller than theb-initio mesh
spacing.) While the choice of reciprocal-space cell spdrnyethe vectors is immaterial, because
of the periodicity of reciprocal space, this is not so for theetorsR.. In practice we choose the

N, x N4 x N, vectorsR to be evenly distributed on the Wigner-Seitz supercell dfive N3a?
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centered aroun® = 0 [72]. This is the most isotropic choice possible, ensurima the strong
decay of the matrix elements fdR| ~ L/2 is achieved irrespective of direction.

The matrix elements of the Hamiltonian are obtained from(Ed1) as
(On|H|Rm) = iy Z —aR W) (q) (4.42)

which is the reciprocal of Eq. (4.37), with the sum runningiothe coarseab-initio mesh points.

The position matrix is obtained similarly by inverting E4.39):

(0n|7a|Rm) = i Z e RAN (a) - (4.43)
The matrixA%?a(q) is then evaluated by approximating thederivatives in Eq. (4.17) by finite-
differences on thab-initio mesh using the expression [75]

A(a) =0 wpba ((uhd [ulyg ) = dm ) (4.44)
b

whereb are the vectors connectirgto its nearest neighbors on thb-initio mesh. This approxima-
tion is valid because in the Wannier gauge the Bloch statgssvaoothly withk. We note that the
overlap matrices appearing on the right-hand side areadlailfor free” as they have already been
computed and stored during the WF construction procedunés i$ also the case for the matrices
HW)(q) needed in Eq. (4.42).

It should be kept in mind that thie-space finite-difference procedure outlined above engails
error of orderO(Aq¢?) in the values of the position operator matrix elements, whey is theab-
initio mesh spacing. The importance of such an error is easily ss$dxy trying denseg-point
meshes; in our case, we find that it is not a numerically sicpmti source of error for thg& x 8 x 8
mesh that we employ in our calculations. (In large measuseigtsimply because less than 2% of
the total AHC comes from terms that depend on these posifi@nator matrix elements, as will

be discussed in Sec. 4.4. Indeed, we find that(#ie¢?) convergence of this small contribution
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hardly shows in the convergence of the total AHC, which erogilly appears to be approximately
exponential in theab-initio mesh density.) However, if th€&(Aq?) convergence is a source of
concern, one could adopt the direct real-space mesh itimgraethod mentioned at the beginning

of this subsection, which should be free of such errors.

4.3 Computational details

In this section we present some of the detailed steps of thalations as they apply to our test sys-
tem of bcec Fe. First, we describe the first-principles bandgire calculations that are carried out
initially. Second, we discuss the procedure for constngcthaximally localized Wannier functions
for the bands of interest following the method of Souza, Merzand Vanderbilt [72]. Third, we
discuss the variable treatment of the spin-orbit inteoaictvithin these first-principles calculations,

which is useful for testing the dependence of the AHC on tlie-ggbit coupling strength.

4.3.1 Band structure calculation

Fully relativistic band structure calculations for bcc Rét$ ferromagnetic ground state at the exper-
imental lattice constant = 5.42 Bohr are carried out using tHASCF code [76]. A kinetic-energy
cutoff of 60 Hartree is used for the planewave expansion@f/tience wavefunctions (400 Hartree
for the charge densities). Exchange and correlation sffeiet treated with the PBE generalized-
gradient approximation [77].

The core-valence interaction is described here by meansrai-gonserving pseudopotentials
which include spin-orbit effects [78, 79] in separable Khaan-Bylander form. (Our overall Wan-
nier interpolation approach is quite independent of thecH choice and can easily be generalized
to other kinds of pseudopotentials or to all-electron meéthpThe pseudopotential was constructed

using a reference valence configuratior3@f4s° 7>4p°-2>. We treat the overlap of the valence states
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with the semicor&p states using the non-linear core correction approach [@%.pseudopotential
core radii for the3d, 4s and4p states ard.3, 2.0 and 2.2 Bohr, respectively. We find the small
cut-off radius for the3d channel to be necessary in order to reproduce the all-etebndstructure

accurately.

We obtain the self-consistent ground state using a1B5<16 Monkhorst-Pack [81] mesh of
k-points and a fictitious Fermi smearing [82] of 0.02 Ry for Bllouin-zone integration. The
magnetization is along the [001] direction, so that the amn-zero component of the integrated
Berry curvature, Eq. (4.7), is the one alonglhe spin magnetic moment is found to be 2.22 the

same as that from an all-electron calculation [21] and dogke experimental value of 2.12;.

In order to calculate the Wannier functions, we freeze tlfecemsistent potential and perform
a non-self-consistent calculation on a unifamny n x n grid of k-points (the ‘ab-initio mesh”). We
tested several grid densities ranging framd to n=10 and ultimately chose=8 (see end of next
subsection). Since we want to construct 18 W49( andd-like for spin up and down), we need
to include a sufficient number of extra bands to cover thetarbharacter of these intended WFs
everywhere in the Brillouin zone. With this in mind, we cdbte the first 28 bands at eakkpoint,
and then exclude any bands above 58 eV, the “outer window”"edf R2]. (The choice of outer
window is somewhat arbitrary as long as the number of barglscibses is larger than the number
of WFs, and we confirm that the calculated AHC has very litdpehdence upon this choice. The
main effect of choosing a larger outer window is that one iobtalightly more localized WFs in
real space, and thus slightly smoother bandk-gpace.) The 18 WFs are then disentangled from

the remaining bands using the procedure described in thesaetion.
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4.3.2 Maximally-localized spinor Wannier functions for bac Fe

The energy bands of interest (extending up to, and just akixéeFermi energy) have mainly
mixed s andd character and are entangled with the bands at higher esellgierder to construct
maximally-localized WFs to describe these bands, we usedifien version of the post-processing
procedure of Ref. [72]. We start by reviewing the originabtatep procedure from that work, as it
applies to iron. In the first (“subspace selection”) stepl&band subspace (the “projected space”)
is identified. This is done by minimizing a suitably defineddtional, subject to the constraint of
including the states within an inner energy window [72].He tase of iron we choose this window
to span an energy range of 30 eV from the bottom of the valeandd(up taFi, in Fig. 4.1). In
the second (“gauge selection”) step, the gauge freedoniniittl projected subspace is explored to
obtain a set of Bloch-like functiodsaglf)> which are optimally-smooth as a functionlof75]. They
are related to the 18 maximally-localized WFs by Eq. (4.1&hough the method of Refs. [72]
and [75] was formulated for the spinless case, it is trivieddapt it to treat spinor wavefunctions, in
which case the resulting WFs also have spinor characteh elament of the overlap matrix, which
is the key input to the WF-generation code, is simply catedlas the sum of two spin components,
Sieh =D (umclul i) - (4.45)
o=T,l

In order to facilitate later analysis (e.g., of the orbitatlaspin character of various bands), we
have used a modified three-step procedure. The initial swespelection step remains unchanged.
The new second step (“subspace division”) consists oftisgithe 18-dimensional projected space
for eachk on theab-initio mesh into two 9-dimensional subspaces, as follows. At égobint we
form the 18<18 matrix representation of the spin operafor = (h/2)6, in the projected space
and diagonalize it. The tw-dimensional subspaces are then chosen as a mostly spibspaze

spanned by the eigenstates havisigeigenvalues close te¢-1, and a mostly spin-down subspace
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(b)

Figure 4.3: Isosurface contours of maximally-localizethagp WF in bce Fe (red for positive value
and blue for negative value), for tlex 8 x 8 k-point sampling. (a)yp3d?-like WF centered on a
Cartesian axis; (bj,,-like WF centered on the atom.

associated with eigenvalues close-td (we will use units ofi,/2 whenever we discusS, in the
remainder of the manuscript). The third and final step is thegg-selection step, which is now done
separately for each of the two 9-dimensional subspaces. hWedmerge with 18 well-localized
WFs divided into two groups: nine that are almost entireipggp and nine that are almost entirely
spin-down (in practice we finf{S.)| > 0.999 in all cases). While this procedure results in a total
spread that is slightly greater than the original two-stegcedure, we find that the difference is
very small in practice, and the imposition of these rulesasdkr a much more transparent analysis
of subsequent results. For example, it makes it much eastesidk the changes in the WFs before
and after the spin-orbit coupling is turned on, or to idgntife spin character of various pieces of

the Fermi surface.

The subspace-selection step can be initialized [72] byigmoy 18 trial functions having the
form of s, p, and ¢, andt,,) d-like Gaussians of pure spin character (nine up and nine fidwour
first attempts at initializing the gauge-selection stepused these same trial functions. However,
we found that the iterative gauge-selection procedure [¥bich projects the nine trial functions of

each spin onto the appropriate band subspace and improwaghgm, converted the threg;-like
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trial functions intot,,-like WFs, while it mixed ther,, s, andp-like states to form six hybrid WFs of
sp3d?-type [83]. Having discovered this, we have modified our pohee accordingly: henceforth,
we choose three,,-like trial functions and sixsp®d?-like ones in each spin channel. With this
initialization, we find the convergence to be quite rapidihvanly about 100 iterations needed to

get a well-converged spread functional.

We have implemented the above procedure inviABINI ERO0 code [84]. The resulting WFs
are shown in Fig. 4.3. The up-spin WFs are plotted, but the #Wesery similar for both spins. An
example of asp3d?-hybrid WF is shown in Fig. 4.3(a); this one extends along-theaxis, and the
five others are similarly projected along the, -y, and+z axes. One of the,,-like WFs is shown
in Fig. 4.3(b); this one hasy symmetry, while the others hawe: andyz symmetry. The centers
of the sp3d>-like WFs are slightly shifted from the atomic center alag, +v, or -z, while the

ta4-like WFs remain centered on the atom.

We studied the convergence of the WFs and interpolated basmdsfunction of the density
n x n x n of the Monkhorst-Pack-mesh used for the initiagb-initio calculation. We tested = 4,
6, 8, and 10, and found that = 8 provided the best tradeoff between interpolation accueaay

computational cost. This is the mesh that was used in gengithie results presented in Sec. 4.4.

4.3.3 Variable spin-orbit coupling in the pseudopotentiaframework

Since the AHE present in ferromagnetic iron is a spin-ariaticed effect, it is obviously important
to understand the role of this coupling as thoroughly asiplessFor this purpose, it is very con-
venient to be able to treat the strength of the coupling aglarstable parameter. For example, by
turning up the spin-orbit coupling continuously from zeraldracking how various contributions
to the AHC behave, it is possible to separate out those totitnns that are of linear, quadratic, or

higher order in the coupling strength. Some results of tiid Will be given later in Sec. 4.4.
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Because the spin-orbit coupling is a relativistic effeis appreciable mainly in the core region
of the atom where the electrons have relativistic velogiti®a a pseudopotential framework of the
kind adopted here, both the scalar relativistic effects #uedspin-orbit coupling are included in
the pseudopotential construction. For example, in the 8atiHamann semilocal pseudopotential
scheme [31], the construction procedure generates, for @dital angular momenturh) a scalar-
relativistic potential/™ (r) and a spin-orbit difference potenti&P° () which enter the Hamiltonian

in the form

Vos = > B [V (r) + AV°(r)L- 8], (4.46)
l

where P, is the projector onto states of orbital angular momentwand A controls the strength of
spin-orbit coupling (withA\=1 being the physical value). For the free atom, this cayrdetds to
eigenstates labeled by total angular momenjumi + 1/2.

In our calculations, we employ fully non-local pseudoptitda instead of semilocal ones be-
cause of their computationally efficient form. In this casentrolling the strength of the spin-orbit
coupling requires some algebraic manipulation. We wrigerthrm-conserving non-local pseudopo-

tential operator as
Vs = |Biu) Dij (Bijl (4.47)

where there is an implied sum running over the indices (arligular momenturfy total angular
momentum;j = [ + 1/2, andy = —j, ..., j) and species and atomic position indices have been
suppressed. Thg,;,,) are radial functions multiplied by appropriate spin-amgtlnctions and the
D,; are the channel weights. We introduce the nota,ﬁ{:)ﬂ (r) andﬁl(_)(r) for the radial parts of
1B1141/2,,) @NA By _1 /2 ,,), respectively, and similarly defin@l(i) = Dy 41/2- Using this notation,

we can define the scalar-relativistic (i.g-averaged) quantities

st I+1 (1) l (=)
Dl_2l_|_1Dl +2l—|—1Dl , (4.48)
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o [+1 D(+) l Dl(_) (-)
Bt (r) = 21\ DF ﬁ () + 2+1\ DF By (r) (4.49)
and the corresponding spin-orbit difference quantities
Dj} =Dy — Dj", (4.50)
1675, = 1B1jn) = 167,00 - (4.51)

where|ﬁls;u> is 3;* () multiplied by the spin-angular function with labglg ). Then the non-local

pseudopotential can be written as

Vs = VS 4 AV (4.52)

where

‘5l3u> lS < lj,u‘ (453)

and

‘750 = ‘5lju> <5lju

+10655.) (DF + D7) (57j,.]
+ ‘5l3u> ( ) <6lj,u
+10550 (DF + Di7) (Bl - (4.54)

This clearly reduces to the desired results (4.47)fer 1 and (4.53) forA = 0.

4.4 Results

In this section, we present the results of the calculatidrtkeBerry curvature and its integration

over the BZ using the formulas presented in Sec. 4.2, fordle of bcc Fe.
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Figure 4.4: Band structure and total Berry curvature, asutailed using Wannier interpolation,
plotted along the pati*—H—P in the Brillouin zone. (a) Computed at the full spinibdoupling
strength\ = 1. (b) Computed at the reduced strengthk= 0.25. The peak marked with a star has a

height of 5<10* a.u.
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4.4.1 Berry Curvature

We begin by illustrating the very sharp and strong variaitrat can occur in the total Berry cur-
vature, Eq. (4.8), near Fermi-surface features in the harasre [13]. In Fig. 4.4(a) we plot the
energy bands (top subpanel) and the total Berry curvatwiofin subpanel) in the vicinity of the
zone-boundary pointl = 27”(1, 0,0), where three states, split by the spin-orbit interacti@njust
above the Fermi level. The large spike in the Berry curvahg®veen the H and P points arises
where two bands, split by the spin orbit interaction, lie ithar side of the Fermi level [21]. This
gives rise to small energy denominators, and hence largeilmations, mainly in Eq. (4.34). On
reducing the strength of the spin-orbit interaction as m Bi4(b), the energy separation between
these bands is reduced, resulting in a significantly shampéthigher spike in the Berry curvature.
A second type of sharp structure is visible in Fig. 4.4, whare can see two smaller spikes, one
at about 40% and another at about 90% of the way ffota H, which decrease in magnitude as
the as the spin-orbit coupling strength is reduced. Thase &obm pairs of bands that straddle the
Fermi energy even in the absence of spin-orbit interacfitnus, the small spin-orbit coupling does
not shift the energies of these bands significantly, butésdaduce an appreciable Berry curvature

that is roughly linear in the spin-orbit coupling.

The decomposition of the total Berry curvature into its @as contributions in Eq. (4.32) is
illustrated by plotting the first €2”) term, the second and third '-A") terms, and the fourth
(“ D-D” or Kubo-like) term of Eq. (4.32) separately along the linieH-P in Fig. 4.5. Note the
logarithmic scale. The results confirm the expectationsesged in Secs. 4.2.3 and 4.2.4, namely,
that the largest terms would be those reflecting large darttans toD arising from small energy
denominators. Thus, th@ term remains small everywhere, tfiz-A terms become one or two

orders of magnitude larger at places where small energyndieators occur, and th®—-D term,
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Figure 4.5: Decomposition of the total Berry curvature intmtributions coming from the three
kinds of terms appearing in Eq. (4.32). The patltiapace is the same as in Fig. 4.4. Dotted line
is the first 2) term, dashed line is the sum of second and thive-4) terms, and solid line is the
fourth (D-D) term of Eq. (4.32). Note the log scale on the vertical axis.

Eq. (4.34), is another one or two orders larger in those sa&giens. Scans along other lineskin
space reveal similar behavior. We may therefore expecttiedd—D term will make the dominant
overall contribution to the AHC. As we shall show in the nexbsection, this is precisely the case.
In order to get a better feel for the connection between Feurface features and the Berry
curvature, we next inspect these quantities onithe= 0 plane in the Brillouin zone, following
Ref. [21]. In Fig. 4.6 we plot the intersection of the Fermifaae with this plane and indicate,
using color coding, thé&, component of the spin carried by the corresponding wavéfume The
good agreement between the shape of the Fermi surface girenahd in Fig. 3 of Ref. [21] is
further evidence that the accuracy of our approach mattia¢st all-electron methods. It is evident
that the presence of the spin-orbit interaction, in additim the exchange splitting, is sufficient to
remove all degeneracies on this plane [85], changing sogmifly the connectivity of the Fermi

surface.

The calculated Berry curvature is shown in Fig. 4.7. It carséen that the regions in which
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Figure 4.6: Lines of intersection between the Fermi surtau the pland, = 0. Colors indicate
the S, spin-component of the states on the Fermi surface (in uhits'®).
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Figure 4.7: Calculated total Berry curvatuig in the planek, = 0 (note log scale). Intersections
of the Fermi surface with this plane are again shown.



86

the Berry curvature is small (light green regions) fill moktie plane. The largest values occur at
the places where two Fermi lines approach one another,atensiwith the discussion of Fig. 4.4.
Of special importance are the avoided crossings betweetbands having the same sign of spin,
or between two bands of opposite spin. Examples of both lamesisible in the figure, and both
tend to give rise to very large contributions in the regiorthaf avoided crossing. Essentially, the
spin-orbit interaction causes the character of these bandsange extremely rapidly witk near
the avoided crossing; this is the origin of the large Bernywature. The large contributions near the
H points correspond to the peaks that were already mentiorted discussion of Fig. 4.4, resulting

from mixing of nearly degenerate bands by the spin-orbéranttion.

4.4.2 Integrated anomalous Hall conductivity

We now discuss the computation of the AHC as an integral oB#vey curvature over the Brillouin
zone, Eq. (4.7). We first define a nomins} x Ny x Ny mesh that uniformly fills the Brillouin
zone. We next reduce this to a sum over the irreducible wethgditls %th of the Brillouin zone,
using the tetragonal point-group symmetry (broken fromicily the onset of ferromagnetism),
and calculate2, on each mesh point using Eq. (4.32). Finally, following Yetoal. [21], we
implement an adaptive mesh refinement scheme in which wdifidéimose points of the:-space
mesh at which the computed Berry curvature exceeds a tHdeghloe(2.,.;, and recomput€l, on
anN, x N, x N, submesh spanning the original cell associated with thidwpest. The AHC is

then computed as a sum Qf over this adaptively refined mesh with appropriate weights.

The convergence of the AHC with respect to the choice of mesghdsented in Table 4.1. We
have choseff).,; = 1.0 x 10? a.u., which causes the adaptive mesh refinement to be wigger
approximately 0.11% of the original mesh points. Based enréisults of Table 4.1, we estimate

the converged value to be,, = 756 (2 cm)~!. This agrees to within 1% with the value of
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Table 4.1: Convergence of AHC with respect to the densityhef mnominalk-point mesh (left
column) and the adaptive refinement scheme used to subdihddaesh in regions of large contri-
butions (middle column).

k-point mesh Adaptive refinemento, (2 cm)~!

200 x 200 x 200 3x3x%x3 766.94
250 x 250 x 250 3x3x3 767.33
320 x 320 x 320 3x3x3 768.29
200 x 200 x 200 HxHxH 758.35
250 x 250 x 250 H5XHXDH 758.84
320 x 320 x 320 HxHxH 759.25
200 x 200 x 200 TXTXT 756.25
250 x 250 x 250 TXTxT 757.32
320 x 320 x 320 TXTxT 757.59
320 x 320 x 320 9x9x9 757.08
320 x 320 x 320 11 x 11 x 11 756.86
320 x 320 x 320 13 x 13 x 13 756.76

Table 4.2: Contributions to the AHC coming from differengiens of the Brillouin zone, as defined
in the text.

AFE (eV) like-spin (%) opposite-spin (%) smooth (%)

0.1 21 26 53
0.2 23 51 26
0.5 30 68 2

751(92 cm)~! reported previously in Ref. [21], where an adaptive mesmegfient was also used.
As discussed in Ref. [21], this value is in reasonable agee¢mwith the available measurements

[86, 87], which yield a value o, slightly abovel000 (2 cm) L.

It can be seen from Table 4.1 tha2@) x 200 x 200 mesh with3 x 3 x 3 refinement brings us
within ~1% of the converged value. Itis also evident that the leveéfihement is more important
than the fineness of the nominal mesk2pa x 200 x 200 mesh with5 x 5 x 5 adaptive refinement
yields a result that is within 0.2% of the converged valugtdoehan &320 x 320 x 320 mesh with

a lower level of refinement.

It is interesting to decompose the total AHC into contribod coming from different parts of
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the Brillouin zone. For example, as we saw in Fig. 4.7, thermesmooth, low-intensity background
that fills most of the volume of the Brillouin zone, and it isrthdo knowa priori whether the total
AHC is dominated by these contributions or by the much lacges concentrated in small regions.
With this motivation, we have somewhat arbitrarily dividdm Brillouin zone into three kinds of
regions, which we label as ‘smooth’, ‘like-spin’, and ‘oite-spin’. To do this, we identify-
points at which there is an occupied band in the intefiigl— AE, E¢| and an unoccupied band in
the interval[E'¢, E; + AFE], whereAE is arbitrarily chosen to be a small energy suclds 0.2,

or 0.5eV. If so, thek-point is said to belong to the ‘like-spin’ or ‘opposite-spregion depending
on whether the dominant characters of the two bands belovabode the Fermi energy are of the
same or of opposite spin. Otherwise, theoint is assigned to the ‘smooth’ region. As shown in
Table 4.2, the results depend strongly on the valuA 8f Overall, what is clear is that the major
contributions arise from the bands withit0).5 eV of £/, and that neither like-spin nor opposite-spin

contributions are dominant.

Next, we return to the discussion of the decomposition otaked Berry curvature in Eq. (4.32)
into theQ), D—A, and D-D terms. We find that these three terms accountf0r39%, 1.36%, and
99.03%, respectively, of the total AHC. (Similarly, for thlernative decomposition of Appendix
A, the second term of Eqg. (4.58) is found to be responsiblarfore than 99% of the total.) Thus,
if a 1% accuracy is acceptable, one could actually neglesttrand D—A terms entirely, and

approximate the total AHC by thB—D (Kubo-like) term alone, Eq. (4.34).

From a computational point of view, the fact that the-D term is fully specified by the Hamil-
tonian matrix elements alone means that considerablegsmeam be obtained by avoiding the eval-
uation of the Fourier transforms in Egs. (4.39—-4.40) atyevmerpolation point (and avoiding the
setup of the matrix element®n|r,|Rm), which can be costly in a real-space implementation).

More importantly, this observation, if it turns out to holor fother materials as well, could prove
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Figure 4.8: Anomalous Hall conductivity vs. spin-orbit pting strength.

to be important for future efforts to derive approximate esoles capable of capturing the most

important contributions to the AHC.

Finally, we investigate how the total AHC depends upon thengfth of the spin-orbit interac-
tion, following the approach of Sec. 4.3.3 to modulate the-spbit strength. The result is shown in
Fig. 4.8. We emphasize that our approach is a more specifioftédse dependence upon spin-orbit
strength than the one carried out in Ref. [21]; there, thed# light ¢ was varied, which entails
changing the strength of the various scalar relativistimseas well. Nevertheless, both studies lead
to a similar conclusion: the variation is found to be linear $mall values of the spin-orbit cou-
pling (A < 1), while quadratic or other higher-order terms also becoppexiable when the full

interaction is includedX = 1).

4.4.3 Computational considerations

The computational requirements for this scheme are quitdesto The self-consistent ground state

calculation and the construction of the WFs takes 2.5 hoara single 2.2GHz AMD-Opteron
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processor. The expense of computing the AHC as a sum ovepafation mesh points depends
strongly on the density of the mesh. On the same processdioa®,athe average CPU time to
evaluate),, on eachk-point was about 14 msec. We find that the mesh refinementtigredoes not
significantly increase the total numbersfoint evaluations until the refinement levE), exceeds
~10. Allowing for the fact that the calculation only needs @wdbne in the irreducibler%th of the
Brillouin zone, the cost for the AHC evaluation on a 2D0x 200 mesh is about 2 hours.

The CPU time pelkk-point evaluation is dominated (roughly 90%) by the Foutransform
operations needed to construct the objects in Egs. (4.80%-4The diagonalization of the ¥88
Hamiltonian matrix, and other operations needed to compute(4.32), account for only about
10% of the time. The CPU requirement for the Fourier tramsfstep is roughly proportional to the
number ofR vectors kept in Egs. (4.37—4.40); it is possible that thisibar could be reduced by
exploring more sophisticated methods for truncating therdautions coming from the more distant
R vectors.

Of course, the loop ovet-points in the AHC calculation is trivial to parallelize, sar dense

k-meshes we speed up this stage of the calculation by distipacross multiple processors.

4.5 Summary and Discussion

In summary, we have developed an efficient method for comgutie intrinsic contribution to the
anomalous Hall conductivity of a metallic ferromagnet asrdld@iin-zone integral of the Berry
curvature. Our approach is based on Wannier interpolatigogwerful technique for evaluating
properties that require a very dense sampling of the Biillaaone or Fermi surface. The key idea
is to map the low-energy first-principles electronic stmetonto an “exact tight-binding model”
in the basis of appropriately constructed Wannier funatiavhich are typically partially occupied.

In the Wannier representation the desired quantities cam Itle evaluated at arbitrakypoints at
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very low computational cost. All that is needed is to evayaince and for all, the Wannier-basis
matrix elements of the Hamiltonian and a few other propspgeific operators (namely, for the

Berry curvature, the three Cartesian position operators).

When evaluating the Berry curvature in this way, the sumonativer all unoccupied bands and
the expensive calculation of the velocity matrix elememrtsded in the traditional Kubo formula are
circumvented. They are replaced by quantities definedtgtsidthin the projected space spanned
by the WFs. Our final expression for the total Berry curvatiie. (4.32), consists of three terms,

namely, the, D-A, andD-D terms.

We have applied this approach to calculate the AHC of bcec Rale/dur Wannier interpolation
formalism, with its decomposition (4.32), is entirely ipgmdent of the choice of an all-electron
or pseudopotential method, we have chosen here a relatipstudopotential approach [76] that
includes scalar relativistic effects as well as the splritanteraction. We find that this scheme
successfully reproduces the fine details of the electranicteire and of the Berry curvature. The
resulting AHC is in excellent agreement with a previous @ilton [21] that used an all-electron

LAPW method [88].

Remarkably, we found that more than 99% of the integratedyBmirvature is concentrated
in the D—D term of our formalism. This term, given explicitly in Eq. 84), takes the form of a
Kubo-like Berry curvature formula for the “tight-bindindgages.” Unlike theQ and D—A terms,
it depends exclusively on the Hamiltonian matrix elememvieen the Wannier orbitals, and not
on the position matrix elements. Thus we arrive at the vepealing result that a Kubo picture
defined within the “tight-binding space” gives an excelleiresentation of the Berry curvature in

the originalab-initio space. This result merits further investigation.

Several directions for future studies suggest themsel¥es. example, it would be desirable

to obtain a better understanding of how the AHC depends omvéak spin-orbit interaction. As
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we have seen, this weak interaction causes splittings amideal crossings that give rise to very
large Berry curvatures in very small regions /ebpace. There is a kind of paradox here. Our
numerical tests, as in Fig. 4.8, demonstrate that the AHIE éahoothly to zero as the spin-orbit
strength) is turned off, suggesting that a perturbation theory ishould be applicable. However,
in the limit thatA becomes small, the full calculation beconmesre difficult not less: the splittings
occur in narrower and narrower regionske$pace, energy denominators become smaller, and Berry
curvature contributions become larger (see Fig. 4.4), éwhe integratedcontribution is going to
zero. It would be of considerable interest, therefore, fane ways to reformulate the perturbation
theory in A so that the expansion coefficients can be computed in a ramasefficient fashion.
Because the exchange splitting is much larger than thea@pinh-splitting, it may also be of use
to introduce two separate couplings that control the strengf the spin-flip and spin-conserving
parts of the spin-orbit interaction respectively, and tokwaut the perturbation theory in these two

couplings independently.

Another promising direction is to explore whether the AH@ ba computed as a Fermi-surface
integral using the formulation of Haldane [69] in which ategration by parts is used to convert
the volume integral of the Berry curvature to a Fermi-swefaxtegral involving Berry curvatures or
potentials. Such an approach promises to be more efficiantttie volume-integration approach,
provided that a method can be developed for carrying out @nogpate sampling of the Fermi
surface. This is likely to be a delicate problem, howevercaithe weak spin-orbit splitting causes
Fermi sheets to separate and reattach in a complex way dt/skoales, and the dominant con-
tributions to the AHC are likely to come from precisely thge®tions of the reconstructed Fermi

surface that are the most difficult to describe numerically.

Finally, it would be of considerable interest to generattze Wannier-interpolation techniques

developed here for the dc anomalous Hall effect to treatfifndquency magneto-optical effects.
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In any case, even without such further developments, theepteapproach is a powerful one.
It reduces the expense needed to do an extremely fine sangbliFeymi-surface properties to the
level where the AHC of a material like bcc Fe can be computed workstation in a few hours.
This opens the door to realistic calculations of the intdromalous Hall conductivity of much
more complex materials. More generally, the techniquegldped here for the AHE are readily
applicable to other problems which also require a very desasepling of the Fermi surface or
Brillouin zone. For example, an extension of these ideatdcetvaluation of the electron-phonon

coupling matrix elements by Wannier interpolation is cotieunder way [89].

4.6 Appendix: Alternative expression for the Berry curvature

In this Appendix, we return to Eq. (4.27) and rewrite it in sucway that all of the large, rapidly
varying contributions arising from small energy denomangiin the expression fap,,, Eq. (4.24),
are segregated into a single term. We do this by solving E@5)4or D, and substituting into

Eqg. (4.27) to obtain

1) o) [ 0] (1)
o) — ol —Z[Aa A }H[A&H),Aﬁ } . (4.55)

Then only the last term will contain the large, rapid vadas. This equation could have been

anticipated based on the fact that the tensor

Oop = Qug — i[Aq, Ag] (4.56)

is well known to be a gauge-covariant quantity [90, 75]; gp Eq. (4.21) toﬁaﬁ then leads

directly to Eq. (4.55).

This formulation provides an alternative route to the clalton of the matringé): evaluate

ﬁgg) in the Wannier representation using Eqgs. (4.59-4.60) hedowvert it toﬁgg via Eq. (4.21),
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computeA&H) using Eg. (4.25), and assemble
al) = al) +ia®, A5 (4.57)

The large and rapid variations then appear only in the last tavolving commutators of thel
matrices.

In Sec. 4.2.4, we showed how to write the total Berry cuneafirz(k) as a sum over bands
in such a way that potentially troublesome contributionsicy from small energy denominators

between pairs of occupied bands are explicitly excludeatjitey to Eq. (4.32). The corresponding

expression based on Eqg. (4.57) is
S (H
Qaﬁ(k) = Z f" Qf@n),aﬁ
+ 3 (Fn = fn) AR AT 5. (4.58)

Now, in addition to the four quantities given in Egs. (4.348), we need a corresponding equa-

tion for ,,5. After some manipulations, we find that

Q) k) = > R, 15(R) (4.59)
R
where
wnap(R) = —i > (On|fa[R'm)(R'm|fsRn)
R'm
+i > (0nlig|R/m)(R'mliq|Rn) .

R/'m

(4.60)

This formulation again requires the same basic ingrediastsefore, namely, the Wannier matrix
elements off and#,. In some respects it is a little more elegant than the fortimaf Eq. (4.32).
However, the direct evaluation af;, .5 in the Wannier representation, as given in Eq. (4.60), is not

as convenient because of the extra sum over intermediateayffesaring there; moreover,, 3 is
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longer-ranged than the Hamiltonian and coordinate makements. Also, one appealing feature of
the formulation of Section 4.2, that more than 99% of theatféan be recovered without using the
position-operator matrix elements, is lost in this refolation. We have therefore chosen to base
our calculations and analysis on Eq. (4.32) instead.

It is informative to obtain Eq. (4.57) in a different way: defithe gauge-invariant band projec-
tion operator [75P = "M | i) (uni| and its complemer®y, = 1— B. Insertingl = Q.+ Py
into Eq. (4.18) in the Hamiltonian gauge then yields direéit). (4.57) since, as can be easily veri-

fied, Eq. (4.56) may be written as
Qum.ap = {(Oatin|05tm) — 1(D5tn|Oatim) , (4.61)

whered, = Qd,. The gauge-covariance 6f, follows directly from the fact thad), is a gauge-
covariant derivative, in the sense tma;u%H)> = Z%:l \5au$7\f] )>Umn is the same transformation
law as Eq. (4.15) for the Bloch states themselves. It is agpdrom this derivation that as the num-
ber M of WFs increases anbl, approaches, the second term on the right-hand side of Eq. (4.58)
increases at the expense of the first term. Indeed, in the-lardimit the entire Berry curvature is
contained in the second term. For the choice Wannier oshita$cribed in the main text for bcc Fe,

that term already accounts for 99.8% of the total AHC.

4.7 Appendix: Finite-difference approach

In this Appendix, we outline an alternative scheme for cotimguthe AHC by Wannier interpo-
lation. The essential difference relative to to the appneaadescribed in Section 4.2 and in Ap-
pendix 4.6 is that the needédspace derivatives are approximated here by finite diftereinstead

of being expressed analytically in the Wannier represimtat

This approach is most naturally applied to the zero-temperdimit where there are exactlyy
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occupied states at a givén Instead of starting from the Berry curvature of each irdiral band
separately, as in Eq. (4.6), we find it convenient here to viiank the outset with the total Berry

curvature

Ny
Qapk) = Qunas(k) (4.62)
n=1

of the occupied manifold &k (the zero-temperature limit of Eq. (4.19)). We now introelue
covariant derivativ NéN“) = AiN“)c‘)a designed to act on the occupied states only; @f@‘) =

1 — A and B = SN Ju) (] The only difference with respect to the definition of
Do in Appendix 4.6 is that the projection operator here spaas\jh occupied states only, instead
of the M states of the full projected space. Accordingly, terms sagligauge-covariance” and
“gauge-invariance” are to be understood here in a restristmse. For example, the statement that

5&]\7“) is a gauge-covariant derivative means that undeNgrx Ny unitary rotatior/ (k) between

the occupied states htit obeys the transformation law

Ny
08 i) =Y 108 tpaac) Upn (K). (4.63)

m=1

(We will use calligraphic symbols to distinguis¥i, x Ny, matrices such a from their M x M
counterparts such d$.) We now define a gauge-covariant curvat@iég“)(k) by replacing§ by
oK) in Eq. (4.61). Since the trace of a commutator vanishes,llitvis from Eg. (4.56) that

Eq. (4.62) can be written as
Quslle) = T | 0300 | (4.64)

where the symbdlt(V«) denotes the trace over the occupied states.

The advantage of this expression over Eqg. (4.62) is thatahermnt derivative of a Bloch state

can be approximated by a very robust finite-differences tdarf39, 91]:

M =S wb B (4.65)
b



97

where the sum is over shells of neighboritigoints [75], as in Eq. (4.44), and we have defined the

gauge-invariant operator

Ny
B 1%“) = [ s+ b) (k| (4.66)
n=1

in terms of the gauge-covariant “dual states”

Ny
|tk b) = Z |Um, k4+b) (Qk+bk),, - (4.67)

m=1

Here Qx 1, x is the inverse of théVy x Ny overlap matrix,

Quibk = (Skkib) (4.68)

where

(Skk4b) = (Unk|Um,k+b) - (4.69)

The discretization (4.65) is immune to arbitrary gauge phasd unitary rotations among the occu-
pied states. Because of that property, the occurrence of &rassings and avoided crossings does
not pose any special problems.

Inserting Egs. (4.65-4.69) into Eq. (4.64) and us®gy 1, = QL+b7k, we find that an appro-

priate finite-difference expression for the total Berryvature is

Qg\g[k)(k) =2 Z Wy, Why b1, b2 3 Ak by bos (4.70)
bi,b2
where
Ay by = —ImTr™) (O b Siciby ks Dk by k) - (4.71)

This expression is manifestly gauge-invariant, since ind Q are gauge-covariant matrices,
i.e.,Skkib — Z/{T(k)Sk,keru(k + b), and the same transformation law holds @ i 1.
Egs. (4.70-4.71) can be evaluated at an arbitrary doiotice the overlap matriceSy 1, are

known. For that purpose we construct a uniform mesh of sgagih in the immediate vicinity of
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k, set up the needed shells of neighborinrgointsk + b on that local mesh, and then evaluate
Sk x+b Dy Wannier interpolation. Since the WFs span the entirelimensional projected space,
at this stage we revert to the full' x M overlap matricesSk k1. In the Wannier gauge they are
given by a Fourier transform of the form

(Sl(c\,)ii)—i-b) = Z e R (0n|e™® B=1) | Rm) (4.72)
R

For sufficiently smallAk, this can be approximated as

(S&\Z)er) b —ib Y e R(0n]i|Rm) (4.73)
R

Note that the dependence of the last expressioAkiis trivial, since it only enters as a multiplica-
tive prefactor. In practice one choos& to be quite small~ 1079 a.u!, so as to reduce the error
of the finite-differences expression.

In the Wannier gauge the occupied and empty states are mikbdne another, because the
WFs are partially occupied. In order to decouple the two gabss we perform the unitary trans-

formation
Sﬁ)% - UT(k)SQIZLbU(k +b). (4.74)

This produces the fulM x M overlap matrix in the Hamiltonian gauge. Thg x Ny submatrix
in the upper left corner is precisely the mat.ﬂﬁirb needed in Eq. (4.71).

Like the approach described in the main text, this approétifosly requires the WF matrix
elements of the four operatof$ and#, (o = z, y, andz). We have implemented it, and have
checked that the results agree closely with those obtaisied) wising the method of the main text.
Although not as elegant, this approach has the interestisyife of circumventing the evaluation of
the matringH), Eq. (4.24). This may be advantageous in certain speciat&ns. For example,

if a parameter such as pressure is tuned in such a way thapace Dirac monopole [13] drifts to
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the Fermi surface, the vanishing of the energy denominaté&i (4.24) may result in a numerical
instability when trying to find the monopole contributionttee AHC.

We conclude by noting that Eq. (4.71) is but one of many pdessiibite-differences expressions,
and may not even be the most convenient one to use in praBjaecalling that the Berry curvature
is the Berry phase per unit area, one realizes that in thel-gkalimit of interest, the quantity
Ax b,,b, IN EQ. (4.70) can be viewed as the discrete Berry pliasecumulated along the small
loopk — k + b; — k + by — k. As is well-known, the Berry phase around a discrete loop is

defined as [20]
¢ = —Im Indet [Sk k1b, Sktby ktbySkiby k] - (4.75)
It can be shown thap = Axp, b, + O(AK?), so that for small loops the two formulas agree.

Eqg. (4.75) has the practical advantage over Eq. (4.71) thimieis not require inverting the overlap

matrix.
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Chapter 5

Fermi-surface calculation of the anomalous Hall conductiity

It is by now well established that the intrinsic Karplus-limger mechanism [16] plays a significant
role in the anomalous Hall conductivity (AHC) of ferromatmeThis contribution can be expressed
as an integral of thé-space Berry curvature over the occupied portions of thikoBim zone (BZ)
[66, 67, 68, 15]. First-principles calculations of the insic AHC have been carried out by several
authors, using either a Kubo linear-response formula [1BpRa direct “geometric” evaluation of
the Berry curvature in Chapter 4, and achieving good agraewith experimental values for several
ferromagnets. These studies revealed that the Berry cuevé very sharply peaked in certain
regions of the BZ where spin-orbit splitting occurs nearRlaemi level. As a result the calculations
tend to be rather demanding; in the case of bcc Fe, for exampmlBons of k-points must be

sampled to achieve convergence [21]. More efficient apemare therefore highly desirable.

In the preceding chapter, we developed a strategy for logl the AHC in which Wannier
interpolation of the Bloch functions was used to circumvbetneed to perform a full first-principles
calculation for everyk-point. Thus, while the required number kfpoints was not reduced, the
computational load pek-point was greatly reduced. In this approach, the actuatgniaciples
calculations are performed on a comparatively coargeesh. Then, in a postprocessing step, the
calculated electronic structure is mapped onto an “exght-tinding model” based on maximally-
localized Wannier functions [72]. Working in the Wanniepresentation, the Berry curvature can
then be evaluated very inexpensively at each ofitpmints of the fine mesh needed for accurate

evaluation of the AHC.

Recently, Haldane has shown that while the intrinsic AHCdgally regarded as a Fermi-sea
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property of all the occupied states, it can alternativelyd @ some ways more naturally, be re-
garded as a Fermi-surface property [69]. (More precisebldbhe showed that these quantities
are equal modulo the quantum of transverse conductivity ithavell-known from the quantum

Hall effect, since one cannot rule out the possibility trat., some occupied bands carry non-
zero Chern numbers [69]). By a kind of integration by partalddne showed how the integral of
the Berry curvature over the occupied portions of the BZ @¢dnéd manipulated first into a Fermi-

surface integral of a Berry connection, and then ultimairly a Fermi-surface integral of a Fermi-
vector-weighted Berry curvature, augmented with some\Bghase corrections for the case of

non-simply-connected Fermi sheets.

In this chapter, we present a tractable and efficient contipntl scheme based on a Fermi-
surface formulation of the AHC. While following the basidrifpof the Haldane idea, we proceed
along a slightly different path. In our approach, the BZ igdkd into a fine mesh of equally-spaced
slices normal to the direction of the magnetization, andrtegral of the Berry curvature over the
occupied states of a given slice is transformed into a sumenfyBphases of Fermi loops lying
in that slice. As a result, the three-dimensional BZ intégrais avoided, and the method relies
instead only on information calculated on the two-dimenald~ermi surface. As in Chapter 4,
an important ingredient of our approach is the use of a Wammierpolation scheme to lower the
cost further by eliminating the need for a full first-prinigp evaluation at each point on the Fermi
surface. Combining these two complementary strategiesyrise at a robust and efficient method

for computation of the AHC in ferromagnetic metals.

The chapter is organized as follows. In Sec. 5.1 we presemtabessary formulas relating Berry
phases on the Fermi surface to the AHC, as well as their ei@tuia the Wannier representation.
The details of the first-principles calculations and theedatnation of the Fermi loops are given in

Sec. 5.2. In Sec. 5.3 the method is applied to the transitietalsiFe, Co and Ni. A discussion of
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issues of computational efficiency is given in Sec. 5.4pfe#id by a brief conclusion in Sec. 5.5.

5.1 Method

5.1.1 Fermi-loop formula

Our starting point is the AHC expressed as an antisymmetiteSian tensor in terms of the Berry

curvature,

dk
ap = —% 3 /B s 109 Qnas0) (5.1)

where the integration is over the three-dimensional BZ &edotcupation functiorf,, (k) restricts
the sum to the occupied states (we work at zero temperatutg),s(k) is the Berry-curvature

matrix of bandn, defined as

aunk
0k,

Ot > (5.2)

U ap(k) = —2Tm o

whereu,y is the periodic part of the Bloch functiap,. Because),, .3 is antisymmetric, we can

represent it instead in axial-vector notation as

1
Qn'y = 5 Z eaﬁnyn,aﬁ ) (53)
af

or equivalentlyS2, o5 = > €apy$2ny, Wheree, s, is the antisymmetric tensor. The Berry curvature
can also be written as

2, (k) = Vi x A, (k) (5.4)

where the Berry connection is

A (k) = i(unk| Viclunk) - (5.5)

Following Ref. [69], we rewrite Eq. (5.1) as

- 1
OaB = TW %:GaﬁwKn-y (56)
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where

K, i/ dk fr (k) Q, (k) . (5.7)
BZ

- 27
For the case of a completely filled band lying entirely beltw Eermi level, Haldane has shown
[69] thatK,, is quantized to be a reciprocal lattice vector (the “Cherctag), as will become clear
in Sec. 5.1.2 below.
Let a; and b; be a conjugate set of primitive real-space and reciprquates lattice vectors

respectivelya; - b; = 27,5, and let
1

so that
Kn = chj bj . (59)
J

In order to compute,,3, for example, we choose the BZ to be a prism whose base is apédnyt
andbs and whose height 27 /a3, and convert the integral into one over slices parallel éoltase.

In general, separate calculations in which the slices amstnacted parallel to thB,-bs andb;-bs
planes are needed to computg andc,s respectively [92]. However, this can be avoided in the
common case that the magnetization lies parallel to a symgragts; one can then choodg and

b, perpendicular to this axis, and ontys needs to be computed.

Inserting Eq. (5.7) into Eq. (5.8) yields

27
e = 5 | dky == (5.10)
where
bn (kL) :/ d*k aj - (k) . (5.11)
Sn(ky)

Herek labels the slice and,,(k_ ) is the region of the slice in which bamdis occupied. Recalling

Eq. (5.4) and noting thait; is the unit vector normal to the slice, the application ofké® theorem
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Figure 5.1. Sketch of intersections of the Fermi surfacd& witonstant:, plane. Open, hashed,
and cross-hashed regions correspond to filling of zero, ame two bands, respectively. The four
small Fermi loops belong to the first band, while the largdre¢one belongs to the second. Arrows
indicate sense of circulation for performing the Berry-gdintegration.

to Eq. (5.11) yields

bulh1) = yﬁ o Al (5.12)

whereC,, (k] ) is the oriented curve boundir, (k) on the slice and,,(k, ) has the interpretation

of a Berry phase. For later convenience we also define

$k) =Y on(ky) (5.13)

and similarlyc; = > ¢,; etc. The calculation of the AHC has thus been reduced to alediton
that is restricted to the Fermi surface only, in the spiritHz#fldane [69] but using a somewhat

different formulation.
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In general, the occupied or unoccupied region of barid slice £, need not be simply con-
nected, in which case the boundaty(k, ) is really the union of several loops. Moreover, loops
encircling hole pockets should be taken in the negativectime of circulation. This is illustrated
in Fig. 5.1, where the first band exhibits four hole pocketd e second band has one electron
pocket, so that; is the union of four countercirculating loops adg is a fifth loop of positive
circulation. If higher bands are unoccupied, theik | ) for this slice is just given by the sum of
the Berry phases of these five loops. We shall assume forisityph the following thatC, (k. ) is

simply connected, but the generalization to compositedasgtraightforward.

5.1.2 The quantum of Hall conductivity

We claimed earlier that if bandis fully occupied K, in Eq. (5.7) is quantized to a reciprocal lattice
vector. This can now be seen by noting that under those cstamoes the integral in Eq. (5.11)
runs over a two-dimensional BZ, which can be regarded as sedlowo-dimensional manifold
(two-torus), and for topological reasons [93] the integrathe Berry curvature over such a closed
manifold must be an integer multiple 2fr (the Chern number). Then eac}y is an integer, and
K, in Eqg. (5.9) must be a reciprocal lattice vector as claimdédhd system is an insulator, then
K =3, K, (summed over occupied bands) is also guaranteed to be soetifattice vector, and
if it is a nonzero one, the insulator would have a quantizelll ¢daductivity and could be regarded
as a quantum Hall crystal (or “Chern insulator”) [69, 94]. ploysical realization of such a system

is known experimentally, but the search for one remains tamésting challenge.

Let us consider again a slice for which bands fully occupied but has a non-zero Chern
number. If this slice is regarded as an open rectangle (@lpkrgram) rather than a closed two-
torus, and a continuous choice of gauge is made in its imtér@, A, (k) is free of singularities),

then the boundar¢, (k) is the perimeter of this rectangle and Eq. (5.12) will yiehe tsame
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integer multiple o7 as Eq. (5.11). In the spirit of Fig. 5.1, however, we preferegard the slice
as a closed two-torus and to exclude the perimeter from ofimitien of the boundanC,, (k).
ThenC, (k) is null and Eq. (5.12) vanishes for the case at hand, in désagent with Eq. (5.11).
The disagreement arises because of the impossibility ofngakcontinuous choice of gauge on a
closed manifold having a non-zero Chern number [93]; th¢ the$ can be done is to make, (k)
finite everywhere except at singularities (“vortices”) atni when included, restore the missing
contributions of27.

Returning to the general case of a partially occupied bawith C,,(k, ) defined to exclude the
perimeter of the slice, we conclude that Eq. (5.12) is reatily guaranteed to equal the true result
of Eqg. (5.11) modul@n. Moreover, the Berry phase will be evaluated in practicegisidiscretized
Berry-phase formula [20] of the form

n (k1) = —ImIn [ (up, ) (5.14)
J

wherek; discretizes the loog,, (k). (We will actually use a modified version, Eq. (5.25), of this
formula.) The choice of branch cut is now arbitrary, and adhée agreement with Eq. (5.12) or
Eq. (5.11) is only guaranteed modula. By convention one normally restricts phases to lie in the
interval (—, 7], but theng,, (k) would in general have unwanted discontinuities at someegaii

k. . In practice we discretize the, integration, so that using Eq. (5.1@},= ", ¢,; becomes

S N 0N (5.15)

Nslice =5 27
We then enforce continuity of the total phagig: | ) of Eq. (5.13) by choosing(i) such thato(i) —
¢(i — 1)| < 27 for each slicei = 2,3, ... in sequence. Since the true phase given by the sum of
contributions in Eq. (5.11) is also continuous, this gutgas that our calculatet k, ) differs from
the true one by the same multiple &f for all £, . Our computed AHC would then differ from

the true one by a multiple of the quantum and could be saidviottie “non-quantized part” of the
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intrinsic AHC in the sense of Haldane [69]. However, it isagghtforward to remove this overall
ambiguity of branch choice by evaluatiggk | ) from Eq. (5.11) on the first slice and then enforcing
continuity for each subsequent slice, thus arriving at theect AHC without any question of a

quantum.

We note in passing that an isolated point of degeneracy &tDmoint”) between a pair of bands
n andn + 1 can generically occur in three-dimensioriakpace in the absence of time-reversal
symmetry [69]. If such a Dirac point occurs below the Fernerey, thene,, (k) and ¢, 41 (k1)
will, when evaluated from Eq. (5.11), exhibit equal and apmodiscontinuities ofw at thek |
of the Dirac point. However, the total phagék, ) will remain continuous, so that the algorithm

described in the previous paragraph will still work corhgct

We close this subsection by emphasizing that the discus$ioossible non-zero Chern numbers
or the presence of Dirac points is rather academic. In owutations on Fe, Ni and Co, we have
not encountered any indications of such anomalies; thesupmably occur rarely or not at all in the

materials studied here.

5.1.3 Evaluation of the Fermi-loop Berry phase

The essential problem now becomes the computation of the iltegral of Eq. (5.12). As is
well known, the Berry connectioa,, (k) of Eq. (5.5) is gauge-dependent, i.e., sensitive tokthe
dependent choice of phase of the Bloch functions. If Eq.2)6id to be calculated by the direct
evaluation ofA,, (k) and its subsequent integration around the loop, this ladaafje-invariance
may present difficulties. For example, it means that themoisinique Kubo-formula expression
for A, (k). An alternative and more promising approach is to compute:, ) by the discretized
Berry-phase formula [20] of Eq. (5.14), where the inner picid are computed from the full first-

principles calculations at neighboring pairs/epoints around the loop. However, this may still
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be quite time-consuming if it has to be done at very maspoints. We avoid this by using the
technique of Wannier interpolation [72, 95, 96] to perfolm heeded loop integral inexpensively.
In this formulation, the loop integral of Eq. (5.12) can b@mssed as a sum of two terms, one in
which a contribution taA,, (k) is evaluated and integrated explicitly, and a second tlkesta form
like that of Eq. (5.14).

The key idea of Wannier interpolation is to map the low-epdigt-principles electronic struc-
ture onto an “exact tight-binding model” using a basis ofrappiately constructed crystalline Wan-
nier functions. For metallic systems like those considérea, the bands generated by these Wan-
nier functions are only partially occupied. They are gutgad by construction to reproduce the
true first-principles bands in an energy window extendingewhat above the Fermi level, so that
all valence and Fermi-surface states are properly descfit#]. In the Wannier representation, the
desired quantities such as band energies, eigenstatebeaddrivatives of eigenstates with respect
to wavevectolk can then be evaluated at arbitra&rnpoints at very low computational cost. All that
is needed is to evaluate, once and for all, the Wannier-lpaaisx elements of the Hamiltonian and
position operators in Chapter 4. It is worth pointing out thanay sometimes be expedient to drop
some lower occupied bands and construct the Wannier furscso that they correctly represent
the Bloch functions only in some narrower energy window aorihg the Fermi energy; since the
present formulation involves only Fermi-surface progestithe nonquantized part of the AHC will
then still be given correctly.

The Wannier construction procedure of Ref. [72] providewills a set ofA Wannier functions
|IRn) (n = 1,..., M) in each cell labeled by lattice vect®. From these the Bloch basis functions

|uf@vkv)> are constructed according to the Fourier transform redatio

W) = 3" ek R Rp) | (5.16)
R

Here the superscrigV) indicates that these are obtained from the Wannier repiasam that is,
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they are not yet Hamiltonian eigenstates. To obtain those¢amstruct thél/ x M Hamiltonian

matrix
W), \%W%
HW) (k) = () [H () [uly) (5.17)
via
HYW) =" ™R (on|H[Rm) . (5.18)
R

At any givenk this matrix can be diagonalized to yield ah x M unitary matrixU,,, (k), i.e.,
Ut (k) HW (k)U (k) = HW (k) (5.19)
whereH® (k) = £M5,,, are the energy eigenvalues and
i) = 3 [ulh) Ui (k) (5.20)

are the corresponding band states. By the constructiorguoe of Ref. [72]57(LH) is identical to the
true &, (and similarly for the eigenvectons(nlf()) for all occupied states and low-lying empty states.
This is strictly true only fork-points on the originahb-initio mesh. The power of this interpolation
scheme lies in the fact that, by virtue of the spatial loedlon of the Wannier functions, the error
remains extremely small even for points away from that g9@l [

The next step is to evaluaﬁﬁ) on a two-dimensional mesh &tpoints covering a single slice
and then use a contour-finding algorithm to map out and digeréhe Fermi loops therein. This
part of our scheme will be described in more detail in Sec25.Bor now we can just assume that
the output is a sequence of poikks (j = 0,...,J — 1) providing a fairly dense mapping of the
contour. (As before, we assume for simplicity that the Faramitour consists of a single loop; the

extension to multiple loops is straightforward.)

Next we need to obtain the Berry connectidn (k) = z’(uﬁ’NHuﬁ’) as in Eq. (5.5). Using
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Eq. (5.20), this becomes

Ank) = S UK AN () Uy (K)

Im
+i > Ub () VicUn (k) (5.21)
where
AN (k) = i(u(} | Viul)) (5.22)

is computed in practice from the expression

AN (k) =D ™R (0|t Rm) (5.23)

R
in a manner similar to Eq. (5.18). Details concerning thehmeétof calculating Egs. (5.18) and
(5.23) can be found in Chapter 4.

The decomposition oA, (k) into two terms in Eq. (5.21) is an artifact of the choice of \tvan
functions; only the sum of the two terms is physically meghih (upon a circuit integration).
However, for a given choice of Wannier functions, the firstt@rises because the Bloch functions
m,{}ib acquire some of the Berry curvature attached to the full gades of A/ Wannier functions
used to represent them, whereas the second term reprdseBerty curvature arising from changes
of character of this Bloch stateithin the Wannier subspace. To clarify this viewpoint, we introslu
a notation in Chapter 4 in whiclv,)) is defined to be theth column vector of matriX/, so that

the second term of Eq. (5.21) becomigs, k|| V| vnx)). Plugging into Eq. (5.12), this yields

ouli) = Flond A 0]) -
+ P (o Vo) - (5.24)
for the Berry phase of slicé appearing in Eqg. (5.15). Note that the integrand in the feantis

gauge-invariant (here “gauge” refers to the applicatiora ghase twist|v,i) — €& ||lu,, ),

while in the second term only the entire loop integral is gainyariant. Indeed, the second term is
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just a Berry phase defined within tiié-dimensional “tight-binding space” provided by the Wamnie
functions. Recalling that; for j = 0,..., J—1is our discretized description of the Fermiloop, and

using standard methods for discretizing Berry phases [0} &q. (5.14), our final result becomes

bn(i) = Z vnkHA k)[loni)) - Ak
7=0
J—1

~ImIn [ (v, llvni, 0 ) (5.25)
=0

whereAk = (kj11 —kj_1)/2.

As we shall see below, in practice we only encounter closedsprin which case it is clearly
appropriate to sek; = k(o and close the phases witlv,, x ) = ||vnk,)). For lower-symmetry
situations, however, open orbits witly = ko + G may be encountered. Even in this case, however,
we would still set|v,, k) = ||vnk,)); IN contrast to the full Bloch states which obey [20]k , =
e iGT un ko, NO €Xtra phase factors are needed here because the Roamg&form convention of
Eqg. (5.16) treats the Wannier functions as though they ar@aiinally located at the cell origin.

In summary, our strategy is to evaluate Eq. (5.15) by decampceach generalized pafh (i)
into connected simple loops, and sum the loop integrals empuated using Eq. (5.25). The opera-
tions needed to evaluate Eq. (5.25) are inexpensive as lhayalve vectors and matrices defined

in the low-dimensional space of the Wannier representation

5.2 Computational details

5.2.1 First-principles calculations

Fully relativistic band-structure calculations are aadriout for the ferromagnetic transition met-
als Fe, Co and Ni at their experimental lattice constan%2(54.73, and 6.65 bohr, respectively)
using thePWSCF code [76]. Norm-conserving pseudopotentials with spimitaroupling [97] are

generated using similar parameters as in Chapter 4. Angetgff of 60 Hartree is used for the
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Table 5.1: Calculated spin magnetic moment per atomginfor the three transition metals Fe, Ni
and Co, with magnetization along [001], [111] and [001] pestively.

bccFe fccNi hep Co
Theory 2.22 0.62 1.60
Experiment 2.13  0.56 1.59

planewave expansion of the valence wavefunctions (400rétafor the charge densities), and the
PBE generalized-gradient approximation [77] is used ferdkchange-correlation functional. The
self-consistent ground state is obtained using a 16 x 16 Monkhorst-Pack [81] mesh @fpoints

and a fictitious Fermi smearing [82] 6f02 Ry for the Brillouin-zone integration.

The calculated spin magnetic moments are shown in TableHhé. effect of spin-orbit cou-
pling on these moments is included in the calculation, sibhég needed in any case to obtain a
nonzero AHC. The agreement with experiment is rather gomafjrening that our norm-conserving

pseudopotentials are suitable for describing the ferroreiig state of the transition metals.

The maximally-localized Wannier functions are generatsithgitheWANNI ER90 code [84];

details are given in Secs. 5.3.1-5.3.3 below.

5.2.2 Mapping and sampling of Fermi loops

As discussed above, our basic strategy involves dividiegBB into a series of parallel slices and
finding the intersections of the Fermi surface with each ekéhslices. Each slice is sampled
on a uniformN x N k-point mesh, withV ranging from300 to 500, and the band energies are
computed on the mesh using Wannier interpolation. A stahdantour-finding algorithm of the

kind used to make contour plots is then used to generate @f Fsrmi loops and, for each loop, a

list ko, ...,ky_1 of k-points providing a discretized representation of the loop

As shown in Fig. 5.2(a), the Fermi contours in the first BZ am@stimes composed of multiple
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Figure 5.2: Calculated Fermi-surface intersections (fFéosops) on thek, = 0.02 plane for bcc
Fe; different bands are color-coded for clarity. (a) Ferontours within the first Brillouin zone.
(b) Fermi contours after reassembly to form closed contyrsranslating some portions by a
reciprocal lattice vector. Inset. enlargement showing paan avoided crossing where a refined
mesh (black lines) is used to obtain a more accurate regeggenof the Fermi loop. The actual
calculation is performed within the dashed box.
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segments terminating at the BZ boundary. To insure that welgeed loops suitable for the eval-
uation of Eq. (5.25), we actually do the initial contour-fimgl procedure in an extended zone with
3 x 3 times the size of the first BZ. We then select closed loopstéacaear the central cell while
identifying and discarding loops or portions of loops thatrespond to periodic images of these
chosen loops. The result is a set of closed loops that garéiglend outside the first BZ as shown
in Fig. 5.2(b). Of course, if there were open orbits on therkaurface, it would not always be pos-
sible to select closed loops in the above sense; one woutdthaccept a “loop” wittk ; = kg + G

as discussed following Eqg. (5.25). However, we never enepwsuch open orbits in practice for the
types of materials studied here, in which the magnetizadaligned with a three-fold, four-fold,
or six-fold rotational symmetry axis. The slices are pedieumar to the symmetry axis, and the

symmetry ensures that open orbits cannot occur on the slices

A potential difficulty in applying the Fermi-loop method teal materials arises from the pos-
sible presence of degeneracies or near-degeneracieselpebaads. If two bands are degenerate
at the Fermi energy, this means that two Fermi loops toucath,itaie no longer straightforward to
define and compute the Berry phases of these loops. Fortyrthtepresence of ferromagnetic spin
splitting and spin-orbit coupling removes almost all deggeies. In our calculations we found no
true degeneracies in hcp Co or fcc Ni, and the only degeresracibcc Fe were found to lie in the
k. = 0 plane. (In the latter case, we avoid the= 0 plane by picking &, mesh that is offset so
that this plane is skipped over.) On the other hand, we do fimdemous weakly avoided crossings
induced by the spin-orbit interaction, and while theseoiditice no difficulty in principle, they do
require special care in practice. Indeed, we find that it ipartant to sample the Fermi surface
very accurately in the vicinity of these crossings. To dovg®calculate the Berry curvature at each
k; using Wannier interpolation, and if a large value is encered, we introduce a refined mesh

with 4 x 4 greater density in this region, repeat the contour-findirec@dure there, and replace
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the discretized representation of this portion of the loadfh\a denser one. We also take care to
recomputes, i at eachk; and iteratively adjust thé-point location in the direction transverse to
the loop in order to insure that,, lies precisely at the Fermi energy. An example of a portion of
a Fermi loop that has been refined in this way is illustratethéninset to Fig. 5.2(b). Overall, the
resulting numbet/ of k-points per loop ranges from several hundreds to thousaegending on

the size and complexity of the Fermi loop.

In our current implementation, the entire procedure absvepeated independently on each of
the slices. As already mentioned in Sec. 5.1.2, it is immbtiamake a consistent choice of branch
of the Berry phase (i) on consecutive slices. We do this by adding or subtractingikipte of
27 to the Berry phase calculated from Eq. (5.15) such fpgati) — ¢, (i — 1)| < 27 is satisfied,

always checking for consistency between the first and last. sl

5.2.3 Use of symmetry to reduce computational load

The presence of a net magnetization results in a consigerabdlction in symmetry, but several
symmetries still remain that can be exploited to reduce traputational cost. In the previous
Fermi-sea-based methods [21, 95] the use of symmetriemiglsforwardly implemented by re-
stricting thek-point sampling to the irreducible wedge of the BZ. For thenkidoop method, the

use of symmetries needs more careful treatment.

Here we discuss the difficulties, and point out their solutiasing ferromagnetic bcc Fe as an
example. We focus our attention on the mirror symmetfigsand M,. Since each slice lies in
an z-y plane, we can use these to restrict the bandstructure atimuland the search for Fermi
contours to a reduced BZ having one-fourth of the area ofuhd3Z, as shown by the dashed line
in Fig. 5.2(b). However, a typical Fermi loop will no longdose within this reduced BZ. Because

a Berry phase is a global property of a closed loop, one cguosbrtompute the Berry phase of
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open segment lying inside the reduced BZ and multiply by;fthe Berry phase of this segment is

ill-defined unless the phases of the wavefunctions at itsited points are specified.

Our solution to this difficulty is illustrated in Fig. 5.3. Waake some arbitrary but definite
choice of the phases of the Bloch functions in the uppertsghgment, compute the open-path Berry
phase following Eq. (5.25), and multiply by four. We then addrections that take account of the
phase jumps at the segment boundaries. For example, W&, lecting on the Bloch states froin
to 2 define the Bloch states froirito 2. The correction arising from thié-1 boundary is then given
by the phase ofuy/|ui) = (Myui|ui). (HereM, is defined in the spinor context and includes a
complex conjugation component. Since the Bloch functioeseapressed in the Wannier basis in
our approach, information about the symmetries of the Warfainctions has to be extracted and
made available for the application of the symmetry tramsfgions.) Similar corrections, using also
M,, are obtained for the’-2", 1”-1", and2"-2 segment boundaries. By including these mismatch
corrections, we are able to calculate the global Fermi-Bepry phase in a correct and globally

gauge-invariant manner.

We have tested this procedure and confirmed that the reduétsied are essentially identical to
those computed without the use of symmetry. The BZ couldiimciple be reduced further in bcc

Fe using the diagonal mirror operations, but we have nal tnémplement this.

5.3 Results

In this section we present the results of our calculationthefanomalous Hall conductivity using
the Fermi-loop approach of Eqg. (5.25) as applied to the tlmeemagnetic transition metals Fe, Co

and Ni.
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Figure 5.3: lllustration of use af/,, and M, mirror symmetries on a slice of the Brillouin zone in
bcc Fe. Only the segment of the Fermi loop from Point 2 to Pbistactually computed; the three
other segments are included using symmetry operations.
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5.3.1 bccFe

We have previously presented calculations of the AHC of becémputed using the Fermi-sea
formulation in Chapter 4. Here we adopt the same choice ofni#ariunctions as in that work,
namely 18 Wannier functions covering thep andd character and both spins. The orbitalssof
p, ande, character are actually rehybridized into Wannier funatiohsp3d? type, and the Wannier
functions are only approximate spin eigenstates becausigeqgfresence of spin-orbit interaction
(see Chapter 4 for details).

Six bands cross the Fermi energy in bcc Fe. In Fig. 5.4 we shevireérmi-surface sheets for
four of these, plotted using thécr ysden package [99]. Some of these are quite complicated but,
as expected, they all conform to the lattice symmetries. tighaot clearly visible in these plots
are the tiny spin-orbit-induced splittings, which changge tonnectivity of the Fermi surface. As
mentioned earlier, such features play an important roleer®HC, and need to be treated with care.

We take the magnetization to lie along t961] axis. Choosing>; = (27/a)(110) andby =
(27/a)(110) in the notation of Sec. 5.1.1, it follows thag = 27 b; X by /Viecip = (0,0, a) where
Viecip 1S the primitive reciprocal cell volume, and we only need ¢onpute thec,,3 in Eq. (5.10).
The slices are square in shape, &nd= k., is discretized into 500 slices.

In Fig. 5.5 we have plotted the total Berry phase Eq. (5.13ach slice as computed from
Eq. (5.25). The results are symmetric under mirror symmetyonly half of the range of, is
shown. The sharp peaks and valleys in Fig. 5.5 are relatedgengrate or near-degenerate bands
that have been split by the spin-orbit interaction, as wastiated, e.g., in the inset of Fig. 5.2. To
validate the calculation, we compare it against a directerigal integration of the Berry curvature
over the occupied bands using Eq. (5.11), as indicated bywyh#ols in Fig. 5.5. In spite of
rather complex and irregular Fermi surfaces, the agreelbmmteen the two methods in Fig. 5.5 is

excellent.



119

Figure 5.4: Calculated Fermi surfaces of bcc Fe. The outsigiee is the boundary of the Brillouin
zone.
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Figure 5.5: Calculated Berry phasék, ) of bcc Fe (in radians) as a function bf (in units of
27 /a). Solid line shows results obtained from the Fermi-loophodtof Eq. (5.25); circles indicate
reference results obtained by the integration of the Basryature on each slice using Eq. (5.11).
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Table 5.2: Anomalous Hall conductivity, in-cm~—'. First three rows show values computed using
Egs. (5.6)—(5.10) together with Eq. (5.25), the first terrfy@f Eq. (5.25), or Eq. (5.11), respec-
tively. Results of previous theory and experiment are idetlifor comparison.

bccFe  fccNi hep Co

Fermi loop 750 —2275 478
Fermi loop (1st term) 7 0 -4
Berry curvature 753 —2203 477
Previous theory 751 —207F 492
Experiment 1032 —646" 480

The values of the integrated anomalous Hall conductiviipgighe new approach and the ref-
erence approach are shown in the first and third lines of Tallle The second line shows the
contribution obtained from integrating only the first terika. (5.25); clearly, this contribution
is very small. The agreement with the previous theory of ¥aal[21] is excellent, while the

agreement with experiment is only fair. Table 5.2 will becdissed further in Sec. 5.3.4.

5.3.2 fcc Ni

For fcc Ni we chose 14 Wannier functions, seven each of ajpately spin-up and spin-down
character. These were comprised of five Wannier functiong-ldfe symmetry centered on the
Ni atoms and two Wannier functions of tetrahedral symmeaioated on the tetrahedral interstitial
sites, similar to the choice that was made for Cu in Ref. [TBE inner energy window was chosen
to extend 21 eV above the bottom of the bands, thus exterdingV above the Fermi energy and

including several unoccupied bands as well.

In Fig. 5.6 we show the Fermi sheets for four of the five bands ¢thoss the Fermi energy in
fcc Ni. The shapes of these Fermi surfaces are somewhat ploeeical than those of bcc Fe. As

expected, they again conform to the lattice symmetries.

In the case of fcc Ni, the magnetization lies along fthiel] axis. Choosing; = (27/a)(022)
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andby = (27/a)(202) in the notation of Sec. 5.1.1, it follows that = 27 by x by /Viecip =
(a,a,a) = av/3&(111), and we only need to compute thg; in Eq. (5.10). The slices are hexagonal
in shape, and; =k - &1, is discretized into about00 slices.

The results are plotted in Fig. 5.7, along with symbols diegathe reference calculation by an
integration of the Berry curvature over the slice. Oncemghie agreement is very satisfactory. The

values of the integrated AHC are again summarized in TaBlle 5.

5.3.3 hcp Co

Co in the hcp structure has two atoms per unit cell. We choB3#&/dnnier functions per Co atom,
nine for each spin, in a very similar manner as was done fonSet. 5.3.1. We therefore have 36
Wannier functions per cell.

Seven bands cross the Fermi energy in hcp Co. We show thedigast Fermi-surface sheets
in Fig. 5.8. The Fermi surfaces can be seen to respect thie 6rfgstal symmetry, and none of them

touch each other.

The magnetization of hcp Co lies along fhe1] axis. We thus choode, = (27/a)(1/v/3,—1,0)
andby = (27/a)(1/4/3,1,0) in the notation of Sec. 5.1.1, and it follows thaf = 27 b; x
ba/Viecip = (0,0, ¢). The slices are hexagonal in shape, &nd= k. is discretized into abow00

slices.

The results are plotted in Fig. 5.9, along with the symbolsotiag the reference calculation
by integration of the Berry curvature. Once again, the peekkvalleys correspond to the places
where two loops approach one another closely. Some piecd® dgfermi surfaces of hcp Co are
nearly parallel to the slices (see the bottom right paneligf $.8), so that the number and shapes
of the Fermi loops sometimes change rapidly from one slicantather. In particular, we found it

difficult to enforce continuity of the branch choice of Eq.25) as a function ok, near the sharp
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features at a/27 = 0.18 and0.42 in Fig. 5.9. We therefore redetermined the correct branch
choice by comparing with the result of the Berry-curvaturegration at slices just outside these
difficult regions. Despite these difficulties, it can stith keen that the Fermi-loop method works

well for this case.

5.3.4 Discussion

The second row of Table 5.2 shows the results computed usilyglee first term of Eq. (5.25). In
each case, its contribution is less than 1% of the total, amaddmherefore be negligible for most
purposes. Actually, it can be shown that the inclusion offits term only in Eq. (5.25) of the
present method is equivalent to carrying out the Berry-aume integration approach of Chapter 4
with the D—D term omitted in Eq. (32) of that work (that is, only tliz-4 and() terms included).
We have carried out this comparison and find values of@.,5 and—2Q-cm ™! for bce Fe, fcc
Ni, and hcp Co, respectively, in very good agreement withvidaes reported in Table 5.2. The
physical interpretation for the small terms in the second ob Table 5.2 is basically that the full
set of Bloch-like states constructed from the Wannier fionst (e.g., the manifold of 18 Bloch-like
states in bcc Fe) has some small Berry curvature of its owthttenprojection of this curvature onto
the occupied subspace gives the small first term of Eq. (5@B)he other hand, spin-orbit induced
splittings across the Fermi leveetweerBloch-like states built from these Wannier functions give
large, sharply peaked contributions to the Berry curvabirthe occupied subspace, and make a
very much larger contribution to the total AHC. Of coursee firecise decomposition between the
first and second term of Eq. (5.25) depends on the exact chbiannier functions, but the present
results seem to indicate that the dominance of the secomdisgarobably a general feature, at least
for systems in which the Wannier functions are well localized the spin-orbit splitting is not very

strong.
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As mentioned in the previous section, the overall agreesesm in Table 5.2 between the results
computed using the Fermi-loop approach and those compatrg the Berry-curvature integration
indicate the internal consistency of our theory and impletaition. The agreement with the results
of Yao and coworkers, which were obtained by a Berry-cumeatntegration using an all-electron
approach [21], also demonstrates the robustness of oudpgetential implementation, including

its ability to represent spin-orbit interactions corrgctl

In the last row of Table 5.2 we show comparison with some eéwxpatal values for the AHC
of Fe, Ni, and Co. The agreement is not very good, but it waserpected to be. First, the
theoretical values in Table 5.2 are all computed by inclgdinly the intrinsic Karplus-Luttinger
contribution to the AHC; extrinsic skew scattering and giglap scattering contributions are not
included, and there is no reasarpriori to expect these to be negligible. Second, the experimental
values themselves have considerable uncertainty. FormgaRef. [101] gives values for Fe and
Ni films of about 970 and-480Q-cm ™' respectively (the value quoted in Table 5.2 for Co is also
a film value) whereas it gives a value of about 2086m ! for single-crystal Fe. Ref. [17] gives a
value for Ni of —753Q-cm ! and Ref. [102] reports a value for Co of 506cm . It could well be
that different kinds of experimental samples have diffenpurity and defect populations, leading
to different extrinsic contributions to the AHC. Finallyndhe theoretical side, not much is yet
known about the accuracy of common exchange-correlatinctifinals, such as the PBE functional
used here [77]. for the AHC. Clearly, there is much work to baalon both the experimental and
theoretical side before close agreement can be expectedrtNeless, the very rough agreement, at
the level of signs and general trends, between the theaketid experimental values in Table 5.2
suggests that the intrinsic Karplus-Luttinger contribntis probably an important, and sometimes

a dominant, one.
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5.3.5 AHC anisotropy of Ni

Rather little is known, either experimentally or theoralig, about the dependence of the AHC on
the crystallographic orientation of the magnetization.ciystal with a small magneto-crystalline
anisotropy, it may be possible to rotate the direction of negnetization with a small applied
magnetic field, and to test, for example, whether the AHC gaeector remains aligned with the
magnetization (isotropic behavior). In at least one cak@lay anisotropic AHE has been observed
experimentally in Ag-doped Feg3, (ferromagnetic diamond lattice) [103]. In the followingew
explicitly calculate the dependence of AHE on the angle betw axis and the direction of mag-

netization for the case of fcc Ni.

The easy axis of fcc Ni is determined experimentally to begtine [111] direction [98]. Along
this direction, the calculated spin magnetization is 0.@&Bmagneton, which is in good agree-
ment with the experimental value 0.56. In Table 5.3, we pretiee results of the calculations
of the anisotropy energy and anisotropic anomalous Halllgotivity along several directions be-
tween the [001] direction and [111] directions. For eacthete directions, a noncollineab-initio
calculation is performed with the orientation of the magragton fixed to that direction and its
magnitude is allowed to relax. The differences in total gpdretween different magnetization di-
rections are not significant. It is worth noting that our naficear magnetization calculation gives
the wrong prediction, namely that the [001] direction is khwest-energy configuration. The spin
magnetization does not change dramatically and it ranges .61 to 0.63 Bohr magneton. It is
clear that the largest change occurs for the anomalous Hadluxtivity, which differs by about
12.8% between the [111] direction and the [001] directiohisTs illustrated in Fig. 5.11. As the
angle of the magnetization increases from thaxis, the change in anomalous Hall conductivity

increases, reaching its maximum at about.4B addition to the change in the magnitude of the
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Table 5.3: Calculated magnitude of the magnetic momentlamdnisotropic anomalous Hall con-
ductivity, in units of 2 cm)~!, as the magnetization is rotated in tfid1) plane. 6, is the angle
between the magnetization and thexis.

Hz AHC Mspm FE— Elll(ueV)
0.0(001) —2366 0.63 -0.27
9.00 —2323 0.63 0.0
18.00 —2219 0.63 0.0
27.00 —2137 0.63 0.27
36.00 —2110 0.63 0.27
45.00 —2091 0.62 0.27
545 (111) —2097 0.61 0.0
60.0 —2098 0.62 -0.27
70.0 —1986 0.63 0.27
80.0 —-1931 0.63 0.0
90.0 —-1910 0.62 0.0

magnetization, the pseudo-vecidrdefined in Eq. (5.7) is not parallel to the direction of magnet
zation, as shown in Fig. 5.12. It is evident that fcc Nicket beclearly anisotropic anomalous Hall

effect.

The anisotropic anomalous Hall effect can be understooeérimg of the relation of the band
structure and the Berry curvature. The calculated bandtsime around the Fermi surface and the
Berry curvature along high-symmetry k points are shown o Bil0. The largest value of Berry
curvature occurs at the place where the Fermi energy liegelegt a pair of bands which have a
small gap (for example, at 75% of the distance from G to K). Vélee of the Berry curvature is
very sensitive to the gap. The small gap is induced by sgiit-opupling. Different directions of

magnetization induce different gaps, which dramaticafigrgye the Berry curvature.

5.4 Computational efficiency

The motivation for developing a method for computing the AHWat relies only on information

computed on the Fermi surface is, to some degree, aesthetjghélosophical: Haldane argued that
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the AHC is physically most naturally regarded as a Fermifiaser property [69], and as such should
be computed using a method that does not make use of extiairfotmation in arriving at the
desired quantity. However, a much more important motivaffom the practical point of view is
the idea that the computational effort might be drasticediyuced by having to compute quantities

only on the two-dimensional Fermi surface rather than onmeetidimensional mesh éfpoints.

In the present implementation as it stands, unfortunatbly, computational savings gained
through the use of the Fermi-loop Berry-phase approachiie modest. After taking advantage of
the symmetry as discussed in Sec. 5.2.3, the total compuoghtiime of our AHC calculation for
bcc Fe is about 1.7 hours using@@) x 200 k-mesh on each of 500 slices, to be compared with about
2 hours using our previous method of Chapter 4. (These tisnimg on a 2.2 GHz AMD-Opteron
PC, and neither includes the Wannier construction stepctwtikes about 2.5 hours.) Roughly,
the work on each slice can be divided into three phases: Stepniputing the energy eigenvalues
on the200 x 200 k-mesh; Step 2, executing the contour-finding algorithng 8tep 3, evaluating
Eq. (5.25) on the discretized Fermi loops. We find that leags tt#% of the computer time goes to
Step 2, while the remainder is roughly equally split betw8¢&p 1 and 3. The operations in these
steps have been greatly accelerated by making use of Wantaégpolation methods, but this is
also the case for the comparison method of Chapter 4. (We asigghthat, for this reason, both
the method of Chapter 4 and the present one are orders of tmdgHiaster than methods based on

direct first-principles calculations at evekypoint.)

Many opportunities for further reduction of the computerdiare worthy of further exploration.
Regarding Step 1, for example, at the moment the contouinfing done independently on each
slice; it might be much more efficient to step from slice taeland use a local algorithm to deter-
mine the deformation of the Fermi contours on each step. Yt atso be possible to do a first cut

at the contour-finding using a coarser k-mesh (&ay 50) and then refine it in regions where the
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loops approach one another or have sharp bends. It may afaxsbible to take larger steps between
slices in most regions df | , and fall back to fine slices only in delicate regions. In iempénting all
such strategies, however, one should be careful to avoisimgigny small loops that might appear
suddenly from one slice to the next, or which might be missedminitial coarse sampling of the
slice. It may also be interesting to explore truly three-glisional algorithms for finding contour

surfaces, and then derive two-dimensional loops from these

As for Step 3, it should be possible to use a lower density-pbints in the portions of the loop
discretization where the character of the wavefunctiorch@nging slowly. The time for this step
will also obviously benefit from taking larger steps betwsbces in regions where this is possible.
Finally, a reduction by a factor of two or more may be possiiylenaking use of symmetries not

considered in Sec. 5.2.3, such as the diagonal mirror syrieadt < y etc.) in bcc Fe.

The exploration of these issues is somewhat independeanttfie quantum-mechanical formu-
lation of the underlying theory, which is the main focus of ffresent work, and we have therefore

left the exploration of these possibilities for future istigations.

Finally, it should be emphasized that the computational k@ales strongly with the dimension
of the Wannier space used to represent the wavefunctiormurloalculations, this was 18, 14, and
36 for Fe, Ni, and Co, respectively. In some materials, tieag be only a few bands crossing
the Fermi energy, and it might be possible to represent theimgua much smaller number of
Wannier functions. This is the case in many transition-inexddes such as SRuQy, cuprate
superconductors, etc. In ferromagnetic materials of thig kit should be possible to choose an
inner window in the Wannier disentanglement procedure f{fid{ brackets the Fermi energy but
does not extend to the bottom of the occupied valence bartitcagenerate just a handful of
Wannier functions (e.g., threg, orbitals times two for spin) to be used in the Wannier intéafpon

procedure. Then all matrices used in that procedure woukkebe much smaller (e.g.,>66) and
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the computation would go considerably faster.

5.5 Summary

In summary, we have developed a first-principles method donguting the intrinsic AHC of fer-
romagnets as a Fermi-surface property. Unlike conventio@ihods that are based orkapace
volume integration of the Berry curvature over the occugt@dmi sea, our method implements
the Fermi-surface philosophy by dividing the Brillouin zomto slices normal to the magnetiza-
tion direction and computing the Berry phases of the Fermpsoon these slices. While Haldane
has pointed out that only the non-quantized part of the AHChmdetermined in principle from a
knowledge of Fermi-surface properties only, we find in gcacthat it is straightforward to make the
correct branch choice and resolve the quantum of uncerthintdoing a two-dimensional Berry-
curvature integration on just one or a few of the slices. Oathod also makes use of methods
of Wannier interpolation to minimize the number of calcidas that have to be done using a full
first-principles implementation; almost all the operatioreeded to compute the AHC are actually
done by working with small matrices (e.g.,488 for bcc Fe) in the Wannier representation.

We have tested and validated our new method by comparingouitrearlier implementation
of a Fermi-sea Berry-curvature integration for bcc Fe, fécawd hcp Co. The different crystal
structures and magnetization orientations in these thisgenmals also allow us to demonstrate the
flexibility of the method in dealing with these different eas We find excellent agreement between

the two approaches in all cases.
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Figure 5.7: Calculated Berry phasgk, ) of fcc Ni (in radians) as a function df, (in units of
27 /+/3a). Solid line shows results obtained from the Fermi-loop lmodtof Eq. (5.25); circles
indicate reference results obtained by the integratiorhefBerry curvature on each slice using
Eq. (5.11).
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Figure 5.8: Calculated Fermi surfaces of hcp Co. The oufsiahee is the boundary of the Brillouin
zone.
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Figure 5.9: Calculated Berry phasg¢k | ) of hcp Co (in radians) as a function bf (in units of
27 /¢). Solid line shows results obtained from the Fermi-loophodtof Eq. (5.25); circles indicate
reference results obtained by the integration of the Basryature on each slice using Eq. (5.11).
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Figure 5.10: Top panel: calculated band structure of Nirgna units of eV)with magnetization
along [001] (blue) and [111] (red) directions. Bottom pareglculated Berry curvature in atomic
units with the corresponding magnetization.
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Figure 5.11: Calculated change in the magnitude of the almusadall conductivity as a function
of the angle between theaxis and the direction of magnetization, as the magnetizasi rotated
in the (011) plane. The vertical line indicates the [111] direction.
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Figure 5.12: Calculated difference in angle between thermimation and the pseudovector of the
anomalous Hall conductivity, as the magnetization is satah the(011) plane. The vertical line
indicates the [111] direction.
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