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ABSTRACT OF THE DISSERTATION

First-principles calculation of dynamical properties of insulators in

finite electric fields and anomalous Hall conductivity of ferromagnets

based on Berry phase approach

by Xinjie Wang

Dissertation Director: Professor David Vanderbilt

We present first-principles methods for calculating two distinct types of physical quantities within

the framework of density functional theory: the response properties of an insulator to finite electric

fields, and the anomalous Hall conductivity of a ferromagnet. Both of the methods are closely

related to the same ingredient, namely the Berry phase, a geometric phase acquired by a quantum

system transporting in parameter space. We develop gauge-invariant formulations in which the

random phases of Bloch functions produced by numerical subroutines are irrelevant.

First, we provide linear-response methods for calculatingphonon frequencies, Born effective

charge tensors and dielectric tensors for insulators in thepresence of a finite electric field. The

starting point is a variational total-energy functional with a field-coupling term that represents the

effect of the electric field. This total-energy functional is expanded with respect to both small

atomic displacements and electric fields within the framework of density-functional perturbation

theory. The linear responses of field-polarized Bloch functions to atomic displacements and electric

fields are obtained by minimizing the second-order derivatives of the total-energy functional. The
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desired second-order tensors are then constructed from these optimized first-order field-polarized

Bloch functions.

Next, an efficient first-principles approach for computing the anomalous Hall conductivity is

described. The intrinsic anomalous Hall conductivity in ferromagnets depends on subtle spin-orbit-

induced effects in the electronic structure, and recentab-initio studies found that it was necessary

to sample the Brillouin zone at millions of k-points to converge the calculation. We start out by per-

forming a conventional electronic-structure calculationincluding spin-orbit coupling on a uniform

and relatively coarse k-point mesh. From the resulting Bloch states, maximally localized Wannier

functions are constructed which reproduce theab-initio states up to the Fermi level. With inex-

pensive Fourier and unitary transformations the quantities of interest are interpolated onto a dense

k-point mesh and used to evaluate the anomalous Hall conductivity as a Brillouin-zone integral.

The present scheme, which also avoids the cumbersome summation over all unoccupied states in

the Kubo formula, is applied to bcc Fe, giving excellent agreement with conventional, less efficient

first-principles calculations.

Finally, we consider anotherab-initio approach for computing the anomalous Hall conductivity

based on Haldane’s Fermi-surface formulation. Working in the Wannier representation, the Bril-

louin zone is sampled on a large number of equally spaced parallel slices oriented normal to the

total magnetization. On each slice, we find the intersections of the Fermi surface sheets with the

slice by standard contour methods, organize these into a setof closed loops, and compute the Berry

phase of the Bloch states as they are transported around these loops. The anomalous Hall conduc-

tivity is proportional to the sum of the Berry phases of all the loops on all the slices.
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Chapter 1

Introduction

1.1 Response properties of an insulator

The response properties of an insulator to atomic displacements, homogeneous electric fields, or

both of these perturbations include the phonon force-constant matrix, the dielectric tensor, and the

Born effective charge tensor. These tensors, defined as second derivatives of the total energy, are

among the most extensively studied properties of an insulator. Phonon properties are very helpful

to explain the occurrence of peaks in Raman and infrared spectroscopy [1], and to identify structure

instability and the resulting phase transition [2]. Dielectric properties are of fundamental and practi-

cal interest. In theory, many models have been developed to calculate dielectric constants of various

materials, and in practice, high-κ dielectric materials have critical applications in next-generation

high-performance integrated circuits. The Born effectivecharge is important in determining the

response to an electric field. It provides a transparent picture for understanding and modeling how

atoms respond to an applied electric field.

The early theoretical models for calculating phonon properties involved development of empir-

ical interatomic potentials and the parameter fitting to experimental phonon spectra. Valence-force-

field models [3, 4], bond charge models [5] and shell models [6] are examples. As the result of the

complexity of atomic interactions, these models usually have complicated parameter dependence,

low accuracy and poor transferability.

The Born effective charge and the dielectric constant are two elementary responses of an insu-

lator to electric fields. The electrostatic potential of a homogeneous electric field is linear in space
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and unbounded from below, which breaks the translational symmetry. Previous methods circumvent

this problem by treating electric fields as perturbations and performing calculations in the slowly-

varying limit of periodically-varying fields [7]. The main drawback of these methods is that they

only work when the reference unperturbed system has a vanishing electric field.

Density-functional theory provides a powerful framework for performing calculations on real-

istic materials. Within this framework, density-functional perturbation theory has been developed

by several authors [8, 9, 10] to facilitate response calculations. The response properties can now be

calculated very conveniently at high accuracy without using empirical parameters.

Recently, the effect of finite electric fields attracted boththeoretical and practical attention. The

tuning of the response properties of an insulator by applying finite electric fields is of importance in

a variety of practical applications in electronics, such asfor capacitors and oscillators. It is highly

desirable to develop a theoretical approach for calculating response properties of a periodic system

in the presence of finite electric fields.

1.2 Anomalous Hall effect

In 1880, Edwin R. Hall discovered the ordinary Hall effect, and just one year later he discovered

anomalous Hall effect [11, 12]. In non-ferromagnets, it is well-known that the flow of electrons in a

perpendicular magnetic field is affected by the Lorentz force. However, in ferromagnets such as Fe,

Ni and Co, a Hall current is still present even in the absence of a magnetic field. Since the magnetic

field is not necessary, this effect is called the anomalous Hall effect (AHE).

In addition to simple ferromagnetic metals, many other types materials of different crystal struc-

tures have been found to exhibit AHE, such as SrRuO3 (perovskite structure) [13], CuCr2Se4 (spinel

structure) [14], diluted magnetic semiconductors [15], and so on. The AHE has become a useful tool

to characterize and investigate magnetic properties of nano-scale systems. Its fundamental physics
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as well as potential technical applications in memory devices and sensors motivate intensive theo-

retical and experimental studies.

Unlike the ordinary Hall effect, the AHE is strongly relatedto the spin-orbit coupling of elec-

trons. It is not produced by the internal field associated with magnetization. Historically, the mecha-

nism of the AHE has been controversial for many years. There are two distinct approaches to explain

the AHE. Karplus and Luttinger first showed that it can arise in a perfect crystal as a result of the

spin-orbit interaction of polarized conduction electrons[16]. Later, two alternative mechanisms,

skew scattering [17] and side-jump scattering [18], were proposed by Smit and Berger, respectively.

In skew scattering, the spin-orbit interaction gives rise to an asymmetric scattering cross section

even if the defect potential is symmetric, and in side-jump scattering it causes the scattered electron

to acquire an extra transverse translation after the scattering event. These two mechanisms involve

scattering from impurities or phonons, while the Karplus-Luttinger contribution is a scattering-free

band-structure effect.

In recent years, new insights into the Karplus-Luttinger contribution have been obtained by

several authors, who reexamined it in the modern language ofBerry phases. The termΩn(k) in the

equations below was recognized as the Berry curvature of theBloch states in reciprocal space, a

quantity which had previously appeared in the theory of the integer quantum Hall effect, and which

is also closely related to the Berry-phase theory of polarization.

1.3 Berry phase

In 1984, M.V. Berry introduced a geometric phaseeiγ(C) acquired by a quantum system in an

eigenstate adiabatically transporting along a closed pathC in parameter space [19]. Here, the

parameter space is simply a set of values on which Hamiltonian depends. Consider the Hamiltonian
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H(R) as a function of parametersR = {a1, a2, ...}. The Berry phase is defined as

γn(C) ≡ i

∮

C
〈n(R)|∇Rn(R)〉 · dR , (1.1)

where∇R means that the derivative is with respect toR, and |n(R)〉 is the eigenstate ofH(R)

satisfying

H(R)|n(R)〉 = En|n(R)〉 .

It is worth to note that while the Berry phaseγn(C) itself is gauge-invariant (a change of wave

functions of the form|n(R)〉 → eiθ(R)|n(R)〉 is called a gauge transformation), the inner product

〈n(R)|∇Rn(R)〉 is not gauge-invariant, i.e., addingeiθ(R) to |n(R)〉

〈n(R)e−iθ(R)|∇R|eiθ(R)n(R)〉 = 〈n(R)|∇Rn(R)〉 + i∇Rθ(R) .

In general,∇Rθ(R) is not zero. However, its integral is zero, that is

∮

C
∇Rθ(R)dR = 0 ,

which clearly shows theγn(C) gauge-invariant.

If C lies close to a degeneracy ofH(R), the Berry phase takes a particularly simple and mean-

ingful form as described below. Consider a degeneracy that involves only two states. The Hamilto-

nian near this degeneracy can generally be described by a2 × 2 Hermitian matrix

H = (X · σx + Y · σy + Z · σz) +K · σ0

whereσx,y,z are Pauli matrices,σ0 is the unit matrix, andX,Y,Z,K are real coefficients. IfX,Y,Z

are viewed as coordinates in a 3-dimensional spaceF, the Berry phase is given by

γ±(C) = ∓1

2
Ω(C ′) ,

whereC ′ in F -space is the image ofC in R and Ω(C ′) is the solid angle subtended byC ′ in

F-space.
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In our work, the parametersR are the three Cartesian components of the reciprocal vectork,

and |n(R)〉 is the periodic part of Bloch function|ukn〉. For practical calculations, one normally

works on a discretizedk-mesh. The integration in Eq. (1.1) can then be performed over thek-mesh

[20], using

γn(C) = Im ln

J−1∏

j=0

〈ukjn|ukj+1n〉 (1.2)

whereIm means imaginary part andj indicates the discretized consecutivek points on the closed

pathC. It is straightforward to verify that whenJ → ∞, Eq. (1.2) goes back to its continuous form

in Eq. (1.1). It is also easy to confirm that Eq. (1.2) is independent of the arbitrary phaseeiθ(k): both

〈ukjn| and|ukjn〉 appear in Eq. (1.2), so the arbitrary phase cancels out.

In the past twenty years, Berry phases have been found to manifest themselves in many solid-

state physics observables such as the Aharonov-Bohm effect[19], electronic polarization [20],

anomalous Hall conductivity [21] and quantum Hall effect [22]. Our work is related to the elec-

tronic polarization and anomalous Hall conductivity.

1.4 Outline of the present work

The present work is devoted to developing first-principles methods for calculating response proper-

ties of an insulator to external perturbations in finite electric fields, and efficientab-initio methods

for the computing anomalous Hall effect of ferromagnets.

Chapter 2 describes the theoretical basis for our study, including density-functional theory and

density-functional perturbation theory. In addition to the fundamental theories, approximations that

are necessary to carry out practical applications and some important numerical algorithms are also

discussed in this chapter.

In Chapter 3, we present a perturbative method for calculating response properties of an insu-

lator in the presence of a finite electric field. We expand a variational total-energy functional with
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a field-coupling term that represents the effect of the electric field with respect to small atomic dis-

placements and electric fields within the framework of density-functional perturbation theory. The

first-order response of field-polarized Bloch functions is obtained by minimizing the second-order

derivatives of the total-energy functional. We implement the method in theABINIT code and per-

form illustrative calculations of the field-dependent phonon frequencies for III-V semiconductors.

In Chapter 4, we report an efficient first-principles approach for computing the anomalous Hall

conductivity. This approach has three steps: (1) a conventional electronic-structure calculation is

performed including spin-orbit coupling on a uniform and relatively coarsek-point mesh; (2) from

the resulting Bloch states, maximally-localized Wannier functions are constructed which reproduce

theab-initio states up to the Fermi level; (3) the quantities of interest are interpolated onto a dense

k-point mesh and used to evaluate the anomalous Hall conductivity as a Brillouin-zone integral.

The present scheme, which also avoids the cumbersome summation over all unoccupied states in

the Kubo formula, is applied to bcc Fe, giving excellent agreement with conventional, less efficient

first-principles calculations. Remarkably, we find that about 99% of the effect can be recovered by

keeping a set of terms depending only on the Hamiltonian matrix elements, not on matrix elements

of the position operator.

In Chapter 5, we present anab-initio approach for computing the anomalous Hall conductivity

by converting the integral over the Fermi sea into a more efficient integral on the Fermi surface

only. First, a conventional electronic-structure calculation is performed with spin-orbit interaction

included. Maximally-localized Wannier functions are thenconstructed by a post-processing step in

order to convert theab-initio electronic structure around the Fermi level into a tight-binding-like

form. Working in the Wannier representation, the Brillouinzone is sampled on a large number of

equally spaced parallel slices oriented normal to the totalmagnetization. On each slice, we find the

intersections of the Fermi-surface sheets with the slice bystandard contour methods, organize these
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into a set of closed loops, and compute the Berry phases of theBloch states as they are transported

around these loops. The anomalous Hall conductivity is proportional to the sum of the Berry phases

of all the loops on all the slices. Illustrative calculations are performed for Fe, Co and Ni.
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Chapter 2

First-principles methods

In this chapter, the fundamental theory of our first-principles tools for calculating electronic struc-

tures of a system is introduced. Since its birth [23, 24], density-functional theory (DFT) has became

a most powerful, widely-used theoretical tool for investigating properties of various materials. The

basic idea of DFT is that it exactly maps an electron many-body electron problem onto an equiva-

lent non-interacting single-electron problem, keeping the complexity of the problem in an unknown

functional. Mathematically, DFT exactly transforms the many-body Schroedinger equation of3N

degrees of freedom into an equivalent set of Schroedinger-like equations of3 degrees of freedom.

2.1 Density-functional theory

2.1.1 Hohenberg-Kohn theorem

There had been many attempts to express the total energy of systems in terms of the electron charge

density. The real breakthrough came in 1964. In that year, Hohenberg and Kohn proposed an exact

formal variational principle of the ground state of an inhomogeneous interacting electron gas in

an external potential. The charge densityn(r) is the basic variable. They proved the existence of

a universal functional of densityF [n(r)] which is independent of the external potentialv(r), such

that the minimum value of the total energyE ≡
∫
v(r)n(r)dr+F [n(r)] is equal to the ground-state

energy of the system.

For the non-degenerate ground state,v(r) is a unique functional ofn(r) up to a constant poten-

tial. Sincev(r) fixes the Hamiltonian, the full many-body ground state is a unique functional of the
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charge densityn(r).

If the form of the universal functionalF [n(r)] were known, the true ground-state energy can be

obtained by minimizing the total energy functional

E ≡
∫
v(r)n(r)dr + F [n(r)] (2.1)

with respect to a three-dimensional density functionn(r).

2.1.2 Kohn-Sham equation

The exact form of the functionalF [n(r)] is unknown. Approximation method have been developed.

In 1965, Kohn and Sham developed a set of self-consistent equations including correlation effects.

The Kohn-Sham equation can be derived by applying the variational principle to the Kohn-Sham

energy functional

E ≡
∫
v(r)n(r)dr + F [n(r)] . (2.2)

It is obvious that the universal functionalF [n(r)] includes the classical Coulomb energy

F [n(r)] =
1

2

∫
n(r)n(r′)

|r − r′| drdr
′ +G[n(r)] , (2.3)

whereG[n(r)] is a universal functional consisting of the kinetic energy of non-interacting electrons

and the exchange-correlation energy

G[n(r)] = T [n(r)] + Exc[n(r)] . (2.4)

Under the constraints of
∫
δn(r)dr = 0, the stationary property is

∫
δn(r)

{
v +

∫
n(r′)

|r− r′|dr
′ +

δT [n(r)]

δn(r)
+
Exc[n(r)]

δn(r)

}
dr = 0 . (2.5)

This is equivalent to solving the following Schrödinger-like partial differential equation,

[
− h̄

2∇2

2m
+ Veff (r)

]
ψi(r) = ǫiψi(r) , (2.6)
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wherem is the mass of electron,veff (r) is an effective andlocal potential,ψi(r) is theith Kohn-

Sham orbital, andǫi is the eigenvalue ofith Kohn-Sham orbital. The effective potentialVeff (r),

the most important component in the KS equation, is defined asfollows:

veff (r) ≡ v(r) + vH(r) + vxc(r) (2.7)

v(r) ≡ −
∑

I

ZI
|r −RI |

(2.8)

vH(r) ≡
∫
dr′

n(r′)

|r − r′| (2.9)

vxc(r) ≡ δExc[n]

δn(r)
(2.10)

n(r) ≡
∑

i

|ψi(r)|2 (2.11)

In an intuitive picture, the KS equation describes an electron moving in an effective potential pro-

duced by other electrons. It is worth noting that the densitycontains the contribution from the

electron itself. Thus the electron seems to interact with itself as shown invH(r) andvxc(r) terms.

The point is that if the exchange energy is treated exactly (as in the Hartree-Fock equation), the

self-interaction is canceled out in the Hartree term and exchange term. Unfortunately, in the most

popular local-density approximation (LDA), the cancellation is not exact. The proper treatment of

the self-interaction correction is an important but difficult challenge that is the subject of current

research. In this thesis, we shall restrict ourselves to working with the LDA only.

2.1.3 Approximations for exchange-correlation energy

In Hohenberg and Kohn’s paper, they considered the case of a slowly varying charge density. If

n(r) is sufficiently slowly varying, the exchange-correlation energy functional can be approximated

by

Exc[n(r)] =

∫
n(r)ǫunif

xc (n)dr , (2.12)
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whereǫxc(n) is the exchange-correlation energy per electron of a uniform electron gas of density

n(r). This approximation is called the local-density approximation (LDA). It becomes exact in two

limiting cases: the slowly varying casers/r0 << 1, or the high-density casers/a0 << 1, where

rs = (3/4πn)1/3 is the Wigner-Seitz radius andr0 is a typical length over which charge density

changes considerably. Despite the fact that neither condition is well satisfied for most real materials,

this simple approximation turned out to be very successful in practical calculation of metals, alloys

and semiconductors.

In the local spin-density approximation (LSDA), the spin-orbit coupling effect is ignored and

thus the spin degrees of freedoms are decoupled from the spatial coordinates, that is the (2 × 2)

Hamiltonian matrix is diagonal in spin space (the spin-up component of the spinor wavefunction is

decoupled from the spin-down component). The Kohn-Sham energy functional is then written as

ELSDA
ex [n↑, n↓] =

∫
drnǫunif

xc (n↑, n↓) , (2.13)

where

n(r) = n↑(r) + n↓(r) , (2.14)

n↑(r) =
∑

i

|ψ↑
i (r)|2 , (2.15)

n↓(r) =
∑

i

|ψ↓
i (r)|2 . (2.16)

In comparison with the LDA, the generalized gradient approximation (GGA) [25, 26, 27] makes use

of both charge densityn and its gradient∇n, improving total energies, atomization energies and

structural energy differences. The GGA exchange-correlation energy functional takes the form

EGGA
xc [n↑, n↓] =

∫
drf(n↑, n↓,∇n↑,∇n↓) . (2.17)

In our study of bcc Fe, the GGA gives the correct ground-statestructure whereas the LDA gives the

wrong result.
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The Kohn-Sham method can easily be extended to treat spin-orbit coupling. The treatment of

spin degrees of freedom requires spinor wavefunctions. TheDFT is then expressed in terms of a

2 × 2 density matrix

n(r) =




n11(r) n12(r)

n21(r) n22(r)




The electron density is given by the trace ofn(r). The exchange-correlation energy becomes [28],

ELDAxc [n̄(r)] =

∫
n̄(r) · ǫxc[n̄(r),m(r)]dr

whereǫxc[n̄(r),m(r)] is the exchanged-correlation energy functional of spin-polarized homoge-

neous electron gas with charge densityn̄(r) = n11(r) + n22(r) and magnetization densitym(r) =

|n+(r) − n−(r)|. Here,n+(r) andn−(r) are the eigenvalues of the matrixn(r).

2.1.4 Plane-wave pseudopotential approach

To facilitate solving the Kohn-Sham equations, good basis functions must be used. The most com-

monly used basis functions are plane waves. The Bloch theorem states that the Bloch function of

bandn atk takes the form

ψnk = eik·runk(r) . (2.18)

In the plane-wave basis, the cell-periodic partunk can be expanded as

unk(r) =
∑

G

cnk(G)eiG·r , (2.19)

whereG runs over reciprocal lattice vectors. The summation overG is infinite, but in practice it

is truncated to include only plane waves with kinetic energies smaller than some cutoff energy, i.e.,

h̄2

2m |k + G|2 < Ecut. It should be kept in mind that the truncated set of{G}’s varies with wave

vectork. For example, the inner product between two wave functions〈uk|uk+δk〉 is computed on

the common set of{G}’s of k andk + δk.
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As a result of its delocalized nature, the plane-wave basis is not efficient for expanding localized

core states. In order to use a considerably smaller number ofplane waves, the pseudopotential

approximation has been intensively developed by many authors [29, 30, 31, 32]. The basic idea

of the pseudopotential approximation is to remove the core electrons from the Kohn-Sham orbitals

and replace them and the bare ionic potential by a smoother pseudopotential which acts on the

corresponding pseudo wavefunctions. In practice, the pseudopotential has two parts, the long-range

local part and a short-range nonlocal part, i.e.,

vpp = vlocal(r) +
∑

lm

|lm〉vnonlocal,l(r)〈lm| (2.20)

where the|lm〉 are spherical harmonics andvnonlocal,l(r) is the nonlocal pseudopotential for angular

momentuml.

The pseudopotential approach has been extended to include spin-orbit coupling by taking the

solutions of a fully relativistic radial atomic Dirac-likeequation as the reference all-electron wave

functions. The nonlocal part of such a pseudopotential is a2×2 matrix of operators acting on spinor

wave functions. In a simplified form, it looks like

vαβnonlocal =
∑

n

fn|Y α
n 〉〈Y β

n | ,

whereY α
n are projector functions andα, β are spin indices.

2.1.5 Solving the Kohn-Sham equation by minimizing the total energy

Sinceveff (r) in Eq. (2.6) depends on the charge densityn(r) which is then computed from the

Kohn-Sham orbitalsψi, the Kohn-Sham equation should be solved self-consistently. Typically, one

starts from a trial charge densityn(0)(r) and then calculates the effective potentialv
(0)
eff (r). In the

next step, the Kohn-Sham Hamiltonian matrixHk+G,k+G′ in the plane-wave basis is diagonalized

to obtain orbitalsψ(1)
i (r). From these orbitals, a new charge densityn(1)(r) is computed. This
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procedure repeats until the total-energy difference between iterationi andi + 1 is smaller than a

predetermined tolerance. In practice, the number of plane waves in the basis set is of the order from

102 to 104 per atom. In this range, iterative diagonalizing methods such as the conjugate-gradient

(CG) method are more efficient than direct methods.

2.2 Berry-phase polarization and finite electric fields

The development of first-principles methods for treating the effect of an electric fieldE in a periodic

system has been impeded by the presence of the electrostaticpotentialE · r in the Hamiltonian.

This potential is linear in real space and unbounded from below, and thus is incompatible with

periodic boundary conditions. The electronic bandstructure becomes ill-defined after application of

a potential of this kind. Many attempts have been made to overcome this difficulty. For example,

linear-response approaches have been used to treat the electric field as a perturbation [8, 7]. It

is possible to formulate these approaches so that only the off-diagonal elements of the position

operator

〈ψm|r|ψn〉 =
〈ψm|[H, r]|ψn〉

ǫm − ǫn
,

which remain well defined, are needed, thus allowing for the calculation of Born effective charges,

dielectric constants, etc. Since it is a perturbative approach, a finite electric field cannot be intro-

duced.

2.2.1 Berry-phase polarization

According to the modern theory of polarization [20], the electronic contribution to the macroscopic

polarization is given by

Pmac =
ief

(2π)3

M∑

n=1

∫

BZ
dk〈ukn|∇k|ukn〉, (2.21)
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wheree is the charge of an electron (e < 0), f=2 for spin degeneracy,M is the number of occupied

bands,ukn are the cell-periodic Bloch functions, and the integral is over the Brillouin zone (BZ).

Making the transition to a discretized k-point mesh, this can be written, following Eq. (1.2), in a

form

Pmac =
ef

2πΩ

3∑

i=1

ai

N
(i)
⊥

N
(i)
⊥∑

l=1

Im ln

Ni∏

j=1

detSklj ,kl,j+1
(2.22)

that is amenable to practical calculations. In this expression, for each lattice directioni associated

with primitive lattice vectorai, the BZ is sampled byN (i)
⊥ strings of k-points, each withNi points

spanning along the reciprocal lattice vector conjugate toai, and

(Skk′)mn = 〈umk|unk′〉 (2.23)

are the overlap matrices between cell-periodic Bloch vectors at neighboring locations along the

string. Because Eqs. (2.21-2.22) can be expressed in terms of Berry phases, this is sometimes

referred to as the “Berry-phase theory” of polarization.

2.2.2 Finite electric field

Recently, a total-energy method for treating insulators innonzero electric fields has been proposed

[33, 34]. In this approach, an electric enthalpy functionalis defined as a sum of the usual Kohn-

Sham energy and anE ·P term expressing the linear coupling of the electric field to the polarization

P:

F [R;ψ; E ] = EKS[R;ψ] − ΩE · Pmac[ψ] . (2.24)

The enthalpy functional is minimized with respect to field-polarized Bloch states, and the informa-

tion on the response to the electric field is contained in these optimized Bloch states. Using this

approach, it is possible to carry out calculations of dynamical effective charges, dielectric suscep-

tibilities, piezoelectric constants, etc., using finite-difference methods [33, 34]. It would also be
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possible to study properties of phonons atq = 0, but can be extended to phonons atq 6= 0 only

with difficulty by using supercell methods that are restricted to highly commensurateq-vectors.

2.3 Density-functional perturbation theory (DFPT)

2.3.1 Non-self-consistent approach

A large variety of physical properties of solids are based onthe lattice-dynamical properties, such

as infrared and Raman spectra, ferroelectric transitions,thermal expansions and superconductivity.

Density-functional perturbation theory provides a powerful and accurate theoretical tool for cal-

culating phonon frequencies, dielectric constants, Born effective charges and piezoelectric tensors

which are second derivatives of the total energy with respect to atomic displacements, electric field,

and cell size and shape.

DFPT can be viewed as a combination of DFT and perturbation theory. Consider a small per-

turbation characterized by a parameterλ applied to the Kohn-Sham potential. Expanding the Kohn-

Sham potential in terms ofλ gives

veff (r, λ) = v
(0)
eff (r) + λv

(1)
eff (r) + ... (2.25)

Due to the perturbation, the Kohn-Sham orbitals and Kohn-Sham energies can also be expanded in

terms ofλ as

ψi(r, λ) = ψ
(0)
i (r) + λψ

(1)
i (r)... (2.26)

ǫi(λ) = ǫ
(0)
i + λǫ

(1)
i + ... (2.27)

Inserting the expansions ofveff (r, λ), ψi(r, λ) andǫi(λ) into Eq. (2.6) and keeping only the first

term yields

[
− h̄

2∇2

2m
+ v

(0)
eff (r) − ǫ

(0)
i

]
ψ

(1)
i (r) =

[
v
(1)
eff (r) − ǫ

(1)
i

]
ψ

(0)
i (r) , (2.28)
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which is known as the Sternheimer equation [35]. Multiplying both sides of Eq. (2.28) by[ψ(0)
i (r)]∗

and integrating over the unit cell, we have

ǫ
(1)
i = 〈ψ(0)

i (r)|v(1)
eff (r)|ψ

(0)
i (r)〉 . (2.29)

Similarly, we can obtain

|ψ(1)
i 〉 =

∑

j 6=i

〈ψ(0)
i |v(1)

eff |ψ
(0)
j 〉

ǫ
(0)
j − ǫ

(0)
i

|ψ(0)
j 〉 . (2.30)

The drawback of the above equation is the summation over all states. This requires the computation

of all eigenvalues and eigenstates of the Hamiltonian matrix, which is not efficient at all.

2.3.2 Self-consistent and variational approach

To avoid the drawback mentioned above, one can solve Eq. (2.28) forψ(1)
i (r) self-consistently under

the constraints,

〈ψ(1)
i |ψ(0)

j 〉 = 0 . (2.31)

All zero-order quantities in Eq. (2.28) are calculated in advance. The first-order charge density can

be computed from

n(1)(r) = 2Re
∑

i

ψ
(0)∗
i (r)ψ

(1)
i (r) . (2.32)

The first-order charge density in turn can be used to calculate v(1)
eff (r).

Instead of solving the self-consistent equations, one could use the variational method to ob-

tain the first-order wavefunctionsψ(1)
i (r) [8, 9, 10]. Similar to the expansion of the potential and

wavefunctions, the total energy can be expanded in terms ofλ as

Eλ = E(0) + E(1)λ+E(2)λ2 + ... . (2.33)

The first-order termE(1) is usually vanishing, while the second-order term depends only on the

zero-order and the first-order wavefunctions as a consequence of the “2n+1” theorem [36]. The
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first-order wavefunctions are obtained by minimizing the second-order energy,

E(2) = min
ψ(1)

E(2)[ψ(0), ψ(1)]. (2.34)

In fact, the solutionψ(1)
i (r) of Eq. (2.28) is identical to that from Eq. (2.34).

In the next chapter, this approach will be developed furtherand applied to the cases in the

presence of finite electric fields.
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Chapter 3

DFPT in the presence of finite electric fields

The understanding of ferroelectric and piezoelectric materials, whose physics is dominated by soft

phonon modes, has benefited greatly from the availability offirst-principles methods for calculating

phonon properties. In general, these methods can be classified into two main types, the direct or

frozen-phonon approach [37, 38] and the linear-response approach [10, 9]. In the former approach,

the properties of phonons at commensurate wavevectors are obtained from supercell calculations of

forces or total-energy changes between between equilibrium and distorted structures. In the latter

approach, based on density-functional perturbation theory (DFPT), expressions are derived for the

second derivatives of the total energy with respect to atomic displacements, and these are calculated

by solving a Sternheimer equation [10] or by using minimization methods [9, 8]. Compared to

the direct approach, the linear-response approach has important advantages in that time-consuming

supercell calculations are avoided and phonons of arbitrary wavevector can be treated with a cost

that is independent of wavevector. However, existing linear-response methods work only at zero

electric field.

The development of first-principles methods for treating the effect of an electric fieldE in a

periodic system has been impeded by the presence of the electrostatic potentialE · r in the Hamilto-

nian. This potential is linear in real space and unbounded from below, and thus is incompatible with

periodic boundary conditions. The electronic bandstructure becomes ill-defined after application of

a potential of this kind. Many attempts have been made to overcome this difficulty. For example,

linear-response approaches have been used to treat the electric field as a perturbation [8, 7]. It is
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possible to formulate these approaches so that only the off-diagonal elements of the position op-

erator, which remain well defined, are needed, thus allowingfor the calculation of Born effective

charges, dielectric constants, etc. Since it is a perturbative approach, a finite electric field cannot be

introduced.

Recently, a total-energy method for treating insulators innonzero electric fields has been pro-

posed [33, 34]. In this approach, an electric enthalpy functional is defined as a sum of the usual

Kohn-Sham energy and anE · P term expressing the linear coupling of the electric field to the

polarizationP. The enthalpy functional is minimized with respect to field-polarized Bloch states,

and the information on the response to the electric field is contained in these optimized Bloch states.

Using this approach, it is possible to carry out calculations of dynamical effective charges, dielectric

susceptibilities, piezoelectric constants, etc., using finite-difference methods [33, 34]. It would also

be possible to use it to study phonon properties in finite electric field, but with the aforementioned

limitations (large supercells, commensurate wavevectors) of the direct approach.

In this work, we build upon these recent developments by showing how to extend the linear-

response methods so that they can be applied to the finite-field case. That is, we formulate DFPT

for the case in which the unperturbed system is an insulator in a finite electric field. Focusing on

the case of phonon perturbations, we derive a tractable computational scheme and demonstrate its

effectiveness by carrying out calculations of phonon properties of polar semiconductors in finite

electric fields.
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3.1 Linear response methods for calculating phonon frequencies, dielectric tensor

and Born effective charge tensor in finite electric fields.

3.1.1 Effect of electric field on phonon frequencies

Exact theory

We work in the framework of a classical zero-temperature theory of lattice dynamics, so that quan-

tum zero-point and thermal anharmonic effects are neglected. In this context, the phonon frequen-

cies of a crystalline insulator depend upon an applied electric field in three ways: (i) via the variation

of the equilibrium lattice vectors (i.e., strain) with applied field; (ii) via the changes in the equilib-

rium atomic coordinates, even at fixed strain; and (iii) via the changes in the electronic wavefunc-

tions, even at fixed atomic coordinates and strain. Effects of type (i) (essentially, piezoelectric and

electrostrictive effects) are beyond the scope of the present work, but are relatively easy to include

if needed. This can be done by computing the relaxed strain state as a function of electric field

using the approach of Ref. [33], and then computing the phonon frequencies in finite electric field

for these relaxed structures using the methods given here. Therefore, in the remainder of the paper,

the lattice vectors are assumed to be independent of electric field unless otherwise stated, and we

will focus on effects of type (ii) (“lattice effects”) and type (iii) (“electronic effects”).

In order to separate these two types of effects, we first writethe change in phonon frequency

resulting from the application of the electric field as

∆ω(q; E) = ω(q;RE , E) − ω(q;R0, 0), (3.1)

whereω(q;R, E) is the phonon frequency extracted from the second derivative of the total energy

of Eq. (2.24) with respect to the phonon amplitude of the modeof wavevectorq, evaluated at

displaced coordinatedR and with electrons experiencing electric fieldE . Also,RE are the relaxed
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atomic coordinates at electric fieldE , while R0 are the relaxed atomic coordinates at zero electric

field. Then Eq. (3.1) can be decomposed as

∆ω(q; E) = ∆ωel(q; E) + ∆ωion(q; E) (3.2)

where the electronic part of the response is defined to be

∆ωel(q; E) = ω(q;R0, E) − ω(q;R0, 0) (3.3)

and the lattice (or “ionic”) part of the response is defined tobe

∆ωion(q; E) = ω(q;RE , E) − ω(q;R0, E). (3.4)

In other words, the electronic contribution reflects the influence of the electric field on the wave-

functions, and thereby on the force-constant matrix, but evaluated at the zero-field equilibrium co-

ordinates. By contrast, the ionic contribution reflects theadditional frequency shift that results from

the field-induced ionic displacements.

The finite-electric-field approach of Refs. [33]-[34] provides the methodology needed to com-

pute the relaxed coordinatesRE , and the electronic states, at finite electric fieldE . The remainder

of this work is devoted to developing and testing the techniques for computingω(q;R, E) for given

q, R, andE , needed for the evaluation of Eq. (3.1). We shall also use these methods to calculate

the various quantities needed to perform the decompositionof Eqs. (3.2-3.4), so that we can also

present results for∆ωel and∆ωion separately in Sec. 3.5.

Approximate theory

Our approach above is essentially an exact one, in which Eq. (3.1) is evaluated by computing all

needed quantities at finite electric field. However, we will also compare our approach with an

approximate scheme that has been developed in the literature over the last few years [39, 40, 41, 42],
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in which the electronic contribution is neglected and the lattice contribution is approximated in such

a way that the finite-electric-field approach of Refs. [33]-[34] is not needed.

This approximate theory can be formulated by starting with the approximate electric enthalpy

functional [39]

F [R; E ] = E
(0)
KS[R] − ΩE ·P(0)

mac[R], (3.5)

whereE(0)
KS[R] is thezero-fieldground-state Kohn-Sham energy at coordinatesR, andP

(0)
mac is the

correspondingzero-fieldelectronic polarization. In the presence of an applied electric field E , the

equilibrium coordinates that minimize Eq. (3.5) satisfy the force-balance equation

−dE
(0)
KS

dR
+ Z(0) · E = 0 (3.6)

whereZ(0) = Ω dP
(0)
mac/dR is thezero-fielddynamical effective charge tensor. That is, the sole

effect of the electric field is to make an extra contribution to the atomic forces that determine the

relaxed displacements; the electrons themselves do not “feel” the electric field except indirectly

through these displacements. In Ref. [39], it was shown thatthis theory amounts to treating the

coupling of the electric field to the electronic degrees of freedom in linear order only, while treating

the coupling to the lattice degrees of freedom to all orders.Such a theory has been shown to give

good accuracy in cases where the polarization is dominated by soft polar phonon modes, but not in

systems in which the electronic and lattice polarizations are comparable [39, 40, 41, 42, 43].

In this approximate theory, the effect of the electric field on the lattice dielectric properties [42]

and phonon frequencies [41] comes about through the field-induced atomic displacements. Thus, in

the notation of Eqs. (3.1-3.4), the frequency shift (relative to zero field) is

∆ω′
ion(q; E) = ω(q;R′

E , 0) − ω(q;R0, 0) (3.7)

in this approximation, whereR′
E is the equilibrium position according to Eq. (3.6). We will make

comparisons between the exactRE and the approximateR′
E , and the corresponding frequency shifts
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∆ωion(q, E) and∆ω′
ion(q, E) later in Sec. 3.5.

3.1.2 Background and definitions

We start from the electric enthalpy functional [33]

F [R;ψ; E ] = EKS[R;ψ] − ΩE ·Pmac[ψ], (3.8)

whereEKS has the same form as the usual Kohn-Sham energy functional inthe absence of an elec-

tric field. HereΩ is the cell volume,Pmac is the macroscopic polarization,E is the homogeneous

electric field,R are the atomic positions, andψ are the field-polarized Bloch functions. Note that

Pmac has both ionic and electronic contributions. The former is an explicit function ofR, while the

latter is an implicit function ofR through the Bloch functions, which also depend on the atomicpo-

sitions. When an electric field is present, a local minimum ofthis functional describes a long-lived

metastable state of the system rather than a true ground state (indeed, a true ground state does not

exist in finite electric field) [33].

3.1.3 Perturbation expansion of the electric enthalpy functional

We consider an expansion of the properties of the system in terms of small displacementsλ of the

atoms away from their equilibrium positions, resulting in changes in the charge density, wavefunc-

tions, total energy, etc. We will be more precise about the definition of λ shortly. We adopt a

notation in which the perturbed physical quantities are expanded in powers ofλ as

Q(λ) = Q(0) + λQ(1) + λ2Q(2) + λ3Q(3) + ... (3.9)

whereQ(n) = (1/n!)dnQ/dλn. The immediate dependence upon atomic coordinates is through

the external potentialvext(λ), which has no electric-field dependence and thus depends upon coor-

dinates and pseudopotentials in the same way as in the zero-field case. The changes in electronic
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wavefunctions, charge density, etc. can then be regarded asbeing induced by the changes invext.

3.2 Phonon perturbation with zero q wavevector

The nuclear positions can be expressed as

Rnν = tn + dν + bnν , (3.10)

wheretn is a lattice vector,dν is a basis vector within the unit cell, andbnν is the instantaneous

displacement of atomν in cell n. We consider in this section a phonon of wavevectorq = 0, so

that the perturbation does not change the periodicity of thecrystal, and the perturbed wavefunc-

tions satisfy the same periodic boundary condition as the unperturbed ones. To be more precise, we

choose one sublatticeν and one Cartesian directionα and letbnνα = λ (independent ofn), so that

we are effectively moving one sublattice in one direction while while freezing all other sublattice

displacements. Since the electric enthalpy functional of Eq. (2.24) is variational with respect to the

field-polarized Bloch functions under the constraints of orthonormality, a constrained variational

principle exists for the second-order derivative of this functional with respect to atomic displace-

ments [36]. In particular, the correct first-order perturbed wavefunctionsψ(1)
mk

can be obtained by

minimizing the second-order expansion of the total energy with respect to atomic displacements,

F (2)[ψ
(0)
mk; E ] = min

ψ(1)

(
EKS[ψ

(0)
mk;ψ

(1)
mk]

−ΩPmac[ψ
(0)
mk

;ψ
(1)
mk

] · E
)(2)

, (3.11)

subject to the constraints

〈ψ(0)
mk|ψ

(1)
nk 〉 = 0 (3.12)

(wherem andn run over occupied states). The fact that only zero-order andfirst-order wavefunc-

tions appear in Eq. (3.11) is a consequence of the “2n+1 theorem.”[36]



26

Recalling that|ψ(1)
nk 〉 is the first-order wavefunction response to a small real displacementλ of

basis atomν along Cartesian directionα, we can expand the external potential as

vext(r) = v
(0)
ext(r) + v

(1)
ext,να(r)λ+ v

(2)
ext,να(r)λ

2 + ... (3.13)

where

v
(1)
ext,να(r) =

∑

n

∂vext(r)

∂Rnνα
, (3.14)

v
(2)
ext,να(r) =

∑

n

∂2vext(r)

∂R2
nνα

, (3.15)

etc. From this we shall construct the second-order energyF (2) of Eq. (3.11), which has to be

minimized in order to find|ψ(1)
nk 〉. The minimized value ofF (2) gives, as a byproduct, the diagonal

element of the force-constant matrix associated with displacementνα. Once the|ψ(1)
nk 〉 have been

computed for allνα, the off-diagonal elements of the force-constant matrix can be calculated using

a version of the2n + 1 theorem as will be described in Sec. 3.2.2.

3.2.1 Discretized k mesh

In practice, we always work on a discretized mesh of k-points, and we have to take into account the

orthogonality constraints among wavefunctions at a given k-point on the mesh. Here, we are fol-

lowing the “perturbation expansion after discretization”(PEAD) approach introduced in Ref. [44].

That is, we write down the energy functional in its discretized form, and then consistently derive

perturbation theory from this energy functional. Introducing Lagrange multipliersΛk,mn to enforce

the orthonormality constraints

〈ψmk|ψnk〉 = δmn, (3.16)

whereψnk are the Bloch wavefunctions, and lettingN be the number of k-points, the effective

total-energy functional of Eq. (2.24) can be written as

F = FKS + FBP + FLM (3.17)
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whereFKS = EKS, FBP = −ΩPmac · E , andFLM are the Kohn-Sham, Berry-phase, and Lagrange-

multiplier terms, respectively. The first and last of these are given by

FKS =
f

N

occ∑

kn

〈ψnk|T + vext|ψnk〉 + EHxc[n], (3.18)

and

FLM = − f

N

occ∑

k,mn

Λk,mn(〈ψmk|ψnk〉 − δmn), (3.19)

whereN is the number of k-points in the BZ. As for the Berry-phase term, we modify the notation

of Eq. (2.22) slightly to write this as

FBP = −ef
2π

3∑

i=1

E · ai
N

(i)
⊥

∑

k

Dk,k+gi
(3.20)

where

Dkk′ = Im ln detSkk′ (3.21)

andgi is the reciprocal lattice mesh vector in lattice directioni. (That is,k andk+gi are neighbor-

ing k-points in one of theN (i)
⊥ strings of k-points running in the reciprocal lattice direction conjugate

to ai.) Recall that the matrix of Bloch overlaps was defined in Eq. (2.23).

We now expand all quantities in orders of the perturbation, e.g.,Λ(λ) = Λ(0)+λΛ(1)+λ2Λ(2)+

..., etc. Similarly, we expandSkk′(λ) = S
(0)
kk′ + λS

(1)
kk′ + λ2S

(2)
kk′ + ... where

S
(1)
kk′,mn = 〈u(0)

mk
|u(1)
nk′〉 + 〈u(1)

mk
|u(0)
nk′〉 , (3.22)

S
(2)
kk′,mn = 〈u(0)

mk
|u(2)
nk′〉 + 〈u(1)

mk
|u(1)
nk′〉

+ 〈u(2)
mk|u

(0)
nk′〉 , (3.23)

and we also define

Q
k′k

= [S
(0)
kk′ ]

−1 (3.24)
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to be the inverse of the zero-orderS matrix. Applying the2n + 1 theorem to Eq. (3.17), the

variational second-order derivative of the total-energy functional is

F (2) = F
(2)
KS + F

(2)
BP + F

(2)
LM (3.25)

where

F
(2)
KS =

1

N

occ∑

k,m

[
〈ψ(1)

mk|T (0) + v
(0)
ext|ψ

(1)
mk〉 + 〈ψ(0)

mk|v
(1)
ext|ψ

(1)
mk〉

+〈ψ(1)
mk|v

(1)
ext|ψ

(0)
mk〉

]
+ E

(2)
Hxc[n] , (3.26)

F
(2)
BP = −ef

4π

3∑

i=1

E · ai
N

(i)
⊥

∑

k

D
(2)
k,k+gi

, (3.27)

F
(2)
LM =

1

N
−

∑

k,mn

[
Λ

(1)
k,mn

(
〈ψ(1)

mk|ψ
(0)
nk 〉 + 〈ψ(0)

mk|ψ
(1)
nk 〉

)

+Λ
(0)
k,mn〈ψ

(1)
mk|ψ

(1)
nk 〉

]
. (3.28)

In the Berry-phase term, Eq. (3.27), we use the approach of Ref. [44] to obtain the expansion of

ln detSkk′ with respect to the perturbation. It then follows that

D
(2)
kk′ = Im Tr [ 2S

(2)
kk′Qk′k

− S
(1)
kk′Qk′k

S
(1)
kk′Qk′k

] (3.29)

whereS(2), S(1) andQ are regarded asL × L matrices (L is the number of occupied bands), ma-

trix products are implied, and Tr is a matrix trace running over the occupied bands. Finally, in the

Lagrange-multiplier term, Eq. (3.28), a contributionΛ
(2)
k,mn(〈ψ

(0)
mk|ψ

(0)
nk 〉 − δmn) has been dropped

from Eq. (3.28) because the zero-order wavefunctions, which have been calculated in advance, al-

ways satisfy the orthonormality constraints〈ψ(0)
mk

|ψ(0)
nk 〉 = δmn. Moreover, the zero-order Lagrange

multipliers are made diagonal by a rotation among zero-order wavefunctions at each k point, and

the first-order wavefunctions are made orthogonal to the zero-order ones at each iterative step, so
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that Eq. (3.28) simplifies further to become just

F
(2)
LM = −ǫmk〈ψ(1)

mk
|ψ(1)
mk

〉 . (3.30)

Here, we have restored the notationǫmk = Λ
(0)
k,mm for the diagonal zero-order Lagrange multipliers.

3.2.2 Conjugate-gradient minimization

The second-order expansion of the electric enthalpy functional in Eq. (3.25) is minimized with

respect to the first-order wavefunctions using a “band-by-band” conjugate-gradient algorithm [8,

45]. For a given pointk and bandm, the steepest-descent direction at iterationj is |ζmk,j〉 =

∂F (2)/∂〈u(1)
mk|, whereF (2) is given by Eqs. (3.26-3.27) and (3.30). The derivatives ofF

(2)
KS and

F
(2)
LM are straightforward; the new element in the presence of an electric field is the term

∂E
(2)
BP

∂〈u(1)
mk|

= − ief
4π

3∑

i=1

E · ai
N

(i)
⊥

(
|Dmk,k+gi

〉 − |Dmk,k−gi
〉
)

(3.31)

where

Dmkk′ =
(
|u(1)

k′ 〉Qk′k
− |u(0)

k′ 〉Qk′k
S

(1)
kk′Qk′k

)
m
. (3.32)

In this equation,|u(1)
k′ 〉 and|u(0)

k′ 〉 are regarded as vectors of lengthL (e.g.,|u(1)
mk′〉, m = 1, L), and

vector-matrix and matrix-matrix products of dimensionL are implied inside the parentheses. The

standard procedure translates the steepest-descent directions |ζmk,j〉 into preconditioned conjugate-

gradient search directions|ϕmk,j〉. An improved wavefunction for iterationj + 1 is then obtained

by letting

|u(1)
mk,j+1〉 = |u(1)

mk,j〉 + θ|ϕmk,j〉 , (3.33)

whereθ is a real number to be determined. Since theθ-dependence ofF (2)(θ) is quadratic, the

minimum ofF (2) along the conjugate-gradient direction is easily determined to be

θmin = −1

2

dF (2)

dθ

∣∣∣∣
θ=0

(
d2F (2)

dθ2

∣∣∣∣
θ=0

)−1

. (3.34)
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Construction of the force-constant matrix

To calculate phonon frequencies, we have to construct the force-constant matrix

Φνα,µβ =
∂2F

∂Rνα∂Rµβ
. (3.35)

Each diagonal elementΦµβ,µβ has already been obtained by minimizing theF (2) in Eq. (3.25) for

the corresponding perturbationµβ. The off-diagonal elementsΦνα,µβ can also be determined using

only the first-order wavefunctionsu(1)
mk,µβ using the (non-variational) expression

Φνα,µβ =
2Ω

(2π)3

∫

BZ

occ∑

m

(
〈u(0)
mk

|v(1)
ext,να + v

(1)
Hxc,να|u

(1)
mk,µβ〉

+〈u(0)
mk|v

(2)
ext,να,µβ|u

(0)
mk〉

)
dk +

1

2
E

(2)
Hxc,να,µβ (3.36)

wherev(1)
ext,να = ∂vext/∂Rνα etc.

3.3 Phonon perturbation with nonzero wavevector

In the case of a phonon of arbitrary wavevectorq, the displacements of the atoms are essentially of

the formbnνα = λ exp(iq ·tn), whereλ is a complex number. However, a perturbation of this form

does not lead by itself to a Hermitian perturbation of the Hamiltonian. This is unacceptable, because

we want the second-order energy to remain real, so that it canbe straightforwardly minimized. Thus,

we follow the approach of Ref. [8] and take the displacementsto be

bnνα = λ eiq·tn + λ∗ e−iq·tn , (3.37)

leading to

vext(r) = v
(0)
ext(r) + λ v

(1)
ext,να,q(r) + λ∗ v

(1)
ext,να,−q(r)

+ λ2 v
(2)
ext,να,q,q(r) + λ∗2 v

(2)
ext,να,−q,−q(r)

+ λλ∗ v
(2)
ext,να,q,−q(r) + λ∗λ v

(2)
ext,να,−q,q(r)

+ ... (3.38)
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where

v
(1)
ext,να,±q(r) =

∑

n

∂vext(r)

∂Rnνα
e±iq·tn , (3.39)

v
(2)
ext,να,±q,±q(r) =

∑

nm

∂2vext(r)

∂Rnνα∂Rmνα
e±iq·tn e±iq·tm , (3.40)

etc. Similarly, the field-dependent Bloch wavefunctionsψ and enthalpy functionalF can also be

expanded in terms ofλ and its hermitian conjugate as

ψmk(r) = ψ
(0)
mk(r) + λψ

(1)
mk,q(r) + λ∗ ψ

(1)
mk,−q(r) + ... (3.41)

and

F [E ] = λF (0)[E ] + F
(1)
q [E ] + λ∗F

(1)
−q [E ]

+ λ2F
(2)
q,q[E ] + 2λλ∗F

(2)
q,−q[E ]

+ λ∗2F
(2)
−q,−q[E ] + ... . (3.42)

The first-order wavefunctions in response to a perturbationwith wavevectorq have translational

properties

ψ
(1)
mk,q(r + R) = ei(k+q)·Rψ

(1)
mk,q(r) (3.43)

that differ from those of the zero-order wavefunctions

ψ
(0)
mk(r + R) = eik·Rψ

(0)
mk(r) . (3.44)

As a result, we cannot simply work in terms of perturbed Blochfunctions or use the usual Berry-

phase expression in terms of strings of Bloch functions. Also, in contrast to theq=0 case, in which

only one set of first-order wavefunctions was needed, we now need to solve for two setsψ(1)
mk,±q

corresponding to the non-Hermitian perturbation at wavevector q and its Hermitian conjugate at

wavevector−q [8].
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We now proceed to write out the second-order energy functional F (2)[ψ
(0)
mk;ψ

(1)
mk,±q; E ], cor-

responding to the sum of the quadratic terms in Eq. (3.42), and minimize it simultaneously with

respect toψ(1)
mk,q andψ(1)

mk,−q
.

First, making the same decomposition as in Eq. (3.25), we findthat the Kohn-Sham part is

F
(2)
KS = E

(2)
q,−q[ψ

(0)
mk;ψ

(1)
mk,−q] + E

(2)
−q,q[ψ

(0)
mk;ψ

(1)
mk,q] , (3.45)

where

E
(2)
−q,q =

2Ω

(2π)3

∫

BZ

occ∑

m

(
〈u(1)
mk,q|v

(0)
ext,k+q,k+q|u

(1)
mk,q〉

+〈u(1)
mk,q|v

(0)
Hxc,k+q,k+q|u

(1)
mk,q〉

+〈u(1)
mk,q|v

(1)
ext,k+q,k + v

(1)
Hxc,k+q,k|u

(0)
mk

〉

+〈u(0)
mk

|v(1)
ext,k,k+q

+ v
(1)
Hxc,k,k+q

|u(1)
mk,q〉

+〈u(0)
mk|v

(2)
ext,k,k|u

(0)
mk〉

)
dk +

1

2
E

(2)
Hxc . (3.46)

Note that termsE(2)
q,q andE(2)

−q,−q vanish, essentially because such terms transform like perturba-

tions of wavevector±2q which, except when2q equals a reciprocal lattice vector, are inconsistent

with crystal periodicity and thus cannot appear in the energy expression. (If2q is equal to a recip-

rocal lattice vector,E(2)
q,q andE(2)

−q,−q still vanish, as can be shown using time-reversal symmetry.)

Second, we consider the Berry-phase coupling term. The treatment of this term is rather subtle

because, as mentioned above, the perturbed wavefunctions are now admixtures of parts with period-

icity as in Eq. (3.43) and as in Eq. (3.44), so that the usual Berry-phase formula for the polarization

[20] cannot be used. A different approach is needed now in order to express the polarization in

terms of the perturbed wavefunctions. For this purpose, we consider a virtual supercell in which

the wavevectorsk andq would be commensurate, and make use of the definition introduced by

Resta [46] specialized to the non-interacting case. The details of this treatment are deferred to the
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Appendix, but the results can be written in the relatively simple form

F
(2)
BP = −ef

2π

3∑

i=1

E · ai
N

(i)
⊥

∑

k

D
(2)
k

(gi) (3.47)

where

D
(2)
k (g) = Tr

[
S

(1,1)
k,k+gQk+g,k − S

(1,0)
k,k+g−q

×Qk+g−q,k−qS
(0,1)
k−q,k+gQk+g,k

]
(3.48)

with Qk′k given by Eq. (3.24) and the superscript notationS(s,t) = ∂s+tS/∂(λ∗)s∂λt. From

Eqs. (2.23) and (3.43), we can write these explicitly as

S
(1,0)
kk′,mn = 〈ψ(0)

mk
|e−ig·r|ψ(1)

nk′,q〉

+〈ψ(1)
mk,−q

|e−ig·r|ψ(0)
nk′〉 , (3.49)

S
(0,1)
kk′,mn = 〈ψ(0)

mk
|e−ig·r|ψ(1)

nk′,−q
〉

+〈ψ(1)
mk,q|e−ig·r|ψ

(0)
nk′〉 , (3.50)

S
(1,1)
kk′,mn = 〈ψ(1)

mk,q|e−ig·r|ψ
(1)
nk′,q〉

+〈ψ(1)
mk,−q|e−ig·r|ψ

(1)
nk′,−q〉 . (3.51)

Third, the treatment of the Lagrange-multiplier term is straightforward; in analogy with Eq. (3.30),

we obtain

F
(2)
LM = −ǫmk

(
〈ψ(1)

mk,q|ψ
(1)
mk,q〉 + 〈ψ(1)

mk,−q|ψ
(1)
mk,−q〉

)
. (3.52)

If we look closely at Eq. (3.48), we see that the second term involves not simply pairs of k-points

separated by the mesh vectorg, butquartetsof k-points, as illustrated in Fig. 3.1. Reading from left

to right in the second term of Eq. (3.48), the k-point labels arek, thenk + g − q, thenk− q, then

k + g, and finally back tok. This is the loop illustrated in Fig. 3.1. Each dark arrow represents a
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(a)

k

k+g

(b)

k

k+g-q

k-q

k+g

q

Figure 3.1: Pattern of couplings between k-points arising in (a) the first term, and (b) the second
term, of Eq. (3.48). Reciprocal vectorq is the phonon wavevector, whileg is a primitive vector of
the k-point mesh (indicated by thin horizontal and verticallines).

matrix element ofS(1,0), S(0,1), orQ; the gray arrow indicates the phononq-vector. These loops

arise because there are two kinds of coupling between k-points entering into the present theory. First,

even in the absence of the phonon perturbation, wavevectorsat neighboring k-points separated by

mesh vectorg are coupled by theE ·P term in the energy functional. Second, the phonon introduces

a perturbation at wavevectorq. It is the interplay between these two types of inter-k-point coupling

that is responsible for the appearance of these four-point loops in the expression forF (2)
BP .

The implementation of the conjugate-gradient minimization algorithm proceeds in a manner

very similar to that outlined in Sec. 3.2.2. Naively, one would have to work simultaneously with the

two search-direction vectors

|ζmk,q〉 = ∂F (2)/∂〈u(1)
mk,q| ,

|ζmk,−q〉 = ∂F (2)/∂〈u(1)
mk,−q

| , (3.53)

whereu(1)
mk,±q are the periodic parts ofψ(1)

mk,±q. However, minimizing the second-order energy

F (2) with respect to two sets of first-order wavefunctionsunk,±q would double the computational

cost and would involve substantial restructuring of existing computer codes. We can avoid this by

using the fact that the second-order energy is invariant under time reversal to eliminate one set of
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first-order wavefunctionsψ(1)
nk,−q in favor of the other setψ(1)

nk,q following the approach given in

Ref. [8]. Specifically, the two sets of first-order wavefunctions are related by

ψ
(0)
nk (r) = eiθnkψ

(0)∗
n−k(r) , (3.54)

ψ
(1)
nk,q(r) = eiθnkψ

(1)∗
n−k,−q(r) , (3.55)

whereθnk is an arbitrary phase independent ofr. The arbitrary phaseθnk cancels out in the expres-

sion ofF (2) since every term inF (2) is independent of the phase of the first-order wavefunctions.

Thus, we chooseθnk = 0 for simplicity and write the second-order energy functional in terms of

wavefunctionsψnk,q only.

The minimization procedure now proceeds in a manner similarto the zero-wavevector case,

except that the calculation of the Berry-phase part involves some vector-matrix-matrix products as

in Eq. (3.32), but circulating around three of the sides of the loop in Fig. 3.1. SinceF (2) remains in a

quadratic form, the minimum ofF (2) is again easily searched along the conjugate-gradient direction.

Wavefunctions are updated over k-points one after another,and the first-order wavefunctions are

updated. This procedure continues until the self-consistent potential is converged. Once the first-

order responses of wavefunctions are obtained, the diagonal elements of the dynamical matrix are

obtained by evaluatingF (2), and the off-diagonal elements are obtained from a straightforward

generalization of Eq. (3.36),

Φνα,µβ =
2Ω

(2π)3

∫

BZ

occ∑

m

(
〈u(0)
mk

|v(1)
ext,να,k,k+q

|u(1)
mk,µβ,q〉

+〈u(0)
mk

|v(1)
Hxc,να,k,k+q

|u(1)
mk,µβ,q〉

+〈u(0)
mk|v

(2)
ext,να,µβ |u

(0)
mk〉

)
dk

+
1

2
E

(2)
Hxc,να,µβ . (3.56)
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3.4 Electric field perturbation

We start from the electric enthalpy functional [44, 33]

F [R;ψ; E ] = EKS[R;ψ] − ΩE · P[ψ] , (3.57)

whereR, E , Ω andP are, respectively, the atomic coordinates, the electric field, the cell volume, and

the macroscopic polarization,EKS is Kohn-Sham energy functional at zero electric field, and atomic

units are used throughout. After minimizing this functional, the field-polarized Bloch functionsψ

may be regarded as depending implicitly on the electric fieldE . Our treatment of this functional

will parallel the treatment given in Sec. 3.3.

In the present case, we take the electric fieldE to consist of two parts, a finite partE(0) and a

small variationδE . In the following, we consider the perturbation expansion of the functional in

Eq. (2.24) with respect to the small variationδE under the orthonormality constraints

〈ψmk|ψnk〉 = δmn . (3.58)

The wave functions are to be relaxed, subject to these constraints, in such a way as to minimize the

electric enthalpy functional

F = FKS + FBP + FLM , (3.59)

whereFKS = EKS is the Kohn-Sham energy (as it would be calculated atE = 0), FBP = −ΩE ·P

contains the coupling of the Berry-phase polarizationP to the electric field, and the constraint is

implemented by the inclusion of the Lagrange-multiplier termFLM. The first and last of these terms

are given by

FKS =
f

Nk

occ∑

kn

〈ψnk|T + vext|ψnk〉 + EHxc[n] (3.60)

and

FLM = − f

Nk

occ∑

k,mn

Λk,mn(〈ψmk|ψnk〉 − δmn) (3.61)
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wheref is the spin degeneracy (normallyf=2), Nk is the number ofk-points, andΛk,mn is the

matrix of Lagrange multipliers. In a notation similar to that of Sec. 3.2, the second term may be

written as

FBP = −ef
2π

3∑

i=1

E · ai
N

(i)
⊥

∑

k

Dk,k+gi
. (3.62)

Hereai are the three primitive real-space lattice vectors, and themesh ofNk k-points is defined

by mesh vectorsgi = bi/N
(i) wherebi is the reciprocal lattice vector dual toai. Thus,Nk =

N (1)N (2)N (3), and we also defineN (i)
⊥ = Nk/N

(i) as the number ofk-point strings running in

directioni. Finally,

Dkk′ = Im ln detSkk′ (3.63)

where the overlap matrix is defined as

(Skk′)mn = 〈umk|unk′〉 . (3.64)

In order to obtain the desired response properties, we now wish to expand the finite-field en-

thalpy functionalFKS up to second order in the electric field. We shall assume for the moment that

the electric field is applied in Cartesian directionα only. The expansion ofFKS with respect to

atomic displacements was already obtained in Sec. 3.2, and the expansion with respect to electric

field can be carried through in a very similar way. Indeed, thesecond-order expansions ofFKS and

FLM can essentially be transcribed from Sec. 3.2 with the first-order wave functions with respect to

displacement replaced here by the first-order wave functions with respect to electric field, giving

F
(2)
KS =

1

2

∂2FKS

∂E2
α

=
f

Nk

∑

k

occ∑

n=1

〈uEα

nk|T + vext|uEα

nk〉

+EEαEα

Hxc (3.65)
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and

F
(2)
LM = − f

Nk

occ∑

k,n

Λ
(0)
k,nn〈u

Eα

nk|u
Eα

nk〉 . (3.66)

As in Sec. 3.2, terms that can be eliminated by use of the “2n + 1 theorem” (e.g.,〈uEαEα

nk |T +

vext|u
(0)
nk〉) have been dropped. The the first-order wave functions are

|uEα

nkj
〉 =

∂|unkj
〉

∂Eα
(3.67)

and the second-orderEHxc are

EEαEα

Hxc =
∂2EHxc

2∂Eα∂Eα
. (3.68)

In these and subsequent equations, the partial derivativesindicate that thestructuralcoordinatesR

are being held fixed (while, however, thewave functions|unk〉 are allowed to vary).

The second-order expansion ofFBP with respect to electric field requires somewhat more care.

We find

F
(2)
BP =

1

2

∂2FBP

∂E2
α

= −Ω

2

∂2(E · P)

∂E2
α

= −Ω(êα ·PEα + E(0) ·PEαEα) , (3.69)

whereêα is the unit vector along Cartesian directionα. The first term in the last line of Eq. (3.69)

is special to the case of the electric-field perturbation, while the second term can be derived in close

correspondence to the case of displacement perturbations in Sec. 3.2. The first-order variation ofP

with field Eα is

PEα = − ef

2πΩ

3∑

i=1

ai

N
(i)
⊥

∑

k

D
(1)
k,k+gi

(3.70)

and its second-order variation is

PEαEα = − ef

4πΩ

3∑

i=1

ai

N
(i)
⊥

∑

k

D
(2)
k,k+gi

, (3.71)
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where

D
(1)
k,k+gi

= ImTr
[
S

(1)
k,k+gi

Qk+gi,k

]
(3.72)

and

D
(2)
k,k+gi

= ImTr
[
2S

(2)
k,k+gi

Qk+gi,k

−S(1)
k,k+gi

Qk+gi,kS
(1)
k,k+gi

Qk+gi,k

]
. (3.73)

In these equations, ‘Tr’ indicates a trace of the bracketed matrix over band indices, andQ, S(1), and

S(2) are defined with respect to the series expansion of the overlap matrix via

Skk′(Eα) = S
(0)
kk′ + EαS(1)

kk′ + E2
αS

(2)
kk′ + ... (3.74)

and

Qkk′ = [S
(0)
k′k

]−1 . (3.75)

The first- and second-order expansions of the overlap matrixtake the form

S
(1)
k,k′,mn = 〈uEα

mk|u
(0)
nk′〉 + 〈u(0)

mk|u
Eα

nk′〉 (3.76)

and

S
(2)
k,k′,mn = 〈uEα

mk|u
Eα

nk′〉 . (3.77)

In the last equation above, terms like〈uEαEα

mk |u(0)
nk′〉 have again been dropped by virtue of the “2n+1

theorem.”

3.4.1 First-order wave functions with respect to electric-field perturbation

The second-order term in the expansion of the energy functional, given by the sumF (2) = F
(2)
KS +

F
(2)
BP + F

(2)
LM of the expressions in Eqs. (3.65), (3.69), and (3.66) respectively, is minimized with
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respect to the first-order wave functions|uEα

nk〉 using standard conjugate-gradient methods. The

steepest-descent direction is obtained from the gradient of F (2) with respect to〈uEα

nk|, whose contri-

butions take the form

δF
(2)
KS

δuEα∗
nk

=
f

Nk

[(
T + v

(0)
ext

)
|uEα

nk〉 +
δEEαEα

Hxc

δuEα∗
nk

]
, (3.78)

δF
(2)
BP

δuEα∗
nk

=
ief

4π

3∑

i=1

E(0) · ai
N

(i)
⊥

(
|Cmk,k+gi

〉 − |Cmk,k−gi
〉
)

+
ief

4π

3∑

i=1

êα · ai
N

(i)
⊥

(
|Dmk,k+gi

〉 − |Dmk,k−gi
〉
)
,

(3.79)

and

δF
(2)
LM

δuEα∗
nk

=
f

Nk
ǫ
(0)
nk |u

Eα

nk〉 . (3.80)

Here

Cmkk′ =
(
|uEα

k′ 〉Qk′k − |u(0)
k′ 〉Qk′kS

(1)
kk′Qk′k

)
m
, (3.81)

Dmkk′ =
(
|u(0)

k′ 〉Qk′k

)
m
, (3.82)

andǫ(0)nk is the diagonal zero-order matrix of Lagrange multipliers.Convergence of the conjugate-

gradient procedure yields a set of first-order wave functions |uEα

nk〉. These then become the essential

ingredients for constructing the dielectric and Born charge tensors as discussed below.

3.4.2 Dielectric permittivity tensor

The dielectric permittivity tensor can be written as

ǫ∞αβ = δαβ + 4πχαβ (3.83)
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where the electric susceptibility tensorχαβ at afinite electric field is defined as

χαβ = − 1

Ω

∂2F(E)

∂Eα∂Eβ

∣∣∣∣
E=E(0)

=
∂Pα
∂Eβ

∣∣∣∣
E=E(0)

= êα ·PEβ . (3.84)

The derivativePEβ of the polarization with respect to electric field is alreadygiven by Eq. (3.70).

Since the first-order wave functions|uEα

nk〉 have already been obtained in Sec. 3.4.1, it is straightfor-

ward to evaluate Eq. (3.84) and thus obtain the polarizability and permittivity.

The dielectric responses above are the static responses computed with atomic coordinates frozen.

That is, they correspond to the dielectric response that would be measured at frequencies low com-

pared to electronic frequencies but high compared to any infrared-active phonon modes. The true

static susceptibility could be computed by including the lattice displacements (and, if appropriate,

the piezoelectric strains) using, e.g., the methods of Ref.[47].

3.4.3 Born effective charge tensor

The electronic contribution to the Born effective charge tensor at finite electric field takes the form

Z∗
κ,αβ = − ∂2F (E)

∂Eα∂τκ,β

∣∣∣∣
E=E(0)

. (3.85)

This expression can be calculated equivalently in two different ways. First, introducing the force

fκ,α = −∂F (E)/∂τκ,α acting on atomκ in directionα, it can be written as

Z∗
κ,αβ =

∂fκ,β
∂Eα

. (3.86)

Using the Hellmann-Feynman theorem, the expression for theforce is given as

fκ,β =
f

Nk

∑

k

occ∑

n=1

〈u(0)
nk |(T + vext)

τκ,β |u(0)
nk〉 , (3.87)

and taking an additional derivative with respect to electric field yields

Z∗
κ,αβ =

2f

Nk

∑

k

occ∑

n=1

〈u(0)
nk |(T + vext)

τκ,β |uEα

nk〉 . (3.88)
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This has essentially the same form as Eq. (43) in Ref. [9], except that here the zero-order wave

functions are already polarized by the preexisting finite electric field.

Alternatively, Eq. (3.85) can be computed as the derivativeof the polarization with respect to

the displacement,

Z∗
κ,αβ = Ω

∂Pα
∂τκ,β

= Ωêα ·Pτκ,β . (3.89)

HerePτκ,β takes a form very similar to that of Eq. (3.70), except that the first-order changes|uEα

nkj
〉

in the wave functions in response to an electric field are replaced by the corresponding changes

|uτκ,β

nkj
〉 in response to a sublattice displacement. The computation of the |uτκ,β

nkj
〉 has already been

described in detail in Sec. 3.2.

The computation of the first-order derivatives of the wave functions is typically the most time-

consuming step of the linear-response calculation. Therefore, for a complicated unit cell with many

atomsM per cell, the computation of the three derivatives|uEα〉 will be much cheaper than that of

the3M derivatives|uτκ,β 〉, and the method of Eq. (3.88) will therefore be significantlyfaster than

the method of Eq. (3.89). In the special case that the displacement derivatives|uτκ,β 〉 have already

been computed for some other reason (e.g., for the purpose ofcomputing the phonon frequencies

in finite field), the use of the latter method may be advantageous. In any case, a comparison of

the two methods should provide a useful check on the internalconsistency of the theory and its

computational implementation.



43

3.5 Test calculations for III-V semiconductors

3.5.1 Phonon frequencies

In order to test our method, we have carried out calculationsof the frequency shifts induced by

electric fields in two III-V semiconductors, AlAs and GaAs. We have chosen these two materi-

als because they are well-studied systems both experimentally and theoretically, and because the

symmetry allows some phonon mode frequencies to shift linearly with electric field while others

shift quadratically. Since our main purpose is to check the internal consistency of our theoretical

approach, we focus on making comparisons between the shiftscalculated using our new linear-

response method and those calculated using standard finite-difference methods. Moreover, as men-

tioned at the start of Sec. 3.1.1, we have chosen to neglect changes in phonon frequencies that

enter through the electric-field induced strains (piezoelectric and electrostrictive effects), and we do

this consistently in both the linear-response and finite-difference calculations. For this reason, our

results are not immediately suitable for comparison with experimental measurements.

Our calculations are carried out using a plane-wave pseudopotential approach to density-functional

theory. We use the ABINIT code package [48], which incorporates the finite electric field method

of Souzaet al. [33] for the ground-state and frozen-phonon calculations in finite electric field. We

then carried out the linear-response calculations with a version of the code that we have modified to

implement the linear-response formulas of the previous section.

The details of the calculations are as follows. We use Troullier-Martins norm-conserving pseu-

dopotentials [49], the Teter Pade parameterization [50] ofthe local-density approximation, and a

plane-wave cutoff of 16 Hartree. A 10×10×10 Monkhorst-Pack [51] k-point sampling was used,

and we chose lattice constants of 10.62Å and 10.30Å for AlAs and GaAs, respectively. The crystals

are oriented so that the vector(a/2)(1, 1, 1) points from a Ga or Al atom to an As atom.
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Table 3.1: Calculated frequency shifts, in cm−1, induced by an electric field of5.14 × 108 V/m
applied alongx in GaAs and AlAs (This field is larger than the breakdown field of GaAs 1.8 ×
107 V/m). ‘FD’ are the results of finite-difference (frozen-phonon) calculations in which atoms
are displaced by hand and restoring forces are calculated, while ‘LR’ refers to the use of the linear-
response developed here. The L and X points are at(2π/a)(1, 1, 1) and(2π/a)(1, 0, 0) respectively.

GaAs AlAs
Mode FD LR FD LR
Γ O1 1 −3.856 −3.856 −5.941 −5.941
Γ O2 1 −0.282 −0.281 −0.300 −0.299
Γ O3 1 3.548 3.548 5.647 5.647
L LO 2.701 2.703 4.282 4.282
L TO1 −3.749 −3.749 −5.663 −5.663
L TO2 0.567 0.564 0.952 0.952
X LO 0.050 0.050 −0.243 −0.243
X TO1 −3.953 −3.953 −6.083 −6.083
X TO2 3.753 3.753 5.919 5.919

Table 3.1 shows the changes in phonon frequencies resultingfrom an electric field applied along

a Cartesian direction at several high-symmetry q-points inGaAs and AlAs. Both the electronic and

ionic contributions, Eqs. (3.3-3.4), are included. We firstrelaxed the atomic coordinates in the

finite electric field until the maximum force on any atom was less than10−6 Hartree/Bohr. We then

carried out the linear-response calculation, and in addition, to check the internal consistency of our

linear-response method, we carried out a corresponding calculation using a finite-difference frozen-

phonon approach. For the latter, the atoms were displaced according to the normal modes obtained

from our linear-response calculation, with the largest displacement being 0.0025 Bohr. (Because

the electric field lowers the symmetry, the symmetry-reduced set of k-points is not the same as in

the absence of the electric field.) The agreement between thefinite-different approach and the new

linear-response implementation can be seen to be excellent, with the small differences visible for

some modes being attributable to truncation in the finite-difference formula and the finite density of

the k-point mesh.

In Table 3.2, we decompose the frequency shifts into the ionic contribution∆ωion(q; E) and the
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electronic contribution∆ωel(q; E) defined by Eqs. (3.4) and (3.3), respectively, calculated using the

linear-response approach. It is clear that the largest contributions are ionic in origin. For example,

the large, roughly equal and opposite shifts of the O1 and O3 modes atΓ arise from the ionic

terms. However, there are special cases (e.g., O2 atΓ and LO at X) for which the ionic contribution

happens to be small, so that the electronic contribution is comparable in magnitude.

The pattern of ionic splittings appearing atΓ can be understood as follows. Because the non-

analytic long-range Coulomb contribution is not included,the three optical modes atΓ are initially

degenerate with frequencyω0 in the unperturbed lattice. A first-order electric field along x induces

a first-order relative displacementux of the two sublattices, also alongx. By symmetry considera-

tions, the perturbed dynamical matrix is given, up to quadratic order inux, as

D(Γ) = ω2
0




1 + µu2
x 0 0

0 1 + νu2
x κux

0 κux 1 + νu2
x




. (3.90)

The off-diagonalκ term arises from theExyz coupling in the expansion of the total energy in

displacements; this is the only third-order term allowed bysymmetry. Theµ andν terms arise from

fourth-order couplings of the formExxxx andExxyy respectively. The eigenvalues of this matrix

are proportional to1 + µu2
x and1 ± κux + νu2

x. Thus, two of the modes should be perturbed at

first order in the field-induced displacements with a patternof equal and opposite frequency shifts,

while all three modes should have smaller shifts arising from the quadratic terms. This is just what

is observed in the pattern of frequency shifts shown in Table3.2. (The symmetry of the pattern

of electronic splittings is the same, but it turns out that the linear shift is much smaller in this

case, so that for the chosen electric field, the linear and quadratic contributions to the electronic

frequency shift have similar magnitudes.) A similar analysis can be used to understand the patterns

of frequency shifts at theL andX points.
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Table 3.2: Same as in Table 3.1, but with the frequency shiftsdecomposed into ionic and electronic
contributions as defined in Eqs. (3.4) and (3.3) respectively.

GaAs AlAs
Ion Elec. Ion Elec.

Γ O1 1 −3.659 −0.198 −5.684 −0.257
Γ O2 1 −0.146 −0.135 −0.123 −0.177
Γ O3 1 3.655 −0.107 5.589 0.058
L LO 2.341 0.362 3.633 0.649
L TO1 −3.486 −0.262 −5.628 −0.034
L TO2 1.181 −0.617 1.658 −0.707
X LO 0.122 −0.073 −0.033 −0.209
X TO1 −3.411 −0.543 −5.658 −0.424
X TO2 3.388 0.365 5.609 0.310
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Figure 3.2: Frequency shifts induced by an electric field of 5.14×108 V/m alongx in AlAs, plotted
alongΓ to L. Filled and open symbols indicate the total shift∆ωel + ∆ωion and the electronic
contribution∆ωel respectively.
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We have also plotted, in Fig. 3.2, the calculated total frequency shift∆ωel(q) + ∆ωion(q) and

its electronic contribution∆ωel(q) along the line fromΓ to L for the case of AlAs. (The ‘LO’ and

‘TO’ symmetry labels are not strictly appropriate here because the electric field alongx mixes the

mode eigenvectors; the notation indicates the mode that would be arrived at by turning off the field.)

In contrast to the results presented in Tables 3.1-3.2, the frequencies atΓ in Fig. 3.2 were computed

by including the long-range non-analytic Coulomb contribution for q̂ ‖ (111) in order to extend the

curves toq = 0. (Because the direct linear-response calculation of the dynamical effective charge

and dielectric susceptibility tensors had not yet been developed and implemented in the presence of

a finite electric field, the needed tensor elements were computed by finite differences.) It is clearly

evident that the electronic terms remain much smaller than the ionic ones for all three optical modes

over the entire branch inq-space.

Returning now to the comparison between our exact theory of Sec. 3.1.1 and the approximate

theory of Sec. 3.1.1, we compare the equilibrium positions and phonon frequencies predicted by

these theories in Table 3.3. Recall thatRE is calculated in the approximate theory by using Eq. (3.6).

Using this force, the ion coordinates were again relaxed to atolerance of10−6 (Hartree/Bohr) on

the forces. It can be seen thatRE is predicted quite well by the approximate theory, with errors of

only ∼2%, confirming that the displacements can be calculated to good accuracy using a linearized

Table 3.3: Comparison of ionic displacements and frequencyshifts at theL point in GaAs as com-
puted by the approximate and exact approaches of Sec. 3.1.1 and 3.1.1 respectively, again for an
electric field of5.14 × 108 V/m alongx. RE is the induced displacement of the cation sublattice
alongx, and the∆ωion are ionic contributions to the frequency shifts as defined inEq. (3.4).

RE ∆ωion(L) (cm−1)
(10−3 Å) LO TO1 TO2

GaAs Approx. 5.07 2.63 −3.89 1.37
Exact 4.95 2.34 −3.49 1.18

AlAs Approx. 5.69 3.75 −5.66 1.65
Exact 5.62 3.63 −5.63 1.66
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theory for this magnitude of electric field. The changes in the phonon frequencies resulting from

these displacements (evaluated at zero and non-zero field for the approximate and exact theories

respectively) are listed in the remaining columns of Table 3.3. The discrepancies in the phonon

frequencies are now somewhat larger, approaching 15% in some cases. This indicates that the

approximate theory is able to give a moderately good description of the phonon frequency shifts of

GaAs in this field range, but the exact theory is needed for accurate predictions. (Also, recall that

the approximate theory does not provide any estimate for theelectronic contributions, which are not

included in Table 3.3.)

Finally, we illustrate our ability to calculate the nonlinear field dependence of the phonon fre-

quencies by presenting the calculated opticalL-point phonon frequencies of AlAs in Fig. 3.3 as

a function of electric field alongx. These are again the results of our exact theory, obtained by

including both ionic and electronic contributions. The twoTO modes are degenerate at zero field,

as they should be. All three modes show a linear component that dominates their behavior in this

range of fields. However, a quadratic component is also clearly evident, illustrating the ability of

the present approach to describe such nonlinear behavior.

3.5.2 Born effective charge and dielectric constant

In order to check our method, we have performed test calculations on two prototypical III-V semi-

conductors, AlAs and GaAs, for which the electronic contribution to the polarization is typically

comparable to the ionic contribution [43]. The calculationis carried out using the planewave-

pseudopotential method based on density-functional theory with local-density approximation (LDA).

We use Troullier-Martins norm-conserving pseudopotentials [49] in which the3d states on the Ga

and As atoms are treated as core states. (The omission of the semicore3d states from the valence

on the Ga atom may limit the accuracy of the Ga pseudopotential somewhat.) A16 × 16 × 16
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Figure 3.3: Frequencies of LO and TO modes atL in AlAs as a function of electric field (where
10−3 a.u. =5.14×108 V/m) applied alongx. The symbols have the same interpretation as in Fig. 3.2.

Table 3.4: Calculated electronic dielectric constants of AlAs and GaAs at zero field, and changes
resulting from an electric field of3.08 × 108 V/m along the [100] direction. ‘LR’ and ‘FD’ denote
the results of linear-response [Eq. (3.84)] and finite-difference calculations, respectively.

ǫ∞ ∆ǫ∞,23 ∆ǫ∞,11 ∆ǫ∞,33

AlAs LR 9.681 0.039 0.027 0.013
FD 9.681 0.040 0.027 0.013

GaAs LR 13.315 0.202 0.211 0.104
FD 13.319 0.203 0.207 0.098

Monkhorst-Pack mesh is used for thek-point sampling. More computational details can be found

in Sec. 3.2.

The calculation of the dielectric permittivity tensor and the Born effective charge tensor is car-

ried out in three steps. First, a ground-state calculation at finite electric field is performed using the

Berry-phase approach [33] implemented in theABINIT code, and the field-polarized Bloch func-

tions are stored for the later linear response calculation.Second, the linear response calculation is

carried out to obtain the first-order response of Bloch functions. Third, the matrix elements of the

dielectric and Born effective charge tensors are computed using these first-order responses.
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The first column of Table 3.4 shows the calculated electronicdielectric constants of AlAs and

GaAs at zero electric field, and the remaining ones show the nonzero changes in the dielectric

tensor elements after the application of an electric fieldE(0) of 3.08 × 108 V/m along the [100]

direction. The results obtained with the linear-response approach of Eq. (3.84) are compared with

those calculated by finite differences. In the latter case, polarizations are computed at several values

of the electric field in steps of3.08 × 105 V/m, and the dielectric tensor is calculated using a finite-

difference version of Eq. (3.84). It can be seen that the agreement between the linear-response and

the finite-difference results is excellent, demonstratingthe internal consistency between the two

approaches.

In Table 3.5 we present similar results for the cation Born effective charges of the same two

materials, first at zero field and then again under application of a field ofE(0) of 3.08 × 108 V/m

along the [100] direction. The linear-response results were obtained using Eq. (3.88), but we also

computed the corresponding values using Eq. (3.89) and found agreement between the two linear-

response approaches with a maximum fractional error smaller than10−6 for all values reported. For

the finite-difference comparison, the polarizations were computed at several values of the atomic

displacements in steps of 10−3 Bohr and the Born charge tensors were calculated using a finite-

difference version of Eq. (3.89). It can again be seen the agreement between the linear-response and

the finite-difference results is excellent.

We emphasize that the values of∆ǫ∞ and∆Z∗ reported in Tables 3.4 and 3.5 are purely elec-

tronic or “frozen-ion” ones – that is, the sublattice displacements that would be induced by a truly

static electric fieldE(0) are not included. The results with ionic relaxations are presented in Table

3.6. It is evident that ionic relaxations have neglegible effects on the diagonal elements of dielectric

tensors but moderate effects on the off-diagonal elements.For Born effective charge tensors, the

effects of ionic relaxations are obvious for both diagonal and off-diagonal elements.



51

Table 3.5: Calculated cation Born effective charges of AlAsand GaAs at zero field, and changes
resulting from an electric field of3.08 × 108 V/m along the [100] direction. ‘LR’ and ‘FD’ denote
the results of linear-response [Eq. (3.88)] and finite-difference calculations, respectively.

Z∗ ∆Z∗
23 ∆Z∗

11 ∆Z∗
33

(×10−3) (×10−3) (×10−3)

AlAs LR 2.110 17.23 −0.06 −0.13
FD 2.110 17.22 −0.05 −0.11

GaAs LR 2.186 52.88 −3.42 −3.17
FD 2.186 52.83 −3.36 −3.14

Table 3.6: Calculated changes in electronic dielectric constants and cation Born effective charges of
AlAs and GaAs resulting from an electric field of 3.08×108 V/m along the [100] direction. Here
ions are fullyrelaxedto the electric field.

AlAs GaAs
∆ǫ∞,23 0.024 0.145
∆ǫ∞,11 0.027 0.209
∆ǫ∞,33 0.013 0.101

∆Z∗
23(×10−3) 15.97 53.16

∆Z∗
11(×10−3) −1.405 −1.653

∆Z∗
33(×10−3) −0.431 −1.836

The values ofǫ∞ andZ∗ reported in Tables 3.4 and 3.5 are in good agreement with other

theoretical values in the literature [52, 53, 54] and with experiment. The symmetry is such that the

applied electric field alongx breaks the degeneracy between the diagonal elements of theǫ∞ andZ∗

tensors so thatǫ∞,11 6= ǫ∞,22 = ǫ∞,33 andZ∗
11 6= Z∗

22 = Z∗
33, and introduces non-zero off-diagonal

elementsǫ∞,23 = ǫ∞,32 andZ∗
23 = Z∗

32.

Symmetry considerations also imply thatǫ∞,23 andZ∗
23 should appear to first order inE(0),

while ∆ǫ∞,11, ∆ǫ∞,33, ∆Z∗
11, and∆Z∗

33 should be quadratic inE(0). This is confirmed by our

numerical calculations. Indeed, by repeating calculations like those shown in Tables 3.4 and 3.5 for

several values ofE(0) and fitting to obtain the coefficients of the linear and quadratic dependence, we

can extract information about the nonlinear dielectric response and the Raman tensor. The second-
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Table 3.7: Values of second-order dielectric susceptibility and Raman matrix elements in AlAs, as
defined by Eqs. (3.91) and (3.93) respectively, compared with previous theory and experiment.

χ
(2)
123 (pm/V) |αTO| (Å2)

Present work 62 8.0
Theory,1 Ref. [33] 64
Theory,2 Ref. [55] 70 8.5
Theory,1 Ref. [56] 79 9.0
Theory,2 Ref. [57] 7.4
Experiment, Ref [58] 78±20

and third-order nonlinear dielectric tensors are defined as

χ
(2)
123 =

1

2

∂2P2

∂E1∂E3
=

1

2

∂χ23

∂E1
(3.91)

and

χ
(3)
1111 =

1

6

∂3P1

∂E3
1

=
1

6

∂2χ11

∂E2
1

, (3.92)

while the Raman polarizability tensor is defined by

αTO =
∂2f2

∂E1∂E3
=

∂Z23

∂E1
(3.93)

wheref is the force on the cation sublattice induced by the electricfield. In practice, we calculate

χ23, χ11, andZ∗
23 for a series of finite electric fields oriented along thex-axis with values ofE(0)

ranging from zero to5.14× 108V/m in increments of one-fifth of the maximum value. Fitting these

data to a polynomial inE(0) then gives the values ofχ(2)
123, χ(3)

1111, andαTO. Note thatαTO can

alternatively be expressed as

αTO = Ω
∂χ23

∂τ1
(3.94)

whereτ1 is a cation sublattice displacement andχ23 is computed at zero field. We have also com-

putedαTO by fitting to a series of calculations of this type, and find values ofαTO that agree with

those obtained from Eq. (3.93) within0.3%.
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The results for theχ(2)
123 andαTO values as computed from Eqs. (3.91) and (3.93) are presentedin

Table 3.7 for AlAs, together with some previous theoreticaland experimental values for comparison.

In view of the fact that the calculation of higher-order tensor elements tends to be delicate, the

agreement is generally quite good. In particular, Veithen et al. [55] have shown (see their Fig. 1)

that the results forχ(2)
123 can be quite sensitive to the method of discretization ink-space and the

fineness of thek-point mesh. For GaAs we findχ(2)
123 = 293 pm/V andαTO = −24.1 Å2 (which is

close to the value in Ref. [57]), but these numbers are of questionable accuracy because of our use

of a Ga pseudopotential that does not include the3d semicore orbitals in the valence. We obtain

χ
(3)
1111 values of 3.90 and 33.8×10−11 esu for AlAs and GaAs, respectively. We are not aware of

previous theoretical values ofχ(3)
1111 with which to compare; this quantity is beyond the reach of the

“2n + 1” theorem using first-order wave function responses only, and so is difficult to compute by

pure DFPT methods. Experimental values ranging from 3.9 to 18×10−11 esu for GaAs [59] can be

found in the literature.

The discrepancies noted above between theory and theory, and between theory and experiment,

may have many possible causes. In addition to some of the computational and convergence issues

mentioned above, the adequacy of the LDA approximation itself is also a serious question. Because

the LDA tends to underestimate gaps, some authors have included a so-called “scissors correction”

in order to widen the gap artificially; this tends to decreasethe magnitude of response tensors

[60]. On the experimental side, the difficulty in obtaining reproducible results is surely also an

issue. Nevertheless, we emphasize that therelative accuracy of the values reported in Tables I

and II, which were done under thesamecomputational conditions (same pseudopotentials,k-point

meshes, etc.), demonstrates the correctness of our new finite-field linear-response formulation and

the internal consistency of the computational framework that we employ.
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3.6 Summary and discussion

We have developed a method for computing the phonon frequencies of an insulator in the presence

of a homogeneous, static electric field. The extension of density-functional perturbation theory to

this case has been accomplished by carrying out a careful expansion of the field-dependent energy

functionalEKS + ΩE · P, whereP is the Berry-phase polarization, with respect to phonon modes

both atq = 0 and at arbitraryq. In the general case of nonzeroq, there is a subtle interplay between

the couplings between neighboring k-points introduced by the electric field and the further-neighbor

couplings introduced by theq-vector, so that terms arise that require the evaluation of four-sided

loops in k-space. However, with the judicious use of time-reversal symmetry, the needed evaluations

can be reduced to a form that is not difficult to implement in anexisting DFPT code.

We have carried out test calculations on two III-V semiconductors, AlAs and GaAs, in order

to test the correctness of our implementation. A comparisonof the results of linear-response and

finite-difference calculations shows excellent agreement, thus validating our approach. We also de-

compose the frequency shifts into “lattice” and “electronic” contributions and quantify these, and

we find that the lattice contributions (i.e., those resulting from induced displacements in the refer-

ence equilibrium structure) are usually, but not always, dominant. We also evaluated the accuracy

of an approximate method for computing the lattice contribution, in which only zero-field inputs are

needed. We found that this approximate approach gives a goodrough description, but that the full

method is needed for an accurate calculation.

Our linear-response method has the same advantages, relative to the finite-difference approach,

as in zero electric field. Even for a phonon atΓ, our approach is more direct and simplifies the calcu-

lation of the phonon frequencies. However, its real advantage is realized for phonons at arbitraryq,
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because the frequency can still be obtained efficiently froma calculation on a single unit cell with-

out the need for imposing commensurability of theq-vector and computing the mode frequencies

for the corresponding supercell. We also emphasize that themethod is not limited to infinitesimal

electric fields. We thus expect the method will prove broadlyuseful for the study of linear and

nonlinear effects of electric bias on the lattice vibrational properties of insulating materials.

We have also developed a linear-response method for computing dielectric constants and Born

effective charges in the presence of afinite electric field. We have demonstrated the reliability of

our approach by implementing it in the context of theABINIT code package[48] and performing

test calculations on two III-V semiconductors, AlAs and GaAs. We have confirmed that the results

calculated using the new linear-response approach are consistent with those obtained from finite-

difference calculations carried out within the same framework. In general, our results are also in

good agreement with other theoretical calculations and with experiment.

A major advantage of the present approach is that, unlike theconventional long-wave linear-

response method,[8] it can be applied to obtain response tensors in finite electric field. While it

is possible to obtain similar information from a set of finite-difference calculations carried out for

some chosen set of applied electric fields, the linear-response approach is more direct, and it avoids

the troublesome truncation errors that may arise in a finite-difference approach. In the future, it

may be of interest to extend the finite-field DFPT treatment not just to phonon perturbations and

electric-field perturbations , but also to other perturbations such as those associated with strain or

chemical composition. Taken together, these developmentsshould allow for much greater flexibility

in the calculation of materials properties of insulators under electrical bias and facilitate the study

of higher-order nonlinear dielectric properties.



56

Chapter 4

Ab-initio calculation of the anomalous Hall conductivity by Wannier

interpolation

The Hall resistivity of a ferromagnet depends not only on themagnetic induction, but also on the

magnetization; the latter dependence is known as the anomalous Hall effect (AHE) [61]. The AHE is

used for investigating surface magnetism, and its potential for investigating nanoscale magnetism, as

well as for magnetic sensors and memory devices applications, is being considered [62]. Theoretical

investigations of the AHE have undergone a revival in recentyears, and have also led to the proposal

for a spin counterpart, the spin Hall effect, which has subsequently been realized experimentally.

The first theoretical model of the AHE was put forth by Karplusand Luttinger [16], who showed

that it can arise in a perfect crystal as a result of the spin-orbit interaction of polarized conduction

electrons. Later, two alternative mechanisms, skew scattering [63] and side jump scattering [18],

were proposed by Smit and Berger respectively. In skew scattering the spin-orbit interaction gives

rise to an asymmetric scattering cross section even if the defect potential is symmetric, and in side-

jump scattering it causes the scattered electron to acquirean extra transverse translation after the

scattering event. These two mechanisms involve scatteringfrom impurities or phonons, while the

Karplus-Luttinger contribution is a scattering-free bandstructure effect. The different contributions

to the AHE are critically reviewed in Ref. [64]. Perhaps because an intuitive physical picture was

lacking, the Karplus-Luttinger theory was strongly disputed in the early literature. Attempts at

estimating its magnitude on the basis of realistic bandstructure calculations were also rare [65].

In recent years, new insights into the Karplus-Luttinger contribution have been obtained by

several authors [66, 67, 68, 15, 69], who reexamined it in themodern language of Berry’s phases.
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The termΩn(k) in the equations below was recognized as the Berry curvatureof the Bloch states

in reciprocal space, a quantity which had previously appeared in the theory of the integer quantum

Hall effect [22], and also closely related to the Berry-phase theory of polarization [20]. The dc

anomalous Hall conductivity (AHC) is simply given as the Brillouin zone (BZ) integral of the Berry

curvature weighted by the occupation factor of each state,

σxy = −e
2

h̄

∑

n

∫

BZ

dk

(2π)3
fn(k)Ωn,z(k) , (4.1)

whereσxy = −σyx is the antisymmetric part of the conductivity. While this can be derived in several

ways, it is perhaps most intuitively understood from the semiclassical point of view, in which the

group velocity of an electron wavepacket in bandn is [70, 67]

ṙ =
1

h̄

∂Enk
∂k

− k̇× Ωn(k) . (4.2)

The second term, often overlooked in elementary textbook derivations, is known as the “anomalous

velocity.” The expression for the current density then acquires a new termefn(k) k̇×Ωn(k) which,

with k̇ = −eE/h̄, leads to Eq. (4.1).

Recently, first-principles calculations of Eq. (4.1) were carried out for the ferromagnetic per-

ovskite SrRuO3 by Fanget al. [13], and for a transition metal, bcc Fe, by Yaoet al. [21] In both

cases the calculated values compared well with experimental data, lending credibility to the intrin-

sic mechanism. The most striking feature of these calculations is the strong and rapid variation of

the Berry curvature ink-space. In particular, there are sharp peaks and valleys at places where two

energy bands are split by the spin-orbit coupling across theFermi level. In order to converge the

integral, the Berry curvature has to be evaluated over millions ofk-points in the Brillouin zone. In

the previous work this was done via a Kubo formula involving alarge number of unoccupied states;

the computational cost was very high, even for bcc Fe, with only one atom in the unit cell.

In this chapter, we present an efficient method for computingthe intrinsic AHC. Unlike the



58

conventional approach, it does not require carrying out a full ab-initio calculation for everyk-point

where the Berry curvature needs to be evaluated. The actualab-initio calculation is performed

on a much coarserk-point grid. By a post-processing step, the resulting Blochstates below and

immediately above the Fermi level are then mapped onto well-localized Wannier-functions. In this

representation it is then possible to interpolate the Berrycurvature onto any desiredk-point with

very little computational effort and essentially no loss ofaccuracy.

4.1 Definitions and background

The key ingredient in the theory of the intrinsic anomalous Hall effect is the Berry curvatureΩn(k),

defined as

Ωn(k) = ∇ × An(k) , (4.3)

whereAn is the Berry connection,

An(k) = i〈unk|∇k|unk〉 . (4.4)

The integral of the Berry curvature over a surface bounded bya closed path ink-space is the Berry

phase of that path [19]. In what follows it will be useful to write the Berry curvature as a second-rank

antisymmetric tensor:

Ωn,γ(k) = ǫαβγ Ωn,αβ(k) , (4.5)

Ωn,αβ(k) = −2 Im
〈∂unk
∂kα

∣∣∣
∂unk
∂kβ

〉
, (4.6)

where the Greek letters indicate Cartesian coordinates,ǫαβγ is Levi-Civita tensor andunk are the

cell-periodic Bloch functions.

With this notation we rewrite the quantity we wish to evaluate, Eq. (4.1), as

σαβ = −e
2

h̄

∫

BZ

dk

(2π)3
Ωαβ(k) , (4.7)
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where we have introduced thetotal Berry curvature

Ωαβ(k) =
∑

n

fn(k)Ωn,αβ(k). (4.8)

Direct evaluation of Eq. (4.6) poses a number of practical difficulties related to the presence ofk-

derivatives of Bloch states, as will be discussed in the nextsection. In previous work [13, 21] these

were circumvented by recasting Eq. (4.6) as a Kubo formula [65, 22], where thek-derivatives are

replaced by sums over states:

Ωn,αβ(k) = −2Im
∑

m6=n

vnm,α(k) vmn,β(k)

(ωm(k) − ωn(k))2
, (4.9)

whereωn(k) = Enk/h̄ and the matrix elements of the Cartesian velocity operatorsv̂α = (i/h̄)[Ĥ, r̂α]

are given by [71]

vnm,α(k) = 〈ψnk|v̂α|ψmk〉 =
1

h̄

〈
unk

∣∣∣
∂Ĥ(k)

∂kα

∣∣∣umk

〉
, (4.10)

whereĤ(k) = e−ik·r̂Ĥeik·r̂. The merit of Eq. (4.9) lies in its practical implementationon a finitek-

grid using only the wavefunctions at a singlek-point. As is usually the case for such linear-response

formulas, sums over pairs of occupied states can be avoided in theT = 0 version of Eqs. (4.8–4.9)

for the total Berry curvature,

Ωαβ(k) = −2Im
∑

v

∑

c

vvc,α(k) vcv,β(k)

(ωc(k) − ωv(k))2
, (4.11)

wherev and c subscripts denote valence (occupied) and conduction (unoccupied) bands, respec-

tively. However, the evaluation of this formula requires the cumbersome summation over unoccu-

pied states. Even if practical calculations truncate the summation to some extent, the computation

could be time-consuming. Moreover, the time required to calculate the matrix elements of the ve-

locity operator in Eq. (4.9) or (4.11) is not negligible.
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4.2 Evaluation of the Berry curvature by Wannier interpolat ion

In view of the above-mentioned drawbacks of the Kubo formulafor practical calculations, it would

be highly desirable to have a numerical scheme based on the the “geometric formula” (4.6), in

terms of the occupied states only. The difficulties in implementing that formula arise from thek-

derivatives therein. Since in practice one always replacesthe Brillouin zone integration by a discrete

summation, an obvious approach would be to use a finite-difference representation of the derivatives

on thek-point grid. However, this requires some care: a straightforward discretization will yield

results which depend on the choice of phases of the Bloch states, even though Eq. (4.6) is in principle

invariant under such “diagonal gauge transformations.” The problem becomes more acute in the

presence of band crossings and avoided crossings, because then it is not clear which two states at

neighboring grid points should be taken as “partners” in a finite-differences expression. (Moreover,

since the system is a metal, atT = 0 the occupation can be different at neighboringk-points.)

Successful numerical strategies for dealing with problemsof this nature have been developed in

the context of the Berry-phase theory of polarization of insulators, and a workable finite-difference

scheme which combines those ideas with Wannier interpolation is sketched in Appendix B.

We present here a different, more powerful strategy that also relies on a Wannier representa-

tion of the low-energy electronic structure. We will show that it is possible to express the needed

derivatives analytically in terms of the Wannier functions, so that no finite-difference evaluation of

a derivative is needed in principle. The use of Wannier functions allows us to achieve this while

still avoiding the summation over all empty states which appears in the Kubo formula as a result of

applying conventionalk · p perturbation theory.
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Figure 4.1: Band structure of bcc Fe with spin-orbit coupling included. Solid lines: original band
structure from a conventional first-principles calculation. Dotted lines: Wannier-interpolated band
structure. The zero of energy is the Fermi level.
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Figure 4.2: Wannier-interpolated bands of bcc Fe alongΓ-H. The bands are colorcoded according
to the value of the spin projection〈Sz〉 : red for spin-up and blue for spin-down. The energies are
given in eV and the Fermi level is at 0 eV. The vertical dashed lines indicate k points on the ab initio
mesh used for constructing the WFs.
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4.2.1 Wannier representation

We begin by using the approach of Souza, Marzari, and Vanderbilt [72] to construct a set of Wannier

functions (WFs) for the metallic system of interest. For insulators, one normally considers a set of

WFs that span precisely the space of occupied Bloch states. Here, since we have a metallic system

and we want to have well-localized WFs, we choose a number of WFs larger than the numberNk

of occupied states at anyk, and only insist that the space spanned by the WFs should include, as

a subset, the space of the occupied states, plus the first few empty states. Thus, these partially-

occupied WFs will serve here as a kind of “exact tight-binding basis” that can be used as a compact

representation of the low-energy electronic structure of the metal.

This is illustrated in Fig. 4.1, where the bandstructure of bcc Fe is shown. The details of the

calculations will be presented later in Sec. 4.3. The solid lines show the fullab-initio bandstructure,

while the dashed lines show the bands obtained within the Wannier representation usingM = 18

WFs per cell (nine of each spin; see Sec. 4.3.2). In the methodof Ref. [72], one specifies an energy

Ewin lying somewhat above the Fermi energyEf , and insists on finding a set of WFs spanning all

theab-initio states in an energy window up toEwin. In the calculation of Fig. 4.1 we choseEwin ≃

18 eV, and it is evident that there is an essentially perfect match between the fullyab-initio and the

Wannier-represented bands up to, but not above,Ewin. Clearly, a Wannier-based calculation of any

property of the occupied manifold, such as the intrinsic AHC, should be in excellent agreement with

a directab-initio evaluation, provided thatEwin is set aboveEf .

The Wannier-based method can even reproduce more fine but critical features as shown in

Fig. 4.2. In order to capture the change of the spin of Bloch functions near Fermi surface, the

energy bands are colorcoded according to the value of the spin projection〈Sz〉. At several points

alongΓ-H, one state mixes with the crossing state to form an avoidedcrossing. The value of〈Sz〉

changes rapidly when going through the avoided crossings, which implys that the derivative of
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Bloch functions with respect tok could be orders of magnitude larger near these crossings than

other regions.

We shall assume that we haveM WFs per unit cell denoted as|Rn〉, wheren = 1, ...,M and

R labels the unit cell. We shall also assume that the Bloch-like functions given by the phased sum

of WFs

|u(W)
nk 〉 =

∑

R

e−ik·(r̂−R) |Rn〉 (4.12)

span the actual Bloch eigenstates|unk〉 of interest (n = 1, ...,Nk) at eachk (clearlyM must be

≥ Nk everywhere in the BZ). It follow that, if we construct theM ×M Hamiltonian matrix

H(W)
nm (k) = 〈u(W)

nk |Ĥ(k)|u(W)
mk

〉 (4.13)

and diagonalize it by finding anM ×M unitary rotation matrixU(k) such that

U †(k)H(W)(k)U(k) = H(H)(k) (4.14)

whereH(H)
nm (k) = E(H)

nk δnm, thenE(H)
nk will be identical to the trueEnk for all occupied bands. The

corresponding Bloch states,

|u(H)
nk 〉 =

∑

m

|u(W)
mk

〉Umn(k), (4.15)

will also be identical to the true eigenstates|unk〉 for E ≤ Ef . (In the scheme of Ref. [72], these

properties will actually hold for energies up toEwin.) However, the band energies and Bloch states

will not generally match the true ones at the energies higher thanEwin, as shown in Fig. 4.1. We

thus use the superscript ‘H’ to distinguish the projected band energiesE(H)
nk and eigenvectors|u(H)

nk 〉

from the true onesEnk and |unk〉, keeping in mind that this distinction is only significant inthe

higher-energy unoccupied region (E > Ewin) of the projected bandstructure.

The unitary rotation of states expressed by the matrixU(k) is often referred to as a “gauge

transformation,” and we shall adopt this terminology here.We shall refer to the Wannier-derived
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Bloch-like states|u(W)
nk 〉 as belonging to the Wannier (W) gauge, while the eigenstates|u(H)

nk 〉 of the

projected bandstructure are said to belong to the Hamiltonian (H) gauge.

Quantities such as the Berry connectionAn(k) of Eq. (4.4) and the Berry curvatureΩn,αβ(k)

of Eq. (4.6) clearly depend upon the gauge in which they are expressed. (The curvature is actually

invariant under the subset of gauge transformations of the diagonal formUnm(k) = eiφnkδnm,

which is also the remaining gauge freedom within the Hamiltonian gauge.) The quantity that we

wish to calculate, Eq. (4.8), is most naturally expressed inthe Hamiltonian gauge, where it takes the

form

Ωαβ(k) =

M∑

n=1

fn(k)Ω
(H)
n,αβ(k) . (4.16)

HereΩ
(H)
n,αβ(k) is given by Eq. (4.6) with|unk〉 → |u(H)

nk 〉. It is permissible to make this substitution

because the projected bandstructure matches the true one for all occupied states. In practice one

may take for the occupation factorfn(k) = θ(Ef −Enk) (as done in the present work), or introduce

a small thermal smearing.

Our strategy now is to see how the right-hand side of Eq. (4.16) can be obtained by starting

with quantities that are defined and computed first in the Wannier gauge and then transformed

into the Hamiltonian gauge. The resulting scheme can be viewed as a generalized Slater-Koster

interpolation, which takes advantage of the smoothness ink-space of the Wannier-gauge objects, a

direct consequence of the short range of the Wannier orbitals in real space.

4.2.2 Gauge transformations

Because the gauge transformation of Eq. (4.15) involves a unitary rotation among several bands, it is

useful to introduce generalizations of the quantities in Eqs. (4.4) and (4.6) having two band indices

instead of one. Thus, we define

Anm,α(k) = i〈un|∂αum〉 (4.17)
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and

Ωnm,αβ(k) = ∂αAnm,β − ∂βAnm,α

= i〈∂αun|∂βum〉 − i〈∂βun|∂αum〉 , (4.18)

where every object in each of these equations should consistently carry either a (W) or (H) label.

(We have now suppressed thek subscripts and introduced the notation∂α = ∂/∂kα for concise-

ness.) In this notation, Eq. (4.16) becomes

Ωαβ(k) =

M∑

n=1

fn(k)Ω
(H)
nn,αβ(k) . (4.19)

Note that whenΩαβ appears without a (W) or (H) superscript, as on the left-handside of this

equation, it denotes the total Berry curvature on the left-hand side of Eq. (4.16).

The matrix representation of an ordinary operator such as the Hamiltonian or the velocity can

be transformed from the Wannier to the Hamiltonian gauge, orvice-versa, just by operating on

the left and right byU †(k) andU(k), as in Eq. (4.14); such a matrix is called “gauge-covariant.”

Unfortunately, the matrix objects in Eqs. (4.17–4.18) are not gauge-covariant, because they involve

k-derivatives acting on the Bloch states. For example, a straightforward calculation shows that

A(H)
α = U †A(W)

α U + iU † ∂αU (4.20)

where each object is anM × M matrix and matrix products are implied throughout. For every

matrix objectO, we define

O(H)
= U †O(W)U (4.21)

so that, by definition,O(H)
= O(H) only for gauge-covariant objects.

The derivative∂αU may be obtained from ordinary perturbation theory. We adopta notation

in which ||φm〉〉 is them-thM -component column vector of matrixU , so that〈〈φn||H(W)||φm〉〉 =

En δnm; the stylized bra-ket notation is used to emphasize that objects likeH(W) and ||φn〉〉 are
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M ×M matrices andM -component vectors, i.e., operators and state vectors in the “tight-binding

space” defined by the WFs, not in the original Hilbert space. Perturbation theory with respect to the

parameterk takes the form

||∂αφn〉〉 =
∑

l 6=n

〈〈φl||H(W)
α ||φn〉〉

E(H)
n − E(H)

l

||φl〉〉 (4.22)

whereH(W)
α ≡ ∂αH

(W). In matrix notation this can be written

∂αUmn =
∑

l

UmlD
(H)
ln,α = (UD(H)

α )mn (4.23)

where

D(H)
nm,α ≡ (U †∂αU)nm =





H
(H)
nm,α

E(H)
m − E(H)

n

if n 6= m

0 if n = m

(4.24)

andH
(H)
nm,α = (U †H

(W)
α U)nm according to Eq. (4.21). Note that whileΩαβ andAα are Hermitian

in the band indices,D(H)
α is instead antihermitian. The gauge choice implicit in Eqs.(4.22) and

(4.24) is〈〈φn||∂αφn〉〉 = (U †∂αU)nn = 0 (this is the so-called “parallel transport” gauge).

Using Eq. (4.23), Eq. (4.20) becomes

A(H)
α = A

(H)
α + iD(H)

α (4.25)

and the derivative of Eq. (4.15) becomes

|∂αu(H)
n 〉 =

∑

m

|∂αu(W)
m 〉Umn +

∑

m

|u(H)
m 〉D(H)

mn,α . (4.26)

Plugging the latter into Eq. (4.18), we finally obtain, aftera few manipulations, the matrix equation

Ω
(H)
αβ = Ω

(H)
αβ − [D(H)

α , A
(H)
β ]

+[D
(H)
β , A

(H)
α ] − i[D(H)

α ,D
(H)
β ] . (4.27)
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The band-diagonal elementsΩ
(H)
nn,αβ(k) then need to be inserted into Eq. (4.19).

Eq. (4.27) can also be derived from Eq. (4.25), by combining it with the first line of Eq. (4.18):

Ω
(H)
αβ = ∂αA

(H)
β − ∂βA

(H)
α − i[D(H)

α ,D
(H)
β ], (4.28)

where we have usedi(∂αU)†∂βU = −iD(H)
α D

(H)
β . Invoking Eq. (4.21) we find

∂αA
(H)
β − ∂βA

(H)
α = − [D(H)

α , A
(H)
β ] + [D

(H)
β , A

(H)
α ]

+ U †
(
∂αA

(W)
β − ∂βA

(W)
α

)
U. (4.29)

The last term on the right-hand-side isΩ
(H)
αβ , and thus we recover Eq. (4.27).

4.2.3 Discussion

We expect, based on Eq. (4.9), that the largest contributions to the AHC will come from regions of

k-space where there are small energy splittings between bands (for example, near spin-orbit-split

avoided crossings) [13]. In the present formulation, this will give rise to small energy denominators

in Eq. (4.24), leading to very largeD(H)
α values in those regions. These large and spiky contributions

will then propagate intoA(H)
α andΩ

(H)
αβ , whereasA(W)

α andΩ
(W)
αβ , and alsoA

(H)
α andΩ

(H)
αβ , will

remain with their typically smaller values. Thus, these spiky contributions will be present in the

second and third terms, and especially in the fourth term, ofEq. (4.27). The contributions of these

various terms are illustrated for the case of bcc Fe in Sec. 4.4.1, and we show there that the last term

typically makes by far the dominant contribution, followedby the second and third terms, and then

by the first term.

The dominant fourth term can be recast in the form of a Kubo formula as

ΩDD
n,αβ = −2Im

∑

m6=n

〈〈φn||H(W)
α ||φm〉〉〈〈φm||H(W)

β ||φn〉〉
(
E(H)
m − E(H)

n

)2
. (4.30)

The following differences between this equation and the true Kubo formula, Eq. (4.9), should how-

ever be kept in mind. First, the summation in Eq. (4.30) is restricted to theM -band projected band
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structure. Second, aboveEwin the projected bandstructure deviates from the originalab-initio one.

Third, even belowEwin, where they do match exactly, the “effective tight-bindingvelocity matrix

elements” appearing in Eq. (4.30) differ from the true ones,given by Eq. (4.10). (The relation

between them is particularly simple for energies belowEwin,

v(H)
nm,α =

1

h̄
H

(H)
nm,α − i

h̄

(
E(H)
m − E(H)

n

)
A

(H)
nm,α, (4.31)

and follows from combining the identity [71]Anm,α = i〈ψn|v̂α|ψm〉/(ωm −ωn), valid form 6= n,

with Eqs. (4.24–4.25).) All these differences are however exactly compensated by the previous

three terms in Eq. (4.27). We emphasize that all terms in thatequation are defined strictly within

the projected space spanned by the Wannier functions.

We note in passing that it is possible to rewrite Eq. (4.27) insuch a way that the large spiky

contributions are isolated into a single term. This alternative formulation, which turns out to be

related to a gauge-covariant curvature tensor, will be described in Appendix A.

4.2.4 Sum over occupied bands

In the above, we have proposed to evaluateΩ
(H)
nn,αβ from Eq. (4.27) and then insert it into the band

sum, Eq. (4.19), in order to compute the AHC. However, this approach has the shortcoming that

small splittings (avoided crossings) between a pair ofoccupiedbandsn andm lead to large values of

D
(H)
nm,α, and thus to large but canceling contributions to the AHC coming fromΩ

(H)
nn,αβ andΩ

(H)
mm,αβ.

Here, we rewrite the total Berry curvature (4.19) in such a way that the cancellation is explicit.

Inserting Eq. (4.27) into Eq. (4.19) and interchanging dummy labelsn ↔ m in certain terms,
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we obtain

Ωαβ(k) =
∑

n

fn Ω
(H)
nn,αβ

+
∑

nm

(fm − fn)
(
D(H)
nm,αA

(H)
mn,β

−D(H)
nm,βA

(H)
mn,α + iD(H)

nm,αD
(H)
mn,β

)
. (4.32)

The factors of(fm− fn) insure that terms arising from pairs of fully occupied states give no contri-

bution. Thus, the result of this reformulation is that individual terms in Eq. (4.32) have large spiky

contributions only when avoided crossings or near-degeneracies occur across the Fermi energy. This

approach is therefore preferable from the point of view of numerical stability, and it is the one that

we have implemented in the current work.

As expected from the discussion in Sec. 4.2.3 and shown laterin Sec. 4.4.2, the dominant term

in Eq. (4.32) is the last one,

ΩDD
αβ = i

∑

nm

(fm − fn)D
(H)
nm,αD

(H)
mn,β (4.33)

or, in a more explicitly Kubo-like form,

ΩDD
αβ = i

∑

nm

(fm − fn)
H

(H)
nm,αH

(H)
mn,β(

E(H)
m − E(H)

n

)2
. (4.34)

In the zero-temperature limit, the latter can easily be castinto a form like Eq. (4.30), but with

a double sum running over occupied bandsn and unoccupied bandsm, very reminiscent of the

original Kubo formula in Eq. (4.11).

We remark that(1/h̄)H
(H)
nm,α coincides with the “effective tight-binding velocity operator” of

Ref. [73]. This is an approximate tight-binding velocity operator. Comparison with Eq. (4.31) and

Eq. (4.39) below shows that it is lacking the contributions which involve matrix elements of the

position operator between the WFs [74]. We now recognize in Eq. (4.22) the standard result from

k · p pertubation theory, but in terms of the approximate momentum operator. Using that equation,
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Eq. (4.30) can be cast as the tight-binding-space analog of Eq. (4.6),

ΩDD
n,αβ = −2 Im 〈〈∂αφnk||∂βφnk〉〉 . (4.35)

This allows to rewrite Eq. (4.34) in a form that closely resembles the total Berry curvature, Eq. (4.16):

ΩDD
αβ =

M∑

n=1

fnΩDD
n,αβ . (4.36)

4.2.5 Evaluation of the Wannier-gauge matrices

Eq. (4.32) is our primary result. To review, recall that thisis a condensed notation expressing the

M ×M matrix Ω
(H)
nm,αβ(k) in terms of the matricesΩ

(H)
nm,αβ(k), etc. The basic ingredients needed

are the four matricesH(W), H(W)
α , A(W)

α , andΩ
(W)
αβ at a givenk. Diagonalization of the first of

them yields the energy eigenvalues needed to find the occupation factorsfn. It also provides the

gauge transformationU which is then used to constructH
(H)
α , A

(H)
α , andΩ

(H)
αβ from the other three

objects via Eq. (4.21). Finally,H
(H)
α is inserted into Eq. (4.24) to obtainD(H)

α , and all terms in

Eq. (4.32) are evaluated.

In this section we explain how to obtain the matricesH(W)(k),H(W)
α (k),A(W)

α (k) andΩ
(W)
αβ (k)

at an arbitrary pointk for use in the subsequent calculations described above.

Fourier transform expressions

The four needed quantities can be expressed as follows:

H(W)
nm (k) =

∑

R

eik·R 〈0n|Ĥ|Rm〉 , (4.37)

H(W)
nm,α(k) =

∑

R

eik·R iRα 〈0n|Ĥ|Rm〉 , (4.38)

A(W)
nm,α(k) =

∑

R

eik·R 〈0n|r̂α|Rm〉 , (4.39)
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Ω
(W)
nm,αβ(k) =

∑

R

eik·R
(
iRα 〈0n|r̂β |Rm〉

−iRβ 〈0n|r̂α|Rm〉
)
. (4.40)

(The notation|0n〉 refers to then’th WF in the home unit cellR = 0.) Eq. (4.37) follows by

combining Eqs. (4.12) and (4.13), while Eq. (4.39) follows by combining Eqs. (4.12) and (4.17).

Eqs. (4.38) and (4.40) are then obtained from (4.37) and (4.39) usingHnm,α = ∂αHnm and

Eq. (4.18), respectively.

It is remarkable that the only real-space matrix elements that are required between WFs are

those of the four operatorŝH and r̂α (α = x, y, andz). Because the WFs are strongly localized,

these matrix elements are expected to decay rapidly as a function of lattice vectorR, so that only a

modest number of them need to be computed and stored once and for all. Collectively, they define

our “exact tight-binding model” and suffice to allow subsequent calculation of all needed quantities.

Furthermore, the short range of these matrix elements in real space insures that the Wannier-gauge

quantities on the left-hand sides of Eqs. (4.37–4.40) will be smooth functions ofk, thus justifying

the earlier discussion in which it was argued that these objects should have no rapid variation or

enhancement ink-space regions where avoided crossings occur. (Recall thatsuch large, rapidly-

varying contributions only appear in theD(H) matrices and in quantities that depend upon them.)

It should however be kept in mind that Eq. (4.32) is not written directly in terms of the smooth

quantities (4.37–4.40), but rather in terms of those quantities transformed according to Eq. (4.21).

The resulting objects are not smooth, since the matricesU change rapidly withk. However, even

while not smooth, they remain small.

Evaluation of real-space matrix elements

We conclude this section by discussing the calculation of the fundamental matrix elements〈0n|Ĥ|Rm〉

and〈0n|r̂α|Rm〉. There are several ways in which these could be computed, andthe choice could
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well vary from one implementation to another. One possibility would be to construct the WFs in

real space, say on a real-space grid, and then to compute the Hamiltonian and position-operator

matrix elements directly on that grid. In the context of a code that uses a real-space basis (e.g.,

localized orbitals or grids), this might be the best choice.However, in the context of plane-wave

methods it is usually more convenient to work in reciprocal space if possible. This is in the spirit of

the Wannier-function construction scheme [75, 72], which is formulated as a post-processing step

after a conventionalab-initio calculation carried out on a uniformk-point grid. (In the following we

will use the symbolq to denote the points of thisab-initio mesh, to distinguish them from arbitrary

or interpolation-grid points denoted byk.)

The end result of the Wannier-construction step areM Bloch-like functions|u(W)
nq 〉 at eachq.

The WFs are obtained from them via a discrete Fourier transform:

|Rn〉 =
1

N3
q

∑

q

e−iq·(R−r̂)|u(W)
nq 〉 . (4.41)

This expression follows from inverting Eq. (4.12). If theab initio mesh containsNq × Nq × Nq

points, the resulting WFs are really periodic functions over a supercell of dimensionsL × L × L,

whereL = Nqa anda is the lattice constant of the unit cell. The idea then is to chooseL large

enough that the rapid decay of the localized WFs occurs on a scale much smaller thanL. This

ensures that the matrix elements〈0n|Ĥ |Rm〉 and〈0n|r̂α|Rm〉 between a pair of WFs separated by

more thanL/2 are negligible, so that further refinement of theab-initio mesh will have a negligible

impact on the accuracy of Wannier-interpolated quantities. (In particular, the interpolated band

structure, Fig. 4.1, is able to reproduce tiny features of the full bandstructure, such as spin-orbit-

induced avoided crossings, even if they occur on a length scale much smaller than theab-initio mesh

spacing.) While the choice of reciprocal-space cell spanned by the vectorsq is immaterial, because

of the periodicity of reciprocal space, this is not so for thevectorsR. In practice we choose the

Nq × Nq × Nq vectorsR to be evenly distributed on the Wigner-Seitz supercell of volumeN3
q a

3
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centered aroundR = 0 [72]. This is the most isotropic choice possible, ensuring that the strong

decay of the matrix elements for|R| ∼ L/2 is achieved irrespective of direction.

The matrix elements of the Hamiltonian are obtained from Eq.(4.41) as

〈0n|Ĥ |Rm〉 =
1

N3
q

∑

q

e−iq·RH(W)
nm (q) , (4.42)

which is the reciprocal of Eq. (4.37), with the sum running over the coarseab-initio mesh points.

The position matrix is obtained similarly by inverting Eq. (4.39):

〈0n|r̂α|Rm〉 =
1

N3
q

∑

q

e−iq·RA(W)
nm,α(q) . (4.43)

The matrixA(W)
nm,α(q) is then evaluated by approximating thek-derivatives in Eq. (4.17) by finite-

differences on theab-initio mesh using the expression [75]

A(W)
nm,α(q) ≃ i

∑

b

wbbα

(
〈u(W)
nq |u(W)

m,q+b〉 − δnm

)
, (4.44)

whereb are the vectors connectingq to its nearest neighbors on theab-initio mesh. This approxima-

tion is valid because in the Wannier gauge the Bloch states vary smoothly withk. We note that the

overlap matrices appearing on the right-hand side are available “for free” as they have already been

computed and stored during the WF construction procedure. This is also the case for the matrices

H(W)(q) needed in Eq. (4.42).

It should be kept in mind that thek-space finite-difference procedure outlined above entailsan

error of orderO(∆q2) in the values of the position operator matrix elements, where ∆q is theab-

initio mesh spacing. The importance of such an error is easily assessed by trying denserq-point

meshes; in our case, we find that it is not a numerically significant source of error for the8 × 8 × 8

mesh that we employ in our calculations. (In large measure this is simply because less than 2% of

the total AHC comes from terms that depend on these position-operator matrix elements, as will

be discussed in Sec. 4.4. Indeed, we find that theO(∆q2) convergence of this small contribution
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hardly shows in the convergence of the total AHC, which empirically appears to be approximately

exponential in theab-initio mesh density.) However, if theO(∆q2) convergence is a source of

concern, one could adopt the direct real-space mesh integration method mentioned at the beginning

of this subsection, which should be free of such errors.

4.3 Computational details

In this section we present some of the detailed steps of the calculations as they apply to our test sys-

tem of bcc Fe. First, we describe the first-principles bandstructure calculations that are carried out

initially. Second, we discuss the procedure for constructing maximally localized Wannier functions

for the bands of interest following the method of Souza, Marzari, and Vanderbilt [72]. Third, we

discuss the variable treatment of the spin-orbit interaction within these first-principles calculations,

which is useful for testing the dependence of the AHC on the spin-orbit coupling strength.

4.3.1 Band structure calculation

Fully relativistic band structure calculations for bcc Fe in its ferromagnetic ground state at the exper-

imental lattice constanta = 5.42 Bohr are carried out using thePWSCF code [76]. A kinetic-energy

cutoff of 60 Hartree is used for the planewave expansion of the valence wavefunctions (400 Hartree

for the charge densities). Exchange and correlation effects are treated with the PBE generalized-

gradient approximation [77].

The core-valence interaction is described here by means of norm-conserving pseudopotentials

which include spin-orbit effects [78, 79] in separable Kleinman-Bylander form. (Our overall Wan-

nier interpolation approach is quite independent of this specific choice and can easily be generalized

to other kinds of pseudopotentials or to all-electron methods.) The pseudopotential was constructed

using a reference valence configuration of3d74s0.754p0.25. We treat the overlap of the valence states
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with the semicore3p states using the non-linear core correction approach [80].The pseudopotential

core radii for the3d, 4s and4p states are1.3, 2.0 and2.2 Bohr, respectively. We find the small

cut-off radius for the3d channel to be necessary in order to reproduce the all-electron bandstructure

accurately.

We obtain the self-consistent ground state using a 16×16×16 Monkhorst-Pack [81] mesh of

k-points and a fictitious Fermi smearing [82] of 0.02 Ry for theBrillouin-zone integration. The

magnetization is along the [001] direction, so that the onlynon-zero component of the integrated

Berry curvature, Eq. (4.7), is the one alongz. The spin magnetic moment is found to be 2.22µB, the

same as that from an all-electron calculation [21] and closeto the experimental value of 2.12µB.

In order to calculate the Wannier functions, we freeze the self-consistent potential and perform

a non-self-consistent calculation on a uniformn×n×n grid of k-points (the “ab-initio mesh”). We

tested several grid densities ranging fromn=4 ton=10 and ultimately chosen=8 (see end of next

subsection). Since we want to construct 18 WFs (s, p, andd-like for spin up and down), we need

to include a sufficient number of extra bands to cover the orbital character of these intended WFs

everywhere in the Brillouin zone. With this in mind, we calculate the first 28 bands at eachk-point,

and then exclude any bands above 58 eV, the “outer window” of Ref. [72]. (The choice of outer

window is somewhat arbitrary as long as the number of bands itencloses is larger than the number

of WFs, and we confirm that the calculated AHC has very little dependence upon this choice. The

main effect of choosing a larger outer window is that one obtains slightly more localized WFs in

real space, and thus slightly smoother bands ink-space.) The 18 WFs are then disentangled from

the remaining bands using the procedure described in the next section.
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4.3.2 Maximally-localized spinor Wannier functions for bcc Fe

The energy bands of interest (extending up to, and just above, the Fermi energy) have mainly

mixeds andd character and are entangled with the bands at higher energies. In order to construct

maximally-localized WFs to describe these bands, we use a modified version of the post-processing

procedure of Ref. [72]. We start by reviewing the original two-step procedure from that work, as it

applies to iron. In the first (“subspace selection”) step, an18-band subspace (the “projected space”)

is identified. This is done by minimizing a suitably defined functional, subject to the constraint of

including the states within an inner energy window [72]. In the case of iron we choose this window

to span an energy range of 30 eV from the bottom of the valence bands (up toEwin in Fig. 4.1). In

the second (“gauge selection”) step, the gauge freedom within the projected subspace is explored to

obtain a set of Bloch-like functions|u(W)
nk 〉 which are optimally-smooth as a function ofk [75]. They

are related to the 18 maximally-localized WFs by Eq. (4.12).Although the method of Refs. [72]

and [75] was formulated for the spinless case, it is trivial to adapt it to treat spinor wavefunctions, in

which case the resulting WFs also have spinor character: each element of the overlap matrix, which

is the key input to the WF-generation code, is simply calculated as the sum of two spin components,

Snmk,b =
∑

σ=↑,↓

〈uσnk|uσm,k+b〉 . (4.45)

In order to facilitate later analysis (e.g., of the orbital and spin character of various bands), we

have used a modified three-step procedure. The initial subspace selection step remains unchanged.

The new second step (“subspace division”) consists of splitting the 18-dimensional projected space

for eachk on theab-initio mesh into two 9-dimensional subspaces, as follows. At eachk-point we

form the 18×18 matrix representation of the spin operatorŜz = (h̄/2)σ̂z in the projected space

and diagonalize it. The two9-dimensional subspaces are then chosen as a mostly spin-up subspace

spanned by the eigenstates havingSz eigenvalues close to+1, and a mostly spin-down subspace
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Figure 4.3: Isosurface contours of maximally-localized spin-up WF in bcc Fe (red for positive value
and blue for negative value), for the8 × 8 × 8 k-point sampling. (a)sp3d2-like WF centered on a
Cartesian axis; (b)dxy-like WF centered on the atom.

associated with eigenvalues close to−1 (we will use units of̄h/2 whenever we discussSz in the

remainder of the manuscript). The third and final step is the gauge-selection step, which is now done

separately for each of the two 9-dimensional subspaces. We thus emerge with 18 well-localized

WFs divided into two groups: nine that are almost entirely spin-up and nine that are almost entirely

spin-down (in practice we find|〈Ŝz〉| > 0.999 in all cases). While this procedure results in a total

spread that is slightly greater than the original two-step procedure, we find that the difference is

very small in practice, and the imposition of these rules makes for a much more transparent analysis

of subsequent results. For example, it makes it much easier to track the changes in the WFs before

and after the spin-orbit coupling is turned on, or to identify the spin character of various pieces of

the Fermi surface.

The subspace-selection step can be initialized [72] by providing 18 trial functions having the

form of s, p, and (eg andt2g) d-like Gaussians of pure spin character (nine up and nine down). In our

first attempts at initializing the gauge-selection step, weused these same trial functions. However,

we found that the iterative gauge-selection procedure [75], which projects the nine trial functions of

each spin onto the appropriate band subspace and improves upon them, converted the threet2g-like
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trial functions intot2g-like WFs, while it mixed theeg, s, andp-like states to form six hybrid WFs of

sp3d2-type [83]. Having discovered this, we have modified our procedure accordingly: henceforth,

we choose threet2g-like trial functions and sixsp3d2-like ones in each spin channel. With this

initialization, we find the convergence to be quite rapid, with only about 100 iterations needed to

get a well-converged spread functional.

We have implemented the above procedure in theWANNIER90 code [84]. The resulting WFs

are shown in Fig. 4.3. The up-spin WFs are plotted, but the WFsare very similar for both spins. An

example of ansp3d2-hybrid WF is shown in Fig. 4.3(a); this one extends along the−x axis, and the

five others are similarly projected along the+x, ±y, and±z axes. One of thet2g-like WFs is shown

in Fig. 4.3(b); this one hasxy symmetry, while the others havexz andyz symmetry. The centers

of thesp3d2-like WFs are slightly shifted from the atomic center along±x, ±y, or ±z, while the

t2g-like WFs remain centered on the atom.

We studied the convergence of the WFs and interpolated bandsas a function of the density

n×n×n of the Monkhorst-Packk-mesh used for the initialab-initio calculation. We testedn = 4,

6, 8, and 10, and found thatn = 8 provided the best tradeoff between interpolation accuracyand

computational cost. This is the mesh that was used in generating the results presented in Sec. 4.4.

4.3.3 Variable spin-orbit coupling in the pseudopotentialframework

Since the AHE present in ferromagnetic iron is a spin-orbit-induced effect, it is obviously important

to understand the role of this coupling as thoroughly as possible. For this purpose, it is very con-

venient to be able to treat the strength of the coupling as an adjustable parameter. For example, by

turning up the spin-orbit coupling continuously from zero and tracking how various contributions

to the AHC behave, it is possible to separate out those contributions that are of linear, quadratic, or

higher order in the coupling strength. Some results of this kind will be given later in Sec. 4.4.
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Because the spin-orbit coupling is a relativistic effect, it is appreciable mainly in the core region

of the atom where the electrons have relativistic velocities. In a pseudopotential framework of the

kind adopted here, both the scalar relativistic effects andthe spin-orbit coupling are included in

the pseudopotential construction. For example, in the Bachelet-Hamann semilocal pseudopotential

scheme [31], the construction procedure generates, for each orbital angular momentuml, a scalar-

relativistic potentialV sr
l (r) and a spin-orbit difference potentialV so

l (r) which enter the Hamiltonian

in the form

V̂ps =
∑

l

P̂l [V sr
l (r) + λV so

l (r)L · S] , (4.46)

whereP̂l is the projector onto states of orbital angular momentuml andλ controls the strength of

spin-orbit coupling (withλ=1 being the physical value). For the free atom, this correctly leads to

eigenstates labeled by total angular momentumj = l ± 1/2.

In our calculations, we employ fully non-local pseudopotentials instead of semilocal ones be-

cause of their computationally efficient form. In this case,controlling the strength of the spin-orbit

coupling requires some algebraic manipulation. We write the norm-conserving non-local pseudopo-

tential operator as

V̂ps = |βljµ〉Dlj 〈βljµ| (4.47)

where there is an implied sum running over the indices (orbital angular momentuml, total angular

momentumj = l ± 1/2, andµ = −j, ..., j) and species and atomic position indices have been

suppressed. The|βljµ〉 are radial functions multiplied by appropriate spin-angular functions and the

Dlj are the channel weights. We introduce the notationβ
(+)
l (r) andβ(−)

l (r) for the radial parts of

|βl,l+1/2,µ〉 andβl,l−1/2,µ〉, respectively, and similarly defineD(±)
l = Dl,l±1/2. Using this notation,

we can define the scalar-relativistic (i.e.,j-averaged) quantities

Dsr
l =

l + 1

2l + 1
D

(+)
l +

l

2l + 1
D

(−)
l , (4.48)
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βsr
l (r) =

l + 1

2l + 1

√
D

(+)
l

Dsr
l

β
(+)
l (r) +

l

2l + 1

√
D

(−)
l

Dsr
l

β
(−)
l (r) (4.49)

and the corresponding spin-orbit difference quantities

Dso
lj = Dlj −Dsr

l , (4.50)

|βso
ljµ〉 = |βljµ〉 − |βsr

ljµ〉 . (4.51)

where|βsr
ljµ〉 is βsr

l (r) multiplied by the spin-angular function with labels(ljµ). Then the non-local

pseudopotential can be written as

V̂ps = V̂ sr + λ V̂ so (4.52)

where

V̂ sr = |βsr
ljµ〉Dsr

l 〈βsr
ljµ| (4.53)

and

V̂so = |βsr
ljµ〉Dso

lj 〈βsr
ljµ|

+ |βso
ljµ〉 (Dsr

l +Dso
lj ) 〈βsr

ljµ|

+ |βsr
ljµ〉 (Dsr

l +Dso
lj ) 〈βso

ljµ|

+ |βso
ljµ〉 (Dsr

l +Dso
lj ) 〈βso

ljµ| . (4.54)

This clearly reduces to the desired results (4.47) forλ = 1 and (4.53) forλ = 0.

4.4 Results

In this section, we present the results of the calculations of the Berry curvature and its integration

over the BZ using the formulas presented in Sec. 4.2, for the case of bcc Fe.
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Figure 4.4: Band structure and total Berry curvature, as calculated using Wannier interpolation,
plotted along the pathΓ–H–P in the Brillouin zone. (a) Computed at the full spin-orbit coupling
strengthλ = 1. (b) Computed at the reduced strengthλ = 0.25. The peak marked with a star has a
height of 5×104 a.u.
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4.4.1 Berry Curvature

We begin by illustrating the very sharp and strong variations that can occur in the total Berry cur-

vature, Eq. (4.8), near Fermi-surface features in the bandstructure [13]. In Fig. 4.4(a) we plot the

energy bands (top subpanel) and the total Berry curvature (bottom subpanel) in the vicinity of the

zone-boundary pointH = 2π
a (1, 0, 0), where three states, split by the spin-orbit interaction, lie just

above the Fermi level. The large spike in the Berry curvaturebetween the H and P points arises

where two bands, split by the spin orbit interaction, lie on either side of the Fermi level [21]. This

gives rise to small energy denominators, and hence large contributions, mainly in Eq. (4.34). On

reducing the strength of the spin-orbit interaction as in Fig. 4.4(b), the energy separation between

these bands is reduced, resulting in a significantly sharperand higher spike in the Berry curvature.

A second type of sharp structure is visible in Fig. 4.4, whereone can see two smaller spikes, one

at about 40% and another at about 90% of the way fromΓ to H, which decrease in magnitude as

the as the spin-orbit coupling strength is reduced. These arise from pairs of bands that straddle the

Fermi energy even in the absence of spin-orbit interaction.Thus, the small spin-orbit coupling does

not shift the energies of these bands significantly, but it does induce an appreciable Berry curvature

that is roughly linear in the spin-orbit coupling.

The decomposition of the total Berry curvature into its various contributions in Eq. (4.32) is

illustrated by plotting the first (“Ω”) term, the second and third (“D–A”) terms, and the fourth

(“D–D” or Kubo-like) term of Eq. (4.32) separately along the lineΓ–H–P in Fig. 4.5. Note the

logarithmic scale. The results confirm the expectations expressed in Secs. 4.2.3 and 4.2.4, namely,

that the largest terms would be those reflecting large contributions toD arising from small energy

denominators. Thus, theΩ term remains small everywhere, theD–A terms become one or two

orders of magnitude larger at places where small energy denominators occur, and theD–D term,
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Figure 4.5: Decomposition of the total Berry curvature intocontributions coming from the three
kinds of terms appearing in Eq. (4.32). The path ink-space is the same as in Fig. 4.4. Dotted line
is the first (Ω) term, dashed line is the sum of second and third (D–A) terms, and solid line is the
fourth (D–D) term of Eq. (4.32). Note the log scale on the vertical axis.

Eq. (4.34), is another one or two orders larger in those same regions. Scans along other lines ink-

space reveal similar behavior. We may therefore expect thattheD–D term will make the dominant

overall contribution to the AHC. As we shall show in the next subsection, this is precisely the case.

In order to get a better feel for the connection between Fermisurface features and the Berry

curvature, we next inspect these quantities on theky = 0 plane in the Brillouin zone, following

Ref. [21]. In Fig. 4.6 we plot the intersection of the Fermi surface with this plane and indicate,

using color coding, theSz component of the spin carried by the corresponding wavefunctions. The

good agreement between the shape of the Fermi surface given here and in Fig. 3 of Ref. [21] is

further evidence that the accuracy of our approach matches that of all-electron methods. It is evident

that the presence of the spin-orbit interaction, in addition to the exchange splitting, is sufficient to

remove all degeneracies on this plane [85], changing significantly the connectivity of the Fermi

surface.

The calculated Berry curvature is shown in Fig. 4.7. It can beseen that the regions in which
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Figure 4.6: Lines of intersection between the Fermi surfaceand the planeky = 0. Colors indicate
theSz spin-component of the states on the Fermi surface (in units of h̄/2).
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Figure 4.7: Calculated total Berry curvatureΩz in the planeky = 0 (note log scale). Intersections
of the Fermi surface with this plane are again shown.
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the Berry curvature is small (light green regions) fill most of the plane. The largest values occur at

the places where two Fermi lines approach one another, consistent with the discussion of Fig. 4.4.

Of special importance are the avoided crossings between twobands having the same sign of spin,

or between two bands of opposite spin. Examples of both kindsare visible in the figure, and both

tend to give rise to very large contributions in the region ofthe avoided crossing. Essentially, the

spin-orbit interaction causes the character of these bandsto change extremely rapidly withk near

the avoided crossing; this is the origin of the large Berry curvature. The large contributions near the

H points correspond to the peaks that were already mentionedin the discussion of Fig. 4.4, resulting

from mixing of nearly degenerate bands by the spin-orbit interaction.

4.4.2 Integrated anomalous Hall conductivity

We now discuss the computation of the AHC as an integral of theBerry curvature over the Brillouin

zone, Eq. (4.7). We first define a nominalN0 × N0 × N0 mesh that uniformly fills the Brillouin

zone. We next reduce this to a sum over the irreducible wedge that fills 1
16 th of the Brillouin zone,

using the tetragonal point-group symmetry (broken from cubic by the onset of ferromagnetism),

and calculateΩz on each mesh point using Eq. (4.32). Finally, following Yaoet al. [21], we

implement an adaptive mesh refinement scheme in which we identify those points of thek-space

mesh at which the computed Berry curvature exceeds a threshold valueΩcut, and recomputeΩz on

anNa ×Na ×Na submesh spanning the original cell associated with this mesh point. The AHC is

then computed as a sum ofΩz over this adaptively refined mesh with appropriate weights.

The convergence of the AHC with respect to the choice of mesh is presented in Table 4.1. We

have chosenΩcut = 1.0 × 102 a.u., which causes the adaptive mesh refinement to be triggered at

approximately 0.11% of the original mesh points. Based on the results of Table 4.1, we estimate

the converged value to beσxy = 756 (Ω cm)−1. This agrees to within 1% with the value of
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Table 4.1: Convergence of AHC with respect to the density of the nominalk-point mesh (left
column) and the adaptive refinement scheme used to subdividethe mesh in regions of large contri-
butions (middle column).

k-point mesh Adaptive refinementσxy (Ω cm)−1

200 × 200 × 200 3 × 3 × 3 766.94
250 × 250 × 250 3 × 3 × 3 767.33
320 × 320 × 320 3 × 3 × 3 768.29
200 × 200 × 200 5 × 5 × 5 758.35
250 × 250 × 250 5 × 5 × 5 758.84
320 × 320 × 320 5 × 5 × 5 759.25
200 × 200 × 200 7 × 7 × 7 756.25
250 × 250 × 250 7 × 7 × 7 757.32
320 × 320 × 320 7 × 7 × 7 757.59
320 × 320 × 320 9 × 9 × 9 757.08
320 × 320 × 320 11 × 11 × 11 756.86
320 × 320 × 320 13 × 13 × 13 756.76

Table 4.2: Contributions to the AHC coming from different regions of the Brillouin zone, as defined
in the text.

∆E (eV) like-spin (%) opposite-spin (%) smooth (%)
0.1 21 26 53
0.2 23 51 26
0.5 30 68 2

751(Ω cm)−1 reported previously in Ref. [21], where an adaptive mesh refinement was also used.

As discussed in Ref. [21], this value is in reasonable agreement with the available measurements

[86, 87], which yield a value forσxy slightly above1000 (Ω cm)−1.

It can be seen from Table 4.1 that a200 × 200 × 200 mesh with3× 3 × 3 refinement brings us

within ∼1% of the converged value. It is also evident that the level ofrefinement is more important

than the fineness of the nominal mesh; a200× 200× 200 mesh with5× 5× 5 adaptive refinement

yields a result that is within 0.2% of the converged value, better than a320 × 320 × 320 mesh with

a lower level of refinement.

It is interesting to decompose the total AHC into contributions coming from different parts of
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the Brillouin zone. For example, as we saw in Fig. 4.7, there is a smooth, low-intensity background

that fills most of the volume of the Brillouin zone, and it is hard to knowa priori whether the total

AHC is dominated by these contributions or by the much largerones concentrated in small regions.

With this motivation, we have somewhat arbitrarily dividedthe Brillouin zone into three kinds of

regions, which we label as ‘smooth’, ‘like-spin’, and ‘opposite-spin’. To do this, we identifyk-

points at which there is an occupied band in the interval[Ef −∆E,Ef ] and an unoccupied band in

the interval[Ef , Ef + ∆E], where∆E is arbitrarily chosen to be a small energy such as0.1, 0.2,

or 0.5 eV. If so, thek-point is said to belong to the ‘like-spin’ or ‘opposite-spin’ region depending

on whether the dominant characters of the two bands below andabove the Fermi energy are of the

same or of opposite spin. Otherwise, thek-point is assigned to the ‘smooth’ region. As shown in

Table 4.2, the results depend strongly on the value of∆E. Overall, what is clear is that the major

contributions arise from the bands within±0.5 eV ofEf , and that neither like-spin nor opposite-spin

contributions are dominant.

Next, we return to the discussion of the decomposition of thetotal Berry curvature in Eq. (4.32)

into theΩ, D–A, andD–D terms. We find that these three terms account for−0.39%, 1.36%, and

99.03%, respectively, of the total AHC. (Similarly, for thealternative decomposition of Appendix

A, the second term of Eq. (4.58) is found to be responsible formore than 99% of the total.) Thus,

if a 1% accuracy is acceptable, one could actually neglect the Ω andD–A terms entirely, and

approximate the total AHC by theD–D (Kubo-like) term alone, Eq. (4.34).

From a computational point of view, the fact that theD–D term is fully specified by the Hamil-

tonian matrix elements alone means that considerable savings can be obtained by avoiding the eval-

uation of the Fourier transforms in Eqs. (4.39–4.40) at every interpolation point (and avoiding the

setup of the matrix elements〈0n|r̂α|Rm〉, which can be costly in a real-space implementation).

More importantly, this observation, if it turns out to hold for other materials as well, could prove
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Figure 4.8: Anomalous Hall conductivity vs. spin-orbit coupling strength.

to be important for future efforts to derive approximate schemes capable of capturing the most

important contributions to the AHC.

Finally, we investigate how the total AHC depends upon the strength of the spin-orbit interac-

tion, following the approach of Sec. 4.3.3 to modulate the spin-orbit strength. The result is shown in

Fig. 4.8. We emphasize that our approach is a more specific test of the dependence upon spin-orbit

strength than the one carried out in Ref. [21]; there, the speed of light c was varied, which entails

changing the strength of the various scalar relativistic terms as well. Nevertheless, both studies lead

to a similar conclusion: the variation is found to be linear for small values of the spin-orbit cou-

pling (λ ≪ 1), while quadratic or other higher-order terms also become appreciable when the full

interaction is included (λ = 1).

4.4.3 Computational considerations

The computational requirements for this scheme are quite modest. The self-consistent ground state

calculation and the construction of the WFs takes 2.5 hours on a single 2.2GHz AMD-Opteron
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processor. The expense of computing the AHC as a sum over interpolation mesh points depends

strongly on the density of the mesh. On the same processor as above, the average CPU time to

evaluateΩz on eachk-point was about 14 msec. We find that the mesh refinement operation does not

significantly increase the total number ofk-point evaluations until the refinement levelNa exceeds

∼10. Allowing for the fact that the calculation only needs to be done in the irreducible116 th of the

Brillouin zone, the cost for the AHC evaluation on a 200×200×200 mesh is about 2 hours.

The CPU time perk-point evaluation is dominated (roughly 90%) by the Fouriertransform

operations needed to construct the objects in Eqs. (4.37–4.40). The diagonalization of the 18×18

Hamiltonian matrix, and other operations needed to computeEq. (4.32), account for only about

10% of the time. The CPU requirement for the Fourier transform step is roughly proportional to the

number ofR vectors kept in Eqs. (4.37–4.40); it is possible that this number could be reduced by

exploring more sophisticated methods for truncating the contributions coming from the more distant

R vectors.

Of course, the loop overk-points in the AHC calculation is trivial to parallelize, sofor dense

k-meshes we speed up this stage of the calculation by distributing across multiple processors.

4.5 Summary and Discussion

In summary, we have developed an efficient method for computing the intrinsic contribution to the

anomalous Hall conductivity of a metallic ferromagnet as a Brillouin-zone integral of the Berry

curvature. Our approach is based on Wannier interpolation,a powerful technique for evaluating

properties that require a very dense sampling of the Brillouin zone or Fermi surface. The key idea

is to map the low-energy first-principles electronic structure onto an “exact tight-binding model”

in the basis of appropriately constructed Wannier functions, which are typically partially occupied.

In the Wannier representation the desired quantities can then be evaluated at arbitraryk-points at
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very low computational cost. All that is needed is to evaluate, once and for all, the Wannier-basis

matrix elements of the Hamiltonian and a few other property-specific operators (namely, for the

Berry curvature, the three Cartesian position operators).

When evaluating the Berry curvature in this way, the summation over all unoccupied bands and

the expensive calculation of the velocity matrix elements needed in the traditional Kubo formula are

circumvented. They are replaced by quantities defined strictly within the projected space spanned

by the WFs. Our final expression for the total Berry curvature, Eq. (4.32), consists of three terms,

namely, theΩ,D–A, andD–D terms.

We have applied this approach to calculate the AHC of bcc Fe. While our Wannier interpolation

formalism, with its decomposition (4.32), is entirely independent of the choice of an all-electron

or pseudopotential method, we have chosen here a relativistic pseudopotential approach [76] that

includes scalar relativistic effects as well as the spin-orbit interaction. We find that this scheme

successfully reproduces the fine details of the electronic structure and of the Berry curvature. The

resulting AHC is in excellent agreement with a previous calculation [21] that used an all-electron

LAPW method [88].

Remarkably, we found that more than 99% of the integrated Berry curvature is concentrated

in theD–D term of our formalism. This term, given explicitly in Eq. (4.34), takes the form of a

Kubo-like Berry curvature formula for the “tight-binding states.” Unlike theΩ andD–A terms,

it depends exclusively on the Hamiltonian matrix elements between the Wannier orbitals, and not

on the position matrix elements. Thus we arrive at the very appealing result that a Kubo picture

defined within the “tight-binding space” gives an excellentrepresentation of the Berry curvature in

the originalab-initio space. This result merits further investigation.

Several directions for future studies suggest themselves.For example, it would be desirable

to obtain a better understanding of how the AHC depends on theweak spin-orbit interaction. As
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we have seen, this weak interaction causes splittings and avoided crossings that give rise to very

large Berry curvatures in very small regions ofk-space. There is a kind of paradox here. Our

numerical tests, as in Fig. 4.8, demonstrate that the AHC falls smoothly to zero as the spin-orbit

strengthλ is turned off, suggesting that a perturbation theory inλ should be applicable. However,

in the limit thatλ becomes small, the full calculation becomesmore difficult, not less: the splittings

occur in narrower and narrower regions ofk-space, energy denominators become smaller, and Berry

curvature contributions become larger (see Fig. 4.4), evenif the integratedcontribution is going to

zero. It would be of considerable interest, therefore, to explore ways to reformulate the perturbation

theory inλ so that the expansion coefficients can be computed in a robustand efficient fashion.

Because the exchange splitting is much larger than the spin-orbit splitting, it may also be of use

to introduce two separate couplings that control the strengths of the spin-flip and spin-conserving

parts of the spin-orbit interaction respectively, and to work out the perturbation theory in these two

couplings independently.

Another promising direction is to explore whether the AHC can be computed as a Fermi-surface

integral using the formulation of Haldane [69] in which an integration by parts is used to convert

the volume integral of the Berry curvature to a Fermi-surface integral involving Berry curvatures or

potentials. Such an approach promises to be more efficient than the volume-integration approach,

provided that a method can be developed for carrying out an appropriate sampling of the Fermi

surface. This is likely to be a delicate problem, however, since the weak spin-orbit splitting causes

Fermi sheets to separate and reattach in a complex way at short k-scales, and the dominant con-

tributions to the AHC are likely to come from precisely theseportions of the reconstructed Fermi

surface that are the most difficult to describe numerically.

Finally, it would be of considerable interest to generalizethe Wannier-interpolation techniques

developed here for the dc anomalous Hall effect to treat finite-frequency magneto-optical effects.
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In any case, even without such further developments, the present approach is a powerful one.

It reduces the expense needed to do an extremely fine samplingof Fermi-surface properties to the

level where the AHC of a material like bcc Fe can be computed ona workstation in a few hours.

This opens the door to realistic calculations of the intrinsic anomalous Hall conductivity of much

more complex materials. More generally, the techniques developed here for the AHE are readily

applicable to other problems which also require a very densesampling of the Fermi surface or

Brillouin zone. For example, an extension of these ideas to the evaluation of the electron-phonon

coupling matrix elements by Wannier interpolation is currently under way [89].

4.6 Appendix: Alternative expression for the Berry curvature

In this Appendix, we return to Eq. (4.27) and rewrite it in such a way that all of the large, rapidly

varying contributions arising from small energy denominators in the expression forDα, Eq. (4.24),

are segregated into a single term. We do this by solving Eq. (4.25) forDα and substituting into

Eq. (4.27) to obtain

Ω
(H)
αβ = Ω

(H)
αβ − i

[
A

(H)
α , A

(H)
β

]
+ i

[
A(H)
α , A

(H)
β

]
. (4.55)

Then only the last term will contain the large, rapid variations. This equation could have been

anticipated based on the fact that the tensor

Ω̃αβ = Ωαβ − i[Aα, Aβ ] (4.56)

is well known to be a gauge-covariant quantity [90, 75]; applying Eq. (4.21) toΩ̃αβ then leads

directly to Eq. (4.55).

This formulation provides an alternative route to the calculation of the matrixΩ(H)
αβ : evaluate

Ω̃
(W)
αβ in the Wannier representation using Eqs. (4.59-4.60) below, convert it toΩ̃

(H)
αβ via Eq. (4.21),
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computeA(H)
α using Eq. (4.25), and assemble

Ω
(H)
αβ = Ω̃

(H)
αβ + i[A(H)

α , A
(H)
β ] . (4.57)

The large and rapid variations then appear only in the last term involving commutators of theA

matrices.

In Sec. 4.2.4, we showed how to write the total Berry curvature Ωαβ(k) as a sum over bands

in such a way that potentially troublesome contributions coming from small energy denominators

between pairs of occupied bands are explicitly excluded, leading to Eq. (4.32). The corresponding

expression based on Eq. (4.57) is

Ωαβ(k) =
∑

n

fn Ω̃
(H)
nn,αβ

+
∑

nm

(fn − fm)A(H)
nm,αA

(H)
mn,β . (4.58)

Now, in addition to the four quantities given in Eqs. (4.37-4.40), we need a corresponding equa-

tion for Ω̃αβ. After some manipulations, we find that

Ω̃
(W)
nn,αβ(k) =

∑

R

eik·R wn,αβ(R) (4.59)

where

wn,αβ(R) = −i
∑

R′m

〈0n|r̂α|R′m〉〈R′m|r̂β|Rn〉

+i
∑

R′m

〈0n|r̂β |R′m〉〈R′m|r̂α|Rn〉 .

(4.60)

This formulation again requires the same basic ingredientsas before, namely, the Wannier matrix

elements ofĤ andr̂α. In some respects it is a little more elegant than the formulation of Eq. (4.32).

However, the direct evaluation ofwn,αβ in the Wannier representation, as given in Eq. (4.60), is not

as convenient because of the extra sum over intermediate WFsappearing there; moreover,wn,αβ is
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longer-ranged than the Hamiltonian and coordinate matrix elements. Also, one appealing feature of

the formulation of Section 4.2, that more than 99% of the effect can be recovered without using the

position-operator matrix elements, is lost in this reformulation. We have therefore chosen to base

our calculations and analysis on Eq. (4.32) instead.

It is informative to obtain Eq. (4.57) in a different way: define the gauge-invariant band projec-

tion operator [75]P̂k =
∑M

n=1 |unk〉〈unk| and its complement̂Qk = 1−P̂k. Inserting1̂ = Q̂k+P̂k

into Eq. (4.18) in the Hamiltonian gauge then yields directly Eq. (4.57) since, as can be easily veri-

fied, Eq. (4.56) may be written as

Ω̃nm,αβ = i〈∂̃αun|∂̃βum〉 − i〈∂̃βun|∂̃αum〉 , (4.61)

where∂̃α ≡ Q̂∂α. The gauge-covariance of̃Ωαβ follows directly from the fact that̃∂α is a gauge-

covariant derivative, in the sense that|∂̃αu(H)
n 〉 =

∑M
m=1 |∂̃αu

(W)
m 〉Umn is the same transformation

law as Eq. (4.15) for the Bloch states themselves. It is apparent from this derivation that as the num-

berM of WFs increases and̂Pk approacheŝ1, the second term on the right-hand side of Eq. (4.58)

increases at the expense of the first term. Indeed, in the large-M limit the entire Berry curvature is

contained in the second term. For the choice Wannier orbitals described in the main text for bcc Fe,

that term already accounts for 99.8% of the total AHC.

4.7 Appendix: Finite-difference approach

In this Appendix, we outline an alternative scheme for computing the AHC by Wannier interpo-

lation. The essential difference relative to to the approaches described in Section 4.2 and in Ap-

pendix 4.6 is that the neededk-space derivatives are approximated here by finite differences instead

of being expressed analytically in the Wannier representation.

This approach is most naturally applied to the zero-temperature limit where there are exactlyNk
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occupied states at a givenk. Instead of starting from the Berry curvature of each individual band

separately, as in Eq. (4.6), we find it convenient here to workfrom the outset with the total Berry

curvature

Ωαβ(k) =

Nk∑

n=1

Ωnn,αβ(k) (4.62)

of the occupied manifold atk (the zero-temperature limit of Eq. (4.19)). We now introduce a

covariant derivativẽ∂(Nk)
α = Q̂

(Nk)
k ∂α designed to act on the occupied states only; hereQ̂

(Nk)
k =

1̂ − P̂
(Nk)
k

andP̂ (Nk)
k

=
∑Nk

n=1 |unk〉〈unk|. The only difference with respect to the definition of

∂̃α in Appendix 4.6 is that the projection operator here spans theNk occupied states only, instead

of theM states of the full projected space. Accordingly, terms suchas “gauge-covariance” and

“gauge-invariance” are to be understood here in a restricted sense. For example, the statement that

∂̃
(Nk)
α is a gauge-covariant derivative means that under anNk ×Nk unitary rotationU(k) between

the occupied states atk it obeys the transformation law

|∂̃(Nk)
α unk〉 →

Nk∑

m=1

|∂̃(Nk)
α umk〉 Umn(k). (4.63)

(We will use calligraphic symbols to distinguishNk × Nk matrices such asU from theirM ×M

counterparts such asU .) We now define a gauge-covariant curvatureΩ̃
(Nk)
αβ (k) by replacing∂̃ by

∂̃(Nk) in Eq. (4.61). Since the trace of a commutator vanishes, it follows from Eq. (4.56) that

Eq. (4.62) can be written as

Ωαβ(k) = Tr(Nk)
[
Ω̃

(Nk)
αβ (k)

]
, (4.64)

where the symbolTr(Nk) denotes the trace over the occupied states.

The advantage of this expression over Eq. (4.62) is that the covariant derivative of a Bloch state

can be approximated by a very robust finite-differences formula [39, 91]:

∂̃
(Nk)
k

→
∑

b

wbbP̂
(Nk)
k,b , (4.65)
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where the sum is over shells of neighboringk-points [75], as in Eq. (4.44), and we have defined the

gauge-invariant operator

P̂
(Nk)
k,b =

Nk∑

n=1

|ũn,k+b〉〈unk| (4.66)

in terms of the gauge-covariant “dual states”

|ũn,k,b〉 =

Nk∑

m=1

|um,k+b〉 (Qk+b,k)mn . (4.67)

HereQk+b,k is the inverse of theNk ×Nk overlap matrix,

Qk+b,k = (Sk,k+b)−1 , (4.68)

where

(Sk,k+b)nm = 〈unk|um,k+b〉 . (4.69)

The discretization (4.65) is immune to arbitrary gauge phases and unitary rotations among the occu-

pied states. Because of that property, the occurrence of band crossings and avoided crossings does

not pose any special problems.

Inserting Eqs. (4.65-4.69) into Eq. (4.64) and usingQk,k+b = Q†
k+b,k, we find that an appro-

priate finite-difference expression for the total Berry curvature is

Ω
(Nk)
αβ (k) = 2

∑

b1,b2

wb1 wb2 b1,α b2,β Λk,b1,b2, (4.70)

where

Λk,b1,b2 = −Im Tr(Nk) [Qk,k+b1Sk+b1,k+b2Qk+b2,k] . (4.71)

This expression is manifestly gauge-invariant, since bothS andQ are gauge-covariant matrices,

i.e.,Sk,k+b → U†(k)Sk,k+bU(k + b), and the same transformation law holds forQk,k+b.

Eqs. (4.70-4.71) can be evaluated at an arbitrary pointk once the overlap matricesSk,k+b are

known. For that purpose we construct a uniform mesh of spacing ∆k in the immediate vicinity of
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k, set up the needed shells of neighboringk-pointsk + b on that local mesh, and then evaluate

Sk,k+b by Wannier interpolation. Since the WFs span the entireM -dimensional projected space,

at this stage we revert to the fullM ×M overlap matricesSk,k+b. In the Wannier gauge they are

given by a Fourier transform of the form

(
S

(W)
k,k+b

)
nm

=
∑

R

eik·R〈0n|eib·(R−r̂)|Rm〉 . (4.72)

For sufficiently small∆k, this can be approximated as

(
S

(W)
k,k+b

)
nm

≃ δnm − ib
∑

R

eik·R〈0n|r̂|Rm〉 . (4.73)

Note that the dependence of the last expression on∆k is trivial, since it only enters as a multiplica-

tive prefactor. In practice one chooses∆k to be quite small,∼ 10−6 a.u.−1, so as to reduce the error

of the finite-differences expression.

In the Wannier gauge the occupied and empty states are mixed with one another, because the

WFs are partially occupied. In order to decouple the two subspaces we perform the unitary trans-

formation

S
(H)
k,k+b

= U †(k)S
(W)
k,k+b

U(k + b) . (4.74)

This produces the fullM ×M overlap matrix in the Hamiltonian gauge. TheNk ×Nk submatrix

in the upper left corner is precisely the matrixS(H)
k,k+b needed in Eq. (4.71).

Like the approach described in the main text, this approach still only requires the WF matrix

elements of the four operatorŝH and r̂α (α = x, y, andz). We have implemented it, and have

checked that the results agree closely with those obtained using using the method of the main text.

Although not as elegant, this approach has the interesting feature of circumventing the evaluation of

the matrixD(H)
α , Eq. (4.24). This may be advantageous in certain special situations. For example,

if a parameter such as pressure is tuned in such a way that ak-space Dirac monopole [13] drifts to
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the Fermi surface, the vanishing of the energy denominator in Eq. (4.24) may result in a numerical

instability when trying to find the monopole contribution tothe AHC.

We conclude by noting that Eq. (4.71) is but one of many possible finite-differences expressions,

and may not even be the most convenient one to use in practice.By recalling that the Berry curvature

is the Berry phase per unit area, one realizes that in the small-∆k limit of interest, the quantity

Λk,b1,b2 in Eq. (4.70) can be viewed as the discrete Berry phaseφ accumulated along the small

loop k → k + b1 → k + b2 → k. As is well-known, the Berry phase around a discrete loop is

defined as [20]

φ = − Im ln det [Sk,k+b1Sk+b1,k+b2Sk+b2,k] . (4.75)

It can be shown thatφ = Λk,b1,b2 + O(∆k2), so that for small loops the two formulas agree.

Eq. (4.75) has the practical advantage over Eq. (4.71) that it does not require inverting the overlap

matrix.
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Chapter 5

Fermi-surface calculation of the anomalous Hall conductivity

It is by now well established that the intrinsic Karplus-Luttinger mechanism [16] plays a significant

role in the anomalous Hall conductivity (AHC) of ferromagnets. This contribution can be expressed

as an integral of thek-space Berry curvature over the occupied portions of the Brillouin zone (BZ)

[66, 67, 68, 15]. First-principles calculations of the intrinsic AHC have been carried out by several

authors, using either a Kubo linear-response formula [13, 21] or a direct “geometric” evaluation of

the Berry curvature in Chapter 4, and achieving good agreement with experimental values for several

ferromagnets. These studies revealed that the Berry curvature is very sharply peaked in certain

regions of the BZ where spin-orbit splitting occurs near theFermi level. As a result the calculations

tend to be rather demanding; in the case of bcc Fe, for example, millions of k-points must be

sampled to achieve convergence [21]. More efficient approaches are therefore highly desirable.

In the preceding chapter, we developed a strategy for calculating the AHC in which Wannier

interpolation of the Bloch functions was used to circumventthe need to perform a full first-principles

calculation for everyk-point. Thus, while the required number ofk-points was not reduced, the

computational load perk-point was greatly reduced. In this approach, the actual first-principles

calculations are performed on a comparatively coarsek-mesh. Then, in a postprocessing step, the

calculated electronic structure is mapped onto an “exact tight-binding model” based on maximally-

localized Wannier functions [72]. Working in the Wannier representation, the Berry curvature can

then be evaluated very inexpensively at each of thek-points of the fine mesh needed for accurate

evaluation of the AHC.

Recently, Haldane has shown that while the intrinsic AHC is usually regarded as a Fermi-sea
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property of all the occupied states, it can alternatively, and in some ways more naturally, be re-

garded as a Fermi-surface property [69]. (More precisely, Haldane showed that these quantities

are equal modulo the quantum of transverse conductivity that is well-known from the quantum

Hall effect, since one cannot rule out the possibility that,e.g., some occupied bands carry non-

zero Chern numbers [69]). By a kind of integration by parts, Haldane showed how the integral of

the Berry curvature over the occupied portions of the BZ could be manipulated first into a Fermi-

surface integral of a Berry connection, and then ultimatelyinto a Fermi-surface integral of a Fermi-

vector-weighted Berry curvature, augmented with some Berry-phase corrections for the case of

non-simply-connected Fermi sheets.

In this chapter, we present a tractable and efficient computational scheme based on a Fermi-

surface formulation of the AHC. While following the basic spirit of the Haldane idea, we proceed

along a slightly different path. In our approach, the BZ is divided into a fine mesh of equally-spaced

slices normal to the direction of the magnetization, and theintegral of the Berry curvature over the

occupied states of a given slice is transformed into a sum of Berry phases of Fermi loops lying

in that slice. As a result, the three-dimensional BZ integration is avoided, and the method relies

instead only on information calculated on the two-dimensional Fermi surface. As in Chapter 4,

an important ingredient of our approach is the use of a Wannier interpolation scheme to lower the

cost further by eliminating the need for a full first-principles evaluation at each point on the Fermi

surface. Combining these two complementary strategies, wearrive at a robust and efficient method

for computation of the AHC in ferromagnetic metals.

The chapter is organized as follows. In Sec. 5.1 we present the necessary formulas relating Berry

phases on the Fermi surface to the AHC, as well as their evaluation in the Wannier representation.

The details of the first-principles calculations and the determination of the Fermi loops are given in

Sec. 5.2. In Sec. 5.3 the method is applied to the transition metals Fe, Co and Ni. A discussion of
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issues of computational efficiency is given in Sec. 5.4, followed by a brief conclusion in Sec. 5.5.

5.1 Method

5.1.1 Fermi-loop formula

Our starting point is the AHC expressed as an antisymmetric Cartesian tensor in terms of the Berry

curvature,

σαβ = −e
2

h̄

∑

n

∫

BZ

dk

(2π)3
fn(k)Ωn,αβ(k) , (5.1)

where the integration is over the three-dimensional BZ and the occupation functionfn(k) restricts

the sum to the occupied states (we work at zero temperature).Ωn,αβ(k) is the Berry-curvature

matrix of bandn, defined as

Ωn,αβ(k) = −2 Im
〈∂unk
∂kα

∣∣∣
∂unk
∂kβ

〉
(5.2)

whereunk is the periodic part of the Bloch functionψnk. BecauseΩn,αβ is antisymmetric, we can

represent it instead in axial-vector notation as

Ωnγ =
1

2

∑

αβ

ǫαβγΩn,αβ , (5.3)

or equivalently,Ωn,αβ =
∑

γ ǫαβγΩnγ , whereǫαβγ is the antisymmetric tensor. The Berry curvature

can also be written as

Ωn(k) = ∇k × An(k) (5.4)

where the Berry connection is

An(k) = i〈unk|∇k|unk〉 . (5.5)

Following Ref. [69], we rewrite Eq. (5.1) as

σαβ =
−e2
h̄

1

(2π)2

∑

nγ

ǫαβγKnγ (5.6)
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where

Kn =
1

2π

∫

BZ
dk fn(k)Ωn(k) . (5.7)

For the case of a completely filled band lying entirely below the Fermi level, Haldane has shown

[69] thatKn is quantized to be a reciprocal lattice vector (the “Chern vector”), as will become clear

in Sec. 5.1.2 below.

Let ai and bi be a conjugate set of primitive real-space and reciprocal-space lattice vectors

respectively,ai · bj = 2πδij , and let

cnj =
1

2π
aj · Kn (5.8)

so that

Kn =
∑

j

cnj bj . (5.9)

In order to computecn3, for example, we choose the BZ to be a prism whose base is spanned byb1

andb2 and whose height is2π/a3, and convert the integral into one over slices parallel to the base.

In general, separate calculations in which the slices are constructed parallel to theb2-b3 andb1-b3

planes are needed to computecn1 andcn2 respectively [92]. However, this can be avoided in the

common case that the magnetization lies parallel to a symmetry axis; one can then chooseb1 and

b2 perpendicular to this axis, and onlycn3 needs to be computed.

Inserting Eq. (5.7) into Eq. (5.8) yields

cnj =
aj
2π

∫ 2π
aj

0
dk⊥

φn(k⊥)

2π
(5.10)

where

φn(k⊥) =

∫

Sn(k⊥)
d2k âj · Ωn(k) . (5.11)

Herek⊥ labels the slice andSn(k⊥) is the region of the slice in which bandn is occupied. Recalling

Eq. (5.4) and noting that̂aj is the unit vector normal to the slice, the application of Stokes’ theorem
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Figure 5.1: Sketch of intersections of the Fermi surface with a constant-k⊥ plane. Open, hashed,
and cross-hashed regions correspond to filling of zero, one,and two bands, respectively. The four
small Fermi loops belong to the first band, while the large central one belongs to the second. Arrows
indicate sense of circulation for performing the Berry-phase integration.

to Eq. (5.11) yields

φn(k⊥) =

∮

Cn(k⊥)
An(k) · dl (5.12)

whereCn(k⊥) is the oriented curve boundingSn(k⊥) on the slice andφn(k⊥) has the interpretation

of a Berry phase. For later convenience we also define

φ(k⊥) =
∑

n

φn(k⊥) (5.13)

and similarlycj =
∑

n cnj etc. The calculation of the AHC has thus been reduced to a calculation

that is restricted to the Fermi surface only, in the spirit ofHaldane [69] but using a somewhat

different formulation.
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In general, the occupied or unoccupied region of bandn in slice k⊥ need not be simply con-

nected, in which case the boundaryCn(k⊥) is really the union of several loops. Moreover, loops

encircling hole pockets should be taken in the negative direction of circulation. This is illustrated

in Fig. 5.1, where the first band exhibits four hole pockets and the second band has one electron

pocket, so thatC1 is the union of four countercirculating loops andC2 is a fifth loop of positive

circulation. If higher bands are unoccupied, thenφ(k⊥) for this slice is just given by the sum of

the Berry phases of these five loops. We shall assume for simplicity in the following thatCn(k⊥) is

simply connected, but the generalization to composite loops is straightforward.

5.1.2 The quantum of Hall conductivity

We claimed earlier that if bandn is fully occupied,Kn in Eq. (5.7) is quantized to a reciprocal lattice

vector. This can now be seen by noting that under those circumstances the integral in Eq. (5.11)

runs over a two-dimensional BZ, which can be regarded as a closed two-dimensional manifold

(two-torus), and for topological reasons [93] the integralof the Berry curvature over such a closed

manifold must be an integer multiple of2π (the Chern number). Then eachcnj is an integer, and

Kn in Eq. (5.9) must be a reciprocal lattice vector as claimed. If the system is an insulator, then

K =
∑

nKn (summed over occupied bands) is also guaranteed to be a reciprocal lattice vector, and

if it is a nonzero one, the insulator would have a quantized Hall conductivity and could be regarded

as a quantum Hall crystal (or “Chern insulator”) [69, 94]. Nophysical realization of such a system

is known experimentally, but the search for one remains an interesting challenge.

Let us consider again a slice for which bandn is fully occupied but has a non-zero Chern

number. If this slice is regarded as an open rectangle (or parallelogram) rather than a closed two-

torus, and a continuous choice of gauge is made in its interior (i.e.,An(k) is free of singularities),

then the boundaryCn(k⊥) is the perimeter of this rectangle and Eq. (5.12) will yield the same
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integer multiple of2π as Eq. (5.11). In the spirit of Fig. 5.1, however, we prefer toregard the slice

as a closed two-torus and to exclude the perimeter from our definition of the boundaryCn(k⊥).

ThenCn(k⊥) is null and Eq. (5.12) vanishes for the case at hand, in disagreement with Eq. (5.11).

The disagreement arises because of the impossibility of making a continuous choice of gauge on a

closed manifold having a non-zero Chern number [93]; the best that can be done is to makeAn(k)

finite everywhere except at singularities (“vortices”) which, when included, restore the missing

contributions of2π.

Returning to the general case of a partially occupied bandn with Cn(k⊥) defined to exclude the

perimeter of the slice, we conclude that Eq. (5.12) is reallyonly guaranteed to equal the true result

of Eq. (5.11) modulo2π. Moreover, the Berry phase will be evaluated in practice using a discretized

Berry-phase formula [20] of the form

φn(k⊥) = −Im ln
∏

j

〈unkj
|unkj+1

〉 (5.14)

wherekj discretizes the loopCn(k⊥). (We will actually use a modified version, Eq. (5.25), of this

formula.) The choice of branch cut is now arbitrary, and again the agreement with Eq. (5.12) or

Eq. (5.11) is only guaranteed modulo2π. By convention one normally restricts phases to lie in the

interval(−π, π], but thenφn(k⊥) would in general have unwanted discontinuities at some values of

k⊥. In practice we discretize thek⊥ integration, so that using Eq. (5.10),cj =
∑

n cnj becomes

cj =
1

nslice

nslice∑

i=1

φ(i)

2π
. (5.15)

We then enforce continuity of the total phaseφ(k⊥) of Eq. (5.13) by choosingφ(i) such that|φ(i)−

φ(i − 1)| ≪ 2π for each slicei = 2, 3, ... in sequence. Since the true phase given by the sum of

contributions in Eq. (5.11) is also continuous, this guarantees that our calculatedφ(k⊥) differs from

the true one by the same multiple of2π for all k⊥. Our computed AHC would then differ from

the true one by a multiple of the quantum and could be said to give the “non-quantized part” of the
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intrinsic AHC in the sense of Haldane [69]. However, it is straightforward to remove this overall

ambiguity of branch choice by evaluatingφ(k⊥) from Eq. (5.11) on the first slice and then enforcing

continuity for each subsequent slice, thus arriving at the correct AHC without any question of a

quantum.

We note in passing that an isolated point of degeneracy (“Dirac point”) between a pair of bands

n andn + 1 can generically occur in three-dimensionalk-space in the absence of time-reversal

symmetry [69]. If such a Dirac point occurs below the Fermi energy, thenφn(k⊥) andφn+1(k⊥)

will, when evaluated from Eq. (5.11), exhibit equal and opposite discontinuities of2π at thek⊥

of the Dirac point. However, the total phaseφ(k⊥) will remain continuous, so that the algorithm

described in the previous paragraph will still work correctly.

We close this subsection by emphasizing that the discussionof possible non-zero Chern numbers

or the presence of Dirac points is rather academic. In our calculations on Fe, Ni and Co, we have

not encountered any indications of such anomalies; they presumably occur rarely or not at all in the

materials studied here.

5.1.3 Evaluation of the Fermi-loop Berry phase

The essential problem now becomes the computation of the loop integral of Eq. (5.12). As is

well known, the Berry connectionAn(k) of Eq. (5.5) is gauge-dependent, i.e., sensitive to thek-

dependent choice of phase of the Bloch functions. If Eq. (5.12) is to be calculated by the direct

evaluation ofAn(k) and its subsequent integration around the loop, this lack ofgauge-invariance

may present difficulties. For example, it means that there isno unique Kubo-formula expression

for An(k). An alternative and more promising approach is to computeφn(k⊥) by the discretized

Berry-phase formula [20] of Eq. (5.14), where the inner products are computed from the full first-

principles calculations at neighboring pairs ofk-points around the loop. However, this may still
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be quite time-consuming if it has to be done at very manyk-points. We avoid this by using the

technique of Wannier interpolation [72, 95, 96] to perform the needed loop integral inexpensively.

In this formulation, the loop integral of Eq. (5.12) can be expressed as a sum of two terms, one in

which a contribution toAn(k) is evaluated and integrated explicitly, and a second that takes a form

like that of Eq. (5.14).

The key idea of Wannier interpolation is to map the low-energy first-principles electronic struc-

ture onto an “exact tight-binding model” using a basis of appropriately constructed crystalline Wan-

nier functions. For metallic systems like those consideredhere, the bands generated by these Wan-

nier functions are only partially occupied. They are guaranteed by construction to reproduce the

true first-principles bands in an energy window extending somewhat above the Fermi level, so that

all valence and Fermi-surface states are properly described [72]. In the Wannier representation, the

desired quantities such as band energies, eigenstates and the derivatives of eigenstates with respect

to wavevectork can then be evaluated at arbitraryk-points at very low computational cost. All that

is needed is to evaluate, once and for all, the Wannier-basismatrix elements of the Hamiltonian and

position operators in Chapter 4. It is worth pointing out that it may sometimes be expedient to drop

some lower occupied bands and construct the Wannier functions so that they correctly represent

the Bloch functions only in some narrower energy window containing the Fermi energy; since the

present formulation involves only Fermi-surface properties, the nonquantized part of the AHC will

then still be given correctly.

The Wannier construction procedure of Ref. [72] provides uswith a set ofM Wannier functions

|Rn〉 (n = 1, ...,M ) in each cell labeled by lattice vectorR. From these the Bloch basis functions

|u(W)
nk 〉 are constructed according to the Fourier transform relation

|u(W)
nk 〉 =

∑

R

e−ik·(r−R)|Rn〉 . (5.16)

Here the superscript(W) indicates that these are obtained from the Wannier representation, that is,
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they are not yet Hamiltonian eigenstates. To obtain those, we construct theM ×M Hamiltonian

matrix

H(W)
nm (k) = 〈u(W)

nk |Ĥ(k)|u(W)
mk 〉 (5.17)

via

H(W)
nm =

∑

R

eik·R 〈0n|Ĥ|Rm〉 . (5.18)

At any givenk this matrix can be diagonalized to yield anM ×M unitary matrixUnm(k), i.e.,

U †(k)H(W)(k)U(k) = H(H)(k) (5.19)

whereH(H)(k) = E(H)
n δmn are the energy eigenvalues and

|u(H)
nk 〉 =

∑

m

|u(W)
mk

〉Umn(k) (5.20)

are the corresponding band states. By the construction procedure of Ref. [72],E(H)
n is identical to the

trueEn (and similarly for the eigenvectorsu(H)
nk ) for all occupied states and low-lying empty states.

This is strictly true only fork-points on the originalab-initio mesh. The power of this interpolation

scheme lies in the fact that, by virtue of the spatial localization of the Wannier functions, the error

remains extremely small even for points away from that grid [96].

The next step is to evaluateE(H)
nk on a two-dimensional mesh ofk-points covering a single slice

and then use a contour-finding algorithm to map out and discretize the Fermi loops therein. This

part of our scheme will be described in more detail in Sec. 5.2.2. For now we can just assume that

the output is a sequence of pointskj (j = 0, . . . , J − 1) providing a fairly dense mapping of the

contour. (As before, we assume for simplicity that the Fermicontour consists of a single loop; the

extension to multiple loops is straightforward.)

Next we need to obtain the Berry connectionAn(k) = i〈u(H)
nk |∇k|u(H)

nk 〉 as in Eq. (5.5). Using
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Eq. (5.20), this becomes

An(k) =
∑

lm

U †
nl(k)A

(W)
lm (k)Umn(k)

+i
∑

m

U †
nm(k)∇kUmn(k) (5.21)

where

A(W)
nm (k) = i〈u(W)

nk |∇k|u(W)
mk

〉 (5.22)

is computed in practice from the expression

A(W)
nm (k) =

∑

R

eik·R 〈0n|r̂|Rm〉 (5.23)

in a manner similar to Eq. (5.18). Details concerning the method of calculating Eqs. (5.18) and

(5.23) can be found in Chapter 4.

The decomposition ofAn(k) into two terms in Eq. (5.21) is an artifact of the choice of Wannier

functions; only the sum of the two terms is physically meaningful (upon a circuit integration).

However, for a given choice of Wannier functions, the first term arises because the Bloch functions

|u(H)
nk 〉 acquire some of the Berry curvature attached to the full subspace ofM Wannier functions

used to represent them, whereas the second term represents the Berry curvature arising from changes

of character of this Bloch statewithin the Wannier subspace. To clarify this viewpoint, we introduce

a notation in Chapter 4 in which||vnk〉〉 is defined to be thenth column vector of matrixU , so that

the second term of Eq. (5.21) becomesi〈〈vnk||∇k||vnk〉〉. Plugging into Eq. (5.12), this yields

φn(i) =

∮
〈〈vnk||A(W)(k)||vnk〉〉 · dl

+i

∮
〈〈vnk||∇k||vnk〉〉 · dl (5.24)

for the Berry phase of slicei appearing in Eq. (5.15). Note that the integrand in the first term is

gauge-invariant (here “gauge” refers to the application ofa phase twist||vnk〉〉 → eiβ(k) ||vnk〉〉),

while in the second term only the entire loop integral is gauge-invariant. Indeed, the second term is
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just a Berry phase defined within theM -dimensional “tight-binding space” provided by the Wannier

functions. Recalling thatkj for j = 0, . . . , J−1 is our discretized description of the Fermi loop, and

using standard methods for discretizing Berry phases [20] as in Eq. (5.14), our final result becomes

φn(i) =

J−1∑

j=0

〈〈vnk||A(W)(k)||vnk〉〉 · ∆k

−Im ln
J−1∏

j=0

〈〈vnkj
||vnkj+1

〉〉, (5.25)

where∆k = (kj+1 − kj−1)/2.

As we shall see below, in practice we only encounter closed orbits, in which case it is clearly

appropriate to setkJ = k0 and close the phases with||vn,kJ
〉〉 = ||vn,k0〉〉. For lower-symmetry

situations, however, open orbits withkJ = k0+G may be encountered. Even in this case, however,

we would still set||vn,kJ
〉〉 = ||vn,k0〉〉; in contrast to the full Bloch states which obey [20]un,kJ

=

e−iG·r un,k0, no extra phase factors are needed here because the Fourier-transform convention of

Eq. (5.16) treats the Wannier functions as though they are all nominally located at the cell origin.

In summary, our strategy is to evaluate Eq. (5.15) by decomposing each generalized pathCn(i)

into connected simple loops, and sum the loop integrals as computed using Eq. (5.25). The opera-

tions needed to evaluate Eq. (5.25) are inexpensive as they all involve vectors and matrices defined

in the low-dimensional space of the Wannier representation.

5.2 Computational details

5.2.1 First-principles calculations

Fully relativistic band-structure calculations are carried out for the ferromagnetic transition met-

als Fe, Co and Ni at their experimental lattice constants (5.42, 4.73, and 6.65 bohr, respectively)

using thePWSCF code [76]. Norm-conserving pseudopotentials with spin-orbit coupling [97] are

generated using similar parameters as in Chapter 4. An energy cutoff of 60 Hartree is used for the
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Table 5.1: Calculated spin magnetic moment per atom (inµB) for the three transition metals Fe, Ni
and Co, with magnetization along [001], [111] and [001], respectively.

bcc Fe fcc Ni hcp Co
Theory 2.22 0.62 1.60
Experiment1 2.13 0.56 1.59

planewave expansion of the valence wavefunctions (400 Hartree for the charge densities), and the

PBE generalized-gradient approximation [77] is used for the exchange-correlation functional. The

self-consistent ground state is obtained using a16×16×16 Monkhorst-Pack [81] mesh ofk-points

and a fictitious Fermi smearing [82] of0.02 Ry for the Brillouin-zone integration.

The calculated spin magnetic moments are shown in Table 5.1.The effect of spin-orbit cou-

pling on these moments is included in the calculation, sinceit is needed in any case to obtain a

nonzero AHC. The agreement with experiment is rather good, confirming that our norm-conserving

pseudopotentials are suitable for describing the ferromagnetic state of the transition metals.

The maximally-localized Wannier functions are generated using theWANNIER90 code [84];

details are given in Secs. 5.3.1-5.3.3 below.

5.2.2 Mapping and sampling of Fermi loops

As discussed above, our basic strategy involves dividing the BZ into a series of parallel slices and

finding the intersections of the Fermi surface with each of these slices. Each slice is sampled

on a uniformN × N k-point mesh, withN ranging from300 to 500, and the band energies are

computed on the mesh using Wannier interpolation. A standard contour-finding algorithm of the

kind used to make contour plots is then used to generate a listof Fermi loops and, for each loop, a

list k0, . . . ,kJ−1 of k-points providing a discretized representation of the loop.

As shown in Fig. 5.2(a), the Fermi contours in the first BZ are sometimes composed of multiple
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Figure 5.2: Calculated Fermi-surface intersections (Fermi loops) on thekz = 0.02 plane for bcc
Fe; different bands are color-coded for clarity. (a) Fermi contours within the first Brillouin zone.
(b) Fermi contours after reassembly to form closed contoursby translating some portions by a
reciprocal lattice vector. Inset: enlargement showing part of an avoided crossing where a refined
mesh (black lines) is used to obtain a more accurate representation of the Fermi loop. The actual
calculation is performed within the dashed box.
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segments terminating at the BZ boundary. To insure that we get closed loops suitable for the eval-

uation of Eq. (5.25), we actually do the initial contour-finding procedure in an extended zone with

3 × 3 times the size of the first BZ. We then select closed loops located near the central cell while

identifying and discarding loops or portions of loops that correspond to periodic images of these

chosen loops. The result is a set of closed loops that partially extend outside the first BZ as shown

in Fig. 5.2(b). Of course, if there were open orbits on the Fermi surface, it would not always be pos-

sible to select closed loops in the above sense; one would have to accept a “loop” withkJ = k0 +G

as discussed following Eq. (5.25). However, we never encounter such open orbits in practice for the

types of materials studied here, in which the magnetizationis aligned with a three-fold, four-fold,

or six-fold rotational symmetry axis. The slices are perpendicular to the symmetry axis, and the

symmetry ensures that open orbits cannot occur on the slices.

A potential difficulty in applying the Fermi-loop method to real materials arises from the pos-

sible presence of degeneracies or near-degeneracies between bands. If two bands are degenerate

at the Fermi energy, this means that two Fermi loops touch, and it is no longer straightforward to

define and compute the Berry phases of these loops. Fortunately, the presence of ferromagnetic spin

splitting and spin-orbit coupling removes almost all degeneracies. In our calculations we found no

true degeneracies in hcp Co or fcc Ni, and the only degeneracies in bcc Fe were found to lie in the

kz = 0 plane. (In the latter case, we avoid thekz = 0 plane by picking ak⊥ mesh that is offset so

that this plane is skipped over.) On the other hand, we do find numerous weakly avoided crossings

induced by the spin-orbit interaction, and while these introduce no difficulty in principle, they do

require special care in practice. Indeed, we find that it is important to sample the Fermi surface

very accurately in the vicinity of these crossings. To do so,we calculate the Berry curvature at each

kj using Wannier interpolation, and if a large value is encountered, we introduce a refined mesh

with 4 × 4 greater density in this region, repeat the contour-finding procedure there, and replace
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the discretized representation of this portion of the loop with a denser one. We also take care to

recomputeEnk at eachkj and iteratively adjust thek-point location in the direction transverse to

the loop in order to insure thatEnk lies precisely at the Fermi energy. An example of a portion of

a Fermi loop that has been refined in this way is illustrated inthe inset to Fig. 5.2(b). Overall, the

resulting numberJ of k-points per loop ranges from several hundreds to thousands,depending on

the size and complexity of the Fermi loop.

In our current implementation, the entire procedure above is repeated independently on each of

the slices. As already mentioned in Sec. 5.1.2, it is important to make a consistent choice of branch

of the Berry phaseφ(i) on consecutive slices. We do this by adding or subtracting a multiple of

2π to the Berry phase calculated from Eq. (5.15) such that|φn(i) − φn(i − 1)| ≪ 2π is satisfied,

always checking for consistency between the first and last slice.

5.2.3 Use of symmetry to reduce computational load

The presence of a net magnetization results in a considerable reduction in symmetry, but several

symmetries still remain that can be exploited to reduce the computational cost. In the previous

Fermi-sea-based methods [21, 95] the use of symmetries is straightforwardly implemented by re-

stricting thek-point sampling to the irreducible wedge of the BZ. For the Fermi-loop method, the

use of symmetries needs more careful treatment.

Here we discuss the difficulties, and point out their solution, using ferromagnetic bcc Fe as an

example. We focus our attention on the mirror symmetriesMx andMy. Since each slice lies in

an x-y plane, we can use these to restrict the bandstructure calculation and the search for Fermi

contours to a reduced BZ having one-fourth of the area of the full BZ, as shown by the dashed line

in Fig. 5.2(b). However, a typical Fermi loop will no longer close within this reduced BZ. Because

a Berry phase is a global property of a closed loop, one cannotjust compute the Berry phase of
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open segment lying inside the reduced BZ and multiply by four; the Berry phase of this segment is

ill-defined unless the phases of the wavefunctions at its terminal points are specified.

Our solution to this difficulty is illustrated in Fig. 5.3. Wemake some arbitrary but definite

choice of the phases of the Bloch functions in the upper-right segment, compute the open-path Berry

phase following Eq. (5.25), and multiply by four. We then addcorrections that take account of the

phase jumps at the segment boundaries. For example, we letMx acting on the Bloch states from1

to 2 define the Bloch states from1′ to 2′. The correction arising from the1′-1 boundary is then given

by the phase of〈u1′ |u1〉 = 〈Mxu1|u1〉. (HereMx is defined in the spinor context and includes a

complex conjugation component. Since the Bloch functions are expressed in the Wannier basis in

our approach, information about the symmetries of the Wannier functions has to be extracted and

made available for the application of the symmetry transformations.) Similar corrections, using also

My, are obtained for the2′-2′′, 1′′-1′′′, and2′′′-2 segment boundaries. By including these mismatch

corrections, we are able to calculate the global Fermi-loopBerry phase in a correct and globally

gauge-invariant manner.

We have tested this procedure and confirmed that the results obtained are essentially identical to

those computed without the use of symmetry. The BZ could in principle be reduced further in bcc

Fe using the diagonal mirror operations, but we have not tried to implement this.

5.3 Results

In this section we present the results of our calculations ofthe anomalous Hall conductivity using

the Fermi-loop approach of Eq. (5.25) as applied to the threeferromagnetic transition metals Fe, Co

and Ni.
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Figure 5.3: Illustration of use ofMx andMy mirror symmetries on a slice of the Brillouin zone in
bcc Fe. Only the segment of the Fermi loop from Point 2 to Point1 is actually computed; the three
other segments are included using symmetry operations.



118

5.3.1 bcc Fe

We have previously presented calculations of the AHC of bcc Fe computed using the Fermi-sea

formulation in Chapter 4. Here we adopt the same choice of Wannier functions as in that work,

namely 18 Wannier functions covering thes, p andd character and both spins. The orbitals ofs,

p, andeg character are actually rehybridized into Wannier functions ofsp3d2 type, and the Wannier

functions are only approximate spin eigenstates because ofthe presence of spin-orbit interaction

(see Chapter 4 for details).

Six bands cross the Fermi energy in bcc Fe. In Fig. 5.4 we show the Fermi-surface sheets for

four of these, plotted using theXcrysden package [99]. Some of these are quite complicated but,

as expected, they all conform to the lattice symmetries. What is not clearly visible in these plots

are the tiny spin-orbit-induced splittings, which change the connectivity of the Fermi surface. As

mentioned earlier, such features play an important role in the AHC, and need to be treated with care.

We take the magnetization to lie along the[001] axis. Choosingb1 = (2π/a)(11̄0) andb2 =

(2π/a)(110) in the notation of Sec. 5.1.1, it follows thata3 = 2π b1 × b2/Vrecip = (0, 0, a) where

Vrecip is the primitive reciprocal cell volume, and we only need to compute thecn3 in Eq. (5.10).

The slices are square in shape, andk⊥ = kz is discretized into 500 slices.

In Fig. 5.5 we have plotted the total Berry phase Eq. (5.13) oneach slice as computed from

Eq. (5.25). The results are symmetric under mirror symmetry, so only half of the range ofk⊥ is

shown. The sharp peaks and valleys in Fig. 5.5 are related to degenerate or near-degenerate bands

that have been split by the spin-orbit interaction, as was illustrated, e.g., in the inset of Fig. 5.2. To

validate the calculation, we compare it against a direct numerical integration of the Berry curvature

over the occupied bands using Eq. (5.11), as indicated by thesymbols in Fig. 5.5. In spite of

rather complex and irregular Fermi surfaces, the agreementbetween the two methods in Fig. 5.5 is

excellent.
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Figure 5.4: Calculated Fermi surfaces of bcc Fe. The outsideframe is the boundary of the Brillouin
zone.
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Figure 5.5: Calculated Berry phaseφ(k⊥) of bcc Fe (in radians) as a function ofk⊥ (in units of
2π/a). Solid line shows results obtained from the Fermi-loop method of Eq. (5.25); circles indicate
reference results obtained by the integration of the Berry curvature on each slice using Eq. (5.11).



120

Table 5.2: Anomalous Hall conductivity, inΩ-cm−1. First three rows show values computed using
Eqs. (5.6)–(5.10) together with Eq. (5.25), the first term only of Eq. (5.25), or Eq. (5.11), respec-
tively. Results of previous theory and experiment are included for comparison.

bcc Fe fcc Ni hcp Co
Fermi loop 750 −2275 478
Fermi loop (1st term) 7 0 −4
Berry curvature 753 −2203 477
Previous theory 7511 −20732 4922

Experiment 10323 −6464 4805

The values of the integrated anomalous Hall conductivity using the new approach and the ref-

erence approach are shown in the first and third lines of Table5.2. The second line shows the

contribution obtained from integrating only the first term of Eq. (5.25); clearly, this contribution

is very small. The agreement with the previous theory of Yaoet al.[21] is excellent, while the

agreement with experiment is only fair. Table 5.2 will be discussed further in Sec. 5.3.4.

5.3.2 fcc Ni

For fcc Ni we chose 14 Wannier functions, seven each of approximately spin-up and spin-down

character. These were comprised of five Wannier functions ofd-like symmetry centered on the

Ni atoms and two Wannier functions of tetrahedral symmetry located on the tetrahedral interstitial

sites, similar to the choice that was made for Cu in Ref. [72].The inner energy window was chosen

to extend 21 eV above the bottom of the bands, thus extending7.1 eV above the Fermi energy and

including several unoccupied bands as well.

In Fig. 5.6 we show the Fermi sheets for four of the five bands that cross the Fermi energy in

fcc Ni. The shapes of these Fermi surfaces are somewhat more spherical than those of bcc Fe. As

expected, they again conform to the lattice symmetries.

In the case of fcc Ni, the magnetization lies along the[111] axis. Choosingb1 = (2π/a)(02̄2)
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andb2 = (2π/a)(202̄) in the notation of Sec. 5.1.1, it follows thata3 = 2π b1 × b2/Vrecip =

(a, a, a) = a
√

3 ê(111), and we only need to compute thecn3 in Eq. (5.10). The slices are hexagonal

in shape, andk⊥ = k · ê(111) is discretized into about100 slices.

The results are plotted in Fig. 5.7, along with symbols denoting the reference calculation by an

integration of the Berry curvature over the slice. Once again, the agreement is very satisfactory. The

values of the integrated AHC are again summarized in Table 5.2.

5.3.3 hcp Co

Co in the hcp structure has two atoms per unit cell. We choose 18 Wannier functions per Co atom,

nine for each spin, in a very similar manner as was done for Fe in Sec. 5.3.1. We therefore have 36

Wannier functions per cell.

Seven bands cross the Fermi energy in hcp Co. We show the four largest Fermi-surface sheets

in Fig. 5.8. The Fermi surfaces can be seen to respect the 6-fold crystal symmetry, and none of them

touch each other.

The magnetization of hcp Co lies along the[001] axis. We thus chooseb1 = (2π/a)(1/
√

3,−1, 0)

and b2 = (2π/a)(1/
√

3, 1, 0) in the notation of Sec. 5.1.1, and it follows thata3 = 2π b1 ×

b2/Vrecip = (0, 0, c). The slices are hexagonal in shape, andk⊥ = kz is discretized into about200

slices.

The results are plotted in Fig. 5.9, along with the symbols denoting the reference calculation

by integration of the Berry curvature. Once again, the peaksand valleys correspond to the places

where two loops approach one another closely. Some pieces ofthe Fermi surfaces of hcp Co are

nearly parallel to the slices (see the bottom right panel of Fig. 5.8), so that the number and shapes

of the Fermi loops sometimes change rapidly from one slice toanother. In particular, we found it

difficult to enforce continuity of the branch choice of Eq. (5.25) as a function ofk⊥ near the sharp
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features atk⊥a/2π = 0.18 and0.42 in Fig. 5.9. We therefore redetermined the correct branch

choice by comparing with the result of the Berry-curvature integration at slices just outside these

difficult regions. Despite these difficulties, it can still be seen that the Fermi-loop method works

well for this case.

5.3.4 Discussion

The second row of Table 5.2 shows the results computed using only the first term of Eq. (5.25). In

each case, its contribution is less than 1% of the total, and would therefore be negligible for most

purposes. Actually, it can be shown that the inclusion of thefirst term only in Eq. (5.25) of the

present method is equivalent to carrying out the Berry-curvature integration approach of Chapter 4

with theD–D term omitted in Eq. (32) of that work (that is, only theD–A andΩ terms included).

We have carried out this comparison and find values of 7,−0.5 and−2Ω-cm−1 for bcc Fe, fcc

Ni, and hcp Co, respectively, in very good agreement with thevalues reported in Table 5.2. The

physical interpretation for the small terms in the second row of Table 5.2 is basically that the full

set of Bloch-like states constructed from the Wannier functions (e.g., the manifold of 18 Bloch-like

states in bcc Fe) has some small Berry curvature of its own, and the projection of this curvature onto

the occupied subspace gives the small first term of Eq. (5.25). On the other hand, spin-orbit induced

splittings across the Fermi levelbetweenBloch-like states built from these Wannier functions give

large, sharply peaked contributions to the Berry curvatureof the occupied subspace, and make a

very much larger contribution to the total AHC. Of course, the precise decomposition between the

first and second term of Eq. (5.25) depends on the exact choiceof Wannier functions, but the present

results seem to indicate that the dominance of the second term is probably a general feature, at least

for systems in which the Wannier functions are well localized and the spin-orbit splitting is not very

strong.
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As mentioned in the previous section, the overall agreementseen in Table 5.2 between the results

computed using the Fermi-loop approach and those computed using the Berry-curvature integration

indicate the internal consistency of our theory and implementation. The agreement with the results

of Yao and coworkers, which were obtained by a Berry-curvature integration using an all-electron

approach [21], also demonstrates the robustness of our pseudopotential implementation, including

its ability to represent spin-orbit interactions correctly.

In the last row of Table 5.2 we show comparison with some experimental values for the AHC

of Fe, Ni, and Co. The agreement is not very good, but it was notexpected to be. First, the

theoretical values in Table 5.2 are all computed by including only the intrinsic Karplus-Luttinger

contribution to the AHC; extrinsic skew scattering and side-jump scattering contributions are not

included, and there is no reasona priori to expect these to be negligible. Second, the experimental

values themselves have considerable uncertainty. For example, Ref. [101] gives values for Fe and

Ni films of about 970 and−480Ω-cm−1 respectively (the value quoted in Table 5.2 for Co is also

a film value) whereas it gives a value of about 2000Ω-cm−1 for single-crystal Fe. Ref. [17] gives a

value for Ni of−753Ω-cm−1 and Ref. [102] reports a value for Co of 500Ω-cm−1. It could well be

that different kinds of experimental samples have different impurity and defect populations, leading

to different extrinsic contributions to the AHC. Finally, on the theoretical side, not much is yet

known about the accuracy of common exchange-correlation functionals, such as the PBE functional

used here [77]. for the AHC. Clearly, there is much work to be done on both the experimental and

theoretical side before close agreement can be expected. Nevertheless, the very rough agreement, at

the level of signs and general trends, between the theoretical and experimental values in Table 5.2

suggests that the intrinsic Karplus-Luttinger contribution is probably an important, and sometimes

a dominant, one.
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5.3.5 AHC anisotropy of Ni

Rather little is known, either experimentally or theoretically, about the dependence of the AHC on

the crystallographic orientation of the magnetization. Incrystal with a small magneto-crystalline

anisotropy, it may be possible to rotate the direction of themagnetization with a small applied

magnetic field, and to test, for example, whether the AHC pseudovector remains aligned with the

magnetization (isotropic behavior). In at least one case, ahighly anisotropic AHE has been observed

experimentally in Ag-doped FeCr2S4 (ferromagnetic diamond lattice) [103]. In the following, we

explicitly calculate the dependence of AHE on the angle betweenz axis and the direction of mag-

netization for the case of fcc Ni.

The easy axis of fcc Ni is determined experimentally to be along the [111] direction [98]. Along

this direction, the calculated spin magnetization is 0.62 Bohr magneton, which is in good agree-

ment with the experimental value 0.56. In Table 5.3, we present the results of the calculations

of the anisotropy energy and anisotropic anomalous Hall conductivity along several directions be-

tween the [001] direction and [111] directions. For each of these directions, a noncollinearab-initio

calculation is performed with the orientation of the magnetization fixed to that direction and its

magnitude is allowed to relax. The differences in total energy between different magnetization di-

rections are not significant. It is worth noting that our noncollinear magnetization calculation gives

the wrong prediction, namely that the [001] direction is thelowest-energy configuration. The spin

magnetization does not change dramatically and it ranges from 0.61 to 0.63 Bohr magneton. It is

clear that the largest change occurs for the anomalous Hall conductivity, which differs by about

12.8% between the [111] direction and the [001] direction. This is illustrated in Fig. 5.11. As the

angle of the magnetization increases from thez-axis, the change in anomalous Hall conductivity

increases, reaching its maximum at about 45◦. In addition to the change in the magnitude of the
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Table 5.3: Calculated magnitude of the magnetic moment and the anisotropic anomalous Hall con-
ductivity, in units of (Ω cm)−1, as the magnetization is rotated in the(011̄) plane. θz is the angle
between the magnetization and thez axis.

θz AHC Mspin E − E111(µeV )

0.0 (001) −2366 0.63 −0.27
9.00 −2323 0.63 0.0
18.00 −2219 0.63 0.0
27.00 −2137 0.63 0.27
36.00 −2110 0.63 0.27
45.00 −2091 0.62 0.27

54.5 (111) −2097 0.61 0.0
60.0 −2098 0.62 −0.27
70.0 −1986 0.63 0.27
80.0 −1931 0.63 0.0
90.0 −1910 0.62 0.0

magnetization, the pseudo-vectorK defined in Eq. (5.7) is not parallel to the direction of magneti-

zation, as shown in Fig. 5.12. It is evident that fcc Nickel has a clearly anisotropic anomalous Hall

effect.

The anisotropic anomalous Hall effect can be understood in terms of the relation of the band

structure and the Berry curvature. The calculated band structure around the Fermi surface and the

Berry curvature along high-symmetry k points are shown in Fig. 5.10. The largest value of Berry

curvature occurs at the place where the Fermi energy lies between a pair of bands which have a

small gap (for example, at 75% of the distance from G to K). Thevalue of the Berry curvature is

very sensitive to the gap. The small gap is induced by spin-orbit coupling. Different directions of

magnetization induce different gaps, which dramatically change the Berry curvature.

5.4 Computational efficiency

The motivation for developing a method for computing the AHCthat relies only on information

computed on the Fermi surface is, to some degree, aesthetic and philosophical: Haldane argued that
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the AHC is physically most naturally regarded as a Fermi-surface property [69], and as such should

be computed using a method that does not make use of extraneous information in arriving at the

desired quantity. However, a much more important motivation from the practical point of view is

the idea that the computational effort might be drasticallyreduced by having to compute quantities

only on the two-dimensional Fermi surface rather than on a three-dimensional mesh ofk-points.

In the present implementation as it stands, unfortunately,the computational savings gained

through the use of the Fermi-loop Berry-phase approach is quite modest. After taking advantage of

the symmetry as discussed in Sec. 5.2.3, the total computational time of our AHC calculation for

bcc Fe is about 1.7 hours using a200×200 k-mesh on each of 500 slices, to be compared with about

2 hours using our previous method of Chapter 4. (These timings are on a 2.2 GHz AMD-Opteron

PC, and neither includes the Wannier construction step, which takes about 2.5 hours.) Roughly,

the work on each slice can be divided into three phases: Step 1, computing the energy eigenvalues

on the200 × 200 k-mesh; Step 2, executing the contour-finding algorithm; and Step 3, evaluating

Eq. (5.25) on the discretized Fermi loops. We find that less than 1% of the computer time goes to

Step 2, while the remainder is roughly equally split betweenStep 1 and 3. The operations in these

steps have been greatly accelerated by making use of Wannierinterpolation methods, but this is

also the case for the comparison method of Chapter 4. (We emphasize that, for this reason, both

the method of Chapter 4 and the present one are orders of magnitude faster than methods based on

direct first-principles calculations at everyk-point.)

Many opportunities for further reduction of the computer time are worthy of further exploration.

Regarding Step 1, for example, at the moment the contour-finding is done independently on each

slice; it might be much more efficient to step from slice to slice and use a local algorithm to deter-

mine the deformation of the Fermi contours on each step. It may also be possible to do a first cut

at the contour-finding using a coarser k-mesh (say50 × 50) and then refine it in regions where the
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loops approach one another or have sharp bends. It may also bepossible to take larger steps between

slices in most regions ofk⊥, and fall back to fine slices only in delicate regions. In implementing all

such strategies, however, one should be careful to avoid missing any small loops that might appear

suddenly from one slice to the next, or which might be missed on an initial coarse sampling of the

slice. It may also be interesting to explore truly three-dimensional algorithms for finding contour

surfaces, and then derive two-dimensional loops from these.

As for Step 3, it should be possible to use a lower density ofk-points in the portions of the loop

discretization where the character of the wavefunctions ischanging slowly. The time for this step

will also obviously benefit from taking larger steps betweenslices in regions where this is possible.

Finally, a reduction by a factor of two or more may be possibleby making use of symmetries not

considered in Sec. 5.2.3, such as the diagonal mirror symmetries (x↔ y etc.) in bcc Fe.

The exploration of these issues is somewhat independent from the quantum-mechanical formu-

lation of the underlying theory, which is the main focus of the present work, and we have therefore

left the exploration of these possibilities for future investigations.

Finally, it should be emphasized that the computational load scales strongly with the dimension

of the Wannier space used to represent the wavefunctions. Inour calculations, this was 18, 14, and

36 for Fe, Ni, and Co, respectively. In some materials, theremay be only a few bands crossing

the Fermi energy, and it might be possible to represent them using a much smaller number of

Wannier functions. This is the case in many transition-metal oxides such as Sr2RuO4, cuprate

superconductors, etc. In ferromagnetic materials of this kind, it should be possible to choose an

inner window in the Wannier disentanglement procedure [72]that brackets the Fermi energy but

does not extend to the bottom of the occupied valence band, and to generate just a handful of

Wannier functions (e.g., threet2g orbitals times two for spin) to be used in the Wannier interpolation

procedure. Then all matrices used in that procedure would bevery much smaller (e.g., 6×6) and
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the computation would go considerably faster.

5.5 Summary

In summary, we have developed a first-principles method for computing the intrinsic AHC of fer-

romagnets as a Fermi-surface property. Unlike conventional methods that are based on ak-space

volume integration of the Berry curvature over the occupiedFermi sea, our method implements

the Fermi-surface philosophy by dividing the Brillouin zone into slices normal to the magnetiza-

tion direction and computing the Berry phases of the Fermi loops on these slices. While Haldane

has pointed out that only the non-quantized part of the AHC can be determined in principle from a

knowledge of Fermi-surface properties only, we find in practice that it is straightforward to make the

correct branch choice and resolve the quantum of uncertainty by doing a two-dimensional Berry-

curvature integration on just one or a few of the slices. Our method also makes use of methods

of Wannier interpolation to minimize the number of calculations that have to be done using a full

first-principles implementation; almost all the operations needed to compute the AHC are actually

done by working with small matrices (e.g., 18×18 for bcc Fe) in the Wannier representation.

We have tested and validated our new method by comparing withour earlier implementation

of a Fermi-sea Berry-curvature integration for bcc Fe, fcc Ni, and hcp Co. The different crystal

structures and magnetization orientations in these three materials also allow us to demonstrate the

flexibility of the method in dealing with these different cases. We find excellent agreement between

the two approaches in all cases.
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Figure 5.6: Calculated Fermi surfaces of fcc Ni. The outsideframe is the boundary of the Brillouin
zone.
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Figure 5.7: Calculated Berry phaseφ(k⊥) of fcc Ni (in radians) as a function ofk⊥ (in units of
2π/

√
3a). Solid line shows results obtained from the Fermi-loop method of Eq. (5.25); circles

indicate reference results obtained by the integration of the Berry curvature on each slice using
Eq. (5.11).
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Figure 5.8: Calculated Fermi surfaces of hcp Co. The outsideframe is the boundary of the Brillouin
zone.
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Figure 5.9: Calculated Berry phaseφ(k⊥) of hcp Co (in radians) as a function ofk⊥ (in units of
2π/c). Solid line shows results obtained from the Fermi-loop method of Eq. (5.25); circles indicate
reference results obtained by the integration of the Berry curvature on each slice using Eq. (5.11).
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Figure 5.10: Top panel: calculated band structure of Ni (energy in units of eV)with magnetization
along [001] (blue) and [111] (red) directions. Bottom panel: calculated Berry curvature in atomic
units with the corresponding magnetization.
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Figure 5.11: Calculated change in the magnitude of the anomalous Hall conductivity as a function
of the angle between thez axis and the direction of magnetization, as the magnetization is rotated
in the(011̄) plane. The vertical line indicates the [111] direction.
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Figure 5.12: Calculated difference in angle between the magnetization and the pseudovector of the
anomalous Hall conductivity, as the magnetization is rotated in the(011̄) plane. The vertical line
indicates the [111] direction.
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