
STREAMING TECHNIQUES FOR

STATISTICAL MODELING

BY YIHUA WU

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Prof. S. Muthukrishnan

and approved by

New Brunswick, New Jersey

October, 2007

ABSTRACT OF THE DISSERTATION

Streaming Techniques for Statistical Modeling

by Yihua Wu

Dissertation Director: Prof. S. Muthukrishnan

Streaming is an important paradigm for handling high-speed data sets that

are too large to fit in main memory. Prior work in data streams has shown

how to estimate simple statistical parameters, such as histograms, heavy hitters,

frequent moments, etc., on data streams. This dissertation focuses on a number

of more sophisticated statistical analyses that are performed in near real-time,

using limited resources.

First, we present how to model stream data parametrically; in particular, we

fit hierarchical (binomial multifractal) and non-hierarchical (Pareto) power-law

models on a data stream. It yields algorithms that are fast, space-efficient, and

provide accuracy guarantees. We also design fast methods to perform online

model validation at streaming speeds.

The second contribution of this dissertation addresses the problem of modeling

an individual’s behaviors via “signature” for nodes in communication graphs. We

develop a formal framework for the usage of signatures on communication graphs

and identify fundamental properties that are natural to signature schemes. We

justify these properties by showing how they impact a set of applications. We

ii

then explore several signature schemes in our framework and evaluate them on real

data in terms of these properties. This provides insights into suitable signature

schemes for desired applications.

Finally, the dissertation studies the detection of changes in models on data

with unknown distributions. We adapt the sound statistical method of sequen-

tial probability ratio test to the online streaming case, without independence

assumption. The resulting algorithm works seamlessly without window limita-

tions inherent in prior work, and is highly effective at detecting changes quickly.

Furthermore, we formulate and extend our streaming solution to the local change

detection problem that has not been addressed earlier.

As concrete applications of our techniques, we complement our analytic and

algorithmic results with experiments on network traffic data to demonstrate the

practicality of our methods at line speeds, and the potential power of streaming

techniques for statistical modeling in data mining.

iii

Acknowledgements

I would like to thank my advisor, Prof. S. Muthukrishnan, for his guidance

throughout my Ph.D. studies. Meeting with Muthu is alike to drink from a fire

hose, where it is so common for me to spend a week or longer unraveling the

new ideas (or suggestions) and key words from Muthu during a single one-hour

meeting. Muthu’s greatest gift as an advisor is to encourage me and to instill in

me the confidence in doing fun research on my own, without allowing me to settle

for doing less than the best I can. An excellent speaker himself, I learned from

Muthu how to give good talks, which I found extremely useful. On the other

hand, he is so effective in overcoming my anxiety, as a friend.

I am fortunate to have industrial collaborations with researchers from several

labs. These experiences are eye-openers to me, offering me a unique opportunity

to see how people outside universities do “real” work and do research. I am

grateful to Muthu for such hookups. I thank Flip Korn for being a thoughtful

mentor at AT&T Research. He helped me in every aspect. I benefited greatly

from many detailed discussions with him in many ways: in person, via emails and

on phone. His ideas and advice helped me find solutions to research problems

as well as the path to become a researcher. I am also thankful to Eric van den

Berg for his helpful advice on Chapter 5, to Graham Cormode for his consistent

interests in and encouragement to my work since my first research project. I am

very happy to have collaboration with Graham on Chapter 4.

I want to thank the remaining members of my thesis committee for their time

and interest in this dissertation. They are Prof. David Madigan, Prof. Richard

Martin, and Dr. Divesh Srivastava.

iv

I spent one summer at AT&T Research, as an intern. I enjoyed all my experi-

ences and I thank researchers there for spending time in talking about my work:

Tamraparni Dasu, Marios Hadjieleftheriou, Theodore Johnson, Yehuda Koren,

Shubho Sen, Oliver Spatscheck, Divesh Srivastava, Mikkel Thorup, Simon Ur-

banek, Suresh Venkatasubramanian, Chris Volinsky, and the fellow interns: Emi-

ran Curtmola, Bing Tian Dai, Irina Rozenbaum, Vladislav Shkapenyuk, Hang-

hang Tong, Ranga Vasudevan, Ying Zhang. I am also thankful to my friends and

fellow students in the department, who have made my time at Rutgers colorful.

Finally, I must thank my family members. Their love helped me through my

darker moods while in graduate school. Without their supports, none of this

would be possible.

v

Dedication

To my parents: Longcheng Wu and Sufang Xia. Without their selfless love, I

could not achieve anything.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . xi

List of Figures . xii

1. Introduction . 1

2. Preliminaries . 8

2.1. Computational Model . 8

2.1.1. Massive Data Streams . 8

2.1.2. Window Models . 9

2.1.3. Streaming Computational Model 10

2.1.4. Semi-Streaming Computational Model 12

2.2. Streaming Analysis Tools . 12

2.2.1. Random Projections . 13

2.2.2. Sampling Techniques . 14

2.2.3. Other Algorithmic Techniques 15

3. Modeling Skew in Data Streams 17

3.1. Introduction . 17

3.2. Model Fitting on Data Streams 20

3.3. Hierarchical (Fractal) Model . 22

vii

3.3.1. Model Definition . 22

3.3.2. Fractal Parameter Estimation 23

3.3.3. Model Validation . 27

3.4. Non-Hierarchical (Pareto) Model 30

3.4.1. Model Definition . 30

3.4.2. Pareto Parameter Estimation 30

3.4.3. Model Validation . 33

3.5. Fractal Model Fitting Experiments 34

3.5.1. Alternative Streaming Methods 34

3.5.2. Accuracy of Proposed Method 37

3.5.3. Comparison of Methods 39

3.5.4. Performance On a Live Data Stream 40

3.5.5. Intrusion Detection Application 44

3.6. Pareto Model Fitting Experiments 45

3.6.1. Alternative Streaming Method 45

3.6.2. Accuracy of Proposed Method 46

3.6.3. Comparison of Methods 48

3.7. Extensions . 49

3.8. Related Work . 51

3.9. Chapter Summary . 53

4. Modeling Communication Graphs via Signatures 55

4.1. Introduction . 55

4.2. Framework . 58

4.2.1. Individuals and Labels . 58

4.2.2. Signature Space . 59

4.2.3. Signature Properties . 61

viii

4.2.4. Applying Signatures . 63

4.3. Example Signature Schemes . 64

4.3.1. One-hop Neighbors Based Approaches 66

4.3.2. Multi-hop Neighbors Based Approach 68

4.4. Evaluations of Signature Properties 70

4.4.1. Data Sets . 71

4.4.2. Distance Functions . 72

4.4.3. Experimental Results . 73

4.5. Application Evaluation . 78

4.6. Extensions . 81

4.7. Related Work . 83

4.8. Chapter Summary . 83

5. Modeling Distributional Changes via Sequential Probability Ra-

tio Test . 85

5.1. Introduction . 85

5.2. Change Detection Problems . 87

5.3. Our Global Change Detection Algorithms 89

5.3.1. Preliminary . 89

5.3.2. Our Offline Algorithm . 91

5.3.3. Streaming Algorithm . 93

5.4. Our Local Change Detection Algorithms 97

5.5. Global Change Detection Experiments 100

5.5.1. Experiment Setup . 100

5.5.2. Efficacy of Proposed Methods 101

5.5.3. Comparison of Methods 103

5.5.4. Applications . 105

ix

5.6. Local Change Detection Experiments 108

5.7. Related Work . 112

5.8. Chapter Summary . 114

6. Conclusions and Future Work . 115

Curriculum Vita . 130

x

List of Tables

3.1. Estimates of b on synthetically generated data. 37

3.2. Some statistics from Gigascope experiments. 43

3.3. Estimates of z on synthetically generated data. 46

4.1. Different applications and their requirements 63

4.2. Communication Graph Characteristics and Properties 66

4.3. Properties Used by Signature Schemes 70

4.4. Performance on signature persistence and uniqueness 75

4.5. Summary of the relative behaviors of the signature schemes 78

xi

List of Figures

3.1. Overview of a streaming algorithm for model fitting. 21

3.2. Two examples of a b-model (b = 2
3
) where both data sets have the

same b-value. In (a), M
(0)
0 = 486, M

(1)
0 = 162, M

(1)
1 = 324, M

(2)
0 =

54, M
(2)
1 = M

(2)
2 = 108, M

(2)
3 = 216. 23

3.3. Computing D2 for the example in Figure 3.2. 24

3.4. An example of the quantile generation algorithm. 29

3.5. CCDF plot of fitted Pareto for HTTP connection sizes 31

3.6. An example of pyramid approximation. 36

3.7. Algorithm evaluation: accuracy and running time of online and

offline fractal model fitting, at per-minute time intervals. 38

3.8. Algorithm comparison: accuracy and running time of various al-

gorithms, as a function of the number of levels. 38

3.9. Performance and Study of Stability and Fit of Models on Gigas-

cope: b-values, correlation coefficients. (a) TCP data on destIP;

(b) TCP data on srcIP. 41

3.10. Model Fitting on IP Traffic Data with Network Intrusion Attacks 44

3.11. Performance of parameter estimation. 47

3.12. Algorithm comparison. 48

3.13. Algorithm comparison: accuracy and running time of offline and

online D0, at per-minute time intervals. 50

4.1. Popularity of nodes in signatures. 73

4.2. Signature persistence and uniqueness on two real data sets. 74

xii

4.3. ROC curves from network data 75

4.4. Signature Robustness on Network Data 77

4.5. Multiusage detection: ROC curves 79

4.6. Performance of label masquerading detection. 81

5.1. Examples of local and global changes. P0 and P1 are respective

probability density function (or PDF) of pre- and post-change dis-

tributions. 89

5.2. An illustration for the sequential change detection algorithm. . . . 93

5.3. Sketch structure for EH+CM. 95

5.4. Change detection accuracy. 102

5.5. Accuracy for global change point estimates and detection delays. . 103

5.6. Normalized detection delays
(

|n−w|
w

)

of various methods. 105

5.7. Accuracy to answer queries on post-change distributions: EHCM

vs. FSWIN . 107

5.8. Accuracy of detected local changes. 109

5.9. Accuracy for local change-point estimates and detection delays. . 111

xiii

1

Chapter 1

Introduction

Database research has sought to scale management, processing and mining of data

sources to ever larger sizes and faster rates of transactions. One of the challenging

applications is that of data streams where data sizes are so large that it is difficult

to store all of the data in a database management system (DBMS) and there

may be millions of “transactions” per second. We describe some quintessential

examples as follows:

• Wireless sensor networks are ubiquitous [44, 118]. Sensor networks are used

for location tracking [116], geophysical monitoring [118, 88], “communities”

identification [108] thereof.

• There are multiple information and social networks among internet users,

from web (e.g., blog) to chat networks (e.g., instant message (IM)). Given

the trend in the expansion of information systems and the development of

automatic data-collecting tools, data sets we will encounter in the future

are expected to be more “massive” than what we have today.

• The volume of transaction log data generated is overwhelming. For example,

there are approximately 3 billion telephone calls in U.S. every day, 30 billion

emails daily. By comparison, the amount of data generated by world-wide

credit card transactions is very small, at only 1 billion per month [94].

• In the networking community, there has been a great deal of interest in

analyzing IP traffic data where the packets and flows (“connections”) get

2

forwarded in high speed links [38]. Traffic monitoring ranges from the long

term (e.g., monitoring link utilizations) to the ad-hoc (e.g., detecting net-

work intrusions). Many of the applications operate over huge volumes of

data (Gigabit and high-speed links), and have real-time reporting require-

ments.

In all above examples, data takes the form of continuous data streams rather

than finite stored data sets, and long-running continuous queries are needed, as

opposed to one-time queries. Traditional database systems and data processing

algorithms are ill-equipped to handle complex and numerous continuous queries

over data streams, and many aspects of data management and processing need to

be reconsidered in their presence. Therefore, the research community has devel-

oped a large body of work in data stream management systems (DSMSs). Systems

developed at various universities of this type include Aurora [4], STREAM [1] and

TelegraphCQ [23], etc. Additional systems in this category are also developed in

research labs like AT&T (Gigascope) [37], Sprint (CMON) [2], Telcordia [25].

Moreover, the academic system Aurora has given rise to the commercial Stream-

Base Systems Inc. [3] 1.

Prior work in data stream has shown how to estimate simple statistics such as

distinct counts [51, 11, 34, 56, 58]), summary aggregates (e.g., heavy hitters [30,

24, 91], quantiles [63, 92, 30], histograms [65, 64, 60], wavelets [22]) and query

results [30, 32, 7] (e.g., inner product, frequency moments). We need vastly more

sophisticated statistical analyses in data stream models, which constitute the

focus of this dissertation — statistical modeling of streaming data.

For statistical modeling of input data, we have three fundamental questions

to address:

1. Model fitting — How to find parameters that make a model fit the data as

1http://www.streambase.com

3

closely as possible (given some assumptions)?

2. Model validation — How precise are the best-fit parameter values? Would

another model be more appropriate?

3. Change detection — How to detect a change in models?

Model fitting and model validation are closely related. No matter there is a

change in the underlying model or not, it is necessary for model validation to

justify the correctness of the class of model chosen to begin with. If we start

with a wrong model, even accurate model fitting is meaningless. Additionally,

when modeling streaming data, the computational issue with regard to the three

questions efficiently arises.

Generally speaking, developing a model of the underlying data source leads to

a better understanding of the source and its characterization, which can lead to

a number of applications in query processing and mining. For example, in sensor

systems, models are found effective in offering noise resilient answers to a wide

variety of queries (e.g., selectivity estimation [46], nearest neighbor queries [16,

100], and similarity searches [16], etc.) with much less network bandwidth usage

by acquiring data only when it is not sufficient to approximate query answers with

acceptable confidence [44, 42]. Models are also useful for trend analysis [103].

Once we have established a reliable model of “normal” behavior, then anomalies

and trend changes, defined as deviations to the model, can be detected, we thus

trigger actions or alarms.

We investigate two representative categories of modeling in data streams in

this dissertation: parametric and structural modeling.

In statistics, a parametric model is a parametrized family of probability dis-

tributions, which describe the way a population is distributed. Assuming a model

for the input stream, the goal of parametric modeling is to estimate its parame-

ter(s) using one of the well-known methods such as regression fitting, maximum

4

likelihood estimation, expectation maximization and Bayesian approach on the

data stream models. Due to the ubiquity of skew in data, as we can see in IP

network [81, 113], financial [52], sensor [44], and text streams [32, 89] etc., we

are particularly interested in modeling skew 2 in data streams. The challenges

to do parametric model fitting at streaming speeds are both technical — how to

continually find fast and reliable parameter estimates on high speed streams of

skewed data using small space — and conceptual — how to validate the goodness-

of-fit and stability of the model online. We show how to fit two models of skew

— hierarchical (binomial multifractal) and non-hierarchical (Pareto) power-law

models — on a data stream.

From another perspective, many real applications can be modeled using com-

munication graphs where interested persons engage in various activities such as

telephone calls, emails, Instant Messenger (IM), blog, web forum, e-business and

so on. These arise in applications in characterizing an individual’s communica-

tion behaviors, identifying repetitive fraudsters, message board aliases, extremists

etc., using structural information described by graphs. Thus we call it structural

modeling. Tracking such electronic identities on communication networks can be

achieved if we have a reliable “signature” for nodes and activities. In particu-

lar, a signature for a node is a subset of graph nodes that are most relevant to

the query node, such that the signature represents the query node’s communica-

tion patterns. While many examples of signatures can be proposed for particular

tasks [36, 70, 69], what we need is a systematic study of the principles behind the

usage of signatures to any task. Our framework on signatures for communication

graphs addresses this challenge and the scalability issues with respect to signature

schemes.

2In particular, we are modeling skew in frequencies of domain values. So here “skew” means
few item values are frequent, and we observe a long tail of infrequent values.

5

Another problem of interest, in parallel with modeling, in monitoring streams

of data in a broad range of application is that of change detection [53, 72, 111].

A change in the data source can cause the models stale and degrade their accu-

racy, so a change detection system should respond promptly to a change when

it happens. Parametric change detection methods [44, 42, 82] trigger an alarm

when there is a significant change in parameter value(s). But real data often

does not obey simple parametric distributions in practice. Therefore we need a

non-parametric technique that makes no assumptions on the form of the distri-

bution as a priori. To the best of our knowledge, prior approaches in database

research to detecting a change in non-parametric distributions affix two windows

to streaming data and estimate the change in distribution between them [39, 80].

Fixing a window size is problematic when the information on the time-scale of

change is unavailable, and it is infeasible to exhaustively search over all possible

window sizes either. We improve existing work by adapting the statistically sound

sequential probability ratio test [109] to the online streaming case for change de-

tection, such that the most likely change-point estimate is integrated into the test

statistics, then changes at different scales can be detected without instantiating

windows of different sizes in paralle.

Since the IP traffic analysis case is the most developed application for data

streaming, we focus on network traffic data for application study of our proposed

techniques. The contributions of this dissertation are as follows:

• Parametric modeling. (Chapter 3) We show how to fit hierarchical (bi-

nomial multifractal) and non-hierarchical (Pareto) power-law models on a

data stream. We address the technical challenges using an approach that

maintains a sketch of the data stream and fits least-squares straight lines; it

yields algorithms that are fast, space-efficient, and provide approximations

of parameter value estimates with a priori quality guarantees relative to

those obtained offline. We address the conceptual challenge by designing

6

fast methods for online goodness-of-fit measurements on a data stream; we

adapt the statistical testing technique of examining the quantile-quantile

(q-q) plot, to perform online model validation at streaming speeds.

We complement our analytic and algorithmic results with experiments on IP

traffic streams in AT&T’s Gigascope R© data stream management system,

to demonstrate practicality of our methods at line speeds. We measured the

stability and robustness of these models over weeks of operational packet

data in an IP network. In addition, we study an intrusion detection appli-

cation, and demonstrate the potential of online parametric modeling.

• Structural modeling. (Chapter 4) We develop a formal framework for the

use of signatures on communication graphs and identify three fundamental

properties that are natural to signature schemes: persistence, uniqueness

and robustness. We justify these properties by showing how they impact a

set of applications. We then explore several signature schemes — previously

defined or new — in our framework and evaluate them on real data in

terms of these properties. This provides insights into suitable signature

schemes for desired applications. As case studies, we focus on the concrete

application of enterprise network traffic. We apply signature schemes to two

real problems, and show their effectiveness. Finally, we discuss scalability

issues with respect to signature schemes.

• Change detection. (Chapter 5) We adopt the sound statistical method of

sequential hypothesis testing to study the problem of change detection on

streams, without independence assumption. It yields algorithms that are

fast, space-efficient, and are oblivious to data’s underlying distributions.

Additionally, we formulate and extend our methodology to local change

detection problems that have not been addressed earlier. We perform a

thorough study of these methods in practice with synthetic and real data

7

sets to not only determine the existence of a change, but also the point

where the change is initiated, with only a small delay between the change

point and the ponit when it is detected. Our methods work seamlessly

without window limitations inherent in prior work, and are highly effective

at detecting changes quickly as our experiments show.

8

Chapter 2

Preliminaries

2.1 Computational Model

2.1.1 Massive Data Streams

A data stream is a sequence of data elements x1, x2, . . . , xn from a data source,

with xi ∈ U = {0 . . . u − 1}. The semantics of the data element xi may be

different from application to application. This leads to different models of data

streams. Each data element xi may represent a number such as, an IP address, a

telephone number, a student ID, and the ID of an item in transaction, etc. It may

also represent an instance of interaction or communication between individuals;

that is, xi = (si, di) denotes an interaction between si and di. Moreover, xi can

be attached with more sophisticated data semantics; for example, each xi may

represent a subset of the items that customers put in their market baskets for one

transaction. With such a data stream, the input is also time series, where the

ith entry in the sequence is a measurement at time i. In this dissertation, when

referring to streams, we mean a data stream like the above one, and we do not

consider streams where data might arrive out of (time) order.

There is another type of data stream [96], in which an implicit array S of

domain size u is involved. Here S[i] is the value of the ith entry of array S, and

denotes the total for item i ∈ U in the stream. Data elements in the stream may

take the form (i, k), where i ∈ U and k ∈ Z. The semantics of such an element

state that S[i] = S ′[i] + k, where S[i] and S ′[i] are respective value of that entry

9

after and before seeing the element. This leads to streaming models such as the

cash-register model and the Turnstile model [96]. The difference between the two

models is that, in the cash-register model k ≥ 0; while in the Turnstile model, k

could be negative.

All streaming problems considered in this dissertation assume that data ele-

ments are only added to the current set, but not deleted. This is because models

with the full dynamic property are orthogonal to our proposed methodologies, so

we do not consider those variants for now.

2.1.2 Window Models

A good model for streaming data should fit well on many subsets (window of data)

to be considered robust. Due to the evolution of the real data, it is inaccurate

to build models over the entire data stream. It is natural to imagine that the

recent past in a data stream is more significant than the distant past. There are

a variety of streaming windows to emphasize the data from the recent past:

• Landmark windows [55, 119] identify certain timepoints called landmarks

in the data stream, and the aggregate value at a point is defined with respect

to the data elements from the immediately-proceeding landmark k until the

current point. A cumulative window is a special case when k = 1; in this

case, all the available data are considered. An example of a landmark is

when a user requests the computation of an ad hoc query.

• Sliding windows [40] are typically of a fixed size. One specifies a window

size w, and explicitly focuses only on the most recent stream of size w. That

is, at time n, only consider a sliding window of updates xn−w+1, . . . , xn.

Elements outside this window fall out of consideration for analysis, as the

window slides over time.

10

• Decaying window [27] model believes that recent sliding windows are

more important than previous ones, with weights of data from one window

decreasing exponentially into the past. Formally, one considers the signal

as fixed size windows of size w and the aging factor λ. Let Bi represent the

signal from window i. We inductively maintain βi as the meta-signal after

seeing i windows. When the (i + 1)th window is seen, we obtain

βi+1 = (1− λ)βi + λBi+1.

This weight function provides a smooth dynamic evolution of βi+1. In ad-

dision, periodic updates do not require accessing transaction data for all

previous time windows. All that is needed is βi and the new set of transac-

tions defined by Bi+1.

Ideally, we like methods to work on all of these window models so that we can

flexibly try modeling the data in different ways.

2.1.3 Streaming Computational Model

A data stream contains large volume of data, but what makes data streams unique

is the very large universe. For example, the universal size could be

• the number of distinct source, destination IP address pairs, which could be

as large as 264 in the IPv4 domain;

• the number of distinct http addresses on the web, which is potentially infi-

nite since web queries get sometimes written into http headers;

• the size of a cross-product of the domains of the attributes of interest. This

may lead to a potentially large domain space even if individual attribute

domains are small.

11

A streaming algorithm is an algorithm that computes some function over a

data stream at different times. These functions can be thought of as queries to

the data structure updated during the stream. Due to the explosion of data, a

desired streaming algorithm satisfies the following properties:

• Storage. All elements observed on the fly should be summarized in a

synopsis structure [57] with space much smaller than the domain size u,

typically polylogarithmic in it.

• Per-item processing time. Synopsis should be fast to update in order to

match the streaming speeds. As is standard in dealing with data streams,

each new element is handled in small time, typically polylogarithmic in u.

• Query time. Based on a synopsis of original data, functions on the in-

put stream should be computed efficiently and preferrably with accuracy

guarantees, provided a priori, so that queries can be evaluated on-demand

frequently.

• One pass, sequential access. The input stream is accessed in a sequential

fashion. The order of the data elements in the stream is not controlled by

the algorithm. Moreover, it is preferrable for the algorithm to evaluate

functions over the stream in one or at most a small number of passes.

These properties characterize the algorithm’s behaviors during the time when it

goes through the input data stream. The algorithm may perform certain pre-

processing and/or post-processing on the workspace (not on the input stream)

before and/or after this time.

Property 1 [96] At any time n in the data stream, we would like the per-item

processing time, storage as well as the computing time of a streaming algorithm to

be simultaneously o(u, n), preferrably, polylog(u, n), where u is the domain size.

12

2.1.4 Semi-Streaming Computational Model

Consider the spectrum of the size of the storage space that an algorithm takes to

access the input data. At one extreme of the spectrum, we have algorithms that

can use memory large enough to hold the whole input. At the other extreme,

we have streaming algorithms that use only polylogarithmic space. It has been

suggested in [96] a middle ground:

Property 2 [96] With the semi-streaming model, for a graph with n vertices,

the algorithms use O(n · polylog(n)) bits of space.

That is, the space is proportional to n, the number of vertices, and sublinear in

m, the number of edges. Some interesting results have been obtained in the semi-

streaming model for graph properties such as diameters, spanners etc. [50, 49]. We

consider this model in structural analysis of communication graphs for signatures

(see Chapter 4).

2.2 Streaming Analysis Tools

Previous work on streaming algorithms has focused on computing statistics over

the stream. In a data stream setting, with small-space data structures that can

be updated for each input every efficiently, such algorithms cannot solve most

problems on input exactly, so we will allow approximations. In fact, all algorithms

we show will be probabilistic and will succeed with probability at least 1− δ and

be accurate to some prespecified error ǫ, for parameters ǫ and δ. We discuss below

the main mathematical and algorithmic techniques used in data stream models

that serve as basic building blocks in solving our problems.

13

2.2.1 Random Projections

Random projection is a simple geometric technique for reducing the dimension-

ality, using projection along pseudo-random vectors. The pseudo-random vectors

are generated by space-efficient computation of limitedly independent random

variables. These projections are called the sketches. Many sketches have been

proposed in DSMSs, each suitable of different sets of problems and with different

time and space requirements [9, 96].

Count-Min (CM) Sketch [30, 32] is a small-space data structure that is useful

for variety of approximations. It has similar performance as the best-known

sketches [7, 24, 28, 74] in terms of accuracy for estimates we care about, but has

the best update time.

The CM sketch with parameters (ǫ, δ) is a two dimensional array of counters

with width l and depth d = ⌈ln 1
δ
⌉: count[1, 1] . . . count[d, l]. Each entry of the

array is initially zero. Additionally, d hash functions h1 . . . hd : U → {1 . . . l} are

chosen uniformly at random from a pairwise-independent family. Given l and d,

the space overhead is the ld counters and the d hash functions, each of which can

be stored using two words. Whenever an update (it, ct) arrives (e.g., tth packet

with source it and bytesize ct), ct is added to only one count in each row, and the

counter is determined by hj. Formally, we set

∀1 ≤ j ≤ d : count[j, hj(it)]← count[j, hj(it)] + ct.

The update time depends on the depth d of the sketch. CM sketch can be used

to answer a variety of queries. The output procedure varies with the application

as well as the choice of sketch width l.

Fact 1 With probability at least 1− δ, CM-Sketch [30, 32] provides ǫ approxima-

tions to point, rangesum, inner-product queries, L2-norm and quantile esitmations

14

in small — typically O(log2 |U |
ǫ2

log(log |U |
δ

)) — space and per-item update time 1.

Estimating number of distinct elements. This is a fundamental problem

in data streams, and several approaches [11, 34, 51, 56, 58] have been proposed

to approximate the number of distinct elements observed. We omit detailed

discussions of these methods, and summarize the properties that they guarantee:

Fact 2 There exist approximate distinct counter algorithms [51, 11] that take

parameters ǫ and δ and create a data structure of size O(1
ǫ2

log 1/δ) machine

words. The time to process each update is O(log 1/δ). For an input stream of

(integer) values, such algorithms report an estimate d̂ for the distinct count such

that, if d is the true number of distinct elements observed, then with probability

at least 1− δ, (1− ǫ)d ≤ d̂ ≤ (1 + ǫ)d.

2.2.2 Sampling Techniques

Sampling in the data stream context means every data element is seen but only a

(polylogarithmic sized) subset of them are retained. Which subset of elements to

keep can be chosen deterministically or in a randomized way. Various sampling

algorithms have been proposed to estimate quantiles [63, 105], to find frequent

elements [91], to estimate the inverse distribution [33], and to find rangesum of

elements [6] in a data stream. But the worst case query cost of any sampling

algorithm that (ǫ, δ)-approximates inner-product queries and L2 norm — queries

we care about — is more expensive than the cost for sketches with the same

accuracy guarantees [10]. Therefore, we do not consider sampling algorithms in

the rest of this dissertation.

1Here, we have given a general upper bound that applies to the estimation of all the aggregates.

In the remainder of the dissertation, we will provide bounds for various tasks that are specific

to only the aggregates the tasks need.

15

2.2.3 Other Algorithmic Techniques

Exponential Histograms (EHs) [40] are used to estimate all data counts in a

recent window of size W . Datar et al provided tight bounds where log2 n bits

are sufficient and necessary for (1 + ǫ) approximate estimates at time n. EH

maintains buckets over ranges of data points. All data (it, ct) seen in a time range

t ∈ (ti−1, ti] are aggregated into the ith bucket, and the EH maintains the value

ti and the count Ci =
∑

ti−1<t≤ti
ct for each bucket. Buckets where ti < n −W

are discarded. When a new data point arrives, it is placed in its own new bucket.

Buckets are then merged in a certain way such that there is always a logarithmic

O(log n) number of buckets. At any given point n, the count estimate on the

most recent W observations can be obtained from
∑

i Ci.

A characterization of the merging process of EH is that two consecutive buck-

ets are merged if the combined count of the merged buckets is dominated by the

total count of all more-recent buckets. A merger of more-recent buckets may lead

to a cascade of at most O(log n) such mergers of less-recent buckets upon the

arrival of a single new element. But the amortized number of mergers is O(1)

per new item. Furthermore, the sequence of bucket counts (from the most- to the

least-recent) is a non-decreasing sequence of powers of 2, and for some k = Θ(1/ǫ)

and some P ≤ log 2n
k

+ 1, for each possible count 2p < 2P , there are exactly k or

k + 1 buckets having count 2p, there are at most k + 1 buckets having count 2P ,

and no buckets have counts greater than 2P .

Union Bounds [95]. This is very frequently used in streaming analysis. It

derives directly from the inclusion-exclusion principle and states that the proba-

bility of the union of a set of events is at most the sum of the probabilities of the

events. Formally, let E1, E2, . . . , En be an arbitrary set of events, the bound says:

Pr(∪n
i=1Ei) =

∑

i

Pr(Ei)−
∑

i<j

Pr(Ei ∩ Ej) + · · · ≤
∑

i

Pr(Ei).

An important feature of the union bound is that there is no other condition on the

16

events for the bound to hold. In particular, when the events are not independent,

the bound still holds. This is quite useful in places where independence among

random variables cannot be achieved.

17

Chapter 3

Modeling Skew in Data Streams

3.1 Introduction

While much of prior work on data stream analysis has focused on nonparametric

techniques such as approximate aggregates (e.g., heavy hitters, distinct counts),

summaries (e.g., quantiles, histograms, wavelets) and query results (e.g., join

sizes)—see [9, 96] for surveys—little effort has been focused on modeling the data

stream parametrically. In general, developing a model of the underlying data

source leads to a deeper structural insight into the source and its characterization,

which can lead to a number of applications in query processing and data mining.

For example, parametric models are used in selectivity estimation [46], trend

analysis [103], outlier detection [101], and improving the quality guarantees of

existing algorithms [32, 87]. Models are also useful for generating synthetic traces

of data sources for experimental or simulation studies [110], model-driven data

acquisition in sensor networks [43] and provisioning [113].

What are suitable models for data streams? There are suitable hierarchical

as well as non-hierarchical models.

Data streams have hierarchical dimensions, such as IP addresses in network

data, locations in sensor data, and time indexed share volumes in financial streams.

Models for hierarchical data have focused on multi-scale properties over different

levels of aggregation. Recently, in the networking community, the IP address

space has been shown to be well modeled using the fractal dimension [81]. Using

a variety of traces of network traffic, the authors considered the fractal dimension

18

of the traffic over the IP address space, and showed it is (a) stable over short time

intervals at local sites; (b) different at different sites with different characteristics;

and (c) different with changes in traffic conditions such as during a worm attack.

Hence, it is possible that the fractal dimension of the IP address distribution can

serve as a “fingerprint” for normal traffic, and that sudden deviations from this

would signal an anomaly or a change in network trends.

At a non-hierarchical view, streaming data is also teeming with high variability—

most observations take small values, while a few observations attain extremely

large values with non-negligible probabilities. This phenomena is ubiquitous in in-

ternet traffic—IP flow sizes, TCP connection duration, request interarrival times,

node degrees of inferred Autonomous System, and file sizes transferred over the

Internet; see [112] for references. All these are well modeled by heavy-tailed—

in particular, Pareto—distributions and are characterized by (non-hierarchical)

skew. Moreover, Pareto/power-law modeling of financial streams of stock prices

and number of trades is useful for real-time forecasting and options pricing [52].

What are the revelant issues in fitting models to streaming data? Typically,

model fitting is done offline when it applies to stable situations where it is done

once or infrequently, such as in [81, 112]. However, the dynamics of streaming

data calls for continuous parameter estimation and validation of models to find

reliable models that are robust over long time intervals. For example, at any time

an unnoticed DDoS attack may be altering the distribution of IP address prefixes

in the traffic; this is not a rare occurrence in actual measurement studies [83].

This suggests the need for a higher threshold for accepting a model, to reduce its

susceptibility to outliers by demonstrating temporal stability. In a data stream

context such as IP traffic modeling, it is impractical to gather data frequently

and perform offline analyses. The preferred approach is to perform estimation on

the data stream directly as the data is generated. It is therefore imperative that

estimation work at line speeds (i.e., rates at which packets are forwarded in the

19

links). As a consequence, there are two outstanding concerns in modeling data

streams:

1. How to estimate the model parameter(s) on data streams? Well known

statistical tools such as EM [62] are both computationally expensive and

require a large amount of storage to provide accurate estimates, and are

therefore infeasible within the space and time constraints of a Data Stream

Management System (DSMS).

2. How to validate the goodness-of-fit of the model with the estimated pa-

rameter(s) on data streams? Using traditional statistical hypothesis testing

techniques is typically infeasible within the space and time constraints of a

DSMS.

These concerns are broadly applicable to all modeling applications. We ad-

dress these concerns and present methods for hierarchical and non-hierarchical

modeling in data streams. Our contributions are as follows:

• To the best of our knowledge, this is the first work on model fitting over

data streams with a priori error guarantees. We show how to maintain an

estimate of the binomial multifractal (“b-model”) and Pareto model param-

eters using few memory updates per item and small space; our algorithm

provably output parameter estimates to within an additive error bound that

can be prespecified.

• We present highly efficient streaming methods to validate the model param-

eters online using quantile-quantile (“q-q”) plots from statistics, which are

widely used for power-law fitting. This requires computing order statistics

of the ideal models: we propose methods to compute them without actually

generating data, which would be prohibitive on a data stream.

20

• We complement our analytical and algorithmic results with a detailed ex-

perimental study on a variety of real IP traffic data streams from AT&T. In

particular, we have implemented our methods within the Gigascope system

that is operational inside the AT&T network, to perform model fitting at

speeds of 100K packets per second using only 2% of CPU utilization. We

ran this experiment over a period of several weeks to measure the robustness

and stability of the model. We also perform a detailed study of applicabil-

ity of modeling to an application—intrusion detection—with labeled data.

These real-data experiments provide many insights into the fit of models

on packet-level data and their applicability, something that could not have

been possible without our proposed streaming solutions. As our experience

shows, prior offline trace-driven study provides only limited insight into the

applicability of model that fit IP streams, and careful interpretation of the

evolution of the model parameters as well as the quality of fit of the model

are needed to reason about streaming data.

The chapter is organized as follows. We present a high level view of our

approach in Section 3.2. We present our algorithmic solutions for modeling and

validating (hierarchical) b-model in Section 3.3 and present experimental studies

in Section 3.5. Likewise, we present algorithmic methods and experimental studies

in Sections 3.4 and 3.6 respectively for (non-hierarchical) Pareto model fitting and

validation. Our overall approach can be extended to other models and streaming

applications quite naturally. Section 3.7 describes these extensions. Related work

is in Section 3.8 and conclusions are in Section 3.9.

3.2 Model Fitting on Data Streams

Let U = {0, ..., |U |−1} be the data domain. Our goal is to model the distribution

S[0, . . . , |U | − 1](t) where S[i](t) is the frequency of item i after seeing the t-th

21

input. Say the (t + 1)-th input is item i. Then S[j](t + 1) = S[j](t) + 1 for j = i,

and S[j](t+1) = S[j](t) otherwise. (We omit the timestamp t hereafter.) So each

new input is an update to S. For example, for the IP domain, 0, ..., |U |−1 = 232−1

could be the source IP addresses, S[i] could count the number of packets sent by

i, and each new packet on the network link is an update. As is standard by now

in dealing with such streams, we will design methods that use space much smaller

than |U |, typically polylogarithmic in it; likewise, each new item is handled in

small time, typically polylogarithmic in |U | [96].

Fitting models to a stream S consists of two tightly coupled problems: pa-

rameter estimation and model validation. A large variety of techniques exist for

obtaining parameter estimates from a sample of data; we discuss their adapta-

tion to data streams and our methods in Sections 3.3 and 3.4. Model validation

involves comparing the model (instantiated with the estimated parameter(s) ob-

tained from using one of the available techniques), with the actual data set by

performing a goodness-of-fit test. This is necessary because the class of model cho-

sen may be wrong to begin with. In this case, even accurate parameter estimates

would be bogus.

Parametric Model

Parameter Est.

Distributional

statistics of model

testing

Validation

Data at streaming speeds

Synopsis

Figure 3.1: Overview of a streaming algorithm for model fitting.

The overall process of our parameter estimation and validation is shown in Fig-

ure 3.1. Our challenge is to perform all tasks on high-speed data streams. A

suitable window (e.g. a landmark window [55] which is a window of fixed length)

of the stream is summarized using a synopsis data structure. This is used for

22

model fitting which relies on estimating input stream statistics (eg. L2 norm

estimation). Simultaneously, model validation is done and this too uses different

statistics on the input stream (eg., quantiles, rangesum queries). Further, model

validation requires statistics of the model-generated data without explicitly gen-

erating the data which would be prohibitive. By carefully designing the methods,

we are able to use a single synopsis data structure—CM Sketch [30]—to supply all

the statistics we need for model fitting and validation, as summarized in Fact 1.

3.3 Hierarchical (Fractal) Model

Much of stream data is hierarchical, such as IP addresses in network data, loca-

tions in sensor data, and transaction rates in financial time series data. Models

for hierarchical data have focused on multi-scale properties such as self-similarity

over different levels of aggregation, widely known as a (recursive) ‘80-20’ Law [47].

Here, we study its general version called binomial multifractal, or the b-model.

3.3.1 Model Definition

A binomial multifractal b-model can be constructed through a multiplicative cas-

cade [90, 61, 104, 47, 110], with bias b ∈ [0.5, 1] as the only model parameter.

The process starts with an initial mass M distributed over attribute domain

U . The first stage of the cascade construction divides U into dyadic intervals

[0, |U |/2 − 1] and [|U |/2, |U | − 1]; and assigns mass (1 − b)M to the lower half

domain, bM to the upper half. Iterating this construction process, we recursively

divide each parent interval into its two dyadic subintervals, and assign 1− b and

b fraction of the parent mass to the left and right subinterval. Formally, mass

assignment is as follows: M
(0)
0 = M , M

(p+1)
2k = (1− b)M

(p)
k and M

(p+1)
2k+1 = bM

(p)
k ,

where M
(p)
k =

∑

i∈U
(p)
k

S[i] (called a p-aggregate) indicates the mass associated

with dyadic interval U
(p)
k = (k2log |U |−p, (k + 1)2log |U |−p − 1), p = 0, . . . , log |U |

23

and k ∈ {0, . . . , 2p − 1}. Note that U
(p)
k refers to the set of attribute values

sharing the prefix with length p—a.k.a. a p-bit prefix, valued k. Figure 3.2(a)

shows an example. The structure of the b-model is a binary tree. The model,

108

b
b

486

324
162

108
216

108
54

*

0* 1*

00 01 10 11

1-b

1-b 1-b

b

b

(a)

*

1*

00 01 10 11

1-b

b

b

1-b

0*

54216

1-b

(b)

U = {00, 01, 10, 11} M = 486 b = 2/3

486

324
162

108

p=0

p=1

p=2

Figure 3.2: Two examples of a b-model (b = 2
3
) where both data sets have the

same b-value. In (a), M
(0)
0 = 486, M

(1)
0 = 162, M

(1)
1 = 324, M

(2)
0 = 54, M

(2)
1 =

M
(2)
2 = 108, M

(2)
3 = 216.

as described thus far, is deterministic, but more generally, b can go arbitrarily

to the left or to the right. Note that multiple data sets can map to the same b

value; Figure 3.2(b) gives a different data set with the same b-value as that in

Figure 3.2(a). Due to the multiplicative cascade process being applied at every

level, the model exhibits self-similarity—parts of the data are similar (exactly or

statistically) to the whole—over all scales. Hence, the b-model is a multi-fractal

model.

3.3.2 Fractal Parameter Estimation

The method that is commonly employed to estimate b in the b-model is as follows

(see [61, 110, 104]). We will first describe this method, and our contribution will

be to adapt it to the online streaming case and provide approximation guarantees.

First, a related parameter called the correlation fractal dimension D2 is es-

timated by line-fitting. Let N(p) =
∑2p−1

i=0 (M
(p)
i)2; then the correlation fractal

dimension D2 is defined as (see [104]):

D2 ≡ lim
p→∞

log N(p)/p.

24

From the definition it follows that the plot of (p, log N(p)) is a straight line,

the slope of which is D2. Figure 3.3 gives an example that shows D2 of the above

data sets. In real data sets, seldom does one see such a perfect straight line.

Slope = D2

Correlation Dimension D2

2

2 2

2 2 2 2

log (0) log(486) 17.8496

log (1) log(324 162) 17.0016

log (2) log(108 216 54 108) 16.1536

N

N

N

(0, logN(0))

(1, logN(1))

(2, logN(2))

Figure 3.3: Computing D2 for the example in Figure 3.2.

In practice, D2 is calculated by plotting the points (p, N(p)) for various p and

fitting the best least-squares fit line to the points. Formally, for the point set

P = {(xp, yp) | p ∈ V }, slope of the least-squares fit line (that minimizes the least

squared error) is

D2 =

∑log |U |
p=0 (xp − x̄)yp

∑log |U |
p=0 (xp − x̄)2

=

log |U |
∑

p=0

kpyp,

where kp = xp−x̄
Plog |U|

p=0 (xp−x̄)2
, and x̄ is the average of {xp | p ∈ V }. Then, this

value D2 is used to derive an estimate for b analytically. It is known that D2 =

log(2b2−2b+1) [61]. Inverting this formula, we can get b for a given value of D2.

Sort-based [16] and hash-based [78] algorithms have been proposed for this, but

they require storing the entire data set and are thus infeasible on a data stream.

Proposed Streaming Method. We first obtain an estimate D̂2 for the fractal

dimension, via line fitting on log-log scales, and then extract parameter estimate

b̂ from D̂2 algebraically.

Set V = {0, . . . , log |U |}. The method for estimating D2 involves N(p) for

all p’s, where N(p) denotes the sum of squares over all p-aggregates, p ∈ V .

We use the CM-Sketch to do this. Then, ∀p, the estimate N̂(p) satisfies the

(ǫ, δ) guarantee as in Fact 1. Given F = {(xp = p, yp = log N(p)) | p ∈ V }

25

and F̂ = {(xp = p, ŷp = log N̂(p)) | p ∈ V }, the exact and approximate fractal

dimensions D2 and D̂2 are respectively computed by the slope of the least-squares

fit lines to F and F̂ .

Theorem 1 Given with probability at least 1 − δ
log |U |

, (1 − ǫ)N(p) ≤ N̂(p) ≤
(1 + ǫ)N(p), ∀p ∈ V , the estimate D̂2 with probability at least 1− δ satisfies

|D̂2 −D2| ≤
3ǫ

(1 + log |U |)(1− ǫ)
.

Proof. Note that every x-coordinate of F̂ is accurate and the y values are

approximate. ∀p ∈ V , with probability at least 1− δ
log |U |

, we have

log(1− ǫ) ≤ log N̂(p)− log N(p) ≤ log(1 + ǫ).

Let A = {p |kp ≥ 0, p ∈ V } and B = V − A. Since
∑

p∈V kp = 0,
∑

p∈A kp =

−∑p∈B kp = c. Thus with probability at least 1− δ, 1 we have

c log(1− ǫ) ≤
∑

p∈A

kp(log N̂(p)− log N(p)) ≤ c log(1 + ǫ)

−c log(1 + ǫ) ≤
∑

p∈B

kp(log N̂(p)− log N(p)) ≤ −c log(1− ǫ)

Summing up the terms, we get

|
∑

p∈V

kp(log N̂(p)− log N(p))| ≤ c log(1 +
2ǫ

1− ǫ
).

We have log(1 + 2ǫ
1−ǫ

) ≤ 2ǫ
1−ǫ

. Thus |D̂2 −D2| ≤ c 2ǫ
1−ǫ

. From the definition of kp,

c =
∑

p∈A

kp =

∑log |U |
p=log |U |/2(p− log |U |/2)
∑log |U |

p=0 (p− log |U |/2)2
=

∑log |U |/2
p=0 p

2
∑log |U |/2

p=0 p2
=

3

2(1 + log |U |) .

Thus |D̂2 −D2| ≤ 3ǫ
(1+log |U |)(1−ǫ)

.

1For the log |U | estimations for N(p), p ∈ {1, . . . , log |U |}, the probability of failure for each
is δ

log |U| . Then applying the union bound ensures that, over all the queries, the total probability

that any one (or more) of them overestimated by more than a fraction ǫ is bounded by δ, and
so the probability that every query succeeds is 1− δ.

26

Discussion. An important contribution of our work is the theorem above

that gives a strong guarantee about estimation error of D2. In particular, the

error does not increase with D2 like multiplicative errors, and as |U | → ∞, the

error goes to 0, which is unusual for streaming algorithms. Finally, and this

is crucial, the error is guaranteed no matter how the error in estimating N(p)

is distributed. In particular, we do not make any assumption about the errors

in N(p) estimation are, say, uniformly random. Using the CM-Sketch or any

other sketch, typically does not guarantee that the estimation errors for N(p)’s

are random. Fortunately, we do not need this property. The proof above shows

that even adversarial errors in estimating each N(p)’s (within the specified error

bounds) cannot affect our estimation of D2 significantly.

The kernel of the proof shows that given a set {(xi, log yi) |i ∈ V } of points,

if the approximation error of ŷi for yi is multiplicative and each xi is exact, then

the estimate for the slope of the least-squares fit line has an additive error that

does not depend on its true value. This is a general claim thatis true beyond its

applicability to fractal parameter estimation above. We will extend this analytic

methodology later to other models.

Now we focus on estimating b from D̂2. Recall that D2 = log(2b2 − 2b + 1);

hence, inverting, b =
(1+
√

2D2+1−1)

2
. In the following, let b̂2 represent the b estimate

derived from estimated fractal dimension D̂2. We replace ǫ in Theorem 1 with ǫ̃,

set ǫ = 3ǫ̃
(1+log |U |)(1−ǫ̃)

, and get the accuracy guarantees on b̂2.

Theorem 2 Our algorithm uses O(log |U |
ǫ2

log log |U |
δ

) space, O(log log |U |
δ

log |U |) per-

item processing time, and with probability at least 1− δ, outputs estimate b̂2 for b

in O(1
ǫ2

log |U | log log |U |
δ

) time, such that:

2−
ǫ
2 b2 − 2−

ǫ
2
−1(
√

2ǫ − 1 + 1) +
1

2
≤ b̂2 ≤ 2

ǫ
2 b2 + 2

ǫ
2
−1(
√

1− 2−ǫ − 1) +
1

2

Proof. We show the upper bound on accuracy; the lower bound is similar and the

27

space and times follow from the use of CM-Sketch with appropriate parameters.

b̂2 =
1 +

√

2D̂2+1 − 1

2

≤ 1 +
√

2D2+ǫ+1 − 1

2
=

1

2
+ 2

ǫ
2

√

2D2−1 − 1

4
2−ǫ

≤ 1

2
+ 2

ǫ
2 (

√

2D2−1 − 1

4
+

1

2

√
1− 2−ǫ)

= 2
ǫ
2 b2 + 2

ǫ
2
−1(
√

1− 2−ǫ − 1) +
1

2

To give some intuition, when ǫ = 0.01, we have 0.99654b2 − 0.027629 ≤ b̂2 ≤

1.00347b2 + 0.027776.

3.3.3 Model Validation

Goodness-of-fit hypothesis tests for validating estimated model parameter(s) com-

pare distributional statistics of the actual data against that generated by the

model with the estimated parameter value(s). A standard test uses quantile-

quantile (q-q) plots. The q-q plot [45] graphs the respective quantiles X and Y of

real and generated data sets; if the two data sets are from the same distribution,

then the respective quantiles should be roughly equal. In practice, the correlation

coefficient, denoted cc, of the quantile pairs (X, Y) = {(xi, yi)|i = 1 . . .N} from

the respective distributions is used to indicate goodness-of-fit based on such plots

(e.g., see [18]).

cc =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)2
√
∑

i(yi − ȳ)2
,

where, as usual, x̄ is the mean of the xi’s, ȳ is the mean of yi’s. We use this

method.

We can get approximate φ-quantiles of the input data using the CM-Sketch [30].

However, finding quantiles of generated data using the b-model is a potential bot-

tleneck on a stream. A naive approach is to actually generate such data and then

28

compute its quantiles, but this is infeasible on a data stream because the car-

dinality of generated data should be comparable to size of the input stream for

accurate validation. Instead, we show how to find these quantiles without mate-

rializing such data, which allows for fast q-q testing in small space.

Online Quantile Generation. Our algorithm for generating quantiles directly

from a b-model has a similar flavor to the stack-based algorithm in [110], which

generates data according to parameter b. But whereas their algorithm visits

every tree node in depth-first order (from left to right) and randomly flips a

coin at each node to assign weights b and (1 − b) to the node’s two children,

our algorithm differs in two ways. First, since we are comparing the fractal

model against a specific data set, instead of assigning weights randomly, they

are assigned deterministically to match the input data; point queries to the CM-

Sketch are used for this, by computing the corresponding prefix aggregates from

the input and assigning b to the larger aggregate and (1− b) to the smaller. This

is much less likely to reject a valid model than randomly assigning the weights.

Second, tree nodes which do not contain any φ-quantiles in their subtree are

pruned. To do this, the algorithm maintains a cumulative sum, percent, of the

weights up to current node. If ⌈percent/φ⌉ = i before visiting a node, then this

node’s entire subtree can be eliminated if it will not increase ⌈percent/φ⌉ to at

least i + 1. See Algorithm 1, where we make use of the following CM Sketch

operator:

• CMH Count(cmh, level, index) returns the estimate of the (index)-th level-

aggregate, which is used to deterministically assign b to the larger aggregate.

Example. Consider the b-model representation in Figure 3.4. Let b = 2/3 and

an original data distribution S on domain U = {0, 1, 2, 3}. S[i] represents the

number of times we observe value i from the input data, S[i . . . j] =
∑j

k=i S[k],

29

*

11100100

1*0*

S[0]=55 S[1]=105 S[2]=110 S[3]=210

S[0..1]=160 S[2..3]=320

S[0..3]=480 W*=1

W0*=1-b=1/3 W1*=b=2/3

W00=0.11 W01=0.22 W10=0.22 W11=0.44

1-b b

1-b 1-bb b

Figure 3.4: An example of the quantile generation algorithm.

and wi is the weight of the subtree rooted at node i with regard to the fractal

model with parameter value b. That is, wi = bm(1 − b)(p−m), where m is the

number of edges weighted b along the path from the root to node i, and p is node

i’s aggregation level. We are looking for the median (φ = 0.5) of generated data

that best fits the input data without data materialization. Before visiting the

root node, percent = 0, since percent + w∗ = 1 > φ, current tree must contain

a median. We assign weight 1− b to its left child and b to the right since prefix

aggregate S[0 . . . 1] < S[2 . . . 3]. Then we prune the subtree rooted at 0∗ because

percent+w0∗ < φ, which means the median does not appear inside its subdomain.

When the next node 1∗ is visited, percent is increased to 1/3. Similarly, we can

easily tell that median is within the subdomain rooted at 1∗. Again b and 1− b

are assigned according to prefix aggregates. And when a leaf node 10 is reached,

because percent + w10 > φ, we return (10)2 = 2 as median of the generated

data. In Figure 3.4, nodes in grey are traversed and nodes with dotted circles are

pruned.

Theorem 3 Our algorithm takes O(log2 |U |
ǫ

log log |U |
δ

) space and O(log2 |U |
φ

log log |U |
δ

)

time to generate approximate φ-quantiles directly from a b-model.

Proof. Only nodes whose subtree contains at least one quantile are visited. Since

there are O(1/φ) quantiles in all, only that many nodes per level will be visited

during the quantile search process. The space and time complexity follows from

those of the CM-Sketch used for O((1/φ) log |U |) range sum queries.

Thus, the entire q-q test validation process can be run on a data stream with

30

small space and fast update.

3.4 Non-Hierarchical (Pareto) Model

IP streaming data such as IP flow sizes, TCP connection duration, request interar-

rival times, node degrees of inferred Autonomous System, or file sizes transferred

over the Internet have high variability; these are modeled by the Pareto distribu-

tion.

3.4.1 Model Definition

Define a discrete random variable X with ordered domain U = {0, . . . , |U | − 1}
to be an item observed in the input stream. Recall that S[0 . . . |U |−1] represents

the distribution we want to model where S[i] is the frequency of item i. ∀x ∈

U , a discrete Pareto Model [5] with parameter z, 0 < z < 2, called the tail

index, satisfies F (x) = Pr(X > x) =
∑|U |−1

i=x+1 S[i]/N = (c/x)z, where N is the

total number of observations, c is a scaling constant to ensure Pr() a probability

function. Note that F (x) denotes the complementary cumulative distribution

function (CCDF).

3.4.2 Pareto Parameter Estimation

When plotted on log-log scales, (x, F (x)) appears (ideally) as a straight line with

slope −z; this is the basis of commonly employed Pareto estimation methods

[12, 102, 114, 112]. Our problem is to estimate z and validate the goodness-of-fit

on a data stream.

Given a data set perfectly fitting a Pareto model with tail index z, ∀x1, x2 ∈

U, x1 6= x2, the slope of the line penetrating points (log x1, log F (x1)) and (log x2, log F (x2))

is the desired −z. However, with real-life data, the CCDF on log-log scales

is not likely to be a precise straight line. On one hand, deviations from the

31

line are usually observed at the head, known as top concavity. On the other

hand, sampling effects occur at the end of the tail (higher slope than the true

value) because there is a very small amount of data with extremely large values.

See Figure 3.5 for a typical CCDF plot of a fitted Pareto (originally in [112]).

Therefore, typically, the part of the distribution—the tail excluding extreme val-

0 10 102 103 104 105 106 107
10-6

10-5

10-4

10-3

10-2

10-1

1
HTTP Connections (Sizes) in log-scale

x

F
(x

)
=

 P
r

(X
 >

 x
)

a

b

()a F x b

sampling effects

top concavity

Figure 3.5: CCDF plot of fitted Pareto for HTTP connection sizes

ues at the ends—which looks most “Pareto-like” is used to fit the model [12, 102].

Formally, let F (x) =
∑

i∈U,i>x S[i]/N where N is the total number of observed

items, that is
∑

i S[i]. A regression line is fitted to the set of points Pa,b =

{(log(x), log F (x))|a ≤ F (x) ≤ b, x ∈ U}, for user-specified a and b where

0 < a < b < 1. Again, this computation requires storing the entire data set,

making it infeasible on a stream.

Proposed Streaming Method. We use the CM-sketch as before. However, a

direct combination of CM-Sketch with the offline algorithm has a major drawback:

we need to consider all x such that a ≤ F (x) ≤ b, which is time-consuming. We

can prove much like in Theorem 1 that such an approach will give an accurate

estimate for z in time O(|U |) in the worst case. However, in order to get a faster

estimation algorithm, we propose the use of CM-Sketch to pick out xj ’s such that

32

xj ’s are approximate φ-quantiles, 0 < φ < 1, and a ≤ F (xj) ≤ b. Using CM-

Sketch, we get xj and the approximate value of F (xj), denoted F̂ (xj). Let P be

the set of all (log xj , log F̂ (xj)) such pairs. We will find the least squares fit to

these pairs and take its slope as the estimate −ẑ. We can present an estimate for

the accuracy for this method by comparing against an offline algorithm. Suppose

z is obtained by plotting the set of points Q that is the set of all (log xj , log F (xj))

pairs, because F (xj)’s can be determined offline exactly. The slope of the best-fit

line gives −z for the Pareto parameter.

Theorem 4 Our algorithm uses O(log2 |U |
ǫa

log log |U |
δφ

) space, O(log log |U |
δφ

log |U |)
per-item processing time, and with probability at least 1 − δ, outputs estimate

ẑ for z in O(log |U |
φ

log log |U |
δφ

) time such that:

|ẑ − z| ≤ 2ǫ/(1− ǫ).

Proof. With O(log2 |U |
ǫ′

log log |U |
δ′

) space and per-item update time of O(log log |U |
δ′

log |U |),

CM Sketch returns (xj , F̂ (xj)) such that with probability at least 1− δ′, F (xj)−
ǫ′ ≤ F̂ (xj) ≤ F (xj) + ǫ′. Note that ∀xj , F (xj) ≥ a, so

(1− ǫ′/a)F (xj) = F (xj)− ǫ′F (xj)/a ≤ F̂ (xj)

≤ F (xj) + ǫ′F (xj)/a

= (1 + ǫ′/a)F (xj).

Set ǫ′ = ǫa, then (1− ǫ)F (xj) ≤ F̂ (xj) ≤ (1 + ǫ)F (xj). Therefore, our defined set

of points Q and P , from which z and ẑ are computed by the slope of regression

lines, correspond to respective point set F and F̂ defined before Theorem 1. The

rest of the proof of accuracy is similar to the proof of Theorem 1, and the time

and space bounds follow by replacing ǫ′ and δ′ with ǫa and δφ, respectively. The

time to output ẑ is the time to find O(1/φ) quantiles.

33

3.4.3 Model Validation

Fractal model validation (see Section 3.3.3) relies on q-q plots, where the corre-

lation coefficient (cc) is used as a heuristic to measure the goodness-of-fit. The

Pareto model has infinite variance [112] and hence, the cc-based q-q test fails

directly because correlation is not even defined unless variances are finite. As

a result, both numerator and denomenator of the cc-formula are dominated by

extremely large values, leading the ratio to 1 regardless of whether the corre-

sponding z estimate is close to its true value or not. Therefore, we use q-q plot as

a visual construct to evaluate the goodness-of-fit. The basic building blocks of a

q-q plot are quantiles of real and generated data sets. Quantiles of real data can

be approximated accurately and efficiently by using the CM-Sketch, as before.

Online Quantile Generation. Finding quantiles of generated data without

materializng the entire data set is again a challenge. Luckily, the Pareto model

has well-defined CCDF Pr(X > x) = (c/x)z, where c = [z
∑

x∈U x−(z+1)]−1/z . We

can derive that its i-th φ-quantile xi = c(iφ)−1/z. We do not know c even though

we have the model parameter z. However, any c will do since the expression for

φ-quantile says that the quantiles are linearly related under different c’s. Hence, if

quantiles of generated data are computed via any choice of c-value, the resulting

q-q plot should still be a straight line, though its slope is not necessarily 1. Since

the focus of our testing hypothesis is to validate the correctness of z, rather than

c, we use some arbitrary c to generate online q-q plot, to test goodness-of-fit of

the model, by comparing the generated plot against a straight line. Hence,

Theorem 5 Our algorithm uses O(1/φ) time and space to generate approximate

φ-quantiles directly from the Pareto model without materializing data.

Proof. First, select some c-value. Then the i-th φ-quantile xi = c(iφ)−1/z is

computed in O(1) time and space. There are at most 1/φ φ-quantiles to generate

34

from the region [a, b] of interest.

3.5 Fractal Model Fitting Experiments

In this section we evaluate the accuracy and performance of our proposed stream-

ing methods for fitting a b-model (see Section 3.3) against alternative methods.

Also, we implemented our method in AT&T’s Gigascope data stream manage-

ment system to demonstrate its practicality on a live data stream and examine

the robustness and stability of b-model fitting on several weeks of operational

data in an IP network. Finally, we study an intrusion detection application using

the b-model on traffic data labeled with known attacks.

3.5.1 Alternative Streaming Methods

We consider two alternative methods for estimating b: one based on Maximum

Likelihood Estimation (MLE), a common approach to model fitting in statis-

tics; and a straightforward heuristic which we dub pyramid approximation. We

will later compare these against our proposed method from Section 3.3, both in

concept and in practical performance.

Method 1: Maximum Likelihood Estimation.

Maximum likelihood estimation (MLE) of the parameter b involves finding

the value that maximizes the a posteriori likelihood of occurrence based on the

existing data. MLE is a time-honored technique described in many classical

statistics textbooks. Consider a single stage of the cascade construction with N

items observed in the parent interval, N1 in the heavier subinterval weighted b, and

N−N1 in the other. The probability of observing such an item distribution given

b is bN1(1− b)N−N1 . We can use this for multiple levels to derive formulas for b.

Define event A = {number of items observed at U
(k)
i = M

(k)
i , ∀i ∈ {0, . . . , 2k−1}},

where M
(k)
i is the ith k-aggregate in U

(k)
i at level k. Define M to be the total item

35

count, and B(k) = {i | U (k)
i is assigned b fraction of the parent (p− 1)-aggregate

and i ∈ {0, . . . , 2k − 1}}. Then the likelihood function is

Lp(b|data) = Pr[A|data] =

p
∏

k=1

∏

i∈B(k)

bM
(k)
i (1− b)

M
(k−1)
⌊i/2⌋

−M
(k)
i

= b
Pp

k=1

P

i∈B(k) M
(k)
i (1− b)pM−

Pp
k=1

P

i∈B(k) M
(k)
i .

The log-likelihood function is

log Lp(b|data) = (

p
∑

k=1

∑

i∈B(k)

M
(k)
i) log b + (pM −

p
∑

k=1

∑

i∈B(k)

M
(k)
i) log(1− b).

Setting the derivative with respect to b to zero, we have b̂MLE =
(
Pp

k=1

P

i∈B(k) M
(k)
i)

pM
.

Since |B(k)| = 2k−1, the overall running time is O(
∑p

k=1 2k−1) = O(2p).

In summary, it takes O(2p) time to compute

b̂MLE = (

p
∑

k=1

∑

i∈B(k)

M
(k)
i)/pM,

where M is the total item count, M
(k)
i is the ith k-aggregate in U

(k)
i at level k,

and B(k) = {i | U
(k)
i is assigned b fraction of the parent (p − 1)-aggregate and

i ∈ {0, . . . , 2k − 1}}.

Example. For data in Figure 3.6, M = 5, when p = 2, B(1) = {0}, B(2) = {1, 2},
b̂MLE = 3+(2+2)

2∗5
= 0.7.

Since we cannot maintain all levels p on the data stream since 2p will exceed

available memory for large p, we use only the top few levels and thus the resulting

estimation error can be large.

Method 2: Pyramid Approximation.

This heuristic for estimating the parameter b is inspired by the so-called

“method of moments” from statistics, and immediately follows from the defi-

nition of the b-model. It aggregates the data at multiple prefix levels and then

independently finds the best fit to the fractions, at each level, based on the cor-

responding prefix aggregates; see Figure 3.6 for an illustration.

36

• First level estimates: M is the total packet count. For 1-bit prefix, it is

easy to count packets M
(1)
0 and M

(1)
1 falling into U

(1)
0 and U

(1)
1 , respectively.

Without loss of generality, we assume M
(1)
0 > M

(1)
1 . Since b ∈ [0.5, 1], this

would yield two equations M
(1)
0 /M = b and M

(1)
1 /M = 1− b. Accordingly,

two estimates on b-values are returned from the first-level construction.

• pth level estimates: Recursively, at level p, there are totally 2p equations,

one for each p-aggregate, in the form of bj(1 − b)p−j = f
(p)
i = M

(p)
i /M ,

where j is the number of times an input follows the heavier edge weighted

b along the path from root to U
(p)
i . Estimation at large prefix lengths p re-

quires solving high-degree polynomial equations. We used a combination of

Newton-Raphson and bisection method to find the roots of such polynomial

equations when they exist.

• b̂ estimate: These estimates are combined into a single estimate b̂ by taking

the average (or median) over the individual estimates in the pyramid; we

use the notation b̂pyr to denote the value obtained from this combination.

b

b

5
*

1*

1-b

b
1-b

2
3

0

11

2

00 01 10

1
2

0*
1-b

U = {00, 01, 10, 11}, M = 5
Level 1

Level 2

(1)
0 3

;
5

M
b

M

(1)
1 2 3

1
5 5

M
b b

M

(2)

0
1

(1) 0.7236;
5

M

M
b b b

(2)
21

2
0.6325;

5
M

M
b b

(2)

2
2
(1)

5
M

M
b b no root;

(2)
23

0
(1) 1.

5
M

M
b b

b estimate

(0.6 0.6 0.7236 0.6325 1)
0.71122

5
.b

Figure 3.6: An example of pyramid approximation.

This method keeps two counters at the first level, four at the second, etc.; at

any prefix level p, there are 2p counters. When it is time to estimate b̂, we solve

an exponential (in p) number of equations and aggregates. Hence, it is infeasible

37

both to store this many counters and to solve as many polynomial equations for

all levels of the pyramid. In the streaming setting, we will therefore use this

method only for the top few levels (say p = O(log log |U |)). This does not provide

any guaranteed error for b̂ estimation.

3.5.2 Accuracy of Proposed Method

Parameter Estimation. For control purposes, we generated synthetic data

using the stack-based algorithm in [110]. Given a bias b, data volume N , and

number of levels k, this random generator returns (val, freq) pairs. In our case,

we set N to 108 and k to 32 (to simulate the IPv4 domain); b ranged between 0.55

and 0.95. We evaluated the offline method for deriving an estimate of b on the

data sets to isolate out additional error resulting from sketches that are needed

for online estimation, so that the effectiveness of the offline algorithm in deriving

a correct estimate of b, based on correlation dimension, is evaluated. We see in

Table 3.1 that b̂2 is almost identical to b.

b b̂2 b b̂2 b b̂2

0.55 0.62 0.70 0.7009 0.85 0.850000
0.60 0.63 0.75 0.75007 0.90 0.900000
0.65 0.66 0.80 0.800002 0.95 0.950000

Table 3.1: Estimates of b on synthetically generated data.

We observed that the difference between b and b̂2 becomes smaller as b in-

creases. Recall that the distribution becomes more biased with increasing b. For

less biased data, if the data size is less than |U |, truncation errors of bucket counts

affect the accuracy of b̂2.

We repeated this experiment, using the same methods, on IP addresses from

real TCP packets in the AT&T network collected from a full hour and repeated

the measurements over the course of multiple consecutive hours to examine the

38

stability of the measurements. We also tried experiments on data collected in dif-

ferent hours and days, and observed very similar results. We demonstrate results

from one data set in depth. For these experiments, we report the results from our

experiments at consecutive landmark windows of one-minute time intervals from

destIP on TCP data, at a speed of roughly 60,000 packets/minute. Unlike with

0 20 40 60
−5

0

5
x 10

−3

time

ob
se

rv
ed

 e
rr

or

(a) comparison of estimate to analytic error bound

observed error
error bound

0 20 40 60

0.75

0.8

0.85

0.9

0.95

1

1.05

time

co
rr

el
at

io
n

co
ef

fic
ie

nt

(b) online cc−estimates

0 20 40 60
0

1000

2000

3000

4000

time

ru
nn

in
g

tim
e

(m
s)

(c) running time

offline
online

0 20 40 60
0

0.005

0.01

0.015

0.02

0.025

time

re
la

tiv
e

er
ro

r
(d) estimation of correlation coefficients

cc error

Figure 3.7: Algorithm evaluation: accuracy and running time of online and offline
fractal model fitting, at per-minute time intervals.

10 20 30
0.85

0.9

0.95

1

number of levels

b
va

lu
es

(a) b vs. number of levels

pyramid
MLE
b

2

10 20 30
0

0.5

1

number of levels

co
rr

el
at

io
n

co
ef

fic
ie

nt
s

(b) cc vs. number of levels

pyramid
MLE
b

2

10 20 30

10
5

number of levels

ru
nt

im
e

(m
s)

(c) running time in log scale

pyramid
MLE
b

2

Figure 3.8: Algorithm comparison: accuracy and running time of various algo-
rithms, as a function of the number of levels.

the synthetic data, here we do not know the distribution of the data a priori and,

in particular, there is no known ‘ideal’ value for b. Therefore, we validate the

39

goodness-of-fit using the correlation coefficient, denoted cc, obtained from quan-

tiles of the data compared to those from data that would be generated by the

model (known as the q-q test and described in Section 3.3). In all experiments,

we first consider the approximation error resulting from the underlying CM (the

sketch width was 512 units) technique by comparing the offline D̂2 estimates with

its online counterparts. As we showed in Section 3.3.2, the error of the approach

based on D̂2 is bounded (with high probability). Indeed, this bound tends to hold

in practice; see Figure 3.7(a). A similar trend occurs with the differences between

online and offline estimates for b̂2, since they can be derived from D̂2, but we

are presenting the error with respective to D2 here because the error bounds are

independent of D2 and thus more intuitive to present graphically. We also plot

the q-q test correlation coefficients from b-value estimates based on the online

approaches as shown in Figure 3.7(b). Here the correlation coefficient for b̂2 is

close to 1 at almost all time intervals, indicating a good model fitting. Moreover,

running time of the online algorithm, measured by Unix time command, shown in

Figure 3.7(c), is at least an order of magnitude faster than its offline counterpart.

Online Goodness-of-Fit Estimates. The correlation coefficients used to evalu-

ate the goodness-of-fit of b̂ in the experiments above were computed offline because

the q-q tests require quantiles from the data stream as well as from data gener-

ated from the fractal model using b̂. How accurate are the correlation coefficient

estimates for our proposed method using approximate quantiles in comparison to

those computed offline (using exact quantiles)? Figure 3.7(d) indicates that the

difference is insignificant, in most cases within an absolute difference of 0.0025,

and in the (rare) worst case within 0.017.

3.5.3 Comparison of Methods

We have three methods for estimating b on a data stream. The pyramid and MLE

methods only explore the top few levels since the space used by them explodes

40

exponentially as the levels are increased. In contrast, our proposed method from

Section 3.2 uses small space per level and hence is able to explore the entire depth

of the hierarchy. Furthermore, the proposed method provides accuracy guarantees

on b̂.

We compared these three methods on IP addresses from TCP packet traf-

fic data. We varied the number of levels (from 1 to 32) used to derive b̂, but

found that for pyramid approximation, this marginally improved the estimates

at medium levels, and deteriorated the accuracy with too many levels; for MLE,

b̂MLE gradually converged to b̂2 with many levels considered. Figure 3.8(a)(b)

summarize the results. For comparison, the estimates for b̂2 are plotted as a

straight line. Here pyramid approximation yielded the worst estimates. As shown

in Figure 3.8(b), the correlation coefficient for b̂2 is always higher than that based

on pyramid approximation at any level. Pyramid method has many sources of

error: approximation error from the numerical solution of high-degree polynomi-

als, sometimes such polynomials do not have roots, limiting the number of levels

to fit the space constraints, etc. In contrast, MLE is more robust. b̂MLE starts

behaving well after level 21, with stable goodness-of-fit measures thereafter. Fig-

ure 3.8(c) summarizes the running time to estimate b̂pyr, b̂MLE and b̂2 in the log

scale as a function of the number of levels. The limitations of pyramid and MLE

methods are apparent; hence, we do not consider them in the remainder of our

experiments.

3.5.4 Performance On a Live Data Stream

We implemented the proposed method, based on estimating D̂2 using CM sketches,

as a User-Defined Aggregate Function (UDAF) facility in Gigascope [29], a highly

optimized system for monitoring very high speed data streams [37]. The source

used for these performance experiments was a live IP packet stream monitored

at a network interface inside the AT&T network, and the whole experiment ran

41

for several weeks. On average, the streaming rate at this interface was about

100,000 packets/sec, or about 400 Mbits/sec. The monitoring architecture was a

dual Intel Xeon 3.2 GHz CPU running FreeBSD. Our proposed method incurred

only 2% CPU utilization.

0.6
0.7
0.8
0.9

1

co
rr

 c
oe

ffs

0.88
0.9

0.92

b

(b) srcIP

0.6
0.7
0.8
0.9

1

co
rr

 c
oe

ffs

0.94
0.945

0.95

b

(a) destIP

Figure 3.9: Performance and Study of Stability and Fit of Models on Gigascope:
b-values, correlation coefficients. (a) TCP data on destIP; (b) TCP data on srcIP.

To evaluate the robustness of the model, we estimated the average correla-

tion coefficient obtained from q-q plots, at landmark windows of one minute for

a period of several weeks. To evaluate the stability, we estimated (a) the mean

parameter value as its standard deviation; and (b) the standard deviation of cor-

relation coefficients. Based on these measures, one may draw one of the following

inferences:

• If the average correlation coefficient is low, then the model is generally not

a good fit for the data and can be rejected.

• If the average correlation coefficient is high with low standard deviation,

then the model class with generic parameter b is a good fit.

• If the average correlation coefficient is high with low standard deviation

and the standard deviation of b̂ is low, then the instantiated model with a

specific parameter estimate (say, avg(b̂)) is a good fit.

42

We estimated b̂2 and its corresponding correlation coefficient ĉc on multiple

simultaneous groupings of the data (on either srcIP or destIP addresses, and for

either TCP, UDP, ICMP, or all IP packets). Figure 3.9 illustrates the time series

of b̂2 and ĉc for (a) destIP and (b) srcIP on TCP data, for a period of several

weeks.

Figure 3.9(a) shows a fairly robust fit for the instantiated model, with mean

correlation coefficient 0.918 and standard deviation 0.0662. In addition, the es-

timate for b was quite stable, fluctuating within a very small range [0.928, 0.985]

with mean value 0.945 and standard deviation 0.002 over the interval of several

weeks. Some additional observations:

• The ĉc values were highest when b̂2 was near the mean value and lowest the

further b̂2 was from the mean in either direction.

• Such fluctuations occurred at regular cycles.

• The fluctuations of ĉc appear to correlate with the traffic distribution (de-

scribed by b̂2).

• The time series was generally ‘smooth’, that is, the change in value of b̂

at consecutive time steps was usually very small. However, there were

occasional instances of large jumps, perhaps indicating outliers in the data.

As a ‘sanity check’, we tried to skew the distribution on srcIP addresses by

selecting only packets originating from three different ISPs. The resulting tri-

modal distribution should therefore not be suitable for our model. As expected,

the average ĉc in Figure 3.9(b) is 0.7612, and dips below 0.5 for some windows.

Accordingly, b̂2 has a standard deviation of .011, which is an order of magnitude

higher than that on destIP.

The results on UDP and ICMP packets indicate that the fractal model does

43

mean(b) ± [min(b), mean(cc) ±
stdev(b) max(b)] stdev(cc)

destIP/TCP 0.94 ± 0.002 [0.93,0.985] 0.92 ± 0.06
destIP/UDP 0.97 ± 0.007 [0.946,0.99] 0.51 ± 0.14
destIP/ICMP 0.95 ± 0.012 [0.92,0.994] 0.47 ± 0.12

destIP/all 0.94 ± 0.003 [0.935,0.98] 0.90 ± 0.06
srcIP/TCP 0.90 ± 0.01 [0.87,0.991] 0.76 ± 0.07
srcIP/UDP 0.93 ± 0.01 [0.89,0.994] 0.52 ± 0.09
srcIP/ICMP 0.96 ± 0.01 [0.91,0.995] 0.46 ± 0.08

srcIP/all 0.89 ± 0.01 [0.87,0.99] 0.75 ± 0.06

Table 3.2: Some statistics from Gigascope experiments.

not fit well, having low correlation coefficients; Table 3.2 summarizes these statis-

tics. On the other hand, the model was fairly robust on all IP packets because

TCP accounts for a very large portion of the traffic.

Our experiment demonstrates the need for online model fitting over a long

time interval. Observe in Figure 3.9(a) that, although the average correlation

coefficient was quite high (.918) with small standard deviation (0.0662), there

were rare occasions when it dipped below .6. Had model fitting been based on

a snapshot with such low q-q correlation, the model might have been rejected.

Likewise, there are instances in Figure 3.9(b) where the correlation coefficient

exceeds .95, though it often tends to be much lower (on average .7612 with a

small standard deviation of .0698). Hence, different snapshots can lead to vastly

different conclusions, so it is clearly more robust to consider a series of snapshots

before drawing a conclusion.

Such insights into how the fractal model fits IP traffic data streams would not

have been possible without our online algorithms since running offline methods

on several weeks of trace is infeasible; even capturing and storing such a large

trace is impractical.

44

3.5.5 Intrusion Detection Application

We obtained network traffic data tagged with known intrusion detection at-

tacks [86]. There are several weeks’ worth of IP packet header data labeled with

the date, starting time, the attack name and the target destination IP addresses

(typically over multiple groups of IP prefix ranges) of each attack. We chose data

from a single day on which the traffic rate was roughly 10K packets per minute,

estimated b̂2 at respective landmark windows of 3 minutes and 6 minutes (using

the destIP field), and plotted the time series of b̂2 under the two window sizes;

see Figure 3.10. Within each time series, we also indicate the start time of each

attack with a spike. There were two types of attacks that occurred during the

day we examined: ‘satan’ (first spike): a network probing attack which looks for

well-known weaknesses; and ‘neptune’ (second spike): SYN flood denial of service

on one or more ports.

The target destination IP address prefixes incurred an increase in traffic vol-

ume during both attacks, and the distribution of overall packet traffic shifted

towards these IP addresses during the attacks. As a result, an increase in b̂2 was

observed.

0.96

0.97

0.98

0.99

1

b2

(b) window size = 6 minutes

b2

attacks

0.96
0.97
0.98
0.99

1

b2

(a) window size = 3 minutes

b2

attacks

Figure 3.10: Model Fitting on IP Traffic Data with Network Intrusion Attacks

In Figure 3.10, it can be seen that: (1) the high jumps in the time series of

b̂2 occur immediately after spikes tagged by the data source, while b̂2 estimated

on the other time windows stays fairly constant; (2) when attacks happen, they

45

usually last for awhile, resulting in b̂2 staying high, in contrast to the small fluctu-

ations during other intervals; and (3) at the larger window size (Figure 3.10(b)),

the time series of b̂2 flattens out while the network is not being attacked whereas

the b-values estimated during attacks remain high.

Given the fact that, under normal traffic conditions, mean(b̂2) = 0.962, stdev(b̂2) =

0.007, an increase in b̂2 to above 0.985 is a potential indicator of anomalies in this

time series. This suggests that fitting the b-model parameter online has potential

“discriminatory power” for intrusion detection monitoring. Still, flexible stream-

ing algorithms like ours are needed to get a good understanding of the variability

of b̂2 and ĉc over time to infer critical things about IP network traffic distribution.

3.6 Pareto Model Fitting Experiments

3.6.1 Alternative Streaming Method

We again consider the maximum likelihood estimator of tail index z. Suppose we

have N observed item values (e.g. flow sizes), x1, . . . , xN . For the Pareto model,

Pr(X > x) = (c/x)z where c is the scaling constant. So Pr(X = x) = czzx−(z+1).

Given the observed sequence, its log-likelihood function is

l(x1, . . . xN |z) = Nz log c + N log z − (z + 1)
∑N

i=1 log xi.

Setting its derivative with respect to z to zero, we get

ẑMLE =
N(1 + log c)
∑N

i=1 log xi

.

The denominator can be computed exactly on the fly. But the difficulty is com-

puting c. In theory, c satisfies
∑

x∈U Pr(X = x) =
∑

x∈U czzx−(z+1) = 1 since the

distribution is a probability function. Hence, c = [z
∑

x∈U x−(z+1)]−1/z; and ẑMLE

is derived by solving the equation z =
N [1−(log(z

P

x∈U x−(z+1)))/z]
PN

i=1 log xi
for z. Although

it is theoretically feasible to exploit numerical techniques to find its root, it is

practically infeasible in the streaming case since the number of log-terms in the

46

numerator is linearly proportional to the domain size which is prohibitive. So,

as an alternative, we adapt the commonly-used heuristic of setting c = xmin, the

minimum x-value [5], so that Pr(X > xmin) = 1, which satisfies the definition of a

probability function, and present experimental study exploring this choice of c.

3.6.2 Accuracy of Proposed Method

In all experiments, the range of the distribution that is of interest is, by default,

a = 1% ≤ F (x) ≤ 15% = b.

Synthetic data. For control purposes, We used a standard simulation tech-

nique, the so-called inverse transformation method, to generate values from a

Pareto distribution with specified tail index z. Each experiment consisted of

drawing N = 108 items from a domain of size |U | = 107. We ran our proposed

method to recover z from the entire tail [a, b] of the generated data sets. Table 3.3

shows that z-estimates are more accurate for z in (0.2, 1.8) than at the extremes.

The difference between z and ẑ becomes smaller as |U | or N increases.

z ẑ z ẑ z ẑ

0.2 0.477 0.8 0.8002 1.4 1.366
0.4 0.428 1.0 0.9991 1.6 1.496
0.6 0.6009 1.2 1.1996 1.8 1.638

Table 3.3: Estimates of z on synthetically generated data.

Flow Data. We compared the proposed streaming method with the existing

offline one on flow sizes (in terms of number of bytes per flow) using NetFlow

data collected at a router over multiple consecutive hours. We selected out all

sessions for which the number of packets per flow is greater than 3 to exclude

TCP SYN attacks. Similar results were observed from data collected in different

hours, so we reported our experimental results from one-hour data set in depth, at

consecutive landmark windows of two-minute time intervals, consisting of 100K

flows on average.

47

In all experiments, we evaluated accuracy and efficiency of our proposed online

algorithm (ẑ) by comparing against two versions of offline algorithms: offline

using the entire tail (ẑet) and offline using quantiles (ẑq). We first considered

the approximation error from the underlying CM sketch (set ǫ = 0.1, φ = 0.01 in

Theorem 4) by comparing the offline ẑet, ẑq with its online ẑ. Figure 3.11(a) shows

that z error(q) = |ẑq− ẑ| is bounded by analytic error bound of 2∗0.1/(1−0.1) =

0.22 (with high probability), as Theorem 4 predicts. Likewise, z error(et) =

|ẑet− ẑ|, almost identical to z error(q), is also bounded by theoretical error bound.

This indicates the offline heuristic to estimate z using quantiles is sufficiently

accurate to approximate ẑet. Moreover, it is clear in Figure 3.11(b) that the

running time of the online algorithm, measured with the Unix time command, is

at least an order of magnitude faster than the offline counterpart.

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

time

|o
ffl

in
e(

z)
−

on
lin

e(
z)

|

(a) absolute estimation errors of tail index z

z error(et)
z error(q)
error bound

5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

time

ru
nn

in
g

tim
e

(m
s)

(b) running time

offline
online

Figure 3.11: Performance of parameter estimation.

With flow data from a real network, there is no known ‘ideal’ value for z.

Therefore, we used online validation, in particular, q-q plots, to evaluate the

goodness-of-fit. We employed sequential q-q plots, each of which was generated

at the same landmark windows as those used to estimate ẑ. We show one repre-

sentative q-q plot (see Figure 3.12(a)) at a randomly chosen time step; the plots

at other time steps look very similar. The plot clearly indicates a strong linear

correlation, and thus evidence for a good fit.

48

3.6.3 Comparison of Methods

We repeated our experiments on flow data by comparing our proposed online

method (ẑ) with MLE. As we mentioned earlier, one problem with MLE is finding

the best scaling constant c, from which ẑMLE is derived. We demonstrate the

ad-hocness of picking a c for the MLE estimator by computing ẑMLE based on

three different c-values: minimum observed x-value, its minimum domain value,

the average of the above two minimums, all of which satisfy the definition of a

probability function (i.e. Pr(X > c) = 1). We denote the respective ẑMLE as

ẑmo, ẑmd, ẑma. The average z-values, computed via different methods over all time

steps, are listed below:

ẑ ẑmo ẑmd ẑma

1.37 0.78 0.19 0.68

0 2 4 6 8 10

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

real data

ge
ne

ra
te

d
da

ta

(a) q−q plot

line−fitting

0 2 4 6 8

x 10
4

0

2

4

6

8
x 10

4

real data

ge
ne

ra
te

d
da

ta

(b) q−q plot

MLE−mo

0 2 4 6 8

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

13

real data

ge
ne

ra
te

d
da

ta

(c) q−q plot

MLE−md

0 2 4 6 8

x 10
4

0

0.5

1

1.5

2
x 10

5

real data

ge
ne

ra
te

d
da

ta

(d) q−q plot

MLE−ma

Figure 3.12: Algorithm comparison.

Note the wide disparity in z estimates between the proposed method and MLE-

based approaches. We now examine their goodness-of-fits. The q-q plot for the

49

proposed method (Figure 3.12(a)) is clearly more linear compared to the other

methods (Figures 3.12(b)-(d)) .

In addition, the above list of z estimates also tells us that ẑMLE in general

under-estimates z because of the top concavity.

3.7 Extensions

Other Streaming Windows. On the stream, our methods need to simply

maintain aggregates such as L2 norms, range sums and quantiles. We used the

CM-Sketch for this purpose with the landmark window model. Our methods

directly generalize to other streaming models. For example, in presence of inserts

and deletes, the CM-Sketch methods dynamically maintain all these aggregates

with equal accuracy as when only inserts are allowed. Similarly, with a windowed

stream model, these aggregates can be maintained accurately using [40, 8]. Also,

in the model where the past is continuously weighted down as the stream comes

in, there are similar results for maintaining our desired aggregates [27]. Therefore,

in all these variations of streaming windows, our methods work and give similar

guarantees as the ones we show here with landmark windows. Our contribution

is not in designing the synopses structures for different window models, but in

showing how to use them for parameter estimation and validation, and proving

accuracy guarantees in the process.

Fitting Other Models.

Hausdorff Fractal Dimension D0. Recall notations used to define fractal

model in Section 3.3.1. Set V = {0 . . . , log |U |}. Hausdorff fractal dimension D0

is defined when

N(p) =

2p−1
∑

i=0

1
(
P(i+1)2log |U|−p−1

j=i2log |U|−p
S[j]>0)

, ∀p ∈ V,

and 1() is an indicator function. Instead of using the CM sketch to estimate

log N(p) to derive D2, we use hierarchical Flajolet-Martin, or FM, sketch [51] to

50

provide a (1 + ǫ)-approximation N̂(p) of N(p) for each p. And D0 and D̂0 are

computed by the slope of the regression lines fitting {(p, log N(p))|p ∈ V } and

{(p, log N̂(p))|p ∈ V } respectively.

Theorem 6 Our algorithm uses space O(log |U |
ǫ2

log log |U |
δ

), and with probability at

least 1− δ, outputs estimate D̂0 for D0, such that |D̂0 −D0| ≤ 3ǫ
(1+log |U |)(1−ǫ)

.

Proof. ∀p ∈ V , FM sketch [51] with (ǫ, δ/ log |U |)-guarantees ensures that with

probability 1 − δ/ log |U |, (1 − ǫ)N(p) ≤ N̂(p) ≤ (1 + ǫ)N(p). The rest of the

proof follows the proof for Theorem 1.

0 10 20 30 40 50 60

−0.29

−0.285

−0.28

−0.275

−0.27

−0.265

−0.26

time

D
0

offline(D0)
online(D0)

(a) D̂0

0 10 20 30 40 50 60
0.01

0.015

0.02

0.025

0.03

0.035

0.04

time

re
la

tiv
e

D
0

er
ro

r

(b) relative D̂0 error = | D̂0−D0

D0

|

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

time
ru

nn
in

g
tim

e
(m

s)

offline algo
online algo

(c) running time

Figure 3.13: Algorithm comparison: accuracy and running time of offline and
online D0, at per-minute time intervals.

We repeat our experiments at consecutive landmark windows of one-minute

time intervals from destIP on TCP data, at a speed of 60K packets per minute,

and report results in Figure 3.13. We first consider the approximation error re-

sulting from the underlying FM sketch technique by comparing the offline fractal

dimension estimates D̂0 with its online counterpart (see Figure 3.13(a)). Fig-

ure 3.13(b) demonstrates that the relative error of D̂0 is smaller than 4% at all

one-minute time intervals. Moreover, running time of the online algorithm, mea-

sured by Unix “time” command, shown in Figure 3.13(c), is at least an order of

magnitude faster than its offline counterpart.

Information Fractal Dimension D1. Set V = {0 . . . log |U |}. Information

fractal dimension D1 ≡ limp→∞ F (p)/p, where ∀p ∈ V, F (p) =
∑2p−1

i=0 (
M

(p)
i

M
log

M
(p)
i

M
).

51

Using appropriate sketches to estimate the entropy [21, 66, 20] hierarchically, we

can obtain strong accuracy estimates for calculating the information fractal di-

mension as well.

Our overall approach here of (a) rigorous analysis of fitting regression line to

various plots that are populated with estimations from synopses maintained over

the data streams and (b) online validation using q-q plots that work without ma-

terializing the generated data, is powerful and will find many other applications.

3.8 Related Work

Parametric model fitting has a long history in the statistics literature, where the

goal is to find parameter value(s) which best match the observed data. Many dif-

ferent methods have been proposed, from the “method of moments” to maximum

likelihood estimators. There are trade-offs for different distributions to which

they are applied. Our challenge here is to adapt the commonly used model fitting

methods for skewed data to the streaming scenario.

There has been plethora of methods for managing data streams in general [96].

They have primarily focused on clustering (k-means or k-medians), summarizing

(quantiles or histograms or wavelets) or mining (heavy hitters, change detection).

In contrast to the bulk of this literature, our focus is on modeling of data streams

using parametric models.

A number of different observations have been made about IP network traffic.

For example, IP traffic tends to have bursty behavior [81]; it tends to have heavy-

tailed distributions [112] and exhibit self-similarity in multiple scales [61]. There

is a hierarchical component to their distribution over the IP address space that

resonates with the hierarchical assignment of IP addresses to domains [26]. On

the other hand, non-hierarchical skew of many real data sources is observed and

well modeled by heavy-tailed—in particular, Pareto—distributions [112]. One

52

needs suitable models (hierarchical and non-hierarchical), preferably with a small

number of parameters, to describe the inherent characteristics of IP traffic [114].

Regarding hierarchical model fitting, the most relevant work is [81], where they

identified IP traffic streams as having the fractal behavior (using offline methods)

and demonstrated that the fractal dimension of traffic over the IP address hier-

archy can serve as a “fingerprint” for traffic at different sites and times. From an

algorithmic perspective, a highly relevant work is [110], where the authors studied

the b-model and showed how to estimate b. Their algorithm was focused on tem-

poral modeling of IO systems and does not work on IP traffic streams because it

requires that values arrive in sorted order. Another related algorithmic result is

by [115], where they used the tug-of-war sketch to estimate the fractal dimension.

However, their approach does not provide error guarantees, which is our crucial

focus, and requires more space and update time than ours. Likewise, a lot of

work exists for (offline) fitting of Pareto models [12, 102, 114, 112]. However, we

are not aware of any prior work that exists on fitting Pareto distributions in data

streams.

We build on the existing literature in two key ways. First, all our methods are

streaming, that is, work online within small space and provide the first provable

online guarantees for the accuracy of parameter estimate(s); in contrast, existing

analyses are offline. Second, we introduce online validation of these parameter

estimates, which was not present in previous work and is crucially needed in the

data stream context where distributions and models change over time. Much of

our insights into real live IP streams in Sections 3.5.4 and 3.5.5 would have been

infeasible to get with the offline methods.

53

3.9 Chapter Summary

There has been a lot of work on techniques for analyzing streaming data, but very

little has focused on modeling the data. We presented a highly efficient approach

for (a) estimating paramaters of (non-) hierarchical models on streams such as

IP traffic with guaranteed accuracy, and (b) online model validation, all within

small space and fast update time per new data stream item.

Statistical modeling is a difficult task and it needs careful, systematic and

rigorous real life experimental study to be robust. We performed detailed study

of our methods on an operational DSMS (AT&T’s Gigascope). Fortunately, our

approach only relied on maintaining CM-Sketches on the data stream and this

was already part of Gigascope for other operational reasons; hence, our approach

does not add any additional burden on the system. Also, we benefited from a

number of optimizations in Gigascope for this primitive. As a result, our detailed

study of modeling on several weeks of IP traffic streams reveals many insights on

its applicability and its use. In particular, our online validation approach proved

crucial and we believe it will be of fundamental interest in DSMSs for modeling

streams.

54

Algorithm 1 GeneratedQuantiles(cmh,b,φ) Stack-based method to gener-
ate φ-quantiles Y directly from b-model

1: percent← 0 /*percentage of data generated*/
2: addr ← 0 /*item ID*/
3: i← 1 /*next quantile*/
4: push a pair (1,0,0)
5: while stack not empty do
6: pop a tuple (frac, level, index) from the stack
7: if level == log |U | then
8: percent+ = frac
9: while (percent >= iφ) and (i < 1/φ) do

10: Y [i] = addr; i + +
11: end while
12: addr + +
13: else if percent + frac <= iφ then
14: /* prune the subtree: no quantiles*/
15: percent+ = frac; addr+ = 2log |U |−level

16: else
17: /*assign weights according to range queries*/
18: wl = CMH Count(cmh, level + 1, 2 ∗ index)
19: wr = CMH Count(cmh, level + 1, 2 ∗ index + 1)
20: if (wl < wr) then
21: /*left (1-b), right b*/
22: if percent + frac ∗ (1− b) < iφ then
23: /*prune left branch: no quantiles*/
24: percent+ = frac ∗ (1− b)
25: addr+ = 2log |U |−level−1

26: /*push the right branch*/
27: push (frac ∗ b,level + 1,2 ∗ index + 1)
28: else
29: push (frac ∗ b,level + 1,2 ∗ index + 1)
30: push (frac ∗ (1− b),level + 1,2 ∗ index)
31: end if
32: else
33: /*left b, right (1-b)*/ symmetric with L21-31, exchange b and 1−b
34: end if
35: end if
36: end while
37: return Y /*φ-quantiles*/

55

Chapter 4

Modeling Communication Graphs via Signatures

4.1 Introduction

In the everyday world, instances of interaction or communication between individ-

uals are everywhere. For example, individuals speak to each other via telephone;

IP traffic is passed between hosts; authors write documents together and so on.

There are other examples in which individuals interact with other entities, such as

when users pose search queries; post and comment on messages on bulletin boards

or blog sites; or when stock traders transact stocks, bonds and other goods. In

an indirect sense, users “communicate” with each other via the common objects.

In all cases the communication between individuals can be repeated many times

(such as in the case of telephone calls) and weighted (say, the quantity of stock

bought, or the duration of a call).

Given this abundance of communication between individuals, many applica-

tions rely on analyzing the patterns behind the communications, for example:

• Anti-Aliasing: is an individual behind multiple presences in the communica-

tion network? This happens e.g. when an individual has multiple connection

points (home, office, hotspot) to the Internet.

• Security: has some individual’s ‘identity’ been taken over by someone else?

This happens when a person is given access to another’s laptop, or when

a cellphone is stolen and used by someone else. Is a new user who arrives

at a particular time really the reappearance of an individual who has been

56

observed earlier? This happens in telephone networks when a consumer

defaults on an account and opens a fresh account to further use services

without paying (a “repetitive debtor”); or in bulletin boards when a banned

user re-registers with a new ID.

• Privacy Preservation: can we identify nodes from an anonymized graph

given outside information about known communication patterns per indi-

vidual? This happens in author identification of double-blind submissions.

Each of the questions above and others of this nature that rely on communi-

cation patterns can naturally be solved by designing suitable signatures for the

individuals. Informally, signatures capture the distinctive or discriminatory com-

munication behavior of an individual (telephone user, IP address, trader or user

of a search service, etc). While the concept of signatures is self-evident, formal-

izing and applying signatures to a specific task is really an art. Typically, in any

particular task, “signatures” are defined based on intuition and experimentally

validated against a labeled set. This approach has been instantiated successfully

for certain specific communication settings and applications. It was done for tele-

phone networks in [36, 68] where the authors defined a community of interest

to be the top-k numbers called by a given telephone number. With appropriate

age weighting and a suitable k, this was argued to be highly discriminatory for

detecting repetitive debtors. A second example is when a signature formed from

bibliographic citations is used to identify authors of double-blind submissions [69].

There are many other examples in areas including Security [83, 48, 35, 36], Net-

working [99, 117, 85, 98], Social Network Analysis [59, 15, 107], Epidemiology

and others.

In this chapter, we adopt the signature-based approach to analyzing the pat-

terns of communication exhibited by individuals. However, we focus on the pro-

cess of how signatures are developed and applied. In prior works, typically, one

57

considers a particular application, proposes an intuitive signature and evaluates

it empirically on datasets. We focus on principles behind the usage of signatures.

In particular, we propose the framework in which we first agree on a set of proper-

ties of signatures that are natural, and when faced with an application, determine

what properties of signatures are needed, and then, seek out examples of signa-

tures already known or design new ones which will have those properties. Hence,

the process will focus on abstract properties that are needed, and “shopping” for

signatures with those properties.

We develop a framework for the formal use of signatures for tasks that involve

analyzing communication patterns, for very general notions of communication.

We model the communications between entities using a suitably weighted graph,

and define a signature of a node abstractly in terms of the graph. Our contribu-

tions are:

• We identify basic properties of signatures such as persistence, uniqueness

and robustness, and for several tasks that involve analyzing communication

patterns, study which of these properties are needed. For example, a task

such as finding multiple presences of the same individuals in a time window

does not need signatures to be persistent; likewise, analyzing the changing

behavior of a single individual over time may not need signatures to be

discriminating.

• We consider specific signatures — some previously known, others new — for

communication graphs and study what basic properties they have, using ex-

tensive experiments with real datasets. This helps identify which signatures

are suitable for each of the tasks.

• We complement our conceptual results with a detailed experimental study

on two concrete applications of enterprise network traffic. We adopt the

framework for respective tasks. Our results show that signatures based on

58

a combination of a few application-desired properties is quite effective for

us.

It remains the case that finding suitable signatures for any task is more of an

art than a science, with effectiveness determined experimentally. In this sense,

our proposal of specific signatures for communication graphs and their application

to the specific tasks is such a study. But beyond this, our framework is general

and can be applied broadly.

In what follows, we first introduce our framework for analyzing signatures

in Section 4.2, the properties we desire, and an analysis of their values for a

variety of applications. In Section 4.3, we describe various signature schemes

based on expected features of communication graphs, and their characteristics.

We evaluate signatures empirically, first studying the general characteristics in

Section 4.4, and then for particular applications in Section 4.5. We lastly discuss

scalability issues in Section 4.6, then survey related work and give concluding

remarks.

4.2 Framework

Here we describe our framework for designing and evaluating topological signa-

tures for communication graphs. We define the domain of our signatures, and

three general properties for evaluating them. Finally, we discuss how these prop-

erties relate to specific applications of signatures.

4.2.1 Individuals and Labels

A communication graph is defined by the observed patterns of communications

between nodes representing individual users. However, we observe only the labels

of these nodes rather than the actual identities of the individuals who are com-

municating. For example, we may see traffic on a network between pairs of IP

59

addresses, or calls between pairs of telephone numbers. These may be unique to

individuals, but not necessarily: an IP address may be dynamically reassigned

to another user, a cell phone may be loaned to a friend, etc.1 What we can do

is to analyze the observed communication between nodes in the graph, and infer

the behavior of individuals. We need the assumption that the hidden mapping of

individuals to node labels in the graph is for the most part consistent over time:

if the mapping of every label is randomly reassigned at every time step, then the

task of building good signatures becomes appreciably harder, especially if only

basic information about the communications is available. Indeed, many of the

applications we discuss here concern finding examples where the mapping from

users to labels is slightly perturbed. In subsequent sections, we concentrate on

building signatures based on the observable labels, while understanding that our

purpose is to use the signatures to identify the behavior of individuals.2

4.2.2 Signature Space

Let Gt = 〈V, Et〉 be a communication graph that has been aggregated over some

time interval at t.3 The graph may be revealed as a sequence of directed edges

(v, u), and then aggregated, or may arrive as a set of aggregated edges. An edge

(v, u) ∈ Et represents communication exchanges from node v to u in Gt, and the

weight of edge (v, u), denoted C[v, u], reflects the volume (e.g., frequency) of this

communication. For each node v ∈ Gt, we denote by I(v) and O(v) the set of

v’s in-neighbors and out-neighbors during the time interval, respectively. That

is, I(v) = {u|(u, v) ∈ Et} and O(v) = {u|(v, u) ∈ Et}. In many common cases

the nodes are partitioned into two distinct classes, such as clients and servers,

1However, we consider a group of people sharing a node, e.g., a family with a shared Internet
connection, or even a computer program with a particular communication pattern, to represent
an “individual” in our setting if the group membership is consistent over time.

2We use the terms “individuals” and “users” interchangeably; likewise “labels” and “nodes”.

3In practice, V = Vt as it may vary between windows, but only by a small amount.

60

and so the induced graph is bipartite. A bipartite communication graph Gt =

〈V1 + V2, Et ⊆ V1 × V2〉, with nodes partitioned into disjoint sets V1 and V2, has

directed edges (v, u) ∈ Et with v ∈ V1 and u ∈ V2.

To define our signatures we make use of a relevancy function, w, so that wvu

indicates the relevance of u to v. Initially, assume w is given; we later discuss

choices of w.

Definition 1 (Graph Signature) We define a communication graph signature

σt(v) for node v ∈ V at time t as a subset of V with top-k associated weights4, that

is,

σt(v) := {(u, wvu)|u 6= v ∈ V, wvu ≥ w
(|V |−k)
v , wvu ∈ ℜ+},

where k < |V |; w
(i)
v is the ith order statistic of {wvu|u ∈ V }, that is, w

(1)
v ≤ w

(2)
v ≤

. . . ≤ w
(i)
v ≤ . . . ≤ w

(|V |)
v .

Where the graph is bipartite, we may restrict the signature for nodes in V1

to consist only of nodes in V2, especially if the size of the sets is unbalanced, i.e.

|V1| ≪ |V2|. Otherwise, the treatment of bipartite graphs is the same as that for

general graphs.

We deliberately restrict the scope of the signature space to include only graph

features. Although some prior work on related questions has used features which

do not fit into this setting, such as the maker of the cellphone or the age of the blog

user associated with a node, and those based on interarrival distributions [73],

this definition is sufficiently broad to capture a large class of possible signature

schemes. In many common settings only communication “flows” are revealed, in

the form of graph edges aggregated over multiple occurrences and summarized

as total volumes, such as Call Detail Records in telephony [36] and NetFlow for

summarizing IP traffic at a router [97]. In addition, this definition conforms

4The top weights follow naturally since w quantifies node relevance, and thus filters out

noise.

61

with prior work in [36]. Thus, this restriction allows us to thoroughly explore

signature schemes in a well-defined, useful space. Moreover, this definition lends

to more human comprehensible signatures, and simple descriptions of causes for

differences.

The above definitions leave room for many alternatives, based on the choice of

w. Designing a good signature requires much insight and care. We discuss how to

select an appropriate set of nodes with associated weights (“signature scheme”)

in Section 4.3. Next we introduce some general properties that are desirable for

any signature, and discuss how they apply to a variety of problems.

4.2.3 Signature Properties

The traditional function of a signature is to authenticate an individual’s identity

via handwritten depictions of their name. In our context, signatures are based

on profiling interactions specific to the individual. As with the handwritten case,

a useful communication signature should satisfy the following properties:

Definition 2 (General Properties)

• Persistence: an individual’s signature should be fairly stable across time,

that is, not differ much when comparing similarities at consecutive time

intervals. Otherwise, it will not give a reliable way to identify the individ-

ual. (Slowly evolving signatures may be acceptable but abruptly changing

signatures are not.)

• Uniqueness: one individual’s signature should not match another’s. That

is, if two signatures match, then they should belong to the same individual.

• Robustness: the ability to identify an individual from a signature should not

be sensitive to small perturbations. Any noise introduced in the process of

deriving signatures should not interfere with its effectiveness.

62

To measure these properties and so be able to compare different signature

schemes, we need a way to match identities based on signatures. A natural

approach involves defining distance functions Dist(σ1, σ2) between two signatures

σ1 and σ2. Then we can more precisely define and measure persistence in terms of

the distance between a node’s signature at two different time steps; uniqueness in

terms of the distance between a given node’s signature and that of another node

in the graph; and robustness as the distance between a node’s signature with and

without small perturbations. That is, for a fixed v we measure the three graph

properties, given some node u 6= v, as follows (w.l.o.g., fix 0 ≤ Dist(·, ·) ≤ 1):

• Persistence: 1−Dist(σt(v), σt+1(v));

• Uniqueness: Dist(σt(v), σt(u));

• Robustness: 1−Dist(σt(v), σ̂t(v)), where σ̂t(v) has been slightly perturbed

from σt(v).

These definitions can accommodate different choices for Dist and σ̂t(v). We can

now compare different signature schemes with respect to persistence, uniqueness

and robustness using distance measures. These are defined so that a larger value

in each case indicates greater presence of these properties, up to 1 (perfect).

Because of the hidden mapping from individuals to labels, some trivial signa-

ture schemes do not suffice. We could assign each node v the signature σ(v) =

{(v, 1)}: the signature is the node label. It would seem that such a scheme will

be persistent (since the signature never changes) and unique (since no two nodes

have the same signature). However, this is not the case since the signature relates

only to the node, and not the individual: if the user changes, the signature of the

node remains the same and so it fails.

63

Applications Persistence Uniqueness Robustness
Multiusage Detection Low High High
Label Masquerading High High Medium
Anomaly Detection High Low High

Table 4.1: Different applications and their requirements

4.2.4 Applying Signatures

We now specify some example tasks that involve analyzing communication pat-

terns. We describe one task per category (introduced in Section 4.1) and discuss

which properties of a signature (listed above) are needed to solve it. Table 4.1

summarizes these observations.

Multiusage Detection (Anti-Aliasing). Multiusage is when similar behavior

is exhibited by multiple node labels simultaneously. This could be the result of

malicious behavior such as in link spam where websites attempt to manipulate

search engine rankings through aggressive interlinking to simulate popular con-

tent, or benign behavior such as a single individual communicating from multiple

distinct node labels (e.g., “multihoming”). The key signature property needed is

uniqueness, since the assumption is that if nodes have distinct users then they

have dissimilar signatures. To detect multiusage, we compute Dist(σt(v), σt(u))

for node pairs within the tth time window, and look for high degrees of pairwise

similarity.

Label Masquerading (Privacy Preservation). Label masquerading occurs

when one user switches all their communication from one node to originate from

another. An example of this is the repetitive debtors problem [68], where a

consumer switches accounts with no intention of paying for their usage. The

key signature properties required here are persistence and uniqueness. On the

assumption that such masquerades are relatively rare within the whole graph,

to find instances we seek node pairs where there is very little or no similar-

ity within one time window of interest, but very similar behavior in subsequent

64

windows. Formally, the detection process involves computing the persistence

values 1 − Dist(σt(v), σt+1(u)), for each v, and uniqueness values of a fixed v

Dist(σt(v), σt(u)), for each u 6= v. A masquerader who switches from v to u is

likely to be detected when corresponding persistence and uniqueness values are

both high.

Anomaly Detection (Security). We define an anomaly as an abrupt and

discernible change in the behavior of a fixed label v observed in consecutive time

windows. This change could be the result of malicious behavior such as fraud,

or could be due to benign factors such as one individual going on vacation (and

so changing their communication pattern). The key signature property that will

be useful for detecting anomalies is persistence. Robustness is also needed, as

we expect some noise and variations over time. Uniqueness is not as important

here: we can tolerate some nodes have similar signatures, since we only compare

signatures of the same node over time. A simple algorithm to detect anomalies

from signatures is to compute value given by the above definition of persistence,

1 − Dist(σt(v), σt+1(v)), for each v, and reporting those v with unusually small

values. Consequently, signatures that exhibit higher persistence over a longer

term will be more effective at detecting anomalies.

4.3 Example Signature Schemes

The framework in Section 4.2 leaves a lot of scope for different signature schemes

that satisfy the desired properties. In this section, we study different features of

communication graphs that help us build useful signatures.

• Engagement/Communication strength: the edge weights in communication

graphs indicate the amount of interaction between each pair. So a heavier

edge should make the participating pair of nodes “closer” to each other,

65

and hence more likely to figure in each other’s signatures. Basing signa-

tures on these larger weights should make the signatures robust to small

perturbations. Further, we can assume that high interaction in one time

period predicts high interaction in future time periods, and so will improve

persistence.

• “Novelty” of neighbors: typically communication graphs exhibit a “power-

law”-like distribution of node degrees, so a few nodes have very high degree,

but the majority have smaller (constant) degree. A node with high in-

degree in a graph may be a poor member of a signature, since it is not very

discriminating. For example, a directory assistance number in the phone

graph or a search engine in the web traffic graph may be used by many

people, and hence be poor in distinguishing between them. So nodes with

lower in-degree are more “specific”, and may be preferable for uniqueness.

• Locality: because of the degree distribution, communication graphs are far

from complete, and instead some nodes are much closer (in terms of graph

hop distance) than others. For a given node, choosing nearby nodes may

be more relevant than those that are far away, leading to increased distin-

guishability and hence uniqueness. In addition, a signature may be more

human interpretable if it relates to nodes in the immediate neighborhood

than seemingly arbitrary nodes scattered across the whole graph.

• Transitivity/Path Diversity: communication graphs, although not dense, are

also far from being skeletal trees; between pairs of nodes there are typically

many paths. We assume that the more connecting paths, the “closer” these

two nodes are (even if they are not directly connected). That is, a signature

is likely to be more persistent and robust if it relates node pairs with multiple

connecting paths.

66

Characteristics Properties
Engagement persistence, robustness
Novelty uniqueness
Locality uniqueness
Transitivity persistence, robustness

Table 4.2: Communication Graph Characteristics and Properties

A signature scheme which incorporates some of these features can lead to

greater presence of the desired features. Table 4.2 summarizes the links between

graph characteristics and our desired signature properties.

We now describe a variety of signature schemes. Most are quite simple to

state, and based on extensions of prior work. We emphasize that our concern is

not the novelty or otherwise of these signatures, but rather the evaluation within

our framework, and the extensive experimental comparison which follows.

4.3.1 One-hop Neighbors Based Approaches

We first consider signature schemes that only pick from the immediate (one-hop)

neighbors in the graph. For each neighbor j of i ∈ V , we compute a relevance

measure wij, indicating the computed importance of j to i. Following Definition 1,

we retain the k nodes j with the largest values of wij. For bipartite graphs, for

each i ∈ V1, we retain the k nodes j among V2 with the largest values of wij.

Ties may be broken arbitrarily, and if there are fewer than k nodes with non-zero

values of wij, we retain only this subset. To ease our discussions in the rest of

the chapter, we shall not explain explicitly different notations used for bipartite

and non-bipartite graphs, like what we do here, but keep notations following

Definition 1 when the context is clear. We consider two such schemes:

Definition 3 The Top Talkers (TT) scheme sets wij = C[i, j]/
∑

(i,v)∈Et
C[i, v].

That is, the signature of i consists of the (at most) k nodes adjacent to i with the

highest incoming edge weights wij from i.

67

This might correspond to the most called telephone numbers, or the most visited

web sites, for i. The definition only takes into account Communication Strength,

and is implicit in the “Communities of Interest” work, which used such signatures

in the course of detecting fraudulent activity [36]. A feature of that work was that

it additionally created a signature from the combination of multiple time-steps by

using an exponential decay function applied to older data. It is straightforward

to apply these definitions over a set of modified edge weights C ′[i, j], which reflect

an appropriate exponential decay or other combination of historical data. Hence,

we treat such time decay as orthogonal to our main line of inquiry, and do not

consider it explicitly any further.

Definition 4 The Unexpected Talkers (UT) scheme sets wij = C[i, j]/|I(j)|.
Thus the signature for i consists of the (at most) k nodes j with the largest in-

coming edge weights from i, scaled by the number of j’s incoming edges.

By factoring in “Novelty” of neighbors, this definition downweights nodes

which might be universally popular and dominate signatures, leading to false

matches and hence low uniqueness. The prevalence of such nodes will depend on

characteristics of the setting inducing the communication graph. For example,

there are relatively few nodes of this kind in the telephone call graph: although

people may regularly call directory assistance, they will typically call friends and

family more often, hence such nodes are unlikely to dominate their signature.

However, in the web traffic graph, one can observe sites which attract a lot of

incoming traffic, from many different users, such as search, web mail, and video

sites. Having such nodes in a signature is unlikely to provide a good signature.

One could remove such nodes altogether. We avoid this for two reasons. Firstly,

there can be many such nodes, and the list is not static, but evolves over time

as new nodes attract interest. Secondly, there is still some information in the

set, such as relative weight of such nodes in the communication pattern of a par-

ticular node, and we want to create some signature even if these are the only

68

destinations a node i communicates with. So we downweight this, to try to push

up more “unexpected” destinations, and hence create a signature that is more

likely to be unique. In full generality, we can consider many possible settings

for this downweighting: we can use many functions of |I(j)| and C[i, j] (e.g.,

C[i, j] log(|V |/|I(j)|), by analogy with the TF-IDF measure). In our detailed ex-

periments, we did not see much variation in results for different scaling functions,

so we focus on this definition for brevity.

4.3.2 Multi-hop Neighbors Based Approach

The one-hop approach is highly appropriate for certain graph types, in particular

the telephone call graph. But we can conceive of other communication graph set-

tings where no one-hop signature can do well. Consider the (bipartite) communi-

cation graph induced by customers renting movies. If we consider two subsequent

time periods, it is highly unlikely that any significant fraction of customers will

rent the same title in both periods. Thus, no matter what weighting of their

one-hop neighbors (i.e. their rentals that month) we apply, we will obtain signa-

tures with poor persistence. In general, this is a challenging situation to make

signatures for; however, we can at least hope for somewhat better signatures if

we look beyond the immediate neighborhood.

For a multi-hop signature based approach to be successful, we need to be

able to find nodes and weights outside the immediate (one-hop) neighborhood

of node i that nevertheless accurately represent i. So, even if i communicates

with completely different sets of nodes in each time period, our hypothesis is that

there is sufficient information in the broader link structure of the graph so that

we will find a set of nodes and weights for i that are similar in both time periods

(persistence) while being different to those found for other nodes (uniqueness).

Clearly, the validity of this will depend on the nature of the communication

graph. We propose an example signature scheme, and validate it experimentally

69

on a variety of graphs.

Definition 5 The Random Walk with Resets (RWR) signature scheme is defined

as follows: starting from node i, we define ~wi = [wij]|V |×1 as the steady-state

probability vector, where wij is the probability that a random walk from i occupies

node j ∈ V . Each step in the random walk either selects an edge to follow with

probability proportional to the edge weight or, with probability c, returns to node

i.

As before, we take the k largest wijs in ~wi to define the signature for i. Although

this is the stationary distribution of a random walk, it is can be computed exactly.

The definition of wij is equivalent to the personalized PageRank [67] with an input

set of preferences equal to the single node i and can be computed as follows.

Computation of RWR. Recall that C is the adjacency matrix of the graph Gt

from which we compute the transition matrix P . Here P (i, j) = C[i, j]/
∑|V |

j=1 C[i, j]

denotes the probability of taking edge (i, j) from node i. Let ~si be the start-node

vector with 1 in position i and 0 elsewhere. Then the steady-state probability

vector ~ri satisfies

~ri = (1− c)P~ri + c~si, (4.1)

where ~ri is initialized to ~si and c is the probability of resetting. This equation

can be solved by

~ri = c[I − (1− c)P]−1~si. (4.2)

Then ~ri can be found for any i if we pre-compute and store [cI − (1 − c)P]−1.

However, this becomes impractical for large graphs due to the high cost of com-

puting the inverse. So we use the iterative approach by applying (4.1) repeatedly:

~rl
i = (1− c)P~rl−1

i + c~si. This is guaranteed to converge [17], and the process can

be terminated after a fixed number of iterations, or after the probability vector

does not change significantly. The running time is linearly proportional to the

number of iterations and the number of edges, per starting position i.

70

Scheme Characteristics Properties
TT locality, engagement uniqueness, robustness
UT novelty, locality uniqueness
RWR transitivity, engagement persitence, robustness
RWRh locality, transitivity persistence, uniqueness, robustness

Table 4.3: Properties Used by Signature Schemes

Computation of RWRh
c . As discussed earlier, we may wish to restrict the

signature of a node to its local neighborhood. The RWR signature can pick arbi-

trary nodes from the graph, and may be drawn to “attractors” (nodes with high

indegree). Instead, we propose RWRh
c as a modification of the above procedure

when the random walk is restricted to visit only nodes within at most h hops of

i. As observed in [107], the structure of the graph means that such signatures

may additionally be faster to compute. To compute RWRh
c , we take the iterative

algorithm defined above, and proceed for only h iterations. This ensures that

signatures for node v contain only nodes at most h hops away from v. Notice

that when c = 0 and h = 1, RWRh is identical to the Top Talkers scheme. By

increasing h, we tradeoff between the local (TT) scheme and the global (RWR)

scheme.

Table 4.3 summarizes the schemes in terms of communication graph charac-

teristics exploited and the resulting signature properties from Section 4.2.3 that

are captured. Based on our analysis of application requirements, we reason that

RWR will perform well at anomaly detection; RWRh will succeed at label mas-

querading, and TT will be good for multiusage detection.

4.4 Evaluations of Signature Properties

In this section, we evaluate the quality of signature schemes on various data sets

with respect to persistence, uniqueness and robustness. In particular, we focus

on two real data sets: flow data from an enterprise network and database query

71

logs. All our experiments were performed on a dual 2.8GHz desktop machine

with 2GB RAM. From each graph, we select signatures for each individual using

the TT, UT and RWR schemes outlined in Section 4.3.

4.4.1 Data Sets

Enterprise network data. We collected six weeks’ worth of flow records from

a large enterprise network. LAN switches and a Network Interface Card were

configured to monitor all traffic from more than 300 local hosts including desktop

machines, laptops and some servers; these hosts are the focal point of our analysis.

We captured all outgoing flows from the local hosts to external hosts in the

network. No communications between local hosts are visible on the monitored

links. In this study we used TCP traffic only, and removed weekend data from

our data set for purpose of a more consistent per-day traffic mix. The total six

week collection yielded more than 1.2 GB of network flow records, and contains

about 400K distinct IPs. The flows were aggregated over regular time windows to

form communication graphs. We used an interval of five days to present results;

the results were similar with other window sizes. The weight of a directed edge

was measured as the total number of TCP sessions during the time interval. In

all experiments, we used the signature length of k = 10,5 which is half of the

average local host’s out-degree.

User query logs. Our second data set consisted of 820K tuples summarizing

a set of queries issued by users to a data warehouse. The logs recorded which

tables were queried, but not the attributes accessed within each table. The data

contains 851 distinct users and 979 distinct tables. Given a sequence of (userID,

tableID) “edges”, we split the trace into windows covering five consecutive time

periods. Here, the edge weight is the number of times that the user accessed the

5Due to space limitations, we omit discussion about how we chose k. This issue was inves-
tigated in [68], and is beyond the scope of this chapter.

72

table within the time period. In all experiments, we used a signature length of

k = 3, half the average number of tables a user accessed per period.

4.4.2 Distance Functions

In our evaluation, we employed a variety of distance functions to compare signa-

tures.6 They are generalized from known measures, and take into account both

set overlap as well as weighted occurrence. Formally, given two signatures σ1 and

σ2, where σi = {(uij, wij)|j = 1..ki} is of length ki, let Si = {uij|j = 1..ki} be the

set of u’s in σi. We considered four distance functions:

DistJac(σ1, σ2) = 1− S1 ∩ S2

S1 ∪ S2
;

DistDice(σ1, σ2) = 1−
∑

j∈S1∩S2
(w1j + w2j)

∑

j∈S1∪S2
(w1j + w2j)

;

DistSDice(σ1, σ2) = 1−
∑

j∈S1∩S2
min(w1j , w2j)

∑

j∈S1∪S2
max(w1j, w2j)

;

DistSHel(σ1, σ2) = 1−
∑

j∈S1∩S2

√
w1j · w2j

∑

j∈S1∪S2
max(w1j, w2j)

.

It is easy to verify that all these distance functions are in [0, 1]. DistJac is based

on Jaccard coefficient, where the node weights are not taken into account; it is

minimized when S1 = S2, and it equals 1 when their overlap is empty. DistDice

is an extension of the Dice criterion [68], which factors in node weights; DistSDice

can be thought of as a scaled version of DistDice: it gives an added premium if

the individual weights in S1 and S2 are similar. By using min in the numerator,

however, we may be penalizing too much for non-equal individual weights, since

all that matters is the smaller one rather than some combination of the two. For

this reason, DistSHel is an extension of the Hellinger criterion from [68].

6These functions were chosen based on their simplicity and naturalness, though other choices
are certainly suitable.

73

10
0

10
1

10
2

10
0

10
1

10
2

node indegrees in G

no
de

 fr
eq

ue
nc

y
in

 s
ig

na
tu

re
s

TT
UT
RWR3

0.1

RWR3
0.9

y=x

(a) Network flow data

10
0

10
1

10
2

10
0

10
1

10
2

node indegrees in G

no
de

 fr
eq

ue
nc

y
in

 s
ig

na
tu

re
s

TT
UT
RWR3

0.1

RWR3
0.9

y=x

(b) User query logs

Figure 4.1: Popularity of nodes in signatures.

4.4.3 Experimental Results

To better understand the features selected by the different signature schemes,

we first show the number of signatures into which a given node u was selected

as part of the signature against u’s indegree |I(u)| in Figure 4.1. We show the

results for each signature scheme over multiple nodes and both data sets. For one-

hop neighbors based approaches (i.e., TT and UT), all points lie under the line

y = x because u has only |I(u)| distinct neighbors, and so cannot appear in more

signatures for these schemes. The nodes with high x-values from Figure 4.1(a)

mostly correspond to popular web sites (e.g. search engines). Thus we were

not surprised to see large y-values co-occuring with large x-values for the TT

scheme, since edge weights to these popular servers are higher than others. In

contrast, UT reaches peak y-values at smaller x-values (between 50 and 100) due

to downweighting these popular destinations.

With the RWR scheme, there are numerous points above y = x when both

h and c in RWRh
c are small (e.g., RWR3

0.1)
7, indicating that nodes beyond 1-hop

neighborhoods are being selected as part of signatures. With RWR3
0.1, a lot of

local hosts include low-indegree nodes in their signatures. This is because a small

7When c is as large as 0.9, RWR scheme converges with TT, so we focus on small values of
c.

74

0.2 0.3 0.4 0.5 0.6 0.7
0.8

0.85

0.9

0.95

1

persistence

un
iq

ue
ne

ss

Dist
Jac

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

0.2 0.3 0.4 0.5 0.6 0.7
0.8

0.85

0.9

0.95

1

persistence

un
iq

ue
ne

ss

Dist
Dice

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

0.2 0.3 0.4 0.5 0.6 0.7
0.8

0.85

0.9

0.95

1

persistence

un
iq

ue
ne

ss

Dist
SDice

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

0.2 0.3 0.4 0.5 0.6 0.7
0.8

0.85

0.9

0.95

1

persistence

un
iq

ue
ne

ss

Dist
SHel

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

(a) Network flow data

0.5 0.6 0.7 0.8 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

persistence

un
iq

ne
ss

Dist
Jac

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

0.5 0.6 0.7 0.8 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

persistence

un
iq

ne
ss

Dist
Dice

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

0.5 0.6 0.7 0.8 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

persistence

un
iq

ne
ss

Dist
SDice

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

0.5 0.6 0.7 0.8 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

persistence

un
iq

ne
ss

Dist
SHel

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

(b) User query logs

Figure 4.2: Signature persistence and uniqueness on two real data sets.

h restricts the locality, keeping away from some of the most popular servers.

Unlike with TT and UT, RWRh with a small c-value factors in some “global”

information. Therefore, the RWRh
c scheme (for small c) seems to balance between

local and global information. In Figure 4.1(b), we observe a somewhat different

point distribution for the user query logs, compared to the network flow data.

Signature persistence and uniqueness. For each t, we summarize the per-

sistence (resp. uniqueness) values using µp(t), sp(t) — the mean and standard

deviation of {persistencev(t)|v ∈ V } (resp. µu(t), su(t) — the mean and standard

deviation of {uniquenessv,u |v, u ∈ V, v 6= u}). We display the span of persistence

and uniqueness values as an ellipse: its center is at (µp(t), µu(t)); sp(t) and su(t)

are the respective (x and y) diameters. Over all different time periods we observed

very similar results. Figure 4.2 illustrates results from one time window in depth.

We present results from TT, UT and RWRh
0.1 with h = 3, 5, 7 and observe that

TT lies between UT and RWRh
0.1 in the plots, for both data sets and all distance

functions. This is consistent with our intuition that UT downweights universally

popular nodes to enhance uniqueness; RWRh
0.1 selects most relevant nodes to i

from beyond i’s immediate neighborhood to represent it persistently.

75

(a) AUC from network flow data.

AUC TT UT RWR3
0.1 RWR5

0.1 RWR7
0.1

DistJac 0.9086 0.8827 0.9177 0.9087 0.9052
DistDice 0.9093 0.8826 0.9256 0.9172 0.9167
DistSDice 0.9035 0.8812 0.9207 0.9086 0.9066
DistSHel 0.9094 0.8827 0.9238 0.9162 0.9173

(b) AUC from user query logs.

AUC TT UT RWR3
0.1 RWR5

0.1 RWR7
0.1

DistJac 0.9935 0.9969 0.9901 0.9882 0.9877
DistDice 0.9935 0.9969 0.9901 0.9882 0.9877
DistSDice 1.0000 1.0000 1.0000 1.0000 1.0000
DistSHel 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.4: Performance on signature persistence and uniqueness

The above figures compare the signature schemes separately in terms of per-

sistence and uniqueness but do not capture the trade-off between the two in

a single statistic. For this, we use ROC Curves, a standard measure in statis-

tics [93]. Given Gt and Gt+1, for each node v we computed Dist(σt(v), σt+1(u)) for

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive

T
ru

e
po

si
tiv

e

Dist
SHel

TT
UT
RWR3

0.1

RWR5
0.1

RWR7
0.1

Figure 4.3: ROC curves from network data

all u ∈ V , and returned a ranked list, where u with a smaller Dist-value to v was

ranked higher. Our hypothesis is that across time, a node behaves more similar

to itself than to others. Therefore in v’s ranked list, v should ideally be ranked

the first. The ROC curve starts at the origin (0, 0) and traverses the ranked list

76

of nodes from the top. If the element is v, the ROC curve goes up by a step of

1; otherwise, the ROC curve goes to the right by a step of 1/(|V | − 1). That is,

the x-axis is false positives and y-axis is true positives. We can then compute

the Area Under the ROC Curve (AUC). If the AUC is 0.5, the signature scheme

is no better than random selection; higher AUC values indicate better accuracy,

up to 1 (perfect). We report the average AUC over all v’s. Figure 4.3 shows the

results on the flow data using DistSHel; ROC curves from other distance measures

look very similar.

Table 4.3(a) summarizes AUC across different signature schemes per distance

measure for the flow data. The multi-hop neighbors based schemes achieved bet-

ter AUCs than their one-hop counterparts. Among RWRh
0.1 schemes, RWR3

0.1

outperformed the other two. A further observation is that the difference between

the AUC from RWR5
0.1 and RWR7

0.1 is small enough to be ignored. Other exper-

iments (not shown) with RWRh
0.1 for h > 7 all converged to RWR7

0.1, suggesting

that having more than 5 hops does not bring in drastically “new information”.

This is due in part to the graph having a small diameter: for all h larger than

the diameter of the graph, RWRh coincides with RWR∞, the unbounded random

walk. We repeated the same experiments on user query logs, and summarize AUC

values in Table 4.3(b). All signature schemes behave almost equally well on this

data set (almost perfectly), with UT being slightly better than the others. In

what follows we use RWR3
0.1 as the best representative of the RWR schemes, and

do not show results for other parameter settings.

Signature robustness. To evaluate the robustness of the signature schemes, we

randomly inserted and deleted edges to obtain a perturbed graph G′
t. Let σ(v)

and σ̂(v) denote v’s signatures constructed from Gt and G′
t, respectively. Given

a bipartite graph Gt and parameter α, we inserted α|Et| new edges. First, a

node v′ ∈ V1 was sampled proportional to its outdegree, that is, with probability

|O(v′)|/∑v |O(v)|. Then a node u′ ∈ V2 was sampled proportional to its indegree,

77

that is, with probability |I(u′)|/∑u |I(u)|. The weight of (v, u) (initially 0 if edge

(v, u) did not previously exist) was assigned independently of C[v, u], but from

the total distribution of all edge weights rather than uniformly. For deletions, we

sampled existing edges proportional to their edge weights and decremented the

weight by one unit, repeating β|Et| times.

TT UT RWR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=β=0.1
α=β=0.4

Figure 4.4: Signature Robustness on Network Data

Since our interest in this chapter is in identity matching, we are interested

in whether a signature is more similar to its perturbed self than to signatures of

other nodes. We again used ROC curves to investigate this and used each v ∈ V

in Gt as a query against V in G′
t, reporting the AUC values in Figure 4.4 for two

different parameter settings: α = β = 0.1 and α = β = 0.4. TT was the most

robust, followed by RWR. UT was the least robust, which is to be expected due

to nodes with high indegree (and thus high frequency) being discounted, although

the relative difference between all methods is very small.

Summary. The above table summarizes the relative behavior of the signa-

ture schemes. We observe an interesting trade off between the three considered

schemes: none strictly dominates any other over all three properties. Next we see

a clearer separation when applying signatures, which emphasize the properties to

differing degrees.

78

TT UT RWR

persistence medium low high
uniqueness medium high low
robustness high low medium

Table 4.5: Summary of the relative behaviors of the signature schemes

4.5 Application Evaluation

We discuss two applications in detail, and evaluate them empirically on enterprise

network flow data.

Multiusage Detection. We follow the discussion of multiusage detection in

Section 4.2.4. With network flow data, the problem is to find the set of IPs being

multiple connection points (home, office, wireless hotspot) per individual. Our

algorithm to detect such an IP set containing v computes the uniqueness values

Dist(σ(v), σ(u)) for all nodes u observed within the same time window. We report

those nodes u with low Dist-values (high similarity).

To evaluate the use of signatures for this task, we obtained additional data

mapping users to their registered IP addresses, and identified the set of users U

who made use of multiple addresses within the enterprise network (of course, this

information is not available to the signature-based algorithms). For each user

u ∈ U , we denote its set of registered IPs by gu (|gu| > 1). For the signatures

to be effective for this task, our hypothesis is that in one communication graph,

signatures for IPs belonging to the same user look more similar to each other,

compared to the pairwise similarities between IPs of different users.

For each v ∈ gu (u ∈ U), we computed Dist(σ(v), σ(w)) for all w ∈ V , and

derived a ranked list of V sorted by these distances. From these we produced

an average ROC curve over all v ∈ ⋃u∈U gu, starting at the origin (0, 0). When

we traverse the ranked list from the top, if a node is in gu, the ROC curve goes

up by a step of 1/|gu|; otherwise, the ROC curve goes to the right by a step

79

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive
T

ru
e

po
si

tiv
e

(a) Dist
Jac

TT
UT
RWR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive

T
ru

e
po

si
tiv

e

(b) Dist
Dice

TT
UT
RWR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive

T
ru

e
po

si
tiv

e

(c) Dist
SDice

TT
UT
RWR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive
T

ru
e

po
si

tiv
e

(d) Dist
SHel

TT
UT
RWR

Figure 4.5: Multiusage detection: ROC curves

of 1/|V − gu|. So the x-axis measures false positives and y-axis true positives.

If the hypothesis is correct, and we can use signatures for this task, then the

IPs in gu should be ranked higher than others. We plot the results across the

various schemes in Figure 4.5. Across all distance functions, TT consistently

dominates the other two schemes. This agrees with our prediction in Section 4.3

that multiusage detection calls for TT, due to its emphasis on uniqueness and

robustness.

Label Masquerading. For this problem, we simulated masquerading by per-

turbing f |V | randomly selected nodes (denoted F) in V , where 0 < f < 1. We

created a bijective mapping between nodes in F , and applied this mapping to

the communications. We denote the mapping as EF = {(v, u)|v, u ∈ F}, where

(v, u) means that v (and all of v’s communications) are relabelled with u. Given

graphs Gt and Gt+1 from consecutive time periods, a pair (v, u) ∈ EF means that

node v in Gt+1 is relabelled with u, while v’s label in Gt remains unchanged. We

evaluate our methods on how well they are able to recover EF .

80

Algorithm 2 DetectLabelMasquerading(Gt, Gt+1)

1: Init V1 = ∅, OF = ∅.
2: for each v ∈ V do

3: if 1−Dist(σt(v), σt+1(v)) > δ then

4: V1 = V1 ∪ {v}
5: else

6: ∀u ∈ V , M [u, v] = 1−Dist(σt(v), σt+1(u))
7: if ∃u 6= v, M [v, u] is among v’s top-ℓ largest and M [u, u] ≤ δ then

8: OF = OF ∪ {(v, u)}
9: else

10: V1 = V1 ∪ {v}
11: end if

12: end if

13: end for

Based on the discussion in Section 4.2.4, the detection algorithm is given in

pseudo-code in Algorithm 2. Here V1 returns the set of local hosts not identified

as masqueraders; OF is the estimate for EF . We see that an output (v, u) satisfies

two conditions: (1) both v and u look different from themselves across time (i.e.,

low persistence values, from Step 3 and 7 in Algorithm 2); but (2) they look more

similar to each other than to others (i.e., high persistence between themselves,

from Step 7). We evaluate the various signature schemes for this problem based on

the standard information retrieval criteria of precision, recall and accuracy. Here,

accuracy measures the percentage of correctly classified hosts, labeled either as

“non-suspect” (i.e., v /∈ F) or with the new label of the node. This combines

notions of false positives and false negatives, so we use it as our main evaluation

criterion.

In our algorithm, the persistency threshold δ should be a good cutoff between

local hosts whose signatures look persistent and those who are not. Therefore,

we set δ experimentally as δ =
P

v∈V (1−Dist(σt(v),σt+1(v)))

p|V |
, p ∈ N. That is, we chose

δ as a fraction of the average self-similarity across time (scaled down by p). In

particular, we considered p = 3, 5, 7 in our experiments, and observed very similar

results. Figure 4.6 compares the performance of various schemes with p = 5, for

various ℓ-values, as a function of fraction of the nodes perturbed.

81

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

fraction of perturbed nodes

p
re

c
is

io
n

l=10, TT

l=10, UT

l=10, RWR

l=20, TT

l=20, UT

l=20, RWR

(a) Precision= |OF∩EF |
|OF |

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

fraction of perturbed nodes

re
c
a

ll

l=10, TT

l=10, UT

l=10, RWR

l=20, TT

l=20, UT

l=20, RWR

(b) Recall= |OF ∩EF |
|EF |

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

fraction of perturbed nodes

a
c
c
u

ra
c
y

l=10, TT

l=10, UT

l=10, RWR

l=20, TT

l=20, UT

l=20, RWR

(c)

Accuracy= |V1∩(V −F)|+|OF ∩EF |
|V |

Figure 4.6: Performance of label masquerading detection.

As expected, recall and accuracy increase as ℓ increases, while precision de-

creases. Label masquerading should only affect a small fraction of nodes, so

we focus our discussion and conclusions on lower values of f . In this range, the

RWR scheme outperforms TT and UT in terms of overall accuracy. This coincides

with our expectations, since our analysis of this application indicated that label

masquerading requires a signature with high persistence and high uniqueness.

According to Figure 4.3, which evaluates signature schemes on these measures

with network data, RWR is the method of choice.

4.6 Extensions

In general, communication graphs can become extremely large (for example, the

graph of all phone calls or internet connections made over the course of a week).

Here, we outline some of the scalability issues that arise under such massive data.

Scalable signature computation. When the communication graphs are large,

even storing the graph can become infeasible. Instead we need compact data

structures that can process an observed sequence of communications (defining

edges in the graph), from which we can extract (approximate) signatures. Our

assumption is that although the total volume of edges is too massive, we can

at least record some constant amount of information about each node in turn:

82

this is the “semi-streaming” model of graph stream processing [96]. Any given

signature scheme will need a different approach in this restricted model, here

we outline methods for the signature schemes used here for illustration. For the

Top Talkers, we need to find the approximate heaviest-weight neighbors of node

i. If the communication is pre-aggregated, we can just keep a heap of heavy

edges; but more realistically, we see each individual communication, and want to

recover the most frequent. We can use summary structures such as a CM sketch

for each node to find its heaviest outgoing edges, and hence its signature [30]. For

Unexpected Talkers, the situation is more complex. Here, we can additionally

keep an FM sketch for each node, to find its incoming degree [51]. To find the

signature for a node i, we can use the CM sketch to estimate C[i, j], and the FM

sketch to estimate |I(j)| for each node j; combining these gives an approximation

of C[i, j]/|I(j)| as required. For schemes based on Random Walk with Reset,

there is less prior work to draw on. Techniques in [107] give approaches to make

the comptuations more scalable, based on appropriate block-wise decompositions

of the graph; extending these to the full semi-streaming model remains an open

problem.

Scalable signature comparison. When there are large number of nodes with

signatures, applications based on comparing many signatures together become

expensive (potentially quadratic in the number of nodes). At the heart of many

applications discussed above is the problem of, given a signature, finding the most

similar signature(s) from a particular (sub)set. This fits the set up of the nearest

neighbor problem. Even for moderately small signature sizes, this can become

expensive, and so we can turn to approximate nearest neighbor algorithms. Here,

different approaches are needed for each different distance function, rather than

signature scheme. For example, efficient solutions exist where the distance func-

tion is the Jacard distance, by using an approach based on Locality Sensitive

Hashing [75].

83

4.7 Related Work

Signatures (and fingerprints) were classically studied as an application of statis-

tical pattern recognition, an area of study with a long history of techniques for

feature selection and classification [77]. However, these generic techniques are less

appropriate given contextual information as in the case of communication graphs.

Usage profiling in graphs (and networks) has been studied in multiple set-

tings [99, 117, 85, 107, 73, 98]. However, the goal of these works is to model behav-

ior aggregated at the level of the entire graph to detect network-wide anomalies.

Usage profiling at the granularity of the individual has been studied for activity

monitoring [48], for user recognition [106], and for enterprise security [83]. The

approach uses complex rules on records of individual activity requiring detailed

data storage.

Cortes et al. initiated the study of “COI-based” signatures, which makes use

of communication graph topology to design individual’s signatures in a concise

way for detecting fraudulent users [35, 36], identifying repetitive debtors [68] and

predicting links for viral marketing [70]; similar techniques were also applied to

identify authors from bibliographical citations in [69]. However, they only focused

on particular signatures and their applicability to the motivating tasks. We do

not know of any prior work that proposed a principled approach such as ours

for a detailed classification of properties of signatures and studying applications

based on what properties they need for signatures to be useful.

4.8 Chapter Summary

Nowadays interaction or communication between individuals is ubiquitous. Given

this abundance of communication, many applications emerge which rely on ana-

lyzing the patterns behind the communications. The idea of using signatures to

capture behavior is an attractive one. Here, we have attempted to take a very

84

general approach to problems of defining and analyzing signatures in communica-

tion graphs. We proposed a general framework for understanding and analyzing

these signatures, based on the three fundamental and natural properties of persis-

tence, uniqueness and robustness. We justified these properties by showing how

they impact a broad set of applications. We explored several signature schemes in

our framework and evaluated them on real data in terms of these properties. In

particular, our study on two concrete applications using signatures demonstrates

their effectiveness on real data experimentally. This study underlined the fact

that there is not one single signature scheme which is good for all applications,

but rather that different signatures are needed, depending on what balance of

the three properties they provide. We believe that a larger suite of properties

of signatures are needed for the space of all applications that signatures will be

useful for.

85

Chapter 5

Modeling Distributional Changes via Sequential

Probability Ratio Test

5.1 Introduction

Model-based declarative queries are becoming an attractive paradigm for inter-

acting with many data stream applications. This has led to the development of

techniques to accurately answer the queries using distributional models rather

than raw values. The quintessential problem with this is that of detecting when

there is a change in the input stream [53, 72, 111], which makes models stale and

inaccurate. In IP network management, changes in the traffic patterns might

indicate an intrusion, attack or an anomaly that needs attention of the network

managers [79, 84, 31]. Likewise in financial streams, a change in the pattern of

trades might represent an opportunity or a warning for the analyst.

In particular, changes may be global, involving the entire distribution of items

(such as determining if the distributions are far apart in some measure), or local,

involving the distribution of singleton items (such as, if individual probability

differs significantly in one distribution to another).

Change detection between two stored data sets in general brings up fundamen-

tal questions such as how to measure change and what is a threshold for change.

In the context of data streams, additional questions arise. In particular, what

are the “two” data sets that would be basis for detecting a change? Typically,

data stream queries specify some window W on which the query is executed. For

example, there are tumbling window queries or sliding window queries [96, 9]. An

86

issue is how to determine the W . Although the need of continuous detection

for changes gives rise to the sliding window model [80, 39], in change detection

problems, fixing a window size can only work well if information on the time-scale

of change is available, but this is rarely the case. Indeed, we need scale-free de-

tection algorithm to find changes as quickly as possible. However, this goal may

be delayed by the size of the window, since a window smaller than the changing

rate may miss the detection or capture the change at a later time when gradual

changes cumulate over time, and a window larger than the changing rate delays

the detection until the end of the window. One can tradeoff some performance by

searching over multiple sliding windows (of different sizes) in parallel by spending

some analysis time and space [80, 39]. But it is infeasible to exhaustively search

over all possible window sizes. A different strategy uses a decaying-weighted win-

dow [84, 40] to weight the importance of examples according to their age. In this

case, the choice of a decay constant should match the unknown rate of change.

Still, what is needed is a seamless change detection method, such that whenever

a change occurs, it accurately estimates when it happens with short detection

delay.

In this chapter, we present such change detection algorithms that are inspired

by the well-known sequential probability ratio test [109, 14] in Statistics. It comes

with sound basis for setting the threshold for change, for providing guarantees

on keeping track of the change point incrementally and for the minimum delay in

detecting a change, under the assumptions that (1) distributions before and after

a change are both known as a priori; (2) observations are generated independently.

Our algorithmic contribution is to design a very space-efficient, yet fast method

for change detection in one pass over the data streams, where we have to relax the

above two assumptions. Furthermore, we show that it not only holds for global

changes in the distributions as is studied in Statistics, but also holds for local

changes that have not been addressed earlier. We perform a thorough study of

87

our algorithms in practice with synthetic and real data sets. We not only show the

accuracy and robustness of our algorithms to detect changes in one pass, but also

demonstrate the accurate change-point estimate, relative to those obtained offline.

Our approaches have short detection delay, compared to alternative window-based

solutions. Finally, we study real traces with web logs to demonstrate how an

accurate change-point estimate can help improve model-based query qualities.

Another case study with labelled attacks shows experimental evidence that our

methods have the potential power for intrusion detection monitoring. Still, better

understanding of how attacks incur changes is needed to infer critical things.

The chapter is organized as follows. We define both global and local change

detection problems in Section 5.2. We present our global change detection algo-

rithms in Section 5.3 and present experimental studies in Section 5.5. Likewise,

we present algorithmic methods and experimental studies in Section 5.4 and 5.6

respectively for local change detection. Related work is in Section 5.7, with con-

clusions in Section 5.8.

5.2 Change Detection Problems

An
1 = (x1 . . . xn) is a sequence of input items, with xi ∈ U = {0..u−1}, generated

from some underlying distribution at time i. Its sub-sequence Aw
1 = (x1 . . . xw),

w < n, is a baseline data set generated from an original distribution P0. With P0

known as a priori, two situations are possible: either every xi ∈ An
1 is generated

from P0, or there exists an unknown change point w < λ ≤ n such that, xi ∼ P0

for i < λ and xi ∼ P1 for w < λ ≤ i ≤ n, where P0 and P1 are called pre- and

post-change distributions. We say that a change in P0 has occurred if P1 differs

significantly from P0. By significance we mean the amount of change, measured by

a distance function Dλ(P1||P0), is greater than some threshold. Here Dλ(P1||P0)

depends on the change point λ.

88

A change detection problem is based on hypotheses: H0 — there is no change

in P0; and H1, otherwise. Here H1 is a composite of a set of “parallel” tests

{Hλ|w < λ ≤ n}, where Hλ is the hypothesis that a change occurs at time λ;

that is, H1 =
⋃

w<λ≤n Hλ. In one pass over the data streams, data is presented

one point at a time. To quickly detect a change after its occurrence, the best

opportunity is to make a declaration after each observation, in the process of

data acquisition. Therefore at each xn, a desired change detection algorithm

operates in two phases: it first locates an index w < λ ≤ n, which has the highest

probability of being a change point (i.e., the largest Dλ(P1||P0)); in the second

phase, we conduct a hypothesis testing to accept or reject λ as a change point

(i.e. to accept or reject H1). To interpret the change, the hypothesis testing

compares the largest Dλ(P1||P0) against a threshold to tell whether the difference

is significant. Once we accept Hλ at time n, we call λ the change point, and n the

change detection point; otherwise, we continue to make an additional observation.

Formally,

Definition 6 Let (x1, ..., xn) be an input stream, and its sub-stream (x1, ..., xw),

w < n, is generated from a prior distribution P0. A change detection problem is

to decide whether to accept H1 (i.e., reject H0) or not. We accept H1 at time n

when

• A global change in entire distribution is detected when

T n = Dλ∗(P1||P0) = max
w<λ≤n

Dλ(P1||P0) ≥ τg,

• A local change in distribution of a singleton item j ∈ U is detected when

T n = Dλ∗(P1[j]||P0[j]) = max
w<λ≤n

Dλ(P1[j]||P0[j]) ≥ τl,

where τg and τl are global and local change detection threshold to be specified in

Section 5.3.1 and 5.4. A change detection algorithm outputs: λ∗ = arg maxw<λ≤n Dλ(P1||P0)

89

as a change-point estimate for a global change; λ∗ = arg maxw<λ≤n Dλ(P1[j]||P0[j])

as a change-point estimate for a local change at item j, where P0 and P1 are pre-

and post-change distributions; Pq[j] denotes the probability of seeing j under Pq,

q = 0, 1.

Global and local change detection problems are fundamentally different: global

change detection finds when the entire distribution P1 differs significantly from

P0; local change detection finds where inside distribution P1[j] and P0[j] (i.e., the

distribution of a singleton item) differ significantly. Depending on the nature of

the change, for some cases the local change detection methods succeed and for

some, the global methods succeed in catching the changes (see examples in Figure

5.1). In real applications, we are equally interested in detecting local and global

changes. Therefore, we formulate them as two separate problems.

P
D

F
(x

)

x0

P0

P1

(b) global change

P
D

F
(x

)

x0

P0

P1

(a) local changes

at x1

at x2

Figure 5.1: Examples of local and global changes. P0 and P1 are respective
probability density function (or PDF) of pre- and post-change distributions.

5.3 Our Global Change Detection Algorithms

5.3.1 Preliminary

Sequential change detection algorithms base their detection decision on the classic

Sequential Probability Ratio Test (SPRT) [109]. When the underlying distribution

changes from P0 to P1 at point λ, it is natural that the probability of observing

sub-sequence An
λ = (xλ, ..., xn) under P1 is “significantly” higher than that under

P0. By significance, we mean the ratio of the two probabilities is no smaller

90

than a threshold. Given that both P0 and P1 are known as a priori, and that

points in the stream are independently generated, the test statistic for testing the

hypothesis Hλ that a change occurrs at time λ against H0 that there is no change

is equal to

T n
λ = Dλ(P1||P0) = log

Pr(xλ...xn|P1)

Pr(xλ...xn|P0)

=
n
∑

i=λ

log
P1[xi]

P0[xi]
= T n−1

λ + log
P1[xn]

P0[xn]
.

Page’s (CUSUM) procedure [14] identifies that the statistic T n = maxw<λ≤n T n
λ

obeys the recursion (T 0 = 0):

T n = max

(

0, T n−1 + log
P1[xn]

P0[xn]

)

.

Therefore, it takes each new item O(1) time to update T n and to detect a global

change by testing T n ≥ τg. Accordingly, we update the most likely change point

to n in O(1) time when T n = 0, without extra overhead. When a change is

detected at time n, the change-point estimate is λ∗ = max{λ|T λ = 0, w < λ ≤
n}. Therefore, the adaptive window size at time n is w(n) = w(n−1) · 1{T n>0} +

1, where 1{x} is the indicator of event x, w(n) is the number of observations

after the last time the test statistic T n is reset to zero, and the start point of

the so-called adaptive window estimates the change point. In addition, Wald’s

approximation [109] says that global threshold τg = log((1 − β)/α), given user-

specified false alarm rate α = Pr(H1|H0) = Pr(T n ≥ τg|H0) and miss detection

rate β = Pr(H0|H1) = Pr(T n < τg|H1).

Here T n is an integration of the log likelihood ratios of the most recent (n−
λ + 1) observations, such that T n

λ is maximized. Thus, it is inherent that only

items after the change point contribute to T n. And the natural advantage of this

statistic is to detect changes at different scales without instantiating windows of

different sizes in parallel.

91

5.3.2 Our Offline Algorithm

All discussions in Section 5.3.1 assume that both P0 and P1 are known as a priori.

In practice, it is fair to assume the availability of a “base” distribution P0, but not

the prior knowledge of P1. So (1) how to derive the post-change distribution P1

from the stream? How to incrementally maintain it? (2) What if observations in

stream are not independent, just as with streaming data? We shall address these

issues in this Section. For streaming concerns, we design a fast and small-space

algorithm in Section 5.3.3.

In the context of our problem, the input is a sequence of points An
1 = (x1 . . . xw . . . xn);

each xi ∈ U . The original distribution P0 is known as a priori, and is constructed

from the first w observations Aw
1 = (x1 . . . xw). It is defined as a vector represent-

ing the relative frequency of each distinct element j ∈ U , with smoothing:

P0[j] =
|{i|xi = j, 1 ≤ i ≤ w}|+ γ

w + γ · u =
Sw

1 [j] + γ

w + γ · u .

Here Sw
1 [j] denotes the frequency for item j in Aw

1 . γ is usually set to 0.5

for smoothing, which controls the sensitivity to previously unseen items (i.e.,

∀j ∈ U, P0[j] > 0); u = |U | is the domain size. We assume that the size w of

the baseline data set is large enough to guarantee the goodness of P0, compared

to its true counterpart. There are a variety of methods to capture the under-

lying distribution of a sequence. For simplicity and popularity reasons, we use

empirical distributions after smoothing throughout the chapter. However, our

change detection methodology, as a whole, fits well with other alternatives. That

is, we can isolate definition of a change and mechanism to detect it from the data

representation itself.

Our P1 is incrementally updated based on P0 with new arrivals; that is at

any time n, P n
1 is derived from An

1 : ∀j ∈ U , P n
1 [j] =

Sn
1 [j]+γ

n+γ·u
. An inherent

problem with this setup is that when a change occurs, P1 constructed based on

all observations An
1 makes use of stale data, thus is reluctant to reflect the change

92

promptly. Our argument is that having a change-point-dependent test statistic

greatly alleviates such detection delays. We will study the effectiveness of this

setup against alternative solutions in experiments. In practice, we can improve

our algorithm by adopting, for example sliding window [40] or decaying window

[27] models, to build more up-to-date P1. We consider such variants orthogonal

to our main line of inquiry, and do not consider it explicitly any further.

Theorem 7 With dependent observations, T n
λ ≃ Zn

λ =
∑n

i=λ log
P i

1[xi]

P0[xi]
, where

P i
1[xi] =

Si
1[xi]+γ

i+γ·u
; Si

1[xi] = |{j|xj = xi, 1 ≤ j ≤ i}|; the smoothing factor γ = 0.5;

u = |U |.

Proof. According to the definition for T n
λ ,

T n
λ = log

Pr(xλ...xn|P1)

Pr(xλ...xn|P0)

= log
Pr(xn|xλ...xn−1, P1) · Pr(xλ...xn−1|P1)

Pr(xn|xλ...xn−1, P0) · Pr(xλ...xn−1|P0)

≃ log

∏n
i=λ P i

1[xi]
∏n

i=λ P0[xi]
=

n
∑

i=λ

log
P i

1[xi]

P0[xi]

≡ Zn
λ = Zn−1

λ + log
P n

1 [xn]

P0[xn]
.

The second equality holds due to Bayes’s rule; “≃” means asymptotically equal

since i ≥ λ > w ≫ 0, and holds according to the definition for P i
1 and the fact

that observations xλ . . . xn are independent under a priori P0.

The proof shows that the incremental maintenance of test statistics is by no

means restricted to the independence assumption. It is generally true even for

dependent observations. Again, test statistic Zn = maxw<λ≤n Zn
λ for our offline

global change detection algorithm obeys the recursion (Z0 = 0):

Zn = max

(

0, Zn−1 + log
P n

1 [xn]

P0[xn]

)

.

Figure 5.2 illustrates the basic structure of the algorithm: “base” distribution

P0 is derived from (x1 . . . xw) as a priori; P n
1 is the empirical distribution over

93

- Elements

- Time

x1 x2 xw…
xw+1 x
…

xn…

P0

P1
n

Zn

- Empirical

distributions

- Test statistic

most likely change point

Figure 5.2: An illustration for the sequential change detection algorithm.

(x1 . . . xn); test statistic Zn integrates the change-point estimate and is evaluated

incrementally only according to points after the change. Formally, at any time n:

1. It takes Θ(1) time to update Sn
1 [xn]← Sn−1

1 [xn] + 1 and P n
1 [xn].

2. It takes Θ(1) time to update test statistic Zn according to the recursion.

If Zn ≥ τg, report a detected global change and the associated most likely

change point λ∗. Otherwise, if Zn = 0, update λ∗ = n.

Theorem 8 Our offline sequential change detection algorithm takes O(u) space

and O(1) per-item processing time to detect a global change, where u = |U |.

Proof. It takes O(u) space to store Sw
1 and Sn

1 exactly, plus another two words

of memory for respective Zn and λ∗.

5.3.3 Streaming Algorithm

We will use previously known sketches [96, 9] as basic components to summarize

the input in small space. Then we will estimate test statistic Zn and most likely

change point λ∗ from such small-space structures. One simple attempt is to create

sketches for Sw
1 and Sn

1 , hence to derive good estimates for P0 and P n
1 , respectively.

For every new item xn, the estimate for test statistic Zn is updated through

Ẑn = max
(

0, Ẑn−1 + log P̂1
n
[xn]

P̂0[xn]

)

. However, this method is severely flawed in

two ways. First, approximating the ratio of values in small space could perform

poorly, although we have accurate estimates for values. Second, even though

94

we obtain accurate estimate per log-ratio, the additive errors accumulated with

infinite new items might lead to unbounded errors. Therefore, a more careful

design of a streaming algorithm is desired.

High-level ideas. Since the simple combination of incremental updates (via

recursion) and sketches fails to accurately detect changes, we focus on designing

a sketch-based algorithm to estimate test statistic Ẑn directly in polylogarithmic

time per item. Although this is slightly weaker, compared to the offline algo-

rithm’s O(1) per-item processing time, we have immediate gain in space. Unlike

with the offline solution, we do not incrementally update Ẑn, neither does λ̂∗.

Thus, we will derive λ̂∗ based on multiple Ẑn
λ estimates. Instead of exhausting

all w < λ ≤ n (i.e., O(n)) points and taking the max, we probe at values of the

change point λ that form a geometric progression. For example, we may estimate

Ẑn
λ only for λ = n, n − 1, n− 2, n− 4, . . . , n − 2i, The justification is that it

achieves a dramatic reduction in computation time, since we need only O(log n)

estimates to keep track of. Our method will give good accuracy for λ closer to

n, exactly because for such λ’s we have many points to interpolate; it may give a

larger error for λ≪ n, but the relative error will probably be small.

Data structures. In order to obtain a good estimate for test statistics in form

of log likelihood ratios, we need to pre-process Aw
1 = (x1 . . . xw) to be aggregated

to Sw
1 [i] = |j|xj = i, 1 ≤ j ≤ w|. And this is feasible due to our prior knowledge

on P0. As for streaming algorithm, let S1/P0
be the stream whose ith entry is

S1/P0 [i] = 1
P0[i]

= w+γ·u
Sw

1 [i]+γ
. We keep a CM sketch (see Section 2.2.1) for this

“inverted” stream, denoted CM1/P0 . It can be shown that ∀i ∈ U , CM1/P0 [i] =

minj count[j, hj(i)] is a good estimate for 1/P0[i].

On the other hand, we will use EH+CM to summarize An
1 = (x1 . . . xn),

such that we can use it to answer point queries Sn
λ [i], for any 1 ≤ λ ≤ n, with

accuracy guarantees. We refer to this structure by EHCMS1 . EH+CM is an

example of cascaded summary, or a “sketch within a sketch”: each bucket in

95

time

xnxn-1xn-2xn-3xn-4xn-5xn-6xp…
xq……

s3=2
tm-2

CM3

s4=4
tm-3

CM4

si+1=2
r

tm-i

CMi+1

……

EH+CM

xn-7

s1=1
tm

CM1

s2=1
tm-1

CM2

Figure 5.3: Sketch structure for EH+CM.

EHs (see Section 2.2.3) contains a CM sketch to summarize data points seen in

a time range t ∈ (ti−1, ti]. Associated with this CM sketch is its size s (i.e., the

number of items the CM summarizes) and the timestamp ti. The data structure

is illustrated graphically in Figure 5.3. Each CM sketch we use takes the same

set of hash functions, with (ǫ, δ/ log n)-guarantees (i.e., sketch width is e/ǫ; depth

is log log n
δ

), so they are linearly summable.

Lemma 1 The space overhead of the EH+CM structure is O(log n
ǫ

log log n
δ

).

Proof. There are O(log n) buckets; each takes O(1
ǫ
log log n

δ
) space for a CM

sketch with (ǫ, δ/ log n)-guarantees, due to Fact 1. Then applying the union

bound ensures that, after summing up O(logn) CM sketches in EH+CM, the

probability of failure for each query is still bounded by δ.

Updates. CM1/P0 is constructed during pre-processing. So we only update

EHCMS1on live data as it arrives:

1. For each new item, create a new bucket with size 1 and the current times-

tamp, and initialize a CM sketch with the single item.

2. Traverse the list of buckets in order of increasing sizes (right to left). If

sq+2 + sq+1 ≤ ǫ
∑q

i=1 si, merge the (q + 1)th and the (q + 2)th buckets

into a single bucket. The timestamp for this new bucket is that of the

(q + 1)th bucket; its CM sketch is the linear combination of CMq+1 and

96

CMq+2: count′q+1[i, j] = countq+1[i, j] + countq+2[i, j]. We may need to do

more than one merge.

Lemma 2 To update the EHCMS1, the per-item processing time is O(log n
ǫ

log log n
δ

)

in the worst case, and its amortized time is O(1
ǫ
log log n

δ
).

Proof. Linearly combine two CM sketches takes O(1
ǫ
log log n

δ
) time. And the

arrival of a new element can be processed by one merger of buckets on average

and O(logn) mergers in the worst case (see [40]).

Change detection. Assume that at time n, we have m buckets whose times-

tamps are after w, B1 . . . Bm, ordered from the most- to the least-recent; each

Bi = (si, tm−i+1, CMi). The global change detection algorithm consists of two

components. For each new item xn:

1. Estimate Ẑn
λ directly from sketches, for λ = t1+1, . . . , tm−1+1. The intuition

comes from the fact that T n
λ =

∑n
i=λ log P1[xi]

P0[xi]
=
∑

j∈U

(

Sn
λ [j] · log P1[j]

P0[j]

)

,

where Sn
λ [j] = |{i|xi = j, λ ≤ i ≤ n}|. We first derive a CM sketch for P n

1 ,

denoted CMP n
1
, by linearly combining all the sketches in EHCMS1and updat-

ing every entry in the resulting table: countCMPn
1

[i, j] ←
countCMPn

1

[i,j]+γ

n+γ·u
.

Next, we build a sketch CMlog P n
1 /P0 = log(CMP n

1
× CM1/P0), where ev-

ery entry in the table has: countCMlog Pn
1

/P0

[i, j] = log(countCMPn
1

[i, j] ·
countCM1/P0

[i, j]). Then for each λ = tq + 1 (q = 1..m − 1), we compute

CMn
λ by the linear combination of sketches: CMn

λ =
∑m

j=q+1 CMj. This

gives good estimate for Sn
λ . Finally,

Ẑn
λ = median

log(log n/δ)
i=1

e/ǫ
∑

j=1

(countCMn

λ
[i, j] · countCMlog Pn

1 /P0

[i, j]). (5.1)

2. Change-point estimate. Having Ẑn
λ for λ = t1 + 1 . . . tm−1 + 1, the missing

estimates for Ẑn
λ for other λ-values (w < λ ≤ n) are approximated by

interpolation with a cubic spline. After interpolation, we can use any known

97

method to find the local maxima. If the local maximum is larger than the

threshold τg, we report a global change, and the maximizer is the change-

point estimate.

Lemma 3 Our streaming change detection procedure takes O(log n
ǫ

log log n
δ

) per-

item processing time to detect a global change, and to estimate the change point

when it occurs.

Proof. Given n, it takes O(log n
ǫ

log log n
δ

) time to construct CMP n
1
, and O(1

ǫ
log log n

δ
)

time to build CMlog P n
1 /P0

. Then for each λ = tq + 1 (q = 1..m − 1), incremen-

tally computing CMn
λ: CMn

tq+1 = CMn
tq+1+1 + CMn

q+1 takes O(1
ǫ
log log n

δ
) time,

and then the estimate for Ẑn
λ is output in O(1

ǫ
log log n

δ
) time. We have in to-

tal m = O(log n) [40] Ẑn
λ to estimate, hence, the overall time complexity is

O(log n
ǫ

log log n
δ

).

5.4 Our Local Change Detection Algorithms

Offline Algorithm. Local change detection problem detects change in distribu-

tion P0[j] of any singleton item j ∈ U . Recall that An
s = (xs . . . xn). To make

our notation consistent with that for global changes, for each distinct item value

j ∈ U , we define An
j,s = (ij1, ij2, ..., ijnj

) to be a sequence of timestamps when

item j is observed in An
s , i.e., ∀k ∈ {j1, ..., jnj

}, s = ij1 ≤ ik ≤ n, xik = j, and

nj = |{i|xi = j, s ≤ i ≤ n}| records the frequency of j in An
s . For example, given

An
1 = (1, 3, 2, 4, 2, 3), n = 6, when s = 2, j = 3, An

j,s = (2, 6), since x2 = x6 = 3.

When the underlying distribution P0[j] to generate item j changes to P1[j] at λ

(λ ∈ An
j,w+1 and xλ = j), it is more likely to observe An

j,λ under P1[j] than P0[j].

Similar to the distance function for the global change detection method, we have

Definition 7 Given sequence (x1, ..., xλ, ..., xn), λ is a change point of the sin-

gleton j, P0[j] and P1[j] are its pre- and post-change distributions, then the local

98

distance between P0[j] and P1[j] is

T n
j,λ = Dλ(P1[j]||P0[j]) = log

Pr(An
j,λ|P1[j])

Pr(An
j,λ|P0[j])

,

where Pr(An
j,λ|Pi[j]) is the probability of observing sequence of timestamps An

j,λ

under Pi[j], i = 0, 1, j ∈ U ; xλ = j.

According to Theorem 7, with dependent observations, and when post-change

distribution is not known as a priori, test statistic for a local change hypothesis

Hλ at singleton j is

Zn
j,λ =

n
∑

i=λ

(

1{xi=j} · log
P i

1[xi]

P0[xi]

)

= Zn−1
j,λ + 1{xn=j} · log

P n
1 [xn]

P0[xn]
,

where 1{x} is the indicator of event x; P i
1[xi] =

Si
1[xi]+γ

i+γ·u
; Si

1[xi] = |{j|xj = xi, 1 ≤

j ≤ i}|; the smoothing factor γ = 0.5; u = |U |. Again, test statistic Zn
j =

maxw<λ≤n Zn
j,λ for a local change at singleton j obeys the recursion (Zn

j = 0):

Zn
j = max

(

0, Zn−1
j + 1{xn=j} · log

P n
1 [xn]

P0[xn]

)

. (5.2)

Theorem 9 Given false alarm probability α and miss detection probability β,

local change detection threshold τl = log((1− β)/α).

Proof. For simplicity, we drop off change point in this proof. Consider a sample

path of timestamps Aj = (ij1, ij2 , ..., ijnj
), where item j is observed at time ijk

, k =

1..nj , and on the nj-th observation of j the threshold τl is hit and a change in

P0[j] is detected (i.e. when H1 is accepted). Thus:

D(P1[j]||P0[j]) = log
Pr(Aj |H1)

Pr(Aj |H0)
≥ τl.

For any such sample path, the probability Pr(Aj |H1) is at least 2τl times as large

as Pr(Aj|H0), and this is true for all sample paths where the test terminates with

H1 being accepted. Hence, the probability measure of the totality of all sample

paths where H1 is accepted when H1 is true is at least 2τl times the probability

99

measure of the totality of all sample paths where H1 is accepted when H0 is

true. The former probability (accept H1 when H1 is true) is 1 − β; the latter

probability (accept H1 when H0 is true) is equal to α. This gives an upper bound

on threshold: τl ≤ log((1 − β)/α). In practice, we use log((1 − β)/α) as an

approximation for τl.

It is clear that this proof is distribution free.

Put everything together, at any timestamp n, test statistics for local change

detections can be updated in O(1) time, using recurrence in Eq. (5.2). In par-

ticular, test statistic Zn
j for a local change in P0[j] is updated by the current

observation only when xn = j. Then we conduct a hypothesis test that com-

pares Zn
j against the threshold τl for local changes. If Zn

j ≥ τl, we say that

a local change in P0[j] is detected at time n, and the change-point estimate is

λ∗
j = max{λ|Zλ

j = 0, w < λ ≤ n}.

Corollary 1 Our offline sequential change detection algorithm takes O(u) space

and O(1) per-item processing time to detect local changes, where u = |U |.

Streaming Algorithm. The high-level idea of the streaming algorithm for local

changes is similar to that for global change detection. Therefore, data structures

and the update procedure we use here are the same as those used in Section 5.3.3.

And we shall make changes to the detection procedure. Again we assume that

at time n, we have m buckets whose timestamps are after w, B1 . . . Bm, ordered

from the most- to the least-recent; each Bi = (si, tm−i+1, CMi). The local change

detection algorithm consists of two components. For each new item xn:

1. Estimate Ẑn
xn,λ directly from sketches, for λ = t1 + 1, . . . , tm−1 + 1. The

intuition comes from the fact that T n
xn,λ =

∑n
i=λ

(

1{xi=xn} · log P1[xi]
P0[xi]

)

=

Sn
λ [xn] · log P1[xn]

P0[xn]
, where Sn

λ [j] = |{i|xi = j, λ ≤ i ≤ n}|. We first derive a

CM sketch for Sn
1 , denoted CMSn

1
, by linearly combining all the sketches in

EHCMS1 . Then for each λ = tq + 1 (q = 1..m − 1), we compute CMn
λ by

100

the linear combination of sketches: CMn
λ =

∑m
j=q+1 CMj . This gives good

estimate for Sn
λ . Finally, Zn

xn,λ is estimated through

Ẑn
xn,λ = median

log(log n/δ)
i=1 countCMn

λ
[i, hi(xn)] ·

log

(

countCMSn
1

[i, hi(xn)] + γ

n + γ · u · countCM1/P0

[i, hi(xn)]

)

.

2. Change-point estimate. Having Ẑn
xn,λ for λ = t1 +1 . . . tm−1 +1, the missing

estimates for Ẑn
xn,λ for other λ-values (w < λ ≤ n) are approximated by

interpolation with a cubic spline. After interpolation, we can use any known

method to find the local maxima. If the local maximum is larger than the

threshold τl, we report a local change in P0[xn], and the maximizer is the

change-point estimate.

Corollary 2 Our streaming change detection algorithm takes O(log n
ǫ

log log n
δ

) space

to detect a local change and to estimate the associated change point, with per-item

processing time of O(log n
ǫ

log log n
δ

).

5.5 Global Change Detection Experiments

In this section we evaluate the efficacy of our proposed method SPRT (Sec-

tion 5.3.2) and its streaming heuristic (Section 5.3.3) which we dub EHCM for

detecting global changes against the alternative approaches. The datasets con-

sist of both synthetic data, where we can control change events and see how the

change detection algorithms react to different changes, and real data to reveal

insights on their applicability and their use.

5.5.1 Experiment Setup

For control purposes, we first evaluate the performance of our methods on syn-

thetic data sets. We can apply SPRT and EHCM to various standard distribu-

tions, with finite (Normal, Poisson, Exponential distributions) as well as infinite

101

variances (Zipf [32], a heavy-tailed distribution). Due to space limit, we demon-

strate results from one distribution family—Zipf—in depth, with parameter values

ranging from 0 (uniform) to 3 (highly skewed). This distribution is ubiquitous

in real applications, such as internet traffic, text streams (e.g. weblogs), cita-

tion distributions to web accesses for different sites, etc. [32]. Results on other

distributions are similar.

In our experiments, the underlying distribution is a Zipf with parameter value

z; the domain size is 10K. Ideally, there is no change in distribution if its z-value

keeps constant. However with real applications, it is rare to find a data set

whose empirical probability distribution remains unchanged at any time. For

robustness, we generalize the concept of no change in distribution: we generate

different amount of noise corruptions from a normal distribution N(0, σ2), where

σ2 ∈ [0, 1], to the underlying Zipf z, denoted (z, σ2). We typically consider two

sets of distributions: Az = {(z, iσ2
0)|i = 0, 1, ..., 10, σ2

0 = 0.1}; B = {(iσ2
0, 0)|i =

0, 1, ..., 30, σ2
0 = 0.1}. Any switch between distributions in Az, for a given z, is

considered change-free, whereas a data set is change-contained if the distribution

changes from one to another within B.

In each of the following experiments, we generate 10 streams with 100K

points each; the first and second w =50K points of each stream are generated

from P0 = (z0, 0) and P1, respectively. We consider two scenarios: in the i-

th change-contained stream, P1 = (z0 + ∆z, 0); in the i-th change-free stream,

P1 = (z0, ∆z), ∆z = 0.1..1.

5.5.2 Efficacy of Proposed Methods

Accuracy of detected global changes. With 10 change-contained streams,

our change detection algorithms (both offline and streaming) never miss detecting

a single change. So the miss detection rate on this data set is 0. We repeat the

experiment on change-free data sets. Ideally, there should be no alarm triggered,

102

therefore corresponding number of alarms, after being normalized by w, indicates

the false alarm rate of our algorithms. We plot it in Figure 5.4 as a function of ∆z,

for z0 = 1.2. We also observe very similar results with other z0 values. Here user-

desired miss detection probability β is fixed to 0.05, and we vary user-desired false

alarm rate α to decide threshold. Indeed, the observed false alarm rate increases

as α gets larger, but is always bounded by α (in the worst case within 0.05%). It

is more interesting to observe that with an increased amount of noise, the false

alarm rate from change-free data sets flattens out. This reflects the robustness

of our methods to noise. Moreover, the approximation error resulting from the

underlying sketch technique by comparing the false alarm rate obtained with and

without sketch structure is negligible (as illustrated by dashed curves for EHCM

in Figure 5.4), in the worst case within an absolute difference of 0.05%.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x 10
−3

∆ z

fa
ls

e
al

ar
m

 r
at

e

α
1
=0.01,SPRT

α
1
=0.01,EHCM

α
2
=0.05,SPRT

α
2
=0.05,EHCM

α
3
=0.1,SPRT

α
3
=0.1,EHCM

Figure 5.4: Change detection accuracy.

Change point estimates and adaptive windows. For sequential methods,

questions about how accurate the change point estimate is and how effective it is

to adapt to various rates of change are answered in Figure 5.5. In this experiment,

P0 = (z0, 0) and P1 = (z0 +∆z, 0), ∆z = 0.1..1. We report results when z0 = 1.2.

Our change detection methods output change point estimate λ∗ and detection

103

time n for each detected change. Knowing that the true change point is at w, the

change point delay is defined as |λ∗−w|
w

. Likewise, detection delay refers to n−w
w

. It

is interesting to observe that all (offline) change-point estimates are close to their

true values, independent of individual change rate; whereas faster changes have

shorter delays, as we expect. Again, streaming heuristic EHCM behaves equally

well with its offline counterpart, across all ∆z’s.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

∆ z

de
la

ys

chg pt delay (SPRT)
chg pt delay (EHCM)
detection delay (SPRT)
detection delay (EHCM)

Figure 5.5: Accuracy for global change point estimates and detection delays.

5.5.3 Comparison of Methods

We consider three alternative approaches for change detection, and compare them

against our proposed SPRT and EHCM methods both in concept and in practical

performance:

• Fixed-cumulative window model (CWIN). Given input stream An
1 =

(x1, ..., xn), w < n, P0 and P1 are empirical probability distributions con-

structed from Aw
1 (a fixed window) and An

1 (a cumulative window). This

setup is the same as our SPRT and EHCM. But CWIN computes KL-

distance [39] between P0 and P1 at every new item xn, and signal an alarm

when the distance is significantly large.

104

• Fixed-sliding window model (FSWIN). This algorithm has a similar

flavor to CWIN, but differs in the way that P1 is built based on the most

recent w observations An
n−w+1 = (xn−w+1 . . . xn), which forms a sliding win-

dow of size w.

• Benchmark Sequential Method (BSM). Different from our algorithms,

BSM assumes that not only P0 but also P1 is known as a priori, so that it

guarantees optimum in terms of detection delay [109].

Detection delay. We compare them against our SPRT and EHCM. Again in

this experiment, P0 = (z0, 0)), P1 = (z0 + ∆z, 0), ∆z = 0.1..1, and the true

change point is at w. Without knowing the true threshold to trigger significant

changes with window-based methods (i.e., CWIN and FSWIN), we adopt a con-

servative threshold — the KL-distance between distributions (z0, 0) and (z0, 1).

This is smaller than the true threshold, since we consider it change-free by adding

random noise N(0, 1) to the original data. So the detection delay using the con-

servative threshold is shorter than the true delay. We compare it against detection

delays from other methods, and infer the comparative results when using the true

threshold.

All methods start detecting changes since xw+1. Figure 5.6 demonstrates the

results when z0 = 1.2. As expected, the detection delay of each method decreases

with the increase of ∆z. CWIN yields the longest detection delay, and even

misses detections in the first three streams when change is small. This is because

points prior to the change point decay the amount of change in distribution.

Therefore FSWIN performs better, since it forgets all stale data that arrive at

least w time steps ago. And we can infer that delays from a change detection

algorithm with decaying-weighted window will fall between those from FSWIN

and CWIN. However, FSWIN’s detection delay is still roughly twice of the delay

from equally-well-performed SPRT and EHCM. This indicates the effectiveness

105

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆ z

no
rm

al
iz

ed
 d

et
ec

tio
n

de
la

ys

CWIN
FSWIN
SPRT
EHCM
BSM

Figure 5.6: Normalized detection delays
(

|n−w|
w

)

of various methods.

of a test statistic when the change-point estimate is integrated, even though the

estimate for the associated P1 may be out-of-date to some degree. Due to the

use of a conservative threshold for all window-based solutions, their true gap

from sequential methods should get enlarged with the real threshold. There is

no surprise that BSM always achieves the minimum delay, but it is interesting

to see that detection delays from SPRT/EHCM are mostly close to BSM. This is

another strong indicator of prompt response of sequential approaches to changes.

The limitation of CWIN method is apparent; hence, we do not consider it in the

remainder of our experiments.

5.5.4 Applications

In this section, we study change detection algorithms on real data sets to demon-

strate the effectiveness and the applicability of our approaches. In particular, we

first measure how well an effective change detection algorithm can quickly and

accurately adapt query approximation to the distribution after a change, so as to

improve query qualities. This is very crucial for continuous model-based query

answering. Then we show the potential power of our methods in applications of

106

intrusion detection.

Query quality. We obtain the world cup ’98 HTTP request logs from the

Internet Traffic Archive [76]. We take hourly requests from one server, and focus

on the ClientID attribute contained in each HTTP request record. Analyzing

the data offline finds that logs usually present different distributions in ClientID

across time. We concatenate two one-hour log files S0 = (x1 . . . xw) and S1 =

(xw+1 . . . xn) for our experiments; w + 1 is the true change point. We have about

9K distinct ClientID in this data set, on which we compare FSWIN and EHCM

via a set of queries. Our goal for each query is to quickly and accurately answer

it according to the post-change distribution, when it occurs. The ground truth

is query results Q answered from S1. For each change detection algorithm to be

compared, we first run it on the concatenated data set, with P0 being the empirical

distribution constructed from S0, to get a change-point estimate λ, from which we

start to estimate query answers Q̂ based on all observations after λ. In particular,

λ output from EHCM is an estimate for the most likely change point, whereas

FSWIN with a window of size w returns λ = n−w + 1 if a change is detected at

time n.

Here are the set of queries [96] and the criteria we use to evaluate the accuracy

of various query answers (U is a data domain of size u):

• Point queries: let P2 and P̂2 be empirical probability distributions con-

structed from respective S1 and (xλ . . . xn), where λ is the change-point

estimate returned from a change detection algorithm, and P̂2 is an estimate

for P2. A point query Q(i) is to return an approximation of P2[i]. Thus,

the accuracy of point-query estimates is 1− 1
u

∑

i∈U
|Q̂(i)−Q(i)|

Q(i)
;

• φ-quantiles (0 < φ < 1): let F (x) =
∑

i∈U ,i≤x
P2[i]. The j-th φ-quantile

Q(j) is to find x, such that F (x − 1) < jφ, F (x) ≥ jφ, 1 ≤ j ≤ 1/φ.

Likewise, Q̂(j) is an estimate for Q(j) when P2 is replaced by P̂2. So the

107

accuracy of φ-quantile estimates is 1− φ ·∑1/φ
j=1

|Q̂(j)−Q(j)|
u

;

• h heaviest hitters: a heavy-hitter query returns a set Q of i ∈ U that

has the h largest P2[i] values; its estimate based on P̂2 is denoted Q̂. The

accuracy for estimating h heaviest hitters is measured by Jaccard coefficient

|Q̂∩Q|

|Q̂∪Q|
for set similarity (the closer to 1, the better).

We believe that above parameters φ, h, and window size w are critical for the

evaluation. We analyze the performance under the influence of different parameter

values.

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

ac
cu

ra
cy

EHCM
FSWIN,w=10K
FSWIN,w=20K
FSWIN,w=30K

(a) point queries

0.8

0.85

0.9

0.95

1

time

ac
cu

ra
cy

EHCM
FSWIN,w=10K,φ=5%
FSWIN,w=10K,φ=2%
FSWIN,w=20K,φ=5%
FSWIN,w=20K,φ=2%

(b) φ-quantiles

0

0.2

0.4

0.6

0.8

1

time

ac
cu

ra
cy

EHCM
FSWIN,w=10K,h=50
FSWIN,w=10K,h=100
FSWIN,w=20K,h=50
FSWIN,w=20K,h=100

(c) h heaviest hitters

Figure 5.7: Accuracy to answer queries on post-change distributions: EHCM vs.
FSWIN

Figure 5.7 summarizes the accuracy of EHCM and FSWIN to answer various

queries, as a function of time, since the change-point estimate by respective algo-

rithms. It can be seen that: (1) EHCM performs the worst immediately after the

change point, due to the lack of data samples from the post-change distribution

to estimate P̂2. Shortly after a change occurs, although most items inside the

window of FSWIN are outdated, P̂2 from FSWIN may still be better than that

from EHCM based on very few samples after λ. It is clear that EHCM gradually

outperforms FSWIN and achieves accurate answers to all three queries as more

samples are observed. This is because EHCM never underuses points after the

change, like what FSWIN does. (2) The performance of FSWIN is dominated

by window size w, rather than other parameters, such as φ (Figure 5.7(b)) and

108

h (Figure 5.7(c)): smaller windows (relative to the domain size) lead to inaccu-

rate approximation results, whereas too large windows delay the convergence to

accurate answers (see w = 30K in Figure 5.7(a)), since it takes longer for larger

windows to “forget” all stale data. All these make EHCM the method of choice.

This suggests the importance of accurate change-point estimate in model-based

declarative query answering.

5.6 Local Change Detection Experiments

We evaluate in this section the efficacy of our proposed method SPRT and its

streaming heuristic that we dub EHCM (Section 5.4) for detecting local changes.

We set up experiments with synthetic data as in Section 5.5.1.

Accuracy of Detected Local Changes. We verify the effectiveness of our

methods to recognize significant local changes based on prior knowledge on dis-

tributions. To avoid enumerating all possible changes, we consider two repre-

sentative types of changes: type I, small-to-medium changes, in particular from

P0 = (1.2, 0) to P1 = (1.3, 0); type II, medium-to-large changes, in particular

from P0 = (1.2, 0) to P1 = (1.7, 0). In both cases, the ground truth is that the

set Gk contains singleton items j ∈ U where top-k local Kullback-Leibler (KL)

distance values dKL(P1[j]||P0[j]) = P1[j] log(P1[j]/P0[j]) achieve. Figure 5.8(a)

shows the top-100 local KL distance values. With this ground truth, we shall

evaluate the accuracy of local changes triggered by our local change detection

algorithms. Conceptually, all local changes in j should be signaled when its lo-

cal distance is greater than some threshold. However, this empirical threshold

for local KL distance values is not pre-computable, so we propose the evaluation

procedure as follows.

Zipf distributions have a property that relatively large local changes happen

at the head of a distribution, when switching from P0 to P1. Therefore, a given

109

k-value defines a change-active domain Uk ⊂ U as Uk = {0, 1, ..., max(Gk)}, for

Zipf distributions, 1 where max(Gk) is the maximum j ∈ Gk. Furthermore, let H

be the set of alarms returned by our method; Hk = {j|j ≤ max(Gk), j ∈ H} =

H ∩ Uk be a subset of our returned alarms no larger than max(Gk). Based on

these notations, we define evaluation criteria precision and recall as a function of

k (note this is different from traditional definitions):

precisonk =
|Hk ∩Gk|
|Hk|

,

recallk =
|Hk ∩Gk|
|Gk|

.

10 20 30 40 50 60 70 80 90 100
10

−4

10
−2

k

k−
th

 la
rg

es
t d

K
L

(a) top−100 local KL distances from change−contained data

type I: (1.2,0) → (1.3,0)
type II: (1.2,0) → (1.7,0)

10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

k

pr
ec

is
io

n

(b) precision on change−contained data, α=0.05, β=0.05

type I,SPRT
type II,EHCM
type I,SPRT
type II,EHCM

10 20 30 40 50 60 70 80 90 100
0.6

0.8

1

k

re
ca

ll

(c) recall on change−contained data, α=0.05, β=0.05

type I,SPRT
type II,EHCM
type I,SPRT
type II,EHCM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6
0.8

1

∆ zJa
ca

rd
 C

oe
ffi

ci
en

ts

(d) similarity of detected local changes

Figure 5.8: Accuracy of detected local changes.

For the two types of changes, Figure 5.8(b)(c) demonstrate the performance of

our local change detection algorithms in terms of respective precision and recall,

1Change-active domain also exists in other distributions.

110

when false alarm rate α = 0.05, miss detection rate β = 0.05. It is clear to see

that precision and recall from detecting medium-to-large (type II) changes are

both higher than those from detecting small-to-medium (type I) changes. This

is consistent with our intuition that it is easier to detect larger changes. When

focusing on either type of changes, precision increases with k increasing, with

the worse case value of 85%, and converges to higher than 95% at large k (as

α = 0.05 indicates). This suggests Hk become stable (i.e., no more alarms output

from our algorithm), while Gk keeps expanding. In contrast, recall starts high

(very close to 1) and collapses after some k (i.e., k = 35 in type I, k = 70 in type

II). This indicates that local changes out of these top-k are no longer significant

to signal alarms, although they have relatively high ranking in Figure 5.8(a). All

these constitute a potential indicator of our accurate and robust change detection

algorithms. Moreover, it is interesting to observe that the type I and type II

curves in Figure 5.8(a) have very close y-value at k = 35 and k = 70, respec-

tively, as shown by the horizontal line, which suggests an empirical threshold to

significant local changes, under KL distance. We next factor in the additional

error resulting from our streaming heuristic EHCM. Figure 5.8(b)(c) show that

our streaming algorithm for local change detection performs equally well with its

offline counterpart.

Furthermore, we apply both offline and streaming algorithms for detecting

local changes to 10 change-contained streams; each has 100K points, the first

and the second w = 50K points of which are generated from P0 = (1.2, 0), P1 =

(1.2 + ∆z, 0), respectively, ∆z = 0.1..1, in increments of 0.1. We compute, for

each stream, the similarity between the set of detected local changes by respective

SPRT and EHCM. The measurement we use is the Jaccard coefficient [41]. High

Jaccard-coefficient values, as shown in Figure 5.8(d), indicate the accuracy of our

streaming algorithm.

111

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

ranking of detection time

de
la

ys

change pt delay,SPRT
change pt delay,EHCM
detection delay,SPRT
detection delay,EHCM

Figure 5.9: Accuracy for local change-point estimates and detection delays.

Change-Point Estimates and Adaptive Windows. With local change detec-

tion algorithms, we report in Figure 5.9 their accuracy of change-point estimate

and their effectiveness to be adapt to various rates of changes, when P0 = (1.2, 0),

P1 = (1.7, 0), and omit similar results from other P1 distributions. Again, we set

α = β = 0.05, and the true change point is at w = 50K. Recall that for a local

change with change-point estimate λ∗ and detection time n, the change point

delay is |λ∗−w|
w

; its detection delay is n−w
w

. Change point delays and detection

delays for local changes detected by both SPRT and EHCM are illustrated in

Figure 5.9, in order of their detection time with SPRT: a change that is detected

early indicates its fast change rate. It is interesting to observe that almost all

change point estimates are close to their true values, independent of individual

change rate; whereas faster changes have shorter detection delays, as we expect.

Intrusion Detection Application. We repeat experiments on IP traffic data

obtained from DARPA intrusion detection evaluation [86]. There are several

weeks’ worth of IP packet header data. We choose data from two weeks. The

first week data is attack free and hence is used to build “base” distribution P0.

The second week data is labelled with the date, starting time, the attack name

112

and the target destination IP addresses of each attack. 2 We pair up two data

sets from the same day of each week, and start our EHCM algorithm to check for

any deviation of the second week data from the first.

We focus on two types of attacks that occurred during the day: ‘setan’ —

a network probing attack which looks for well-known weaknesses; and ‘neptune’

— SYN flood denial of service on one or more ports. Both attacks lead to an

increase in packet number in network traffic, so that the distribution of overall

packet traffic shifts towards these IP addresses during the attacks. From labelled

header data, the ground truth is:

Attack names Target IP Starting time

setan 172.16.114.50 9:33 AM

neptune 172.16.114.207 11:04 AM

When packet count distribution is considered, EHCM detects above attacks

at 9:33:32 AM and 11:05:44 AM, with change point estimates being 9:33:32AM

and 11:05:27 AM, respectively. This suggests that our proposed method has the

potential for intrusion detection monitoring. However, if we apply EHCM to

traffic volume (i.e., in terms of number of bytes) distribution, the attack ‘setan’ is

not detected. This indicates that different signals demonstrate different behavior

with respect to the changing distribution. Better understanding of how attacks

entail changes in underlying distributions is needed to apply sequential change

detection to intrusion detection applications.

5.7 Related Work

There is a lot of work on change detection in data streams. Most [54, 80, 39, 31, 84]

are based on fixed-size windows: they affix two windows to streaming data and

estimate the change in distribution between them. A delay in change detection

2Note the difference between changes and attacks. An attack may result in (global or local)
changes in distributions; whereas changes may not result from attacks.

113

is inevitable when the time-scale of change is unavailable. Authors in [54, 80, 39]

exploited parallel windows of different sizes to adapt to different change scales.

But this is not suitable in data stream context, since we can not afford to explore

all window sizes. On the other hand, it has been proposed to use windows of

varied sizes [53, 111, 13]. This line of research has to guess a priori the time-scale

of change, and is mostly computationally expensive. Ho [71] recently proposed

a martingale framework for change detection on data streams, where a “pseudo-

adaptive” window – delimited by two adjacent change detection points – was used.

However, no change point estimate was considered in this work. In contrast to

the bulk of this literature, our approaches differ in two key ways. First, when

a change is detected, our methods also estimate the most likely change point in

time. Second, the change-point estimate is inherent to the evaluation of our test

statistic to detect a change, hence, our methods achieve shorter detection delays.

Applying sequential hypothesis testing to change detection is a natural ap-

proach. Authors in [79] studied sequential change detection method offline, under

a simpler scenario: (1) both pre- and post-change distributions are known as a

priori; (2) the first observation is assumed to be the change point. Our work here

is more general, being able to estimate the actual change point anywhere which

is the crux of the problem. In addition, our challenge is to adapt the well-known

technique to the streaming scenario, even without independence assumption. An-

other relevant work is [19], where they adopted exponential histograms to detect

change of various scales. However, their approach does not work for data with

large domain size, which is our crucial focus.

For local change detection, [31, 84] proposed window-based solutions to find

relatively large local changes. However, they triggered a large local change at a

singleton item when its difference is at least a user-specified fraction of the sum

of differences of all items. This may not indicate a change in the underlying

distribution, since the total difference may be small. In contrast, we extend

114

sequential probability ratio test to both offline and streaming algorithms to detect

statistically significant local changes.

5.8 Chapter Summary

There has been plenty of work on techniques for detecting changes in data, but

most, if not all, focus on certain “windows” to define and study changes in dis-

tributions. This is limiting since window size is a parameter that needs to be

determined which is nontrivial, and its size is a lower bound on the detection

delay. We have adopted the sound statistical method of sequential hypothesis

testing to yield fast and space-efficient algorithms on streams, to detect both

global and local changes, without explicit window specification. Our methods

are oblivious to data’s underlying distributions, and work without independence

assumption. Our detailed study of these methods in practice with synthetic and

real data sets reveals their effectiveness in detecting changes and many insights

on their applicability and their use, depending on the nature of change in the

distribution these phenomena induce.

115

Chapter 6

Conclusions and Future Work

Nowadays, many organizations have applications that deal with millions or even

billions of transactions every day. Under this scenario, a lot of work on designing

techniques for processing and mining such streaming data has emerged in the

past decade. Prior work in streaming analysis has shown how to estimate simple

statistics such as frequent items, quantiles, histograms, join sizes etc. on data

streams, but very little has focused on more sophisticated statistical analyses that

are performed in near real-time, using limited resources. We present streaming

techniques for such statistical modeling in this dissertation.

In our study, we investigate two representative categories of modeling in data

streams: parametric and structural modeling.

For parametric modeling, there are hierarchical as well as non-hierarchical

models. We present highly efficient, small-space approaches for estimating re-

spective model parameters. To the best of our knowledge, this is the first work

on model fitting over data streams with a priori error guarantees. In addition,

we propose online method for model validation so that models can be validated

frequently.

For structural modeling, we focus on communication graphs. With the abun-

dance of communication between individuals, many applications on analyzing the

patterns behind the communications emerge. The idea of using signatures to cap-

ture behavior is an attractive one. Instead of proposing a signature scheme for

a particular task, we take a systematic way to study the principles behind the

116

usage of signatures to any task. In particular, we define fundamental properties

of signatures and study a broad set of applications based on what properties they

need for signatures to be useful. We explore several signature schemes in our

framework and evaluate them on real data in terms of these properties. This

provides insights into suitable signature schemes for desired applications. Our

experiments demonstrate that no single signature scheme fits all applications;

different signatures are needed, depending on the balance among the properties

they provide.

Another critical issue in modeling data streams is to detect its change. There

has been plenty of work on detecting changes in streams, but most, if not all, focus

on certain “windows” to detect the change in distribution between them. This is

problematic since window size is a parameter that needs to be determined which

is nontrivial. We therefore adopt statistically sound sequential probability ratio

test to yield fast and space-efficient streaming algorithm to detect both global and

local changes, without explicit window specification. Our methods are oblivious to

data’s underlying distributions, and work without the independence assumption.

Another advantage of our proposed sequential approaches is shorter detection

delays. This is due to the integration of most likely change-point estimate into

the test statistics of our solutions.

As concrete applications of our techniques, we focus on network traffic data,

one of the richest sources for data streams. We complement our analytic and

algorithmic results with experiments on them to demonstrate the practicality

of our methods at line speeds, and potential power of streaming techniques for

statistical modeling in data mining.

In future work, we propose to study the following.

• Parametric modeling: widely used general modeling procedures that involve

recursive computing such as expectation maximization, as well as regression

models other than linear regression presented in this dissertation, will be

117

explored.

• Structural modeling: we will consider the temporal dimension on signatures

in communication graphs. Interesting questions include but are not limited

to “What is the signature at a given time interval?”, “What sequence of ac-

tivities capture my communication behavior?”, etc. Another line of research

is to study hierarchies of signatures over time. Furthermore, advanced hash-

ing is a promising technique to speed up nearest-neighbor searches among

signatures.

• Change detection: Almost all real world data sets are beyond single dimen-

sion, so we shall address the problems with higher dimensions in our future

work.

118

Bibliography

[1] STREAM: Stanford stream data manager, http://www-

db.stanford.edu/stream/.

[2] Sprint CMON, http://www.sprintlabs.com/.

[3] http://www.streambase.com/.

[4] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin,

E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker,

N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. Aurora: a data stream man-

agement system. In SIGMOD, 2003.

[5] L. Adamic. Zipf, power-law, pareto - a ranking tutorial. http://www.hpl.

hp.com/research/idl/papers/ranking/, 2000.

[6] N. Alon, N. Duffield, C. Lund, and M. Thorup. Estimating sums of arbitrary

selections with few probes. In ACM PODS, pages 317–325, 2005.

[7] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating

the frequency moments. JCSS, 58:137–147, 1999.

[8] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding

windows. In PODS, 2004.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and

issues in data stream systems. In PODS, 2002.

119

[10] Ziv Bar-Yossef. Sampling lower bounds via information theory. In STOC

’03: Proceedings of the thirty-fifth annual ACM symposium on Theory of

computing, pages 335–344, 2003.

[11] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Tre-

visan. Counting distinct elements in a data stream. In RANDOM ’02:

Proceedings of the 6th International Workshop on Randomization and Ap-

proximation Techniques, pages 1–10, London, UK, 2002. Springer-Verlag.

[12] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in web

client access patterns characteristics and caching implications. In WWW,

1999.

[13] P.L. Bartlett, S. Ben-David, and S.R. Kulkarni. Learning changing concepts

by exploiting the structure of change. In Computational Learing Theory,

pages 131–139, 1996.

[14] M. Basseville and I.V. Nikiforov. Detection of Abrupt Changes: Theory and

Application. Prentice-Hall, Inc.

[15] J. Baumes, M. Goldberg, M. Hayvanovych, M. Magdon-Ismail, W.A. Wal-

lace, and M. Javeed Zaki. Finding hidden group structure in a stream of

communications. In ISI, 2006.

[16] A. Belussi and C. Faloutsos. Estimating the selectivity of spatial queries

using the ‘correlation’ fractal dimension. In VLDB, 1995.

[17] P. Berkhin. A survey on pagerank computing. Internet Mathematics,

2(1):73–120, 2005.

[18] Z. Bi, C. Faloutsos, and F. Korn. The ”dgx” distribution for mining massive,

skewed data. In KDD, 2001.

120

[19] A. Bifet and R. Gavalda. Learning from time-changing data with adaptive

windowing. In SDM, 2007.

[20] A. Chakrabarti, K. Do Ba, and S. Muthukrishnan. Estimating entropy and

entropy norm on data streams. In STACS, pages 196–205, 2006.

[21] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm

for computing the entropy of a stream. In Proceedings of ACM-SIAM Sym-

posium on Discrete Algorithms, pages 328–335, 2007.

[22] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok

Shim. Approximate query processing using wavelets. The VLDB Journal,

10(2-3):199–223, 2001.

[23] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Heller-

stein, W. Hong, S. Krishnamurthy, S.R. Madden, F. Reiss, and M.A. Shah.

TelegraphCQ: continuous dataflow processing. In SIGMOD, 2003.

[24] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in

data streams. In ICALP, 2002.

[25] C.-M. Chen, H. Agrawal, M. Cochinwala, and D. Rosenbluth. Stream query

processing for healthcare bio-sensor applications. In ICDE, 2004.

[26] CIDR, http://www.webopedia.com/TERM/C/CIDR.html.

[27] E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates.

In PODS, 2003.

[28] D. Coppersmith and R. Kumar. An improved data stream algorithm for

frequency moments. In SODA, 2004.

[29] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, and

D. Srivastava. Holistic udafs at streaming speeds. In SIGMOD, 2004.

121

[30] G. Cormode and S. Muthukrishnan. An improved data stream summary:

The count-min sketch and its applications. In LATIN, 2004.

[31] G. Cormode and S. Muthukrishnan. What is new: Finding significant dif-

ferences in network data streams. In INFOCOM, pages 1534–1545, 2004.

[32] G. Cormode and S. Muthukrishnan. Summarizing and mining skewed data

streams. In SDM, 2005.

[33] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and min-

ing inverse distributions on data streams via dynamic inverse sampling. In

VLDB, 2005.

[34] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Com-

paring data streams using hamming norms (how to zero in). IEEE Trans-

actions on Knowledge and Data Engineering, 15(3):529–540, 2003.

[35] C. Cortes and D. Pregibon. Signature-based methods for data streams.

Data Min. Knowl. Discov., 5(3):167–182, 2001.

[36] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Communities of in-

terest. Lecture Notes in Computer Science, 2189, 2001.

[37] C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope:

A stream database for network applications. In SIGMOD, 2003.

[38] Chuck Cranor, Yuan Gao, Theodore Johnson, Vlaidslav Shkapenyuk, and

Oliver Spatscheck. Gigascope: high performance network monitoring with

an sql interface. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 623–623, 2002.

[39] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. An information-

theoretic approach to detecting changes in multi-dimensional data streams.

In Interface, 2006.

122

[40] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statis-

tics over sliding windows. In SODA, 2002.

[41] M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data

stream windows. In ESA, 2002.

[42] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models for

data management in acquisitional environments. In CIDR, 2005.

[43] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and W. Hong.

Model-driven data acquisition in sensor networks. In VLDB, 2004.

[44] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and W. Hong.

Model-based approximate querying in sensor networks. VLDB Journal,

2005.

[45] M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. Wiley,

New York, 3rd edition, 2000.

[46] C. Faloutsos and I. Kamel. Beyond uniformity and independence: Analysis

of R- trees using the concept of fractal dimension. In PODS, 1994.

[47] C. Faloutsos, Y. Matias, and A. Silberschatz. Modeling skewed distributions

using multifractals and the ’80-20 law’. In VLDB, 1996.

[48] T. Fawcett and F.J. Provost. Activity monitoring: Noticing interesting

changes in behavior. In SIGKDD, 1999.

[49] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri,

and Jian Zhang. Graph distances in the streaming model: the value of space.

In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 745–754, Philadelphia, PA, USA, 2005. Soci-

ety for Industrial and Applied Mathematics.

123

[50] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri,

and Jian Zhang. On graph problems in a semi-streaming model. Theor.

Comput. Sci., 348(2):207–216, 2005.

[51] P. Flajolet and G.N. Martin. Probabilistic counting. In FOCS, 1983.

[52] X. Gabaix, P. Gopikrishnan, V. Plerou, and H.E. Stanley. A theory of power

law distributions in financial market fluctuations. 423:267–270, 2003.

[53] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift

detection. In Lecture Notes in Computer Science, 2004.

[54] V. Ganti, J.E. Gehrke, R. Ramakrishnan, and W.-Y. Loh. A framework

for measuring changes in data characteristics. Journal of Computer and

System Sciences, 64:542–578, 2002.

[55] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates

over continual data streams. In SIGMOD, 2001.

[56] P.B. Gibbons. Distinct sampling for highly-accurate answers to distinct

values queries and event reports. In VLDB, 2001.

[57] P.B. Gibbons and Y. Matias. Synopsis data structures for massive data

sets. In DIMACS Series in Discrete Mathematics and Theoretical Computer

Science: Special Issue on External Memory Algorithms and Visualization,

volume A, 1999.

[58] Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions

on the union of data streams. In ACM Symposium on Parallel Algorithms

and Architectures, pages 281–291, 2001.

[59] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs

in massive graphs. In VLDB, 2005.

124

[60] A.C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and

M. Strauss. Fast, small-space algorithms for approximate histogram main-

tenance. In STOC, pages 389–398, 2002.

[61] A.C. Gilbert, W. Willinger, and A. Feldmann. Scaling analysis of conser-

vative cascades, with applications to network traffic. In IEEE Transaction

on Information Theory, volume 45, pages 971–991, 1999.

[62] T. Krishnan G.J. McLachlan. The EM Algorithm and Extensions. Wiley-

Interscience, 1996.

[63] M. Greenwald and S. Khanna. Space-efficient online computation of quantile

summaries. In SIGMOD, 2001.

[64] Sudipto Guha. Space efficiency in synopsis construction algorithms. In

VLDB ’05: Proceedings of the 31st international conference on Very large

data bases, pages 409–420, 2005.

[65] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and his-

tograms. In ACM Symposium on Theory of Computing, pages 471–475,

2001.

[66] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian.

Streaming and sublinear approximation of entropy and information dis-

tances. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM

symposium on Discrete algorithm, pages 733–742, 2006.

[67] Taher H. Haveliwala. Topic-sensitive pagerank. In WWW, 2002.

[68] S. Hill, D. Agarwal, R. Bell, and C. Volinsky. Building an effective rep-

resentation for dynamic network. Computational and Graphical Statistics,

15(3):584–608(25), 2006.

125

[69] S. Hill and F. Provost. The myth of the double-blind review? Author

identification using only citations. SIGKDD Explorations, 5(2):179–184,

2003.

[70] S. Hill, F. Provost, and C. Volinsky. Network-based marketing: Identifying

likely adopters via consumer networks. Statistical Science, 21(2):256–276,

2006.

[71] S. Ho. A martingale framework for concept change detection in time-varying

data streams. In ICML, pages 321–327, 2005.

[72] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data

streams. In SIGKDD, 2001.

[73] A. Hussain, J. Heidemann, and C. Papadopoulos. Identification of repeated

dos attacks. In INFOCOM, 2006.

[74] P. Indyk. Stable distributions, pseudorandom generators, embeddings and

data stream computation. In FOCS, pages 189–197, 2000.

[75] P. Indyk and R. Motwani. Approximate nearest neighbors: towards remov-

ing the curse of dimensionality. In STOC, 1998.

[76] Internet traffic archive. http://ita.ee.lbl.gov.

[77] A.K. Jain, R.W. Duin, and J. Mao. Statistical pattern recognition: A

review. IEEE Transaction on Pattern Analysis and Machine Intelligence,

22(1):4–37, 2000.

[78] C. Jr, A. Traina, L. Wu, and C. Faloutsos. Fast feature selection using the

fractal dimension. In SBBD, 2000.

[79] J. Jung, V. Paxson, A.W. Berger, and H. Balakrishnan. Fast portscan de-

tection using sequential hypothesis testing. In IEEE symposium on security

and privacy, 2004.

126

[80] D. Kifer, S. Ben-David, and J. Gehrke. Detecting changes in data streams.

In VLDB, 2004.

[81] E. Kohler, J. Li, V. Paxson, and S. Shenker. Observed structure of addresses

in ip traffic. In IMC, 2002.

[82] F. Korn, S. Muthukrishnan, and Y. Wu. Modeling skew in data streams.

In SIGMOD, 2006.

[83] B. Krishnamurthy, H. Madhyastha, and O. Spatscheck. ATMEN: a trig-

gered network measurement infrastructure. In WWW, 2005.

[84] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change

detection: methods, evaluation, and applications. In IMC, 2003.

[85] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic

anomalies. In SIGCOMM, 2004.

[86] DARPA intrusion detection evaluation. http://www.ll.mit.edu/IST/

ideval/index.html.

[87] F. Li, C. Chang, G. Kollios, and A. Bestavros. Characterizing and exploiting

reference locality in data stream applications. In ICDE, 2006.

[88] T. Liu, C.M. Sadler, P. Zhang, and M. Martonosi. Implementing software on

resource-constrained mobile sensors: Experiences with impala and zebranet.

In MobiSys, 2004.

[89] D. Madigan. DIMACS working group on monitoring message streams.

http://http://stat.rutgrs.edu/∼madigan/mms/.

[90] B.B. Mandelbrot. Fractals and Scaling in Finance. Springer-Verlag, New

York, 1997.

127

[91] G. S. Manku and R. Motwani. Approximate frequency counts over data

streams. In VLDB, 2002.

[92] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Ran-

dom sampling techniques for space efficient online computation of order

statistics of large datasets. In SIGMOD ’99: Proceedings of the 1999 ACM

SIGMOD international conference on Management of data, pages 251–262,

1999.

[93] S.J. Mason and N.E. Graham. Areas beneath the relative operating char-

acteristics (ROC) and relative operating levels (ROL) curves: Statistical

significance and interpretation. Q. J. R. Meteorol. Soc, 30:291–303, 1982.

[94] MassDAL poster. http://www.cs.rutgers.edu/∼muthu/massdalposter.

pdf.

[95] R. Motwani and P. Raqhavan. Randomized Algorithms. Cambridge Univer-

sity Press, 1995.

[96] S. Muthukrishnan. Data streams: Algorithms and applications. Founda-

tions and Trends in Theoretical Computer Science, 1(2), 2005.

[97] Cisco netflow. http://www.cisco.com/warp/public/cc/pd/iosw/ioft/

neflct/tech/napps wp.htm.

[98] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating

signatures for polymorphic worms. In Symposium on Security and Privacy,

2005.

[99] C.C. Noble and D.J. Cook. Graph-based anomaly detection. In SIGKDD,

2003.

[100] B.-U. Pagel, F. Korn, and C. Faloutsos. Deflating the dimensionality curse

using multiple fractal dimensions. In ICDE, 2000.

128

[101] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast

outlier detection using the local correlation integral. In ICDE, 2003.

[102] S.I. Resnick. Heavy tail modeling and teletraffic data. The Annals of Statis-

tics, 25:1805–1869, 1997.

[103] M. Roughan and C. Kalmanek. Pragmatic modeling of broadband access

traffic. In Computer Communications 26(8), 2003.

[104] M. Schroeder. Fractals, Chaos, Power Laws: Minutes From an Infinite

Paradise. W.H. Freeman and Company, New York, 1991.

[105] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and

Subhash Suri. Medians and beyond: new aggregation techniques for sensor

networks. In SenSys ’04: Proceedings of the 2nd international conference

on Embedded networked sensor systems, pages 239–249, 2004.

[106] D. Song, P. Venable, and A. Perrig. User recognition by keystroke latency

pattern analysis. 1997.

[107] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Relevance search and

anomaly detection in bipartite graphs. SIGKDD Explorations Special Issue

on Link Mining, 7(2):48–55, 2005.

[108] Chayant Tantipathananandh, Tanya Berger-Wolf, and David Kempe. A

framework for community identification in dynamic social networks. In

KDD ’07: Proceedings of the 13th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 717–726, 2007.

[109] A. Wald. Sequential Analysis. Dover Publications, 2004.

[110] M. Wang, T. Madhyastha, N.H. Chan, S. Papadimitriou, and C. Faloutsos.

Data mining meets performance evaluation: Fast algorithm for modeling

bursty traffic. In ICDE, 2002.

129

[111] G. Widmer and M. Kubat. Learning in the presence of concept drift and

hidden contexts. Machine Learning, 23(1):69–101, 1996.

[112] W. Willinger, D. Alderson, and L. Li. A pragmatic approach to dealing

with high-variability in network measurements. In IMC, 2004.

[113] W. Willinger and V. Paxson. Where mathematics meets the internet. No-

tices of the American Mathematical Society, 45(8):961–970, 1998.

[114] W. Willinger, V. Paxson, and M.S. Taqqu. Self-similarity and Heavy Tails:

Structural Modeling of Network Traffic. Chapman & Hall, New York, 1998.

[115] A. Wong, L. Wu, P.B. Gibbons, and C. Faloutsos. Fast estimation of fractal

dimension and correlation integral on stream data. In Inf. Process. Lett.

93(2): 91-97, 2005.

[116] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex

event processing over streams. In SIGMOD ’06: Proceedings of the 2006

ACM SIGMOD international conference on Management of data, pages

407–418, 2006.

[117] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling internet backbone traffic:

behavior models and applications. SIGCOMM Comput. Commun. Rev.,

35(4):169–180, 2005.

[118] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR, 2003.

[119] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of

data streams in real time. In VLDB, pages 358–369, 2002.

130

Curriculum Vita

Yihua Wu

EDUCATION

October 2007 Ph.D. in Computer Science, Rutgers University, U.S.A.

May 2003 M.S. in Computer Science, Rutgers University, U.S.A.

July 2000 B.S. in Computer Science, Peking University, Beijing, P.R. China

EXPERIENCE

Jan.2007—Aug.2007 Research Assistant, Department of Computer Sci-
ence, Rutgers University, New Brunswick, NJ

Oct.2004—Sep.2007 Research Consultant, Database Management Re-
search Department, AT&T Shannon Research Lab, Florham Park, NJ

Jan.2006—Dec.2006 Teaching Assistant, Department of Computer Sci-
ence, Rutgers University, New Brunswick, NJ

Jan.2005—Dec.2005 Research Assistant, Department of Computer Sci-
ence, Rutgers University, New Brunswick, NJ

Sep.2001—Dec.2004 Teaching Assistant, Department of Computer Sci-
ence, Rutgers University, New Brunswick, NJ

Jan.2001—Apr.2001 Software Engineer, Asia Electronic Commerce Ltd.,
Beijing, P.R. China

PUBLICATION

On Signatures for Communication Graphs. Graham Cormode, Flip Korn,
S. Muthukrishnan and Yihua Wu. Submitted.

Sequential Change Detection on Data Streams. S. Muthukrishnan, Eric
van den Berg and Yihua Wu. In International Conference on Data Mining
(ICDM) Workshop on Data Stream Mining and Management, 2007.

131

Modeling Skew in Data Streams. Flip Korn, S. Muthukrishnan and Yihua
Wu. In Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2006.

Fractal Modeling of IP Network Traffic at Streaming Speeds. Flip Korn, S.
Muthukrishnan and Yihua Wu. In Proceedings of the 22nd IEEE Conference
on Data Engineering (ICDE), 2006.

