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There are two phases in multivariate statistical process control (MSPC). In 

phase I, we model baseline data off-line to characterize the process. Baseline data is a 

collection of observations describing successful manufacturing. In phase II, we 

compare on-line observations to these models to determine whether the process is in 

control. This dissertation addresses four questions to improve phase I analysis: (1) 

How many operational modes are in baseline data? (2) In a large historical dataset 

collected over a long time period, which periods are the baseline? (3) In profile 

baseline data, are there outlier profiles? (4) When should the phase I model be 

updated?  

Each operational mode appears as a cluster in baseline data. To address the 

first question, we propose a new method to determine the number of clusters with all 

of the following critical features: it determines if there is only one cluster, the most 

common case; it identifies convex or non-convex clusters; and it is insensitive to 

user-specified parameters. No existing method has them all. Simulations show that 

the proposed method works well. 
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We propose a new method to address the second question, where historical 

data may be collected during both baseline and unsuccessful periods. The identified 

baseline periods are reasonably long, and have the best product quality with a stable 

distribution. Through simulated and real datasets, the proposed method shows its 

robustness to various distributions, in contrast to the existing change point 

identification method that is very sensitive to the distribution.  

We address the third question in the context of complex profiles. We treat 

complex profiles as high-dimension vectors. We apply the  control chart to 

identify outliers. Applied to simulated and real datasets, it demonstrates better 

performance on complex profiles than the existing nonlinear regression method.  

2χ

We address the fourth question by testing whether the correlation matrix 

changes from the baseline. The correlation matrix describes relationships among 

variables. We propose a new method to diagnose the responsible variables when the 

change is indicated.  

We also discuss the future work of applying MSPC and data mining 

technologies on data from a brain neural system.  

 

Key words: Statistical Process Control, Data Mining, Phase I, Operational Mode, 

Profile, Outlier Detection, Number of Clusters, Correlation Matrix.
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1 

1 Introduction 

Statistical process control (SPC) is a method of monitoring the performance of 

a manufacturing process by comparing the current state of the process against 

“successful working conditions”. We call working conditions successful if the process 

is consistently producing products with good quality. Originally, SPC was applied on 

each critical variable separately, called univariate SPC. With the advent of more and 

more complex manufacturing processes, and the progress in measurement technology, 

more critical variables (maybe hundreds) can be monitored on-line. Univariate SPC is 

not effective in monitoring these processes because there are too many critical 

variables to be monitored, and correlations among these variables are ignored. 

Multivariate SPC (MSPC), by building a few statistics to monitor all these critical 

variables simultaneously, is a much more effective methodology.  

There are two phases in the implementation of SPC. In phase I, conducted 

off-line, statistical models are built to characterize baseline data, which is collected 

when the process is manufacturing under successful working conditions. Statistics are 

chosen to measure the dissimilarity between observations and baseline models. 

Control limits for these statistics are calculated such that the statistics of observations 

from successful working conditions stay within their corresponding control limits 

with high probability (0.9 or 0.95, for example). Phase II occurs on-line and compares 

new observations to baseline models. If any of the statistics of new observations 

exceeds its corresponding control limits, we know that the new observations do not 

match closely enough with baseline models. We conclude that the process is out of 
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statistical control and is in need of adjustments or corrections, and that the output may 

be unacceptable. 

Two types of variables are concerned in MSPC: process and product 

variables. Process variables characterize the condition of the manufacturing process. 

Product variables, which are measured much less frequently than process variables, 

describe the quality of products.  

In some processes, the working condition is characterized by observations of 

multivariate variables. For example, in an industrial oven process, there are 14 

thermocouples measuring temperatures at different locations inside the oven. The 

working condition of this oven at one time is described by the readings of these 14 

thermocouples at that time. In some other processes, profiles are used to describe the 

working condition of process or the quality of product. Successful working 

conditions or good quality of product requires profiles to have desired patterns. A 

profile is usually defined as a set of responses as a function of one or more explanatory 

variables. Examples of profiles include the percent of a drug dissolved as a function of 

time, and the density of a wood product as a function of the depth into the plank.  

In this dissertation, we investigate baseline data. Some baseline data consists 

of multivariate observations. The others consist of profiles. 

This dissertation focuses on applying data mining technologies (especially 

clustering analysis) to analyze baseline data in phase I so that the SPC models can be 

improved. In the past, researchers were mainly interested in monitoring and 

diagnosing the mean shifts of process or product variables in phase II. The 
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performance of MSPC models in phase II, however, is determined mostly by whether 

the models built in phase I capture the nature of the underlying processes expressed 

through baseline data. So, it is necessary to study baseline data with more attention. 

Data mining technology should be useful for this purpose since it extracts structures 

from data as described in Bradley et al. (1999).  

This dissertation addresses four separate but related questions to improve 

phase I analysis: (1) Are there multiple operational modes in baseline data? If so, how 

many? (2) Which periods in historical data collected over a long time period are the 

baseline? (3) If the baseline consists of profile data, are there outlier profiles? (4) 

When should the baseline model be updated? Before going into details of their 

backgrounds in the following sections, here we first introduce the importance of them 

briefly. 

In the first question, the number of operational modes needs to be determined 

because a manufacturing process may have multiple operational modes, instead of 

only one as commonly assumed by previous works. An operational mode is a set of 

settings of process variables such that the product quality is consistently good. 

Building only one MSPC model for monitoring may have poor performance when 

multiple operational modes exist. In this dissertation, we present a new method to 

determine the number of operational modes. 

In the second question, the baseline periods have to be extracted from 

historical data because the baseline data should only consist of observations when the 

process is manufacturing successfully. However, in practice, the baseline dataset is 

 



4 

rarely given but is selected from a historical dataset, which may consist of many 

observations in a long time period. In this long time period, the process may have 

intervals when it is unstable and may experience periods of both successful and 

unsuccessful production. In this dissertation, we present a new method to extract 

baseline periods in large historical data. 

In the third question, outliers have to be identified before building MSPC 

models because the existence of outliers in baseline data may bias our MSPC model 

such that it has poor performance in online monitoring. Outliers are data points that 

are significantly different from the others. Outlier detection and elimination are two 

important steps in phase I analysis of baseline data. In this dissertation, we present a 

new method to detect outlier profiles. 

In the fourth question, determining when we should update MSPC models is 

important because processes usually change from when the baseline data is collected 

after running for a while, through process improvements or changes of underlying 

structures. Thus baseline data needs to be updated. Correlation matrix characterizes 

relationships among variables. In this dissertation, we use a test of hypothesis to 

determine whether the correlation matrix changes from the baseline. If the changes are 

identified, the MSPC models may need updated.  

1.1 Background of determining the number of operational modes 

The first question we are concerned with in this dissertation is determining the 

number of operational modes in baseline MSPC data. This question was motivated by 

our experience in a food manufacturing company. We collected baseline data from a 
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successful food processing system and constructed an MSPC model to monitor the 

manufacturing process. To our surprise, the MSPC model gave many false alarms 

soon after it was implemented for on-line monitoring. But the product quality was 

within specifications.  

We found that the alarms were caused by adjustments made by operators to 

ensure the consistency of product quality after a major switch in raw materials from 

winter to summer flour. The adjustments constituted a new operational mode. This 

experience illustrates that it is possible for a manufacturing process to have more than 

one operational mode, even the same product is manufactured.  

There are some other descriptions of multiple operational modes in literature. 

Chu et al. (2004) identify three operational modes and one fault mode in baseline data 

from a rapid thermal annealing process where the three operational modes correspond 

to three products manufactured on the same process. Hwang and Han (1999) find 

eleven operational modes in a blast furnace operation. 

There are two ways to handle the baseline dataset which is generated by 

multiple operational modes. The first is that we build a global MSPC model that 

encompasses all the modes, and use this global model to monitor the process. The 

second is to build a separate MSPC model for each operational mode, called a local 

model, and use this set of MSPC models to monitor the process.  

We think the local model method has better performance in signaling an 

out-of-control process. The comparison of the global and local models is illustrated in 

Fig. 1, where we have only two variables. The crosses and circles are baseline data, 
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and the ellipsoids are the in-control areas of Hotelling’s T2 method. Appendix A 

describes Hotelling’s T2 method in details. Obviously there are two operational modes. 

If we build a global model with all baseline data, the model will fail to signal points in 

the space between these two modes, as point P1 in Fig. 1(a) falling inside the 

in-control area. The local model method avoids this problem, as in Fig. 1(b), where P1 

lies outside the in-control areas of these two models, it is signaled by both models.  

(a)  (b)  

Figure 1. Comparison of (a) global and (b) local models 

To build the local model, the number of operational modes in the baseline 

dataset needs to be determined first. In this dissertation, we assume that each data 

cluster represents an operational mode. Thus, determining the number of operational 

modes is equivalent to determining the number of clusters in a baseline MSPC dataset. 

Data mining technology has been used widely to identify clusters in many 

fields including imaging and biology; see Fraley and Raftery (1998), Ertoz et al. 

(2003), Cinque et al. (2004) and Su and Liu (2005). Although in data mining, many 

algorithms exist to determine the number of clusters, each has a serious limitation 

when applied to identify the number of operational modes in the baseline process 

control data. So, a new method is proposed to determine the number of operational 

modes in the baseline MSPC dataset.  
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To address this question, this dissertation proposes a method that has the 

capabilities to detect the number of clusters in baseline MSPC data, namely: (1) The 

method correctly detects exactly one cluster if indeed there is only one. This is, of 

course, the most common outcome in baseline MSPC data; (2) If there is more than 

one cluster, it detects the correct number; (3) It does not require us to assume that all 

clusters are convex in advance; and (4) The number of clusters detected is not 

sensitive to arbitrarily chosen threshold values. The method we propose has all these 

properties in contrast to existing methods, each of which has some but not all of the 

capabilities. 

 In literature, there are three types of algorithms that determine the number of 

clusters: model-based, density-based, and scale-based methods. Model-based 

methods assume that each cluster has its own underlying multinormal distribution and 

consequently they do not work well on non-convex clusters, as shown in Fraley and 

Raftery (1998).  

Density-based methods define clusters as regions in the data space where the 

objects are dense, and which are separated from one another by low-density regions; 

see Daszykowski et al. (2001). The number of clusters is the number of dense regions. 

Shared nearest neighbors, described in Ertoz et al. (2003), is one of the density-based 

methods. The problem with these methods is that the final answer is quite dependent 

on the threshold values used in algorithms and it is hard to select these values properly. 

The scale-based methods overcome the threshold problem by computing the 

number of clusters over a range of the threshold value. The number of clusters is 
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selected as the one that persists for the largest range of the threshold value. These 

methods are very successful; see Kothari and Pitts (1999), Nakamura and Kehtarnavaz 

(1998), Herbin et al. (2001), Costa and Netto (1999) and Wang et al. (2004). However, 

scale-based methods are not capable of determining that there is exactly one cluster, 

the most common situation in baseline MSPC data. 

The method we propose is a scale-based method that has been extended to 

enable it to identify exactly one cluster when that is indeed the case. The concept for 

our method, called scale-based with dummy dimension (SBDD), is to create a new 

augmented dataset which contains the original clusters, plus clones of those clusters, 

and an additional dimension. Thus, if the baseline dataset has 5 clusters in a three 

dimensional space, the augmented dataset has 10 clusters in the four-dimension space. 

Then we safely use a scale-based method to determine the number of clusters in the 

augmented dataset since the number of clusters is two or greater. To find the number of 

clusters in the original dataset, we simply divide by two.  

To illustrate the proposed SBDD method and the existing methods we apply 

these to various simulated and actual datasets: a simulated multinormal dataset with 

one cluster; a dataset with three clusters, one of which is a non-convex cluster; a 

simulated industrial oven with two zones under engineering control with two 

operational modes; and a dataset from literature that contains the constituents of three 

related wine products.  

The experimental results show that SBDD method gives the correct number of 

clusters for all four datasets, while the other methods do not. The model-based method 
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fails on the non-convex dataset and the wine dataset, which is a real dataset and we do 

not know whether it has convex or non-convex clusters. The results given by 

density-based methods depend heavily on the selection of parameters. The 

scale-based method gives right answers on three of the four datasets. But it gives 

higher than the actual number when there is only one cluster in the dataset.  

In practice, since we do not know whether the clusters are convex or 

non-convex and whether we have only one or more clusters in advance, the SBDD 

method proposed here is clearly the safest choice to detect the number of clusters in a 

baseline dataset. 

We do not study clustering errors in this dissertation. The steps in a cluster 

analysis are (1) find the number of clusters; (2) assign observations to clusters. 

Clustering error refers to assigning observations to clusters incorrectly. This 

dissertation focuses on step (1) only. None of the previous methods of determining the 

number of clusters uses clustering error to evaluate the performance. 

1.2 Background of determining baseline periods in historical data 

The second topic of this dissertation is determining the baseline periods in a 

historical dataset with a large number of observations collected in a long time period. 

We propose a method to automatically extract baseline periods from a large historical 

dataset of product variables. Baseline periods have a stable distribution of quality, and 

the most favorable quality. For example, the yield is consistently high or the mean of a 

particular product variable is close to target with small variation. Also, a baseline 

period should not include transient periods where the product quality is good for a 
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short while but the process is set unsuccessfully. For example, in an industrial steel 

melting tank, the output may still be good for a short while even when the settings of 

temperatures are poor. Usually engineering expertise can give the minimal length of a 

baseline period. Any period shorter than this given length is not included among 

baseline periods.  

The motivation to address the problem of identifying baseline periods from a 

historical dataset collected in a long time period comes from our experience in a 

continuous process. Observations of process and product variables for approximately 

one year were collected. We wanted to find baseline periods by analyzing this huge 

amount of product observations in this long period so that the process and product data 

in these periods can be used to build SPC models. The yield rate in each batch is the 

product variable. Our question is: how can we select baseline periods from large 

amount of historical data of product variables? 

In this dissertation, we propose a probability density profile (PDP) clustering 

method to address this problem. This method is robust to distributions generating the 

observations. It works in the following way. First, we use a moving window to 

segment the sequence of product variable into overlapping subsequences, which are in 

the end transformed into PDPs. Then, the number of PDP clusters is determined and 

each PDP is assigned to a cluster. We also assign a cluster label to each product 

observation, which derives clusters of points (product observations). The mean and 

standard deviation of the product variable in each point cluster are calculated. We 

select the clusters with the best statistics, such as the highest mean. The periods 

 



11 

spanned by the time stamps of the observations in the selected clusters and longer than 

a minimal length are baseline periods.  

The ideas of segmenting sequence into subsequences, transforming them into 

PDPs and clustering PDPs are inspired by Guh (2005) and Han and Baker (1995). Guh 

(2005) uses an overlapping moving window with fixed number of observations to 

segment a sequence of historical data into subsequences. They are interested in the 

patterns of subsequences and a neural network was trained to classify these patterns. 

The trained neural network is applied online to recognize the abnormal patterns in the 

process. In Han and Baker (1995), in order to cluster protein sequences, they count the 

frequencies of the occurrence of 20 amino acids in certain positions of each protein 

sequence. The resulting sequence of frequency distribution is called a profile. Then, 

the protein sequences are clustered according to the distances in the profiles.  

This inspired us that if a sequence contains observations from both successful 

and unsuccessful productions, the PDPs of subsequences from periods of successful 

and unsuccessful productions should have different patterns. We can cluster these 

PDPs to identify periods generated by different distributions. 

To our best knowledge, there is no literature addressing how to determine 

baseline periods from a sequence of quality observations in SPC. As stated in Woodall 

(2000), “It is doubtlessly disturbing to many practitioners that researchers tend to 

neglect Phase 1 applications…., (which) cannot be easily placed into a general 

mathematical framework. Because of this fact, these important practical issues are 

rarely mentioned in the SPC research literature.” This may explain why such an 
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important issue in phase I, determining baseline periods, has not been addressed.  

In literature, identification of change points in a sequence of observations is 

the only research work related to this topic. The change point is the last observation 

before the probability distribution of observations changes. Observations between two 

consecutive change points follow a single distribution consistently. One possible way 

of applying methods of change point identification to choose baseline periods is to 

find all the change points in the sequence of quality observations. Then, statistical 

tests can be applied to compare different periods and the ones with the most favorable 

statistics are selected as baseline periods. 

Likelihood ratio test (LRT) is a popularly used method for change point 

identification; see Sullivan and Woodall (1996 and 2000), Hawkins and Zamba (2005), 

Son and Kim (2005), Herberts and Jensen (2004), Loschi and Cruz (2005), and 

Ramanayake and Gupta (2002). Sullivan (2002) proposes a method based on 

hierarchical clustering to identify change points.  

The disadvantage of change point identification methods is that they rely 

heavily on the assumption of observation distributions. When the assumption is 

violated, which can happen in practice, they may have poor performance. For instance, 

Sullivan and Woodall (1996 and 2000), Sullivan (2002), Hawkins and Zamba (2005), 

and Son and Kim (2005) assume normal distributions; Herberts and Jensen (2004) and 

Loschi and Cruz (2005) assume Poisson distribution; and Ramanayake and Gupta 

(2002) assume exponential distributions. When the real distribution is different from 

the assumed ones, they may identify too many change points and segment the 
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sequence into many short periods. In the end, only a few short periods are selected as 

the most favorable ones. Consequently, only a small portion of baseline periods can be 

successfully identified. Chapter 3 shows how an LRT method based on the 

assumption of normal distribution performs poorly when observations are generated 

by lognormal or hyper-exponential distributions.  

In this dissertation, we assume that there is only one product variable. 

However, this method can also be extended to cases with multiple product variables.  

We apply the proposed PDP clustering method and the LRT method in 

Sullivan and Woodall (1996) on simulated datasets and a real dataset from a 

continuous process. The comparison of their performances on these two datasets 

shows that the PDP clustering method is more robust to distributions and gives more 

convincing baseline periods from the real dataset. 

1.3 Background of detecting outlier profiles 

Detecting outlier profiles in baseline data is my third concern in this 

dissertation. When the quality of processes or products is characterized by profiles, 

MSPC methods are devised for on-line monitoring in phase II and outlier detection in 

phase I.  

From the definition of profiles (functions of explanatory variables), one may 

expect to see smooth curves or hyper-planes depicting the functions. However, if we 

loosen the definition of a function by letting it take any form (even not smooth), we 

have a more general definition of profiles.  

With this more general definition of functions, profiles and high-dimension 
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vectors are interchangeable. A profile can be treated as a high dimensional vector if 

we take the index of each value of the explanatory variable as the index of each 

dimension. The value in that dimension is just the value of the response variable. Fig. 

2(a) illustrates how a linear profile with two sample points is transformed into a 

vector in 2-D space. In Fig. 2(a), the linear profile has two samples when the 

explanatory variable equals x1 and x2, respectively. The response variable takes 

values y1 and y2 accordingly. This linear profile is transformed into a vector in 2-D 

space by letting y1 and y2 be the values in the first and second dimension 

respectively.  

Reversely, a high-dimension vector can be illustrated as a profile, which 

takes the more general definition described above. To transform a high-dimension 

vector into a profile, we take the index of dimension as the explanatory variable. The 

value in each dimension is the value of the response variable. This is illustrated in 

Fig. 2(b). Albazzaz et al. (2005) discuss this in more details, where high dimensional 

vectors are transformed into profiles for visual interpretation. 
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(a)  

(b)  

Figure 2. Transformation between profiles and vectors: (a) profiles to vectors; (b) 
vectors to profiles 

We have experience in a real industrial oven process where engineers use 

profiles and vectors interchangeably. The engineers believed that the quality is 

determined by the temperature profile a product experiences in the oven. Here, the 

profile is just the temperature as a function of the locations of the 14 thermocouples. 

There is no explicit expression for this function. This profile is actually a 14-D vector. 

Treating profiles as vectors is especially useful, or sometimes the only option 

when profiles are too complex. In this case, it is usually hard, if not impossible, to fit a 

regression model to express the relationship between the response and explanatory 

variables. In Chapter 4, we use the terms profiles and vectors interchangeably. 

We treat profiles as vectors in high-dimension space, so 2χ  control chart 

can be applied to identify outliers in multivariate datasets. Here we assume that all 

profiles take fixed values of explanatory variables such that when we treat profiles as 
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vectors, all vectors are in the same space.  

The application of the 2χ  control chart to identify outlier profiles is 

valuable in statistical process control in two ways: (1) It can be used to identify and 

remove outliers in the baseline data in phase I enabling the creation of a better model. 

(2) It can be used for on-line monitoring of processes in phase II by determining 

whether a newly observed profile is different from the baseline profile, i.e., 

out-of-control.  

The 2χ  control chart method works as follows: Given a set of profiles, we 

treat it as a set of vectors in high-dimension space. A central vector is derived by 

finding the median in each dimension. The variance among profiles is estimated by 

considering the pair-wise differences between profiles. Then each profile is 

compared to the central vector. A 2χ  statistic is developed to measure their 

differences. If the 2χ  statistic exceeds a threshold value, it is labeled an outlier.  

We assume that there is only one response variable and one explanatory 

variable. But the 2χ  control chart method can also be applied with one response 

variable and multiple explanatory variables.  

One may think that we can apply methods of outlier detection from data 

mining area, such as the local outlier factor (LOF) method; see Breunig et al (2000). 

Usually these methods require the number of vectors to be large compared to the 

number of dimensions. It might not be satisfied in a profile baseline dataset such as 

the VDP data in Chapter 4 which has only 24 vectors in 314-dimension space.  

In Chapter 4, we apply the 2χ  control chart method to simulated and real 
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data. The simulated profiles are generated from a highly nonlinear complex equation. 

The 2χ  control chart method is able to identify outliers that are generally too high 

or too low relative to the preponderance of the profiles. Also, it can identify an 

outlier that is near “the middle of the pack” but has the wrong shape. 

When using simulated profiles, Type I and Type II errors are computed to 

measure the performance of the proposed 2χ  control chart method. It is compared 

with the existing methods based on these two errors. The Type I error is the percent 

of non-outlier profiles that are identified as outliers. The Type II error is the percent 

of outlier profiles that are identified as non-outliers. In contrast, Mahmoud and 

Woodall (2004) assess the performance of several methods to detect outliers for 

linear profiles by considering the probability of identifying at least one outlier, 

regardless of the number present.  

We also apply the 2χ  control chart method to data that gives the density 

profile of a wood product as a function of the depth into the plank. This data was 

originally presented in Walker and Wright (2002) and is used in Williams et al. 

(2003) to test an outlier detection method based on non-linear regression. In contrast 

to the method in Williams et al. (2003), the 2χ  control chart method identifies 

outliers masked by other profiles but with the wrong shape. Also, the 2χ  control 

chart method does not require qualitative judgment to determine the outliers as in 

Williams et al. (2003).  

There is a growing body of research about profiles. Regression-based 

methods fit an explicit model relating the response and explanatory variables and 
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focus on the coefficients of the model to determine outliers. Other methods, 

including the 2χ  control chart method and wavelet transformations, do not create 

an explicit function and can be used when the profiles are complex and regression 

would involve too many regression parameters. The power to detect outliers drops 

significantly when the number of parameters is large, as discussed in Jeong et al. 

(2006). 

Focusing on linear profiles, Mahmoud and Woodall (2004) compare their 

outlier detection method to those proposed by Kang and Albin (2000), Stover and 

Brill (1998), and Kim et al. (2003). Kang and Albin (2000) simultaneously monitor 

the slope and intercept of a linear profile with a T2 chart. Kim et al. (2003) remove 

the correlation between the slope and intercept by coding X values such that the 

mean is zero and separately monitor the slope, intercept and error variance. 

Mahmoud and Woodall (2004) create two multivariate linear models: one gives the 

response as a function of the explanatory variable and the other includes an indicator 

function for each profile as additional explanatory variables. They conclude there are 

no outliers if the two models are not statistically significantly different. Mahmoud 

and Woodall (2004) compare these methods for linear profiles on simulated data and 

conclude that their own method and the method in Kim et al. (2003) perform best.  

Considering nonlinear profiles, Williams et al. (2003) detect outlier profiles 

by creating a nonlinear regression model and identifying outliers with four T2 charts. 

Jin and Shi (2001) and Lada et al. (2002) use wavelet transformations for nonlinear 

profiles. They focus on a subset of coefficients chosen using engineering knowledge. 
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Jeong et al. (2006) also use wavelet transformations but they select the key 

coefficients with an adaptive procedure. Wavelet methods handle complex profiles 

well but can be somewhat difficult to interpret. Woodall et al. (2004) is a good 

reference for the research work of applying SPC on linear or nonlinear profiles. 

All of the profile methods described, including the proposed 2χ  control chart 

method, assume that the dataset consists of realizations of one underlying profile plus 

some outlier profiles. In fact, it is possible that a dataset could contain two or more 

clusters of profiles as well as some outlier profiles. Data mining methods can be 

applied in these cases by treating profiles as vectors, such as methods to determine the 

number of clusters, e.g., the model-based method by Fraley and Raftery (1998), the 

density-based method in Ertoz et al. (2003), and the scale-based method in Zhang and 

Albin (2007) and Kothari and Pitts (1999). Then the profiles can be clustered.  

1.4 Background of detecting the change of correlation matrix 

The fourth question addressed in this dissertation is how we can determine 

whether the MSPC models need update after they are put into on-line monitoring. We 

answer this question through detecting whether the correlation matrix has changed. If 

so, the MSPC models may need update.  

We describe a test of hypothesis to determine whether the current correlation 

matrix is significantly different from the baseline. If significant difference is detected, 

we provide a new method to diagnose which variables may change their mutual 

correlations. Thus, operators can be guided to check these variables to see whether 

errors happen among them. The scope of trouble-shooting is greatly narrowed. If no 
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process error is found, we should consider updating the MSPC baseline data with the 

latest observations. 

In literature, there is no work for detecting correlation changes of multivariate 

processes. Except for detecting mean shifts, detecting variance changing also absorbs 

some interests; see Guo and Dooley (1992), Albin et al. (1997), Ho and Chang (1999), 

Acosta-Mejia and Pignatiello (2000), Montgomery (2001), and Yeh and Lin (2002). In 

literature regarding detecting changes of correlations, only the detection of 

autocorrelation coefficients in univariate autoregressive process is studied, as shown 

in Guo and Dooley (1995), Cook at al. (2001), and Hwarng (2004 and 2005).  

This dissertation also discusses my future work, the application of MSPC and 

data mining technologies in a brain neuron system. In that system, we want to find the 

patterns of the activities of brain neurons when one is planning body movements. 

Thereafter we can predict from the activities of brain neurons what the brain plans the 

body parts to do, e.g., move the right arm to reach an object. This is very helpful for 

disabled people with artificial arms or legs. We can drive the corresponding artificial 

body parts to fulfill the task as planned by the brain based on the prediction results. 

My expertise in MSPC and data mining applies in the following way for my 

future research. Data mining technologies (especially clustering analysis) can be used 

to segment neurons into clusters with different activities in brain planning. Different 

neurons are involved at different levels in planning different body movements. 

Clustering neurons helps to understand which neurons are active in planning a certain 

body movement, which in the end facilitates the body movement prediction. Multiple 
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neurons are involved in planning a certain body movement. Their signals form a 

multivariate dataset, which can be modeled by MSPC technologies.  

The remainder of this dissertation is organized as follows. Chapter 2 describes 

the method of determining the number of operational modes in MSPC baseline data. 

The method to determine the baseline periods in a historical dataset is described in 

chapter 3. A method of detecting outlier profiles in baseline data is provided in chapter 

4. The similarity test of correlation matrices and diagnosing methods are given in 

chapter 5. Chapter 6 concludes the research. Future work of applying MSPC and data 

mining technologies in the brain neuron system is described in Chapter 7.  
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2 Determining the number of operational modes in MSPC baseline datasets 

In this chapter, a new method to determine the number of operational modes in 

MSPC baseline datasets is proposed. Section 2.1 describes the methods in data mining 

context to determine the number of clusters. Section 2.2 describes our proposed 

method. Section 2.3 compares the performances of the proposed method with the 

other three existing methods by applying them on four experimental datasets. The 

experimental results show that our proposed method works better than the existing 

methods.  

2.1 Methods to determine the number of clusters 

A difficult and unresolved aspect of clustering is determining the number of 

clusters, say K*, in a dataset. There are three categories of methods to find K*. This 

section reviews the model-based, density-based and scale-based methods.  

Before describing methods to find K*, we describe an important building block: 

the method of k-means which, given the number of clusters k, finds cluster centers and 

assigns points to clusters. It works as follows: Randomly select k points as cluster 

centers and assign each point in the dataset to the cluster with the nearest center. 

Calculate new cluster centers that are the averages of the assigned points. Reassign 

points to the nearest cluster center, calculate new centers, and so on until the centers 

converge, i.e., they are less than a threshold distance from centers in the previous 

iteration. The threshold distance can be any arbitrarily small number, such as 0.001 or 

less. The smaller this value, the longer the algorithm takes to converge. Note the result 

is not too sensitive to the selection of threshold distance. For different selections of 
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threshold distance, if they are all small enough, only a few (or even no) points change 

their memberships. For details of the k-means method, refer to Han and Kamber 

(2001). 

2.1.1 Model-based methods 

Model-based methods to find K* assume each cluster is generated by its own 

multivariate normal distribution and work as follows. First we select Kmax, an upper 

bound on possible value of K* . For k=1, 2,…, Kmax, use k-means (or any other 

algorithm which takes k as input parameter) to partition the data into k clusters and 

estimate the mean vector and the variance-covariance matrix for each cluster. Then, 

for each k, compute an adjusted loglikelihood value l’(k)=l(k)-f(k), where l(k) is a 

loglikelihood value and f(k) is an overfitting penalty which is an increasing function of 

k. Select K* to maximize l’(k) as shown in the example in Fig. 3 where K*=4. For 

details of model-based methods, please refer to Fraley and Raftery (1998). 

The disadvantage of model-based methods is the assumption of mixture of 

multivariate normal distributions. It tends to incorrectly divide non-convex clusters 

into several convex clusters. In MSPC applications, in high dimensions, it is hard to 

know whether normality or even convexity is a safe assumption. 
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Figure 3. Model-based method for selecting the number of clusters; K*=4 

2.1.2 Density-based methods 

The second class of methods to find K* is density-based. Shared nearest 

neighbors (SNN) is one density-based method; see Daszykowski et al. (2001). In SNN, 

there are three user-specified integers, k0, k1 and k2, and k0>k1. For each point, k0 

nearest neighboring points are recorded. Then, if two points share at least k1 nearest 

neighboring points, we say these two points are connected. If one point has at least k2 

points connected with it, this point is called a core point. Only core points are counted 

when we determine the number of clusters. The number of clusters is the number of 

disconnected groups of connected core points. Any two core points in the same group 

are connected by at least one path, but there is no path connecting any two core points 

from two different groups.  

The major disadvantage of the density-based methods is that k0, k1 and k2 are 

critical user-specified parameters in the algorithm. The final answer K* is very 

sensitive to the values of these parameters. The selection of the parameter values is 

arbitrary or depends on the user’s understanding of the dataset. Therefore, the number 
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of clusters given by the density-based method may be wrong because of the improper 

selection of the parameter values. 

2.1.3 Scale-based methods 

The third type of method is scale-based such as the one proposed by Kothari 

and Pitts (1999). There is one scale parameter tλ  in the algorithm that gives the 

minimum allowable distance between cluster centers. As tλ  increases in small 

increments, the number of clusters detected is monotone decreasing. The algorithm 

finds , the number of clusters associated with each value of tK tλ . A graph of  vs. tK

tλ  is constructed and the number of clusters K* is set equal to the  that 

corresponds to the largest horizontal range of 

tK

tλ . In Fig. 4, =3 for tK tλ  from 0.35 to 

0.6; so K*=3. Herbin et al. (2001), Costa and Netto (1999) and Wang et al. (2004) 

provide other versions of scale-based methods. 

 

tK  

Figure 4. Scale-based method for selecting the number of clusters; K*=3. 

The scale-based method proposed by Kothari and Pitts (1999) can be 

simplified into the following steps: 

Step 0: Standardize the dataset such that each variable has mean 0 and unit 
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variance, denoted as X. Initialize: t=0; K0= Kmax, a number greater than the maximal 

possible number of clusters; 0λ  and the scale increment λ∆ .  

Step 1: Cluster X into  clusters using the method of k-means (or any 

other clustering method which segments dataset into  clusters). Find  cluster 

centers.  

tK

tK tK

Step 2: If distance between any two cluster centers is less than tλ , combine 

into one cluster. 

Step 3: Iterate: t=t+1; =the number of remaining clusters; tK 1t tλ λ λ−= + ∆  

Step 4: If , go to Step 5; otherwise, go to Step 1.  1tK =

Step 5: Graph  vs. tK tλ . K* >1 corresponds to longest horizontal segment.  

Scale-based methods are capable of dealing with non-convex clusters in 

contrast to model-based method. They are not overly sensitive to user selected 

threshold values in contrast to the density-based methods. However, there is a 

significant problem: the scale-based methods determine the number of clusters 

correctly only if there are two or more clusters in the data. The methods are not 

capable of concluding that the number of clusters is equal to one. This is quite 

important in MSPC, since one operational mode is the most common situation. 

Scale-based methods cannot conclude that there is one cluster because the 

algorithm stops when =1, as you can see in Step 4 and Fig. 6 above. Therefore the 

longest horizontal interval can never lead to the result K

tK

*=1. If the algorithm 

continued, increasing the scale parameter to infinity, the number of clusters detected 

 



27 

remains 1. Therefore the longest horizontal interval would always lead to the result 

K*=1. So, the algorithm has to stop when =1. If there is only one cluster in the data 

set, the scale-based method always concludes that the number is greater than 1. We 

propose a modification to the scale-based method in Section 2.2 such that it can detect 

one cluster and can be applied in MSPC. 

tK

2.2 Scale-based with dummy dimension (SBDD) method to determine the 

number of clusters 

This section proposes a scale-based method that is able to identify exactly one 

cluster or more than one cluster. Consider a matrix  that contains baseline data 

where n is the number of observations and p is the number of variables. Also, assume 

there are K

pn×X

* operational clusters in X. We construct an augmented dataset XD such that 

it has 2K* clusters. We can safely apply the scale-based method to find the number of 

clusters in XD, and then we divide it in half to find the number of clusters in X. 

The matrix XD consists of the points in X and a clone of those points and has an 

extra dummy dimension. Fig. 5 illustrates the concept behind XD. The stars in Fig. 4 

are centers for clusters. Fig. 5(a) shows an original dataset X in one-dimension with 2 

clusters, whose centers are labeled A and B respectively. Fig. 5(b) shows the 

augmented dataset XD in two-dimensions with 4 clusters: the original 2 clusters (A and 

B) plus 2 clones (A’ and B’) a distance d =1 away. 
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(a)  

(b)  

Figure 5. (a) Original data set X with 2 clusters in one dimension and (b) dataset XD 
with 4 clusters in two-dimensions 

It is important to notice in Fig. 5 that if d, the distance between the original and 

cloned clusters, is properly selected the centers of the clusters in XD will follow a 

certain pattern. Clusters A and B in X have centers (-0.8) and (1.2) and clusters A, B, 

and their clones A’ and B’ in XD have centers (-0.8, 0), (1.2, 0), (-0.8, d), (1.2, d), 

where d=1. Half the clusters centers, in the dummy dimension, are equal to 0 and half 

are equal to d. We will use this observation about the cluster centers when giving the 

details of the SBDD method. 

2.2.1 Scaled-based with dummy dimension method 

The steps of SBDD method are given below: 

Step 0. Standardize the data such that each variable has mean zero and 

variance one to eliminate the effect of scales of different variables. Denote the 
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standardized matrix by .  pn×X

Step 1. Select a small initial value for d and for d∆ , which is the increment for 

d. A recommended initial value for d is 1 or 2, for d∆  is 0.5 or 1.  

Step 2. Construct an augmented matrix with dummy dimension as follows:  

⎥
⎦

⎤
⎢
⎣

⎡
=+× DX

0X
XD

pn )1()2(                          (1) 

where  is an  vector with each element 0, and  is an  vector with 

each element d.  

0 1×n D 1×n

Step 3. Apply the scale-based method described in Section 2.2 to determine 

, the number of clusters in X*
DK D. Compute and record the cluster centers at each tλ  

in the scale-based method.  

Step 4. Check whether d was correctly chosen. The value d is correct if half the 

cluster centers in XD have 0 in the dummy dimension and half have d in the dummy 

dimension; i.e., the cluster centers in XD have the pattern 

),( ..., ),,( ),,( ),0,( ..., ),0,( ),0,( 2121 ddd c
M

ccc
M

cc XXXXXX              (2) 

where  are the unknown vectors with dimension Mic
i  ..., 2, ,1 , =X p×1  

representing the cluster centers in dataset X.  

• If d is correct, then the number of clusters in X is /2. End. *
DK

• If not, then increase d to d+ d∆  and go to step 2. 

2.2.2 More about selecting d 

The distance d between the original data and the clone must be chosen 
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correctly. Revisiting Fig. 5, note that if d is too small relative to the distance between 

the cluster centers, the scale-based method will incorrectly detect only two clusters in 

XD: one consisting of clusters A and A’ with center (-0.8, d/2) and the other consisting 

of clusters B and B’ with center (1.2, d/2). As you can see from this example, if d is too 

small we can easily detect it since the cluster centers do not follow the pattern in Eqn. 

(2).  

If d is too large relative to the distance between the cluster centers in Fig. 5, the 

scale-based method will incorrectly detect only two clusters in XD: one consisting of 

clusters A and B with center (0, 0) and the other consisting of cluster A’ and B’ with 

center (0, d). Here, the values of the first dimension of these two centers is 0, because 

X is standardized such that it has zero means and unit variance on each dimension of X. 

However the cluster centers appear to follow the pattern in Eqn. (2)! Since we can 

easily detect d too small but not one that is too large, the algorithm begins with a very 

small d and increases until the desired pattern for cluster centers is observed. 

2.3 Experiments 

In this section we present four datasets and use the methods described in 

Sections 2.1 and 2.2 to determine the number of clusters. The experimental results, as 

shown in Table 1, indicate that SBDD method successfully identifies the correct 

numbers of clusters in these four datasets. The other three methods only work on some 

of these four datasets.  
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  Method to Find Number of Clusters 
Density Based(SNN) Dataset 

Name 
true # 

clusters 
Model 
Based k0=30, 

k1=20,k2=10
k0=20, 

k1=10, k2=5

Scale 
Based 

SBDD 

Multinormal 1 1 2 1 2 1 
Non-convex 3 6 9 2 3 3 

Oven 2 2 11 2 2 2 
Wine 3 2 1 1 3 3 

Table 1. Number of clusters identified by four methods on four datasets 

In these experiments, for each dataset, we apply the model-based method 

proposed by Fraley and Raftery (1998), the density-based method by Ertoz et al. 

(2003), the scale-based method by Kothari and Pitts (1999) and the proposed SBDD 

method on it. For the density-based method, to show the effects of the arbitrarily 

chosen parameters, we use two different sets of parameters. Then, the results given by 

these four methods are compared. 

2.3.1 Multivariate normal data with one cluster 

Consider a dataset generated by a multivariate normal distribution with five 

variables having the following mean vector and covariance matrix: 

[10,10,30,25,40]Tµ = , 

4 2 1 2 0
2 3 2 0 1
1 2 5 3 2.2
2 0 3 4 2

0 1 2.2 2 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥Σ = −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

. 

We generate 300 observations and since all the data is generated by the same 

distribution there is only one cluster. The covariance matrix is arbitrarily selected 

and has the features of a covariance matrix: (1) All diagonal values are positive; (2) 

Symmetric; (3) Positive definitive. 

The first row of Table 1 shows the results when these four methods are applied 
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on the multinormal dataset. We can see that the SBDD method and the model-based 

method give the correct answer, and the scale-based method incorrectly selects two 

clusters. The density-based method gives the correct answer with one set of 

parameters but gives an incorrect answer with another set. 

We generate another two datasets X1 and X2 with the same µ  but different 

’s,  and , respectively. The SBDD method is applied. These two ’s are:  Σ 1Σ 2Σ Σ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−
−
−

−

=

322.210
24302
2.23521

10272
02126

1Σ  and .  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−
−−
−

−−

=

322.210
24302
2.23521

10231
02114

2Σ

The properly selected value of d for X0 differs from the one for X1, but is the 

same as the one for X2. However, the detected number of clusters remains the same. 

2.3.2 Non-convex cluster 

A dataset in two dimensions with three clusters, one of which is a concave, is 

shown in Fig. 6. This dataset can be accessed at the following address: 

http://www.stat.rutgers.edu/~jklin/567/hw3data1.txt.  

The results of four methods on this dataset are given in the second row of Table 

1. The scale-based method and the SBDD method both correctly identify three 

clusters. The model-based method incorrectly identifies six clusters. The 

density-based method also fails with either of the two sets of parameters. 

 

http://www.stat.rutgers.edu/~jklin/567/hw3data1.txt
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Figure 6. Scatter plot of a two-dimensional dataset with a concave cluster 

2.3.3 Two-zone industrial oven simulation 

The third dataset we consider comes from a simulation we developed in 

Simulink in Matlab of an industrial oven with two zones. As shown in Fig. 7 a 

conveyor passes through the two zones, each zone having a different target 

temperature. We simulate this system focusing on the temperatures in each zone.  

 

Figure 7. Two-zone industrial oven with PID controllers 

We choose this simulated system as an example here because it captures the 

characteristics of modern manufacturing systems: (1) Controllers are widely used; (2) 

It is hard to tell whether the clusters formed by the observations of process variables 

are convex or not. Thus, if one method of determining the number of operational 
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clusters works in this simulated system, it is promising to work in a real manufacturing 

system. 

The simulated baseline dataset consists of four variables corresponding to the 

four sensors, i.e., thermocouples, which record the temperatures in the bottom and top 

of each zone. Data is collected from the simulation after an initial start-up of 1000 

seconds. Then data is recorded every 10 seconds from the four sensors for a total of 

10,000 seconds. The sampling interval is chosen to avoid autocorrelations in the data.  

A typical industrial oven has some important features that are captured in the 

simulation: (1) The oven has PID controllers in the first zone to insure the target 

temperatures are maintained. PID controllers are feedback controllers: if the sensor 

detects that the current temperature is not equal to the target, the level of heat is 

increased or decreased; (2) The temperature in one part of the oven affects the 

temperatures in the other parts. The bottom temperature of zone one affects the top 

temperature of zone one. Both top and bottom temperatures in zone one affect the top 

and bottom temperatures in zone two; (3) There are several sources of random noise 

that affect the temperatures in each part of the oven. The noise effect and the 

controllers are described in detail in the control diagram in Fig. 8.  

The simulation is run to create two operational clusters representing two 

successful operational modes defined by target values for the first zone. For the first 

4000 seconds the target values for the top and bottom temperatures at zone one are 300 

and 350 degrees, respectively. Then the targets are adjusted to 310 and 360 degrees for 

the two temperatures. In a plant, such a shift could be caused by the transition from 
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warmer to colder ambient temperatures. For example, in food processing industry, the 

operator notes that the product is browning less, the target value is adjusted 

accordingly to insure that the final product has consistent characteristics.  

In manufacturing practice, there may be log documents to record when and 

how the target values are adjusted. Small adjustments are made to insure the 

consistency of the product quality. Because of the existence of noise, adjusting target 

values may or may not lead to multiple clusters in data space. Only those adjustments 

large and persistent enough may cause multiple clusters. But it is still hard to tell what 

adjustment can be called “large enough”. So, even with log documents in hand, we 

still have to analyze the baseline dataset with cluster analysis method to determine the 

number of clusters.  

 

Figure 8. Circuit diagram of two-zone industrial oven with PID control and 4 
thermocouples 

We can see the results from the third row of Table 1 when we apply the four 

methods on the industrial oven dataset. Model-based method, scale-based method and 

SBDD method detect the number of clusters correctly, but density-based method 

succeeds only with one of the two sets of parameters. However, the convexity of the 
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data clusters can not be verified in the high-dimensional space. We also have no prior 

knowledge of the actual number of clusters in the dataset. So, we still recommend 

SBDD method in MSPC applications. 

2.3.4 Wine  

The last dataset we analyze has thirteen variables that characterize three wine 

products. The data is published by UCI Machine Learning Repository and can be 

accessed as follows: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/wine/. 

Row 4 of Table 1 shows the results of the four methods on this wine data. The 

scale-based method and SBDD method successfully detect 3 clusters, while the other 

two do not. 

 

 

 

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/wine/
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3 Determining baseline periods in historical data 

 In this chapter, we describe the PDP clustering method to determine baseline 

periods from a historical dataset of product variables in a long time period. Section 3.1 

describes the PDP clustering method in details. The LRT and PDP clustering methods 

are applied to simulated and real datasets and their performances are compared in 

Section 3.2. 

3.1 PDP clustering method 

In this section, we describe the four steps of the proposed PDP clustering 

method to determine the baseline periods from a sequence of product variable 

observations.   

The sequence of the product variable is denoted as , 

where N is the number of observations in the sequence. The sampling instants of this 

sequence are denoted as 

{ }NN yyy  ..., , , 21=Y

{ }NN ttt  ..., , , 21=T , where  is the sampling time of 

.  

it

Niyi  ..., 2, ,1 , =

In the remainder of this chapter, without losing generality, we assume that the 

product with higher value of the product variable has better quality. 

3.1.1 Segmenting sequence of product observations into subsequences and 

transforming subsequences into PDPs 

In the proposed PDP clustering method, sequence  is first segmented into 

subsequences by a moving window of size w. Instead of defining w as the number of 

observations in each window as in Guh (2005), more generally, we define w as the 

NY
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time length covered by the window. In the ith subsequence ,  is the first 

observation. Then all the observations whose sampling times are between  and 

 constitute subsequencie , i.e., 

iS iy

it

wti + iS

{ }wttty ijiji +≤≤= |S                           (3) 

We also denote the observations in subsequence  as iS

{ }
iiNiliii yyyy  ..., , ..., , , 21=S , where  is the number of observations in subsequence 

. Fig. 9 illustrates how the subsequences are derived from .  

iN

iS NY

Two neighboring subsequences are heavily overlapped. For example, let us 

consider subsequences  and . From Eqn. (3), iS 1+iS { })1(21  ,... , , −+++=
iNiiiii yyyyS , 

{ })(211 1
 ,... , ,

+++++ =
iNiiii yyyS . These two subsequences have overlapped observations 

{ }) ,1min{21 1
 ,... ,

++−+++ ii NiNiii yyy . This is illustrated by and  in Fig. 9. 1S 2S

With this definition of w, the numbers of observations in subsequences are 

varying when the sampling frequency is not fixed, as shown in Fig. 8. Defining w as 

the number of observations in a moving window is just a special case when the 

sampling frequency is fixed.  

 

Figure 9. Segmenting sequence into subsequences using overlapping moving 
window 

Since the PDP of a subsequence Si is derived from its histogram, we must 

define the number of categories and their widths for the histograms. We call the 
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categories bins. To design a set of bins, we need to determine the number of bins and 

the width of each bin. As stated in Besterfield et al. (1999), the number of bins should 

be between 5 and 20. Broad guidelines are as follows: Use 5 to 9 bins when the 

number of observations is less than 100; Use 8 to 17 bins when the number of 

observations is between 100 and 500, and etc. The widths of bins are usually 

recommended uniform. However, sometimes if we want higher resolution in some 

certain range of the variable, we can make bins with smaller widths there. 

The selection of w depends on the sampling frequency of the product variable 

and the design of bins. We need to choose a large enough w such that generally the 

number of observations in each subsequence is compatible with the number of bins. 

When the sampling interval of the product variable is not fixed, it may happen that the 

number of observations in a subsequence is small. PDPs transformed from these 

subsequences can not characterize the distribution of the observations accurately. Any 

subsequence whose number of observations is smaller than a certain number, N , is 

neglected; otherwise it is reserved in the subsequence set.  

A subsequence is then first transformed into a histogram with the set of bins, 

and the PDP is derived by dividing the histogram with the number of observations in 

the subsequence. 

Suppose that we decide to have a set of K bins, whose boundaries consist of a 

set of K-1 strictly monotonically increasing values, denoted as . 

The histogram of subsequence  is just a set of frequencies of observations falling 

into the j

{ }121  ..., , , −= KbbbB

iS

th bin, denoted by , where , j=1, 2, …, K. Here, ijn ∑
−+

=
− <≤=

1

1 )(
iNi

il
jljij bybIn
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)(⋅I  is an identity function such that 1)( =XI  if X is true, and 0 otherwise; −∞=0b  

and . ∞=Kb

The PDP of the ith subsequence  is just its histogram divided by the number 

of observations in . It can be considered as the normalization of histograms such 

that histograms of subsequences with different number of observations can be 

compared directly. We use a set of K variables 

iS

iS

{ }iKiii fff  ..., , , 21=f  to denote the PDP 

of , where iS
i

ij
ij N

n
f = , j=1, 2, …. K. Suppose that after the transformation, there are 

L PDPs reserved, the PDP dataset is: 
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If two subsequences are generated by significantly different distributions, their 

PDPs are two significantly different row vectors in Eqn. (4). It is demonstrated in Fig. 

10 where the bars in dark and light colors represent the PDPs of two sequences 

generated by two different lognormal distributions, respectively.  

PDPs of Two Sequences from Different Distributions

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

Indices of Bins

Probability Density
Distribution 1

Distribution 2

 

Figure 10. Difference of PDPs of different distributions 
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3.1.2 Determining the number of PDP clusters and clustering PDPs 

Since significantly different distributions have significantly different PDPs, 

clustering PDPs helps to determine periods of different distributions in a data 

sequence. Before clustering PDPs, we need to determine the number of PDP clusters. 

In the proposed PDP clustering method, we take each PDP as a point in a high 

dimensional space. The PDP dataset F in Eqn. (4) is just a dataset of L points in 

K-dimension space.  

There are several types of methods to determine the number of clusters in a 

dataset, such as the model-based method in Fraley and Raftery (1998), the density 

based method in Daszykowski et al. (2001), and the scale-based method in Zhang and 

Albin (2007), Kothari and Pitts (1999), Herbin et al. (2001), Costa and Netto (1999) 

and Wang et al. (2004). Among these methods, we recommend the scale-based 

method proposed by Zhang and Albin (2007) since their method can handle 

non-convex clusters, is not sensitive to user-specified parameters, and can give correct 

number of clusters even there is only one cluster in the dataset. The other methods do 

not have all these properties. While in the PDP dataset F, it may happen that there is 

only one PDP cluster since all observations are generated by a single distribution. It is 

also hard to determine the convexity of the PDP clusters in F.  

After the determination of the number of PDP clusters, denoted as N*, in 

dataset F, we need to cluster the PDPs into N* clusters. In the proposed PDP clustering 

method, for simplicity, we use K-means to cluster PDPs. There are many other 

methods of clustering, such as K-median, hierarchical clustering, etc. Please refer to 
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Han and Kamber (2001) for details. Garcia-Escudero and Gordaliza (2005) claim that 

they are clustering curves, but essentially they take curves as points in high 

dimensional space. They use a trimmed K-means method to cluster the curves, which 

is robust to outlying curves. If one wants more robustness to outlying PDPs, the 

trimmed K-means can be applied.  

After the PDP clustering by K-means, we get the cluster label of each PDP. We 

denote these cluster membership labels as { }LMMM  ..., , , 21=M , where =1, 2, …, 

or N* . 

iM

3.1.3 Point clustering: determining the membership of each single observation 

Clustering PDPs only gives the cluster membership of each PDP, but we do 

not have clear cut-off points segmenting periods with different distributions. For 

instance, PDPs  to are labeled 1, PDPs  to are labeled 2. If PDPs  

and  are derived from subsequence 

1f 100f 101f 200f 100f

101f { }145101100100  ..., , , yyy=S  and 

, respectively, we can not determine at which product 

observation the distribution changes. So, we need to determine the cluster 

membership label of each observation. If  and  have different cluster 

membership label, we say that the distribution till  and the distribution after  are 

different.  

{ 150145102101101  ..., , ..., , , yyyy=S }

iy 1+iy

it 1+it

One possible way to determine the label of each observation is as follows. For 

observation yi, we assign a set of N* probabilities to it, denoted as 

Pi= , where  is the percent of PDPs covering y{ }*21  ..., , , iNii ppp ijp i whose 

membership labels are j. We use set  to denote the set of  
⎭⎬
⎫

⎩⎨
⎧=

C
iN

iii
C
i SSSS  ..., , ,

21

C
iN
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subsequences covering observation yi. So,  is calculated as: ijp

N*j
N

jMI
p C

i

N

k
i

ij

C
i

k

 ..., 2, ,1 ,
)(

1 =
=

=
∑
=                       (5). 

Eqn. (5) is applied on all i=1, 2, …, N. Then, for point yi, we assign a cluster 

label, denoted as Li, to each point by choosing the label corresponding to the maximal 

probability, i.e., 
                                                          

} ..., 2, ,1 ,max{arg
j

iji N*jpL == . 

3.1.4 Calculating statistics of each point cluster and picking up the baseline 

periods 

After the point clustering, the whole time period of the historical dataset is 

divided into periods with different cluster labels, as illustrated in Fig. 11. In Fig. 11, 

the whole time period is divided into four periods, two are labeled cluster 1, the 

remaining two are labeled cluster 2. We need to determine which point clusters have 

the best quality, e.g., the highest mean. Then, the periods corresponding to the best 

point clusters are selected as baseline periods.  

 

Figure 11. Periods with different cluster labels 

Among the selected baseline periods, some may be shorter than the 

user-specified minimal length. For example, in Fig. 11, suppose cluster 2 has the best 

quality. The first period of cluster 2, from ti+1 to tj, is too short. These clusters are 

disregarded, and the remaining selected periods are the baseline.  

 



44 

We determine which periods have the best quality by analyzing commonly 

used statistics of each point cluster, the mean and standard deviation. We denote the 

cluster with the highest mean as , the mean of  as )1(C )1(C )1(µ̂ , the standard deviation 

of  as )1(C )1(σ̂ , and the cluster index of  as j*. We also denote the means and 

standard deviations of point clusters as 

)1(C

]ˆ ..., ,ˆ ,ˆ[ˆ *21 Nµµµ=µ  and ]ˆ ..., ,ˆ ,ˆ[ˆ *21 Nσσσ=σ , 

respectively. The numbers of observations in these point clusters are 

.  ] ..., , ,[ *21 Nnnn=n

Except for only choosing  as the point cluster with the best quality, we 

also choose any other point clusters whose mean is not significantly smaller and 

whose standard deviation is not significantly greater than  as clusters with the 

best quality. So, we conduct tests of hypothesis to compare the other clusters with . 

The two hypotheses are: 

)1(C

)1(C

)1(C

)1(11

)1(01

 :

 :

µµ

µµ

<

=

i

i

H

H
, 

)1(12

)1(02

 :

 :

σσ

σσ

>

≤

i

i

H

H
 and * ..., 2, ,1 *, Niji =≠           (6) 

If none of  and  is rejected, we say that cluster i is as good as .  01H 02H )1(C

Usually we conduct t-tests and F-tests to compare means and variances of 

samples from two distributions, respectively. Readers are referred to Montgomery and 

Runger (2006) for details of these two tests. Although t-test and F-test assumes the 

normal distribution, which may be violated in practice, we still use it here to compare 

the means and standard deviations of two clusters roughly.  

In order to reduce the overall type I error in the t-tests and F-tests in Eqns. (6), 

we can choose a small confidence level α , such as α =0.01 when determining the 

critical values of these two tests. So the overall type I error is still not too large. 
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3.2 Simulations and real data 

In this section, we apply the LRT and PDP clustering methods on simulated 

and real datasets. Their performances are compared. We use type I and type II errors as 

the performance measurement. Here, type I error, denoted as 1β , is the percent of the 

successful production period identified as unsuccessful production. Similarly, type II 

error, denoted as 2β , is the percent of the unsuccessful production period identified as 

successful production incorrectly. 

The simulation results show that the proposed PDP clustering method has 

similarly good performance with the LRT methods when the data is generated by 

normal distributions as they have similarly small type I and II errors. However, PDP 

clustering method performs better on lognormal and hyper-exponential distributions 

by having much smaller type I error and similarly small type II error than the LRT 

method. It shows that PDP clustering method is robust to distributions.  

The real dataset is a sequence of a product variable from a continuous process. 

The proposed PDP clustering method segments the sequence into periods which 

coincide with the changes in the process variables. The period of successful 

production in the real dataset is mostly identified correctly as baseline periods by the 

PDP clustering method. Contrarily, the LRT method only extracts a small portion of 

successful production period as baseline. We think the PDP clustering method gives 

more reasonable baseline. 

Before describing experimental results, we first briefly introduce the LRT 

method by Sullivan and Woodall (1996). 
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3.2.1 LRT method 

The procedure of the LRT method is like this. For a given sequence of N 

observations , the log-likelihood value of the whole sequence by assuming that all 

observations come from a single normal distribution is calculated, denoted as . By 

assuming the position of a single change point, , it divides the sequence into two 

subsequences, 

NY

0l

1m

{ }
1

 ..., , , 21 myyy  and { }Nmm yyy  ..., , , 21 11 ++ .The log-likelihood of each 

subsequence is calculated, denoted as  and , respectively, by assuming each 

subsequence follows a normal distribution. The normalized likelihood ratio is 

calculated from ,  and . The assumed change point  changes from 2 to N-2, 

and the normalized likelihood ratio for each  is calculated. If all normalized 

likelihood ratios are within a control limit 1, there is no change point; otherwise, the 

point with the largest normalized likelihood ratio is considered as the most significant 

change point and the sequence is divided into two subsequences at that point. The 

same procedure is repeated on each of these two subsequences, until no change point 

is identified. 

1l 2l

0l 1l 2l 1m

1m

For a given , the log-likelihood values ,  and  are calculated as: 1m 0l 1l 2l

2
)ˆlog(

2
)2log(

2
2

0
NNNl −−−= σπ , 

2
)ˆlog(

2
)2log(

2
12

1
11

1
mmml −−−= σπ , and  

2
)ˆlog(

2
)2log(

2
12
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2
mNmNmNl −

−
−

−
−

−= σπ .  

Here, ,  and  are maximum likelihood estimates of the variance of the 

whole sequence , 

2σ̂ 2
1σ̂

2
2σ̂

NY { }
1

 ..., , , 21 myyy  and { }Nmm yyy  ..., , , 21 11 ++ , respectively.  

The normalized likelihood ratio, denoted as Nlrt( , N- ), is calculated as: 1m 1m

)],([
) ,(),(

11

11
11 mNmlrtEUCL

mNmlrtmNmNlrt
−×

−
=− , where 
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))((2) ,( 21011 lllmNmlrt +−−=− . The two terms in the denominator can be 

approximated by 

2

 ,)1( **/17.1
1

kp k
UCL

−
= χ , and ⎥

⎦

⎤
⎢
⎣

⎡
−−−

−
=−

)1)(1(
22)],([

11
11 mNm

NmNmlrtE , where 

 is the percentile of the  distribution with degrees of 

freedom , and p=0.05. 

2

 ,)1( **/1 kp k−
χ

*/1)1( kp− 2χ

)log(18.376.4* Nk +−=

3.2.2 Simulations with different distributions 

Each simulated dataset consists of 1000 observations of a single variable and 

200 replicates. So, each dataset is a 2001000×  matrix. In each replicate, the first 400 

observations are generated with distribution , the remaining 600 observations 

are generated with distribution . Fig. 12 illustrates the dataset.  

)( 1θf

)( 2θf

 

Figure 12. Simulated dataset 

When generating each dataset, we let  has higher mean. If two periods 

have the same mean, then the period with the smaller variance has better quality.  

)( 1θf

For each dataset, we apply the LRT and the proposed PDP clustering methods 

on each replicate, 1β  and 2β  are calculated. The averages, 1β  and 2β  in all 200 

replicates are recorded.  

When applying PDP clustering method, we assume that the sampling interval 

is a constant. So defining window size w as the time length covered by the window is 
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equivalent to defining it as the number of observations in a moving window. We let 

w=40 observations. For each dataset, we plot the observations of the first replicate to 

have a view of the sequence and design the bins accordingly. In the simulation, we let 

the number of bins K=8. When transforming sequence into PDPs, we let N =20, i.e., 

each PDP is built from a subsequence with at least 20 observations. 

3.2.2.1 Normal distribution 

To simulate the dataset generated by normal distributions, we let  

) ,()(

1) ,0() ,()(
2
222

2
111

σµ

σµ

Nf

NNf

=

==

θ

θ
                     (7) 

where 2µ <0 and 12 ≥σ . We take factor pair [ 2µ , 2σ ] to generate simulated 15 

datasets, where 2µ = [ ]5 4, 3, 2,,1 −−−−− 2 and σ = [ ]3 2, 1, .  

Tables 2 and 3 give 1β  and 2β  of LRT and PDP clustering methods. Table 4 

gives the boundaries of bins { }721  ..., , , bbb=B  for PDP clustering method. By 

comparing Tables 2 and 3, we can see that LRT and PDP clustering method perform 

similarly well. Type I and II errors 1β  and 2β  in Tables 2 and 3 are both very close 

to 0. It means almost the whole baseline period is identified correctly, and almost no 

period of unsuccessful production is identified incorrectly as baseline. It is not a 

surprise for LRT methods since it is based on the assumption of normal distribution.  

2µ  
 

-1 -2 -3 -4 -5 
1 2.1 (0.2) 1.4 (0.1) 0.8 (0) 1.1 (0) 0.7 (0) 

2 1.8 (0.3) 1.0 (0.1) 0.9 (0.1) 1.2 (0) 0.8 (0) 

 

2σ  
3 0.7 (0.3) 0.8 (0.1) 0.4 (0.1) 0.6 (0.1) 0.2 (0) 

Table 2. ( 2β ) of LRT method on simulated datasets by normal distributions 1β
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2µ  
 

-1 -2 -3 -4 -5 
1 0.9 (0.5) 0.4 (0.3) 0.2 (0.2) 0.2 (0.2) 0.2 (0.1) 
2 0.7 (0.7) 0.5 (0.3) 0.4 (0.2) 0.3 (0.2) 0.2 (0.2) 

 

2σ  
3 0.5 (0.4) 0.5 (0.3) 0.3 (0.4) 0.3 (0.3) 0.3 (0.2) 

Table 3. 1β ( 2β ) of PDP clustering method on simulated datasets by normal 

distributions 

 [ 2µ , 2σ ] { }721  ..., , , bbb=B  

[1,1], [1,2], [1,3] {-2, -1, -0.5, 0, 0.5, 1, 2} 
[2,1], [2,2], [2,3] {-4, -3, -2, -1, 0, 1, 2} 
[3,1], [3,2], [3,3] {-4, -3, -2, -1, -0.5, 0.5, 1} 
[4,1], [4,2], [4,3] {-5, -4, -3, -1, -0.5, 0.5, 1} 
[5,1], [5,2], [5,3] {-6, -5, -4, -1, -0.5, 0.5, 1} 

Table 4. Boundaries of bins for normal distribution 

3.2.2.2 Lognormal distributions 

The lognormal distribution is a long-tail distribution with probability density 

function ⎥⎦
⎤

⎢⎣
⎡ −
−= 22

)(lnexp
2

1)(
σ

µ
πσ

y
y

yf , ∞<< y0 . The mean and variance of Y 

are  and . 2/2

)( σµµ +== eYE Y )1()(
2222 −== + σσµσ eeYVar Y

In the simulations with lognormal distributions, we let 

 and , where 0.3] ,9.0[] ,[ 111 == YY σµθ ] ,[ 222 YY σµ=θ 2Yµ = [ ]0.4 0.5, 0.6, 0.7, ,8.0 , 

and = . We take the 15 different factor pairs  to generate 

simulated datasets. 

2Yσ [ 0.7 0.5, ,3.0 ] ] ,[ 22 YY σµ

Fig. 13 shows the plot of 100 observations generated by a lognormal 

distribution, where the first 40 observations are generated with parameter 

, the remaining 60 observations are generated with parameter 

. We can see that visually it is almost impossible to find a proper 

0.03] ,9.0[1 =θ

0.03] ,8.0[2 =θ
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segmentation point to divide this sequence into two parts.  

 

Figure 13. Plot of 100 observations from lognormal distribution 

Tables 5 and 6 show 1β  and 2β  after we apply LRT and PDP clustering 

method on these 15 simulated datasets. PDP clustering method performs much better 

than LRT method by having much smaller 1β . Tables 5 and 6 also show that the PDP 

clustering method has higher 2β  than LRT method. However, since PDP clustering 

method has far smaller 1β  than LRT method, we still conclude that generally PDP 

clustering method has much better performance than LRT method on lognormal 

distributions. Table 7 gives the boundaries of bins used in the PDP clustering method 

on these datasets. 

2Yµ  
 

0.8 0.7 0.6 0.5 0.4 
0.3 88.7(0.2) 87.7(0) 85.0(0) 89.5(0) 82.3(0) 
0.5 88.3(0.6) 89.2(0.1) 86.8(0) 84.8(0) 87.4(0) 

 

2Yσ  
0.7 90.2(1.1) 89.0(0.1) 87.8(0) 85.1(0) 87.6(0) 

Table 5. 1β ( 2β ) of LRT on simulated datasets by lognormal distributions 
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2Yµ  
 

0.8 0.7 0.6 0.5 0.4 
0.3 1.0(1.1) 0.5(0.3) 0.5(0.3) 0.4(0.2) 0.4(0.2) 
0.5 5.7(10.7) 0.7(0.5) 0.5(0.3) 0.5(0.3) 0.4(0.3) 

 

2Yσ  
0.7 9.8(24.5) 1.1(1.4) 0.5(0.4) 0.5(0.3) 0.5(0.3) 

Table 6. ( 2β ) of PDP clustering method on simulated datasets by lognormal 

distributions 

1β

 [ 2Yµ , ] 2Yσ { }721  ..., , , bbb=B  

[0.8,0.3], [0.8,0.5], [0.8,0.7] {0.75, 0.78, 0.8, 0.82, 0.89, 0.91, 0.93} 
[0.7,0.3], [0.7,0.5], [0.7,0.7] {0.67,0.70,0.73,0.82,0.89,0.91,0.94} 
[0.6,0.3], [0.6,0.5], [0.6,0.7] {0.57,0.60,0.63,0.82,0.89,0.91,0.94} 
[0.5,0.3], [0.5,0.5], [0.5,0.7] {0.47,0.50,0.53,0.72,0.89,0.91,0.94} 
[0.4,0.3], [0.4,0.5], [0.4,0.7] {0.37,0.40,0.43,0.55,0.87,0.90,0.93} 

Table 7. Boundaries of bins for lognormal distribution 

3.2.2.3 Hyper-exponential distributions 

In our simulation with hyper-exponential distribution, we use the mixture of 

two exponential distributions to generate datasets, i.e., )()1()()( 21 xfpxpfxfX −+= . 

Function , i=1, 2. Parameter x
ii

iexf λλ=)( 1λ =1 is fixed in all simulated datasets. To 

simulate datasets, we have two factors, 2λ  and p . They take values {2, 3, 4, 5, 6} 

and {0.9, 0.8, 0.7}, respectively. In each replicate of every dataset, the first 400 

observations are generated with parameter ] ,[ 21 pλ=θ , the remaining 600 

observations are generated with ]-1 ,[ 22 pλ=θ , i.e., their pdfs are 

)()1()()( 211
xfpxpfxf −+=θ  and )()()1()( 212

xpfxfpxf +−=θ , respectively. 

Fig. 14 shows the plot of 100 observations generated by a hyper-exponential 

distribution, where [ 2λ , p]=[3, 0.8]. The first 40 observations are generated by , 

the remaining 60 observations are by . Like the lognormal distribution in Fig. 

13, it is difficult to tell which periods are the baseline.  

)(
1

xfθ

)(
2

xfθ

 



52 

 

Figure 14. Plot of 100 observations from hyper-exponential distribution 

Tables 8 and 9 give 1β  and 2β  when we apply the LRT and PDP clustering 

methods on these 15 datasets. PDP clustering method has much smaller 1β  than and 

similar 2β  as the LRT method in all circumstances. For a given value of 2λ , with the 

increase of p, both 1β  and 2β  increase because the difference between the means of 

 and  decreases. For instance, when [)(
1

xfθ )(
2

xfθ 2λ , p]=[3, 0.9], 93.0
1
=θµ , 

4.0
2
=θµ , 53.0

21
=− θθ µµ ; when [ 2λ , p]=[3, 0.8], 87.0

1
=θµ , 47.0

2
=θµ , 

4.0
21
=− θθ µµ . The boundaries of bins used by the PDP clustering method are 

={0.2,0.4,0.6,0.8,1,1.2,1.4} in all 15 simulated datasets.  { 721  ..., , , bbb=B }

2λ  
 

2 3 4 5 6 
0.9 21.8(11.3) 29.0(7.1) 22.2(6.8) 27.6(6.4) 23.1(5.8) 
0.8 27.1(17.8) 25.4(17.0) 29.8(13.7) 33.9(13.9) 24.4(14.7) 

 
p  

0.7 34.5(24.9) 37.3(29.7) 35.7(18.7) 40.6(22.9) 33.3(14.9) 

Table 8. ( 2β ) of LRT on simulated datasets by hyper-exponential distributions 1β
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2λ  
 

2 3 4 5 6 
0.9 9.6(7.5) 5.1(8.6) 4.4(5.7) 3.1(7.0) 3.5(5.1) 
0.8 17.9(19.1) 12.1(13.7) 13.0(15.4) 11.8(13.1) 11.8(14.5) 

 
p  

0.7 23.8(29.6) 28.6(29.9) 20.7(20.1) 27.8(26.3) 19.5(17.4) 

Table 9. 1β ( ) of PDP clustering method on simulated datasets by 

hyper-exponential distributions 

2β

3.2.3 Real dataset 

The real dataset comes from a continuous manufacturing process. The yield of 

each batch is recorded as the product variable. It is ranged between 0 and 1. Fig. 15 

shows the real dataset with 483 batches. The sampling interval is 4 to 5 hours and 

averagely we have around 5 samples each day. From Fig. 15 we can see that the 

process experiences a period of unsuccessful production from t1 to t2. Some of the 

batches before t1 have high percentages of defected products, so do batches after t2.  

 

Y
ie

ld
 

Figure 15. Plot of data from a real continuous process 

We apply the PDP clustering method and the LRT method on this real dataset. 

When applying the PDP clustering method, we let the moving window size w=9 days. 

So, each moving window roughly has 40 to 50 observations. Any subsequence whose 
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number of observations is less than 20 is neglected, i.e., N =20. The boundaries of 

bins are B={0.79, 0.82, 0.85, 0.88, 0.91, 0.94, 0.97}. After the segmentation by PDP 

clustering or the LRT method, any period with less than 10 observations is 

disregarded.   

The PDP clustering method segment the sequence into three parts, the start and 

end indices, the means and the standard deviations of these three segments are given in 

Table 10. The period between observations 1 and 118 is selected as the period of 

successful production because it has significantly smaller mean than others. 

Period Start Index End Index Mean Standard Deviation 
1 1 115 0.92 0.13 
2 116 185 0.81 0.13 
3 186 483 0.89 0.13 

Table 10. Periods segmented by PDP clustering method and statistics 

The selection of baseline periods is supported by the events happening in the 

process variables. A big change happened in the process variables after the 122nd batch. 

Thereafter, the process engineers adjusted the process variables by trials and the 

adjustment procedure stopped after the 178th batch. The process settings after the 178th 

batch are very stable, so are the settings before the 122nd batch. However, they are 

different.  

So, it should be reasonable to segment the sequence into three periods: batches 

1 to 122, batches 123 to 178 and batches 179 to 483. The average yield in the first 

period is the highest and should be considered as the baseline. Comparing with the 

period identified by the PDP clustering method, we can see that 1β =1-115/122=5.7%, 

and 2β =0.  
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Contrarily, the LRT method picks up periods of batches 13 to 41 and 233 to 

245 as the ones representing the successful production. Thus, 1β =1-(41-13+1)/122 

=76.2%, and 2β =(245-233+1)/(483-122)=3.5%. The majority of information about 

the successful production is lost. If we use the observations of the process variables in 

these two periods identified by LRT method to build MSPC models, they can not 

characterize the successful working conditions from batches 1 to 122 and are very 

likely to have poor performance in online monitoring. 

3.2.4 Sensitivity of PDP clustering method to designations of bins 

PDP clustering method needs a set of bins to transform subsequences into 

PDPs, as described in section 3.1.1. Now we show that the PDP clustering method is 

not sensitive to the designation of bins, as long as the bins are reasonable to the data. 

We demonstrate this by applying the PDP clustering method on the datasets in 

section 3.2.2 with newly designed bins, whose boundaries are B={0.51, 0.58, 0.65, 

0.72, 0.79, 0.86, 0.93} constantly. This set of bins is reasonable since the product 

variable is valued from 0 to 1. We want to focus more on the higher end of the value 

range, so we design bins with width 0.07 each from 0.51 to 1.0, and let [0, 0.51) to 

constitute a single bin.  

Table 11 lists the 1β  and 2β  of the PDP clustering method. It shows that with 

these newly designed bins, PDP clustering method has similarly good performance 

(small 1β  and 2β ) as when the boundaries of bins are designed as in Table 7. 
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2Yµ  
 

0.8 0.7 0.6 0.5 0.4 
0.3 1.0(1.3) 0.4(0.3) 0.4(0.2) 0.3(0.2) 0.4(0.2) 
0.5 4.3(11.0) 0.7(0.6) 0.4(0.3) 0.4(0.3) 0.4(0.2) 

 

2Yσ  
0.7 10.5(23.6) 1.0(1.3) 0.4(0.4) 0.5(0.3) 0.4(0.3) 

Table 11. 1β ( ) of PDP clustering method on simulated datasets by lognormal 

distributions with newly-designed bins 

2β
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4 Detecting outlier profiles 

In this chapter, we apply 2χ  control chart to detect the outliers in profile 

baseline data. Section 4.1 describes the proposed 2χ  control chart method for 

detecting outliers in a profile dataset. The method is described in the context of 

statistical process control assuming that the dataset is baseline process control data. 

Section 4.2 shows simulated and real examples of the application of the 2χ  control 

chart method, and compares it with the nonlinear regression method by Williams et al. 

(2003). Section 4.3 discusses the robustness of the variance estimator and applies the 

method to on-line monitoring of profiles. 

4.1  control chart method to detect outlier profiles in baseline 2χ

The baseline profile dataset consists of N profiles. Denote the response 

variable by Y and the single explanatory variable by X. The explanatory variable takes 

a set of M fixed values 1 2{ , ,..., }Mx x x . The ith profile, i=1, 2,…, N, is a 1-by-M vector 

{ }1 2, ,...,i i iMy y y  where  is the response Y for the iijy th profile when jX x= .  

Among the N profiles, there are P outlier profiles and N-P non-outlier profiles. 

Denote the set of outlier profiles by S1 and non-outlier profiles by S0. It is reasonable to 

assume that P<N/2. 

Model the profiles in S0 as follows: 

0( ) ,  1, 2,..., ;  ij s j ijy f x j M i Sε= + = ∈                      (8) 

As commonly assumed in literature, such as Kang and Albin (2000), Kim et al. (2003) 

and Williams et al. (2003), the noise terms s'ijε  in Eqn. (8) are independent 

identically-distributed (iid) normal random variables with mean 0 and variance 2
sσ  
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for all i and j. (Section 4.1.4 extends the results to the case where the variances of ijε  

differ for different xj’s.) Function ( )sf ⋅  can be of any form, linear or nonlinear. Since 

the possible values of xj are fixed for profiles in S0, write jjs yxf =)( .  

Model the profiles in set S1 as follows: 

1( ) ,   1, 2,..., ;  kj k j kjy f x j M k Sε= + = ∈ .                     (9) 

The model in Eqn. (9) for S1 may differ from the model in Eqn. (8) for S0 in two 

ways: (1) ( ) ( )k sf f⋅ ≠ ⋅  and/or (2) . Any two different 

profiles k and l in set S

222  ), ,0(~ skkkj N σσσε >

1 can be generated by the same or different underlying models, 

i.e., either ( ) ( )k lf f⋅ ≠ ⋅  or ( ) ( )k lf f⋅ = ⋅  and either 2
k

2
lσ σ≠  or 2 2

k lσ σ= .  

Among the N profiles, there are NM noise terms in Eqns. (8) and (9) that are 

assumed to be independent.  

When ( )sf ⋅  and )(⋅kf  in Eqns. (8) and (9) are complex, it is difficult to fit 

explicit expressions for them. We take the N profiles as points in M-dimension space, 

among which P profiles are outliers. From Eqn. (8), profiles in S0 can be considered 

N-P normally distributed points with mean vector [ ]TMs yy y ..., , , 21=µ , and 

variance-covariance matrix , where  is an M-by-M identity matrix. 

Similarly, from Eqn. (9), profile k in S

IΣ 2
ss σ= I

1 can be considered a normally distributed point 

with mean vector  and/or variance-covariance , where . sk µµ ≠ IΣ 2
kk σ= 22

sk σσ >

In the remainder of this section, we first describe the  control chart to 

identify outliers. Then, we propose robust estimators of the mean vector  and the 

variance . The test statistic plotted on the  control chart is revised based on the 

estimators of  and , and its approximate distribution is derived. In the end of 

2χ

sµ

2
sσ 2χ

sµ 2
sσ
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this section, the situation when the variance differs at different ’s is discussed. jx

4.1.1  control chart 2χ

The  control chart works as follows. Suppose we know the mean vector 

 and the variance-covariance matrix  of the M-variate baseline normal 

distribution. In the case of identifying outlier profiles,  and 

. Given profile i in baseline , we construct a statistic: 

2χ

sµ sΣ

[ ]TMs yy y ..., , , 21=µ

IΣ 2
ss σ= T

iMiii yyy ] ..., , ,[ 21=y

                    ∑
=

− −
=−−=∆

M

j s

jij
sis

T
sii

yy

1
2

2
1 )(

][][
σ

µyΣµy                   (10) 

If profile i is non-outlier, i∆  is a sample from a  distribution with M 

degrees of freedom. The upper control limit for the  control chart is , 

the upper 100

2χ

2χ 2
,MUCL αχ=

α  percentile of the  distribution with M degrees of freedom. The 

 control chart plots  against i for i=1, 2, …, N. Profile i with  is 

considered an outlier. 

2χ

2χ i∆ UCLi >∆

Mean vector  and  in Eqn. (10) are usually unknown and can only be 

estimated from the baseline data. The following subsection gives their robust 

estimators. 

sµ 2
sσ

4.1.2 Estimating  and  sµ 2
sσ

Since profile baseline data may contain outliers, we need to derive estimators 

of  and  which are robust to the presence of outliers.  sµ 2
sσ

The estimator of the mean vector  is the median of the points in profile 

baseline data, denoted as , i.e.,  

sµ

sµ̂

Mjmiymedianyy
yyy

ijjj

Ms

 ..., ,1 ); ..., 2, ,1,(~ˆ
]ˆ ..., ,ˆ ,ˆ[ˆ 21

====
=

⋅

µ
.             (11) 
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To estimate 2
sσ , we calculate the N(N-1)/2 pair-wise differences between 

profiles i and k at each jx : 

( , ) ,   , 1, 2,..., ,   ;   1, 2,...,i k j ij kjy y i k N i k j Mδ = − = ≠ = .     (12) 

For each pair i and k, average the squared differences over the values of jx  to obtain 

N(N-1)/2 estimates of 2
sσ , called pair-wise estimator:  

   2 2
( , ) ( , )

1

1ˆ   , 1, 2,..., ,   
2

M

i k s i k j
j

i k N i k
M

σ δ
=

= =∑ ≠ .               (13) 

(There is a 2 in the denominator since  in Eqn. (12).) Then 

estimate

22
),( 2)( sjkiV σδ =

2
sσ with the median of the N(N-1)/2 estimates in Eqn. (13) as follows:  

) ; ..., 2, ,1 , ,ˆ(ˆ 2
),(

2 kiNkimedian skis <== σσ .                     (14) 

We approximate the statistical property of the estimator  in Eqn. (14) by 

studying the statistical property of 

2ˆ sσ

∑
<−

=
N

ki
skis NN

2
),(

2 ˆ
2/)1(

1ˆ σσ since mean has much 

better known statistical property than median. In appendix, we prove that 2ˆ sσ  is an 

unbiased and asymptotically effective estimator. 

The reason of using estimator  in Eqn. (14) other than the regular sample 

variance 

2ˆ sσ

∑∑
=

⋅
=

−
−

=
N

i
jij

M

j
sSample yy

NM 1

2

1

2
, )(

1
11σ̂  is that  is more robust to outliers 

than , which is equivalent to 

2ˆ sσ

2
,ˆ sSampleσ 2ˆ sσ . It is demonstrated by simulations in section 

4.2. 

4.1.3 Revising test statistic i∆  

After estimating  and , we need to revise the test statistic  in Eqn. (8) 

since it assumes that  and 

sµ̂ 2ˆ sσ i∆

sµ 2
sσ  are known. When we use the estimators in Eqns. (8) 

and (14), the test statistic should be: 
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   ∑
=

−

−
−

=−−=∆
M

j
s

jij
sis

T
sii

N
N

yy

1 2

2
1'

ˆ1
)ˆ(

]ˆ[ˆ]ˆ[
σ

µyΣµy                   (15) 

Profile i is considered an outlier if , where .  UCLi >∆' 2
,MUCL αχ=

Now, we prove that statistic  is a sample from a random variable of an 

approximate  distribution with M degrees of freedom if profile i is non-outlier. 

'
i∆

2χ

To simplify the proof, we first assume that there is no outlier in baseline and 

the variance 2
sσ  is known. As when we approximate the statistical property of  in 

Eqn. (14), we use the average, instead of median in Eqn. (11) to estimate the mean 

vector and study the approximate statistical property of  in Eqn. (15).  

2ˆ sσ

'
i∆

The average vector of the N baseline profiles is: 

jjMs yyyyy ⋅== ˆ  where],ˆ ..., ,ˆ ,ˆ[ˆ 21µ                       (16) 

The difference between profile i and  is sµ̂ ]ˆ ..., ,ˆ ..., ,ˆ[ 11 MiMjiji yyyyyy −−− . From 

the definition of non-outlier profiles in Eqn. (8), we can prove that jij yy ⋅−  is a 

sample from a normal distribution with mean 0 and variance 21
sN

N σ− . So, 

∑
= −

−M

j
s

jij

N
N

yy

1 2

2

1
)ˆ(

σ
 is a sample from a  distribution with M degrees of freedom. We 

release the assumptions and substitute the estimators of the mean vector and variance 

with their robust estimators in section 4.1.2. Then  is a sample from an 

approximate  distribution. 

2χ

'
i∆

2χ

Readers may think that it is more proper to use Hotelling’s T2 control chart 

than to use the  control chart when the mean vector and the variance-covariance 

matrix are estimated from the sample and the sample size is small. In Hotelling’s T

2χ

2 

 



62 

control chart, the UCL of the test statistic is 2/)1( ,2/ ,

2)1(
−−

−
MNMN

N
αβ , where 

2/)1( ,2/ , −−MNMαβ   is the upper 100α  percentile of a beta distribution with parameters 

M/2 and N-M-1; see Montgomery (2001) for details. The UCL of Hotelling’s T2 

control chart requires the number of points (N) is larger than their dimension (M). This 

condition is sometimes not satisfied when we treat profiles as points. Profiles may 

have a huge number of fixed values of the explanatory variable but we only have a few 

profiles. Therefore we recommend using  control chart instead. 2χ

4.1.4 When variance of noise differs at different Xj’s 

In the previous subsections, we assume . Now we consider 

the case where the variance of 

),0(~ 2
sij Niid σε

ijε  differs at different j=1, 2,…, M and 

. ),0(~ 2
sjij Niid σε

We revise Eqn. (15) as  

∑
= −

−
=∆

M

j
sj

jij
i

N
N

yy

1 2

2
'

ˆ1
)ˆ(

σ
                              (17) 

where can be the regular sample variance, i.e., 2ˆ sjσ
1

)(
ˆ 1

2
.

2

−

−
=σ
∑
=

N

yy
N

i
jij

sj . If one wants 

higher robustness to outliers, mean absolute deviation (MAD) estimator can be used to 

estimate sjσ , which is ∑
=

⋅−×=
N

i
jijjMAD yy

N 1
,

125.1σ̂  when . Readers are 

referred to Montgomery et al. (1990) for more details of MAD estimators.  

jxX =

4.2 Examples 

In this section, we study the performance of the 2χ  control chart method in 
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detecting outlier profiles in phase I by applying it to two nonlinear profile datasets: 

one simulated and one real. Its performance on these two datasets is compared with 

the nonlinear regression method by Williams et al. (2003). To determine the UCLs of 

the test statistics in these two methods, we choose 05.0=α . Simulation results show 

that the 2χ  control chart method has better performance than the nonlinear 

regression method. 

4.2.1 Nonlinear regression method 

In this subsection, we briefly introduce the nonlinear regression method by 

Williams et al. (2003). For each profile, four T2 statistics of the regression coefficients 

and the mean squared error (MSE) of the regression model are calculated. If any of 

these five statistics exceeds its control limit, that profile is identified as an outlier.  

Suppose for profile i, the least square estimates of regression coefficients are 

, , where L=k+1; i=1, 2, …, N. 

Here, , where 

T
ikiii ]ˆ ..., ,ˆ ,ˆ[ˆ

10 βββ=β )/()ˆ(
1

2 pMyyMSE
M

j
ijiji −−=∑

=

)ˆ;(ˆ ijij xfy β= )(⋅f  is the function we use to fit the profile, e.g., 

.  ∑
=

=
k

l

l
l xxf

0

);( ββ

The first Hotelling’s T2 statistic is calculated by 

)ˆˆ()ˆˆ( 1
1

2
,1 ββSββ −−= −

i
T

iiT                         (18) 

where ∑
=

=
N

i
iN 1

ˆ1ˆ ββ  and ∑
=

−−
−

=
N

i

T
iiN 1

1 )ˆˆ)(ˆˆ(
1

1 ββββS . Similarly, the second T2 

statistics  is calculated by substituting  in Eqn. (18) with 2
,2 iT 1S

)1(2
'ˆˆ

2 −
=

N
VVS , 

where  and , i=1, 2, …, N-1. Substituting  in ]ˆ ..., ,ˆ ,ˆ[ˆ
32 NvvvV = iii ββv ˆˆˆ 11 −= ++ 1S
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Eqn. (20) with ∑
=

−×=
N

i
iiiMSE

N 1

1'
3 )ˆˆ(1 DDS , where  
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β
βXD , 

we get   2
,3 iT

The control limit for  is 2
,1 iT 2/)1( ,2/ ,

2

1
)1(

−−
−

= LNLB
N

NUCL α , where 

 is the 1002/)1( ,2/ , −−LNLBα α  upper percentile of a beta distribution with shape 

parameters L/2 and (N-L-1)/2. Control limit 2/)1( ,2/ ,

2

2
)1(

−−
−

= LfLB
f

fUCL α , where 

43
)1(2 2

−
−

=
N
Nf , and . The upper and lower control limits of MSE are 2

 ,3 LUCL αχ=

σα ˆ , ,
2

∞± NhS , where h is a critical value given in Nelson (1983), ∑
=

=
N

i
iMSE

N
S

1

2 1 , 

and ))(/()1(2ˆ 2 LMNNS −−=σ .  

The exact distribution of the fourth T2 statistic is unknown, so we skip it when 

we apply the nonlinear regression method on simulated data. 

4.2.2 Nonlinear profiles: simulated datasets 

In the simulated dataset, we use Type I and Type II detection errors to assess 

the proposed 2χ  control chart method and compare it with the nonlinear regression 

method. Suppose among the N profiles in a dataset, there are P outliers. If, among 

the N-P non-outlier profiles, P1 profiles are incorrectly identified as outlier profiles, 

and among the P outlier profiles, P2 profiles are correctly identified, then  
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Type I Error =
PN

P
−

1100  and Type II Error =
P

PP )(100 2− .  

We generate profile datasets, each with N=200 profiles, that consist of 200-P 

non-outlier and P outlier profiles where P takes values 20, 40, 60 or 80. For each 

profile there are M=100 values of X; i.e. X=0.08, 0.16, …, 8.  

The profiles are generated as follows: 

),0(~ and

)4cos(104/)4sin(2010)(

,)(

2

222

σε

ε

N

xaeaxaaexf

xfy

ij

j
ax

j
ax

a

ijaij

jj −+−−−=

+=
−−   (19) 

The non-outlier profiles have a=0.5 and 1σ = . Fig. 16 shows f0.5(x) and 

f1.1(x). Regression models could not easily model these profiles.  

The nonlinear regression model we choose to fit the profiles is a multinomial 

function . Here, order 5 is chosen because in Fig. 14 there are four 

obvious points where . So,  

. We also conduct likelihood ratio test to compare models of order 5 and 

order 6; see Rawlings et al. (1998). It shows that the model of order 6 is not 

significantly better than order 5.  
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Figure 16. Plots of f0.5(x) and f1.1(x) 

We perform two simulation experiments. In the first experiment, the factors 

are P, the number of outliers, and a, the function parameter, with levels a=0.5, 

0.7, …, 1.9. In the second simulation experiment, the factors are P and σ , the 

standard deviation of the noise term, with levels 1.2, 1.4, …, 3.0. For each (P, a) or 

(P, σ ) combination, we generate 300 profile datasets, apply the 2χ  control chart 

method and the nonlinear regression method.  

The simulation results show that the 2χ  control chart method generally 

outperforms the nonlinear regression method. The average Type I and II errors of 

applying these two methods on simulated data are listed in the following tables, 

where the standard deviations of the Type I and II errors in 300 replications are the 

numbers in parentheses.  
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Parameter a for Outliers (a=0.5 for non-outliers) # outliers 
(P) 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 
20 7(1) 9(1) 7(1) 7(1) 8(1) 8(1) 8(1) 8(1) 
40 7(1) 6(1) 3(1) 3(1) 4(1) 4(0) 4(0) 4(0) 
60 5(1) 3(1) 1(0) 1(0) 2(1) 2(0) 2(0) 3(2) 
80 7(1) 8(2) 3(1) 2(1) 3(1) 5(1) 5(1) 6(1) 

Table 12. Average percent (and standard deviation) of non-outlier profiles incorrectly 

identified as outliers by  control chart method when a shifts, Type I error 2χ

Parameter a for Outliers (a=0.5 for non-outliers) # outliers 
(P) 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 
20 N/A 52(10) 1(2) 0(0) 0(0) 0(0) 0(0) 0(0) 
40 N/A 70(6) 10(4) 0(0) 0(0) 0(0) 0(0) 0(0) 
60 N/A 82(4) 39(6) 3(2) 0(0) 0(0) 0(0) 0(0) 
80 N/A 91(3) 75(0) 41(5) 8(3) 1(1) 0(0) 0(0) 

Table 13. Average percent (and standard deviation) of outlier profiles incorrectly 

identified as non-outliers by 2χ  control chart method when a shifts, Type II error 

Tables 12 and 13 list the simulation results with factor pair (P, a) of the 2χ  

control chart method. In Table 12, when a equals 0.5, there are no outlier profiles 

and we see that 5 to 7 percent of profiles are incorrectly identified as outliers, though 

the Type I error in the test of hypothesis was set at 5 percent. The realized Type I 

error is higher because the statistic  in Eqn. (15) is a sample from an 

approximately 

'
i∆

2χ  distribution.  

Table 13 shows that at each P, the Type II error drops quickly with the 

increase of a. It also shows that at the same value of a, as the number of outliers 

increases, the Type II error increases. Note that in Table 13, when a=0.5, the 

calculation is not applicable (N/A) because there are no outlier profiles.  

Fig. 17 illustrates that depending on visual recognition of an outlier profile is 

not realistic. The figure shows 200 non-outlier profiles in gray with a=0.5 and one 
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outlier profile in black with a=1.1. It would be difficult to visually pick out this 

outlier. The proposed method though would find it almost certainly, according to 

Table 13.  

Table 14 and 15 show the Type I and II errors of the 2χ  control chart 

method with factor pair (P, σ ). Table 14 shows that the 2χ  method retains most of 

the non-outlier profiles and Table 15 shows that when σ  increases sufficiently, 

most of the outlier profiles are detected. 

 

Figure 17. 200 Non-outlier profiles in gray and one outlier profile in bold 

Parameter σ  for outliers (σ =1 for non-outliers) # outliers 
(P) 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
20 10(1) 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 10(0)
40 4(0) 2(0) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 
60 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
80 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Table 14. Average percent (and standard deviation) of non-outlier profiles incorrectly 

identified as outliers by 2χ  control chart method when σ  increases, Type I error 

Parameter σ  for outliers (σ =1 for non-outliers) # outliers 
(P) 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

20 16(8) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
40 26(6) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
60 40(5) 4(3) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
80 48(4) 16(3) 6(2) 3(2) 1(1) 1(1) 0(1) 0(1) 0(0) 0(0) 

Table 15. Average percent (and standard deviation) of non-outlier profiles incorrectly 

identified as outliers by 2χ  control chart method when σ  increases, Type II error 
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Parameter a for Outliers (a=0.5 for non-outliers) # outliers 
(P) 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 
20 61(46) 64(45) 61(46) 67(44) 60(45) 64(44) 63(44) 60(45) 
40 64(45) 63(45) 67(42) 69(40) 67(39) 68(37) 67(36) 72(32) 
60 55(47) 61(45) 70(39) 73(31) 79(24) 86(19) 89(13) 93(9) 
80 66(45) 66(41) 75(30) 89(15) 93(8) 96(5) 97(3) 99(1) 

Table 16. Average percent (and standard deviation) of non-outlier profiles incorrectly 
identified as outliers by nonlinear regression method when a shifts, Type I error 

Parameter a for Outliers (a=0.5 for non-outliers)  
# outliers 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 

20 N/A 16(21) 1(2) 0(0) 0(0) 0(0) 0(0) 0(0) 
40 N/A 19(23) 1(3) 0(0) 0(0) 0(0) 0(0) 0(0) 
60 N/A 27(30) 4(6) 0(0) 0(0) 0(0) 0(0) 0(0) 
80 N/A 29(34) 10(12) 1(2) 0(0) 0(0) 0(0) 0(0) 

Table 17. Average percent (and standard deviation) of outlier profiles incorrectly 
identified as non-outliers by nonlinear regression method when a shifts, Type II error 

Parameter σ  for outliers (σ =1 for non-outliers)  
# outliers 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
20 56(48) 57(48) 52(49) 59(49) 57(49) 54(49) 63(48) 59(49) 52(49) 58(48)
40 63(47) 60(48) 62(48) 63(48) 55(49) 61(48) 60(48) 59(46) 63(41) 70(34)
60 63(48) 57(49) 58(49) 60(49) 55(49) 63(45) 62(42) 73(31) 80(21) 92(10)
80 60(49) 56(50) 64(48) 60(47) 57(44) 65(39) 80(24) 91(10) 97(3) 99(1) 

Table 18. Average percent (and standard deviation) of non-outlier profiles incorrectly 
identified as outliers by nonlinear regression method when σ  increases, Type I 

error 

Parameter σ  for outliers (σ =1 for non-outliers)  
# outliers 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
20 34(37) 18(21) 7(8) 1(2) 0(1) 0(1) 0(0) 0(0) 0(0) 0(0) 
40 31(39) 23(28) 11(14) 4(6) 1(2) 0(1) 0(0) 0(0) 0(0) 0(0) 
60 34(41) 29(34) 19(22) 9(11) 5(6) 2(3) 1(2) 0(1) 0(1) 0(0) 
80 35(42) 32(37) 21(28) 16(20) 13(13) 7(8) 4(5) 3(4) 2(2) 1(2) 

Table 19. Average percent (and standard deviation) of non-outlier profiles incorrectly 
identified as outliers by nonlinear regression method when σ  increases, Type II 

error 

The results of applying the nonlinear regression method on the same 

simulated datasets are shown in Tables 16 to 19. We now compare the performance 

of the 2χ  control chart method and the nonlinear regression method. The 2χ  

control chart method has much lower Type I error than the nonlinear regression 

 



70 

method in all simulated datasets, no matter whether a shifts or σ  increases; see 

Tables 12 vs. 16 and Tables 14 vs. 18. High Type I error of the nonlinear regression 

method is caused by the high correlations among nonlinear regression coefficients, 

which causes the near-singularity of the variance-covariance matrices ,  and 

 in section 3.1. So, even a small shift in the regression coefficient vector leads to 

high testing statistics ,  or .  

1S 2S

3S

2
,1 iT 2

,2 iT 2
,3 iT

The 2χ  control chart method has higher Type II error than the nonlinear 

regression method when the shift of parameter a is small; see Tables 13 vs. 17. This 

is not a surprise since 2χ  control chart is known to be insensitive to small and 

moderate mean shifts. To have a higher sensitivity to small and moderate shift in the 

mean vector, one can choose multivariate EWMA control chart to identify outlier 

profiles; see Montgomery (2001) for details.  

When σ  increases, the 2χ  control chart method generally has smaller Type 

II error than the nonlinear regression method; see Tables 15 vs. 19. It shows that the 

2χ  control chart method is more effective in detecting variance increases than the 

nonlinear regression method. 

4.2.3 Vertical density profile data 

In this subsection, we apply the 2χ  control chart method to the Vertical 

Density Profile (VDP) dataset which can be accessed at 

http://bus.utk.edu/stat/walker/VDP/ Allstack.txt. Each of the 24 profiles consists of 

the density of a board measured at fixed depths across the thickness of the board 

with 314 measurements taken 0.002 inches apart. One VDP profile is shown in Fig. 

 

http://bus.utk.edu/stat/walker/VDP/ Allstack.txt
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18.  

 

Figure 18. Example of a VDP profile 

To apply the 2χ  control chart method, we first check whether the noise 

term ijε  has the same variance at different values of X=xj. Fig. 19 shows that the 

variances are obviously different at different X’s and thus we use the regular sample 

variance to estimate  as in Section 4.1.4. 2
sjσ

 

Figure 19. Standard deviation vs. X In VDP data 

Profiles 3, 6, 9, 10 and 14 are identified as outliers as shown in Fig. 20 which 

gives the dissimilarity measure  from Eqn. (17) for each of the 24 profiles 

compared to the threshold value.  

'
i∆
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Figure 20. 2χ  control chart on VDP data 

The outlier profiles are highlighted in Fig. 21 with black curves and the 

non-outlier profiles are shown in gray. Profile 3 is an outlier because the density is 

too high across all x; profiles 6, 9 and 14 are outliers because the density is too low 

across all x. Profile 10 is an outlier because its shape is not consistent with the other 

profiles; the density decreases too quickly at low depths and increases too quickly at 

high depths.  

 Depth Indices

Figure 21. VDP outlier profiles identified by 2χ  control chart method 

In Williams et al. (2003) each profile is modeled with a non-linear regression 

and four T2 charts identify profiles 4, 9, 15, 18, and 24 as outliers. Upon further 

examination, especially of the regression coefficients, they conclude that profiles 15 
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and 18, shown in Fig. 22(a), are outliers while profiles 4, 9, and 24, shown in Fig. 

22(b), require further investigation. Visually, it is not obvious why these are outliers 

and why some other profiles are not labeled as outliers.  

(a)  (b)  

Figure 22. VDP outlier profiles identified by Williams et al. (2003) (a) outliers; (b) 
possible outliers 

4.3 Discussions 

4.3.1 Robustness of estimator  in Eqn. (14) 2ˆ sσ

In Eqn. (16), we use the median of N(N-1)/2 pair-wise estimators  to 

estimate . Now, using simulated data, we illustrate that estimator  in Eqn. 

(14) is more robust to outliers than MAD estimator 

2
),(ˆ skiσ

2
sσ 2ˆ sσ

∑∑
= =

⋅−=
M

j

N

i
jijsMAD yy

NM 1 1
,

125.1σ̂  

and regular sample variance . In each dataset, 200 profiles are generated 

where 160 nonoutlier profiles are generated by Eqn. (19) with a=0.5 and 

sSample,σ̂

1=σ . The 

remaining P=40 outliers are generated by increasing a from 0.7 to 1.9 and keeping 

σ  unchanged. Table 20 lists the means (and standard deviations in brackets) of 

these three estimators in 300 replicates. It shows that  is closer to 1, which is the 

true value of 

sσ̂

σ , than the other two estimators. The conclusion holds even when 

P=80.  
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a (a=0.5 for nonoutliers)  
Estimators 0.7 0.9 1.1 1.3 1.5 1.7 1.9 

sσ̂  
1.021 

(0.002) 
1.04 

(0.001) 
1.042 

(0.001) 
1.042 

(0.001) 
1.042 

(0.001) 
1.042 

(0.001) 
1.042 

(0.001) 

sMAD,σ̂  
1.021 

(0.003) 
1.060 

(0.003) 
1.096 

(0.003) 
1.125 

(0.003) 
1.149 

(0.003) 
1.169 

(0.003) 
1.186 

(0.003) 

sSample,σ̂  
1.025 

(0.003) 
1.065 

(0.003) 
1.102 

(0.003) 
1.133 

(0.003) 
1.158 

(0.004) 
1.179 

(0.003) 
1.197 

(0.004) 

Table 20. Three estimates of when P=40 and a increases sσ

4.3.2 Application of the 2χ  control chart method to on-line profile monitoring 

After removing the outlier profiles from the baseline data, we can derive a 

central point as in Eqn. (11) with the remaining profiles. We will consider a newly 

observed profile, ynew,j, j=1, …, M, out-of-control if the dissimilarity measure  

∑
= +

−
=∆

M

j
s

jjnew
new

N
N

yy

1 2

2
,'

ˆ1
)ˆ(

σ
      (20) 

exceeds the 95th percentile of the 2χ  distribution with M degrees of freedom. Note 

that the dissimilarity measure is slightly different than in Eqn. (15).  

Eqn. (20) is obtained by observing that  is independent from the ’s in 

the baseline profiles. It follows that 

jnewy , ijy

)1,0(~ˆ 2
, sjjnew N

NNiidyy σ+
−  and 

)1,0(~
1

ˆ

2

, Niid

N
N

yy

s

jjnew

σ+

−
 and  in Eqn. (20) has an approximate '

new∆ 2χ  distribution 

with M degrees of freedom. 
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5 Detect and diagnose changes of correlation matrix  

In this chapter, we first describe the problems that regular MSPC methods may 

have when correlation matrix changes. Then, in section 5.2, we describe in details a 

test of hypothesis on the similarity of two correlation matrices. A diagnose method is 

proposed in this section when the similarity is denied. Section 5.3 gives simulation 

results of the testing and diagnosing. 

5.1 Problems when correlation matrix changes 

When correlation matrices change, the performance of MSPC methods in 

detecting mean shifts may be jeopardized. In this section, we first show that regular 

MSPC methods have poor performance in detecting correlation matrix changes in 

some specific situations. Then, we demonstrate through a simulation example that 

correlation matrix changes may deteriorate the performance of MSPC methods in 

detecting process mean shifts. 

Let us consider the simplest bi-variate situation where the baseline correlation 

matrix is , ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

0 θ
θ

Σ 0>θ . We use a Hotelling’s T2 control chart to monitor these 

two variables simultaneously. The stars in Fig. 23 represent baseline observations. 

Two new orthogonal axis, z-1 and z-2, represent the first and the second main variation 

directions, respectively. The in-control area of the T2 model, if plotted on the two 

dimensional space, is the ellipsoid in Fig. 23.  
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Figure 23. Scatter plot of observations with correlation matrix . 0Σ

Now we change  to . The 

principal axes will not change, and the points generated with the new correlation 

matrix will be more compressed along axis z-1, shown as circles in Fig. 24. We can see 

that these new observations are less likely to exceed the in-control area. It is difficult 

for T

0Σ 0 ,
1

1
2112

21

12
1 >=∆=∆⎥

⎦

⎤
⎢
⎣

⎡
∆+

∆+
= δ

θ
θ

Σ

2 chart to detect this correlation change. 

 

Figure 24. Scatter plot of observations with correlation matrix  where 1Σ 0δ > . 

Now, let us see what will happen when 0δ < . If 0δ <  and 0θ δ+ > , the 

new observations generated with  have more variation along axis z-2 and the T1Σ
2 
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chart signals easily. Operators may be able to find the cause of the correlation change 

during inspections. Furthermore, if 0θ δ+ < , the main variation direction will be in 

the direction of z-2 , so points appear more frequently out of the in-control area; see 

Fig. 25.  

(a)  (b)  

Figure 25. Scatter plot of observations with  where (a) 1Σ 0δ <  and 0θ δ+ >  (b) 

0δ <  and 0θ δ+ < . 

This shows that the T2 chart is sensitive to directions of correlation coefficient 

changes. It is only sensitive to the correlation changes in some specific directions. The 

same situation happens when 0<θ  or more than 2 variables are under consideration. 

If 0>θ  and 0δ > , or 0<θ  and 0δ < , we call it the change in the sign direction, 

otherwise, we call it the reverse direction.  

The intuitive explanation for this phenomenon is that when the correlation 

changes in the sign direction, the directions of the major variations change a little (or 

do not change in bi-variate situation), while the effects of the more compression along 

these directions are far beyond the change of main variation directions. So, it will be 

hard for a T2 chart to signal. On the other hand, for the change in reverse directions, T2 

 



78 

chart can signal easily because either of the more sparse distribution of data on some 

directions or of the great direction changes of the major variations.  

The direction sensitiveness of the T2 chart is very dangerous in practice, 

because the correlation changing in the sign direction may mask the shifting of mean 

values, which makes it even less capable of signaling the mean shifts.  

Table 21 shows quantitatively how correlation changes may affect the 

capability of a T2 chart to detect process mean shifts. Table 21 is generated as follows: 

200 bi-variable normal distributed baseline observations are generated with mean [10, 

10], variance [3, 2] and correlation coefficient 0.5. We denote these two variables as 

X1 and X2. A T2 chart is used to monitor this process and the control limit  is 

calculated such that a point whose T

2
UCLT

2 statistic exceeds  is considered 

out-of-control at 95% confidence level. So, when there is no process error, the ARL 

should be 1/0.05=20.  

2
UCLT

Then we apply the T2 chart to monitor the process on-line. The monitored 

observations are generated with two factors: the shifting amount of the mean of X1 and 

the change of correlation coefficient, denoted by 1µ∆  and δ  respectively. Factor 

1µ∆  takes values [0, 1, 2, 3, 4] and δ  takes values [-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4]. 

For each [ 1µ∆ ,δ ] combination, 200 replications are run. In each replication, N=1000 

normally distributed observations are generated with mean [10+ 1µ∆ , 10], variance [3, 

2] and correlation coefficient 0.5+δ . The index of the first observation whose T2 

statistic exceeds the  is recorded as the run length (RL). Then average RL (ARL) 

is calculated by averaging these RLs in 200 replications.  

2
UCLT
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In Table 21, when 31 ≤∆µ  and δ >0, the ARLs are larger than when δ =0, 

i.e., no correlation change. This shows that the correlation changes may delay the 

detection of small mean shifts by T2 charts. 

δ  

Reverse Direction No Shift Sign Direction 

 

-0.2 -0.1 0 0.1 0.2 0.3 0.4 
0 15.8 17.4 21.2 28.0 33.7 45.3 30.8 
1 10.9 13.0 15.3 20.2 21.2 25.7 25.7 
2 5.3 5.7 5.6 6.9 7.7 10.6 12.4 
3 2.9 2.7 2.9 2.5 3.2 3.4 4.3 

 
 

1µ∆  

4 1.8 1.9 1.8 1.7 1.7 1.7 1.7 

Table 21. ARL of T2 charts in detecting mean shifts when correlation changes 

5.2 Test of correlation matrix similarity and correlation change diagnosis 

method 

In this section, we first describe a test procedure for the similarity of two 

correlation matrices. Then we propose a diagnose method when the test shows 

significant difference between them to give the possible responsible variables.  

5.2.1 Testing similarity between two correlation matrices 

Rencher (2002) derives a statistic u to measure the difference between the 

desired and the actual correlation matrix. When u exceeds the threshold value, we say 

that the current correlation matrix is significantly different from the baseline one. The 

test procedure in Rencher (2002) is as follows:  

011

010

  : 
 :

ΣΣ
ΣΣ

≠
=

H
H

                                     

1
0[ln ln ( ) ]u v tr p−= − +Σ S SΣ0 −                       (21) 

where S is the estimate of the current correlation matrix ,  is the desired one, 1Σ 0Σ

 



80 

p is the number of process variables to be monitored, v=n-1, n is the sample size 

when estimating , and tr(X) is the trace of square matrix X. If statistic u >C, 

reject H

1Σ

0, where C is the threshold value.  

If the n observations come from a distribution with the same correlation matrix 

as , when v is large, u in Eqn. (21) is approximately distributed with degrees of 

freedom df=

0Σ
2χ

)1(
2
1

+pp . The value of C in the test procedure is usually set as the α 

percentile of the  distribution, denoted as 2χ ))1(
2
1(2 +ppαχ . Regularly we choose 

α=0.99 or 0.95. If v is small, the following statistic u’ is a better approximation to the 

 distribution.  2χ

1' [1 (2 1 )]
6 1 1

u p
v p

= − + −
− +

2 u                        (22) 

Eqn. (21) can be expressed in terms of eigenvalues pλλλ  ..., , , 21  of matrix 

 by noting that 1
0
−SΣ 1

0
1

( )
p

i
i

tr λ−

=

=∑SΣ and  1
0

1
00 lnlnlnlnln −− −=−−=− SΣSΣSΣ  

. So, Eqn. (21) is equivalent to: ∑
=

−=
p

i
i

1
lnλ

1
[ ( ln )

p

i i
i

u v pλ λ
=

]= − −∑                       (23) 

Note that if = , , where I is a S 0Σ ISΣ =−1
0 p p×  identity matrix. Then  

1, 1, 2,...,i i pλ = = . So, in Eqn. (21), 
1

( ln
p

i
i

)iλ λ
=

−∑ =p, and u=0. Otherwise, if 

, there exist some eigenvalues not equal to 1. Fig. 26 shows the curve of ≠S 0Σ

lnλ λ−  vs. λ , from which it is clear that lnλ λ−  can get its minimal value 1 at 

1λ = , otherwise lnλ λ− >1. So, when ≠S 0Σ , u>0.  
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Figure 26. ( ln ) ~x x x−  plot 

5.2.2 Correlation change diagnosis (CCD) method when H0 is rejected 

Eqn. (23) also tells us how each 1, 1,2,...,i i pλ = =  contributes to statistic u. 

Now, our question is that whether we can get any information from those 'sλ  and 

their corresponding eigenvectors on the possible causes when H0 is rejected. 

When H0 is rejected, with Eqn. (23), we can rank the value of lni iλ λ− , i=1, 

2, …, p, in decreasing order, to see the contribution of each iλ  to the value of u. We 

name { 1ln: >− iii }λλλ  as the contributing eigenvalues and their corresponding 

eigenvectors as contributing eigenvectors. In the following proposition, we propose 

that the contributing eigenvectors can give us information of possible variables 

responsible for the rejection of H0. We use these information to diagnose the causes of 

rejecting H0. We call this method as correlation change diagnosis (CCD) method. Its 

proof is provided in Appendix C. 

Proposition 5.1: Suppose there are p variables with correlation matrix . We 

denote the set of p variables as S. We also denote a variable set consisting of all the 

variables whose mutual correlation coefficients change as S

0Σ

1, the number of 
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variables in S1 as k, and the subset consisting of the remaining variables as S2. We 

reorganize the p variables such that the first k variables are in S1, and the last p-k 

variables are in S2. We denote the new correlation matrix as Σ+= ∆ΣΣ 01 , where 

 and  is a k-by-k symmetric matrix. Then, for any of the 

contributing eigenvalues of matrix , the contributing eigenvectors will 

have all zero elements on positions corresponding to variables in S

⎥
⎦

⎤
⎢
⎣

⎡
=Σ 00

0∆
∆ 11

11∆

1
01
−= ΣΣD

2; 

We illustrated the above proposition in the following example.  

Example: 

0

1 0.5 0.3
0.5 1 0.1
0.3 0.1 1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Σ  

1 0

1 0.5 0.3 0 0 0
0.5 1 0.2 0 0 0.1
0.3 0.2 1 0 0.1 0

⎡ ⎤ ⎡
⎢ ⎥ ⎢= − = +⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

Σ Σ
⎤
⎥− ⎥
⎥⎦

 

Then, the eigenvalues of  and their corresponding eigenvectors are: 1
01
−= ΣΣD

T

T

T

]74.0 ,67.0 ,0[

]74.0 ,67.0 ,0[

]26.0 ,43.0 ,86.0[

10.1,83.0,1

3

2

1

321

−=

−−=

−−−=

===

t

t

t

λλλ

. 

Since only variable 2 and 3 change their correlation, in the eigenvectors 

corresponding to the contributing eigenvalues, only the 2nd and 3rd elements have 

non-zero values. 

However, in practice, because of the existence of noise and the limit of the 

number of observations to estimate the new correlation matrix , the estimate of the 

new correlation matrix may not be identical to the actual one. For the eigenvectors 

1Σ
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corresponding to the contributing eigenvalues of D matrix, in the positions of 

variables in S2 , non-zero values may appear, but with small absolute values. So, in 

practice, we can plot a bar chart, with the horizontal axes being the variables. The 

vertical axes of the bar chart is the absolute values of the eigenvector elements 

corresponding to the λ  which has the maximum λλ ln−   value. We denote this 

eigenvector as diagnosis eigenvector.  

For instance, after the similarity of correlation matrices is denied, we get a 

diagnosis eigenvector as: 

[0.11, 0.04, 0.06, -0.12, -0.10, 0.55, -0.11, -0.04, 0.02, 0.80], then the contribution 

plot can be plotted as Fig. 27. Actually, the correlation change occurs between 

variables 6 and 10. Fig. 27 shows that variables 6 and 10 have the highest bar. Thus 

operators can be guided to narrow their inspection scope onto variables 6 and 10.  
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Figure 27. Contribution bar chart of CCD method 

Accuracy of the CCD method is one thing we are concerned with. In practice, 

the operators do not know in advance how many variables change their correlations, 

so an applicable way is to define a set with a fixed size, for instance, set the size as 3. 

We say the CCD method is a success if the actual fault-causing variables are 
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included in the set after the diagnosis.  

For example, in Fig. 27, we set the diagnosis set size as 3. Variables 4, 6 and 10 

have the highest bars, so this set equals {4, 6, 10}. We know the actual variables which 

change their mutual correlations are 6 and 10, so {6, 10} {4, 6, 10} and this 

diagnosis is a successful one. If more than 3 process variables change correlations, the 

operators can first inspect these 3 variables and correct any error among them, and 

then put the process into running. After the similarity of the latest and the baseline 

correlation matrix is denied again, use CCD method to find out another 3 possible 

contributing variables. 

⊂

After we put MSPC methods in on-line monitoring, we need to test the 

similarity of the latest and the baseline correlation matrix regularly. We can use a 

non-overlapping window of size w. The estimate of the current correlation matrix is 

derived from the latest w observations. For instance, if w=100, we estimate the 

correlation matrix at t=100 with the first 100 observations, and at t=200 with the 

second 100 observations, etc. The value of w can be determined pragmatically from 

the number of variables and how fast we want to be able to detect correlation matrix 

changes. With the larger w, we can have the more accurate estimate of correlation 

matrix, but the detection of changes of correlation matrices becomes slower. 

5.3 Simulation for similarity testing and diagnosing 

In this section, several simulations are conducted to demonstrate the 

performance of similarity test in detecting correlation changes and the CCD method in 

diagnosing possible responsible variables. The simulation results show that the 
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similarity test can pick up the correlation changing quickly and give the diagnosis with 

high accuracy.  

These simulations are conducted under these conditions: 1000 observations of 

10 process variables from a real manufacturing process running under successful 

conditions are gathered to estimate the correlation matrix . The correlation 

between a randomly chosen variable pair, variables 5 and 7, is changed by an amount 

0Σ

5,7 7,5 δ∆ = ∆ = , thus leading to a new correlation matrix . The correlation 

coefficient between variables 5 and 7 in  is 0.37. Then 10000 normally distributed 

observations are generated with mean vector 

1Σ

0Σ

=µ 0 , correlation matrix=  and 

variance vector . Another 10000 observations are generated with N( , ),  

which follow the first 10000 observations to form a dataset with 20000 observations. 

Then the similarity test is implemented on the 20000 observations, with different w.  

Fig. 28 shows the charts of u statistics for different w’s. It shows that the similarity test 

can detect the significant difference between two correlation matrices correctly. 

0Σ

=σ 1 0 1Σ

(a)  (b)  

Statistic u with w=100 Statistic u with w=70

Figure 28. Chart of u statistics with (a) w=100 (b) w=70 

In Fig. 28(a), the u statistic of the 101st moving window exceeds the threshold. 

It is the first estimate of the correlation matrix after the correlation matrix changes to 

 



86 

1Σ . In Fig. 28(b), w=70, the u statistic starts to go beyond the threshold value after the 

144th estimate of correlation matrix. The u statistic of the 143rd moving window, which 

consists of observations 9941~10010, does not exceed the threshold value since in 

these 70 observations, 60 observations are generated with correlation matrix , the 

remaining 10 come from the new correlation matrix . 

0Σ

1Σ

To study how accurate the CCD method can diagnose the possible variables 

responsible to the correlation matrix change, for each combination of w and δ , 200 

replications are run. Factor w takes values 70, 90 and 130, δ  has three levels, 0.3, 

-0.3 and -0.45, respectively. Each time when the similarity test denies H0, the CCD 

method is applied. The percentages of successful diagnosis in the 200 replications 

under different w and δ are recorded in Table 22. We can see that CCD method 

always gives high accuracy rate under different w and δ values, and the CCD method 

gives more accurate diagnosis if the window size is higher, i.e., we use more 

observations to estimate the current correlation matrix.  

w  
70 90 130 

0.3 97.5 99.5 98.5 
-0.3 92.5 92.5 96.5 

 
δ 

-0.45 96.5 99 99 

Table 22. Percentage of successful diagnosis 
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6 Conclusion 

This dissertation covers four topics to improve the SPC model (models) 

constructing in phase I: determining the number of operational modes in MSPC 

baseline data; determining baseline periods in historical data collected in a long time 

period; detecting outlier profiles in complex profile baseline data; and determining 

whether the MSPC model needs to be updated.  

A new SBDD method is first proposed to determine the number of operational 

modes in a baseline MSPC dataset. The proposed method has the following specific 

features: (1) It detects the correct number of clusters whether the dataset has one or 

more clusters; (2) It detects the correct number of clusters whether the clusters are 

convex or non-convex; (3) It is not sensitive to user-specified parameters.  

To demonstrate the performance of the proposed method, we apply it, along 

with the three existing data mining methods for clustering, on each of four datasets 

and compare their performances. Three of these four datasets are simulated and the 

remaining one is a real dataset of the ingredients of three wine products. The numbers 

of clusters in these datasets are previously known. The results show that the proposed 

method gives the correct numbers of clusters on all four datasets, while the others do 

not.  

We propose a PDP clustering method to determine baseline from a sequence of 

historical product observations collected in a long time period. It uses overlapping 

moving windows to segment the sequence into subsequences. These subsequences are 

transformed into PDPs. Clustering methods are applied to group these PDPs, and to 
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cluster each single observation. Basic statistics of each point cluster are calculated and 

the clusters with the most satisfying statistics are selected. The periods corresponding 

to the points in the selected clusters are considered as baseline periods.  

We apply the proposed PDP clustering method on simulated and real datasets 

and its performance is compared with the LRT method. The results on simulated 

datasets show that the proposed PDP clustering method is robust to distributions 

which generate the data, but the LRT method is not. The PDP clustering method is 

insensitive to the reasonable designation of bins, which are used to transform 

subsequences into PDPs. On the real dataset, the selection of period of successful 

production by the PDP clustering method is supported by the changes of process 

variables. However, the LRT method only picks up a small portion of period of 

successful production. We think the PDP clustering method gives more convincing 

result.  

The limitation of the proposed PDP clustering method is that it is difficult to be 

applied when the number of product variable is large. The proposed PDP clustering 

method assumes that there is only one product variable. If we want to extend it to cases 

with multiple product variables, we need to define a set of grids in high dimension 

space. A sequence of observations can thus be transformed into PDPs and the PDP 

clustering method can be applied. However, with the increase of dimension, the 

number of grids increases exponentially. So, the number of observations in a 

subsequence has to be very large to be compatible with the number of grids, which 

might not be feasible.  
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There are two possible ways to handle these cases. One is that we select only a 

few (one or two) product variables which dominate the product quality. Alternatively, 

we use data reduction methods, such as principal component analysis, to reduce the 

dimensionality by choosing only a few latent variables to represent the majority of 

variance in the original variables. Each latent variable is a linear or nonlinear 

combination of the original product variables. Then, the PDP clustering method can 

still be applied on the selected dominating product variables or latent variables. 

We apply the 2χ  control chart method to detect outlier profiles that does not 

require fitting regression models and can be applied to profiles of any complexity. 

This is accomplished by treating profiles as vectors in high-dimension space. This 

method is useful in process control in removing outliers from baseline data and also 

in monitoring new profiles. It may sometimes be the only option when the profiles 

are so complex that all other methods do not apply. 

This method uses the median of the baseline profiles to estimate the mean 

vector of the nonoutlier profiles (vectors). The difference between a profile and the 

center vector is measured by a statistic that is approximately 2χ  distributed. A 

profile is identified as an outlier if this statistic exceeds a threshold value.  

This method can be applied to profiles that are too complex to model with 

linear or non-linear regression, as illustrated in the simulation experiments we 

conducted. The 2χ  control chart method successfully identifies most of the outliers 

while retaining most of the non-outlier profiles. When applied to actual data where the 

profiles describe the density of a wood product along the depth, the 2χ  control chart 
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method yields convincing results.  

The fourth method proposed in this dissertation is to test the similarity of 

correlation matrices in MSPC applications and diagnose when the similarity is 

denied. A test statistic is computed to measure the difference between the current 

and the baseline correlation matrices. If there is significant difference between them, 

a new method is devised to diagnose the responsible process variables to see whose 

mutual correlations have changed. The operators can be guided to inspect whether 

there are process errors in the diagnosed process variables. If no error is found, we 

should consider building a new MSPC model.  

We apply the correlation matrix testing and diagnosis methods on simulated 

datasets. The results show that our diagnosis method can find the responsible 

variables which cause the change of correlation matrix with high accuracy. 
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7 Future work 

In previous chapters, we have shown applications of MSPC and data mining 

technologies in various manufacturing processes, such as the industrial oven process 

in Chapter 2 and the continuous process in Chapter 3. In fact, MSPC and data mining 

technologies can be widely applied in almost all data-rich systems, such as biomedical, 

manufacturing, health care, and other service systems such as insurance and financial 

systems.  

Among these data-rich systems, my future research will focus on a biomedical 

system, the brain neuron system. This research opportunity is brought to me by the 

post doctoral position in Arizona State University.  

The biomedical system shares the following four features with the other 

data-rich systems, which make my expertise in MSPC and data mining useful: (1) It 

has many variables; (2) Most variables are highly correlated; (3) It is so complicated 

that it is almost impossible to build explicit physical models to describe it; (4) The 

patterns of data are usually unknown in such a high dimensional space. Such a system 

generates a huge amount of data every day, but only a small fraction is utilized. Data 

mining technologies can extract the patterns in the huge amount of multivariate data 

and MSPC methods can build statistical models to these patterns. 

My future research topic will be finding the patterns of brain neuron activities 

when one is planning body movements. The brain neurons control our body 

movements. Signals (commands) are sent from the brain to our body parts such as 

arms and legs, and movements of these parts are accomplished accordingly. 
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Discovering these patterns and connecting it with the planned body movements help 

to predict body movements based on detected neuron signals. 

This research is conducted by studying the signals of brain neurons of 

monkeys. Huge amount of data, e.g., the intra-cortical signals, of the brain neurons of 

monkeys can be measured by microelectrodes inserted into certain areas of the cortex, 

as the square area shown in Fig. 29. The areas where the electrodes are inserted 

depend on the functions of those areas and the tasks we want the monkeys to conduct.  

 

Figure 29. Areas of brain with different functions 

The purpose of this research is to investigate the set-related neurons according 

to their different firing patterns when a monkey is preparing to fulfill a simple task, 

such as reaching a target with its right hand. Set-related neurons are those in a certain 

area of the brain that are believed to be involved in preparing for a certain task.  

The firing of neurons is defined as follows. There is always a difference in 

electrostatic potential between the inside and outside of a neural cell: the cell is 

polarized. We call this electrostatic potential the membrane voltage. The membrane 

voltage of an inactive cell remains close to a resting potential, which is approximately 

-70 mV (the negative sign signifies excess negative charge inside the cell relative to 

 

http://en.wikipedia.org/wiki/Membrane_potential
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the outside). When the membrane of an excitable cell becomes depolarized beyond a 

threshold, the cell undergoes an action potential, we say the cell “fires”, often called a 

“spike”. This threshold generally is about 15 mV more positive than the cell’s resting 

potential. 

Fig. 30 shows the process of the firing of a neuron. In the beginning, the 

neuron is inactive. The membrane voltage is around -75 mV, which is its resting 

potential. Then the cell is activated and the membrane voltage increases. When the 

membrane voltage increases beyond the threshold, the cell “fires”.  

 

Figure 30. Firing of a neuron 

The main hypotheses that we test in this study are as follows. Hypothesis I is to 

test whether the firing patterns are inhibited by a localized set of neurons, i.e., only a 

few neurons in that certain area are involved in the task preparing. Hypothesis II is to 

test whether neurons fire signals to communicate with one another when the animal is 

preparing the task. The questions addressed in this research are: (1) Which neurons are 

involved in preparing the task under different conditions? (2) If multiple neurons are 

involved in preparing for the task, do they work independently or do they 
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communicate with each other? (3) Do these neurons show different activity pattern 

when preparing to complete the task under different conditions? 

In the remainder of this chapter, we first describe the experiments we conduct 

to collect the data. Then we propose methods to analyze the data to test the 

hypothesis described before. 

7.1 Empirical Studies 

The experiments are conducted in a 3-D virtual reality environment (VRE), 

which is presented to the monkey through a mirror in front of the monkey’s eyes. In 

the VRE, there are only five objects that can show up: a stationary starting position 

(green solid sphere), a true target (a green flashing solid sphere), a false target (a 

green non-flashing semi-transparent sphere), an obstacle (cylinder) and a mobile 

cursor (red sphere). The position of the cursor in the 3-D VRE is determined by a 

sensor taped to the wrist of the monkey. When the monkey’s hand moves, the cursor 

in the 3-D VRE also moves.  

The monkey is trained to move the cursor from the starting position to hit the 

true target and hold the cursor there for at least 0.1 second, with the presence or 

absence of obstacle in the middle of the straight path from the starting position to the 

target. There are four types of failures when the monkey conducts the task: (1) Fail 

by curvature, i.e., the monkey takes a detoured trajectory to reach the target when the 

obstacle is absent; (2) Fail by hit obstacle, i.e., the monkey hits the obstacle because 

of failing to take the detoured trajectory when the obstacle is present; (3) Fail by 

wrong target, i.e., the monkey hits the false target; (4) Fail by target hold time, i.e., 
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the monkey holds the target less than 0.1 second. 

 

Figure 31. Signals given to monkeys in each trial 

There are two factors in the design of experiments: the position of the true 

target and the existence of the obstacle. The position of the true target has two levels: 

left-top and right-top corner. The obstacle also has two levels: presence and absence. 

There are totally 4 different experimental conditions. Several replicates are run under 

each of the experimental conditions. In each replicate, signals of the same 19 

neurons are recorded. 

In each trial, signals of eight events are given to the monkey in a certain 

order, as shown in Fig. 31. In Fig. 31, the cube represents the VRE presented to the 

monkey. The light gray dot in the bottom represents the stationary starting position. 

The light gray dots in the up-right or up-left corner represent the true and false 

targets. The black dot represents the cursor.  

The first signal is “Center On”, where the light gray sphere is shown at the 

bottom of the VRE. The monkey moves its right hand to hit it with the cursor. The 

time when it is hit is recorded as “Center Hit”. Then, 100 to 500 milliseconds later, 
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the true target is shown, denoted as “Target On”. The monkey is given 500 

milliseconds to memorize the position of the target before it is turned off, as the 

“Target Off” in Fig. 31. The time 1000 milliseconds later than the “Target Off” is 

when obstacle appears (“Obstacle On”), if there is an obstacle in the trial. The 

obstacle is shown as a gray line in the cube of the VRE in Fig. 31. The obstacle 

cylinder (if any) disappears 500 milliseconds later, denoted as “Obstacle Off”. The 

“Go” tone is given to the monkey 100 to 500 milliseconds later, and the true and 

false targets, and the obstacle (if any) are also shown in the VRE. This signal allows 

the monkey to move the cursor to hit the target. The time when the cursor hit the 

target is recorded as “Target Hit”.  

The preparing time period is the time between “Obstacle On” and “Go”. The 

monkey is trained to know that if there is no obstacle showing up at the time point of 

“Obstacle On”, there will be no obstacle in the trial. So, by then the monkey has all 

the information of the true target and the presence/absence of the obstacle. He starts 

preparing the task. 

Two types of signals are recorded from each neuron: spike train data and 

waveform data. Spike train data is the time stamps of all neuronal spikes. Fig. 32 

shows the spike train data of a neuron in around twenty successful trials, where the 

X-axis is the time axis, each row represents a successful trial, and each dot represent 

a neuron spike. Four behavioral events are illustrated in Fig. 31 by different symbols: 

“Obstacle On”, “Obstacle Off”, “Go Signal”, and “Target Hit”. Time zero is aligned 

to “Obstacle On”. The trials are sorted by “Go Signal” in an ascending order.  

 



97 

 

Trials 

Time
 

Figure 32. Spike train data of a neuron 

Waveform data records the waveform shape of each spike. Fig. 30 is an 

example of the waveform data of a neural spike.  

7.2 Methods 

In this section, we describe how to analyze spike train and waveform data, 

respectively. We model the spike train data of each neuron. The model parameters 

are used to cluster neurons into clusters of involved and uninvolved neurons when 

preparing for a task.  

The purpose of analyzing waveform data is to build connections between 

different wave shapes and different body movements. Waveform data records the 

shape of each spike. Based on the assumption that the commands sent by the brain 

neurons are coded by different wave shapes, mapping spike shapes to the body 

movements may decode the spike shapes to commands. 

7.2.1 Spike train data 

The purpose of this analysis is to find neuron clusters that are involved in 

preparing the task under each experimental condition and the dependency among 

these neurons.  

For the spike train data of one experimental condition, there are two ways to 

model it: (1) model the spike train data in each trial, or (2) pool the data of a single 
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neuron in all successful trials together, transform it into a histogram, and model the 

histogram. Then we find the cluster patterns in these model parameters. 

7.2.1.1 Analyzing spike train data in each trial 

We can analyze the spike train data of each trial separately. From Fig. 29, we 

can see that the preparing process of a neuron can be segmented into several stages, 

each of which has different arrival rate of spikes. It is equivalent to say that the 

inter-spike time in different stages is distributed differently. If we plot the inter-spike 

time of a neuron in a successful trial, we have the plot in Fig. 33.  

Change point identification method can be applied to segment the spike train 

data into several periods, each of which is assumed to be generated by a stable 

probability distribution. It is reasonable to assume that the inter-arrival time between 

two consecutive spikes is exponentially distributed, but with different parameters at 

different stages. Methods of change point identification in exponential distribution 

can be found in literature, e.g., Ramanayake and Gupta (2002). We can directly use 

it here. After segmenting spike train data into periods by identified change points, 

the distribution parameter in each period can be estimated. Thus, the spike train data 

of a successful trial can be modeled by several change points and the distribution 

parameter in each period.  
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Figure 33. Inter-spike time of a neuron in a successful trial 

We can choose only a few model parameters of interests, such as the starting 

time and the distribution parameter of the most active stage, to represent the spike 

train data of a neuron in a successful trial. For the same neuron, these selected 

parameters should have similar values in all of the successful trials. Under a certain 

experimental condition, the involved neurons should have similar values of these 

selected parameters. These parameters of these neurons should fall into a cluster (or 

multiple clusters), and the uninvolved neurons should fall into other clusters.  

7.2.1.2 Clustering neurons by their histograms 

To transform spike train data into histograms, the time period of task 

preparing is segmented into a set of contiguous and equal-size bins. The histogram 

of a neuron is just a set of integer numbers, each of which is the count of spikes in a 

bin in all the successful trials. So, totally we can have 19 histograms, one for each 

neuron. Fig. 34 demonstrates the spike train data of four neurons and their 

histograms.  
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Figure 34. Spike train data of four neurons and histograms 

There are several possible methods that can be applied on these 19 

histograms to find their different patterns under the kth experimental condition. These 

methods include: (1)Regression based method, and (2)Fourier or 

wavelet-transformation based method. 

(1) Regression based method uses nonlinear regression to fit each histogram 

on the same nonlinear model. Each histogram can be represented by a set of 

regression parameters. In this way, a high-dimension histogram is projected to a 

lower dimensional coefficient space. Clustering analysis can be applied to study the 

cluster pattern in the coefficient space. The histograms of those neurons which are 

involved in the preparing of the action under the experimental condition should have 

significantly different histogram with those uninvolved neurons. So, the coefficient 

vectors of those involved neurons should form a cluster, and the other coefficient 

vectors either appear as outliers, or form another cluster.  

(2) Fourier-transformation or wavelet-transformation based method applies 
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Fourier or wavelet transformation to individual histogram. Filters can be applied on 

the transformation coefficients to select coefficients of our interest. The reserved 

coefficients can be clustered. The reserved coefficients of the neurons involved in 

preparing the action under the experimental condition should form a cluster, and the 

others should form another cluster or are just outliers.  

Principal component analysis (PCA) can be applied on the regression or 

selected Fourier or wavelet transformation coefficients since these coefficients 

should be correlated. If we only use 2 or 3 principal components to represent these 

coefficients, we can plot a 2-D or 3-D scatter plot of the projections of these 

coefficients. Thus, the cluster pattern in these coefficients can be visually accessed.  

7.2.1.3 Studying the dependency among neurons 

After we cluster the neurons, the relationships among the neurons involved in 

preparing the action under a certain experimental condition can be studied. The 

purpose of studying the relationship among them is to find how the neurons are 

cooperating and communicating with each other in the task preparing.  

The simplest relationship, linear relationship can be studied by the 

correlations of the histograms of the involved neurons. However, correlations only 

capture the linear relationship between two histograms. Nonlinear relationships, 

which are more likely to be the fact among neurons in the brain, can not be captured.  

Dependency describes the relationship between two variables more generally, 

which includes linear and nonlinear relationships. It can be captured by mutual 

information. The mutual information of two random variables is large if they are 
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dependent, and small otherwise. A bottom-up hierarchical clustering method can be 

applied on the histograms of neurons to cluster them. In this hierarchical clustering, 

the mutual information is used as the measure of similarity. The bottom-up 

hierarchical clustering works in the following way. In the beginning, we take each 

neuron as a single cluster. Two neurons with the largest mutual information are 

combined into one cluster. Then, any two clusters with the largest mutual 

information are combined into one. The algorithm stops when some stopping 

criterion is satisfied. In the end, the neurons in the same cluster are considered 

dependent on each other. Readers are referred to Kojadinovic (2004) for more details 

about this hierarchical clustering based on mutual information. 

7.2.2 Waveform data 

Waveform data is also called profiles. We can either model the profiles and 

analyze the model’s coefficients, or treat profiles as points in a high-dimension space, 

where the dimension is the number of observations we have in a profile. The 

methods of profile modeling include nonlinear regression, Fourier transformation or 

wavelet transformation, etc.  

Then, profiles can be clustered by clustering their model coefficients or by 

clustering profiles as points directly. In all successful trials when preparing the same 

task, spike profiles of a single neuron may show similar cluster patterns, e.g., at a 

certain stage of the task preparing, the spike profiles have similar shapes, but 

different shapes at another shape. This may imply that different commands are sent 

at different stages. The spike profile shapes may change in the same stage but when 
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preparing different tasks. Finding the difference in the spike profile shapes and 

mapping it to the difference in the body movement may uncover which spike profile 

shape corresponds to what command of body movement.  
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Appendix A. MSPC methods 

Commonly used MSPC methods include Hotelling’s T2 in Tracy et al. (1992), 

Mason et al. (1995 and 1997) and Mason and Young (1999 and 2000), Multivariate 

EWMA (MEWMA), as discussed in Lowry et al. (1992), Testik et al. (2002) and 

Montgomery (2001), Multivariate CUSUM (MCUSUM) proposed by Crosier (1988), 

Principal Component Analysis (PCA) in Jackson (1991), Kourti and MacGregor 

(1996) and Kano et al. (2004), and Partial Least Squares (PLS); see Geladi and 

Kowalski (1986), Kresta et al. (1991), Wurl et al. (2001) and Xu and Albin (2002). 

The above MSPC methods can be classified into two categories: subspace and 

full-space methods. PCA and PLS are subspace methods because points in the full 

dimensional space are projected onto a subspace with lower dimension. The 

remaining methods, Hotelling’s , MEWMA and MCUSUM are categorized as 

full-space methods.  

2T

Hotelling’s T2 is a popular MSPC method to monitor a multivariate process. 

For a p-variable process, the T2 statistic is defined as: 

2 1( ) ' (T − )= −x x S x x−                          (A1) 

where x  and S  are the estimates of the mean vector and variance-covariance matrix 

of these p variables obtained from baseline data respectively.  

Assuming the multivariate normality of process variables while the process is 

in control, Hotelling’s T2 statistic is proportional to an F distribution. The upper 

control limit of the T2 statistic is calculated as 

2 ( 1)( 1) ( , )
( )UCL

N N pT F
N N p α p N p− +

=
−

−                       (A2) 
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where N is the number of observations in baseline data to build the MSPC model, 

 is the upper 100( , )F p N pα − α  percentile of F distribution with degrees of freedom 

p and N-p.  

A Hotelling’s T2 control chart can be built by plotting statistic  of vector 

 vs. the time tag of  or i when we apply it for on-line process monitoring. For a 

new observation , if its  exceeds , we conclude that the current mean of the 

underlying p-variable process is significantly different from the baseline mean. When 

we are not confident with the assumption of multinormality of , we can let  be 

the 99
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th or 95th percentile of the ’s of baseline observations. 2T

Hotelling’s T2 statistic can be decomposed into the sum of p elements, as 

shown in the following paragraphs. We also show that the in-control space  

is just a hyper-ellipsoid in the p-dimension space. 

2 2
UCLT T≤

Since  is a positive definitive and symmetric matrix, it can be decomposed 

as , where 

S

'=S PΛP 1 2[ , ,..., ]p=P t t t  is the eigenvector matrix and 

1 2( , ,..., )pdiag λ λ λ=Λ  is the diagonal eigenvalue matrix of  respectively. Matrix 

 has the same eigenvector matrix P as , and its eigenvalue matrix is just the 

inverse of the eigenvalue matrix of S , i.e., 

S

1−S S

1 1 1
1 2( , ,..., )pdiag 1λ λ λ− − − −=Λ . So, 

 1 1 '− −=S PΛ P

Thus, the T2 statistic in Eqn. (A1) can be rewritten as: 

2 1( ) ' '(T − )= −x x PΛ P x x−                         (A3) 

If we define '( )= −z P x x , which is a new p-by-1 vector, Eqn. (A3) is equivalent to: 

2
2 1

1

'
p

i

i i

zT
λ

−

=

= Λ =∑z z                            (A4) 
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Since , where I is a p-by-p identity matrix, ' '= =PP P P I '( )= −z P x x  is just 

projecting the point  onto a new coordinate system, whose axes are  

with origin 

x 1 2, ,..., pt t t

x . So, the in-control area defined by 
2

2

1

p
i

UCL
i i

zT
λ=

= ≤∑ 2T  is just a 

hyper-ellipsoid in this new coordinate system. 

Fig. 35 illustrates the Hotelling’s T2 more clearly with a bi-variable example, 

i.e., p=2. In Fig. 35, the circles are baseline observations and the dashed ellipse is the 

edge of the in control area. This ellipse is centered at the baseline average x . The 

directions of the two new axes are , which are the two eigenvectors of the S 

matrix derived from the baseline data.  

1 and t 2t

L

L

In Fig. 35, note two points A and B. Point A is inside the ellipse,  

and is considered an in-control point. Point B is outside of the ellipse,  and 

is considered an out-of-control point.  

2 2
A UCT T<

2 2
B UCT T>

 

Figure 35 Hotelling’s 2T  in a bi-variable example 

Before introducing MEWMA, let’s first introduce its univariate version, 

exponentially weighted moving average (EWMA) control chart. EWMA is devised to 
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detect subtle shifts of the mean of a single variable from the target 0µ . The EWMA 

statistic is defined as: 1)1( −−+= iii zxz λλ , 10 ;z ...; 3, 2, ,1 00 <<== λµi . 

Sometimes the average of baseline data is used as the starting value of the EWMA, i.e., 

0z x= .  

When we apply the EWMA control chart on on-line monitoring, we plot  

versus the sample number i (or time). The center line and the control limits for the  

are as follows, 

iz

iz

2
0 0[1 (1 ) ];   ;

2
iUCL L Center lineλµ σ λ

λ
= + − − =

−
µ  

2
0 [1 (1 ) ]

2
iLCL L λµ σ λ

λ
= − − −

−
, where σ  is the standard deviation of the 

variable. For details of EWMA control chart and how to select the proper values of L 

and λ, please refer to Montgomery (2001). 

Multivariate EWMA (MEWMA) monitors the small and moderate shifts of the 

mean vector of p variables. Similar with EWMA, a new vector  is defined as iz

0 1 0( ) (1 ) , 1, 2,3,...; ,0 1i i i iλ λ −= − + − = = < ≤z x µ z z 0 λ

i

. Then, for vector , a 

Hotelling’s  statistic can be calculated as , where 

iz

2T 2 ' 1
ii iT −= zz Σ z

 2[1 (1 ) ]
2i

iλ λ
λ

= − −
−zΣ Σ                       (A5) 

Parameters 0µ  and  are the mean vector and variance-covariance matrix of 

variable vector x  when the process is in control. When these two parameters are 

unknown, they can be substituted by the estimates from baseline data. The MEWMA 

control chart is constructed by plotting  versus i. The control limits for the 

MEWMA control chart can be retrieved from tables given in Montgomery (2001).  

Σ

2
iT

Cumulative Sum (CUSUM) control chart is another method to detect small 
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shifts in the mean value of a single variable. Multivariate CUSUM is the application of 

CUSUM in multivariate cases. In Montgomery (2001), to monitor the process by 

individual observations, CUSUM statistics are defined as: 

0

0 1

max[0, ( ) ]

max[0, ( ) ]
i i

i i

C x K

C K x

µ

µ

+ +
1i

i

C

C
−

− −
−

= − + +

= + − +
                     (A6) 

where . In Eqn. (A6), 0 0 0C C+ −= = 1 0

2
K

µ µ−
= , where 0µ  is the target 

process mean and 1µ  is the shifted mean that we want to detect it as fast as possible. 

If  or iC+
iC−  of observation ix  exceeds decision interval H, the process is 

considered out-of-control. A reasonable value for H is five times the process standard 

deviation.  

Crosier (1988) proposes two schemes of multivariate CUSUM (MCUSUM): 

CUSUM of T statistic (COT) and regular MCUSUM. Method COT just applies the 

univariate CUSUM on Hotelling’s T statistic. COT statistic is calculated as: 

1max(0, ),  1, 2,3,...i i iS S T k i−= + − =                     (A7) 

where  and  is the positive square root of  as calculated in Eqn. (A1) for 

observation . If , the process is considered out of control. Parameter k is 

selected such that the mean vector shift of our interest can be detected as fast as 

possible. For instance, if we want to detect mean vector shift in the amount of one 

standard deviation, 

0 0S = iT 2
iT

ix iS h>

k = p

/ 2

, where p is number of process variables. Parameter h is 

selected such that the COT chart has the desired false alarm rate.  

The regular MCUSUM scheme is expressed as follows: Let 

1 1
1 0 1 0[( ) ' ( )]i i i i iC −
− −= + − + −s x µ Σ s x µ , then 
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1 0

                                      if 
( )(1 / )  if 

i i

i i i i i

C k
k C C k−

= ≤
= + − − >

s 0
s s x µ

 

where , k>0, 0 =s 0 0µ  is the target mean vector, and  is the variance-covariance 

matrix of process variables. Let . The regular MCUSUM control chart 

signals when . Selections of parameters k and h are similar with the COT 

scheme such that the control chart has the desired performance to detect the interested 

mean shift.  

Σ

' 1 1/[ ]i i iY −= s Σ s 2

iY h>

The Hotelling’s , MEWMA and MCUSUM methods may have serious 

problems when the process variables are highly correlated. Many highly correlated 

variables lead to the  matrix in Eqn. (A1) and the  matrix in Eqn. (A5) being 

near singular. This implies that some 

2T

S Σ

'i sλ  in Eqn. (A4) are very small or near zero. It 

makes the Hotelling’s  very sensitive to deviations of  in Eqn. A(4) 

corresponding to these small 

2T 'iz s

'i sλ , i.e., even a very small deviation in these  can 

make the statistic of Hotelling’s , MEWMA or MCUSUM exceed the control limit. 

So, the false alarm rate will be very high when these methods are applied to monitor 

highly correlated multivariate process.  

'iz s

2T

Subspace methods, such as principal component analysis (PCA) and partial 

least squares (PLS), solve this problem by using only a few orthogonal latent variables. 

Latent variables are linear combinations of original variables and are independent to 

each other. When variables are highly correlated, only a few latent variables can 

account for most of the variance of variables in the original full space. The space 

spanned by the latent variables is called a subspace. The variance not accounted by 

the few latent variables is considered noise.  
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PCA only concerns X variables and constructs a few latent variables to capture 

the major variance in X variables. PLS captures the information contained in X matrix 

(usually the process variables) that accounts for the major variation in the Y matrix 

(product variables) with only a few latent variables.  

The baseline dataset of PLS consists of both process observations X (n-by-p) 

and corresponding product observations Y(n-by-m). Each row of X represents an 

observation of p process variables, and each row of Y represents an observation of m 

product variables.  

Before building PCA and PLS models, to eliminate the effects of different 

scales of different variables, each variable in the baseline dataset is standardized with 

mean 0 and variance 1.  

In PCA, we denote the standardized vector of process variables by . We 

project vector  in a p-dimension space into an A-dimension subspace (A<<p) by: 

x

x

'
A=z P x                                   (A8) 

where ,  are A eigenvectors of variance-covariance 

matrix  corresponding to its A largest eigenvalues 

1 2[ , ,..., ]A A=P t t t 1 2, ,..., At t t

S pAA λλλλλ ≥≥≥≥≥≥ + ...... 121 . 

Eqn. (A8) is equivalent to project a point  onto a subspace spanned by . 

So,  is an A-by-1 vector. Usually A is much smaller than p, which implies that we 

project a vector in high dimensional full space into a subspace with much smaller 

dimensions. The projections of  on the remaining dimensions defined by 

 are usually considered noise.  

x 1 2, ,..., At t t

z

x

1 2, ,...,A A+ +t t t p

zWe can transform the projected point  in the A-dimension subspace back to 
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the full space by: 

ˆ A=x P z                                   (A9) 

The squared prediction error (SPE) gives a measure of how close the 

observation  is to its projection  in the full space: x x̂

2

1

ˆ(
p

i i
i

SPE x x
=

= −∑x )                            (A10) 

Another measure, , is just the Hotelling’s  of the projected point in the 

subspace. We can prove that in the A-dimension space, the variance-covariance matrix 

of the projections of the baseline data points is 

2T 2T

1 2( , ,..., )A Adiag λ λ λ=S . Thus the  

for the projected point of  is just: 

2T

x

2
2

1

A
i

i i

zT
λ=

=∑                                (A11) 
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(a)  

(b)  

Figure 36. Illustration of PCA, SPE and  2T

Fig. 36 illustrates the PCA, SPE and  in a more straightforward way. In Fig. 

36(a), the circles are baseline data points. We can see that these points are mainly 

varying along the direction defined by . If we only choose one latent variable, A=1. 

The variance along direction  can be considered noise. Point B in Fig. 36(b) is 

projected onto the one-dimension subspace whose coordinate is defined by . Point 

B’ is the projected point. The location of B’ in the one-dimension space is . If we 

transform the coordinate of B’ back to the original 2-dimension space, its coordinate is 

2T

1t

2t

1t

B
Az

1 2ˆ ˆ[ , ]B Bx x , just as shown in Fig. 36(b). The SPE of point B equals 
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2 2
1 1 2 2ˆ( ) (B B B Bˆ )x x x x− + −  and the  equals 2T

2

1

( )B
Az
λ

.  

Similarly, we can calculate the SPE and  values of point C. We can see that 

point C has a higher SPE but a smaller  than B. SPE measures the similarity of the 

relationships among variables to the relationships among variables in baseline data. In 

Fig. 36(a), the relationship between these two variables in baseline data is captured by 

the first principal component , which means all the points should be very close to 

this line. In Fig. 36(b), point B has a smaller SPE than point C, because point B is 

closer to line  than point C. So, the relationship between these two variables of 

point B is more similar to the baseline data than point C. Statistic  captures how far 

the projected point to the origin of the A-dimension space. 

2T

2T

1t

1t

2T

When we apply PCA for MSPC, we first determine the definition of the 

subspace, i.e., the value of A, 1 2( , ,..., )Aλ λ λ  and 1 2[ , ,..., ]A A=P t t t . Then, we can 

have SPE and  charts for on-line monitoring. The process is considered 

out-of-control if either SPE or  statistic of an observation exceeds its 

corresponding control limit. 

2T

2T

For details of how to determine the value of A and how to calculate the upper 

control limit of the SPE chart, please refer to Jackson (1991), where he denotes the 

SPE statistic by Q-statistic. The upper control limit of  chart can be calculated 

similarly as Eqn. (A2), just substituting p with A, i.e., 

2T

2 ( 1)( 1) ( , )
( )UCL

N N AT F
N N A α
− +

=
−

A N A− ; see Jiji et al. (2003).  

PLS is another subspace method. For any process observation 
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1 2( , ,..., ) 'px x x=x , PLS constructs A components, , where  is a linear 

combination of x

1 2( , ,..., ) 'At t t it

j’s, j=1,2,…, p. The number of PLS components, A, is usually much 

smaller than the number of process variables, p.  

The PLS components are calculated sequentially from baseline data. The first 

PLS component , where , 

is calculated by maximizing the covariance between the linear combination of x

'
1 11 1 12 2 1 1p pt w x w x w x= + + + = w x 1 11 12 1( , ,..., ) 'pw w w=w

j’s and 

the linear combination of yj’s. Using the baseline (X,Y), the covariance maximization 

problem can be written as: 

2 ( , )

. . ' 1,  ' 1

Max Cov

s t = = =

Xw Yc

w w w c c c =

1

 

The optimal solution  is used for the weighting vector for the first PLS 

component.  

1w

Let  be a vector containing the first PLS component for all process 

observations in the baseline X, or 

1t

1 =t Xw . Then  can be used to predict X and Y, 

or  and , where 

1t

'
1 1

ˆ =X t p1 1
'

1 1
ˆ =Y t q 1 11 12 1( , ,..., ) 'pp p p=p  contains the regression 

coefficients of the columns of X regressed on , and 1t 1 11 12 1( , ,..., ) 'mq q q=q  contains 

the regression coefficients of the columns of Y regressed on . Let  

and . The residual matrix  and  comprise the information 

contained in X and Y unrelated to the first component . 

1t
'

2 1= −X X t p1

1 1

2

'
2 = −Y Y t q 2X 2Y

1t

Similarly the weighting vector  for the second PLS component can be 

computed by maximizing the covariance between  and . Let , 

then  and  can be obtained by regressing the columns of  and  on . 

2w

2X w 2Y c 2 2=t X w

2p 2q 2X 2Y 2t
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The residual matrices in this iteration are  and . The 

matrices  and  comprise the information contained in X and Y but unrelated to 

both  and .  

'
3 2 2= −X X t p2 2

'
3 2 2= −Y Y t q

3X 3Y

1t 2t

Proceeding in this way, the vectors ,  and  are obtained from the 

baseline, the PLS components for any new process observation 

iw ip iq

1 2( , ,..., ) 'px x x=x  

can be sequentially constructed in the following manner: 1 1 't = w x ,  

. The prediction of  by the PLS 

model can be written as 

2 1 ,t= −x x p1

'
A

' '
2 2 2 3 2 2 2 3 3 3,  ,  ,..., A At t t t= = − = =w x x x p w x w x x

1 1 2 2ˆ ... A At t t= + + +x p p p . Hence  represents the 

information contained in  but not captured by ’s.  

ˆ−x x

x it

Similar with PCA, we use SPE to capture the similarity of variables’ 

relationships of new observation  to the variable relationships of baseline data. The 

SPE is calculated as SPE( )=

ix

x ∑
=

−=−
p

j
jj xx

1

22 )ˆ(x̂x . In PLS, if the SPE of an 

observation is out of the control limit, we can infer that the product quality will be bad 

with high probability. 

For details of PLS, please refer to Geladi and Kowalski (1986), Kresta et al. 

(1991), Wurl et al. (2001) and Xu and Albin (2002). 

Appendix B. Approximate the expectation and variance of estimator 2ˆ sσ  

We prove that if there are no outlier profiles,  

∑
<−

=
N

ki
skis NN

2
),(

2 ˆ
2/)1(

1ˆ σσ                 (B1) 

is an unbiased and asymptotically effective estimator of 2
sσ .  

We first prove that 2ˆ sσ  is unbiased. From Eqn. (12), the difference between 
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two profiles i and k is kjijjki εεδ −=),( , where and ij kjε ε ~ iid N(0, 2
sσ ). Therefore 

( , )i k jδ ~N(0, 2 2
sσ ) and the expectation of  in Eqn. (13) is 2

( , )ˆ i k sσ 2
sσ . From Eqn. (B1), 

E( 2ˆ sσ )= 2
sσ , i.e., the estimator in Eqn. (B1) is unbiased. 

Estimator 2ˆ sσ  is called an effective estimator of 2
sσ  if it is unbiased and its 

variance satisfies the following equation: 

)(
1)ˆ( 2

2

s
s IW

Var
σ

σ
⋅

=                              (B2) 

where W is the sample size and 2( )sI σ  is the Fisher information. The Fisher 

information about parameter 2
sσ  of a normal distribution with mean 0 and variance 

2
sσ  is 2

4

1( )
2s

s

I σ
σ

= ; see DeGroot (1986), pp.420-424. In profile baseline data, 

W=NM.  

For 2ˆ sσ  to be an asymptotically effective estimator, we need to prove: 

42 2)ˆ(lim ssN NM
Var σσ =

∞→
                         (B3) 

Since ∑ ∑∑
= =

⋅
<

−
−

=
−

=
M

j

N

i
jij

N

ki
skis yy

NMNN 1 1

22
),(

2 )(
1

11ˆ
2/)1(

1ˆ σσ  and ’s are 

independent at different j, the variance of random variable 

ijy

2ˆ sσ  is:  

))((
))1((

1)ˆ(
1

2

1
2

2 ∑∑
=

⋅
=

−
−

=
N

i
jij

M

j
s yyVar

NM
Var σ               (B4) 

We know that 2
1

2)(

σ

∑
=

⋅−
N

i
jij yy

 follows  distribution with N-1 degrees of freedom. 

So 

2χ

4

1

2 )1(2))(( σ−=−∑
=

⋅ NyyVar
N

i
jij . Consequently, Eqn. (B4) is equivalent to: 

)1(
2

))1((
)1(2)ˆ(

4

1

4
2

2

−
=

−
−

= ∑
= NMNM

NVar
M

j
s

σσσ                   (B5) 

Take limits of both sides to obtain: 
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42 2)ˆ(lim ssN NM
Var σσ =

∞→
                         (B6) 

Thus, we have proved that the estimator in Eqn. (B1) is an asymptotically 

effective estimator of 2
sσ . � 

Appendix C. Proof of proposition 5.1 

Proof: 

Suppose *λ  is a contributing eigenvalue. Eigenvector  is the 

eigenvector corresponding to 

T],[ 21 VVV =

*λ , where  is a k-by-1 vector and  is a (p-k)-by-1 

vector.  

1V 2V

Since  is the eigenvector corresponding to V *λ  of matrix , we 

have . It is equivalent to ( + )* =

1
01
−= ΣΣD

VDV *λ= 0Σ Σ∆
1

0
−Σ V *λ V . So  

(I+ ) =                          (C1) 1
0
−

ΣΣ∆ V *λ V

where I is a p-by-p identity matrix. 

We can also rewrite matrix  as blocks , where , 

,  and  are k-by-k, k-by-(p-k), (p-k)-by-k and (p-k)-by-(p-k) matrices, 

respectively. Then 

1
0
−Σ ⎥

⎦

⎤
⎢
⎣

⎡
=−

2221

12111
0 AA

AA
Σ 11A

12A 21A 22A

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=−

Σ 00
A∆A∆

AA
AA

00
0∆

Σ∆ 12111111

2221

1211

2221

12111
0           (C2) 

From Eqns (C1) and (C2), we get 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
+⎥

⎦

⎤
⎢
⎣

⎡

2

1*2121111111

2

1

V
V

0
VA∆VA∆

V
V

λ                 (C3) 

Thus, we have . Since , in order for 

, . � 

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ +

2

1*2121111111 )1(
V
V

0
VA∆VA∆

λ * 1λ ≠

0V =− 2
* )1(λ 0V =2
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