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ABSTRACT OF THE DISSERTATION

Multiple testing methods in dependent cases

by MINYA XU

Dissertation Director: Arthur Cohen, Harold B. Sackrowitz

The most popular multiple testing procedures are stepwise procedures based on P-values

for individual test statistics. Included among these are the false discovery rate (FDR)

controlling procedures of Benjamini-Hochberg(1995) and their offsprings. For many

models including the case where model variables are multivariate normal, dependent

and alternatives are two sided, these stepwise procedures lack an intuitive convexity

property which is also needed for admissibility. Here we present two new stepwise

methods that do in fact have the convexity property. Furthermore unlike the method

using P-values based on marginal distributions, the new methods take dependency into

account in all stages. Still further the new methodology is computationally feasible.

Applications are detailed for models such as testing for change points of variances and

testing treatments against control of variances.
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Chapter 1

Introduction

The need for multiple testing procedures (MTPs) has been given great impetus by

diverse fields of application such as microarrays, astronomy, mutual fund evaluations,

proteomics, disclosure risk, cytometry, imaging and others. Traditional methods to deal

with multiple testing when the number of tests is large are deemed too conservative (do

not detect significant effects often enough). New approaches to multiple testing have

arisen. Many of the new approaches are classified as stepwise procedures such as step-

up and step-down in contrast to single step procedures. See Hochberg and Tamhane

(1987) and also Dudoit, Shaffer and Boldrick (DSB) (2003) where 18 procedures are

listed as single step, step-up or step-down. Among the more popular procedures is the

Benjamini-Hochberg (1995) false discovery rate (FDR) controlling procedure. Many

offspring have followed. See for example, Efron, Tibshirani, Storey and Tusher (2001),

Storey and Tusher (2001), Storey and Tibshirani (2003), Sarkar (2002), Benjamini and

Yekutieli (2001), Lehmann and Romano (2005), Cai and Sarkar (2006) and Dudoit and

van der Laan (2008). Typically, the stepwise procedures deal with P-values determined

from marginal distributions. Even when the model entails random vectors with corre-

lated variates, P-values from marginal distributions, ignoring correlations, are the basis

of the procedures.

In a series of papers Cohen and Sackrowitz (CS) (2005), (2007), (2008), and Cohen,

Kolassa, and Sackrowitz (2007) demonstrated that given a typical step-up or step-down

procedure, there exist other procedures whose expected numbers of type I and type II

errors are smaller. In fact in CS(2007b) for multivariate normal models when correlation

is nonzero, for two-sided alternatives of means, there exist procedures whose individual

tests have smaller expected type I and type II errors.
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The goal of this thesis is to develop good MTPs in the case of correlated variables.

To begin with we realize that every MTP induces individual tests, φi, for the individual

hypothesis testing problems Hi vs Ki. The behavior of these tests should be of fun-

damental concern. However, the stepwise construction of most MTPs often makes it

difficult to describe and study the individual tests.

In particular, suppose an individual test induced by an MTP is inadmissible for

the standard hypothesis testing loss. That is, for that individual hypothesis testing

problem, a test exists whose size is no greater than the stepwise procedure test and

whose power is no less with some strict inequality. It would then follow that the overall

procedure would be inadmissible whenever the risk function is a monotone function of

the expected numbers of type I and type II errors.

We use a convexity property (A.Cohen, H.Sackrowitz and M.Xu (2007)) that is

necessary and sufficient for admissibility of the individual tests. In CS (2008) it has been

shown that most popular stepwise procedures do not possess the convexity property

when there is correlation in the two-sided alternative case. In this thesis we have

constructed two step-down type MTPs whose individual tests do have the required

convexity property for the problems we studied in the thesis. As is typical in problems

where no single optimal procedure exists, the selection of a procedure is somewhat

subjective. In evaluating procedures we focus mainly on the expected number of Type

I and Type II errors that the procedures make.

One of the new stepwise testing methods proposed is based on the maximum of

adaptively formed residuals. The method is called maximum residual down (MRD)

procedure. The other one is called ”maximum-likelihood ratio down (M-LRD)” proce-

dure, as the name says, it is based on the maximum of a collection of likelihood ratios.

Both of them are step-down type MTPs. These two methods have several advantages

over the stepwise methods that are currently recommended in the literature.

(1) They can’t be improved upon in terms of both type I and type II errors at

the same time. That is, they are admissible for a vector risk function, each of whose

components is the risk for the individual testing problems. The loss function for the

individual tests is the typical zero-one loss function entailing type I and type II errors.
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(2) They take into account the correlation among the variates, thus utilizing infor-

mation oftentimes not used by the current P-value methods.

(3) For the change point model of variances in this thesis, we found if the variances

have only one spot of consecutive changes, then MRD is quite efficient in detecting

them. For the treatment vs control model of variances, simulations demonstrate that the

MRD and M-LRD make substantially fewer mistakes that the popular FDR controlling

procedures.

For the testing of means case, we assume X is an M×1 vector which is multivariate

normal with mean vector µ and known intraclass covariance matrix Σ. Applications

of the intraclass model include the model of testing several treatments vs control. We

test two sided alternatives, i.e. Hi : µi = 0 vs Ki : µi 6= 0, i = 1, ..., M . We also test

one sided alternatives, i.e. Hi : µi = 0 vs K∗
i : µi > 0, i = 1, ..., M .

A seemingly logical step-down method that would take correlations into account is

to successively perform likelihood ratio tests (LRT) of global hypotheses, that is, it con-

tinues in a step-down fashion in determining the LRT-based MTP. Call this procedure

LRSD. At step one, LRSD employs the closure method (see Marcus, Peritz, and Gabriel

(1976)) using a LRT for µ = 0 vs µ 6= 0. If the global test rejects, then eliminate the

variate corresponding to max
1≤i≤M

|Xi|. One continues in a step-down fashion. Similar for

one sided alternatives.

With this intraclass covariance matrix , for one-sided alternatives, LRSD is admis-

sible. For two sided alternatives LRSD is admissible for any monotone collection of

critical constants only when M=2 or M=3. For M ≥ 4, counterexamples abound. That

is, there are many critical constants for which LRSD is inadmissible. Furthermore

critical constants are found for M ≥ 5 which relate to constants that are likely to be

used.

The inadmissibility of LRSD is what prompted and led to MRD and M-LRD.

We have already applied our MRD method to the mean case of two special problems

in the paper (A.Cohen, H.Sackrowitz and M.Xu (2007)). One problem is to detect the

change points in mean. The other problem is testing for means of several treatments

against a control. Advantages and limitations of MRD method to these two projects
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have been discussed in detail in this paper. And later we found that the test statistics

for M-LRD and MRD are linear functions of each other for the two sided mean case.

Thus a similar proof of admissibility works for M-LRD.

For the testing of variance case, we assume zj = (zj1, zj2, ..., zj(M+1))′ is a sequence of

independent normal variables with parameters(µ1, σ
2
1), (µ2, σ

2
2), ..., (µM+1, σ

2
M+1). j =

1, 2, ..., n. i.e., for each distribution with parameters (µj , σ
2
j ), there are n independent

sample points. Let s2
i =

∑n
j=1(zji−z̄i)

2

n−1 be the sample variance, where z̄i =
∑n

j=1 zji

n ,

i = 1, ..., (M + 1). For this variance case, similarly, we mainly studied two problems.

That is, one is to detect the change points in variance for a sequence of data. Another

one is to test for variance of each of several treatments against a control.

The first problem is simplified into testing two sided alternatives, i.e. Hi : σ2
i =

σ2
i+1 vs Ki : σ2

i 6= σ2
i+1, i = 1, ..., M . or test one sided alternatives, i.e. Hi : σ2

i =

σ2
i+1 vs Ki : σ2

i > σ2
i+1, i = 1, ...,M . In either case the step-up and step-down methods

are inadmissible. The LRSD step-down method is mostly inadmissible while the MRD

method is admissible for both cases. The statistics for M-LRD and MRD are not linear

functions of each other for this testing of variance case. M-LRD is studied only for two

sided alternatives and M-LRD is admissible for such cases.

For the second problem, we test two sided alternatives, i.e. Hi : σ2
i = σ2

M+1 vs Ki :

σ2
i 6= σ2

M+1, i = 1, ..., M . We also test one sided alternatives, i.e. Hi : σ2
i = σ2

M+1 vs Ki :

σ2
i > σ2

M+1, i = 1, ..., M . For one-sided alternatives, step-up , step-down and LRSD

methods are all admissible. For two sided alternatives, step-up and step-down methods

are inadmissible while LRSD is admissible for any monotone collection of critical con-

stants only when M=2. For M ≥ 3, counterexamples abound. That is, there are many

critical constants for which LRSD is inadmissible, while the MRD method is admissible

for both cases and M-LRD is admissible for the two sided case.

One issue of concern in any MTP is computational feasibility. It is an issue because

in some instances the number of tests to be performed is very large. The only obstacle to

computational feasibility would be the possible need to invert high dimensional matrices

numerically. Oftentimes covariance matrices are such that the inversion process can be

simplified algebraically so that the computations present no problem. This is the case
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for the practical applications we consider here. The general case however involves

inverting higher order matrices which may not be feasible if M is extremely large.

In the next Chapter we describe the LRT based step-down procedure (LRSD) for

the mean case. Here there are both admissibility and inadmissibility results of interest.

Chapter 3 and Chapter 4 are focused on change point problems and treatment vs

control problems of variance individually, MRD, M-LRD, LRSD, step-up and step-

down procedures are studied here. Admissibility and inadmissibility of each procedure

is assessed. Chapter 5 provides a set of C’s controlling strong FWER for the MRD

procedure. Simulations and analysis are given in Chapter 6.
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Chapter 2

Testing of means with intraclass covariance matrix

Assume X is an M×1 vector which is distributed as multivariate normal with unknown

mean vector µ and known covariance matrix Γ = σ2Σ. The Σ matrix is an intraclass

matrix here. Without loss of generality we take the diagonal elements of Σ to be 1 and

the off diagonal elements to be ρ, that is

Σ=




1 ρ ρ · · · ρ ρ

ρ 1 ρ · · · ρ ρ

· · · · · ·
ρ ρ ρ · · · 1 ρ

ρ ρ ρ · · · ρ 1




, which is a M ×M matrix.

We are interested in testing two sided alternatives, i.e

Hi : µi = 0 vs Ki : µi 6= 0, i = 1, ..., M (2.1)

We also interested in testing one sided alternatives, i.e

Hi : µi = 0 vs K∗
i : µi > 0, i = 1, ..., M (2.2)

One of the applications to the intraclass model is the model of testing several means

of treatments vs control. For example, we have (M + 1) independent random samples

from (M + 1) normal populations, i.e. Zi ∼ N(νi, σ
2), i = 1, 2, ..., (M + 1) . Without

loss of generality we assume σ2 = 1. The treatments correspond to i = 1, 2, ..., M while

the control population corresponds to the (M + 1)st population. And we are interested

in testing

Hi : νi − νM+1 = 0 vs Ki : νi − νM+1 6= 0, i = 1, ..., M (2.3)

or one sided alternatives:

Hi : νi − νM+1 = 0 vs K∗
i : νi − νM+1 > 0, i = 1, ...,M (2.4)
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Let Xi = Zi−ZM+1, i = 1, 2, ..., M so that X is distributed as multivariate normal

with mean vector µ, µi = νi − νM+1 and covariance matrix Γ . That is

Γ= 2×




1 0.5 0.5 · · · 0.5 0.5

0.5 1 0.5 · · · 0.5 0.5

· · · · · ·
0.5 0.5 0.5 0.5 1 0.5

0.5 0.5 0.5 0.5 0.5 1




, which is a M ×M intraclass matrix.

To solve these problems, we only studied Likelihood Ratio Step-Down Method(LRSD)

method here which naturally takes correlation into account. It continues in a step-down

fashion in determining the LRT-based MTP. We have already applied our new method

MRD to these cases in the paper (A.Cohen, H.Sackrowitz and M.Xu (2007)). Advan-

tages and limitations of MRD method have been discussed in detail in this paper. And

we found that the test statistics for M-LRD and MRD are linear functions of each other

for the two sided mean case. Thus a similar proof of admissibility works for M-LRD.

By way of notation, let X(j1,j2,...,jm−1) be the (M-(m-1)) vector consisting of the

components of X with Xj1 , ..., Xjm−1 left out. µ(j1,j2,...,jm−1) is the (M-(m-1)) vector

consisting of the components of µ with µj1 , ..., µjm−1 left out. Σ(j1,j2,...,jm−1) is the

(M − (m− 1))× (M − (m− 1)) covariance matrix of X(j1,j2,...,jm−1).

2.1 Likelihood Ratio Step-Down Method(LRSD)

LRSD Procedure for two sided alternatives:

Let c1 > c2 > · · · > cM > 0 be a given set of constants.

Stage 1: Let I1 = {1, 2, ..., M} be the indices of the hypotheses of (2.1) . We

test H1G : µ = 0 vs K1G : µ 6= 0. The likelihood ratio for this test is L1 =
sup
µ

1

(2π)M/2|Σ|1/2
exp{− 1

2
(x−µ)′Σ−1(x−µ)}

1

(2π)M/2|Σ|1/2
exp{− 1

2
x′Σ−1x} = exp{1

2x′Σ−1x}. If L1 < c1, then accept H1G

and stop; Otherwise, reject Hj1 where j1 is the index for which |Xj1 | = max{|Xj | : j ∈
I1}, then continue.

Stage 2: Let I2 be the indices of the hypotheses not previously rejected. Now we

test H2G : µ(j1) = 0 vs K2G : µ(j1) 6= 0. Let L2 be the likelihood ratio for this test.
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If L2 < c2, then accept H2G and stop; otherwise, reject Hj2 where j2 is the index for

which |Xj2 | = max{|Xj | : j ∈ I2} and continue.
...

In general at stage m: 1 ≤ m ≤ M , let Im be the indices of the hypotheses not

previously rejected. Now we test HmG : µ(j1,...,jm−1) = 0 vs KmG : µ(j1,...,jm−1) 6= 0 .

Let Lm be the likelihood ratio for this test. If Lm < cm, then accept Hm
0 and stop;

otherwise, reject Hjm where jm is the index for which |Xjm | = max{|Xj | : j ∈ Im} and

continue.

We will demonstrate that the LRSD is admissible for M=2 and M=3. For M ≥ 4

there exist counterexamples for certain collections of critical values and certain values

of ρ. We offer a counterexample when M = 4 and when M = 5 we demonstrate

inadmissibility for a large class of practical critical values for logical values of ρ. In

fact for large M , using χ2 critical values it turns out that for most ρ values (ρ 6= 0)

counterexamples demonstrate that LRSD is inadmissible.

On the other hand should the alternatives for the individual hypotheses be the

one-sided alternatives given in (2.2), then the LRSD is admissible.

Now we express the density of X as

fX(x|µ) =
1

(2π)M/2|Σ|1/2
exp{−1

2
(x− µ)′Σ−1(x− µ)} (2.5)

which in exponential family form is

fX(x|µ) = h(x)β(µ) exp{x′Σ−1µ} (2.6)

Next let Y = Σ−1X so that

fY (y|µ) = h∗(y)β(µ) exp{
M∑

i=1

yiµi} (2.7)

Lemma 2.1.1. A necessary and sufficient condition for a test, ψ(y), of H1 : µ1 = 0 vs

K1 : µ1 6= 0 to be admissible, is that for almost every fixed y2, ..., y(M+1), the acceptance

region of the test is an interval in y1.

Proof. See Matthes and Truax (1967).
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Note, to study the test function ψ(y) = φ(x) as y1 varies and (y2, ..., y(M+1)) remain

fixed we can consider sample points x + rg where g is the first row of Σ and r varies.

This is true since y is a function of x and so y evaluated at (x+rg) is (Σ)−1(x+rg) =

y + (r, 0, ..., 0)′ = (y1 + r, y2, ..., y(M+1)).

Focusing firstly on the two-sided alternative case we note that the LRT for H1G vs

K1G is to reject if

x′Σ−1x ≥ C1 (2.8)

where Σ−1 =




1 + (M − 2)ρ −ρ −ρ · · · −ρ

−ρ 1 + (M − 2)ρ −ρ · · · −ρ

· · · · · ·
−ρ −ρ −ρ · · · 1 + (M − 2)ρ




Theorem 2.1.1. For the two-sided alternative case LRSD is admissible for M=2 and

M=3.

Proof of Theorem 2.1.1. We prove the theorem for M=3. For M=2 the method is the

same and the proof is simpler. Note when x∗1 = 0, H1 is accepted. In light of Lemma

2.1.1 we need to show that the LRSD test for H1 vs K1, say φ1(x), as a function of

x+rg goes from reject to accept to reject as r varies from (−∞,∞), where g = (1, ρ, ρ)′.

Another way of stating this requirement is suppose φ1(x∗) = 1 when x∗1 > 0. Then we

must have φ1(x∗+ rg) = 1 for all r > 0 while if φ1(x∗) = 1 when x∗1 < 0, we must have

φ1(x∗ − rg) = 1 for all r > 0.

H1 can be rejected at three different stages:

(1) If H1 is rejected at stage 1 for x = x∗ =⇒ |x∗1| > |x∗2|, |x∗1| > |x∗3| and x∗′Σ−1x∗ ≥
C1,

when x∗1 > 0, this implies

(x∗ + rg)′Σ−1(x∗ + rg) = x∗
′
Σ−1x∗ + 2rx∗1 + r2 > C1 (2.9)

Also x∗1 + r > |x∗2 + rρ| and x∗1 + r > |x∗3 + rρ|, so φ1(x∗ + rg) = 1 too, for all r > 0.

When x∗1 < 0, a similar argument works for (x∗ − rg)′Σ−1(x∗ − rg)
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(2) If H1 is rejected at stage 2 for x = x∗, suppose x∗3 is out first =⇒ |x∗3| > |x∗1| >
|x∗2|, x∗′Σ−1x∗ ≥ C1 and x∗(3)′Σ−1

(3)x
∗(3) = x∗21 + x∗22 − 2ρx∗1x

∗
2 ≥ C2.

When x∗1 > 0 =⇒ (2.9) > C1 and

(x∗(3) + rg(3))′Σ−1
(3)(x

∗(3) + rg(3))

= (x∗1 + r)2 + (x∗2 + rρ)2 − 2ρ(x∗1 + r)(x∗2 + rρ)

= x∗21 + x∗22 − 2ρx∗1x
∗
2 + 2rx∗1 + r2 + ρ2r2 − 2ρ2x∗1r − 2ρ2r2

(2.10)

But since r2 + ρ2r2 > 2ρ2r2 and 2rx∗1 ≥ 2ρ2rx∗1 it follows that (2.10)> C2 for all

r > 0. Hence φ1(x∗ + rg) = 1 for all r > 0.

When x∗1 < 0, a similar argument works for (x∗(3) − rg(3))′Σ−1
(3)(x

∗(3) − rg(3)).

(3) If H1 is rejected at stage 3 for x = x∗, suppose x∗3 is out first and x∗2 is out

second =⇒ |x∗3| > |x∗2| > |x∗1|.
When x∗1 > 0, subcases where the ordering of the components of x∗ is maintained

with (x∗ + rg), it is easy to prove the required monotonicity property. The most

challenging subcases is if |x∗3| > x∗2 > x∗1 > 0 with x∗3 < 0 but

|x∗3 + rρ| < x∗2 + rρ (2.11)

In this case when ρ > 0 we use the fact that x∗23 > x∗22 and use the inequalities as in the

previous case to prove the result. When ρ < 0 we observe that if |x∗3| > x∗2 > x∗1 > 0

and x∗3 < 0 then |x∗3 + rρ| > x∗2 + rρ and so (2.11) can’t happen. It’s easy to verify that

if φ1(x∗) = 1 then φ1(x∗ + rg) = 1 for all r > 0.

Similar argument works for x∗1 < 0.

For M=4 we exhibit a set of critical values for which LRSD is inadmissible. To do so

we find a sample point x∗(x∗1 > 0) at which H1 is rejected and for which H1 is accepted

at x∗ + rg. In fact let x∗ = (a,−a −∆, b,−b − ε)′ for b > a + ∆ > a > 0, ε > 0 and

b + ε > a + ε/ρ. Thus using (2.8) at stage 1 choose C1 so that x∗′Σ−1x∗ ≥ C1 and H4

is rejected and x∗4 is eliminated at stage 1. At stage 2 we calculate

x∗(4)′Σ−1
(4)x

∗(4) =
1

1 + ρ− 2ρ2
{(1 + ρ)b2 + 2a2(1 + 2ρ) + 2∆[a + 2aρ + ρb + (1 + ρ)∆/2]}

(2.12)
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We set x∗(4)′Σ−1
(4)x

∗(4) = C2, so H3 is rejected. At stage 3, H2 is rejected and at stage

4, H1 is rejected. Now if ρ > 0 let r = ε/ρ and note that (x∗ + rg)′Σ−1(x∗ + rg) ≥ C1.

This time however, H3 is rejected at stage 1. At stage 2 we calculate for r = ε/ρ,

x∗(3)′Σ−1
(3)x

∗(3)

=
1

1 + ρ− 2ρ2
{(1 + ρ)b2 + 2a2(1 + 2ρ) + 2∆(a + 2aρ− bρ + (1 + ρ)∆/2)

+ (ρ− 1 +
1
ρ

+
1
ρ2

)ε2 + ε(
2a

ρ
+ 2a− 4aρ− 2ρ∆ + 2(1 + ρ)b)}

(2.13)

We note that (2.12) minus (2.13) is

1
1 + ρ− 2ρ2

{4∆bρ− (ρ− 1 +
1
ρ

+
1
ρ2

)ε2 − ε(
2a

ρ
+ 2a− 4aρ− 2ρ∆ + 2(1 + ρ)b)}

(2.14)

There are many choices of a, b, ∆, ε, ρ for which (2.14) is positive (e.g., a = 2, b =

4, ∆ = 1, ε = .1, ρ = .5, r = .2). The fact that (2.14) > 0 implies that we can choose

C2 such that x∗(3)′Σ−1
(3)x

∗(3) < C2 so that at x∗ + rg the overall procedure rejects H3

and accepts H1,H2 and H4. Note since x∗1 > 0, x∗ − ag is an accept point. Now if

H1 is rejected for x = x∗ but accepted for x∗ + rg, that implies the test for H1 is

inadmissible.

For M = 5 it can be shown that if the critical values correspond to critical values

of chi-square with m degrees of freedom, m=1,2,3,4,5, at level, say .05, then for most

values of ρ, LRSD is also inadmissible. The same is true for any M > 5.

Next for the intraclass model we consider testing one-sided alternatives, i.e. we test

Hi : µi = µi+1 vs K∗
i : µi > µi+1. The LRSD method in this case is the same as in the

two-sided alternative case except that |Xj1 | is replaced by Xj1 = max(X1, ..., XM ), the

likelihood ratio L1 = exp{1
2x′Σ−1x} is replaced by L1 = sup

u≥0
exp{x′Σ−1u− 1

2u
′
Σ−1u},

and similar changes for subsequent stages. For this setup we have

Theorem 2.1.2. For the one-sided alternative case LRSD is admissible.

Proof of Theorem 2.1.2. Once again we focus on H1 vs K∗
1 and demonstrate that if

φ(x∗) = 1 then φ(x∗ + rg) = 1 for all r > 0. Suppose H1 is rejected at stage m for

x = x∗. Then x∗1 > 0, x∗j1 > x∗j2 > · · · > x∗jm−1
> x∗1 > x∗jm+1

> · · · > x∗jM
and
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L1 > c1, L2 > c2, ..., Lm > cm. Note at x∗∗ = x∗ + rg the orders of all coordinates

are preserved except perhaps the first coordinate which now can be anywhere among

the m largest coordinates. The k stage global hypothesis is considered if Hj1 , ..., Hjk−1

have been rejected. This global testing problem is HkG : µ(j1,...,jk−1) = 0 vs KkG :

µ(j1,...,jm−1) ≥ 0 but at least one µi > 0, i ∈ Kk. The likelihood ratio test rejects HkG

if Lk > ck, i.e

sup
{µi≥0,i∈Kk}

exp{x∗(j1,...,jk−1)′Σ−1
(j1,...,jk−1)µ

(j1,...,jk−1) − 1
2
µ(j1,...,jk−1)′Σ−1

(j1,...,jk−1)µ
(j1,...,jk−1)}

= exp{x∗(j1,...,jk−1)′Σ−1
(j1,...,jk−1)µ̂

∗(j1,...,jk−1) − 1
2
µ̂(j1,...,jk−1)∗′Σ−1

(j1,...,jk−1)µ̂
∗(j1,...,jk−1)}

(2.15)

> ck, where µ̂∗(j1,...,jk−1) is the maximum likelihood estimator on [0, +∞) of µ(j1,...,jk−1)

when x = x∗.

Next consider the likelihood ratio test statistic Lk at x∗∗. It is

sup
{µi≥0,i∈Kk}

exp{(x∗(j1,...,jk−1)′ + rg(j1,...,jk−1))Σ−1
(j1,...,jk−1)µ

(j1,...,jk−1)

− 1
2
µ(j1,...,jk−1)′Σ−1

(j1,...,jk−1)µ
(j1,...,jk−1)}

≥ exp{(x∗(j1,...,jk−1)′ + rg(j1,...,jk−1))Σ−1
(j1,...,jk−1)µ̂

∗(j1,...,jk−1)

− 1
2
µ̂∗(j1,...,jk−1)′Σ−1

(j1,...,jk−1)
µ̂∗(j1,...,jk−1)}

= exp{x∗(j1,...,jk−1)′Σ−1
(j1,...,jk−1)µ̂

∗(j1,...,jk−1) − 1
2
µ̂∗(j1,...,jk−1)′Σ−1

(j1,...,jk−1)µ̂
∗(j1,...,jk−1)

+ rµ̂
∗(j1,...,jk−1)
1 }

(2.16)

Recognize that the right-hand side of (2.16) is the maximized likelihood in (2.15)

times exp{rµ̂(j1,...,jk−1)∗
1 }. Since µ̂

(j1,...,jk−1)∗
1 ≥ 0, it follows from (2.15) and (2.16) that

(2.16) ≥ ck, which means there is a rejection at stage k at x∗∗ if there was a rejection

at stage k at x∗, k = 1, ..., M . Since the order of the coordinates of x∗∗j1 , x∗∗j2 , · · · , x∗∗jm−1

remains unchanged and x∗∗1 is among the m largest coordinates of x∗∗ it follows that

H1 is rejected at stage m or sooner.
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Chapter 3

Variance Change

Let zj = (zj1, zj2, ..., zj(M+1))′ be a sequence of independent normal variables with

parameters(µ1, σ
2
1), (µ2, σ

2
2), ..., (µM+1, σ

2
M+1), j = 1, 2, ..., n, i.e., for each distribution

with parameters (µi, σ
2
i ), there are n independent sample points. Let s2

i =
∑n

j=1(zji−z̄i)
2

n−1

be the sample variance for the ith population, where z̄i =
∑n

j=1 zji

n , i = 1, ..., (M + 1).

The interest here is to test the hypothesis testing:

Hi : σ2
i = σ2

i+1 vs Ki : σ2
i 6= σ2

i+1, i = 1, ..., M (3.1)

So rejecting any Hi indicates a change point in variance occurs at position i.

We will also consider one-sided alternative problems

Hi : σ2
i = σ2

i+1 vs K∗
i : σ2

i > σ2
i+1, i = 1, ..., M (3.2)

We know that (n−1)s2
i

σ2
i

∼ χ2
n−1, so the density of s2 = (s2

1, s
2
2, ..., s

2
M+1)

′ is:

fs2(s
2|σ2) =

M+1∏

i=1

(n− 1)
Γ(n−1

2 )2(n−1)/2

((n− 1)s2
i )

(n−1
2
−1)

(σ2
i )

n−1
2

e
− (n−1)s2i

2σ2
i (3.3)

Now let z̃i = (n− 1)s2
i , ui = − 1

2σ2
i
, so that (3.3) becomes:

fz̃(z̃|u) = h(z̃)β(u) exp{z̃′u} (3.4)

where z̃ = (z̃1, z̃2, ..., z̃M+1)′ and u = (u1, u2, ..., uM+1)′.

Let A=




1 −1 0 · · · 0 0

0 1 −1 · · · 0 0

· · · · · ·
0 0 0 · · · 1 −1

1 1 1 · · · 1 1




, which is a (M + 1)× (M + 1) matrix,
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Then

fz̃(z̃|u) = h(z̃)β(u) exp{z̃′A−1Au} (3.5)

Denote ν = Au, so

fz̃(z̃|u) = h(z̃)β∗(ν) exp{z̃′A−1ν} (3.6)

And testing (3.1) and (3.2) are equivalent to test

Hi : νi = 0 vs Ki : νi 6= 0, i = 1, ..., M (3.7)

Hi : νi = 0 vs K∗
i : νi > 0, i = 1, ..., M (3.8)

3.1 MRD

The maximum residual down (MRD) method is based on the maximum of adaptively

formed residuals. It is step-down type MTP. For each stage, we calculate the residuals

for the hypotheses not previously rejected, and compare the biggest one with some

constant c, then make decision of rejecting or accepting.

Let X = Az̃, Σ = AA′,then from (3.6) we can get

fX(x|ν) = h∗(x)β∗(ν) exp{x′Σ−1ν} (3.9)

Note that

Σ = AA′ =




2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

· · · · · · · · ·
0 0 0 · · · −1 2 0

0 0 0 · · · 0 0 (M + 1)




which is a (M + 1)× (M + 1) matrix.

Using the similar notation as in Chapter 2, let X(j1,j2,...,jr,i) be the (M-r) vector

consisting of the components of X with Xj1 , ..., Xjr , Xi left out; Σ(j1,j2,...,jr,i) is the

(M − r) × (M − r) covariance matrix of X(j1,j2,...,jr,i); σ
(j1,j2,...,jr)
(i) is the (M − r) × 1

vector of covariances between Xi and all variables except Xj1 , ..., Xjr and Xi.
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So for stage m after rejecting Hj1 ,Hj2 , ...Hjm−1 , we define Residualm,i as follows:

Residualm,i = Xi − σ
(j1,j2,...,jm−1)′
(i) Σ−1

(j1,j2,...,jm−1,i)X
(j1,j2,...,jm−1,i) (3.10)

for any i, i ∈ {1, 2, ..., M} \ {j1, ..., jm−1},
Let (j(1), ...j(m−1)) be the ordered sequence of (j1, ..., jm−1).

If i is in the range of (j(k), j(k+1)), where k = 0, 1, ..., m − 1. Here denote j(0) = 0,

j(m) = M + 1. After calculating (3.10), we get

Residualm,i =
z̃j(k)+1 + · · ·+ z̃i

i− j(k)
− z̃i+1 + · · ·+ z̃j(k+1)

j(k+1) − i
(3.11)

which only involves (z̃j(k)+1, z̃j(k)+2, ..., z̃j(k+1)
)′.

To make Residualm,i invariant in scale, let Wm,i be defined as Residualm,i divided

by z̃j(k)+1 + · · ·+ z̃j(k+1)
. That is

Wm,i =
Residualm,i(z̃)

z̃j(k)+1 + · · ·+ z̃j(k+1)

=

z̃j(k)+1+···+z̃i

i−j(k)
− z̃i+1+···+z̃j(k+1)

j(k+1)−i

z̃j(k)+1 + · · ·+ z̃j(k+1)

(3.12)

Then our test statistics Um,i is defined as:

Um,i = (Wm,i)2 (3.13)

for the two sided (3.1) case, m = 1, ...,M .

And

Um,i = Wm,i (3.14)

for the one sided (3.2) case, m = 1, ..., M

3.1.1 MRD Procedure

MRD Procedure:

Let c1 > c2 > · · · > cM > 0 be a given set of constants.

Stage 1: Let I1 = {1, 2, ..., M}. If U1,j1 = max{U1,i : i ∈ I1} < c1, then accept all

hypotheses and stop; otherwise, reject Hj1 and continue.

Stage 2: Let I2 be the indices of the hypotheses not previously rejected. If U2,j2 =

max{U2,i : i ∈ I2} < c2, then accept all hypotheses in I2 and stop; otherwise, reject Hj2

and continue.
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...

In general at stage m: 1 ≤ m ≤ M , let Im be the indices of the hypotheses not

previously rejected. If Um,jm = max{Um,i : i ∈ Im} < cm, then accept all hypotheses in

Im and stop; otherwise, reject Hjm and continue.

3.1.2 Admissibility of MRD

We will demonstrate that for each individual testing problem that the MTP based on

MRD method is admissible. Without loss of generality we focus on H1 vs K1. Again

our plan is to use a result of Matthes and Truax (1967) stated as Lemma 2.1.1 which

offers a necessary and sufficient condition for admissibility of a test of H1 vs K1 when

the joint distribution of z̃ is an exponential family. We next demonstrate in Lemma

3.1.1 that Wm,i(z̃) function given in (3.12) has certain monotonicity properties. These

monotonicity properties will enable us to prove in Lemma 3.1.2 that the individual

test function for Hi vs Ki have the convexity property that is necessary and sufficient

for admissibility. Theorem 3.1.1 summarizes and states the admissibility of the MRD

procedure.

The density of z̃ is expressed in (3.6), now let Y = (A′)−1z̃ so that

fY(y|ν) = h∗∗(y)β∗(ν) exp{
M+1∑

i=1

yiνi} (3.15)

Similar to the proofs in Chapter 2, to study the test function ψ(y) = φU (z̃) as y1

varies and (y2, ..., y(M+1)) remain fixed we can consider sample points z̃ + rg where g is

the first row of A and r varies. This is true since y is a function of z̃ and so y evaluated

at (z̃ + rg) is (A′)−1(z̃ + rg) = y + (r, 0, ..., 0)′ = (y1 + r, y2, ..., y(M+1))

Lemma 3.1.1. The function Wm,j(z̃) given in (3.12) have the following properties:

At any stage m, as far as H1 has not been rejected, for any i 6= 1, i.e., i ∈ {2, ..., M}\
{j1, ..., jm−1}, j1 6= 1, ..., jm−1 6= 1,

Wm,i(z̃ + rg) = Wm,i(z̃) (3.16)

and

Wm,1(z̃ + rg) = Wm,1(z̃) + ar (3.17)
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where a is some constant and a > 0;

Proof of Lemma 3.1.1. For i = 1, use (3.12) and recall g = (1,−1, 0, ...., 0)′ is the first

row of A to see that

Wm,1(z̃ + rg) =
(z̃1 + r)− (z̃2−r)+z̃3+···+z̃j(1)

j(1)−1

(z̃1 + r) + (z̃2 − r) + · · ·+ z̃j(1)

= Wm,i(z̃) + ar

where a =
1+ 1

j(1)−1

∑j1
k=1 z̃k

, j(1) ≥ 2, so a > 0. This establishes (3.17).

Now for i 6= 1, if j(k) < i < j(k+1) , j(k) 6= 1, k = 0, 1, ..., m, where j0 = 0, jm = M+1,

Wm,i(z̃ + rg) =

z̃j(k)+1+···+z̃i

i−j(k)
− z̃(i+1)+···+z̃j(k+1)

j(k+1)−i

z̃j(k)+1 + · · ·+ z̃j(k+1)

= Wm,i(z̃)

since i ≥ 2 and j(k) = 0 or j(k) ≥ 2. This establishes (3.16).

Lemma 3.1.2. Suppose that for some z̃∗ and r0 > 0, φU (z̃∗) = 0 and φU (z̃∗+r0g) = 1.

Then φU (z̃∗ + rg) = 1 for all r > r0. This is true both for the one sided alternatives

(3.2) and two sided alternatives (3.1) of the variance change problem in this Chapter.

Proof of Lemma 3.1.2. If φU (z̃∗) = 0 when z̃∗ is observed, the process must stop before

H1 is rejected. Suppose it stops at stage m without having rejected H1. That means that

Um,jm < cm which is equivalent to Um,i < cm for all i ∈ {1, 2, ..., M}\{j1, ..., jm−1}, ji 6=
1. Also Ui,ji > ci, i = 1, ..., m−1, ji 6= 1. Next consider z̃∗ +r0g which is a rejecting H1

point. By Lemma 3.1.1, (3.16) and (3.17) imply that only the function Uh,1 can change

from z̃∗ to z̃∗ + r0g at each stage h ≤ m. For some stage s, s ≤ m, Ws,1 must have

increased to become positive and Us,1 become the maximum function at that stage and

also be ≥ cs. By (3.17) Us,1(Us,1 = Ws,1 for one sided alternatives and Us,1 = (Ws,1)2

for two sided alternatives) will be at least this large for all r ≥ r0. Thus H1 will also

be rejected for all z̃∗ + rg, r > r0.
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Not that Lemma 3.1.2 implies that the acceptance region in y1, for fixed y2, ..., yM+1

is an interval.

Theorem 3.1.1. Both for the one sided alternatives (3.2)and two sided alternatives

(3.1), the MRD procedure based on Um,i is admissible.

Proof. Admissible means that each individual test for each hypothesis testing problem

is admissible. Without loss of generality we show admissibility of φU (z̃) for H1 vs K1.

Proof that the other tests are admissible for the other hypotheses would be done in the

same way. That φU (z̃) is admissible for H1 vs K1 follows readily from Lemma 2.1.1

and Lemma 3.1.2.

3.2 M-LRD

The Maximum-Likelihood Ratio down (M-LRD) method is step-down type MTP too.

It’s also based on the maximum of a collection of likelihood ratios. Only two-sided

alternatives will be addressed here.

3.2.1 M-LRD Procedure

M-LRD procedure calculates M likelihood ratios for the first stage and calculate (M−1)

likelihood ratios for the second stage and so on.

M-LRD Procedure:

Let c1 > c2 > · · · > cM > 0 be a given set of constants.

Stage 1: Let I1 = {1, 2, ...,M} be the indices of the hypotheses of (3.7). We test

H1G : ν1 = ν2 = ... = νM = 0 vs K1
i : H1G but νi 6= 0. Let L1,i be the likelihood ratio

for H1G vs K1
i . If L1,j1 = max{L1,i : i ∈ I1} < c1, then accept H1G and stop, i.e., there

is no change point; Otherwise, reject Hj1 , say these is a change point at position j1,

and continue.

Stage 2: Let I2 be the indices of the hypotheses not previously rejected. Now we

test H2G : ν1 = ... = νj1−1 = νj1+1 = ... = νM = 0 vs K2
i : H2G but νi 6= 0, i ∈ I2.

Let L2,i be the likelihood ratio for H2G vs K2
i . If L2,j2 = max{L2,i : i ∈ I2} < c2, then

accept H2G and stop; otherwise, reject Hj2 and continue.
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...

In general at stage m: 1 ≤ m ≤ M , let Im be the indices of the hypotheses not

previously rejected. Now we test HmG : all the νi = 0, i ∈ Im vs Km
i : HmG but νi 6= 0,

i ∈ Im. Let Lm,i be the likelihood ratio for HmG vs Km
i . If Lm,jm = max{Lm,i : i ∈

Im} < cm, then accept HmG and stop; otherwise, reject Hjm and continue.

3.2.2 Admissibility of M-LRD

For stage m after rejecting Hj1 , Hj2 , ...Hjm−1 , Im = {1, 2, ..., M} \ {j(1), ...j(m−1)}, let

(j(1), ...j(m−1)) be the ordered sequence of (j1, ..., jm−1).

Then if i is in the range of (j(k), j(k+1)), where k = 0, 1, ..., m − 1, with j(0) =

0, j(m) = M + 1, testing

HmG : all the νi = 0, i ∈ Im vs Km
i : HmG but νi 6= 0, i ∈ Im (3.18)

is equivalent to:

H ′
mG : σ2

1 = ... = σ2
j(1)

= σ′21

σ2
j(1)+1 = ... = σ2

j(2)
= σ′22

· · ·

σ2
j(k)+1 = ... = σ2

j(k+1)
= σ′2k+1

· · ·

σ2
j(m−1)+1 = ... = σ2

M+1 = σ′2m

vs

K ′m
i : H ′

mG except

σ2
j(k)+1 = ... = σ2

j(k+1)
= σ′2k+1 changes to

σ2
j(k)+1

= ... = σ2
i = σ′2k1

and σ2
i+1 = ... = σ2

j(k+1)
= σ′2k2
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So under H ′
mG, the likelihood function of s2 = (s2

1, s
2
2, ..., s

2
M+1)

′ is

L0(σ′21 , ..., σ′2k , ..., σ′2m)

=
m∏

h=1

j(h)∏

t=(j(h−1)+1)

(
(n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
t )

(n−1
2
−1)

(σ′2h )
n−1

2

e
− (n−1)s2t

2σ′2
h

)

=




∏

1≤h≤m
and h6=(k+1)

jh∏

t=j(h−1)+1

(
(n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
t )

(n−1
2
−1)

(σ′2h )
n−1

2

e
− (n−1)s2t

2σ′2
h

)



×
j(k+1)∏

t=j(k)+1


 (n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
t )

(n−1
2
−1)

(σ′2k+1)
n−1

2

e
− (n−1)s2t

2σ′2
k+1




And under K ′m
i , the likelihood function is

L1(σ′21 , ..., σ′2k1
, σ′2k2

, ..., σ′2m)

=




∏

1≤h≤m
and h6=(k+1)

j(h)∏

t=(j(h−1)+1)

(
(n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
t )

(n−1
2
−1)

(σ′2h )
n−1

2

e
− (n−1)s2t

2σ′2
h

)



×
i∏

t=j(k)+1


 (n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
t )

(n−1
2
−1)

(σ′2k1
)

n−1
2

e
− (n−1)s2t

2σ′2
k1




×
j(k+1)∏

t=i+1


 (n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
t )

(n−1
2
−1)

(σ′2k2
)

n−1
2

e
− (n−1)s2t

2σ′2
k2




So the likelihood ratio is

Lm,i =

sup
{σ′21 ,...,σ′2k1

,σ′2k2
,...,σ′2m}

L1

sup
{σ′21 ,...,σ′2k ,...,σ′2m}

L0

=

sup
σ′2k1

,σ′2k2


 i∏

t=j(k)+1


 ((n−1)s2

t )(
n−1

2 −1)

(σ′2k1
)

n−1
2

e
− (n−1)s2t

2σ′2
k1


×

j(k+1)∏
t=i+1


 ((n−1)s2

t )(
n−1

2 −1)

(σ′2k2
)

n−1
2

e
− (n−1)s2t

2σ′2
k2







sup
σ′2k+1

j(k+1)∏
t=j(k)+1


 ((n−1)s2

t )(
n−1

2 −1)

(σ′2k+1)
n−1

2
e
− (n−1)s2t

2σ′2
k+1




and the maximum likelihood estimator(mle) of σ′2k+1, σ
′2
k1

, σ′2k2
are

σ̂′2k+1 =

j(k+1)∑
t=j(k)+1

s2
t

j(k+1) − j(k)
, σ̂′2k1

=

i∑
t=j(k)+1

s2
t

i− j(k)
, σ̂′2k2

=

j(k+1)∑
t=i+1

s2
t

j(k+1) − i
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So

Lm,i =







i− j(k)

i∑
t=j(k)+1

s2
t




i−j(k)



j(k+1) − i
j(k+1)∑
t=i+1

s2
t




j(k+1)−i 


j(k+1)∑
t=j(k)+1

s2
t

j(k+1) − j(k)




j(k+1)−j(k)



(n−1)
2

(3.19)

Since z̃i is defined as z̃i = (n− 1)s2
i , then

Lm,i =







i− j(k)

i∑
t=j(k)+1

z̃t




i−j(k)



j(k+1) − i
j(k+1)∑
t=i+1

z̃t




j(k+1)−i 


j(k+1)∑
t=j(k)+1

z̃t

j(k+1) − j(k)




j(k+1)−j(k)



(n−1)
2

(3.20)

Lemma 3.2.1. The function Lm,j(z̃) given in (3.20) has the following properties:

(1) At any stage m, as far as H1 has not been rejected, then for any i 6= 1, i.e.,

i ∈ {2, ..., M} \ {j1, ..., jm−1}, j1 6= 1, ..., jm−1 6= 1,

Lm,i(z̃ + rg) = Lm,i(z̃) (3.21)

for any r > 0.

(2) For i = 1, regard Lm,1(z̃ + rg) as a function of r, then:

If for any 0 < r1 < r2, Lm,1(z̃ + r2g) > Lm,1(z̃ + r1g), then for any r > r2,

Lm,1(z̃ + rg) > Lm,1(z̃ + r2g).

Proof of Lemma 3.2.1. Use (3.20) and recall g = (1,−1, 0, ...., 0)′ is the first row of A.
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For i 6= 1: if i falls into the range 0 < i < j(1), then

Lm,i(z̃ + rg)

=







i

(z̃1 + r) + (z̃2 − r) +
i∑

t=3
z̃t




i



j(1) − i
j(1)∑

t=i+1
z̃t




j(1)−i 


(z̃1 + r) + (z̃2 − r) +
j(1)∑
t=3

z̃t

j(1)




j(1)



(n−1)
2

=







i
i∑

t=1
z̃t




i



j(1) − i
j(1)∑

t=i+1
z̃t




j(1)−i 


j(1)∑
t=1

z̃t

j(1)




j(1)



(n−1)
2

= Lm,i(z̃)

if i falls into the range j(k) < i < j(k+1) and j(k) 6= 0, since j(k) ≥ 2 =⇒ i ≥ 3 =⇒
z̃i + rgi = z̃i, then it’s obvious that

Lm,i(z̃ + rg) = Lm,i(z̃)

This establishes (3.21).

For i = 1,

Lm,1(z̃ + rg) =




(
1

z̃1 + r

)



j(1) − 1
j(1)∑
t=2

z̃t − r




j(1)−1 


j(1)∑
t=1

z̃t

j(1)




j(1)



(n−1)
2

Let

lm,1(r) = log{Lm,1(z̃ + rg)}

=
(n− 1)

2


− log(z̃1 + r) + (j(1) − 1) log




j(1) − 1
j(1)∑
t=2

z̃t − r


 + j(1) log




j(1)∑
t=1

z̃t

j(1)







Now take derivative of lm,1(r) with respect to r

dlm,1(r)
dr

=
(n− 1)

2


−

1
z̃1 + r

+ (j(1) − 1)
1

j(1)∑
t=2

z̃t − r
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So as r increases, r > 0, dlm,1(r)
dr increases =⇒ once dlm,1(r)

dr becomes positive, it will

stay positive =⇒ Once Lm,1(z̃ + rg) increases, it will keep increasing.

Lemma 3.2.2. Suppose that for some z̃∗ and r0 > 0, φL(z̃∗) = 0 and φL(z̃∗+r0g) = 1.

Then φL(z̃∗ + rg) = 1 for all r > r0.

Proof. Same as proof of Lemma 3.1.2.

Theorem 3.2.1. For the two sided case the M-LRD procedure based on Lm,i is admis-

sible.

Proof. Same as proof of Theorem 3.1.1.

3.3 Likelihood Ratio Step-Down Method(LRSD)

Similar to the mean case in Chapter 2, for one-sided variance change case, the LRSD

method is as following:

Let c1 > c2 > · · · > cM > 1 be a given set of constants. At Stage 1: Let I1 =

{1, 2, ...,M} be the indices of the hypotheses of (3.8). We test H1G : ν = 0 vs K1G :

ν ≥ 0 and at least one νi > 0, i ∈ I1 . The likelihood ratio for this test is L1. If

L1 < c1, then accept H1G and stop; Otherwise, reject Hj1 where j1 is the index for

which Fj1 = max{Fj : j ∈ I1},where

Fj =
s2
j

s2
j+1

=
z̃j

z̃j+1
(3.22)

and continue similarly for the hypotheses not rejected.

In general, the Stage m global hypothesis is considered if Hj1 , ...,Hjm−1 have been

rejected. This global testing problem is HmG : ν(j1,...,jm−1) = 0 vs KmG : ν(j1,...,jm−1) ≥
0 but at least one νi > 0, i ∈ Im, where Im is the indices of the hypotheses not
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previously rejected. The likelihood ratio test rejects HmG if Lm ≥ cm, i.e

Lm

=

sup
{σ2

i≥σ2
i+1,i∈Im}

M+1∏
i=1

( 1
σ2

i
)

n−1
2 e

− (n−1)s2i
2σ2

i

sup
{σ2

i =σ2
i+1,i∈Im}

M+1∏
i=1

( 1
σ2

i
)

n−1
2 e

− (n−1)s2
i

2σ2
i

=

sup
{σ2

i≥σ2
i+1,i∈Im}

M+1∏
i=1

( 1
σ2

i
)

n−1
2 e

− (n−1)s2i
2σ2

i

sup
{σ′21 ,σ′22 ,...,σ′2m}

(
j(1)∏
i=1

( 1
σ′21

)
n−1

2 e
− (n−1)s2

i
2σ′21

)(
j(2)∏

i=j(1)+1
( 1

σ′22
)

n−1
2 e

− (n−1)s2
i

2σ′22

)
· · ·

(
M+1∏

i=j(m−1)+1
( 1

σ′2m
)

n−1
2 e

− (n−1)s2
i

2σ′2m

)

(3.23)

≥ cm

For the denominator the maximum likelihood estimators are: σ̂′21 =

j(1)∑
1

s2
j

j(1)
, σ̂′22 =

j(2)∑
j(1)+1

s2
j

j(2)−j(1)
, ..., σ̂′2m =

M+1∑
j(m−1)+1

s2
j

M−j(m−1)+1 , replace σ′21 , σ′22 , ..., σ′2m with them in (3.23), we get:

(3.23)

= e
(M+1)(n−1)

2

×







j(1)∑
1

s2
j

j(1)




j1



j(2)∑
j(1)+1

s2
j

j(2) − j(1)




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

s2
j

M − j(m−1) + 1




M−j(m−1)+1



(n−1)/2

×
(

sup
{σ2

i≥σ2
i+1,i∈Im}

M+1∏

i=1

(
1
σ2

i

)e
− s2i

σ2
i

)(n−1)/2

(3.24)
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Define

L′m

=




j(1)∑
1

s2
j

j(1)




j(1)



j(2)∑
j(1)+1

s2
j

j(2) − j(1)




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

s2
j

M − j(m−1) + 1




M−j(m−1)+1

× sup
{σ2

i≥σ2
i+1,i∈Im}

M+1∏

i=1

(
1
σ2

i

)e
− s2i

σ2
i

=




j(1)∑
1

z̃j

(n− 1)j(1)




j(1)



j(2)∑
j(1)+1

z̃j

(n− 1)(j(2) − j(1))




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

z̃j

(n− 1)(M − j(m−1) + 1)




M−j(m−1)+1

× sup
{σ2

i≥σ2
i+1,i∈Im}

M+1∏

i=1

(
1
σ2

i

)e
− z̃i

(n−1)σ2
i

=




j(1)∑
1

z̃j

(n− 1)j(1)




j(1)



j(2)∑
j(1)+1

z̃j

(n− 1)(j(2) − j(1))




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

z̃j

(n− 1)(M − j(m−1) + 1)




M−j(m−1)+1

×
M+1∏

i=1

(
1
σ̂2

i

)e
− z̃i

(n−1)σ̂2
i

(3.25)

where σ̂2
i is the maximum likelihood estimator of σ2

i when z̃ = z̃. Thus Lm ≥ cm ⇐⇒
L′m ≥ Cm, where cm = e

(M+1)(n−1)
2 × C

(n−1)/2
m .

Lemma 3.3.1. When z̃∗ = z̃+rg =




z̃1+r
z̃2−r

z̃3···
z̃M+1


, if j(1) > 1, i.e.H1 has not been rejected,

L∗′m ≥ L′m.

Proof of Lemma 3.3.1. From (3.25),

L∗′m

=




j(1)∑
1

z̃∗j

(n− 1)j(1)




j(1)



j(2)∑
j(1)+1

z̃∗j

(n− 1)(j(2) − j(1))




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

z̃∗j

(n− 1)(M − j(m−1) + 1)




M−j(m−1)+1
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× sup
{σ2

i≥σ2
i+1,i∈Im}

M+1∏

i=1

(
1
σ2

i

)e
− z̃∗i

(n−1)σ2
i

since j(1) > 1 =⇒

L∗
′

m

=




j(1)∑
1

z̃j

(n− 1)j(1)




j(1)



j(2)∑
j(1)+1

z̃j

(n− 1)(j(2) − j(1))




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

z̃j

(n− 1)(M − j(m−1) + 1)




M−j(m−1)+1

× sup
{σ2

i≥σ2
i+1,i∈Im}

M+1∏

i=1

(
1
σ2

i

)e
− z̃∗i

(n−1)σ2
i

≥




j(1)∑
1

z̃j

(n− 1)j(1)




j(1)



j(2)∑
j(1)+1

z̃j

(n− 1)(j(2) − j(1))




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

z̃j

(n− 1)(M − j(m−1) + 1)




M−j(m−1)+1

×
M+1∏

i=1

(
1
σ̂2

i

)e
− z̃∗i

(n−1)σ̂2
i

=




j(1)∑
1

z̃j

(n− 1)j(1)




j(1)



j(2)∑
j(1)+1

z̃j

(n− 1)(j(2) − j(1))




j(2)−j(1)

· · ·




M+1∑
j(m−1)+1

z̃j

(n− 1)(M − j(m−1) + 1)




M−j(m−1)+1

× (
1
σ̂2

1

)e
− (z̃1+r)

(n−1)σ̂2
1 (

1
σ̂2

2

)e
− (z̃2−r)

(n−1)σ̂2
2

M+1∏

i=3

(
1
σ̂2

i

)e
− z̃i

(n−1)σ̂2
i

= e
r

n−1
( 1

σ̂2
2
− 1

σ̂2
1
) × L′m

where σ̂2
i is the maximum likelihood estimator of σ2

i when z̃ = z̃.

Thus L∗′m ≥ L′m. Since σ̂2
1 ≥ σ̂2

2.

Theorem 3.3.1. For the one-sided alternatives (3.2) LRSD is admissible for M=2 and

M=3.

Proof of Theorem 3.3.1. We proof the theorem for M=3. For M=2 the method is the

same and the proof is simpler. Once again we focus on H1 vs K∗
1 and demonstrate that

if φ(z̃∗) = 1 then φ(z̃∗ + rg) = 1 for all r > 0. H1 can be rejected at three different

stages:
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(1) If H1 is rejected at stage 1 for z̃ = z̃∗ =⇒ F ∗
1 > F ∗

2 , F ∗
1 > F ∗

3 and L∗′1 ≥ C1.

When at z̃∗∗ = z̃∗+rg, F ∗∗
1 = z̃∗1+r

z̃∗2−r > F ∗
1 = z̃∗1

z̃∗2
, F ∗∗

2 = z̃∗2−r
z̃∗3

< F ∗
2 = z̃∗2

z̃∗3
, F ∗∗

3 = z̃∗3
z̃∗4

= F ∗
3

and from Lemma 3.3.1, we know that L∗∗′1 ≥ L∗′1 ≥ C1, so φ1(z̃∗ + rg) = 1 too, for all

r > 0.

(2) If H1 is rejected at stage 2 for z̃ = z̃∗,

when H3 is rejected first =⇒ F ∗
3 > F ∗

1 > F ∗
2 and L∗′1 ≥ C1, L

∗′
2 ≥ C2. When at

z̃∗∗ = z̃∗ + rg, we know that F ∗∗
1 > F ∗

1 , F ∗∗
2 < F ∗

2 , F ∗∗
3 = F ∗

3 , if the ordering of F ∗∗

changes to F ∗∗
1 > F ∗∗

3 > F ∗∗
2 , by Lemma 3.3.1 that L∗∗′1 ≥ L∗′1 ≥ C1, so φ1(z̃∗+ rg) = 1

too, for all r > 0; if the ordering of F ∗∗ keeps unchanged,i.e., F ∗∗
3 > F ∗∗

1 > F ∗∗
2 , also

by Lemma 3.3.1 that L∗∗′1 ≥ L∗′1 ≥ C1, L
∗∗′
2 ≥ L∗′2 ≥ C2, so φ1(z̃∗ + rg) = 1 too, for all

r > 0;

when H2 is rejected first, a similar argument works too.

(3)If H1 is rejected at stage 3 at z̃ = z̃∗,

when H3 is rejected first =⇒ F ∗
3 > F ∗

2 > F ∗
1 > 1 (since if F ∗

1 < 1, it can be proved

that L∗3 < 1 < c3, thus H1 can’t be rejected on at stage 3) and L∗′1 ≥ C1, L∗′2 ≥ C2,

L∗′3 ≥ C3. If the ordering of F ∗∗ keeps unchanged, similar argument like above assures

that φ1(z̃∗+rg) = 1, for all r > 0; If the ordering of F ∗∗ changes to: F ∗∗
3 > F ∗∗

1 > F ∗∗
2 or

F ∗∗
1 > F ∗∗

3 > F ∗∗
2 ; no matter for which case, Lemma 3.3.1 assures that L∗∗′1 ≥ L∗′1 ≥ C1

for both cases and L∗∗′2 ≥ L∗′2 > C2 for the first case, thus φ1(z̃∗ + rg) = 1 too, for all

r > 0.

when H2 is rejected first =⇒ F ∗
2 > F ∗

3 > F ∗
1 > 1 and L∗′1 ≥ C1, L∗′2 ≥ C2,

L∗′3 ≥ C3. If the ordering of F ∗∗ keeps unchanged, it’s not difficult to verify that

φ1(z̃∗ + rg) = 1, for all r > 0 by using the Lemma 3.3.1; If the ordering of F ∗∗

changes to: F ∗∗
2 > F ∗∗

1 > F ∗∗
3 or F ∗∗

1 > F ∗∗
2 > F ∗∗

3 or F ∗∗
1 > F ∗∗

3 > F ∗∗
2 , using the

similar argument we can verify that φ1(z̃∗+rg) = 1 too, for all r > 0; The most difficult

subcases are: if the ordering of F ∗∗ changes to: F ∗∗
3 > F ∗∗

2 > F ∗∗
1 and F ∗∗

3 > F ∗∗
1 > F ∗∗

2 .

For these two cases, Lemma 3.3.1 assures that L∗∗′1 ≥ C1. So H3 is rejected first.
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For z̃∗ at stage 2: by (3.25),

L∗
′

2 =
(

z̃∗1 + z̃∗2
2(n− 1)

)2 (
z̃∗3 + z̃∗4
2(n− 1)

)2

× sup
σ2
1≥σ2

2
σ2
3≥σ2

4

4∏

i=1

(
1
σ2

i

)e
− z̃∗i

(n−1)σ2
i (3.26)

Since F ∗
2 > F ∗

3 > F ∗
1 > 1 =⇒ z̃∗1 > z̃∗2 > z̃∗3 > z̃∗4 =⇒ σ̂∗2i = z̃∗i

n−1 =⇒

L∗
′

2 =
(

z̃∗1 + z̃∗2
2

)2 (
z̃∗3 + z̃∗4

2

)2 1
z̃∗1

1
z̃∗2

1
z̃∗3

1
z̃∗4

e−4 (3.27)

For z̃∗∗ at stage 2: by (3.25),

L∗
′

2 =
(

z̃∗∗1 + z̃∗∗2 + z̃∗∗3
3(n− 1)

)3 z̃∗∗4
(n− 1)

× sup
σ2
1≥σ2

2≥σ2
3

σ2
4

4∏

i=1

(
1
σ2

i

)e
− z̃∗∗i

(n−1)σ2
i (3.28)

Since F ∗∗
1 = z̃∗1+r

z̃∗2−r < F ∗∗
3 = z̃∗3

z̃∗4
=⇒ r <

z̃∗2 z̃∗3−z̃∗1 z̃∗4
z̃∗3+z̃∗4

=⇒ F ∗∗
2 = z̃∗2−r

z̃∗3
>

z̃∗2−
z̃∗2 z̃∗3−z̃∗1 z̃∗4

z̃∗3+z̃∗4
z̃∗3

=
z̃∗2 z̃∗4+z̃∗1 z̃∗4
z̃∗3 (z̃∗3+z̃∗4 ) since z̃∗1 > z̃∗2 > z̃∗3 > z̃∗4 =⇒ F ∗∗

2 >
2z̃∗2 z̃∗4
2z̃∗3 z̃∗3

since F ∗
2 > F ∗

3 i.e., z̃∗2
z̃∗3

>
z̃∗3
z̃∗4

=⇒
F ∗∗

2 > 1 and F ∗∗
3 > F ∗∗

1 > F ∗
1 > 1 =⇒ z̃∗∗1 > z̃∗∗2 > z̃∗∗3 > z̃∗∗4 =⇒ σ̂∗∗2i = z̃∗∗i

n−1 =⇒

L∗∗
′

2 =
(

z̃∗∗1 + z̃∗∗2 + z̃∗∗3
3

)3

z̃∗∗4
1

z̃∗∗1

1
z̃∗∗2

1
z̃∗∗3

1
z̃∗∗4

e−4

=
(

z̃∗1 + z̃∗2 + z̃∗3
3

)3

z̃∗4
1

(z̃∗1 + r)
1

(z̃∗2 − r)
1
z̃∗3

1
z̃∗4

e−4

(3.29)

If we can prove L∗∗′2 ≥ L∗′2 , then if F ∗∗
1 > F ∗∗

2 we reject H1 at second stage; if F ∗∗
2 > F ∗∗

1 ,

by Lemma 3.3.1 we know that L∗∗′3 > L∗′3 ≥ C3, thus we reject H1 at the third stage.

Thus φ1(z̃∗ + rg) = 1, for all r > 0.

So in order to prove (3.29) ≥ (3.27), we want to prove

1
(z̃∗1 + r)

1
(z̃∗2 − r)

≥ 1
z̃∗1

1
z̃∗2

(3.30)

and (
z̃∗1 + z̃∗2 + z̃∗3

3

)3

z̃∗4 ≥
(

z̃∗1 + z̃∗2
2

)2 (
z̃∗3 + z̃∗4

2

)2

(3.31)

For (3.30), (z̃∗1 +r)(z̃∗2−r) = −(r− (z̃∗2−z̃∗1 )
2 )2 +( (z̃∗2−z̃∗1 )

2 )2 + z̃∗1 z̃
∗
2 ≤ z̃∗1 z̃

∗
2 since z̃∗1 > z̃∗2

and r ≥ 0.

For (3.31), let

f =

((
z̃∗1 + z̃∗2 + z̃∗3

3

)3

z̃∗4 −
(

z̃∗1 + z̃∗2
2

)2 (
z̃∗3 + z̃∗4

2

)2
)

/z̃∗44

=
(

D∗ + F ∗
3

3

)3

−
(

D∗

2

)2 (
F ∗

3 + 1
2

)2
(3.32)
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where D∗ = z̃∗1+z̃∗2
z̃∗4

. Since F ∗
2 > F ∗

3 > F ∗
1 > 1, i.e., z̃∗2

z̃∗3
>

z̃∗3
z̃∗4

>
z̃∗1
z̃∗2

and D > 2 z̃∗2
z̃∗4

=⇒
D∗ > 2F ∗2

3 .

Now we think f as a function of D∗ only. In order to prove f > 0, we need to prove

that (1) f(D∗ = 2F ∗2
3 ) > 0 and (2) df

dD∗ > 0, for D∗ > 2F ∗2
3 .

For (1), f(D∗ = 2F ∗2
3 ) =

(
2F ∗23 +F ∗3

3

)3
−

(
2F ∗23

2

)2 (
F ∗3 +1

2

)2
= F ∗33

108 (F ∗
3 −1)2(5F ∗

3 +4) >

0, since F ∗
3 > 1.

For (2), df
dD∗ =

(
D∗+F ∗3

3

)2
− D∗

2

(
F ∗3 +1

2

)2
= 1

9{D∗2 − (9F ∗23 +2F ∗3 +9)
8 D∗ + F ∗2

3 } which

is a function of D∗, whose graph is open upward and symmetric with (9F ∗23 +2F ∗3 +9)
16 .

It’s not difficult to verify that 2F ∗2
3 >

(9F ∗23 +2F ∗3 +9)
16 by using F ∗

3 > 1. And at D∗ =

2F ∗2
3 , df

dD∗ = F ∗23
36 (F ∗

3 − 1)(7F ∗
3 + 5) > 0, since F ∗

3 > 1. Thus df
dD∗ > 0, for D∗ > 2F ∗2

3 .

Combine (1) and (2), we know that f > 0. Thus (3.31) holds.

For M=4 we exhibit a set of critical values for which LRSD is inadmissible. To

do so we find a sample point z̃ at which H1 is rejected and for which H1 is accepted

at z̃ + rg. In fact let z̃ = (z̃1, z̃2, z̃3, z̃4, z̃5)′ for z̃2
z̃3

> z̃3
z̃4

> z̃4
z̃5

> z̃1
z̃2

> 1, i.e., F2 >

F3 > F4 > F1 > 1. Thus using (3.25) at stage 1 choose C1 so that L′1 =




5∑
j=1

z̃j

5(n−1)




5

×

sup
{σ2

1≥σ2
2≥σ2

3≥σ2
4≥σ2

5}

5∏
i=1

( 1
σ2

i
)e
− z̃i

(n−1)σ2
i ≥ C1 so that H2 is rejected. At stage 2 we calculate

L′2 =




2∑
j=1

z̃j

2(n− 1)




2 


5∑
j=3

z̃j

3(n− 1)




3

× sup
{σ2

1≥σ2
2 ,σ2

3≥σ2
4≥σ2

5}

5∏

i=1

(
1
σ2

i

)e
− z̃i

(n−1)σ2
i (3.33)

Since z̃1 > z̃2 > z̃3 > z̃4 > z̃5 =⇒ σ̂2
i = z̃i

n−1 =⇒

L′2 =




2∑
j=1

z̃j

2




2 


5∑
j=3

z̃j

3




3

1
z̃1

1
z̃2

1
z̃3

1
z̃4

1
z̃5
× e−5 (3.34)

We set




2∑
j=1

z̃j

2




2 


5∑
j=3

z̃j

3




3

1
z̃1

1
z̃2

1
z̃3

1
z̃4

1
z̃5
× e−5 = C2. At stage 3, H4 is rejected and at

stage 4, H1 is rejected.
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Now at z̃∗ = z̃ + rg, let r such that z̃3
z̃4

> z̃2−r
z̃3

> 1 and z̃3
z̃4

> z̃1+r
z̃2−r , i.e., F ∗

3 > F ∗
2

and F ∗
3 > F ∗

1 . Note that by Lemma 3.3.1, we know L∗′1 ≥ L′1 ≥ C1. This time however,

H3 is rejected at stage 1. At stage 2 we calculate at z̃∗ ,

L∗
′

2 =




3∑
j=1

z̃∗j

3(n− 1)




3 


5∑
j=4

z̃∗j

2(n− 1)




2

× sup
{σ2

1≥σ2
2≥σ2

3 ,σ2
4≥σ2

5}

5∏

i=1

(
1
σ2

i

)e
− z̃∗i

(n−1)σ2
i

=




3∑
j=1

z̃j

3




3 


5∑
j=4

z̃j

2




2

1
(z̃1 + r)

1
(z̃2 − r)

1
z̃3

1
z̃4

1
z̃5
× e−5

(3.35)

since z̃∗1 = z̃1 + r > z̃∗2 = z̃2 − r > z̃∗3 = z̃3 > z̃∗4 = z̃4 > z̃∗5 = z̃5.

We note that (3.34) divided by (3.35) is

(
2∑

j=1
z̃j)2(

5∑
j=3

z̃j)3(z̃1 + r)(z̃2 − r)

(
3∑

j=1
z̃j)3(

5∑
j=4

z̃j)2z̃1z̃2

(3.36)

There are many choices of z̃1, z̃2, z̃3, z̃4, z̃5, r for which (3.36) is greater than 1 (e.g.,

z̃1 = 99, z̃2 = 96, z̃3 = 70, z̃4 = 52, z̃5 = 43.2, r = 10). The fact that (3.36) > 1 implies

that we can choose C2 such that L∗′2 < C2 so that at x∗ + rg the overall procedure

rejects H3 and accepts H1,H2 and H4. Note when r > z̃1−z̃2
2 , z̃− rg is an accept point,

since then F2 = (z̃2+r)
z̃3

> F3 = z̃3
z̃4

> F4 = z̃4
z̃5

> 1 > F1 = (z̃1−r)
(z̃2+r) , then L4 < 1 < c4, then

H1 is accepted at stage 4. Now if H1 is rejected for z̃ but accepted for z̃ + rg, that

implies the test for H1 is inadmissible.

The same is true for M ≥ 5.

Next for the variance change model we consider testing two-sided alternatives, i.e.

we test Hi : νi = 0 vs Ki : νi 6= 0. The LRSD method in this case is the same as in the

one-sided alternative case except that Fj is replaced by

Fj =
max{s2

j , s
2
j+1}

min{s2
j , s

2
j+1}

=
max{z̃j , z̃j+1}
min{z̃j , z̃j+1} (3.37)

.

In general, the Stage m global hypothesis is considered if Hj1 , ...,Hjm−1 have been

rejected. This global testing problem is HmG : ν(j1,...,jm−1) = 0 vs KmG : ν(j1,...,jm−1) 6=
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0. The likelihood ratio test rejects HmG if Lm ≥ cm, i.e

sup
{σ2

i }

M+1∏
i=1

( 1
σ2

i
)

n−1
2 e

− (n−1)s2i
2σ2

i

sup
{σ′21 ,σ′22 ,...,σ′2m}

(
j(1)∏
i=1

( 1
σ′21

)
n−1

2 e
− (n−1)s2

i
2σ′21

) (
j(2)∏

i=j(1)+1
( 1

σ′22
)

n−1
2 e

− (n−1)s2
i

2σ′22

)
· · ·

(
M+1∏

i=j(m−1)+1
( 1

σ′2m
)

n−1
2 e

− (n−1)s2
i

2σ′2m

)

(3.38)

≥ cm

For the numerator the maximum likelihood estimators are: σ̂2
i = s2

i . For the de-

nominator the maximum likelihood estimators are: σ̂′21 =

j(1)∑
1

s2
j

j(1)
, σ̂′22 =

j(2)∑
j(1)+1

s2
j

j(2)−j(1)
, ...,

σ̂′2m =

M+1∑
j(m−1)+1

s2
j

M−j(m−1)+1 , replace σ′21 , σ′22 , ..., σ′2m with them in (3.38), we get:

Lm =




j(1)∏

i=1




j(1)∑
1

s2
j

j(1)s
2
i




j(2)∏

i=j(1)+1




j(2)∑
j(1)+1

s2
j

(j(2) − j(1))s2
i



· · ·

M+1∏

i=j(m−1)+1




M+1∑
j(m−1)+1

s2
j

(M − j(m−1) + 1)s2
i







(n−1)/2

=




j(1)∏

i=1




j(1)∑
1

z̃j

j(1)z̃i




j(2)∏

i=j(1)+1




j(2)∑
j(1)+1

z̃j

(j(2) − j(1))z̃i



· · ·

M+1∏

i=j(m−1)+1




M+1∑
j(m−1)+1

z̃j

(M − j(m−1) + 1)z̃i







(n−1)/2

(3.39)

Define

L′m =
j(1)∏

i=1




j(1)∑
1

z̃j

j(1)z̃i




j(2)∏

i=j(1)+1




j(2)∑
j(1)+1

z̃j

(j(2) − j(1))z̃i



· · ·

M+1∏

i=j(m−1)+1




M+1∑
j(m−1)+1

z̃j

(M − j(m−1) + 1)z̃i




(3.40)

Thus Lm ≥ cm ⇐⇒ L′m ≥ Cm, where C
n−1

2
m = cm. For this set up we have

Theorem 3.3.2. For the two-sided alternative case (3.1) LRSD is admissible for M=2.

Proof of Theorem 3.3.2. For M=2, once again we focus on H1 vs K1:

(1) If z̃1 > z̃2, we will demonstrate that if φ(z̃) = 1 then φ(z̃ + rg) = 1 for all r > 0.
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When H1 is rejected first =⇒ F1 = z̃1
z̃2

> F2 = max{z̃2,z̃3}
min{z̃2,z̃3} and L′1 ≥ C1. At z̃∗ =

z̃ + rg, r > 0, F ∗
1 = z̃1+r

z̃2−r > F ∗
2 = max{z̃2−r,z̃3}

min{z̃2−r,z̃3} , L∗′1 = ( z̃1+z̃2+z̃3
3(z̃1+r) )( z̃1+z̃2+z̃3

3(z̃2−r) )( z̃1+z̃2+z̃3
3z̃3

) =

z̃1z̃2
(z̃1+r)(z̃2−r)L

′
1 > L′1 by (3.30), so φ1(z̃ + rg) = 1 too, for all r > 0.

When H1 is rejected secondly =⇒ F1 = z̃1
z̃2

< F2 = max{z̃2,z̃3}
min{z̃2,z̃3} , L′1 ≥ C1 and L′2 ≥

C2. At z̃∗ = z̃ + rg, r > 0, F ∗
1 = z̃1+r

z̃2−r , F ∗
2 = max{z̃2−r,z̃3}

min{z̃2−r,z̃3} , L∗′1 = z̃1z̃2
(z̃1+r)(z̃2−r)L

′
1 ≥

L′1. If F ∗
1 > F ∗

2 , we reject H1 firstly at z̃∗; If F ∗
2 > F ∗

1 , we reject H2 firstly, since

L∗′2 = ( z̃1+z̃2
2(z̃1+r))(

z̃1+z̃2
2(z̃2−r)) = z̃1z̃2

(z̃1+r)(z̃2−r)L
′
2 > L′2, we reject H1 at second stage. Thus

φ(z̃ + rg) = 1 for all r > 0.

(2) If z̃2 > z̃1, we will demonstrate that if φ(z̃) = 0, and if φ(z̃∗) = φ(z̃ + r1g) = 1

for certain r1 > 0, then φ(z̃∗ + rg) = 1 for all r > r1.

When both H1,H2 are not rejected at z̃ =⇒ L′1 < C1. In order to reject H1, r1 must

> (z̃2−z̃1), then at z̃∗ = z̃+r1g, L∗′1 = z̃1z̃2
(z̃1+r1)(z̃2−r1)L

′
1 = z̃1z̃2

−(r1− 1
2
(z̃2−z̃1))2+ 1

4
(z̃2−z̃1)2+z̃1z̃2

L′1

> L′1, and z̃∗1 = z̃1 + r1 > z̃2, z̃∗2 = z̃2 − r1 < z̃1, so z̃∗1 > z̃∗2 , by the above part (1) we

know that φ1(z̃∗ + rg) = 1, for all r > 0.

When H2 is rejected and H1 is accepted at z̃ =⇒ L′1 ≥ C1, F1 = z̃2
z̃1

< F2 = max{z̃2,z̃3}
min{z̃2,z̃3}

and L′2 < C2. To reject H1 at z̃∗ = z̃ + r1g, there are two cases. One is that at z̃∗,

L∗′1 ≥ C1, F
∗
1 < F ∗

2 and L∗′2 ≥ C2; the other one is that L∗′1 ≥ C1, F
∗
1 > F ∗

2 .

For the first case, L∗′2 ≥ C2 =⇒ L∗′2 > L′2, i.e.

L∗
′

2 =
z̃1z̃2

(z̃1 + r1)(z̃2 − r1)
L′2 =

z̃1z̃2

−(r1 − 1
2(z̃2 − z̃1))2 + 1

4(z̃2 − z̃1)2 + z̃1z̃2
L′2 > L′2

=⇒ r1 > (z̃2 − z̃1) =⇒ z̃∗1 = z̃1 + r1 > z̃2, z̃∗2 = z̃2 − r1 < z̃1 =⇒ z̃∗1 > z̃∗2 , then by part

(1) we know that φ1(z̃∗ + g) = 1, for all r > r1.

For the second case, F ∗
1 > F ∗

2 =⇒ z̃∗1 > z̃∗2 . Since if z̃∗1 < z̃∗2 , F ∗
1 = z̃∗2

z̃∗1
= z̃2−r

z̃1+r < F1,if

F2 = z̃3
z̃2

=⇒ F ∗
2 = z̃3

z̃2−r > F2 =⇒ F ∗
2 > F ∗

1 contradicted with F ∗
1 > F ∗

2 ; if F2 = z̃2
z̃3

and

if F ∗
2 = z̃2−r

z̃3
, since F1 = z̃2

z̃1
< F2 = z̃2

z̃3
=⇒ F ∗

1 = z̃2−r
z̃1+r < F ∗

2 = z̃2−r
z̃3

contradicted with

F ∗
1 > F ∗

2 ; if F2 = z̃2
z̃3

and if F ∗
2 = z̃3

z̃2−r , since F1 = z̃2
z̃1

< F2 = z̃2
z̃3

=⇒ F ∗
1 = z̃2−r

z̃1+r <

z̃2−r
z̃3

< z̃3
z̃2−r = F ∗

2 contradicted with F ∗
1 > F ∗

2 . Thus for this case, z̃∗1 > z̃∗2 and H1 is

rejected firstly at z̃∗, by part (1), we know that φ1(z̃∗ + rg) = 1, for all r > r1.

For M=3 we exhibit a set of critical values for which LRSD is inadmissible. To
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do so we find a sample point z̃∗ at which H1 is rejected and for which H1 is accepted

at z̃∗ + rg. In fact let z̃∗ = (z̃∗1 , z̃
∗
2 , z̃

∗
3 , z̃

∗
4)
′ for z̃∗3 > z̃∗1 > z̃∗2 > z̃∗4 and z̃∗3

z̃∗4
>

z̃∗3
z̃∗2

>

z̃∗1
z̃∗2

, i.e. F ∗
3 > F ∗

2 > F ∗
1 . Thus using (3.40) at stage 1 choose C1 so that L∗′1 =

( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗1

)( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗2

)( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗3

)( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗4

) = C1 so that H3 is rejected. At

stage 2 we calculate

L∗
′

2 = (
z̃∗1 + z̃∗2 + z̃∗3

3z̃∗1
)(

z̃∗1 + z̃∗2 + z̃∗3
3z̃∗2

)(
z̃∗1 + z̃∗2 + z̃∗3

3z̃∗3
) (3.41)

We set ( z̃∗1+z̃∗2+z̃∗3
3z̃∗1

)( z̃∗1+z̃∗2+z̃∗3
3z̃∗2

)( z̃∗1+z̃∗2+z̃∗3
3z̃∗3

) = C2, so H2 is rejected. At stage 3, H1 is

rejected.

Now let r such that z̃∗2 − z̃∗4 < r < z̃∗3 − z̃∗1 . Thus at z̃∗∗ = z̃∗ + rg, F ∗∗
2 = z̃∗3

z̃∗2−r >

F ∗∗
3 = z̃∗3

z̃∗4
, F ∗∗

2 = z̃∗3
z̃∗2−r > F ∗∗

1 = z̃∗1+r
z̃∗2−r , and

L∗∗
′

1 = (
z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4

4(z̃∗1 + r)
)(

z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4
4(z̃∗2 − r)

)(
z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4

4z̃∗3
)(

z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4
4z̃∗4

)

=
z̃∗1 z̃

∗
2

(z̃∗1 + r)(z̃∗2 − r)
L∗

′
1

> L∗
′

1

This time however, H2 is rejected at stage 1. At stage 2 we calculate for z̃∗∗,

L∗∗
′

2 = (
z̃∗1 + z̃∗2

2(z̃∗1 + r)
)(

z̃∗1 + z̃∗2
2(z̃∗2 − r)

)(
z̃∗3 + z̃∗4

2z̃∗3
)(

z̃∗3 + z̃∗4
2z̃∗4

) (3.42)

We note that (3.41) divided by (3.42) is

16
27

(z̃∗1 + z̃∗2 + z̃∗3)
3z̃∗4(z̃

∗
1 + r)(z̃∗2 − r)

(z̃∗1 + z̃∗2)2(z̃
∗
3 + z̃∗4)2z̃

∗
1 z̃
∗
2

(3.43)

There are many choices of z̃∗1 , z̃∗2 , z̃∗3 , z̃∗4 , r for which (3.43) is greater than 1 (e.g.,

z̃∗1 = 1.2, z̃∗2 = 1.1, z̃∗3 = 3, z̃∗4 = 1, r = 0.001). The fact that (3.43) > 1 implies that

we can choose C2 such that L∗∗′2 < C2 so that at x∗ + rg the overall procedure rejects

H2 and accepts H1, H3. Note since z̃ = z̃∗ − rg, r <
z̃∗1−z̃∗2

2 is an accept point (because

L′1 < L∗′1 = C1). Now if H1 is rejected for z̃∗ but accepted for z̃∗ + rg, that implies the

test for H1 is inadmissible.

The same is true for M ≥ 5.
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3.4 Step-Up

Now we study two of the most popular stepwise procedures. We demonstrate that the

individual tests they induce are inadmissible for these one-sided and two-sided testing

hypotheses of variance change.

For step-up, let 1 ≤ C1 < C2 < · · · < CM be a sequence of increasing of critical

values and let F(1) ≤ F(2) ≤ · · · ≤ F(M) be the ordered statistics of F1, F2, ..., FM ,

where for one side testing hypotheses of (3.8), Fj is defined in (3.22); and for two sided

testing hypotheses of (3.7), Fj is defined in (3.37).

Stage 1: If F(1) ≤ C1, accept H(1) where H(1) is the hypothesis corresponding to

F(1). Otherwise reject all Hi.

Stage 2: If H(1) is accepted, accept H(2) if F(2) ≤ C2. Otherwise reject H(2), ..., H(M).

· · · · · ·
In general, at stage m, if F(m) ≤ Cm accept H(m). Otherwise reject H(m), ..., H(M).

Theorem 3.4.1. Consider the variance change problem of this chapter, the step-up

procedure is inadmissible for the one sided testing problem (3.8).

Proof of Theorem 3.4.1. Again we focus on H1 vs K∗
1 . To show φ1(z̃) is inadmissible we

will find three points z̃∗, z̃∗∗, z̃∗∗∗ with z̃∗∗ = z̃∗ − r1g, z̃∗∗∗ = z̃∗ − r2g, r2 > r1 > 0

such that φ1(z̃∗) = 0, φ1(z̃∗∗) = 1, φ1(z̃∗∗∗) = 0. This will prove the theorem by

Lemma 2.1.1.

At z̃∗, let z̃∗1 = C1 + C2, z̃∗2 = 2, z̃∗3 = 2
C1

, z̃∗j = 1
Cj+1 z̃∗j−1, j = 4, ...,M + 1,

so F ∗
1 = C1+C2

2 , F ∗
2 = C1, F ∗

j = Cj + 1, j = 3, ..., M . Since for stage 1, F ∗
(1) =

min{F ∗
j , j = 1, 2, ..., M} = F ∗

2 ≤ C1 =⇒ φ2(z̃∗) = 0; for stage 2, F ∗
(2) = min{F ∗

j ,

j = 1, 3, 4, ..., M} = F ∗
1 ≤ C2 =⇒ φ1(z̃∗) = 0 at z̃∗.

Let r1 = (C2−C1)
2(1+C1) , so at z̃∗∗ = z̃∗−r1g, z̃∗∗1 = C1+C2− (C2−C1)

2(1+C1) = 2C2
1+2C1C2+3C1+C2

2(1+C1) ,

z̃∗∗2 = 2 + (C2−C1)
2(1+C1) = 4+3C1+C2

2(1+C1) , z̃∗∗3 = z̃∗3 = 2
C1

, z̃∗∗j = z̃∗j , j = 4, ..., M + 1. So

F ∗∗
1 = 2C2

1+2C1C2+3C1+C2

4+3C1+C2
> C1, F ∗∗

2 = (4+3C1+C2)C1

4(1+C1) > C1, F ∗∗
j = Cj + 1 > C1,

j = 3, ..., M , so we reject all =⇒ φ1(z̃∗∗) = 1 at z̃∗∗.

Let r2 = C2+C1−2
2 > r1, so at z̃∗∗∗ = z̃∗−r2g, z̃∗∗∗1 = C1+C2− C2+C1−2

2 = C1+C2+2
2 ,
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z̃∗∗∗2 = 2 + C2+C1−2
2 = C1+C2+2

2 , z̃∗∗∗3 = z̃∗3 = 2
C1

, z̃∗∗∗j = z̃∗j , j = 4, ..., M + 1. So

F ∗∗∗
1 = 1 ≤ C1, F ∗∗∗

2 = (C1+C2+2)C1

4 > C1, F
∗∗∗
j = Cj +1 > C1, j = 3, ...,M , so at stage

1, we accept H1, i.e., φ1(z̃∗∗∗) = 0 at z̃∗∗∗.

Theorem 3.4.2. Consider the variance change problem of this chapter, the step-up

procedure is inadmissible for the two sided testing problem (3.7).

Proof of Theorem 3.4.2. Again we focus on H1 vs K1. For this two sided case prob-

lem, we use Fj is defined in (3.37). To show φ1(z̃) is inadmissible, the three points

z̃∗, z̃∗∗, z̃∗∗∗ defined in the above proof for the one sided case with z̃∗∗ = z̃∗ − r1g,

z̃∗∗∗ = z̃∗ − r2g, r2 > r1 > 0 can also be used here satisfying φ1(z̃∗) = 0, φ1(z̃∗∗) = 1,

φ1(z̃∗∗∗) = 0. This prove the theorem by Lemma 2.1.1.

3.5 Step-Down

For step-down, let 1 ≤ C1 < C2 < · · · < CM be a sequence of increasing of critical

values and let F(1) ≤ F(2) ≤ · · · ≤ F(M) be the order statistics of F1, F2, ..., FM , where

for one side testing hypotheses of (3.8), Fj is defined in (3.22); and for two sided testing

hypotheses of (3.7), Fj is defined in (3.37).

Stage 1: If F(M) > CM , reject H(M) where H(M) is the hypothesis corresponding to

F(M). Otherwise accept all Hi.

Stage 2: If H(M) is rejected, reject H(M−1) if F(M−1) > CM−1. Otherwise accept

H(1), ..., H(M−1).

· · · · · ·
In general, at stage m, if F(M−m+1) > CM−m+1 reject H(m). Otherwise accept

H(1), ..., H(M−m+1).

Theorem 3.5.1. Consider the variance change problem of this section, the step-down

procedure is inadmissible for the one sided testing problem (3.8).

Proof of Theorem 3.5.1. Similar to the proof of Theorem 3.4.1, we focus on H1 vs K∗
1 .

To show φ1(z̃) is inadmissible we will find three points z̃∗, z̃∗∗, z̃∗∗∗ with z̃∗∗ = z̃∗−r1g,
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z̃∗∗∗ = z̃∗ − r2g, r2 > r1 > 0 such that φ1(z̃∗) = 0, φ1(z̃∗∗) = 1, φ1(z̃∗∗∗) = 0. This

will prove the theorem by Lemma 2.1.1.

At z̃∗, use the same z̃∗ for the proof of Theorem 3.4.1, except change z̃∗3 to z̃∗3 = 2
C2

.

i.e., z̃∗1 = C1+C2, z̃∗2 = 2, z̃∗3 = 2
C2

, z̃∗j = 1
Cj+1 z̃∗j−1, j = 4, ..., M +1, so use the definition

of Fj in (3.22), F ∗
1 = C1+C2

2 < C2, F ∗
2 = C2, F ∗

j = Cj + 1 > Cj , j = 3, ..., M . From the

above step-down procedure, we accept H1 and H2, i.e., φ1(z̃∗) = 0 at z̃∗.

Use the same r1 = (C2−C1)
2(1+C1) , so at z̃∗∗ = z̃∗ − r1g, z̃∗∗1 = C1 + C2 − (C2−C1)

2(1+C1) =
2C2

1+2C1C2+3C1+C2

2(1+C1) , z̃∗∗2 = 2 + (C2−C1)
2(1+C1) = 4+3C1+C2

2(1+C1) , z̃∗∗3 = z̃∗3 = 2
C2

, z̃∗∗j = z̃∗j , j =

4, ..., M + 1. So F ∗∗
1 = 2C2

1+2C1C2+3C1+C2

4+3C1+C2
> C1, F ∗∗

2 = (4+3C1+C2)C2

4(1+C1) > C2, F ∗∗
j =

Cj + 1 > Cj , j = 3, ..., M , so we reject all =⇒ φ1(z̃∗∗) = 1 at z̃∗∗.

Use the same r2 = C2+C1−2
2 > r1, so at z̃∗∗ = z̃∗−r2g, z̃∗∗∗1 = C1 +C2− C2+C1−2

2 =

C1+C2+2
2 , z̃∗∗∗2 = 2 + C2+C1−2

2 = C1+C2+2
2 , z̃∗∗∗3 = z̃∗3 = 2

C2
, z̃∗∗∗j = z̃∗j , j = 4, ..., M + 1.

so F ∗∗∗
1 = 1 ≤ C1, F ∗∗∗

2 = (C1+C2+2)C2

4 > C2, F ∗∗∗
j = Cj + 1 > Cj , j = 3, ...,M , so we

accept H1, i.e., φ1(z̃∗∗∗) = 0 at z̃∗∗∗.

Theorem 3.5.2. Consider the variance change problem of this section, the step-down

procedure is inadmissible for the two sided testing problem (3.7).

Proof of Theorem 3.5.2. Again we focus on H1 vs K1. For this two sided case problem,

we use Fj is defined in (3.37). To show φ1(z̃) is inadmissible, the three points z̃∗,

z̃∗∗, z̃∗∗∗ defined in the above proof of Theorem 3.5.1 for the one sided case with

z̃∗∗ = z̃∗ − r1g, z̃∗∗∗ = z̃∗ − r2g, r2 > r1 > 0 can also be used here satisfying

φ1(z̃∗) = 0, φ1(z̃∗∗) = 1, φ1(z̃∗∗∗) = 0. This prove the theorem by Lemma 2.1.1.
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Chapter 4

Testing of variances of treatments against a control

The setting for testing of variances of treatments against a control is same to the vari-

ance change problem in Chapter 3, i.e., we have (M + 1) independent random samples

zj = (zj1, zj2, ..., zj(M+1))′ from (M + 1) normal populations with parameters(µ1, σ
2
1),

(µ2, σ
2
2), ..., (µM+1, σ

2
M+1). And there are n such independent sequences. The treat-

ments correspond to j = 1, 2, ...M while the control population corresponds to the

(M + 1)th population. The testing problem we are interested in this chapter is:

Hi : σ2
i = σ2

M+1 vs Ki : σ2
i 6= σ2

M+1, i = 1, ..., M (4.1)

So rejecting any Hi indicates the variance for ith population is different from the control.

We will also consider one-sided alternative problems

Hi : σ2
i = σ2

M+1 vs K∗
i : σ2

i > σ2
M+1, i = 1, ...,M (4.2)

Same as in Chapter 3, let s2
i =

∑n
j=1(zji−z̄i)

2

n−1 be the sample variance, where z̄i =
∑n

j=1 zji

n , i = 1, ..., (M +1). So s2 = (s2
1, s

2
2, ..., s

2
M+1) follows a distribution in (3.3), i.e.,

fs2(s
2|σ2) =

M+1∏

i=1

(n− 1)
Γ(n−1

2 )2(n−1)/2

((n− 1)s2
i )

(n−1
2
−1)

(σ2
i )

n−1
2

e
− (n−1)s2i

2σ2
i

Now let z̃i = (n− 1)s2
i , ui = − 1

2σ2
i
, so

fz̃(z̃|u) = h(z̃)β(u) exp{z̃′u}

Let A=




1 0 0 · · · 0 −1

0 1 0 · · · 0 −1

· · · · · ·
0 0 0 · · · 1 −1

1 1 1 · · · 1 1




, which is a (M + 1)× (M + 1) matrix.
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Then

fz̃(z̃|u) = h(z̃)β(u) exp{z̃′A−1Au} (4.3)

Define ν = Au then

fz̃(z̃|u) = h(z̃)β∗(ν) exp{z̃′A−1ν} (4.4)

So Testing (4.1) and (4.2) are equivalent to test

Hi : νi = 0 vs Ki : νi 6= 0, i = 1, ..., M (4.5)

Hi : νi = 0 vs K∗
i : νi > 0, i = 1, ..., M (4.6)

4.1 MRD procedure

Similar to the variance change problem, the maximum residual down (MRD) method is

based on the maximum of adaptively formed residuals for treatment vs control problems.

It is step-down type MTPs. For each stage, we calculate the residuals for the hypotheses

not previously rejected, and compare the biggest one with some constant c, then make

decision of rejecting or accepting.

Let X = Az̃, Σ = AA′,then from (4.4) we can get

fX(x|ν) = h∗(x)β∗(ν) exp{x′Σ−1ν} (4.7)

Note that Σ = AA′ =




2 1 1 · · · 1 1 0

1 2 1 · · · 1 1 0

· · · · · · · · ·
1 1 1 · · · 1 2 0

0 0 0 · · · 0 0 (M + 1)




which is a (M + 1) ×

(M + 1) matrix.

Use the same notation as in the previous chapter, let X(j1,j2,...,jr,i) be the (M-r)

vector consisting of the components of X with Xj1 , ..., Xjr , Xi left out. Σ(j1,j2,...,jr,i) is

the (M − r)× (M − r) covariance matrix of X(j1,j2,...,jr,i). σ
(j1,j2,...,jr)
(i) is the (M − r)×1

vector of covariances between Xi and all variables except Xj1 , ..., Xjr and Xi.
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So for Stage m after rejecting Hj1 ,Hj2 , ...Hjm−1 , let (j(1), ...j(m−1)) be the ordered

sequence of (j1, ..., jm−1), then for j(k) < i < j(k+1), where k = 0, 1, ..., m − 1, with

j(0) = 0, j(m) = M + 1, we define Residualm,i like this:

Residualm,i = Xi − σ
(j1,j2,...,jm−1)′
(i) Σ−1

(j1,j2,...,jm−1,i)X
(j1,j2,...,jm−1,i) (4.8)

= Xi − 1
M −m + 1

∑
1≤j≤M

j 6=j1,j2,...,jm−1,i

Xj (4.9)

= z̃i − 1
M −m + 1

∑
1≤j≤(M+1)

j 6=j1,j2,...,jm−1,i

z̃j (4.10)

and let Wm,i be defined as Residualm,i divide by
∑

1≤j≤(M+1)
j 6=j1,j2,...,jm−1

z̃j to make it invariant

in scale. That is

Wm,i =
Residualm,i(z̃)∑

1≤j≤(M+1)
j 6=j1,j2,...,jm−1

z̃j
=

z̃i − 1
M−m+1

∑
1≤j≤(M+1)

j 6=j1,j2,...,jm−1,i

z̃j

∑
1≤j≤(M+1)

j 6=j1,j2,...,jm−1

z̃j
(4.11)

Then our test statistics Um,i is defined as:

Um,i = (Wm,i)2 (4.12)

for the two sided (4.5) case, m = 1, ...,M .

And

Um,i = Wm,i (4.13)

for the one sided (4.6) case, m = 1, ..., M .

4.1.1 MRD Procedure

MRD Procedure:

Let c1 > c2 > · · · > cM > 0 be a given set of constants.

Stage 1: Let I1 = {1, 2, ..., M}. If U1,j1 = max{U1,i : i ∈ I1} < c1, then accept all

hypotheses and stop; otherwise, reject Hj1 and continue.

Stage 2: Let I2 be the indices of the hypotheses not previously rejected. If U2,j2 =

max{U2,i : i ∈ I2} < c2, then accept all hypotheses in I2 and stop; otherwise, reject Hj2

and continue.
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...

In general at stage m: 1 ≤ m ≤ M , let Im be the indices of the hypotheses not

previously rejected. If Um,jm = max{Um,i : i ∈ Im} < cm, then accept all hypotheses in

Im and stop; otherwise, reject Hjm and continue.

4.1.2 Admissibility of MRD

Similarly we will demonstrate that for each individual testing problem that the MTP

based on MRD method is admissible. Without loss of generality we focus on H1 vs

K1. Again we will use the result of Matthes and Truax (1967) and demonstrate in

Lemma 4.1.1 that Wm,i(z̃) function given in (4.11) has the monotonicity properties

which enable us to prove in Lemma 4.1.2 that the individual test functions for Hi vs Ki

have the convexity property that is necessary and sufficient for admissibility. Theorem

4.1.1 summarizes and states the admissibility of the MRD procedure.

The density of z̃ is expressed in (4.4), now let Y = (A′)−1z̃ so that

fY(y|ν) = h∗∗(y)β∗(ν) exp{
M+1∑

i=1

yiνi} (4.14)

Note, to study the test function ψ(y) = φU (z̃) as y1 varies and (y2, ..., y(M+1))

remain fixed, we can consider sample points z̃ + rg where g is the first row of A and

r varies. This is true since y is a function of z̃ and so y evaluated at (z̃ + rg) is

(A′)−1(z̃ + rg) = y + (r, 0, ..., 0)′ = (y1 + r, y2, ..., y(M+1)).

Lemma 4.1.1. The function Wm,j(z̃) given in (4.11) have the following properties:

At any stage m, as far as H1 has not been rejected, for any i 6= 1, i.e., i ∈ {2, ..., M}\
{j1, ..., jm−1}, j1 6= 1, ..., jm−1 6= 1,

Wm,i(z̃ + rg) = Wm,i(z̃) (4.15)

and

Wm,1(z̃ + rg) = Wm,1(z̃) + ar (4.16)

where a is some constant and a > 0;
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Proof of Lemma 4.1.1. For i = 1, use (4.11) and recall g = (1, 0, 0, ....,−1)′ is the first

row of A to see that

Wm,1(z̃ + rg) =
(z̃1 + r)− 1

M−m+1

∑
1≤j≤(M+1)

j 6=1,j1,j2,...,jm−1

z̃j + 1
M−m+1r

∑
1≤j≤(M+1)

j 6=j1,j2,...,jm−1

z̃j

= Wm,i(z̃) + ar

where a =
1+ 1

M−m+1∑
1≤j≤(M+1)

j 6=j1,j2,...,jm−1

z̃j
, so a > 0. This establishes (4.16).

Now for i 6= 1, jk 6= 1, k = 1, ..., (m− 1),

Wm,i(z̃ + rg) =
z̃i − 1

M−m+1

∑
1≤j≤(M+1)

j 6=j1,j2,...,jm−1,i

z̃j

∑
1≤j≤(M+1)

j 6=j1,j2,...,jm−1

z̃j

= Wm,i(z̃)

This establishes (4.15).

Lemma 4.1.2. Suppose that for some z̃∗ and r0 > 0, φU (z̃∗) = 0 and φU (z̃∗+r0g) = 1.

Then φU (z̃∗ + rg) = 1 for all r > r0. This is true both for the one sided alternatives

(4.6)and two sided alternatives (4.5) of the treatment vs control problem of variance in

this Chapter.

Proof. Same as proof of Lemma 3.1.2.

Not that Lemma 4.1.2 again implies that the acceptance region in y1, for fixed y2,

..., yM+1 is an interval.

Theorem 4.1.1. Both for the one sided alternatives (4.6) and two sided alternatives

(4.5), the MRD procedure based on Um,i is admissible

Proof. Same as proof of Theorem 3.1.1.

4.2 M-LRD

The Maximum-Likelihood Ratio down (M-LRD) method depends on Likelihood Ratios

for each stage. Again, only the two-sided test is addressed here.
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4.2.1 M-LRD Procedure

M-LRD Procedure:

Let c1 > c2 > · · · > cM > 0 be a given set of constants.

Stage 1: Let I1 = {1, 2, ...,M} be the indices of the hypotheses of (4.5). We test

H1G : ν1 = ν2 = ... = νM = 0 vs K1
i : H1G but νi 6= 0. Let L1,i be the likelihood ratio

for H1G vs K1
i . If L1,j1 = max{L1,i : i ∈ I1} < c1, then accept H1G and stop, i.e., the

variances of treatments and control are equal; Otherwise, reject Hj1 and continue, then

the variance of the jth
1 treatment is different from the variance of control.

Stage 2: Let I2 be the indices of the hypotheses not previously rejected. Now we

test H2G : ν1 = ... = νj1−1 = νj1+1 = ... = νM = 0 vs K2
i : H2G but νi 6= 0, i ∈ I2.

Let L2,i be the likelihood ratio for H2G vs K2
i . If L2,j2 = max{L2,i : i ∈ I2} < c2, then

accept H2G and stop; otherwise, reject Hj2 and continue.
...

In general at stage m: 1 ≤ m ≤ M , let Im be the indices of the hypotheses not

previously rejected. Now we test HmG : all the νi = 0, i ∈ Im vs Km
i : HmG but νi 6= 0,

i ∈ Im. Let Lm,i be the likelihood ratio for HmG vs Km
i . If Lm,jm = max{Lm,i : i ∈

Im} < cm, then accept HmG and stop; otherwise, reject Hjm and continue.

4.2.2 Admissibility of M-LRD

For stage m after rejecting Hj1 ,Hj2 , ...Hjm−1 , test

HmG : all the νi = 0, i ∈ Km vs Km
i : HmG but νi 6= 0, i ∈ Km (4.17)

is equivalent to test:

H ′
mG : σ2

k = σ2
M+1, k 6= j1, ...jm−1

vs

K ′m
i : H ′

mG but σ2
i 6= σ2

M+1
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So under H ′
mG, the likelihood function of s2(j1,...jm−1) which is the (M-m+2) vector

consisting of the components of s2 with s2
j1

, ..., s2
jm−1

left out is

L0(σ2
M+1) =

∏
1≤k≤(M+1)
k 6=j1,...jm−1


 (n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
k)

(n−1
2
−1)

(σ2
M+1)

n−1
2

e
− (n−1)s2k

2σ2
M+1




And under K ′m
i , the likelihood function is

L1(σ2
i , σ

2
M+1) =




∏
1≤k≤(M+1)

k 6=j1,...jm−1,i


 (n− 1)

Γ(n−1
2 )2(n−1)/2

((n− 1)s2
k)

(n−1
2
−1)

(σ2
M+1)

n−1
2

e
− (n−1)s2k

2σ2
M+1







×
(

(n− 1)
Γ(n−1

2 )2(n−1)/2

((n− 1)s2
i )

(n−1
2
−1)

(σ2
i )

n−1
2

e
− (n−1)s2k

2σ2
i

)

So the likelihood ratio is

Lm,i =

sup
{σ2

i ,σ2
M+1}

L1

sup
{σ2

M+1}
L0

=

sup
{σ2

i ,σ2
M+1}

∏
1≤k≤(M+1)

k 6=j1,...jm−1,i


 ((n−1)s2

k)(
n−1

2 −1)

(σ2
M+1)

n−1
2

e
− (n−1)s2k

2σ2
M+1


×

(
((n−1)s2

i )(
n−1

2 −1)

(σ2
i )

n−1
2

e
− (n−1)s2k

2σ2
i

)

sup
{σ2

M+1}

∏
1≤k≤(M+1)
k 6=j1,...jm−1


 ((n−1)s2

k)(
n−1

2 −1)

(σ2
M+1)

n−1
2

e
− (n−1)s2

k
2σ2

M+1




.

For the numerator the maximum likelihood estimator(mle) of σ2
M+1, σ

2
i are

σ̂2
M+1 =

∑
1≤k≤(M+1)

k 6=j1,...jm−1,i

s2
k

M −m + 1
, σ̂2

i = s2
i .

For the denominator the maximum likelihood estimator(mle) of σ2
M+1 is

σ̂2
M+1 =

∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

M −m + 2

.

So

Lm,i =







∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

M −m + 2




M−m+2

(
1
s2
i

)



M −m + 1∑
1≤k≤(M+1)

k 6=j1,...jm−1,i

s2
k




M−m+1



(n−1)
2

(4.18)
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Since z̃i = (n− 1)s2
i , so

Lm,i =







∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

M −m + 2




M−m+2

(
1
z̃i

)



M −m + 1∑
1≤k≤(M+1)

k 6=j1,...jm−1,i

z̃k




M−m+1


(n−1)
2

(4.19)

Lemma 4.2.1. The function Lm,j(z̃) given in (4.19) have the following properties:

(1) At any stage m, as far as H1 has not been rejected, then for any i 6= 1, i.e.,

i ∈ {2, ..., M} \ {j1, ..., jm−1}, j1 6= 1, ..., jm−1 6= 1,

Lm,i(z̃ + rg) = Lm,i(z̃) (4.20)

for any r > 0.

(2) For i = 1, regard Lm,1(z̃ + rg) as a function of r, then:

If for any 0 < r1 < r2, Lm,1(z̃ + r2g) > Lm,1(z̃ + r1g), then for any r > r2,

Lm,1(z̃ + rg) > Lm,1(z̃ + r2g).

Proof of Lemma 4.2.1. For i = 1, use (4.19) and recall g = (1, 0, 0, ....,−1)′ is the first

row of A to see that

Lm,1(z̃+rg) =







∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

M −m + 2




M−m+2

(
1

z̃1 + r

)



M −m + 1∑
1≤k≤(M+1)

k 6=j1,...jm−1,1

z̃k − r




M−m+1


(n−1)
2

Let

lm,1(r)

= log{Lm,1(z̃ + rg)}

=
(n− 1)

2

×


(M −m + 2) log




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

M −m + 2


− log(z̃1 + r)− (M −m + 1) log




∑
1≤k≤(M+1)

k 6=j1,...jm−1,1

z̃k − r

M −m + 1







Now take derivative of lm,1(r) with respect to r

dlm,1(r)
dr

=
(n− 1)

2


−

1
z̃1 + r

+ (M −m + 1)
1∑

1≤k≤(M+1)
k 6=j1,...jm−1,1

z̃k − r
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So as r increases, dlm,1(r)
dr increases =⇒ once dlm,1(r)

dr becomes positive, it will stay

positive =⇒ once Lm,1(z̃ + r) increases, it will keep increasing.

For m = 1, ...,M ; i ∈ {2, ..., M} \ {j1, ..., jm−1}, j1 6= 1, ..., jm−1 6= 1, it’s obvious

that

Lm,i(z̃ + rg) = Lm,i(z̃)

.

Lemma 4.2.2. Suppose that for some z̃∗ and r0 > 0, φL(z̃∗) = 0 and φL(z̃∗+r0g) = 1.

Then φL(z̃∗ + rg) = 1 for all r > r0.

Proof. Same as proof of Lemma 3.1.2.

Theorem 4.2.1. For the two sided case the M-LRD procedure based on Lm,i is admis-

sible.

Proof. Same as proof of Theorem 3.1.1.

4.3 Likelihood Ratio Step-Down Method(LRSD)

Similar to the variance change cases in Chapter 3, the LRSD method for one-sided

alternatives in this case is as follows:

Let c1 > c2 > · · · > cM > 1 be a given set of constants. At Stage 1: Let I1 =

{1, 2, ...,M} be the indices of the hypotheses of (4.6). We test H1G : ν = 0 vs K1G :

ν ≥ 0 and at least one νi > 0, i ∈ I1. The likelihood ratio for this test is L1. If

L1 < c1, accept H1G and stop; Otherwise, reject Hj1 where j1 is the index for which

Fj1 = max{Fj : j ∈ I1}, where Fj is defined as:

Fj =
s2
j

s2
M+1

=
z̃j

z̃M+1
. (4.21)

Continue similarly for the hypotheses not rejected.

In general, the Stage m global hypothesis is considered if Hj1 , ..., Hjm−1 have been

rejected. This global testing problem is HmG : ν(j1,...,jm−1) = 0 vs KmG : ν(j1,...,jm−1) ≥
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0 but at least one νi > 0, i ∈ Im, where Im is the indices of the hypotheses not

previously rejected. The likelihood ratio test rejects HmG if Lm ≥ cm, i.e

Lm

=

sup
{σ2

i≥σ2
M+1,i∈Im}

∏
1≤i≤(M+1)
i 6=j1,...jm−1

( 1
σ2

i
)

n−1
2 e

− (n−1)s2i
2σ2

i

sup
σ2

M+1


 ∏

1≤i≤(M+1)
i6=j1,...jm−1

( 1
σ2

M+1
)

n−1
2 e

− (n−1)s2
i

2σ2
M+1




≥ cm

(4.22)

For the denominator the maximum likelihood estimator is: σ̂2
M+1 =

∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

M−m+2 ,

replace σ2
M+1 with it in (4.22), we get:

Lm

= e
(M−m+2)(n−1)

2 ×






∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

M −m + 2




M−m+2

sup
{σ2

i≥σ2
M+1,i∈Im}

∏
1≤i≤(M+1)

k 6=j1,...jm−1

(
1
σ2

i

)e
− s2i

σ2
i




(n−1)/2 (4.23)

Define

L′m

=




∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

M −m + 2




M−m+2

sup
{σ2

i≥σ2
M+1,i∈Im}

∏
1≤i≤(M+1)

k 6=j1,...jm−1

(
1
σ2

i

)e
− s2i

σ2
i

=




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

(n− 1)(M −m + 2)




M−m+2

sup
{σ2

i≥σ2
M+1,i∈Im}

∏
1≤i≤(M+1)

k 6=j1,...jm−1

(
1
σ2

i

)e
− z̃i

(n−1)σ2
i

=




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

(n− 1)(M −m + 2)




M−m+2

∏
1≤i≤(M+1)

k 6=j1,...jm−1

(
1
σ̂2

i

)e
− z̃i

(n−1)σ̂2
i

(4.24)

where σ̂2
i is the maximum likelihood estimator of σ2

i when z̃ = z̃. And Lm > cm ⇐⇒
L′m > Cm, where cm = e

(M−m+2)(n−1)
2 × C

(n−1)/2
m .
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Lemma 4.3.1. When z̃∗ = z̃ + rg =




z̃1+r
z̃2
z̃3···

z̃M+1−r


, if j(1) > 1, i.e. H1 has not been

rejected, L∗′m ≥ L′m.

Proof of Lemma 4.3.1. From (4.24),

L∗
′

m

=




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃∗k

(n− 1)(M −m + 2)




M−m+2

sup
{σ2

i≥σ2
M+1,i∈Km}

∏
1≤i≤(M+1)

k 6=j1,...jm−1

(
1
σ2

i

)e
− z̃∗i

(n−1)σ2
i

=




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

(n− 1)(M −m + 2)




M−m+2

sup
{σ2

i≥σ2
M+1,i∈Km}

∏
1≤i≤(M+1)

k 6=j1,...jm−1

(
1
σ2

i

)e
− z̃∗i

(n−1)σ2
i

≥




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

(n− 1)(M −m + 2)




M−m+2

∏
1≤i≤(M+1)

k 6=j1,...jm−1

(
1
σ̂2

i

)e
− z̃∗i

(n−1)σ̂2
i

=




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

(n− 1)(M −m + 2)




M−m+2

(
1
σ̂2

1

)e
− (z̃1+r)

(n−1)σ̂2
1 (

1
σ̂2

M+1

)e
− (z̃M+1−r)

(n−1)σ̂2
M+1

∏
2≤i≤M

k 6=j1,...jm−1

(
1
σ̂2

i

)e
− z̃i

(n−1)σ̂2
i

= e
r

n−1
( 1

σ̂2
M+1

− 1

σ̂2
1
)
× L′m

≥ L′m

since σ̂2
1 ≥ σ̂2

M+1, where σ̂2
i is the maximum likelihood estimator of σ2

i when z̃ = z̃.

Theorem 4.3.1. For the one-sided alternative case (4.6) LRSD is admissible.

Proof of Theorem 4.4.1. Once again we focus on H1 vs K∗
1 and demonstrate that if

φ(z̃∗) = 1 then φ(z̃∗+rg) = 1 for all r > 0. Suppose H1 is rejected at stage m for z̃ = z̃∗.

Then F ∗
j1

> F ∗
j2

> · · · > F ∗
jm−1

> F ∗
1 > F ∗

jm+1
> · · · > F ∗

jM
and L′1 ≥ C1, L′2 ≥ C2,...,

L′m ≥ Cm. Note at z̃∗∗ = z̃∗ + rg, F ∗∗
i = z̃i

z̃M+1−r for i 6= 1 and F ∗∗
1 = z̃1+r

z̃M+1−r , so

the orders of all coordinates are preserved except perhaps the first coordinate which

now can be anywhere among the m largest coordinates. It follows form Lemma 4.3.1

that L∗∗′k ≥ L∗′k ≥ Ck, which means there is a rejection at stage k at z̃∗∗ if there was
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a rejection at stage k at z̃∗, k = 1, ..., M . Since the order of the coordinates of F ∗∗
j1

,

F ∗∗
j2

, · · · , F ∗∗
jm−1

remains unchanged and F ∗∗
1 is among the m largest coordinates of z̃∗∗

it follows that H1 is rejected at stage m or sooner.

Next we consider testing two-sided alternatives for this treatment vs control model

of variance, i.e. we test Hi : νi = 0 vs Ki : νi 6= 0. The LRSD method in this case is

the same as in the one-sided alternative case except that Fj is replaced by

Fj =
max{s2

j , s
2
M+1}

min{s2
j , s

2
M+1}

=
max{z̃j , z̃M+1}
min{z̃j , z̃M+1} (4.25)

.

In general, the Stage m global hypothesis is considered if Hj1 , ...,Hjm−1 have been

rejected. This global testing problem is HmG : ν(j1,...,jm−1) = 0 vs KmG : ν(j1,...,jm−1) 6=
0. The likelihood ratio test rejects HmG if Lm ≥ cm, i.e

Lm

=

sup
{σ2

i ,i∈Im}

∏
1≤i≤(M+1)
i6=j1,...jm−1

( 1
σ2

i
)

n−1
2 e

− (n−1)s2i
2σ2

i

sup
σ2

M+1


 ∏

1≤i≤(M+1)
k 6=j1,...jm−1

( 1
σ2

M+1
)

n−1
2 e

− (n−1)s2
i

2σ2
M+1




≥ cm

(4.26)

For the numerator the maximum likelihood estimators are:

σ̂2
i = s2

i .

For the denominator the maximum likelihood estimator is:

σ̂2
M+1 =

∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

M −m + 2
.

Put them into (4.26), we get:

Lm =
∏

1≤i≤(M+1)
i 6=j1,...jm−1




∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

(M −m + 2)s2
i




(n−1)/2

(4.27)
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Define

L′m =
∏

1≤i≤(M+1)
i 6=j1,...jm−1




∑
1≤k≤(M+1)
k 6=j1,...jm−1

s2
k

(M −m + 2)s2
i




=
∏

1≤i≤(M+1)
i 6=j1,...jm−1




∑
1≤k≤(M+1)
k 6=j1,...jm−1

z̃k

(M −m + 2)z̃i




(4.28)

Then Lm ≥ cm ⇐⇒ L′m ≥ Cm, where (( 1
M−m+2)M−m+2Cm)

n−1
2 = cm. For this set up

we have

Theorem 4.3.2. For the two-sided alternative case (4.5) LRSD is admissible for M=2.

Proof of Theorem 4.3.2. For M=2, once again we focus on H1 vs K1:

(1) If z̃1 > z̃3, we will demonstrate that if φ(z̃) = 1 then φ(z̃ + rg) = 1 for all r > 0.

When H1 is rejected first =⇒ F1 = z̃1
z̃3

> F2 = max{z̃2,z̃3}
min{z̃2,z̃3} and L′1 ≥ C1. At z̃∗ =

z̃ + rg, r > 0, F ∗
1 = z̃1+r

z̃3−r > F ∗
2 = max{z̃2,z̃3−r}

min{z̃2,z̃3−r} , L∗′1 = ( z̃1+z̃2+z̃3
3(z̃1+r) )( z̃1+z̃2+z̃3

3z̃2
)( z̃1+z̃2+z̃3

3(z̃3−r) )) =

z̃1z̃3
(z̃1+r)(z̃3−r)L

′
1 = z̃1z̃3

−(r− 1
2
(z̃3−z̃1))2+ 1

4
(z̃3−z̃1)2+z̃1z̃3

L′1 > L′1 , so φ1(z̃ + rg) = 1 too, for all

r > 0.

When H1 is rejected secondly =⇒ F1 = z̃1
z̃3

< F2 = max{z̃2,z̃3}
min{z̃2,z̃3} , L′1 ≥ C1 and

L′2 ≥ C2. At z̃∗ = z̃ + rg, r > 0, F ∗
1 = z̃1+r

z̃3−r , F ∗
2 = max{z̃2,z̃3−r}

min{z̃2,z̃3−r} , L∗′1 = z̃1z̃3
(z̃1+r)(z̃3−r)L

′
1 >

L′1. If F ∗
1 > F ∗

2 , we reject H1 firstly for z̃∗; If F ∗
2 > F ∗

1 , we reject H2 firstly, since

L∗′2 = ( z̃1+z̃3
2(z̃1+r))(

z̃1+z̃3
2(z̃3−r)) = z̃1z̃3

(z̃1+r)(z̃3−r)L
′
2 > L′2, we reject H1 at second stage. Thus

φ(z̃ + rg) = 1 for all r > 0.

(2) If z̃3 > z̃1, we will demonstrate that if φ(z̃) = 0, and if φ(z̃∗) = φ(z̃ + r1g) = 1

for certain r1 > 0, then φ(z̃∗ + rg) = 1 for all r > r1.

When both H1,H2 are not rejected at z̃ =⇒ L′1 < C1. In order to reject H1, r1 must

> (z̃3−z̃1), then at z̃∗ = z̃+r1g, L∗′1 = z̃1z̃3
(z̃1+r1)(z̃3−r1)L

′
1 = z̃1z̃3

−(r1− 1
2
(z̃3−z̃1))2+ 1

4
(z̃3−z̃1)2+z̃1z̃3

L′1

> L′1, then z̃∗1 = z̃1 + r1 > z̃3, z̃∗3 = z̃3 − r1 < z̃1 =⇒ z̃∗1 > z̃∗3 , by the above part (1) we

know that φ1(z̃∗ + rg) = 1, for all r > 0.

When H2 is rejected and H1 is accepted at z̃ =⇒ L′1 ≥ C1, F1 = z̃3
z̃1

< F2 = max{z̃2,z̃3}
min{z̃2,z̃3}

and L′2 < C2. To reject H1 at z̃∗ = z̃ + r1g, there are two cases. One is that at z̃∗,
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L∗′1 ≥ C1, F
∗
1 < F ∗

2 and L∗′2 ≥ C2; the other one is that L∗′1 ≥ C1, F
∗
1 > F ∗

2 .

For the first case, L∗′2 ≥ C2 =⇒ L∗′2 > L′2, i.e.,

L∗
′

2 =
z̃1z̃3

(z̃1 + r1)(z̃3 − r1)
L′2 =

z̃1z̃3

−(r1 − 1
2(z̃3 − z̃1))2 + 1

4(z̃3 − z̃1)2 + z̃1z̃3
L′2 > L′2

=⇒ r1 > (z̃3 − z̃1) =⇒ z̃∗1 = z̃1 + r1 > z̃3, z̃∗3 = z̃3 − r1 < z̃1 =⇒ z̃∗1 > z̃∗3 , then by part

(1) we know that φ1(z̃∗ + rg) = 1, for all r > r1.

For the second case, F ∗
1 > F ∗

2 =⇒ z̃∗1 > z̃∗3 . Since if z̃∗1 < z̃∗3 , F ∗
1 = z̃∗3

z̃∗1
= z̃3−r

z̃1+r < F1,

if F2 = z̃2
z̃3

=⇒ F ∗
2 = z̃2

z̃3−r > F2 =⇒ F ∗
2 > F ∗

1 contradicted with F ∗
1 > F ∗

2 ; if F2 = z̃3
z̃2

and if F ∗
2 = z̃3−r

z̃2
, since F1 = z̃3

z̃1
< F2 = z̃3

z̃2
=⇒ F ∗

1 = z̃3−r
z̃1+r < F ∗

2 = z̃3−r
z̃2

contradicted

with F ∗
1 > F ∗

2 ; if F2 = z̃3
z̃2

and if F ∗
2 = z̃2

z̃3−r , since F1 = z̃3
z̃1

< F2 = z̃3
z̃2

=⇒ F ∗
1 = z̃3−r

z̃1+r <

z̃3−r
z̃2

< z̃2
z̃3−r = F ∗

2 contradicted with F ∗
1 > F ∗

2 . Thus for this case, z̃∗1 > z̃∗3 and H1 is

rejected firstly at z̃∗, by part (1), we know that φ1(z̃∗ + rg) = 1, for all r > r1.

For M=3 we exhibit a set of critical values for which LRSD is inadmissible. To

do so we find a sample point z̃∗ at which H1 is rejected and for which H1 is accepted

at z̃∗ + rg. In fact let z̃∗ = (z̃∗1 , z̃
∗
2 , z̃

∗
3 , z̃

∗
4)
′ for z̃∗2 > z̃∗1 > z̃∗4 > z̃∗3 and z̃∗4

z̃∗3
>

z̃∗2
z̃∗4

>

z̃∗1
z̃∗4

, i.e. F ∗
3 > F ∗

2 > F ∗
1 . Thus using (4.28) at stage 1 choose C1 so that L∗′1 =

( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗1

)( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗2

)( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗3

)( z̃∗1+z̃∗2+z̃∗3+z̃∗4
4z̃∗4

) = C1, so that H3 is rejected.

At stage 2 we calculate

L∗
′

2 = (
z̃∗1 + z̃∗2 + z̃∗4

3z̃∗1
)(

z̃∗1 + z̃∗2 + z̃∗4
3z̃∗2

)(
z̃∗1 + z̃∗2 + z̃∗4

3z̃∗4
) (4.29)

We set ( z̃∗1+z̃∗2+z̃∗4
3z̃∗1

)( z̃∗1+z̃∗2+z̃∗4
3z̃∗2

)( z̃∗1+z̃∗2+z̃∗4
3z̃∗4

) = C2, so H2 is rejected. At stage 3, H1 is

rejected.

Now let r such that r < z̃∗2 − z̃∗1 , r < z̃∗4 − z̃∗3 and (z̃∗4 − r)2 < z̃∗2 z̃
∗
3 . Thus at
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z̃∗∗ = z̃∗ + rg, F ∗∗
2 = z̃∗2

z̃∗4−r > F ∗∗
3 = z̃∗4−r

z̃∗3
, F ∗∗

2 = z̃∗2
z̃∗4−r > F ∗∗

1 = z̃∗1+r
z̃∗4−r and

L∗∗
′

1

= (
z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4

4(z̃∗1 + r)
)(

z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4
4z̃∗2

)(
z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4

4z̃∗3
)(

z̃∗1 + z̃∗2 + z̃∗3 + z̃∗4
4(z̃∗4 − r)

)

=
z̃∗1 z̃

∗
4

(z̃∗1 + r)(z̃∗4 − r)
L∗

′
1

> L∗
′

1

This time however, H2 is rejected at stage 1. At stage 2 we calculate,

L∗∗
′

2 = (
z̃∗1 + z̃∗3 + z̃∗4

3(z̃∗1 + r)
)(

z̃∗1 + z̃∗3 + z̃∗4
3z̃∗3

)(
z̃∗1 + z̃∗3 + z̃∗4

3(z̃∗4 − r)
) (4.30)

We note that (4.29) divided by (4.30) is

(z̃∗1 + z̃∗2 + z̃∗4)
3(z̃∗1 + r)z̃∗3(z̃

∗
4 − r)

(z̃∗1 + z̃∗3 + z̃∗4)3z̃
∗
1 z̃
∗
2 z̃
∗
4

(4.31)

There are many choices of z̃∗1 , z̃∗2 , z̃∗3 , z̃∗4 , r for which (4.31) is greater than 1 (e.g.,

z̃∗1 = 1.6568, z̃∗2 = 2.7, z̃∗3 = 1, z̃∗4 = 1.6432, r = 0.0002). The fact that (4.31) > 1 implies

that we can choose C2 such that L∗∗′2 < C2 so that at x∗ + rg the overall procedure

rejects H2 and accepts H1,H3. Note since z̃ = z̃∗ − rg, r <
z̃∗1−z̃∗4

2 is an accept point

(L′1 < L∗′1 = C1). Now if H1 is rejected for z̃∗ but accepted for z̃∗ + rg, that implies

the test for H1 is inadmissible.

The same is true for M ≥ 5.

4.4 Step-Up

Now again we study two of the most popular stepwise procedures. We demonstrate

that the individual tests they induce are inadmissible for these two-sided testing hy-

potheses of treatment vs control of variances, but admissible for these one-sided testing

hypotheses.

For step-up, let 1 ≤ C1 < C2 < · · · < CM be a sequence of increasing of critical

values and let F(1) ≤ F(2) ≤ · · · ≤ F(M) be the order statistics of F1, F2, ..., FM , where

for one side testing hypotheses of (4.6), Fj is defined in (4.21); and for two sided testing

hypotheses of (4.5), Fj is defined in (4.25).
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Stage 1: If F(1) ≤ C1, accept H(1) where H(1) is the hypothesis corresponding to

F(1). Otherwise reject all Hi.

Stage 2: If H(1) is accepted, accept H(2) if F(2) ≤ C2. Otherwise reject H(2), ..., H(M).

· · · · · ·
In general, at stage m, if F(m) ≤ Cm accept H(m). Otherwise reject H(m), ..., H(M).

Theorem 4.4.1. Consider the treatment vs control problem of this chapter, the step-up

procedure is admissible for the one sided testing problem (4.6).

Proof of Theorem 4.4.1. Once again we focus on H1 vs K∗
1 and demonstrate that if

φ(z̃∗) = 1 then φ(z̃∗ + rg) = 1 for all r > 0. At z̃∗, F ∗
j =

z̃∗j
z̃∗M+1

, for j = 1, 2, ...,M .

Suppose H1 is rejected at stage m, then F ∗
1 = z̃∗1

z̃∗M+1
it the mth smallest among the F ∗.

And F ∗
(1) ≤ C1, F

∗
(2) ≤ C2, ..., F

∗
(m−1) ≤ Cm−1, F

∗
(m) = F ∗

1 > Cm and F ∗
(j) > Cm for

j > m. Note at z̃∗∗ = z̃∗ + rg, F ∗∗
1 = (z̃∗1+r)

(z̃∗M+1−r) and F ∗
j =

z̃∗j
(z̃∗M+1−r) for j 6= 1, so the

value of F ∗∗ increased, and the order of the coordinates of F ∗∗ remains unchanged,

except the order of F ∗∗
1 increases, it follows that H1 is rejected at stage m or sooner.

Theorem 4.4.2. Consider the treatment vs control problem of this chapter, the step-up

procedure is inadmissible for the two sided testing problem (4.5).

Proof of Theorem 4.4.2. Again we focus on H1 vs K1. To show φ1(z̃) is inadmissible we

will find three points z̃∗, z̃∗∗, z̃∗∗∗ with z̃∗∗ = z̃∗ − r1g, z̃∗∗∗ = z̃∗ − r2g, r2 > r1 > 0

such that φ1(z̃∗) = 0, φ1(z̃∗∗) = 1, φ1(z̃∗∗∗) = 0. This will prove the theorem by

Lemma 2.1.1.

At z̃∗, let z̃∗1 = C1 + C2, z̃∗2 = 2
C1

, z̃∗j = 2
Cj+1 , j = 3, ..., M , and z̃∗M+1 = 2, so

F ∗
1 = C1+C2

2 , F ∗
2 = C1, F ∗

j = Cj + 1, j = 3, ..., M . Then at stage 1, F ∗
(1) = min{F ∗

j ,

j = 1, 2, ..., M} = F ∗
2 ≤ C1 =⇒ φ2(z̃∗) = 0; at stage 2, F ∗

(2) = F ∗
1 ≤ C2 =⇒ φ1(z̃∗) = 0

at z̃∗.

Let r1 = (C2−C1)
2(1+C1) , so at z̃∗∗ = z̃∗−r1g, z̃∗∗1 = C1+C2− (C2−C1)

2(1+C1) = 2C2
1+2C1C2+3C1+C2

2(1+C1) ,

z̃∗∗M+1 = 2+ (C2−C1)
2(1+C1) = 4+3C1+C2

2(1+C1) , z̃∗∗j = z̃∗j , j = 2, ...,M . So F ∗∗
1 = 2C2

1+2C1C2+3C1+C2

4+3C1+C2
>
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C1, F ∗∗
2 = (4+3C1+C2)C1

4(1+C1) > C1, F ∗∗
j = (2 + (C2−C1)

2(1+C1) ) (Cj+1)
2 > Cj + 1 > C1, j = 3, ...,M ,

so we reject all =⇒ φ1(z̃∗∗) = 1 at z̃∗∗.

Let r2 = C2+C1−2
2 > r1, so at z̃∗∗ = z̃∗−r2g, z̃∗∗∗1 = C1 +C2− C2+C1−2

2 = C1+C2+2
2 ,

z̃∗∗∗M+1 = 2 + C2+C1−2
2 = C1+C2+2

2 , z̃∗∗∗j = z̃∗j , j = 2, ..., M , so F ∗∗∗
1 = 1 ≤ C1, F ∗∗∗

2 =
(C1+C2+2)C1

4 > C1, F ∗∗∗
j = (2+ C2+C1−2

2 ) (Cj+1)
2 > Cj +1 > C1, j = 3, ..., M , so at stage

1, we accept H1, i.e., φ1(z̃∗∗∗) = 0 at z̃∗∗∗.

4.5 Step-Down

For step-down, let 1 ≤ C1 < C2 < · · · < CM be a sequence of increasing of critical

values and let F(1) ≤ F(2) ≤ · · · ≤ F(M) be the order statistics of F1, F2, ..., FM , where

for one side testing hypotheses of (4.6), Fj is defined in (4.21); and for two sided testing

hypotheses of (4.5), Fj is defined in (4.25).

Stage 1: If F(M) > CM , reject H(M) where H(M) is the hypothesis corresponding to

F(M). Otherwise accept all Hi.

Stage 2: If H(M) is rejected, reject H(M−1) if F(M−1) > CM−1. Otherwise accept

H(1), ..., H(M−1).

· · · · · ·
In general, at stage m, if F(M−m+1) > CM−m+1 reject H(M−m+1). Otherwise accept

H(1), ..., H(M−m+1).

Theorem 4.5.1. Consider the variance change problem of this chapter, the step-down

procedure is admissible for the one sided testing problem (4.6).

Proof of Theorem 4.5.1. Similar to the proof of Theorem 4.4.1, we focus on H1 vs K∗
1

and demonstrate that if φ(z̃∗) = 1 then φ(z̃∗ + rg) = 1 for all r > 0. At z̃ = z̃∗,

F ∗
j =

z̃∗j
z̃∗M+1

, for j = 1, 2, ..., M . Suppose H1 is rejected at stage m, then F ∗
1 = z̃∗1

z̃∗M+1
it

the mth largest among the F ∗. And F ∗
(M) > CM , F ∗

(M−1) > CM−1, ..., F ∗
(M−m+2) >

CM−m+2, F ∗
(M−m+1) = F ∗

1 > CM−m+1. Note at z̃∗∗ = z̃∗ + rg, F ∗∗
1 = (z̃∗1+r)

(z̃∗M+1−r) and

F ∗
j =

z̃∗j
(z̃∗M+1−r) for j 6= 1, so the value of F ∗∗ increased without changing the order of

(F ∗∗
2 , ..., F ∗∗

M ), and F ∗∗
1 is among the m largest coordinates of F ∗∗, it follows that H1 is

rejected at stage m or sooner.
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Theorem 4.5.2. Consider the treatment vs control problem of this chapter, the step-

down procedure is inadmissible for the two sided testing problem (4.5).

Proof of Theorem 4.5.2. Similar to the proof of Theorem 4.4.2, we focus on H1 vs K1.

To show φ1(z̃) is inadmissible we will find three points z̃∗, z̃∗∗, z̃∗∗∗ with z̃∗∗ = z̃∗−r1g,

z̃∗∗∗ = z̃∗ − r2g, r2 > r1 > 0 such that φ1(z̃∗) = 0, φ1(z̃∗∗) = 1, φ1(z̃∗∗∗) = 0. This

will prove the theorem by Lemma 2.1.1.

At z̃∗, use the same z̃∗ for the proof of Theorem 4.4.2, except change z̃∗2 to z̃∗2 = 2
C2

.

i.e., z̃∗1 = C1 + C2, z̃∗M+1 = 2, z̃∗j = 2
Cj+1 , j = 3, ...,M , so use the definition of Fj in

(4.25), F ∗
1 = C1+C2

2 < C2, F ∗
2 = C2, F ∗

j = Cj + 1 > Cj , j = 3, ..., M . From the above

step-down procedure, we accept H1 and H2, i.e., φ1(z̃∗) = 0 at z̃∗.

Use the same r1 = (C2−C1)
2(1+C1) , so at z̃∗∗ = z̃∗ − r1g, z̃∗∗1 = C1 + C2 − (C2−C1)

2(1+C1) =
2C2

1+2C1C2+3C1+C2

2(1+C1) , z̃∗∗M+1 = 2 + (C2−C1)
2(1+C1) = 4+3C1+C2

2(1+C1) , z̃∗∗j = z̃∗j , j = 3, ..., M . So F ∗∗
1 =

2C2
1+2C1C2+3C1+C2

4+3C1+C2
> C1, F ∗∗

2 = (4+3C1+C2)C2

4(1+C1) > C2, F ∗∗
j = (2+ (C2−C1)

2(1+C1) )(Cj+1
2 ) > Cj+1,

j = 3, ..., M , so we reject all =⇒ φ1(z̃∗∗) = 1 at z̃∗∗.

Use the same r2 = C2+C1−2
2 > r1, so at z̃∗∗ = z̃∗−r2g, z̃∗∗∗1 = C1 +C2− C2+C1−2

2 =

C1+C2+2
2 , z̃∗∗∗M+1 = 2 + C2+C1−2

2 = C1+C2+2
2 , z̃∗∗∗j = z̃∗j , j = 3, ..., M . So F ∗∗∗

1 = 1 ≤ C1,

F ∗∗∗
2 = (C1+C2+2)C2

4 > C2, F ∗∗∗
j = (2 + C2+C1−2

2 )(Cj+1
2 ) > Cj + 1, j = 3, ...,M , so we

accept H1, i.e., φ1(z̃∗∗∗) = 0 at z̃∗∗∗.
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Chapter 5

Choosing critical values to control strong FWER for

MRD procedure

The MRD procedure can be viewed as a family of admissible procedures parameterized

by a set of constants c1, ..., cM . It is shown that using an inequality due to Sidák (1968)

that c1, ..., cM can be chosen so that the MRD procedure controls the strong FWER at

level α, thus controls FDR at level α (see Lehamann and Romano).

Assume P is the true probability distribution generating the data, let I = I(P ) ⊂
{1, 2, ...,M} denote the indices of the set of true hypotheses. For K ⊂ {1, 2, ..., M}, let

HK denote the intersection hypothesis that all Hi with i ∈ K are true.

Let the critical value be ĉj,K(1− α
M ), which is designed for testing the intersection

hypothesis HK , at nominal level α
M , at stage j, when assuming that U ’s for that stage

are independent. I.e.,

P{independent}{max{Uj,i, i ∈ K} ≥ ĉj,K(1− α

M
)} =

α

M

Then we will prove that this set of critical values control strong FWER for MRD

procedure at level α.

Consider the event that MRD procedure commits a false rejection, so that for some

i ∈ I(P ), hypothesis Hi is rejected. Let j be the earliest stage in the method where

this occurs, which means

max{U1,i, i ∈ I1} = max{U1,i, i ∈ I1 \ I(P )} ≥ ĉ1,I1(1−
α

M
)

max{U2,i, i ∈ I2} = max{U2,i, i ∈ I2 \ I(P )} ≥ ĉ2,I2(1−
α

M
)

‘
...

max{Uj−1,i, i ∈ Ij−1} = max{Uj−1,i, i ∈ Ij−1 \ I(P )} ≥ ĉj−1,Ij−1(1−
α

M
)

max{Uj,i, i ∈ Ij} = max{Uj,i, i ∈ I(P )} ≥ ĉj,Ij (1−
α

M
)

(5.1)
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Note that this can only happens before or at the (M − |I|+ 1)th stage, so,

FWER

= P{
M−|I|+1⋃

j=1

(5.1)happens}

≤ P{
M−|I|+1⋃

j=1

(max{Uj,i, i ∈ Ij} = max{Uj,i, i ∈ I(P )} ≥ ĉj,Ij (1−
α

M
))}

≤
M−|I|+1∑

j=1

P{max{Uj,i, i ∈ Ij} = max{Uj,i, i ∈ I(P )} ≥ ĉj,Ij (1−
α

M
)}

(5.2)

When U’s are independent, according to Sidák (1968),

≤
M−|I|+1∑

j=1

P{independent}{max{Uj,i, i ∈ Ij} = max{Uj,i, i ∈ I(P )} ≥ ĉj,Ij (1−
α

M
)}

(5.3)

Since Ij ⊃ I(P ) =⇒ ĉj,Ij (1− α
M ) ≥ ĉj,I(P )(1− α

M ) =⇒

FWER ≤
M−|I|+1∑

j=1

P{independent}{max{Uj,i, i ∈ I(P )} ≥ ĉj,I(P )(1−
α

M
)}. (5.4)

So by the definition of ĉj,I(P )(1− α
M )

FWER ≤
M−|I|+1∑

j=1

α

M

≤ α

(5.5)
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Chapter 6

Simulations

The multiple hypothesis testing procedures in this thesis can be viewed as families of

procedures parameterized by a set of constants c1, ..., cM . It is shown in the above

chapter that using an inequality due to Sidák (1968) that C1, ..., CM can be chosen so

that the MRD procedure controls the strong FWER, this implies it also controls FDR.

However such a choice of C’s would be extremely conservative and would sacrifice the

gains achieved by MRD which takes advantage of the correlation among the variables. It

may also be possible to choose C’s to control FWER and FDR for the M-LRD or LRSD

procedures. However this too is likely to lead to an overly conservative procedure. To

determine a reasonable set of constants one must study the risks (errors and error rates)

for various choices of constants. As is the case in a typical decision theory problem where

no optimal procedure exists one must choose from a number of admissible procedures.

Of course this process needs to be done prior to looking at the data. To make this

choice in practice one must consider the particular application. In the examples we

present, a large variety of sets of constants were evaluated through simulation. Those

presented gave a good balance of performance in terms of expected numbers of Type I

and Type II errors committed.

We have seen in Chapter 2, Chapter 3 and Chapter 4 that the LRSD procedures

for the one-sided alternatives of mean cases, the MRD procedures for the change points

of variances cases and the M-LRD procedures for the two sided variances of treatment

versus control cases possess the intuitive convexity property needed for admissibility.

These stepwise procedures make extensive use of the covariance structure at every stage.

To see the types of improvements that can be made over usual stepwise methods we now

present some simulation studies. We present a comparison of these three methods with
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either the step-up or step-down method (whichever did best in the given situation). The

step-up and step-down methods used in the comparison are those based on P-values

determined from marginal distributions. We report the expected number of Type I

errors, the expected number of Type II errors and the FDR. To obtain the probabilities

of Type I and Type II errors we can divide the expected number of errors in the tables

below by the number of true nulls and alternatives respectively. For all simulations we

used 1000 iterations.

Table 6.1 gives the results for the one sided treatment versus control model of

means. So ρ = 0.5 for the intraclass covariance matrix. The difficulty of using one

sided LRSD is calculating the likelihood ratio in each stage which involves finding the

solution to a quadratic optimization problem. Here we use the package ”quadprog”

in R which implements the dual method of Goldfarb and Idnani (1982, 1983). This

method was found to be very satisfactory compared to other quadratic programming

methods. This quadratic programming procedure involves calculating inverse matrices

which can take a considerable amount of time. Hence we only present results for

M=100. The step-up procedure in the table is based on the difference of two normal

variables, each with variance 1. This procedure is the Benjamini-Hochberg(1995) FDR

controlling procedure where FDR = .05. The critical values for LRSD are somewhat

related to the FWER controlling step-down procedure where the control is at level

.05. Specifically these critical values for LRSD are as follows: For α = .05, M = 100,

C1 = 1.25Φ−1(1 − .05/M), Ci = 1.2Φ−1(1 − .05/(M − i + 1)), 1 < i ≤ M . These

critical values were selected by trial and error using simulations with 1000 iterations.

They were chosen so that a desirable procedure would ensue and and also to suggest a

way to get critical values in other cases. Here M=100 and the results are dramatic in

almost all the cases presented here. There is improvement (usually substantial) in the

expected number of Type II errors, while the Type I errors remain comparable, though

step-up and step-down procedures can be proved admissible for this positive ρ case.

Table 6.2 gives results for the treatment versus control model of variances. The

variance of control equals 1. MRD and M-LRD procedures are both presented here.

Step-up works better than step-down in this case. So only step-up is presented here.
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Here M = 1000, n = 10, α = .05. For MRD, C1 = 0.00012F−1
(n−1),(n−1)(1 − .05/2M),

Ci = 0.00007F−1
(n−1),(n−1)(1 − .05/2(M − i + 1)), 1 < i ≤ M ; For M-LRD, C1 =

0.11F−1
(n−1),(n−1)(1− .05/2M), Ci = 0.07F−1

(n−1),(n−1)(1− .05/2(M − i + 1)), 1 < i ≤ M .

The step-up procedure in the table is based on P-values of the marginal distributions

of F(n−1),(n−1)-statistics. The step-up procedure controls FDR at α = .05. From it

we can see that for a small proportion of true alternatives (≤ 20%) MRD and M-LRD

have fewer numbers of mistakes compared to step-up procedure. For the proportion of

alternative > 20%, M-LRD performs much better than the other two procedures and

M-LRD has smaller number of Type I errors and Type II errors than step-up procedures

in almost all the cases here.

Table 6.3 to Table 6.5 deal with the change point model for variances. Unlike the

previous two models, the variables in this problem are not exchangeable. Thus the

pattern of true variance values as well as the choice of true variance values impacts the

operating characteristics of the procedures. It would be difficult to select a particular

portion of the parameter space to study without knowing the specific application. We

have tried three types of patterns. For all the cases M=1000, α = .05.

Pattern 1: The sequence of differences in consecutive variances are of the form:

1, .., 1, 11, 8, 2, 1, ..., 1, 11, 8, 2, 1, ..., 1 where the triple sets of (11,8,2) are equally spaced.

So there are 4 changes (the present variance comparing to the previous variance) accom-

panied with this tripe set, they are (−10,−3,−6,−1). The results are shown in Table

6.3. For MRD, C1 = 0.00005F−1
(n−1),(n−1)(1 − .05/2M), Ci = 0.00003F−1

(n−1),(n−1)(1 −
.05/2(M − i+1)), 1 < i ≤ M ; For M-LRD, Ci = 0.55F−1

(n−1),(n−1)(1− .05/2(M − i+1)),

1 ≤ i ≤ M . The step-up procedure in the table is based on P-values of the marginal

distributions of F(n−1),(n−1)-statistics. The step-up procedure controls FDR at α = .05.

The message in Table 6.3 is that MRD has least number of errors for small number

of consecutive changes; while M-LRD performs best for larger number of consecutive

changes by a slight elevation in the number of Type I errors in exchange for a substantial

improvement in Type II errors.

Pattern 2: There is only one spot of consecutive variances changes. The results

are shown in Table 6.4. The step-down (Holm (1979)) procedures deals with p-values
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determined form marginal distributions of F(n−1),(n−1)-statistics. It controls FWER at

α = 0.05. For MRD, Ci = 0.00005F−1
(n−1),(n−1)(1 − .05/2(M − i + 1)), 1 ≤ i ≤ M ; For

M-LRD, Ci = 0.7F−1
(n−1),(n−1)(1− .05/2(M − i + 1)), 1 ≤ i ≤ M . Table 6.4 shows that

MRD performs best for these one spot of consecutive variances changes situations, most

time it almost detects all the changes, while step-down seldom detects the changes.

Pattern 3: The sequence of differences in consecutive variances are of the form:

1, .., 1, 5, 5, 5, 1, ..., 1, 5, 5, 5, 1, ..., 1 where the triple sets of (5,5,5) are equally spaced.

So there are two changes (the present variance comparing to the previous variance)

accompanied with this tripe set. The results are shown in Table 6.5. We used the

same Cs as for Table 6.4 for MRD and M-LRD. The step-up procedure in the table

is based on P-values of the marginal distributions of F(n−1),(n−1)-statistics controlling

FDR at α = .05. From the table we can see that the three methods’s performance are

comparable. They are quite weak in detecting the change points of variances for this

kind of situation.



   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

   
   

   
   

   
 

  
61

 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
T

ab
le

s 
fr

om
 s

im
ul

at
io

ns
 

  

N
u

m
b

e
r 

o
f 

m
e

a
ns

 e
q

ua
l t

o
 

E
xp

e
ct

e
d

 #
 o

f 
T

yp
e

 I
 e

rr
o

rs
 

E
xp

e
ct

e
d

 #
 o

f 
T

yp
e

 I
I 

e
rr

or
s 

F
D

R
 

N
u

m
b

e
r 

o
f r

e
je

ct
s 

T
o

ta
l e

rr
o

rs
 

  
  0

 
0

.5
 

2 
4 

LR
S

D
 

S
U

 
LR

S
D

 
S

U
 

LR
S

D
 

S
U

 
LR

S
D

 
S

U
 

LR
S

D
 

S
U

 

1
00

 
0 

0 
0 

0
.1

45
 

0
.5

08
 

0 
0 

0
.0

3 
0

.0
27

 
0

.1
45

 
0

.5
08

 
0

.1
45

 
0

.5
08

 

7
0 

0 
0 

3
0 

0
.2

03
 

1
.2

82
 

4
.3

26
 

9
.8

54
 

0
.0

07
 

0
.0

31
 

2
5.

87
7 

2
1.

42
8 

4
.5

29
 

1
1.

13
6 

7
0 

0 
3

0 
0 

0
.9

17
 

0
.8

69
 

1
8.

41
 

2
6.

82
1 

0
.0

66
 

0
.0

25
 

1
2.

50
7 

4
.0

48
 

1
9.

32
7 

2
7.

69
 

7
0 

3
0 

0 
0 

0
.2

06
 

0
.5

65
 

2
9.

75
3 

2
9.

58
7 

0
.0

38
 

0
.0

22
 

0
.4

53
 

0
.9

78
 

2
9.

95
9 

3
0.

15
2 

7
0 

0 
1

0 
2

0 
0

.3
84

 
1

.3
03

 
9

.3
73

 
1

5.
42

1 
0

.0
16

 
0

.0
32

 
2

1.
01

1 
1

5.
88

2 
9

.7
57

 
1

6.
72

4 

7
0 

1
0 

2
0 

0 
0

.8
5 

0
.8

26
 

2
2.

57
5 

2
8.

00
7 

0
.0

85
 

0
.0

27
 

8
.2

75
 

2
.8

19
 

2
3.

42
5 

2
8.

83
3 

7
0 

1
0 

0 
2

0 
0

.2
27

 
0

.9
86

 
1

2.
92

3 
1

7.
38

9 
0

.0
12

 
0

.0
29

 
1

7.
30

4 
1

3.
59

7 
1

3.
15

 
1

8.
37

5 

7
0 

1
0 

1
0 

1
0 

0
.5

14
 

1
.0

15
 

1
7.

82
9 

2
3.

08
4 

0
.0

35
 

0
.0

28
 

1
2.

68
5 

7
.9

31
 

1
8.

34
3 

2
4.

09
9 

6
0 

4
0 

0 
0 

0
.1

35
 

0
.4

68
 

3
9.

71
6 

3
9.

53
7 

0
.0

26
 

0
.0

22
 

0
.4

19
 

0
.9

31
 

3
9.

85
1 

4
0.

00
5 

6
0 

0 
0 

4
0 

0
.1

45
 

1
.4

19
 

5
.6

13
 

1
1.

50
1 

0
.0

04
 

0
.0

27
 

3
4.

53
2 

2
9.

91
8 

5
.7

58
 

1
2.

92
 

6
0 

0 
4

0 
0 

0
.8

1 
1

.1
13

 
2

4.
36

3 
3

4.
55

5 
0

.0
45

 
0

.0
26

 
1

6.
44

7 
6

.5
58

 
2

5.
17

3 
3

5.
66

8 

6
0 

2
0 

2
0 

0 
0

.6
54

 
0

.9
62

 
3

2.
49

2 
3

7.
51

3 
0

.0
65

 
0

.0
26

 
8

.1
62

 
3

.4
49

 
3

3.
14

6 
3

8.
47

5 

6
0 

1
0 

1
0 

2
0 

0
.3

39
 

0
.8

57
 

1
9.

25
3 

2
5.

30
6 

0
.0

15
 

0
.0

22
 

2
1.

08
6 

1
5.

55
1 

1
9.

59
2 

2
6.

16
3 

5
0 

1
0 

2
0 

2
0 

0
.3

46
 

0
.9

75
 

2
5.

57
9 

3
3.

02
4 

0
.0

13
 

0
.0

21
 

2
4.

76
7 

1
7.

95
1 

2
5.

92
5 

3
3.

99
9 

4
0 

2
0 

2
0 

2
0 

0
.2

38
 

0
.8

07
 

3
5.

87
9 

4
2.

41
7 

0
.0

09
 

0
.0

17
 

2
4.

35
9 

1
8.

39
 

3
6.

11
7 

4
3.

22
4 

3
0 

3
0 

2
0 

2
0 

0
.1

58
 

0
.6

72
 

4
6.

45
9 

5
1.

98
4 

0
.0

06
 

0
.0

13
 

2
3.

69
9 

1
8.

68
8 

4
6.

61
7 

5
2.

65
6 

 
T

ab
le

 7
.1

: 
C

o
m

p
ar

is
o

n
 o

f L
R

S
D

 a
n

d
 s

te
p

-u
p

 p
ro

ce
du

re
s 

fo
r 

tr
ea

tm
en

t 
vs

. 
co

n
tr

o
l o

f m
ea

n
s 

        



   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

   
   

   
   

   
 

  
62

 

N
u

m
b

e
r 

o
f 

va
ri

a
nc

e
s 

e
q

ua
l t

o
 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

 
e

rr
o

rs
 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

I 
e

rr
o

rs
 

F
D

R
 

T
o

ta
l e

rr
o

rs 

1
 

0
.1

 
0

.5
 

2
.5

 
5

 
M

R
D

 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

S
U

 

1
00

0 
0 

0 
0 

0 
0

.1
9 

0
.1

2 
1

.6
4 

0 
0 

0 
0

.0
5 

0
.0

4 
0

.0
2 

0
.1

9 
0

.1
2 

1
.6

4 

9
50

 
5

0 
0 

0 
0 

0
.4

5 
1

.9
5 

1
.6

6 
5

0 
9

.3
5 

2
9.

77
 

0
.0

7 
0

.0
45

 
0

.0
29

 
5

0.
45

 
1

1.
3 

3
1.

43
 

9
50

 
0 

5
0 

0 
0 

0
.0

9 
0

.0
4 

4
.4

9 
5

0 
4

9.
96

 
4

9.
92

 
0

.0
3 

0
.0

07
 

0
.0

1 
5

0.
09

 
5

0 
5

4.
41

 

9
50

 
0 

0 
5

0 
0 

2
.8

1 
1

.3
8 

1
6.

84
 

3
2.

43
 

4
1.

5 
4

8.
26

 
0

.1
3 

0
.1

21
 

0
.0

52
 

3
5.

24
 

4
2.

88
 

6
5.

1 

9
50

 
0 

0 
0 

5
0 

4
.1

7 
1

.8
7 

8
.3

6 
7

.0
4 

1
3.

15
 

4
5.

77
 

0
.0

86
 

0
.0

47
 

0
.0

38
 

1
1.

21
 

1
5.

02
 

5
4.

13
 

9
00

 
5

0 
0 

5
0 

0 
4

.6
4 

1
.8

7 
9

.0
7 

7
9.

69
 

4
8.

01
 

7
7.

5 
0

.1
82

 
0

.0
35

 
0

.0
35

 
8

4.
33

 
4

9.
88

 
8

6.
57

 

9
00

 
5

0 
0 

0 
5

0 
6

.6
 

1
.9

1 
1

.4
4 

5
6.

41
 

2
1.

56
 

7
5.

15
 

0
.1

29
 

0
.0

24
 

0
.0

27
 

6
3.

01
 

2
3.

47
 

7
6.

59
 

9
00

 
0 

5
0 

5
0 

0 
3

.2
8 

1
.8

9 
0

.0
7 

8
1.

26
 

8
8.

69
 

9
9.

91
 

0
.1

44
 

0
.1

41
 

0
.0

25
 

8
4.

54
 

9
0.

58
 

9
9.

98
 

9
00

 
0 

5
0 

0 
5

0 
5

.1
3 

1
.7

 
3

.2
2 

5
7.

16
 

6
2.

15
 

9
5.

31
 

0
.1

04
 

0
.0

42
 

0
.0

27
 

6
2.

29
 

6
3.

85
 

9
8.

53
 

8
50

 
1

00
 

0 
0 

5
0 

9
.7

8 
1

.8
9 

6
.2

7 
1

05
.4

1 
2

7.
83

 
9

4.
2 

0
.1

76
 

0
.0

15
 

0
.0

23
 

1
15

.1
9 

2
9.

72
 

1
00

.4
7 

8
50

 
0 

1
00

 
5

0 
0 

4
.3

6 
1

.5
1 

4
.4

4 
1

29
.3

5 
1

37
.3

3 
1

49
.4

1 
0

.1
71

 
0

.0
97

 
0

.0
44

 
1

33
.7

1 
1

38
.8

4 
1

53
.8

5 

8
50

 
5

0 
0 

1
00

 
0 

3
.7

 
1

.9
 

2
.1

4 
1

11
.4

8 
9

0.
02

 
1

28
.7

6 
0

.0
85

 
0

.0
3 

0
.0

31
 

1
15

.1
8 

9
1.

92
 

1
30

.9
 

8
00

 
1

00
 

0 
0 

1
00

 
1

4.
2 

2
.0

5 
4

.7
3 

1
09

.3
5 

3
8.

49
 

1
20

.1
8 

0
.1

33
 

0
.0

12
 

0
.0

25
 

1
23

.5
5 

4
0.

54
 

1
24

.9
1 

8
00

 
0 

1
00

 
1

00
 

0 
3

.6
5 

1
.6

6 
4

.2
7 

1
60

.7
3 

1
78

.6
5 

1
98

.1
4 

0
.0

84
 

0
.0

72
 

0
.0

34
 

1
64

.3
8 

1
80

.3
1 

2
02

.4
1 

8
00

 
5

0 
0 

0 
1

50
 

1
1.

45
 

2
.3

3 
4

.8
1 

6
4.

68
 

4
6.

74
 

1
50

.2
9 

0
.0

77
 

0
.0

15
 

0
.0

26
 

7
6.

13
 

4
9.

07
 

1
55

.1
 

8
00

 
0 

5
0 

1
50

 
0 

2
.0

3 
1

.8
2 

3
.8

7 
1

48
.0

3 
1

77
.7

1 
1

95
.9

9 
0

.0
36

 
0

.0
76

 
0

.0
32

 
1

50
.0

6 
1

79
.5

3 
1

99
.8

6 

8
00

 
1

50
 

0 
5

0 
0 

1
1.

7 
2

.0
9 

1
0.

53
 

1
74

.6
4 

5
8.

39
 

1
06

.7
3 

0
.3

1 
0

.0
14

 
0

.0
37

 
1

86
.3

4 
6

0.
48

 
1

17
.2

6 

8
00

 
5

0 
5

0 
5

0 
5

0 
7

.2
2 

1
.9

8 
1

2.
03

 
1

33
.1

9 
1

09
.2

4 
1

70
.2

9 
0

.0
95

 
0

.0
21

 
0

.0
44

 
1

40
.4

1 
1

11
.2

2 
1

82
.3

2 

7
00

 
0 

1
50

 
0 

1
50

 
1

3.
75

 
1

.6
2 

0
.0

3 
1

62
.7

6 
1

81
.3

4 
2

86
.0

3 
0

.0
9 

0
.0

13
 

0
.0

01
 

1
76

.5
1 

1
82

.9
6 

2
86

.0
6 

6
50

 
1

50
 

5
0 

1
50

 
0 

1
6.

44
 

2
.0

5 
4

.8
7 

2
64

.1
3 

1
86

.2
6 

2
54

.9
5 

0
.1

56
 

0
.0

12
 

0
.0

22
 

2
80

.5
7 

1
88

.3
1 

2
59

.8
2 

6
00

 
2

00
 

1
00

 
1

00
 

0 
4

3.
05

 
1

.4
8 

6
.7

1 
3

30
.2

1 
1

97
.3

4 
2

48
.7

7 
0

.3
7 

0
.0

07
 

0
.0

25
 

3
73

.2
6 

1
98

.8
2 

2
55

.4
8 

6
00

 
1

00
 

1
00

 
1

00
 

1
00

 
2

8.
9 

1
.9

8 
9

.3
5 

2
40

.8
2 

2
17

.1
4 

3
08

.1
 

0
.1

5 
0

.0
11

 
0

.0
35

 
2

69
.7

2 
2

19
.1

2 
3

17
.4

5 

6
00

 
1

00
 

2
00

 
1

00
 

0 
1

9.
29

 
1

.5
1 

3
.5

1 
3

39
.2

2 
2

88
.8

1 
3

35
.4

8 
0

.2
37

 
0

.0
13

 
0

.0
22

 
3

58
.5

1 
2

90
.3

2 
3

38
.9

9 

5
00

 
5

0 
2

00
 

1
50

 
1

00
 

3
9.

14
 

1
.3

2 
1

4.
59

 
2

98
.2

6 
3

50
.3

9 
4

40
.3

3 
0

.1
56

 
0

.0
09

 
0

.0
37

 
3

37
.4

 
3

51
.7

1 
4

54
.9

2 
 

T
ab

le
 7

.2
: 

C
o

m
p

ar
is

o
n

 o
f M

R
D

, M
-L

R
D

 a
n

d
 s

te
p

-u
p

 p
ro

ce
d

u
re

s 
fo

r 
tr

ea
tm

en
t 

vs
. 

co
n

tr
o

l o
f v

ar
ia

n
ce

s 

    



   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

   
   

   
   

   
 

  
63

 

  

N
u

m
b

e
r 

o
f 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

 
e

rr
o

rs
 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

I 
e

rr
o

rs 
F

D
R

 
T

o
ta

l e
rr

o
rs

 

n
u

lls
 

tr
ip

le
s 

ch
an

ge
s 

M
R

D 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

 
S

U
 

1
00

0 
0 

0 
0

.0
5 

0
.0

23
 

0
.0

72
 

0 
0 

0 
0

.0
39

 
0

.0
23

 
0

.0
47

 
0

.0
5 

0
.0

23
 

0
.0

72
 

9
96

 
1 

4 
0

.2
4 

0
.0

84
 

0
.0

7 
0

.0
22

 
2

.3
98

 
3

.8
76

 
0

.0
43

 
0

.0
54

 
0

.0
43

 
0

.2
62

 
2

.4
82

 
3

.9
46

 

9
88

 
3 

1
2 

0
.2

35
 

0
.3

47
 

0
.0

88
 

8
.0

2 
9

.9
74

 
1

1.
52

 
0

.0
42

 
0

.0
84

 
0

.0
37

 
8

.2
55

 
1

0.
32

1 
1

1.
60

8 

9
80

 
5 

2
0 

0
.2

11
 

0
.7

83
 

0
.1

01
 

1
6.

01
8 

1
7.

14
3 

1
9.

11
6 

0
.0

38
 

0
.1

39
 

0
.0

4 
1

6.
22

9 
1

7.
92

6 
1

9.
21

7 

9
60

 
1

0 
4

0 
0

.1
47

 
2

.5
41

 
0

.2
21

 
3

6.
03

8 
3

2.
74

 
3

7.
65

 
0

.0
28

 
0

.2
16

 
0

.0
47

 
3

6.
18

5 
3

5.
28

1 
3

7.
87

1 

9
00

 
2

5 
1

00
 

0
.1

11
 

7
.8

32
 

0
.5

54
 

9
6.

20
9 

6
8.

82
 

8
9.

78
5 

0
.0

21
 

0
.2

 
0

.0
43

 
9

6.
32

 
7

6.
65

2 
9

0.
33

9 

8
60

 
3

5 
1

40
 

0
.1

83
 

9
.8

44
 

0
.8

97
 

1
36

.4
2

4 
8

9.
51

1 
1

22
.1

8
2 

0
.0

31
 

0
.1

63
 

0
.0

42
 

1
36

.6
0

7 
9

9.
35

5 
1

23
.0

7
9 

8
00

 
5

0 
2

00
 

0
.2

89
 

9
.9

84
 

1
.3

27
 

1
96

.8
6

4 
1

29
.0

4 
1

69
.5

3 
0

.0
47

 
0

.1
27

 
0

.0
39

 
1

97
.1

5
3 

1
39

.0
2

4 
1

70
.8

5
7 

7
60

 
6

0 
2

40
 

0
.3

37
 

8
.5

58
 

1
.5

66
 

2
37

.5
6

7 
1

64
.0

8
5 

2
00

.2
0

1 
0

.0
51

 
0

.1
04

 
0

.0
36

 
2

37
.9

0
4 

1
72

.6
4

3 
2

01
.7

6
7 

  
  

   
  

   T
ab

le
 7

.3
: 

C
o

m
p

ar
is

o
n

 o
f M

R
D

, M
-L

R
D

 a
n

d
 s

te
p

-u
p

 p
r

o
ce

d
u

re
s 

fo
r 

th
e 

ch
an

ce
 p

oi
n

t m
o

d
el

 o
f v

ar
ia

n
ce

s,
 w

ith
 v

ar
ia

n
ce

s 
o

f t
h

e 
p

at
te

rn
: 

1,
..

,1
,1

1
,8

,2
,1

,.
..,

1
,1

1,
8

,2
,1

,.
..,

1,
…

 

                



   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

   
   

   
   

   
 

  
64

 

  

D
iff

e
re

nt
 S

itu
a

tio
n

s 
 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

 
e

rr
o

rs
 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

I 
e

rr
o

rs
 

F
D

R
 

T
o

ta
l e

rr
o

rs
 

V
a

ria
n

ce
s 

N
u

m
b

er
 o

f  
ch

an
ge

s 
M

R
D

 
M

-L
R

D
 

S
D

 
M

R
D

 
M

-L
R

D
 

S
D

 
M

R
D

 
M

-L
R

D
 

S
D

 
M

R
D 

M
-L

R
D

 
 

S
D

 

1
,…

,1
,2

,…
,2

 
1

 
0

.0
1 

0
.0

4 
0

.0
5 

0
.6

9 
0

.9
6 

1 
0

.0
05

 
0

.0
4 

0
.0

4 
0

.7
 

1 
1

.0
5 

1
,…

,1
,6

,…
,,6

 
1

 
0

.0
2 

0
.1

 
0

.0
5 

0
.0

8 
0

.3
6 

0
.9

9 
0

.0
1 

0
.0

95
 

0
.0

4 
0

.1
 

0
.4

6 
1

.0
4 

1
,…

,1
,2

,3
,…

,3
 

2
 

0
.0

2 
0

.1
4 

0
.0

3 
0

.9
4 

1
.6

6 
2 

0
.0

08
 

0
.1

35
 

0
.0

3 
0

.9
6 

1
.8

 
2

.0
3 

1
,…

,1
,6

,1
1

,…
,1

1,
16

,2
1

,…
,2

1
 

2
 

0
.0

7
 

0
.0

8 
0

.0
3 

0
.0

4 
1

.0
7 

1
.9

7 
0

.0
23

 
0

.0
75

 
0

.0
3 

0
.1

1 
1

.1
5 

2 

1
,…

,1
,2

,3
,4

,…
,4

 
3

 
0

.0
3 

0
.0

9 
0

.0
2 

1
.1

8 
2

.2
5 

2
.9

9 
0

.0
18

 
0

.0
8 

0
.0

2 
1

.2
1 

2
.3

4 
3

.0
1 

1
,…

,1
,6

,1
1

,1
6

,..
.,1

6
 

3
 

0
.0

4 
0

.0
5 

0
.0

6 
0

.0
6 

1
.9

9 
3 

0
.0

1 
0

.0
3 

0
.0

6 
0

.1
 

2
.0

4 
3

.0
6 

1
,…

,1
,0

.5
,1

.5
,3

,…
,3

 
3

 
0

.0
4 

0
.0

7 
0

.0
4 

1
.9

3 
2

.4
8 

2
.9

9 
0

.0
17

 
0

.0
5 

0
.0

3 
1

.9
7 

2
.5

5 
3

.0
3 

1
,…

,1
,2

,3
,4

,5
,…

,5
 

4
 

0
.0

3 
0

.1
 

0
.0

5 
1

.2
1 

3
.1

2 
4 

0
.0

06
 

0
.0

9 
0

.0
4 

1
.2

4 
3

.2
2 

4
.0

5 

1
,…

,1
,3

,4
,5

,1
,…

,1
 

4
 

0
.0

5 
0

.1
1 

0
.0

3 
0

.5
3 

3
.0

3 
3

.9
8 

0
.0

18
 

0
.0

95
 

0
.0

3 
0

.5
8 

3
.1

4 
4

.0
1 

1
,…

,1
,6

,1
1

,1
6

,2
1,

…
,2

1
 

4
 

0
.0

3
 

0
.0

3 
0

.0
3 

0
.0

9 
2

.9
6 

3
.9

7 
0

.0
06

 
0

.0
15

 
0

.0
3 

0
.1

2 
2

.9
9 

4 

1
,…

,1
,1

1
,8

,1
2

,1
1,

…
,1

1
 

4
 

0
.0

1
 

0
.0

4 
0

.0
3 

0
.0

3 
3 

3
.8

8 
0

.0
02

 
0

.0
2 

0
.0

2 
0

.0
4 

3
.0

4 
3

.9
1 

1
,…

,1
,1

1
,2

1
,3

6,
26

,…
,2

6
 

4
 

0
.0

4
 

0
.0

2 
0

.0
4 

0
.0

3 
3 

3
.8

9 
0

.0
08

 
0

.0
1 

0
.0

3 
0

.0
7 

3
.0

2 
3

.9
3 

1
,…

,1
,2

,3
,4

,5
,6

,…
,6

 
5

 
0

.0
5 

0
.0

8 
0

.0
6 

0
.9

8 
4

.0
5 

5 
0

.0
09

 
0

.0
7 

0
.0

6 
1

.0
3 

4
.1

3 
5

.0
6 

1
,…

,1
,6

,1
1

,1
6

,2
1,

26
,…

,2
6

 
5

  
0

.0
3

 
0

.0
3 

0
.0

3 
0

.0
7 

3
.9

2 
5 

0
.0

05
 

0
.0

15
 

0
.0

3 
0

.1
 

3
.9

5 
5

.0
3 

  
  

   
  

   
   

  
  

T
ab

le
 7

.4
: C

o
m

p
ar

is
o

n
 o

f M
R

D
, 

M
-L

R
D

 a
n

d
 s

te
p

-d
o

w
n

 p
ro

ce
d

u
re

s 
fo

r 
th

e 
ch

an
ce

 p
o

in
t 

m
o

d
el

 o
f v

ar
ia

n
ce

s
, 

w
ith

 o
n

ly
 o

n
e 

sp
ot

 o
f c

on
se

cu
tiv

e 
ch

an
ge

s 
in

 v
ar

i
an

ce
s.

 

           



   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

   
   

   
   

   
 

  
65

 

    

N
u

m
b

e
r 

o
f 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

 
e

rr
o

rs
 

E
xp

e
ct

e
d

 #
 o

f T
yp

e
 I

I 
e

rr
o

rs
 

F
D

R
 

T
o

ta
l e

rr
o

rs
 

n
u

lls
 

tr
ip

le
s 

ch
an

ge
s 

M
R

D 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

S
U

 
M

R
D

 
M

-L
R

D
 

 
S

U
 

1
00

0 
0 

0 
0

.0
5 

0
.0

2 
0

.0
8 

0 
0 

0 
0

.0
5 

0
.0

2 
0

.0
7 

0
.0

5 
0

.0
2 

0
.0

8 

9
98

 
1 

2 
1

.8
9 

0
.1

8 
0

.0
5 

0
.1

5 
1

.1
6 

1
.9

9 
0

.4
81

 
0

.1
65

 
0

.0
4 

2
.0

4 
1

.3
4 

2
.0

4 

9
96

 
2 

4 
2 

0
.1

4 
0

.1
3 

2
.0

5 
2

.9
3 

3
.9

4 
0

.5
01

 
0

.1
02

 
0

.0
78

 
4

.0
5 

3
.0

7 
4

.0
7 

9
94

 
3 

6 
1

.9
3 

0
.3

2 
0

.1
 

4
.1

7 
4

.9
7 

5
.8

8 
0

.4
89

 
0

.1
78

 
0

.0
42

 
6

.1
 

5
.2

9 
5

.9
8 

9
92

 
4 

8 
1

.8
9 

0
.3

4 
0

.1
 

6
.1

8 
6

.7
6 

7
.8

7 
0

.4
96

 
0

.1
49

 
0

.0
75

 
8

.0
7 

7
.1

 
7

.9
7 

9
90

 
5 

1
0 

1
.8

8 
0

.4
5 

0
.0

8 
8

.2
1 

8
.8

 
9

.8
4 

0
.4

78
 

0
.1

91
 

0
.0

41
 

1
0.

09
 

9
.2

5 
9

.9
2 

9
80

 
1

0 
2

0 
1

.8
9 

0
.7

4 
0

.1
4 

1
8.

22
 

1
8.

05
 

1
9.

62
 

0
.4

93
 

0
.2

16
 

0
.0

65
 

2
0.

11
 

1
8.

79
 

1
9.

76
 

9
70

 
1

5 
3

0 
1

.7
9 

1
.0

7 
0

.1
4 

2
8.

29
 

2
7.

6 
2

9.
34

 
0

.4
57

 
0

.2
72

 
0

.0
5 

3
0.

08
 

2
8.

67
 

2
9.

48
 

9
60

 
2

0 
4

0 
1

.8
5 

1
.2

3 
0

.1
1 

3
8.

27
 

3
6.

64
 

3
9.

27
 

0
.4

85
 

0
.2

14
 

0
.0

5 
4

0.
12

 
3

7.
87

 
3

9.
38

 

9
40

 
3

0 
6

0 
1

.6
2 

2
.2

4 
0

.1
3 

5
8.

53
 

5
4.

35
 

5
7.

86
 

0
.4

4 
0

.2
88

 
0

.0
37

 
6

0.
15

 
5

6.
59

 
5

7.
99

 

9
20

 
4

0 
8

0 
1

.3
7 

2
.6

 
0

.2
 

7
8.

71
 

7
3.

26
 

7
6.

85
 

0
.3

58
 

0
.2

75
 

0
.0

37
 

8
0.

08
 

7
5.

86
 

7
7.

05
 

9
00

 
5

0 
1

00
 

1
.5

2 
2

.8
6 

0
.4

7 
9

8.
61

 
9

1.
12

 
9

4.
77

 
0

.4
12

 
0

.2
43

 
0

.0
58

 
1

00
.1

3 
9

3.
98

 
9

5.
24

 

8
80

 
6

0 
1

20
 

1
.1

6 
2

.5
3 

0
.4

6 
1

18
.9

8 
1

10
.9

 
1

12
.7

9 
0

.3
18

 
0

.2
39

 
0

.0
42

 
1

20
.1

4 
1

13
.4

3 
1

13
.2

5 

8
60

 
7

0 
1

40
 

1
.0

5 
1

.9
6 

0
.7

2 
1

39
.0

5 
1

32
.8

3 
1

28
.9

7 
0

.2
92

 
0

.2
34

 
0

.0
51

 
1

40
.1

 
1

34
.7

9 
1

29
.6

9 
  

  
   

  
   T

ab
le

 7
.5

: 
C

o
m

p
ar

is
o

n
 o

f M
R

D
, M

-L
R

D
 a

n
d

 s
te

p
-u

p
 p

r
o

ce
d

u
re

s 
fo

r 
th

e 
ch

an
ce

 p
oi

n
t m

o
d

el
 o

f v
ar

ia
n

ce
s,

 w
ith

 v
ar

ia
n

ce
s 

o
f t

h
e 

p
at

te
rn

: 
1,

..
,1

,5
,5

,5
,1

,..
.,1

,
5,

5
,5

,1
,.

..,
1,

…
 

  



66

References

[Anderson, T.W. (1984)] An introduction to multivariate statistical analysis. 2nd ed.
Wiley, New York.

[Benjamini, Y. and Hochberg, Y. (1995)] Controlling the false discovery rate: A prac-
tical and powerful approach to multiple testing. J.Roy.Statist. Soc. Ser. B 57,
289-300.

[Benjamini, Y. and Yekutieli, D. (2001)] The contol of the false discovery rate in mul-
tiple testing under dependency. Ann. Statist 29, 1165-1188.

[Cai, G. and Sarkar, S.K (2006)] Modified Simes critical values under positive depen-
dence. J. Statist. Plann. Inference 136, 4129-4146.

[Casella, G. and Berger, R.L. (2002)] Statistical Inference, 2nd ed. Duxbury, Pacific
Grove, CA.

[Chen, J. and Gupta, A.K. (2000)] Parametric Statistical Change Point Analysis.
Birkhauser, Boston.

[Cohen, A., Kolassa,J. and Sackrowitz, H.B.(2007)] A smooth version of the step-up
procedure for multiple tests of hypotheses. J. Statist.Plann.Inference

[Cohen, A. and Sackrowitz, H.B.(2004)] Monotonicity properties of multiple endpoint
testing procedures. J. Statist.Plann.Inference 125 17-30.

[Cohen, A. and Sackrowitz, H.B.(2005a)] Decision theory results for one-sided multiple
comparison procedures. Ann. Statist. 33 126-144.

[Cohen, A. and Sackrowitz, H.B.(2005b)] Characterization of Bayes procedures for
multiple endpoint problems and inadmissibility of the step-up procedure. Ann.
Statist. 33 145-158.

[Cohen, A. and Sackrowitz, H.B.(2007)] More on the inadmissibility of step-up. J. Mul-
tivariate Anal. 98 481-492.

[Cohen, A. and Sackrowitz, H.B.(2008)] Multiple testing of two-sided alternatives with
dependent data. Statistica Sinica.

[Cohen, A.,Sackrowitz, H.B. and Xu, M(2007)] A new multiple testing method in the
dependent case. Submitted.

[Cohen, A.,Sackrowitz, H.B., Xu, M. and Buyske, S.(2008)] A family of Bayes multiple
testing procedures. Biometrika.

[Dudoit, S., Shaffer, J. P., and Boldrick, J. C. (2003)] Multiple hypothesis testing in
microarray experiments. Statist. Sci. 18, 71-103.



67

[Efron, B., Tibshirani, R., Storey, J. D., and Tusher, V. (2001)] Empirical Bayes anal-
ysis of a microarray experiment. J. Amer. Statist. Assoc. 96, 1151-1160.

[Goldfarb, D. and Idnani, A. (1982)] Dual and Primal-Dual Methods for Solving
Strictly Convex Quadratic Programs.Numerical Analysis J.P. Hennart ed.
Springer-Verlag, Berlin. 226-239.

[Goldfarb, D. and Idnani, A. (1983)] A numerically stable dual method for solving
strictly convex quadratic programs. Mathematical Programming. 27, 1-33.

[Gupta, A.K. and Tang, J.(1987)] On testing Homogeneity of Variance of Gaussian
Models. Journal of Statitical Computation and Simulaion. 27 155-173.

[Hochberg, Y. and Tamhane, A.C. (1987)] Multiple Comparison Procedure. Wiley,
New York.

[Lehmann, E.L. (1957)] A theory of some multiple decision problems, I. Ann. Math.
Statist. 28, 1-25.

[Lehmann, E.L. and Romano, J.P.(2005)] Testing Statistical Hypotheses. 3rd ed.
Springer.

[Marcus, R., Peritz, E. and Gabriel, K.R.(1967)] On closed testing procedures with
special reference to ordered analysis of variance. Biometrika 63, 655-660.

[Matthes, T.K. and Truax, D.R. (1967)] Test of composite hypotheses for the multi-
variate exponential family. Ann. Math. Statist 38, 681-697.

[Dudoit, Sandrine and van der Laan, Mark J.(2008)] Multiple Testing Procedures with
Applications to Genomics. Springer.

[Sarkar, S.K. (2002)] Some results on false discovery rate in stepwise multiple testing
procedures. Ann. Statist. 30, 239-257.

[Sidák (1968)] On multivariate normal probabilities of rectangles. Ann. Math. Statist.
39, 1425-1434.

[Stapleton, J.H. (1995)] Linear Statistical Models. Wiley, New York.



68

Vita

Minya Xu

2004 B. Sc. in Statistics, University of Science and Technology of China

2008 Ph. D. in Statistics, Rutgers University

2004-05 Fellowship, Department of Computer Science, Rutgers University

2005-08 Teaching assistant, Department of Statistics, Rutgers University

2007 A.Cohen, H.Sackrowitz and M.Xu (2007) A new multiple testing method in the
dependent case. Accepted by The Annals of Statistics.

2007 A.Cohen, H.Sackrowitz, M.Xu and S. Buyske (2007) A family of Bayes multiple
testing procedures. Accepted by Biometrika.

2007 Arthur Cohen, H.B. Sackrowitz, Minya Xu (2007) The use of an identity in An-
derson for multivariate multiple testing. Accepted by Journal of Statistical Planning
and Inference.




