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ABSTRACT OF THE DISSERTATION

Multiple testing methods in dependent cases

by MINYA XU

Dissertation Director: Arthur Cohen, Harold B. Sackrowitz

The most popular multiple testing procedures are stepwise procedures based on P-values
for individual test statistics. Included among these are the false discovery rate (FDR)
controlling procedures of Benjamini-Hochberg(1995) and their offsprings. For many
models including the case where model variables are multivariate normal, dependent
and alternatives are two sided, these stepwise procedures lack an intuitive convexity
property which is also needed for admissibility. Here we present two new stepwise
methods that do in fact have the convexity property. Furthermore unlike the method
using P-values based on marginal distributions, the new methods take dependency into
account in all stages. Still further the new methodology is computationally feasible.
Applications are detailed for models such as testing for change points of variances and

testing treatments against control of variances.
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Chapter 1

Introduction

The need for multiple testing procedures (MTPs) has been given great impetus by
diverse fields of application such as microarrays, astronomy, mutual fund evaluations,
proteomics, disclosure risk, cytometry, imaging and others. Traditional methods to deal
with multiple testing when the number of tests is large are deemed too conservative (do
not detect significant effects often enough). New approaches to multiple testing have
arisen. Many of the new approaches are classified as stepwise procedures such as step-
up and step-down in contrast to single step procedures. See Hochberg and Tamhane
(1987) and also Dudoit, Shaffer and Boldrick (DSB) (2003) where 18 procedures are
listed as single step, step-up or step-down. Among the more popular procedures is the
Benjamini-Hochberg (1995) false discovery rate (FDR) controlling procedure. Many
offspring have followed. See for example, Efron, Tibshirani, Storey and Tusher (2001),
Storey and Tusher (2001), Storey and Tibshirani (2003), Sarkar (2002), Benjamini and
Yekutieli (2001), Lehmann and Romano (2005), Cai and Sarkar (2006) and Dudoit and
van der Laan (2008). Typically, the stepwise procedures deal with P-values determined
from marginal distributions. Even when the model entails random vectors with corre-
lated variates, P-values from marginal distributions, ignoring correlations, are the basis
of the procedures.

In a series of papers Cohen and Sackrowitz (CS) (2005), (2007), (2008), and Cohen,
Kolassa, and Sackrowitz (2007) demonstrated that given a typical step-up or step-down
procedure, there exist other procedures whose expected numbers of type I and type II
errors are smaller. In fact in CS(2007b) for multivariate normal models when correlation
is nonzero, for two-sided alternatives of means, there exist procedures whose individual

tests have smaller expected type I and type II errors.



The goal of this thesis is to develop good MTPs in the case of correlated variables.
To begin with we realize that every MTP induces individual tests, ¢;, for the individual
hypothesis testing problems H; vs K;. The behavior of these tests should be of fun-
damental concern. However, the stepwise construction of most MTPs often makes it
difficult to describe and study the individual tests.

In particular, suppose an individual test induced by an MTP is inadmissible for
the standard hypothesis testing loss. That is, for that individual hypothesis testing
problem, a test exists whose size is no greater than the stepwise procedure test and
whose power is no less with some strict inequality. It would then follow that the overall
procedure would be inadmissible whenever the risk function is a monotone function of
the expected numbers of type I and type II errors.

We use a convexity property (A.Cohen, H.Sackrowitz and M.Xu (2007)) that is
necessary and sufficient for admissibility of the individual tests. In CS (2008) it has been
shown that most popular stepwise procedures do not possess the convexity property
when there is correlation in the two-sided alternative case. In this thesis we have
constructed two step-down type MTPs whose individual tests do have the required
convexity property for the problems we studied in the thesis. As is typical in problems
where no single optimal procedure exists, the selection of a procedure is somewhat
subjective. In evaluating procedures we focus mainly on the expected number of Type
I and Type II errors that the procedures make.

One of the new stepwise testing methods proposed is based on the maximum of
adaptively formed residuals. The method is called maximum residual down (MRD)
procedure. The other one is called ” maximum-likelihood ratio down (M-LRD)” proce-
dure, as the name says, it is based on the maximum of a collection of likelihood ratios.
Both of them are step-down type MTPs. These two methods have several advantages
over the stepwise methods that are currently recommended in the literature.

(1) They can’t be improved upon in terms of both type I and type II errors at
the same time. That is, they are admissible for a vector risk function, each of whose
components is the risk for the individual testing problems. The loss function for the

individual tests is the typical zero-one loss function entailing type I and type II errors.



(2) They take into account the correlation among the variates, thus utilizing infor-
mation oftentimes not used by the current P-value methods.

(3) For the change point model of variances in this thesis, we found if the variances
have only one spot of consecutive changes, then MRD is quite efficient in detecting
them. For the treatment vs control model of variances, simulations demonstrate that the
MRD and M-LRD make substantially fewer mistakes that the popular FDR controlling
procedures.

For the testing of means case, we assume X is an M x 1 vector which is multivariate
normal with mean vector g and known intraclass covariance matrix . Applications
of the intraclass model include the model of testing several treatments vs control. We
test two sided alternatives, i.e. H; : yu; =0 wvs K;:pu; #0,i=1,..., M. We also test
one sided alternatives, i.e. H; : u; =0 vs K7 :p; >0,0=1,..., M.

A seemingly logical step-down method that would take correlations into account is
to successively perform likelihood ratio tests (LRT) of global hypotheses, that is, it con-
tinues in a step-down fashion in determining the LRT-based MTP. Call this procedure
LRSD. At step one, LRSD employs the closure method (see Marcus, Peritz, and Gabriel
(1976)) using a LRT for p =0 wvs p # 0. If the global test rejects, then eliminate the
variate corresponding to max | X;|. One continues in a step-down fashion. Similar for
one sided alternatives. o

With this intraclass covariance matrix , for one-sided alternatives, LRSD is admis-
sible. For two sided alternatives LRSD is admissible for any monotone collection of
critical constants only when M=2 or M=3. For M > 4, counterexamples abound. That
is, there are many critical constants for which LRSD is inadmissible. Furthermore
critical constants are found for M > 5 which relate to constants that are likely to be
used.

The inadmissibility of LRSD is what prompted and led to MRD and M-LRD.

We have already applied our MRD method to the mean case of two special problems
in the paper (A.Cohen, H.Sackrowitz and M.Xu (2007)). One problem is to detect the
change points in mean. The other problem is testing for means of several treatments

against a control. Advantages and limitations of MRD method to these two projects



have been discussed in detail in this paper. And later we found that the test statistics
for M-LRD and MRD are linear functions of each other for the two sided mean case.
Thus a similar proof of admissibility works for M-LRD.

For the testing of variance case, we assume z; = (21, 2j2, ..., Zj(M—i—l))/ is a sequence of
independent normal variables with parameters(uy,07), (12, 03), ..., (41, 03741)- J =
1,2,...,n. ie., for each distribution with parameters (;, O'j2-), there are n independent
i1 (25— %) Doi 7

2
be the sample variance, where z; = ==——
n—1 ’ ’

sample points. Let s? = n

i =1,....,(M +1). For this variance case, similarly, we mainly studied two problems.
That is, one is to detect the change points in variance for a sequence of data. Another
one is to test for variance of each of several treatments against a control.

2 _

The first problem is simplified into testing two sided alternatives, i.e. H; : 0y =

af_H vs Kj: af #+ ai2+1,i =1,...,M. or test one sided alternatives, i.e. H; : af =
UZ-QH vs K;: 02-2 > UZ-QH,i =1,..., M. In either case the step-up and step-down methods
are inadmissible. The LRSD step-down method is mostly inadmissible while the MRD
method is admissible for both cases. The statistics for M-LRD and MRD are not linear
functions of each other for this testing of variance case. M-LRD is studied only for two
sided alternatives and M-LRD is admissible for such cases.

For the second problem, we test two sided alternatives, i.e. H; : 012 = 0]2\4 41 vs Ki:
02-2 # 012\/[+1,i =1,..., M. We also test one sided alternatives, i.e. H; : 02-2 = 012\/H_1 vs K; :
022 > 012\4 410 = 1,..., M. For one-sided alternatives, step-up , step-down and LRSD
methods are all admissible. For two sided alternatives, step-up and step-down methods
are inadmissible while LRSD is admissible for any monotone collection of critical con-
stants only when M=2. For M > 3, counterexamples abound. That is, there are many
critical constants for which LRSD is inadmissible, while the MRD method is admissible
for both cases and M-LRD is admissible for the two sided case.

One issue of concern in any MTP is computational feasibility. It is an issue because
in some instances the number of tests to be performed is very large. The only obstacle to
computational feasibility would be the possible need to invert high dimensional matrices

numerically. Oftentimes covariance matrices are such that the inversion process can be

simplified algebraically so that the computations present no problem. This is the case



for the practical applications we consider here. The general case however involves
inverting higher order matrices which may not be feasible if M is extremely large.

In the next Chapter we describe the LRT based step-down procedure (LRSD) for
the mean case. Here there are both admissibility and inadmissibility results of interest.
Chapter 3 and Chapter 4 are focused on change point problems and treatment vs
control problems of variance individually, MRD, M-LRD, LRSD, step-up and step-
down procedures are studied here. Admissibility and inadmissibility of each procedure
is assessed. Chapter 5 provides a set of C’s controlling strong FWER, for the MRD

procedure. Simulations and analysis are given in Chapter 6.



Chapter 2

Testing of means with intraclass covariance matrix

Assume X is an M x 1 vector which is distributed as multivariate normal with unknown
mean vector g and known covariance matrix I' = ¢?Y. The ¥ matrix is an intraclass
matrix here. Without loss of generality we take the diagonal elements of ¥ to be 1 and

the off diagonal elements to be p, that is

L p p - pp
p 1 p - pop
Y=\ ... , which is a M x M matrix.
pp p - 1op
pp p  op 1

We are interested in testing two sided alternatives, i.e

H:p=0 wvs K;j:pu; #0, i=1,...M (2.1)
We also interested in testing one sided alternatives, i.e
Hi:p=0 wvs K :p;>0, 1=1,..,M (2.2)

One of the applications to the intraclass model is the model of testing several means
of treatments vs control. For example, we have (M + 1) independent random samples
from (M + 1) normal populations, i.e. Z; ~ N(v3,02),i=1,2,....,(M + 1) . Without
loss of generality we assume o2 = 1. The treatments correspond to i = 1,2, ..., M while
the control population corresponds to the (M + 1)5* population. And we are interested

in testing
Hi LV — UM+l =0 vSs Ki YV — VM1 7'&0, 1= 1,...,M (23)
or one sided alternatives:

Hi:vi—vyy1=0 wvs K :vi—vyy1 >0, i=1,...,. M (2.4)



Let X; =2, — Zpr1, i =1,2,..., M so that X is distributed as multivariate normal

with mean vector wu, p; = v; — var41 and covariance matrix I' . That is
1 05 05 .-~ 05 05
05 1 0.5 -+ 0.5 05

'=2x1{| ... , which is a M x M intraclass matrix.

05 05 05 05 1 0.5

05 05 05 05 05 1

To solve these problems, we only studied Likelihood Ratio Step-Down Method(LRSD)
method here which naturally takes correlation into account. It continues in a step-down
fashion in determining the LRT-based MTP. We have already applied our new method
MRD to these cases in the paper (A.Cohen, H.Sackrowitz and M.Xu (2007)). Advan-
tages and limitations of MRD method have been discussed in detail in this paper. And
we found that the test statistics for M-LRD and MRD are linear functions of each other
for the two sided mean case. Thus a similar proof of admissibility works for M-LRD.

By way of notation, let X(1:72:--m=1) he the (M-(m-1)) vector consisting of the

components of X with Xj,..., X left out. p172-Jm=1) is the (M-(m-1)) vector

jmfl

consisting of the components of p with pj,, ..., pj,, , left out. 3 is the

J15J25+Jm—1)

(M — (m —1)) x (M — (m — 1)) covariance matrix of X1:J2:jm-1),

2.1 Likelihood Ratio Step-Down Method(LRSD)

LRSD Procedure for two sided alternatives:
Let ¢1 > co > -+ > cpr > 0 be a given set of constants.
Stage 1: Let I; = {1,2,..., M} be the indices of the hypotheses of (2.1) . We

test qu = O1 vs Kig : p # 0. The likelihood ratio for this test is L1 =
S‘;ILPWGXP{*i(TB*N)IE_l(‘B*N)}

e S e ) = exp{s2’S'x}. If L; < c1, then accept Hig
(2m) =t 2

and stop; Otherwise, reject H;, where j; is the index for which | X} | = max{|X,|:j €
I}, then continue.

Stage 2: Let Is be the indices of the hypotheses not previously rejected. Now we
test Hog : pl) = 0 vs Kog : pl91) % 0. Let Ly be the likelihood ratio for this test.



If Ly < cg, then accept Hag and stop; otherwise, reject H;, where js is the index for

which | X},| = max{|X,|: j € I5} and continue.

In general at stage m: 1 < m < M, let I,, be the indices of the hypotheses not
previously rejected. Now we test Hy : plitdm=1) = 0 vs K : plt--dm=1) £ Q |
Let L, be the likelihood ratio for this test. If L,, < ¢, then accept Hj" and stop;
otherwise, reject Hj,, where j,, is the index for which | X}, | = max{|X;|: j € I,,} and
continue.

We will demonstrate that the LRSD is admissible for M=2 and M=3. For M > 4
there exist counterexamples for certain collections of critical values and certain values
of p. We offer a counterexample when M = 4 and when M = 5 we demonstrate
inadmissibility for a large class of practical critical values for logical values of p. In
fact for large M, using x? critical values it turns out that for most p values (p # 0)
counterexamples demonstrate that LRSD is inadmissible.

On the other hand should the alternatives for the individual hypotheses be the
one-sided alternatives given in (2.2), then the LRSD is admissible.

Now we express the density of X as
= ! N 2.5
fx(x|p) = WGXI’{ 5(33 K) (x—p)} (2.5)
which in exponential family form is
fx(w|p) = h(z)B(p) exp{x'S ™ p} (2.6)
Next let Y = 71X so that
M
fy(ylp) = 1" (y)B(w) exp{ > _ yimi} (2.7)
i=1

Lemma 2.1.1. A necessary and sufficient condition for a test, ¥(y), of Hy : p1 =0 vs
K1 : pa # 0 to be admissible, is that for almost every fized ya, ..., Y(nr11), the acceptance

region of the test is an interval in vy .

Proof. See Matthes and Truax (1967). O



Note, to study the test function 1 (y) = ¢(x) as y; varies and (y2, ..., Y(rr41)) remain
fixed we can consider sample points « + rg where g is the first row of ¥ and r varies.
This is true since ¥ is a function of & and so y evaluated at (x +rg) is (X) "} (z +rg) =
Y+ (r,0,..,0) = (y1 + 7,92, -, Y41

Focusing firstly on the two-sided alternative case we note that the LRT for Hig vs

Kig is to reject if

'yl > 0y (2.8)
1+ (M —2)p —p —p —p
where ¥ 7! = 7 L =2)p = 7
—p —p —p o 1+ (M=2)p

Theorem 2.1.1. For the two-sided alternative case LRSD is admissible for M=2 and
M=3.

Proof of Theorem 2.1.1. We prove the theorem for M=3. For M=2 the method is the
same and the proof is simpler. Note when x] = 0, H; is accepted. In light of Lemma
2.1.1 we need to show that the LRSD test for Hy vs K, say ¢1(x), as a function of
x+rg goes from reject to accept to reject as r varies from (—oo, 00), where g = (1, p, p)’.
Another way of stating this requirement is suppose ¢1(x*) = 1 when zj > 0. Then we
must have ¢ (x*+rg) = 1 for all » > 0 while if ¢; (x*) = 1 when 2} < 0, we must have
¢1(x* —rg) =1 for all r > 0.

H; can be rejected at three different stages:

(1) If Hy is rejected at stage 1 for ¢ = &* = |2%| > |25|, |2%| > |23| and &*' 2~ Tz >
Ch,

when 27 > 0, this implies
(" +rg) S Ha* +rg) =" S & + 2rat + 12 > O} (2.9)

Also z] + 7 > |25 + rp| and x] +r > |z3 + 7p|, so ¢1(x* +rg) = 1 too, for all r > 0.

When z} < 0, a similar argument works for (z* — rg)’S~(z* — rg)
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(2) If Hy is rejected at stage 2 for & = x*, suppose zj is out first = |z5| > |z]| >
25|, 'S a* > Oy and m*(g)/E&%az*(?’) = 232 + 232 — 2pxial > Oy,

When z7 > 0= (2.9) > C and

= (xf + )2+ (3 +7p)? — 2p(x} +7)(ah + p) (2.10)

= 2i? + a3 — 2pxial + 2ra + 0% + pPr? — 2p%air — 2017

But since 72 + p?r? > 2p*r? and 2rz} > 2p?ra} it follows that (2.10)> Cy for all
r > 0. Hence ¢1(x* +rg) =1 for all 7 > 0.

When z% < 0, a similar argument works for (z*() — rg(?’))’E(*?s (x*(3) —rg®),

(3) If H is rejected at stage 3 for & = x*, suppose z3 is out first and z% is out
second = |z§| > |x3| > |zF].

When z7 > 0, subcases where the ordering of the components of * is maintained

with (x* + rg), it is easy to prove the required monotonicity property. The most

challenging subcases is if |x3| > 25 > ] > 0 with 23 < 0 but
|z5 +1p| < 25 +71p (2.11)

In this case when p > 0 we use the fact that 232 > 232 and use the inequalities as in the
previous case to prove the result. When p < 0 we observe that if |z5| > 25 > 27 > 0
and x5 < 0 then |23 +rp| > 25+ 7p and so (2.11) can’t happen. It’s easy to verify that
if ¢1(x*) =1 then ¢1(x* +rg) =1 for all r > 0.

Similar argument works for 7 < 0. ]

For M=4 we exhibit a set of critical values for which LRSD is inadmissible. To do so
we find a sample point *(z] > 0) at which H; is rejected and for which H; is accepted
at * + rg. In fact let * = (a,—a — A,b,—b—¢) forb>a+ A >a >0, >0 and
b+¢e > a+¢e/p. Thus using (2.8) at stage 1 choose C; so that * L~ 'z* > C| and Hy

is rejected and z is eliminated at stage 1. At stage 2 we calculate

AT (14 p)b” +2a°(1 + 2p) 4+ 2A[a + 2ap + pb+ (1 + p)A/2]}

(2.12)

:1+p72p2{
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We set :13*(4)'2(_4%33*(4) = (9, so Hj is rejected. At stage 3, Ho is rejected and at stage
4, Hy is rejected. Now if p > 0 let r = ¢/p and note that (x* +rg)'S ™ (x* +rg) > C;.

This time however, Hs is rejected at stage 1. At stage 2 we calculate for r = ¢/p,

93*(3)'2—533*(3)
1 2 2
1 1., 2
—i—(p—l—i—;—i—;)s —i—e(?+2a—4ap—2pA+2(1+p)b)}
We note that (2.12) minus (2.13) is

11 2a
— _AAbp— (p—1+4 =+ —)e2 — (= + 2a — dap — 2pA + 2(1 + p)b
1+p_2p2{ p—(p p pg) (p a—4ap —2p (1+p)b)}

(2.14)

There are many choices of a,b, A, e, p for which (2.14) is positive (e.g., a = 2,b =
4,A =1,e =.1,p = .5,r =.2). The fact that (2.14) > 0 implies that we can choose
C5 such that a:*(?’)/E(_B%:c*(?’) < (9 so that at * + rg the overall procedure rejects Hs
and accepts Hy, Hy and Hs. Note since 27 > 0, " — ag is an accept point. Now if
Hy is rejected for = x* but accepted for x* 4+ rg, that implies the test for H; is
inadmissible.

For M = 5 it can be shown that if the critical values correspond to critical values
of chi-square with m degrees of freedom, m=1,2,3,4,5, at level, say .05, then for most
values of p, LRSD is also inadmissible. The same is true for any M > 5.

Next for the intraclass model we consider testing one-sided alternatives, i.e. we test
H; : pi = piv1 vs K7 @ py > pri1. The LRSD method in this case is the same as in the
two-sided alternative case except that | X}, | is replaced by X;, = max(Xy,..., Xar), the
likelihood ratio Ly = exp{%w’z_lw} is replaced by L = sup exp{x ©~lu— %u,E_lu},

u>0
and similar changes for subsequent stages. For this setup we have

Theorem 2.1.2. For the one-sided alternative case LRSD is admissible.

Proof of Theorem 2.1.2. Once again we focus on H; vs K] and demonstrate that if
¢(x*) = 1 then ¢(x* + rg) = 1 for all » > 0. Suppose H; is rejected at stage m for

z = z*. Then 27 > 0, 2} > 2}, > > > x>y > >z and
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L1 > c1,Ly > co,..., Ly, > ¢, Note at ** = x* + rg the orders of all coordinates
are preserved except perhaps the first coordinate which now can be anywhere among
the m largest coordinates. The k stage global hypothesis is considered if H; , ..., Hj, |
have been rejected. This global testing problem is Hyg : pUtdk=1) = 0 vs Ky :
plitdm=1) > 0 but at least one p; > 0,7 € Kj. The likelihood ratio test rejects Hyg

if Ly > ¢, i.e

A oy L 1 . o v ; ;
*(J15e0dk—1) y1—1 (J1sensdb—1) _ =4, (F150mdk—1)"50—1 (15 1dk—1)
{Hizsol,liIéKk}exp{w E(J'l:-wjkﬂ)“' 2“ E(jl""’jkfl)'uj }
) ) , . . 1 . . ’ : :
— *(J1,edk—1) §7—1 UL dk—1) _ = 5y (01dk—1)% s =1 o (J15ee 0Tk 1)
= exp{z ' E(jl,.u,jk—l)u 1 2“ 1 Z(jlv--’]'kfl)“ 7Y

(2.15)
> ¢, where f1*U13k-1) is the maximum likelihood estimator on [0, +-00) of p(it:k-1)
when x = x*.

Next consider the likelihood ratio test statistic Lj at x**. It is

Sup exp{(w*(jlw"vjk—l)/ + /r'g(]177.7k—1)>2(_1 . )N(j17"'7jk—1)
(1 >04€ K} J1yeeosdk—1
1 . oy . .
_ =, Utende—1) -1 (150 sdk—1)
2“ ' E(j1,~~-,jk71)“ )
> exp{(a:*(jl"”’jk—l), + Tg(jlw-yjk—l))z_.l . I:L*(jl7--~7jk—1)
= (J15sd—1)
1 ., o
_ o nxUendk—1) y—-1 A (15 0k—1)
2“ ' ZULka—l)“ V)
o, o 1 ., o
— *(J15000Jk—1) y1—1 Ak dk—1) _ =y *(J1,eodk—1) -1 2k (J1,eesdk—1)
= exp{@ ' Z(]'ly-~~7jk71)u ' 2 ' E(j1,~~~,jk71)p’ '
_|_ ,},./:‘l;{(.jlvvjk—l)}

(2.16)

Recognize that the right-hand side of (2.16) is the maximized likelihood in (2.15)

times exp{rﬂgjl"“’jkfl)*}. Since ﬂgjl""’jk”)* > 0, it follows from (2.15) and (2.16) that

k3%

(2.16) > cg, which means there is a rejection at stage k at ** if there was a rejection

at stage k at «*,k =1, ..., M. Since the order of the coordinates of xﬁ", x;‘;‘, e 7:B;f:<nfl

remains unchanged and z7* is among the m largest coordinates of ** it follows that

H, is rejected at stage m or sooner. O
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Chapter 3

Variance Change

Let z; = (zjl,sz,...,zj(M+1))’ be a sequence of independent normal variables with

parameters(p1, 07), (12, 03), .., (ar41503741), § = 1,2,...,n, ie., for each distribution
S (zi—7)?

with parameters (u;,02), there are n independent sample points. Let s? = P

be the sample variance for the i*" population, where z; = @, i=1,...,(M+1).
The interest here is to test the hypothesis testing:
Hi:ol=07, ws Ki:0l#0}, i=1,.,M (3.1)
So rejecting any H; indicates a change point in variance occurs at position i.
We will also consider one-sided alternative problems
H;:o? = Uz'2+1 vs  Kf:o?> 0'1-24_1, i=1,...,. M (3.2)
V2
We know that % ~ Xx2_1, so the density of s2 = (s?, 53, ..., 5%/[+1)/ is:
n— n—1)s2
o2 7 (=1 ((n=1)sH D e
fsz(S |U ): H [(r=1)o(n—1)/2 oy =L € 7 (33)
i=1 (*57) (07) 2
Now let Z; = (n — 1)s? , u; = —2(17?, so that (3.3) becomes:
fz(z|u) = h(z)B(u) exp{z'u} (3.4)

where zZ = (21, 22, ..., Zp+1)" and u = (u1, ug, ..., upr41)"

Let A=

1

-1

0

0
0

0
0

, which is a (M 4 1) x (M + 1) matrix,



consisting of the components of X with X ,..., X

Then
fa(2w) = h(z)B(u) exp{z' A" Au}

Denote v = Au, so

fz(zlu) = h(z)5* (v) exp{Z’A_lu}

And testing (3.1) and (3.2) are equivalent to test

H :vy=0 wvs K;:v,#0, i=1,..

Hi:vi=0 ws K :v;>0, i=1,..

3.1 MRD

constant ¢, then make decision of rejecting or accepting.

Let X = Az, ¥ = AA’ then from (3.6) we can get

fx(xlv) = h*(x)5*(v) exp{xlE_lu}

Note that
2 -1 0 0 0 0
-1 2 -1 0 0 0
Y=AA=|
0 0 0 e =102 0
0 O 0 e 00 (M+1)

which is a (M + 1) x (M + 1) matrix.

14

(3.5)

(3.6)

The maximum residual down (MRD) method is based on the maximum of adaptively
formed residuals. It is step-down type MTP. For each stage, we calculate the residuals

for the hypotheses not previously rejected, and compare the biggest one with some

(3.9)

Using the similar notation as in Chapter 2, let XU1J2:Jr%) be the (M-r) vector

T

Xi left out; Xj 4, . .0 is the

(M —r) x (M — r) covariance matrix of X{1:72:--Jr:1); O'g)l’h’””jr) is the (M —r) x 1

vector of covariances between X; and all variables except X, ..., X, and X;.
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So for stage m after rejecting Hj,, Hj,,...H;,, _,, we define Residual,, ; as follows:

Residualy,; = X;— o #2dnVycl X Undeesdnoid) - (3.10)

for any 4, ¢ € {1,2,..., M} \ {j1, e, Jm—1},
Let (j(1), ---J(m—1)) be the ordered sequence of (ji, ..., jm—1)-
If i is in the range of (j(), j(k+1)), where k = 0,1,...,m — 1. Here denote j) = 0,
Jim) = M + 1. After calculating (3.10), we get
Zjgg+1 Tt 2 Zign et 2

Residual,, ; = — — - - (3.11)
L= Ik J(k+1) =0

which only involves (éj(k)H, Zjiy+2s o0 2j<k+1>),'
To make Residual,, ; invariant in scale, let W, ; be defined as Residual,, ; divided

by Zj,+1+ -+ Zj,,,,- That is

Zjgy 1tz B Zip1 2

W o Residualm’i(g) . Z_j(k) j(k+1)—l (3 12)
m,i — = p = - = .
g+ T T Zge) Zag 1 e

Then our test statistics Uy, ; is defined as:

) )

for the two sided (3.1) case, m = 1,..., M.
And
Ui = Wi (3.14)

)

for the one sided (3.2) case, m =1,..., M

3.1.1 MRD Procedure

MRD Procedure:

Let ¢1 > co > --- > cpr > 0 be a given set of constants.

Stage 1: Let Iy = {1,2,..., M}. If Uy j, = max{Uy; : i € I1} < c¢1, then accept all
hypotheses and stop; otherwise, reject H;, and continue.

Stage 2: Let Iz be the indices of the hypotheses not previously rejected. If Us j, =
max{Usy; : i € I} < ¢, then accept all hypotheses in 5 and stop; otherwise, reject Hj,

and continue.
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In general at stage m: 1 < m < M, let I,, be the indices of the hypotheses not
previously rejected. If Uy, j,, = max{U,,; : i € I,,} < ¢, then accept all hypotheses in

I,,, and stop; otherwise, reject H;,, and continue.

3.1.2 Admissibility of MRD

We will demonstrate that for each individual testing problem that the MTP based on
MRD method is admissible. Without loss of generality we focus on Hy vs Kj. Again
our plan is to use a result of Matthes and Truax (1967) stated as Lemma 2.1.1 which
offers a necessary and sufficient condition for admissibility of a test of H; vs Ky when
the joint distribution of Z is an exponential family. We next demonstrate in Lemma
3.1.1 that Wy, ;(z) function given in (3.12) has certain monotonicity properties. These
monotonicity properties will enable us to prove in Lemma 3.1.2 that the individual
test function for H; vs K; have the convexity property that is necessary and sufficient
for admissibility. Theorem 3.1.1 summarizes and states the admissibility of the MRD
procedure.

The density of Z is expressed in (3.6), now let Y = (A’)~'Z so that

M+1
fy(ylv) = (y)8* (v) exp{ D yivi} (3.15)

i=1
Similar to the proofs in Chapter 2, to study the test function ¢(y) = ¢y (Z) as y1
varies and (ya, ..., Y M+1)) remain fixed we can consider sample points Z +rg where g is
the first row of A and r varies. This is true since y is a function of Z and so y evaluated

at (2 + Tg) is (A/)—l(g + 7ﬁg) =Y+ (T,O, -‘-30), = (yl + 7,92, ""y(M—f—l))

Lemma 3.1.1. The function Wy, j(Z) given in (3.12) have the following properties:
At any stage m, as far as Hy has not been rejected, for anyi # 1, i.e., i € {2,..., M }\

{jla "'7jm71}; jl 75 la "'7jm71 7£ 1;
Wini(Z+1g) = Wiy i(2) (3.16)

and

Wini(Z2+rg) = Wpa(2) +ar (3.17)
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where a is some constant and a > 0;

Proof of Lemma 3.1.1. For i = 1, use (3.12) and recall g = (1,—1,0,....,0)" is the first

row of A to see that

(Z2—7r)+2Z3++Z;
s 1)
(Z1+7) - J-1

(Z14+r)+ (22 —1)+ -+ Z,

Wm,l(g + Tg) =

= Whn.i(Z) +ar

14—
where a = ijl(l) ~1 , Ja) = 2, 80 a > 0. This establishes (3.17).
k=1 ~k

Now fori # 1, ifj(k) <1 < j(k+1) ,j(k) #1,k=0,1,...,m, where jo =0, j,, = M+1,

Zigg it ot Zarp iy

1=J(k) J(k+1)—

Wni(Z+rg) = = -
m,l( g) Zj(k>+l + . + Zj(k+1)

= Wn,i(2)
since ¢ > 2 and j) = 0 or jg) > 2. This establishes (3.16).

O]

Lemma 3.1.2. Suppose that for some 2* and ro > 0, ¢y (2*) = 0 and ¢y (Z2*+1og) = 1.
Then ¢y (Z* +1rg) = 1 for all v > ro. This is true both for the one sided alternatives

(3.2) and two sided alternatives (3.1) of the variance change problem in this Chapter.

Proof of Lemma 3.1.2. If ¢y7(2*) = 0 when 2* is observed, the process must stop before
H isrejected. Suppose it stops at stage m without having rejected H;. That means that
Um, jn < ¢m which is equivalent to Uy, ; < ¢, for all i € {1,2, ..., M}\{j1, ..., jm-1},Ji #
1. Also U; j, > ¢i,i = 1,...,m—1,5; # 1. Next consider 2* 4-rog which is a rejecting H
point. By Lemma 3.1.1, (3.16) and (3.17) imply that only the function Up, ; can change
from z* to 2* + rog at each stage h < m. For some stage s, s < m, W, must have
increased to become positive and U, 1 become the maximum function at that stage and
also be > ¢s. By (3.17) U1 (Usy = W1 for one sided alternatives and U1 = (W571)2
for two sided alternatives) will be at least this large for all » > ro. Thus H; will also

be rejected for all 2* +rg, r > rg. O
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Not that Lemma 3.1.2 implies that the acceptance region in y;, for fixed o, ..., yar+1

is an interval.

Theorem 3.1.1. Both for the one sided alternatives (3.2)and two sided alternatives

(3.1), the MRD procedure based on U, ; is admissible.

Proof. Admissible means that each individual test for each hypothesis testing problem
is admissible. Without loss of generality we show admissibility of ¢y(2) for Hy vs K.
Proof that the other tests are admissible for the other hypotheses would be done in the
same way. That QSU(Z) is admissible for H; vs K; follows readily from Lemma 2.1.1

and Lemma 3.1.2. O

3.2 M-LRD

The Maximum-Likelihood Ratio down (M-LRD) method is step-down type MTP too.
It’s also based on the maximum of a collection of likelihood ratios. Only two-sided

alternatives will be addressed here.

3.2.1 M-LRD Procedure

M-LRD procedure calculates M likelihood ratios for the first stage and calculate (M —1)
likelihood ratios for the second stage and so on.
M-LRD Procedure:

Let ¢ > co > --- > cpr > 0 be a given set of constants.

Stage 1: Let Iy = {1,2,..., M} be the indices of the hypotheses of (3.7). We test
Heao:vi=wvr=..=vy=0vs Ki1 : Hig but v; # 0. Let Lq; be the likelihood ratio
for Hig vs Kl1 If Ly j, =max{Ly; :i € I1} < c1, then accept H;¢ and stop, i.e., there
is no change point; Otherwise, reject Hj,, say these is a change point at position j,
and continue.

Stage 2: Let Iy be the indices of the hypotheses not previously rejected. Now we
test Hog :v1 = ... = Vj_1 = Vj 41 = ... = vy = 0 vs Kf : Hog but v; #0, 4 € Is.
Let Lo ; be the likelihood ratio for Hog vs KZ2 If Ly j, = max{Lo; :i € Iz} < ¢y, then

accept Hag and stop; otherwise, reject Hj, and continue.
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In general at stage m: 1 < m < M, let I,, be the indices of the hypotheses not
previously rejected. Now we test H,,q : all the v; = 0,7 € I, vs K] : Hp,¢ but v; # 0,
i € I,. Let Ly, ; be the likelihood ratio for Hy,g vs K[*. If Ly, ;,, = max{Ly; : i €

I} < ¢, then accept H,,¢ and stop; otherwise, reject H;, and continue.

Jm

3.2.2 Admissibility of M-LRD

For stage m after rejecting Hj,, Hj,,..Hj,, 1, Im = {1,2,.... M} \ {j1), --J(m—1)} let
(Ja1)s --J(m—1)) be the ordered sequence of (j1, ..., jm—1)-
Then if 4 is in the range of (j), jk+1)), where k = 0,1,....,m — 1, with j) =

O,j(m) = M + 1, testing
Hyg: allthev; =0,i € I, vs K" : Hpg but v; #0,i € Iy, (3.18)

is equivalent to:

mG - 01 = = J](l) =01
2 2 _ 2
2 _ 2 _ 2
TG+l = = = Thgyry — Tk+1
2 _ .2 _ .
Ty +1 = = = OM41 = O
\£
K™: H| . except
2 . _ 2 _ 12
Tjy+1 = = = Tjiny = Okt changes to
2 _ o 2_ 2 _ _ 2 )
Tjypr = = = 0i = Ok, and o7 =..= Tiesr) = Tk
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So under H/, ., the likelihood function of s? = (s?,s3, ..., S%\4+1)/ is

Lo(o?, .., Uf,...,o?’%)
(e )
) h=1t=(j(n-1)+1) (2z2)2ln- 172 (o} 25t ’
- 1I ﬁ ( (n—1) (<n1>s%)<’:211>6m2—%;s%>
dgizn e TEEDZIE o
x j(ﬁl) (n—1)  ((n—1)s )(7—1>6_%
TEF0DR - (op)'T

t:j<k)+1

And under K™, the likelihood function is

2 /2 2 12
Ll(O'I, O-k17o-k2""7o-m)

J(n
|1 ﬁ < (n=1)  ((n—1)s}
B n—1y9(n—1)/2 PN
1<h<m  t=(jp_1y+1) (*z7) (07) 2
and h#(k+1)
i n—1__ (n71)52
1 (n=1)  ((n—1)sp5 D -t
X e 1
; F(;l)Q(n 1)/2 (0/2)”7_1
t=j(k)+1 2 k1
J(k+1 n—1_ (n—1)s
B O R o 4
2
n=1\9(n—1)/2 2\ n=l
t=i+1 L(*37)2 (0h,) 2
So the likelihood ratio is
sup Ly
{02,002 1012 ss0i2}
Lm,z’ 177 k2
sup Ly
{01 ’” ,O’k 9’ 70,2}
. (n— 1)st j _ (nfl)s%
_ - (k+1) n—1_ —
sup [ = 1>st>(7j De R | kL (s Y e
0;3170;32 =5y +1 (0'161)T t=i+1 (o %)T
B : _ (n— l)s
J(k+1) n—1_ —
sp [] [ L=nhEY, 2
chz+1 t=jy+1 (U;CQH)T
and the maximum likelihood estimator(mle) of o7, |, Uf , UkQ are
J(k+1) i J(ke41)
2 2
> S > S S s?
2 =it 2 =it L2 t=itl
ki — . . )0k2 - . N
L= J(k) J(k+1) —
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So
. . n—1
i=J(k) J(k+1)—1 Jekt1) J(k1)—I(k) p)
2
. . . St
L — = k) J(k+1) — 0 t=j()+1
myi — T E— _ B
XZ: 2 IE+D J(k+1) — J(k)
¢ dYoos
: t
t=j()+1 t=it+1
(3.19)
Since Z; is defined as Z; = (n — 1)s?, then
. . . . . (n—1)
P=Ik) J(k+1)—0 Jek+1) J(k+1)=J(k) 2
o . , 2t
L. . — LIk J(k+1) — 7 t=jpy+1
m,r T 17 m ji_
z ~ (k+1) — J(k)
Z t > %4
t=j(r)+1 t=i+1
(3.20)

Lemma 3.2.1. The function Ly, j(Z) given in (3.20) has the following properties:

(1) At any stage m, as far as Hy has not been rejected, then for any i # 1, i.e.,

1€ {2, ,M} \ {,jh ...,jm_l}, jl 7é 1, ...,jm_l 7& 1,
Limi(Z+7g) = Limi(2) (3.21)

for any r > 0.
(2) Fori =1, regard Ly, 1(Z +rg) as a function of r, then:
If for any 0 < r1 < 12, Ly1(Z + rag) > Lm1(Z + 11g), then for any r > ro,

Lm71(£ + Tg) > Lm,l(g + TQQ)'

Proof of Lemma 3.2.1. Use (3.20) and recall g = (1,—1,0,....,0)" is the first row of A.
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For i # 1: if 4 falls into the range 0 < i < j(1), then

L, i(Z2+rg)
o A (n—1)
i Iyt jaoy N0\
. ) zZ14+1r)+ (29 —71) + z
B ; oy — (Z1+7)+ (22 —71) t;st
- ~ i Jq) Ja
Ci4+r)+(Z—1r)+ > 2% S 5 @
t=3 t=i+1
. ‘ (n—1)
i J) e J(1) 2
. ) z
N doy —i &
i J(1) Ja
S 2, S 5 1)
t=1 t=i+1
= Lm;i(2)

if ¢ falls into the range j) < i < jy1) and jx) # 0, since jg) > 2 =1 > 3 =

Zi + rg; = Z;, then it’s obvious that
Lm,i(,% + rg) = Lmﬂ(g)

This establishes (3.21).

Fori:=1,
Jm—1 /iaq Ja) z
t
- 1 Jay —1 =1
L z+rg)= — -
mal 9) (21 + 7’) Jay J)
Zt —T
=2
Let
b1 (r) = log{Lm1(Z +rg)}
J(1)
‘ > %
n—1 N . Jay —1 . =
= ( 5 ) —log(z1 +r) + (j(l) —1)log j(l() ) +Ja) log =
Z 2,5 -7
=2
Now take derivative of I, 1(r) with respect to r
dlpa(r)  (n—1) 1 , 1
L - - —1)-
dr 2 Z1+r + (‘7(1) )J(1>
Zt —-T
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. dl . dl . .
So as r increases, r > 0, ”3’77{(” increases = once "3’77{(71) becomes positive, it will

stay positive = Once Ly, 1(Z + rg) increases, it will keep increasing.

O]

Lemma 3.2.2. Suppose that for some Z* andrg > 0,¢r(2*) = 0 and ¢r(Z*+19g) = 1.

Then ¢r(Z* +rg) =1 for all v > ry.
Proof. Same as proof of Lemma 3.1.2. O

Theorem 3.2.1. For the two sided case the M-LRD procedure based on L, ; is admis-

sible.

Proof. Same as proof of Theorem 3.1.1. O

3.3 Likelihood Ratio Step-Down Method(LRSD)

Similar to the mean case in Chapter 2, for one-sided variance change case, the LRSD
method is as following;:

Let ¢ > ¢co > --- > ¢y > 1 be a given set of constants. At Stage 1: Let I; =
{1,2,..., M} be the indices of the hypotheses of (3.8). We test Hig : v = 0 vs K¢ :
v > 0 and at least one v; > 0, ¢ € I; . The likelihood ratio for this test is Lq. If
L1 < c1, then accept Hig and stop; Otherwise, reject H;, where j; is the index for
which Fj, = max{Fj : j € I, },where

=1 —_ (3.22)
st Ein

and continue similarly for the hypotheses not rejected.

In general, the Stage m global hypothesis is considered if Hj,, ..., H. have been

jm—l

rejected. This global testing problem is H,,g : pULIm=1) = 0 vs K, : pULdm=1) >

0 but at least one v; > 0, i € I, where I, is the indices of the hypotheses not
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previously rejected. The likelihood ratio test rejects H,,q if Ly, > ¢, i€

Ly,
M+1 ) _ (n=1)s?
135+ 202
Sup ]__[ (p) 2 e 7
{02202, ji€lm} i=1 '
- 2
M+1 et _ (n—1)s7
n—1 P
sup IT (%) T e 200
{0?=0? ji€ly} i=1 '
2
M+1 1 _(n—1)s7
n—1 2
sup IT (ULQ) e 20
- {0?>02,  i€ln} i=1
J) (st J2) - (n—1)s2 M =,
2 e 20;%

s (T Fe =0 ) T G Fe *F )| T ()

oty ot} \i=1 =i+l =j(m—1)+1

(3.23)
2 Cm
i
1) s?
For the denominator the maximum likelihood estimators are: 67 = ;(1) 62 =
I2) M1
. 5? _ > 52
Jay+t 2 Fmontt

/2 12 12 . . )
T =i 0m T M=jon 1 replace o1, 0%, ..., o) with them in (3.23), we get:

(3.23)
(M41)(n-1)

= e 2

J) g i) 9 J@ =i Mi1 o M—j(m_1)+1 (n—1)/2

252' Z 5j A > S5
X r’ i+t Jim—1)+1

Ja) J@) —Jq) M~ 1) +1

M+1 2\ (n=1)/2

1 _U
% Sup [T (e -
{07207 i€lm} =1 i

(3.24)
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Define
/
Lm
e J) @) ) J@TIw) Mi1 M—jj(n—1)+1
> sjz Z S5 A > S5
. 1 Jy+1 Jm-1)+1
J(1) J2) —J) M = jom—1) +1
M+1 1 52
2
x sup H (7) ‘
{0'2>0'1+1,161m} i=1 9
en J) i@ 2= M+1 M =jj(m—1)+1
Z ~j Z Zj ) Z Zj
1 Jom+l Jm—-1)+1

(n =1 —Jw) (n—=1D(M = jm-1) +1)

Il
—
S
|
—
S~—
<
P
-
=
—

M+1 s
1 (n 1)o
X sup —2 e
{0'2>0'1+1le[771} = 1 i
i) Ja) i) UORE[O) Mi1 M —j(m—1)+1
7 2 % 2 %
I Juy+l Jim—1)+1
(n—1)jq) (n =1 — i) (n—1)(M — jom_1)+1)
M1l ;
n— 0'2
T e
=1 ?
(3.25)

where [7? is the maximum likelihood estimator of af when zZ = 2. Thus L,, > ¢, <

(M41)(n=1) _
Qb - A(n=1)/2

L, > Cp, where ¢, = e 2 g
Zitr

Lemma 3.3.1. When z* = z+rg = ng s 4f J1y > 1, i.e.Hy has not been rejected,
ZM+1

LY > L.

Proof of Lemma 3.3.1. From (3.25),

L*

m
Ja) J) e J@TIW MA1 M—=j(m—1)+1
> % D F DD
1 .](1)"‘1 ](m—l)+1

~ | 1) (n =10 - ja) T =DM =Gy 1)
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M+1 5;‘
T Da2
X sup | | ()e "7V
{07:22012+17i61m} i=1 %

since j) > 1 =

m
J) J) i) OO M+1 M=jm-1)+1
S > % DD
_ |t Jay+l (m—1)F1
(n—1)jq) (n =1 — i) (n— 1)(M Jm—1) +1)
M+1 1 5
X sup 72 e (n l)a
{o2>02, | ji€ln} ;= 1 gi
J ) i) UORS[O) MA1 M =jj(m-1)+1
N7 2 F 2 F
> 1 Jay+1 o Jem-1)+1
| (n=1)jn (n =1 — i) (n—1(M — jm-1) +1)
M+1 1 ¥
- n—1)62
< |1 (zg)e 707
=1 ?
J J1) i) I Myl M—=jj(n—1)+1
Z Nj Z Zj ) Z Zj
B 1 Jay+l o Jem-1)+1
(n— 1) (n =1 —Jw) (n—=1D(M — jm-1) +1)
_ (51+T)2 1 _ (ZQ*T)2 M+1 1 7 5
_ (n=1)6% ( _— (n—1)& (nfl)fri
X (& )e 1(63)6 2 H (&2)6
=3 ?
1
=e"” 1("2 7 L,

where 62-2 is the maximum likelihood estimator of 01-2 when z = 2.

Thus L%, > L',. Since 67 > 3. O

Theorem 3.3.1. For the one-sided alternatives (3.2) LRSD is admissible for M=2 and
M=3.

Proof of Theorem 3.3.1. We proof the theorem for M=3. For M=2 the method is the
same and the proof is simpler. Once again we focus on H; vs K| and demonstrate that
if $(2*) = 1 then ¢(2* +rg) = 1 for all » > 0. H; can be rejected at three different

stages:
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(1) If Hy is rejected at stage 1 for 2 = 2* = F} > F5, F} > Fy and L”f’ > (1.

When at 2 = Z* +rg, Fi* =

EELRE IR R R A S
and from Lemma 3.3.1, we know that L’l‘*/ > L”l‘/ > (1, so ¢1(Z* +rg) = 1 too, for all
r > 0.

(2) If Hy is rejected at stage 2 for Z = Z¥,

when Hj is rejected first = Ff > Ff > Fj and L] > C1,L5 > Cy. When at
Z* = Z* +rg, we know that F"™* > F}, Fy* < Fy, F3* = F3, if the ordering of F**
changes to Fi* > Fy* > Fy* by Lemma 3.3.1 that L?* > LY > C}, 50 ¢1(2* +rg) =1
too, for all r > 0; if the ordering of F** keeps unchanged,i.e., F3* > F™* > F3*, also
by Lemma 3.3.1 that LT*, > L’{/ > (1, L;*/ > L’2‘, > (Y, s0 ¢1(2* + rg) = 1 too, for all
r > 0;

when Hs is rejected first, a similar argument works too.

(3)If H; is rejected at stage 3 at Z = 2*,

when Hj is rejected first = F3 > Fy > F; > 1 (since if F}" < 1, it can be proved
that L < 1 < c3, thus H; can’t be rejected on at stage 3) and L’{/ > (1, L;l > (o,
L;’ > (5. If the ordering of F** keeps unchanged, similar argument like above assures
that ¢1(2*+rg) = 1, for all » > 0; If the ordering of F** changes to: Fy* > F™* > Fy* or
Fi* > Ff* > F3*; no matter for which case, Lemma 3.3.1 assures that L* > LY > Cy
for both cases and L;*/ > L’Q‘/ > (4 for the first case, thus ¢1(2* + rg) = 1 too, for all
r > 0.

when Hj is rejected first = Fy > Fy > Ff > 1 and Li‘/ > (1, L;l > (o,
L;l > (5. If the ordering of F** keeps unchanged, it’s not difficult to verify that
¢1(Z* +rg) = 1, for all r > 0 by using the Lemma 3.3.1; If the ordering of F**
changes to: F5* > F* > Fi* or FI™* > F;* > F3* or Ff"* > F3* > Fy* | using the
similar argument we can verify that ¢(2*4rg) = 1 too, for all » > 0; The most difficult
subcases are: if the ordering of F** changes to: F3™* > F5* > F|™ and F3™* > F™* > FJ*.

For these two cases, Lemma 3.3.1 assures that L*{*/ > C1. So Hsj is rejected first.
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For z* at stage 2: by (3.25),

Sk | s N2 /o g ox \ 2 4
’ z:i +z 2a + 2 1 - ")
¥ — 17T %2 3T <4 X Su e =17 3.26
F=(amh) Gichy) e IIG (3:20)
N
3="4
SinceF5>F§‘>Ff>1:>2’{>2;‘>2§>21:>6;“2:n2—51:>
e\ 2 e | men 2
/ * iy x x 1111
; = Atc I TTTT€_4 (3'27)
2 2 21 25 23 %)

For z** at stage 2: by (3.25),

Sk Sk ~xk\ O ~ sk 4 o
L*’ 2 + 29 + Z3 2y % (i) (n—l)ai2 (3 28)
o 3(n—1) (n—1) SUD o2’¢ '
0%>U%25§ =1 )
o3
L i )
Since F** = Htr < F¥* = Z = r < 2323 —21Z) [ — Z5—r > z 247, .
1 - 2577' 3 - 231‘ 2§+gz - 5 = 2§ 23: —
SR SR | SR Ik . _ B 5 B 93k % ) . ~ .
% since 27 > Z5 > Z5 > 2} = Fi* > Q%% since Fy > F§ ie., 2 > % —
- - - 5 . Frx
Fg**>1andF§*>F1**>F1*>1:>Zf*>Z§*>Z§*>ZZ*:>U;“*2:”Z_1:>
5 = ~ 3
I Az .1 111 _,
2~ f 24 ik Tk Sk Sk
1 %2 %3 %4 3.99
e e 3 (3.29)
grmezV. 1 1 11
= — 24775 pos = =€
3 (Zi4+7r) (25 —r) 23 24

If we can prove L3* > L3, then if F* > FJ* we reject H; at second stage; if Fij* > Fi*,
by Lemma 3.3.1 we know that L§*/ > Lg/ > (3, thus we reject Hp at the third stage.
Thus ¢1(2* +rg) =1, for all » > 0.

So in order to prove (3.29) > (3.27), we want to prove

1 1 S 11 (3 30)
(Z+r)(z—r) ~ 2 '
and
Za+a\° Z+a\ [+
_— Zr > 31
() w2 (157) (35 @1
For (3.30), (35 +7)(55 —r) = —(r— G721 (B2 2 | zeze < s since 77 > 53
and r > 0.
For (3.31), let
Sk Sk sk \ O Sk sk \ 2/ % o\ 2
f: Zl+22+23 2*_ Zl+22 23+Z4 2*4
3 4 2 2 4
(3.32)

D* + F\* D*\? (Fif +1\?
3 2 2
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where D* = 2222 Since Ff > Ff > Ff > 1,ie, 2 > 2 > 2L and D > 22 —
24 23 24 22 2y

D* > 2F32.
Now we think f as a function of D* only. In order to prove f > 0, we need to prove
that (1) f(D* = 2F3?) > 0 and (2)4% > 0, for D* > 2F>.

2F*2+F* 3 2F*2 2 F*+1 2 F*S
For (1), f(D* = 2F3?) = (350 ) " (350)7 (5 = § (R —12(65F5 +4) >

0, since F5 > 1.

* * 2 * * 2 *2 *
For (2) g = (P575) =5 (7)) = g0 - BEETEIND 4 £2) which

. . . . . (9FF2+4+2F5+9)
is a function of D*, whose graph is open upward and symmetric with ~—%—=z3-—.

*2 *
It’s not difficult to verify that 2F;? > W by using Fy > 1. And at D* =

oF?, 4 = B (pr 1)(7Ff +5) > 0, since F§ > 1. Thus L > 0, for D* > 252,
Combine (1) and (2), we know that f > 0. Thus (3.31) holds.

O]

For M=4 we exhibit a set of critical values for which LRSD is inadmissible. To
do so we find a sample point Z at which H; is rejected and for which H; is accepted

at Z +rg. In fact let Z = (21, 22, 23, 24, 25)’ for % > ;—i > % > % > 1, ie., Fy >

F3 > Fy > F; > 1. Thus using (3.25) at stage 1 choose C} so that L} = 5o | X

5 _
sup [T(&)e ™77 > Cy so that Hj is rejected. At stage 2 we calculate

h o
{02>03>02>03>02}i=1 !

2 2 5.
2 ( > % 5

.: 1 _ 7
> X sup H(—Z) (n—1)7 (3.33)

J
3 =1 | (320303203202} i O

=1 j=3
We set, 5 3

5
> % > %
= - 11111
LIQ = (j ; ! ; — = == X 675 (334)

stage 4, H; is rejected.
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Now at 2* = Z 4 rg, let r such that 23 > 22 > 1 and 23 > 247 e, Fy > Fy

Zo—1?

and F35 > FY. Note that by Lemma 3.3.1, we know LT > L} > C4. This time however,

Hj is rejected at stage 1. At stage 2 we calculate at z* |

3 2

3 5
-Zl j Z4 J IS TN
Ly = -I—— 2= | x sup (=)e (=i
3(n—1) 2(n—1) {o}>02>02,03>02 }H 012
, 5, . ) (3.35)
Z; z
=7 324] 1 1 111
= ———Xe
3 2 (Zl + ’I") (22 — 7“) 23 Z4 Z5
since 2] =21 +1 > 25 =20 —1 > Z3 =23 > Zj = 24 > Zy = Zs.
We note that (3.34) divided by (3.35) is
20, O .
(;Zj) (2 )P (2 +r) (22 —)
= = (3.36)

Nz

3
(2:: P2 %)% 8%

<
HM@
W~

There are many choices of 21, 2o, Z3, Z4, 25, r for which (3.36) is greater than 1 (e.g.,
5= 99,5 = 96,53 = 70,5 = 52,35 = 43.2,7 = 10). The fact that (3.36) > 1 implies

that we can choose Cy such that Lz/ < (5 so that at &* + rg the overall procedure

#1522 Z—rg is an accept point,

rejects H3 and accepts Hy, Ho and H4. Note when r >

since then Fp = 2 > = 2 > = 4 > 1> F = g;:§, then Ly < 1 < ¢4, then
Hy is accepted at stage 4. Now if Hj is rejected for Z but accepted for zZ + rg, that
implies the test for Hy is inadmissible.

The same is true for M > 5.

Next for the variance change model we consider testing two-sided alternatives, i.e.
we test H; : v; = 0 vs K; : v; # 0. The LRSD method in this case is the same as in the

one-sided alternative case except that I} is replaced by

_ max{sh, 57} max{Zj, %)

. - D2 (3.37)
min{s?,s5,,}  min{Z;, Zj41}

In general, the Stage m global hypothesis is considered if Hj,,..., H;, _, have been

rejected. This global testing problem is Hy,q : vUb0m=1) = 0 vs K, : pULdm=1) £
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0. The likelihood ratio test rejects Hy,g if Ly, > ¢, i€

(nfl)s2
M+1 1 n—1 - 202 L
sup [] (?) T e 2%
{o?} i=1 *
. _1)<2 _ 2 2
J) oy = 1/;% J2) oy = 1/;% M+1 oy (DS
Sup H(ﬁ) e 201 H (ﬁ)Te 207 H (U%)Te 2072
{of20,02} \i=1 ! i=jy+l 2 =jm-n+1 "
(3.38)
> Cm
For the numerator the maximum likelihood estimators are: 6? = s?. For the de-
. 1(2)
Ve PIL)
. . - . . R J
nominator the maximum likelihood estimators are: 62 = +—, 62 = 2
J(1) J(2)~=I)
M+1
.
N Jm—1)*t1 . .
612 = m , replace 072, 0%, ..., 02 with them in (3.38), we get:
. —1)/2
i G Ml (n=1)/
in [ X85 e 24 5 M1 X5
e T | T |2 0|
m = — 5 R Y] — 2
el IO Bt (J2) — J))s; i1 (M — jm—1) +1)s;
. ~1)/2
J i) M+l (n=1)/
iy [ 2% o 2. A M+1 DD
=11 11 T 11 o
il O Pt (J2) — Ju))Zi 41 (M = jim-1) + 1)z
(3.39)
Define
; J2) M+1
J(1) ~ ~
i | D Z i) Z Zj M+1 . > %
Ll _ 1 Jay+1 Jim-1)+1
7H J)? H (Jeo) — )2 H (M = jm-1) + 1)z
i=1 (1)~ i=j1)+1 (2) (1)) i=f(m—1)+1 (m—1) ?
(3.40)

n—1

Thus Ly, > ¢y < L], > C,,, where Crn? = ¢p. For this set up we have

Theorem 3.3.2. For the two-sided alternative case (3.1) LRSD is admissible for M=2.

Proof of Theorem 3.3.2. For M=2, once again we focus on Hj vs Ki:

(1) If 21 > Z5, we will demonstrate that if ¢(Z) = 1 then ¢(Z+rg) = 1 for all r > 0.
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When H; is rejected first = F| = ;—; > Fy = % and L) > Cy. At z* =
- % _ Ei4r % _ max{Z2—r,z3} x _ (Z1+Zo+Z3\( 214224533\ (211452123
Z+rg, >0, FY =550 > Iy = =5y [ = (GEE (BEEH (55572

%Lﬁ > L} by (3.30), so ¢1(Z + rg) = 1 too, for all r > 0.

When H; is rejected secondly = F} = & < Fp = max{Zs, 7} Ly > Cy and L}, >

Z2 min{,%g,ig} ?

Co. At Z* =Z4rg, r >0, Ff = 2tr pp = madbond) g 25 _pr >

Zo—r? min{Za—r,23} "’ (Z1+7r)(z2—7) =

Ly. If Ff > F5, we reject Hy firstly at 2*; If Fy > F}, we reject Hy firstly, since

5 = (ﬁ%jﬁ))(ﬁgfi)) = (21;3‘(2;24)L’2 > L, we reject H; at second stage. Thus

d(Z+rg) =1 for all r > 0.

(2) If Z2 > z;, we will demonstrate that if ¢(Z) = 0, and if ¢(2*) = ¢(Z +r1g) =1
for certain r; > 0, then ¢(2* +rg) =1 for all r > ry.

When both Hy, Hy are not rejected at 2 = L} < C;. In order to reject Hy, r1 must

Z129 ! 2129

== S* _ 3 *
> (22=21), thenat 2% = 24119, I = =yl = pIemanyr maras

> Ly, and 27 = 21 +r1 > 2o, 25 = Z9 — 11 < Z1, so 27 > Z3, by the above part (1) we

know that ¢1(Z* +rg) = 1, for all » > 0.

max{Z2,Z3}
min{Z2,23}

When Hj is rejected and H; is accepted at 2 —> L/1 >Ch, = % < Fy =
and L) < Cy. To reject Hy at 2* = Z + r1g, there are two cases. One is that at Z*,
LY > Cy, Ff < Fy and L} > Cy; the other one is that LY > Cy, Ff > Fj.

For the first case, L > Co = L} > L}, i.e.

’ 5122 2122
Ly = — = L, = — — — L5 > L
? (21 +71)(Z2 — 1) 2 —(r1 — %(22—21))2-1-%(22—21)24-2122 2 2

:>T1>(22—§1):>§ik:§1+7“1>22, ,?2":22—7"1<§1z2>f>2§,thenbypart

(1) we know that ¢1(2* +g) = 1, for all r > ry.

* * o Sk . ek ok * _ By _ Fp—r :
For the second case, F}' > F5 = z] > z5. Since if 2] < z3, F|' = = a5 < Fyif

=3 —= Fy = B Sy, — F5 > FY contradicted with F}" > Fy; if Fy = 2—2 and

22 Z2—r 3

if Fr = 2" gj — 2 — 22 ¥ _ Zp—r * _ Zpor ; :
if Fj ==, since F1 = 2 < Fp = 2 = F = 277 < F; = *~ contradicted with

Ff > F5; it Fp = 2 and if Fy = 5 since Fy = 2 < F = 2 — Ff = 2% <

Zo—r" zZ1+r

22274 < 2 = F¥ contradicted with Fj > Fj. Thus for this case, 7 > 25 and Hj is
3 22—

rejected firstly at 2*, by part (1), we know that ¢1(2* +rg) =1, for all » > ry.
O

For M=3 we exhibit a set of critical values for which LRSD is inadmissible. To

L

!/
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do so we find a sample point Z* at which H; is rejected and for which H; is accepted

% Ik

at Z* +rg. In fact let 2* = (27,25, 25,2;) for 25 > 27 > Zz5 > Zj and i—i > % >
7 . . /
2, ie. F§ > Fy > Fy. Thus using (3.40) at stage 1 choose Cy so that L} =
2

ZYESAZEL | (B AE VAL \ (i A AL\ (BT A AL\ is rej

( 7 )( = )( = )( = ) = C so that Hj is rejected. At

stage 2 we calculate

Ly o AEEEE A BEH A5 (3.41)

) )

327 3z5 323
We set (5i‘+35§;+5§)(5f+35§5+5§)(5f+35§§+5§) = (9, so Hy is rejected. At stage 3, H; is
rejected.
Now let  such that 25 — 2z < r < z3 — 2z]. Thus at 2** = 2* +rg, F5* = gi >

ok 5; s,k 2; kok EI'H"
21‘4—25—1—2;’3‘—1—22)(
4z +r)
T (=% S*
(Z7 +r)(2 —7)

A+ Z+E+ 7

L = 5{+2§+5§;+2§;)(zf+z;+2§+zz)
L 4(25 — ) 47 47%

)

> L}
This time however, Hs is rejected at stage 1. At stage 2 we calculate for Z**,

2+ z
2(zf + 1)

R I RN

L**/:
2 = 2% —r) 2% 2%

) ) (3.42)

We note that (3.41) divided by (3.42) is

16 (37 + 25 + 23)°25 (31 + ) (35 — 1)

3.43
T T (3.43)

There are many choices of Z}, Z3, 235, Zi, r for which (3.43) is greater than 1 (e.g.,
71 =122 = 11,7 = 3,7 = L,r = 0.001). The fact that (3.43) > 1 implies that
we can choose C5 such that L;*/ < (5 so that at &* + rg the overall procedure rejects

Hy and accepts Hip, Hs. Note since 2 = 2* —rg,r < ZngQ is an accept point (because

L) < LY = C4). Now if Hj is rejected for Z* but accepted for 2* 4 rg, that implies the
test for H; is inadmissible.

The same is true for M > 5.
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3.4 Step-Up

Now we study two of the most popular stepwise procedures. We demonstrate that the
individual tests they induce are inadmissible for these one-sided and two-sided testing
hypotheses of variance change.

For step-up, let 1 < 7 < Cy < --- < Cyy be a sequence of increasing of critical
values and let F(y) < Fg) < --- < F(;) be the ordered statistics of F1, Fh, ..., Fir,
where for one side testing hypotheses of (3.8), F}j is defined in (3.22); and for two sided
testing hypotheses of (3.7), Fj is defined in (3.37).

Stage 1: If Fiy) < C1, accept H(j) where H(y) is the hypothesis corresponding to
F(1). Otherwise reject all H;.

Stage 2: If H y) is accepted, accept H(g) if F(o) < C2. Otherwise reject H oy, ..., H(pr).

In general, at stage m, if F{,,) < Cy, accept H,,). Otherwise reject H(,,), ..., H(pp).-

Theorem 3.4.1. Consider the variance change problem of this chapter, the step-up

procedure is inadmissible for the one sided testing problem (3.8).

Proof of Theorem 3.4.1. Again we focus on H; vs K. To show ¢;(Z) is inadmissible we
will find three points Z*, Z** Z*** with 2** = 2* —r1g, Z2*** = Z* —rog, 10 > 11 > 0
such that ¢1(2*) = 0, ¢1(2**) = 1, ¢1(2***) = 0. This will prove the theorem by
Lemma 2.1.1.

At 2%, let 27 = C1 4+ Co, 55 = 2, 25 = &, 2] = ﬁz;:l, Jj=4,.,M+1,

o F* — %7 F} = Cy, F;‘ =C;+1, 5 = 3,...,M. Since for stage 1, F(*l) —

j=1,3,4,.. .M} =Ff < Cy = ¢1(3*) = 0 at z*.

_ (Ca=Ch) SHk _ Sw Sak _ (Ca=C1) _ 2C3+42C1C243C14C
Let r| = S(TCh) ) S0 at 2% = Z¥—rig, 2" = Ch1+Cs 30+C1) — 2(1+C1) ’
SEx (C2—C1) _ 443C1+Co sz _ zx 2 ek _ zx ;o
2 = 2 + 2(1+C1) — 2(1+Cy) Z3 = Zg3 = k) Zj = Zj’ ] = 4,,M+ 1. So
s 2024201C2+3C1+C> s _ (443C1+C2)C1 sk _ i
o= 1+3C1+C3 > O, By = “agey - > On BT =0 +1 >

j=3,...,M, so we reject all = ¢1(2**) =1 at Z**.

Let 7o = Cz+2C'1—2 > 7, 50 at SHkk 2*_7,29, 5T** _ Cl+02_ Cg+201—2 _ C1+2C2+2’
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Saak CotCi—=2 _ Ci14Co42  zasx _ zx 2 zskk _ zx  _
M =2 4 =S = 22 ,z§**-z§—c—l, Z;**—Z;,j—ll,...,M-i-l. So

Fye =1< Oy, By = Q302G Ci, F** = Cj+1>Cy, j=3,..., M, so at stage

1, we accept Hy, i.e., ¢1(Z***) = 0 at Z***. .

Theorem 3.4.2. Consider the variance change problem of this chapter, the step-up

procedure is inadmissible for the two sided testing problem (3.7).

Proof of Theorem 3.4.2. Again we focus on H; vs Kj. For this two sided case prob-
lem, we use F} is defined in (3.37). To show ¢;(Z) is inadmissible, the three points

z*, z** z*** defined in the above proof for the one sided case with z** = z* — ryg,

= kK

Z¥** = Z* — rog, ro > 11 > 0 can also be used here satisfying ¢1(2*) = 0, ¢1(2**) =1,

¢1(2***) = 0. This prove the theorem by Lemma 2.1.1.

3.5 Step-Down

For step-down, let 1 < (7 < Cy < --- < Cjr be a sequence of increasing of critical
values and let F(l) < F(g) << F(M) be the order statistics of Fy, Fo, ..., Fs, where
for one side testing hypotheses of (3.8), Fj is defined in (3.22); and for two sided testing
hypotheses of (3.7), F; is defined in (3.37).

Stage 1: If Fpp > Cr, reject Hypy where H(yyy is the hypothesis corresponding to
Fiary. Otherwise accept all H;.

Stage 2: If Hyy) is rejected, reject Hipr_1) if Fiar—1) > Cy—1. Otherwise accept
Hays ooy Hipp—1y-

In general, at stage m, if Fipyr_py1) > Crm—mt1 reject H,y). Otherwise accept

H(1)7 ey H(M—m+1)'

Theorem 3.5.1. Consider the vartance change problem of this section, the step-down

procedure is inadmissible for the one sided testing problem (3.8).

Proof of Theorem 3.5.1. Similar to the proof of Theorem 3.4.1, we focus on H; vs K7.

To show ¢1(Z) is inadmissible we will find three points 2*, Z**, Z*** with 2** = 2*—rg,
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¥ = 2% _pog 1o > 11 > 0 such that ¢1(2*) = 0, ¢1(3**) = 1, ¢1(2***) = 0. This

will prove the theorem by Lemma 2.1.1.

At z*, use the same z* for the proof of Theorem 3.4.1, except change Z3 to z3 = C%

: oF S% __ sx _ 2 zx _ _ 1 zx s e
ie,z] =C1+0Cr, 25 =2,23 = SR Il e T e 4,...,M+1, so use the definition

of Fj in (3.22), Ff = ©4< < Cy, F§ = Cy, F; =Cj+ 1> Cj, j =3,..., M. From the

above step-down procedure, we accept Hy and Ho, i.e., ¢1(2*) =0 at 2*.

USe the same 711 = g?f;gf;, SO at 2** — 2* — ’I"lg, Zik* = Cl + 02 - (26(’12;8111)) =
2CIQ+ZC1CQ+3C1+CQ ~wk (Ca—=C1) _ 443C14+Co %% _ =% _ 2 SHk%x ok g
2(1+C1) » 2 = 24 5050y T o(don) 0 BB T A T Gy 4 T %) =

wx _ 20%42C1C243C1+C; wxk __ (443C14+C2)Co ok

4, 7]\4 + 1. So Fl = 1+3C1+Co > Cl, F2 = W > CQ, F] =

Cij+1>Cj, j=3,..., M, so we reject all = ¢1(2**) =1 at 2**.

Use the same r9 = 702+51*2 > 1y, 80 at 2% = Z* —rog, 27 = C1 +Coy — 702+g“2 =

Ci1+C2+2 = _ Co+C1—2 _ C1+Ce+2 = ¢ _ 2 z _z s
SRS 2 = 2 S = 2R ,zg‘**—z;—C—Q,Z;-‘**—z;-‘,j—él,...,M—l—l.

so Fi* =1<Cy, By = % > O, FI™ =Cj+1>Cj, j=3,..., M, so we

accept Hy, i.e., ¢1(Z***) =0 at 2***. O

Theorem 3.5.2. Consider the variance change problem of this section, the step-down

procedure is inadmissible for the two sided testing problem (3.7).

Proof of Theorem 3.5.2. Again we focus on Hj vs K. For this two sided case problem,

we use Fj is defined in (3.37). To show ¢1(Z) is inadmissible, the three points 2*,

z** z*** defined in the above proof of Theorem 3.5.1 for the one sided case with

vt 2

Z¥ = z¥ — rig, Z**

= Z¥ —reg, ro > 1r1 > 0 can also be used here satisfying

$1(2%) =0, ¢p1(2**) =1, ¢1(2***) = 0. This prove the theorem by Lemma 2.1.1. O
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Chapter 4

Testing of variances of treatments against a control

The setting for testing of variances of treatments against a control is same to the vari-
ance change problem in Chapter 3, i.e., we have (M + 1) independent random samples
zj = (2j1, 252 - Zj(m+1))" from (M + 1) normal populations with parameters (1, 03 ),
(pa,03), ..., (,U,M+1,O'%J+1). And there are n such independent sequences. The treat-
ments correspond to j = 1,2,...M while the control population corresponds to the

(M + 1) population. The testing problem we are interested in this chapter is:
Hi:ol=034, wvs Kj:o0?#03,, i=1.,M (4.1)

So rejecting any H; indicates the variance for ith population is different from the control.

We will also consider one-sided alternative problems

Hi:ol=o0% vs Kf:ol>0%41, i=1,.,M (4.2)
. 9 Yioalzi—z)? : -
Same as in Chapter 3, let sy = == —=—-— be the sample variance, where z; =

=1 Zji

n

yi=1,..,(M+1). So 82 = (s1,53,...., 537, ) follows a distribution in (3.3), i.e

M-+1 " 1_ (n— )‘512
-1 (n - )b o
L - 2(” 1)/2 (02) -

Now let Z; = (n — 1)si , U = —

10 0 0 -1
01 0 0 -1

Let A= |  ...... , which is a (M + 1) x (M + 1) matrix.
00 0 1 -1




Then
fa(2w) = h(z)B(u) exp{z' A" Au}

Define v = Au then

fz(zlu) = h(z)5* (v) exp{Z’A_lu}

So Testing (4.1) and (4.2) are equivalent to test
H:vy=0 wvs K;:v#0, i=1,..,M

Hi:vi=0 ws K :v;>0, i=1,..,M

4.1 MRD procedure
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(4.3)

(4.4)

Similar to the variance change problem, the maximum residual down (MRD) method is

based on the maximum of adaptively formed residuals for treatment vs control problems.

It is step-down type MTPs. For each stage, we calculate the residuals for the hypotheses

not previously rejected, and compare the biggest one with some constant c, then make

decision of rejecting or accepting.

Let X = Az, ¥ = AA’ then from (4.4) we can get

Fx(xl) = ()" () exp{x'E" v} (47)
2 1 1 11 0
1 2 1 11 0

Note that ¥ = AA' =  ......... which is a (M + 1) x
11 1 o102 0
0 0 0 00 (M+1)

(M + 1) matrix.

Use the same notation as in the previous chapter, let X(1:72-3r%) be the (M-r)

vector consisting of the components of X with X, ..., X;

I

X; left out. E(jl,jz,.--,jmi) is

the (M —1r) x (M —r) covariance matrix of X (71:72:-ri) aég)l’jQ””’jr) is the (M —r) x 1

vector of covariances between X; and all variables except X, ..., X and Xj.
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So for Stage m after rejecting Hj,, Hj,,...Hj,, _,, let (j),--jm—1)) be the ordered
sequence of (ji,...,jm—1), then for ju) < i < j41), where & = 0,1,...,m — 1, with

J) =0, Jm) = M + 1, we define Residualy, ; like this:

Residual,,; = X;— o'g)l’j%'"’jm’l),Z(_jij%m’jm_l,i)X(j“jQ““’jm—”') (4.8)
1
S PR — X; (4.9)
M—-—m-+1 1<]_2<M
G e 140
1
= 5-— > z; (4.10)
M-m+1 1< <(M+1)

J#315325dm—151

and let Wy, ; be defined as Residual,, ; divide by > 1<j<s1) Zj to make it invariant

JF#315925Im—1
in scale. That is

~ 1 ~
, - Zi— e D 1SisMAD) 2y
Residual,, ;(Z) m+ FETT %G1
Wi = | _ - (4.11)
> oi<icaty  Z Yo iy Zj
#5152 dm—1 J#315325 - Im—1

Then our test statistics Uy, ; is defined as:

) )

for the two sided (4.5) case, m = 1,..., M.
And
Uni = Wi (4.13)

) )

for the one sided (4.6) case, m = 1,..., M.

4.1.1 MRD Procedure

MRD Procedure:

Let ¢1 > co > --- > cpr > 0 be a given set of constants.

Stage 1: Let Iy = {1,2,..., M}. If U1 j, = max{Uy; : i € I} < c1, then accept all
hypotheses and stop; otherwise, reject H;, and continue.

Stage 2: Let Iz be the indices of the hypotheses not previously rejected. If Uz j, =
max{Us; : i € I} < co, then accept all hypotheses in I, and stop; otherwise, reject Hj,

and continue.
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In general at stage m: 1 < m < M, let I,, be the indices of the hypotheses not
previously rejected. If Uy, j,, = max{U,,; : i € I,,} < ¢, then accept all hypotheses in

I,,, and stop; otherwise, reject H;,, and continue.

4.1.2 Admissibility of MRD

Similarly we will demonstrate that for each individual testing problem that the MTP
based on MRD method is admissible. Without loss of generality we focus on H; vs
K;. Again we will use the result of Matthes and Truax (1967) and demonstrate in
Lemma 4.1.1 that W, ;(z) function given in (4.11) has the monotonicity properties
which enable us to prove in Lemma 4.1.2 that the individual test functions for H; vs K;
have the convexity property that is necessary and sufficient for admissibility. Theorem
4.1.1 summarizes and states the admissibility of the MRD procedure.
The density of Z is expressed in (4.4), now let Y = (A’)~'Z so that

M+1

fy(ylv) = ()8 (v) exp{ ) yiwi} (4.14)
i=1

Note, to study the test function ¥(y) = ¢y (2) as y1 varies and (y2, ..., Y1)
remain fixed, we can consider sample points Z + rg where g is the first row of A and

r varies. This is true since y is a function of Z and so y evaluated at (£ + rg) is

(A/)_l(g + Tg) =y+ (7",0, ‘"70)/ = (yl + 7, Y2, "'7y(M+l))'

Lemma 4.1.1. The function Wy, j(Z) given in (4.11) have the following properties:
At any stage m, as far as Hy has not been rejected, for anyi # 1, i.e., i € {2,..., M }\

{jla "'7jm71}; jl ?é la "'7jm71 7& 1;
Wini(Z +1rg) = Wpi(Z) (4.15)

and

Win1(Z +rg) = Wina(2) +ar (4.16)

where a is some constant and a > 0;
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Proof of Lemma 4.1.1. For i = 1, use (4.11) and recall g = (1,0,0,...., —1)" is the first
row of A to see that

z 1 s 1
(Z1+7)— M—mTl > i<ci<ut Z2i T =y’
371,501,325 dm—1

Win1(2 +rg) = -
Z 1<G<(M+1)  Zj
FF51:325 s Jm—1
= Whn.i(Z) +ar
4 5y : :
where a = —, 80 a > 0. This establishes (4.16).
> 1<G<(M+1) #)

J#51:325Im—1

Now for i # 1, jx # 1,k=1,....(m —1),

1 ~
%~ WomrT 2 sisoasy  Z
JF#T1:925 - Fm—1,%

Yo iy Z
JF#515325sdm—1

= Wn,i(2)
This establishes (4.15).

O]

Lemma 4.1.2. Suppose that for some Z* and ro > 0, ¢y (2*) = 0 and ¢y (Z*+rog) = 1.
Then ¢y (Z* +1rg) = 1 for all v > ro. This is true both for the one sided alternatives
(4.6)and two sided alternatives (4.5) of the treatment vs control problem of variance in

this Chapter.
Proof. Same as proof of Lemma 3.1.2. O

Not that Lemma 4.1.2 again implies that the acceptance region in y;, for fixed ys,

.eey YM1 18 an interval.

Theorem 4.1.1. Both for the one sided alternatives (4.6) and two sided alternatives

(4.5), the MRD procedure based on U, ; is admissible

Proof. Same as proof of Theorem 3.1.1. 0

4.2 M-LRD

The Maximum-Likelihood Ratio down (M-LRD) method depends on Likelihood Ratios

for each stage. Again, only the two-sided test is addressed here.
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4.2.1 M-LRD Procedure

M-LRD Procedure:

Let ¢1 > co > --- > cpr > 0 be a given set of constants.

Stage 1: Let I; = {1,2,..., M} be the indices of the hypotheses of (4.5). We test
Hgag:vi=vr=..=vy=0vs Ki1 : Hig but v; # 0. Let Lq; be the likelihood ratio
for Hig vs Kl-l. If Ly = max{Lj; : i € I1} < ¢1, then accept Hig and stop, i.e., the
variances of treatments and control are equal; Otherwise, reject H;, and continue, then
the variance of the ji! treatment is different from the variance of control.

Stage 2: Let Is be the indices of the hypotheses not previously rejected. Now we
test Hog : V1 = ... = Vj—1 = Vj 41 = ... = vy = 0 vs Kf : Hog but v; #0, 4 € Is.
Let La; be the likelihood ratio for Hog vs Kf If Ly, = max{Lo; :i € Is} < co, then

accept Hog and stop; otherwise, reject H;, and continue.

In general at stage m: 1 < m < M, let I, be the indices of the hypotheses not
previously rejected. Now we test H,,q : all the v; = 0,7 € I, vs K] : Hp, but v; # 0,
i € I, Let Ly, ; be the likelihood ratio for Hy,g vs K[*. If Ly, ,, = max{Ly; : i €
I} < ¢m, then accept H,,¢ and stop; otherwise, reject H;, and continue.

4.2.2 Admissibility of M-LRD

For stage m after rejecting H;,, Hj,,...H;, _,, test
Hpy, :all the v =0,i € K, vs K" : Hpg but v; #0,i € Ky, (4.17)

is equivalent to test:

/ . 2 2 . -
mG Ok =041,k F J1y - Jm—1

VS

m . / 2 2
Ki™: Hpg but of #oyp
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So under H’ ., the likelihood function of s2(1»+Jm-1) which is the (M-m+2) vector

consisting of the components of s? with s?l, e s?m_l left out is
g\ (n=l_1) _ (n—1)s?
ACHNENND ) QI (R L S
= n—1\9(n—1)/2 n_1
1<k<(M+1) I( 2 )2(n )/ ( i +1) 2
k#j1,-Im—1
And under K™, the likelihood function is
2y (21 1) _(nfl)Si
2 9\ _ (m—1) ((n—1)sp)" 2 207
Ll(UiaUM+1) - H F(;l)Z(n_l)/Q 5 T e M+1
1<k<(M+1) 2 (UM+1) 2
K#G 1 dm1st
ov(n=l_1 (n—1)s2
=1 (o) y
-1 — n—1
D(#51)2002 (02)
So the likelihood ratio is
sup I
L. . — {U?v”?vfﬂ}
o sup Ly
{U]2v1+1}
n—1_ _(n—l)s% n—1 (n—l)s2
sup H 1<k<(M4+1) we 2012”“ X WQ_ 2"1'2k
{2t ) e\ @R T @)
- _ (n—1)s2
_ 2 (L171> _ k
sup H1gkg(M+1) %e 20?‘”1
{UJ2VI+1} I dm—1 (U%\er) 2

For the numerator the maximum likelihood estimator(mle) of 03, ,,07 are

s
1<k<(M+1)
.2 kit 2 9
OMIT T 1 % T

For the denominator the maximum likelihood estimator(mle) of 0%, ; is

2
Sk
1<k<(M+1)
~92 k#j15-Im—1
0' = —-—
M+1 M—-—m-+2
So
(n—1)
2\ M—m+2 M—m-+1 2
> Sk
1<k<(M+1)
k#j15-dm—1 M—-—m-+1
Ly, = Y S S| == (4.18)
M—-—m+2 s; Eh

1<k<(M+1)
k#j1,--dm—1-1
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Since z; = (n — 1)s?, so

~ M—m42 M—ma1 ("; )
%k
I . — kl#gjkf(lyyj_li l M — m + 1 (4 19)
e M—m+2 El gk ’

1<k<(M+1)
K#j1 s G150
Lemma 4.2.1. The function Ly, j(Z) given in (4.19) have the following properties:
(1) At any stage m, as far as Hy has not been rejected, then for any i # 1, i.e.,
1€ {27 7M} \ {j17 "‘7jm—1}; jl 7& 17 "‘7jm—1 7& 17

Ly i(Z+1g) = Lm,i(Z) (4.20)

for any r > 0.
(2) Fori =1, regard Ly, 1(Z +rg) as a function of r, then:
If for any 0 < r1 < 12, Lyy1(Z + 1r2g) > Lm1(Z + r1g), then for any r > ro,

Lin1(Z4+7g) > Lp1(Z + ra2g).

Proof of Lemma 4.2.1. For i = 1, use (4.19) and recall g = (1,0,0,...., —1)" is the first
row of A to see that

5.\ M—m+2 M-—m+1 %

2k,
Lo s(F4rg) = A 1 M—m+1

m I ET =AM~ 2 Pt S v
1<k<(M+1)
k51 dm—1,1
Let
b1 (7)
= log{Lm 1(Z+rg)}
(n—1)

2

> > A —r
1<k S 41) 1<k 1)

PRI m —log(z1 +7) — (M —m+1)log S

M — 2)1 —_—
< ( m + 2)log M—m+2 M—-—m-+1

Now take derivative of [, 1 (r) with respect to r

dlpi(r)  (n—1) 1 1
A7) - M-—m+1
dr 2 Gy P M mmA )

1<k<(M+1)
k#j15--Im—1,1
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. dl . dl . ..
So as r increases, m’i(r) increases = once ”377{(7") becomes positive, it will stay

positive = once Ly, 1(Z + r) increases, it will keep increasing.
Form =1,...M;ie{2,..., M}\ {j1,-,Jm—-1}, 1 # 1, ..., jm—1 # 1, it’s obvious
that

Lm71(2 + rg) = Lm’z(g)
]

Lemma 4.2.2. Suppose that for some Z* and rg > 0,¢r(2*) = 0 and ¢r(Z*+19g) = 1.

Then ¢r(Z* +rg) =1 for all v > ry.
Proof. Same as proof of Lemma 3.1.2. O

Theorem 4.2.1. For the two sided case the M-LRD procedure based on L, ; is admis-

sible.

Proof. Same as proof of Theorem 3.1.1. O

4.3 Likelihood Ratio Step-Down Method(LRSD)

Similar to the variance change cases in Chapter 3, the LRSD method for one-sided
alternatives in this case is as follows:

Let ¢ > ¢co > --- > ¢y > 1 be a given set of constants. At Stage 1: Let I; =
{1,2,..., M} be the indices of the hypotheses of (4.6). We test Hig : v = 0 vs K¢ :
v > 0 and at least one v; > 0, ¢ € I;. The likelihood ratio for this test is Ly. If
L1 < c1, accept Hyg and stop; Otherwise, reject Hj;, where j; is the index for which
F;, = max{F}j : j € Iy}, where Fj is defined as:

F; = - 4.21
’ 3?\4+1 ZM+1 ( )

Continue similarly for the hypotheses not rejected.

In general, the Stage m global hypothesis is considered if Hj , ..., H have been

jm—l

rejected. This global testing problem is H,,g : pULIm=1) = 0 vs K, : pULdm=1) >
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0 but at least one v; > 0, i € I,,, where [, is the indices of the hypotheses not

previously rejected. The likelihood ratio test rejects H,,q if Ly, > ¢y, i€

Lp,
(nfl)slz
R
sup I (z) 7 e 273
2>52 i 1<i<(M+1) 0t
B {07203 1,7€Im} Z.#jllemﬂ
= (4.22)
(nfl)slz
1L 25t 20
sup I (02 )z e +1
o2 1<i<(M+1) M1
M1\ iy dim—1
> Cm
52
1<k<(M+1)
. . . . " s A2 _ kFidm—1
For the denominator the maximum likelihood estimator is: 63,, = i
replace 03, with it in (4.22), we get:
Ly,
(M—m+2)(n—1)
= € 2 X
—-1)/2
52 M-m+2 (n=1)/ (4.23)
1<k<(M+1) s§
K21 dm—1 sup ( 1 )67:2
M —_—mL2 52 '
M —m+2 {0220}, 1 i€Im} 1<ic(uyr) i
k#j1--dm—1
Define
/
Lm
2\ M—m+2
Sk
1<k<(M+1) s?
- k#3515 Im—1 Sup H ( ]. )6_072.
| M—mLo _ o2 ‘
M —m +2 {0'1'220'%/[+17161m} 1<i<(MA+1) 9
k#3515 dm—1
~ M— 2
% m-+
1<k<(M+1) z; (4.24)
- K51 -dm—1 sup H ( 1 )efm
= — — ' 72 1
(TL 1)(M m+ 2) {U?ZU%WJFI,ZGIm} 1<i<(M+1) g;

kE#j1,--dm—1

2k M—m+2

1<k<(M+1) z;

. k#51sm—1 ( ) T (n—1)62
= | | 3 )€ B

(n—1)(M—-m+2) iz O
k#j1s-dm—1

where 62-2 is the maximum likelihood estimator of a? when Z = 2. And L,, > ¢, <

(M—m+2)(n—1) —
M=manin=l) C(n /2.

/ J—
L;, > Cp,, where ¢, = e m
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zZ1+r
- . Z2 o .
Lemma 4.3.1. When z* = 2 +rg = %3 , if jay > 1, i.e. Hy has not been
EM41—T
. ’
rejected, LY, > L/ .
Proof of Lemma 4.3.1. From (4.24),
*l
Lm
Z 2;:: M—m+2
1<k<(M+1) 5
_ k#j15edm—1 sup H ( 1 )6_<n—1)02
= 72 K2
(n —1)(M —m +2) {07203 14€Km} 1<ic(Mi1) i
EE51 s G
51<: M—-m~+2
1<k<(M+1) z
_ K21 dm -1 sup I Ly mmne?
== 72 K2
(n=1)(M —m+2) {07203 1i€Km} 1<izueny i
KZI1 e dm—1
Z ék M—m+2
1<k<(M+1) 1 zr
> K515 Gm—1 H ()e (n-1)52
(n—1)(M —m+2) 1<ic(a+1) i
KA1y Gm—1
Zlc M—m+2
1<k<(M+1) _ (5147) _ Gmy1-m) 5
_ ki1 -dm—1 (7)6 (n—1)87 (%)e (n=1)63, 4 H (%)6 (n—1)6?
(n - 1)(M —m+ 2) 01 UM+1 2<i<M 9
k#j1-dm—1
r (¥,L
—e" ! Sir+1 01 % L;n
/

since 6% > 63, 41, where 62 is the maximum likelihood estimator of o2 when 2 = 2. [
Theorem 4.3.1. For the one-sided alternative case (4.6) LRSD is admissible.

Proof of Theorem 4.4.1. Once again we focus on H; vs K] and demonstrate that if
¢(2*) = 1 then ¢(2*+rg) = 1 for all r > 0. Suppose H; is rejected at stage m for 2 = Z*.

Then F}, > F}, > - > F; > F > F' >-..->F; and L} > Cy, Ly > Cs,...,

L' > Cp. Note at 2** = 2* + rg, [ = EMiirr for i # 1 and F;™ = %, SO
the orders of all coordinates are preserved except perhaps the first coordinate which
now can be anywhere among the m largest coordinates. It follows form Lemma 4.3.1

that LZ*/ > Lzl > C, which means there is a rejection at stage k at z** if there was
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a rejection at stage k at 2*,k = 1,..., M. Since the order of the coordinates of F]?’;*,

F J’-;*, - F ]7:_1 remains unchanged and F|* is among the m largest coordinates of z2**
it follows that H; is rejected at stage m or sooner. O

Next we consider testing two-sided alternatives for this treatment vs control model
of variance, i.e. we test H; : v; = 0 vs K; : v; # 0. The LRSD method in this case is

the same as in the one-sided alternative case except that Fj is replaced by

max{s?, 53,1} max{Zj, 241}
min{s?, S%\/H_l} min{Zj, Zrr11}

=

(4.25)

In general, the Stage m global hypothesis is considered if Hj,,..., H;, _, have been
rejected. This global testing problem is Hyq : vUb0m=1) = 0 vs K, : pULdm=1) £

0. The likelihood ratio test rejects H,,q if Ly, > ¢, i€

Ly,
(n—l)slz
1\21 T2
sup [I ()2e *
{o2)i€ly} 1<iS(M41) 77
G Im—1
= 4.26
(n—l)s? ( )
no1 Tour -
sup H ( 21 )Te 200141
o2 1<i<(M+1) M+l
MA1 N\ kZii, Gt
> Cm
For the numerator the maximum likelihood estimators are:
62 =52,
For the denominator the maximum likelihood estimator is:
2
> Sk
1<E<(MA41)
52 L
Put them into (4.26), we get:
—1)/2
Si (n—1)/
1<k<(M+1)
k#J1s--Im—1
Lon= ][] 4.27
" (M —m +2)s? (4:27)

1<i<(M+1)
1#515--Tm—1
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Then Ly, > ¢ <= L, > C,y,, where ((

we have

>

1<k<(M+1)

o H k#j15--dm—1

- _ 2
i) (M —m+ 2)51'
iZJ1sTm—1

Z,
1<k<(M+1)

. H k#J15dm—1
i (M —m+2)z
i#J1Im—1

1 M—m+2 =l
—m73) Cm) 2
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(4.28)

= ¢;,. For this set up

Theorem 4.3.2. For the two-sided alternative case (4.5) LRSD is admissible for M=2.

Proof of Theorem 4.3.2. For M=2, once again we focus on H; vs Kj:

(1) If Z2; > Z3, we will demonstrate that if ¢(Z) = 1 then ¢(Z+rg) =1 for all r > 0.

When Hj is rejected first = [} = % > Fy = % and L} > Cy. At z2* =
Z+rg,r>0, Ff =24 > Fy = %ﬁfﬁjﬁ:ﬁ LY = (B (=) (BEE50) =
2123 ! 2123 / / > —
EFI G = S IGm o e G n e Ly > L}, so ¢1(2+rg) =1 too, for all
r > 0.

When H; is rejected secondly — F}

Lh>Co At 2*=Z+7rg, 7 >0, Ff = 24
L.

x +z +Z — 212
Lt = G ati) = woit

d(Z+rg) =1 for all r > 0.

(2) If 23 > z;, we will demonstrate that if ¢(Z) = 0, and if ¢p(2*) =

for certain r; > 0, then ¢(2*

_ Z max{Z2,Z3} /

= % < kK = min{Z.5} L > (7 and
* max{22723 7’} ! Z123 L/ >

» 72 7 min{Z,z3—r}’ 1= Gitr)(zs—r) 1

+rg)=1forall r > r;.

It F{' > F3, we reject H; firstly for z*; If F > FY, we reject Ho firstly, since

i — 5Ly > L, we reject Hy at second stage. Thus

H(Z+rig)=1

When both Hy, Hy are not rejected at 2 = L} < C;. In order to reject Hy, r1 must

Z

Z

_ 2123

L) =

> (23—%), then at 2* = 24 g, L =

Ly

> Ly, then 2f = 2 + 11 > Z3, 25 = Z3 —r; < 2 = Z{ > Z3, by the above part (1) we

know that ¢ (Z*

When Hj is rejected and H is accepted at 2= L} > C1, F} =

and L5 < Cs.

1<3
(Z1+r1)(Z3—71)

+rg) =1, for all r > 0.

To reject Hy at z*

—(r1—3(3—%1))2+1(33—21)2+2123

max{Z2,Z3}
min{Z2,23}

3 _
?<F2—

= Z 4 r1g, there are two cases. One is that at z*,

/
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LY > Cy, Ff < Fy and L} > Cy; the other one is that LY > Cy, Ff > Fj.
For the first case, Lj > Co = L} > L}, i.e.,

" Z123 , Z123 , ,
L = — 2 I, = _ ~ - - — > L
2 (21 +7‘1)(23 —7“1) 2 —(7"1 — %(2’3 —21))24-%(23 —2’1>2+2123 2 2

—1ry > (23—51) :>§>1k =2z +7r > 23, §§:23—7“1 <z :>Zik >2§, thenbypart
(1) we know that ¢1(2* +rg) =1, for all r > r.

For the second case, Fy > Fy = 2 > 5. Since if 77 < 25, Fj = 2 = 2= < P,

if Ffy = 2 — F5 = 2. > Fy = F; > F} contradicted with Ff > F3; if F = £

zZ3—T

: *x __ Z3—7r : __ 23 __ 23 x __ Z3—7Tr * __ Z3—7Tr :
and if Iy = ==, since F1 = 2 < Iy = £ = F' = 27 < Fy = =~ contradicted
with Ff' > F3iif Fo = 2 and if Fj = 32, since F1 = 2 <F, = 2 = I = 27 <

r? zZ1+r

2"%—_7" < 2 = F¥ contradicted with Fj > Fj. Thus for this case, 7 > 2§ and Hj is
2 23—

rejected firstly at 2*, by part (1), we know that ¢1(2* +rg) =1, for all » > ry.

For M=3 we exhibit a set of critical values for which LRSD is inadmissible. To

do so we find a sample point Z* at which H; is rejected and for which H; is accepted

S

S S¥ __ (3% zx zx gx\/ % S % S Z Z
at 2* +rg. In fact let 2* = (2,25, 25, 2;) for 25 > 2z} > Z; > Z; and % > # >

z*

%, ie. Ff > Ff > Fy. Thus using (4.28) at stage 1 choose C} so that L} =

YA E AL\ (A HES IS AL \ (BT A A AL\ (A HES A ALY is rej
( = )( = )( = )( = ) = C1, so that Hs is rejected.

At stage 2 we calculate

2+ 2+ 7
>k
3Z]

2+ 2+ 7
>k
3Z5

2+ + 7
>k
3z

Ly =( )

) ) (4.29)

We set (Zl+3222*+z4)(Z1+3Z§*+Z4)(zl+3z§jz4) = (9, so Hsy is rejected. At stage 3, Hp is
1 2 4

rejected.

Now let r such that r < 23 — 2, r < z} — 2z} and (Z; — r)? < Z3z;. Thus at
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B =3 4rg, Fy = o

**_34 r kok **_ET"FT
> By =3 Byt = o5 > ' = 2 and

Z; —7"
sk
Ll

=

R R S - R i S - N I N e I

) ) ) )

A(Zy +r) 4z 4z3 A4z; —r)
(r+r)E—r)
> Ly
This time however, Hs is rejected at stage 1. At stage 2 we calculate,
Ly = (LA (AL S A (AL R (4.30)
3(zy +1) 373 3(z;—r)

We note that (4.29) divided by (4.30) is

(Zf+ 25+ 2033 +r)z5(2 — 1)
(Z1 + 25 + 2132 552

(4.31)

There are many choices of Z}, Z3, 235, Zi, r for which (4.31) is greater than 1 (e.g.,
Zy = 1.6568,25 =2.7,25 = 1, 2] = 1.6432,r = 0.0002). The fact that (4.31) > 1 implies
that we can choose Cy such that L;*/ < (5 so that at &* + rg the overall procedure
rejects Hy and accepts Hi, H3. Note since Zz = 2* —rg,r < @ is an accept point
(L) < L*{’ = (7). Now if H; is rejected for Z* but accepted for Z* 4+ rg, that implies

the test for H; is inadmissible.

The same is true for M > 5.

4.4 Step-Up

Now again we study two of the most popular stepwise procedures. We demonstrate
that the individual tests they induce are inadmissible for these two-sided testing hy-
potheses of treatment vs control of variances, but admissible for these one-sided testing
hypotheses.

For step-up, let 1 < Cy < Cy < --- < Cpy be a sequence of increasing of critical
values and let Fij) < Fi9) < --- < F(;p) be the order statistics of Fy, Fy, ..., Fjy, where
for one side testing hypotheses of (4.6), Fj is defined in (4.21); and for two sided testing
hypotheses of (4.5), F; is defined in (4.25).
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Stage 1: If Fiyy < C1, accept H(j) where H(yy is the hypothesis corresponding to
F1). Otherwise reject all H;.
Stage 2: If H y) is accepted, accept H o) if F(o) < Cy. Otherwise reject H ), ..., H(pr)-

In general, at stage m, if F{,,) < Cy, accept H(,,). Otherwise reject H,,y, ..., Hyp).-

Theorem 4.4.1. Consider the treatment vs control problem of this chapter, the step-up

procedure is admissible for the one sided testing problem (4.6).

Proof of Theorem 4.4.1. Once again we focus on H; vs K| and demonstrate that if

z*

qb(i*):1then¢(5*+rg)zlforallr>0. At z¥, F*—Z ,for j =1,2,..., M.

]\[+1

Suppose Hj is rejected at stage m, then F}" = 23 1t the m™ smallest among the F*.

And Fgy < €, B, Fim)

j > m. Note at 2** = 2" +rg, FI™* = ((217”) and F} = (227777") for j # 1, so the
M+1

1)

< Oy, ..., < Cpo1, F (m) = F > (), and F(*j) > Oy, for

value of F** increased, and the order of the coordinates of F** remains unchanged,
except the order of F|™* increases, it follows that H; is rejected at stage m or sooner.

O

Theorem 4.4.2. Consider the treatment vs control problem of this chapter, the step-up

procedure is inadmissible for the two sided testing problem (4.5).

Proof of Theorem 4.4.2. Again we focus on H; vs K1. To show ¢(2) is inadmissible we
will find three points Z*, Z**, Z*** with 2** = 2* — r1g, 2*** = Z* —rog, 10 > 11 >0
such that ¢1(2*) = 0, ¢1(2**) = 1, ¢1(2***) = 0. This will prove the theorem by
Lemma 2.1.1.

= sk sx 2 sk 2 o 5 _
At z*) let 27 = C1 + Cy, z5 = o8 ZJ* =cmJ= 3,..., M, and z3; , = 2, so

Fy = %, Fy=C, Ff =C;+1,j=3,..,M. Then at stage 1, F(*1) = min{FJ’f,

J

j=1,2,..., M} =F; <Cp = ¢2(2*) = 0; at stage 2, F(*Q) =F<Cy= ¢1(2*) =0

at z*.
(Ca—C1) ek e _ (C2=C1) _ 2C342C102+3C14+Co
Letr; = STC) S0 at Z2¥ =2z"—rig, Z{" = C1+C, SAT0y) = S IEETen) )
.. (Co—C1) _ 443C14+Cs  ~ex _ P sk 20%+20102+301+02
S =24 5050y = ey 5 =40 =2 M. So T = 3G+ ~
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Cy, Fyr = UHOIRIA > ¢ e = (24 20 S 05 11> ¢, =3, M,

so we reject all = ¢1(2**) =1 at 2**

Let rg = 238122 > py 50 at %% = 2% —rag, 27 = Cy + Cp — 24122 = C1ilot2

= Co+C1—2 __ C1+C2+2 = _ _ _
i = 2+ 2GS = 22 ,zj** z ,J=2,..,M,s0 F{** =1< (4, F5* =

w > Cy, B = (24 Cz+g'1f2)(ca2+1) >Cj+1>Ch, j=3,..,M, so at stage

1, we accept Hy, i.e., ¢1(2***) = 0 at 2***. O

4.5 Step-Down

For step-down, let 1 < (7 < Cy < --- < Cjr be a sequence of increasing of critical
values and let F(l) < F(g) <. < F(M) be the order statistics of Fy, Fo, ..., Fy, where
for one side testing hypotheses of (4.6), F} is defined in (4.21); and for two sided testing
hypotheses of (4.5), F; is defined in (4.25).

Stage 1: If Fpp > Cur, reject H gy where H(yyy is the hypothesis corresponding to
Far). Otherwise accept all H;.

Stage 2: If Hyy) is rejected, reject Hipr_1) if Fiar—1) > Cy—1. Otherwise accept
Hay, ooy Hipp—1y-

In general, at stage m, if Fip;_yq1) > Crr—m+1 r€ject Hpr_pyq). Otherwise accept

Hays oo Hp—may-

Theorem 4.5.1. Consider the variance change problem of this chapter, the step-down

procedure is admissible for the one sided testing problem (4.6).

Proof of Theorem 4.5.1. Similar to the proof of Theorem 4.4.1, we focus on H; vs K}

and demonstrate that if ¢(2*) = 1 then ¢(2* +rg) = 1 for all »r > 0. At Z = 2Z*,

F* = , for j =1,2,..., M. Suppose H; is rejected at stage m, then F}" = z*i it
M M+1
the m'h largest among the F*. And Foupy > Cns Fiyyoqy > Cn—1s vy Flyp_pyo) >
= k% ot 3 ok ~*+
Crt-ms2s Fiyg—mn) = Ff > Car—mir. Note at 2% = 2+ rg, Fy* = G505 and

S

Fr = for j # 1, so the value of F** increased without changing the order of

(ZM+1 T)

(F5*, ..., F3f), and F;* is among the m largest coordinates of F**, it follows that H; is

rejected at stage m or sooner. ]
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Theorem 4.5.2. Consider the treatment vs control problem of this chapter, the step-

down procedure is inadmissible for the two sided testing problem (4.5).

Proof of Theorem 4.5.2. Similar to the proof of Theorem 4.4.2, we focus on H; vs K;.
To show ¢1(2) is inadmissible we will find three points Z*, Z**, Z2*** with 2** = Z*—r g,
Z¥** = Z* —rag, g > 11 > 0 such that ¢1(2*) = 0, ¢1(2**) = 1, ¢1(2***) = 0. This
will prove the theorem by Lemma 2.1.1.

2

At z*, use the same z* for the proof of Theorem 4.4.2, except change Z5 to z5 = &

ie, Zf = C1 4+ Cy, 23y = 2, 7 = ﬁa j =3,..,M, so use the definition of F} in

(4.25), F} = CH'CQ <Oy F5=0Cq, F; =Cj+1>Cj, j=3,...,M. From the above
step-down procedure, we accept H; and Hg, ie, ¢1(2*) =0 at 2*.
Cy—C =k =% Sk C

Use the same r = (2(12+011)), so at 2** = 2* —nrig, 2" = C1 + Cy — ((1“1‘011)) =
203420102 +3C1+Ca  zyx (C2—C1) _ 443C14+Co sk _ _

ey » 2 = 2+ 2(f+011) = 0t Zit =2, =3,..,M. So FI" =
2024201 C2+3C1+C> wx _ (44+30C1+C2)C * _ (C2—C1)y,Cj+1

30,4 Ch >C, Fy = 74(11012) 2> Oy, Fi* = (245 (1+Cl) )(Z5=) > Cj+1,

Jj=3,..., M, so we reject all = ¢1(2**) =1 at 2**.

Use the same 19 = 702+§1_2 > 7y, 80 at 2% = Z* — g, 2P = O+ Cy — Cz+g1—2 —
Ci1+02+2 _ Co4+C1—=2 _ C1+Co+2 _ —
1 22 ’Z}k\/?j-l_Q—i_ 2 21 — Y 22 72;** Z ]_3 M SOFl***—]-SCL

Ry — (01+C’2+2)Cz > Gy, B = (24 Cz+2C1—2)(C +1) >Cj+1,j=3,..,M, so we

accept Hy, i.e., ¢1(2***) =0 at 2***. O
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Chapter 5

Choosing critical values to control strong FWER for
MRD procedure

The MRD procedure can be viewed as a family of admissible procedures parameterized
by a set of constants ¢y, ..., cpr. It is shown that using an inequality due to Siddk (1968)
that ¢y, ..., car can be chosen so that the MRD procedure controls the strong FWER, at
level v, thus controls FDR at level « (see Lehamann and Romano).

Assume P is the true probability distribution generating the data, let I = I(P) C
{1,2,..., M} denote the indices of the set of true hypotheses. For K C {1,2,..., M}, let
Hy denote the intersection hypothesis that all H; with ¢ € K are true.

Let the critical value be ¢; r(1 — f7), which is designed for testing the intersection
hypothesis Hy, at nominal level 7, at stage j, when assuming that U’s for that stage

are independent. Le.,

(6] (6

P{independent}{maX{Uj,i7i € K} > éj,K(l - M)} = M

Then we will prove that this set of critical values control strong FWER, for MRD
procedure at level a.

Consider the event that MRD procedure commits a false rejection, so that for some
i € I(P), hypothesis H; is rejected. Let j be the earliest stage in the method where

this occurs, which means

(0}

max{Uy;,i € 1} = max{Uy;,i € [ \ I[(P)} > é1,,(1 — M)
max{Us;,i € Iy} = max{Us;,i € I, \ I(P)} > éo.1,(1 — %)

‘ (5.1)
max{Uj_1,i € Ij_1} = max{Uj_1;,i € [_1 \ I(P)} > &_11, , (1 — %)

max{Uj;,i € I;} = max{Uj;,i € [(P)} > é;1,(1 — %)
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Note that this can only happens before or at the (M — |I| + 1) stage, so,

FWER
M—|I]+1

= P{ U (5.1)happens}
j=1

M—|I|+1 o (5.2)
< P{ U1 (max{Uj,i € I;} = max{Uj,i € I(P)} > ¢;1,(1— 7))}
J:
M—|I|+1
< Y Plmax{Ujui € I} = max{Uj,i € [(P)} > &p,(1 — o)}
= j:1 7, J 7,0 = "y M

When U’s are independent, according to Sidak (1968),

M—|I|+1
. . o (6%
< Z P{independent}{maX{UjJ’ te I]} = maX{Uj,i7Z €I(P)} = ijlj(l - M)}
j=1
(5.3)
Since Ij D) ](P) — éj’[j(l — %) > éj’[(p)(l — %) -
M—|I|+1 N
FWER< > Pndependent}{max{Uj,i € I(P)} > &; rp)(1 — il (5.4)
j=1
So by the definition of ¢; ;(p)(1 — 7)
M—|I|+1
FWERS Y —
j=1 (5.5)

<«
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Chapter 6

Simulations

The multiple hypothesis testing procedures in this thesis can be viewed as families of
procedures parameterized by a set of constants ci,...,cps. It is shown in the above
chapter that using an inequality due to Siddk (1968) that C1,...,Cys can be chosen so
that the MRD procedure controls the strong FWER, this implies it also controls FDR.
However such a choice of C’s would be extremely conservative and would sacrifice the
gains achieved by MRD which takes advantage of the correlation among the variables. It
may also be possible to choose C’s to control FWER and FDR for the M-LRD or LRSD
procedures. However this too is likely to lead to an overly conservative procedure. To
determine a reasonable set of constants one must study the risks (errors and error rates)
for various choices of constants. Asis the case in a typical decision theory problem where
no optimal procedure exists one must choose from a number of admissible procedures.
Of course this process needs to be done prior to looking at the data. To make this
choice in practice one must consider the particular application. In the examples we
present, a large variety of sets of constants were evaluated through simulation. Those
presented gave a good balance of performance in terms of expected numbers of Type I
and Type II errors committed.

We have seen in Chapter 2, Chapter 3 and Chapter 4 that the LRSD procedures
for the one-sided alternatives of mean cases, the MRD procedures for the change points
of variances cases and the M-LRD procedures for the two sided variances of treatment
versus control cases possess the intuitive convexity property needed for admissibility.
These stepwise procedures make extensive use of the covariance structure at every stage.
To see the types of improvements that can be made over usual stepwise methods we now

present some simulation studies. We present a comparison of these three methods with
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either the step-up or step-down method (whichever did best in the given situation). The
step-up and step-down methods used in the comparison are those based on P-values
determined from marginal distributions. We report the expected number of Type I
errors, the expected number of Type II errors and the FDR. To obtain the probabilities
of Type I and Type II errors we can divide the expected number of errors in the tables
below by the number of true nulls and alternatives respectively. For all simulations we
used 1000 iterations.

Table 6.1 gives the results for the one sided treatment versus control model of
means. So p = 0.5 for the intraclass covariance matrix. The difficulty of using one
sided LRSD is calculating the likelihood ratio in each stage which involves finding the
solution to a quadratic optimization problem. Here we use the package ”quadprog”
in R which implements the dual method of Goldfarb and Idnani (1982, 1983). This
method was found to be very satisfactory compared to other quadratic programming
methods. This quadratic programming procedure involves calculating inverse matrices
which can take a considerable amount of time. Hence we only present results for
M=100. The step-up procedure in the table is based on the difference of two normal
variables, each with variance 1. This procedure is the Benjamini-Hochberg(1995) FDR
controlling procedure where FFDR = .05. The critical values for LRSD are somewhat
related to the FWER controlling step-down procedure where the control is at level
.05. Specifically these critical values for LRSD are as follows: For @ = .05, M = 100,
Cy = 1250711 — .05/M), C; = 120741 —.05/(M —i+1)), 1 <i < M. These
critical values were selected by trial and error using simulations with 1000 iterations.
They were chosen so that a desirable procedure would ensue and and also to suggest a
way to get critical values in other cases. Here M=100 and the results are dramatic in
almost all the cases presented here. There is improvement (usually substantial) in the
expected number of Type II errors, while the Type I errors remain comparable, though
step-up and step-down procedures can be proved admissible for this positive p case.

Table 6.2 gives results for the treatment versus control model of variances. The
variance of control equals 1. MRD and M-LRD procedures are both presented here.

Step-up works better than step-down in this case. So only step-up is presented here.
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Here M = 1000, n = 10, & = .05. For MRD, Cy = 0.00012F, ' ;) .\, (1 —.05/2M),

C; = 0.00007F ' (1 —.05/2(M —i+1)), 1 < i < M; For M-LRD, C; =

(n=1),(n—1)

—1 — —1
0.11F Ly oy (1= .05/2M), C; = 0.07F L) )

The step-up procedure in the table is based on P-values of the marginal distributions

(1—.05/2(M —i+1)),1<i< M.

of Fi,_1),(n—1)-statistics. The step-up procedure controls FDR at a = .05. From it
we can see that for a small proportion of true alternatives (< 20%) MRD and M-LRD
have fewer numbers of mistakes compared to step-up procedure. For the proportion of
alternative > 20%, M-LRD performs much better than the other two procedures and
M-LRD has smaller number of Type I errors and Type II errors than step-up procedures
in almost all the cases here.

Table 6.3 to Table 6.5 deal with the change point model for variances. Unlike the
previous two models, the variables in this problem are not exchangeable. Thus the
pattern of true variance values as well as the choice of true variance values impacts the
operating characteristics of the procedures. It would be difficult to select a particular
portion of the parameter space to study without knowing the specific application. We
have tried three types of patterns. For all the cases M=1000, oo = .05.

Pattern 1: The sequence of differences in consecutive variances are of the form:
1,.,1,11,8,2,1,...,1,11,8,2,1, ..., 1 where the triple sets of (11,8,2) are equally spaced.
So there are 4 changes (the present variance comparing to the previous variance) accom-
panied with this tripe set, they are (—10, -3, —6, —1). The results are shown in Table
6.3. For MRD, C; = 0.00005F;1 1 (1 —-.05/2M), C; = O.OOOOSF;1 1

(n=1),(n-1) (n—1),(n-1) (1 =
05/2(M —i+1)),1 < i< M;For M-LRD, C; = 0.55F(:11_1)7(n_1)(1 —.05/2(M —i+1)),
1 < ¢ < M. The step-up procedure in the table is based on P-values of the marginal
distributions of F{,,_1) (,—1)-statistics. The step-up procedure controls FDR at a = .05.
The message in Table 6.3 is that MRD has least number of errors for small number
of consecutive changes; while M-LRD performs best for larger number of consecutive
changes by a slight elevation in the number of Type I errors in exchange for a substantial
improvement in Type II errors.

Pattern 2: There is only one spot of consecutive variances changes. The results

are shown in Table 6.4. The step-down (Holm (1979)) procedures deals with p-values
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determined form marginal distributions of F{,_1) ,—1)-statistics. It controls FWER at

a = 0.05. For MRD, C; = 0.00005F, (1—.05/2(M —i+1)),1<i< M; For

(n=1),(n—1)

M-LRD, C; = 0.7F 1)) (1 —.05/2(M —i+1)), 1 <i < M. Table 6.4 shows that

(n—1),(n—
MRD performs best for these one spot of consecutive variances changes situations, most
time it almost detects all the changes, while step-down seldom detects the changes.
Pattern 3: The sequence of differences in consecutive variances are of the form:
1,.,1,5,5,5,1,...,1,5,5,5,1, ..., 1 where the triple sets of (5,5,5) are equally spaced.
So there are two changes (the present variance comparing to the previous variance)
accompanied with this tripe set. The results are shown in Table 6.5. We used the
same Cs as for Table 6.4 for MRD and M-LRD. The step-up procedure in the table
is based on P-values of the marginal distributions of F{,,_1) ,_1)-statistics controlling
FDR at o = .05. From the table we can see that the three methods’s performance are

comparable. They are quite weak in detecting the change points of variances for this

kind of situation.
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