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This dissertation addresses the problem of reliable file transfer over single-hop and multi-hop 

shared-media wireless networks which are generally characterized by fluctuating bandwidth and 

error characteristics. Traditional reliable file transport protocols such as TCP assume relatively 

slow-varying links and were not generally designed to deal with interference problems of shared 

media wireless networks. The large performance gap between unreliable UDP and reliable TCP 

motivates the investigation of new transport protocols that might achieve significantly faster file 

transfer than TCP on wireless media.   

CLAP � a Cross Layer Aware transport Protocol has been developed as a general solution for 

reliable file transfer, with decoupled flow control and error control to accommodate time-varying 

links. Error control in CLAP was designed to minimize interference and round-trip time 

estimation. Flow control in the proposed transport protocol leverages MAC status information via 

a novel cross-layer software framework (CLF), developed to provide systematic access to intra-

node and inter-node status information.  

Single hop evaluations, which consider an 802.11b wireless LAN with wired backhaul, were 

carried out using both NS2 simulations and ORBIT test-bed experiments. In time-varying, high 

loss scenarios, TCP shuts down operation without MAC retries, while an early CLAP version 

(CLAP-beta) achieves over 68% of upper-bound UDP performance. In noise-free scenarios, a 
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�skip-ACKs� TCP modification to reduce interference achieves limited gains since TCP flow 

control depends on regular ACKs, while CLAP-beta approaches peak UDP performance by fully 

using the bandwidth available. 

Multi-hop evaluations with NS2 simulations consider a 3-hop primary path in a 4x4 wireless 

mesh over 802.11b single-channel interfaces. Occasional background flows and on-off channel 

noise injection produce bandwidth and error fluctuations. These simulations expose the general 

multi-hop wireless problem where self interference in the forward path significantly reduces end-

to-end bandwidth. Increasing interference and random packet losses tend to degrade TCP 

performance even more significantly than in 1-hop scenarios. Here, CLAP-final with 

improvements (relative to CLAP-beta) to reduce dependence on RTT estimation achieves over 

90% of UDP performance in a variety of time-varying conditions.     

This thesis demonstrates the efficacy of reliable file transfer using CLAP to address interference 

and time-varying links in both single- and multi-hop wireless network scenarios. Future research 

opportunities include cross-layer techniques for error control, efficient inter-node protocols for 

CLF, and tighter integration with mesh network routing protocols. 
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Chapter 1  
Introduction 

     This thesis addresses the problem of reliable data transport over emerging wireless networks. 

The last two decades have seen tremendous advancement in high-data rate wireless network 

technologies. Inexpensive unlicensed band radio technologies have enabled quick deployment of 

wireless local area networks in homes, offices, hotspots and even entire cities. Commercial multi-

hop mesh networks are emerging rapidly and are expected to gain momentum with the ratification 

of the 802.11s standard. Mesh networks are being deployed to enable outdoor municipal networks 

at relatively low cost, and also as a wireless backhaul in indoor high-performance wireless LANs. 

The Transmission Control Protocol (TCP) is the most popular transport protocol on the Internet 

today. In the last 3 decades it has connected islands of heterogeneous networks, making data 

accessible from across the globe. Extending TCP performance to wireless networks has been an 

active research topic in the last 15 years, but several problems have been encountered. Although 

the first demonstration of TCP included Packet Radio and Packet Satellite networks, its 

subsequent optimization was driven by rapid advancement in �wired� link technologies such as 

Ethernet [1]. These wired links in general have high reliability (bit error rates of the order of 10-

12) and have very low rate of fluctuations, if any. Losses in wired networks are hence dominated 

by queue overflows in intermediate and end nodes, and TCP has been optimized likewise.  

Wireless link characteristics are significantly different. It is now well known that wireless links 

have high loss rates and various TCP enhancements have tried to address this issue [31][35]. 

However it is less understood that wireless links are time-varying in nature with rapid fluctuations 

in bandwidth and error characteristics. One reason for these variations is fluctuating signal-to-

noise ratio (SNR) at wireless receivers that occurs from people walking, mobility of nodes and 

intermediate objects, environmental factors such as rain etc or even opening/closing of doors. 

Fluctuating SNR affects the likelihood of packet reception, and hence affects the link reliability 

perceived at higher layers.  

Another reason for these variations is interference. The 802.11 networks, which are the basis for 

most of the emerging wireless scenarios, are shared media technologies that operate using 

distributed medium access control mechanisms. 802.11 links thus suffer additional interference 

issues because of multiple contending radio nodes in close proximity. This not only results in 
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MAC collision losses, but also affects the channel time available for transmission, causing delay 

variations. Thus interference issues cause additional fluctuations in link bandwidth and error 

characteristics. 802.11 wireless cards commonly include non-standard link layer enhancements 

such as MAC retransmissions and auto-rate adaptation that introduce high transmission latency in 

changing noise scenarios, thus introducing additional link bandwidth fluctuations.   

In addition to these, 802.11 networks have the unique self-interference problem for flows with bi-

directional traffic. Here packets of the same flow contend with each other for channel access, 

often degrading overall performance, as observed with TCP  DATA-ACK contention in wireless 

LAN scenarios [3][4][5].   

The situation only worsens with increasing wireless hops, because now the transport protocol 

must deal with the compound effect of quality variations on all the links in a path, as well as 

complex external interference and self interference effects resulting from dense node placement.    

Traditional transport protocols such as TCP were designed under the assumption of relatively 

slow-varying links with high reliability, and do not generally have to deal with self-interference 

that arises only in shared media networks. Experiments with TCP confirm that TCP performance 

is very sensitive to signal quality variations and other-user interference due to frequent protocol 

timeouts.  TCP in these scenarios is observed to have excessive file transfer delays, despite a high 

goodput achieved by saturating UDP traffic. Such a large performance gap between UDP and 

TCP indicates the potential for new reliable transport protocols that might achieve significantly 

faster file transfer than TCP on wireless media [2][31][33][35].  

1.1  Problem statement 

Overall in 802.11 networks, fluctuating SNR and shared-medium interference translate to self-

interference and time-varying link characteristics for higher layers, as depicted in Figure 1.1.  In 

Shared medium interference

Fluctuating SNR

Wireless link characteristics

Time-varying link 
bandwidth and errors

Transport layer issues

Self-interferenceShared medium interference

Fluctuating SNR

Wireless link characteristics

Time-varying link 
bandwidth and errors

Transport layer issues

Self-interference

 

Figure 1.1: Transport issues due to wireless characteristics 
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this section we describe these effects in detail and hence describe the research problem 

considered.  

1.1.1  Self-interference in 802.11 wireless links 

TCP performance evaluations demonstrate that interference among TCP DATA and ACK packets 

is a significant cause of throughput degradation in single hop and multi-hop scenarios. Figure 1.2 

depicts one example of the instantaneous received rate of the popular TCP-Reno version in a 

wireless LAN environment with no other noise or other-node interference, and without using any 

additional link layer enhancements. TCP utilizes the available bandwidth poorly and experiences 

several durations of low or zero goodput. Much to the contrary, the UDP goodput plot obtained 

with saturating CBR traffic demonstrates much higher bandwidth available, than used by TCP.  

Our detailed investigation of TCP performance revealed that the various intervals of low goodput 

are due to TCP deadlocks that end in timeouts. The deadlocks occur after interference between 

the DATA and ACK packets of the same flow, result in multiple losses within a TCP congestion 

window. In these situations, the widely used fast-recovery algorithm of TCP, fails to recover all 

the lost packets, leading to the deadlock situation [5]. 

Next, Figure 1.3 depicts the performance achieved with increasing hops between a source-

destination pair in a multi-hop wireless topology, with additional MAC retries to improve the 

reliability of links. Here the goodput achieved by upper-bound UDP decreases with increasing 

wireless hops, because of lower end-to-end bandwidth because of self-interference between 

DATA-DATA packets from adjacent nodes. When nodes within interference range of each other 

transmit packets, they cause lesser channel time available for other nodes, decreasing the overall 

number of DATA packets transmitted in a given interval. This multi-hop wireless characteristic is 

a fundamental shift from traditional transport protocol assumptions. TCP is designed to match the 

sending rate to the delay-bandwidth product of the route by �filling the end-to-end pipe� with as 
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many packets as possible. The results here demonstrate that this approach lowers net available 

bandwidth and increases interference losses, and hence degrades the overall throughput of the 

flow.  

1.1.2  Time-varying links  

Wireless links are time-varying for various reasons. Changing SNR and interference in the 

wireless shared medium manifest as changes in link quality for higher layers. In fact, various 

MAC layer adaptations aggravate the flucatuations. We describe these various reasons for 

fluctuating link quality in 802.11 wireless links in the sections below.  

1.1.2.1 Time-varying errors 

A wireless link loss is caused because the wireless receiver is unable to decode at least one signal 

constituting a packet. When there is no interference, accurate reception depends primarily on the 

received signal strength relative to the received noise power. This value is commonly known as 

the Signal-to-Noise Ratio (SNR). The likelihood of accurate reception increases with increasing 

SNR. When another signal interferes, it corrupts the legitimate signal, causing the signal to be 

wrongly decoded by the receiver. This inaccurate decoding even for a single symbol constituting 

a packet often results in the loss of the entire packet. Time-varying losses are caused because of 

fluctuating SNR and interference at the wireless receiver.  

SNR losses: SNR fluctuations occur from fading, shadowing and additive noise as revealed by 

several propagation studies such as those described by Rappaport[64]. Thermal noise causes an 

additive white Gaussian noise to always be present at the receiver. Even when the nodes are not 

mobile, environment changes caused by movement of people, and opening and closing of doors, 

have been found to cause SNR changes. These factors also cause a high loss rate in wireless links 

[75]. 

Interference losses: Changes in interference occur in 802.11 links because nodes become active 

randomly, and contend for channel access in a distributed manner. Particularly, when nodes have 

saturating traffic, the 802.11 MAC continuously contends for channel access. This increases the 

likelihood of MAC collisions as we showed analytically in an earlier paper [3].  We derived that 

that in a wireless LAN environment (all nodes within hearing range of each other), the loss 

likelihood ζ with saturating traffic among (N+1) active nodes is  

ζ =  







−−

−− NCWNCW
CW

)(*)!1(
)!1(1  ; where CW is the size of the contention window.  
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For example for two active nodes the collision likelihood is 3%, and for three nodes it is 17.5%. 

Hence in 802.11 wireless links, interference losses could significantly dominate SNR losses.  

1.1.2.2 Time-varying bandwidth   

Dynamic interference is one reason for time-varying link bandwidth. In addition, there are 

various 802.11 MAC features and enhancements that �translate� the fundamental wireless 

problems of interference and channel noise to bandwidth fluctuations. 

Interference: The shared medium operation of 802.11 uses the CSMA/CA protocol where nodes 

contend for channel access on a per-packet basis. Here nodes only send when they sense the 

channel to be idle (Carrier Sense Multiple Access � CSMA). Simultaneous transmissions are 

minimized by transmitting in a contention window slot after random backoff (Collision 

Avoidance � CA). As a result the net �channel time� available to a node for transmission, is a 

function of number of active nodes in that interval. Since nodes are active at different times 

independent of each other, the channel time/interval might fluctuate rapidly affecting the number 

of packets sent out by the MAC in each interval. This appears like changing bandwidth to the 

transport layer.  

Auto-rate adaptation: This is a special algorithm introduced in most wireless cards to maximize 

the link speed for a given SNR. The use of the algorithm is not specified in the 802.11 standard 

and is proprietary to each card manufacturer [70]. Wireless cards come equipped with several 

different modulation schemes that provide a wide range of channel rates. For example 

802.11a/b/g cards support channel rates 1Mbps to 54Mbps. Higher channel rates however also 

cause higher loss likelihood because of decreased likelihood of accurate reception for the same 

SNR. Hence card manufacturers introduce auto-rate adaptation schemes to adapt channel 

 
Figure 1.4: Auto-rate adaptation in wireless cards over noise-prone wireless links 

(result by Wu, Ganu et. al [58]) 
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modulation to operate at the highest channel rate possible while still meeting the threshold 

reliability requirements. These algorithms are non-standard, but are invariably introduced in 

wireless cards to improve overall performance. When channel reliability fluctuates, say due to 

random noise, auto-rate adaptation causes the physical channel rate to also fluctuate. Wu, Ganu 

et. al. demonstrated this effect with experimentation on the ORBIT wireless test-bed in the 

802.11g environment[58]. Their result (depicted in Figure 1.4) shows that the link bandwidth 

fluctuates rapidly between 6Mbps and 48Mbps in a 10 second interval, due to the combination of 

channel noise and auto-rate adaptation.  Thus for the transport layer, auto-rate adaptation 

translates channel noise fluctuations to link bandwidth fluctuations.  

MAC retries: MAC retries are suggested in the 802.11 standard to reduce transient interference 

losses, but are not mandatory [45]. However they are used by default in wireless cards mainly to 

hide these losses from TCP, and hence improve TCP performance over these shared medium 

links. When enabled, the MAC reacts to a loss by retransmitting the packet and doubling the 

contention window after each retransmission. This doubling halves the likelihood of MAC 

collisions, but also doubles the average delay to transmit the packet. For example the minimum 

delay (average) due to MAC random backoff in 802.11b is 310µs and the maximum delay is 

10230µs since the MAC contention window can operate between 31 slots and 1023 slots. Since 

the 802.11 MAC does not differentiate between loss types, doubling is done even when the loss is 

due to noise and not interference. When the channel noise characteristic fluctuates, MAC retries 

could result in fluctuating MAC transmission delay for each each packet. To understand the effect 

at the transport layer, we conducted a simple simulation with saturating UDP traffic with and 

without MAC retries in a 3-hop wireless chain in a mesh topology. Figure 1.5 depicts the 

instantaneous received rate of UDP with and without MAC retries. Without MAC retries, the 
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Figure 1.5: Effect of MAC retries on UDP  receivd rates in a 3-hop wieless environment 

with bandwidth and error fluctuations 
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changing channel noise indeed causes some fluctuations in the received rate, but the fluctuations 

are significantly magnified with MAC retries. They also result in several intervals of zero 

received rate, while without MAC retries, there is a goodput of 0.5 � 1Mbps. Thus MAC retries 

cause the perception of rapid fluctuations in link bandwidth to the transport layer.   

Packet sizes: Another less known result is the changing link capacity as a function of packet size. 

Results on video multicast experiments over wireless LANs demonstrated this insight where the 

802.11 link capacity changed as the packet size distribution in video streams [10]. It happens 

because the 802.11 MAC introduces a large fixed time-overhead to transmit each packet, due to 

MAC contention. Hence the bandwidth utilization is lesser for smaller packet sizes. Hence for a 

VBR stream that constitutes a wide range of packet sizes, the link capacity fluctuates depending 

on the distribution of packet sizes in a given interval. Details of these experiments and results are 

in Appendix Section 6.1.  

Thus the lower layer characteristics of fluctuating SNR and shared medium interference translate 

to time-varying link characteristics and self-interference at the transport layer. The problems for 

data transport due to these effects increase with increasing wireless hops.  Next, we describe the 

research opportunity available to improve transport efficiency over these networks.   

1.2  Research opportunity and our approach 

Reliable transport protocols operating over wireless networks must address the fundamental 

issues of time-varying link quality (bandwidth and errors) and self-interference. To find available 

opportunities, we first explored the effects of interference and time-varying links on transport 

protocol performance, with in-depth evaluation of both TCP and UDP performance. The various 

results are presented in detail in chapters 3 and 4 where all protocols are evaluated. In this section 

we will summarize the derived opportunity and our proposed solution motivated.  

Figure 1.6 depicts a wireless 1-hop result in the ORBIT test-bed, demonstrating the effects of 

fluctuating channel noise on transport protocol performance. Random Gaussian channel noise is 

injected in nodes at 5-second intervals, causing random packet drops at the receiver. UDP 

goodput shows the net received rate to change between 0 and 5Mbps at the same rate as injected 

noise. On the other hand, the TCP received rate plot shows that it misses several high link quality 

opportunities, and takes much longer to adapt after the link becomes consistently good (at 66 

seconds). Here TCP achieves less than 25% of UDP goodput. These problems are even more 

severe over multi-hop wireless networks because of the compounding of loss and interference 

effects with increasing hops. The wide gap in goodput between TCP and the upper-bound 
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Figure 1.6: ORBIT test-bed result - TCP performance in a channel with burst noise, with 
MAC retries

achieved with simple unreliable UDP, shows potential for new reliable transport protocols that 

might achieve significantly faster file transfer than TCP on wireless media.  

Link-layer enhancements (such as MAC retries or hybrid ARQ) for hiding wireless channel 

impairments from the transport layer have been tried earlier. These enhancements handle non-

varying link characteristics well, but for fluctuating link conditions introduce large transmission 

latencies that even degrade the net bandwidth available as demonstrated with MAC retries in 

figure 1.5. Further the heterogeneity of existing and emerging wireless links, limited processing 

capability of cheap wireless hardware, and the diverging requirements of traffic (video, voice, 

data) make it very difficult, if not impossible, to address all the per-flow issues at the link layer. 

Transport layer protocols, on the other hand, residing on more powerful end-system hardware, are 

better positioned to address these issues in a link agnostic manner. 

In the last 15 years, various approaches have tried to improve TCP performance over wireless 

networks. However several core design aspects of TCP are mismatched to the fundamental 

wireless characteristics, making it difficult to �fix� TCP for wireless networks or for that matter, 

�fix the wireless problem� to help TCP perform well. First, TCP�s flow control algorithm is 

designed to scale back when losses occur. This design stems from wired network characteristics, 

where losses imply filled up queues in a bottleneck node at the source of the slowest link. 

However this design causes TCP to reduce the sending rate �unnecessarily� when operating over 

wireless links with random errors. Second, TCP�s window-based flow control algorithm requires 

a regular pace of positive acknowledgements to adapt sending rate. But time-varying link 

bandwidth causes fluctuating transmission delays in each wireless link that in turn makes the 

acknowledgements irregular. This delay-variance effect of TCP acknowledgements are shown to 

degrade TCP throughput significantly [1]. Third, in 802.11 links positive acknowledgements 

cause self-interference that degrades TCP performance due to bandwidth sharing and MAC 
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collision losses. But TCP needs positive acknowledgements to clock its sending rate. Hence self-

interference will remain a dominant cause of packet losses and bandwidth reduction for TCP over 

802.11 networks. Fourth and final, TCP�s end-to-end bandwidth estimation procedure using own 

acknowledgements, is relatively slow to adapt compared to the time-scale of the bandwidth 

fluctuations. Instead, status indicators in the Phy/MAC layers in each hop more conveniently 

capture the changes and hence promote the case for cross-layer protocol design.  

 Instead, the opportunity to improve instantaneous goodput performance of reliable transport 

protocols lies in the cross-layer information available in lower layers in the network stack. The 

physical layer for example has complete knowledge of the channel rate used, and the average 

received signal strength � RSSI, which are together indicative of the link quality due to channel 

noise. The 802.11 MAC layer has information of the net channel time available for transmission 

after contention with other nodes. Thus a node in itself has information of link quality and 

interference, and we use this �cross-layer information� to determine the instantaneous link 

bandwidth available. 

These various observations motivated CLAP � a Cross Layer Aware transport Protocol, as a 

general solution for reliable file transfer over wireless networks. It is developed addressing 

unique wireless features such as that there could be substantial bandwidth available despite high 

loss rates, and that control traffic must be minimized to conserve the bandwidth for legitimate 

DATA packets in shared media networks.  

The performance of reliable transport protocols is usually measured with �bulk throughput� 

which is the ratio of the file size to the time take to complete the transfer. But because it evaluates 

the overall performance of reliable transport, combining the effects of flow control and error 

control algorithms, this metric does not indicate the upper-bound performance possible in the 

given scenario. We hence introduced �instantaneous goodput� as a performance metric, which is 

defined as the ratio of the number of bytes delivered to the time interval considered. This metric 

measures the upper-bound performance, since it removes the effects of error control and measures 

how well the protocol is using the available bandwidth instantaneously. We use this metric to 

evaluate the various protocols in several time-varying one-hop and multi-hop wireless scenarios.  

1.3  Contributions 

We will enumerate the contributions in this investigation categorizing them in terms of research 

opportunity and proposed solution.  
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• Identified primary wireless problems that affect file transfer end-to-end  

• Identified mismatched TCP design aspects that restrict performance in wireless networks 

• Developed a novel transport protocol, CLAP, which achieves significant performance 

improvements for reliable transfer over 1-hop and multi-hop wireless networks 

• Implemented a cross-layer protocol framework for CLAP  

• Validated all of the above with extensive simulation and experimental methodologies 

1.4  Related Work 

Data transport over wireless networks has been an active research topic in the past 15 years. 

Various observed issues of wireless networks such as transient packet loss, disconnections and 

route failures have been extensively studied in literature. However the fundamental aspects of 

interference and time-varying link characteristics in wireless shared media networks have 

received less attention.  

Several enhancements to TCP have been proposed recognizing that TCP often scales back flow 

control �unnecessarily� over wireless networks. Some have tried �implicit decoupling� with link 

layer enhancements such as with link layer retransmissions to hide wireless losses from the TCP 

sender [2][21][27][31][38][66][69]. Others have tried �explicit decoupling� where, for example, 

the window size is explicitly frozen during disconnection avoiding errors to affect the flow rate 

[20][26][34][36].   

Each proposed solution has addressed at most one wireless �symptom� such as transient loss in 

cellular networks [14][20][24][26][29][31][32][35], disconnections/route failures[20][21] and 

delay variance[2]. However since these �symptoms� emerge because of the core characteristics of 

time-varying link quality and interference � they are also tightly interconnected. For example,   

fluctuating SNR and/or interference cause transient packet losses, and transient packet losses 

result in temporary disconnections and route failures. Chun and Ramjee showed that even with 

link layer enhancements to handle these wireless issues �locally�, the transmission latency 

introduced significantly degrade end-to-end TCP performance [2].  The gains are hence limited 

when the problems are addressed separately and when the transport protocol is not geared to 

handle link quality fluctuations.   
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New protocols have also been proposed, such as RCP[29] and ATP[13] in cellular and 802.11 

multi-hop contexts respectively. However, they still use positive acknowledgements to clock the 

sending rate (RCP addresses transient losses in cellular networks, and ATP addresses route 

failures in multi-hop wireless networks), and hence do not operate well in rapidly time-varying 

and high loss scenarios.    

From the wireless perspective, the available transport protocols may be categorized based on the 

type of wireless network and the wireless problem they address, as depicted in Table 1.1 with a 

sampling of protocols listed in each category. Some propose TCP enhancements for cellular 

networks [2][20][21][29][31][34][35], while others address 802.11 networks 

[22][24][25][26][32][33][38]. They broadly address low link error rates (< 5%) and/or slow-

varying wireless links (occasional disconnections and route failures).  In the table, protocols 

available in the shared medium have not considered the wireless 1-hop scenario and hence are not 

list in that shared medium 1-hop category.  Rapidly varying bandwidth scenarios do not occur 

with cellular 1-hop networks, and hence that category is shaded out. To the best of our 

knowledge, none of the available solutions address fluctuating link bandwidths and errors, or link 

error rates higher than 5% that are inherent characteristics of emerging wireless network 

scenarios.  

The various proposed wireless transport solutions are restricted to a specific type of network, and 

many of them require flow-specific and network-specific link layer proxies. They hence lack 

general applicability to heterogeneous networks. History shows that TCP enabled the Internet 

with widespread access, because of its ability to integrate islands of heterogeneous networks. 

Cellular 1-hop 802.11 link,          
1-hop

802.11 links,           
Multi-hop 

Low random packet errors        
(due to channel noise/MAC 

interference)

Snoop-TCP, BA-TCP , 
TCPW, TCP-Triple-ACK-

Recovery, RCP

addressed by MAC 
layer solutions

ATCP, TCP-F, TCP-
DOOR, Atra

Slow-varying links                
(due to delay-variance/bandwidth 
fluctuations/ disconnections/route 

failures)

Freeze-TCP, Ack-regulator, 
window-regulator

not addressed
TCP-ELFN, TCP-BEAD, 

ATP

High error rates, rapidly varying 
links                             

(general scenario due to MAC 
interference, fluctuating SNR)

addressed by physical 
layer solutions

not addressed not addressed

Table 1.1: Summary of available transport protocols for wireless networks  
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Such an integrating protocol is required for wireless networks more so with increasing 

heterogeneity of end-user devices.  

The CLAP protocol presented here instead is developed �top-down� from basic principles 

addressing the core wireless characteristics. CLAP is applicable to any network where cross layer 

status information is available as an overlay network service.  

 

The rest of this document is organized as follows. In Chapter 2 we describe our detailed 

investigation of TCP performance in wireless LANs affected by self-interference and time-

varying noise conditions, with evaluations in the NS2 simulator and experimentation on the 

ORBIT test-bed. The CLAP protocol is described in detail in Chapter 3 along with details of the 

cross-layer software framework developed to systematically extract intra-node and inter-node 

status information. Chapter 4 has the CLAP protocol evaluated in wireless LAN scenarios. 

Chapter 5 evaluates the CLAP, TCP and UDP protocols in multi-hop wireless scenarios 

considering time-varying bandwidth and noise conditions. We conclude in Chapter 6 with 

directions for future work. The Appendix chapter 7 has additional results from experiments with 

video multicast over wireless LANs, detailed description of NS2 simulations and ORBIT test-bed 

experimentation. It also has additional design details of the CLAP protocol pertaining to the error 

control algorithm.   
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Chapter 2                                                                          
TCP performance in wireless LANs 

Wireless 1-hop scenarios are common in many different network technologies � 802.11 wireless 

LANs, 802.16 (WiMAX) for wide-area coverage, and cellular EvDO technologies.  Of these, 

wireless local area networks have become very popular in the past few years, particularly with the 

ratification of the 802.11b/g/a standards and widespread availability of cheap wireless cards that 

enable easy Internet access from portable computers. Recent advances in physical layer 

technologies have resulted in steadily increasing transmission speed, for example 802.11n 

promises channel rates exceeding 100 Mbps. 

Since TCP is the most popular reliable transport protocol used on the Internet, improvements in 

its performance over cellular 1-hop and multi-hop 802.11 networks have been actively considered 

these past several years. Much of this research is based on the premise that high loss rate links in 

cellular 1-hop scenarios and mobility-induced route failures are the prime reasons for poor TCP 

performance. Since wireless LANs have a single wireless link and short range of transmission, 

TCP performance in these networks has seldom been considered for evaluation assuming good 

performance. However, our own personal experience showed otherwise. The wireless LAN 

deployed in our laboratory building often did not provide the desired service experience. File 

download delay was unpredictable at certain times of the day (such as mid-afternoon when there 

was maximum activity in the lab) and some offices often experienced poor connection quality 

(particularly corner offices where high performance was the most required!). Since the problem 

happened for applications that required reliable transfer, we anticipated the problem to be with 

TCP and began investigating it with simulations in the NS2 simulator and wireless LAN 

emulation in the ORBIT wireless test-bed.    

These investigations revealed that wireless links are in fact characterized by issues much different 

from those that were commonly considered in literature. Wireless links are time-varying in nature 

with rapid fluctuations in bandwidth and error characteristics, instead of just having a static loss 

distribution. Another significant problem for TCP was self-interference in shared-medium 

operation of 802.11, where DATA and ACK packets of the same flow interfered with each other. 
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This caused significant throughput degradation in TCP. For TCP-Reno in particular, there were 

several timeouts in the course of a flow when additional link layer enhancements such as MAC 

retries were not used. We found that these timeouts were due to increased loss likelihood during 

fast-recovery, and the less optimized TCP Tahoe was found to perform much better. These 

various TCP performance issues due to interference are presented in this chapter.   

In the next section we present a brief background of 802.11 and TCP, followed by an in-depth 

analysis of TCP�s self-interference problem considering bulk throughput effects and per-packet 

dynamics of various TCP versions. Next we tried to reduce the self-interference problem with a 

�skip-ACKs� enhancement to TCP. Here when no losses are encountered, the TCP receiver sends 

fewer ACKs than otherwise. However the gains achieved with this approach are still limited. We 

explore core reasons for poor TCP performance in all these cases.  Valuable insights were derived 

from these TCP lessons to develop the new solutions for reliable file transfer.  

2.1  Overview of protocols and simulation setup 

Signal interference occurs with all wireless technologies, whether cellular or 802.11 because of 

the inherent broadcast nature of the wireless medium. An efficient medium access method is 

invariably required to minimize interference among active nodes in the neighborhood. Cellular 

technologies address this with centralized medium access schemes such as 

TDMA/FDMA/CDMA where the base station allocates a unique time-slot/frequency-

band/orthogonal code for contention-free access to the wireless channel.  

The 802.11 networks instead use a distributed coordination method (DCF mode), where each 

node contends for channel access for every packet it has to send. They implement the Carrier 

sense Multiple Access with Collision Avoidance (CSMA/CA) protocol, where the likelihood of 

collisions in the shared medium is minimized with random back-off and waiting for an idle 

channel before sending. However, unlike cellular networks, interference affects higher layers in 

802.11, because with distributed access the net sending rate of an 802.11 MAC depends on other 

active nodes nearby and losses due to interference can still occur when at least one neighborhood 

nodes sends in the same random back-off slot.  

In the next few sections we present details of the 802.11 MAC and describe the TCP protocol and 

its complex interaction with the 802.11 MAC. These overview discussions are required to 

describe TCP self-interference problems in later sections 
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2.1.1  802.11 MAC Overview 

The Distributed Coordination Function (DCF) mode of 802.11 Medium Access Control (MAC) 

uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)[45]. Even in the 

infrastructure mode with a central Access Point (AP), all entities have equal priority for channel 

access. Channel contention happens on a per-packet basis. A  node waiting to transmit a packet, 

first senses the channel to be idle for a certain duration (called DIFS [45]), then selects a backoff 

slot randomly based on a uniform distribution in [0,CW-1], where CW is the contention window. 

The packet is transmitted if the channel is still idle in the selected slot. If not, the node waits till 

the channel is idle again, backs off only for the requisite slots before attempting to transmit. The 

node learns of a successful transmission when it receives an acknowledgement (MAC-ACK) 

from the destination.   

Throughput derivations of 802.11 MAC have typically assumed Poisson packet arrival per 

backoff slot [55]. Instead, suppose there are (N+1) nodes with a continuous supply of packets that 

causes them to contend for the channel far more consistently. A transmission is successful only if 

no other node transmits in the same backoff slot.  This likelihood of all nodes selecting 

independent slots is 







 −







 −






 −

CW
NCW

CW
CW

CW
CW

K
21*1  









−−

−= NCWNCW
CW

)(*)!1(
)!1(

 

Hence the likelihood of at least two nodes selecting the same slot is 
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This is the likelihood of a failed transmission for nodes having a consistent supply of packets to 

send.  

2.1.2  Brief Overview of TCP  

TCP is a reliable sliding window protocol.  It allows several packets to be transmitted before an 

acknowledgement (TCP ACK) is received.  Unacknowledged data packets are maintained in a 

congestion window (cwnd).  In steady state, cwnd is expected to be equal to the delay-bandwidth 

product of the network. TCP ACKs are cumulative. Hence it is not necessary to have separate 
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ACKs for each packet.  TCP operates in either of slow-start or congestion-avoidance modes. In 

slow-start, cwnd grows exponentially, increasing by one packet for every ACK received, while in 

congestion avoidance, cwnd increases linearly (one packet per round-trip-time) in proportion to 

the number of data segments acknowledged.  

In case of a packet loss TCP reduces cwnd assuming network congestion. With TCP Reno, three 

or more duplicate ACKs trigger a fast-retransmit and cwnd drops to ½ its previous value. Then, 

cwnd grows conservatively in congestion avoidance mode. The situation is much worse in case of 

a timeout, when cwnd drops to 1. Here TCP backs off exponentially before trying to send the next 

packet. The backoff duration can be as high as 64 seconds. Sinha et. al explained the derogatory 

effect of timeouts on TCP throughput [30].  

These various design aspects of TCP evolved in the last 30 years, mostly to cater to wired 

networks.  We will show in later sections in this chapter that some of these optimizations (fast-

recovery for example) that work very well over the wired Internet, in fact worsen performance 

over wireless LANs. 

In order to explore TCP performance in the general interference and time-varying 802.11 links, 

we considered noise-free as well as noise-prone wireless LAN environments. The noise-free 

scenarios were intended to study the effects of just interference on the transport quality, while the 

latter explored the effects when there was both interference and fluctuating SNR. Details of the 

simulation setup used for TCP evaluation is described in the next section. 

2.1.3  Wireless LAN system description and simulation details 

The various evaluations are conducted in the NS2 simulator, version 2.1b9a enhanced with the 

CMU wireless module containing 802.11implementation. Figure 2.1 depicts the wireless LAN 

system considered here. Each node caters to a single flow, and the wireless nodes act as data 
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Figure 2.1: 802.11 wireless LAN topology  
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sources. The data sinks are wired nodes one hop away from the access point. The wired link 

bandwidth is chosen such that the wireless link is the bottleneck in all scenarios. 

The physical channel rate is fixed at 11Mbps. However the net data rate at the transport layer is 

about 5Mbps due to various overheads given in Table 2.1 (in section 2.2).  

2.2  Overview of TCP self-interference (noise-free conditions) 

Simulation results with a single flow, showed TCP throughput to be significantly lower than the 

UDP throughput, even though there were no other interfering flows or channel noise that could 

result in packet losses. The analysis of the NS2 trace files revealed interesting insights. 

2.2.1  TCP simultaneous-send problem 

Detailed analysis of the traces showed that the problem in fact was happening because the send 

times of the DATA and ACK packet were within one slot time (20µs) of each other, i.e. they had 

selected to send within the same 802.11 MAC random backoff slot. The 802.11 MAC prevents 

nodes from transmitting when another node is already transmitting, with the CSMA requirement 

where nodes cannot send if the channel is sensed to be �busy�. When the channel is idle, 

simultaneous transmission by multiple nodes is alleviated with the Collision Avoidance (CA) 

requirement, where they wait for a DIFS duration, and pick a random backoff slot to send the 

packet. If another node begins to transmit before this slot, the node waits until the channel is idle 

again to continue the count down before sending. However when two or more nodes select the 

same slot to send, they transmit in that slot without being aware of each other�s transmission. This 

is because the 802.11 hardware is half-duplex and cannot detect a signal while in the transmit 

mode (unlike Ethernet they cannot send and receive at the same time). Hence the device cannot 

s 161.835981483 _2_ MAC  --- 566 tcp 1112 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
s 161.835981506 _1_ MAC  --- 1020 ack 92 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 0 0
s 161.837918779 _1_ MAC  --- 1020 ack 92 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 0 0
r 161.83796 0 1 ack 40 ------- 2 0.0.0.0 1.0.1.0 349 1054
r 161.838160257 _2_ MAC  --- 1020 ack 40 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 1 0
s 161.838170257 _2_ MAC  --- 0 ACK 38 [0 0 0 0] 
r 161.838185257 _2_ AGT  --- 1020 ack 40 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 1 0
s 161.838185257 _2_ AGT  --- 1055 tcp 1040 [0 0 0 0] ------- [4194305:0 0:0 32 0] [678 0] 0 0
s 161.838185257 _2_ AGT  --- 1056 tcp 1040 [0 0 0 0] ------- [4194305:0 0:0 32 0] [679 0] 0 0
r 161.838474281 _1_ MAC  --- 0 ACK 38 [0 0 0 0] 
s 161.838944257 _2_ MAC  --- 566 tcp 1112 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
s 161.838944281 _1_ MAC  --- 1023 ack 92 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [340 0] 0 0
D 161.840245530 _2_ RTR  CBK 566 tcp 1060 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
D 161.840245530 _2_ MAC  --- 566 tcp 1060 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
s 161.840635530 _2_ MAC  --- 567 tcp 1112 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [351 0] 0 0
r 161.841618826 _1_ MAC  --- 567 tcp 1060 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [351 0] 1 0
s 161.841628826 _1_ MAC  --- 0 ACK 38 [0 1 0 0]

Difference 
is 0.0024µs
aSlotTime = 20µs

s 161.835981483 _2_ MAC  --- 566 tcp 1112 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
s 161.835981506 _1_ MAC  --- 1020 ack 92 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 0 0
s 161.837918779 _1_ MAC  --- 1020 ack 92 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 0 0
r 161.83796 0 1 ack 40 ------- 2 0.0.0.0 1.0.1.0 349 1054
r 161.838160257 _2_ MAC  --- 1020 ack 40 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 1 0
s 161.838170257 _2_ MAC  --- 0 ACK 38 [0 0 0 0] 
r 161.838185257 _2_ AGT  --- 1020 ack 40 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [339 0] 1 0
s 161.838185257 _2_ AGT  --- 1055 tcp 1040 [0 0 0 0] ------- [4194305:0 0:0 32 0] [678 0] 0 0
s 161.838185257 _2_ AGT  --- 1056 tcp 1040 [0 0 0 0] ------- [4194305:0 0:0 32 0] [679 0] 0 0
r 161.838474281 _1_ MAC  --- 0 ACK 38 [0 0 0 0] 
s 161.838944257 _2_ MAC  --- 566 tcp 1112 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
s 161.838944281 _1_ MAC  --- 1023 ack 92 [13a 1 0 800] ------- [0:0 4194305:0 30 4194305] [340 0] 0 0
D 161.840245530 _2_ RTR  CBK 566 tcp 1060 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
D 161.840245530 _2_ MAC  --- 566 tcp 1060 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [350 0] 0 0
s 161.840635530 _2_ MAC  --- 567 tcp 1112 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [351 0] 0 0
r 161.841618826 _1_ MAC  --- 567 tcp 1060 [13a 0 1 800] ------- [4194305:0 0:0 32 4194304] [351 0] 1 0
s 161.841628826 _1_ MAC  --- 0 ACK 38 [0 1 0 0]

Difference 
is 0.0024µs
aSlotTime = 20µs

Figure 2.2 NS2 trace file snapshot that demonstrates self-interference between a pair of 
TCP DATA and ACK packets 
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detect a collision when it occurs, but realizes later that the MAC transmission failed when a MAC 

ACK fails to arrive.   

In Figure 2.2, the highlighted lines demonstrate such a situation when two nodes picked the same 

slot to transmit. In this wireless LAN scenario with a single TCP flow, the two nodes are the AP 

and wireless client sending packets (a TCP ACK packet and a TCP DATA packet respectively) to 

each other, and we hence term it as the simultaneous-send problem of TCP over wireless LANs. 

Hence the AP and wireless client send signals to each other in the same 802.11 random backoff 

slot and fail to detect each other�s transmission.  The simulations demonstrated that this problem 

of same-slot selection happened quite frequently with TCP traffic, despite there being only one 

TCP flow.   

This 802.11 MAC shortcoming for popular TCP traffic is a rather puzzling result, since the 

802.11 MAC was specifically designed to extend Internet connectivity over wireless LANs, and 

TCP is the most popular transport protocol on the Internet. This motivated us to explore the core 

aspects of TCP and 802.11 MAC interactions that result in the poor performance. The analysis is 

explained in the next sub-section. 

2.2.2  TCP saturates 802.11 MAC 

The 802.11 MAC is designed to operate optimally for traffic that is Poisson-distributed, where 

packets to be sent arrive randomly and uncorrelated to each other at the MAC entities in a 

neighborhood. The arrivals are expected to have exponential inter-arrival times and that do not 

operate the MAC in saturation.  We show in this section that TCP traffic is in fact quite the 

contrary � the traffic arrives in bursts and hence does not have exponential inter-arrival times, and 

this invariably operates the MAC in saturation, even while there is a single TCP flow over the 

wireless LAN.   

The TCP sender generates data in bursts because of its window-based operation. When there is no 

loss, each incoming ACK triggers one or more segments to be sent. When a cumulative ACK 
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Figure 2.3: TCP self-interference over wireless LANs 
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arrives that acknowledges multiple segments, there could be a large burst of packets sent by the 

TCP sender to the link layer below.  

When the link is a �wire� such as switched Ethernet, the packets are transmitted immediately, 

with little MAC overhead. On the other hand, 802.11 DCF-MAC is a stop-and-wait protocol that 

for each packet, first contends for channel access, sends the packet with significant MAC and Phy 

overheads, and then waits for a MAC ACK to confirm its reception. If the MAC ACK fails to 

arrive and MAC retries are enabled, the MAC retransmits the lost packet again and again until it 

succeeds. If a new TCP ACK arrives at this time (remember that nodes contend independent of 

each other for channel access and so the AP may send a TCP ACK irrespective of the sending 

situation at the wireless client), the TCP sender sends more segments down, even as the previous 

burst of packets are not yet sent.  The effect of these packet bursts is hence to cause a sustained 

occupancy of the MAC send queue. This causes the MAC to operate in saturation, consistently 

contending for channel access to send packets. A consistent supply of packets occurs even at the 

MAC in the Access Point (AP), since in default TCP sink implementation one ACK is generated 

for every incoming DATA packet.  

We derived the same-slot selection likelihood with saturating traffic in Section 2.2.1. Particularly 

when there is a single TCP flow operating, there are two nodes with saturating traffic contending 

for channel access. Here the likelihood of the same slot being selected by both nodes among CW 

slots available is simply (1/CW)*(1/CW)*CW. For the default contention window size 

CW=CWmin=32, the likelihood is 3%. For three nodes the likelihood is 17.6% from Equation 

(1). With these observations, we differ from Kamerman and Aben [55] who state that with TCP 

traffic the likelihood of two nodes selecting the same slot is miniscule. 

Our insights are confirmed by the NS2 simulation trace of a TCP-Reno flow depicted in Figure 

2.3. It captures the operation of TCP over 802.11 MAC in a wireless LAN. The TCP congestion 

window size (cwnd) in this state is 15 segments. A vertical cross section at any point shows at 

least one TCP packet waiting to be sent by the 802.11 MAC. This confirms our hypothesis of the 

802.11 MAC operating in saturation with TCP traffic. The figure also demonstrates the 

simultaneous-send problem (losses at instants A, B and C in the figure) where the AP and 

wireless TCP data source send to each other within the same back-off slot and neither node 

detects the transmission. We have referred to this same phenomenon as TCP self-interference 

elsewhere in this document. 

Another effect happens during the slow-start mode of TCP operation - the sender sends multiple 

DATA segments in response to an incoming ACK [3]. When ACKs arrive in quick succession, 
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they result in a large burst of DATA packets at the sender-side MAC. If there is insufficient 

sending queue buffer in the MAC interface and the TCP burst size is not curtailed, there could be 

significant loss within the same node of the TCP sender at the MAC interface. This is a common 

reason for poor TCP performance in NS2 simulations. However in real-world implementation of 

TCP over 802.11 MAC, this problem of interface queue overflow seldom occurs because of the 

controlling role of the kernel or Operating System (OS) [4]. The OS forms the liaison between the 

TCP socket buffer and the interface queue. It moves a packet between them only when the 

interface sets an �available� flag. Most commonly the send operation in the TCP sender is 

implemented in a �blocking mode�, and hence the sender is blocked from sending more packets 

down until the OS has sent packets to the interface to make more space in the TCP socket buffer. 

Coming back to TCP performance during self-interference, the simulation results showed the 

bulk throughput for a TCP-Reno flow to be about 1Mbps during a 1 Megabyte file transfer 

without MAC retries. When MAC retries were used, the self-interference losses are recovered by 

the MAC and the throughput increased to 2Mbps. On the other hand, the goodput of a saturating 

UDP flow was consistently at 5Mbps (of course, no losses because there was no feedback traffic). 

So for no MAC retries, TCP experienced 80% degradation in throughput for a mere 3% loss rate 

due to self-interference.  

The instantaneous received rate plot of TCP-Reno depicted in Figure 2.3, shows why there is 

such a low TCP throughput. There are several durations of zero received rate at the TCP receiver, 

despite there being full bandwidth available in the link. Further, the peak received rate of TCP is 

just 70% of the available bandwidth. Clearly it is these reasons that cause the bulk throughput to 

be just 20% of the available bandwidth. This curious observation, motivated us to examine the 
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Figure 2.4: Instantaneous TCP-Reno received rate (NS2 simulations) 
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dynamics of TCP operation, to explain the core reasons why self-interference causes such 

degradation in TCP performance. The results are described in the next section.  

2.3  TCP Dynamics over 802.11 wireless LANs 

We conducted a detailed examination of the NS2 traces to understand the reasons behind the TCP 

performance of Figure 2.4. First, there were several fixed length intervals of zero received rates. 

Then, TCP throughput peaked at 3.5Mbps instead of the 5 Mbps of the UDP flow (available 

bandwidth plot). There was another fixed length interval with non-zero rate, but fixed and low 

TCP throughput.  

Our analysis of lead to examining the dynamics of various TCP versions and the following 

insights were derived as a result:   

(a) The peak TCP throughput is limited because of bandwidth sharing with the TCP ACK 

packets. 

(b) Poor Reno performance: Losses due to self-interference often occur in quick succession 

(before the first loss is perceived by TCP sender). This results in multiple losses in a TCP 

congestion window. Reno's congestion-control is known to deadlock in such situations [72]. In 

Figure 2.4, the six "flat goodput" intervals result from deadlocks that end in timeouts.  

Overhead Duration (µs) 

DIFS 50 

Average duration of random backoff for min. MAC  
contention window 310 

Physical layer: short Preamble(144bits/2Mbps) +        
   PLCP header (48bits/2Mbps) 96 

MAC header + FCS duration (8*34bytes/11Mbps) 24.73 

LLC + IP headers (8*(8+8)bytes/11Mbps) 11.64 

Time taken by Additional SIFS + MAC-ACK,  
after successful delivery of the Layer-4 packet 10 + 304 = 314 

40-byte TCP Header duration (40*8 bits/11Mbps) 
= 40 byte TCP-ACK duration  29.1 

Total Overhead time for each Layer-4 packet (TACK) 835.47 

Duration of 1000-byte TCP data segment (TDATA) 
(1000*8 bits/11 Mbps) 727.28 

Table 2.1: 802.11 overheads incurred by a TCP packet 
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(c) Poor NewReno performance: NewReno, an enhancement to TCP-Reno to recover multiple 

packets in a congestion window, in turn deadlocks when retransmissions are lost. Self-

interference increases this likelihood, even during fast-recovery. 

(d) Tahoe outperforms Reno, and in some cases, NewReno:  TCP Tahoe, an earlier less optimized 

version of TCP gains in throughput over Reno and NewReno because of fewer deadlocks (that 

end in timeouts) in the self-interference scenarios.  

We explain each of these aspects in detail in the sub sections below.  

2.3.1  The Cost of TCP Acknowledgements 

The TCP ACKs have two effects on performance over wireless LANs.  First, they consume a 

portion of the link bandwidth at the cost of DATA packets, since the wireless link is not duplex � 

only one of TCP DATA or ACK packets can traverse it at a given time. Second, ACKs result in 

the loss of DATA packets due to simultaneous-send issues. We explore these aspects in detail 

below.  

2.3.1.1 TCP-ACKs are expensive 

A TCP-ACK comprises of 40 bytes of TCP header (without additional options). However various 

time overheads in MAC and Physical layers causes it to consume a significant portion of channel 

time. Table 3.1 specifies the various overheads for 11 Mbps channel rate (802.11b). Following is 

the average time consumed transmitting a TCP data/ACK (assuming previous transmission was 

successful): 

TPACKET = TDIFS + TPHY_PREAMBLE, HDRS + TMAC_BACKOFF, HDRS  

                          + TSIFS, MAC-ACK + TIP_HDR + TTCP_HDR  

                             + TDATA                                                                                                                          (1) 
 

                = TACK + TDATA 

where TACK is the total time taken to transmit a TCP-ACK, given the same header size in TCP 

data and ACK packets. DIFS and SIFS are the Distributed and Slot Inter-Frame-Spaces 

respectively introduced by the MAC layer Each TCP packet (data/ACK) incurs an average 

overhead of 806.37µs and constitute 99.7% of the channel time consumed by a TCP-ACK 

packet. 

The bandwidth consumed by n ACKs in a unit interval i, at the expense of data packets may be 

calculated as follows: 
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Number of data packets that could have been sent: k    = n * TACK / (TDATA + TACK)                (2) 

Lost bandwidth                                                               = ( k*1000*8)  / i  bits/sec                  (3) 

The frequency of TCP-ACKs in each unit interval in the course of the 1MB file transfer is shown 

in Figure 2.5. At peak operation, the number of returning ACKs is also at its peak - an average of 

40 ACKs in a 0.1 second interval. At this time, the lost bandwidth from equations (2) and (3) is 

1.47 Mbps. In Figure 2 this number matches the difference between TCP's peak instantaneous 

throughput and the available bandwidth, corroborating the ill-effects of self-interference on TCP 

throughput. A more expensive effect however is packet loss that triggers congestion control in 

TCP. 

2.3.1.2 Packet loss due to self-interference 

In Figure 2.5, when the throughput is at its peak, the number of returning ACKs is also at its 

peak. The dynamics of TCP and 802.11 MAC during this time is depicted in Figure 2.2. It 

demonstrates the situations when self-interference results in three MAC collisions in quick 

succession of each other (instants A, B and C), before TCP-sender detects the first loss. Hence all 

the losses occur within a single congestion window (15 segments at this time). 

A vertical cross section between a TCP and MAC process (in Figure 2.2) shows how many 

packets are waiting in the MAC queue (an indirect conclusion on the AP side). Clearly with a 

consistent supply of TCP packets, the MAC operates in saturation. We showed earlier that the 

collision likelihood in this MAC situation is 3% [3]. 

TCP sender detects a loss (the first one) only when three duplicate ACKs arrive. It then scales 

down the congestion window (and hence the sending rate) despite a high bandwidth availability 

in the wireless link at that instant. We show in the next section that the situation of multiple losses 
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Figure 2.5: Number of TCP ACKs received compared to the data bytes 
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in a congestion window, often leads to timeouts in Reno and NewReno, that are a lot more 

expensive in terms of lost throughput than the mere loss of data packets. 

2.3.2  Tahoe Outperforms Reno in 802.11 Wireless Links 

Tahoe, Reno and NewReno operate identically in the normal operation mode (no losses), but 

differ in their congestion control algorithms. Figures 2.6, 2.7 and 2.8 depict congestion control 

algorithms of Reno, NewReno and Tahoe respectively, triggered in response to multiple losses of 

Figure 3.2. All three versions implement fast-retransmit where the segment is retransmitted upon 

three duplicate ACKs. (They also implement limited-transmit (RFC 3042) , where the first and 

second duplicate ACKs trigger transmission of up to two data segments over the congestion 

window.). They differ in how they adjust the congestion window after fast-retransmit 

Tahoe scales it down to 1 segment, forgetting all about higher sequence number segments that 

were already sent (at instant A in Figure 3.8). No more packets are sent until an ACK arrives 

confirming the retransmitted packet. Normal operation subsequently resumes in slow-start mode. 

Reno and NewReno cut down congestion window in half after fast-retransmit (at instant A in 

Figures 2.6 and 2.7) and "fill the pipe" with new data packets until a new ACK arrives. This is the 

fast-recovery mode of operation where the congestion window is incremented by one segment for 

each duplicate ACK. New packets are sent when congestion window exceeds the number of 

already outstanding packets 

Reno exits fast-recovery and resumes normal operation when the first non-duplicate ACK arrives 

recovering from the first loss. In case of multiple losses (before instant A),  Reno's fast-recovery 

ends when there are more outstanding packets than the congestion window (at instant B in 2.6). 

The congestion window is cut down further when recovering from the subsequent losses. In 

Figure 2.6, Reno enters congestion control to recover the 2nd loss at instant C, and exits at instant 

D. Since the congestion window is small, no new packets are sent between instants B and D. 

Subsequently there are no more ACKs and the deadlock situation results at instant D. It ends in a 

timeout. 
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Figure 2.6: Congestion Control in TCP-Reno following multiple losses of Figure 3.2 
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Figure 2.7: Congestion control in NewReno following multiple  losses of Figure 3.2 
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To overcome the deadlock, NewReno [72] continues in fast-recovery until all losses (that 

occurred before instant A in Figure 2.7) are recovered. The segment is retransmitted when the 

first ACK indicating it arrives (at instant B). The congestion window is halved after each 

retransmission. NewReno recovers all losses if and only if all retransmissions are successful. A 

timeout occurs otherwise. Figure 2.7 depicts a deadlock situation that occurs in NewReno when a 

packet retransmitted during fast-recovery is lost (packet #102 at instant C).  Subsequent duplicate 

ACKs grow the congestion window, but this not sufficient to send new data packets. With no 

more data packets, no ACKs are triggered and a deadlock situation occurs (at instant D in Figure 

2.7) 

The comparison of instantaneous goodputs of Tahoe, Reno and NewReno in the course of the 

1MB file transfer in the said wireless scenario is depicted in Figure 2.9. Despite being the least 

optimized version of TCP, Tahoe completes the file transfer in a significantly shorter time 

compared to Reno and NewReno and the dynamics reveal the following insights: 

• Reno suffers multiple timeouts: With the frequent occurrence of multiple losses in a TCP 

congestion window, Reno deadlocks several times that end in timeouts. The 1-second duration of 

each interval is due to the minimum retransmission timeout setting (minrto_ ) 

• NewReno also suffers multiple timeouts: During fast-recovery, NewReno sustains a "full 

transmission pipe" by sending new packets. Thus the probability of self-interference is still large 

during fast-recovery. In the example of Figure 2.9, deadlock situations occur three times in the 

course of the 1MB file transfer, and end in timeouts (after minrto_ of 1 sec).  They all occur due 

to loss of the first retransmission, or of one of the packets sent during fast recovery 

• A low throughput is sustained in Reno/NewReno in some timeout intervals: Figure 2.7 

captures the dynamics of TCP NewReno/Reno the scenario when the retransmission at the start of 

congestion control is lost (at instant B). Despite this, duplicate ACKs #333 sustain the growth of 
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the congestion window, and consistently trigger new data segments. In this example congestion 

window and the number of outstanding packets reach 154 segments at the end of fast-recovery. 

With a single packet in transit at a time, the likelihood of self-interference diminishes to zero. But 

with stop-and-wait approach during this interval, the goodput drops to a minimum.  In Figure 2.9, 

Reno starting at 4.4 seconds, and NewReno at 1.9 and 3.3 seconds experience this situation 

• Tahoe outperforms Reno. Outperforms NewReno considerably for minrto_ = 1 second. Tahoe 

operation following multiple losses in a congestion window is depicted in Figure 2.8. By not 

implementing fast-recovery and resuming operation in slow-start soon after fast-retransmit (at 

instant A), Tahoe reduces the loss likelihood due to self-interference, improving the resilience to 

loss recovery. Several duplicate transmissions of data segments could ensue. But Tahoe does not 

deadlock and timeout as long as the retransmission is successful. Hence the likelihood of a 

deadlock in Tahoe is far lower than in Reno and NewReno. Tahoe's gain in goodput during the 

additional timeout periods of Reno and NewReno offsets the bandwidth wasted by redundant 

retransmissions and the lack of "pipe-filling" during loss recovery 

 

2.3.3  Effect of  minrto_ on TCP Performance 

In the wireless LAN scenario considered here, the round-trip time fluctuated between 7 and 30 

milliseconds. RFC 2988 [73] stipulates a minimum timeout duration (minrto_ in NS2) of 1 

second. This was to avoid spurious timeouts and retransmissions in TCP in wired nets with large 

fluctuating round trip times.  In our scenario, Reno and NewReno both waste several 1-second 

intervals in a deadlock before the timeout occurs and resumes the sending rate.  

 More recent TCP implementations set minrto_ to 0.2 seconds. Figure 2.10 compares the net 

throughputs of Reno, NewReno and Tahoe for various minrto_ settings. minrto_= 0 implies that 

the retransmission timeout duration is completely based on the estimated round-trip time.  With 
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Figure 2.10: Performance of various TCP flavors for different minrto_ settings 
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these settings, Reno and NewReno still experience the same number of timeouts but gain in 

throughput because of the shorter time spent in deadlock, and Tahoe's gain over Reno and 

NewReno diminishes. 

2.3.4  Related Work 

All TCP enhancements proposed for wireless networks, are extensions of either TCP-Reno or 

TCP-NewReno. To the best of our knowledge ours is the first attempt to investigate the dynamics 

of operation of different TCP versions in an 802.11 scenario. 

The enhancement protocols may be clearly categorized into those for cellular networks and those 

for multi-hop 802.11 networks. Cellular networks however do not operate in a shared medium, 

and hence do not suffer the MAC problem. Some papers addressing TCP in multi-hop wireless 

have proposed limiting the congestion window in decreasing proportion to the number of hops, to 

reduce interference [25]. But this drastically limits TCP throughput in the multi-hop scenario, and 

the available bandwidth will be underutilized. 

2.3.5  Summary 

In this section we delved into the dynamics of TCP operation to explain the reason why TCP 

performs poorly when affected by merely 3% losses due to self-interference in a wireless LAN. 

We simulated various flavors of TCP and found that the problem was due to the incompatible 

operation of the popular fast-recovery algorithm in 802.11 wireless links. Fast-recovery greatly 

improves TCP performance in wired nets by maintaining a nominal sending rate while a lost 

packet is being recovered. However for shared medium 802.11 links, this operation of fast-

recovery introduces relatively high likelihood of packet loss because self-interference continues 

to happen at the same rate. Losses in this period cause a deadlock situation that finally ends in a 

timeout. We traced the packet dynamics of TCP-Reno and TCP-NewReno that implement fast-

recovery, to demonstrate these derogatory effects. Then for comparison, we analyzed the 

dynamics of TCP-Tahoe that does not implement fast-recovery and showed that it undergoes 

fewer deadlock situations and timeouts and hence gains significantly in throughput.  

Basically, here we have exposed the TCP problem that its positive acknowledgements interfere 

with the DATA packets and degrade performance. The problem would reduce if there were fewer 

acknowledgements interfering with the TCP DATA packets. In the next section we describe a 

simple TCP modification we implemented and evaluated to reduce ACKs and hence alleviate the 

self-interference problem. 
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2.4   �Skip-ACKs� modification to TCP 

TCP acknowledgements are cumulative in nature, that is, an ACK for byte i implies that all bytes 

until (i-1) are correctly received (in the TCP implementation in NS2 simulator the ACK for i 

implies all segments including i are correctly received). We capitalized on this cumulative nature 

and introduced ACK skipping to reduce the number of ACKs traversing the 802.11 link, and 

hence reduce self-interference.  

2.4.1  Protocol Description and details 

The �ACK-skipping� algorithm is rather simple and is implemented at the receiver. In the normal 

mode of operation where DATA packets are arriving in sequence, the TCP receiver skips sending 

ACKs. Say the number of ACKs to skip is k, the receiver only sends the first of (k+1) ACKs. 

Two tracking variables are introduced at the receiver - one maintains the number of ACKs to skip 

(k), and another maintains the sequence number of the last ACK sent (prevACK). The ACK 

sequence number is incremented every time one is generated, and the skip decision is made only 

at the final sending step at the receiver. An ACK is sent only if currentACK > prevACK + k;   

To allow the congestion window to stabilize, ACK skipping is set to start only after TCP 

sequence number crosses a threshold (chosen as 50 here by trial and error).   

ACKs were not skipped when duplicate ACKs were to be sent, or a received data packet was out 

of order (indicative of a possible loss). These measures were taken to ensure that the ACK-skip 

modification did not interfere with TCP�s default error control algorithms.  Further, ACK 

skipping started only after the received DATA sequence number reached a certain threshold (set 

to 50 here) since in slow-start mode, the flow rate depends on the number of ACK segments 

received. 

Skipping alternate ACKs reduces traffic load at the AP by a factor of two and the AP contends 

half as much for channel access. This reduces interference with data packets, hence improving 

TCP throughput. However, TCP throughput is directly related to the growth of TCP congestion 

window, which in turn depends on regular arrival of TCP ACKs. Thus skipping too many ACKs 

impedes cwnd growth and curtails TCP throughput. Simulation and experimental results given in 

the next two sections confirm this insight.   

2.4.2  Evaluation Methodology 

This protocol was validated in NS2 simulations and also implemented in the ORBIT wireless test-

bed. The following traffic parameters for both simulations and experimentation: 
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1. Length of TCP flow  

2. MAC retries  

3. Number of ACKs skipped  

4. Number of simultaneous flows.   

Below we present some details of simulation and ORBIT implementation, but most of the detail 

is in the Appendix.  

Details of NS2 simulations: Long-lived (short-lived) TCP connections are set up with 10MB 

(1MB) file transfers using the File Transfer Protocol (FTP). Each TCP throughput value 

published here is an average of 5 runs, obtained by varying FTP start times.  TCP Reno is used in 

all experiments with the duplicate ACK parameter set to 3. Further details of setup are in 

Appendix section 6.2. 

Details of ORBIT test-bed experiments: To reflect short-lived and long lived TCP flows, file sizes 

of 100kB and 6MB are used respectively. Home-grown TCP traffic generators � tcptest for TCP 

and NPM for UDP are used to generate traffic and collect instantaneous throughput traces in 

various scenarios. Details of experiment setup are described in Appendix Section 6.3 

2.4.3  Performance of TCP with �skip-ACKs� 

Here we will describe the NS2 simulation results and ORBIT test-bed implementation results 

separately, and then summarize the overall performance of the protocol enhancement. 
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2.4.3.1 NS2 simulations 

The various results are depicted in Figures 2.11 � 2.15. Skipping TCP ACKs is found to indeed 

improve TCP throughput for most scenarios. All scenarios gain from skipping at least 1 ACK. 

Figure 3.11 compares TCP throughput of long-lived TCP connections in the absence of MAC 

retries for different link delays with increasing ACK skips. Since there isn�t a significant 

difference in performance for different delays, we explain results obtained with 2ms link delay.  

Figures 2.12 � 2.15 depict the main results. We explain performance observed with single and 

multiple flows, short-lived and long-lived flows, and with and without MAC retries. 

A. Case with a Single TCP flow 

The results in Figures 2.12 and 2.13 show that with no MAC retries, and default TCP 

implementation of one ACK per DATA packet, TCP achieves a meager throughput of around 

1Mbps with both short-lived and long lived flows. One ACK skip almost doubles the throughput 

(98% gain) for both short-lived and long lived flows. This is because the reduced MAC traffic 

simply cuts MAC interference in half reducing the bandwidth consumed by the ACKs, and more 

importantly reduces MAC interference losses. For higher ACK skips, many sessions failed to 

complete despite a long simulation time. This can be explained from a combination of two effects 

� TCP congestion window starving from lack of regular TCP ACKs as well as the loss of 

cumulative ACKs due to MAC failures. Multiple timeouts severely reduce TCP throughput.  

With MAC retries, the 3% loss rate due to self-interference is handled by the MAC itself. The 

throughput gains are because ACK skipping reduces the rate of increase of packet bursts sent by 

TCP to the MAC layer. We observed that TCP throughput degradation with MAC retries 

occurred mostly from overflow of interface queue at the TCP sender node during the slow-start 

mode of operation. Results depicted in Figures 2.14 and 2.15 show consistent throughput gain 

with ACK skipping. The gains in throughput are curiously due to TCP dynamics during slow-

start. With no ACK skipping, the cwnd grows exponentially in slow start mode. Because of the 

stop-and-wait simplex characteristic of the 802.11 link, data packets are held up in the interface 

send queue and a large burst of TCP data packets could cause a queue overflow. When ACKs are 

skipped, cwnd experiences slower growth because of the reduced number of incoming ACK 

segments. Hence TCP sends smaller bursts of packets, reducing or even eliminating MAC queue 

overflows. This is why we see up to 30% gain in TCP throughput with ACK skipping. 

B. Case with multiple TCP flows 
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Contention among multiple wireless nodes causes collisions in addition to the self-interference 

problem.  Simulations showed that the most common cause of packet loss is a combination of 

both problems. Referring Figure 2.1, Node N1 transmits a TCP data packet to the AP at the same 

time when the AP transmits a packet to node N2. N2 sees a garbled signal due to simultaneous 

signals from N1 and the AP (collision), while the AP fails to detect N1�s transmission 

(simultaneous-send). Thus the AP is found to contend for channel access far more often than 

other nodes. This corroborates our hypothesis that the AP will have many more packets to 

transmit than any one of the other wireless nodes. With MAC retries, ACK skipping results in 

throughput gains for the same reasons explained in the case of a single TCP flow.  

C. Short-lived and Long-lived TCP connections 

Figures 2.12 - 2.15 show that the pattern of throughput improvement is very similar for short-

lived and long-lived TCP connections. They differ only in the extent of their gains. It may be 

inferred that longer the TCP connection, more will be the gain from ACK skipping. TCP 

congestion window achieves steady-state in the long run, when its size is close to the delay-

bandwidth product of the network between source and destination. For the network setup here, it 

would be the product of the average RTT and the net bandwidth available.  However, NS trace 

files show that with packets lost due to MAC contention and queue overflows, the congestion 
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Figure 2.13: Long-lived TCP flow with 

NO MAC retries 

0

0.5

1

1.5

2

2.5

3

Th
ro

ug
hp

ut
 (M

bp
s)

1 flow 2 flows 3 flows

0 ACK skip
1 ACK skip
2 ACK skips
3 ACK skips

 
Figure 2.14: Short-lived TCP flow with 

MAC retries 
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Figure 2.12: Short-lived TCP flow with NO 
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window seldom reaches this steady state. 

In the next section, we evaluate the skip-ACKs modification of TCP in the ORBIT test-bed  

2.4.3.2 ORBIT test-bed implementation 

Numerous research papers have been published in the area of wireless networks. Most of them 

test performance and new protocols with network simulators such as NS2 and OPNET. These 

tools are excellent sandboxes to check correctness and understand the detailed operation of  

protocols. However just this not sufficient validation, since these simulation tools for often fail to 

capture the exact characteristics of the protocol in wireless networks because of the difficulty in 

fully representing the physical medium. NS2 provides a relatively abstract implementation for the 

physical layer of the network stack  thus missing many important PHY level mechanisms such as 

autorate and capture. Further it supports just the basic features of MAC protocols such as IEEE 

802.11, hence making it essential to evaluate protocols by real world experimentation. These 

motivated us to consider evaluation of the skip-ACKs method in the ORBIT test-bed 

The description of testbed setup and parameters are given in the methodology section in an earlier 

section.  

Figures 2.16 - 2.19 present results from the experiments. First it is important to notice that the 

TCP throughput obtained with no adaptation was itself significantly higher than in simulations. 

The primary reason for this discrepancy is from the implementation of the interface queue in 

NS2. With the default setting of 50 packets, TCP packets were lost while in slow-start due to 

MAC queue overflows. This caused timeouts in TCP that significantly degraded overall 

throughput. This phenomenon did not happen while operating real-world TCP, as the operating 

system in the node acted as an intermediary between the TCP socket buffer and the interface 

queue in the network card. The OS delivered a packet from the TCP send-socket-buffer to the 

network interface queue, only when the interface driver set a memory availability flag. If the TCP 

socket buffer was full, no new bytes were accepted from the application (the send() function 

returned an error in the application operating the TCP socket).  
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Since base throughputs in NS simulations differed from those in testbed experiments, we compare 

patterns in gains achieved rather than the actual gains themselves.  

 

 

A. Case of enabled MAC retries 

The Atheros cards had a default MAC retry setting of 16 that could not be changed. Hence that 

value was used even with Cisco cards. On the other hand, the maximum retries used in NS 

simulations was 8. 

Just as in simulations, ACK skipping consistently improved TCP throughput (in this case with 

MAC retries) even with multiple simultaneous flows. MAC retransmissions were tracked by 

means of standalone sniffers. These sniffers comprised of Atheros cards in monitor mode and the 

tcpdump software. The particular gain patterns for short lived and long lived flows differed from 

those of NS simulations. This was probably due to the NS2 artifact of interface queue overflows 

during TCP slow start, something that did not occur in real experiments. The throughput gain in 
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real experiments seemed to come directly from reduced MAC contention due to fewer TCP ACK 

packets.   

Long lived flows saw consistent throughput gain even with 3 skipped ACKs, whereas the gain 

dropped with such high ACK skips for short-lived flows. This could be because short-lived flows 

spent a higher percentage of their operation in slow start mode. In this mode, increase in TCP 

congestion window was proportional to the actual number of incoming ACK segments, even if 

they were cumulative ACKs. In the congestion-avoidance mode on the other hand, increase in 

congestion window was proportional to the number of data segments acknowledged. With three 

or more ACKs skipped, short-lived flows experienced ACK starving and hence had reduced 

throughput.  

Overall, ACK skipping helped the case with MAC retries. Both short-lived and long-lived flows 

gain from this adaptation. 

B.  Case of disabled MAC retries 

We reiterate that it was not possible to produce the case when MAC retries were completely 

disabled in the wireless infrastructure network, as this feature was not supported in Atheros cards 

that were used for AP. However MAC retries could be disabled in non-AP wireless nodes where 

Cisco cards were used. For the traffic scenario considered, this meant that MAC retries were 

disabled for TCP data segments, while the TCP ACK segments that were relayed by the AP 

enjoyed MAC retries. This was also confirmed with a standalone sniffer (Described above). In liu 

of this, results from simulations and experiments for this case cannot be compared.  

From these results we infer that ACK skipping was more favorable for long lived rather than for 

short-lived flows, when MAC retransmissions were available only for TCP ACK packets.  

C. Other observations 

The graphs indicate that for the default case with no ACK skips, TCP throughput was better with 

no MAC retries for TCP data segments than with MAC retries. This could be because link layer 

retransmissions produce variations in RTT for TCP, reducing its performance. This could 

possibly imply that TCP does a far better job handling MAC congestion by itself rather than with 

link layer retransmissions. This observation requires further study. 

There was much better channel utilization with multiple simultaneous flows that with a single 

flow. This can be explained as due to the 802.11 backoff overhead. The 802.11 DCF backoff 

mechanism caused an average overhead of 300ms. With a few flows this overhead reduced as 
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contention slots were staggered. When the likelihood of same slot selection was still reasonably 

small, there was a throughput improvement. However as the number of flows increased, the 

likelihood of same slot selection also increased, resulting in more MAC failures and subsequent 

degradation in throughput.  

2.4.3.3 Summary of observations with �Skip-ACKs� TCP modification 

Results in both simulations and test-bed experiments demonstrated consistent gains with ACK-

skipping over default TCP [3][4]. The simulation results capture the case without MAC retries. 

Here one ACK skip produced the highest gains, while higher ACK skips degraded throughput 

since TCP flow control depends on the regular pace of returning ACKs.  Higher ACK skips also 

placed a heavy burden on the occasional ACKs and their loss caused premature timeouts in the 

sender that in turn degraded throughput. With MAC retries, ACK skipping helped consistently. 

The highest gains were seen with a single long-lived flow in both NS2 simulations and ORBIT 

test-bed evaluation.  

The single flow results confirm our hypothesis of significant throughput degradation with a 3% 

loss likelihood. Without MAC retries, TCP itself experienced the 3% loss rate and scaled back its 

sending rate. A single ACK skip produces significant gains because of lesser interference to 

DATA packets. When MAC retries were used, the 802.11 losses were �hidden� from TCP.  The 

consistent throughput gain with ACK skipping was because of a controlled flow rate increase 

with fewer ACKs during slow-start. This reduced the packet bursts within the sender node, 

causing fewer overflows at the MAC send queue. 

With multiple flows, cross-interference dominated over self-interference issues. In the topology 

we considered, there were more wireless nodes contending for the channel and the AP contended 

to relay all the TCP ACKs to the respective TCP source nodes.  Skipping 1 ACK (in all flows) 

reduced the AP transmission load in half, causing the AP to contend less often for channel access, 

and hence reduces collisions due to ACKs. But since ACK skipping only reduced interference 

from the AP traffic, the overall gains with ACK skipping diminished with multiple TCP flows. 

Considering all these gains, it is evident that self-interference in TCP over wireless LANs, cannot 

easily be mitigated because of its tightly intertwined error and flow control mechanisms. Here the 

window-based flow control algorithm is �clocked� by the positive acknowledgement, and hence 

heavily depends on their pace.  

While MAC retries could hide the interference losses from TCP, they could result in delay-

variance that could also degrade TCP throughput. Chun and Ramjee[1] observed this effect in the 
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context of 3G channel scheduling in cellular networks. We demonstrate these effects in detail in 

the multi-hop scenario with both UDP and TCP performance in a fluctuating noise scenario. 

These problems are occurring because of TCP sender�s heavy dependence on regularly arriving 

ACKs for flow control. We show in the next section that this combined operation of flow control 

and error control algorithms, results in very poor TCP performance for time-varying noise in the 

802.11 link.          

2.5  TCP Performance in time-varying noise scenarios 

We began the evaluation with emulation of such an environment on the ORBIT wireless test-bed 

and then created the same scenarios in NS2 simulations.  

2.5.1  ORBIT test-bed experiments 

Setting up a fluctuating noise-prone environment was a significant challenge on the ORBIT test-

bed. We will first describe the methodology for setup and then explain performance results.  

2.5.1.1 Experiment methodology 

In the ORBIT 64 node test-bed we selected a pair of nodes that were close to one of the noise 

antennae in the grid. We evaluated various noise power levels to obtain a test scenario where 

noise produced partial throughput. However the granularity in the noise injection system was 

relatively course, and either produced full throughput (the noise did not reduce SNR much) or 

produced no throughput (the noise invariably reduced SNR below threshold). So we had to settle 

in for the latter, and introduced on-off noise that had the effect of full bandwidth or zero 

bandwidth link. We wrote a Ruby script to generate a time-varying noise scenario with changes 

every 5 seconds. Lower granularity on-off noise was not consistently available with the web-

based control of the noise generator due to signaling delays.  

When the noise was on, the antennae transmitted random signals that had an additive Gaussian 

noise characteristic. This noise power (transmitted by the signal generator) was selected as -

20dBm. We chose a receiver node close to a noise antenna so as to be able to influence the 

received traffic with random noise.  

We used the tcptest traffic generator (described in Appendix) to transfer a 1MB file over the 

default TCP socket in the Linux 2.6.10 kernel. The tcptest receiver collected traces of bytes 

received in 1-second intervals. Next the NPM traffic generator (described in Appendix) was run 

in the same noise environment and bytes received in 1-second intervals were logged along with 

the full trace of packet sequence number, packet size and received timestamps. NPM was 
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configured to transmit saturating UDP traffic of constant rate and packet size, so that the link was 

always saturated (6Mbps is the available link bandwidth over a 11Mbps physical channel rate). 

The TCP and UDP traces of 1-second interval bytes received were compared to obtain insight 

into the efficiency of TCP operation. 

2.5.1.2 ORBIT test-bed results 

The effect of on-off noise on TCP and UDP throughput in the ORBIT test-bed is depicted in 

Figure 3.20 (same as Figure 1.5 in Chapter 1). The UDP curve shows pulses of good throughput 

opportunities. UDP continues to send packets at the same rate the whole time, but when the noise 

is on, the low SNR causes the receiver to fail to decode most of the received packets. These 

packets (which fail the MAC CRC check) are dropped by the MAC in the interface card, and are 

not seen by the host computer, let alone in the transport layer.  

These low SNR cases also happen with TCP packets resulting in several losses. However unlike 

UDP that does not have any flow control, TCP with flow control scales back its sending rate in 

response to the losses. This causes TCP to not use multiple �noise-free� opportunities of the 

channel. TCP is also very slow to adapt after the channel returns to normalcy (takes over 5 

seconds). This demonstrates the shortcoming of TCP�s flow control algorithm over wireless links, 

where the error characteristics can rapidly fluctuate. 

While real-world experimentation provides a proof of concept, it is hard to explore protocol 

operation characteristics here. ORBIT test-bed had other problems of time-granularity for noise, 

etc. Hence we simulated the same ORBIT environment in NS2 simulations to evaluate TCP over 

time-varying links in greater detail. 

2.5.2  NS2 simulations  

2.5.2.1 Methodology 
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Figure 2.20: TCP and UDP performance with 5-second on-off noise in the ORBIT test-bed
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The same wireless LAN topology of Figure 3.1 was used and the same settings were made as 

described in earlier wireless LAN experiments. In addition, random noise in wireless links were 

simulated to have similar effect as in the ORBIT test-bed. We created an AWGN propagation 

model, where for each incoming packet, a random value for noise power is generated using a 

bipolar Normal (Gaussian) random variable of mean 0 and variance set to the noise power value 

(set to 9.3X10-8W for the given results). The slow-varying wireless link is produced by 

introducing the random Gaussian noise in alternate 1-second intervals, and to produce the slow-

varying link, noise is introduced in alternate 0.1-second intervals. TCP-Reno is used for 

evaluation. 

2.5.2.2 NS2 simulation results 

Figures 2.21 and 2.22 show the performance results over slow-varying and fast-varying noise 

conditions simulated in NS2, produced by injecting on-off noise at the wireless receivers. Here 

noise injection causes the channel noise to fluctuate between 0 and 40%. This is evident from the 

UDP received rate plot, which fluctuates between about 5Mbps (when noise if off) and about 

3Mbps (when noise is on).  

TCP performance is similar in both slow and fast-varying noise conditions. It mostly shuts down 

operation when the noise is on, and fails to use the �noise-free channel� opportunities. Self-

interference in the noise-free channel causes spike-like operation of TCP-Reno, and the peak TCP 

throughput is limited to a fraction of the full bandwidth available. 

Certain differences between the ORBIT result and NS2 result need mention. The ORBIT kernel 

uses delayed ACKs that reduce the frequency of ACKs as a result of which the interference to the 

data packets is reduced. Hence TCP instantaneous received rate on OBIT (plotted in Figure 3.20) 

achieves higher peak throughput than in the NS2 simulations.     

It is thus evident that TCP shuts down operation over high error rate links. In literature, this is 

well known TCP behavior, where it performs poorly for error rates higher than 3%. In scenarios 

considered here, the error rates fluctuate between 0 and 40%.  

Again here, the �shut-down� behavior of TCP is because it wrongly interprets the losses as due to 

network congestion, and scales back the flow rate unnecessarily. As losses continue to occur, it 

backs off exponentially several times to allow time for the network to recover from congestion.  
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During this time, it is clear that fails to use the significant bandwidth opportunity still available in 

the link. Note that despite changing noise in the link, the link bandwidth itself remains constant at 

about 5Mbps. The plots of received rate show fluctuations because of changing goodput at the 

transport layer, since corrupted received packets are simply dropped and not sent to the transport 

layer. This �bandwidth-available-despite-loss� is a significant shift in characteristic of the 

wireless link, from traditional wired links for which TCP is optimized. 

While MAC retries could recover losses in the link, they cause large fluctuations in transmit 

delays for each packet. This does not help with time-varying noise, since the significant delay-

variance it introduces will degrade TCP performance significantly.  

In these various sections we have demonstrated that positive acknowledgements of TCP degrade 

its performance over wireless LANs and combined flow control and error control cause limited 

gains with ACK skipping, and poor performance when there is time-varying channel noise.  The 

slow flow rate adaptation of TCP also misses several opportunities of �noise-free� channel 

conditions.       
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Figure 2.21: Instantaneous TCP received rate over a fast-varying wireless link 
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Figure 2.22: Instantaneous TCP received rate over a slow-varying wireless link 
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These observations motivated the design of the CLAP protocol to reduce file transfer delays over 

wireless LANs.  

2.6  Summary 

In this chapter we identified and evaluated the TCP self-interference problem. We showed that 

for a single TCP flow, despite a small likelihood of interference losses (3%), TCP pays a heavy 

price because a popular TCP algorithm (fast-recovery) used during congestion control, aggravates 

self-interference in wireless LANs. A simple �skip ACKs� modification to TCP to reduce ACK 

interference achieves limited gains because of the tight coupling of error and flow control 

algorithms in TCP.   

We showed that this same reason causes TCP to shut down operation in time-varying high loss 

rate scenarios, despite bandwidth being available. Hence overall TCP performs poorly over 

802.11 wireless LANs because of combined error and flow control algorithms and positive 

acknowledgements.  
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Chapter 3                                                                          
Architecture and Design Considerations for Cross Layer Transport 

In this chapter we describe the new cross-layer architecture and the CLAP protocol proposed as a 

general solution for reliable file transfer over wireless networks.   

Various insights gained from TCP and UDP performance in 802.11 networks, are key to the 

design of the CLAP protocol. In general we observed that simple unreliable UDP always �adapts� 

to changing bandwidth, because channel errors do not induce flow rate reduction. On the other 

hand, TCP throughput suffers severely from interference losses, bandwidth changes and high 

error rate links. TCP performs poorly when its own positive acknowledgements cannot correctly 

capture the bandwidth available end-to-end. This situation arises in wireless networks because of 

�link anomalies� that often change the pace of acknowledgements or cause losses. Hence the 

following lessons are derived from an analysis of TCP performance in wireless scenarios:  

(a) Reduce dependence of flow control on positive acknowledgements, since returning 

acknowledgements can often get delayed or lost in wireless networks. 

(b) Minimize dependence on round trip time estimation, since rapidly fluctuating bandwidth in 

802.11 networks also fluctuates round trip time.    

(c) Decouple flow control from error control, since the flow rate has to sustain irrespective of 

losses and thus approach UDP performance.  

(d) Reduce number of feedback packets as much as possible, to minimize self-interference in 

802.11 networks.  

3.1  Design considerations for a transport protocol 

Consider the following brute-force reliable file transfer approach that reduces feedback packets to 

a minimum, and also separates flow control from error control. The sender sends data as UDP 

packets and transfers the entire file over and over again (data carousal) until the confirmation 

arrives that the entire file is received successfully. Assume that the end-to-end bandwidth is 

available by out-of-band means. It may be simple information such as that the transmission is 
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over 802.11b with 11Mbps physical rate that translates to a peak 6Mbps transport layer 

bandwidth in noise-free, interference-free conditions.  The flow control algorithm of the brute-

force protocol is merely to send at a large enough constant bit rate (CBR) (at least 6Mbps in the 

802.11b case) that saturates the route (since assuming single-path routing, the end to end 

bandwidth at any instant, is the bandwidth of the slowest link). The receiver sends an 

acknowledgement only to confirm that all packets in the file are received, and no feedback is sent 

before that. With this approach the wireless requirements are somewhat satisfied. Because of no 

self-interference all the available bandwidth is conserved for the DATA packets, and by sending 

at the peak data rate possible in the network, the full bandwidth is utilized at any time.   

However this approach has various flaws that cause poor performance. Despite using full 

bandwidth, there are too many duplicates (entire file is retransmitted each time) and causes a 

significantly reduction in throughput, since the receiver waits for a long time for legitimate 

packets to arrive. Also because of its overly opportunistic approach to data delivery with a large 

�fixed� CBR rate, queue overflows can occur for many reasons. When there are multiple flows, 

the available bandwidth for a specific flow is much lesser than the offered load of 6Mbps and 

excessive packets are dropped due to queue overflows. These could also lead to unfair queue 

access by some flows. In wireless networks, such queue overflow losses could also occur when 

the link bandwidth is fluctuating and there is a significant difference in the offered load and link 

bandwidth available.  

Hence while it is desirable to achieve UDP-like high-goodput over time-varying links, the 

following objectives are essential to maximize throughput:  

(a)  Design flow control to closely match the slowest-link bandwidth. This would not only 

improve bandwidth utilization, but will also reduce queue overflow losses.   

(b) Design error control algorithm to minimize duplicates while also minimizing self-interference. 

This because duplicate retransmissions consume bandwidth unnecessarily at the cost of 

legitimate data packets. 

  With these insights on transport protocol design, we developed CLAP � Cross Layer Aware 

transport Protocol, with the following design characteristics: 

(a)  Decouple flow control and error control algorithms, so that there is no �unnecessary� scale- 

back of the sending rate in response to a loss, while there is abundant bandwidth available.   
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(b) The flow control algorithm uses supplemental information to estimate bandwidth, to 

compensate for not depending on the feedback packets that are now used only for error control. It 

obtains this supplemental information by leveraging MAC status information.  

(c) The flow control algorithm is rate-based, so that it adapts sending rate quickly (changes every 

observation interval) to new bandwidth reported by the cross-layer report. In comparison, 

window-based algorithms such as in TCP have been found to adapt to averages rather than 

instantaneous changes [11]. 

(d) An error control algorithm that uses aggregate Negative ACKnowledgements (NACKs) to 

minimize self-interference and improve resilience to losses. Various optimizations are introduced 

to minimize duplicates to improve the overall throughput. Key to this improvement is minimizing 

the dependence on round trip time estimation. 

In fact these considerations for CLAP design significantly simplify the transport protocol 

compared to TCP. TCP uses various adaptive timers and states, to jointly manage rate adaptation 

and reliability by means of the congestion control algorithm (In recent times, network congestion 

has dominated receiver-side buffer overload and hence congestion control in TCP has received 

extensive attention). TCP implements various timed algorithms to perceive losses (fast-

retransmit), and scale back the sending rate in proportion to the loss level. The various timers 

depend on accurate round-trip time estimation. CLAP on the other hand uses the information 

already available in lower layers, instead of �guessing� the network status with complex 

algorithms. It only needs constant timers to regularly extract status information and send packets 

at a constant rate in each interval, and the dependence on round-trip time estimates is required 

only on the receiver side towards the end of file transmission, and does not affect the packet 

sending rate.   Key to the simpler transport protocol design lies in cross-layer information.  

Designed to operate without it, TCP uses its own acknowledgements to match the sending rate to 

the delay-bandwidth product of the link. TCP�s window-based AIMD (Additive Increase 

Multiplicative Decrease) algorithm for flow control maintains a sliding-window (called cwnd) 

that is increased additively with incoming ACKs and decreased multiplicatively when there are 

losses. The algorithm is sufficiently complex with an elaborate state machine requiring various 

timers to be maintained to track ACKs, retransmissions etc. On the other hand, CLAP�s flow 

control constitutes only a few lines of code and does not need a state machine for efficient 

operation. Figure 3.1 compares conceptual representations of TCP and CLAP operation.  
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Today�s networks are in fact quite capable of providing status information in the form of an 

�overlay� control plane. Moore�s law has resulted in sufficient processing functionality and 

memory to support cross-layer status extraction.  There is also sufficient bandwidth available 

(~Mbps) to support nominal control overheads due to inter-node status extraction (~kbps).  This 

said, it is important to note that cross-layer techniques can achieve high performance gains only if 

they are implemented with reasonable complexity [51]. However given the infancy of such 

unified cross-layer approaches, there are few mechanisms available in literature to achieve this 

purpose [18].   

Based on these considerations, we developed a Cross-Layer software Framework (CLF) to 

systematically extract intra-node and inter-node status information.  A central status daemon in 

each node maintains general status information for each interface. For intra-node updates, the 

status daemon forms a liaison between status-extracting and status-providing entities in the 

network stack.  For inter-node status updates, the status daemons run a probe-based protocol 

among each other. The protocol is per-flow based with the control overhead increasing with each 

additional flow. However the overhead is nominal at about 3.2kbps/flow for the update frequency 

and other parameters considered in the current implementation.   

In the next two sections, we describe CLAP and CLF in detail. Their evaluation is described in 

Chapters 4 and 5 in single and multi-hop wireless scenarios  

3.2   Cross-Layer Aware transport Protocol (CLAP)  
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Figure 3.1: Decoupling and a systematic cross-layer design simplify transport protocol 

design and implementation 
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CLAP implements procedures for connection establishment and teardown similar to those in 

TCP, to ensure process-to-process communication. To establish the connection, the sender sends 

a SYN_ message including the start sequence number and the total number of DATA packets in 

the file. The CLAP receiver responds with a SYN_ACK_ message to confirm the establishment. 

When the receiver has received all the packets, it sends a FIN_ message to indicate completion. 

The sender sends a FIN_ACK_ message in response, and releases the resources allocated to the 

flow. The receiver waits for a FIN_ACK_ for a specific duration, and if not received by then, 

retransmits a FIN_ a few times before releasing the resources allocated to the flow.  

The reliable transfer of the file over an established connection is handled by CLAP�s flow control 

and error control algorithms. We discuss these in the next two sections describing how CLAP 

adapts its sending rate based on network conditions with its flow control algorithm, and ensures 

reliable delivery of all the packets with its error control algorithm.  

3.2.1  Flow control  

The CLAP sender adapts the packet sending rate to rapid bandwidth changes by leveraging cross-

layer information. It uses status parameters from the MAC layer to estimate instantaneous 

bandwidth and adapts the sending rate in small intervals with a simple rate-based flow control 

algorithm.  

3.2.1.1 Cross-layer parameters to measure instantaneous bandwidth 

Our approach is to learn from link bandwidth measured in a past interval, to decide the packet 

sending rate in the current interval. The idea is to choose an observation interval small enough so 

that changes in link bandwidth can be tracked well. In general, a smaller observation interval 

achieves better adaptation accuracy, since any differences in actual bandwidth and offered load 

are noticed more quickly. In order for CLAP to adapt well, status parameters must be provisioned 

to represent the following information in each observation interval (a) link bandwidth (b) whether 

the link is in saturation (c) If the link is not in saturation, what should be the rate of increase  

(a) link bandwidth: This determines the number of packets that can be sent in a given interval. In 

an 802.11 link it depends on the �net channel time� available for transmission because of 

distributed access, and the �physical channel rate� used to transmit each packet, since there can 

be auto-rate adaptation where the channel rate changes rapidly. A status parameter provisioned to 

represent �link bandwidth� must hence be inclusive of both these factors. Many papers addressing 

QoS in 802.11 links have used �channel busy time� as a measure of bandwidth. However, 

channel busy time is difficult to measure and provision since the time spent by the MAC in 
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random backoff mode for each packet must also be accounted.  For example, for a single node 

serving a saturating UDP flow with 1000-byte packets, the channel appears �busy� only for 54% 

of the time because of various MAC and physical layer overheads (Table 2.1 has the overheads 

for a unicast packet, and Table 7.1 in Appendix section 7.1 has overheads for a multicast packet).  

Hence what is required is an easy-to-measure parameter that provides a precise measure of the 

link capacity in each observation interval.  

Instead we provision a simple MAC outgoing rate parameter to measure link bandwidth. This not 

only captures changing channel access time due to other-node interference, but also represents 

changing physical channel rates since the number of packets sent in an interval is directly 

proportional to the physical channel rate. Further unlike the �channel busy time� parameter, MAC 

outgoing rate is easy to provision, since it merely requires the incrementing of a counter. To 

accommodate the possibility of MAC retries (where the same packet is sent until successful), we 

implemented the counter to increment at the specific location in the program where a new packet 

is considered for transmission, instead of when after the packet is sent.   

(b) A parameter to track link saturation: The MAC outgoing rate depends on the load offered to 

the MAC layer by higher layers. Hence if there is insufficient load, it will fall short of measuring 

the full link capacity. An unsaturated link condition must hence be flagged, so that in subsequent 

intervals, the higher layers can offer a higher load to drive the link to saturation. We introduced 

the MAC underflow indicator to meet this purpose. It is incremented whenever the MAC cannot 

send because of an empty send queue. 

(c) A parameter to indicate how much to increase sending rate: A MAC underflow is an 

indication to the transport protocol to increase its offered load. To help the transport protocol to 

decide by how much, we provisioned an Interface queue space availability parameter that 

indicates the space available in the send queue of the MAC interface in that observation interval 

(in packets). 

 These three MAC parameters are read and reset at the end of each observation interval. Since 

there can be multiple interfaces and possibly multiple CLAP processes in a node, access to these 

status parameters is restricted to be via the cross layer software framework (CLF). CLAP could 

hence extract MAC status parameters from CLF, asynchronous to the CLF-MAC interaction, and 

at its own preferred periodicity (lower than or equal to CLF-MAC periodicity).    

When there are multiple wireless hops in data path, the same three MAC parameters can still be 

used to indicate the net bandwidth in the route, since the net bandwidth is the bandwidth of the 
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slowest link. Hence these MAC parameters are general indicators of instantaneous bandwidth 

end-to-end (assuming single-path routing; additional network layer parameters would be required 

for multi-path routing). In Section 3.3 we describe implementation aspects of status collection 

within (intra-node) and across (inter-node) nodes it is sufficient to collect these same parameters 

in a multi-hop scenario to indicate instantaneous end-to-end bandwidth. 

Next we describe how CLAP uses these MAC status parameters to adapt its flow rate. 

3.2.1.2 CLAP rate adaptation 

CLAP�s flow control algorithm is chosen to be rate-based in order to adapt quickly to changing 

bandwidth, since window-based schemes such as in TCP have been found to adapt much more 

slowly than rate-based schemes [11]. Window-based schemes also send packets in bursts that 

cause transient queue overflows, particularly when there are bandwidth fluctuations (such as the 

result in Figure 4.7(b) in Chapter 3). The problem arises because of a significant difference in the 

offered load and the link capacity.    

The CLAP sender uses status updates of the three MAC status parameters to decide its sending 

rate in each interval. The sending rate must be sampled more frequently than the rate of change of 

the link, so that bandwidth fluctuations are tracked accurately. In the current implementation, the 

sampling rate is fixed to 10 times/second, and is found sufficient for the fluctuating bandwidth 

scenarios considered (in Chapter 4 in the context of multi-hop wireless scenarios).  

The CLAP sending rate in a given observation interval is decided as follows:  
If (MAC underflow indicator ==0),  
           CLAP sending rate = MAC outgoing rate. 
else  
           CLAP sending rate = 0.5*Interface queue availability 

CLAP sends packets at a constant rate instead of in bursts, so as to minimize any MAC interface 

queue overflows. When there is an underflow, CLAP sends half the available queue space in 

order to be fair to other flows.  This value �0.5� is heuristically chosen and achieves quick rate 

increase, while still maintaining fairness among multiple flows. 
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 Implementation details: The CLAP packet format is depicted in Figure 3.2. It contains a source 

port and destination port (src port and dst port) fields to uniquely identify a connection, and to 

satisfy the basic process multiplexing functionality of a transport protocol. 

The sequence number field is used to identify each DATA packet uniquely. The payload length 

field is used to indicate the number of DATA bytes in the packet. The flags field is currently used 

only to indicate SYN_ and FIN_ messages, but may be extended for future use.  

The current CLAP implementation only supports one-way data transfer in a given connection (as 

compared to two-way data transfer supported by Full-TCP)  

The sender fills the timestamp field with the instant at which the data packet was generated. In the 

timestamp-echo field, the sender enters the timestamp of the latest feedback received from the 

CLAP receiver. These timestamp and timestamp fields are provisioned for future use, possibly to 

derive rough estimates of the round trip time.   

Two timers are introduced for flow control, one to periodically extract MAC status updates, and 

another to send at a uniform packet rate in each interval. If an update is stale (older than 2 

observation intervals), CLAP uses the local MAC status values.  

Overall the CLAP flow control algorithm is rather simple compared to TCP, since the bandwidth 

estimation aspect is significantly simplified by using cross-layer status information.   

3.2.2  Error Control in CLAP 

CLAP�s error control algorithm is designed to minimize self-interference and duplicate 

retransmissions. The CLAP receiver generates aggregate Negative ACKnowledgements (NACKs) 

to report the receipt status of a sequence of packets. Self-interference is minimized by reducing 

the number of NACKs and increasing each NACK information. Each NACK reports a sequence 

Src Port Dest port

Sequence number

Data or NACK bitmap

31240 16

Payload Length 

Flags

NACK number

timestamp

timestamp echo

~~

 
Figure 3.2: CLAP Packet format 
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that is at least nack_threshold_ long. Such an aggregate feedback method is also used in RMTP 

for bulk transfer [60].   

We implemented two error control algorithms namely, CLAP-beta and CLAP-final that we 

describe in the next two sub-sections. They differ in the type of NACKs used.  CLAP-final 

significantly reduces duplicate retransmissions compared to CLAP-beta, and hence improves 

overall throughput.  

3.2.2.1 CLAP-beta 

Here NACKs are sent at regular intervals to report all missing packets up to the highest sequence 

number received. NACKs are triggered when there is at least a nack_threshold_ difference 

between a lost packet and the latest one received. However, the number of NACKs is restricted to 

one in each interval to allow sufficient time for the retransmissions to arrive at the receiver. 

Further at least one NACK is generated in a given maximum period, to ensure that the sender 

receives at least one feedback notifying the receipt status of DATA packets so that it may purge 

its buffers of successful packets. Hence in all these NACKs are sent periodically and are therefore 

known as periodic-NACKs. They also serve to resolve deadlock situations. One example of a 

deadlock that occurs without periodic-NACKs is when the sender has finished sending all new 

packets and is waiting for feedback to retransmit missing packets, while the receiver has lost a 

burst of packets towards the end of the file and there is no trigger to generate a NACK.  Details of 

various design aspects of periodic-NACKs are presented in the Appendix Section 7.6.  

However, periodic-NACKs could cause bandwidth underutilization when sent infrequently, or 

result in too many duplicates when sent too often because of overlapping information in adjacent 

NACKs. For example, in one high-loss scenario with fluctuating error rates and multiple wireless 

hops, periodic-NACKs sent much sooner than a round-trip time resulted in over 60% overhead 

due to duplicates. Not only do they cause bandwidth wastage, they also block queues and result in 

long delays for legitimate packets.  On the other hand, when NACKs were sent too sparsely (i.e. 

the NACK interval is much larger than the actual round trip time), the bandwidth could be 

underutilized because of slow feedback at the sender informing of missing packets. An approach 

to alleviate this problem could be to introduce sophisticated round trip time estimation techniques 

similar to TCP to pace the rate of periodic NACKs generated by the receiver. But TCP 

performance is itself proof that such techniques could fail in rapidly varying wireless scenarios 

(various results in later chapters).  Instead we introduce a novel error control algorithm that 

minimizes duplicates by significantly reducing the dependence on round trip time estimation. 
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3.2.2.2 CLAP-final 

This CLAP version overcomes the limitations of periodic-NACKs, by significantly minimizing 

the dependence on round trip time estimation for NACK generation. Here duplicates are 

minimized by reporting only the differential vector of missing packets since the previous NACK.  

These NACKs are called pivot-NACKs and its frequency is controlled by reporting a packet 

sequence that is at least nack_threshold_ in length. The sequence begins with the first unreported 

loss, and hence does not overlap with the previous NACK.   

Such a �delta� reporting scheme is possible in CLAP, because the error control and flow control 

operations are decoupled. Compare this to TCP�s window-based operation, where the first in the 

set of outstanding packets must be confirmed as successfully received, before proceeding further 

in the sequence. When this does not happen �on time�, TCP�s error control (commonly called 

congestion control) mechanism sets in to recover the segment. Until confirmed as successfully 

received, error control supersedes flow control, and only a limited number of new segments are 

sent in this interval (fast-recovery algorithm).  On the other hand in CLAP, as long as there is 

information of which packets to send, error control never supersedes flow control. The sending 

rate sustains at the bandwidth reported as available, even when NACKs report failure of some 

packets. These missing packets are prioritized over new packets and transmitted at the available 

rate by the flow control algorithm.      

It is possible that some pivot-NACKs and retransmissions are lost in transit, and there could be 

�holes� in the file sequence without the sender knowing about it. Hence another type of NACKs 

called sweep-NACKs are triggered towards the end of the file, to report all missing packets from 

start to the highest sequence number received. These NACKs are also triggered when no packets 

are received for a long time. To enable the receiver to decide when to begin generating sweep-

NACKs, the sender conveys the total number of packets in the file in the SYN_ message during 

connection establishment. After the first sweep-NACK, subsequent sweep-NACKs are sent 

periodically until all packets in the file are received successfully. These sweep-NACKs however, 

require round trip time estimation. The interval between sweep-NACKs is set to the average RTT, 

calculated using the �request and response� of all the earlier NACKs. The RTT is estimated by 

using the timestamp and timestamp_echo fields in the pivot-NACK and the data packets sent in 

response, without maintaining any timers at the receiver. 

Milestone-NACKs are optionally sent to aid the sender to purge the send buffer of the completed 

file portion. Figure 3.3 shows a conceptual representation of the three NACK types used in 

CLAP-final.  
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CLAP-final is evaluated in the multi-hop wireless scenarios in Chapter 5, instead of CLAP-beta 

using periodic-NACKs. It achieves large performance gains over CLAP-beta. Pivot-NACKs 

resulted in a consistent performance of CLAP, even in high loss scenarios, using over 90% of the 

bandwidth available (upper-bound UDP performance). On the other hand, CLAP-beta 

performance degraded with increasing loss, demonstrating a performance pattern similar to that 

of TCP in those scenarios. Low bandwidth utilization was seldom seen with CLAP-final because 

of sweep-NACKs that conveyed all the missing packets in almost the entire file. The percentage 

duplicates dropped to under 2% because of non-overlapping information until when over 90% of 

the file is transmitted. Non-overlapping information in NACKs reduced unnecessary 

retransmissions, conserving the available bandwidth for legitimate data packets. The cost of poor 

RTT estimation also reduced significantly, since the estimates were only needed towards the end 

of the file for sweep-NACKs. Thus CLAP-final with pivot-NACKs and sweep-NACKs proves the 

gains achieved with the core design objectives of CLAP outlined in section 2.1., namely � 

decoupled flow control and error control and minimized NACKs.    

Implementation:  

It is important to note that, despite various types of NACKs, they all use the same reporting 

format, and hence the sender side processing of NACKs does not change with NACK types and 

the sender merely retransmits the missing packets. NACKs use the same packet format as the data 

packets, as depicted in Figure 3.2. The sequence number field represents the start of the sequence 

reported in the NACK. The packet sequence is itself represented by a bitmap in the payload field, 

and its length is specified in the payload length field. The bitmap representation is as follows:  If 

seq_ is the sequence number, the ith bit in the bitmap represents the status of packet (seq_+ i). A 

0-bit indicates receipt, and a 1-bit indicates loss.   

Hence the various NACKs differ in their sequence number field - it�s the first missing packet in 

NACK#n NACK#(n+1) NACK#(n+2)Last loss reported 
in NACK#(n-1)

~~
Start End

NACK#(n+3) 

NACK#m 

NACK#(n+4)

90%

Pivot NACKs
(nack_threshold_ = 8)

~
NACK#(m+k) ~

Sweep NACKs 
begin after seqno 
(Start+90%) recvd
Sent One per RTT

MILESTONE NACKs at 10%,20%, 30%, � , 90%, 100% of file

Figure 3.3: Aggregate NACK types in CLAP-final 
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the entire file in periodic-NACKs, its the first missing packet after the previous NACK in pivot-

NACKs and the first packet in the file in sweep-NACKs.  

The timestamp and timestamp_echo_ fields serve to estimate round trip time required for sweep-

NACKs. The receiver sets the timestamp field to the NACK generation time. The sender includes 

the timestamp of the last received NACK in the timestamp_echo_ field of all DATA packets. 

When a DATA packet arrives, the CLAP receiver uses the differential of the current time and the 

timestamp_echo_ field to estimate the round trip time. 

CLAP�s error control algorithm makes extensive use of the bitmap data-structure at both the 

sender and receiver sides. It significantly reduces the complexity of NACK generation and receipt 

algorithms, enabling efficient implementation. 

This simplified error control algorithm is possible because of the separation of sending rate 

adaptation from CLAP feedback packets. This separation is itself enabled because of the available 

of cross-layer status information. In the next section we describe the framework developed to 

enable the network to supply this status information in a systematic manner.   

3.3  Architectural considerations for cross-layer design  

In this section we present the architecture for a intra-node and inter-node status collection, that 

may be used to benefit all layers in the network stack. Using this framework, intermediate nodes 
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may regularly supply status information, and transport/routing protocols in edge nodes no longer 

need to �guess� the network status using their own feedback messages.  

When the current Internet architecture came into existence in the 1970s, network entities were 

limited in their capability. They had low memory and storage, and the link bandwidths were too 

low to support the additional overhead of control information [11]. Much to the contrary 

however, today�s routers are equipped with high processing power, large memory and storage. 

There is abundant link bandwidth in core networks (terabits per second in wired links for 

example), often underutilized. With networks moving from shared medium technologies towards 

switched technologies, the core network is ceasing to be the bottleneck, and its capabilities may 

be put to good use to significantly improve end-to-end performance (as demonstrated with 

CLAP). It is hence feasible to support a parallel status/control plane even in the wired Internet.  

In this section we present the architecture and implementation details of a Cross-Layer software 

Framework (CLF) to provision status-extraction capability in the network, and hence enable 

cross-layer design of transport protocols.  Figure 2.4 shows a conceptual representation of a 

parallel status plane aiding end-to-end transport functionality. The status daemon incorporated in 

each node performs all the intra-node and inter-node functionality required to enable the parallel 

status plane in the network.  

3.3.1  Cross-layer status parameters of benefit to the transport layer 

In the context of wireless networks, various status parameters may be extracted to represent 

network status.  Following is a non-exhaustive list of parameters that may possibly aid end-to-end 

transport.  

Physical layer:  This layer translates bits in a packet to symbols and then to analog signals for 

transmission over the physical medium. The parameters here are on a per-node, per-next-hop 

basis. For example, a node may select the modulation to a certain next-hop node based on the 

perceived bit error rate to that node. In wireless networks, the �link speed� is the physical channel 

rate used and is determined by the modulation. Thus the link modulation determines the link 

capacity. For example in 802.11b, BPSK modulation corresponds to a 1Mbps link speed, while 

16-QAM modulation corresponds to 11Mbps.  The signal-to-noise ratio (SNR) of the received 

signal affects the likelihood of accurate reception of a bit. Hence we find that channel modulation 

and average SNR are two parameters in the physical layer that are of interest at the transport 

layer, since they determine the link bandwidth the net goodput respectively. These parameters are 

already available as (a) Received Signal Strength Indicator (RSSI) and (b) Physical channel rate 



55 

 

and may be extracted using libraries such as libmac [61], available as part of the ORBIT wireless 

test-bed[47][48].    

MAC/Data Link Control layer: This layer concerns with sharing the transmission medium with 

other nodes and plays a significant role in 802.11 links because of distributed medium access.  

Each interface in the host can have separate set of parameters, which can further be categorized 

on a per-next-hop basis. The transport layer may extract information to estimate interference, link 

bandwidth, link loss rate etc.  A possible list of parameters that may be provisioned include: 

(a) Packet Error Rate (b) average packet size (c) packet sent rate (bandwidth) (d) packet loss rate 

(d) packet retransmission rate (e) interface queue availability (f)  

Most of the MAC layer parameters are inseparable from physical layer functionality. For 

example, fluctuating physical channel rates can cause fluctuations in the packet sent rate.  

Network layer: The status information here is on a per destination node basis. Some parameters 

could be tracked at end nodes as well as intermediate nodes in the route.  Following is a list of 

possible parameters of value to the transport layer 

(a) Delay jitter (variation of delay between arriving packets irrespective of order of transmission) 

(b) Route stability (c) Round trip time (d) bottleneck router (d) bottleneck router queue size  

Transport layer: A reliable transport protocol may maintain the following status parameters:   

(a) Packet loss rate (b) Packet out of order rate (c) Rate of retransmissions (d) average packet size 

(e) average bandwidth (f) Trigger for new route discovery (g) Average Round-trip-time (h) 

Variance of Round-trip-time. 

3.3.2  Intra-node status collection 

Within a node (intra-node), the status daemon interacts with status providing and extracting 

entities by means of a register-and-pull architecture, as depicted in figure 3.4. Each layer entity 

participating in status extraction interacts with the status daemon via standard methods defined in 

the Cross-Layer Framework (CLF). To the best of our knowledge, this is one of the first 

systematic approaches to intra-node status extraction. Other approaches include one with ICMP 

messaging between entities [16]-[18].   
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The register and pull architecture contains a �status plane participant� (SP-Participant) class, of 

which, all participating layer entities are a sub-class. The status daemon is an object of SP-

Daemon class), and there is a single SP-Daemon object running in each node. At the start of a 

process, an SP-Participant registers with the SP-Daemon specifying details of the status 

parameters it can supply, using SP-Daemon::register_params() method. Subsequently the SP-

Daemon �pulls� parameter values from the SP-Participant, using SP-Participant::get_params() 

method. Another SP-Participant interested in a status parameter accesses the values through the 

SP-Daemon::get_status() method. The SP-Daemon maintains a database of all the status 

parameters in the node. Each parameter is identified by a unique identifier, and the SP-Daemon is 

itself oblivious to their values or the entities that supply and extract them.  

Implementation:  

This intra-node Cross-Layer software Framework (CLF) is implemented in the NS2 simulator. 

The MAC layer (of class MAC802_11) is the status providing entity, and the transport layer 

(CLAPAgent) is the status extracting entity.  A new class called CPMac802_11 is created, that 

sub-classes both MAC802_11 and SP_Participant classes and hence inherits both functionality. It 

supplies three status parameters namely., MAC outgoing rate, Interface underflow flag and 

Interface queue availability. The SP-Daemon extracts the values every 100ms.  

The CLAPAgent is only aware of the SP-Daemon and not of the CPMac802_11 object, and 

extracts the MAC status parameters from SP-Daemon every 100ms. The database in SP-Daemon 

currently is very simple, where a new value simply replaces the old one.  
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Figure 3.5: Register and Pull Architecture for intra-node updates 
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3.3.3  Inter-node status extraction  

In a multi-hop scenario, at any instant the net bandwidth available in the route is the bandwidth of 

the slowest link. The same intra-node MAC parameters apply, but in addition an inter-node 

update protocol is required between status daemons for extracting information about minimum 

bandwidth available for each flow end-to-end in the network.   

At first thought the status plane appears to be an extension of the routing plane, operating just 

more frequently. However there are some subtle but defining differences. The routing plane 

collects extreme pieces of information such as node up or down. The network status plane instead 

assimilates information about operational quality of the nodes: information that determines 

channel quality such as channel rate, level of MAC contention, bit error rate etc. The time 

constants in the control plane are much smaller, that is, updates could be a lot more frequent and 

not necessarily triggered by a problem condition. Given this, the design of the control plane needs 

to be far more efficient so that messaging overheads are within bounds, and do not curtail 

operation of the data plane. 

Implementation of this update protocol is flexible and can be network-specific. Here we designed 

a simple probe-based protocol where status daemons in CLAP senders initiate periodic status 

probe messages to collect net bandwidth information in the data path. Intermediate nodes (status 

daemons in them) compare MAC outgoing rate and Queue Availability parameter values with 

their own, and replace them if their values are smaller. The MAC underflow is updated if MAC 

sending rate parameter is updated, and thus tracks the bandwidth increase in the slowest link. The 

destination node merely tunnels the message back to the original sender.  This approach 

introduces f*p bytes/sec per flow in overhead, where f: update frequency in packets/sec and p: 

packet size in bytes/packet. In our simulation, f = 10 pkts/sec and p=40 bytes, and hence the 

control overhead is 3.2 kbps per flow.    
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The packet format of the status probe message is depicted in Figure 3.6. The source and 

destination addresses identify the CLAP sender and receiver nodes and are required for 

intermediate nodes to look up the message�s next hop. The �C� (=Complete) flag indicate 

message status and is set by the intended destination. Parameter fields include a unique parameter 

id, address of the node that provided the update and the parameter value.  

3.4   Summary 

In this chapter we described details of the Cross-Layer Aware transport Protocol (CLAP) and the 

Cross-Layer software Framework (CLF) used by CLAP to extract bandwidth information end-to-

end. Primarily they address self-interference and time-varying characteristics of wireless links by 

decoupling flow control and error control algorithms. CLAP uses aggregate NACKs for error 

control, many of which report non-overlapping packet sequences. The rate-based flow control 

algorithm leverages three MAC status parameters to estimate the bandwidth available in each 

interval, namely, the Outgoing MAC rate, Interface underflow indicator, Interface queue 

availability. The sending rate is adapted in each interval to the slowest link bandwidth available in 

the end-to-end route.  

Two versions of CLAP are implemented � CLAP-beta and CLAP-final that differ in the type of 

NACKs they generate. CLAP-beta uses periodic-NACKs which convey the receipt status of a 

sequence of 128 packets (32 byte bitmap). It requires fairly accurate round-trip time estimation to 

maximize bandwidth utilization and minimize duplicate retransmissions, particularly in high-

noise scenarios. CLAP-final instead uses pivot-NACKs that report the receipt status of non-

overlapping sequences and thus significantly reduces the problem of duplicates. Towards the end 

of the file, the status of all the entire file is conveyed in sweep-NACKs providing sufficient 

information to the sender to fully use the available bandwidth for retransmissions.   

The Cross-Layer software Framework (CLF) is developed to extract general cross-layer 

information systematically. A single status daemon in a node extracts both intra-node and inter-

node status information and thus significantly simplifies code complexity.   

 

In the next two chapters we evaluate CLAP performance in various single-hop and multi-hop 

scenarios containing 802.11 links with time-varying bandwidth and error characteristics. In these 

scenarios CLAP extracts MAC status information via the CLF.  
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Chapter 4                                                                          
Cross-layer aware transport in wireless LANs 

We evaluate the performance of CLAP-beta using periodic-NACKs in this chapter. The protocol 

is compared to TCP throughput and upper-bound UDP goodput, considering severe wireless LAN 

scenarios affected by both interference and fluctuating SNR. Fluctuating SNR is an inherent 

wireless problem that causes the packet loss rates to change significantly over time. In wireless 

LANs, SNR fluctuations are common in indoor as well as outdoor deployments because of 

changes induced in signal reception. This occurs from various factors including movement of 

people, opening/closing of doors, transient shadowing due to buildings, environmental conditions 

such as rain, wind etc. Receiver mobility introduces fading effects that result in additional SNR 

fluctuations because of changing distance and propagation characteristics of intermediate objects 

[64].  

In this chapter, CLAP performance is evaluated and compared to TCP and upper-bound UDP 

performance. The UDP goodput obtained with saturating CBR traffic is the upper-bound in 

performance over time-varying wireless links because of unrestricted flow rate in UDP. Both 

throughput and goodput are used as performance metrics to evaluate overall CLAP efficiency. 

CLAP minimizes self-interference and sustains the sending rate even in noisy link scenarios.  

4.1  CLAP performance in noise-free scenarios 

We described the CLAP protocol along with methods for cross-layer status extraction in Chapter 

3. In summary, CLAP decouples flow control and error control algorithms to enable rate 

adaptation in time-varying scenarios. Its error control uses aggregate negative acknowledgements 

(NACKs) to minimize interference to data packets in the shared medium. For rate adaptation, it 

uses a rate-based flow control algorithm that periodically adapts the sending rate, using 

supplemental MAC status updates instead of its own feedback packets. 

In this section we evaluate CLAP performance in a wireless LAN environment with no noise. We 

will first consider a single flow case, and then a multi-flow scenario.  
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4.1.1  Methodology 

CLAP is developed and validated in the NS2 simulator. Simulation details are the same as those 

specified in Chapter 2, Section 2.1.3. In this chapter we use CLAP-beta for evaluation that uses 

periodic-NACKs. MAC-layer retransmissions were disabled in these experiments.  

In this scenario it is sufficient for CLAP to extract status information only from within its own 

node, since the wireless link is the sole bottleneck. We realize that this is not a general scenario, 

however the scope of this work is to prove the validity of cross layer information as an effective 

method to supplement flow control so that error control algorithm may be separated.  

Here the CLAP sender matches its sending rate to the net sending rate reported by MAC status 

parameters every 100ms. TCP-SACK is used for comparison since it uses ACK aggregation and 

reduces self-interference to some extent.  

4.1.2  Single Flow performance 

Figure 4.1 and demonstrates CLAP performance compared to TCP-SACK and UDP. With 

reduced feedback packets, CLAP experiences negligible self-interference. Further since it uses 

regular updates of MAC layer information to estimate bandwidth, it uses the 802.11 link to full 

capacity.  TCP-SACK is used here for comparison since it aggregates feedback with selective 

acknowledgements and hence suffers lesser self-interference. Never-the-less TCP-SACK 

undergoes protocol timeouts several times in the course of the flow due to interference from the 

ACK packets. Here, CLAP gains over 250% in throughput over TCP-SACK.  
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Figure 4.1 compares the instantaneous received rates of CLAP with other TCP versions with the 

minrto_ set to 0 seconds, to allow default RTT estimation to guide timeout intervals. A large 

minrto_ is not required here because of the small network considered. Since we saw in the TCP 

dynamics section (Section 2.3 in Chapter 2) that Tahoe performed better than the other TCP 

versions that used fast-recovery, we compare CLAP performance to this �best� version of TCP 

that combats self interference. CLAP completes the 1MB file transfer in 1.7 seconds while Tahoe 

with 1 ACK skip takes 2.4 seconds. The gain with 1-ACK-skip, is 12%, while CLAP gains 95% 

in throughput over �best-performing� TCP version in self-interference dominated scenarios.  

The reasons for CLAP gains here over TCP are evident from the figures. The gain is primarily 

from the aggregate NACK based approach for error control instead of TCP�s positive 

acknowledgements. In these noise-free scenarios, CLAP-beta sends periodic NACKs, at the rate 

of 10 NACKs per second.  Since here of the two contending nodes (AP sending CLAP-NACKs 

and the wireless client sending CLAP-DATA), one node has very low traffic (AP sending CLAP-
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Figure 4.1: Comparison of CLAP, TCP-SACK, UDP for 10MB file transfer
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Figure 4.2: Comparing CLAP, TCP-Tahoe and Tahoe-with-1ACKSkip for 1MB file transfer
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NACKs), there is low consumption of bandwidth by the CLAP feedback packets. This is evident 

in the Figures 4.1 and 4.2 with CLAP instantaneous received rate closely matching the available 

bandwidth plot.  

4.1.3  Fairness with multiple flows  

Figure 4.3 depicts the instantaneous received rates of 5 CLAP-beta flows and Figure 4.4 depicts 

that of 5 TCP flows operating simultaneously over the wireless LAN environment. These flows 

begin within 0.1 seconds of each other.  The CLAP performance curves show fair bandwidth 

sharing among all the flows, during most part of the operation.  This fairness in bandwidth 

sharing is a direct effect of using MAC status parameters. CLAP matches its sending rate in a 

given interval to the value of the MAC outgoing rate parameter (described in Section 3.2.1  ) 

measured in the previous interval. This value is directly proportional to the net channel time that 

was available to the node for transmission after sharing the time with other active nodes in the 

neighborhood. Hence the CLAP sending rate scales in proportion. Further with decoupled flow 
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Figure 4.3: 5 CLAP flows over a noise-free 802.11 link 
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Figure 4.4: 5 TCP-Reno flows over a noise-free 802.11 link 
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control and error control, CLAP continues to operate despite the losses due to MAC collisions. 

From Equation (1) in Section 2.1.1 the loss rate for 5 saturating flows (plus the AP) due to failed 

MAC transmissions (two or more nodes select the same slot to send) is 39.03%.     

The �spiky� CLAP received rates is due to the lower than required frequency of periodic NACKs, 

which happens because the periodicity of NACKs is significantly different from the actual round-

trip time.   

On the other hand, the TCP performance in Figure 4.4 shows significant unfairness among flows 

with them finishing at widely different times (recvr 0 flow takes about 50% longer time to 

complete than recvr 1 flow). Only a single TCP flow operates at a given time, i.e. the TCP flows 

do not co-exist. Xu and Saadawi [23] also observed this phenomenon, and termed it as a �TCP 

incompatibility problem� in the context of multi-hop wireless networks.  

This multi-flow performance in fact is a result of the same reasons that caused timeouts in the 

self-interference scenarios considered in earlier sections. Again the reason for these losses is 

interference (in this case cross-interference occurs in addition to self-interference) and combined 

flow control and error control that scales back the flow rate when these losses occur. A TCP flow 

operates at peak rate only for a short while before it experiences interference losses and scales 

back.   Since interference causes multiple losses in a congestion window (we proved this in 

Section 2.3 in chapter 2) Reno is unable to recover without a timeout. Hence interference causes a 

TCP flow performance to quickly slide down from peak operation. When one flow scales back, 

another flow gains in throughput, and hence the flows appear as if they are incompatible. The 

unfairness between flows happens because of the inconsistent losses among flows. The complex 

interplay between TCP fast-recovery algorithm (that leads to timeouts) and the losses in the MAC 

introduces significant randomness in operation among flows that appears like incompatibility and 

unfairness.   

Consequently in the given example, five CLAP flows complete transmission around the same 

time in about 12 seconds, while the last TCP flow completes transmission only after 20.5 

seconds. With each of these flows transmitting a 1MB file, the aggregate throughput of 5 

simultaneous CLAP flows gains over 80% above the aggregate throughput of 5 TCP flows.   
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4.1.4  Aggregate throughput with increasing flows 

Clearly, CLAP utilizes the bandwidth available in the wireless medium better than TCP for 5 

simultaneous flows. More importantly, CLAP appears to use the MAC bandwidth in proportion 

to its availability. To examine this further, we simulated increasing number of flows and found 

the aggregate throughput (goodput in case of UDP flows) for each of TCP, UDP and CLAP 

protocols.  

Figure 4.5 shows these aggregate throughputs with increasing flows. First, the available 

bandwidth plot (that of saturating UDP traffic) peaks at 2 flows and then decreases linearly as the 

number of flows increase further. Second, the TCP plot shows increasing aggregate throughput 

but the gains are not consistent with the available bandwidth. The reason for this is the same as 

explained earlier for the �incompatibility� problem. Third, the CLAP plot shows aggregate 

throughputs to be in proportion to the bandwidth available, but the performance drops 

significantly after 3 flows.  

 Now we will explain the available bandwidth and CLAP plots in detail. The available bandwidth 

peaks at two flows because of the following reasons: Due to MAC random back-off, there is 

higher utilization of channel time two flows than with one. But for a higher number of flows, 

collision losses dominate the gains achieved with improved channel time utilization, and hence 

the UDP goodput drops for higher flows. 

 The drastic reduction in CLAP performance is because of the use of periodic-NACKs in the 

CLAP-beta version being evaluated here. As the number of flows increase, the loss rate due to 

MAC collision also increases. Lots of NACKs are generated at this time. But because of the 

discrepancy between the NACK periodicity and the actual RTT, there is too much overlapping 

information in adjacent NACKs that results in too many duplicates. At this time, even though 

CLAP-beta flows may fill the bandwidth available with sufficient packets, the throughput is low 
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Figure 4.5: Aggregate throughputs of TCP, CLAP and UDP flows 
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because of the large number of duplicates (similar to the problem with the brute force approach 

described in Section 3.1 in Chapter 3). This problem of overlapping information in adjacent 

NACKs is overcome in the CLAP-final version by using pivot-NACKs with non-overlapping 

information in adjacent NACKs, in the initial parts of file transfer.  

In the next section, we evaluate CLAP performance in a time-varying noise scenario.  

4.2  CLAP performance in time-varying noise scenarios 

TCP evaluation in fluctuating noise scenarios showed less than 2% of bandwidth utilization, 

because of combined error and flow control algorithms. CLAP decouples these algorithms and 

uses MAC status information to estimate bandwidth for flow control. In this section we simulate 

slow and fast-varying noise scenarios and evaluate CLAP-beta performance.  

4.2.1  Methodology 

These scenarios were simulated in the NS2 simulator. MAC-layer retransmissions were disabled 

in these experiments, to observe transport protocol operation time-varying 802.11 links.  The 

time-varying scenarios are produced by injecting channel noise. Additive Gaussian noise is 

introduced similar to the method described in Section 3.5.1 with respect to NS2 simulations.  

4.2.2  Single flow performance 

Figures 4.6 and 4.7 show the instantaneous received rate of CLAP as compared to TCP-Reno and 

the available bandwidth (saturating UDP flow). CLAP received rate is in proportion to the UDP 

goodput in the most part, while TCP simply shuts down operation. CLAP is able to operate in this 

manner because of the decoupling of flow control from error control and the availability of 

supplemental bandwidth information. CLAP gains of 275% and 317% in these slow and fast 

varying scenarios. These gains only increase with increasing noise affecting the flows. 

The bit rate spikes in the later part of the CLAP flow in both scenarios are due to the following 

reason: The flow control algorithm operates independent of the error control algorithm as long as 

there are new packets to send. In high loss scenarios like those considered here, the sender enters 

a retransmit-only phase where, it waits for returning NACKs to inform it of which packets to 

send. With periodic NACKs, and the bitmap length maxed at 32 bytes, the information conveyed 

in each NACK is insufficient to �fill� the available bandwidth and hence the operation in spikes. 

Further, with NACKs sent too soon in some scenarios, it results in a large number of duplicates 

that unnecessarily delay the completion of file transfer.    
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One approach to alleviate this problem is to increase the bitmap length in NACKs and use RTT 

estimation techniques to improve bandwidth utilization in the retransmit-only phase. But doing 

so, introduces high dependence on accurate round trip time estimation, which in highly 

fluctuating bandwidth scenarios, can cause a large number of duplicates or result in low 

bandwidth utilization due to poor estimation, and result in performance degradation similar to 

TCP.     

Instead we overcome this problem in CLAP-final with a very simple NACK adaptation where 

NACKs only report non-overlapping packet sequences until a significant portion of the file is 

received. This reduces round trip time estimation requirement only towards the end of file 

transmission. CLAP-final is used for evaluation in highly dynamic multi-hop wireless scenarios 

with both bandwidth and noise fluctuations. 
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Figure 4.6: Slow-varying error characteristics: CLAP takes 4.9 seconds to transmit a 1MB 

file while TCP takes over 19 seconds. 
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Figure 4.7: Fast-varying error characteristics: CLAP takes 5.4 seconds to reliably transfer a 

1MB file, while TCP takes over 13 seconds 
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4.2.3   Multiple flows 

Figure 4.8 and Figure 4.9 compare the aggregate throughputs of CLAP and TCP in noise-prone 

scenarios. Figure 4.8 demonstrates fair bandwidth sharing in CLAP despite channel noise. Of 

course here the channel noise is Gaussian distributed and occurs simultaneously across all 

wireless nodes. The fairness here is achieved because of the opportunistic flow control operation 

of CLAP, using MAC layer updates and not scaling back the sending rate despite losses. In this 

manner the link bandwidth is used to full capacity irrespective of the losses that occur at the 

wireless receiver node (at least one bit constituting the packet is not decoded correctly due to low 

SNR).  

The overall aggregate throughput in a noise-prone scenario (fast-varying noise) is depicted in 

figure 4.9. TCP with increasing flows has the worse losses due to MAC contention, and its 

performance fluctuates quite widely. CLAP aggregate throughput is seen to be significantly 

higher than that of TCP. The throughput increases with increasing flows because of the overall 

goodput gains as the number of flows increase.   

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 Flow 2 Flows 3 Flows 4 Flows

Th
ro

ug
hp

ut
 (M

bp
s)

 
Figure 4.8: Flow fairness in CLAP in fast-varying noise scenario 
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Figure 4.9: Aggregate TCP and CLAP throughputs in a noise-prone scenario. 
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4.3  Discussion of results and Summary 

In this chapter we evaluated an early version of CLAP (CLAP-beta) in noise-free as well as 

highly fluctuating noise conditions in 802.11 wireless LANs. In noise-free scenarios, CLAP 

achieves over 95% of the upper-bound UDP performance compared to the 68% utilization by 

TCP-SACK. CLAP gains in performance over TCP because self-interference in CLAP is 

significantly reduced because of the low rate of feedback packets. To achieve this, CLAP uses 

aggregate NACKs that convey the loss status in a long packet sequence. Supplemental MAC 

status information enables the flow control algorithm to match sending rate to the available 

bandwidth irrespective of the CLAP feedback packets.  

This decoupling of flow control and error control algorithms also gains significant advantage in 

highly fluctuating noise scenarios considered, where CLAP utilizes over 70% of the available 

bandwidth and completed file transfer compared to TCP which simply shuts down operation.    

These results prove the efficacy of the novel algorithms in CLAP for efficient file transfer over 

802.11 wireless LANs, and hence combat interference and time-varying link characteristics in 

these networks. 
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Chapter 5                                                                           
Cross-layer transport in multi-hop wireless networks 

Multi-hop wireless networks are expected to become increasingly important in the next few years, 

particularly with the emergence of mesh networks as a viable alternative in both indoor as well as 

outdoor settings. In outdoor environments, mesh networks are being deployed to serve as 

�community wireless networks� to extend broadband Internet connectivity to developing 

communities. Indoors they are being proposed as 2-3 hop wireless backhaul in high-performance 

wireless LANs. Other than for Internet connectivity, wireless mesh networks are also being 

considered to form dedicated municipal access networks, such as to connect neighborhood fire 

stations and police stations. These networks however face significant challenges for data 

transport, since the data path now contains not one but multiple links with shared medium 

interference and time-varying characteristics.    

Another application of multi-hop wireless networks is with �vehicular networks� where 

automobiles on a highway send critical information to each other to avert fatal accidents and 

hence save human lives. Here there is not only end node mobility, the network itself may be 

mobile since intermediate hops may be constituted by other autos. Various propagation studies 

have demonstrated that such mobility introduces rapid SNR fluctuations due to fading, shadowing 

etc [64]. In shared media networks mobility also changes interference regions because of 

changing proximity to other nodes. 

Hence, when compared with 1-hop wireless LAN scenarios considered earlier, it may be expected 

that reliable data transport is an even greater challenge for the emerging class of multi-hop 

wireless networks. The transport protocol must now deal with the compound effect of quality 

variations on all the links in a path, as well as complex external interference and self interference 

effects resulting from dense node placement. 

These considerations motivated us to examine the performance of reliable transport protocols in 

general multi-hop wireless scenarios. We evaluate transport performance for the fundamental 

issue of fluctuating link quality that occurs for both static and mobile scenarios of wireless links.  
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Earlier papers have merely considered transport issues in the secondary dimension, where the 

same fluctuating link quality causes the network layer to react with route failures and rediscovery.  

We set up a 3-hop wireless mesh topology with fluctuating interference and SNR and high loss 

rates to represent these scenarios. Fluctuating SNR and high loss rates were produced by injecting 

on-off additive Gaussian noise at receiver nodes, in order to emulate thermal noise that affects the 

sensitivity of real wireless cards. Varying interference was produced by introducing occasional 

background flows in the neighborhood. In this environment, the changing end-to-end capacity for 

a flow was assessed by measuring the instantaneous received rate of saturating UDP traffic. TCP-

SACK and CLAP (CLAP-final version) were evaluated by comparing their instantaneous 

received rates with the upper bound of simple, unreliable UDP that represents best-effort since it 

has neither flow control nor error control restricting the throughput. Details of the CLAP-final 

protocol are in Section 2.4 

Several key insights became evident with these evaluations. First, UDP performance with 

saturating traffic showed that there were significant changes in end-to-end goodput in the 

presence of other flows in the neighborhood and fluctuating channel loss rates (between 0 and 

6%).  Hence evaluation of reliable transport protocols in these scenarios explored how well they 

adapt to rapid end-to-end quality fluctuations.  

CLAP evaluation showed that CLAP adapted quickly to fluctuating bandwidth and sustained the 

sending rate despite losses. There were fewer than 10% duplicates and the status collection 

protocol constituted less than 0.1% of the available bandwidth (it constituted a load of 3.2 

kbps/flow). In all the scenarios considered CLAP performed consistently, utilizing over 90% of 

the available bandwidth (indicated by best-effort UDP throughput).  

On the other hand, TCP-SACK showed significant shortcomings in performance. In channel loss 

scenarios, it utilized less than 2% of the bandwidth available, and it was slow to adapt when the 

bandwidth changed suddenly. The performance improved significantly when MAC retries were 

used to hide wireless losses from the TCP sender, but the throughput fluctuated rapidly due to 

bursty transmissions (this kind of operation is known to increase queue overflow losses). 

Thus CLAP gained significantly over TCP performance and approached ideal performance. The 

reasons for these gains are due to all of CLAP�s design considerations. Use of supplemental MAC 

status information for flow control achieved quick rate adaptation in fluctuating bandwidth 

scenarios. Efficient error control design reduced self-interference and duplicates conserving the 
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overall bandwidth to be used by legitimate data packets. Finally decoupling of flow control from 

error control enabled a sustained flow rate despite link losses.   

These significant gains of CLAP over TCP-SACK, and close approach to upper-bound UDP 

performance demonstrate the efficacy of CLAP�s approach to reliable file transfer over wireless 

networks.      

The rest of this chapter is organized as follows. We begin in Section 5.1 with a general overview 

of multi-hop wireless networks considering end-to-end interference and noise effects. We 

describe the system considered for evaluation in Section 5.2 and the evaluation methodology in 

Section 5.3. In Sections 5.4 ad 5.5 we present the results of TCP and CLAP evaluation. Then in 

Section 5.6, we discuss the results in detail and conclude this chapter.   

5.1  Characteristics of multi-hop wireless networks 

In this section we analytically show the effects of random noise and interference effects in 

individual wireless links, on end to end throughput.   

5.1.1  Random noise 

We assume that additive noise at each wireless receiver causes a packet loss rate of p%. Since this 

loss is primarily due to fluctuating SNR that arises from thermal noise, mobility etc, we assume 

that the link noises are uncorrelated.  

Figure 5.1 depicts end-to-end random loss with increasing hops. Here Source S sends a saturating 

UDP data flow containing T packets, to a destination that is (k+1) wireless hops away. If p is the 

packet loss rate in each wireless link (0< p< 1), the fraction of the original number of packets that 

arrive at the destination is an exponential function given by T(1-p)k+1. Hence the number of 

packets received � goodput, decreases exponentially with increasing hops due to losses 

introduced by additive random noise. 

 

S N1 N2 DNk

T T� = T(1-p) T�� = T�(1-p)
= T(1-p)2

T(1-p)k T(1-p)k+1

p p p

 

Figure 5.1: UDP packet  loss due to uncorrelated random noise  
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5.1.2  Interference 

The problem is a lot more complex with interference than with additive random noise, since 

interference reduces the sending rate as well as losses due to simultaneous transmissions.  That is, 

it affects performance at both the sender and receiver nodes of wireless link, while random noise 

only affects at the receiver node of a wireless link.  

Figure 5.2 depicts a typical multi-hop scenario where non-adjacent nodes are not in receiving 

range of each other. The CSMA/CA protocol of 802.11 MAC causes two types of interference 

ranges that are also marked in the figure � RxThresh_ is the �Receiver threshold� range, and 

CSThresh_  is the �Carrier Sense Threshold� range. These ranges are due to the wireless card 

sensitivity to received SNR levels, and in drawing them here, we assume that there are no SNR 

fluctuations.  Nodes within RxThresh_ range can decode each other�s signals accurately. Nodes 

outside the RxThresh_, but within CSThresh_ cannot decode each other�s signals accurately, but 

can still detect the carrier.  

When a node is active, all nodes within its CSThresh_ detect a �busy� signal, and hold back 

transmitting until the channel is idle. This is due to the CSMA (Carrier Sense Multiple Access) 

aspect of 802.11 MAC that is introduced to avoid overlapping transmissions among 

neighborhood nodes. Hence nodes within CSThresh_ share the channel time and hence their 

activity causes bandwidth fluctuations to other nodes in the range.  

Nodes within RxThresh_ range corrupt each other�s signals if they transmit simultaneously. The 

Collision Avoidance mechanism in CSMA/CA is introduced to minimize this problem, but 

signals can still get corrupted if they select the same random backoff slot for transmission. We 

showed in Chapter 3 that for saturating load at the 802.11 MAC, same slot selection can occur 

frequently and hence is of concern here.  Thus nodes within RxThresh_ not only cause bandwidth 

fluctuations, but also result in packet losses.  

In other words, the interference ranges determine how nodes in a neighborhood affect each other. 

S DN2 N3

CSThresh_

RxThresh_

N1 Nk

End-to-end Flow

Figure 5.2: Interference ranges in typical multi-hop wireless settings 
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CSThresh_ only affect wireless sender nodes by causing bandwidth fluctuations, while RxThresh_ 

affects both wireless sender and receiver nodes by causing both bandwidth fluctuations and MAC 

collision losses.  

5.1.3  Effects of Interference on throughput in a chain topology 

Next we describe how these interference ranges affect end-to-end throughput. We consider a 

multi-hop chain topology, where the wireless links are noise-free. Hence any packet losses are 

only due to interference. MAC retries are enabled to handle these losses at the link layer, so the 

links appear 100% reliable at the transport layer. In this particular experiment, the link queues are 

set to be large enough to eliminate queue overflows for TCP traffic.  

Figure 5.3 shows throughput vs. increasing hops in the chain topology. Observe that the net 

throughput drops by half when hops increase from one to two, degrades further as the number of 

hops increase, but stabilizes when there are more than 6 hops. This is the effect of the interference 

ranges.  

As the data packets traverse across nodes in the chain, all nodes within CSThresh_ share the 

channel time among each other because of CSMA. When adjacent nodes (they are within 

RxThresh_) send within the same slot, these could be wasted because the receiver node may not 

detect the signal (remember 802.11 MAC is non-duplex, and can only do one of send or receive 

at a given time). i.e. when the Collision Avoidance aspect in 802.11 MAC fails (3% for a pair of 

nodes with saturating traffic).  

For the 1-hop case, TCP throughput is significantly lesser than UDP throughput even though 

there are no losses, because of the bandwidth consumed by TCP ACK packets, as a result of self-

interference in the shared 1-hop wireless medium. With increasing hops, self-interference affects 
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Figure 5.3: UDP and TCP performance in a noise-free scenario with increasing hops
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TCP as well as UDP, since DATA-DATA packets in the forward path now interfere with each 

other. The difference between TCP and UDP throughputs drops because of lesser percentage 

bandwidth consumed by TCP ACKs.  

In this section we showed the end-to-end effects of random additive noise and interference in a 

multi-hop wireless network. Clearly interference is a significant issue that causes both bandwidth 

fluctuations and losses. Because of interference, neighboring links affect each other�s bandwidth 

characteristics. This is a significant shift from the wired network characteristics where links not 

only have fixed bandwidth, they also operate independent of each other. These latter 

characteristics are what traditional transport protocols like TCP are tuned to cater to. This 

motivated us to explore and compare the performance of TCP and CLAP in general multi-hop 

wireless scenarios.      

5.2  System Description 

The wireless mesh topology depicted in Figure 5.4 is considered to evaluate TCP and CLAP 

protocols. The nodes are placed equidistant in rows and columns in a grid. The distance between 

nodes is selected so that in no-noise conditions, adjacent nodes on a diagonal are within 

RxThresh_ of each other.  In some scenarios we considered another topology, depicted in Figure 

5.6, where diagonal nodes are out of RxThresh_  but within CSThresh_ of each other. Hence they 

cannot transmit directly to each other, but can detect each other�s carrier during CSMA. 



75 

 

The source and destination operate over a 3-hop primary path. Background flows are selected so 

that when introduced, interfere with one or more links in the primary path to produce bandwidth 

fluctuations.  To explain this, consider the situation when in the course of the primary flow, BG 

flow 1 starts. Now when node 9 transmits, all nodes in the primary path are within its CSThresh_ 

range. So all of them hear a busy signal and cannot transmit, when node 9 is transmitting. This 

results in transmission delays in all three links in the primary path. This transmission delay results 

in fewer packets sent in a unit interval, which results in lower bandwidth. 

Then there is the issue of interference loss.  Suppose node 1 sends in the same backoff slot to its 

next hop � node 6, node 6 sees a corrupted signal because of the interfering signal from node 9 

(node 6 is within RxThresh_ of node 9). The same interference losses occur at node 14 due to 

node 9. 

Thus the background flows affect the primary flow even though they do not use the primary path 

nodes. This unique aspect of multi-hop wireless networks distinguishes them from traditional 

wired networks where flows only interfere with each other because of shared queues in common 

nodes in their routes. 

Random channel losses are produced by injecting on-off noise across all nodes in the network. 

When on the noise has an additive Gaussian characteristic and may cause a signal to be corrupted 

(incorrectly decoded or undetected) by lowering its SNR (signal to noise ratio).  The operating 
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Figure 5.4: Mesh network topology
including diagonal transmissions 

0 51 7 93.51.5

Noise Power

9.3X10-10 W

0 W
On-off random gaussian noise 

3

BG flow 1 BG flow 1
Primary flow

Start

2 4.0
Time

 

Figure 5.5(a): Scenario with significant noise and some 
interference 
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sequences of Figures 5.5(a), 5.5(b) and 5.6(b) are created by introducing the occasional 

background flows and channel noise.  

CLAP and TCP-SACK performance is measured in the primary path, while they transmit a 1MB 

file from source to destination. The received bit-rate of a saturating UDP flow is representative of 

the actual bandwidth available during the file transfers, since UDP is best-effort transport without 

any flow control or error control algorithm.  

Next we explain the methodology used to implement this system and how we evaluated the 

transport protocols over them. 

5.3  Simulation Methodology 

The results in this chapter are obtained with simulations using an enhanced NS2 model, where we 

included several corrections to ns-2.1b9a, particularly related to 802.11 wireless modules. Some 

enhancements are described here.  

(a)  Disabled link failure interpretation: A default NS2 feature is to notify the �routing agent� 

when despite maximum MAC retries, a MAC-ACK fails to arrive confirming the successful 

receipt of the packet to the sender.  In real implementations, such a notification mechanism would 

require the wireless interface to have complete knowledge of all host processes using it. Such an 

operation is seldom implemented in real wireless cards, since not only is it too complex and 

beyond the scope of 802.11 standard specifications, it also restricts card utilization.   
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Figure 5.6(a): Mesh network without diagonal transmissions 
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(b) Physical and MAC layer settings: Physical parameters such as carrier sense and receiver sense 

thresholds are set based on Lucent�s Orinoco card settings. A short preamble is used where the 

physical and MAC headers are transmitted at 2Mbps. The interface queue size is set to 100 

packets. The 802.11b MAC is used with 11Mbps channel rate. RTS/CTS is disabled. All other 

physical and MAC parameter settings are described in Appendix section 6.2 

MAC retries: MAC retries are not used unless specified. The 802.11 standard specifies optional 

MAC retries to reduce transient interference losses and hence improve link reliability. We 

presented more details in Section 1.2. Since in the multi-hop wireless scenario, there is significant 

interference, we introduce them to study effects of transport protocols. However only some of the 

results presented here use MAC retries. All the CLAP results presented do not use MAC retries.  

(c) Network layer: The nodes are pre-configured with static routes.  We made this choice since 

transient link losses triggered route discovery faster in some routing protocols than others, and the 

study of their effects is out of scope of this paper.   

(d) TCP settings: NS2 has mature implementations of various higher layer protocols including 

various TCP implementations. We use TCP-SACK version since it aggregates 

acknowledgements, and hence experiences lesser self-interference loss. TCP-SACK operates with 

the following parameters:- minrto_ = 1 second.  Initial slow-start threshold ssthresh_ is set to 64 

packets, instead of the default interface queue length. The latter setting invariably caused the 

sender-side MAC queue to overflow during TCP�s initial slow-start. 

(e) CLAP and CLF: the CLAP-final version was implemented for performance evaluation in 

multi-hop wireless scenarios. CLAP extracted cross-layer updates from CLF once in 100 ms. 

CLF sent status probes at the same frequency � once every 100ms.   

These various simulation parameters were carefully selected to reflect real-world settings. For 

example, the interface queue length here is set to 100 packets, since in the real world, a TCP 

socket buffer is of this order by default. We showed in an earlier paper that this parameter 

significantly affects TCP performance in NS2 simulations, but does not matter so much in real-

world because of the kernel operation [4]. Similarly the inbuilt NS2 feedback from MAC to 

routing agent was disabled after realizing from experimental insight that it was not feasible to 

implement in real-world systems. Various wireless card parameters relating to receiver sensitivity 

such as RxThresh, CSThresh etc are set based on Orinoco cards.  

By adopting this approach to carefully select simulation parameters, our approach differs 

significantly from the approach adopted in most related papers that use NS2 simulations. For 
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example, many papers identified poor TCP performance due to route failures in NS2 simulations. 

Their results are based on the �route failure� notification mechanism inbuilt in NS2, where the 

MAC notifies the routing agent when all the MAC retries fail. However since such a mechanism 

is not implemented in real-world systems, the validity of the results themselves becomes 

questionable. Other than the notification procedure, the MAC retries are themselves not 

mandatory in 802.11 MAC and so inconsistency arises when MAC retries are disabled. 

Hence although we use simulations to evaluate protocols, with the simulation parameters 

reflecting real-world settings, our results are close to kernel implementation results.  

5.4  Effect of MAC retries (UDP performance) 

Here we describe the effect of MAC retries on end-to-end bandwidth characteristics. It is 

important to understand this effect since MAC retries are essential for TCP to sustain its flow rate 

in high-loss and time-varying bandwidth scenarios 

In 1-hop wireless scenarios such as in wireless LANs, MAC retries hide most wireless losses 

from higher layers. For TCP in particular, this MAC behavior enables operating in saturation, as 

TCP scales back its flow rate when it encounters packet losses. However in error-prone multi-hop 

wireless scenarios with interference losses, MAC retries could result in poorer bandwidth 

utilization.  

Figure 5.7 shows UDP goodput in the 3-hop path of Figure 5.6(a). With MAC retries, the packet 

receive rate at the primary receiver, fluctuates rapidly compared to the no MAC retries case. 

When there is interference from the background flow, the throughput in some intervals drops to 

zero.  

Large fluctuations occur with MAC retries because of the increasing size of the random backoff 
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Figure 5.7: Comparison of UDP instantaneous received rate, with and without MAC retries 

(operating scenario of Figure 5.6(a)) 
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window after each loss. In case of high losses and interference, the high loss likelihood often 

causes the contention window to reach the maximum (1024 slots), and remains at that stage until 

the packet is successfully sent. On the other hand, when MAC retries are disabled, the contention 

window size does not increase. The same base window size (CWmin) is used for random backoff 

before every packet, even if the previous transmission was unsuccessful.        

It is evident here that in the typical time-varying multi-hop scenario, MAC retries cause bursty 

link performance. It is known from basic queuing theory however, that such changing link 

performance causes transient queue occupancy that may often lead to queue overflows.   

Hence while MAC retries improve link reliability, their use has detrimental effects to overall 

performance because of the bursty transmissions and the perception of fluctuating bandwidth they 

present to higher layers.  

The problem with MAC retries may be expected to worsen with increasing wireless hops because 

of the compounding effects of interference and end-to-end noise. Hence in subsequent sections 

we will evaluate protocols with and without MAC retries, and try to not use MAC retries as much 

as possible.  

5.5   TCP performance 

Many papers in literature have addressed the shortcomings of TCP performance in wireless multi-

hop networks. They mostly examined TCP performance considering random mobility scenarios 

in the NS2 simulator. Some papers showed that 80% of all TCP losses here were due to route 

failures and subsequently others proposed performance improvements in these route failure 

scenarios.  

Instead here we address the more fundamental wireless problems of interference and fluctuating 

link characteristics in multi-hop wireless networks. These not only cause transport issues, but also 

cause failures in the network layer(disconnections or route failures). These same fundamental 

problems affect performance even with mobility, just that they occur with higher severity causing 

greater SNR and even interference fluctuations because of changing proximity to other active 

nodes.  

Next is the question of with and without MAC retries. We showed the detrimental effects of using 

MAC retries in the previous section. However TCP evaluation in the 1-hop wireless LAN 

scenario showed that TCP is very sensitive to channel losses. Hence here we will evaluate TCP in 

both with MAC retries and No MAC retries cases and discuss the tradeoffs in both scenarios.  
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5.5.1  No MAC retries 

Here the TCP sender perceives all losses that happen end-to-end including self-interference losses 

and those due to random channel noise. Figures 5.8(a) and 5.8(b) shows TCP performance in 

scenarios where MAC retries are not used. These instantaneous received rate plots are obtained 

for 1MB file transfers. The interference and noise scenario of Figure 5.5(a) is considered, and the 

occasional flows and channel noise are introduced separately in different experiments.   

First consider TCP performance when there is fluctuating channel noise. The noise introduced is 

such that the loss rate fluctuates between 0 � 3% in each wireless link. End-to-end however, the 

compounding effect of losses over multiple wireless hops causes the loss rate to fluctuate between 

6 � 31% (evident from the UDP plot in Figure 5.8(a)).  

TCP performance in this scenario depicted in Figure 5.8(a) is similar to the result obtained in 

wireless 1-hop scenarios (Figure 2.8 and 2.9 in Chapter 2). Here TCP nearly shuts down 

operation and uses less than 2% of the bandwidth available. This performance is because the 

sender does not receive acknowledgements regularly and TCP�s flow control algorithm depends 

on regular ACKs to clock its sending rate and a timeout occurs when an ACK does not arrive in 

the expected time (which is a function of estimated RTT). The TCP sender scales down the 

congestion window to one segment and tries again by sending just one segment. If there is no 

response for that segment, the next attempt is made only after an exponential backoff period. This 

period doubles after each attempt and can reach a maximum of 64 seconds. In Figure 5.8(a) this 

exponential backoff algorithm causes TCP to delay adaptation to a few seconds after the on-off 

noise interval has ended.   

Next consider TCP performance for bandwidth fluctuations depicted in Figure 4.8(b). There are 

two occasions here, when the bandwidth available (UDP plot) drops suddenly to about half the 
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peak value. During the first bandwidth drop, the TCP flow rate adapts proportionately, but during 

the second drop (between instants B and C),  TCP received rate drops to zero multiple times, even 

while the UDP plot indicates sufficient availability.   

In the next section, we try to eliminate these transient wireless losses by introducing MAC retries 

and evaluate TCP performance in the same scenarios considered here.  

5.5.2  With MAC retries 

MAC retries compensate for wireless link losses �locally� and thus reduce the number of wireless 

losses seen by the TCP receiver.  Figures 5.8(a) and 5.8(b) show TCP performance with MAC 

retries.   

Figure 5.9(a) shows the effect of MAC retries on TCP performance in the presence of fluctuating 

noise. TCP�s bandwidth utilization improves from 2% (in figure 5.8(a)) to 68%. However MAC 

retries also introduce large fluctuations in the TCP received rate. These are caused by the 

combination of transmission latency introduced by MAC retries, and the bursty transmissions 

caused by delay-variance in TCP. We explained in Section 5.4 that MAC retries cause fluctuating 

transmission delays in the presence of fluctuating channel noise. For TCP traffic they not only 

affect onward DATA packets, but also the returning ACK packets. Overall there is a large 

fluctuation in the pace of returning acknowledgements at the TCP sender. Since TCP sender 

responds with packet bursts for each incoming ACK, there is a large variation of TCP data 

packets. Such large fluctuations in throughput often lead to transient queue overflows, 

particularly with multiple flows.  

Figure 5.9(b) depicts performance in a general scenario where both channel noise and interfering 

background flows affect the flow. The received rates here are for the operating scenario of Figure 
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5.5(b) where there is a short duration of fluctuating noise and multiple background flows interfere 

in the course of the flow. The TCP received rate depicts a case where TCP poorly uses the 

bandwidth available, despite MAC retries.  Here the background flows suddenly increase the 

transmission delays (lesser channel time available for transmission), and MAC retries during 

channel noise cause sudden bursts of TCP DATA packets.  The sudden increase in transmission 

delay is captured in the �measured round trip time� plot of Figure 5.9(b), where around the 1.5 

second instant, the RTT is seen to increase from 0.4 seconds to over 1 second.  

A combination of these effects results in multiple losses in some �bottleneck� nodes such as node 

6, which is within RxThresh_ of all the background sources, and is hence affected by MAC 

interference losses in addition to channel time reduction.  This result is a simple example where 

TCP fails even with MAC retries due to a fluctuating multi-hop wireless environment.  

Indeed here TCP packet losses are due to queue overflows. But the overflow itself happens 

because of TCP�s bursty traffic that cause transient filling of the queues. The bursts happen 

because the TCP offered load is does not match the available link capacity, indicating poor 

estimation of the bandwidth available by TCP�s flow control algorithm, demonstrating the 

shortcoming of TCP�s window based �pipe filling� approach to adapt the sending rate.  

It is also clear that the dependence on positive acknowledgements to �clock� the sending rate is 

the reason for all the traffic bursts. This delay-variance effect is also observed to occur in 3G 

cellular networks due to channel scheduling [1]. This reiterates the detrimental effects of 

combined error and flow control.                                                                                                                                  

5.6  CLAP performance 

We began our evaluation with CLAP-beta that uses periodic-NACKs for error control. In the 

wireless LAN environment, CLAP-beta utilized over 60% of the available bandwidth in the noise 

scenarios, but also had a long tail where the bandwidth was poorly utilized because of the limited 

amount of information conveyed by the periodic-NACKs. In the multi-hop noise-prone scenarios 

considered here, the fat tail of periodic NACKs caused significant delay in file transfer. Further 

because of overlapping information of missing packets, there was a large percent of duplicate 

retransmissions. In one scenario, they caused a 68% overhead.  

CLAP-final eliminated this problem in CLAP-beta by using pivot-NACKs with non-overlapping 

information of missing packets. Sweep-NACKs were used towards the end of the file which 

reported all the missing packets periodically. This optimization in CLAP�s error control algorithm 

reduced the requirement for round trip time estimates to the end of the file. Since sweep-NACKs 
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also conveyed lot of information, the CLAP sender could send the missing packets in bulk using 

the full bandwidth available, thus eliminating the �fat tail� of CLAP-beta. Here we show the 

results of evaluation of CLAP-final. We compare its performance with that of TCP that uses 

MAC retries for operation.  

Figures 5.10 and Figures 5.11 compare bandwidth utilization of CLAP and TCP-SACK (with and 

without MAC retries) in the wireless scenarios depicted in Figures 5.5 (a) and (b). In all these 

scenarios, CLAP-final was seen to have fewer than 10% duplicate transmissions. 

In all the figures, the UDP-no MAC retries curve is representative of the instantaneous bandwidth 

available in the primary path, since it always saturates traffic.  

Figures 5.10 and 5.11 depict performance when bandwidth fluctuations and channel errors of 

Figure 5.5(a) occur separately.  

5.6.1  Adapting to fluctuating bandwidth 

In the fluctuating bandwidth plot of Figure 5.10, the instantaneous received rate of CLAP is seen 

to be very close to the upper bound UDP plot, for the entire duration of the flow. This high 

utilization of bandwidth for DATA packets and the relatively small fluctuations in received rate 

demonstrate the consistently low overhead due to CLAP�s own feedback packets (the NACKs) 

and the status probes used by the cross-layer software framework to extract end to end status.  

The use of status probes to collect requisite link bandwidth information end-to-end is key to 

CLAP�s efficient rate adaptation. It is evident that despite their low frequency (10 probes/second, 
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Figure 5.10: CLAP performance in a 3-hop chain topology with time-varying bandwidth

 ( Background flows, no noise in the scenario of Figure 5.5(a)). 
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each of 40 bytes) these probes are sufficient to capture the bandwidth of the slowest link and 

convey it on time to the CLAP sender.   

CLAP�s quick rate adaptation also demonstrates the advantages of using the three specific MAC 

status parameters. The MAC outgoing rate parameter scales immediately in response to the 

channel access time in any given interval. When the bandwidth suddenly increases (such as at the 

5.5 seconds instant in Figure 5.10(a)) the use of the MAC underflow flag enables CLAP to adapt 

to the change quickly. Further by also conveying the Interface queue availability value, CLAP 

increases its rate, just as the amount of queuing resources available, and hence minimizes 

transient queue overflows.  

Thus CLAP�s rate adaptation approach is to �fill the link to capacity� while being mindful of 

queuing resources.  This approach differs significantly from TCP�s packet-burst approach to �fill 

the queues�, and has the advantage of minimizing queue backlogs. This minimizes the queuing 

delays for the status probes and enables their quick traversal across the network. This 

demonstrates the advantages of rate-based flow control rather than a window-based flow control 

such as used in TCP.  

With these methods CLAP gains at least 30% in throughput over TCP-SACK, even with TCP-

SACK is enhanced with MAC retries. CLAP also has far lesser fluctuations in throughput than 

TCP which results in fewer losses due to queue overflows.  

5.6.2  Adapting to fluctuating noise 

Figure 5.11 shows the performance of CLAP and other transport protocols in the presence of 

fluctuating noise (of the scenario depicted in Figure 5.5(a)). CLAP is seen to complete the file 

transfer irrespective of all the losses due to channel noise. The data received rate of CLAP is 

within 90% of that of upper-bound UDP.   
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Compare this result that uses the CLAP-final version with the result using CLAP-beta in figure 

4.6. CLAP-final here is seen to eliminate the fat-tail at the end of transmission. This performance 

is a result of the �complete� separation of flow control and error control in CLAP-final. In CLAP-

beta, flow control and error control get �coupled� towards the end of file transfer, since after 

sending all the new packets, the CLAP sender begins to depend on the periodic-NACKs for 

information of which missing packets to retransmit. The periodic-NACKs themselves convey less 

information because of the limited bitmap length (with 32 bytes, report up to sequence of 256 

packets). Increasing the bitmap length however causes a large overlap in adjacent NACKs if they 

are sent sooner than the actual round trip time. This requires accurate round trip time estimation, 

which is a difficult task with time-varying links, as is evident from TCP performance over time-

varying links. With these large overlaps, CLAP-beta experienced a large overhead due to 

duplicate retransmissions.  

The figure also demonstrates the gains of CLAP-final over TCP-SACK. In the absence of MAC 

retries, TCP-SACK sent only a small fraction of the file when the noise was on. In this scenario, 

CLAP gained over 300% over TCP-SACK. The gains only increase with worsening noise 

conditions. CLAP gains 30% in throughput over TCP-SACK, when the latter uses MAC retries to 

reduce the error rate. But it is also evident from the plots that CLAP has far fewer fluctuations in 

the received rate, that gains in performance when there are multiple flows. 
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Figure 5.11: CLAP performance in a 3-hop chain topology with time-varying noise 

(Channel noise, no BG flows in the scenario of Figure 5.5(a)). 
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5.6.3  Combined bandwidth and error fluctuations 

Figures 5.12 and 5.13 show CLAP-final performance in the general multi-hop wireless scenario 

where both bandwidth and error fluctuations occur. These scenarios differ in which of bandwidth 

or noise fluctuations dominate. 

In Figure 5.12, where error fluctuations dominate, TCP throughput fluctuation (with MAC 

retries) is very large and uses zero bandwidth in several intervals. On the other hand, CLAP 

performance without MAC retries, is devoid of these rapid fluctuations. Instead it reduces the file 

transfer delay significantly and gains 35% in throughput over TCP-with-MAC-retries. In doing 

so, it also uses over 90% of the available bandwidth in the course of its flow.  

In Figure 5.13 where bandwidth fluctuations dominate, CLAP outperforms TCP as expected. We 

explained TCP performance in this scenario in a previous section. While TCP reacts to previous 

losses with flow rate reduction, CLAP sustains its sending rate because of using supplemental 

status updates from CLF. However, the CLAP plot shows some instances when the received rate 

differs significantly from that of upper-bound UDP (for example, at the 5.2 second instant). This 

is a result of a lost status probes, which are sent best effort sent over UDP. Since these losses can 

happen frequently (in noise-prone scenarios for example), we optimized CLAP operation to use 

�local� MAC information when the end-to-end update is outdated (this �lifetime� is hard-coded 

to two observation intervals).  
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Figure 5.12: Performance in the noise fluctuations dominated scenario of 5.5(a) 
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This use of �local� information is justified for current mesh networking environments for the 

following reasons: The wireless multi-hop is not expected to be longer than 2 � 3 hops. From the 

mesh topology and the discussion of RxThresh_ and CSThresh_ it is evident that interference 

affects a wide area, covering more than two hops in a chain. The chain is the worst case scenario 

since with other paths interference has more overlapping effects across nodes. Finally, it is also 

true that such bandwidth fluctuations due to interference have a much larger impact on 

performance of mesh networks than with fluctuating noise.   

These two figures also lead to some curious observations of TCP performance (with MAC 

retries). MAC retries are suggested in 802.11 standards to reduce interference-related losses. 

Likewise here, MAC retries aid TCP performance much better in the interference-dominated 

rather than the noise-dominated scenario. MAC retries are hence more suitable to eliminate 

interference losses than losses due to noise, and are not an efficient enhancement for TCP 

operation in these wireless scenarios.  

It is evident from these that CLAP without MAC retries performs better than TCP with MAC 

retries in terms of both reduced delay for file transfer, and reduced throughput fluctuations in the 

noise scenarios. CLAP without MAC retries is also seen to adapt more appropriately to link 

quality fluctuations compared to TCP with/without MAC retries.  

From the scenario-related gains that we observed for TCP with MAC retries, it is clear that MAC 

retries only help in certain wireless conditions. On the other hand, CLAP performance is 

consistent � using over 90% of the available bandwidth irrespective of the wireless conditions. 
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Figure 5.13: Performance in the interference dominating scenario of 5.5(b) 
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5.7  Related Work 

TCP performance in multi-hop wireless networks (more commonly known in literature as 

MANET � Mobile Ad-hoc NETworks) have been addressed in many papers 

[23][26][27][33][38], where by simulating data transfer over mobile nodes, they found that �route 

failures� are a predominant cause of poor TCP performance. Most have proposed link layer 

enhancements to notify TCP sender of an impending route failure. Some have proposed new 

transport protocols using cross-layer awareness to address the same route failure problem.  

Solutions such as TCP-ELFN [27] and TCP-BEAD[38] do not improve transport performance in 

these fluctuating scenarios since they only modify TCP�s congestion control algorithm to freeze 

the flow control state when a route failure is detected. They do not overcome the slow adaptation 

issues of TCP over time-varying links and do not address losses due to self-interference. 

Similarly the ATP protocol that uses cross-layer information from the network layer, still uses 

positive acknowledgements to adapt sending rate and thus still intertwines flow control and error 

control algorithms.  

Hence all the available solutions for multi-hop wireless networks still use positive 

acknowledgements to clock the sending rate that increases self-interference, and intertwine error 

and flow control algorithms that causes poor bandwidth utilization in rapidly time-varying links.   

Another observation is regarding the cross-layer approach used in these existing solutions. Many 

protocols [27][[38] require intermediate nodes to track packets on a per-flow basis, and send 

notification to the TCP sender when they detect impending route failures. This approach is not 

feasible to implement in multi-hop wireless networks because of the following reasons:-  

(a) When there are a large number of flows, these proxies require elaborate state machines and 

large memory to support them.  

(b) The low-cost radio in these emerging networks cannot support the complexity required to 

implement these proxies 

(c) Nodes in the multi-hop network are expected to come up and go down in an ad-hoc manner. 

They may not have the �motivation� to track the packets of a remote TCP sender and send 

�altruistic� notifications.  

Hence these proxy solutions will not scale with increasing flows in highly dynamic multi-hop 

wireless environments.  
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Clearly there is a lack of solutions to address the general problems in multi-hop wireless networks 

caused because of interference and fluctuating bandwidth and error characteristics in each link. 

This motivates the evaluation of CLAP in these time-varying scenarios.  

5.8  Discussion of results 

In this chapter, we evaluated performance of TCP and CLAP in a general mesh network setting, 

with multiple wireless hops from source to destination. We observed the effects of rapid 

bandwidth fluctuations due to background flows, and also observed performance for rapid noise 

fluctuations.  

CLAP-final very closely approaches UDP performance by utilizing over 90% of the bandwidth 

available despite time-varying high-loss rate scenarios. The number of duplicates are greatly 

reduced by using pivot-NACKs, and constitute less than 10% of the overhead. All this gain is 

achieved with simple CLF status probes extracting network status information in a best effort 

manner. That is, a mere 3.2kbps/flow of control overhead to collect status updates, produced over 

90% bandwidth utilization in highly challenging scenarios.   

TCP needs MAC retries to sustain operation in time-varying scenarios, particularly when there is 

channel noise. Our results show that with MAC retries TCP bandwidth utilization improved from 

2% to 68%. However MAC retries are intended for interference-dominated scenarios and in 

noise-dominated scenarios considered, MAC retries were seen to cause large fluctuations in TCP 

throughput over time, because of the compound effect of MAC latency and bursty operation of 

TCP due to delay-variance. We demonstrated a scenario where these large TCP packet bursts 

results in a TCP timeout due to transient queue overflows.  

These results demonstrate the efficacy of using a decoupled flow control and error control 

approach for reliable file transfer over emerging wireless scenarios with interference and time-

varying link quality. Decoupling enables CLAP to approach over 90% of the upper-bound UDP 

performance with a suitable choice of flow control and error control algorithms to quickly adapt 

to time-varying bandwidth, minimize interference, reduce dependence on round-trip time 

estimation and minimize duplicate retransmissions.  
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Chapter 6                                                                          
Conclusion and Future Work 

In this PhD dissertation we have addressed the problem of reliable file transfer over the emerging 

class of shared media wireless networks. These networks are characterized by multi-user 

interference and fluctuating SNR, resulting in links with low reliability and highly fluctuating 

bandwidth and error characteristics. We found that traditional transport protocols such as TCP 

perform poorly because of oversimplified assumptions about link characteristics.  In particular, 

(a) TCP assumes relatively slow-varying highly reliable links, while wireless links are low-

reliability and time-varying, and, (b) TCP assumes duplex operation of links, while many wireless 

networks in fact operate over a simplex shared medium. A wide gap was observed between TCP 

performance and that of simple unreliable UDP with a saturating flow.  

These considerations motivated the design of CLAP � a Cross Layer Aware transport Protocol as 

a general solution for reliable transfer of files over wireless networks. CLAP decouples flow 

control and error control algorithms to accommodate time-varying links, and uses a NACK-based 

feedback scheme optimized to minimize self-interference and duplicate packet transmissions. The 

flow control algorithm adapts sending rate based on supplemental MAC and PHY cross-layer 

status information provided by the underlying network. A Cross-Layer Software Framework 

(CLF) has been implemented to systematically provision intra-node and inter-node status 

information.  

We evaluated the performance of CLAP, TCP and UDP in various time-varying scenarios in both 

single-hop and multi-hop settings. For single-hop evaluation we selected a wireless LAN 

environment with rapidly changing error characteristics. The performance of CLAP-beta version 

that used periodic NACKs (dependent on RTT estimation) was compared with that of UDP and 

TCP. CLAP-beta improved significantly over TCP performance, approaching over 60% of upper-

bound unreliable UDP performance.  

For multi-hop evaluation we considered a 3-hop chain path in a mesh network topology in a time-

varying environment.  Occasional background flows caused bandwidth fluctuations, and receiver-
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injected on-off noise caused error fluctuations. The performance of CLAP-final version that used 

NACKs with non-overlapping reports of missing packets (pivot-NACKs) was compared with that 

of UDP and TCP-SACK. As expected, TCP did badly in many scenarios, while CLAP-final 

performed very well achieving over 90% of UDP performance. CLAP-final gained over CLAP-

beta because of a large reduction in duplicates due to non-overlapping information in NACKs.  

These experiments in various single-hop and multi-hop scenarios prove the efficacy of using the 

proposed cross-layer transport approach for file transfer over wireless networks.  

Overall, we believe that clean-slate transport protocols optimized for wireless scenarios are 

practical and feasible in spite of the strong TCP legacy.  Changes to transport layer protocols are 

strongly motivated in emerging ad hoc and mesh network scenarios where TCP performance is 

problematic. Unlike changes to network layer protocols, transport layer improvements like CLAP 

can be implemented as plug-in software at servers and mobile devices, while cross-layer control 

information can be provided as an overlay network service. 

This work opens significant new opportunities for future research. First, CLAP, MAC status 

parameters and CLF need to be implemented in the Linux kernel and tested for performance, 

since NS2 simulations do not evaluate code complexity that could lead to sub-optimal 

performance. CLAP currently uses cross-layer status information only for flow control and could 

also be used for error control on the receiver side, possibly for a hybrid-ARQ scheme that will 

reduce the number of retransmissions in the interference-limited environment.  Status parameters 

collected by the Cross-Layer Software Framework may be extended to benefit other layers in the 

network stack.  In particular, interactions between CLAP transport and the routing layer in multi-

hop ad hoc and mesh networks is an important topic for further study.   
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Chapter 7                                                                          
Appendix 

Here we describe supplemental work relevant to the thesis. In Section 7.1 we describe insights 

obtained from video multicast experiments in an indoor wireless LAN. In Section 7.2 we describe 

ORBIT experimental setup.  

Then in Sections 7.3 and 7.4 we describe the TCP and UDP traffic generators we developed and 

used extensively for real-world experiments and ORBIT test-bed evaluations. And in Section 7.5 

we describe the insights gained from various design considerations for CLAP�s error control 

algorithm with aggregate NACKs.  

7.1  Video multicast over wireless LANs 

This project was carried out to experimentally evaluate the feasibility of 802.11b wireless LANs 

to sustain video multicast applications [10]. For multicast/broadcast applications, a common 

choice is the use of RTP/UDP/IP stack. The UDP/IP layers provide a best effort transmission 

service, with no guarantees of reliability or flow control. Further with retransmissions shut down 

in the link layer, there is a minimum end-to-end delay but at the expense of reduced link 

reliability. The RTP layer fragments large video frames to form payload of multiple packets and 

provides a display timestamp and sequence number for each packet.  

Several video compression standards have been developed to cater to video transmission. The 

most popular ones include H.263 and MPEG-2 that are tailored for different applications. 

Emerging standards include MPEG4-SP/ASP and MPEG4-AVC (also called H.264 or JVT). It is 

important to evaluate the efficacy of using efficiently compressed video over a lossy channel 

while employing forward error correction techniques (with additional overhead), as opposed to 

using a hierarchical coding technique such as MPEG4-SP/ASP that is less coding efficient. In this 

work, we focused in general on the carriage of an efficient coding format over wireless LANs. 

Experimentation in wireless networks poses distinct challenges. The inherent broadcast nature of 

wireless links makes them vulnerable to environmental factors such as materials composing the 
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floor, ceiling and furniture, opening and closing of doors and even movement of people. Hence 

experimental results obtained in one indoor environment are rarely reproduced elsewhere. There 

is also the problem of repeatability in the same location. Research has also demonstrated that 

results even vary with the time of the day. The varying traffic characteristics of VBR streams 

makes it even harder to gain insight into the reasons behind observed behavior. Hence we 

analyzed multiple MPEG4-AVC video streams to derive some common characteristics of video 

compression, and then used them as input to UDP traffic generators.   

MPEG4-AVC contains three types of frames - IDR, P and B. Their size is very content dependent 

and is influenced by a number of factors including resolution and other selected encoding 

parameters. IDR frames contain independent information of a macro-block, P frames contain 

differential information starting with the IDR frame and B frames include �future� information. 

We analyzed a representative set of MPEG4-AVC encoded video streams provided by [63]. They 

were QCIF at 30 frames/second with a global quantization parameter of 15. Some of their 

characteristics include: 

Wide variation in size of different frame types � IDR frames may be up to 20Kbytes while a B 

frame may be as small as a few tens of bytes.  

IDR frames may constitute almost half the compressed bit rate even though they constitute only 

1/12th the number of frames.  

7.1.1  Experimental setup and results  

A suite of UDP streams were generated using general VBR stream characteristics and were 
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(c) Channel loss at furthest location with non-saturating traffic 

Figure 7.2: Measured loss rates in different scenarios for constant UDP multicast 
streams with 100,000 packets 

multicast in different wireless scenarios. Each experimental run had one of these parameters 

changing - packet size (16bytes to 1000 bytes), video traffic bit rate (5Mbps, 2.25Mbps, 1Mbps, 

0.5Mbps), receiver location (line of sight, different room, different floor) and physical channel 

rate (2Mbps, 11Mbps). 802.11b MAC and a short Phy preamble (Phy header and Preamble 

transmitted at 2Mbps) were used.  

The experiments were conducted in an office premises spanning multiple floors as depicted in 

Figure 7.1. The setup comprised of a server PC, access point and a laptop receiver. Each test 

comprised of UDP multicast stream of 100,000 packets with fixed packet sizes and constant bit 

rate, streamed from the server to the receiver via the access point. The access point was setup at a 

fixed location and receiver laptop was moved to different locations and the tests were repeated. 

At each location, the test was repeated for all traffic loads and all physical channel rates 

considered. All the experiments were conducted on weekends and holidays when there was  

nobody else in the building.  

  Figure 7.2 plots loss rates as a function of packet size in different scenarios.  (a) and (b) 

demonstrate significant losses for small packet sizes even in the line of sight location (hence no 
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Figure 7.3: Limiting throughputs 

w.r.t. packet sizes 

wireless channel losses). Phy rates of 11Mbps and 2Mbps produced the same effect for different 

sets of traffic loads. From Figure (c) it is evident that in the specific office environment, 1 floor 

separation did not produce any significant packet loss (< 0.1%).  

 

Clearly, the most significant result in the paper is with changing packet sizes. Nearly all packets 

are lost for small size packets even with a moderate channel load. We analyzed possible losses at 

various points in the network, and found that the packets were being dropped in the access point, 

in the bridge between Ethernet and 802.11 interfaces. In these scenarios, the 802.11 link is much 

slower than expected causing access point queues to overflow. The reason stems from the 

overheads introduced by the MAC contention mechanism in the DCF mode of 802.11 operation. 

Each packet experiences delay in transmission due to random backoff in the shared medium. This 

introduces average delay of 310µs per packet. Table 7.1 gives the transmission times for various 

headers in the packet, and the total transmission delay overhead for each packet is 515µs, not 

including the payload. The same overhead applies irrespective of whether the payload is 16 bytes 

or 1000 bytes. Hence at the application layer the net link bandwidth available depends on the 

packet size. Figure 7.3 depicts the maximum throughput possible over an 11Mbps 802.11b link, 

for different packet sizes. It is a mere 200kbps for 16-byte packets, and just over 5Mbps for 1024 

byte packets. The utilization efficiency improves with increasing packet sizes.  
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Figure 7.4: Conceptual diagram of multiple video encoders 
simultaneously multicasting into a wireless LAN environment 

 

Figure 7.5: �Max possible bits� values change because of link capacity 
changes with packet sizes; Bigger packets use the 802.11 bandwidth more 
efficiently than smaller ones because of lower percentage overheads  

 

Hence from the perspective of the application layer, 802.11 link bandwidth fluctuates with packet 

sizes. For multiple VBR streams simultaneously multicast into the wireless LAN network, this 

means that the wireless link bandwidth changes depending on the combination of packet sizes 

arriving at the access point in each unit interval.  

We confirmed this insight by analyzing simultaneous transmission of 3 VBR streams into the 

wireless LAN via the AP (conceptually depicted in Figure 7.4). These streams were staggered 

versions of a reference video stream called Tempete, compressed to CIF resolution in MPEG4-

AVC format with QP=25. Average bit-rate per stream was 1.9Mbps and no traffic shaping. The 

total video bits that arrive at the AP in a 1-second interval is independent of any packet sizes. 

However packet sizes matter in determining the total bits serviced by the 802.11 link in that 1-

second interval. Figure 7.5 depicts the difference. When the RTP MTU is 892 bytes, there are 

several 1-second intervals when the AP cannot send out all the packets that have arrived. On the 

other hand, when the RTP MTU is 1300 bytes, the 802.11 link operates much faster than the 
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combined incoming rate of the three VBR streams, and can possibly accommodate an additional 

stream.  

This insight may be used to adapt video multicast traffic. Small size packets must be avoided as 

much as possible. The compression gains achieved by small size B-frames may be offset by the 

large overhead incurred during transmission over a 802.11 wireless link. On the other hand, large-

size packets are more vulnerable to be lost due to channel losses. Hence cross-layer feedback may 

also be used to indicate channel quality to traffic-shaping modules in video encoders, so that they 

maximize packet sizes and hence improve 802.11 bandwidth utilization. 

7.2  Description of NS2 simulations 

All our simulations are conducted in the NS 2.1b9a version, extended with the CMU wireless 

module that implements the 802.11 MAC protocol. We included several corrections to correct 

logical and implementation problems. One, we disabled the NS2 feature where failed MAC 

retries were interpreted as a �link failure�, and the routing agent is notified. In real 

implementations, such a notification mechanism would require the wireless interface to have 

complete knowledge of all host processes using it. This complexity curtails wireless network 

cards from implementing it. Second, we introduced a patch that appropriately reset the 

DeferTimer was applied to correct a persistent NS2 bug that caused an invalid uid_ in the 

scheduler [67].  

DSDV is used as wireless routing protocol although there is no need for one in the infrastructure 

mode. Experiments were conducted with various link delays ranging from 2ms to 15ms. A long-

preamble was used, where the Physical/MAC headers are modulated at a basic channel rate of 

1Mbps. For propagation, a two-ray-ground channel model is used. 

Physical parameters such as carrier sense and receiver sense thresholds are set based on Lucent�s 

Orinoco card settings.  

Phy/WirelessPhy object was set with the following parameters - transmit power (Pt_) = 0.2818 

Watts; bandwidth_ = 11Mb; dataRate_ = 11Mb; basicRate_ = 1Mb; freq_ = 2.472e9 Hz; 

CSThresh_ =  5.011872e-12 Watts; RXThresh_= 3.652e-10 Watts;  The wired links were set to 

be of type duplex-link with 10Mbps bandwidth (sufficient for 802.11b where the max data rate is 

limited to 6Mbps due to network stack overheads), 2ms link delay and dropTail queue.  

MAC queue length in wireless nodes (including AP) were set to the default NS value of 50 

packets. 802.11 MAC standard suggests RTS/CTS disabled (dot11RTSThreshold = 3000; while 
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Maximum MAC MTU = 2304). Our experiments with RTS/CTS in this network, showed reduced 

TCP throughput from additional overhead per packet. Hence RTS/CTS is disabled in all 

simulations.  For experiments with MAC retries,  the default values suggested in the 802.11 

std.[15] are used (dot11ShortRetryLimit=7; dot11LongRetryLimit=4). 

TCP receiver advertised window is set to 1,000,000 packets - large enough to ensure that 

instantaneous TCP throughput is only paced by the TCP congestion window.   

The link bandwidth in any scenario, is measured using a CBR flow with UDP packets between 

the same source-destination pair. It comprises of 1000 byte UDP packets sent (down the network 

stack to the wireless interface) at a constant interval of 0.001 seconds. Overheads due to 802.11 

Physical and MAC layers limit the transport layer bit rate for 1000 byte packets, to less than 6 

Mbps. Hence the CBR rate, which corresponds to 8Mbps is enough to saturate the wireless link.  

Maximum duration of simulations was 1000 seconds. Some experiments, particularly with 

multiple skipped ACKs did not complete file transfers in this duration. In these cases, TCP 

goodput (net data transferred successfully in 1000s) was used as a measure of throughput. 

Optional RTS/CTS in the 802.11 MAC was disabled since there were no hidden nodes in our 

experiments.  

The interface queue length is set to 100 packets to eliminate queue overflow situations (unless 

otherwise specified).  All packet sizes (CLAP, TCP and UDP) are set to 1000 bytes. CLAP 

header size is set to be 40 bytes, to match that of TCP. Multiple flows are staggered from each 

other, and each flow starts 0.1 seconds after the previous one. 

7.3  Experimental procedures on the ORBIT wireless test-bed 

The 400-node ORBIT wireless test-bed is a state-of-the-art system built to conduct repeatable and 

controllable wireless experiments (picture is shown in Figure 7.6 and experiment setup for 

wireless LAN is shown in Figure 7.7). It enables emulation of noisy wireless links by injecting 

random gaussian noise into the grid environment via 4 noise antennae in the grid and the noise is 

generated by means of a signal genarator.  3-hop topologies may be created with noise injection 

to lower SNR, and carefully selecting affected nodes.   

We used ORBIT test-bed to implement TCP ACK skipping in a wireless LAN environment, and 

to also demonstrate slow TCP adaptation with fluctuating channel noise.    
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7.3.1  Experimental procedure 

We used a 3-layer approach for ORBIT experiments: 

1. Select the network topology and experiment parameters (such as noise power) and identify 

nodes to use in the experiment    2. Set up experiment in ORBIT, run noise and traffic generators 

and collect results. An average of several trial runs of the experiment is used as the final result.  3. 

Parse result files, and plot graphs to derive the requisite insights.   

This procedure is depicted in the flow charts of Figure 7.8 and 7.9. Node selection requires prior 

knowledge of the grid topology, since the results obtained are somewhat node-specific. This is a 

result of wireless card sensitivities and asymmetric noise patterns in the grid. ORBIT allows 

experimenters to use their preferred operating system/kernel on test bed nodes, allowing complete 

root privileges. A systematic suite of Perl, Bash and Ruby scripts are used to operate the 

experiments. Independently developed UDP and TCP traffic generators are key to carry out the 

experiments among nodes.  

W1

M2

W3

M1

W2

M3AP

W1

M2

W3

M1

W2

M3AP

 
Figure 7.7: Wireless LAN setup 
on the ORBIT grid; Ws and Ms 
are wired and wireless nodes 
communicating via the AP   

 

Figure 7.6 ORBIT test-bed at WINLAB, Rutgers
University located in North Brunswick, NJ 
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The ORBIT test bed contains a noise generator that injects noise into the grid via antennae at 

fixed locations. The wireless characteristic causes signal impairment only when the signal is 

received, and not enroute or at the transmitter. Hence the received characteristic could be 

different at different receivers depending upon the interference/noise environment at that node. 

Hence operating nodes should be selected carefully in order to produce the environmental 

scenario desired in the experiment. Noise patterns of low granularity (over 1 second) are specified 

in Ruby scripts and supplied to the nodehandler tool in ORBIT. The nodehandler in turn invokes 

requisite web services to inject AWGN noise of the desired power levels in the test bed. 

 

7.3.2  TCP skip-ACKs setup 

The main challenges experienced were with configuring certain parameters in different network 

cards.  We explored Atheros 5212, Cisco and Intel cards. Only Cisco cards allowed disabling of 

MAC retries and physical rate fixation.  Similarly, only the Atheros cards operated in �Master� 

Level 1
Issue single command to single node

Level 2
Specify single command to multiple nodes

Level 3
Run complete experiment (suite of commands in sets of nodes)

load_and_config.pl
set_txpower.pl
start_npm*.pl
kill_npm*.pl
start_tcp*.pl
kill_tcp*.pl
etc...

all_load_config.sh
all_set_txpower.sh
all_run_clients.sh
all_run_servers.sh
all_kill_clients.sh
all_run_tcp_recvers.sh
all_collect_tcp_results.sh
etc ...

Complete Experiments:
Image_nodes.sh
run_single_flow_tcp.sh
run_mhop_exp.sh
run_multiflow_udp.sh
etc ...

Node sets:
sb9_nodepool.lst
ClientList.lst
tcpServers.lst
etc ..

Hierarchy of Scripts to run ORBIT experiments

Supplemental scripts:
format_nodenames.pl
pulse_noise.rb
step_noise.rb
etc �

 
Figure 7.9: Hierarchy of scripts to run ORBIT 

experiments 

Image nodes

Download setup scripts and 
traffic generator into nodes

Set up wireless network

Run traffic generator

Collect result files 
from nodes

Identify desired network topology

Select wireless 
technology/parameters 
(802.11 a/b/g or Intel/

Atheros etc)

Start noise 
program

Select Nodes

 
Figure 7.8: Experiment procedure in 

ORBIT 

#!/bin/sh
#intel-adhoc-setup.sh
modprobe ipw2200 
ifconfig eth2 up
iwpriv eth2 set_mode 2
iwconfig eth2 mode ad-hoc essid sumathiAdhoc channel 1
ifconfig eth2 10.80.$1 netmask 255.255.0.0

Usage: ./intel-adhoc-setup.sh 1.1
    

#!/bin/sh
#ap-setup.sh
modprobe ath_pci
ifconfig ath0 up
iwconfig ath0 mode Master essid sumathi
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and �Monitor� modes required for Access Point and sniffing respectively. Our experiments 

required MAC retries to be disabled, and no auto-rate adaptation. Hence we selected nodes with a 

Cisco card interface as the mobile (M) nodes. A node with an Atheros card interface was selected 

for AP setup. Due to this combination, MAC retries could only be disabled in the M nodes, but 

not in the AP. Hence for the traffic type considered here (file upload from M nodes to W nodes), 

MAC retries were disabled for TCP DATA, but not for TCP ACKs.   

Both layer 2 (MAC) and layer 3 (Network layer with forwarding tables) settings were required to 

establish the  wireless infrastructure network in the ORBIT grid. In layer 2, the wireless 

Infrastructure mode of operation between the AP and M nodes was established using the iwconfig 

tool in linux.  The physical rate was fixed at 11 Mbps and RTS/CTS feature was turned off (no 

hidden nodes in the experiments so don�t need RTS/CTS). Layer 3 settings were required for 

wired-cum-wireless routing between the Ws and the Ms via the AP. The forwarding table in each 

end node was updated to ensure routing via the AP (using the route command) and ARP was 

disabled by pre-updating. IP forwarding was enabled in the AP node to forward packets between 

W and M nodes. There was no other interfering traffic/noise/channel fading during the 

experiments. Hence in all the experiments, all packet losses were due to MAC transmission 

failures.  TCP implementation in the kernel (version 2.6.10) was modified to incorporate ACK 

skipping. It is important to mention that, although the kernel modification was only a few lines 

(less than 10 lines), one has to be very careful while making them to avoid sub-optimality. For 

example, a single print statement to log skipped ACKs reduced TCP throughput to a 100th of its 

previous value. This was due to the expensive per-packet file-write overhead in kernel operation.  

TCP segment sizes were set to 1000 bytes using TCP socket options.  

Kernel programming with ORBIT: Transport protocols are implemented in kernel-space instead 

of in user-space, to maximize efficiency because of their time-critical nature of operation. The 

ORBIT test bed infrastructure makes it easy to do kernel modifications. ORBIT�s parallel control 

infrastructure may be used to track critical boot status and when required restart nodes etc. In case 

of erroneous implementation that leads to unbootable kernels, the kernel can be repaired via the 

control infrastructure.  

7.4  Network Performance Monitor (NPM) � a pattern-based UDP traffic generator 

The UDP traffic generator (called NPM - Network performance Monitor) was designed to suit the 

needs of various general applications. It generates UDP traffic based on the pattern of required bit 

rates and packet sizes, reading from a config file. It comprises of two programs � npmServer that 
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serves requests with UDP packet streams, and npmClient that sends the desired traffic pattern to 

the npmServer and receives data. It logs information of received packets including the packet 

sequence number, packet size and received timestamp.  

NPM can operate in unicast as well as multicast modes, The implementations for these aspects 

differ merely in the type of IP address specified by the npmClient that receives data. In the 

UDP Traffic Generator
(Network Performance Monitor ) 

Input
Config file (orbit.conf)

Number - packets

Range -Application bit rate 
Step pattern per iteration
Number - iterations

Range � Packet size

Operation

TCP

Client Server

Fork new process 
with new port

Send UDP stream with 
requested parameters

Save packet sent 
info in file

Send config file with 
stream parameters

Save received packet info 
with timestamps in file

End End

Output Result files

Client side
• R_*.res : Pkt SeqNo, recved_TS, pktSize
• Th_*.res : received # of bits per interval

Sender side
• S_*.res : Pkt SeqNo, sent_TS, pktSize

Start serverStart client

Wait for request

Server IP address

 

Figure 7.11: NPM - A UDP Traffic Generator 
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multicast case, the program handles subscription to the specified multicast IP address, by 

initiating IGMP messages in the kernel.   

The general procedure is to first start the npmServer so that it binds to a specific port (5000) and 

wait for a request from an npmClient. The npmClient reads traffic parameters from a 

configuration file and sends the request to npmServer over a TCP connection.  It then binds to a 

specific UDP port (5001) and waits for traffic from the npmServer.  npmServer forks a new 

process to serve the traffic to the npmClient.  Figure 7.10 depicts this procedure.  

7.5  tcptest � A TCP traffic generator 

Output

Input File size 

Destination IP Address

rth_*.res: Bits received per interval

TCP Traffic Generator

operation

Record bits received in each 
interval and save to file

TCP
Recver

TCP
Sender

Use kernel TCP socket to 
send chunks of file

End End

Start serverStart Rcvr

Wait for 
connection

Accept user specified file 
size and destination 

Connect to dest

 

Figure 7.12: tcptest - A TCP Traffic Generator 
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The TCP traffic generator whose functionality is depicted in figure 7.12 is designed deliver a 

dummy data file of the specified size to the given destination. In essence it is a light-weight FTP 

application, serving the byte stream in constant packet sizes using a default kernel-supported TCP 

socket (Linux kernel 2.6.10 uses TCP-BIC by default). 

 

7.6  Various considerations for CLAP error control algorithm 

We considered and evaluated various different methods for CLAP�s error control algorithm 

before finalizing the non-overlapping NACK method in the CLAP-final version. These various 

algorithms are tested in stress-test noise-prone scenarios, where rapid fluctuations in link errors 

cause significant packet losses.  

In shared medium operation, a selective reject approach using negative ACKs could achieve high 

gains over a positive ACKs approach, when the packet loss rate is low, because of lesser 

bandwidth consumed by feedback packets. However in high-loss scenarios where there are a lot 

of missing packets, too many NACKs may even worsen the link conditions. Hence the NACKs 

must deal with two possible situations: (a) When the channel is bad, its possible that there are too 

many aNACKs generated that would consume precious wireless bandwidth, cause self-

interference and hence worsen loss of data packets.  (b) In case of a very good channel, very few 

aNACKs could ensue. But the sender needs feedback from the receiver to ensure that the receiver 

is alive to periodically flush the send-window in the kernel of successful packets. Hence the 

number of NACKs must be controlled so that the error control operation is efficient even in high-

loss scenarios. In other words, NACKs should be restricted in high-loss scenarios, but a minimum 

frequency is required to clear the sender side memory of outstanding packets.   

We considered two possible approaches that achieve these objectives: (a) Sender-driven NACKs: 

The receiver sends a NACK only when solicited by the sender.  (b) Receiver-driven NACKs: The 

receiver generates a NACK on its own accord when an incoming data packet indicates losses.   

Sender-driven NACKs: Here the receiver sends a NACK only when requested by the sender. The 

sender maintains a transmit buffer of size max_buf to track outstanding packets. When the buffer 

fills up, the sender stops sending new packets and requests a NACK from the receiver. The 

receiver responds with a single NACK containing all missing packets up to the highest sequence 

number received.  
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While this approach minimizes interference significantly using only few NACKs, it underutilizes 

available bandwidth while waiting for a NACK. This is particularly expensive in scenarios with 

high loss rates and long round trip times. Further the method introduces the requirement of round 

trip time estimation (to retransmit NACK solicit request) at the sender, which is difficult to do 

with few returning feedback packets and the algorithm becomes susceptible to rapid round trip 

time fluctuations that in turn may generate too many NACKs.   

Receiver-driven NACKs: The receiver sends an aggregate NACK to the data sender whenever an 

out-of-order packet is received. NACKs report all missing packets up to the highest sequence 

number received, using a variable length bitmap. With occasional losses and short round trip 

delays, this approach works well with consecutive NACKs reporting different sets of missing 

packets. However if there are burst losses where and new data packets arrive before the 

retransmitted packets, each new data packet generates a NACK containing a list of missing 

packets that overlap with the previous NACK.  One such situation is depicted in Figure 7.13 
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Figure 7.14: Comparing performance of spontaneous NACKs and periodic NACKs 
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Figure 7.13:  CLAP performance with spontaneous NACKs 



106 

 

(7.13(a) shows the received rate of new packets and 7.13(b) shows the received rate of duplicate 

packets). Here duplicate retransmissions result in a 134% overhead. It is clear from the 

instantaneous received rate graphs in the figure, that although the flow control algorithm utilizes 

the available bandwidth well, the large overhead due to duplicates degrades throughput.  

Hence it is essential to reduce the number of duplicate retransmissions, to improve overall 

throughput achieved during reliable file transfer. The sender retransmits a packet only when 

requested in a NACK, so we reduced the number of NACKs by using periodic-NACKs instead of 

sending them spontaneously. 

 

7.6.1  Periodic NACKs  

Here the frequency of aggregate NACKs is restricted to one per unit interval. The length of the 

interval is hard-coded to be the median round trip time. This is to allow sufficient time for the 

sender to respond with retransmissions, before sending the next NACK, to avoid large overlaps in 

adjacent NACKs. We tested this approach by setting the NACK period to 100ms.  The approach 

resulted in a significant reduction in duplicates as shown in Figure 7.14(a). This reduction 

produce significant gains in throughput, particularly with increasing flows as shown in figure 

7.14(b).  

7.6.2  Periodic NACKs with long bitmap length 

However periodic NACKs could introduce significant coupling between the flow control and 

error control algorithms. One high loss rate scenario where this happens is depicted in figures 

7.15 and 7.16. In noise-prone scenarios, many NACKs are lost due to channel noise. This causes 

the sender to mostly sends new packets in the initial stages of file transfer. This is marked as the 

�new packet phase� in figures 7.15 and 7.16. After this, the sending rate begins to be paced by 
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returning NACKs, and the sending load only constitutes retransmissions.  The duration of this 

�retransmission-only phase� depends on the amount of feedback conveyed in each NACK. In 

Figure 7.15 each NACK the reported sequence length is 32 packets (NACK bitmap length = 4 

bytes), while in Figure 7.16 it is 128 packets (bitmap length = 32 bytes).  Increasing the bitmap 

length from 4 bytes to 32 bytes produces nearly a 100% gain in throughput in the particular 

scenario. Still the link bandwidth is underutilized in the �retransmission-only phase�.   

Further increasing the bitmap length however, increases the dependency on accurate round trip 

time estimation. When there is a mismatch in the periodicity of NACKs and the actual round-trip 

time, there could either be periods of unutilized bandwidth, or there could be significant overlap 

in adjacent NACKs. This latter results in a large amount of duplicates. In one multi-hop wireless 

scenario with fluctuating bandwidth (due to occasional background flows) and high noise, 

periodic NACKs with 32 byte bitmap, caused a duplicates overhead of over 40%.  

 

These issues with periodic-NACKs motivated the new approach with pivot-NACKs where 

adjacent NACKs reported non-overlapping packet sequences. This approach is described in detail 

in the context of CLAP-final version in Chapter 3.  
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