Staff View
Video multicast over wireless local area networks

Descriptive

TitleInfo (displayLabel = Citation Title); (type = uniform)
Title
Video multicast over wireless local area networks
Name (ID = NAME001); (type = personal)
NamePart (type = family)
Makharia
NamePart (type = given)
Shivesh
DisplayForm
Shivesh Makharia
Role
RoleTerm (authority = RULIB)
author
Name (ID = NAME002); (type = personal)
NamePart (type = family)
Raychaudhuri
NamePart (type = given)
Dipankar
Affiliation
Advisory Committee
DisplayForm
Dipankar Raychaudhuri
Role
RoleTerm (authority = RULIB)
chair
Name (ID = NAME003); (type = personal)
NamePart (type = family)
Gruteser
NamePart (type = given)
Marco
Affiliation
Advisory Committee
DisplayForm
Marco Gruteser
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME004); (type = personal)
NamePart (type = family)
Zhang
NamePart (type = given)
Yanyong
Affiliation
Advisory Committee
DisplayForm
Yanyong Zhang
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME005); (type = personal)
NamePart (type = family)
Liu
NamePart (type = given)
Hang
Affiliation
Advisory Committee
DisplayForm
Hang Liu
Role
RoleTerm (authority = RULIB)
outside member
Name (ID = NAME006); (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (ID = NAME007); (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2007
DateOther (qualifier = exact); (type = degree)
2007-10
Language
LanguageTerm
English
PhysicalDescription
Form (authority = marcform)
electronic
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xiii, 56 pages
Abstract
Video multicast services over wireless media are expected to grow in importance over the next few years. Multicasting over wireless networks is complicated by the fact that wireless links are error-prone and time varying. In multicast scenarios using the 802.11 wireless LAN protocol, multiple receivers experience widely varying channel conditions and the link layer protocol does not retransmit erroneous or lost packets, potentially resulting in poor video quality. Therefore, it is a key requirement to support quality of service for all the receivers of the multicast video in the desired coverage area while efficiently utilizing the available wireless LAN resources.
In this thesis, we investigate some of the aspects of reliable video multicast over WLANs. We design, implement and evaluate multi-group hybrid ARQ (MHARQ), a new and improved adaptive system for reliable video multicast. MHARQ combines the advantages of receiver-driven staggered FEC and hybrid ARQ schemes to compensate the large dynamic range of WLAN channels and to achieve high reliability, scalability and wireless bandwidth efficiency for video multicast. The FEC packets generated by a cross-packet FEC code are divided into multiple streams according to the pre-configured overhead and are transmitted in different multiple IP multicast groups. Certain FEC streams are delayed from the original video stream. The receivers dynamically join/leave the FEC multicast groups based on the channel conditions. For efficient utilization of WLAN bandwidth, FEC data for a multicast group would not be transmitted by the APs in wireless networks if no receiver joins this group. The time shift between the video stream and the FEC streams introduces temporal diversity and compensates for the client join delay and handoff interruption. In addition, when delayed FEC packets are not enough to recover the lost packets, the receivers can send a hybrid ARQ request to the video server. We design a channel estimation algorithm for a receiver to dynamically determine the delayed FEC multicast groups to join and/or send ARQ NACK to request for retransmission.
Using the ORBIT radio grid testbed, we have investigated the performance of the proposed MHARQ system with various numbers of users per AP and different numbers of APs per video server. It is demonstrated via real system implementation on ORBIT that MHARQ improves wireless bandwidth efficiency and scalability for reliable video multicast, compared with existing reliable multicast schemes. The experience and insight obtained from implementation are discussed as well.
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references (p. 55-56).
Subject (ID = SUBJ1); (authority = RUETD)
Topic
Electrical and Computer Engineering
Subject (ID = SUBJ2); (authority = ETD-LCSH)
Topic
Multicasting (Computer networks)
Subject (ID = SUBJ3); (authority = ETD-LCSH)
Topic
Wireless LANs
Subject (ID = SUBJ4); (authority = ETD-LCSH)
Topic
Wireless communication systems
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17085
Identifier
ETD_413
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3HT2PP1
Genre (authority = ExL-Esploro)
ETD graduate
Back to the top

Rights

RightsDeclaration (AUTHORITY = GS); (ID = rulibRdec0006)
The author owns the copyright to this work.
Copyright
Status
Copyright protected
Availability
Status
Open
AssociatedEntity (AUTHORITY = rulib); (ID = 1)
Name
Shivesh Makharia
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
RightsEvent (AUTHORITY = rulib); (ID = 1)
Type
Permission or license
Detail
Non-exclusive ETD license
AssociatedObject (AUTHORITY = rulib); (ID = 1)
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Back to the top

Technical

Format (TYPE = mime); (VERSION = )
application/x-tar
FileSize (UNIT = bytes)
796160
Checksum (METHOD = SHA1)
e03451cfe8329e94de7d5b93c5d7af821bfa7489
ContentModel
ETD
CompressionScheme
other
OperatingSystem (VERSION = 5.1)
windows xp
Format (TYPE = mime); (VERSION = NULL)
application/x-tar
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024