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Dissertation Director: Dr. Alberto M. Cuitiño

Cellular materials such as metallic and polymeric open-cell foams resemble a labyrinth

of interconnected struts surrounded by air-filled voids however a closer inspection re-

veals a periodicity where a particular unit cell is repeated throughout a lattice inside

a matrix of air. Depending on the loading rate, the specifics of the cellular topology

and the material properties of the solid phase, the different stages of deformation can

involve elasticity, plasticity, fracture, viscoelasticiy, thermoelasticity, strain rate effects,

density (microinertia) etc. This dissertation contributes an approach for modeling dy-

namically loaded open-cell foam materials where the structure is mimicked with the

replication of a periodic unit cell composed of a four ligament tetrahedron inside a

dual tetrakaidecahedron volume element. Formulation of the Lagrangian for a repre-

sentative unit cell comprising an imposed macroscopic deformation and enforcement of

the principle of minimum action for dissipative systems results in a relation between

the globally applied macroscopic deformation and the motion of the internal unit cell

vertex, which uniquely defines the kinematic state of each cell and the effective stress

state. By maintaining the history of local non-affine motion along with the global affine
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deformation, the model is able to capture the microinertial and viscous effects impor-

tant during dynamic loading of open-cell foams. The micromechanical formulation is

used to predict the dynamic compressive uniaxial response of polymeric (visco-elastic)

and metallic (elasto-plastic) open-cell foams for different loading rates and structural

and material properties gauging the effects of strain rate, viscosity, plasticity and mi-

croinertia. The predictions capture the experimentally observed effects namely that

as the strain rate increases the foam strength increases and that this effects are more

pronounced for more viscous or more massive foams. The micromechanical model alone

provides the effective foam response in a numerically efficient manner allowing the user

to probe a wide range of material properties and cellular dimensions in a short amount

of time. However in order to predict the full field, full range response of an open-cell

foam specimen, it is necessary to implement the micromechanical model as a constitu-

tive update into implicit and/or explicit nonlinear dynamic finite element analysis FEA

schemes. The FEA simulations clearly capture the experimentally observed signature

response with the different stages including the heterogeneous bands of deformation

during dynamic compression of cellular materials.

iii



Acknowledgements

Thanks to all the faculty in the department of Mechanical and Aerospace Engineering

with whom I’ve had the opportunity to take a class or to discuss a topic, thank you

very much for sharing your knowledge with me. I am very thankful to my dissertation

committee members: Prof. Andrew N. Norris, Prof. Ellis H. Dill, and Prof. Hae Chang

Gea from Rutgers University and Prof. Winston O. Soboyejo from Princeton University

for spending part of their very valuable time inspecting this work and for providing me

with suggestions on how to improve this dissertation. I would especially like to thank

my advisor, Prof. Alberto M. Cuitiño, for all his patience, guidance, support and

encouragement during the past few years. Without Dr. Cuitiño’s guidance, this work

could not have been completed. Dr. Cuitiño is a brilliant scientist and it has been an

honor to spend time with him discussing research ideas in addition to chatting about

life. I hope to continue our partnership to expand my ability to work on technical,

scientific problems.

I would also like to acknowledge Dr. Shanfu F. Zhang for his invaluable as-

sistance and helpful suggestions with the work presented here. Thanks to the current

graduate director, Dr. Haim Baruh and special thanks to the former graduate director

Dr. Haym Benaroya for accepting me into the department at a difficult time in my

professional career. I thank the current and past members of Dr. Cuitiño’s group in-

cluding Kinjal Dhruva, Daniel Braido, Alisar Tunser, Dr. Shanfu Zhang, Dr. Stephen

Kutchnique, Dr. Moises Smart, and Dr. Zhan Gao. Also, thanks to the past and

current graduate students in the department with whom I the opportunity to interact

such as Lucian, Edward, Jason, Elan, Paola, David, etc. I would also like to thank the

staff at the MAE department including Bill Vasiliou, John Petrowski, Virginia Dare,

Beatrice Vena, Helene Press, and Aiesha Jenkins for their assistance during my stay at

the department.

iv



I want to express my gratitude to the Center for Advanced Food Technology

(CAFT ) at Rutgers University for partially supporting my graduate work. I would

also like to thank and acknowledge the National Science Foundation and Rutgers GK12

fellowship program for its financial support during my early years as a graduate student.

Special thanks go to Dr. Kathleen Scoth and Suan Colettta of the GK12 program for

their support, understanding, and assistance over those years. The opportunity to

interact with young middle school students was very enjoyable and rewarding because

while I shared my scientific knowledge and experiences with the students I was able

to improve my teaching technique. I will make an effort to always get involved in

similar programs in the future. Next, I would also like to sincerely thank Dean Ilene

Rosen and Dean Donald Brown from the Office of Student Development for their great

support and encouragement ever since I first came to Rutgers for the Engineers of

the Future Program. Finally, I would like to thank my family Isidro, Maria, Daysi,

Mario, Lindon, and Reynaldo. Thanks to SHE, SHPE, and CAHSEE for helping me

expand my interpersonal skills. Thanks to my Rutgers engineering friends including
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Chapter 1

Introduction

Foams are light weight cellular materials which can be conceptualized by the repetition

of a particular unit cell. This unit cell can have a myriad of shapes and sizes as long

as its mirror duplications can be fitted into a lattice arrangement to reproduce the

cellular material. It appears that nature has always known about the advantages of

cellular materials because they are found in plants, animals, and humans. Over the

years, mankind has learned about the many properties offered by these materials and

has began to take advantage of them in different applications. Industrial and scientific

interest in the field of foams has grown significantly over the last couple of years with the

advent of novel foam manufacturing processes. The work presented in this dissertation

contributes to the understanding of the intriguing mechanical behavior exhibited by

visco-elastic and elasto-plastic open-cell solid foam materials. This chapter presents an

introduction to the field of foam materials and an overview of the work contained in

this dissertation. First, Section 1.1 will give an introduction to the general field of foam

materials. Next, Section 1.2 will present a concise review of the relevant experimental

and modeling studies on the mechanics of solid foam materials. Lastly, Section 1.3 will

present an overview of the work presented in the different chapters of this dissertation.

1.1 Introduction to Foams

Foam materials are not exclusively solids, liquids, or gases; they are made with solid

or liquid cells which entrap a fluid within the solid or liquid microstructure combining

properties and characteristics of multiple states of matter Perkowitz (2000). The vast

field of natural and man-made foam materials is divided into liquid and solid cellular

materials. The soap froth shown in Figure 1.1 is a well known example of a liquid foam
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Figure 1.1: A liquid foam, soap froth, Weaire and Hutzler (1999).

because the walls, the membranes, of the spherical cells making up the froth are in

the liquid state. Probably the most familiar solid cellular materials are the polymeric

foams used in packaging to protect delicate and fragile products from impact during

transportation.

Considering all liquid and solid cellular materials results in a vast field of foam

materials. The field of solid foam materials alone can be larger than the composites

field when wood is included. Many of the materials that we frequently encounter in our

everyday lives such as coffee cups, cakes, cereals, snacks, whipped cream, cappuccino

foam, beer foam, wood, cork, bone, packaging cushioning foams, sofa foams, mat-

tress foams, honeycombs, etc have cellular structures and thus qualify as foams. Solid

cellular-structured materials have existed naturally for many years in woods, human

tissue such as cancellous bone, honeycomb structures, sponge, and coral. Figure 1.2

shows some of the different foam materials that exist naturally in world. Nowadays the

number of man-made cellular materials is much larger than the number of natural cel-

lular materials. At some point many of us have come across polymeric foams but as can

be deduced from figure 1.3, many other materials such as metals, glasses, and ceramics
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Figure 1.2: The microstructure of different natural foam systems as shown in Gibson and Ashby
(1997): (a) cork, (b) balsa, (c) sponge, (d) cancellous bone, (e) coral, (f) cuttle fish bone, (g) iris leaf,
(h) stalk of a plant.

which the general public is not used to seeing as foams are being synthesized as foams

with different cellular structures. As can be seen from Figure 1.3, man-made solid foams

have a wide range of open-cell and closed-cell cellular structures. Solid cellular materi-

als are becoming more common because they are starting to be found everywhere. For

instance solid cellular structured materials are found in foods (breads, cereals, snacks),

the human body, resting equipment/furniture (chairs, sofas, mattresses), ships, aircraft,

packaging materials, sports equipment (helmets, shoes), etc. Figures 1.4 and 1.5 show

the cellular structure of different food foams and cancellous bone respectively.

1.1.1 Synthesis of Foams

The synthesis of foam materials is an incredibly dynamic process involving the injection

of a gas into a material in the liquid state. We can be amazed by carefully observing

the commonplace nucleation and self-organization of the bubbles whenever someone

pours a beer into a glass or brews a cappuccino into a cup (Weaire and Hutzler, 1999;
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Figure 1.3: The structures of different cellular solids as shown in Gibson and Ashby (1997): (a)
open-cell polyurethane, (b) closed-cell polyethylene, (c) nickel, (d) copper, (e) zirconia, (f) mullite, (g)
glass, (h) a polyether foam with both open and closed cells.

Perkowitz, 2000). Man-made or artificial solid foams are essentially synthesized by

generating air voids in a melt and solidifying at a specific rate to produce the desired

cellular structure and material properties. The different processing routes including

gas injection into a melt, immersion of gas releasing blowing agents into a melt, and

pouring the melt into a removable mold have been reviewed by authors such as Banhart

(2003), Gibson (2000), Ashby et al. (2000) and Gibson and Ashby (1997). There are

two basic methods for manufacturing cellular solids on which almost all the current

cellular material fabrication techniques are based. The first is a self-forming method

which inserts a gas into the material in the liquid state. The liquid is often treated

with additives to increase the material’s viscosity and to decrease its surface energy

in order to minimize the drainage of the liquid and to stabilize the cell walls at a

desired point in the foaming process. Once the material is solidified at the desired

point, we have a new cellular-structured solid. The second method uses molds with

the desired cellular structure to pour the material in the liquid state and once the
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Figure 1.4: Examples of food foams from Gibson and Ashby (1997): (a) bread, (b) meringue, (c)
chocolate bar, (d) junk food crisp, (e) Malteser, (f) Jaffa cake .

material solidifies in the mold’s shape; the mold is burned away or chemically removed.

Figure 1.6 depicts the mold process used to generate metallic foams. Using variations of

these synthesis techniques, many efforts have and are being directed at foaming metals,

ceramics, polymers, glasses and other materials in efforts to create foam materials with

properties that can be exploited in different applications. Some of the more recent

and exotic cellular solids being synthesized include syntactic foams (Erikson, 1999) and

magnetic foams (Boonyongmaneerat et al., 2007).

1.1.2 Structure of Foams

The different processing routes and the properties of the material being foamed pro-

duce solid foam materials with either open- or closed-cell cellular structures. Earlier

Figure 1.3 showed a couple of solid foam materials with either open- or closed-cell

cellular structures. A cellular material with cells that are completely closed, such as

foams composed of hollow spherical cells, is considered a closed-cell foam because the

fluid, such as air, trapped in each cell is restricted to that cell. In closed-cell foams,

there is no fluid flow across the foam’s cellular structure without breakage of the cell

walls. On the other hand, open-cell foams allow fluid flow throughout the cellular

structure. The cellular architecture of open-cell foams resembles a labyrinth of small,
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Figure 1.5: SEM pictures showing the cellular structure of cancellanous bone from Gibson and Ashby
(1997): (a) low density femoral head specimen, (b) high density femoral head specimen, (c) a femoral
condyle specimen Gibson and Ashby (1997).

interconnected trusses. In reality many cellular solids have cellular structures in be-

tween open- and closed-cell where many of the cells show characteristics of both types.

The work presented here concentrates on open-cell foams which we model as a network

of interconnected ligaments surrounded by air-filled voids.

1.1.3 Properties of Foams

Man-made solid cellular materials inherit their properties from the cellular architecture

resulting from the synthesis process along with the material properties of the solid

cell wall. Solid foam materials can have properties such as very low densities, very

low thermal conductivities, moderate to small stiffness, negative Poisson’s ratios, large

deformation ability, very high strength to weight ratios, high damping coefficients, high

friction coefficients, very large energy absorption capacity and increased moments of

inertia. Table 1.1 shows the properties, applications, and products that can come out

of Aluminum metallic foams. Table 1.1 corresponds to just one type of foam, Aluminum

foam, if we realize that we can make foams out of many other materials such as polymers,

ceramics, glasses, and other metals, one can start to imagine the enormous number of

material properties that we can have at our disposal through solid foams.
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Figure 1.6: Synthesis of metallic open-cell foams as shown in Yamada et al. (2000).

1.1.4 Applications of Foams

Many enterprises such as automotive, aircraft, and rail transportation, as well as the

electronic, food, and packaging industries are envisioning applications for cellular solids

especially in fields requiring strong, lightweight materials, capable of handling dynamic

loads. Foam materials are preferable in many engineering applications requiring mit-

igation of the adverse effects of sudden impact loading which can result in injuries to

soft tissue and/or degradation of personnel and property shields. Cellular solids such

as visco-elastic and elasto-plastic open-cell foams can offer the benefits of light weight

and sufficient strength along with the ability to absorb impact energy through dissipa-

tion mechanisms appearing in the large deformation regime during cellular structure

collapse. However, it is through their wonderful combinations of properties that cellular

solids offer the greatest potential for applications (Korner and Singer, 2000) because
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Property Application Product form
High specific bending -stiff and super -Shaped parts
stiffness and strength light-weight panels -(Sandwich) panels

for transport and -3D-shaped (Sandwich)
architecture panels

Isotropic absorption of -Impact energy -Shaped parts
impact energy at a nearly absorption -Large panels
constant low stress level components in cars

-Packaging
-Blast protection

Good sound absorption, -Self-supporting wall -Large panels
electromagnetic shielding, panels -Sandwich panels
and vibration damping -Housing for electronic

devices
-Machine casing for
sound absorption

-Soundproof walls
along railway tracks
and roads

High thermal stability and -Heat shields -Large panels
low thermal conductivity
Decorative, -Furniture -Large panels
non-combustible, weather -Wall panels -Shaped parts
resistant
Light-weight -Sand core replacement -Complex shaped

-Floating structures parts with a dense
surface skin

High inner surface -Compact heat -Complex open-cell
exchangers parts

-Catalyst support
-Cyrogenic applications

Table 1.1: Characteristic properties, resulting applications, and necessary product forms for metal
foams, Korner and Singer (2000).

nowadays, industries usually need to satisfy more than one property in a certain mate-

rial application, it’s here that people see the greatest potential for foam materials. The

varied combinations of material properties offered by cellular solids make them advan-

tageous in applications such as thermal insulation, packaging/transportation of frag-

ile/dangerous products/materials, structural applications with high strength to weight

ratios requirements, flotation/buoyancy, filtering, sound insulation, etc (Gibson and

Ashby, 1997; Friis et al., 1988).

1.1.5 Typical Mechanical Behavior

Nowadays, due to the advent of novel synthesis processes almost every type of solid

material can be transformed into a cellular solid. The resulting diversity of solid foam

materials still exhibit a typical response even though the fundamental physics at cell

wall level can be very different depending on the properties of the solid phase material.
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Figure 1.7: The compressive stress-strain curves for foams with elastic, elastic-plastic, and brittle
cell wall material as shown in Gibson and Ashby (1997). (a) an elastomeric foam, (b) an elastic-plastic
foam, and (c) an elastic-brittle foam.

The characteristic mechanical behavior of a particular foam system depends heavily

on the topology of the cellular structure in addition to properties of the solid making

up the cell walls Gibson and Ashby (1997). The microstructure in different cellular

material can have very distinct properties because the cell walls can be made from

almost any type of material. In addition, the geometry of the microstructure can be

very different from one foam system to the next because the shape and size of the cells

can change drastically depending on the implemented synthesis method. The large

range of microstructural properties and geometries results in many inherently different

mechanical responses in foam systems but still maintaining a typical pattern.

Figure 1.7 shows the typical response of cellular solids whose cell walls are made

from (a) elastic, (b) plastic, or (c) brittle material. Even though the stress values can
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Figure 1.8: The typical response of a foam system, Weaire and Hutzler (1999).

vary enormously for the different kinds of foams, we have a good understanding of the

typical pattern exhibited by the stress vs. strain curve for all solid foam systems. As

shown in figure 1.8 if we were to compress a cellular solid it would result in the typical

behavior where first we would observe a portion of initial elastic behavior, then we

would observe a constant stress (plateau stress) portion which happens when the cell

walls collapse, finally we would observe a densification portion where the collapsed cells

are further compressed almost as a bulk solid and the stress increases very rapidly. The

typical deformation of a foam system results in a very long strain range because very

large deformations occur during the collapse portion.

1.2 Review of Relevant Previous Works

Learning about the synthesis, cellular structure, physics, and properties of foam sys-

tems seems to have captured the interest of some of the early great scientists. Robert

Hooke gave the name ”cell” to the repetitive shape that makes up the cellular material

when he observed the cellular structure of cork wood using a microscope (Micrographia,

1664). William Thompson, Lord Kelvin, came up with the polyhedral tetrakaidecahe-

dron as the cell which minimized the area of the cell wall material for the most efficient

foam structure Thompson (1961). Joseph Antoine Ferdinand Plateau did work which

helped in the understanding of soap films, bubbles and foams establishing rules for the
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connectivity of the cells in a foam system Plateau (1873). Over the years, the arrange-

ment and behavior of foam systems has caught the attention of so many people that

even the idea that continents and galaxies are organized similar to foam systems has

been considered Perkowitz (2000).

1.2.1 Pioneering Mechanics Works

The very interesting processes that occur in the mechanical response of solid foams has

motivated scientists to perform varied experimental and theoretical studies to under-

stand the behavior. The majority of the studies on foam mechanics have been done

under quasi-static loading conditions. These pioneering works have been introduced by

a number of research groups, most of which have been collected in the book on cellular

solids Gibson and Ashby (1997) and the book on cellular plastics Hilyard (1982) and in

reviews such as Kraynik and Warren (1994), Zhu et al. (1997b), Mills (2000), Han et al.

(1998), and Zhang et al. (1998). These studies have generated substantial knowledge

which has established much of the current theory and characterization of the behavior

of cellular solids. Some of the more notable groups which have contributed pioneering

works include Gibson and Ashby (1982); Dement’ev and Tarakanov (1970, 1973); Chen

et al. (1994); Chen and Lakes (1996); Tyler and Ashby (1986); Deshpande et al. (2001);

Deshpande and Fleck (2000a,b, 2001); Evans et al. (2001); Kraynik et al. (1997); Warren

and Kraynik (1997). These works have provided insights on the compressive strength,

tensile strength, Young’s Modulus, the deformation mechanisms, and the typical stress

vs. strain curve of solid foams.

1.2.2 Recent Work

More recently, experimental and modeling studies have concentrated on the different

stages of deformation as well as on the effect of the cell wall properties on the macro-

scopic response of open-cell foams, for instance Papka and Kyriakides (1998); Gong

et al. (2005); Gong and Kyriakides (2005); Zhou et al. (2004a,b); Zhou and Soboyejo

(2004); Lee et al. (2003, 2006b,a). Also, due to the renewed interest in utilizing foams
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for energy absorption applications, there has been a number of experimental studies fo-

cusing on the dynamic response of foam systems, including Chen et al. (2002); Tedesco

et al. (1993); Rinde and Hoge (1971); Nagy et al. (1974); and especially for metal-

lic foam materials, Deshpande and Fleck (2000a); Mukai et al. (1999a,b); Shimojima

et al. (2001); Dannemann and Lankford (2000); Kanahashi et al. (2001, 2000); Yi et al.

(2001); Han et al. (1998); Hall et al. (2000).

1.2.3 Dynamic Loading

The quasi-static response of foam systems has been well-studied, however the majority

of foam materials being considered for future and/or potential applications will be put

to use in dynamic loading environments, many times at very high strain rates. Addi-

tionally, many interesting changes occur to the mechanical behavior of foam systems

under dynamic loading situations relative to the quasi-static response. As a result there

is a need to obtain an improved understanding of the dynamic response of foam systems.

The current quasi-static literary works don’t provide the necessary understanding for

dynamic loading applications at exceedingly high strain rates (Mills and Gilchrist, 1991;

Fuganti et al., 2000; Gilchrist and Mills, 1994). Different researchers have performed

studies on different types of helmets (Gilchrist and Mills, 1994; Mills and Gilchrist, 1991)

to investigate ways to make them more protective to users such as cyclist, football and

baseball players, constructions workers etc. Others researchers (Loveridge and Mills,

1993; Gibson and Ashby, 1997) have studied packaging systems where high velocity,

impact type loading happens during transportation. A more effective approach to im-

prove these current applications is to dedicate our efforts to understanding the cellular

materials employed in these helmets, packages, bumpers, foods, resting equipment and

vest, since it is these foam systems which absorb the energy from the impact. To date,

very little work has been done in the field of solid foams to study the dynamic mechan-

ical behavior and to develop dynamic numerical models for dynamic loading analysis.

Recently experiments have been done to learn about the strain rate and relative den-

sity effects Mukai et al. (1999a,b); Kanahashi et al. (2001, 2000, 2002); Deshpande and

Fleck (2000a); Shimojima et al. (2001); Chen et al. (2002); Tedesco et al. (1993) on the
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mechanical response of dynamically loaded solid foam materials.

Strain Rate Dependency

Rinde and Hoge (1971) studied the compressive strength of rigid polystyrene foams at

room temperature as a function of strain rate and showed that the strength increases

only slightly with strain rate. Similar conclusions were reached by Nagy et al. (1974).

Tyler and Ashby (1986) found that if a flexible polyurethane foam was filled with a vis-

cous water-glycerin the plateau strength exhibited a remarkable strain rate dependence

at low strain rates (0.002 to 20)s−1. Lankford and Dannemann (1998); Dannemann

and Lankford (2000) reported that the strain rate dependence was negligible for a low

density open-celled Aluminum foam and the effect was more apparent for higher density

foams. Mukai et al. (1999a) reported recently that the plateau stress of a close-celled

aluminum, ALPORAS, exhibited a higher strain rate sensitivity than a polystyrene

foam with the same density. Yi et al. (2001) did experiments to investigate the effect

of strain rate on the mechanical response and the energy-absorbing capacity of Alu-

minum alloy cellular solids and concluded that strength and energy absorbed increase

with increasing strain rate, and that the increase is greater for higher density foams.

Kanahashi et al. (2000) concluded that plateau stress normalized by the relative density

and the absorbed energy drastically increased based on dynamic compression experi-

ments (strain rate = 1.4x103s−1) on very low density Aluminum foams. The results

are similar for Magnesium alloy foams. Higher strain rate (10−3 to 5000s−1) compres-

sion experiments were done by Deshpande and Fleck (2000a), however they concluded

that strain rate had no effect on the plateau stress even though the Aluminum foam

relative density was similar to that used in Kanahashi et al. (2000). Currently there is

no general consensus on how exactly the mechanical response of cellular solids changes

when they are loaded dynamically from low to very high strain rates because currently

there aren’t many experimental and/or numerical studies regarding the strain rate de-

pendency of these materials. The limited available data is due in part to the lack of

experimental equipment capable of impacting specimens of at high strain rates.

As you can deduce from the few literary works mentioned above, there is no
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clarity on how exactly the strain rate affects the mechanical response of cellular solids.

However, the majority of works do seem to agree that strain rate increases the plateau

stress and that the range of the plateau does not decrease which results in a higher en-

ergy absorption capacity during dynamic loading applications. The majority of studies

report that as long as we stay in the range of relative density that corresponds to foam

systems without increasing it too much that we are looking a porous materials instead

of foams, the increase of the plateau stress caused by the strain rate is greater as the

relative density increases. The relation between the compressive stress and strain at

dynamic strain rates must be well understood in order to adequately study the energy

absorption capacity of cellular solids. Experimentally, the stress vs. strain behavior

at fast strain rates has mostly been investigated using the split Hopkinson pressure

bar (SHPB) method Deshpande and Fleck (2000a), an experimental technique widely

used to study the dynamic response of structural materials. All the strain dependency,

dynamic loading experimental studies mentioned here, have been done using the SHPB

method. In order to perform dynamic loading test at exceedingly high strain rates i.e.

10000s−1, a new technique must be developed. An attempt is made to explain the

reasons behind the experimentally-observed effects on the dynamic response of foams

by employing the numerical micromechanical model presented in chapter 2.

1.2.4 Modeling

Modeling and simulating the behavior of foams is quite challenging due to unknown

microstructural properties, complex microstructural geometry, extremely large defor-

mations, and cell wall contact after collapse. One approach is to simply consider single

portions of the solid cell wall; for instance a single ligament for open-cell foams or a

single membrane for closed-cell foams (Christensen, 1986), (Zilauts and Lagzdin, 1992).

The foam response is then predicted by averaging over the different possible orientations

of the ligament or membrane. This approach however only considers axial deformation

and ignores the cell connections as well as the shape and size of cells drastically reduc-

ing its validity. Another approach considers a representative unit cell that can replicate
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Figure 1.9: Some of the possible structures in 2D foam systems, Gibson and Ashby (1997): (a) AL
honeycomb foam, (b) paper-phenolic resin honeycomb foam, (c) ceramic with square cells, (d) ceramic
foam with triangular cells.

the periodic cellular structure through mirror duplications. 2D foams have been mod-

eled extensively as honeycomb structures (Gibson et al., 1982; Warren and Kraynik,

1987; Overaker et al., 1998a,b), 3D foams have been modeled with cubic cells (Gent

and Thomas, 1963; Gibson and Ashby, 1982), tetrahedral cells (Warren and Kraynik,

1988; Wang and Cuitiño, 2000), pentagonal dodecahedrons (Menges and Knipschild,

1975), and tetrakaidecahedrons (Warren and Kraynik, 1997; Zhu et al., 1997a,b). In

addition to accounting for the cellular structure, this approach allows researchers to

incorporation additional important modes of deformation such as bending and twisting

in addition to axial deformation.

Despite the many challenges in modeling of foam mechanics, a good number of

modeling/simulation studies have surfaced which have provided connections between

foam cellular architecture and cell wall material response. Some of the available works

are based on tetrakaidecahedral unit cell models. For example, a 3D open-cell foam

model with periodic tetrakaidecahedral cells was presented for the purpose of studying

the nonlinear response of elastic 3D-periodic microstructures Laroussi et al. (2002).

The high-strain compression of open-cell foams was analyzed using a lattice model with

tetrakaidecahedral cells Zhu et al. (1997b). The micromechanical dynamic modeling
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Figure 1.10: Cubic unit open cell for foam modeling, Gibson and Ashby (1997).

work presented here evolved from a previously reported quasi-static tetrakaidecahedral

unit cell model Wang and Cuitiño (2000). A micromechanical model for 3D open-cell

foams using tetrakaidecahedral cells was developed using energy methods and Cas-

tigliano’s second theorem Li et al. (2003). The same group has also reported an open-

cell micromechanical model for the emerging ultralightweight carbon foams Sihn and

Roy (2001, 2004).

Other modeling efforts have employed the Voronoi technique. For instance, a

study was done using a cubic open-cell model along with the Voronoi technique to gen-

erate the microstructure Shulmeister et al. (1998). An investigation of cell irregularity

effects was performed via ABAQUS FEA and a Voronoi open-cell foam with different

degrees of randomness of the cell size and shape Zhu and Windle (2002). A few models

are based on continuum approaches. For example there is a visco-elastic continuum

model employing ABAQUS Software Hucko and Faria (1997) and there is a Cosseret

continuum modeling study on cellular solids Onck et al. (2001). Other modeling works

include a comprehensive study on the effects of various geometrical imperfections on

the in-plane yielding behavior of 2D cellular foams under biaxial loading utilizing FEA

Chen et al. (1999). Another study used a modified cube as the representative unit cell
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Figure 1.11: Representation of the open-cell microstructure in foam systems with the gravity effects
that help form the structure, Weaire and Hutzler (1999).

to model the quasi-static crushing of closed-cell metallic foams Meguid et al. (2002). A

rate-dependent elasto-plastic foam constitutive model was developed to use with LS-

DYNA3D software Zhang et al. (1998). Finally, recently a version of the material point

method (MPM), the Generalized Interpolation Material Point method (GIMP method),

was used to analyze a small group of open cells with emphasis on the densification por-

tion of the deformation Bardenhagen et al. (2005).

Because the unit cell that makes up a cellular solid can have a multitude of

shapes, there is an enormous range of possible cellular microstructures. Of the many

possible cellular structures for open-cell foams, modeling investigators tend to select

honeycombs for 2D analysis which seems to be a good model (see figure 1.9) but the

open-cube shown in figure 1.10 Gent and Thomas (1963); Gibson and Ashby (1997)

used as the unit cell in many three dimensional studies does not resemble the actual

cellular microstructure formed in open-cell foams very closely, see figure 1.11. The

different foaming processes do not generate open-cell solid foams with cubic cellular

structures because cubes are not the unit cell which provides the more stable and

stronger microstructure Kusner and Sullivan (1996). A cubic cellular structure can

only be generated if a mold is specifically designed to produce a cellular structure with
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cubes. Based on the previous work on open-cell solid foams under the direction of prof.

Alberto M. Cuitiño (Wang and Cuitiño, 2000; Wang et al., 2000), here a four column

tetrahedron enclosed inside a dual tetrakaidecahedron volume element is selected as the

proper unit cell to model the cellular microstructure in open-cell foams. This unit cell is

more favorable foaming process and it mimics more closely the cellular microstructure

observed in actual open-cell solid foams as shown in figure 1.11.

There are very few modeling studies which take into account the effects of dy-

namic loading Zhang et al. (1998); Laroussi et al. (2002); Hucko and Faria (1997).

Furthermore, many of the available models are not very robust because some of the

works have made use of commercial software to model specific aspects of foam mechan-

ics; some have made a continuum assumption to come up with constitutive expressions

for the foam behavior, and some are based on phenomenological ideas. The model

presented here accounts for the effects of dynamic loading at high strain rates and can

predict the overall foam response while being completely based on the cell wall ma-

terial properties, the open-cell topology, and the cell wall (ligament) physics. To our

knowledge there is no micromechanical formulation in the literature for dynamically

loaded, open-cell, periodic cellular materials similar to the one presented here. The

current formulation will provide a physical insight into the deformation process at cell

wall and unit cell level while quantifying the effect of the foam structure, ligament

properties, and strain-rate on the overall mechanical response. Finally, the reader is

warned that many of the literary works mentioned in this introductory chapter will

be mentioned again in the introduction to chapters 2, 3, and 4 in order to make each

chapter self-contained.

1.3 Overview of the Dissertation

The work presented in this dissertation is organized in the following order:

• Chapter 1 : Background and Major Relevant Studies

• Chapter 2 : Formulation of the Micromechanical Model and Application to Visco-

Elastic Foams
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• Chapter 3 : Application of Micromechanical Model to Metallic Foams

• Chapter 4 : Implementation of Micromechanical Models for Open-cell Foams Into

Nonlinear Implicit and Explicit Finite Element Analysis Schemes

• Chapter 5 : Summary, Conclusions and Future Work

• Appendix : Additional Information

The dissertation begins in chapter 1 with a general introduction to the field

of cellular materials with an emphasis on solid foams, more specifically open-cell solid

foams. There it provides a summary of the majority of pioneering scientific studies

performed over the last couple of years to elucidate the intricate mechanical behavior

exhibited by foam materials.

In chapter 2 the dissertation presents the description and formulation of a mi-

cromechanical model for dynamically loaded visco-elastic open-cell foams. The theory

is based on an energy analysis of the solid microstructure through a representative 3D

unit cell which is limited to cells with an arbitrary number of ligaments concurring at

a central vertex. The formulation starts with the expression for the Lagrangian of a

representative unit cell comprising an imposed macroscopic deformation. Enforcement

of the principle of minimum action results in a relation between the applied deformation

history and the motion of the internal vertex history, which uniquely defines the kine-

matic state and thus the stress state. Axial and bending deformation are incorporated

at ligament level through the relocation of the unit cell vertex which is also the method

trough which cell collapse is captured. By maintaining the history of global affine de-

formation in addition to the history of local non-affine motion of the cell vertex, the

model is able to capture the microinertial effects important during dynamic loading of

open-cell foam materials. The model is applied to open-cell polymeric foam with decou-

pled visco-elastic constitutive behavior at cell wall level. The chapter concludes with a

set of predictions for visco-elastic, open-cell foams resulting from the implementation

of the model into a numerical analysis code. We have selected to presents results for

a compressive, uniaxial loading case because it is perhaps one of the most interesting,

challenging, and technologically relevant cases to study due to the effects introduced
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during the evolution of the cell collapse. It is also quite relevant from the application

viewpoint due to the associated energy absorption/dissipation characteristics exhibited

during the collapse. As will be shown the incorporated mechanics provides physical

insights which help describe the different stages in the response of dynamically loaded

open-cell foam systems.

In chapter 3 the dissertation presents the application of the micromechanical

model developed in chapter 2 to metallic open-cell foams with elasto-plastic cell wall

constitutive behavior. The key equations from the micromechanical model formulated in

chapter 2 will be mentioned again in order to make the chapter self-contained. Here it is

crucial to preserve the history of deformation because it dictates the future constitutive

response. The history of plastic deformation is retained at ligament level to predict

the succeeding axial and bending constitutive behavior while the history of cell vertex

motion is maintained at cell level to account for microinertial effects during dynamic

loading. The chosen cell wall constitutive relations account for the coupled elastic and

viscous response of metallic materials. As in chapter 2, the process of cell collapse is

again captured through ligament reorientation at unit cell level. The chapter concludes

with a set a parametric predictions for the dynamic compression of different metallic

open-cell foams. The effects of dynamic loading are investigated independently for the

rate of loading and viscosity which is investigated through the initial yield stress and

the initial rate of plastic deformation.

In chapter 4 the dissertation presents the implementation of the micromechan-

ical model for Open-cell foams developed in chapter 2 as a constitutive update into

nonlinear implicit and explicit finite element analysis schemes. The chapter presents

the key equations of the general continuum framework along with the spatial and tem-

poral discretization of the general finite element analysis framework. Again, the key

expressions from the micromechanical model formulated in chapter 2 will be restated to

make the chapter self-contained. Here we well develop the formulation for the consistent

tangents based on the micromechanical model from chapter 2. The chapter concludes

with various simulations for visco-elastic and elasto-plastic open-cell foams capturing

the different key stages in the deformation of foam materials such the heterogenous
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bands of deformation during cellular structure collapse.

Finally, in chapter 5 the dissertation presents a brief summary along with a

set of concluding remarks for the work presented here. The chapter will also make

explicit the limitations of the developed model and it will also point out the work that

could be undertaken in the near future to extend the applicability of the formulated

theory. Here, the dissertation also presents areas of research work needed to help

the scientific community complete our understanding of cellular solids with diverse

properties in varying application environments such as brittle open-cell and closed-cell

under thermal loading. Lastly, there is an appendix where the process for obtaining the

effective foam response from the micromechanical model and the concept of Maxwell

stress is presented.
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Chapter 2

Micromechanical Modeling of Dynamically Loaded

Open-Cell Foams

This chapter introduces a mesoscopic formulation for modeling the dynamic response

of visco-elastic, open-cell solid foams. The effective material response is obtained by

enforcing on a representative 3D unit cell the principle of minimum action for dissipa-

tive systems. The resulting model accounts explicitly for the foam topology, the elastic

and viscous properties of the cell wall, and the inertial effects arising from non-affine

motion within the cells. The micro-inertial effects become significant in retarding the

foam collapse during extremely high strain-rate loading. The simulations show the

ability of the model to capture the progressive foam collapse during dynamic compres-

sion as observed in experimental studies. The inertial and viscous strain rate effects

are investigated through the foam density, viscosity, and relative density. Based on

the physics incorporated into the micromechanical model, we provide insights on the

physics mechanisms responsible for the experimentally observed strain rate effects on

the behavior of dynamically loaded foam materials.

2.1 Introduction

Foam materials engage our interest because they are hybrid in structure and behavior,

not exclusively solids, liquids, or gases. Foams have a solid or liquid cellular structure

that entraps a gas within it, so they exhibit properties and characteristics of multiple

states of matter (Perkowitz, 2000). Foams are usually produced by injecting a gas,

such as air, into a material in the liquid state. The formation of foams can be seen

in the commonplace nucleation and self-organization of the bubbles whenever someone

pours a glass of beer or brews a cappuccino (Weaire and Hutzler, 1999). Solid cellular
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materials are categorized as either open-cell or closed-cell foams depending on the shape

of the cells. The cellular structure of open-cell foams looks like a network of small,

interconnected ligaments allowing the surrounding fluid to flow during loading. The

work presented in this chapter concentrates on homogeneous open-cell solid foams;

however some of the ideas described here are also applicable to closed-cell solid foams.

Industrially there is a constant and sustained interest in utilizing cellular mate-

rials in dynamic loading scenarios. Foam materials are preferable in many engineering

applications requiring mitigation of the adverse effects of sudden impact loading which

can result in injuries to soft tissue and/or degradation of personnel and property shields.

Many enterprises such as automotive, aircraft, and rail transportation, as well as the

electronic, and packaging industries require strong yet lightweight materials which are

capable of handling dynamic (up to impact-type) loads. Cellular solids such as vis-

coelastic open-cell foams can offer the benefits of light weight and sufficient strength

along with the ability to absorb impact energy through dissipation mechanisms appear-

ing in the large deformation regime during cellular structure collapse. Consequently,

the focus of this treatment is on modeling the dynamic aspects of foams deformed at

high strain rates.

As mentioned in chapter 1, Pioneering work in the area of foam mechanics

has been introduced by a number of research groups, including Gibson and Ashby

(1982, 1997); Dement’ev and Tarakanov (1970, 1973); Chen et al. (1994); Chen and

Lakes (1996); Tyler and Ashby (1986); Deshpande et al. (2001); Deshpande and Fleck

(2000a,b, 2001); Evans et al. (2001); Kraynik et al. (1997); Warren and Kraynik (1997).

More recently, experimental and modeling studies have concentrated on the different

stages of deformation as well as on the effect of the cell wall properties on the macro-

scopic response of foams, for instance Papka and Kyriakides (1998); Gong et al. (2005);

Gong and Kyriakides (2005); Zhou et al. (2004a,b); Zhou and Soboyejo (2004); Lee

et al. (2003, 2006b,a). Also, due to the constant interest in utilizing foams for en-

ergy absorption applications, there has been a number of experimental studies focusing

on the dynamic response of foam systems, including Chen et al. (2002); Tedesco et al.
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(1993); Rinde and Hoge (1971); Nagy et al. (1974); and especially for metallic foam ma-

terials, Deshpande and Fleck (2000a); Mukai et al. (1999a,b); Shimojima et al. (2001);

Dannemann and Lankford (2000); Kanahashi et al. (2001, 2000); Yi et al. (2001); Han

et al. (1998); Hall et al. (2000).

Modeling and simulating the behavior of foams is quite challenging due to un-

known microstructural properties, complex microstructural geometry, extremely large

deformations, and cell wall contact after collapse. Nevertheless, a number of model-

ing/simulation studies have surfaced which have provided connections between cellular

architecture, cell wall material properties and the foam response. Some of the available

works are based on tetrakaidecahedral unit cell models. For example, a 3D open-cell

foam model with periodic tetrakaidecahedral cells was presented for the purpose of

studying the nonlinear response of elastic 3D-periodic microstructures (Laroussi et al.,

2002). The high-strain compression of open-cell foams was analyzed using a lattice

model with tetrakaidecahedral cells (Zhu et al., 1997b). The micromechanical dy-

namic modeling work presented here evolved from a previously reported quasi-static

tetrakaidecahedral unit cell model (Wang and Cuitiño, 2000). A micromechanical

model for 3D open-cell foams using tetrakaidecahedral cells was developed using en-

ergy methods and Castigliano’s second theorem (Li et al., 2003). The same group has

also reported an open-cell micromechanical model for the emerging ultralightweight

carbon foams (Sihn and Roy, 2001, 2004).

Other modeling efforts have employed the Voronoi technique. For instance, a

study was done using a cubic open-cell model along with the Voronoi technique to

generate the microstructure (Shulmeister et al., 1998). An investigation of cell irreg-

ularity effects was performed via ABAQUS FEA and a Voronoi open-cell foam with

different degrees of randomness of the cell size and shape (Zhu and Windle, 2002). A

few models are based on continuum approaches. For example there is a visco-elastic

continuum model employing ABAQUS Software (Hucko and Faria, 1997) and there is a

Cosseret continuum modeling study on cellular solids (Onck et al., 2001). Some other

modeling works include the FEM comprehensive study on the effects of various geomet-

rical imperfections on the in-plane yielding behavior of 2D cellular foams under biaxial
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loading (Chen et al., 1999). Another study used a modified cube as the representa-

tive unit cell to model the quasi-static crushing of closed-cell metallic foams (Meguid

et al., 2002). A rate-dependent elasto-plastic foam constitutive model was developed to

use with LS-DYNA3D software (Zhang et al., 1998). Finally, recently a version of the

material point method (MPM), the Generalized Interpolation Material Point method

(GIMP method), was used to analyze a small group of open cells with emphasis on the

densification portion of the deformation (Bardenhagen et al., 2005).

There are very few modeling studies which take into account the effects of

dynamic loading (Zhang et al., 1998; Laroussi et al., 2002; Hucko and Faria, 1997).

This paper presents a formulation for how the cells composing the cellular structure

deform and move when a foam material is dynamically loaded at high strain rates. The

model accounts for the effects of dynamic loading at high strain rates and can predict

the overall foam response while being completely based on the open-cell topology, the

cell wall properties, and the dominant deformation mechanisms at unit cell level. To

our knowledge there is no micromechanical formulation in the literature for dynamically

loaded, open-cell, periodic cellular materials similar to the one presented here. This

model can provide physical insight into the deformation process happening at cell level

while quantifying the effects of the foam cellular structure, ligament properties, and

strain-rate on the overall mechanical response.

The model presented here evolved from a previously reported, quasi-static,

hyper-elastic model (Wang and Cuitiño, 2000). Our version enhances the previous

one through the added ability to model the response of dynamically loaded, viscoelas-

tic, open-cell foams. While the local general formulation presented here can be applied

to different unit cells, we limit the description to cells with an arbitrary number (M)

of ligaments concurrent to one vertex. M is later set equal to four as a sample unit

cell resulting in the cellular microstructure shown in Figure 2.1. The formulation starts

with the expression for the Lagrangian of a representative unit cell comprising a given

(imposed) macroscopic deformation history. Then, by enforcing the principle of mini-

mum action, we determine a relation between the applied deformation and the motion

of the unit cell vertex, which uniquely defines the kinematic state and thus the stress
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Figure 2.1: Representation of the open cell microstructure in foam systems, (Weaire and Hutzler,
1999).

state. The details of the formulation are presented in section 2.3.

Section 2.4 presents the predictions of the local microstructural model described

in Section 2.3. We have selected a compressive, uniaxial loading case because it is per-

haps one of the most interesting, challenging, and technologically relevant cases to

study due to the effects introduced during the evolution of the cell collapse. It is also

quite relevant from the application viewpoint due to the associated energy absorp-

tion/dissipation characteristics exhibited during the collapse. Based solely on the local

microstructural model, a parametric study of a broad range of strain rates, ligament

properties, and cellular structures are presented for the case of uniaxial compression.

We gage the effects of strain rate, ligament material properties, and cellular geometry

on the overall response of a dynamically loaded visco-elastic foam material. Finally, the

local predicted response is contrasted with published experimental studies, the results

will show similar trends to those exhibited in the experiments. A central aspect of

the comparison with the experimental data is the characterization of the stress plateau.

This plateau is due to the progressive cell collapse across the sample (Wang and Cuitiño,
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2000; Gioia et al., 2001) and thus involves more than one cell. It is therefore necessary,

before comparing the model’s local predicted response with experiments, to ’average’

the unit cell results in order to account for the entire sample. The effective response is

based on the convexification of the microscopic non-convex energy landscape predicted

by the unit cell model during the cell collapse process. In this context, the plateau

stress is identified as the Maxwell stress (Ericksen, 1998). The procedure used to ob-

tain the effective or ’average’ response from the local response is briefly described in

appendix A.

2.2 General Framework

We seek to obtain continuum-level constitutive relations for open-cell foam materials

attendant to their internal microstructure. In particular, we concentrate on including in

these relations the inertial effects arising from the internal collapse of the foam structure

during dynamic loading. These constitutive relation can then be used in the framework

of continuum mechanics to study the mechanical response of foam materials under

general dynamic conditions by satisfying the governing field equations as will be done in

Chapter 4. Formulating a proper constitutive relation P(F) for open-cell foams suffices

for closing the problem defined by the field equations of continuum mechanics assuming

that the foam material can be analyzed as a continuum system. In formulating the

constitutive relation, we conceptualize that the material is generated by the systematic

repetition of a particular unit cell, the size of which is much smaller than the region of

interest (sample). In other words we assume separation of scales where the mechanical

response of any material macroscopic point in the body is obtained from a local or

microscopic model of the cellular structure as sketched in Figure 2.2.

2.3 Formulation of the Model

In this section we derive a continuum level constitutive relation P(F) for open cell

foams subjected to dynamic loading based on a unit cell approach. While the pro-

cedure can be utilized for a more general class of unit cells, we limit our description
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Figure 2.2: Schematic of the global, continuum view and the local, cellular structural view for foam
material specimens much larger than the size of the cells. The macroscopic fields such as u and F
prescribed at point X are trickled down to the microstructure to the midpoints of the ligaments. The
vertex of each unit cell is allowed to move an additional amount χ resulting in non-affine deformation
within the microstructure.

to cells containing M ligaments concurring into one internal vertex. A coherent cellu-

lar solid can be generated from this type of unit cell by recursive application of point

symmetry operations centered on each of the ligament midpoints (Wang and Cuitiño,

2000). For example, distorted or regular diamond-like structures such as the one shown

in Figure 2.1 result from this procedure by setting M = 4. The four ligament unit cell

is enclosed inside a dual tetrakaidecahedron volume element (Bo) which represents the

portion of volume occupied by the unit cell.

In Section 2.3.1, we describe the assumed kinematics for the unit cell and con-

tinue in Section 2.3.2 with the expressions for the elastic and viscous potentials which

define the local constitutive behavior of the unit cell ligaments. Then in Section 2.3.3,

we introduce a key step in the derivation of the constitutive relation that allows us to

link the macroscopic deformation to the local non-affine deformation by enforcing the

principle of stationary action at cell level. One of the key aspects in setting up the

Lagrangian is the selection of the appropriate boundary conditions. As we shall see in
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that section, both surface and volumetric terms need to be considered for the present

dynamic case. Finally in Section 2.3.4, we define the stress state for the kinematic state

of the unit cell based on the assumed elastic and viscous potentials.

2.3.1 Kinematics

Consider that the macroscopic description of the kinematics of a cellular material

point X is governed by the time-evolution of the displacement field u(X, t) such that

x = X+u. It it is implicitly assumed that there is a length scale separation where the

microstructural dimensions are much smaller than the macroscopic dimensions. In this

context, a macroscopic point X translates into a microscopic array of homogeneous unit

cells sharing the same macroscopic fields. The macroscopic fields such as displacement

u, velocity v, and acceleration a are trickled down to a microstructural model, however

in the present formulation we allow for non-affine motion within each cell. More specif-

ically, we assume that the macroscopic fields (u, v, a) only describe the motion of the

ligament midpoints, and the intra-cell deformation (ligament bending and stretching) is

uniquely determined by the motion of the unit cell central vertex. While more relaxed

kinematics can also be considered by introducing, for example, central vertex rotations,

we select the present one as the simplest description that can capture the process of

cell collapse for low relative density foams.

To start lets define the initial unit cell configuration. The solid part of each

unit cell is composed by half of the length of M ligaments converging at the cell vertex.

The initial undeformed state of this unit cell is described by M vectors denoted by L

representing the M ligaments. All the vectors have a common origin, the central vertex,

and each one ends at the ligament midpoint. These vectors are defined as

Li = LieL
i

with i = 1 to M (2.1)

where Li represents half of the ligament’s initial length and eL
i

is a unit vector centered

at the vertex that defines the initial orientation. The initial angle (Ψij) between any

two ligaments Li and Lj can be easily obtained by recourse of the inner product:

Ψij = cos−1

(
Li · Lj

Li Lj

)
(2.2)
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Figure 2.3: Depiction of the kinematic assumptions for a 4-ligament unit cell showing the reference
and deformed cell configurations. Keep in mind that each unit cell is composed with only half of the
length of each ligament since each ligament is shared by two adjacent cells in the cellular microstructure.
All ligament midpoints move with the specified macroscopic affine field u(X, t), while the central vertex
may have the additional displacement of χ(X, t). Note that if χ = 0 the cell motion is affine which
corresponds to the position indicated by the dashed lines.

Now, let χ(X, t) be the non-affine component of the motion of the central vertex,

i.e. that the total displacement field of the central vertex is given by u(X, t) + χ(X, t),

which is schematically shown in Figure 2.3. As indicated in Figure 2.3, all midpoints

are tied-up to the macroscopic motion while the central vertex may have the additional

motion χ inducing heterogeneous deformation within the cell. Only axial and bending

(including bending shear) deformation are considered in the present description because

these are the dominant modes of deformation during cell collapse for uniaxial loading.

Other effects such as torsion are not introduced in the formulation. Moreover, as the

relative-density is reduced (i.e. thinner ligaments) the bending deformation concen-

trates near the central vertex, as depicted in Figure 2.4, where the bending moment

is a maximum. We exploit this observation to postulate that bending deformation is

localized at the central vertex, which further implies that all ligaments remain straight.

In order to describe the intra-cell fields, we define a local coordinate system for each
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Figure 2.4: Schematic of the localization of bending at the unit cell vertex allowing the ligaments to
remain straight during deformation.

ligament i,

ζi =
Zi

Li
(2.3)

where Zi is the location of the material point along the ligament i measured from

the central vertex and as mentioned earlier Li is the half length of the corresponding

ligament. In this manner, ζi = 0 is always at the central vertex and ζi = 1 is a point

located at the outer boundary of the unit cell or at the midpoint of ligament i. The

intra-cell displacement field for each ligament i can then be written as:

ui(X, t, ζi) = uiaffine(X, t, ζ
i) + uinon−affine(X, t, ζ

i) (2.4)

where the affine and non-affine components can be expressed by

uiaffine(X, t, ζ
i) = u(X, t) + (F(X, t)− I) Li ζi (no sum over i) (2.5)

and

uinon−affine(X, t, ζ
i) = χ (1− ζi) . (2.6)

Similarly, the velocity field can be written for each ligament i as

vi(X, t, ζi) = viaffine(X, t, ζ
i) + vinon−affine(X, t, ζ

i) with (2.7)
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viaffine(X, t, ζ
i) = v(X, t) + Ḟ(X, t) Li ζi (no sum in i) and (2.8)

vinon−affine(X, t, ζ
i) = χ̇(1− ζi) (2.9)

and acceleration field as

ai(X, t, ζi) = aiaffine(X, t, ζ
i) + ainon−affine(X, t, ζ

i) with (2.10)

aiaffine(X, t, ζ
i) = a(X, t) + F̈(X, t) Li ζi (no sum in i) and (2.11)

ainon−affine(X, t, ζ
i) = χ̈(1− ζi) (2.12)

The assumed kinematics implies that the current configuration of each ligament

li(X, t) can be expressed as:

li(X, t) = liel
i

= F(X, t) Li − χ(X, t) (2.13)

where li is the current half length of the ligament and el
i

is the current orientation

(unit vector). Notice that

∂li

∂li
=

∂

∂li
√

li · li =
li√
li · li

= el
i

(2.14)

The rate of change of each leg vector can be expressed as:

d

dt
(li(X, t)) = l̇i(X, t) = Ḟ(X, t) Li − χ̇(X, t). (2.15)

or

l̇i =
d

dt
liel

i
= l̇iel

i
+ liėl

i
(2.16)

Here l̇i refers to the component of the leg velocity along the leg direction and it is not

to be confused with the magnitude of the entire leg velocity |l̇i|, namely

l̇i 6= |l̇i| =
√

l̇i · l̇i (2.17)

Also notice that

l̇i =
d
√

li · li
dt

= el
i · l̇i and thus

∂l̇i

∂ l̇i
= el

i
(2.18)

The current angle ψij and the angle rate of change ψ̇ij between any two ligaments i

and j can be computed using expressions 2.13 and 2.15 and the recourse of the inner
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product,

ψij = cos−1

(
li · lj

lilj

)
(2.19)

ψ̇ij =
dψij

dt
=
∂ψij

∂li
· l̇i +

∂ψij

∂lj
· l̇j . (2.20)

Notice that

∂ψij

∂li
=

∂

∂li
cos−1

(
li · lj

lilj

)
=

∂

∂li
cos−1

(
li · lj√
li · lilj

)
(2.21)

=
−1√

1−
(

li·lj
lilj

)2

[
lj

lilj
− (li · lj)li

(li)3lj

]
(2.22)

=
−lilj√

(lilj)2 − (li · lj)2

[
lj

lilj
− (li · lj)li

(li)3lj

]
(2.23)

=
−1√

(lilj)2 − (li · lj)2

[
lj − (li · lj)li

li · li

]
(2.24)

Let

al
ilj = lj − (li · lj)li

li · li
(2.25)

and notice that the magnitude of al
ilj is

|alilj | =
√

alilj · alilj (2.26)

=

√
lj · lj − 2

(li · lj)
li · li

(li · lj) +
(li · lj)
(li · li)

(li · lj)
(li · li)

(li · li) (2.27)

=

√
( lj)2 − 2

(li · lj)2

(li)2
+

(li · lj)2

(li)2
(2.28)

=

√
(lj)2 − (li · lj)2

(li)2
(2.29)

=
1
li

√
(lilj)2 − (li · lj)2 (2.30)

This means that ∂ψij

∂li
can be written as

∂ψij

∂li
=

1
li

el
ilj (2.31)

where el
ilj is a direction defined as

el
ilj = − al

ilj

|alilj |
(2.32)
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Based on Equation 2.20, we can also say that

∂ψ̇ij

∂ l̇i
=
∂ψij

∂li
=

1
li

el
ilj (2.33)

Equations 2.13, 2.15, 2.19 and 2.20 are the primary kinematic variables used in the

present formulation. These variables are defined in terms of the specified field u(X, t)

(and its associated fields F(X, t), v(X, t) etc..) and in terms of the unknown and yet to

be determined field χ(X, t). In Section 2.3.3 we introduce a condition that implicitly

ties up χ to u, making 2.13, 2.15, 2.19 and 2.20 unique functions of the specified field u.

Before finding such a condition it is convenient to define the local, ligament constitutive

relations.

2.3.2 Local Constitutive Relations

We assume that there exist an elastic potential W and a dissipative potential D which

are functions of the primary kinematic variables defined in Equations 2.13, 2.15, 2.19

and 2.20. We based our assumptions of the existence of these potentials on Ortiz and

Stainer (1999) and Lubliner (1972, 1990) which provide guidelines for the selection of

constitutive updates in modeling the behavior of visco-elastic and visco-plastic solids.

While the structure of these potentials could be quite general, we adopt an additive

form for the stretching and the bending contributions. The elastic potential is written

as

W(li, ψij) =
1
Bo

 ∑
i=1,M

WN (li) +
1
2

∑
i=1,M

∑
j=1,M

WM(ψij)

 (2.34)

where Bo is the volume of the unit cell in the reference configuration and WN (li) and

WM(ψij) are defined as the elastic energy due to stretching and bending respectively.

The derivatives with respect to their independent variables give the elastic axial force

NE
i in ligament i and the elastic bending moment ME

ij between ligaments i and j, i.e.

∂WN (li)
∂li

= NE
i (li) and

∂WM(ψij)
∂ψij

=ME
ij(ψ

ij) (2.35)

Similarly, the dissipative potential is written as

D(l̇i, ψ̇ij) =
1
Bo

 ∑
i=1,M

DN (l̇i) +
1
2

∑
i=1,M

∑
j=1,M

DM(ψ̇ij)

 (2.36)
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where DN (l̇i) and DM(ψ̇ij) are the dissipative energy terms due to stretching and

bending respectively. Again, the derivatives with respect to their independent variables

provide the viscous axial force N η
i in ligament i and the viscous bending moment Mη

ij

between ligaments i and j, i.e.

−∂DN (l̇i)
∂l̇i

= N η
i (l̇i) and − ∂DM(ψ̇ij)

∂ψ̇ij
=Mη

ij(ψ̇
ij). (2.37)

It should be noted that the functions in Equations 2.35 and 2.37 should be provided

as part of the material description. These functions describe the constitutive behavior

of the ligament material and thus will depend on the specific material to be modeled.

In Section 2.4 some concrete examples are provided for all four functions, which are

needed to obtain definite predictions.

2.3.3 Linking Local to Global

Before a constitutive expression can be formulated, it is necessary to link the specified

global field u(X, t) with the local unknown one χ(X, t). By providing such a condition,

the intra-cell kinematics can be determined univocally for a given macroscopic field,

and thus, the stress state can be obtained as will be shown in Section 2.3.4. The

sought relationship can be realized by enforcing the principle of stationary action on

the Lagrangian. Since dissipation is included in the present formulation, we also need

to account for the non-conservative terms. The application of this principle in the static

case reduces to enforcing local or cell level equilibrium (Wang and Cuitiño, 2000). The

dynamic case, however, requires a more careful consideration.

Our region of analysis is the representative unit cell for which we need to specify

the appropriate constraints: boundary and loading conditions. To enforce compatibil-

ity among cells, we specify that at the intersection of unit cell boundary with each

ligament, i.e. when ζi = 1 in Equation 2.3, the motion is prescribed by the macro fields

or the affine components of the displacement, velocity and acceleration fields. These

conditions are trivially satisfied by the assumed cell kinematics, which gives only the

affine components for ζi = 1 in Equations 2.4, 2.7 and 2.10. The treatment of the

inertial forces is similar to the one appearing in formulating the static problem under
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gravitational loads. Here the inertial force field p prescribed by the macro fields is:

pi(X, t, ζi) = ρ̃is(ζ
i) aaffine(X, t, ζi) (2.38)

where ρ̃is is the mass density per unit length of the solid ligament i and aiaffine is the

affine component of the acceleration defined in Equation 2.11. Note that these inertial

forces will ”work” against the cell displacements, contributing to the potential of the

forces.

Now we turn our attention to formulating the principle of stationary action for

the representative unit cell, which provides the condition to link the macro-fields with

the intra-cell fields. At unit cell level, the only degree of freedom in our system is the

motion of the central vertex χ = χαeα where χα are the Cartesian components along

an orthogonal 3D basis, eα. For a non-conservative system such as the one here, the

principle of stationary action states that

d

dt

(
∂L
∂χ̇α

)
− ∂L
∂χα

= Qα (2.39)

where Qα are the nonconservative terms arising from the ligament’s viscous response

which are given by

Qα =
∂D
∂χ̇α

(2.40)

L is the Lagrangian which is defined as

L(χα, χ̇α) = T (χ̇α)− V(χα) = T (χ̇α)− [W(χα) + P(χα)] (2.41)

where T is the kinetic energy and V is the potential energy which includes both the

elastic potential energy ( W) and the inertial potential energy (P) due to the affine

inertial forces. Noting that the kinetic energy doesn’t depend on χα and the potential

energy terms don’t depend on χ̇α, the principle of stationary actions can now be recast

as
d

dt

(
∂T
∂χ̇α

)
+
∂W
∂χα

+
∂P
∂χα

=
∂D
∂χ̇α

. (2.42)

Mass and Relative Density

The unit cell mass and density terms needed for the present formulation are presented

here. The total mass contained in the unit cell can be easily computed by adding the
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individual mass of each ligament. We define a mass density per unit reference length

ρ̃is for each ligament i as

ρ̃is(ζ
i) = ρis(ζ

i)Ai(ζi) (2.43)

where ρis(ζ
i) and A(ζi) are respectively the volumetric mass density and the cross

sectional area of the solid ligament i at the location ζi. Remembering that the total

reference length of each ligament is Li, the mass of each ligament (mi) is computed as

mi = Li
∫ 1

0
ρ̃is(ζ

i) dζi (2.44)

and the total unit cell mass (m) and foam density (ρ) are respectively given by

m =
∑
i=1,M

mi and ρ = m/Bo (2.45)

Recall that Bo is the volume of the unit cell in the initial or reference configuration.

The relative density (ρr) which is defined as the ratio of the foam density (ρ) to

the solid ligament material density (ρs) can be defined solely in terms of microstructural

geometrical parameters. As previously shown in the quasi-static, elastic version of this

model (Wang and Cuitiño, 2000), the relative density can be defined solely in terms

of the ligament radius (r) and ligament length (L) for foams composed of unit cells

containing 4 cylindrical ligaments (M = 4).

ρr =
ρ

ρs
=

3
√

3π
16

r2

L2
−

(
3
√

6π
32

− 23
√

2
96

)
r3

L3
(2.46)

Now we concentrate on writing down the expressions and derivatives indicated in the

principle of stationary action Equation 2.42.

Kinetic Energy Terms

The kinetic-energy-density expression for the M -strut unit cell model can be obtained

using the definitions for velocity and mass defined in Equations 2.7 and 2.44 respectively.

T =
1

2Bo

 ∑
i=1 ,M

Li
∫ 1

0
ρ̃is (vi · vi) dζi

 (2.47)

The principal of stationary action requires the time derivative of the partial derivative

of the kinetic energy with respect to the components of χ̇. In order to obtain this
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derivative, first we evaluate the partial derivative of the kinetic energy with respect to

the components of χ̇ resulting in

∂T
∂χ̇α

=
1
Bo

 ∑
i=1 ,M

Li
∫ 1

0
ρ̃is v

i
affine,α (1− ζi) dζi +mc χ̇α

 (2.48)

where viaffine,α are the Cartesian components of the affine portion of the velocity of

ligament i which is given in Equation 2.8 and

mc =
∑

i=1 ,M

Li
∫ 1

0
ρ̃is (1− ζi)2 dζi, (2.49)

which can be interpreted as the effective mass at the central vertex. Finally, we evaluate

the time derivative of Equation 2.48 to obtain

d

dt

(
∂T
∂χ̇α

)
=

1
Bo

 ∑
i=1 ,M

Li
∫ 1

0
ρ̃is a

i
affine,α (1− ζi) dζi +mc χ̈α

 (2.50)

where aiaffine,α are the Cartesian components of the affine portion of the acceleration of

ligament i which is given in Equation 2.11.

Potential of the Inertial Forces

The potential of the inertial forces P is defined as the negative of the work done by the

inertial forces

P = − 1
Bo

∑
i=1 ,M

Li

∫ 1

0
(pi · ui) dζ i (2.51)

where p is the inertial force field given in Equation 2.38 and u is the displacement field

given in Equation 2.4. Now, the partial derivative of this inertial potential energy with

respect to the components of χ becomes

∂P
∂χα

= − 1
Bo

∑
i=1 ,M

Li
∫ 1

0
ρ̃isa

i
affine,α (1− ζi) dζi. (2.52)

Elastic Potential Terms

The principle of stationary action will also require the derivative of the elastic potential

W defined in Equation 2.34 with respect to the components of χ, namely

∂W
∂χα

=
1
Bo

 ∑
i=1,M

∂WN (li)
∂χα

+
1
2

∑
i=1,M

∑
j=1,M

WM(ψij)
∂χα

 (2.53)
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This derivative can be evaluated by employing the chain rule along with the kinematic

relations in Equations 2.13 and 2.19.

∂W
∂χ

=
1
Bo

 ∑
i=1 ,M

∂WN
∂l i

∂l i

∂li
∂li

∂χ
+

1
2

∑
j=1 ,M

∂WM
∂ψij

(
∂ψij

∂li
∂li

∂χ
+
∂ψij

∂lj
∂lj

∂χ

) (2.54)

Recalling that
∂WN i

∂l i
= NE

i and
∂WMi

∂ψij
= ME

ij from Equation 2.35 and also recalling

that
∂l i

∂li
= el i and

∂ψij

∂li
=

el
ilj

li
(2.55)

from Equations 2.14 and 2.31, where el i l j is a unit vector contained in the plane defined

by li and lj and normal to li . Then, the derivative can now be expressed in a more

compact form as

∂W
∂χ

=
1
Bo

 ∑
i=1 ,M

NE
i el i +

1
l i
∑

j=1 ,M

ME
ij e

l i l j

 ∂li

∂χ

 (2.56)

or in component form as

∂W
∂χα

=
1
Bo

 ∑
i=1 ,M

NE
i e

l i

m +
1
l i
∑

j=1 ,M

ME
ij e

l i l j

m

 ∂l im
∂χα

 (2.57)

where sum in m is implied. Additionally from Equation 2.13, we have that l im =

FkK Li
K − χm and consequently

∂l im
∂χα

= −δαm (2.58)

Then, the derivative of the elastic potential with respect to the components of χ be-

comes

∂W
∂χα

= − 1
Bo

 ∑
i=1,M

NE
i e

li

α +
1
li

∑
j=1,M

ME
ije

lilj

α

 (2.59)

= − 1
Bo

 ∑
i=1,M

(
NE
i e

li

α + VE
i e

l̄i

α

)
= − 1

Bo

 ∑
i=1,M

fE,iα


In the expressions above, recall thatW refers to the elastic potential defined in Equation

2.34 and NE
i and ME

i are the elastic forces and moments respectively which were
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defined in Equation 2.35. In the last expression above, the term denoted by fE,iα

represents the sum of the Cartesian components of the elastic axial NE
i and shear VE

i

forces from ligament i applied at the vertex of the unit cell.

Dissipative Potential Terms

In the same manner that ∂W
∂χα

was evaluated earlier, we evaluate the derivative of the

dissipated viscous energy D with respect to the vertex velocity χ̇, namely ∂D
∂χ̇α

which

provides us with the nonconservative forces Qα, needed in the principle of minimum

action,

∂D
∂χ̇α

=
1
Bo

 ∑
i=1 ,M

∂DN (l̇i)
∂χ̇α

+
1
2

∑
i=1,M

∑
j=1,M

∂DM(ψ̇ij)
∂χ̇α

 (2.60)

Taking the rate of change in length for each strut l̇i and the rate of change in angle

between struts ψ̇ij as given by Equations 2.13-2.20 allows us to rewrite ∂D
∂χ̇α

as

∂D
∂χ̇

=
1
Bo

 ∑
i=1,M

∂DN

∂l̇i
∂l̇i

∂ l̇i
∂ l̇i

∂χ̇
+

1
2

∑
i=1,M

∑
j=1,M

∂DM

∂ψ̇ij

(
∂ψ̇ij

∂ l̇i
∂ l̇i

∂χ̇
+
∂ψ̇ij

∂ l̇j
∂ l̇j

∂χ̇

) (2.61)

Recalling that −∂DN (l̇i)

∂l̇i
= N η

i and −DM(ψ̇ij)

∂ψ̇ij
= Mη

ij from Equation 2.37 and also

recalling that
∂l̇i

∂ l̇i
= el

i
and

∂ψ̇ij

∂ l̇i
=

el
ilj

li
(2.62)

from Equations 2.18 and 2.33. Now we can rewrite ∂D
∂χ̇ as

∂D
∂χ̇

= − 1
Bo

 ∑
i=1 ,M

N η
i el

i
+

1
li

∑
j=1 ,M

Mη
ij e

lilj

 ∂ l̇i

∂χ̇

 (2.63)

or in term of components the above derivative takes the form

∂D
∂χ̇α

= − 1
Bo

 ∑
i=1,M

N η
i e

li

m +
1
li

∑
j=1,M

Mη
ije

lilj

m

( ∂l̇im
∂χ̇α

) (2.64)

From l̇ im = ḞkK Li
K − χ̇m we have

∂ l̇ im
∂χ̇α

= −δαm (2.65)
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Therefore the derivative of the dissipated viscous energy with respect to the components

of χ̇α, the dissipative forces Qα (= ∂D
∂χ̇α

) can be written as

∂D
∂χ̇α

=
1
Bo

 ∑
i=1,M

N η
i e

li

α +
1
li

∑
j=1,M

Mη
ije

lilj

α

 (2.66)

=
1
Bo

 ∑
i=1,M

(
N η
i e

li

α + Vηi e
l̄i
α

)
=

1
Bo

 ∑
i=1 ,M

fη,iα


In the expression above, recall that D represents the dissipative potential defined in

Equation 2.36 and N η
i and Mη

i are the viscous forces and moments respectively which

were defined in Equation 2.37. In the last equation above the term fη,iα represents the

Cartesian component α of the viscous axial N η
i and shear Vηi forces from ligament i

applied at the vertex of the unit cell.

Equilibrium Condition

We are now ready to apply the principle of stationary action to obtain the equilibrium

condition which will define the kinematic state of the unit cells in the microstructure.

Replacing Equations 2.50, 2.52, 2.59 and 2.66 into the principle of stationary action

given in Equation 2.42, we obtain

1
Bo

 ∑
i=1 ,M

Li
∫ 1

0
ρ̃is a

i
affine,α (1− ζi) dζi +mc χ̈α

− 1
Bo

 ∑
i=1 ,M

fE,iα


− 1
Bo

∑
i=1 ,M

Li
∫ 1

0
ρ̃isa

i
affine,α (1− ζi) dζi =

1
Bo

 ∑
i=1 ,M

fη,iα

 . (2.67)

The above expression is the equation of motion for the vertex of the unit cell which is

a second order system of nonlinear ordinary differential equations for χ(X, t). We can

express the above equation of motion as a dynamic equilibrium condition by simplifying

and rearranging the terms into a resultant (Rα) of the elastic, viscous, and inertial forces

at the vertex as

Rα =
∑
i=1,M

(
fE,iα + fη,iα

)
−mcχ̈α = 0 with α = 1, 3 (2.68)
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or in vector form as

R =
∑
i=1,M

(
fE,i + fη,i

)
−mcχ̈ = 0 (2.69)

In equation 2.68 above, (fη,iα + fη,iα ) represent the sum at the cell vertex of the elastic

and viscous forces respectively for ligament i and mcχ̈α represents the effective mi-

croinertia for the unit cell given by the motion of the vertex. This condition provides

the link between the macroscopic fields and the intra-cell ones, and allows us to univo-

cally define the stress state for an applied macroscopic deformation field as described

in Section 2.3.4. In particular, this condition allows us to write that W = W(F) and

D = D(Ḟ).

2.3.4 Macroscopic Stresses

Once both the elastic and the viscous potentials are univocally defined in terms of the

macroscopic fields and the kinematic state of the cells in the microstructure is deter-

mined by enforcing the equilibrium condition stated in Equation 2.68, the constitutive

relation P̃(F(t)) can be obtained. In particular, the First Piola-Kirchhoff stress tensor

P = P̃(F(t)) emerges as the derivative with respect to F and Ḟ of the elastic W(F)

and viscous D(Ḟ) potentials respectively.

PkK(F(t)) =
∂W(F)
∂FkK

+
∂D(Ḟ)
∂ḞkK

(2.70)

PkK(F(t)) represents the Cartesian components of the First Piola Kirchhoff stress tensor

and ∂W(F)
∂FkK

and ∂D(Ḟ)

∂ḞkK
are respectively the Cartesian components of the elastic and

viscous contributions to the total stress state. The elastic contribution to the stress

tensor is written as

∂W(F)
∂FkK

=
1
Bo

 ∑
i=1,M

NE
i e

li

α +
1
li

∑
j=1,M

ME
ije

lilj

α

 ∂liα
∂FkK


=

1
Bo

 ∑
i=1,M

fE,iα

∂liα
∂FkK

 (2.71)

and the viscous contribution to the stress tensor is written as

∂D(Ḟ)
∂ḞkK

=
1
Bo

 ∑
i=1,M

N η
i e

li

α +
1
li

∑
j=1,M

Mη
ije

lilj

α

 ∂l̇iα
∂ḞkK


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=
1
Bo

 ∑
i=1,M

fη,iα
∂l̇iα
∂ḞkK

 . (2.72)

Remembering Equations 2.13 and 2.15, the derivatives ∂liα
∂FkK

and ∂l̇iα
∂ḞkK

can be evaluated

as

∂liα
∂FkK

= δαkLi
K −

∂χα
∂FkK

and
∂ l̇ iα
∂ḞkK

= δαkLi
K −

∂χ̇α

∂ḞkK

. (2.73)

Using these expressions we can restate the stress tensor as

PkK(F(t)) =
1
Bo

 ∑
i=1 ,M

(
f E ,i
k Li

K + f η,ik Li
K

)
−
∑

i=1 ,M

(
f E ,i
α

∂χα
∂FkK

+ f η,iα

∂χ̇α

∂ḞkK

)
(2.74)

Additionally since Equation 2.68 implicitly provides a relationship between χ and F,

it is possible then to write that χ = h(F) and thus χ̇ = h′ Ḟ which allow us to write

∂χα
∂FkK

=
∂χ̇α

∂ḞkK
= h′ . (2.75)

Introducing Equation 2.75 into Equation 2.74 and then using Equation 2.68 results in

the following expression for the stress tensor.

PkK (F(t)) =
1
Bo

 ∑
i=1,M

(
fE,ik LiK + fη,ik LiK

)
− ∂χα
∂FkK

∑
i=1 ,M

(
fE,iα + fη,iα

)
=

1
Bo

 ∑
i=1,M

(
fE,ik LiK + fη,ik LiK

)
−mc

∂χα
∂FkK

χ̈α

 (2.76)

or in vector form

P(F(t)) =
1
Bo

 ∑
i=1,M

(
fE,i ⊗ Li + fη,i ⊗ Li

)
−mc

∂χ

∂F
· χ̈

 (2.77)

Equation 2.76 above is the final expression for the effective First Piola-Kirchhoff stress

tensor for a dynamically loaded visco-elastic, open-cell foam material. Notice that

this stress tensor includes the elastic and viscous contributions 1
Bo
∑

i=1,M (fE,ik LiK +

fη,ik LiK) and the inertial contribution 1
Bo

∂χα
∂FkK

mcχ̈α. As the predictions will show, the

inertial stresses due to the non-affine acceleration are especially important during cell

collapse at exceptionally high strain rates. Equations 2.76 and 2.77 above reduce to

the previously reported version of this model for quasi-statically loaded elastic foams

(Wang and Cuitiño, 2000).
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Material Frame Indifference

The formulated constitutive relation P̃(F) given in Equation 2.77 satisfies the principle

of material frame indifference, where the material behavior is unaffected by a superposed

rigid body rotation R. Recall that enforcing the principle of minimum action gave us

the unit cell kinematic state condition stated in Equation 2.69 and repeated below for

convenience

R(F,χ) =
∑
i=1,M

(
fE,i + fη,i

)
−mcχ̈ = 0 ⇒ χ = χ̃(F). (2.78)

In order to be consistent with the principle of frame indifference, we first show that for

a rigid rotation R such that F∗ = RF, the rotated kinematic state of the unit cell is

also in equilibrium. Namely that

R(F∗,χ∗) = 0 ⇒ χ∗ = χ̃(F∗) (2.79)

is also satisfied if χ∗ = Rχ. Recall that χ is just a 3D vector for the current position

of the unit cell vertex, therefore let’s assume that

χ∗ = Rχ ⇒ χ̇∗ = Rχ̇ ⇒ χ̈∗ = Rχ̈. (2.80)

Now recall that the current ligament vectors for each ligament composing the unit cell

are given by li = li(F) = FLi − χ̃(F), then the rotated current ligament vectors

are

li
∗ = li(F∗) = F∗Li − χ̃(F∗)

= F∗Li − χ∗

= RFLi −Rχ

= R[FLi − χ].

Noticing that the term inside the square brackets above is the un-rotated current liga-

ment vector, we write that

li
∗ = Rli (2.81)

which then implies that

el
∗
i = Reli and el

∗
i l
∗
j = Relilj (2.82)
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because el
∗
i and el

∗
i l
∗
j are simply unit vectors defined by the current leg vectors li and

lj .

The magnitude of the axial and shear forces from each ligament depend only

on the magnitude of the length of each leg and the magnitude of the angle between

legs. Therefore the magnitude of the forces doesn’t change due to a rigid rotation R.

As shown by Wang and Cuitiño (2000) for the elastic forces, the force vectors fE,i and

fη,i are the sum of the product of the axial and shear force magnitudes times the unit

vectors mentioned above in equation 2.82. This implies that if the unit vectors rotate

as mentioned above in equation 2.82 then the rotated elastic and viscous force vectors

in R∗(F∗,χ∗) = 0 are

fE,i
∗

= RfE,i and fη,i
∗ = Rfη,i. (2.83)

Now consider the rotated kinematic state and lets make use of Equations 2.80, 2.81,

2.82, and 2.83.

R(F∗,χ∗) =
∑
i=1,M

fE,i
∗

+ fη,i
∗ −mcχ

∗

=
∑
i=1,M

RfE,i + Rfη,i −mcRχ̈

= R

 ∑
i=1,M

fE,i + fη,i −mcχ̈

 (2.84)

Noticing that the term in curly brackets above corresponds to the un-rotated kinematic

equilibrium stated in Equation 2.78, we can write that R(F∗,χ∗) = R{R(F,χ)}which

then implies that rotated kinematic state is also in equilibrium

R(F∗,χ∗) =
∑
i=1,M

fE,i
∗

+ fη,i
∗ −mcχ

∗ = 0 (2.85)

The above expression dictates that if F∗ = RF, then χ∗ = Rχ.

Now we show that the derived effective stress state obeys the principle of frame

indifference. We have

P = P̃(F, Ḟ) ⇒ P = P̃(F(t)) (2.86)
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Recall the un-rotated stress state in component form

PsK = P̃(FsK) =
1
Bo

 ∑
i=1,M

(fE,is LK + fη,is LK)− ∂χα
∂FsK

mcχ̈α

 (2.87)

Similarly, the rotated stress state in component can written as

P ∗lK = P̃(F ∗lK) =
1
Bo

 ∑
i=1,M

(fE,il

∗
LK + fη,il

∗
LK)−

∂χ∗β
∂F ∗lK

mcχ̈
∗
β

 . (2.88)

Now Let’s consider a rigid body rotation R with components Rls such that F ∗lK =

RlsFsK (F∗ = RF). First let’s look at the 2nd term in Equation 2.88 without mc, the

effective mass constant located at the unit cell vertex.

∂χ∗β
∂F ∗lK

χ̈∗β =
∂χ∗β
∂χα

∂χα
∂FsK

∂FsK
∂F ∗lK

χ̈∗β (2.89)

Remembering that χ∗β = Rβαχα dictates that χ̈∗ = Rβαχ̈α as stated in Equation

2.80. Now performing the multiplication R−1(F∗ = RF) in component form and

remembering that R−1 = RT and RTR = I gives

R−1
sl F

∗
lK = R−1

sl RlmFmK

= δsmFmK

= FsK

RlsF
∗
lK = FsK

then
∂FsK
∂F ∗lK

= Rls. (2.90)

Now Equation 2.89 can be restated as

∂χ∗β
∂F ∗lK

χ̈∗β = Rβα
∂χα
∂FsK

RlsRβδχ̈δ (2.91)

= RβαRβδRls
∂χα
∂FsK

χ̈δ (2.92)

Noticing that RβαRβδ = δαδ, we can write

∂χ∗β
∂F ∗lK

χ̈∗β = δαδRls
∂χα
∂FsK

χ̈δ

= Rls
∂χα
∂FsK

χ̈α (2.93)
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Now consider the 1st term in Equation 2.88, applying Equation 2.83 gives us

∑
i=1,M

(fE,il

∗
LK + fη,il

∗
LK) =

∑
i=1,M

(Rlsf
E,i
l LK +Rlsf

η,i
l LK). (2.94)

Substituting 2.93 and 2.94 into 2.88 gives

P ∗lK =
1
Bo

 ∑
i=1,M

(Rlsf
E,i
l LK +Rlsf

η,i
l LK)−Rls

∂χα
∂FsK

mcχ̈α

 (2.95)

= Rls

 1
Bo

 ∑
i=1,M

(fE,il LK + fη,il LK)− ∂χα
∂FsK

mcχ̈α

 (2.96)

Noticing that the term in curly brackets above is the un-rotated stress state, PsK , means

that

P ∗sk = RlsPsK or P∗ = RP. (2.97)

Therefore

P = R−1P∗ ⇒ P̃(F) = R−1P̃(RF) (2.98)

This demonstrates that the effective stress state equation that we have derived for an

open-cell foam material obeys the principle of frame indifference.

2.4 Predictions of the Theory

This section presents a specific application of the general framework developed in Sec-

tion 2.3. Here, the formulation is utilized to predict the effective mechanical response of

polymeric foams with visco-elastic constitutive cell wall behavior for homogeneous con-

ditions of global applied deformation. In order to obtain the resulting predictions it is

necessary to select a specific unit cell geometry along with the properties and constitu-

tive laws for the material composing the ligaments of the cells. Therefore, Section 2.4.1

will describe the chosen unit cell geometry and the form adopted for the elastic and

viscous potentials which dictate the axial and bending constitutive response of the lig-

aments composing the unit cell through Equations 2.35 and 2.37. Then, Section 2.4.2

presents the effective response of a small groups of cells and then evaluates the effective

foam response, including the plateau stress, employing the concept of Maxwell stress.

Using these results, we quantify the role of strain rate, cell geometry and ligament
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Figure 2.5: (a) Four ligament unit cell and (b) unit cell with its dual tetrakaidecahedron representative
volume, (Wang and Cuitiño, 2000).

properties for dynamic uniaxial compression under macroscopically homogeneous con-

ditions. Finally, the predictions are contrasted with the available experimental data to

verify the validity of the formulation.

2.4.1 Cell Geometry and Ligament Response

Consider a unit cell composed of four ligaments (M = 4) converging at the cell’s

vertex and occupying a dual tetrakaidecahedron volume element as shown in Figure 2.5.

Figure 2.5a shows the solid phase of the unit cell and Figure 2.5b shows the portion of

the foam volume corresponding to each unit cell. The ligaments composing the unit cell

are taken as cylindrical rods of length L and radius r. The initial ligament orientations

stated in Equation 2.1 are selected as

L1 = L1

(
2
√

2
2

z2 +
1
3
z3

)

L2 = L2

(√
6

3
z1 −

√
2

3
z2 +

1
3
z3

)

L3 = L3

(
−
√

6
3

z1 −
√

2
3

z2 +
1
3
z3

)
L4 = L4

(
−z3

)
(2.99)
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where L1 to L4 represent the initial half length of each ligament while the terms in

parenthesis are unit vectors describing the initial ligament orientation. zi is a local

Cartesian coordinate basis centered at the vertex of the unit cell.

It is necessary to select an specific form for the axial elastic potential WN (li)

and the bending elastic potential WM(ψij) stated in Equation 2.34 in order to apply

Equation 2.35 to obtain the elastic constitutive relations for the ligaments composing

the unit cells. The axial elastic potential is taken as

WN (li) = ΛcLiNE
c

Λi

Λc
sinh−1

(
Λi

Λc

)
−

√(
Λi

Λc

)2

+ 1

 (2.100)

where Λi = li/Li − 1 is the ligament axial strain, NE
c = EAΛc is the characteristic

elastic axial force, which is written in terms of the ligament’s Young Modulus E, cross

sectional area A (= πr2 for circular cross sections of radius r) and a characteristic elastic

strain Λc which controls the degree of nonlinearity. After application of Equation 2.35,

the elastic axial force NE
i for each ligament i becomes

NE
i (li) = NE

c sinh−1

(
Λi

Λc

)
(2.101)

which is a non-linear (depending on Λc) function of the current ligament half length li.

The elastic bending potential is similarly taken as

WM(ψij) = ΞcME
c

Ξij

Ξc
sinh−1

(
Ξij

Ξc

)
−

√(
Ξij

Ξc

)2

+ 1

 (2.102)

where Ξij = ψij −Ψij is the change in angle andME
c = 3EIΞcL−1 is the characteristic

elastic bending moment, which is written in terms of the ligament’s Young Modulus

E, moment of inertia I (= πr4/4 for circular cross sections of radius r), length L, and

a characteristic angle Ξc which controls the degree of nonlinearity. After application

of Equation 2.35, the elastic bending moment ME
ij between any two ligaments i and j

becomes

ME
ij(ψ

ij) =ME
c sinh−1

(
Ξij

Ξc

)
(2.103)

which is a non-linear (depending on Ξc) function of the current angle ψij between the

two ligaments. We have selected the sinh−1 relations in the expressions above because

they can be adapted to provide highly nonlinear behavior.
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Finally, it is also necessary to select an specific form for the axial dissipative

potential DN (l̇i) and the bending dissipative potential DM(ψ̇ij) stated in Equation 2.36

in order to apply Equation 2.37 to obtain the viscous constitutive relations for the

ligaments composing the unit cells. The axial viscous potential is taken

DN (l̇i) = Λ̇cLiNE
c

 Λ̇i

Λ̇c
sinh−1

(
Λ̇i

Λ̇c

)
−

√√√√( Λ̇i

Λ̇c

)2

+ 1

 (2.104)

where Λ̇i = l̇i/Li is the ligament axial strain rate, N η
c = ηAΛ̇c is the characteristic

viscous axial force, which is written in terms of the ligament’s viscosity η, cross sectional

area A and a characteristic strain rate Λ̇c which determines the degree of nonlinearity.

After application of Equation 2.37, the axial viscous force N η
i takes the form

N η
i (l̇i) = N η

c sinh−1

(
Λ̇i

Λ̇c

)
(2.105)

This is a non-linear (depending on Λ̇c) function of the rate of change of the ligament

half length l̇i. The bending dissipative potential is similarly taken as

WM(ψ̇ij) = Ξ̇cME
c

 Ξ̇ij

Ξ̇c
sinh−1

(
Ξ̇ij

Ξ̇c

)
−

√√√√( Ξ̇ij

Ξ̇c

)2

+ 1

 (2.106)

where Ξ̇ij = ψ̇ij is the rate of angle change between ligaments i and j and Mη
c =

3ηIΞ̇cL−1 is the characteristic viscous bending moment, which is written in terms of

the ligament’s viscosity η, inertia moment I, length L, and a characteristic rate of

angle change Ξ̇c which again controls the degree of nonlinearity. After application of

Equation 2.37, the viscous bending moment Mη
ij between any two ligaments i and j

takes the form

Mη
ij(ψ̇

ij) =Mη
c sinh−1

(
Ξ̇ij

Ξ̇c

)
(2.107)

Again, this is a function nonlinear (depending on Ξ̇c) of the rate of change of the angle

ψ̇ij between two ligaments.

It is worthwhile to notice that the framework presented in here allows for the

incorporation of any ligament constitutive response. In the examples presented in this

section, we have chosen a local constitutive law defined by sinh−1 which follows a proto-

typical material response characterized by a stiff linear regime at low strains followed by
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a softer non-linear response at larger strains. As reported in Wang and Cuitiño (2000),

the extent of linear regime is determined by the selection of the characteristic param-

eters Λc, Λ̇c, Ξc and Ξ̇c for the elastic/viscous force/moment relations respectively. In

addition, we have assumed that the elastic and viscous potentials are decoupled. How-

ever, other forms of the potentials can be implemented. For example, the response

of typical metals can be incorporated by formulating a coupled elatico-visco-plastic

potential as done in chapter 3.

2.4.2 Effective Theoretical Predictions

This section presents a set of effective predictions based solely on the micromechanical

model formulated in Section 2.3. The effective predictions presented here correspond

to a nominal strain rate without accounting for the variation in local strain rate in

an actual foam specimen. The effective response is obtained by first obtaining the

response of a small group of cells and then evaluating the plateau stress employing

the Maxwell stress idea. A brief overview of the procedure that was used to obtain the

Maxwell (plateau) stress is presented in Appendix A. Using the effective predictions, we

quantify the role of strain rate, ligament material properties, and cell geometry (relative

density) for dynamic uniaxial compression under macroscopic homogeneous conditions.

These predictions are also contrasted with some of the available experimental studies

to verify the validity of our formulation.

Figure 2.6 shows the model’s prediction for the effects of strain rate on the

effective response of a visco-elastic open-cell foam. Figure 2.6a shows the effective

local response prediction and Figure 2.6b shows the effective response with the plateau

stress evaluated as the Maxwell stress. According to Figure 2.6b, the model predicts

an increase in the plateau stress as the strain rate increases with a stronger effect for

extremely high strain rates. Figure 2.6b also predicts that as the strain rate increases

both the length of the plateau region and the initial slope (the Youngs Modulus of the

foam) increase as the strain rate increases. Finally, Figure 2.6 demonstrates that the

effects of strain rate are a lot stronger at extremely high strain rates (ε̇ > 50000 s−1).

Experimentally, the exact mechanisms operating at high strain rates during
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Figure 2.6: The effects of strain rate on visco-elastic open-cell foams. (a) Predicted effective response.
(b) Effective response after evaluation of the Maxwell stress which is identified as the plateau or collapse
stress. The other microstructural parameters were held constant: Young’s Modulus (E) = 1.0×109 N

m2 ,

Foam density (ρ) = 100.0 Kg
m3 , cell ligament viscosity (η) = 1000.0 N·s

m2 , cell ligament radius (r) = 0.34
mm, cell ligament length (L) = 1.0 mm.

collapse in foam materials are still unclear, however most experimental studies agree

that the higher the applied strain rate, the higher the plateau stress, at least for the

range of rates (up to ε̇ = 5000 s−1) for which data is available. Rinde and Hoge (1971)

studied the compressive strength of rigid poly-styrene foams at room temperature as a

function of strain rate and showed that the strength increases slightly with increasing

strain rate with similar conclusions being reached by Nagy et al. (1974). Kanahashi

et al. (2000) concluded that plateau stress normalized by the relative density and the

absorbed energy drastically increased based on dynamic compression experiments (ε̇ =

1.4x × 103s−1) of very low density aluminum foams. Yi et al. (2001) showed that the

collapse stress of aluminum foams increases with increasing strain rate, but this effect

becomes less pronounced as the relative density of the foam decreases. Higher strain

rate (up to 5000 s−1) compression experiments were done by Deshpande and Fleck

(2000a); however, they concluded that strain rate had no effect on the plateau stress.

Studies for open-cell metallic foams and textile/pyramidal truss cores with strain rates

up to 10000s−1 using a Kolsky bar and a Gas Gun were recently reported by Lee et al.

(2006b,a). They concluded that strain has very minimal effects on the collapse stress
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Figure 2.7: The effects of strain rate on foams without viscosity (purely microinertial effects). (a)
Predicted effective response. (b) Effective response after evaluation of the Maxwell stress which is
identified as the plateau or collapse stress. The other microstructural parameters were held constant:
Young’s Modulus (E) = 1.0 × 109 N

m2 , Foam density (ρ) = 100.0 Kg
m3 , cell ligament viscosity (η) = 0.0

N·s
m2 , cell ligament radius (r) = 0.34 mm, cell ligament length (L) = 1.0 mm.

for strain rates up to 10000s−1 which is in agreement with our predictions.

The predictions of the present theory are in general agreement with the majority

of the available experimental work, namely that as the strain rate increases, the plateau

stress increases and that the extent of the plateau region increases slightly with higher

strain rates. These predictions imply that the energy absorption capacity of visco-

elastic foams increases for impact loading at high strain rates. The strain rate effects

shown in Figure 2.6 are the combined effect of viscosity and density (inertia) during

dynamic loading of the foam material. The effect of the strain rate on the overall

response during foam collapse (plateau region) can be understood within the present

framework as the coupled effect of the ligament viscosity and the inertial effects due to

non-affine motion within the cells of the foam material. While in actual materials both

effects are coupled, we can afford to investigate numerically and theoretically the effect

of each individual contribution separately.

Figure 2.7 shows the effects of strain rate due to microinertia alone, which was

done by simply setting the viscosity of the solid ligament material to zero during each

run. According to Figure 2.7b, the microinertial strain rate effects on the plateau stress
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Figure 2.8: The effects of strain rate on viscous but massless foams (e.x. zero microinertial effect).
(a) Local predicted effective response. (b) Effective response after evaluation of the Maxwell stress (the
plateau or collapse stress). The other microstructural parameters were held constant: Young’s Modulus
(E) = 1.0× 109 N

m2 , Foam density (ρ) = 0.0 Kg
m3 , cell ligament viscosity (η) = 1000.0 N·s

m2 , cell ligament
radius (r) = 0.34 mm, cell ligament length (L) = 1.0 mm.

are very minimal for lower strain rates (ε̇ < 10000 s−1) but very strong at exceptionally

high strain rates. Figure 2.7b also shows that the microinertial strain rate effects cause

the length of the plateau region to increase as the strain rate increases. Additionally,

microinertia seems to only affect the initial slope of the response at extremely high

strain rates (ε̇ > 50000 s−1).

In order to look at the viscous strain rate effects alone, every run in Figure 2.8

was done with the foam density set to zero to exclude the microinertial strain rate

effects. Therefore, Figure 2.8 shows the isolated strain rate effects due to the viscosity

of the solid phase of the foam material. As shown in Figure 2.8b, the viscous strain rate

effects on the plateau stress are clearly noticeable for lower strain rates (ε̇ < 10000 s−1).

Therefore, we conclude that at lower strain rates the viscosity dominates the effect on

the plateau stress during dynamic loading. Similar to the microinertia, at exceptionally

high strain rates (ε̇ > 50000 s−1) the viscosity has a very strong effect on the plateau

stress. Figure 2.8b also shows that the viscous strain rate effects don’t affect the length

of the plateau region which tells us that only the microinertia is responsible for the

length of the plateau. Finally, based on Figure 2.8b, viscosity appears to cause a
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Figure 2.9: Effect of the strain rate for non-viscous foam materials. The foam density ρ was varied
as shown in the graphs but all other variables were held constant: Foam Young’s modulus (E) =
1.0 × 109 N

m2 , Cell ligament viscosity (η) = 0 N·s
m2 , Cell ligament radius (r) = 0.3 mm, Cell ligament

length (L) = 1.0 mm. Po and ∆o were evaluated with foam density ρ = 0 and ligament viscosity
η = 0. (a) Collapse stress Pc normalized by the static collapse stress Po. (b) Plateau strain range ∆p

normalized by the static plateau strain range ∆o.

gradual steady increase in the initial slope of the response as the strain rate increases.

Next we look at how the dynamic collapse of the visco-elastic foam materials

compares to the quasi-static collapse behavior. We look at the effects of viscous and

dynamic effects separately. First, we study the case where the ligament material has

no viscosity (η = 0), and thus the strain-rate effects are solely due to the microinertial

aspects. Figure 2.9a shows the predicted increase in the collapse stress and Figure 2.9b

shows the predicted increase in the plateau extent as a function of the strain rate for

different foam densities ρ. The foam density spans two orders of magnitude from 0.01ρo

(an order of magnitude which is seen in very light woods), to 0.1ρo (for polymers) to

ρo (for some metals), where ρo = 1227.1Kg
m3

1. Figure 2.9 shows that when a foam is

loaded at high strain rates, the effects of microinertia are more pronounced for higher

density foams such as foams with higher ligament density ρs. Figure 2.9a shows that the

higher the foam density, the higher the increase in the plateau stress, and Figure 2.9b

shows that the higher the foam density, the higher the increase in the plateau length for

1Note: The relative density ρr for all cases in Figure 2.9 is kept constant at ρr = 0.0815, therefore,
as the foam density ρ is altered, the ligament density ρs changes.
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Figure 2.10: Effect of the strain rate for viscous but massless foam materials. The solid ligament
viscosity η was varied as shown in the graphs but all other variables were held constant: Foam Young’s
modulus (E) = 1.0×109 N

m2 , Foam density (ρ) = 0 Kg
m3 , Cell ligament radius (r) = 0.3 mm, Cell ligament

length (L) = 1.0 mm. Po and ∆o were evaluated with foam density ρ = 0 and ligament viscosity η = 0.
(a) Collapse stress Pc normalized by the static collapse stress Po. (b) Plateau extent ∆p normalized by
the static plateau range ∆o.

loading at increasingly higher strain rates. The behavior is very nonlinear with respect

to the applied macroscopic strain rat. As in the majority of experimental works, there

is no noticeable effects for low strain rates (ε̇ < 1000 s−1), a weak dependency for

intermediate rates (ε̇ < 10000 s−1) and a very strong effect for extremely high strain

rates (ε̇ > 50000 s−1). If we look at the plateau stress in Figure 2.9a at ε̇ = 100000 s−1,

the plateau stress increases by about 1%, 3% and 383% for ρs/ρo = 0.01, 0.1 and 1.0

respectively. Similarly in Figure 2.9b at ε̇ = 100000 s−1, the plateau length increases

by about 1%, 3.5% and 35% for ρs/ρo = 0.01, 0.1 and 1.0 respectively.

Now, consider the case where the inertial aspects are ignored, i.e. when ρs = 0,

this allows us to study the role of the strain rate due to ligament viscosity alone.

Figure 2.10 shows both the collapse stress (Pc) normalized by the static collapse stress

(Po) and the plateau extent (∆p) normalized by the static plateau extent (∆o) as a

function of the applied strain rate for different values of the viscosity η. The range of

the viscosity spans two orders of magnitude from η = 1ηs to η = 102ηs, where ηs is set

to 1.0 N ·s
m2 . As expected higher collapse stress is observed for higher viscosity and higher

applied strain rate as shown in Figure 2.10a. Notice that the effects of viscosity are
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Figure 2.11: Effects of relative density ρr on the effective response of open-cell foams with zero
viscosity. To obtain these results the relative density ρr was varied trough the ligament radius r and
length L and the other parameters remained constant at: Ligament viscosity (η) = 0.0 N·s

m2 , Foam

density (ρ) = 100 Kg
m3 , Ligament Young’s modulus (E) = 1.0× 109 N

m2 . (a) Effective predicted response
for varying relative density. (b) Effective response w/ the plateau stress(= Maxwell stress).

initially observed for values of strain rate above 103, but these effects grow very rapidly

for faster rates. As the strain rate increases, the viscosity η, however, does not affect

the length of the plateau region, which remains unaltered by any value considered as

shown in Figure 2.10b.

Finally, to further investigate the role of microinertia, we consider the role

of foam relative density in Figure 2.11. As discussed in Wang and Cuitiño (2000),

for the present cellular microstructure with cylindrical ligaments, the relative density

(ρr = ρ/ρs) is univocally determined by the cell geometry (cell ligament length L and

radius r) and is written as stated in Equation 2.46. We concentrate on the effects of

the cell geometry at a constant strain rate of 1000 s−1 where microinertial effects from

modeling can be compared with most of the available experimental data.

Higher relative density foams which result from adopting shorter and/or thicker

ligaments, increase the plateau stress as shown in Figure 2.11b.2 Figure 2.11b shows

that when the relative density is increased by augmenting the thickness of the ligaments

2Note: the foam density (ρ) for all these cases is kept constant and equal to 100Kg
m3 ; therefore, as

the relative density (ρr) is altered, the ligament density (ρs) changes.
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while holding the length constant, the plateau stress increases and similarly when the

relative density is increased by reducing the ligament length while holding the thickness

constant, the plateau stress increases. Experimentally, Yi et al. (2001) showed that as

the relative density of the foam is decreased, the collapse stress shows a decreased sen-

sitivity to strain rate. Lankford and Dannemann (1998) and Dannemann and Lankford

(2000) reported that the strain rate dependence was negligible for low density open-

celled aluminum foams, and the effect was more apparent for higher density foams.

Similarly, Mukai et al. (1999a) reported that the plateau stress of a close-celled alu-

minum, ALPORAS, exhibited a higher strain rate sensitivity than a polystyrene foam

with the same density. These experimental conclusions are in agreement with the pre-

dictions of the current model.

2.5 Conclusions

A mesoscopic model to describe spatially homogeneous open-cell visco-elastic foams

subjected to dynamicloading has been developed where the effective macroscopic stress

state is obtained by enforcing the principle of stationary action on a representative unit

cell. While the present approach is independent of the particular unit cell selection, in

this chapter we limit the formulation to unit cells where all ligaments converge into a

central vertex. Moreover, for the presented theoretical predictions, the cell topology

is further constrained to cells with only four ligaments realizing a diamond structure.

In the formulation both the elastic and viscous contributions for both the bending and

axial components are incorporated. The bending and axial contributions are written in

additive form thanks to the introduction of the simplifying kinematic assumption that

the bending deformation is concentrated near the cell vertex for low relative density

foams. A distinctive feature which arises naturally from the present formulation is a

microinertial term in the constitutive relation. This term appears due to the non-affine

motion (acceleration) of the unit cell vertex, which is most notably observed during cell

collapse at high strain rates.

A set of effective predictions are presented in order to investigate the effects

of strain rate. These predictions are based only on the local formulation at unit cell
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level and the Maxwell stress idea. As in the majority of experimental studies, the

simulations showed that as the strain rate increases the plateau stress increases with

minimal effects at lower strain rates and stronger effects at higher strain rates. The

effect of the strain rate on the effective response during foam collapse (plateau region)

can be understood within the present framework as the coupled effect of the ligament

viscosity and the inertial effects due to foam density and non-affine motion within

the cells of the foam material. While in actual materials both effects are coupled, we

investigate the effect of each individual contribution separately. The predictions for

non-viscous ligaments isolated the microinertial strain rate effects and exhibited an

increase in plateau length for increasing strain rates and an increased collapse stress

and Young’s modules for strain rates above 50000 s−1. The predictions for foams

with massless but viscous ligaments demonstrated an increase in plateau stress and the

Young’s modulus for increasing strain rate but zero effect on the length of the plateau

region. Based on these results, we conclude that the microinertial strain rate effects are

most significant at extremely high strain rates (ε̇ > 50000s−1) and that the viscosity

is mostly responsible for the effects at lower strain rates (ε̇ < 10000s−1). Even though

the viscosity affects the response at all rates, it doesn’t seem to have an effect of the

length of the plateau region.

As in the majority of experimental studies, we observed very minimal strain

rate effects for less than 1000s−1 strain rates. Overall the formulation agrees well

with the main conclusions of the experimental studies, namely that as the strain rate

increases the plateau stress increases. These effects are more noticeable for more vis-

cous and/or more massive foams which can happen by increasing the ligament density

for a constant relative density or by increasing the relative density (by increasing the

ligament thickness and/or decreasing the ligament length) for a constant ligament den-

sity. In summary the present theory allows one to define a constitutive formulation

for lightweight, open-cell foams based on clear and quantifiable parameters such as

microstructural topology, geometry and ligament properties. The model incorporates

the competition between the bending and axial contributions which are necessary in

order to capture the process of collapse. The effects of dynamic loading are considered
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through the incorporation of viscosity at ligament level and microinertia at unit cell

level. The theory can be incorporated into the general framework of nonlinear finite

element analysis codes as a constitutive update in the context of either quasi-static

or dynamic problems using either explicit or implicit formulations as will be shown

in chapter 4. The details of the numerical formulation and implementation including

the derivation and performance evaluation of the consistent tangents are the scope of

chapter 4.
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Chapter 3

Micromechanical Modeling of Dynamically Loaded

Open-Cell Metallic Foams: Yielding, Collapse and Strain

Rate Effects

Open-celled metallic foams exhibit properties desirable in engineering applications re-

quiring mitigation of the adverse effects resulting from impact loading however the

history dependent, dynamic response of these cellular materials has not been clearly

elucidated. This chapter contributes an approach for modeling the response of dynam-

ically loaded open-cell metallic foams from ligament level to unit cell level to specimen

level. The effective response captures the localized chaotic collapse phenomena through

ligament reorientation at cell level while maintaining the history of plastic deformation

at ligament level. First, the phenomenological elasto-plastic constitutive behavior of the

ligaments composing the unit cell is modeled. Then, using the constitutive ligament

model, the effective unit cell response is obtained from a micromechanical model which

enforces the principle of minimum action on a representative 3D unit cell. The current

communication focuses on the ability of the model to capture the yielding and collapse

behavior as well as the strain rate effects observed in recent tests on metallic foams.

3.1 Introduction

Man-made cellular materials such as polymeric, metallic, ceramic, and glassy foams

and natural cellular materials such as wood, bone, coral, and sponge engage our in-

terest because they are hybrid in structure and behavior exhibiting properties and

characteristics of multiple states of matter Weaire and Hutzler (1999). The variety in

cellular structure combined with the diversity of materials which can form the solid

phase results in foam materials with a vast array of combinations of properties capable
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(b) Ni Foam(b) Ni Foam

Figure 3.1: Cellular Structure of Metallic Open-Cell Foams.

of performing multiple functions. Here we focus on metallic foams, an emerging class

of man-made cellular material with intriguing properties which could be exploited in

different potential applications.

Metallic foams can have open-cell or closed-cell or mixed cellular structures

depending on the synthesis process. These materials are essentially synthesized by

generating bubbles in a molten metal and solidifying at a specific rate to produce the

desired cellular structure and material properties such as high strength to weight ratio,

high deformability, and high surface area. The different processing routes including gas

injection into a melt, immersion of gas releasing blowing agents into a melt, and pouring

the molten metal into a removable mold have been reviewed by authors such as Banhart

(2003); Gibson (2000); Ashby et al. (2000); Gibson and Ashby (1997). Open-cell foams

are permeable and resemble a labyrinth of interconnected struts while closed-cell foams

are impermeable and can be though of as a lattice arrangement of hollow spherical

bubbles. The work presented here concentrates on open-cell metallic foams which we

model as a network of interconnected struts surrounded by air-filled voids. Figure 3.1

shows a typical open-cell metallic foam.
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Many industries such as automotive, aircraft, maritime, and rail transportation,

as well as the electronic and packaging industries require strong and/or lightweight

materials such as metallic foams. These materials are being considered for applica-

tions such as lightweight construction (sandwich panel cores), impact energy mitigation,

thermal management (heat dissipators), acoustic and vibration insulation (dampers).

Recently there has been an elevated interest in utilizing metallic foams in applications

requiring mitigation of impact energy during exposure to dynamic loading at high strain

rates especially in areas requiring high collapse strengths not currently accessible with

polymeric, ceramic and glass foams. Because of their varied combinations of properties,

metallic foams can be best implemented as multi-functional materials in applications

requiring a set of properties not available from their bulk solid counterparts.

The mechanical response of cellular materials such as metallic open-cell foams

is dominated by the cellular structure and the properties of the solid phase such as

the constitutive behavior of the ligaments in open-cell foams. The response is char-

acterized by an initial elastic region (usually linear) followed by a long plateau region

due to unstable collapse of cells and concluded by a densification region after termi-

nation of cell collapse. The majority of the early pioneering studies on the mechanics,

characterization and properties of metallic foams has been well documented in reviews

such as Gibson (2000); Ashby et al. (2000); Gibson and Ashby (1997); Evans et al.

(1999). More recently, experimental and modeling studies have concentrated on the

different stages of deformation as well as on the effects of the cell wall properties on the

macroscopic response of open-cell foams, for instance Bardenhagen et al. (2005); Gong

et al. (2005); Zhou et al. (2004a). Due to the recent interest in utilizing metallic foams

for energy absorption applications, there has been a number of experimental studies

focusing on the dynamic response of metallic foam materials for example Mukai et al.

(1999a,b); Shimojima et al. (2001); Dannemann and Lankford (2000); Kanahashi et al.

(2001); Han et al. (1998); Hall et al. (2000) The majority of these studies concluded

that the collapse strength of the foam increases with increasing strain rate, density

and/or viscosity.

Most of the studies on foams under dynamic loading focus on the effects of
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strain on the overall response. For example, the effect of strain rate on the dynamic

compression of aluminum alloys foams was reported by Yi et al. (2001) where the effects

of strain rate up to 3000s−1 along with relative density were presented showing that the

collapse stress of aluminum foams increases with increasing strain rate, but this effect

becomes less pronounced as the relative density of the foam decreases. Kanahashi

et al. (2000) concluded that plateau stress normalized by the relative density and the

absorbed energy drastically increased based on dynamic compression experiments (ε̇ =

1.4x×103s−1) of very low density aluminum foams. Higher strain rate (up to 5000 s−1)

compression experiments were done by Deshpande and Fleck (2000a); however, they

concluded that strain rate had no effect on the plateau stress. Studies for open-cell

metallic foams and pyramidal truss cores with strain rates up to 10000s−1 using a

Kolsky bar and a Gas Gun were recently reported by Lee et al. (2006b,a) where it was

shown that strain rate has very minimal effects on the collapse stress for strain rates

up to 10000s−1.

The theoretical and numerical response remains to fully assessed due to the

challenges posed by the history dependent plastic yielding that occurs during large

deformation of metallic foams. Some of the available modeling efforts include the FEM

comprehensive study on the effects of various geometrical imperfections on the in-plane

yielding behavior of 2D cellular foams under biaxial loading Chen et al. (1999). Meguid

et al. (2002) used a modified cube as the representative unit cell to model the quasi-static

crushing of closed-cell metallic foams. A rate-dependent elasto-plastic foam constitutive

model was developed in Zhang et al. (1998) to use with LS −DYNA3D software. A

version of the material point method (MPM), the Generalized Interpolation Material

Point method (GIMP method), was recently used to analyze a small group of open cells

with emphasis on the densification portion of the deformation Bardenhagen et al. (2005).

Finally, Demiray et al. (2007) reported an approach for the numerical determination of

the evolution of the initial and subsequent yield surfaces of metallic open-cell foams.

Our has reported a micromechanical model to predict the effective response of open-cell

foams; initially the model was developed for quasi-statically loaded, hyper-elastic open-

cell foams as communicated in Wang and Cuitiño (2000) and recently it was further
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developed to predict the response of dynamically loaded, visco-elastic open-cell foams

as presented in chapter 2. Here we present the extension of that model to dynamically

loaded open-cell elasto-plastic metallic foams.

As stated earlier, there is a need for additional modeling work based on con-

sistent strut and unit cell level mechanics capable of predicting the full field response

of metallic foam materials in dynamic loading environments. Any model for metallic

foams should accurately capture the history dependent constitutive response of the solid

phase (struts) as well as the unit cell buckling process. Here, we present the application

to metallic foams of the micromechanical formulation for dynamically loaded open-cell

foams developed in chapter 2. The current approach starts by modeling the experimen-

tally observed elasto-plastic constitutive behavior (including hardening) of the metallic

struts composing the open-cell structure and then incorporating this behavior into the

micromechanical model which captures the unit cell collapse and predicts the effective

foam response. The history dependent, elasto-plastic constitutive model of the solid

struts and the unit cell formulation can then be implemented as a constitutive update

into a nonlinear Finite Elements Analysis (FEA) scheme to predict the response of the

macroscopic metallic open-cell foam specimen as will be shown in Chapter 4.

The rest of this chapter is organized as follows. Section 3.2 presents an overview

of the formulation and the modeling approach. Section 3.2.1 briefly reviews the unit cell

micromechanical model formulated in Chapter 2. Section 3.2.2 presents the axial and

bending elasto-plastic, history dependent constitutive behavior of the struts composing

the unit cell along with the predicted constitutive response for the struts. The effects of

the history of plastic deformation and effects of loading rate are presented in Section 3.3

through the effective metallic foam response predicted by the unit cell micromechanical

model while instituting elasto-plastic constitutive behavior at cell wall level. Finally

section 4.6 will pose some concluding remarks.

3.2 Formulation

A formulation to predict the effective dynamic response of open-cell foams based on a

micromechanical unit cell model was presented in chapter 2. The formulation can be
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Figure 3.2: Depiction of the local kinematic evolution of the length of each half ligament li and the
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Li ) and the change in angle between any two ligaments i and j is defined as αij = ψij −Ψij .

implemented as a constitutive update in the realm of nonlinear finite element analysis

for scenarios where the specimen size is much larger than the size of the cells composing

the foam material as will be done in chapter 4. The description is limited to open-cell

foams with cells containing M struts converging at a central vertex. The deformation of

a 4 strut unit cell (M = 4) is described in Fig. 3.2. This type of unit cell can generate a

coherent cellular solid by recursive application of point symmetry operations centered on

each of the ligament midpoints. As shown in Fig. 3.2, the cell deforms according to the

macroscopically prescribed affine deformation F, however the formulation allows the cell

vertex to move an additional amount χ which results in non-affine motion/deformaton

within the cell. Here we present the application of that formulation to open-cell metallic

foams with elasto-plastic constitutive cell wall (strut) behavior.

3.2.1 Micromechanical Model

This section briefly reviews the micromechanical unit cell model reported in chapter 2

where the response of dynamically loaded open-cell foams is predicted for all stages of

foam deformation (initial elastic, plateau, and densification). The model predicts the

collapse behavior in open-cell foams by capturing the unstable behavior of the unit cells

through the non-affine motion χ of the cell vertex. The non-affine degree of freedom
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χ allows one to capture the bending and axial deformation with the assumption that

bending is concentrated at the vertex for unit cells composed of thin struts.

Consider a 3D unit cell composed of M struts where the initial length vector

Liα for every strut i and the initial angle Ψij between every two struts i 6= j in the unit

cell are specified. Then for an applied deformation FkK , the new length vector liα for

every struts and the new angle ψij between every two struts on the deformed unit cell

as shown in Fig. 3.2 are given by Eqn. (4.46).

liα = FkKL
i
α − χα ψij = cos−1

(
liα l

j
α

li lj

)
α = 1...3 (3.1)

The χα needed in Eqn. (4.46) is determined for the prescribed deformation FkK by en-

forcing on the representative 3D unit cell the principle of minimum action for dissipative

systems as described by Eqn. (3.2).

d

dt

(
∂Π
∂χ̇α

)
− ∂Π
∂χα

= Qα (3.2)

Here Π(= T − P) represents the Lagrangian expressed as the difference between the

kinetic energy (T ) and the potential energy (P) of the system. Qα(= ∂D
∂χ̇α

) represents

the nonconservative forces arising from the dissipative energy (D) of the system. The

resulting equation of motion shown in Eqn. (4.47) determines the kinematic equilibrium

condition for each cell through χα.

Rα(FkK , χα) =
∑
i=1,M

f iα −mcχ̈α = 0 (3.3)

Rα represents the equilibrium resultant for the involved forces, mcχ̈α represents the

microinertial forces where mc is an effective mass located at the cell vertex and χ̈α

is the acceleration of the cell vertex. f iα represents the force due to ligament i and

it is evaluated as the sum of the axial Ni and shear Vi forces at the cell vertex from

ligaments i−M as shown below.

f iα = Niel
i

α + Viel̄
i

α = Niel
i

α +
1
l i
∑

j=1 ,M

Mije
l i l j

α (3.4)

Here el
i

and el
i l j represent local unit base vectors defining the direction along strut i and

the direction perpendicular to struts i and j respectively. Notice that the shear force
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Vi due to each ligament i is evaluated from the bending moment Mij between strut i

and all j struts for i 6= j. The unit cell configuration χα is determined numerically by

iterating using the Taylor expansion of Eqn. (4.47) and a Newton-Raphson scheme.

Once the kinematic configuration of the cell χα is determined through Eqn. (4.47)

for a particular value of applied deformation FkK , the stress state PkK is obtained by

differentiation of the elastic W and viscous D energy of the system with respect to the

deformation FkK and the rate of deformation ḞkK . The resulting final expression is

stated below.

PkK(FkK) =
1
Bo

 ∑
i=1,M

f ikL
i
K −mc

∂χα
∂FkK

χ̈α

 (3.5)

Notice that the constitutive relation in Eqn 3.5 includes the microinertial stresses

mc
∂χα
∂FkK

χ̈α as well as the stresses due to stretching and bending f ikL
i
K of the struts.

Keep in mind that f ik involves both the axial and shear forces as stated in Eqn. (3.4).

3.2.2 Cell Wall Constitutive Behavior

In order to apply the micromechanical model reviewed in Section 3.2.1 it is necessary

to obtain the axial and bending constitutive behavior of the solid struts composing the

unit cells, namely Ni and Mij for any struts i and j on a unit cell. The strut axial

force Ni and the bending moment Mij are respectively determined as a function of

the elastic axial strain εen+1 and the elastic change in angle αen+1 between every two

ligaments. At unit cell and strut level the axial strain and change in angle between

any two struts are measured as explained in Fig. 3.2. Sections 3.2.2 describes the

axial deformation and the expressions at strut level which allow us to model the axial

elasto-plastic constitutive behavior of struts. Similarly Section 3.2.2 describes bending

deformation and the expressions used to predict the bending elasto-plastic constitutive

behavior at strut level. The variables in the expressions will be presented in discrete

form to give the reader a sense of the numerical process. Due to the foaming process, the

constitutive behavior of struts in open-cell foams can be very different when compared

the their solid counterparts. Recent experiments by Zhou et al. (2004a) captured the

axial constitutive behavior of the struts in metallic open-cell foams for different heat
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treatments. The formulation presented next allows one to model any elasto-plastic

constitutive behavior at strut level.

Strut Axial Response

For a particular metallic strut on a unit cell of an open-cell foam consider the dis-

crete multiplicative decomposition of the total axial deformation (λn+1 ) into the elastic

(λe
n+1 ) and plastic (λp

n+1) axial deformation.

λn+1 = λen+1λ
p
n+1 ⇒ λn+1 =

ln+1

L
λpn+1 =

lpn+1

L
(3.6)

Here L refers to initial strut length and ln+1 refers to the current strut length. Fur-

ther decomposition of the current plastic deformation (λp
n+1 ) into the previous plastic

deformation (λp
n) and the incremental step in plastic deformation, ∆λp , gives.

λpn+1 = λpn∆λp ⇒ λpn =
lpn
L

∆λp =
lpn+1

lpn
(3.7)

where lpn and lpn+1 refers to the previous and current plastic strut length respectively.

The strain εn+1 is defined through the logarithmic definition based on the expressions

in Equations 3.6 and 3.7.

εn+1 = log(λn+1) = log(λen+1λ
p
n+1) = log(λen+1) + log(λpn+1)

⇒ εn+1 = εen+1 + εpn+1 (3.8)

εpn+1 = log(λpn+1) = log(λpn∆λp) = log(λpn) + log(∆λp)

⇒ εpn+1 = εpn + ∆εp (3.9)

εn+1 = εen+1 + εpn+1 = εen+1 + εpn + ∆εp

⇒ εen+1 = εn+1 − (εpn + ∆εp) (3.10)

where εn+1 represents the total current axial strain, εen+1 represents the current axial

elastic strain, εpn+1 represents the current axial plastic strain, εpn refers to the previous

axial plastic strain and ∆εp refers to the increment in plastic strain.

Now we are ready to write down the expressions as functions of the strain

variables in Equations 3.8 - 3.10 which will dictate the axial constitutive response of
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the struts in the cells. The axial response is a function of the elastic ligament axial

strain εen+1. Here the strut’s axial force N (= σA) is predicted from the linear relation

Nn+1(εn+1,∆εp) = EAεen+1 = EA(εn+1 − εpn+1)

= EA(εn+1 − (εpn + ∆εp)) (3.11)

where E represents the strut’s Youngs Modulus and A represents the strut cross sec-

tional area. The evolution of the Yield Force Ny(= σyA) is predicted by a hardening

power law

Ny,n+1(∆εp) = Aσoy

( |εpn+1|
εpo

+ 1
)1/r

= Aσoy

(
|εpn|+ |∆εp|

εpo
+ 1
)1/r

(3.12)

where r is a hardening exponent, σoy is the initial yield stress and εpo is a reference

plastic strain. Finally, the increment in plastic deformation is dictated by a rate of

plastic axial deformation power law

ε̇p = ε̇po

(
|Nn+1|
Ny,n+1

− 1
)1/m

(3.13)

where ε̇po is a reference plastic strain rate and m is a rate-sensitivity exponent. Now,

denoting the time step by ∆t and substituting ∆εp = ∆tε̇p into Eqn. (3.13) and rear-

ranging we can write

G1(εn+1,∆εp) = ∆εp −∆tε̇po

(
|Nn+1|
Ny,n+1

− 1
)1/m

= 0 (3.14)

For any specified deformation εn+1 through ln+1 which is specified by FkK and χα, ∆εp

is determined from Eqn. (3.14) by iterating on its Taylor expansion using a Newton

Raphson procedure.

∆εpn+1 = ∆εpn −
∂G1
∂∆εp

(3.15)

The strut axial constitutive behavior predicted by Eqn. (3.11), Eqn. (3.12) and Eqn. (3.13)

is shown in Fig. 3.3. Fig. 3.3a presents the axial constitutive response for tensile loading

alone while Fig. 3.3b presents the loading and unloading response for both tensile and

compressive loading. Fig. 3.3b clearly demonstrates that the model is able to capture

the effects of the history of plastic deformation during loading, unloading and/or reverse

loading.
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Figure 3.3: The axial constitutive behavior of the struts composing each unit cell of an open-cell
metallic foam as predicted by Eqn. (3.11), Eqn. (3.12), and Eqn. (3.13). The variables in Eqn. (3.11),
Eqn. (3.12), and Eqn. (3.13) were taken as initial initial length Lo = 1.0mm, initial strut radius ro =
0.3mm, E = 50.0Gpa, σyo = 50.0Mpa, exponent r = 4, axial exponet m = 4, εop = 0.005, ε̇op = 0.10
(a)The loading axial constitutive response for tensile loading. (b)The axial constitutive response for
loading and unloading for both tensile and compressive loading.

Strut Bending Response

Now consider two particular metallic struts on the unit cell of an open-cell foam. Ini-

tially the angle between the two struts is Ψ and after deformation of the unit cell the

current angle between the two struts is ψn+1. Lets define the current change in angle

by αn+1 and then lets split it into a elastic change in angle αen+1 and a plastic change

in angle αpn+1.

αn+1 = αen+1 + αpn+1 (3.16)

αn+1 = ψn+1 −Ψ αpn+1 = ψpn+1 −Ψ (3.17)

ψpn+1 in Eqn. (3.17) refers to the remaining plastic angle between the ligaments after

unloading. The current plastic change in angle αpn+1 is further subdivided into the

previous plastic change in angle αpn and the increment of plastic change in angle ∆αp.

αpn+1 = αpn + ∆αp ⇒ αpn = ψpn −Ψ (3.18)

ψpn+1 and ψpn in Eqn. (3.17) and Eqn. (3.18) refer respectively to the current and previous

parts of the plastic angle between two ligaments. From Eqn. (3.16) and Eqn. (3.18) we
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can write the current elastic change in angle αen+1 as

αn+1 = αen+1 + αpn+1 = αen+1 + αpn + ∆αp (3.19)

⇒ αen+1 = αn+1 − (αpn + ∆αp) (3.20)

Next, Using the variables in Eqns. (3.16-3.19), we present the set expressions

which will model the bending constitutive response between any two struts on a unit

cell of a metallic open-cell foam. The bending response is a function of the elastic

change in angle αen+1 between any two ligaments. Here the bending moment Mn+1

between any two struts is given by the linear relation

Mn+1(αn+1,∆αp) =
3EI
L

αen+1 =
3EI
L

(αn+1 − αpn+1)

=
3EI
L

(αn+1 − (αpn + ∆αp)) (3.21)

where E refers to the Youngs Modulus of the struts, I refers to moment of inertia of

the struts, and L refers to the initial ligament length. The evolution of the yielding

bending moment My,n+1 is predicted by a hardening power law

My,n+1(∆αp) =
Iσoy
r

( |αpn+1|
αpo

+ 1
)1/r

=
Iσoy
r

(
|αpn|+ |∆αp|

αpo
+ 1
)1/r

(3.22)

where σoy is the initial yield stress, αpo is a reference plastic change in angle and r is a

hardening exponent. Lastly, the increment in plastic change in angle is dictated by a

rate of plastic deformation power law

α̇p = α̇po

(
|Mn+1|
My,n+1

− 1
)1/m

(3.23)

where α̇po is a reference rate for the plastic in change and m a rate sensitivity exponent.

Substituting ∆αp = ∆tα̇p into Eqn.(3.23) above and rearranging we can write

G2(αn+1,∆αp) = ∆αp −∆tα̇po

(
|Mn+1|
My,n+1

− 1
)1/m

= 0 (3.24)

For any specified αn+1 through ψn+1 which is specified through FkK and χα, ∆αp

is determined from Eqn.(3.24) by iterating on its Taylor expansion using a Newton

Raphson procedure.

∆αpn+1 = ∆αpn −
∂G2
∂∆αp

(3.25)
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Figure 3.4: The bending constitutive behavior of the struts composing each unit cell of an open-cell
metallic foam as predicted by Eqn. (3.21), Eqn. (3.22), and Eqn. (3.23). The variables in Eqn. (3.21),
Eqn. (3.22), and Eqn. (3.23) were taken as initial length Lo = 1.0mm, initial strut radius ro = 0.3mm,
E = 50.0Gpa, σyo = 50.0Mpa, exponet r = 4, exponent m = 20, αop = 0.005, α̇op = 0.10 (a)The loading
bending constitutive response for tensile loading. (b)The bending constitutive response for loading and
unloading for both tensile and compressive loading.

The bending constitutive behavior predicted by the constitutive relation in Eqn. (3.21),

the power law yielding moment relation in Eqn. (3.22), and the rate of plastic angle

deformation expression in Eqn. (3.23) is shown in Fig 3.4. Fig 3.4a presents the loading

bending constitutive response due to tensile loading alone while Fig 3.4b presents the

loading and unloading response for both tensile and compressive loading. Fig 3.4b

demonstrates the ability of the model to capture the effects of the history of plastic

deformation during loading, unloading, and/or reverse loading. Eqns. (3.11 - 3.13) and

Eqns. (3.21 - 3.23) which dictate the cell wall constitutive behavior were taken from

Ortiz and Stainer (1999) and Cuitiño and Ortiz (1992) which provide guidelines on the

selection of plastic constitutive updates. Similar simpler equations exist for polymeric

visco-elastic ligaments where history of deformation is not relevant.

3.3 Predictions

This section presents the predictions for metallic open-cell foams based on the ex-

pressions presented here to describe elasto-plastic cell wall constitutive behavior. The

effective foam response predictions are based on the micromechanical unit cell model
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Figure 3.5: The predicted evolution of the unit cell configuration during compressive loading The
variables in Eqns. (3.11 - 3.13) and Eqns. (3.21 - 3.23) were set to initial strut length Lo = 1.0mm,
initial strut radius ro = 0.3mm, E = 50Gpa, σyo = 50Mpa, axial exponent r = 4, axial exponet m =
4, εop = 0.005, ε̇op = 0.10, bending exponet r = 4, bending exponent m = 20, αop = 0.005, α̇op = 0.10

formulated in Chapter 2 and briefly reviewed in Sec. 3.2.1 of this chapter. Keep in

mind that the strut constitutive relations for axial and bending elasto-plastic behavior

described in Sec. 3.2.2 and Sec. 3.2.2 respectively dictate the predictions of the unit

cell model and therefore the effective foam response. For the following predictions we

consider a four strut unit cell (M = 4). The struts composing the unit cells are taken as

cylindrical rods of initial length Lo and radius ro with the following initial orientations:

L1
α = Lo

(
2
√

2
2
e2
α +

1
3
e3
α

)

L2
α = Lo

(√
6

3
e1
α −
√

2
3
e2
α +

1
3
e3
α

)

L3
α = Lo

(
−
√

6
3

e1
α −
√

2
3
e2
α +

1
3
e3
α

)
L4
α = Lo

(
−e3

α

)
(3.26)

where the terms in parenthesis are unit vectors describing the initial ligament orienta-

tion and eiα is a local Cartesian coordinate basis centered at the initial vertex of the

unit cell. The configurational evolution of a four ligament unit cell M = 4 as predicted

by Eqn. (4.47) is shown in Fig. 3.5 at four different values of deformation.

Multiple predictions of the effective foam response as predicted by Eqn. 3.5 are

presented next. The effective plateau stress presented here is obtained from the mi-

croscopic simulation by convexification of the non-convex portion of the microscopic

energy landscape as discussed in chapter 3 of Ericksen (1998), Gioia et al. (2001) in the
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Figure 3.6: The effective response for foams with elastic cell walls. The values for the vari-
ables in Eqns. 3.11-3.13 and Eqns. 3.21-3.23 were set to initial initial length Lo = 1.0mm,
initial strut radius ro = 0.3mm, E = 10Gpa, σyo = 0.5Gpa, axial exponent r = 1, axial exponet m =
1, εop = 0.005, ε̇op = 0.10, bending exponet r = 1, bending exponent m = 1, αop = 0.005, α̇op = 0.10 (a)
The effective cell and plateau response for foams composed from struts with a high initial yield stress
such that the response doesn’t involve any plastic deformation. (b) The load and unload response when
the cell walls (struts) don’t undergo any plastic deformation.

appendix A. Fig. 3.6a shows the effective unit cell and plateau response for foams com-

posed from elastic ligaments which never undergo yielding deformation while Fig. 3.7a

shows the effective unit cell and plateau response for foams composed from elasto-plastic

(metallic) ligaments which undergo yielding during plastic deformation. Fig. 3.6b shows

the loading/unloading unit cell response for foams that don’t yield during deformation.

Fig. 3.7b on the other had shows the loading/unloading response when the ligaments

composing the unit cell undergo plastic yielding deformation. The current elasto-plastic

relations for the cell wall material capture the expected plastic phenomena. Namely

that if the cell wall material undergoes yielding, the loading/unloading responses have

distinct paths with a large residual deformation (Fig. 3.7b) while if the cell wall ma-

terial doesn’t undergo yielding, the loading/unloading responses have identical paths

without any residual deformation (Fig. 3.6b).

Fig. 3.8 presents the predicted effects of the cell wall initial yield stress σyo

on the plateau stress on a metallic open-cell foam. Fig. 3.8a shows how the effective

foam response (solid line) with the effective plateau stress (dashed line) while Fig. 3.8b
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Figure 3.7: The effective response for foams with elasto-plastic cell walls. The values for the
variables in Eqns. 3.11-3.13 and Eqns. 3.21-3.23 were set to initial strut length Lo = 1.0mm,
initial strut radius ro = 0.3mm, E = 50Gpa, σyo = 50Mpa, axial exponent r = 4, axial exponet m =
4, εop = 0.005, ε̇op = 0.10, bending exponet r = 4, bending exponent m = 20, αop = 0.005, α̇op = 0.10
(a) The effective cell and plateau response for foams composed from struts with low initial yield stress
such that the response involves a lot of plastic deformation. (b) The load and unload response when
the cell walls (struts) undergo plastic deformation.

presents the effects of the initial yield stress on effective plateau stress. As expected

the plateau stress increases as the yield stress increases as shown in Fig. 3.8. Fig. 3.9

presents the effects of the applied strain on the effective plateau stress of metallic open-

cell foams. Fig. 3.9a presents the effects of the applied strain on the effective foam

response (solid line) along with the plateau stress (dashed line). Fig. 3.9b presents the

effects of the applied strain on the plateau stress. Again as expected, the plateau stress

increases as the strain rate increases. Fig. 3.10 presents the effects of the initial rate

of plastic deformation ε̇po on the effective foam response. The results in Fig. 3.10 can

be interpreted as the effects of viscosity η because for the current strut constitutive

formulation the viscosity can be written in terms of the initial yield stress and the

initial rate of plastic deformation, e.g. η = σyo

ε̇po
. Fig. 3.10a presents the effects of the

initial rate of plastic deformation on the effective response while Fig. 3.10b presents the

effect on the plateau stress.
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Figure 3.8: The effect of initial yield stress on the response of metallic, open-cell foams. The foam
density was taken as 100Kg/m3 and every run was carried out at a strain rate of 1s−1. The values
for the variables in Eqns. 3.11-3.13 and Eqns. 3.21-3.23 were set to initial strut length Lo = 1.0mm,
initial strut radius ro = 0.3mm, E = 50Gpa, axial exponent r = 4, axial exponet m = 4, εop = 0.005,
ε̇op = 0.10, bending exponet r = 4, bending exponent m = 20, αop = 0.005, α̇op = 0.10 (a) The effective
cell response (solid line) and the effective plateau (dashed line) for foams composed of struts with
different initial yield stress σyo. (b) The effect of the initial yield stress σyo on the predicted effective
plateau stress for metallic open-cell foams.

3.4 Conclusions

In summary, the present theory allows one to define a constitutive formulation for

lightweight, open-celled metallic foams based on clear and quantifiable parameters such

as microstructural topology and cell wall properties such as Youngs modulus and density

while capturing the effects of dynamic loading via viscosity (initial yield stress and initial

rate of plastic deformation) at cell wall level and microinertia at unit cell level. We

limited the presented predictions to cells containing 4 struts converging into the internal

cell vertex. A coherent cellular solid can be generated from this type of unit cell by

recursive application of point symmetry operations centered on each of the ligament

midpoints as previously reported in Wang and Cuitiño (2000). The microscopic results

predicted the expected foam response with the plateau stress increasing for increasing

applied strain rate, increasing initial cell wall yield stress, and increasing cell wall

viscosity. The resulting model accounts explicitly for the foam topology, the elastic and

plastic behavior of the cell wall material, and the inertial effects arising from non-affine
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Figure 3.9: The effect of applied strain rate on the response of metallic, open-cell foams. The foam
density was taken as 100Kg/m3 and the values for the variables in Eqns. 3.11-3.13 and Eqns. 3.21-3.23
were set to initial strut length Lo = 1.0mm, initial strut radius ro = 0.3mm, E = 50Gpa, σyo =
50Mpa, axial exponent r = 4, axial exponet m = 4, εop = 0.005, ε̇op = 0.10, bending exponet r = 4,
bending exponent m = 20, αop = 0.005, α̇op = 0.10 (a) The effective cell response (solid line) and the
effective plateau (dashed line) for foams loaded at different strain rates ε̇. (b) The effect of the applied
strain rate ε̇ on the predicted effective plateau stress for metallic open-cell foams.

motion within the cells. Finally, we point out that the current approach for modeling

the plastic behavior of the ligaments doesn’t account for softening and eventual fracture

of the ligaments and it also doesn’t account for the Bauschinger effect that results form

loading-unloading and reverse loading which effects the ability of model to simulate the

response at exceedingly high levels of deformation.



79

Strain (ε)

S
tr

es
s

(M
pa

)

0.70.60.50.40.30.20.10.0

60

50

40

30

20

10

0

εo
p rate = 5.0e3(s-1)

εo
p rate = 5.0e3(s-1)

εo
p rate = 5.0e1(s-1)

εo
p rate = 5.0e1(s-1)

εo
p rate = 5.0e-1(s-1)

εo
p rate = 5.0e-1(s-1)

εo
p rate = 5.0e-3(s-1)

εo
p rate = 5.0e-3(s-1)

(a) Predicted response

εo
p rate (s-1)

P
la

te
au

S
tr

es
s,

σ pl
(M

pa
)

0 1000 2000 3000 4000 5000

10

8

6

4

2

0

increasing viscosity

(b) Plateau Stress

Figure 3.10: The effect of the initial rate of plastic deformation (ε̇po and α̇po) on the response
of metallic, open-cell foams. The foam density was taken as 100Kg/m3, the applied strain was
maintained at 1000s−1 and the values for the variables in Eqns. 3.11-3.13 and Eqns. 3.21-3.23
were set to initial strut length Lo = 1.0mm, initial strut radius ro = 0.3mm, E = 50Gpa,
σyo = 50Mpa, axial exponent r = 4, axial exponet m = 4, εop = 0.005, bending exponet r = 4,
bending exponent m = 20, αop = 0.005, (a) The effective cell response (solid line) and the effective
plateau (dashed line) for foams loaded at different initial rates of plastic deformation. (b) The effect of
initial rate of plastic deformation on the on the predicted effective plateau stress for metallic open-cell
foams.
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Chapter 4

Harnessing Continuum Mechanics and Finite Element

Analysis Schemes to Predict the Behavior of Open-Cell

Foams

This chapter presents an approach for modeling and simulating porous, open-cell foam

materials using the established ideas of continuum nonlinear finite element analysis

(FEA). The approach is valid for cases where the microstructural dimensions of the

cells are much smaller than the macroscopic dimensions of the specimen under analy-

sis. While the FEA simulations are performed at continuum level; the stresses at every

node in the FEA mesh are obtained from a surrogate micromechanical model which

predicts the effective foam response based on the cellular topology and the properties

and constitutive behavior of the solid phase making up the cellular architecture which

was presented in Chapter 2. The consistent tangents which are necessary in an implicit

FEA scheme will be formulated here based on the micromechanical constitutive rela-

tion formulated in Chapter 2 which is depends on the axial and bending constitutive

behavior considered for the cell wall material. The formulation captures the process

of cell collapse by allowing non-affine deformation at unit cell level while maintaining

affine deformation at the continuum level. The formulation is then used to predict the

response of various Elasto-Plastic and Visco-Elastic Open-Cell Foams specimens for de-

formations up to 70%. The simulations capture the different stages of foam deformation

including the plateau region which occurs during unstable cell collapse. The local strain

evolution exhibits the expected heterogeneous deformation through localized bands of

collapsed and un-collapsed cells. The effects of cell wall material properties as well as

the effects of cellular structure topological alterations on predicted response are also

shown.
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4.1 Introduction

Cellular materials such as metallic and polymeric open-celled foams are gaining prefer-

ence in different engineering applications requiring mitigation of energy during sudden

impact loading. However before industry can take full of advantage of the properties

offered by foam materials, it is necessary to develop tools capable of predicting the full

field response under adverse loading conditions. The full range macroscopic dynamic

response of foam materials is characterized by an initial elastic region (usually linear)

followed by a long plateau region due to unstable collapse of cells and concluded by

a densification region after termination of cell collapse. This mechanical response is

dominated by the topology of the cellular structure and the properties and constitutive

behavior of the solid phase. The majority of the pioneering studies on the mechan-

ics, characterization and properties of metallic foams have been well documented in

reviews such as Gibson (2000); Ashby et al. (2000); Gibson and Ashby (1997); Evans

et al. (1999). More recently, experimental and modeling studies have concentrated on

the different stages of deformation as well as on the effects of the cell wall properties

on the macroscopic response of open-cell foams, for instance Bardenhagen et al. (2005);

Gong et al. (2005); Zhou et al. (2004a). Due to the recent interest in exploiting foams

for energy absorption applications, there has been a number of experimental studies

focusing on the dynamic response of metallic foam materials for example Mukai et al.

(1999a,b); Shimojima et al. (2001); Dannemann and Lankford (2000); Kanahashi et al.

(2001); Han et al. (1998); Hall et al. (2000).

Predicting the full range response of foam materials by modeling the entire

cellular structure and keeping track of the motion and deformation of the solid cell wall

composing each cell in the cellular structure is extremely challenging theoretically due

to intricate cellular architectures and diverse materials properties in multiple phases

and to many issues which arise during loading such as considerably large deformation,

contact among cell walls, random heterogeneous unstable collapse, multiple deformation

phenomena (elasticity, plasticity, fracture) etc. Therefore, it would be computationally

unfeasible to perform an FEM numerical analysis on the entire cellular structure while
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taking into account the deformation of every cell in the specimen under consideration.

One of the most efficient ways to predict the response of a material is by modeling the

material as a continuum and then modeling the continuum system with finite elements.

Foam materials however have a high degree of porosity and therefore can not be modeled

as standard continuum systems. Zooming into a cellular solid reveals many voids and

a network of cells made of trusses for open-cell foams and spherical walls, membranes,

for closed-cell foams. This means the constitutive relation would not apply equally at

every material point throughout the continuum body. The local constitutive equation

only applies to the solid cell walls. It is know that even though cellular materials are

predominantly composed by voids filled with a fluid, typically air, the effective foam

response is dominated by the characteristics of the cells such as the orientation and

dimensions and the cell wall materials properties such as elasticity and viscosity.

This communication offers an efficient approach for modeling porous foam mate-

rials as continuum systems in order to exploit the established ideas of the finite element

method (FEM). In order for the current approach to be valid, it is implicitly as-

sumed that there exists a length scale separation where the microstructural dimensions

of the cells are much smaller than the macroscopic dimensions of the sample. In this

context, a macroscopic continuum level material point X translates into a microscopic

array of identical unit cells sharing the same macroscopic fields. This is essentially the

technique of internal variables where a local minimum of the energy is reached at a

local level through the variation of the internal variables and then a global minimum is

reached by satisfying all the local minimums is the region under consideration. In this

approach the global macroscopic perspective appears as a standard continuum body

with mathematical points described by X and containing certain values of deformation

F, displacement u, acceleration ü, density ρ, viscosity η etc. At continuum level it is

not possible so see a cell’s shape or how the cells move and deform. The details of the

cellular structure only become apparent upon zooming into a mathematical point X.

In the current approach, the effective macroscopic response such as cellular

kinematic state, stresses, and stress tangents at every node in the nonlinear FEA mesh

is obtained from a surrogate microscopic structural model which enforces the principle
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of minimum action on a representative 3D unit cell. The micromechanical unit cell

model in turn depends on a third phenomenological model for the elasto-plastic or

visco-elastic constitutive behavior of the solid cell wall material. This chapter presents

the coherent application of a global nonlinear implicit finite element analysis scheme, the

local micromechanical unit cell model and sample local visco-elastic and elasto-plastic

constitutive relations. The resulting FEA simulations clearly capture the different

stages of deformation observed during dynamic compression experiments of open-cell

foam materials. The remainder of this chapter is organized in the following manner.

Section 4.2 will state the general continuum mechanics framework in the reference

configuration. Section 4.3 will present the finite element analysis framework including

the spatial and temporal discretizations. Section 4.4 will restate the key details of

the micromechanical model which serves as the constitutive update at every node in

the FEA mesh. The consistent tangents necessary in implicit FEM schemes will be

formulated in Section 4.4.3 from the reported micromechanical model. Section 4.5

will present sample predictions for both elasto-plastic and visco-elastic open-cell foams.

Finally Section 4.6 will pose some concluding statements for the work presented here.

4.2 Continuum Framework

A cellular solid (foam material) can be approximated as a continuum system at the

macroscale when the size of the specimen under consideration is much larger than the

size of the cells composing the cellular structure. In solid mechanics such a system as

depicted in Figure 4.1 can be described by the field equations of continuum mechanics.

In the reference configuration and in terms of the First Piola-Kirchhoff stress tensor

P(X, t) with Cartesian components PiJ , the governing field equations of continuum

mechanics acquire the following form:

Conservation of linear momentum :

P(X, t) · ←−∇X + ρo b̃(X, t) = ρo ü(X, t) (4.1)

Conservation of angular momentum :

P(X, t) · FT (X, t) = F(X, t) ·PT (X, t) (4.2)
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Figure 4.1: Schematic of the foam system as a continuum body with prescribed boundary conditions
and initial conditions.

Traction boundary conditions :

P(X, t) ·N = t̃(X, t) on Sσo (4.3)

Displacement boundary conditions :

u(X, t) = ũ(X, t) on Su
o (4.4)

Here X represents the position of a material particle in the original or reference config-

uration. At time t the same material particle is located at position x in the current or

deformed configuration. b̃ refers to the body force per unit mass and ρo to the mass

density per unit reference volume and u and ü refer respectively to the displacement

and acceleration throughout the body. In addition, t̃ and ũ are the prescribed traction

and imposed displacement along the traction surface Sσo and displacement surface Su
o

respectively. Finally, N is the surface unit normal in the reference configuration.

4.2.1 Derivation of the Weak Form

The strong form of the balance of linear momentum stated in Equation 4.1 can be recast

in a weak form by invoking the Principle of Virtual Work. First the strong form given
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in Equation 4.1 is multiplied by an arbitrary virtual displacement δu which satisfies

the prescribed displacement (ũ) boundary condition on Su
o and then the expression is

integrated over the reference volume Vo as shown below∫
Vo

δu · (P · ←−∇X + ρob̃− ρoü) dVo = 0 (4.5)

Separating each term in equation 4.5 gives∫
Vo

δu · (P · ←−∇X) dVo +
∫
Vo

ρoδu · b̃ dVo −
∫
Vo

ρoδu · ü dVo = 0 (4.6)

Now notice that the first term in Equation 4.6 can be written as∫
Vo

δu · (P · ←−∇X) dVo =
∫
Vo

(δu ·P) · ←−∇X dVo −
∫
Vo

P:(δu←−∇X) dVo (4.7)

since

(δu ·P) · ←−∇X = δu · (P · ←−∇X) + P:(δu←−∇X) (4.8)

or

(δuiPiJ)
∂

∂XJ
= δui

∂PiJ
∂XJ

+ PiJ
∂δui
∂XJ

Making use of Gauss’ theorem to convert the first term on the right side of Equation 4.7

from a volume integral to a surface integral on the reference configuration with unit

surface normal N gives∫
Vo

δu · (P · ←−∇X) dVo =
∫
So

δu ·P ·N dSo −
∫
Vo

P:(δu←−∇X) dVo (4.9)

Further noticing that t = P ·N gives∫
Vo

δu · (P · ←−∇X) dVo =
∫
So

δu · t dSo −
∫
Vo

P:(δu←−∇X) dVo (4.10)

Now, recalling that on the portion of the boundary (Sσo ) where a traction BC (t̃) is

specified we have

δu · (P ·N) ≡ δuiPiJNJ = δu · t̃ (4.11)

and on the portion of the boundary where no tractions are specified, we have

δu · (P ·N) = 0 or t = 0 (4.12)
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allows us to write Equation 4.10 as∫
Vo

δu · (P · ←−∇X) dVo =
∫
Sσo

δu · t̃ dSo −
∫
Vo

P:(δu←−∇X) dVo (4.13)

Substituting Equation 4.13 into Equation 4.6 and rearranging gives∫
Sσo

δu · t̃ dSo +
∫
Vo

ρoδu · b̃ dVo −
∫
Vo

P:(δu←−∇X) dVo =
∫
Vo

ρoδu · ü dVo (4.14)

Equation 4.14 above is the weak form of the balance of linear momentum stated ear-

lier in Equation 4.1. Given a proper constitutive relation P(F(t)) for the continuum

foam system, the continuum problem can be solved numerically by employing the finite

element method. Before presenting the details of the micromechanical model which

furnishes the necessary constitutive expression P(F(t)), the next section discretizes

Equation 4.14 in space and time in order to provide a brief overview of the general

finite element analysis method.

4.3 Finite Element Analysis Framework

In an effort to make this a self-contained communication as self-contained, this section

presents a brief overview of the general finite element analysis (FEA) framework. The

finite element method provides an approximation of the gradual response of the contin-

uum body for an incrementally applied load. The Finite Element Method essentially

enforces the weak form of the balance of linear momentum stated in Equation 4.14 along

with the specified boundary and initial conditions on every element in the discretized

form of the continuum body at every instant of the incrementally applied load. Before

discretizing the problem in space and time, notice that the weak balance of momentum

expression in Equation 4.14 can be written as

∫
Sσo

δuT · t̃T dSo +
∫
Vo

ρoδuT · b̃T dVo −
∫
Vo

(δu←−∇X):P dVo (4.15)

=
∫
Vo

ρoδuT · üT dVo

and recalling that for any two tensors A and B, A:B = B:A = AT · ·B = A · ·BT ,

then Equation 4.15 can be rewritten as
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Figure 4.2: Schematic representation of the spatially discretized continuum body. Each element is
assigned a number e and every node is assigned a number n.

∫
Sσo

δuT · t̃ dSo +
∫
Vo

ρoδuT · b̃ dVo −
∫
Vo

(δu←−∇X)T · ·P dVo (4.16)

=
∫
Vo

ρoδuT · ü dVo

4.3.1 Spatial Discretization

This sections presents the discretization of the body in space. Figure 4.2 depicts the

discretized form of the continuum body with every element numbered by e and every

node numbered by n. A set of shape (interpolation) functions are represented by N =

N(X) and the nodal displacement, velocity, and acceleration by U, U̇, Ü respectively.

The continuum displacement, velocity, and acceleration are represented by u(X), u̇(X),

ü(X) respectively and are expressed in terms of the shape functions and discrete nodal

values as written below

u(X) = N(X)U δu(X) = N(X)δU δuT (X) = δUTNT (X) (4.17)

u̇(X) = N(X)U̇ δu̇(X) = N(X)δU̇ δu̇T (X) = δU̇TNT (X) (4.18)
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ü(X) = N(X)Ü δü(X) = N(X)δÜ δüT (X) = δÜTNT (X) (4.19)

The deformation gradient F can also de expressed in term of the nodal values as

F = u←−∇X − I = N←−∇XU− I = BU− I (4.20)

δF = δu←−∇X − I = N←−∇XδU− I = BδU− I (4.21)

δFT = (δu←−∇X)T − I = (NδU←−∇X)T − I = δUTBT − I (4.22)

Now substituting for ü, δuT and (δu←−∇X)T from Equations 4.17 - 4.19 into Equa-

tion 4.16 results in∫
Sσo

δUTNT · t̃ dSo +
∫
Vo

ρoδUTNT · b̃ dVo −
∫
Vo

δUTNT←−∇X · ·P dVo (4.23)

=
∫
Vo

ρoδUTNT ·NÜ dVo

Now substituting BT = NT←−∇X and factoring out δUT gives

δUT

[∫
Sσo

NT · t̃ dSo +
∫
Vo

ρoNT · b̃ dVo −
∫
Vo

BT · ·P dVo =
∫
Vo

ρoNT ·NÜ dVo

]
(4.24)

In order for Equation 4.24 to be satisfied for any valid virtual displacement field δU,

the term in square brackets must be satisfied independently at all times. Applying the

term in square brackets in Equation 4.24 to every element e and summing over all the

elements in the discretized body gives∑
e

∫
Sσe

NT · t̃ dSo +
∑
e

∫
Ve

ρoNT · b̃ dVo −
∑
e

∫
Ve

BT · ·P dVo (4.25)

=
∑
e

∫
Ve

ρoNT ·NÜ dVo

For convenience, the different terms in Equation 4.25 will be represented by

R =
∑
e

∫
Sσe

NT · t̃ dSo (4.26)

G(U, U̇) =
∑
e

∫
Ve

ρoNT · b̃ dVo −
∑
e

∫
Ve

BT · ·P dVo (4.27)

I(Ü) =
∑
e

∫
Ve

ρoNT ·N dVoÜ (4.28)

whereR represents the external forces, G represents the internal forces, and I represents

the inertial forces. G is a function of the displacement U and velocity U̇ because in
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general the stress state P is a function of both strain and strain rate which in turn

depend on displacement and velocity.

4.3.2 Temporal Discretization

This section presents the discretization in time of the motion and deformation. The

duration of the loading event is discretized in increments of ∆t with the previous time

represented by tn and current time represented by tn+1. Then it is necessary to satisfy

Equation 4.25 at the current given time tn+1, i.e.

G(Un+1, U̇n+1) + I(Ün+1) = Rn+1 (4.29)

where Un+1,U̇n+1 and Ün+1 are the current nodal values of displacement, velocity,

and acceleration on every element. Knowing the conditions at the previous time tn

including the previous nodal values Un,U̇n and Ün, together with a time integration

scheme given by

Un+1 = Un + ∆tU̇n +
∆t2

2
(1− 2β)Ün + β∆t2Ün+1 (4.30)

U̇n+1 = U̇ + ∆t(1− γ)Ün + γ∆tÜn+1 (4.31)

Permits us to determine the necessary values for each incremental time step. Notice

that different implicit time integration schemes are possible depending on the selected

values for γ and β in Equations 4.30 and 4.31. Notice that for β = γ = 0 we have an

explicit integration scheme. Substituting Equations 4.30 and 4.31 into Equation 4.29

gives

H(Ün+1) = G(Un+1(Ün+1), U̇n+1(Ün+1)) + I(Ün+1) = Rn+1 (4.32)

or simply

Hn+1(Ün+1)−Rn+1 = 0 (4.33)

Equation 4.33 is a nonlinear system of equations for the current nodal acceleration

Ün+1 which is solved utilizing a Newton Raphson scheme as

Ün+1 = Ün −
[
∂Hn+1

∂Ün+1

]−1

(Hn+1 −Rn+1) (4.34)
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This iteration scheme necessitates the evaluation and inversion of the modified mass

matrix defined as

M̃ =
∂Hn+1

∂Ün+1

=
[
β∆t2

∂Gn+1

∂Un+1
+ γ∆t

∂Gn+1

∂U̇n+1

+
∂I

∂Ün+1

]
(4.35)

where the term ∂Gn+1

∂Un+1
is the global stiffness matrix. Taking P = P(F, Ḟ) and making

use of Equations 4.29 and 4.27, the global mass matrix can be written as

∂Gn+1

∂Un+1
= Kn+1 =

∑
e

Ke,n+1 =
∑
e

[∫
Ve

BT · ·∂P
∂U

dVo

]
(4.36)

=
∑
e

[∫
Ve

BT · ·∂P
∂F

B dVo

]
where

∂P
∂U

=
∂P
∂F

∂F
∂U

=
∂P
∂F

B (4.37)

since

u←−∇X = F + I ⇒ F = u←−∇X − I = N←−∇XU− I ⇒ dF
dU

= B (4.38)

The term ∂Gn+1

∂U̇n+1
represents the damping matrix and can be written as

∂Gn+1

∂U̇n+1

= Cn+1 =
∑
e

Ce,n+1 =
∑
e

[∫
Ve

BT · ·∂P
∂U̇

dVo

]
(4.39)

=
∑
e

[∫
Ve

BT · ·∂P
∂Ḟ

B dVo

]
where

∂P
∂U̇

=
∂P
∂Ḟ

∂Ḟ
∂U̇

=
∂P
∂Ḟ

B (4.40)

since

u̇←−∇X = Ḟ ⇒ Ḟ = u̇←−∇X = N←−∇XU̇ ⇒ dḞ
dU̇

= B (4.41)

The term ∂In+1

∂Ün+1
represents the inertial mass matrix and can be written as

∂In+1

∂Ün+1

= M =
∑
e

Me =
∑
e

[∫
Ve

ρoNT ·N dVo

]
(4.42)

The modified mass matrix in Equation 4.35 can now be restated as

M̃ =
∂Hn+1

∂Ün+1

=
[
β∆t2Kn+1 + γ∆tCn+1 + M

]
(4.43)
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The micromechanical model formulated in chapter 2 renders P = P(F(t)) hence the

modified mass matrix won’t involve the variation of the stress with respect to the rate

of deformation ∂P
∂Ḟ

and will take the simpler form

M̃ =
∂Hn+1

∂Ün+1

=
[
β∆t2Kn+1 + M

]
(4.44)

In addition to the terms stated in the modified mass matrix in Equation 4.35, the

Newton-Raphson iteration scheme also requires the evaluation of H

Hn+1 =
∑
e

[∫
Ve

ρoNT · b̃n+1 −BT · ·Pn+1 + ρoNT ·N Ün+1

]
dVo (4.45)

In order to march in time by utilizing the Newton-Raphson scheme in Equa-

tion 4.34, we need to have a constitutive relation P and its consistent tangents dP
dF as

required by Equations 4.36 and 4.45. We seek a continuum-level constitutive relation

for open-cell foam materials attendant to their internal microstructure and including

the inertial effects arising from the internal collapse of the foam structure. In formulat-

ing such a constitutive relation, we conceptualize that the material is generated by the

systematic repetition of a particular unit cell, the size of which is much smaller than the

region of interest (sample). In other words we assume separation of scales where the

mechanical response of any material macroscopic point in the body is obtained from a

local or microscopic model of the cellular structure as sketched in Figure 4.3. The next

sections presents a brief review of the necessary continuum level constitutive relation

P(F(t)) for open-cell foams as recently reported in Romero et al. (2008). The consistent

tangents dP
dF are then formulated based on the developed constitutive relation.

4.4 Micromechanical Formulation

An separation of scales is implicity assumed by the current formulation where the region

of foam material under analysis is much larger then the size of the cells composing

the foam’s cellular structure as depicted in Figure 4.3a which is repeated here from

Chapter 2 for convenience. In this context, the global continuum level perspective

is limited to mathematical points designated by X which contain certain values for

an array of variables such deformation F, Stress P, density ρ, viscosity η, etc. The
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Figure 4.3: a) Continuum and microstructural view of foam material composed of very small cells
relative to the sample size. The macroscopic fields such as u and F prescribed at point X are trickled
down to the microstructure to the midpoints of the ligaments. b) Kinematic assumptions for a 4-
ligament unit cell showing the reference and deformed cell configurations. The cell deforms according to
the prescribed macroscopic affine field F and all ligament midpoints move with the specified macroscopic
affine field u, however the cell vertex may have the additional displacement χ resulting in non-affine
deformation within the microstructure.

cellular structure only becomes visible after zooming into one of the continuum level

mathematical points X. Further zooming into the cellular structure reveals the unit

cell along with the shape, dimension, and orientation of each cell wall (strut). The

structural level perspective exhibits the motion and deformation of each cell as a whole

and the individual deformation of the struts composing it. The cell moves and deforms

according to the applied deformation F however the current approach allows the unit

cell vertex to move an additional amount χ until structural equilibrium is achieved as

shown in Figure 4.3b. Keep in mind that the motion of the strut midpoints remains

tied to the global continuum deformation F at all times.

Before presenting the continuum level stress state equation P and formulating

the consistent tangents dP
dF which are necessary in any Implicit Finite Element Analysis

scheme, it is necessary to link the global heterogeneous deformation field F to the

local field χ at every global point X. As shown in Figure 4.3 and as reported in

Romero et al. (2008), this is done by trickling down from the continuum level to the

unit cell level the global field F and enforcing the principle of minimum action on a

representative 3D unit cell. This results in an Equation of Motion (EOM) in terms of
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χ which dictates the evolution of the configuration of each unit cell for every globally

specified deformation F at every point X in the continuum view. Section 4.4.1 will

briefly summarize this lengthy derivation previously communicated in Romero et al.

(2008) and Section 4.4.2 will state the derived continuum level, First Piola-Kirchoff

Stress equation P(F(t)) which predicts the stress state for every unit cell configuration

as required by the applied global deformation F. Finally Section 4.4.3 will formulate

the stress tangents necessary to march in the implicit continuum level finite element

analysis scheme being implemented here.

4.4.1 Kinematic Equilibrium Condition

We consider a unit cell composed of M ligaments and consider the axial and bending

deformation of the ligaments. The bending deformation is concentrated at the cell’s

vertex and is evaluated as a function of the current angle ψ between every two ligaments.

This assumption allows us to capture the unstable buckling process of every unit cell

through a single additional degree of freedom χ which locates the unit cell vertex and

results in non-affine motion within the cell. Once the initial length Li of every ligament

i and the initial angle Ψij between every two ligaments i and j in the unit cell are

specified and a deformation F is applied, we need to determine the new lengths and

angles for the ligaments composing the unit cell. The current length li of any ligament

i and the current angle ψij between any two ligaments i and j are respectively defined

in Equation 4.46.

Kinematics :⇒ li = FLi − χ ψij = cos−1

(
li · lj

li lj

)
(4.46)

Once the deformation F is specified, Equation 4.46 requires the value of χ in order to

determine li and ψij . First, notice that once F is specified at unit cell level, the only

degree of freedom in the system is the motion of the central vertex χ which can be

determine by satisfying equilibrium at the unit cell vertex. The Equation of Motion for

χ resulting from application of the principle of minimum action for non-conservative

systems, d
dt

(
∂L
∂χ̇α

)
− ∂L

∂χα
= Qα, is presented in Equation 4.47 as a resultant equilibrium
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condition.

Equilibrium :⇒ R(F,χ) =
∑
i=1,M

f i −mcχ̈ = O (4.47)

where

f i = N i(F,χ)el
i

+
1
l i
∑

j=1 ,M

Mij (F,χ)el i l j (4.48)

with N i representing the axial force for ligament i and Mij representing the bending

moment between ligaments i and j. At ligament levelN i andMij depend on the current

ligament length li(F,χ) and angle ψij(F,χ) and come from the assumed potentials as

described in Romero et al. (2008). mcχ̈ represents the microinertia within each cell

with the current acceleration of the cell vertex χ̈n+1 given by

χ̈n+1 =
χn+1 − χn

∆t2
− χ̇n

∆t
(4.49)

The condition in Equation 4.47 provides the link between the continuum level affine field

F and the cell level non-affine field χ and allows us to univocally define the kinematic

configuration of the cellular structure for an applied macroscopic deformation field. The

specification of the global deformation F together with the history of motion of the cell

vertex turns Equation 4.47 into a second order system of nonlinear ordinary differential

equations for χ. Therefore, once a macroscopic deformation field F is prescribed, one

can solve for the current configuration (χn+1) of each unit cell, by iterating utilizing

the Taylor expansion of Equation 4.47 such as

χn+1 = χn −
[
∂R
∂χ

]−1

R (4.50)

where
∂R
∂χ

= −
∑
i=1,M

 ∑
j=1,M

∂f i

∂lj

− mc

∆t2
I (4.51)

as will be shown in Section 4.4.3.

4.4.2 Macroscopic Stress State

Once the unit cell equilibrium configuration χ is determined for a globally specified

field F through Equation 4.47, the First Piola-Kirchhoff stress tensor P = P̃(F(t))
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emerges as the derivative with respect to F and Ḟ of the assumed elastic W(F) and

viscous D(Ḟ) potentials respectively, PkK(F(t)) = ∂W(F)
∂FkK

+ ∂D(Ḟ)

∂ḞkK
. The resulting final

expression is presented in Equation 4.52.

Stresses :⇒ P = P̃(F(t)) =
1
Bo

 ∑
i=1,M

f i ⊗ Li −mc
∂χ

∂F
· χ̈

 (4.52)

Notice that the constitutive relation in Equation 4.52 includes the microinertial stress

mc
∂χ
∂F · χ̈ in addition to the stresses due to stretching and bending (f i ⊗Li) of the cell

ligaments. We also point out that the constitutive relation for P̃(F) in Equation 4.52

satisfies the principle of frame indifference, namely P̃(F) = R∗−1P̃(R∗F) where R∗

represents a superposed rigid body motion.

4.4.3 Stress Tangents

In order to implement the derived constitutive relation P = P̃(F(t)) into an implicit

finite element analysis program, it is necessary to determine the consistent stress tan-

gents. In the current problem the tangents take the following form

dP
dF

=
∂P
∂F

+
∂P
∂χ

∂χ

∂F
(4.53)

Furthermore, since ∂χ
∂F can be evaluated from 4.47,

∂R
∂F

+
∂R
∂χ

∂χ

∂F
= 0 ⇒ ∂χ

∂F
= −

[
∂R
∂χ

]−1 ∂R
∂F

, (4.54)

the stress tangents defined in Equation 4.53 can be re-stated as

Tangents :⇒ dP
dF

=
∂P
∂F
− ∂P
∂χ

[
∂R
∂χ

]−1 ∂R
∂F

. (4.55)

It’s clear that the stress tangents in Equation 4.55 depend on the four partial derivatives

∂R
∂χ , ∂R

∂F , ∂P
∂χ , and ∂P

∂F . According to Equation 4.47 we can write

∂R
∂χ

=
∑
i=1,M

∂f i

∂χ
− ∂(mcχ̈)

∂χ
(4.56)

and
∂R
∂F

=
∑
i=1,M

∂f i

∂F
. (4.57)
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Also, according to Equation 4.52 we can write

∂P
∂χ

=
1
Bo

 ∑
i=1,M

∂f i

∂χ
⊗ Li − ∂χ

∂F
· ∂(mcχ̈)

∂χ

 (4.58)

and
∂P
∂F

=
1
Bo

∑
i=1,M

∂f i

∂F
⊗ Li. (4.59)

Observing 4.56, 4.57, 4.58, and 4.59 and recalling 4.54; we notice that the four partial

derivatives depend on just three partial derivatives, namely ∂f i

∂χ , ∂f
i

∂F , and ∂(mcχ̈)
∂χ . Using

chain rule differentiation we can write

∂f i

∂χ
=
∑
k=1,M

∂f i

∂lk
∂lk

∂χ
(4.60)

and
∂f i

∂F
=
∑
k=1,M

∂f i

∂lk
∂lk

∂F
. (4.61)

and recalling Equation 4.49

∂(mcχ̈)
∂χ

=
mc

∆t2
I or mc

∂χ̈α
∂χβ

=
mc

∆t2 δαβ where α, β = 1 − 3 (4.62)

Furthermore, based on Equation 4.46, the partial derivatives ∂lk

∂χ and ∂lk

∂F can be written

as

∂lk

∂χ
= −I (4.63)

∂lk

∂F
= I⊗ Lk. (4.64)

Now, we can simplify ∂f i

∂χ and ∂f i

∂F as

∂f i

∂χ
= −

∑
k=1,M

∂f i

∂lk
(4.65)

∂f i

∂F
=

∑
k=1,M

∂f i

∂lk
⊗ Lk. (4.66)

It’s clear that the two partial derivatives 4.65 and 4.66 only depend on one partial

derivative, namely ∂f i

∂lk
. Now let’s express everything in terms of ∂f i

∂lk
explicitly.

∂R
∂χ

= −
∑
i=1,M

 ∑
j=1,M

∂f i

∂lj

− mc

∆t2
I (4.67)
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∂R
∂F

=
∑
i=1,M

 ∑
j=1,M

(
∂f i

∂lj
⊗ Lj

) (4.68)

∂P
∂χ

= − 1
Bo

 ∑
i=1,M

 ∑
j=1,M

∂f i

∂lj

⊗ Li +
mc

∆t2
∂χ

∂F
· I

 (4.69)

∂P
∂F

=
1
Bo

 ∑
i=1,M

∑
j=1,M

(
∂f i

∂lj
⊗ Lj

)
⊗ Li

 (4.70)

The four tensor expressions in Equations 4.67 - 4.70 above define the necessary stress

tangents according to Equation 4.55. By defining two tensor as

Si1 =
∑
j=1,M

∂f i

∂lj
(4.71)

Si2 =
∑
j=1,M

(
∂f i

∂lj
⊗ Lj

)
, (4.72)

the four partial derivatives in Equations 4.67 - 4.70 can be stated more concisely as

∂R
∂χ

= −
∑
i=i,M

Si1 −
mc

∆t2
I (4.73)

∂R
∂F

=
∑
i=1,M

Si2 (4.74)

∂P
∂χ

= − 1
Bo

 ∑
i=1,M

(
Si1 ⊗ Li

)
+

mc

∆t2
∂χ

∂F
· I

 (4.75)

∂P
∂F

=
1
Bo

∑
i=1,M

(
Si2 ⊗ Li

)
. (4.76)

4.4.4 Numerical Notation

Consider a four ligament unit cell (M = 4) and let’s define arrays to store data in the

form of dfdl(3, 3, 4, 4) and cL(3,4) such that

∂f i

∂lj
=

∂f im

∂ljn
⇒ dfdl(m,n, j, i) (4.77)

Lj = Ljk ⇒ cL(k, j) (4.78)

where m,n, k = 1-3 and i, j = 1-4 . It follows that the arrays storing Si1 and Si2 can be

defined as

Si1 = Si1mn =
∑
j=1,4

∂f im

∂ljn
⇒ S1(m,n, i) =

∑
j=1,4

dfdl(m,n, j, i) (4.79)
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Si2 = Si2lmn =
∑
j=1,4

∂f il
∂ljm

Ljn ⇒ S2(l,m, n, i) =
∑
j=1,4

dfdl(l,m, j, i) · cL(n, j)(4.80)

where l,m, n = 1-3 and i = 1-4 . Similarly the arrays for storing the four partial

derivatives ∂R
∂χ , ∂R

∂F , ∂P
∂χ , and ∂P

∂F are defined as

∂R
∂χ

=
∂Rm
∂χn

⇒ dRdu(m,n) = −
∑
i=1,4

S1(m,n, i)− mc

∆t2
δmn (4.81)

∂R
∂F

=
∂Rl
∂Fmn

⇒ dRdF (l,m, n) =
∑
i=1,4

S2(l,m, n, i) (4.82)

∂P
∂χ

=
∂Plm
∂χn

⇒ dPdu(l,m, n) = − 1
Bo

∑
i=1,4

S1(l, n, i) · cL(m, i) (4.83)

− ∂χn
∂Flm

mc

∆t2
δmn

∂P
∂F

=
∂Plm
∂Fnk

⇒ dPdF (l,m, n, k) =
1
Bo

∑
i=1,4

S2(l, n, k, i) · cL(m, i) (4.84)

where l,m, n, k = 1-3. To make sense of the dimensions of the arrays above, it is

beneficial to write down the derivatives in component form.

∂Rm
∂χn

=
∑
i=1,4

∂f im
∂χn

= −
∑
i=1,4

∑
j=1,4

∂f im

∂ljn
= −

∑
i=1,4

Si1mn

⇒ dRdu(m,n) = −
∑
i=1,4

S1(m,n, i) (4.85)

∂Rl
∂Fmn

=
∑
i=1,4

∂f il
∂Fmn

=
∑
i=1,4

∑
j=1,4

∂f il
∂ljm

Ljn =
∑
i=1,4

Si2lmn

⇒ dRdF (l,m, n) =
∑
i=1,4

S2(l,m, n, i) (4.86)

∂Plm
∂χn

= − 1
Bo

∑
i=1,4

∂f il
∂χn

Lim = − 1
Bo

∑
i=1,4

∑
j=1,4

∂f il
∂ljn

Lim = − 1
Bo

∑
i=1,4

Si1lnL
i
m

⇒ dPdu(l,m, n) = − 1
Bo

∑
i=1,4

S1(l, n, i) · cL(m, i) (4.87)

∂Plm
∂Fnk

=
1
Bo

∑
i=1,4

∂f il
∂Fnk

Lim =
1
Bo

∑
i=1,4

∑
j=1,4

∂f il
∂ljn

Ljk

Lim =
1
Bo

∑
i=1,4

Si2lnkL
i
m

⇒ dPdF (l,m, n, k) =
1
Bo

∑
i=1,4

S2(l, n, k, i) · cL(m, i) (4.88)
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4.5 Predictions

This section presents the implementation of the formulation in Section 2.3 as a consti-

tutive update within the framework of nonlinear finite element analysis(FEA) schemes.

The results presented here were obtained using an in-house implicit Nonlinear Finite

Element Analysis (FEA) code. The stress tangents needed in any implicit FEA sim-

ulation are those formulated in Section 4.4.3. The simulations serve as an example of

how the micromechanical open-cell foam constitutive law, Equation 2.77, formulated in

Section 2.3 of Chapter 2 can be implemented as a constitutive update into a nonlinear

implicit finite element analysis program to simulate the response of dynamically loaded

polymeric (visco-elastic) and metallic (elasto-plastic) open-cell foam specimen. In order

to use the derived constitutive law (Equation 2.77) to simulate the mechanical response

of a foam specimen, first we assume that the size of the specimen is much larger than

the size of the individual cells which compose it. Then, we assume a separation of scales

where the response of any point on the sample when viewed from a global (macroscopic)

perspective is obtained from the local (microscopic) model of the cellular structure de-

scribed in Section 2.3. This is a multiscale simulation where the overall response of the

foam material is obtained from a finite element analysis simulation which obtains the

response at each node in the mesh from a lower scale micromechanical simulation of

the cells. The micromechanical unit cell model in turn requires a third model which

predicts the axial and bending constitutive behavior of the ligaments composing each

unit cell.

4.5.1 Polymeric Visco-Elastic Foam Predictions

This section presents the finite element analysis simulations for polymeric foams with

decoupled visco-elastic behavior at cell wall level. Figure 4.4a shows a schematic of

the geometry of the sample and the boundary and initial conditions. The simulation

mimics a 2D cuboid sample under plane strain conditions dynamically compressed at

constant velocity from the top surface. Figure 4.4b shows the recorded stress at the

top surface as a function of the average vertical strain. The stress-strain signature in
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Figure 4.4: Simulation of impact at a constant downward velocity of v = 10.0m
s

on a visco-elastic
foam material. The foam is homogeneous and composed of the unit cell described in the section 2.4.1.
The foam density was taken as ρ = 75.0 Kg

m3 and the ligaments of every cell in the microstructure had the

properties: ligament Young’s Modulus (E) = 7.5× 108 Pa, ligament viscosity (η) = 10.0 N·s
m2 , ligament

radius (r) = 0.3 mm, ligament length (L) = 1.0 mm. (a) Visco-elastic foam specimen in its initial state
along with the region selected for finite element analysis. (b) Vertical Piola Stress P33 normalized by
the Young’s Modulus (E) vs. vertical strain εyy response evaluated at the top surface.

Figure 4.4b clearly shows the strain (or displacement) interval where collapse (config-

urational transformation) occurred. The details of the transformation process can be

studied by inspecting snapshots at different times or strain levels during the loading

process.

Nine snapshots taken at different strains or times are shown in Figure 4.5.

Three clearly different stages are observed during the evolution of the deformation. In

the small deformation regime with average deformation up to approximately 20% all the

material remains in the original stable configuration without cell collapse. This process

can be observed in the first two snapshots (Strain = 4% and 15%) shown in Figure 4.5

where the deformation remains nearly homogeneous throughout the entire specimen.

Any small variations are due to disturbance from the boundaries and dynamic effects

such as wave propagation.

As can be observed from Figures 4.5c -4.5h, during the intermediate deformation

regime with average strain between 20% to 60%, the deformation pattern is consistent

with materials exhibiting phase transformation behavior such as foams. The common

plateau response of foam materials during the collapse process is captured by the model
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(a) 4% Avg. Strain (b) 15% Avg. Strain (c) 25% Avg. Strain

(d) 36% Avg. Strain (e) 43% Avg. Strain (f) 48% Avg. Strain

(g) 53% Avg. Strain (h) 57% Avg. Strain

Strain εyy
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-0.8
-0.9

(i) 70% Avg. Strain

Figure 4.5: Snapshot taken at different times corresponding to different average vertical strains during
the dynamic compression of the 2D visco-elastic foam sample described in Figure 4.4. Colors represent
the local deformation in the vertical direction. The black lines describe the FEM mesh, not the lattice.
The snapshots clearly show the transition from (nearly) homogeneous deformation to heterogeneous de-
formation (mixture of collapsed and un-collapsed phases) and back to nearly homogeneous (completely
collapsed) phase.
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as shown in Figure 4.4b. During this deformation regime there is a spatial distribution

of two phases (collapsed and un-collapsed regions) which minimize the energy of the

system. As shown in Figures 4.5c -4.5h, the deformation process evolves by the gradual

transformation of the un-collapsed phase (which initially has the larger volume) into

the collapsed phase (which initially has the smaller volume). This process is clearly

observed from Figures 4.5c -4.5h, where the snapshots were taken at times with strain

25%, 36%, 43%, 48%, 53%, and 57%.

The transformed phase (red region) starts in the middle due to stress concen-

tration effects (Strain = 25%), propagates as a band towards the edges (Strain = 36%),

continues to thicken in the interior (Strain = 43%), propagates as a thick band towards

the top and bottom (Strain = 48% and Strain = 53%) and eventually reaches the lower

surface (Strain = 57%), leaving a small region (green) without transforming next to

the top surface in contact with the support plate. While the general behavior is similar

to plasticity, the process is quite different. In this case there is a co-existence of two

phases, each one with characteristic deformation associated with λ+ and λ− which are

the deformation at the initiation of collapse and at the termination of collapse respec-

tively. Locally, λ+ and λ− are defined by the two strain values defining the interval of

non-convex energy during the deformation of the unit cell as shown by the red curve in

Figure A.1b in appendix A. In the large deformation regime with average deformation

above 60%, all the material has transformed into the collapsed phase as indicated in

the last snapshot in Figure 4.5 (Strain = 70%). The deformation is again homogeneous

across the specimen after complete collapse throughout. As can be observed from Fig-

ure 4.4b, the increased stiffness exhibited by foam materials when the whole sample

has been transformed into the collapsed phase is captured by the current model.

In the Chapter 2, we study the effects of strain rate on the response of dynami-

cally loaded open-cell foams based solely on the local micromechanical model derived in

Section 2.3 and a Maxwell construction of the effective foam response. It is also worth

noting that the local strain rate throughout the foam specimen is actually nonuniform

while the foam system is undergoing collapse. Figure 4.6 shows snapshots at different

average vertical strains of the variation of the local vertical strain rate through the foam
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(a) 4% Avg. Strain (b) 15% Avg. Strain (c) 25% Avg. Strain

(d) 36% Avg. Strain

εyy rate (s -1)
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(e) 43% Avg. Strain (f) 48% Avg. Strain

(g) 53% Avg. Strain (h) 57% Avg. Strain

εyy rate (s -1)
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-86
-100

(i) 70% Avg. Strain

Figure 4.6: Snapshots taken at different times corresponding to different average vertical strains
during the dynamic compression of the 2D visco-elastic foam sample described in Figure 4.4. Colors
represent the local strain rate in the vertical direction. The black lines describe the FEM mesh, not the
lattice. The snapshots show the variation of the local strain vertical strain rate throughout the foam
specimen as it is being loaded with a constant downward velocity at the top surface. The snapshots
clearly show the variation of the strain rate before collapse, during collapse and after collapse.
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(a) Local Vertical Strain (b) Local Vertical Strain Rate

Collapsed Region

Collapsing Region

Un-collapsed Region

Figure 4.7: Comparison of the strain and strain rate for the 36% average vertical strain snapshots in
Figures 4.5d and 4.6d. (a) Variation of the local vertical strain. (b)Variation of the local vertical strain
rate.

material for the FEM simulation presented in Figures 4.4 and 4.5. As can be observed

from Figures 4.6a and 4.6b, the strain rate is approximately uniform before the mate-

rials starts to collapse and any small variations are due wave propagation. Figures 4.6c

- 4.6h show the variation of the strain rate while the cellular structure is undergoing

collapse. As can be observed from Figures 4.6c - 4.6h, once collapse initiates, the local

strain rate is very heterogeneous throughout the material. The strain rate is highest

for regions of the material which are currently undergoing collapse as captured by the

yellow and red portions in Figures 4.6c - 4.6h. Once a certain region of material fin-

ishes collapsing, the strain rate for that region returns to a lower value corresponding to

blue and green in Figures 4.6c - 4.6h. Once the whole material is done collapsing, the

strain rate once again becomes approximately uniform through the material as shown

in Figure 4.6i.

Figure 4.7 shows a more detailed description of the variation of the local vertical
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strain and strain rate while the foam system is undergoing collapse for example at 36%

average vertical strain. Comparison of Figures 4.7a and 4.7b clearly indicates that the

local strain rate is highest at the interface between collapsed and un-collapsed regions

which are the regions currently undergoing collapse. The regions currently undergoing

collapse are highlighted by the higher strain rate regions marked with red in Figure 4.7b.

Figure 4.7 also points out that the strain rate is lowest in both the collapsed and non-

collapsed region.

4.5.2 Metallic Elasto-Plastic Foam Predictions

Here we present the Finite Element Modeling simulations for metallic open-cell foams

with coupled elasto-plastic constitutive behavior at cell wall level. During the FEA

simulations, the microscopic unit cell model reviewed in Section 4.4 provides the stress

response at every node in the mesh while the stress tangents formulated in Section 4.4.3

allow the simulation to march in time. Keep in mind that the micromechanical unit

cell in turn obtains the necessary forces and moments from the strut axial and bend-

ing constitutive models described in Chapter 3. The simulations provides a coherent

description of the metallic foam material from specimen level to unit cell level to strut

level.

The images shown in Fig. 4.8 and Fig. 4.8 are snapshots taken at different aver-

age vertical strains during dynamic compression of a 2D specimen a constant downward

velocity of 10m/s. Fig. 4.8 presents the evolution of the local vertical deformation for

open-cell foams with a high initial yield stress which reduces the amount of plastic de-

formation during compression of the foam specimen. Fig. 4.9 on the other hand presents

the evolution of the local vertical strain for the case of low initial yield stress which re-

sults in a high amount of plastic deformation during compression of the specimen. This

prediction clearly shows how the system undergoes heterogeneous deformation during

collapse of the cells in the system.

Fig. 4.8 and Fig. 4.9 clearly show that the model captures the experimentally ob-

served heterogeneous deformation through localized collapse bands. First, in Figs. 4.8a

- 4.8c and Figs. 4.9a - 4.9b the cellular microstructure has not yet collapsed and the
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(a) 0% Avg. Strain (b) 16% Avg. Strain (c) 30% Avg. Strain

(d) 34% Avg. Strain (e) 38% Avg. Strain (f) 41% Avg. Strain

(g) 48% Avg. Strain (h) 50% Avg. Strain

εyy
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0.45

(i) 60% Avg. Strain

Figure 4.8: Simulation of impact at a constant downward velocity of v = 10.0m/s on a homogeneous
elasto-plastic 2D open-cell foam specimen with a high initial yield stress resulting in a small amount
of plastic deformation. The snapshots were taken at different times corresponding to different average
vertical strains during the dynamic compression. Colors represent the local deformation in the vertical
direction and the black lines describe the FEM mesh. The snapshots clearly demonstrate the transition
from (nearly) homogeneous deformation to heterogeneous deformation (mixture of collapsed and un-
collapsed regions) and back to nearly homogeneous (completely collapsed) deformation.

material is undergoing uniform deformation. Next, in Figs. 4.8d - 4.8h and Figs. 4.9c

- 4.9h the cellular microstructure is collapsing and the material is undergoing hetero-

geneous deformation. Finally, in Fig. 4.8i and Fig. 4.9i the cellular microstructure has

collapsed completely and the material is again undergoing uniform compaction defor-

mation. Overall the formulation agrees well with the main conclusions of the exper-

imental studies capturing the different characteristic of foam response, namely initial

homogeneous, heterogeneous collapse and homogeneous compaction.
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(a) 0% Avg. Strain (b) 15% Avg. Strain (c) 29% Avg. Strain

(d) 35% Avg. Strain (e) 40% Avg. Strain (f) 44% Avg. Strain

(g) 50% Avg. Strain (h) 58% Avg. Strain

εyy

0.06
0.10
0.13
0.17
0.20
0.24
0.27
0.31
0.34
0.38
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(i) 72% Avg. Strain

Figure 4.9: Simulation of impact at a constant downward velocity of v = 10.0m/s on a homogeneous
elasto-plastic 2D open-cell foam specimen with a low initial yield stress resulting in a large amount of
plastic deformation. The snapshot were taken at different times corresponding to different average
vertical strains during the dynamic compression. Colors represent the local deformation in the vertical
direction and the black lines describe the FEM mesh. The snapshots clearly demonstrate the transition
from (nearly) homogeneous deformation to heterogeneous deformation (mixture of collapsed and un-
collapsed regions) and back to nearly homogeneous (completely collapsed) deformation.

4.6 Conclusions

As demonstrated in this chapter, the theory formulated in Chapter 2 provides a continuum-

level constitutive formulation for lightweight, open-celled foams based on clear and

quantifiable parameters such as microstructural topology and ligament properties while

capturing the effects of dynamic loading via viscous dissipation at ligament level and

microinertia at unit cell level. The model captures the successive collapse process of

the unit cells through relocation of the unit cell vertex and reorientation of the liga-

ments while evaluating the axial and bending deformation of the ligaments composing
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the unit cell level. History of deformation is considered at ligament level and used to

predict the succeeding cell wall axial and bending constitutive response. As shown, the

derived constitutive relation is readily implementable in the realm of nonlinear implicit

and implicit finite element analysis FEA schemes. In the specimen level simulations

the FEA scheme obtains the response at every node in the mesh from the microme-

chanical open-cell foam model which in turn requires constitutive models for the axial

and bending cell wall constitutive behavior.

In the simulations, the deformation pattern of constrained cuboidal foam sam-

ples subjected to uniaxial compression is followed utilizing an implicit FEA dynamic

formulation. The predictions are in good agreement with the experimental observations,

revealing the typical deformation stages of foam materials. Specifically, the resulting

macroscopic FEA simulations clearly capture all the typical stages of deformation ob-

served during dynamic compression of foams materials. Namely, the typical initial

homogeneous deformation region, the collapse region with localized heterogenous de-

formation, and the homogeneous densification region in addition to the effective wave

propagation due to dynamic loads. While the outlined procedure can be utilized for a

more general class of unit cells, we limited the presented results to cells containing 4

ligaments concurring into one internal vertex. The present unit cell model assumed that

the ligaments remain straight after buckling to ease the computational burden however

this restriction could be removed in future improvements of the model. Additionally,

the visco-elastic and the elasto-plastic constitutive cell wall behavior for polymeric and

metallic foams respectively are just two examples of the type of constitutive behavior

that can be implemented. Other relations for visco-elasto or elasto-plastic or elasto-

brittle constitutive behavior could be implemented in the future.
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Chapter 5

Conclusions and Future Work

5.1 Summary

Cellular materials such as metallic and polymeric foams are multi-phase materials that

have structure, geometry, density, viscosity, and elasticity properties with no clear un-

derstanding about how these different properties effect the dynamic behavior separately

or coupled. The modeling work presented here aids in understanding the connection

between the complex mechanical response exhibited by foam materials during dynamics

loading and the diverse cellular characteristic and distinct materials properties found in

these materials. The developed model could be used by engineers and scientist looking

to develop the next generation of multi-functional, multi-property materials such as

metallic and polymeric foams. The present development has the potential to simulate a

wide array of material systems exhibiting a cellular structure. Different mechanics have

been incorporated to account for very different potential scenarios. From viscoelas-

tic systems such as polymeric foams to brittle systems such ceramic foams to plastic

systems such as Metallic Foams. With minor alterations, the formulated model could

be used to study different types of foam systems with diverse cellular structures and

varying cell wall material properties.

The model presented here evolved from the earlier work reported in Wang and

Cuitiño (2000) and conducted under the direction of prof. Alberto M. Cuitiño. The

previously developed numerical model for the analysis of statically loaded, open-cell,

hyperelastic foam systems was enhanced with the capability to analyze dynamically

loaded, visco-elastic (polymeric) and elasto-plastic (metallic) open-cell foam systems

because many current and future applications of foam materials are or will take place

under dynamic loading environments where the loading occurs at very high, impact
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type strain rates. The enhanced model takes into account the effects of the cell wall

material properties, dimensions of the solid cell walls, and inertial motion of the cells

which in turn facilitates one to investigate the effects of density, viscosity, elasticity and

plasticity of the small bars making up every unit cell in the cellular structure. First, the

micromechanical formulation is resolved numerically and used to predict the effective

response of different foams. The formulation is then implemented as a constitutive

update into implicit and explicit finite element analysis schemes to predict the full field

response. The resulting FEM simulations capture the localized collapse behavior and

the variation of the local strain rate due to unstable cell collapse.

5.2 Conclusions

As long as we stay in the range of cellular solids without increasing the relative den-

sity of the cellular solid to the point that one is looking at a porous material instead

of a foam system, the predictions by the presented model make sense physically and

support the experimentally observed deformation patterns for dynamically loaded cel-

lular solids. The mechanical behavior of solid foams is a complex, nonlinear process

where the cellular microstructure and the cell-wall material properties dictate the re-

sponse in a coupled manner. The deformation process can involve elasticity, plasticity,

fracture, viscosity, temperature effects, strain rate effects, density (microinertia), un-

stable collapse etc. Experimentally it is extremely difficult to investigate the different

effects separately, however through the current model, we can afford to look at effect

separately. For instance, Almost all the experimental studies on dynamically loaded

solid foam systems point out that as the strain rate increases the yield and collapse

strength increases. This conclusion is also reached by the current model in the case of

both visco-elastic and visco-elastic foams but the model is able to give reasons for this

increase such as viscous and inertial effects going on inside the microstructure.

Experimental studies on dynamically loaded foams systems conclude that as the

density of a cellular material is increased the collapse strength increases. We also make

this conclusion and point out the reasons for this increase in strength is an increased in

inertial force. When the cellular solid is dynamically loaded the increase in mass due
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to higher density results in larger inertial forces inside the cellular material resulting in

a stronger response from the foam material as observed experimentally. Cellular solids

also exhibit higher strengths during dynamic loading if the relative density is increased.

This can also be understood in term of inertial effects according the present model. For

a given bulk solid density, changing the cell dimensions (same as changing the relative

density) in a foam system has the same effect as increasing the bulk solid density. If

the dimensions such as the thickness or length of bars in a cell are changed, the collapse

stress will change. If the cell leg thickness such as the radius increases or if the cell leg

length decreases, the collapse strength increases because a bigger inertial force results

inside the material with such cell dimension changes. The opposite will happen if the

dimensions are changed by decreasing the cell leg radius and increasing the cell leg

length.

It has been shown that increasing the viscosity in a foam system by increas-

ing the viscosity of the surrounding fluid also increases the strength response during

dynamic loading. This effect is also understood via the current model. The current

visco-elastic version of the model is able to the viscous response of the solid phase

and it is also able to superimpose an additional response from a filler material. The

viscous property of a material exerts a dissipative, friction force against the motion or

deformation in the material. The effects of solid phase viscosity on dynamically loaded

solid foam systems have not been investigated experimentally because it is difficult to

measure the viscosity of the solid cell wall material. The current model predicts that

as the viscosity of the solid cell wall material increases the strength of the dynamically

loaded cellular solid increases including an increase in collapse strength. Increasing the

viscosity of the fluid inside the microstructure should have a similar effect as increasing

the solid cell wall material viscosity.

In the metallic version of the model the viscous effects are coupled with the

elastic effects in the local relations therefore we must look at the viscous effects in

metallic foams through the initial yield stress and the initial rate of plastic deformation.

As expected increasing the initial value of the yield stress which a way to increase the cell

wall material viscosity, increases the collapse strength of the metallic foam. Similarly
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decreasing the initial rate of plastic deformation which essentially increases the cell wall

material viscosity, causes an increase in the collapse strength of metallic foams during

dynamic loading. The elasto-plastic model maintains the history of plastic deformation

at strut level to use in predicting the succeeding strut constitutive response based on

the Young’s Modulus, initial yield stress, initial rate of plastic deformation, hardening

power law exponent, rate of plastic deformation power law exponent and strut cross

sectional area and moment of inertia. The model is able to gage the effects of loading

rate through the elasticity and viscosity of the solid cell wall materials.

The micromechanical visco-elastic and elasto-plastic alone provide effective re-

sponses in a numerically efficient manner allowing the user to probe a wide range of

properties in a short amount of time. However in order to predict the full range full

field response through an open-cell foam specimen, it is necessary to implement the

micromechanical model as a constitutive update into nonlinear finite element analysis

schemes. The FEM predicted response captures the experimental signature response

of open-cell foams observed during compressive loading. The FEM simulation nicely

capture the different stages of deformation (initial homogeneous, heterogenous collapse,

and homogeneous compaction) during compression of polymeric and metallic open-cell

foams. The simulations clearly capture the heterogeneous bands of deformation dur-

ing collapse of dynamically compressed visco-elastic and elasto-plastic open-cell foams.

Finally, the FEM simulations also capture the heterogeneity of the local strain rate

during collapse of the open-cell foams.

Solid open-cell foams such as the one that has been modeled here have great

material properties which can be put to use in many different applications. However,

it is more important to emphasize that cellular solids are materials which contain great

combinations of material properties such as high strengths and low density, good sound

absorption and thermal stability, great energy absorption ability at low stress levels

etc. It is through this extraordinary combinations of properties that cellular solids

offer the greatest potential for applications Korner and Singer (2000). Nowadays, we

usually need to satisfy more than one property in a certain material application, it’s

here that we see the advantages of materials with great combinations of properties such
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as cellular solids. Models such as the one presented here can provide industry in the

cellular materials field with great insights on how the low level material properties of

cellular solids affect the mechanical behavior. This could be used as a tool to decide on

the properties of the liquid that will be used to form the cell walls of the foam system

or to tell us how to guide and control the foaming process to obtain desired densities,

viscosities, cell wall dimensions, strength etc. The present model is very general and

eventually will have the ability to simulate all the different types of foam systems in

different loading scenarios.

5.3 Recommendations and Future Work

The work presented here could enhanced or expanded by considering varied cellular

geometries, distinct constitutive local relations, accelerating impact loads, careful treat-

ment of the fluid flow around the cellular structure, high temperature environments,

and developing similar ideas for dynamically loaded closed-cell foams. The model pre-

sented here is applicable to foams which can be mimicked by a homogeneous cellular

structure but the model can be extended to foam with cell size distributions by consid-

ering a Taylor averaging approach as done in Cuitiño and Zheng (2003). The current

model could also be enhanced by adding ligament bending away form the unit cell ver-

tex by considering vertex rotation in present formulation. The formulation was derived

for open-cell foams which can be considered as being composed of bars with circular

cross sections however considering ligaments with different cross sectional areas such as

squares, rectangles or triangles will result in drastically different problems because it

has been show that the ligament shape (specific microstructure) can have a very strong

effect on the measured response. Currently the structural problem at cell level is being

considered as a decoupled system with moment equilibrium automatically satisfied since

it is limited to the cell vertex. A different problem could be analyzed by considering

the coupled bending and axial problem at cell level.

In its current state, the formulation presented here has the ability to model

polymeric and metallic foams respectively exhibiting visco-elastic and elasto-plastic
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constitutive behavior at cell wall level. Polymeric foams are dominated by elastic de-

formation while metallic undergo mostly plastic deformation during the loading process.

Different predictions could be obtained for polymeric foams by employing different cell

wall material constitutive models such as coupled visco-elastic (Kelvin-Voigt model)

local relations. Consideration of local elasto-plastic local relations which account for

softening, necking and eventual fracture will render different results for metallic foams

because the current approach for modeling the plastic behavior of the ligaments does

not account for these effects. Additionally, the current plastic local relations do not ac-

count for the Bauschinger effect that results from loading-unloading and reverse loading.

Therefore, local relations which account for the Bauschinger effect will also generate

different predictions for metallic foams. Brittle foams undergo fracture in addition some

yielding during collapse. Their signature response could be predicted by current model

after some alterations. Consequently, work is currently under way to enhance the model

with the ability to model materials which fracture during the loading process such as

brittle ceramic foams. This involves preserving the history of plastic and fracture defor-

mation in addition to considering local fracture constitutive relations at cell wall level.

Still more challenging types of loading that remain to be addressed by the model are

creep and fatigue Loading. A very challenging issue that remains to be addressed is

contact that occurs between cell walls after neighboring cells collapse.

Industries envision potential applications for foam systems as impact absorbers

and as energy mitigators therefore research work on the energy absorption capacity

of different foam systems is currently needed. The developed model can be utilized

for this purpose to a certain extent but currently it lack the ability to account for

varying global strain rates which would trickle down to cell level as affine acceleration.

Adding this capability will enhance the model tremendously. The temperature of foam

materials increases during high strain rate impact loading therefore it is also necessary

to consider temperature effects. Additionally many foam systems are used in high

temperature environments as insulators therefore studies are need to learn about the

effects of temperature the mechanical response. To provide a more complete treatment

of the energy absorption capacity of foam materials it is essential to perform a careful
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study of fluid flow around the cellular structure during dynamic loading. If desired, the

current model can impose the strength of a filler material on the response of the solid

phase but it doesn’t consider the effects of fluid flow. One needs to perform a detailed,

in dept investigation on the effects of the fluid phase surrounding the solid phase to

learn of its contribution to both the quasi-static and dynamic foam response. This way

the model will provide a thorough treat of the dynamically loaded open-cell foam, and

at that point the model could possibly be applied to study semisolid foams such as wet

foams (e.g. mayonnaise, whip cream, shaving cream, coffee foam).

The formulation presented here was developed for open-cell foam which can

be modeled as a network of interconnected struts. The model is not applicable to

closed-cell foams, however the same approach could be used to derive an equivalent

model for closed-cell foams in dynamic loading environments. Axial and bending de-

formation can be accounted through stretching and curvature changes to the spherical

membranes composing each cell in the cellular structure. Keeping track of the curvature

and stretching of the membranes would allow us to account for the elastic and viscous

effects. The inertial forces however need to be considered more carefully. Additionally,

incorporation of warping of the membranes might be extremely challenging and very

expensive computationally. The contribution from the fluid surrounding the cellular

structure could be superimposed on the response of the solid phase, however if we are

able to account for the flow of fluid in and around the cells of closed-cell foams, the

model would provide a much more complete treatment. An model capable of predict-

ing the dynamic response of closed-cell foams would be very useful to the community

looking to exploit foam materials in energy absorption applications.

5.4 Final Comments

As pointed out throughout the dissertation, the current approach is only valid for

situations where the cell size dimensions are much large the specimen region under

consideration. Also, the relatively must be small so that we are not considering porous

materials instead of low density foams. As mentioned earlier, the results presented

here in general agree with the expected results of the physical problem and with the
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available experimental data on cellular solids loaded at high strain rates, however a

complete validation was not presented because equipment was not available and be-

cause experimental data was not available at most of the strain rates that were used

for the simulations. In the future, once equipment or a suitable set of experimental

data becomes available a thorough comparisons should be made with the simulation

results. The expectation is that the model will agree in general with the pattern of the

experimental response, but the specimens used in experiments usually have defective

cells with cracks and unevenness of cell wall thickness which lower stress values, speed

up the initiation of collapse, lower the collapse stress and reduce the compaction stress

and strain. Therefore, it is very difficult to exactly match numerical and experimental

results on cellular solids.

The model presented here could provide more accurate results if better local

constitutive laws were specified. Improvement of the local constitutive laws requires

a detailed study at cell wall level. For the dynamic simulations mentioned here, we

used bulk material properties for the cell wall material properties. However, it has

been shown that the properties of the material in the cell walls of foams can be very

different compared to the properties of their bulk solid counterparts as result of small

sizes and the curing process during foaming. For instance in metallic foams you are

very likely to find just a few grains in a strut of an open-cell foam, which results in very

different properties from the bulk solid metal. Therefore, it would be beneficial to uti-

lize a multi-scale modeling technique based on first principles to obtain the properties

and the behavior of the cell wall material in metallic foams. The multi-scale method

would consists of obtaining the material properties from the bottom-up (crystals and

their orientation, defects, inhomogeneities, cell walls etc) through computer simulations

of models based on first principles. In addition to reducing some of the experimental

drawbacks of measuring the micro-scale samples the multi-scale modeling method offers

the possibility of achieving a deeper understanding of the physics of material behav-

ior, supplying guidelines for cellular material design. Figure 5.1 shows the modeling

approach for open cell metallic crystalline material, which clearly shows the different

connections among hierarchical spatial scales. Each leg of the cell is a thin bar that is
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Figure 5.1: Depiction of metallic open-cell foams across the scales.

composed of multiple orientated crystals. The crystals have distinct boundaries where

yield sliding and the stress concentration is expected to occur. Each grain of the crys-

tals is divided into many elements, but many atoms will be included in a single element.

In other words, the elements bridge the gap from nano- to meso-scale for the materials.

The introduction of elements with a characteristic size between atoms and grains allows

capturing nanoscale effects while providing average estimates for a relatively large size

sample.
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Appendix A

A.1 Evaluation of the Effective Foam Response w/ the Maxwell stress

When many cells are present in a foam specimen, the collapse of every cell occurs at

the same stress, the plateau stress, at which point the strain for the cell goes from λ−

to λ+ which are respectively the strain values at the start and end of collapse behavior.

Once collapse is initialized until its completion, two groups of cells coexist to minimize

the total energy. A group of un-collapsed cells with deformation λ− and a group of col-

lapsed cells with deformation λ+ coexist to equilibrate the system. Therefore, during

the interval of deformation between λ− and λ+, the cells dynamically transforms from

one phase (un-collapsed) to another (collapsed) without visiting intermediate deforma-

tion states. Macroscopically, the foam specimen exhibits a completely convex energy

landscape while microscopically the individual cells exhibit an energy landscape with a

non-convex interval (see red/solid curve in Figure A.1b). One can obtain the effective

response of a foam specimen from a microscopic simulation by convexification of the

non-convex portion of the microscopic energy landscape as discussed in chapter 3 of

Ericksen (1998) and in Gioia et al. (2001).

If we observe the energy vs. strain graphs in Figure A.1b, we obtain the entirely

convex landscape (green/dashed curve) by linearly approximating the non-convex por-

tion between λ− and λ+ of the microscopic energy landscape (red/solid curve). We can

then obtain the Maxwell stress (P) by determining the slope of the convexified energy

landscape (E = W + D =
∫
P33dλ) between λ− and λ+ as written in Equation A.1

below.

P =
[
dE(λ)
dλ

]
λ+

=
[
dE(λ)
dλ

]
λ−

= P33(λ+) = P33(λ−) (A.1)

The Maxwell stress (P) in then identified as the effective plateau stress (P33(λ−) or

P33(λ−)) for the macroscopic foam specimen. Note that since the convexified energy
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Figure A.1: Evaluation of the macroscopic, effective foam specimen response from the microme-
chanical effective response during uniaxial dynamic compression. a) The compressive uniaxial First
Piola-Kirchoff stress P33 normalized by the Youngs Modulus E plotted versus the uniaxial strain λ.
The red/solid line represents the local micromechanical response and the green/dashed line represents
the evaluated effective response with the Maxwell stress as the plateau stress. b) The elastic W plus
viscous D energy potentials normalized by the Youngs Modulus E plotted against the uniaxial strain λ.
The red/solid line represents the potential energy evolution with the non-convex region between strains
λ− and λ+. The green/dashed line represents the convexified energy landscape where the non-convex
region has been replaced by a linear approximation.

region is linear, the slope or the Maxwell stress is constant from λ− to λ+.

Figure A.1a shows the predicted microscopic response (red/solid curve) and

the calculated effective response (green/dashed curve) including the collapse region

for a foam specimen with homogeneous unit cell distribution. The convexification of

the microscopic energy landscape corresponds to finding the points on the microscopic

stress vs. strain graph (red/solid curve in Figure A.1a) where the change in area (=∫ λ+
λ− P33dλ) between two strain values λ+ and λ− is equal to the area (= P∆λ between

the two strain values λ+ and λ− at the common stress P as shown in Equation A.2

below.

∆E =
∫ λ+

λ−
P33dλ = P∆λ = E(λ+)− E(λ−) (A.2)

where

∆λ = λ+ − λ− (A.3)

In Summary, the non-convex energy interval of the microscopic energy curve
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defines the plateau or Maxwell stress (P) and the extent of the plateau region (∆λ).

The slope of this non-convex interval after it has been convexified (green dashed curve

in Figure A.1b) defines the plateau stress. While the first and second inflection points

λ− and λ+ respectively, define the extent of the plateau region. Using this procedure,

one can obtain stress versus strain curves from micromechanical simulations such as

the one in Figure A.1a which can be interpreted as representative of a foam specimen

with a homogeneous distributions of cells.
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