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ABSTRACT OF THE DISSERTATION

System Architectures Based on Functionality Offloading

by Aniruddha Bohra

Dissertation Director: Liviu Iftode

Offloading to hardware components that support the primary task of a system enables sep-

aration of concerns and allows both the primary and offloaded components of a system to be

easy to understand, manage, and evolve independent of other components.

In this dissertation, we explore the software mechanisms required to effectively offload

functionality to idle processing elements. We present the design, implementation, and evalua-

tion of three system architectures – TCPServers, Orion, and FileWall, which offload functional-

ity for improving performance (TCPServers), improving availability (Orion), and for extending

functionality (FileWall). We explore software mechanisms to offload functionality to a subset

of processors in an Symmetric Multiprocessor (SMP) system, a programmable network inter-

face, and an interposing network middlebox to realize the three system architectures.

TCPServers is a system architecture that offloads network processing to a subset of proces-

sors in an SMP system. Network processing imposes direct and indirect overheads on server

systems. It directly affects system performance since it executes at a higher priority than ap-

plication tasks and prevents other components of the system from executing simultaneously

on the processors. It indirectly affects performance by causing cache pollution and Trans-

lation Lookaside Buffer (TLB) flushes, which lead to degraded memory system performance.

Through offloading, TCPServers isolates the network processing and eliminates the direct over-

heads. We also present mechanisms for increasing network stack concurrency and connection
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scheduling, which significantly improve the performance in a multi-threaded network stack.

Orion is a system architecture that enables Remote Healing, where the monitoring and

healing actions are performed externally, by offloading such functionality to external hardware.

Fine grained monitoring of computer systems for performance anomalies, intrusion detection,

and failure detection imposes significant overhead on the target system. Performance critical

systems, where such fine grained monitoring is essential, cannot be subjected to these over-

heads. Orion offloads the healing functionality to a programmable network interface, which

provides an alternate path to the memory of the target system. Using Orion, monitoring and

healing actions can be performed nonintrusively, without involving the processors of the target

system. We present the design and implementation of mechanisms for remote monitoring and

remote repair of damaged OS state using Orion.

FileWall is a system architecture that enables extension of network file system functionality.

Network file system evolution is constrained by the tight binding between clients and servers.

This binding limits the evolution of file system protocols and hinders deployment of file system

or protocol extensions. For example, current network file systems have limited support for

implementing file access policies. We propose message transformation as a mechanism to

separate the client and server systems for protocol enhancement. FileWall offloads message

transformation and policy enforcement to an interposing network element on the client-server

path. We have used FileWall to implement file access policies and present experimental results

showing policy enforcement at FileWall imposes minimal overheads on the base file system

protocol.

The main conclusion of our research is that system architectures based on functionality of-

floading can be realized simply and effectively through efficient software mechanisms, using

only commodity off the shelf hardware. With the availability of resources at idle processing

cores in a multiprocessor system, intelligent peripherals, and unused nodes in a cluster, of-

floading is a practical solution for improving performance and introducing new functionality in

computer systems and networks.
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Chapter 1

Introduction

1.1 Thesis

This dissertation investigates the role of functionality offloading in architecting high perfor-

mance, highly available, and extensible systems. We believe offloading presents a practical

solution to improve performance and introduce new functionality in computer systems by uti-

lizing idle hardware resource. We demonstrate software mechanisms for functionality offload-

ing through three system architectures that improve network performance, enable continuous

monitoring, and extend network file system protocols. With the availability of resources at idle

processing cores in multicore systems, intelligent peripheral devices, and idle nodes in a cluster,

offloading presents an important and practical design principle for future system architectures.

1.2 Offloading Functionality in Computer Systems

Functionality offloading in computer systems can be roughly defined as identifying self-contained,

computation intensive sub-tasks of all processing, and executing them on external hardware.

This results in freeing up CPU cycles that can be used for other applications. Offloading re-

duces the overheads of main memory accesses and the ensuing cache pollution on the host

system by placing memory on the external hardware. Finally, specialized hardware can be

designed to ensure that offloaded tasks are processed faster than at the general purpose host

processor.

For offloading to be beneficial, three conditions must be satisfied. First, the computer sys-

tem must have hardware that can execute the tasks offloaded to it by the host CPU. Second, the

host CPU must have other tasks to perform even after some functionality has been offloaded.

Third, the overheads of offloading the functionality, which arise due to data communication
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Hardware Software
Coprocessor Floating Point Unit (FPU), Crypto

accelerators
Emulated FPU, Programmable
Graphical Processing Units [117]

Watchdog Hardware sensors [55],
AVIO [116], Copilot [147],
GigaScope [57]

Defensive Programming [157],
Recovery Oriented Comput-
ing [146], Cluster Based Ser-
vices [46, 26]

Interposition (Internal) TCP Offload Engines [10, 5, 25,
219], User level networking [23,
64, 67, 95], Network Attached Se-
cure Disks [79]

Recoverable soft-
ware [201, 158, 49], Virtual Ma-
chine Monitors [66, 214, 209, 21],
Asymmetric OS [192, 128]

Interposition (External) Active Networks [203], Early-
Bird [182], Packet Filters [35]

Firewall [74], NAT [85], Overlay
networks [164], Content Distribu-
tion Networks [211, 106], Internet
Services [133, 40]

Table 1.1: Comparison of offloading architectures

and state synchronization between the host CPU and external hardware, must be low.

In this dissertation, we focus on offloading in the context of network server systems, which

are the basic building block of Internet services. Servers that support Internet services are

expected to (i) serve a large number of clients without performance degradation, (ii) be highly

available and tolerate hardware and software failures, transparent to the clients, and (iii) be

extensible to incorporate any new features required to support evolving application workloads

and client expectations.

1.3 Offloading Architectures

System architectures have continuously evolved with application workloads to offload com-

mon tasks. Early system designers identified the inefficiencies in floating point arithmetic and

designed coprocessors to improve its performance. Recently, cryptographic accelerators have

been introduced to handle the increasing complexity of cryptographic operations in the growing

number of security aware applications. However, computer systems are no longer used only for

computation. For desktop systems today, high performance network access, large data storage,

and entertainment and graphics are arguably more important. For server systems today, the

ability to support a large number of concurrent clients while maintaining continuous service is

of primary importance.

Offloading architectures can be classified into three broad categories based on the target
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RESPONSE
Host Coprocessor

REQUEST

Figure 1.1: Coprocessor based offloading architecture

functionality - (i) Coprocessor, (ii) Watchdog, and (iii) Interposition. These architectures have

been realized in hardware as well as software and are applied in a wide array of systems from

desktops to collections of servers in Internet services and Content Distribution Networks. Ta-

ble 1.1 presents a summary of instances of these architectures and we discuss them in more

detail in the remainder of this section.

1.3.1 Coprocessor

Coprocessors are offloading targets that provide execution support to the host processor. CPU

intensive tasks are isolated and executed externally at the target. Figure 1.1 shows a coprocessor

based offloading architecture. Data and execution control is transferred from the host to the

coprocessor through explicit requests. The host waits on the coprocessor to returns the results,

synchronously through polling, or asynchronously through an interrupt.

Coprocessors are used to improve system performance by delegating tasks to dedicated,

possibly specialized execution elements. For example, early microprocessors did not natively

implement floating point arithmetic. Software emulation of floating point operations on these

systems led to significant CPU overheads. Using a specialized coprocessor as the floating point

unit reduces these overheads and improves overall system performance. Other examples of

coprocessors include cryptographic accelerators, memory management hardware, etc., which

are commonly used in desktop and server systems today.

Apart from specialization, programmable coprocessors can be used to implement function-

ality beyond their primary role in the system. For example, programmable Graphical Process-

ing Units (GPUs), originally designed for 3D rendering, have been used to implement parallel

processing engines kernels for general purpose computations [117].
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Host

CPU/App Device/App

Watchdog

ALERT

Figure 1.2: Watchdog based offloading architecture

Remote displays and graphical terminals [172, 165] use servers as coprocessors and offload

all computation to them over a local area network. The host system simply performs graphical

display and rendering, while the server handles all processing. User actions, e.g., keyboard and

mouse events, are sent to the servers and the updates to the display are returned to the client.

Recently, thin clients have been used over the wide area network to support seamless mobility

and stateless computation at clients [20, 108].

1.3.2 Watchdog

Watchdogs are offloading targets that are programmed to monitor a subset of system state,

execute independent of the host processor, and generate alerts on detecting unexpected behavior

through interrupts or system messages. The watchdog functionality is an independent task and

the host does not control execution of the watchdog, which can operate even when the CPU

is not available due to OS crash or deadlock. Figure 1.2 shows a watchdog based offloading

architecture. In the figure, the watchdog observes the communication between the CPU and a

device, and triggers an alert to the CPU when unexpected behavior is detected.

Watchdogs are used to trigger tasks on the host system, which adapt the host behavior in

response to external or unpredictable changes in the execution environment. For example, fail-

ure of a fan in the chassis of a system leads to increase in the CPU operating temperature,

which may result in loss of expensive hardware. On detecting this event, a watchdog monitor-

ing the fan would generate an alert and the OS may shut down the system to protect against

failures. Watchdog functionality is an integral part of all computer systems today. Apart from
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RESPONSE
Host/DeviceHost Interposer

REQUEST

RESPONSE

REQUEST

Figure 1.3: Interposition based offloading architecture

hardware sensors, common hardware watchdogs include device health monitors, e.g., RAID

array monitors, and PCI bus monitors. Recently, watchdogs that monitor memory traffic have

been introduced to detect leaking sensitive information [226], to design workload aware page

replacement policies [223], detecting atomicity violations in programs [116], etc. Copilot [147]

uses an external host as a watchdog to monitor the integrity of in-memory OS data structures

to identify and detect incorrect or malicious modifications.

Watchdogs have been used in software to improve the resilience of applications. Defensive

Programming [157] introduces a programming methodology for designing server applications

to avoid denial of service attacks. In this system, sensors are introduced through code annota-

tion and an external monitor observes the evolution of these sensor values. On detecting a vio-

lation of normal or expected behavior, an alert is generated and a specialized recovery handler

is invoked to repair the system. In the context of Internet services, several systems have used

watchdogs to continuously monitor client requests and responses, to monitor client perceived

performance [139, 140], identify failures [48] or misconfigurations [134], and to initiate recov-

ery actions through migration [199, 122, 102, 171], rollback [38], or recursive reboots [40, 49].

Watchdogs have also been used in cluster based systems to reconfigure the cluster in response

to workload changes. These systems define observable metrics, e.g., response time, power dis-

sipation, CPU and device idle times, etc., to define policies that are continuously evaluated by

the watchdog. Alerts are generated for reconfiguration through request rerouting [11], and load

balancing or unbalancing [88, 150, 46, 225].
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1.3.3 Interposition

In an interposition architecture, offloading targets are placed on the interface boundary between

two system components, e.g., the CPU and device controllers, to observe and police the com-

munication between them. Figure 1.3 shows an interposition based offloading architecture.

While in a coprocessor architecture, the host communicates explicitly with the offloading tar-

get, in an interposition architecture, two end-points communicate. Interposition can be realized

internally, where all communication is within a host, and externally, where two autonomous

hosts communicate over the network.

Hardware implementations of internal interposition architectures typically involve interpos-

ing on communication between the host CPU and one or more peripheral devices. The goal in

such architectures is to offload device management to specialized hardware, closer to the de-

vice. Examples of internal interposition include protocol offload engines [10, 5, 25, 219, 76],

which interpose between the host CPU and the network interface to eliminate network process-

ing overheads at the host. User-level networking [23, 64, 67, 95] completely bypasses the OS

and enables direct memory-to-memory communication over the network. Network Attached

Secure Disks (NASDs) [79] offload query processing closer to the disks to reduce the overheads

of data transfers across the I/O bus.

Software implementations of internal interposition monitor the interface across software

components. Valgrind [61] annotates function calls and monitors the process address space to

identify memory leaks, data races, and array bounds violations. Tripwire [207], virus scan-

ners [202], and software firewalls [86, 155] are commonly used today to protect desktop sys-

tems from unwanted traffic, viruses, and worms. Rx [158] interposes on all memory accesses,

identifies failures, and uses execution replay while modifying the environment to avoid bugs

due to data races, scheduling priorities, signal delivery, etc. Nooks [201] interposes between

device drivers and the OS and protects OS data structures against corruption due to bugs in

the device drivers. Buffering and replaying transactions across this interface enables trans-

parent restarts that would otherwise require a full system reboot. Infokernel [17] interposes

between the application and the OS for implementing user defined policies without modify-

ing the underlying OS. Infokernel relies on external observations and request transformation



7

to modify buffer cache replacement, network congestion control, and even process scheduling.

Hypervisors [37] or Virtual Machine Monitors [66, 214, 209, 21] interpose on the OS-hardware

boundary and in different instances verify, modify, or emulate hardware instructions to create a

virtual execution environment for efficient resource sharing and to improve resilience of a wide

variety of OS and application software.

In multiprocessor systems, software based internal interposition has been used to offload

network processing to a subset of host processors. Such offloading isolates network processing

from application processing. The Enhanced Transport Architecture (ETA) [161, 162] uses

dedicated packet processing engines to isolate network processing from the rest of the OS. ETA

also proposes the use of I/O Memory Management Units, which enable DMA across different

memory regions to reduce the data copying overheads within the OS. AsymOS and Piglet [128,

192] partition a multiprocessor OS into device and host kernels that communicate using shared

memory. The device kernel has its own scheduler and handles all device interactions while the

host kernel executes applications.

External interposition architectures involve two autonomous hosts communicating over

the network. Interposers sit on the client-server network path and are often called middle-

boxes [210]. These middleboxes are used to implement functionality that would require modi-

fication of the clients and/or servers. They are also used to protect end-points against unwanted

network traffic [74], identify intrusions [213, 182], reduce network address requirements [85],

virtualize end-points to support failover [122] and improve performance [144], and migrate

processing within the network [199]. Middleboxes are the basic building block of overlay

networks [7], which have been applied in almost all areas of distributed services, e.g., monitor-

ing [222, 190], content distribution [106, 211], distributed storage [107, 131, 13, 194, 58, 167],

content sharing [51, 39, 105, 44], resilient routing [7], multi-path transport protocols [221, 104],

etc. In the context of Internet services, middleboxes have been used to improve client-visible

performance and to maintain continuous service through load balancing [144] and client trans-

parent failover [200, 197]. Such interposition has also been used to replay client requests and

for replication of client requests to multiple instances of the same service for debugging and

maintenance [134].
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1.4 The Offloading Debate: Opportunity and Challenges

The growing use of the Internet has led to a large population of users who expect high quality,

continuous service from the system infrastructure. Simultaneously, the increasing complexity

of the applications provided over the network requires additional processing power. Offloading

is attractive, as it frees up cycles on the host to perform complex application processing, handle

a large number of simultaneous clients, and continuously monitor the health of the critical

system infrastructure. Offloading is challenging, as it partitions the state of the system into

multiple components that are maintained independently at the host and the offloading target.

Maintaining consistent state across the host and the target requires data communication and

synchronization, which in turn may require modifications to existing software. Communication

and synchronization introduce overheads, while software modifications increase complexity

and reduce maintainability of code.

In the following, we identify the technology trends and application requirements that create

an opportunity for offloading while illustrating the challenges in realizing such architectures in

the same context.

1.4.1 Offloading Network Processing

In current operating systems, the CPU implements the network protocol stack. As a result, net-

work servers spend a significant fraction of CPU cycles processing packets within the network

stack. Ideally, the system should spend as little time as possible processing packets and spend

more time running applications.

Past research has identified that packet processing time is dominated by CPU stalls on main

memory accesses, not by the execution of the instructions involved in the processing [50].

Historically, the data touching operations - checksum and memory copies, were identified as

the primary source of memory accesses and avoiding them has been the focus of researchers

for the past two decades. As a result of academic and industrial efforts, most Network Interface

Cards (NICs) support checksum offloading, and DMA controllers, which eliminate the use of

programmed I/O in the OS. Modern operating systems also support zero-copy send and receive

interfaces [145] that avoid data copies across the user space and OS kernel boundary. User
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level networking completely bypasses the OS from the network processing path and enables

direct memory to memory communication [23, 64]. Recently proposed Remote Direct Memory

Access (RDMA) [67, 95] standards and commercially available NICs implement memory to

memory communication eliminating OS involvement in the critical path of network processing.

The techniques described above completely eliminate the checksum and data copy over-

heads in the modern network stacks. However, network processing also involves accesses to

in-kernel data structures, for example, protocol control blocks (PCBs), shared queues, rout-

ing tables, etc., which result in main memory accesses. Interrupt driven network stacks cause

disruption of application processing for handling network events leading to loss of locality

of reference, cache misses and TLB flushes. In extreme cases, this may lead to receive live-

lock [125], where no useful processing can be performed by the system.

Data independent main memory accesses are difficult to avoid since the network protocols

are layered and in some cases stateful. With a few thousand concurrent connections, these

accesses overwhelm the CPU caches and result in main memory stalls. In modern processors, a

main memory access may lead to a stall for up to 200 clock cycles and this overhead is getting

worse with growing processor speeds. Compared to the typical packet processing time of 3000

clock cycles, it is easy to see that a few memory accesses may result in significant performance

degradation.

In the past, the rapid increase in CPU frequency with the relatively slow growth in network

bandwidth has allowed server systems to handle the demands of protocol processing. Today,

we are witnessing a dramatic increase in the network bandwidth, both at the end-host, through

faster NICs, and end-to-end, with growing access and core network bandwidth. Consequently,

the Internet is being used to access applications, which have high bandwidth requirements and

place significant processing load on the server systems. Internet games, virtual worlds, video

and voice traffic, require servers to handle high network volumes and large numbers of clients

while performing complex computation.

Offloading network processing in server systems satisfies the requirements of freeing up

CPU cycles for use by other applications. It is also promising for reducing the memory accesses

and improving cache efficiency. Finally, specialized hardware can be design to execute the

protocol processing tasks faster than the general purpose host processors.
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Despite the promise of performance benefits, network protocol offloading has its prob-

lems. Its benefits have been regarded by some to be elusive [181] and others to call it a dumb

idea [124]. This skepticism is rooted in three primary observations. First, protocol offload only

benefits workloads, which have a balance of both network and application computation. For

others, offloading yields significantly lower improvements, which are offset by the increased

complexity of the resulting system. Second, the global state shared by all network consumers,

for example, port numbers and IP routing tables, may be updated external to the network pro-

tocol. Therefore, the corresponding state, maintained at the external hardware must be updated

frequently. These accesses typically involve traversing high latency I/O buses leading to a

degradation of performance. Third, the external hardware has fixed limited resources, which

may cause it to become the bottleneck in the network processing path. Even in scenarios where

the CPU can provide the extra cycles required to handle protocol processing, it is difficult to

reconfigure the system at run-time to utilize them.

The issues raised by the opponents can be addressed today by using software mechanisms

for offloading to idle general purpose processors. With the availability of multiprocessor and

multicore systems, it is possible to dedicate a subset of processors for protocol processing.

Therefore, the processing capability of the offloading hardware is identical to the host proces-

sors, the software can be developed, debugged, and maintained similar to the base OS, and

the resources dedicated to network processing can be dynamically reconfigured based on the

observed load.

In the context of using a subset of processors in a multiprocessor system as the offload-

ing target, several systems have recently been proposed [161, 162, 128, 192]. The availability

of multiprocessor servers has led to the performance bottleneck becoming the limited concur-

rency afforded by traditional interrupt-driven OS. Parallelization of network processing allows

the system to take advantage of the multiple processing elements - hardware threads, indepen-

dent cores on a processor die, or multiple processors in a Symmetric Multi Processing (SMP)

system. Offloading network processing to a subset of processors isolates the network protocol

processing. The system can be reconfigured at run-time to dynamically adapt to the load expe-

rienced by the system. The processors that handle network processing use shared memory to
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communicate with the host, reducing the overheads of maintaining consistent state. The soft-

ware that implements the offloaded functionality is a part of the host operating system and can

process packets as fast as the host processor. In summary, offloading overheads are low, the

modifications to existing software are limited, and the source code can be easily maintained.

In Chapter 2 of this dissertation, we present the design and implementation of TCPServers,

a system architecture that offloads protocol processing to a subset of processors in a multipro-

cessor system. We also present mechanisms to improve the concurrency of the protocol stack

using TCPServers as the basic building block of the system architecture.

1.4.2 Offloading System Monitoring

In large and complex system architectures commonly deployed today, identifying a failed com-

ponent, fast and with high accuracy, is crucial. Large data centers routinely host hundreds of

thousands of computer systems [81]. The problem is further compounded when the system is

distributed geographically, e.g. in Content Distribution Networks (CDNs) like Akamai [4] and

research networks like Planetlab [24]. At such large scales and distribution, hardware as well

as software component failures are routine and occur frequently. Continuous maintenance and

monitoring involving humans in these scenarios is becoming prohibitively expensive. There-

fore, self-management of computer systems has become more and more the focus of systems

research [146, 157, 158].

Traditionally, monitoring has been performed within the system, by executing a special

monitoring task or daemon that observes the target application or a subsystem through statis-

tics that represent the behavior of the system. Continuous monitoring of a large complex target

uses system resources, for example, CPU, memory, disk, etc. which may not be available.

Monitoring from within the system relies on CPU resources of the system and cannot detect

or identify failures like crashes or deadlocks which render the system unusable. Finally, mon-

itoring from within cannot reliably detect intrusions, since the monitoring task itself may be

compromised.

Previous research has proposed observing the target system from an external monitor to

overcome the limitations of internal monitoring [83]. External monitors can identify unre-

sponsive or crashed systems through coarse grained periodic heartbeats. Fine-grained external
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monitoring can be performed by a cooperative monitor and target system. The target system

gathers statistics locally and exports this information to the monitor, either on-demand or con-

tinuously. The monitor provides resources to retrieve, store, and analyze the monitoring data.

Unfortunately, external monitoring still relies on the target’s resources to gather monitoring

data. Moreover, the monitor must trust the data provided by the target, which may not be ac-

curate if the target system is malicious or may be stale if the target system is overloaded. For

example, a malicious target may deliberately provide incorrect data to the monitor to prevent

detection, while an overloaded system may be unable to reply to the external monitor, leading

to incorrect decisions.

Ideally, a monitor must observe all state changes at the target system, without consuming

any resources at the target processor. The monitor must be transparent and the target system

or application must not be able to detect, observe, or otherwise affect the operation of the

monitor. Unfortunately, in complex systems, realizing an ideal monitor is impossible. System

designers have focused on monitoring a subset of state changes by identifying critical state

in system memory and defining a thin interface through which applications access this critical

state. The monitors can then (i) interpose on this interface to observe and modify state updates,

or (ii) observe the changes to critical state externally, identify anomalies, and make out-of-band

modifications to recover or repair the critical state

Offloading monitoring functionality to external hardware enables the monitor to be isolated

from the target system. With offloading, the monitor does not consume any target resources,

can store monitoring data in local memory not visible to the target, can access target memory

through DMA even if the target OS is crashed, hung, or is otherwise unresponsive, and can be

protected against modification or tampering by the target system.

Despite the promise of strong isolation and low overheads, offloading system monitoring

has its problems. These problems arise due to three fundamental limitations of an offloading

based monitoring architecture. First, the external monitor does not interpose on the opera-

tions that access critical state. Therefore, the monitoring data generated is, at best, delayed

and cannot prevent the illegal modifications to the state. Second, there is an inherent tension

between the monitoring coverage and the resource requirements at the monitor. If the critical

state being monitored is large or it generates a large volume of updates, the monitor requires
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significant memory and CPU resources to process the data. Limited resources at the monitor

lead to losing data, ignoring portions of the data, or limiting the processing. Conversely, by

focusing on a small subset of system state, the monitor may ignore critical information outside

the monitored state. In both cases, the monitor may generate false alarms or it may ignore criti-

cal events. Third, the monitor has access to system state through an alternative path to memory.

Therefore, an insecure monitor may compromise the integrity of the target system by exposing

memory contents and in some cases lead to incorrect or inconsistent state if monitor initiated

modifications are permitted to critical state.

Offloading for monitoring has been studied in several contexts: sensors for monitoring

temperature, fan speeds, etc., within a single system [55], monitoring applications [115, 157]

and system software on a single node [201, 195, 158, 147, 66], monitoring cluster based ap-

plications [133, 163, 40, 146] or nodes [111], Internet scale monitoring of distributed ser-

vices [182, 65], and the core IP network backbone [57]. In all cases, the goal is to generate

a sequence of updates to the state, maintain a history of updates through logging, and use this

historical log with a baseline profile of the system to identify anomalous behavior. The base-

lines are specified by developers and administrators, or they may be generated by creating a

statistical model during system operation. The monitor generates alerts on detecting anomalies

and these alerts can then be used to recover or repair the damaged state of the target system.

In Chapter 3, we present the design and implementation of Orion, a system architecture

that offloads monitoring functionality to a programmable network interface or a cooperating

monitor node in a cluster. Orion enables an alternative path to system memory for fine-grained

monitoring of system and application state. We also present mechanisms for failure detection

and remote repair of damaged OS state through Orion.

1.4.3 Offloading Protocol Extensions

In enterprise networks today, applications increasingly rely on key network services, for ex-

ample, domain controllers, directory services, and network file services. These networks are

well-managed, are protected from external accesses, and are expected to provide much higher

performance and availability than that provided by the Internet. Internally, enterprise network

services are accessible by all clients and typically provide unrestricted access to resources.



14

Therefore, managing enterprise services is a critical challenge for administrators today.

Administrators must exercise control over access to enterprise services, including moni-

toring performance, validating access rights, and implementing organizational policies. They

must also continuously evolve their deployments to meet the needs of changing workloads,

dynamic user communities, and evolution of legislative and organizational policies. The chal-

lenge is maintaining control and evolution without disrupting service to a large population of

users. While the transport and network protocols are standardized and implement the least

common denominator of functionality, application protocols, e.g., network file systems, must

be extended to incorporate new functionality specific to an enterprise network. These exten-

sions may fix an implementation bug, improve monitoring functionality, improve performance

through non-standard optimizations, or extend functionality to implement policies beyond those

supported by standardized protocols.

Traditionally, protocol extensions have been implemented by modifying the client and

server systems. Unfortunately, such modification is intrusive and requires changes not only

to a large and diverse client software ecosystem, but also to server software that may not be

available.

Recently, network middleboxes have been used to extend and modify network protocols

over the Internet [210]. Middleboxes interpose on the client-server network path and provide a

platform for system designers to offload functionality for extending network protocols. Inter-

posing middleboxes, for example, Firewalls [74] and Network Address Translators (NATs) [85]

are an integral part of the current network architecture. Packet filters [35], network intrusion

detection systems [213, 182], protocol proxies [106, 211], load balancers, etc., are increasingly

being used to extend existing network protocol functionality.

Despite the advantages of transparent protocol extension and separation of concerns be-

tween the base and extended protocols, offloading application protocol functionality to mid-

dleboxes has its problems. First, such offloading breaks end-to-end semantics [169], which

has been the guiding principle of network protocol design throughout its history. Intelligent

network elements limit the control of the end points on protocol behavior. They also introduce

possibilities of incorrect implementation or failures, which violate the assumptions made by the
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communicating end points. Second, offloading protocol extensions requires middleboxes to un-

derstand protocol semantics. Since the state is maintained at the clients and servers, transparent

extension requires the middlebox to infer the end-point state from the message streams. Out

of band modifications of the end point state cannot be identified at the middleboxes, leading to

incomplete or inconsistent knowledge of the protocol state. Moreover, any modification to the

message streams may violate these semantics and lead to disruption of service. Finally, enter-

prise network protocols are performance critical and an additional interposing network element

adds latency and may become the bottleneck. With network speeds approaching 10Gbps in the

near future, performance limitations at the middleboxes may significantly degrade application

performance.

In this dissertation, we focus on extension of network file systems using functionality of-

floading. In the context of network file systems, offloading to middleboxes has been used in

Slice [11] to virtualize cluster-based file systems to scale up to large volumes of data storage and

number of clients, and to provide quality of service guarantees to file system clients. Offloading

authentication is provided by Kerberos [191] and various active directory protocols, e.g. LDAP,

NIS, etc. In the context of wide area file systems, offloading has been used to provide content

addressable caching [13] at middleboxes to reduce the number of round trips over the wide area

network (WAN). Such offloading enables client visible file system performance over the WAN

to be similar to that over a local area network. Extensions to the file system protocols at mid-

dleboxes to support monitoring [68], reordering requests [69], federating namespaces [204],

and even repairing failed file servers [224] have also been proposed.

In Chapter 4 of this dissertation, we present the design and implementation of FileWall,

a system architecture for offloading file system extensions to a network middlebox. FileWall

uses message transformation to virtualize network file system endpoints, file system objects,

and the file system namespace and allows implementation of complex file access policies. We

use FileWall to implement a wide array of file access policies including monitoring, access

control, and client transparent failover policies.
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1.5 Summary of Dissertation Contributions

This dissertation has three main contributions in the area of system architectures using function-

ality offloading, which were published in the Proceedings of the 3rd International Symposium

on Network Computing and Applications, 2007 [159, 33], Proceedings of the 1st International

Conference on Autonomic Computing, 2004 [32], Proceedings of the 3rd International Sympo-

sium on Dependable, Autonomic, and Secure Computing, 2007 [185], and Rutgers University

Computer Science Technical Report 569, 2005 [31].

We present the design, implementation, and evaluation of three system architectures –

TCPServers [159], Orion [32, 31], and FileWall [33, 185], which offload functionality for

improving performance (TCPServers), improving availability (Orion), and for extending func-

tionality (FileWall) respectively.

TCPServers is a system architecture that offloads network processing to a subset of proces-

sors in an SMP system. Network processing imposes direct and indirect overheads on server

systems. It directly affects system performance since it executes at a higher priority than ap-

plication tasks and prevents other components of the system from executing simultaneously on

the processors. It indirectly affects performance by causing cache pollution and Translation

Lookaside Buffer (TLB) flushes, which lead to degraded memory system performance. These

effects are even more prominent in Symmetric Multiprocessor (SMP) and Chip Multiprocessor

(CMP) systems, where there are additional processing components that are idle due to limited

concurrency afforded by traditional operating system architectures. We also present Receive

Queues (RQs), OS data structures that enable early demultiplexing of incoming packets and

connection aware scheduling of network processing. These mechanisms allow the system to

support a large number of simultaneous connections while maintaining high throughput for

each connection.

Orion is a system architecture that enables Remote Healing [198], where the monitoring and

healing actions are performed externally, by offloading such functionality to a programmable

network interface. Fine grained monitoring of computer systems for performance anomalies,

intrusion detection, and failure detection imposes significant overhead on the target system.
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Performance critical systems, where such fine grained monitoring is essential, cannot be sub-

jected to these overheads. Moreover, healing from within may not be possible if the system

state is corrupted, the system is hung or deadlocked, or is otherwise unable to execute the

healing actions. Orion offloads the healing functionality to a programmable network interface,

which provides an alternate path to the memory of the target system. Using Orion, monitoring

and healing actions can be performed nonintrusively, without involving the processors of the

target system. We present Sensor Box (SB), an OS data structure that collects monitoring data

and exports it to the external monitor. Applications and OS subsystems can participate in the

Orion monitoring framework by updating the SB through an API. We present two case studies,

(i) failure detection, and (ii) remote repair of OS state damaged by resource exhaustion, which

demonstrate the use of Orion mechanisms for Remote Healing.

Orion is an extension of the Backdoor Architecture (BDA) vision, where intelligent network

interfaces are used to design automated management of computer systems without human in-

volvement. In BDA, the focus is identifying critical system and application states and, on

failure, restore this state on a healthy replica in a local area network. Monitoring in BDA is

designed to identify failed nodes and is not extensible. In contrast, Orion takes a holistic view

of monitoring OS subsystems and applications and designs mechanisms to allow applications

to participate in the monitoring system. Unlike BDA, Orion also uses a local intelligent device

for monitoring and is not limited to cooperative monitoring within a cluster.

FileWall is a system architecture that enables administrator governed extension of network

file system functionality. Network file system evolution is constrained by the tight binding be-

tween clients and servers. This binding limits the evolution of file system protocols and hinders

deployment of file system or protocol extensions. For example, current network file systems

have limited support for implementing file access policies. We propose message transformation

as a mechanism to separate the client and server systems for protocol enhancement. FileWall

offloads message transformation and policy enforcement to an interposing network element on

the client-server path. Through primitive FileWall policies, we demonstrate the mechanisms of

attribute transformation, flow transformation, and flow coordination, to enforce a range of file

access policies, from performance monitoring to client transparent failover. As a case study

for complex policy enforcement, we present a Role-Based Access Control policy implemented
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using FileWall without modifying either clients or servers. Through a Virtual Control Names-

pace, FileWall also eliminates the need for interface changes or specialized software agents

that enable users to participate in the access control protocol. We present experimental results

showing policy enforcement is accomplished by FileWall with minimal overheads on the base

network file system protocol.

1.6 Contributors to the Dissertation

The following is a list of my colleagues who co-authored papers from which I used material in

this dissertation, along with their contributions: Florin Sultan, Pascal Gallard (INRIA/IRISA),

contributed to the design and implementation of the Orion system architecture. Iulian Neamtiu

(University of Maryland), Stephen Smaldone, Yufei Pan, and Arati Baliga implemented appli-

cations for the Orion system. Stephen Smaldone implemented various policies for FileWall and

contributed to the FileWall evaluation.

1.7 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 describes TCPServers, a system architec-

ture that offloads network protocol functionality to a subset of processors in a multiprocessor

system. Chapter 3 describes Orion, a system architecture that offloads system management

functionality to a programmable network interface. Chapter 4 describes FileWall, a system

architecture that offloads file system protocol extensions to a network middlebox. Finally,

Chapter 5 concludes the dissertation.
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Chapter 2

TCPServers: Offloading for Improved Network Performance

2.1 Problem Statement

Network processing performance has been the focus of systems research for more than two

decades. At different times, especially when the bandwidth supported by the network inter-

faces has increased significantly, e.g., from 10Mbps to 100Mbps and from 100Mbps to 1Gbps,

offloading network processing to the network interfaces has been proposed to alleviate the CPU

overheads. Fortunately, the CPU speeds have correspondingly increased over the years to keep

pace with the increased bandwidth, prompting some researchers to question the motivation of

offloading and that of the benefits it offers [124, 181].

At present, we are witnessing another jump in the network bandwidth with NICs supporting

up to 10Gbps. However, this increase is not accompanied by the optimism of ever increasing

processor speeds due to gate complexity and temperature limitations in modern microproces-

sors. To counter the slowdown in the processor speed, CPU vendors are now providing multi-

processor hardware, where one or more execution contexts are present on the same processor

die. While the increased parallelism provides an opportunity for scaling to higher network

bandwidths, such parallelism is difficult to harness. The synchronization, interrupt, and mem-

ory overheads prevent existing network stacks to scale up to support available network band-

widths.

In this chapter, we present TCPServers, a system architecture to offload network processing

to a subset of processors in a multiprocessor system. TCPServers takes advantage of available

processors in a multiprocessor system to offload network processing while retaining the advan-

tages of simplicity of interfaces and resource management, along with ease of deployment and

maintenance, which have been the primary criticisms of protocol offload [124].
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The primary benefit of offloading within a multiprocessor system using TCPServers is

isolation of network and application processing. Isolation of network processing prevents

application-network cohabitation that leads to cache and TLB pollution and involuntary con-

text switches. We present mechanisms that take advantage of isolated network functionality

to reduce the synchronization overheads and to increase concurrency of network processing.

We introduce Receive Queues (RQ), an OS abstraction, that enables scheduling network pro-

cessing at the priority of the connections. RQs also enable early demultiplexing and graceful

degradation of performance even when the system is overloaded.

2.2 Network Processing Overview

To support network processing, the OS must (i) provide applications with an interface to

send/receive data, (ii) control the network devices to transmit data from memory to the in-

terface and from the interface to the system memory, (iii) perform protocol processing, e.g. IP,

TCP, etc. In the following, we trace the path of a packet in an operating system.

To simplify the discussion, we focus on the TCP/UDP/IP protocol suite, and on widely

deployed and implemented BSD-derived network stacks. We do not describe protocol details

since our focus is the end-host processing from the Operating System perspective.

2.2.1 Sockets

Sockets are data structures that support communication between user applications and the OS

kernel. Sockets perform two primary functions in the network stack: (i) provide applications

an interface to send and receive network data, and (ii) virtualize the implementation details

of individual protocol stacks. The kernel representation of sockets consists of state variables,

e.g., reference count, socket state, non-blocking status, etc., send and receive queues, a refer-

ence to the protocol implementation, e.g. IPv4, and a reference to the protocol control block

representing the connection,.

A mapping between the kernel socket representation and the user interface is maintained

through a socket descriptor, which is returned to the application when the socket is created.

The system call interface exports the sockets as file descriptor and enables the application to
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Figure 2.1: Transmit and receive paths in an OS network stack

communicate with the Operating System kernel.

2.2.2 Network Buffers

Network data is maintained in the OS in chains of memory resident kernel buffers, called mbufs

in *BSD systems and skbufs in Linux. These buffers represent a packet that contains application

data and protocol headers to construct a self-contained unit of network transmit and receive

data. Network buffers are small size contiguous regions of memory that are reference counted

to allow efficient sharing and manipulation through different components of the network stack.

In the following discussion, we use mbufs as the representative name for the network buffers.

2.2.3 Transmit Path

Figure 2.1 shows the transmit path through the OS networking stack. Application data is copied

from application buffers into newly allocated mbufs in the socket send queue using the send

system call.

For datagram sockets (UDP/IP), the mbufs are handed to the UDP output routine, which
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constructs the UDP datagrams, adds the transport header, and calls the IP transmit routine for

downstream processing.

For TCP/IP sockets, the OS checks the connection state to compute the available capacity

on a connection using its congestion control algorithm. If the connection can accommodate

data, application data is divided into segments and a transport header is created for each seg-

ment. TCP segments are cloned and sent to the IP transmit routine for downstream processing.

In addition to the application send context, the TCP transmit functionality is invoked when ac-

knowledgements are received and when retransmission is required. In all cases, TCP segments

are sent to the IP output routine for further processing.

During IP processing, application data is broken up into maximum transmission unit (MTU)

sized fragments, the IP address next hop neighbor is identified, and an IP header is added to

each fragment. The OS maintains a global routing table, which is used to identify the IP address

of the next hop in the network path. A routing table entry contains the next hop IP address, and

the Medium Access Control (MAC) addresses of the outgoing network interface and the next

hop neighbor. The MAC address of the next hop neighbor is determined on demand, using the

Address Resolution Protocol (ARP), and is added to the global routing table. Once the MAC

addresses are added to the IP datagram, the packet is complete and can be transmitted over the

network.

If the network interface is idle, the packet is queued for a DMA transfer to the NIC. If the

interface is busy, the packet is queued in a software interface queue to be transmitted when the

network interface is ready to accept new packets for transmission.

The OS performs the above tasks in the context of the application process unless the in-

terface is busy and the packet is queued on the interface transmit queue. The packets on the

interface queue are transmitted in the software interrupt context when the NIC indicates to the

OS that it is ready to send new packets.

2.2.4 Receive Path

From the OS perspective, network receive processing starts with the NIC generating an inter-

rupt indicating that packets have been received. Historically, each packet required at least two

interrupts, first to indicate the packet arrival to prompt the OS to initiate a DMA transfer from
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the NIC to the host memory, and second to indicate completion of the transfer. Modern NICs

can initiate the transfer without involving the host CPU. In the following, we assume the OS

maintains a ring of pre-registered DMA descriptors and the NIC generates an interrupt only

when the packet has been transferred to the host memory.

Interrupt service routines (ISRs) execute at the highest priority in the system and preempt

the currently executing process on the CPU to borrow its context. Therefore, all other activity

in the system is suspended while interrupts are being handled, and the ISR must not perform

CPU intensive tasks and defer these tasks for the software interrupt context.

Typical network interrupt handlers perform the following essential tasks : acknowledge the

interrupt and perform book-keeping. Since each packet transfer consumes a DMA descriptor,

the interrupt handler also replenishes the depleted DMA descriptors and registers them with the

NIC. Most network receive processing is deferred for the software interrupt handlers, which

execute at a higher priority than all user processes.

In the software interrupt handler, the packets are classified and the protocol specific input

handler is invoked. For IP packets, the IP input handler defragments the packets and forwards

them if the destination is not the current host.

IP packets destined for the current host are further classified according to the unique 5-

tuple connection identifier, < srcIP, dstIP, srcPort, dstPort, Protocol >, where srcIP and

dstIP are the source and destination IP addresses respectively, and srcPort and dstPort are the

source and destination port numbers respectively. Protocol identifies the transport layer proto-

col, which handles this packet. The 5 tuple uniquely identifies the connection and consequently

the socket to which the packet belongs and invokes the transport layer protocol handler refer-

enced in the socket.

For the UDP/IP protocol, the packet is queued directly in the socket receive queue. If an

application is blocked waiting for receive on the socket, it is woken up and a transfer is initiated

to copy the data to the application.

For the TCP/IP protocol, packets are queued to the socket input queue in sequence. If

the packet is out of sequence, it is maintained in a reorder queue until the gaps are filled by

subsequent packets. TCP protocol handlers are also responsible for handling and generating

acknowledgements and updating the congestion control information. The data is copied to the
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application in the context of a recv system call issued on the socket.

2.2.5 Network Performance Overheads

Network processing overheads can be classified into per-byte and per-packet overheads. Per-

byte overheads are due to operations that access each byte transmitted or received over the net-

work, for example, checksum calculation and verification, data copies across the user-kernel

boundaries, etc. Per-packet overheads arise due to operations performed by the OS on receiv-

ing and sending a packet, for example, interrupt processing, DMA setup and teardown, trans-

port layer processing, etc. Since a packet typically contains thousands of bytes, the per-byte

operations contribute to the majority of the CPU cycles consumed by network processing. Per-

byte overheads can be significantly reduced or avoided altogether using zero-copy protocols,

and previous research, discussed in Section 2.7, has demonstrated both hardware and software

mechanisms for the same. Unfortunately, even with low per-byte overheads, per-packet op-

erations contribute significantly to the processing time, which gets worse for multiprocessor

implementations of the network stack.

Network processing imposes direct overheads by consuming CPU cycles and limiting OS

concurrency. Software interrupt handling executes at a higher priority than application process-

ing and directly prevents other tasks from executing in the system. This significantly reduces

the performance observed by applications running on the system, and, in extreme cases, leads to

receive livelock [125]. In multiprocessor systems, global data structures, for example connec-

tion tables, packet queues, memory allocators, etc., are protected by expensive synchronization

that further limits network stack concurrency, reducing overall system performance.

Indirect overheads of network processing arise due to the cohabitation of application and

network processing and are manifest as diminished locality of reference and increased context

switches. The loss of locality of reference results in higher cache and Translation Lookaside

Buffer (TLB) misses, which reduce the throughput of the system. Similarly, a context switch

requires the OS to take a snapshot of the process state in memory and restore it when execution

resumes, which increases the time spent in the system scheduler. Context switches also cause

a large number of cache and TLB misses and pipeline flushes.
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Figure 2.2: TCPServers Architecture.

2.3 TCPServers Architecture

TCPServers is a system architecture for offloading network processing from application hosts to

dedicated processors in a multiprocessor environment, nodes in a cluster, or intelligent devices

in a cluster of intelligent devices (CID). TCPServers partitions the network processing into

application and dedicated packet processing engines (PPEs). Application processors (nodes)

are separated from the PPEs to alleviate the inefficiencies introduced by cohabitation of the

network processing.

Figure 2.2 shows the TCPServers architecture. The application processors and the PPEs

communicate over fast communication channels. For multiprocessor environments, the com-

munication is over shared memory, for cluster and CID environments, the communication be-

tween application processors and PPEs is over a high-bandwidth, low-latency interconnect, e.g.

VIA or Infiniband.

In a multiprocessor system, which is the focus of this dissertation, PPEs handle the asyn-

chronous events, e.g., NIC interrupts, network timers, deferred send processing, and receive

processing. Since the majority of the send processing is performed in the context of the sending

process and does not generate significant overhead when using zero-copy send interfaces, com-

municating with PPEs through shared memory and Inter-Processor-Interrupts (IPIs) is avoided.

Therefore, PPEs are invoked in the send path only if the network processing is deferred, e.g.

waiting for interface queue to be drained, or for ARP processing.
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Figure 2.3: TCPServers Packet Processing Engine

Receive processing for TCP/IP protocol requires asynchronous protocol processing to gen-

erate ACKs, to send any pending data in response to received ACKs, and to retransmit packets

on loss detection or on timeouts. These tasks cannot be delayed to be performed in the con-

text of the receiving process, therefore PPEs handle majority of the receive processing. The

receiving process context is used only to perform the copy from the kernel to user buffers.

2.4 TCPServers Design

Figure 2.3 shows the components of a TCPServers Packet Processing Engine (PPE). Each PPE

has three main components: an asynchronous event handler, a scheduler, and a Packet Process-

ing Thread (PPT). In the following, we describe the design guidelines and the design of the

individual components in the TCPServers software architecture.

TCPServers is designed to minimize application and network processing cohabitation. Such

cohabitation leads to increased involuntary context switches, cache and TLB misses, and unfair

resource allocation to network processing due to higher priority of interrupts in the system.

However, a naive isolation of network and application processing may reduce the network

server performance.
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2.4.1 Protocol Processing Threads and Asynchronous Event Handling

TCPServers performs protocol processing in a process context instead of the software inter-

rupt context. Kernel-resident processes, called protocol processing threads (PPTs), performs

network processing and are bound to each packet processing engine. An active PPT never

yields the processor since network receive processing is non-blocking and runs to completion.

Moreover, the scheduler does not schedule any other process on PPEs. During startup, a PPT

is created for each processor in the system and is woken up using an inter-processor interrupt

on activation. The enables TCPServers to dynamically reorganize the PPE and application

processor sets in a system.

TCPServers uses an adaptive polling mechanism for handling NIC generated events. The

NIC generates an interrupt on the network activity edge. The first received packet generates an

interrupt, which is followed by a sequence of polls to handle received packets. During polling

the NIC interrupt mechanism is disabled. When polling generates no new events, interrupts are

re-enabled at the NIC.

TCPServers assigns a statically configured Master Packet Processing Engine (MPPE) to

handle all interrupts. All interrupts are diverted to the MPPE using the I/O APIC redirection

mechanism. Polling is performed in the software interrupt context (softirq), which executes at

the MPPE at a higher priority than the PPT.

The choice of a single processor to handle all interrupts appears to be limited. However,

isolating the interrupt handler and the softirq at the master PPE reduces cache pollution at the

application processors as well as on other PPEs. Moreover, since a single processor handles

packets from the NIC, packets are read off in the order they are received at the NIC, eliminating

packet reordering. Finally, even if additional processors were used to handle the interrupt,

only one softirq thread could execute at a time in the system, therefore yielding no additional

parallelism than afforded by our architecture.

2.4.2 Receive Queues

We introduce Receive Queue (RQ), an OS data structure used by TCPServers to enqueue pro-

tocol processing requests to PPTs or application processes. An RQ is a mailbox associated
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with each socket, where received packets are queued by the asynchronous event handler and

are dequeued by the PPT. The RQ is addressed by the connection identifier that identifies a

socket.

Receive queues are implemented as fixed sized arrays, which are protected by per-CPU

atomic operations, for example test and set or compare and swap operations. Since there is one

producer (asynchronous event handler) and one consumer for each queue (PPT), the atomic

operation based mutual exclusion is sufficient. This eliminates not only expensive synchro-

nization operations but also the contention on the globally shared IP queue.

Receive queues are associated with a socket when the socket’s address is identified on one

of the following events: (i) when local ports are allocated implicitly or through a bind()

system call, (ii) the OS creates a new socket on a successful connection, (iii) when sockets

are bound to the same UDP multicast group. Globally shared queues are created at startup for

packets received for unknown connections or IP fragments that do not contain the transport

headers.

2.4.3 Early Demultiplexing

Traditional networking stacks handle hardware interrupts and queue the received packet in the

IP queue for processing in the software interrupt context. TCPServers eliminates the IP queue.

Instead, the asynchronous event handler demultiplexes the incoming packets early into per-

socket receive queues.

Packet demultiplexing in the asynchronous event handler uses the Ethernet header to iden-

tify the target network protocol (ARP, IP, PPP, IPX etc.). IP packets are further classified using

the five tuple flow identifier to uniquely identify the connection. Packets are queued into the

corresponding receive queue only if there is an empty slot and are dropped otherwise. IP frag-

ments that do not contain a transport layer header are placed in a globally shared receive queue

for future reassembly.

Through early demultiplexing and fixed sized per-socket receive queues, TCPServers cre-

ates a feedback mechanism. When applications cannot handle the packets at the incoming rate,

receive queues overflow and further packets are dropped. On the other hand, well-behaved

applications that can handle the rate of incoming packets enjoy greater stability under load.
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2.4.4 Scheduling Network Processing

TCPServers requires a mechanism to schedule network protocol processing in the PPT context.

Integrating the PPT with the system-wide scheduler defeats the purpose of offloading. There-

fore, we need a mechanism independent of the system scheduler, which prioritizes network

event processing across receive queues. Network processing has several unique characteristics

which affect the design of such a scheduling algorithm:

1. Scheduling a network processing task does not involve a context switch. Instead, it is a

function call and therefore does not incur any additional overhead.

2. Network processing in the PPT always runs to completion. The tasks do not block wait-

ing for other tasks or OS resources, e.g. IPC or disk. Therefore, no additional state must

be preserved across executions.

3. Network processing priority is determined not only by the resources spent on servicing

the socket, but also by the network protocol semantics. For example, IP forwarding

packets must be handled at a higher priority than the packets destined for the host; in a

busy server, packets that terminate connections (FIN, RST) must be handled as soon as

possible to reclaim system resources.

Packet Classes and Scheduling Queues

The PPT must handle packets for IP forwarding, packets received for active sockets (connected

TCP and bound UDP sockets), connection requests for new connections, and packets belonging

to multiple protocols, e.g. TCP/UDP, ICMP, ARP, etc.

We classify network packets which are processed by the PPT into the following categories

in decreasing order of priority.

• Forwarding Packets: Packet forwarding systems, e.g., software routers, must handle

packets that must be forwarded at a higher priority than packets for the host itself. Such

requests are rare or are disabled altogether for server systems.

• Control Protocol Packets: ICMP, ARP, and RARP protocols are essential for other

network communication to continue. Therefore, these packets have a higher priority than
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other higher layer protocols. Classifying ICMP packets further, ICMP error messages,

e.g. for MTU errors, are higher priority than the requests, which can be delayed further.

• Connection Teardown Requests: Packets that cause a connection teardown free up re-

sources at the server and are therefore highest priority packets destined for connected

sockets.

• Packets for Existing Sockets: Data packets belonging to a connected socket are assigned

a higher priority than requests for new connections (SYN) packets. New connection

requests are used to admit new clients for service, and a busy server, which is unable to

keep up with existing clients, would not want to spend system resources on new requests.

The packet classes above are identified by the asynchronous event handler at the time it

performs early demultiplexing into receive queues. We maintain four classes of queues : (i)

Forwarding Queue, where receive queues for forwarding are maintained, (ii) Control Queue,

where receive queues for control protocols and for sockets where a connection teardown request

has been received are maintained, (iii) Ready Queue, where all receive queues with packets

pending for service are maintained, and (iv) Wait Queue, where the remaining receive queues

are maintained.

The packets in a higher priority queue are serviced before moving to the next queue. Except

the Ready Queue, packets in all other queues are of identical priority, therefore a simple round

robin scheduling mechanism is used to service those queues in the PPT. When more than one

processor is used as a packet processing engine, the master PPE handles all queues, while other

processors handle only the Ready Queue.

The Receive Queues in the Ready Queue are organized further into priority groups based

on the responsiveness of the application and the number of pending packets received for the

socket. The Receive Queues belonging to the same priority group have similar priorities. The

TCPServers scheduling algorithm tries to ensure each priority group receives its fair share of

the PPE CPU resources.
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Scheduling Priority

The Receive Queue priority captures the responsiveness of the parent application (socket). Ap-

plications that are unresponsive have data waiting in the socket queues for receive system

calls. Therefore, packets received for these applications, can be delayed. On the other hand, ap-

plications with pending send buffers require urgent service, since these applications are waiting

on the network subsystem to send out the bytes already present in the socket buffers. Finally,

if there are neither pending sends or receives, applications that have received more packets re-

quire service before those that have received only a few packets, since the system has invested

more resources in handling them.

The scheduling priority or weight that captures the above criteria allows the TCPServers

scheduling to ensure prioritized packet processing for active and responsive applications. We

define the scheduling priority as a linear combination of the weights assigned to the pending

send and pending receive packets at the socket, and the pending packets in the RQ denoted by

Ws,Wr, and Wq respectively. These weights are defined for a socket i as

Ws(i) =
PendingSendBytes(i)

SegmentSize(i)
(2.1)

Wr(i) =
MaxRcvBytes(i)− PendingRcvBytes(i)

SegmentSize(i)
(2.2)

Wq(i) = NumPendingPackets(i) (2.3)

Ws(i) and Wr(i) are approximate number of pending send and receive packets. In the

above, MaxRcvBytes(i) represents the socket’s receive buffer size, and SegmentSize(i) is

the size of a segment of data that is sent out over the connection. While this measure is not

exact, it approximates the number of packets pending attention and the number of packets that

can be served for this socket.

Unfortunately, the equations above ignore the applications that set a very large receive

socket buffer. In that scenario, MaxBytes(i) dominates Wr(i) and cannot be easily compared

against other sockets. To overcome this limitation, we normalize the weights and redefine the
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weights as

Ŵs(i) =
Ws(i)×MaxSndBytes

MaxSndBytes(i)
(2.4)

Ŵr(i) =
Wr(i)×MaxRcvBytes

MaxRcvBytes(i)
(2.5)

Ŵq(i) =
Wq(i)×MaxRQSize

MaxRQSize(i)
(2.6)

To avoid fractional weights, we scale the normalized weights by the maximum allowed

send and receive buffer sizes, and redefine the scheduling weight as

W (i) = Ŵs(i) + Ŵr(i) + Ŵq(i) (2.7)

TCPServers Scheduling Algorithm

Algorithm 1 TCPServers scheduling algorithm
1: TCPServerSchedule
2: S = TCPServerGroupSchedule(Gi)
3: Wi = Wi + 1
4: if i < gand Wi+1

Wi+1+1 >
φi

φi+1
then

5: i = i+ 1
6: else
7: i = 1
8: end if
9: return S

TCPServers uses a proportional share scheduling algorithm derived from the recently pro-

posed Group Ratio Round-Robin (GR3) [43] CPU scheduling algorithm. The GR3 algorithm

provides constant fairness bounds on proportional sharing accuracy with O(1) scheduling over-

head.

Figure 1 shows the algorithm used by TCPServers to schedule network processing at the

PPT. φ is the weight assigned to each groupG, whileD is the deficit maintained within a group

to perform a deficit round robin scheduling; curpos is the current position in the group. The

TCPServerSchedule subroutine picks the next group to schedule (Gi) and passes a pointer

to this group to the TCPServerGroupSchedule, which returns the socket whose packets are

processed.
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The key idea is to define groups of RQs (clients) with closely related priorities and keep

the groups in sorted order, while keeping the RQs (clients) within the group in an unsorted list.

Scheduling across groups uses the ratio of group weights (sum of weights of all members of

the group) to determine which group to select. Since the groups are kept in a sorted list, this

operation compares only two group weights at a time yielding a constant time decision. Within

the group, RQs are scheduled using a simple Deficit Round Robin algorithm, where the RQ

is scheduled for time slots proportional to its normalized weight within the group. Fractional

shares are deferred for the next round where the deficit is added to the client’s weight.

Groups are defined for RQs with closely related weights. The closeness in weights is de-

fined as a logarithmic order, where a group of order σ, contains all clients whose weights

(W (i)) follow

2 σ ≤W (i) ≤ 2 σ+1 − 1 (2.8)

Using the logarithmic relationship reduces the number of groups and therefore the main-

tenance overheads for the sorted group list. Moreover, all clients within a group have their

priorities within a factor of two.

Unlike in GR3, the RQ weights change frequently, on receiving a packet and on sending

packets. TCPServers recalculates the priority for all RQs on which packets are received before

returning from the asynchronous event handler. The RQs are removed from their current group

and are re-inserted into the group which satisfies Equation 2.8. Removal and insertion of an

RQ is an O(g) operation, where g is the number of groups in the system since a linear scan

is required to identify the group for the modified RQ. However, even for large 32 bit weights,

there are a small number (32) queues in the system and this scan is not too expensive.

In a server system, where there are few applications, and there are few outstanding send

bytes in the socket buffer, the number of packets received in a burst is the only source of

modification to the priority. All updates for a receive queue due to packets received in one

invocation of the asynchronous event handler are batched, therefore the updates represent only

a fraction of the overall CPU overheads.
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2.5 Prototype Implementation

We implemented TCPServers in FreeBSD-7 Current, which implements a multithreaded net-

work stack and uses fine-grained synchronization based on mutual exclusion primitives: mu-

texes, locks including read-write locks and spinlocks, and condition variables. This operating

system is multithreaded and scales well for medium sized multiprocessor systems. It has sup-

port for adaptive polling API and uses a deferred task-queue to handle asynchronous events.

We use the fast interrupt handler for handling the network interrupts instead of the default

interrupt thread based implementation. The driver implements a deferred task-queue based

interrupt handling, where the interrupts are acknowledged and the task-queue is responsible for

initiating the DMA and replenishing the DMA descriptors.

We implement three versions of the TCPServers, (i) TCPServers, where the PPT is bound to

one processor of the multiprocessor, (ii) TCPServers-Early, where we implement early demul-

tiplexing through Receive Queues in addition to the base TCPServers implementation, and (iii)

TCPServers-Sched, where we implement our socket aware scheduling algorithm in addition to

the TCPS Early implementation.

TCPServers is implemented as a loadable kernel module and requires minor modifications

to the default OS. The OS modifications are limited to the scheduler and to the device driver.

The TCPServers module installs a private network stack, which has minor modifications to the

default FreeBSD stack.

The TCPServers stack registers as a consumer for the netgraph ethernet node, ng ether [153],

which hands over all network packets to the TCP server asynchronous event handler in the in-

terrupt context. A new protocol family, (PF TCPS), is used to invoke the system calls defined

in the TCP server stack for application sockets to allow easy debugging and to localize changes

within the module. These changes are not required if the default stack includes the non-intrusive

modifications.

2.5.1 Dedicating Processors for Network Processing

To implement TCPServers functionality, we create kernel resident processes (kthreads), which

execute the packet handling code for the receive part of the network processing. We disable
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pre-emption and execute an infinite loop within the kthreads to isolate the CPU for network

processing.

To enable dynamic reconfiguration, we create a kthread for all processors in the system and

bind them to a CPU using the scheduler thread bind API. Specific threads are woken up by the

inter-processor-interrupt (IPI) mechanism, which allows a processor to generate a trap on one

or more processors in the system. The trap handler executes a function specified in the IPI.

All kthreads are initialized in the sleeping state. The system maintains two bitmaps : (i)

AllowedPPE represents the subset of processors that are candidates for being a dedicated PPE.

This bitmap prevents all processors being assigned to network processing, preventing all other

activity in the system, and (ii) ActivePPE represents the set of processors currently dedicated

to network processing.

During initialization, a Master PPE is chosen statically, the kthread assigned to its CPU is

woken up, the ActivePPE bitmap is updated, and interrupts are rerouted. We modified the I/O

APIC interrupt control infrastructure to enforce routing all network interrupts to a dedicated

processor (Master PPE) and disable all other interrupts from being delivered to this processor.

We also bind the network interrupt task queue (softirq) handler to the Master PPE to ensure

all asynchronous events are delivered to the Master PPE. To ensure that the scheduler does not

schedule threads on the PPEs, the ActivePPEs are removed from the candidate processor set.

2.5.2 Receive Queues

Receive Queues are implemented as fixed sized arrays and are protected using atomic vari-

ables instead of expensive locking primitives. These queues are First In First Out (FIFO) data

structures that store the packets received by the asynchronous event handler and accessed by

the TCP server PPTs. The PPT queues any data to be delivered to sockets after IP and trans-

port (TCP/UDP) processing in the default socket receive buffers. The data is copied out to the

process address space in the context of a receive system call.

Receive Queues are associated with sockets, and each socket has a unique RQ. Receive

Queues are assigned a unique addresses based on the socket’s network address 5-tuple. The

queues are stored in a hash-table indexed by this address and a reference is kept in the socket

data structure.
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RQs are created when the application calls the bind system call or when a stream based

socket is connected. Additional Receive Queues are created for out of order IP fragments that

do not have transport headers. Separate kernel threads and receive queues are created for han-

dling control protocols like ARP, RARP, and ICMP. RQs are destroyed when the parent socket

is closed, or the TCP connection is disconnected. Receive Queues for the control protocols are

never destroyed.

2.6 Evaluation

We perform all experiments using an SMP Dell Poweredge 2600 server with two 2.8 GHz Intel

Xeon processors, each with 512KB L2 cache. The system has 3GB RAM, and two Intel 82544

gigabit Ethernet adapters connected over a 66MHz/64bit PCI-X bus interface. We use two

identical clients connected back-to-back with the server interfaces using cross-over cables. In

all our experiments, the client systems are not overloaded and the performance is determined

solely by the server system. The server runs a modified version of the FreeBSD-Current as of

September 20, 2006, while the clients run Linux Fedora Core 3 with a 2.6.18 kernel.

Benchmark: Most existing network performance benchmarks are not designed for a large

number of simultaneous connections and typically measure the peak bandwidth using a sin-

gle connection. To overcome this limitation, we implemented a benchmark program using

the libevent event driven programming library [156]. The benchmark operates in two phases.

During the startup phase, it establishes the requested number of connections and, in the mea-

surement phase, the server sends data to the client over each of the connections. The data is

obtained from an in-memory file using the zero copy sendfile interface. We set the send

and receive buffers for all sockets as 64KB, as this yields the maximum performance in our

experiments. The benchmark runs for 3 minutes (180 seconds) and the data is continuously

transferred for the duration of the test in fixed sized blocks of 8KB. The clients discard all

received data and send an acknowledgement at the end of each block. On receiving the ac-

knowledgement, the server queues the next block for transfer to the socket. For fine-grained

measurements, we use the hardware performance monitoring counters exported by the hwpmc

driver in the FreeBSD kernel.
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Figure 2.4: Aggregate throughput for default SMP network stack.

2.6.1 Network Stack Characterization

We first characterize the network stack performance using our synthetic benchmark. Figure 2.4

shows the aggregate throughput observed across all connections, as the number of connec-

tions are increased for the uniprocessor (UP) and a multiprocessor (SMP) kernel. We observe

that, while the UP performance degrades as the number of connections increases, the SMP

performance initially increases and then degrades. The initial increase is due to the additional

parallelism being exploited by the multiprocessor kernel.

The performance of both systems is much lower than the theoretical maximum. A break-

down of the CPU utilization is shown for the SMP kernel in Figure 2.5. We show the idle

time, time spent in the scheduler and synchronization, the network stack, and the user-level

processing. We observe that as the number of connections increases, the synchronization and

scheduling overhead increases significantly, reducing the time spent in the network stack. This

leads to a drop in performance as the number of connections increases.

To further analyze the performance, in Figure 2.6 we show the effects of lock contention.

In a multiprocessor system, a contended lock leads to the executing thread being suspended

and woken up later when the current owner releases the lock. Therefore, contended locks

lead to a higher synchronization, as well as, context switch overhead. To illustrate the effect,

we focus on the global connection table lock, which is acquired on every send and receive
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Figure 2.5: CPU utilization breakdown for default network stack.
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Figure 2.6: Lock contention in default network stack.
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Figure 2.7: Aggregate throughput comparison across network stack variants.

operation to locate the corresponding connection structure from the list of all connections. We

see that the contention for the global lock increases and beyond 8 simultaneous connections,

the lock is always contended. From the above, we conclude that in order to improve network

performance, we must reduce the lock contention as well as scheduler overheads from the

network processing.

2.6.2 Performance

Figure 2.7 shows the performance of three variants of TCPServers compared against the de-

fault SMP performance. The uniprocessor (UP) performance is included as a baseline ref-

erence. We observe that for up to 16 connections, the SMP performance is comparable to

the base TCPServers. This variant of TCPServers reduces the scheduler overheads and ded-

icates one processor in a 2-way SMP server to network processing. However, it still suffers

from the higher lock contention overheads, which start dominating at higher connection loads.

The TCPS Early and TCPS Sched eliminate the lock contention since they do not access the

global connection structure and access only the receive and send queues, which are protected by

atomic operations. Therefore, these variants provide a steady throughput even in the presence

of a large number of concurrent connections.

The higher throughput of the TCPServers variants is also reflected in the CPU utilization
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Figure 2.8: CPU utilization breakdown for network stack variants.

showing the fraction of CPU used by the scheduler and synchronization, the network stack, and

the user-level processing. Figure 2.8 shows the CPU utilization for 256 concurrent connections.

Here, the SMP system suffers from high scheduler overheads and therefore the network stack

has a smaller fraction and cannot handle the high volume of traffic. In contrast, all variants

of TCPServers provide the network stack with a higher fraction of CPU time by dedicating a

processor. A lower synchronization overhead further explains the higher performance of the

TCPS Early and TCPS Sched.

Finally, to illustrate the effects of L2 cache misses due to data migration, we show the

number of L2 cache misses per KB of data transferred for 256 concurrent connections in Fig-

ure 2.9. We observe that the the L2 misses for the SMP and TCPServers variants is higher than

the TCPS Early and TCPS Sched since there is limited data migration. Among TCPS Early

and TCPS Sched, the scheduling data structures lead to a higher L2 cache miss rate and thus a

slight performance degradation.

To illustrate the benefit of scheduling network processing at the priority of the destination

socket, we first create 8 concurrent connections. We then run a separate process where clients

create a number of short-lived connections. These connections are closed as soon as the user-

level program receives a completed connection notification. Figure 2.10 shows the aggregate
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Figure 2.10: Aggregate throughput with short-lived connections

throughput as the number of short-lived connections increases. Since the new connection estab-

lishment leads to higher overhead and leads to packets belonging to other (active) connections

being dropped, the throughput decreases. In contrast, the TCPS Sched assigns a lower priority

to the new connections (SYN), and leads to a lower degradation in the performance.

2.6.3 Web Server Performance

To evaluate the impact the our system on a real-world application, we measure the performance

of a web-server using each of the variants of our system. We use the Apache 2.0.48 [14] web

server and the httperf [127] benchmark to characterize the performance. Httperf maintains a

fixed request rate defined in the configuration and measures the number of completed requests

within a specified timeout during a run. We generate a trace where all requests are static, for

32KB web pages. Our goal is to measure the performance improvement due to increased con-

currency, therefore, we design a workload mix whose working set fits in the available memory.

To avoid noise from the disk effects, we discard the results from the first run of our benchmark

for all cases.

Figure 2.11 shows the performance of the web server measured by httperf while varying

the offered load. The performance measure is the number of successful requests. We observe

that for underloaded conditions, all systems demonstrate similar performance. However, as the
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Figure 2.11: Web server throughput with varying load.

Hardware Approaches Software Approaches
Memory Copy Avoidance UNet [23], VMMC [64],

RDMA [95], IOMMU [162]
IOLite [145, 154],
Trapeze [10]

Interrupt Mitigation Interrupt batching [25] Polling [125, 187, 118],
LRP [62]

Offloading TCP Offload Engines [10, 5,
25, 219, 76], RDMA [95]

Piglet [128, 192],
MARS [161] ETA [162]

Table 2.1: Summary of techniques for improving network stack performance

request load increases, the TCPS Sched and TCPS Early can support a higher request load.

Finally, TCPS Sched sustains the high load and shows graceful degradation even when over-

loaded. The gap between TCPS Early and TCPS Sched when overloaded is due to the large

number of new connections being established continuously. While TCPS Early handles all

packets at the same priority, TCPS Sched handles the data packets (requests from established

sessions) before handling new connections. This allows more HTTP requests to be satisfied,

better utilizing the CPU.

2.7 Related Work

Performance of TCP/IP network stack implementations has been a prolific research area. At

different times, hardware and software solutions for improving network stack performance

have been proposed. We can further classify the research into three categories based on the
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underlying mechanisms used to overcome network processing bottlenecks - (i) memory copy

avoidance, (ii) interrupt mitigation, and (iii) offloading. Table 2.1 summarizes the past work

based on the above classification, and we discuss each of the categories below.

2.7.1 Memory Copy Avoidance

Memory copies have traditionally been the main performance bottleneck in network servers.

Copies between user level applications and the kernel network stack requires the CPU to move

data byte-by-byte. Therefore, the CPU is busy for long periods of time. Busy network servers,

for example, web servers, transfer large amounts of data from stored files over the network. This

requires copies from the file system to application memory and the same data is transferred over

network sockets.

The inefficiency of the I/O-network interface has been addressed in I/OLite [145], where

an integrated buffer management system is proposed and the applications can perform transfers

directly from the buffer cache to the sockets. The I/O Lite interface has been adapted by popular

Operating Systems e.g. Linux and FreeBSD in form of the sendfile [154] system call, where

data is transferred between file descriptors (file and socket descriptors). Intelligent use of the

sendfile interface along with memory mapped files allows application designers to perform

zero-copy sends.

User-level networking [64, 23, 152, 95] proposes to completely bypass the Operating Sys-

tem and provide applications direct access to the network interface. The Operating System is

involved in arbitrating the access to the NIC during connection setup, providing a safe interface

to the NIC’s control data structures, and generating signals for events registered with the NIC.

Applications implement network protocols, buffer management, and flow control. Through

a combination of virtual memory registration with the NIC and pre-posting receive buffers,

user level networking implementations provide zero-copy send and receive interfaces through

virtual memory mapped communication [64].

User level networking additionally provides asynchronous I/O support through a modified

interface, e.g. VIA [67] and Infiniband [95, 59]. Asynchronous I/O allows event driven appli-

cations to perform concurrent tasks without blocking in the OS. Event driven applications run

an event loop, which manages a state machine for each network connection that is updated on
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events signaled by the OS. Event driven servers do not suffer from the scheduling and context

switching overheads prevalent in the corresponding multithreaded implementations.

User level networking implementations require hardware support from the NIC, and require

application modifications for zero-copy transfers and to use the asynchronous API. Finally,

implementations of traditional networking protocols, e.g. TCP/IP and sockets, as user libraries

add overheads to each application limit the benefits offered by zero-copy transfers.

2.7.2 Interrupt Mitigation

Interrupt processing imposes significant overheads on busy network servers. Interrupts affect

the system performance directly as interrupt processing executes at the highest priority and

prevents any other processing in the system. Indirectly, interrupts cause cache misses, TLB

shootdowns, and pipeline flushes, which reduce the overall system performance. Finally, inter-

rupt processing executes in the context of the currently executing process, which leads to unfair

resource accounting, as the interrupt may be on behalf of the another non-executing process.

Mogul and Ramakrishnan [125] demonstrate that in a loaded system, interrupt processing

can easily overwhelm the server CPU leading to receive livelock. Interrupt moderation through

interrupt batching, polling, and hybrid interrupt and polling architectures have been proposed

to mitigate receive livelock in busy systems.

Modern NICs have used on on-board memory to store and aggregate packets before gener-

ating an interrupt for the CPU to process them. Such aggregation reduces the hardware interrupt

handling cost of network processing. However, with increasing network bandwidths such in-

terrupt moderation has limited effect due to high rate of events. Moreover, most of the network

processing is performed in the software interrupt context, which still imposes significant over-

heads.

Polling the network interface to identify network packet arrivals eliminates receive livelock

since the interrupt processing is performed inline. However, polling may lead to lost packets if

the NIC is not polled frequently enough, or it may lead to CPU resource wastage if the interface

is idle. A hybrid interrupt-polling architecture has been proposed where the NIC interrupts the

CPU once. This interrupt leads to the system polling the NIC until all packets are handled, or

for a fixed period of time when interrupts are re-enabled. Such architecture provides benefits
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of low latency and CPU usage while preventing receive livelock without additional hardware

support, and is implemented in the Linux networking stack as New API [168] (NAPI) and

FreeBSD and MacOS-X as the Interrupt Filter API [15].

Lazy Receiver Processing(LRP) [62] uses early demultiplexing and defers packet process-

ing to execute in the context of the process that owns the connection. LRP integrates network

processing into the system’s global resource management, schedules network processing at

the priority of the receiving process, and discards packets of unresponsive processes early to

conserve system resources and limit the effects of unfair resource allocation.

TCPServers provides separation of application and network functionality by dedicating a

subset of processors to network processing. Since a dedicated processor performs all receive

processing, it must handle receive events at the priority of the destination socket. Once invoked,

the receive processing at the dedicated processor runs to completion, therefore the invocation

of handlers must roughly follow the process priorities determined by the scheduler.

2.7.3 Network Stack Parallelization

Much of the research on parallelizing the network stack took place in the mid-1990s. Two forms

of network processing parallelism were examined : message-oriented and connection-oriented

parallelism. In message-oriented parallel organization, any message (packet) can be processed

simultaneously on a separate thread without any connection based separation. Therefore, mul-

tiple messages for the same connection may be processed concurrently in different threads, po-

tentially improving performance. In connection-oriented parallel the granularity of parallelism

is coarse grained, the messages are classified according to connections as early as possible and

all messages for a connection are processed in a single thread. Threads may handle multiple

connections.

Nahum et. al first examined message-oriented parallelism on an SGI Challenge shared-

memory multiprocessor [135]. The study focused on the locking granularity within the network

stack, cost of mutual exclusion on protocol performance, and the opportunity for parallelization

in the network stack. The authors conclude that there is limited parallelization opportunity

within a single connection, but multiple connection parallelization scales with the number of

CPUs. They also demonstrate that cache affinity and lock contention play a significant role in
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the performance of a parallel network stack. However, the network stack used in the above was

implemented in user-space and used a memory only pseudo network device ignoring the effects

of hardware access. Moreover, the TCP/IP protocol implementations, costs of synchronization,

OS mechanisms for scheduling and context switching have changed dramatically compared to

when the study was performed necessitating a new perspective.

Yates et. al later examined the connection-oriented parallel implementation of the x-kernel,

also utilizing a pseudo network interface and running on an SGI Challenge architecture [218].

Their study examined the effects of increasing the number of threads with the number of con-

nections and found that a connection-oriented parallel network stack outperforms the message

parallel stack. A finding that was further supported by Schmidt and Suda [173] who used mod-

ified SunOS and used a real hardware interface. They also concluded that the cost of synchro-

nization significantly affects the efficiency of both message-oriented and connection-oriented

stacks.

In modern operating systems, both message-oriented and connection-oriented parallel net-

work stacks have been implemented. Linux and FreeBSD operating systems use a message

parallel organization, whereas DragonflyBSD and Solaris implement a connection-oriented par-

allel stack. Willmann et. al. perform a comparative study of message and connection-oriented

parallelism on modern hardware and conclude that, while the connection oriented parallelism

offers benefits over message oriented parallelism, the scheduling overheads significantly reduce

the efficiency [215].

In this dissertation, we focus on the message-parallel organization of the network stack in

context of offloading its functionality to a set of processors in a multiprocessor system. This

organization improves cache locality and reduces lock contention, which are identified as two

important sources of inefficiency in the above.

2.7.4 Offloading

Network processing performs several CPU intensive tasks, e.g., data copies, checksumming,

TCP segmentation, etc. These tasks are independent of any OS specific state and can be per-

formed independent of other network processing. Moreover, offloading these tasks does not

require significant changes to existing network stack implementations and do not significantly
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increase the processing or memory requirements of the network interfaces.

TCP/IP protocol specifications require a one’s complement Cyclic Redundancy Check (CRC)

checksum to be performed independently over the IP header and the payload including the TCP

header [151]. This checksum can efficiently be performed at the NIC and is offloaded yielding

significant savings in the packet processing overheads. Most modern NICs support checksum

offload. Recently, other tasks e.g. TCP segmentation offload has been introduced, which al-

lows the OS to DMA large chunks of data to the NIC. The network interface then segments

the payload into Maximum Transmission Unit (MTU) sized chunks and sends out the packets.

Such offloading support is largely stateless and requires little OS support.

TCP/IP offload engines (TOEs) propose a more aggressive offloading strategy and offload

stateful tasks, e.g., TCP/IP state maintenance, IP fragment reassembly, TCP reordering, global

connection variable maintenance, etc., to the NIC. Such offloading is complex and requires

significant CPU and memory resources at the NIC. In an ideal scenario with a few connections

and low latency, such offloading eliminates almost all network processing overheads from the

host CPU. Unfortunately, unlike the host, the memory and CPU capacities at the NICs grow at a

much slower rate, are more expensive, and are limited by power resources at the NIC. A hybrid

approach to offloading, where the connection offload is controlled and managed by the OS, has

been proposed recently [99, 76]. These systems target the poorly scaling operations like I/O

bus crossings, cache misses, and interrupt processing. While such approaches demonstrate a

significant performance gain for a reasonable number of connections, the system reverts to the

traditional network stack with the associated overheads for larger connection rates. For busy

network servers with a large number of short-lived connections, such offload does not offer

significant benefit.

To overcome the resource limitations of NIC based offloading as well as to simplify devel-

opment, evolution, and maintenance of networking code, dedicating a subset of processors to

network processing has been proposed by us [159] as well as other researchers [128, 161, 162].

Such an architecture eliminates the limitations of memory and CPU cycles, improves cache and

TLB locality, allows efficient polling of the NIC, and retains the simplicity of implementation

and maintenance.
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Muir et. al. propose Piglet, where the device driver functionality is offloaded to the dedi-

cated processors. Piglet enables the system to poll the NIC, but majority of the TCP/IP function-

ality is still executed in the application processors. In Piglet, the dedicated processors are de-

termined statically and the system always performs polling of the NIC. In contrast, TCPServers

enables a reconfigurable dedicated processor set, and uses both interrupts and polling to handle

NIC events.

Embedded Transport Acceleration (ETA) [162] dedicates one or more processors or hard-

ware threads to perform all network processing. These dedicated Packet Processing Engines

(PPEs) avoid context switches and cache conflicts with application processes, and interrupt

overheads by polling the NIC. These PPEs can be extended with additional DMA engines,

which support memory to memory transfers without involving the CPU. These extensions free

the CPU of the memory copying task and further improve cache locality. Memory Aware Ref-

erence Stack (MARS) uses PPEs and the hardware extensions for memory copying and header

separation [161, 162].

Brecht et. al. have recently proposed an extension of the ETA architecture introduces a

Direct Transport Interface (DTI), which uses shared memory between the OS and the applica-

tions along with an asynchronous I/O API to enable the PPEs to poll for application generated

events [36]. This system executes the entire network stack including transmit and receive pro-

cessing in a dedicated processor. However, both for ETA and for the system reported by Brecht

et. al. [36], the set of hardware contexts dedicated as PPEs is fixed and they use an ad-hoc

scheduling strategy for NIC polling and application event handling.

TCPServers shares the design where a subset of hardware contexts are dedicated to network

processing. However, TCPServers monitors the system load and the rate of NIC and application

events to schedule individual event handlers and reconfigure the set of PPEs. TCPServers

also separates the transmit path and the receive path of network processing. In the transmit

path, TCPServers only handles packet scheduling for the NIC. This does not eliminate the

memory copy and system call costs for the transmit path, however, the zero-copy send interfaces

and low-overhead of system calls does not warrant the complexity of a maintaining a shared

memory interface and application modification. Additionally, we expect similar benefits from

the hardware extensions for memory-to-memory copies.
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2.8 Summary

Network stack performance is critical and with the increasing multiprocessor availability, needs

to be revisited in the context of parallelization as well as separation of application processing

and network processing. In this chapter, we presented TCPServers, a system architecture that

takes advantage of processing contexts available in multiprocessor systems to offload network

processing to them. Such offloading enables low-overhead shared memory communication be-

tween the host and the offloaded context while retaining the isolation provided by the TOEs.

We developed mechanisms for early demultiplexing and scheduling network processing at the

connection priority using per-socket OS data structures: Receive Queues. We implemented

TCPServers and demonstrated through our evaluation that TCPServers architecture improves

the performance of our benchmark program by more than 75%, compared to a modern multi-

processor network stack.
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Chapter 3

Orion: Offloading Monitoring for Improved Availability

3.1 Problem Statement

Self-healing and recoverability from events that impair the functionality of a computer system

have become more and more the focus of systems research [146, 157, 158]. This trend reflects

a shift from raw performance towards intelligent self-manageable computer systems. To realize

the goal of self-management, the system must minimally perform two tasks, (i) gather monitor-

ing data and analyze it to identify anomalies, and (ii) to take healing actions to repair or recover

the system.

Hardware sensors, for example, CPU temperature sensors, fan speed monitors, disk activ-

ity sensors, etc. have been used to offload hardware monitoring tasks that enable a system to

adapt its functionality. SMART [193], ACPI [90] and IPMI [55] have introduced the ability

to offload fine-grained hardware monitoring and raising events on exceptional operating condi-

tions. System software has incorporated support to react to these alerts for intelligent resource

management and protection of the system against hardware failures, e.g., reducing the CPU

frequency when the temperature is high, spinning down disks that have a faulty disk arm in a

disk array, switching off idle nodes in a cluster, etc. Unfortunately, similar functionality for

continuous software monitoring is limited in existing computer systems.

Traditionally, software monitoring has been performed within the system, by executing a

special monitoring task or a daemon, which monitors events generated by applications and the

OS. Events represent the behavior of the system and are generated internally, e.g., through

logging, or externally, by interposition on the interface through which the monitored software

component interacts with the rest of the system. Monitoring using internal events relies on the

software components to generate detailed logs or statistics. Software monitoring using external

events has incomplete knowledge and only approximates the state of the monitored component
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using side-effects, e.g. statistics, system call logs, etc. Most software monitoring systems use

a combination of internal and external events to identify anomalous behavior. External moni-

toring has broader coverage, can monitor overall system state, and does not require application

modification. Moreover, internal events can be externalized using explicit calls to external mon-

itoring interfaces. Therefore, in this chapter, we focus on continuous monitoring using external

events.

There are several challenges in continuous OS and application monitoring. First, statis-

tics that represent system state are updated frequently and these updates do not generate ex-

plicit events, making interposition difficult. Second, events generated in the OS are scattered

across memory in various subsystems and applications. Traditional administration utilities, e.g.

vmstat, top, ps, etc., are inefficient, as they gather information through multiple system

calls. Using these utilities for continuous monitoring by periodic invocations to generate events

has prohibitively high overheads. Moreover, using the system to monitor itself or “monitoring

from within” cannot be used to detect and diagnose system-wide failures which render the OS

unavailable, e.g., depletion of system resources, system hang failures, crashes or deadlocks.

Finally, monitoring from within cannot reliably detect intrusions and malicious behavior, since

the monitoring task itself may be compromised.

In this chapter, we present Orion, a system architecture based on offloading continuous

monitoring and repair of OS and application state to external hardware. Offloading monitoring

and repair functionality has the following requirements. First, the external hardware must be

able to access the target memory to retrieve in-memory state for monitoring and modify it

for repair. Second, the external hardware must be programmable, for the administrators to

define and modify monitoring policies. Third, monitoring from the external hardware must not

directly involve the monitoring target, and the target must not be able to disable, modify, or

adversely affect monitoring functionality. Finally, monitoring must be nonintrusive, that is, it

must not impose significant overheads at the target, which could change the target behavior.

Orion offloads monitoring and repair functionality to a programmable network interface.

This network interface sits on the I/O bus of the target system, has its own processor and mem-

ory, can access the target memory without using host CPUs and can be accessed over the net-

work for cooperative external monitoring. Orion enables continuous monitoring of in-memory
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state without imposing any CPU overheads and without interfering with tasks executing on the

system. We demonstrate mechanisms for external monitoring over Orion and show that we can

continuously monitor OS and application state, quickly and reliably detect failures, and repair

inconsistent or incorrect OS state without imposing significant overheads.

3.2 Operating System and Application Monitoring

In this section, we identify requirements for Operating System and application monitoring and

define the usage models that motivate the design of our monitoring architecture. We identify

three primary tasks that must be supported by Orion: (i) Failure Detection, for accurate and low-

latency identification of failures, (ii) Failure Diagnosis, for monitoring data structure invariants

to identify the root cause of failures, and (iii) Failure Prevention, for performing repair of

damaged or inconsistent OS and application state.

3.2.1 Failure Detection

Network services today are hosted at large data centers, which deploy hundreds of thousands

of computer systems to handle high performance and availability requirements [81, 6, 4]. At

such large scales, hardware as well as software component failures are routine, and it is critical

to identify a failed component, quickly, and with high accuracy. Moreover, monitoring these

performance critical services must not impose high overheads and require human involvement,

which is prohibitively expensive and slow to be practical.

Failure detection is a crucial part of system maintenance as it generates alerts for failed

components, which must be replaced to maintain continuous service, and it allows the system

to adapt and reorganize itself through load balancing and failover. Failure detection must be (i)

low latency, to maintain uninterrupted service to clients, (ii) accurate, with low false positives,

i.e., a component is active even when the system declares it as failed, and with low false nega-

tives, i.e., the system fails to identify a failed component, and (iii) low overhead, to minimize

interference with the executing applications.

Orion implements Remote Monitoring, which uses Memory-to-Memory Communication

without involving the the CPU or OS of the target system to offload monitoring functionality to
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a cooperating monitor. Remote monitoring over low-latency interconnects enables fast detec-

tion without imposing additional overheads at the target. Since Orion does not involve a local

software agent on the target, the probability of false positives is low. Moreover, Orion is pro-

grammable and can be used to implement timed-perfect failure detection protocols [73], which

guarantee that a node that is declared by the monitor to have failed does not cause inconsistent

behavior. Finally, since the target cannot control and is unaware of the existence of an Orion

monitor, monitoring functionality cannot be disabled and is always available, even when the

OS is crashed, compromised, or is otherwise unavailable.

3.2.2 Failure Diagnosis

Identifying the root cause of a failure is as important as failure detection itself. Treating failures

as isolated instances and ignoring the underlying cause squanders opportunities for preventive

maintenance, cost savings, and reduced future downtimes. Several studies have shown that

software failures are much more prevalent than hardware failures [201, 196, 45]. Careful anal-

ysis of software failures through offline inspection of the failed software state (core dumps)

enables developers to identify and fix problems in their code, while online inspection of live

state enables prevention of impending failure through repair of inconsistent state.

Failure diagnosis can be performed proactively, during development through code inspec-

tion and software verification tools, and reactively, through continuous online monitoring.

Large codebases and complexity introduced due to implicit assumptions about programming

invariants makes it difficult to identify and handle all failure conditions during development.

Automated tools for software verification are limited in coverage and are low performance, and

are hence impractical for analysis of large systems. Therefore, the only alternative to identify

and diagnose failures in such systems is online monitoring and reacting to detected failures.

For example, when designing a multithreaded OS, detecting a cyclic acquisition of locks is

possible only by continuously monitoring the system during normal operation [19] despite ef-

forts of hundreds of skilled developers and analysis tools [56]. Unfortunately, such monitoring

functionality is intrusive and imposes significant overheads. Therefore, it is common practice

to disable monitoring functionality in production environments. This leads to monitoring being

limited to controlled test environments and and imprecise diagnosis of failure conditions when
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deployed in a production system.

To support fine-grained diagnosis and to maintain history, remote monitoring over Orion

goes beyond simple heartbeat mechanisms and provides an OS abstraction, Sensor Box, which

stores monitoring data generated by the OS and applications. Orion enables direct access to

remote memory even when the OS may be hung, deadlocked, or be otherwise unavailable.

Programmability of the Orion NIC enables fine-grained inspection of live data structures in the

target memory. Finally, Orion defines a query interface, which supports defining predicates that

operate on the monitoring data to detect anomalous behavior during normal operation and can

be composed to implement complex policies for automated failure diagnosis.

3.2.3 Failure Prevention

To enable continuous service, anomalous system states must be identified and if possible re-

paired before the system is rendered unusable. Repairing incorrect or inconsistent state allows

the system to survive hard to reproduce, unpredictable failures, which would otherwise lead to

unavailability.

Software rejuvenation or restarts have previously been proposed to repair damaged state [146].

However, such mechanisms are disruptive as they always cause a restart, even when the incon-

sistency is localized to a small, easily repairable, portion of the state. For a network server,

repair through restarts is no better than an actual failure where clients lose service for the du-

ration of the restart. Recently, small changes to the execution environment and device driver

interface have been used to avoid failures and in some cases recover from them [158, 201].

Orion supports failure prevention through remote repair, where damaged OS state is cor-

rected through remote intervention. We regard the state of an OS as damaged when a certain

OS subsystem is impaired and cannot perform its normal function. Damage to the OS state

can be caused by system misconfiguration, malicious attacks, bugs triggered under heavy load,

resource exhaustion, etc. Orion repairs damaged OS state through specialized handlers, called

Repair Hooks, which replace the damaged state with correct state generated on an external

monitor.
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Figure 3.1: Orion Architecture

3.3 Orion Architecture

In this section, we present Orion, a system architecture that enables near real-time monitoring

of OS and application events when offloaded to a programmable network interface (I-NIC) or

a remote node in a collocated cluster.

Figure 3.1 shows the Orion architecture. It is defined in context of a Monitor-Target pair.

The target exports regions of memory where events of interest are stored. These regions may

include statistics data structures, in-memory system log, process stack buffers, etc. The tar-

get also defines specialized handlers, called Repair Hooks (RH), which allow modification of

system behavior through memory modifications. Examples of RHs include dynamic configu-

ration variables (sysctl), process signal masks, kernel resident processes that execute when

memory locations are modified, etc.

The Monitor in Figure 3.1 is the external hardware that executes the monitoring and re-

pair functionality in a Monitor Context. It has its own processor, memory, and communicates

with the Target over a fast communication medium. It reads the exported memory to retrieve

monitoring data, which is used to identify anomalous conditions and maintain a historical log.

On detecting an anomaly, the monitoring context writes to the RHs exported at the target to

perform repair.

In the Orion monitoring framework, the monitoring context can be instantiated on the target

host as a process or a daemon, on a programmable network interface as a network interface

context, and on a remote node connected over an interconnect that provides direct access to
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Configuration Communication Channel Context Host
Local Shared Memory Thread or Process Target
NIC DMA over PCI bus NIC Context Target

Remote RDMA Thread or Process Monitor

Table 3.1: Orion monitoring configurations

target memory. Characteristics of these configurations are summarized in Table 3.1 and we

discuss each of them below.

Local: The local configuration is the baseline configuration for Orion, where the monitor is

instantiated at the target system. Monitoring is performed in a thread or process context,

which uses the host CPU for execution. In this configuration, the exported memory is

instantiated using shared memory established between the monitoring context and the

monitored entity.

Shared memory is the fastest communication channel, therefore the access to the ex-

ported memory is almost instantaneous. Unfortunately, fast access is not enough since

the monitoring thread relies on the host CPU for execution and competes with other

threads on the same machine. Moreover, monitoring from within the system cannot re-

port failures since it cannot execute on an already impaired system.

NIC: In the NIC configuration, the monitor is instantiated on a programmable Intelligent NIC

(I-NIC) that sits on the PCI bus of the target host and has its own processor and mem-

ory. The monitoring context is the I-NIC specific execution context. Communication

is performed over the PCI bus using I-NIC initiated DMA. A one-time registration of

the exported memory with the target context generates a memory descriptor used by the

monitor to fetch the SB memory through DMA.

The monitoring context in the NIC configuration can access the exported memory through

DMA. This access does not involve a network transfer, is reliable, and does not require

additional monitoring systems. However, the NIC is limited in its resources, is difficult

to program, and monitoring logs are lost on each restart and cannot be used for future

inspection as it does not have access to stable storage.
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Remote: The Remote configuration enables the monitor to be instantiated on a remote node

connected over a private network. The monitoring context is a thread or process that

executes on the remote node.

Remote monitoring relies on a mechanism that enables direct remote access to the target

memory. Serial interconnects, including USB and firewire provide such access. How-

ever, these interconnects are point-to-point cannot communicate with other hosts in the

network. Therefore, Orion uses a low-latency high-bandwidth network interconnect with

Remote DMA (RDMA) capabilities, e.g. Myrinet or Infiniband, to offload monitoring

functionality. RDMA allows direct data transfers between the target and monitor system

memory without involving the target host processors. A one-time registration of the ex-

ported memory with the remote context generates a remote memory descriptor, used by

the monitor to initiate remote reads to fetch the memory contents.

Since the monitoring context executes on a remote system, it has more resources than

the NIC configuration, and does not rely on the host CPU like the local configuration.

Finally, development and maintenance of the monitoring system is much easier than

with the I-NIC. This configuration is the most powerful as near real-time monitoring and

logging to stable storage can be supported simultaneously.

3.4 Orion Design

Figure 3.2 shows an overview of the Orion Architecture for offloading OS and application

monitoring functionality. The target exports memory through one or more Sensor Boxes (SBs),

which store the monitoring data generated by applications and the OS using the Sensor Box

API. The monitor defines one or more monitoring contexts, which are associated with a Sensor

Box at the target and retrieve it periodically over the fast communication channel to create a

local SB View. The Orion Query Interface is used to program the monitoring contexts to define

monitoring policies. This interface can also be used for on demand querying of the monitoring

context state.

Orion is a monitoring framework based on functionality offloading. We use efficiency and

generality as the two first order considerations in designing the Orion framework. Efficiency of
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Figure 3.2: Orion Model.

the offloading mechanism is important as it determines the latency of detecting anomalies, and

determines the complexity of the monitoring functionality that can be supported in different

configurations. To make the monitoring framework application independent, we do not rely on

specific properties of the monitoring target. Instead, the Sensor Box API is designed to allow

easy adaptation and extension for diverse applications and OS subsystems.

Figure 3.3 shows details of the Orion monitoring architecture. The Monitor and Target Con-

trollers create a binding between the monitoring entity and the target system. The monitoring

entity can be instantiated on the same host, at an I-NIC, or on a remote host depending on the

configuration. The control channel is used to maintain and exchange information about the two

primary components of the Orion Architecture: (i) Sensor Box, and (ii) Monitoring Context,

which are discussed in more detail below.

3.4.1 Sensor Box

A Sensor Box (SB) is a structured collection of records called sensors, which are allocated in

the OS memory of the target system. Each update of a sensor adds a row to the sensor box.

Therefore, an SB can be thought of as an infinite event stream, whose contents are revealed

one row at a time. Sensor Boxes are created at the target system and are updated either by

instrumenting code to record updates, or by using existing statistics data structures exported by

the system.
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Figure 3.3: Orion Monitoring Architecture

The monitor retrieves the SB contents to create a local view that reflects the state of the

monitored system. Each Sensor Box is assigned an identifier and a name, which are used

by the monitoring thread to associate the appropriate Sensor Handler (SH) to handle events.

Each monitoring task, for example failure detection, defines a new SB and SH pair. The SB is

instantiated on the Target, while the SH is executed on the monitor.

Sensors

A sensor is represented by the tuple,< ID, T , V >, where ID is a unique event identifier, T is

a timestamp, and V is the sensor specific event record. A monitored entity (e.g., OS subsystem)

registers the sensor with an SB that assigns it an identifier, ID. Updates to the sensor value,

V , are performed through the SB interface. Each sensor defines V , which can be a scalar, a

structure with multiple fields, or a reference to a memory location.

The SB records the timestamp, T , of the update and stores the sensor tuple in the SB

memory. There can be multiple tuples with the same identifier in an SB indicating multiple

updates to the same sensor. Once stored by the SB, the sensor tuples cannot be modified at the

target. The monitor flushes the SB contents when it has completed processing the tuples.



61

ID Timestamp Value
VM METER 0 &(vmmeter)
TIMER INTR 1 100
OOM RUNNING 1.4 1
FORK REC 1.8 (5120, 5124)
TIMER INTR 2 100

Figure 3.4: Sensor Box example

API Routine Input Output Purpose
sbcreate Name, SB params. SB, SB ID Create a new SB
sbdestroy SB ID - Destroy existing SB
sbexport SB ID Memory descriptor Export SB memory
addsensor SB ID Sensor ID Add sensor
rmsensor SB ID, Sensor ID - Remove sensor
updatesensor SB ID, Value Status Update sensor value

Table 3.2: Summary of Sensor Box API routines executed at the Target

Figure 3.4 shows a Sensor Box with four sensors. The TIMER INTR sensor counts

the number of timer interrupts handled by the system and is updated every second. The

FORK REC sensor records the parent and child process identifiers on each invocation of

the fork() system call. The VM METER sensor maintains a reference to the FreeBSD

vmmeter data structure, which records statistics related to the Virtual Memory subsystem. Fi-

nally, the OOM RUNNING sensor records a flag whenever the system runs out of memory

and invokes a memory reclaim thread, which kills processes to free up system memory.

The monitored entity and the Sensor Handlers are tightly coupled. The Sensor Handlers

must be aware of the semantics of the sensor contents recorded in the SB. The binding between

the Sensors and Sensor Handlers imposes a contract between the monitor and the target. At

the target system, the monitored entities must record the values, V , following the semantics

expected by the associated SH. The monitor must retrieve the SB from the target and invoke

the Sensor Handler to interpret the contents.
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sbcreate(char *name, sbparams_t *sbparams);
sbdestroy(int sbid);
sbexport(int sbid);
addsensor(int sbid);
rmsensor(int sbid, int sensorid);
updatesensor(int sbid, int sensorid, void *value, size_t len);
sbdiscover(char *sbname, sbparams_t *sbparams);
sbassociate(int sbid, sh_t *sensorhandler);
sbfetch(int sbid, memdesc_t md, void *sbview, size_t len);
sbflush(memdesc_t md);

Figure 3.5: Sensor Box API

API Routine Input Output Purpose
sbdiscover Name SB ID, SB params. Find exported SB
sbassociate SB ID, SH Status Set SH for SB
sbfetch SB ID, Memory de-

scriptor
SB Contents Fetch SB contents

sbflush Memory descriptor - Clear remote SB
contents

Table 3.3: Summary of Sensor Box API routines executed at the Monitor
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Sensor Box API

The Sensor Box API, shown in Figure 3.5, enforces the contract between the monitor and

the target and provides an interface to access and update Sensor Boxes. Tables 3.2 and 3.3

summarize the Sensor Box API routines executed at the target and the monitor respectively.

They describe the purpose of each routine and its input and output parameters.

At the target, the Sensor Box is created during initialization using the sbcreate and is

exported for the monitor using the sbexportAPI calls. These calls return an SB identifier and

a memory descriptor, used in all future calls. The memory descriptor is a cookie, which is used

by an external monitor to gain access to the target memory. For a local configuration, it is the

shared memory handle, for the I-NIC configuration, it is a DMA descriptor, and it is an RDMA

descriptor in the Remote configuration. The sbexport call additionally registers the SB

name with the target controller. The SB is destroyed using the sbdestroy call. To update the

sensor box, the applications and the OS subsystems use the addsensor, updatesensor,

and rmsensor to add, update, and remove sensors from an SB respectively.

The monitor identifies the Sensor Box of interest using a name through the sbdiscover

call. This call is performed over the Control Channel and the names registered during initializa-

tion through the sbexport calls are provided to the monitor as its response. The SB discovery

also provides the SB parameters, which include update frequency, number of sensor records,

and the memory descriptors. At the end of this call, the monitor can start fetching the SB using

sbfetch and clearing the remote SB using sbflush API calls. sbassociate is used to

map handlers to sensors. When the monitor context identifies a sensor update to an associated

handler, it makes an asynchronous function call to the handler.

Sensor Box Views

A Sensor Box View is a copy of the SB contents, which can be modified by the monitor. This

view is used by the sensor handlers to process events recorded in the SB. For a local monitor,

a Sensor Box View is a reference to the SB contents and does not require any copies. When

offloading to an I-NIC, the SB View is retrieved through DMA. The SB at the target system is

exported and a DMA mapping is established between the NIC and the host. This is a one-time
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registration operation following which, the I-NIC initiates the transfers from host memory to

the NIC memory to obtain the view.

Remote Orion configurations rely on the RDMA capability of the private network. To ex-

port an SB over RDMA, a one-time registration operation is performed at the target host through

the sbexport API routine. The resulting memory descriptor is passed to the remote monitor,

which then uses this descriptor to perform non-intrusive remote reads on the SB memory to

retrieve the SB views.

Sensor Box Updates

Orion does not rely on the target OS or CPU for analyzing events when such processing is

offloaded to the NIC or to a remote node. However, the SB contents must be updated at the

target. These updates can be performed inline by instrumenting the code paths being moni-

tored. Today, several OSes support tracing code paths through instrumentation [53]. Systems

like DTrace [42] provide pervasive instrumentation that records events in system memory. If

available, a reference to these buffers can be used to construct SBs for monitoring fine-grained

events. Orion also supports offloading monitoring functionality without code instrumentation,

using only existing data structures that record statistics. An SB is created using a reference to

these data structures and the contents are exported to the monitor. The monitor first retrieves

the SB, identifies the references to data structures and initiates further sbfetch calls to get

the sensor values.

When SBs are defined using existing data structures without code instrumentation, the SB is

not updated when the contents are modified. Therefore, updates to such sensors are performed

either explicitly, in a thread executing on the target system, or implicitly, when the SB contents

are retrieved by the monitor.

While explicit updates in a thread can record fine-grained events, executing a thread on the

target may not always be possible, e.g. on a busy or a failed system. Moreover, even when

executing locally, all updates cannot be recorded reliably, for example interrupt statistics may

be updated multiple times in the interrupt context.

On the other hand, implicit updates provide an aggregated view of events. These updates

do not require any involvement of the host OS in monitoring. In fact, the CPUs of the target
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system are not used for monitoring. Unfortunately, implicit updates cannot be used to identify

event sequences, e.g. for performance debugging or data structure monitoring. However, for

monitoring applications that rely on aggregate statistics, e.g. failure detection, implicit updates

are sufficient.

3.4.2 Monitoring Context

The Monitoring Context represents a unit of execution at the monitor. It is a thread context

for the Local monitoring, is a task control block in the NIC configuration, and a thread context

executing on the monitor for Remote monitoring. In each of the above, the Monitoring Context

performs three primary tasks: (i) Construct the SB View at the monitor by fetching the Sensor

Box from the target, (ii) Classify events and invoke the associated Sensor Handler, which parses

the event records to generate composite events or to log the events, and (iii) Provide a Query

Interface, which enables administrators to specify interesting events or a group of events and

generate alerts when these events occur.

Event Processing Engine

The Event Processing Engine (EPE) initiates the transfer of the SB from the target node to

construct an SB View. During initialization, the EPE discovers the memory descriptor of the

exported Sensor Box associated with its context. It also handles the asynchronous events, for

example, network disconnection events, feedback rate control for fetching the SB, etc., which

are generated by the Monitoring Controller.

The EPE schedules the SB transfers periodically. The initial frequency of SB View refresh

is determined by the SB parameters specified at the target. During operation, the EPE adapts

this frequency based on the feedback from the Monitoring Controller and the Query Interface.

This operation determines the overheads as well as the latency of detecting anomalous events.

Clearly, the higher the frequency of transfers, the higher is the overhead. Therefore, the SB

View refresh is delayed for events that do not require frequent updates. For example, for fast

failure detection, the SB View must be refreshed as fast as possible, whereas for periodic events,

e.g. to find the average CPU load, scheduling the SB transfer every second is enough.
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Event Summaries

Event Summaries are the data structures stored by the Monitoring Context to represent the his-

tory and the current state of the target system. These data structures are used by the Query

Interface to respond to user defined queries or to generate alerts for automated response sys-

tems.

Efficient and detailed event summaries are crucial to Orion. Limited memory and CPU

overhead for updating and querying the summaries is essential to successfully offload monitor-

ing functionality, while maintaining a reasonable response time. At the same time, it is equally

important to store enough information to support queries of interest with high accuracy. These

constraints make the choice of the data structure used to store summaries crucial.

We define three primary data structures used in Orion to maintain event histories, (i) Coun-

ters, (ii) Counter Aggregates, and (iii) Dependency Graphs.

Counters Counters are the basic data structures for maintaining event statistics. The counter

values are scalars and this data structure maintains an exact count for each event identifier.

Counters are useful when the number of event sources is low. The primary application

of counters is in failure detection, where continuous updates to a small number of health

indicators, called progress sensors, are used to determine whether the system is alive.

For example, if an OS is alive, it must periodically receive the timer interrupt and update

its timer variables. A counter representing the number of timer interrupts and the current

timer value at the target is sufficient to determine its health. The monitoring system must

maintain a list of these counters for a window of time to identify lack of activity on the

target.

Unfortunately, counters are unsuitable for finer grained monitoring due to two main rea-

sons. First, the memory required to store the counters increases linearly with the number

of counters. Second, counters do not maintain causality information, and are therefore

not useful to track dependencies and the order of events.

Counter Aggregates While raw counters provide a snapshot of the system state, storing a

long historical record and accessing this log for each query is computationally expensive.

Most often, a monitoring system uses aggregates, e.g. average, median, rate of change
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of values, etc. to identify anomalous behavior. Moreover, the monitor may be interested

in the evolution of aggregates rather than simple counter values, e.g. interrupt rates vs.

interrupt counts. Aggregates are generated at the monitor using the raw contents of the

SB views.

Randomized data structures, e.g. counting Bloom filters and randomized sketches have

been previously used to generate and maintain efficient counter aggregates. These data

structures require small amounts of space and provide probabilistic accuracy guaran-

tees for query results. Orion provides implementations of Bloom filters and Count-Min

sketches to support efficient storage of counter aggregates.

Dependency Graphs For sensor values which are not scalars, but represent an event identifier,

the monitoring system is interested in relationships between them. For example, to pro-

tect a system from a fork bomb, a process that recursively creates new processes without

doing any useful work, the original process and all its descendents must be terminated.

The FORK REC sensor, which records the parent and child process in each invocation

of the fork system call, can be used at the monitor to generate a shadow data struc-

ture that mirrors the process hierarchy at the target. The ability to construct this shadow

process hierarchy at the monitor allows Orion to identify and terminate the parent and

all its descendants. Other examples where dependency graphs are useful are lock order

verification, intrusion detection, etc.

Dependency graphs are used to represent event dependencies and enable continuous

queries that verify a pre-specified order of events. Each node in the data structure is

an event identified by the event identifier. An edge ID0 → ID1 in the graph records that

event ID0 happened before ID1. The correlations between two events can be specified

a-priori, in the example above, a fork() system call generates a dependency between

the parent and child process identifiers, or may be inferred offline by analyzing historical

records of all events.

Orion constructs dependency graphs using a sequence of SB Views at the monitor. The

timestamps in every sensor record impose a causal ordering on all events and are used

to construct a sequence of events. This sequence of events can then be used to enforce
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ordering constraints on operations at the target.

3.4.3 Orion Query Interface

The goal of any monitoring system is to support user queries and generate alerts on detecting

events of interest. The Query Interface uses the event summaries generated by the Monitoring

Context to evaluate queries. It may also access the raw event data through the EPE to maintain

a log on stable storage or a window of events in memory.

In the Orion model, the SB is updated frequently. Multiple passes over the SB View causes

a long delay between updates, which may lead to lost events at the target. Therefore, we

keep the SB View in memory for exactly one update interval and the Sensor Handlers and the

Query Interface can scan a sensor tuple exactly once. This model is similar to the Data Stream

Model [18], where relations are not stored in persistent tables, but arrive as a transient stream

of updates.

Orion supports only pre-defined queries. These queries are defined before any data required

to satisfy the query is received. These pre-defined queries can be invoked multiple times on-

demand during operation, or can be continuously evaluated by the system. The sensors can be

accessed exactly once, and Orion maintains only summaries of the events, e.g. average value

of a sensor, and not the exact event data. Therefore, a new query that refers to past events

cannot be answered. Moreover, a set of queries defined at the monitor can be verified during

initialization and any updates to this set may lead to inconsistencies or a compromise of the

monitoring functionality. Disabling updates protects the monitor from such vulnerabilities.

Finally, modifying the monitoring code during operation requires reloading the NIC firmware

or restarting the monitoring thread. Therefore, in effect, the new queries are treated the same

as pre-defined queries.

We classify the queries supported by Orion into the following three categories.

On-Demand Queries: These queries are evaluated when the user or administrator is interested

in a snapshot of the system state, or its history. The result of an on-demand query depends

on the current state of the event summaries and does not reflect any past or future values.

On-demand queries are usually used in conjunction with one-shot or continuous queries
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to perform fine-grained diagnosis after detecting an event of interest.

One-Shot Queries: Detecting events requires continuous evaluation of predicates that define

the event of interest. When performing an action, administrators or recovery/repair sys-

tems are often interested in an event that happens exactly once. For example, the failure

of a machine is interesting exactly once. All further alerts just confirm its occurance. In

these scenarios, Orion uses one-shot queries, which are evaluated continuously until an

event of interest happens.

Continuous Queries: These queries track the state of the system and are evaluated continu-

ously, for example the heaviest contended mutexes in each second. Unlike the one-shot

queries, the monitoring system generates multiple alerts, one for each time the query is

evaluated.

Continuous queries for monitoring live systems typically involve identifying and tracking

aggregates of statistics, e.g., average, median, and standard deviation. These queries are

also used to track a sequence of events when maintaining data structure invariants or

verifying event order.

3.5 Case Studies

In this section, we describe case studies to illustrate the use of Orion in offloading system mon-

itoring functionality. These case studies focus on detecting failures and on repairing damaged

OS state. Without Orion, improving availability of these systems would require software mod-

ifications and monitoring agents to execute on the target system. Since the OS is unavailable

in the scenarios we study, the monitoring agents would not be able to execute, causing a high

degree of inaccuracy in failure detection and repairing OS state impossible.

3.5.1 Failure Detection

Failure detection or identifying that a node is crashed, hung, or is otherwise unresponsive is

the simplest and most important monitoring task. Trivially, failure detection is impossible

locally or from within a target system. Therefore, all failure detection approaches are external.
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Figure 3.6: Monitoring ring configuration

Most failure detectors use a “heartbeat” mechanism, where a periodic message is sent from the

monitor to the target and a valid response indicates liveness. On the other hand, if a response is

not received or it is invalid, the node is declared dead and a failure is said to be detected.

The simplest monitoring configuration is centralized, where a single monitor sends heart-

beats to all target nodes in a group. This leads to the monitor becoming a hot-spot for large

groups. A monitoring ring configuration shown in Figure 3.6 overcomes the limitation of load

on the central monitor. In this configuration, the nodes are arranged in a logical ring, each node

in the ring monitors its successor in a predefined order (clockwise or anticlockwise).

The ring configuration can easily be extended to monitor not one but a fixed number k + 1

successor nodes for quick reorganization of the ring in presence of k failures. We use the ring

configuration for monitoring in Orion and assume all failures are fail-stop and power failures

are reported to the monitor through out of band link-layer mechanisms. In the following, a false

positive in detecting failure means that the monitor declared a target node to be failed when it

was in fact alive.

Failure Detector Accuracy

Heartbeats are periodic messages sent by a monitor to the target, that generates a response.

The response can be a simple reflected message or it can include additional information, for

example statistics counters. Timely responses received by the monitor indicate a healthy server.

The monitor declares a system failed if it does not receive a response within a deadline.

The latency of failure detection (lag between failure event and detection) is bounded by

the frequency of the heartbeat. Gupta et. al. studied the tradeoff between failure detection
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accuaracy, message loss probability, and the heartbeat rate [83]. Using their notation, a monitor

can detect failure within T with false positive probability PM(T ), over a network with the

message loss probability of the underlying network, pml and the worst case Round Trip Time

(RTT ) by sending heartbeats at rate R = Messages
T given by

R ≥ log (PMT )
log (pml)

, where T � RTT (3.1)

Failure detection using simple reflected messages, e.g. ping, are limited. First, lost packets

in either the forward or the reverse direction lead to false reports of a failure. Second, the

successful reflected message simply indicates that the target network stack is active. A server

that is otherwise unresponsive to applications or clients is not identified as failed.

Running a monitoring daemon on the target to listen and respond to the monitor’s heartbeat

request improves the failure detector accuracy. The monitor can identify overload at the target

apart from simple liveness. Unfortunately, this daemon competes with other processes on the

system and even long scheduling delays can lead to missed deadlines for target responses and

lead to false positives in detecting failure.

Apart from the above, both the reflectors and monitoring daemons suffer from the mon-

itoring overheads at the target. To maintain a reasonable failure detection accuracy and low

detection latency, the monitor must probe the target frequently. High probe rates lead to high

network and server load. Finally, traditional network heartbeats over ethernet suffer from no

link-layer support for reliability. Lost packets are common, and the problem is further exacer-

bated if the monitoring traffic shares the network with applications.

Failure Detection with Orion

Of the three monitoring configurations for Orion, the local configuration cannot detect failures.

Therefore, we focus on the I-NIC and the remote configurations for failure detection. In these

configurations, it is important to ensure that the sensor box updates and fetch does not utilize

the target processors as they might be unavailable.

For failure detection, we define the Sensor (< ID, T , V >) using the default interrupt and

VM statistics structures maintained by the OS shown as TIMER INTR and VM METER



72

sensors in Figure 3.4. These structures are updated on each interrupt, context switch, page fault,

etc., which occur continuously on a live system. On the other hand, if the system is crashed,

deadlocked, or otherwise unusable, these statistics are not updated.

The Sensor Box exports the memory where the interrupt and VM statistics structure (struct

vmmeter) to the monitor. Since the SB reuses the memory as the sensor value, V , the updates

to the SB are implicit. The monitor fetches the SB with a rate R and assigns a local timestamp

to each sensor. The sensor value is an aggregate count of all events that occured between two

consecutive retrievals of the SB from the target. As a liveness indicator, the monitor maintains

a counter aggregate, the slope of the line connecting the two point updates in consecutive SBs.

If a system is alive, this slope has a positive value, and it is 0 on a failed system, where the

statistics and therefore the values in the SB View are not updated.

Failure detection queries are one-shot queries. The monitoring context evaluates the live-

ness condition (slope > 0) on each SB View refresh through an SB fetch. A crucial choice

in designing a failure detection protocol is the SB View refresh rate. If the refresh interval is

too small, the SB may not have been updated and would result in the monitor declaring the

target as failed. If this interval is too large, the detection latency is increased. Orion uses the

SB discovery to identify the refresh rate. Sensor Boxes specify their update rates when created

with the sbcreate API call at the target. The rate is determined by the slowest sensor in the

SB. For example, the SB containing the TIMER INTR sensor defines the refresh rate as the

time slice defined by the granularity of the system clock (HZ). To add hysteresis, the failure

detection declares failure if the liveness condition is not satisfied over k refresh periods. In our

example, we choose k to be three refresh cycles.

Once a monitor detects a failure, it stops updating its SB View and does not evaluate the

liveness condition again. To ensure fail stop mode, Orion forces the remote OS to stop all

execution by acquiring a Remote OS Lock, which denies access to the target system scheduler

and hence any further processing on the target.

Orion takes advantage of highly reliable communication channels for fast and accurate fail-

ure detection. For the NIC configuration, the communication channel is the PCI bus, which

guarantees no message loss and a bounded time for completion of SB fetch. In the Remote

configuration, Orion uses Myrinet, a low latency high bandwidth interconnect that supports
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RDMA. Myrinet supports a Go Back N ARQ protocol that ensures successful, in-order trans-

mission of messages. The worst case Round Trip Time latency for Myrinet is a few microsec-

onds. Therefore, in both cases, pml → 0, which in turn implies that the sampling rate R can

be arbitrarily close to T from Equation 3.1. In Orion, the latency of failure detection therefore

depends only on the RTTs and Orion can successfully detect failures with latencies close to

tens of milliseconds.

3.5.2 Repair of OS State Damaged by Resource Exhaustion

We illustrate the remote repair mechanism in scenarios where traditional techniques fail to

prevent the system from becoming unavailable due to resource exhaustion, and cannot repair

the system. We describe two such situations, show why the traditional mechanisms fail, and

describe a remote healing solution.

Forkbomb: Process Table Repair

A forkbomb is a process that recursively spawns new processes, without doing useful work,

until the resources on the system are exhausted. A forkbomb monopolizes the CPU resources of

the system and does not allow other processes to execute. It also causes the process table in the

OS to fill up, preventing new processes from being created on the system. The forkbomb starves

all processes indirectly, as the scheduler has to traverse a large list of processes, to identify

and update their priorities. No other user or system activity is possible when the scheduler is

running.

In our test system (FreeBSD), the OS protects against the forkbomb, or any such runaway

process by limiting (i) the maximum number of processes per user, and (ii) the maximum rate of

process creation. When any of these limits is exceeded, the user is “locked out” of the system

by killing all her processes, and not allowing her to create new processes. Other operating

systems have similar protection mechanisms.

On a heavily loaded system, a forkbomb may never reach the system limit, so the built-in

OS protection will not work. The system is not “dead”, as all its hardware components and the

OS are functioning correctly, but cannot do any useful processing. In this scenario, the system

is inaccessible through the traditional channels (console, or network) as new processes (at least
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the shell) are required to execute any repair task. The forkbomb also prevents the existing

processes, e.g. daemons, from repairing the system by starving them of CPU cycles.

Orion uses two sensors to detect a resource unavailability at the target and to identify the

fork bomb process and all its sub-processes, (i) NPROCS, which counts the total number of

fork and exit system calls executed in the system and maintains a log of the difference between

them, and (ii) the FORK REC sensor shown in Figure 3.4, which records the parent-child

relationships between the processes. These sensors record the total number of processes in the

system and a shadow data structure representing the process hierarchy.

These sensors are recorded in the SB explicitly by registering hooks with the process create

and exit subroutines. A loadable kernel module registers for these notifications and updates the

SB usinng the sbupdateAPI call. The monitor maintains a dependency graph for the shadow

process hierarchy and a counter aggregate for the number of processes in the system. We also

use the rate of creation of new processes to predict the resource depletion before it occurs.

We use three detection policies that use the logs to identify a resource exhaustion. These

policies define thresholds for the maximum number of processes, the depth, and the breadth of

each level of the process hierarchy. Using the depth policy, the system can identify processes

that create a large number of children. Using the breadth policy, Orion can identify sophisti-

cated fork bomb processes, which create new process groups to limit the depth of the process

hierarchy to avoid detection by the depth policy and the default OS protection mechanisms.

On detecting a fork bomb, Orion freezes all processing on the target node to prevent further

damage to the OS state and to perform diagnosis and repair. To freeze the processing and to

create a snapshot, Orion acquires the OS scheduler lock remotely, which prevents all further

activity at the target system. Note that this suspends service to active clients for the duration

of the repair but does not require termination of well behaved servers as in a restart based

approach.

To repair the process table at the target OS, the fork bomb process and all its descendants

must be killed. To minimize remote intrusion, we modify the process signal masks and rely

on the target OS to actually terminate the process. The target defines a Remote Hook with the

signal mask of all processes. This hook can be defined at startup or can be constructed on de-

mand following detection. The external monitor constructs a signal mask with the SIGKILL
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flag set. This signal is delivered to a process when it is scheduled for execution and cannot

be masked off. Once the signal mask of all culprit processes are modified, Orion releases the

remote OS lock and lets the target OS perform the cleanup.

MemoryHog: Memory System Repair

A process or a group of processes that allocate large amounts of memory may cause the sys-

tem to exhaust its memory. The virtual memory abstraction allows each processes to allocate

the maximum addressable memory. Under memory pressure, unused memory is moved to a

backing store for anonymous memory called swap space. We define the usable memory on the

system as the sum of the physical memory size, and the swap space size.

In our test system (FreeBSD), the OS limits the maximum amount of memory allocated per

process. This limit cannot be too low as useful processes with a large memory footprint would

be hampered. However, the maximum usable memory in the system can be exhausted with a

small number of processes that allocate the maximum allowed memory without freeing it.

When the entire usable memory is exhausted, the OS has no alternative but to reclaim

memory from processes. It calls an out-of-memory handler to choose the process with the

largest memory footprint, and to kill it. Unfortunately such a brute force policy does not prevent

a process that creates several child processes, each of which continuously allocate memory,

from exhausting system memory. In one experiment, with as few as 30 such processes, we

were able to prevent any useful execution on the system. Moreover, this policy can eliminate a

useful process on the system if it has the largest memory footprint.

Although the system is alive, it is unusable, as no new processes can be created. Any local

repair is also impossible if it requires allocation of memory as the resource has been exhausted.

This prevents the administrator from carrying out any additional repair on the system. In con-

trast, our BD based system identified the memory hog, and repaired the system.

Orion uses three sensors, OOM KILLER RUNNING, the VM METER, and the

FORK REC sensors described in Figure 3.4 to identify memory resource exhaustion at

the target system. The VM METER structure records statistics about the virtual mem-

ory subsystem including the number of pages in the buffer cache, number of pages available

for low-level system processing, and thresholds for detecting low memory conditions. The
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OOM KILLER RUNNING is a flag, which is set when a severe low memory condition

exists and the system starts terminating processes. Finally, the FORK REC sensor is used to

create a shadow process hierarchy described above to identify the process group that occupies

the maximum memory in the system.

On detecting a memory shortage, Orion freezes all processing on the target system and

identifies the set of processes that have the largest resident memory set. To identify these

processes, Orion remotely traverses the process list and creates a candidate set for termination.

The head of the process table is exported to the external monitors through the remote hooks.

The remote traversal identifies the remote address of the next process structure and uses an

internal mapping table to translate it to the appropriate DMA transfer descriptor, offset, and

length. The process strucuture definition is statically defined in the Orion monitor.

The candidate set of processes are matched against a whitelist of critical processes, essential

for the system to continue execution, e.g., the swapper, kernel resident threads, etc., and these

processes are not terminated, even if at fault. The whitelist is specified by the administrators

during initialization and may contain processes essential to maintain service to the clients.

Finally, using the process table hierarchy, the process groups with the largest resident set sizes

are determined and all processes belonging to this set are terminated. The remote hooks for

terminating processes for memory hogs are identical to that of the fork bomb eradication policy.

3.6 Prototype Implementation

We have implemented a prototype in the FreeBSD 4.8 x86 kernel, using Myrinet Lanai-XP pro-

grammable NICs [132]. For remote monitoring and state extraction, we modified the Myrinet

GM 2.0 library to provide in-kernel remote memory read/write operations between monitor and

target machines.

We implemented the SB mechanism in the OS kernel. The event dispatcher is implemented

as a user-space daemon, and the healing modules are user defined plug-ins for the event dis-

patcher. Healing modules are implemented as dynamically loadable libraries. The SB interface

is implemented as a pseudo-device accessed both from the kernel (at the monitored node, for

sensor updates) and from user space (at the monitor, for sampling the remote SB).
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Remote OS Access

Remote access is enabled by registering the kernel memory of a target system with an I-NIC.

FreeBSD allocates OS memory from a kernel virtual memory map, therefore, a kernel virtual

page may map to different physical pages (if freed and reallocated). This is a problem for the

NIC, which uses a translation table of virtual-to-physical memory mappings and maintains a

mapping cache for fast lookups of frequently used mappings. To keep the NIC table in sync

with the kernel page tables, we dynamically update virtual-to-physical mappings when needed

(on kernel memory allocations).

Performing dynamic mapping updates also requires flushing stale entries from the NIC

mapping cache. Flushing the cache on every mapping update incurs a high cost on a critical

path (kernel memory allocation) and may create synchronization problems between the host

processor and the slower Lanai. To avoid them, we chose instead to completely disable caching.

The incurred penalty is negligible, given the low frequency and volume of the monitoring traffic

(SB is light-weight and fits in one page, requiring just one translation lookup for access). For

recovery or repair, an infrequent event, the penalty from not caching is paid only once.

Remote OS Locking

We have implemented a remote OS locking mechanism that blocks execution of system calls

and of interrupt/exception handlers on the target machine. Remote OS locking is used: (i)

to freeze a suspected target before starting recovery and thus completely eliminate unwanted

effects of false positives in failure detection, and (ii) to freeze the target OS in order to have

a consistent view of its state while performing diagnosis and repair operations. We have also

used remote OS locking to remotely freeze a machine during emulated failure experiments.

Remote OS locking uses remote read/write operations on a “giant” shared-memory lock, in

a two-phase handshake protocol. To acquire the lock, a remote requester (monitor) atomically

writes a one-word lock request in target’s memory. Lock acquire operations on the target OS

were altered to check for posted remote lock requests after acquiring the lock, but before al-

lowing the local acquirer to enter the critical section. If a remote lock request is pending, the

local acquirer on the target relinquishes the lock to the requester by writing back to signal that
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the remote OS lock is free, then blocks (spins) waiting on a flag. To later release the lock, the

holder writes the lock free flag remotely and the target OS resumes normal operation.

This implementation relies on a giant lock maintained and used by the native OS for its own

purposes (e.g., in some SMP versions of FreeBSD and Linux, for mutual exclusion in accessing

related kernel data structures). However, in a kernel that allows fine-grained access to its data

structures, adding a giant lock would kill concurrency. In this case, a better implementation

is possible by noting that the local global locking primitive is actually not needed to block

remote accesses. At the time remote access is granted by a local acquirer, the local global lock

ensures that: (i) no other code will be able to enter the kernel (since accesses are guarded by

lock acquires and the lock is held), and (ii) no code is currently executing in the kernel (since

the lock can only be held by the acquirer, which has not yet entered the critical section).

The idea is to enforce these two conditions separately, from the remote node, with assis-

tance from the target OS. To enforce (i), the remote node will set a blocking flag that the target

checks at all kernel entry points (system calls, interrupt handlers, fault handlers, etc.). To en-

force (ii), the target OS will maintain a counter of threads currently executing in the kernel for

each class of entry points, atomically updated at entry and upon exit. After setting the blocking

flag, the remote node will wait until all threads of execution have “drained” from the kernel,

i.e., until all thread counters become zero. Note that in both implementations a timeout can

be used to break an infinite wait, e.g., if the system hangs with the giant lock held or with a

nonzero counter.

3.7 Evaluation

We present an evaluation of the Orion mechanisms to offload monitoring functionality and the

effectiveness of remote monitoring and repair in the context of the two case studies. For failure

detection, the goal is to evaluate the overheads imposed by Orion and the accuracy of the failure

detection. For remote repair, the goal is to demonstrate the effectiveness of restoring the system

to a functional state.

The experimental setup consists of DELL PowerEdge 2600 2.4 GHz, 1 GB RAM dual-

processors interconnected by 1 Gb/s Ethernet. Server nodes run FreeBSD 4.8 incorporating
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our BD prototype. Orion is implemented with Myrinet LanaiX NICs with a 133MHz PCI-X

interface [132].

3.7.1 Failure Detection

The goal of failure detection is identifying a faulty node accurately and as soon as possible.

To evaluate Orion mechanisms, we instantiate the monitor at the I-NIC and at a remote node.

We introduce failures at the target node using a kernel module for a faulty network interface

driver, which crashed the system upon loading it in the kernel. Once crashed, all system activity

ceased and the system was rebooted for further experiments. Using a SB view refresh rate of

100ms, and the hysteresis of 3 refresh cycles with no updates to the sensors, Orion was able to

detect the failure in all cases within 400ms of introducing the failure.

Monitoring Overhead

The sensors used to detect failures are statistics data structures, maintained by default in the OS

(struct vmmeter in FreeBSD), Orion does not introduce any additional overhead at the

target. During initialization, a one-time registration cost of the memory descriptors is incurred,

which is less than 10µs.

The CPU overheads at the monitor involve retrieving the SB contents from the target and

evaluating the liveness condition, and the memory overheads involve storing the log required

to evaluate this condition. We use the slope of the line connecting the context switch counter

and the timer interrupt counter as the liveness indicator. To maintain these slopes, we store the

contents of two SB Views at the monitor. The size of the vmmeter structure is 196 bytes,

therefore, the memory overhead at the monitor is 392 bytes.

On a monitor node, the overhead includes (i) monitoring cost (reading the local view of the

monitored SB, comparing sensor values, etc.), and (ii) cost of transferring the remote SB from

the target node. To determine them, we measured the CPU usage of a monitor process while

varying the sampling rate of a remote SB with 100 sensors. In the worst case (sampling the SB

in an infinite loop), the CPU usage was 46%. Sampling every 10 ms (the lowest granularity of

a timer), the CPU usage is about 5%, while at 100 ms it drops under 1%. This shows that fast

failure detection can be performed with low overhead on a monitor node.
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Figure 3.7: Variation of false positives in failure detection with the detection deadline.

The latency of transferring the SB contents for the I-NIC configuration is the DMA transfer

time, which is less than 100µs, the minimum timer granularity available at the NIC. For the

RDMA connected remote monitoring configuration, we measured the transfer time to be around

300µs. The low transfer times indicate that detection deadlines of less than 1ms are possible

with Orion if the sensors are updated at the target with similar intervals.

Detection Deadlines and False Positives

This experiment shows that the detection deadline T , must be carefully chosen to match the

behavior of the sensors used for failure detection, in order to avoid false positives at a monitor.

A false positive occurs when a healthy node is wrongly declared failed by a monitor.

In this experiment, we illustrate the effect of choosing aggressive SB View refresh rates,

which may not allow the sensor values to be updated leading to false positives. We artificially

induce false positives in failure detection by a monitor, using the number of context switches,

recorded in the VM METER sensor as the liveness indicator. A remote monitor samples

the counter with period T equal to its detection deadline while a CPU-bound task runs on the

target node. Since this task does not block, if there are no other runnable tasks, no context

switch may take place within a time-slice. The counter may stall for the duration of a time-

slice, and a monitor may declare the node faulty if the detection deadline is smaller than the

time-slice. Figure 3.7 shows the fraction of false positives with increasing detection deadline.

Since the normal time-slice of our test system is 100 ms, deadlines under this value run the
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No. of processes Time (ms)
100 140
500 263
1000 350
1500 426

Table 3.4: Variation of the repair cost with the number of processes in the system
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Figure 3.8: Variation of execution time of test program with number of forkbomb processes.

risk of inducing wrong decisions. As the deadline increases, so does the chance that a context

switch occurs before the deadline. For deadlines larger than 85 ms, other activity in the system

eliminates false detection. This shows that the system is sensitive enough to fail “as-expected”

and expose programming errors caused by unrealistic detection deadlines.

3.7.2 Remote Repair

For remote repair, the goal of our evaluation is four fold. First, we show that a computer

system can be brought down using the programs described in Section 3.5.2. Second, show that

the system cannot be repaired locally, i.e., either the system is unresponsive, or it terminates

essential processes like an application server. Third, we show that we can detect and repair such

cases using Orion. Fourth, we show that the monitoring and repair in our system are efficient.

Diagnosis and Repair Cost. Diagnosis and repair involve traversing the remote process

table and building a local view, identifying the culprit, and killing all its processes.

The cost of repair therefore depends on the number of processes present on the target node.

Table 3.4 shows the variation of the average cost of repair with the number of processes on
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Figure 3.9: Variation of execution time of test program with number of memory hogs.

the target node. While the repair cost grows with the number of processes, in all the scenarios

we studied, it takes less than half a second to execute. This shows that repair (an exceptional

action) is fast, and also that it should not impose too much overhead on the monitor system.

Repair Effectiveness. To illustrate the two case studies of Section 3.5.2, and to show

that remote repair works while local repair is practically impossible, we developed two test

programs: a forkbomb and a memory hog.

The forkbomb creates processes that execute in a tight loop until the CPU cycles on the

system are exhausted. A variation of this forkbomb continuously reads from a pseudo device

(/dev/zero in FreeBSD) and writes to a NULL device (/dev/null in FreeBSD). This prevents the

scheduler from lowering the priority of the forkbomb and of its children.

The memory hog exhausts the system memory and swap space. It has a controller process,

and a variable number of child processes. The controller creates the children which allocate

memory in a loop. If a child is killed by the system, the controller spawns a new process.

To illustrate the effect of the above two programs, we run a simple process that executes in

a loop, measuring the time it takes for each iteration. The user time of this process is constant

through all experiments. However, when the forkbomb or the memory hog are executing, the

program takes longer to get its share, increasing the wall clock time measured on the system.

The ideal time in Figures 3.8 and 3.9 is the time the program takes to execute when there is no

other load on the system (5s).

Figure 3.8 shows the variation of the wall clock time for the test program with the number



83

of processes created by the forkbomb when (i) a CPU bound forkbomb executes, and (ii) when

an I/O bound forkbomb executes. We see that the execution time grows unbounded for the

forkbomb cases without repair, while it stays close to the ideal value when remote repair is

performed.

Figure 3.9 shows the variation of the wall clock time for the test program with the number

of processes created by the memory hog. Our system has 1GB of RAM and 2GB of swap

space. Our test OS (FreeBSD) limits the maximum memory allocated by a process to 512MB,

therefore up to 5 processes the system is well behaved and repair is not triggered. Once the

memory is exhausted, the system becomes unavailable and execution time without remote re-

pair explodes. With remote repair, the memory hog is identified, and all processes with the

same userid are killed. The system is recovered with minimal disruption.

With around 400 processes created by the forkbomb, or with a pool of 30 memory hog

processes, the test program did not complete for more than 30 minutes. In fact, we failed to

access the system for repair, and we had to reboot to regain control over the machine. With

remote repair, the system correctly identified the culprit and recovered in a very short time.

3.8 Related Work

There is a large body of research and commercial products that focus on monitoring computing

systems and networks.

3.8.1 Hardware Sensors and Platform Management

Intelligent Platform Management Interface (IPMI) [55] is a standard that defines hardware com-

ponents and the communication protocol to gather hardware sensor information within a com-

puter system. The term ”platform management” is used to refer to the monitoring and control

functions that are built in to the platform hardware and primarily used for the purpose of mon-

itoring the health of the system hardware. This typically includes monitoring elements such as

system temperatures, voltages, fans, power supplies, bus errors, system physical security, etc.

It includes automatic and manually driven recovery capabilities such as local or remote sys-

tem resets and power on/off operations. It includes the logging of abnormal or ‘out-of-range’
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conditions for later examination and alerting where the platform issues the alert without aid

of run-time software. Lastly it includes inventory information that can help identify a failed

hardware unit. IPMI is composed of a system management bus Intelligent Platform Manage-

ment Bus (IPMB) which enables IPMI enabled devices and emergency system management

components, e.g. network interfaces to be plugged in to the system and communicate with

other components in the system. IPMI support is incorporated in several vendor offerings and

is used in conjunction with OS and management software, e.g. HP Openview [179] and IBM

Tivoli [110] to monitor and control hardware components. IPMI is an evolution of similar

functionality in systems like Tandem [22], TARGON32 [34], and DEC Titan [137], which

use monitoring and failure detection in conjunction with highly redundant hardware to provide

continuous operation. Orion focuses on offloading software component monitoring, including

application and OS subsystems. However, the sensor information generated by hardware can

also be incorporated into the Sensor Box and used to define monitoring policies.

Flight Data Recorder [217] uses specialized hardware to interpose on the memory bus to

monitor and log all modifications to system state, including memory, cache, and processor reg-

isters. This allows the system to replay failed executions and identify exact points of failure.

Specialized hardware has also been used to monitor memory traffic to identify the page miss

ratio and use this information for intelligent memory allocation. Memory traffic is not visible

to Orion, therefore it is impossible to build a complete view of the memory state. However,

providing access to the memory bus requires modifications to the memory bus and cache con-

trollers and is not practical for commodity computer systems.

3.8.2 Software Monitoring

Monitoring software through internal logs and external statistics has been studied in a variety of

contexts. Self-monitoring was used in [177] for adapting OS behavior with the goal of increas-

ing performance. Our system also relies on introspection by the monitored system (through the

SB mechanism), but uses external, nonintrusive observation of the SB and of other OS state to

detect and diagnose exceptional events in the monitored system.

K42 [189] is an OS with built-in support for component hot-swapping. While in principle

hot-swapping can fix certain cases of damaged OS state (e.g., when the cause is an OS bug, the
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faulty OS module can be dynamically replaced with a correct one), it cannot address the more

frequent situations when the trigger lies in user space (e.g., faulty or malicious user programs).

Moreover, such systems are built from scratch to provide hot-swapping support. In contrast, our

system uses a slightly modified general-purpose OS to provide generic support for monitoring,

diagnosis and recovery of a computer system from damage to its OS state.

Defensive programming [157] is a technique in which compiler-assisted program annota-

tion is used to insert introspecting and reactive code (sensors and actuators) into application/OS

code, with the goal of detecting and alleviating DoS attacks. Similarly to BD, defensive pro-

gramming requires cooperation from system and/or application code through the use of min-

imal APIs for augmenting software functionality. Defensive programming could be used (at

least in principle) to detect and react to violations of constraints on system resource usage.

However, in the case of OS resources, this would require extensive changes to be integrated

with OS kernel code, including complex detection and repair policies to be statically built into

the OS. Moreover, collocation of such code with the system it protects would incur CPU over-

head to execute the monitoring and detection algorithms. In contrast, our system provides a

simple monitoring abstraction along with support for flexible detection/repair mechanisms to

be easily implemented, tested and deployed from a different system, without using resources

of the target system.

Language support for automatic error detection and repair of data structures is explored

in Acceptability Oriented Computing (AOC) [60, 166]. A BD-based architecture can be inte-

grated with and leverage such support to define diagnosis/repair algorithms on OS data struc-

tures. Using a BD-based architecture in conjunction with AOC can also solve its vulnerability

to system faults and resource exhaustion by monitoring resource constraints and performing

repairs remotely from another system.

Self-Healing Systems use statistical learning techniques to characterize the behavior of the

system, identify anomalies, and take actions to heal the system [98]. Learning the behavior

of the system requires comprehensive training data, which must be similar to the actual ob-

servations on similar data at run-time. This approach has been shown to be successful in case

of fault diagnosis in recoverable Internet services [41, 48, 47] and enterprise-wide load bal-

ancing [46, 52]. Similar techniques have been used to determine the workflow in distributed
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applications and debug distributed systems. Orion builds efficient mechanisms to provide con-

tinuous access to monitoring data. Through the SB API, Orion also enables applications to

participate in generating the monitoring data. Therefore, the above techniques are complemen-

tary as they operate on the available data to construct models of expected behavior, and identify

anomalous conditions and adapt system behavior.

Copilot [147] is a system that provides access to system memory from an external copro-

cessor to detect intrusions. Similar to Orion, Copilot uses a PCI card on the I/O bus of the

target to provide nonintrusive access to the target memory. However, unlike Orion, the OS

and applications cannot participate in the monitoring framework, which in turn is limited to

identifying intrusions and violations of data structure invariants, e.g., in file systems, through

statically defined policies.

3.8.3 Interposition and Virtual Machine Monitors

Nooks [201] is a system that interposes on the communication between the OS and the device

drivers by creating a thin wrapper layer between the driver modules and the OS kernel. Nooks

monitors the health of the driver and on detecting a fault or hardware lockup, reloads the driver

and prevents a system-wide failure. Nooks requires significant changes to the OS and is limited

to monitoring software on a single node. In contrast, Orion performs external monitoring and

while it cannot prevent failures from incorrect or inconsistent accesses within a system in real-

time, it can be used to generate alerts on detecting failures and preserving state for future repair

actions.

Application monitoring and recovery has been proposed in Rx [158], where the OS main-

tains snapshots of application state and on identifying a failure, performs a controlled replay

while modifying environment variables. This approach recovers applications from faults that

arise due to scheduling decisions and other environmental factors that affect execution external

to the application logic. Repair with Orion is performed externally, from the I-NIC or from a

remote monitor. However, similar to Rx, Repair Hooks in Orion use controlled modification of

system memory to modify execution of application and OS subsystems for affecting repair.

Hypervisors [37] and Virtual Machine Monitors (VMMs) [21, 214, 209] interpose between

the OS and the hardware and multiple OS instances to share the same hardware resources.
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VMMs have been used to create primary-backup pairs for client transparent recovery [37],

identify and recover from software misconfiguration [214], and even for logging all OS opera-

tions to provide a time-line of failures [66] and allow backtracking for intrusion detection [100].

Recently, VMMs have been used to allow application-specific predicates to identify and handle

application monitoring and recovery. In principle, offloading monitoring to Orion is similar to

offloading it to a VMM, but differs as Orion does not control access to hardware. However,

Orion can be instantiated within a VMM and use a separate VM for monitoring and even for

repair.

In the context of Internet Services, interposing on the client-server path has been used for

monitoring client visible performance characteristics, identifying failed requests, monitoring

availability of services, and implementing client-transparent failure mitigation. The Recovery

Oriented Computing (ROC) [146] project studied the behavior of Internet Services from the

availability perspective [141] and built systems based on software rejuvenation [41] and op-

erator controlled rollback from an inconsistent state [38]. The Vivo project [133] studied the

relationship between performance and availability in Internet Services and database systems.

Interposition was used to create distinct production and validation clusters where the behavior

of different versions of the service were studied using live and trace driven requests [134, 138].

Several systems use interposition to monitor network traffic. These systems capture all

packets flowing on the network and extract statistics or patterns to build a view of the ongoing

communication. Building such systems is challenging due to the high network bandwidths and

the large number of communicating end-points, and offloading monitoring functionality to a

programmable network interface is a well accepted technique in network monitoring. Network

monitoring systems based on offloading have been proposed to identify traffic characteristics,

heavy hitters, application communication patterns, intrusion detection, etc. While Orion has a

different goal, techniques developed for maintaining historical information with a small mem-

ory footprint, e.g. randomized data structures [28, 71, 54], are relevant for improving coverage

and accuracy of monitoring with Orion. Network monitoring data can also be used in conjunc-

tion with the Sensor Box data to further broaden the scope and improve efficiency of monitoring

systems with Orion.
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3.9 Summary

In this chapter, we presented Orion, a system architecture that offloads monitoring functionality

to a programmable intelligent network interface card (I-NIC) and enables remote monitoring

and repair of operating system state. The I-NIC sits on the I/O bus of the target system, has

its own processor and memory, and is connected over a private network. Using the I-NIC,

the target memory can be accessed nonintrusively, without involving its CPUs. Therefore,

monitoring with Orion continues to function, even when the target OS is crashed, hung, or is

otherwise unavailable.

We presented mechanisms to record monitoring records, Sensors at the monitoring target

and an OS abstraction, Sensor Box (SB), which collects and exports sensors to remote monitors.

As part of the Orion framework, we presented the monitoring context, which retrieves the SB

and processes its contents to generate an event log and provides a query interface to build

monitoring policies.

We demonstrated the use of Orion through two case studies that perform failure detection

and remote repair of OS state damaged due to resource exhaustion. Through the experimental

evaluation of our prototype, we characterized the overheads of Orion mechanisms. Our evalu-

ation also showed the effectiveness of Orion in accurately identifying failed nodes in a cluster,

and eradicating processes that monopolize the OS process table (fork bomb) and memory re-

sources (memory hog).
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Chapter 4

FileWall: Offloading Policy Enforcement in Network File Systems

4.1 Problem Statement

Network protocol evolution is limited due to the tight binding between clients and servers. Sim-

ple extensions to protocols are difficult to deploy since they require modifications to a clients,

which may have diverse hardware and software profiles, and servers, which may be propre-

itary and closed source. Users and administrators are willing to tackle protocol upgrades for

substantial and critical upgrades, e.g., for better performance, bugfixes, and plugging secu-

rity vulnerabilities. However, extensions that affect access policies are largely ignored. Such

limitations have long been recognized in networking research, and offloading functionality to

network middleboxes has become increasingly popular for protocol extensions.

Network middleboxes [210], for example, Firewalls [74], Network Address Translators

(NATs) [85], Network Intrusion Detection Systems (NIDS) [213, 182], Virtual Private Net-

work Concentrators (VPNs) [80], etc., are an integral part of the network infrastructure today.

These systems interpose on the network path between critical infrastructure services and the un-

trusted, possibly vulnerable clients of these services. Through interposition, the middleboxes,

(i) identify and discard unwanted, malformed, or malicious traffic, (ii) transform packet con-

tents to map hosts with private addresses to the public address space, and (iii) generate traffic

monitoring and profiling data based on administrator defined policies and the state accumulated

during operation.

Network file systems, e.g., NFS, CIFS, etc., are an important part of the critical network in-

frastructure protected by network middleboxes. These file systems provide centralized storage

for data shared by several users. The user interface of network file systems has been designed to

be identical to the local file systems. Uniform interfaces enable applications to work seamlessly

when file system data is stored locally, or over the network. Unfortunately, due to this limited
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interface, the access control of network file systems is also identical to local file systems.

Access control in existing network file systems relies on primitive mechanisms, like Access

Control Lists and permission bits, which are not enough when operating in a hostile network

environment. While file servers can be protected from unauthorized network access by filter-

ing out unauthorized network traffic at the edge of the network, e.g., at firewalls and network

intrusion detection systems (NIDS), such protection is unavailable within the network, where

all file system clients reside. Moreover, using a local firewall at the servers completely ignores

the file system semantics when defining access policies.

Unfortunately, both unmodified network file systems and network middleboxes cannot in-

dependently implement policies effectively on file system accesses. On the one hand, network

middleboxes are limited to using the network context information, for example IP addresses,

to implement network access policies. On the other hand, network file systems rely on the lim-

ited local access control mechanisms, e.g., Access Control Lists and rwx permission bits, to

implement access policies, and ignore the network context. As a result, simple access control

policies to protect the file system, for example, preventing user accesses to the file server, si-

multaneously from multiple machines, are difficult, if not impossible to implement in network

file systems.

We believe, a combination of file system context and network context is essential to suc-

cessfully enforce context aware network file system access policies. In a network file system,

the file system context includes naming, file hierarchy, and the semantics of the file system

operations, while the network context includes the client identities, e.g., IP addresses and host-

names, the network characteristics, e.g., bandwidth, delay, loss rate, and the network topology.

In this chapter, we present FileWall, a middlebox that combines network and file system

contexts to offload enforcement of file system access policies. It interposes between file system

clients and servers and mediates their interaction. It captures, modifies, and generates network

file system messages, provides a persistent state storage mechanism, access context, and defines

an execution engine for rules, which implement access policies. Figure 4.1 shows the FileWall

architecture. Analogous to a firewall, the file servers and FileWall are trusted and reside in the

same network domain, whereas the clients are external. Administrators have exclusive access

to FileWall.
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FileWall provides a single point of administration for enforcing access policies on network

file system communication. While a similar functionality could also be implemented at the

servers, there are several benefits of interposition. First, it provides isolation by offloading the

monitoring and control functionality from the file servers. This leads to a separation of concerns

and allows file servers to evolve independent of the access policies. Second, by restricting

access only to administrators, and allowing no user programs or daemons from executing on

it, FileWall reduces the chances of subversion of the file server by rootkits. Third, offloading

through interposition enables FileWall to virtualize the network endpoint visible to clients,

allowing file system federation, failure recovery, and system upgrades to be handled transparent

to the clients. Finally, FileWall requires no modification to existing file servers and is readily

deployable.

Realizing FileWall as a network middlebox is challenging. While clients and servers have

a complete knowledge of the file system state, only the state updates are visible over the net-

work. Therefore, the the file system state must be inferred and maintained externally, using

message history and protocol specifications. Network file systems are built on top of transport

protocols, which implement their own semantics. Therefore, any FileWall cannot make arbi-

trary modifications to messages and flows, and must adhere to the semantics of the underlying

transport protocols. An additional challenge for implementing FileWall in the network is the

usability. For administrators to use the system, it must be easy to configure, monitor, debug,

and extend. Finally, performance is a first order concern in network file systems. Latency and

throughput requirements are more stringent, and they directly affect user-visible performance.

Therefore offloading policy enforcement at a network middlebox should not degrade the file

system protocol performance.

4.2 FileWall Model

Offloading file system access policy enforcement in the network requires a network compute

element. This element must adhere to a set of constraints. First, it must be autonomous and

programmable. Autonomy ensures that clients and servers are not modified when defining ac-

cess policies. Programmability is necessary as the access policies may be extended, refined,
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Figure 4.1: FileWall architecture.

or updated, due to organizational or legislative policy changes. Second, all network file sys-

tem messages and message flows must be visible to the element. Third, modifications can be

performed on messages and flows to alter the behavior of the file system protocol, but these

modifications must preserve all underlying protocol semantics (e.g., RPC, TCP/UDP, etc.)

FileWall satisfies these constraints. It is a network middlebox, which intercepts all mes-

sages flowing between the client and the server, and transforms these messages to modify and

extend network file systems. FileWall is transparent to clients and is collocated in the same

network segment as the servers. FileWall is trusted by the file servers and shares the servers’

authentication keys, which enables it to intercept, interpret, and transform encrypted or signed

messages. File system policies are defined by administrators who have exclusive access to File-

Wall. A single policy represents a unit of FileWall processing. Similar to an object oriented

program, each policy is defined by a class that determines its behavior and adheres to a common

interface.

FileWall is a firewall for network file systems that offloads policy enforcement to a network

middlebox. FileWall combines file system context information with network context informa-

tion to evaluate policies that operate on file system messages. Table 4.1 compares the features

of a typical firewall/NAT with FileWall. As shown in the table, both firewalls and FileWall
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Firewall / NAT FileWall
Attributes Packet File System Message
State Flow State Access Context
Event Packet Arrival, Timeout Message Arrival, Timeout
Condition Firewall Rules FileWall Policies
Action Forward, Rewrite, Discard Forward, Rewrite, Discard, Generate
Access Administrator Only Administrator Only

Table 4.1: Firewall vs. FileWall

utilize attributes contained in messages. Additionally, both are event-driven, evaluating condi-

tions (rules) on message arrival or when an timeout occurs. Both maintain state, either network

flow state or access context. A firewall can either forward, rewrite, or discard a packet, while

FileWall may choose to forward, rewrite, discard, or generate a new message. Finally, both are

configured through an restricted interface, which is accessible only to administrators.

4.2.1 Network File System Model

In our model, all file system accesses are remote, and clients cannot log on directly to the server

and modify the file system. Therefore, all modifications to the file system state are performed

over the network as file system messages, and pass through FileWall.

A file system message defines a single unit of transfer between clients and servers, which

is composed of one or more packets sent over the network. For a datagram protocol, e.g., UDP,

each packet contains a file system message. For stream oriented protocols, e.g., TCP, client

connections are made directly to FileWall, which in turn establishes connections to the servers,

and messages are identified by special record markers. Each message contains attributes that

determine the file system operation. A message sent by a client contains the attributes corre-

sponding to a remote procedure call (RPC), while a server sends the response to this call.

FileWall is responsible for extracting file system attributes from messages and reconstruct-

ing messages with new or transformed attributes. Therefore, it must understand the data repre-

sentation used by the protocol. In the following, we describe FileWall built for the ONC/RPC

protocol that uses the XDR data representation. However, FileWall can be easily extended to

work with other data representation standards.

FileWall operates on file systems that follow a transactional mode, that is, every file system
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operation initiated by the client must receive a response from the server. The client state is

not updated until the server reply is received. Most existing network file systems, for example,

NFS and CIFS, follow the client driven transactional model.

4.2.2 State Model

FileWall policies are executed using the attributes contained in the file system message, in the

context of state maintained by the policy or present in the execution environment. We call this

state the access context. There are two components of the access context: (i) static context, and

(ii) dynamic context. Each component is available to policy writers.

Static context is read-only state specified by the policy writer during initialization. This

state is not updated during execution. Examples of such state include lists of user identifiers,

list of file servers, and servers’ authentication keys.

Dynamic context contains state generated by policies during execution. FileWall policies

can store arbitrary state in the dynamic context and retrieve it at a later stage. FileWall does

not interpret the state, and treats it as a black box. Policies may choose to store their dynamic

context in persistent storage through a database, which guarantees the ACID properties (Atom-

icity, Consistency, Integrity, and Durability) of the stored state. By default, dynamic context

stored in memory is purged on every restart and must be rebuilt from scratch.
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4.2.3 Message Transformation

FileWall is external to clients and servers, therefore all file system policies are implemented

using a combination of attribute transformation, flow transformation, and flow coordination.

These primitives represent the minimal set of functionality supported by FileWall for message

transformation.

To illustrate message transformation, Figure 4.2 shows the flow of a client request mes-

sage (M) and the response message (R) through FileWall. The client sends its request to the

server. FileWall intercepts this message and invokes policy handlers, which use access context

to transform this message to M ′ and forwards M ′ to the server. The server responds with a

message (R), which is transformed to R′ and sent to the client as the file system response.

Attribute Transformation: File system messages are constructed by the sender as a set of

arguments and updates in a request, or as a response to a previously received request. Upon

receiving a message, the destination (client or server) executes the request, or updates its state

based on the response. The attributes in the message determine the corresponding action.

Policies may modify the attributes to affect the action performed at the destination. These

attributes may also be modified to request additional information. Attribute transformation

includes attribute remapping, operation modification, and argument transformation.

Attribute remapping adds a layer of indirection between the client and the server. The client

visible attributes are modified in each message by FileWall before being presented to the server.

The server responses are modified similarly to remap the attributes to those visible to the client.

File system messages include the identifier of the operation to be performed at the server.

Through operation modification, client requests are transformed to execute different function-

ality. The responses to the modified operations must be transformed to match the original

request.

Argument transformation may modify any part of the file system message to implement

policies. Arguments include the data updates (writes) and queries (reads). Therefore, FileWall

can also implement data transformations through this mechanism.

Flow Transformation: A network flow represents a client-server channel where all file
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system messages are exchanged. One or more messages in a sequence determine the opera-

tions performed and the state updated at the clients and servers. Flow transformation includes

filtering, reordering, and injecting messages within a flow to modify the file system behavior.

Filtering removes messages sent by one end of the flow from being received at the other.

Such transformation is useful to implement access control and security policies, where only

messages representing permitted operations are forwarded to the server, removing all other

messages from the flow.

Message injection is the dual of filtering and introduces additional messages in the flow.

Recall that in our model, all file system requests must generate a response. Therefore, for every

filtered request, a response must be injected in the flow to maintain protocol semantics and

operation. Additionally, message injection is used to retrieve state information from the server.

This state, while required by the policies, may not be available for all file system operations

external to the file server and may require specialized operations. Request injection and filtering

out the response are used to retrieve such state from the server.

Message reordering modifies the sequence of messages within a flow. Such transformation

may be used to modify the caching and read-ahead mechanisms at the file server by changing

the inputs to the existing mechanisms. Such an approach has previously been used in con-

text of Infokernels [17], which use carefully crafted input sequences to modify existing OS

mechanisms like buffer cache eviction.

Flow Coordination: For a single client-server pair, all FileWall policies may be imple-

mented using attribute and flow transformation. However, when policies affect more than one

client-server pair, additional mechanisms to transform messages across a collection of flows

is necessary. Flow coordination includes multiplexing/serialization and demultiplexing/fan-out

across a group of flows.

Multiplexing or fan-in operates on a collection of flows and generates a single flow of

messages delivered to the client or the server. Multiplexing may be used to implement novel

consistency semantics by controlling the sequence of messages across flows, atomic updates

by serializing all operations performed on a file system object or a group of objects, etc.

Demultiplexing or fan-out are the duals of multiplexing and separate a single flow of mes-

sages into multiple flows. These multiple flows may correspond to a previously multiplexed
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collection or may be new flows generated for replicating a message flow. These are used

to implement file server replication, where multiple flows are generated, one for each server

replica, from a single client-server flow. Each request must be replicated using fan-out and the

responses combined using fan-in.

4.2.4 Policy Model

FileWall policies are used by administrators to modify and extend network file systems. File-

Wall policies are stand-alone and execute independently. Policies may be primitive, where the

functionality is self-contained, or composite, where multiple primitive policies are combined

by connecting them in a chain.

The scope of file system policies is broad. The policies differ in their intended functionality,

state requirements, and transformations required. File system policies have previously been

proposed for performance, including aggregating file servers and functional decomposition, for

access control and security, for file system management, including monitoring, replication and

failover, and for extending semantics or implementing new policies for consistency, atomic

updates, versioned updates, etc.

We define four classes of primitive policies and describe a small set of representative poli-

cies from these classes. This set is by no means exhaustive. However, it illustrates the key

features, which are used to implement policies, and the ease of implementing such policies

using FileWall. These policies define templates, which can be utilized by administrators, to

implement the most commonly used functionality. Moreover, these templates can also be used

as a starting point for writing customized policies.

The first class of FileWall policies performs only attribute extraction and state updates. To

illustrate this, we describe a message flow statistics gathering policy. The purpose of this policy

is to collect per-client/per-server statistics about the messages flowing between the clients and

servers.

The second class of policies performs attribute transformation. To illustrate this, we de-

scribe a file handle security policy, which generates per-client virtual file handles and stores

a mapping between the virtual and real (server generated) file handles. The purpose of this

policy is to add an additional layer of security. Server generated file handles typically reveal
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information about the server, such as OS version and date of file system creation, as described

in [206].

The third class of policies performs flow transformation. To illustrate this, we describe a

temporal access control policy implemented with FileWall. This policy prevents all accesses

to the file system during a specified time window. This example also demonstrates how an

extended ACL attribute, time, can be added to the default rwx access control. This attribute is

maintained only by FileWall and is not visible either to the client or the server.

The final class of policies performs flow coordination. To illustrate this, we describe a

replication policy, which generates copies of client-server messages for each replica server.

Virtual file handles are used to maintain a one-to-many mapping across replicas. We assume

all servers start with identical state and the failure mode is fail-stop. That is, once a server

fails, it must be brought back to a consistent state external to the normal file system operation.

Server-client messages are forwarded to the clients only after a response is received from each

of the replica servers.

4.3 FileWall Design

In this section, we present the design of the FileWall system. Our goal while designing File-

Wall was to keep the core of the system small and provide a set of primitive policies, which

can then be composed. The core functionality of FileWall is message construction, attribute ex-

traction, scheduling, and message forwarding. Message transformation and state maintenance,

which extend file system functionality, are implemented by policies in the context of message

handlers. The minimal functionality of the FileWall core leads to a small and easy-to-maintain

code base and encourages modular policies and code reuse.

In the following, we first describe policy execution, composition, and scheduling. We then

discuss how FileWall associates requests and responses, and finally describe how policies are

specified in the system.
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Figure 4.3: FileWall policy chains with the scheduler and forwarder.

4.3.1 Policy Execution and Scheduling

A policy is a unit of FileWall processing. Its behavior is defined by handlers, which are invoked

on receiving messages. FileWall policies may be linked as shown in Figure 4.3. FileWall

manages fixed-sized input buffers for each policy. A policy interacts with FileWall through

either reading/writing the access context, or through explicitly forwarding a message. FileWall

places the forwarded messages in the input buffer of the next policy in the chain.

Two FileWall components, Scheduler and Forwarder (shaded boxes in Figure 4.3), enable

policy chains. The forwarder is invoked by policies with a message, it classifies the message as

a request or response, finds the next policy in the chain, and places a reference to the message

in the next policy’s buffer. If this buffer has no empty slots, the message is dropped. Messages

dropped by FileWall are no different than messages dropped by the network and do not affect

the correctness of the file system protocol.

Policy chains are organized as two ordered queues: the input and the output queue, which

are mirror images of each other. That is, the policy at the head of the input queue is at the tail

of the output queue. Intuitively, if a policy, E0, sees a request R0 before E1, then the response

for R0 will be processed first by E1 and then by E0. The start (RECV) and the end (SEND)

of the policy chains are fixed, and receive and send messages over the network, respectively.

Policy chains are defined by the administrator using a plain-text configuration file that is parsed

by FileWall. This file lists the policies in the order they must see the client request messages.
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Figure 4.4: FileWall pending request map.

FileWall gains control of execution either asynchronously, on receiving a new message,

or synchronously, on completion of a policy handler. On receiving a new message, FileWall

simply inserts it in the input buffer of the RECV policy. Note that the messages are well formed

file system messages. Reassembly and classification of messages are performed external to

FileWall. No scheduling decisions are made during the execution of a policy.

FileWall schedules the policies synchronously by invoking the corresponding handler. Poli-

cies are scheduled round-robin, from RECV-to-SEND, in the chain specified during configura-

tion and run to completion. More complicated scheduling algorithms, for example proportional

fair share or lottery scheduling, can be used as replacements for our default implementation.

4.3.2 Matching Requests and Responses

FileWall maintains a global pending request map, which is initialized when client to server re-

quest messages are generated, either by receiving them from the network, or by policy handlers.

The pending request map maintains the messages indexed by the unique transaction identifier,

and a bitmap of all policies that have handled the message.

Figure 4.4 shows the flow of two messages through a policy chain. There are three policies

in the system with identifiers 0, 1, and 2. The message P0 has the message identifier M0 and is

seen by all three policies. As each policy forwards the message, the bit in the pending request

map corresponding to this policy is set. Policy 1 generates a new message, which has not been

seen by Policy 0. On creation, FileWall allocates a new entry in the pending request map and
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sets the bit for policy 1. The modifications to the request map are shown as shaded boxes.

On receiving a server to client response message, the corresponding client to server request

message is identified, is retrieved from the pending request map, and is presented to the policy

handler along with the response message. Before handling the response, FileWall checks if its

bit is set in the bitmap. If not, the message is passed to the next policy in the chain. If none of

the successor policies in the response queue handle the message, the message is discarded.

FileWall ensure exactly once execution semantics through the bitmap. Response messages

are handled only by policies that have previously handled the corresponding request message.

Therefore, if an policy generates a new request message, none of its predecessors in the policy

chain see the response. Similarly, if a response message is generated by a policy, the successors

in the policy chain see neither the request nor the response message.

If the message is dropped, either by a policy or by the network, the pending requests occupy

FileWall memory. FileWall defines a timeout that purges the request messages and clears the

bitmap. All responses for this request are subsequently discarded.

4.3.3 Policy Specification

FileWall provides support for policy specification in two ways. First, a convenient macro-like

language (FWL) for specifying new policies is provided. FWL policies are first translated into

C or C++, then compiled into object code using the native compiler. However, developers (or

power users) who wish low-level access can bypass the macro language completely and work

directly with the native language policy implementations (C or C++). A base library of generic

policies, which can be used to specify more complex policies (chains of policies), is provided.

A FileWall policy consists of sections that correspond to the respective processing in the

policy. Administrators define new policies using the following format (in FWL):

@CONFIG::PolicyName {

/* Declarations, Configuration variables*/ }

@CLItoSRV {

/* Client-side message handling code */ }

@SRVtoCLI {

/*Server-side message handling code */ }

A policy is specified, using FWL, in three sections: configuration (CONFIG), client-side
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(CLItoSRV), and server-side (SRVtoCLI) that handle the corresponding FileWall processing.

The CONFIG section contains all of the configuration variables and references to externally-

defined functions or libraries. The CLItoSRV section is placed in the body of the client-side

message handler and contains the code that is executed for any message received by FileWall

from a client. The SRVtoCLI section is placed in the body of the server-side message handler

and contains the code that is executed for any message received by FileWall from a server.

FWL provides two additional conveniences: attribute extraction and associative arrays. At-

tributes are encoded in packets in a host-independent data representation format (e.g., XDR).

FileWall provides an extraction operator “@”, which decodes the packets and presents the pol-

icy writer a reference to the decoded attribute.

Associative arrays are declared in the configuration section and are usually stored, as an

in-memory hash table, in the access context of a policy. However, if a persistent array is re-

quired, it can be specified using a special operator, #, in the array declaration. To support this

persistence, FileWall uses a transactional database on stable storage. Reading an element in

a persistent associative array translates to a database lookup, and an assignment to a database

update.

4.4 FileWall Policy Templates

In this section, we describe the FWL implementations of four network file system policies in-

troduced in Section 4.2.4. Each policy represents a specific case of message transformation. In

the accompanying descriptions, we present the sections of FWL code that illustrate the FileWall

features we wish to highlight.

4.4.1 State Extraction and Update

The first example represents the class of FileWall policies that does not perform any message

transformation. We illustrate attribute extraction and access context usage, without message

transformation, by presenting the relevant FileWall implementation details from the message

flow statistics gathering policy.
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The access context generated by the statistics policy is counters associated with each client-

server pair, and is stored in two non-persistent associative arrays: reqstats and rspstats.

A record in reqstats or rspstats represents the count of an operation in the client-server

request and server-client response streams respectively. The array index types are defined in

FileWall and the NFS protocol specification. The following FWL code initializes these arrays.

@CONFIG::stats {

int reqstats[IPFlowID][nfs3_ops];

int rspstats[IPFlowID][nfs3_ops];

}

For each message, this policy extracts the flow identifier and operation number from the

message, and updates the operation count stored in the reqstats or rspstats arrays ac-

cordingly. Also note that, while the operation number is not available in the server-client mes-

sage, FileWall attribute extraction uses the matching client-server message to find the operation

identifier. The following code performs these actions for client-server messages. The server-

client code is identical, but substitutes the rspstats array for reqstats.

@CLItoSRV {

op = op@$MSG;

flowid = flowid@$MSG;

reqstats[flowid][op]++;

}

While this policy is simplistic, it is the basic building block for any policy that builds up

state by observing message flows between clients and servers. Similar policies can track access

patterns, monitor server response times, etc., which can in turn be used for more sophisticated

policies.

4.4.2 Attribute Transformation

This next example represents the class of policies that performs attribute transformation. We

illustrate this by presenting the relevant FileWall implementation details from the file handle

security policy.

This policy maintains two persistent maps as access context (forward and reverse file handle
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to virtual file handle maps). The policy also uses an external function, randfh(), which is

used to generate the random file handles in the SRVtoCLI code section (not shown).

For each client-server message, this policy extracts the flow identifier (flowid) and the

virtual file handle (vfh) from the message. The policy performs a lookup in the access context

(fwdmap), using flowid and vfh, to determine the real server file handle (fh). Once found,

the client-server message is transformed to replace the vfh with the fh.

@CLItoSRV {

flowid = flowid@$MSG;

vfh = fhreq@$MSG;

fh = fwdmap[flowid][vfh];

fhreq@$MSG = fh;

forward($MSG);

}

For each server-client message (code not shown), this policy extracts the flow identifier

and the server file handle (fh), if it exists, from the message. If the fh is not contained in

the message (e.g., ACCESS responses), the policy exits, forwarding the message. Otherwise,

the policy performs a lookup in the access context (revmap), using flowid and fh, to de-

termine the virtual file handle (vfh). If the vfh does not already exist, one is generated by

the randfh() externally defined function and the new mapping is inserted into fwdmap and

revmap. Once a vfh is obtained, the response is transformed to replace the fh with the vfh.

For server-client READDIRPLUS response messages, any file handles returned by the server

in the directory entry attribute listing must also be transformed.

The policy described above uses flow transformation, shown in Section 4.4.3, to generate a

deny response to any request that does not contain a previously encountered virtual file handle.

This prevents malformed or malicious requests from reaching the server leading to a potential

crash or information disclosure.

4.4.3 Flow Transformation

The next example represents the class of policies that performs flow transformation. We il-

lustrate this by presenting the relevant FileWall implementation details for the temporal access

control policy.
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For each client-server message, this policy extracts the current time from the environment.

Between specified (configuration parameters) start (start time) and end (end time) times, the

policy generates a deny message in response to client-server messages using the discard()

and denyrsp() functions. In the code shown below, denyrsp() creates a new server-

client message based on the attributes contained in the client-server message argument and

discard() drops the message. The server-client message handler (not shown) simply for-

wards messages it receives.

@CLItoSRV {

if(($curtime > start_time) &&

($curtime < stop_time)) {

rsp = denyrsp($MSG);

forward(rsp);

discard($MSG);

}

else

forward($MSG);

}

4.4.4 Flow Coordination

The final example represents the class of policies that performs flow coordination. We illustrate

this by describing the relevant FileWall implementation details for the replication policy.

This policy uses a list of replicated file servers specified in the configuration section (not

shown). Each server is assigned an identifier and a liveness bitmap is maintained in the envi-

ronment. The failover policy generates virtual file handles for each client-server pair similar to

the file handle security using forward and reverse maps.

Upon receiving a client-server message, a new message is generated for each live server

in the server list. The new message is a copy of the incoming client-server message. The file

handle is replaced similar to the file handle security policy. However, in this policy, each server

has its own vfh to fh map and the message is forwarded to all live servers. This is equivalent

to the creation of a new flow, for each client-replica server pair.

@CLItoSRV {

flowid = flowid@$MSG;

vfh = fhreq@$MSG;
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XID = XID@$MSG;

bmap = 0;

foreach saddr in replicas {

server = servermaps[saddr];

fh = server.fwdmap[flowid][vfh];

newmsg = copymsg($MSG);

fhreq@newmsg = fh;

dstaddr@newmsg = s;

forward(newmsg);

bmap |= (1 << server.id);

}

pendingreqs[XID] = bmap;

discard($MSG);

...

}

Upon receiving a server-client message (code not shown), the policy performs two main

functions. First, it suppresses multiple server-client responses for the same client-server mes-

sage. FileWall forwards one server-client message to the client after all server-client responses

are received. However, this may easily be modified to only wait for the first server-client re-

sponse or until a majority of server-client messages have been received. Second, it populates

the per-server vfh to fh maps on receiving the file handle information, e.g., in LOOKUP and

READDIRPLUS messages. This is equivalent to the aggregation of all client-replica server

pair flows, into one flow per client.

4.5 Case Study: Role Based Access Control using FileWall

In this section, we describe the use of FileWall in implementing a role-based access control

policy for network file systems. Through this case study, we illustrate the use of FileWall to

offload (i) enforcement of an administrator defined access policy, and (ii) virtualization of the

file system namespace to incorporate this policy without modifying the application interface at

clients.

In recent years, role-based access control (RBAC) has emerged as a model for enforcing

dynamic access control policies across a wide range of enterprise resources [96, 72]. There

are three main benefits of using RBAC. First, RBAC models have been shown to be “policy
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neutral”, that is by using role hierarchies and constraints, a wide range of security policies can

be expressed. Second, security administration is simplified by using roles to organize access

privileges. For example, if a user moves to a new function in an organization, the user’s role

can simply be reassigned. In contrast, without RBAC, permissions on individual files would

have to be updated. Third, by using constraints on the activation of user assigned roles, the

principle of least privilege [170] can be enforced. In fact, today, RBAC models have matured

to the point where they are prescribed as a generalized approach to access control.

While RBAC is attractive, there are several reasons for the reluctance of file system admin-

istrators to adopt RBAC. First, network file systems are performance critical and user applica-

tions expect their performance to be similar to local file systems. Second, due to the reliance

on standardized file-system interfaces, users and applications expect and tolerate no modifica-

tions to existing behavior. Finally, deployability of any new mechanism requires that it does

not modify either the clients or the servers. The servers may be proprietary and closed source

precluding any modifications to them, and clients may refuse or be unable to execute any agents

to support the modified access control protocols.

4.5.1 Example Access Control Policy

In the following, we define an RBAC security policy (F) applied to a network file system.

We use this policy to illustrate how FileWall applies RBAC concepts and use it as a running

example. This example illustrates four basic principles of RBAC. First, the principle of least

privilege is enforced. Specifically, a user accesses files at the lowest privilege level she is

assigned to that is required for accessing an object. Second, dynamic escalation of roles is

defined across user sessions. Third, delegation of roles is illustrated through a dynamic time-

based policy, and fourth, per-file access control policies, defined by the user, are enforced.

Principal Definition: We assume a system with four users, USERS, who are assigned to

three roles, ROLES, which have a partial order relationship defined by HIER. Permissions

(PERMS) are derived from the NFSv4 ACL model and apply to each file system object (files,

directories, links, etc) in the context of NFS operations defined for the object. Formally, the

principal sets are defined as:
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Role Users
user alice, bob*, charles*, root*
developer bob, charles, root*
admin root
threat NULL

Table 4.2: User assignment for Role Based Access Control policy with FileWall.

GETATTR READ WRITE REMOVE
ALLOW user user developer OWNER
LOG admin admin admin admin
ALARM threat threat threat threat

Table 4.3: Subset of the FileWall access control matrix

USERS←{alice, bob, charles, root}

ROLES←{user, developer, threat, admin}

HIER←{user ≤ developer ≤ admin, threat}

PERMS←{ALLOW,DENY,LOG,ALARM}

User Assignment: User assignment defines the mapping between users and active roles. In

a hierarchical RBAC system, the users are assigned to all roles below the initial assignment

through inheritance. The default role assignments for F are shown in Table 4.2. The users

marked by a * in the table show the inherited role memberships.

While the user assignment provides a list of all available roles, the active roles are deter-

mined for each session subject to dynamic separation of duty constraints. F includes a dynamic

separation of duty constraint, which states that a user cannot acquire the admin role in a session

with any other role (user, developer, or threat) active.

Permission Assignment: Permission assignment maps the roles to the set of permissions for

operations on an object. The permission assignment is statically defined by the policy, and may

be dynamically updated by the owner of the object.

Table 4.3 shows a subset of the permission assignment for a file. Here, the user role
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is allowed GETATTR and READ operations, while WRITE operation is permitted only for the

developer role. The special tagOWNER is derived from the file attributes and only the owner

(or the admin) is allowed to remove the file. If the operation is allowed, FileWall additionally

evaluates the LOG permission and logs the operation if required. Also, if the operation is denied,

the ALARM permission is evaluated to possibly generate an alarm for the system administrator.

The members of the role user can only access the files owned by them. Members of the role

developer derive all the user properties and can, additionaly, access all files owned by users in

the developer role. Administrators belong to the admin role and have unrestricted access to the

file system. However, all administrator actions that modify the file system are logged. Finally,

a user can be made a part of the threat role, based on a dynamic rule. As an illustration, all

users with role user who try to escalate their privileges to the role admin are threats and all

updates made by members of this role are logged.

Session Management: A session determines the set of active roles assigned to a user. All role

assignments, as well as, dynamic separation of duty constraints are evaluated within a session.

While the user may acquire multiple roles, the set of active roles within a session is fixed. If the

user wishes to modify this set of roles, the old session must be terminated and a new session

created with the new roles.

In our example policy, on session initiation, all users are part of the user role. If a user

is a member of the developer role, she additionally retains the developer privileges. Modifi-

cation of the active roles in a session can be explicit or implicit. For explicit modification of

active roles, the user must initiate modifications to the role set through FileWall. In F , the

administrator delegates his role to members of the developer group during the non-work hours.

That is, the members of the developer group can acquire administrator privileges between 5PM

and 9AM. This delegation is often desired but is seldom implemented without explicit RBAC

support. The escalation of developer to admin is performed explicitly, and a new session is

created.

F also supports an implicit session update using the environment. When the access control

system determines a user is a threat, based on previously specified access patterns or attempted

accesses to sensitive files, FileWall terminates the active user session and initiates a new session

with the threat role. This update does not involve the user and prohibits access to the file
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Figure 4.5: Overview of Role Based Access Control implementation with FileWall.

system including any role updates. Administrator intervention is required to re-enable the user

access.

Figure 4.5 shows the flow of requests and responses through FileWall. The client generates

file system requests for both real (solid boxes) and virtual (patterned boxes) objects. The re-

quests for virtual objects are handled by a special VCN handler, which generates the file system

responses. Requests for real objects are forwarded to the file server, which generates the re-

sponses sent to the client. All requests are subject to permission evaluation and deny responses

are generated for all requests that are denied.

Policy Specification and Update: Access control policies must be defined before any accesses

to the system are performed by clients. Therefore, to bootstrap the system, FileWall requires ad-

ministrators to provide an initial policy description during startup. This initial description con-

tains the principal definitions and access control constraints. Several policy specification lan-

guages have previously been proposed for RBAC. We use XACML [8], a standardized RBAC

specification language that provides not only the core RBAC specification but also allows us to

define temporal and dynamic access control policies.

During execution, FileWall provides interfaces for administrators to update access control

policies, and for users to manage their sessions and permissions for the files they own. These

interfaces are realized using a virtual namespace, called the Virtual Control Namespace (VCN),

contained within the existing file system namespace (see Section 4.5.2).

State Maintenance: FileWall maintains persistent state, which must be available through the
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lifetime of the system and is essential for correct enforcement of RBAC. We identify two per-

sistent state components for FileWall: (i) Policy definition, which includes user and role identi-

fiers, role hierarchies, user assignment, and any separation of duty constraints. (ii) Permission

assignment, which includes per-file access control matrix and owner information.

FileWall also maintains soft state, which is throw-away, and can be reconstructed from the

persistent state and by observing the file system requests and responses. This state has two main

components: (i) Session state, which consists of active user sessions and their currently active

roles. FileWall assumes each user has at most one session on each machine. This creates a

unique identifier for a user session, which is then used to identify the active roles associated with

the session, and (ii) a Virtual File Handle mapping, which represents an association between

FileWall generated client-visible file identifiers, distinct from server-defined file identifiers.

Algorithm 2 FileWall algorithm for implementing RBAC.

1: sid← SESSIONS[MSG.IP ][MSG.UID];
2: rolessid ← ROLES[sid];
3: vfh←MSG.FH;
4: vfhentry ← V FHMAP [vfh];
5: fh← vfhentry.fh;
6: if fh = NULL then
7: vcnhandler(MSG, vfhentry.shadow);
8: return
9: end if

10: shadow ← SHADOWFILES[vfhentry.shadow];
11: ownerid← shadow.ownerid;
12: perms← shadow.perms;
13: op←MSG.OP ;
14: minrole← perms[op];
15: for all r ∈ rolessid do
16: found← DFS(HIER, r,minrole)
17: if found = TRUE then
18: MSG′ ←MSG
19: MSG′.UID ← ownerid;
20: MSG′.FH ← fh;
21: forward(MSG′);
22: return
23: end if
24: end for
25: deny(MSG);
26: return
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Permission Evaluation: FileWall maintains the state required for making access control deci-

sions and generates a boolean ALLOW or DENY verdict for each file system request. The

requests that are allowed are forwarded to the file server. For requests that are denied, FileWall

generates an appropriate deny response without contacting the server.

Algorithm 2 shows the algorithm used by FileWall for permission evaluation. The algorithm

uses the incoming request message as input and uses attributes contained in the message to

identify the set of active roles (Lines 1-2). These roles are maintained in order of increasing

privilege level. It then extracts the virtual file handle (vfh) from the request message and

uses this VFH to obtain the structure containing the real file handle (fh). If this mapping

structure does not contain a FH, then the VFH refers to a VCN object, which is handled by the

vcnhandler (Line 6-9).

For the case of real file system objects, the algorithm obtains the corresponding access

control information (shadow file) (Line 10). The least privileged role required to perform op is

identified from the permission map. Finally, a depth first search (DFS) is performed on the role

hierarchy defined by the policy starting at the current role (Line 16). If the target role (defined

by the permission) is found during the DFS, the message is allowed. Otherwise, if all active

roles are exhausted, the request is denied.

While forwarding the message, FileWall replaces the UID and VFH in the request with

the ownerid and real fh respectively, and the message is forwarded to the server (Line 21).

This ensures that the operation is performed as the owner of the file and the base file system

permissions are still enforced. All other messages are denied (Line 25).

FileWall uses four tables to maintain the state required for permission evaluation. The

SESSIONS table maintains a mapping of the user identifier and the IP address to a local

session identifier. This identifier indexes into the ROLES table, which maintains the set of

active roles for each active session. The V FHMAP stores a mapping from the VFH to the

2-tuple < fh, shadowfh >. Finally, the SHADOWFILES map maintains the permis-

sion assignment and the file owner information for each file indexed by the file identifier (file

handle).
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Figure 4.6: Subset of the FileWall Virtual Control Namespace.

4.5.2 Virtual Control Namespace

FileWall defines a virtual namespace, called the Virtual Control Namespace (VCN), for session

management and dynamic permission assignment. The VCN is initialized when a file system is

mounted over NFS. All operations on objects in the VCN are sent using the standard file system

protocol and are interpreted as commands at FileWall. Through the VCN, clients can interact

with FileWall over the well known file system interface using a familiar set of tools. Therefore,

the VCN eliminates the need to run separate software at the clients or servers. It is important to

note that user authentication is performed externally and is not the focus of FileWall. However,

authentication mechanisms can be easily incorporated using the VCN.

The functionality of the VCN is similar to the well known /proc file system in Linux. File-

Wall handlers are invoked on receiving a file system request for virtual objects. For read-only

requests, for example, READ, READDIR, GETATTR, etc., the handlers query the FileWall

state and generate the file contents dynamically. The query operation presents a snapshot of the

FileWall state at the clients. The WRITE operations update the FileWall state and are used to

modify active roles, permission assignment, and other session state defined by the system-wide

policy. No metadata update operations, e.g. SETATTR, are supported on virtual files to restrict

the update interface.

Figure 4.6 shows a subset of the VCN for the example in Section 4.5.1. The VCN has two

main components: Session namespace, and Shadow namespace. The directories users and

roles make up the session namespace and provide an interface to control the user sessions
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and user assignments, respectively. In the session namespace, a control file, ctrl, provides

the update interface for each directory in the VCN. Users write the identifiers, of the new

roles they want activated, to this file. If successful, the new active roles are instantiated and any

modifications to the available roles are reflected in the contents of the directory. If unsuccessful,

a permission denied message is returned to the client and the session remains unmodified.

The shadow namespace mirrors the file system. The names for objects in the shadow

directory are derived directly from the files they represent in the primary file system. The

shadow files provide an interface to query and update the permission assignments for each file.

Effective permissions are determined using the owner permissions, specified as file attributes

(rwx) of real files, and using the policy defined role-based permissions.

The initial permission assignment identifies the owner of each file and assigns her least

privileged role the rights defined by the file permission bits. For example, if a file owned by

alice has permissions rw−, FileWall identifies the least privileged role for alice (user), and

provides that role with read and write privileges to the file. To update permissions for a file,

users write the updated permission assignment to the corresponding file in the shadow names-

pace. If successful, the modifications are reflected in the contents of the shadow file. Owners

can also update the permissions on the files through the chmod interface. For such updates,

the effective permissions are re-evaluated and the contents of the corresponding shadow files

are also updated.

Figure 4.6 shows the contents of a shadow file. For a shadow directory, the file handle

information and shadow file identifiers of each of its children are also stored. This enables the

VCN handlers for directory listing to construct a virtual namespace hierarchy that mirrors the

real file system namespace.

The shadow file hierarchy is built lazily, using the file system requests to populate itself.

FileWall generates shadow files by extracting records from the responses to directory listing

and file lookup client requests (READDIR, LOOKUP). The root directory is special since it is

identified during the mount protocol and the VCN root directory appears as an immediate child

of the root directory. FileWall adds an additional record for the VCN for any root directory

listing request. The state required to generate the shadow files includes owner information,

server specified file identifiers, and the access control matrix. While the owner information and
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the file handles can be regenerated, the access control matrix must be available across FileWall

restarts as it represents the permission assignments that may have been updated by the owners.

All objects in the VCN are virtual and there is no file (or directory) at the server that stores

the content of these objects. Virtual File Handles (VFH) are file identifiers generated by File-

Wall to transparently implement the VCN. Each virtual object in the VCN has a unique VFH.

To prevent collisions between VFHs and file server specified FHs, FileWall generates a VFH

even for real file system objects. FileWall maintains the VFH to FH mapping in its local state

as a file handle mapping table (VFHMap). For real objects, FileWall replaces the VFH with the

corresponding FH when forwarding a request message, and the FH with the VFH for a response

message. For virtual objects, the appropriate FileWall handler is invoked. VFHs are also used

to implement the write-once semantics for virtual objects by generating a new VFH every time

the virtual object is updated.

4.6 Implementation

We implemented FileWall in the Click modular router framework [103] as an external user-level

package. Click element classes define input and output ports, which represent connections to

other elements in the router. Elements are classified as push and pull. Push elements are

invoked in context of a network packet and run to completion. Optionally, these elements

output a packet to one or more ports through a synchronous call. Pull elements, on the other

hand, wait for packets to be generated by upstream elements and execute when packets are

available. Explicit queues are used to buffer packets between push and pull elements.

Figure 4.7 shows the Click configuration that realizes FileWall with two policies: (i) a

primitive policy (FWExt0), and (ii) a composite policy (FWExt1/FWExt2). Each policy is im-

plemented as an autonomous Click push element, which runs to completion. The FileWall

scheduler is a pull element and chooses the policy to execute. As shown in the figure, File-

WallSched interposes between all FileWall extensions to schedule and maintain global state

across extensions.

We implemented the access context using an open-source database – BerkeleyDB [184].

This database shares a process’s address space allowing direct function calls to be made to
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Figure 4.7: FileWall implementation using the Click modular router.

the DB. We use the default DB configuration where the data is stored as B-Trees. Separate

databases are created for each extension in the system to maintain private access context.

The FileWall templates define the skeleton of the classes and the initialization code required

to construct a Click element class. The FWL compiler is implemented using treecc [212], which

converts input files in the treecc syntax into source code that permits creating and walking

abstract syntax trees. We use treecc along with standard compiler generation tools lex and yacc

to generate Click element code from the FWL code.

4.7 Evaluation

In this section, we present an evaluation of our system. Our goal in this evaluation is to measure

FileWall overheads and to characterize FileWall behavior, under varying network conditions

and workloads.
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4.7.1 Setup

In our experimental setup, all systems are Dell Poweredge 2600 SMP, systems with two 2.4GHz

Intel Xeon II CPUs, with 2GB of RAM, and 36GB 15K RPM SCSI drives. All systems run the

Fedora Core 3 distribution with a Linux-2.6.16 kernel and are connected using a Gigabit Ether-

net switch. The average round-trip time between any two hosts on the switch is 30µs. FileWall

is configured to interpose on all NFS requests and responses. Unless otherwise specified, all

experiments with FileWall use the filehandle security extension described in Sections 4.2.4

and 4.4.2.

Microbenchmark: To study the behavior of the file system, with and without FileWall, we de-

veloped our own microbenchmark. This benchmark is an RPC client and issues NFS requests

without relying on the client file system interface. Using this benchmark eliminates the noise

due to the client buffer cache and other file system optimizations, and allows fine-grained mea-

surements to be collected. The benchmark measures the CPU cycles between a request and the

corresponding response.

4.7.2 Latency

In this section, we study the effect of adding FileWall to the network file system message path

on the client observed latency. To isolate the FileWall overheads, we study three systems: (i)

Tunnel, which is a pass-through network tunnel implemented at the user level and does not in-

clude FileWall, (ii) Kernel Tunnel, which is identical to Tunnel implemented in the kernel, and

(iii) FileWall, which is built on top of the Tunnel system with the attribute mapping extension

described in Section 4.4.2. As a baseline, we present the latency of the default NFS protocol.

Interposition Overheads: The latency of an operation includes the network delays and the

server processing overheads. Interposition overheads manifest themselves as increased latency

for each network file system message. Increased latency has three components: (i) the packet

capture and injection latency, (ii) the FileWall processing latency, and (iii) the extension latency.

Formally, the base NFS request-response latency and the latency with interposition is given by
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LNFS = 2×DCS + TS (4.1)

LTun = 2× (DCF + TP +DFS) + TS (4.2)

LFileWall = 2× (DCF + TP + TF +DFS) + TS (4.3)

where L represents the client observed latency, D represents the one-way network delay,

and T is the processing overhead of each component. The subscripts C, S, and F represent the

client, server, and FileWall respectively. TP is the per-message processing overhead due to the

packet capture and injection.

Our first goal is to isolate the overheads imposed by FileWall (TF ) and per-message pro-

cessing (TP ), eliminating the impact of network delays. From Eqs. 4.2 and 4.3, we observe that

the difference between LFileWall and LTun represents the FileWall and extension overheads.

TF =
LFileWall − LTun

2
(4.4)
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Figure 4.9: Distribution of response latency for NFS with interposition.

Figure 4.8 shows the client observed latency for different NFS operations. For clarity, we

show only the most common operations, as reported by various file system workload stud-

ies [68] in the figure. We observed similar results for other extensions as well as for the NFS

operations not shown. In the figure, each group of bars has 4 members, base NFS, tunnel, ker-

nel tunnel, and FileWall. The height of each bar shows the average response latency for 1000

instances of the call.

We observe that FileWall imposes minimal overhead compared to Tunnel overhead, as

shown in Eq. 4.4. As expected, the kernel-tunnel is more efficient than the user level imple-

mentation, but the difference between them is less than 60µs. Figure 4.9 shows the cumulative

distribution function (CDF) for all READDIRPLUS calls to illustrate that these overheads do

not vary significantly across measurements and are largely fixed.

To isolate per-message processing overheads (TP ), we observe from Eqs. 4.1 and 4.2 that

TP =
LTun − LNFS

2
− (DCF +DFS −DCS) (4.5)

Therefore, if (DCF +DFS −DCS)→ 0, we can identify the interposition overheads using
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Figure 4.10: Overheads of placing FileWall at client, server, and interposed

operation latencies over the two systems. To accomplish this, we instantiate the network tunnel

at the client, where (DCF � DFS) and DFS ≈ DCS , and at the server (DCF � DFS) and

DCF ≈ DCS .

Figure 4.10 shows the results for our microbenchmark for the READDIRPLUS call. The

figure shows the average time between the call and its response at the client when the tunnel

and FileWall are instantiated at the client, server, and on a separate machine on the network.

As a baseline, we include the latency for the default NFS.

We observe that FileWall instantiation on a separate node (our model) performs well. The

interposition overheads (TP ) are within 100µsec and can be improved further using an in-kernel

implementation.

Network Delays: To study the effect of network delays on client-observed latency with a meta-

data intensive workload mix, we vary the network delays and study the effect of this variation

using Postmark.

Postmark [97] is a synthetic benchmark that measures file system performance with a work-

load composed of many short-lived, relatively small files. Postmark workloads are character-

ized by a mix of metadata intensive operations. The benchmark begins by creating a pool of

files, performs a sequence of transactions, and concludes by deleting all of the files created.
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Figure 4.11: NFS metadata performance with varying network delay

Each transaction consists of two operations: a randomly chosen CREATE or DELETE, paired

with a randomly chosen READ or WRITE.

In our experiments, we use 8KB block sizes for read and write operations for Postmark. The

initial file set consists of 5,000 files with sizes distributed randomly between 1KB and 16KB.

For each run of the benchmark, we perform 20,000 transactions and report the transaction rate.

Figure 4.11 shows the Postmark results for varying the one-way network delay between the

client and the server (DCS) for base NFS and the client-FileWall delay (DCF ) for FileWall.

The FileWall-server link is unmodified.

We observe that for low delays (< 100µs), FileWall and the base NFS differ significantly

in the supported transaction rate. However, for networks with larger delays, the difference

between FileWall and NFS performance is minimal. FileWall introduces delays of the order

of 10s of µs, therefore, for comparable network delays, the performance of latency sensitive

operations is greatly affected. However, these delays are hidden when the network delays

dominate the overall delay between the client and the server and the operations are pipelined.

For typical deployments, file servers are physically separated from clients and delays of up

to 300µs are common. Therefore, in realistic scenarios, we believe that FileWall will not affect

performance and will be transparent to the clients.
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Figure 4.12: FileWall scalability with increasing number of extensions.

Scalability: In this experiment, our goal is to study the effect of the processing overheads due

to FileWall extensions (TF in Eq. 4.3). As we increase the number of extensions, we expect

this overhead to increase. However, this increase should not be exponential and ideally should

be linear.

The number of FileWall extensions vary across deployments. Therefore, it is difficult to

understand the client perceived performance as the number of extensions increases. We define

a synthetic extension that captures the tasks common across a wide range of extensions and

vary the number of instances of this extension to study FileWall behavior.

Each extension performs the following tasks: On a request message, it stores a fixed number

(20) keys, each of size 50 bytes in the access context (DB insert). On a response, it looks up

all the keys inserted by the corresponding request and deletes them (DB lookup and delete).

Since DB access is the most CPU intensive task performed by a FileWall extension, our results

capture the expected behavior. However, these results may vary with different extensions.

Figure 4.12 shows the average response latency for our benchmark as the number of exten-

sions is varied. The two curves are for GETATTR and WRITE requests, which illustrate the

FileWall performance for metadata and data operations respectively. We observe that FileWall

overheads increase linearly in the worst case and, even with 20 extensions, the response time is
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Figure 4.13: FileWall performance for emacs compilation.

within 5 ms.

4.7.3 Real Workloads

Emacs Compilation: In the following, we compare the performance of FileWall with the file

handle security extension, default NFS, and a pass-through tunnel, for a multi-stage software

build similar to a modified Andrew Benchmark [91]. We measure the time taken to untar,

configure, compile, install, and remove an Emacs 20.7 distribution.

The Emacs distribution size is 76MB, which reduces to 20MB when tarred and gzipped.

It contains 43 directories and 76,400 files. The compilation performs a large number of read,

write, lookup, create, and remove operations. At the end of the compilation, the total number

of files in the directory is 101,644 and the size is 95MB. We performed one run of the bench-

mark to load the compiler binaries and associated libraries that are external to the file system

under test. We discarded this result and performed ten further runs. Between each run of the

benchmark, we unmounted the file system and mounted it to start with a cold cache on the file

system under test at the client.

Figure 4.13 shows the time taken for each phase of the Emacs compilation benchmark from

left to right. The bars in each group are NFS, Pass-through tunnel, and FileWall with the file
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Figure 4.14: FileWall throughput vs. latency

handle security extension. Experiments with other extensions described in the paper yielded

similar results and are omitted for clarity.

We observe that FileWall imposes a modest overhead of around 12% for the sum of all

phases of the benchmark. The most expensive data intensive phases have small (< 10%)

overheads. However, the metadata intensive untar, install, and remove phases show significant

degradation. These results are pessimistic for FileWall due to the extremely low network delay

without interposition (30µs). Recall from our microbenchmark that interposition imposes tens

of µs of additional latency, which is comparable to the network delays in our environment.

These overheads reflect in the extra time required for the metadata intensive phases of the

benchmark. For networks with larger delays, the performance of all three – NFS, tunnel, and

FileWall is identical.

Fstress: Fstress [9] is a synthetic, self-scaling benchmark that measures server scalability.

We use the canned SpecSFS97-like workload distributed with Fstress, which performs random

read-write accesses with file sizes varying from 1KB–1MB. The workload is characterized by

a large number of directories with thousands of files in each directory. The size of the file

set accessed by Fstress is adjusted to reflect the offered load on the system. The operation

distribution is identical to that defined by SPECsfs97, which in turn is based on a survey of file
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Figure 4.15: FileWall overheads under varying server CPU speeds.

set distributions and workloads on one thousand NFS servers.

Fstress increases the offered load by issuing NFS requests according to the workload mix.

The metric used is the latency of these operations. For an overloaded server, the client observed

latencies grow rapidly, whereas for an underloaded server, these latencies are small. For our

experiments, we use three load generators (clients) that have the configurations described in

Section 4.7.1.

Figure 4.14 shows the results from the Fstress benchmark. We observe that FileWall laten-

cies are comparable to both the default NFS and the network tunnels (user and kernel) up to

an offered load of 2,500 requests/s. The systems diverge rapidly beyond this point. However,

in all cases, the NFS server is overloaded at around 3,000 requests/s. The sharp increase in

observed latency with FileWall is due to the CPU at FileWall being overloaded. At overload,

the small processing overheads imposed by FileWall become significant and the performance

drops. However, the overheads are small (around 15%) and the enhanced functionality provided

in exchange by FileWall make them acceptable.

FileWall does not necessarily saturate before the NFS server. The impact of FileWall under

heavy load is due to the relative performance between the FileWall machine and the NFS server

machine. This is illustrated in Figure 4.15. For this experiment we run Fstress, while varying



126

the CPU speed of the NFS server. We use the Intel Speedstep voltage scaling to reduce the

CPU speed to 300MHz and 1200MHz, while maintaining all other system parameters constant.

The curves in the Figure represent the base NFS and FileWall performance for the different

NFS server CPU speeds. In all cases, we observe that the performance is similar with and

without FileWall, and the NFS server saturates beyond 2000 requests/s. We conclude that given

sufficient resources relative to the NFS server, FileWall does not impose significant overheads

even under heavy workloads.

4.8 Discussion

FileWall is meant for evolutionary extensions of file systems. Large scale modifications, for

example protocol upgrades, must be performed at the end-hosts. However, we believe such

drastic upgrades are rare. The reluctance of administrators to upgrade existing infrastructure,

especially file systems, is evident in the slow adoption of the new NFSv4 standard, which has

been available for several years now.

In this chapter, we have described a proof of concept implementation for the NFSv3 pro-

tocol. The choice of this protocol is due to its popularity, and due to its limited support for

callbacks and per-file open and close messages. This allows us to study the limitations of im-

plementing access policies with the least support from the protocol. However, this is not a

fundamental limitation of our system. Over the years, most systems which extend NFS func-

tionality have introduced callbacks [92, 101] and support for OPEN and CLOSE [77, 131].

With such support, we can easily implement extensions to provide novel consistency seman-

tics, atomic updates, application aware caching, etc., with FileWall.

FileWall provides an interface for administrators to define file system access policies. How-

ever, this interface is protocol dependent. That is, the administrator must have knowledge of and

FileWall must understand the underlying file system protocols. FileWall is a first step towards

the ultimate goal of a policy specification and enforcement platform, where administrators can

describe system-wide policies, and the low-level implementation of the policy is generated au-

tomatically. In the future, we plan to design a protocol-independent high-level language, which
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eases extension specification and enables verification and debugging of primitive and compos-

ite extensions. Such a language could also be used to enforce and extract invariants, which can

be used by administrators for writing more robust and effective FileWall policies.

A limitation of our system is the limited support for fault-tolerance and reliability. Since

we introduce an additional host in the network file system message path, its failure would lead

to loss of service even when both clients and servers are active. However, we believe we can

introduce a primary-backup failover scheme for FileWall. Since FileWall state is built up during

execution by observing messages, a backup system that snoops all traffic entering and leaving

FileWall can build up its own copy of the state. For stateful protocols, e.g., TCP, we can restore

the state associated with live connections terminated or initiated at FileWall using connection

migration protocols that have been proposed before in [197, 188].

4.9 Related Work

FileWall is related to a variety of work in the areas of (i) Distributed and Extensible File Systems

and (ii) Composable Network Processing. The following section is a survey of the work related

to FileWall in these areas.

Composable Network Processing: FileWall is inspired by packet filters [35], network address

translators, and firewalls, which implement network access policies by interposing on network

traffic and mapping private addresses to public Internet addresses.

FileWall interposes on file system requests to implement file access policies. However,

unlike the packet processing systems, FileWall maintains a chain of policies, each with a private

access context, which is maintained in persistent storage. It supports attribute extraction from

messages and provides a framework for network file system policy specification.

The x-kernel [93] is a framework for implementing and composing network protocols. An

x-kernel configuration is a graph of processing nodes, and packets are passed between nodes

through function calls. Unlike FileWall, where policies are composed as chains and file system

attributes are transformed during processing, the x-kernel nodes represent network protocols

in a protocol stack. the x-kernel nodes are arranged in an acyclic graph and the inter-node

communication is more complex than a simple function call.



128

The Scout Operating System [126] is an OS architecture where paths defined by a sequence

of processing nodes traversed by a network packet are made explicit. Packets are classified into

the correct path as early as possible, so that packets are treated differently as soon as they arrive

on the host. For example, ethernet packets containing video data are treated differently. Each

path in Scout is executed as a separate thread. In addition, Scout paths support different kinds

of inter-node communication beyond a simple packet flow. In contrast, FileWall handles only

file system messages and all messages flow through the same policy chain.

FileWall is implemented within the Click [103] modular router framework. In contrast to

the above, which process network packets, FileWall processing is in context of file system

messages, which may be composed of multiple packets. FileWall also supports persistent state

using a database, which is not required for a router.

Distributed and Extensible File Systems: Several proposals for extending local file systems

by interposing on the request path have been proposed [220, 216]. These systems interpose

between the file systems and transform the vnode operations to enhance functionality. Such

systems have been used to trace file system calls [16], build versioning file systems [129],

virtualized namespaces [149, 160], virus protection [121], etc. Unlike the above, FileWall

extends network file systems and these extensions are implemented external to both clients and

servers through message transformation.

Network storage systems have been extended for functional decomposition [11], enhanced

security [119], saving bandwidth [130, 13], repair and rollback [224], extended access con-

trol [87, 120], and using interposing proxies. These systems interpose on the client-server path

to implement a solution for a specific problem. In contrast, FileWall provides a platform for

extending file systems and builds mechanisms, which go beyond a specific problem instance.

In fact, each of the above extensions can be implemented using a FileWall policy.

FiST [220] is a stackable template language that shares a similar structure with FWL. FiST

templates are used in conjunction with a base file system to extend the operating system vnode

interface. Unlike FiST that operates on local file system calls and a stackable vnode interface,

FWL operates on file system messages to implement extensions.

Extensible Policies: SPIN [183] and VINO [176] are extensible operating systems that allow
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applications to make policy decisions and modify operating system interfaces by safely down-

loading extensions into the kernel. SPIN ensures safety using a type-safe language Modula-3,

while VINO implements mechanisms for fault isolation. Unlike the extensible OS, FileWall

does not modify OS interfaces, targets network file system policies, and implements the poli-

cies external to the client and server systems.

Exokernel [70] exports fine-grained hardware services, for example, TLB management,

directly to applications. Exokernel provides no abstractions beyond those minimally provided

by the hardware and allows libraries to implement OS policies. FileWall policies are similar

in spirit to the Exokernel stable storage system XN. To implement file systems, XN allows

users to define on disk data structures and methods to implement them with libraries (libFSes).

FileWall uses the minimal abstractions provided by the message streams to implement network

file system policies and allows administrators to define policies.

Namespaces and Name Resolution: FileWall incorporates file access policies within ex-

isting file system protocols by constructing virtual namespaces, which are a subset of the file

system namespace. The use of client namespaces is motivated by seminal work on names-

paces [109, 148, 142], each of which recognizes the importance of names as a unifying feature

in all distributed systems.

The Andrew File System [92] introduced the concept of global namespaces in file systems.

Several systems have explored providing a global namespace for clustered file systems [174,

78, 205], distributed file systems [12, 143, 27], and more recently to federated file systems [3,

204, 114]. While the focus of all of the above is organizing collections of objects or file servers

into a global namespace, FileWall focuses on network file system policies. Unlike the above,

we target file systems where file servers and clients are in the same local area network, and the

entire file system is located at the file server.

Plan9 [149] uses a hierarchical file system to represent every resource in the system. A user

or a process constructs a private namespace view by connecting these resources. FileWall uses

the namespace for defining and applying policies on network file systems.Unlike the above

systems, the file names represent more than a mapping to a physical resource (files, network

sockets etc.). Along with the access context and policies, names are used as the vehicle to

implement file access policies: from on-the-fly modification of access control, to supporting
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quality of service.

Semantic File Systems [180], Jade [160], and Prospero [136] use programmable names-

paces to organize and extend physical namespaces. FileWall shares the idea of programmabil-

ity using the control namespace. However, there are several important differences. First, unlike

the above where the filters execute on the client, FileWall policy enforcement is offloaded to a

network middlebox and does not require modifications to the server. Second, the policies are

dynamic and can be modified during execution. Finally, while FileWall can be used to organize

data sources, its primary goal is protection by controlling access to portions of the namespace.

In addition to the classical literature on naming in distributed systems [175, 109, 123], there

has been some recent research in wide area naming and resolution with a focus on programma-

bility, e.g., ActiveNames [208] and Intentional Naming System (INS) [2]. ActiveNames allow

applications to define arbitrary computation that executes on names at name resolvers. The goal

of ActiveNames is to locate and transport wide area services through a programmable naming

abstraction. Intentional Naming System utilizes late binding and declarative style data struc-

tures for maintaining attribute-value pairs used to bind a user-specified name to an appropriate

instance of the target resource.

FileWall differs from both ActiveNames and INS in its goal as well as its realization. First,

in FileWall, the goal is to implement file access policies and not to locate resources. Second,

unlike name resolution, where names are mapped to resources, virtual namespaces in FileWall

are the result of applying policies using the access context and are a subset of the file system

namespace. Finally, FileWall interposes on the client-server path and is not invoked by the

client system as the primary target of name resolution.

Role-Based Access Control (RBAC): The role-based access control model has evolved from

the use of groups in UNIX and other operating systems, privilege groupings in database man-

agement systems, and separation of duty concepts. The modern concept of RBAC embodies the

above in a single access control model ([96, 72] and references therein). Gustaffson et. al. [84]

demonstrate the use of NFS to implement RBAC for distributed systems. They use modified

NFS servers and clients to implement user-role mappings. However, their system does not

support user session modification, role hierarchies, or separation of duty constraints.
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Law Governed Interaction (LGI) [120] proposes a distributed policy definition and enforce-

ment framework for heterogeneous distributed systems [178]. He et. al. use the LGI framework

to implement RBAC for network filesystems [87]. However, their system requires the server to

execute an access control agent to hook into the security framework. It also requires specialized

user agents at each client to communicate with the access control system. Unfortunately, unlike

FileWall, the server modifications and client agents limit the deployability of their system.

4.10 Summary

In this chapter, we presented FileWall, a system architecture that offloads enforcement of net-

work file system access policies to a network middlebox. Using FileWall, we demonstrate that

policies that cannot otherwise be implemented without significant modification of clients and

servers can easily be realized through offloading. We defined a state maintenance and message

transformation model, which determines the capabilities, requirements, and restrictions for a

system to offload file system policy enforcement in the network.

We used FileWall to define four primitive classes of policies, for statistics monitoring, file

handle security, time based access control, and client transparent failover in network file sys-

tems, respectively. Through our experimental evaluation of a prototype system, we demon-

strated that these policies combine network and file system contexts, are easy to specify, and

do not impose significant overheads.

As a case study, we implemented a Role Based Access Control (RBAC) policy for NFS,

which does not require client-server modifications or specialized user agents to participate in

the access control framework. We demonstrated the use of our system through an example

access control policy that supports role hierarchies, user sessions, and static and dynamic sep-

aration of duty constraints.
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Chapter 5

Conclusions

In this dissertation, we investigated how to architect highly available, extensible, high perfor-

mance server systems using functionality offloading as the basic building block. We presented

three system architectures based on offloading: TCPServers, for improving network protocol

performance, Orion, for continuous OS and application monitoring, and FileWall, for imple-

menting access policies for network file systems. The main conclusion of this research is that

offloading provides a powerful mechanism to partition and isolate parts of the functionality

of system architectures, which would otherwise require significant software modifications or

customized hardware. With the availability of idle CPU resources in multiprocessor servers,

programmable peripheral devices, and network middleboxes, offloading is practical, and with

appropriate software support can be used to improve performance and introduce new function-

ality without significant modifications to existing systems and protocols.

At different times in the past, functionality offloading has been regarded as the solution

for improving system performance. However, continuously increasing CPU speeds and the

relatively slow increases in peripheral speeds have relegated it to the background. Detractors

of offloading have often cited limitations of the offloading hardware, difficulty in program-

ming such hardware, and extending or fixing protocol implementations as drawbacks that far

outweigh the performance benefits.

Today, the growth in the CPU speeds is much slower and the peripherals, especially net-

working is catching up with them. With network speeds approaching 10Gbps, and the availabil-

ity of multiple execution contexts in multiple processors or cores, system designers are again

looking at offloading to handle network processing. Unlike in the past, when increases in CPU

speeds could overcome the performance bottlenecks, system architectures must adapt to exploit

increased parallelism to harness the available computing resources. As a consequence, rather
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than data copying overheads, limited parallelism and memory access overheads due to reduced

locality of reference are limiting the protocol performance today.

TCPServers is a system architecture that focuses on offloading network processing within

a multiprocessor system. TCPServers partitions the processors of a multiprocessor system into

dedicated packet processing engines, which handle all network processing, and application

processors, which execute the applications. In TCPServers, the packet processing engines are

not resource constrained as they are identical to the host processors and have access to the

entire system memory. Moreover, programming for the packet processing engines (PPEs) is

identical to that for the host OS and development environments are familiar. This enables easy

maintenance and easy upgrades of the offloaded functionality.

The goal of offloading in TCPServers is to reduce the loss of memory access locality due to

cohabitation overheads, which occur when applications and the network stack share the same

processors. By offloading, TCPServers reduces the impact of interrupts, context switches, TLB

flushes, and migration of tasks across CPUs, on both application and network stack processing.

Our experimental results showed that, while such offloading improves network performance,

the gains are small due to the limited concurrency of the OS network stack.

To improve the network stack concurrency, we designed mechanisms that build on the ba-

sic TCPServers offloading architecture to perform early demultiplexing. We presented Re-

ceive Queues, which are per-socket OS data structures that store incoming packets destined for

the connection. Using Receive Queues and a scheduling algorithm for processing packets at

connection priorities, we demonstrated significant increase in the concurrency, lower synchro-

nization and scheduler overhead, and graceful degradation of performance at high connection

loads.

In computer systems today, monitoring and management functionality are arguably more

important than raw performance. With the low cost of hardware and increasing parallelism in

server workloads, it has become possible to use a large collection of servers to deliver expected

performance to the users. However, providing continuous service still remains a challenge. Due

to reliance on a large number external software components, unknown or unpredictable hard-

ware failures, OS deadlocks or crashes, and presence of malicious or inept users, it is difficult

to design software that handles all possible failures. Using redundancy to maintain continuous
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service relies on online monitoring, diagnosis using live state, and if possible, repair of the

incorrect state. Unfortunately, continuous monitoring of software systems imposes significant

overheads on the primary system functionality and is not effective.

We presented Orion, a system architecture that offloads monitoring and repair functional-

ity to external hardware. Orion offloads monitoring functionality to a programmable network

interface that sits on the system I/O bus, has its own processor, and has direct access to target

memory. This network interface can be connected over a private network to cooperatively mon-

itor nodes in a collocated cluster. We use offloading as the basic building block of a framework

where monitoring is performed without involving the target CPU. This framework is extensible

and defines a programming interface that allows developers and system administrators to build

monitoring and repair support for current and future software components. We have imple-

mented Orion and through our case studies demonstrated its use in failure detection and remote

repair of OS state damaged due to resource exhaustion. These case studies illustrate the ben-

efits of offloading in improving availability. Continuous monitoring with Orion imposes little

overhead during failure-free execution, and Orion successfully performs failure detection and

repair of OS state damaged due to resource exhaustion.

Administration is an important aspect of system management. It is increasingly important

for administrators to extend network protocols to enforce access policies on critical system re-

sources. Enforcing policies is especially important in network file systems, which store critical

data in any enterprise network. Today, incorporating such functionality requires modifications

to both clients and servers to extend the protocol implementations. Modifying file system pro-

tocols is impractical due to the size and diversity of the client population, and the servers being

proprietary and closed source.

We studied the role of offloading administrative functionality through FileWall, a system

architecture that offloads policy enforcement in network file systems. FileWall is a network

middlebox that interposes on the client-server network path and transforms messages to im-

plement policies. FileWall allows administrators to define access policies using the network

and file system contexts and store persistent state at FileWall. We used FileWall to implement

several primitive policies to illustrate attribute transformation, flow transformation, and flow

coordination, which are different aspects of message transformation. As a case-study, we used
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FileWall to implement a Role-Based Access Control policy for the NFSv3 protocol. With File-

Wall, implementing RBAC for NFS does not require any modification to clients or servers,

and due to a Virtual Namespace, eliminates the need for specialized software agents for client

participation in the access control protocol. Through our experimental evaluation, we demon-

strated that offloading policy enforcement to FileWall does not impose significant overheads

compared to the base file system protocol.

5.1 Role of Offloading in Future System Architectures

Functionality offloading has been used since the early years of computer systems to alleviate

the overheads of handling CPU intensive functionality. Over the years, offloading high perfor-

mance graphics, floating point arithmetic, cryptographic operations, etc. have been accepted as

integral parts of system architectures and generate little controversy. Since this functionality is

easily isolated and is largely stateless, specialized hardware has always outperformed software

implementations.

In contrast, network protocol offloading is one of the most contentious topics in systems.

Proponents of offloading have always proclaimed that the next upgrade in network speeds

would bring the system down to its knees, and the only solution is to use specialized hard-

ware to offload functionality. The opponents have always pointed to the ever increasing CPU

speeds and contended that apart from additional complexity and a stop-gap solution, offload-

ing has little benefit [124, 181]. In this debate, the opponents have almost always prevailed

and rightly so, since there has never been the situation where offloading is the only solution to

alleviate the performance bottlenecks.

Today, we are again at the crossroads. On one hand, the network speeds are increasing both

at the end host, with 10Gbps interfaces, and end-to-end, with broadband connectivity. Applica-

tions such as internet video, online games, virtual worlds, etc., are saturating the bandwidth as

well as the CPUs at the end hosts. On the other hand, the growth in CPU speeds, which, in the

past, allowed the OS to handle high network speeds, has slowed considerably. CPU vendors are

now offering simultaneous multi-threading (SMT) or hyperthreading and chip multi-processing
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(CMP) or multi-core processors, and peripheral devices are commonly equipped with fast pro-

cessors and large memories. For the first time, the crucial system design challenge has become

how to utilize the parallelism available in the hardware.

Systems research has always “reacted” to hardware innovation and workload pressures to

reinvent itself. The design considerations change, the assumptions made in the previous genera-

tions are revisited, and novel system architectures are proposed to handle the new reality. There

are several examples of systems that were proposed in the early years of computing being re-

vived in a modern context. Virtual machines, which were first proposed for IBM S370 [82]

systems in early 1970s, are the most active areas of system research and commercial adoption

today. Isolation of peripheral handling and dedicated I/O processors, which were a part of early

mainframe designs, are being revisited with intelligent devices [30, 75]. Parallel programming

runtimes [94, 29] and programming models have made a comeback in the context of multi and

many core processors with transactional memory [89] and Recognition, Synthesis, and Min-

ing initiatives [63]. Thin clients have been revived with the focus on wide area networks and

mobile desktops [108].

We believe that the trends above are a reflection of workload characteristics that were ear-

lier limited to extreme computing environments becoming commonplace. That is, each of the

original systems were designed for applications and environments that required computing re-

sources at the limit or even beyond those available. Today, the same requirements are manifest

in applications for desktop systems and even mobile phones. Therefore, system designers must

continue to design systems for functionality that current hardware is unable to support effec-

tively.

In this context, an interesting question is to revisit the OS structure itself. Microker-

nels [1, 112, 183, 186] partitioned the OS functionality into multiple independent servers.

This enabled modularity, easy extension, and workload specific adaptation. Similarly, Exoker-

nels [70] proposed to eliminate all OS abstractions and allow applications to build customized

libraries to perform OS functionality. The primary drawbacks of these approaches was the

sharing of scarce CPU resources and the overheads imposed to enable such sharing. With

the availability of idle CPU cycles, we must revisit the question of whether the benefits of a

monolithic kernel are diminished when compared to the microkernel architecture. In the same



137

context, offloading can be viewed as a mechanism to introduce new functionality on general

purpose hardware through software mechanisms. However, we must better understand the in-

teraction of the offloaded functionality with the OS resource management mechanisms, and

the interfaces that enable strong isolation of offloaded functionality while retaining the perfor-

mance benefits of parallelization.

With the growing use of computer systems, the ability to monitor and effectively manage

the computing infrastructure is a problem faced not only by highly trained administrators, but

also for naive home users. Providing continuous service, identifying anomalies, and the ability

to define and enforce high level policies are increasingly becoming the primary evaluation cri-

teria for computer systems. Unfortunately, existing architectures, runtimes, and programming

languages provide limited support to incorporate these principles in practice. An important

direction for investigation is new languages and runtimes that make it possible to offload appli-

cation specific monitoring to external hardware or software entities, to ease the programming

burden. These runtimes can be viewed as a safety net for programmers who can use and even

extend the monitoring functionality external to the primary application code. Recently, such

runtimes have been investigated using virtual machines [66, 214] and OS support [201, 158]

and are an important first step towards the ultimate goal of writing highly reliable and available

software.

An important change we envision in the computing landscape is the growing importance of

the handheld computers. CPU intensive applications, which also require significant memory

and energy resources, are being introduced in cellular phones today. The use of offloading in

this context has been limited to migrating all processing to more powerful servers [20], even

when idle resources are available locally [113]. We must better understand the application

workloads, available hardware resources, and system requirements for performance and relia-

bility to define offloading architectures tailored for such environments.

Going forward, offloading must be recognized as a first order design principle for system

architectures. However, it must not be viewed in context of a narrow definition of moving

functionality closer to peripherals. As demonstrated in part by this dissertation, offloading is a

way of architecting systems to utilize hardware resources, which are otherwise idle.
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