
 

 

 

 

 
 
 
 

 

© [2007] 

HEIDI ARLENE TABOADA JIMENEZ 

ALL RIGHTS RESERVED 

 
 
 
 
 
 
 
 



MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS CONSIDERING 

OBJECTIVE PREFERENCES AND SOLUTION CLUSTERS 

by

HEIDI ARLENE TABOADA JIMENEZ 

A Dissertation submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

Graduate Program in Industrial and Systems Engineering 

written under the direction of 

Dr. David W. Coit 

and approved by 

________________________________

________________________________

________________________________

________________________________

________________________________

New Brunswick, New Jersey 

October, 2007 



ii

ABSTRACT OF THE DISSERTATION 

Multi-objective Optimization Algorithms Considering

Objective Preferences and Solution Clusters 

by HEIDI ARLENE TABOADA JIMENEZ 

Dissertation director: Dr. David W. Coit 

This thesis presents the development of new methods for the solution of multiple 

objective problems. One of the main contributions of this thesis is that it presents new 

approaches that provide a balance between the determination of single solutions and a set 

of Pareto-optimal solutions. Existing solution methodologies for multiple objective 

problems can generally be categorized as single solution methods or Pareto optimality 

methods. However, for many problems and decision-makers, a balanced approach is 

more appropriate, and this thesis provides new approaches to meet those needs. Other 

main contributions are that several novel multi-objective evolutionary algorithms are 

presented, which offer distinct advantages compared to existing algorithms.  

Two different new approaches are introduced which can efficiently determine an 

attractive Pareto set or organize and reduce the size of the Pareto-optimal set. This makes 

it easier for the decision-maker to comparatively analyze a smaller set of solutions, and 

finally, select the most desirable one for system implementation.  

In the first approach, the developed algorithm has the capability to automatically 

identify an optimal number of clusters in the Pareto-optimal set and provide the decision-



iii

maker with representative solutions of each cluster. The second approach is a method that 

yields efficient results for any user who can prioritize the objective functions. In this 

method, the objective functions are ranked ordinally based on their importance to the 

decision-maker, and a reduced Pareto set is determined based on randomly generated 

weight sets, reflecting the decision-maker preferences. 

 Different new multiple objective evolutionary algorithms (MOEAs) are designed as 

the result of this research and they are described and tested. New ideas have been 

incorporated into these MOEAs to provide the research community with new alternatives. 

One of the developed MOEAs is MoPriGA, a multi-objective prioritized genetic 

algorithm. MoPriGA incorporates the knowledge of the decision-maker objective 

function preferences directly within the evolutionary algorithm. The idea behind this 

algorithm is to more intensely focus on the region of the Pareto set of interest to the 

decision-maker. 
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1. Introduction 

 This thesis is focused on the development of new methods for the solution and 

analysis of multiple objective optimization problems. These new methods provide a 

balance between commonly existing methods, and for decision-makers, these new 

methods more appropriately offer practical solutions. In the same way, novel 

evolutionary algorithms are presented. These algorithms offer distinct advantages 

compared to existing algorithms. Moreover, the developed algorithms are intended to be 

used on a wide range of optimization problems rather than any specific one. 

 Most real-world engineering optimization problems involve the achievement of 

several objectives, normally conflicting with each other. These problems are called 

“multi-objective,” “multi-criteria,” or “vector” optimization problems, and were 

originally studied in the context of economics. However, scientists and engineers soon 

realized the importance of solving multi-objective optimization problems, and the 

development of techniques to model and solve such problems became an important area 

within operations research. 

 Because of the conflicting nature of their objectives, multi-objective optimization 

problems do not normally have a single optimal solution, and in fact, they even require 

the definition of a new notion or interpretation of “optimum.” The most commonly 

adopted notion of optimality in multi-objective optimization is that originally proposed 
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by Edgeworth (1881) and later generalized by Pareto (1896). Such a notion is called 

Edgeworth-Pareto optimality or, more commonly, Pareto optimality. 

 Classical methods are often not efficient in solving multiple objective problems 

because they require repetitive applications to find multiple Pareto-optimal solutions, and 

in some occasions, repetitive applications do not guarantee finding distinct Pareto-

optimal solutions. These methods are also susceptible to the shape or continuity of the 

Pareto-optimal set, and therefore, their applicability may be severely limited in many 

real-world applications. This context gives the main motivation for using evolutionary 

algorithms for solving multi-objective optimization problems, which provide an efficient 

approach to find multiple Pareto-optimal solutions simultaneously in a single run. 

Recently, several methods for solving multi-objective optimization problems have 

been developed and studied. However, relatively little prior work has been done on the 

evaluation of the solutions obtained by these algorithms. These algorithms give as a 

result, a non-dominated set of solutions. If this set has a relatively small number of 

solutions, then standard decision-making tools, such as the Analytic Hierarchy Process

(AHP), exist. However, this set often contains a large number of solutions, from which 

the decision-maker has to finally select one solution for system implementation and the 

selection of one solution over the others may become an arduous task.  

1.1 Multiple objective problems 

The complexity of solving multi-objective problems involves two types of problem 

difficulties: i) multiple, conflicting objectives, and ii) a highly complex search space. For 

instance, consider a production planning example with two objectives, cost (f1) and 

makespan (f2), to be minimized under a set of constraints. For this bi-objective problem, 
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an optimum design should ideally be a solution that achieves the minimum makespan at 

the minimum cost without violating the constraints. If such a solution exists, then it is 

necessary to solve just a single-objective optimization problem, because the optimal 

solution for the first objective is also optimal for the second objective. However, this 

rarely happens in real multi-objective problems.  

Multi-objective optimization refers to the solution of problems with two or more 

objectives to be satisfied simultaneously. Often, such objectives are in conflict with each 

other and are expressed in different units. Because of their nature, multi-objective 

optimization problems normally have not one, but a set of solutions, which are called 

Pareto-optimal solutions or nondominated solutions (Chankong & Haimes 1983; Hans 

1988). When such solutions are represented in the objective function space, the graph 

produced is called the Pareto front of the problem, as shown in Figure 1.1.  

 
Figure 1.1 Pareto Front of a bi-objective minimization problem 

 



 4

A general formulation of a multi-objective optimization problem consists of a number 

of objectives and is associated with a number of inequality and equality constraints. 

Mathematically, the problem can be written as follows (Rao, 1991): 

Minimize/Maximize   fi (x)      for  i = 1, 2, …, n 

Subject to: 

� � 0�xjg   j = 1, 2, …, J 

� � 0�xqh   q = 1, 2, …, Q 

In the vector function, fi(x), some of the objectives are generally in conflict with 

others, and some may have to be minimized while others are maximized. Thus, the multi-

objective optimization problem is defined as the problem to find the vector x = (x1, 

x2,..,xn) , i.e., solution which optimize the vector function, fi (x). 

The constraints define some feasible region X, and any point x � X defines a feasible 

solution. Normally, we rarely have a situation in which all the fi (x) values have an 

optimum in X at a common point x. Therefore, it is necessary to establish certain criteria 

to determine what is considered as an optimal solution, and this criteria is nondominance. 

Thus, solutions to a multi-objective optimization problem are mathematically expressed 

in terms of nondominance. 

Without loss of generality, for a minimization problem for all objectives, a solution x1 

dominates a solution x2, if and only if, the two following conditions are true: 

	 x1 is no worse than x2 in all objectives, i.e.,  fi (x1) � fi (x2) � 
 i, � �ni ...,,2,1�

	 x1 is strictly better than x2 in at least one objective, i.e., fi (x1) < fi (x2) for at least one i.  
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Then, the optimal solutions to a multi-objective optimization problem are the set of 

nondominated solutions X and they are usually known as Pareto-optimal set (Zeleny, 

1982). 

1.1.1 Existing methods for the solution of multiple objective problems 

 Existing methods require either the aggregation of the objectives into an overall 

objective function or the determination of a Pareto set. The first method, in which one 

single solution is obtained, requires precise knowledge of the objective function priorities 

and relative importance, and thus, very broad and very detailed knowledge of the system 

is demanded, i.e., systems usage, customer priorities and tendencies management 

priorities, etc. Some methods that belong to this first approach are the weighted sum 

method, goal programming, and utility theory among others. These methods are further 

discussed in Chapter 3. In contrast, in the second method a Pareto-optimal set is obtained. 

This set usually contains a large number (in some cases, thousands) of solutions and from 

the decision-maker’s perspective, consideration of all the nondominated solutions can be 

prohibitive and inefficient. Generally, Multiple Objective Evolutionary Algorithms 

(MOEAs) are used to determine a Pareto-optimal set. 

 
1.1.2 Research contributions 

 From the discussion above, it can be seen that there is a need for the development of 

new methods that provide a balance between single solutions and Pareto optimality, as 

shown in Figure 1.2.  

Single solution Pareto optimalityContinuumSingle solution Pareto optimalityContinuum

Figure 1.2 Achieving a balance between single solutions and Pareto-optimal solutions 

 

 



 6

 

The contributions of this thesis are summarized as follows: 

	 Development of new methods for the solution of multi-objective optimization 

problems that achieve a balance between single solutions and Pareto-optimal 

solutions. 

	 A method developed for decision-makers that can prioritize the objective functions to 

find appropriate smaller sets of solutions that clearly reflect his/her objective function 

preferences. 

	 Development of a practical method that allows the decision-maker to obtain a 

comparably smaller set of solutions when he/she does not have any a priori 

information of the objective function preferences. This method represents the 

integration of existing data mining techniques into a new approach for analyzing 

Pareto-optimal sets. 

	 A new multiple objective evolutionary algorithm that, when tested on design 

allocation problems, is observed to be superior to one of the most successful 

evolutionary algorithms that currently exists. 

	 New multi-objective evolutionary algorithms that consider, not only multi-state, but 

also multi-state multi-task systems. 

	 A new multi-objective evolutionary algorithm that incorporates the knowledge of the 

decision-maker objective function preferences directly into the search process for the 

first time. 
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1.2 Thesis organization 

 This thesis is organized as follows: 

 In Chapter 2, a brief overview of some of the most well-known metaheuristic 

algorithms and their classification is presented. Also, the basic design issues in single-

objective genetic algorithms are introduced. 

 In Chapter 3, a description of the two primary approaches to identify solution(s) to 

multiple objective problems is introduced. Since in Chapter 2, the basic design issues in 

single-objective genetic algorithms were introduced, in Chapter 3, some of the aspects 

that make single-objective genetic algorithms different from multiple-objective genetic 

algorithms are reviewed. Due to their importance, most of the effort is concentrated on an 

extensive overview of some of the currently most successful state-of-the-art MOEAs. 

In Chapter 4, several methods are presented, which can efficiently organize and 

reduce the size of the Pareto-optimal set, and thus, make it easier for the decision-maker 

to comparatively analyze a small set of solutions, and finally, select the most desirable 

one for system implementation. 

The primary idea is based on an unsupervised data mining technique, in which the 

solutions in the Pareto-optimal set are clustered so that the Pareto-optimal front is 

reduced to a set of k disjoint clusters or to the solutions contained in the “knee cluster”. 

These are likely to be the most interesting solutions, instead of having to analyze the 

entire Pareto set. 

The second idea is based on an approach analogous to the weighted sum method on 

the Pareto-optimal set except that specific numerical objective function weights or 

penalties are not required. The objective functions are ranked ordinally based on their 
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importance to the decision-maker (ties allowed). To determine a promising set of 

recommended solutions, a pruning process is introduced. In this process, the objective 

functions are scaled and repeatedly combined into a single objective function using 

numerous randomly generated weight sets. Each random weight set adheres to the 

decision-maker preferences and is generated from a multi-dimensional weight function 

analogous to a multiple dimension probability density function. This is a simple method 

that yields efficient results for any user who can prioritize the objective functions to find 

appropriate solutions.  

In the present work, different multi-objective optimization problems are presented 

which (in different ways) incorporate the ideas that are outlined above. 

 Chapter 5 presents a newly developed multi-objective evolutionary algorithm for 

solving system design allocation problems, MOEA-DAP. Because EAs are appropriate 

for high-dimension stochastic problems with many nonlinearities or discontinuities, they 

are suited for solving many different problems, including reliability design problems. 

This new algorithm uses a genetic algorithm based on rank selection and elitist 

reinsertion, and a modifying genetic operator constraint handling method. MOEA-DAP, 

mainly differs from other MOEAs in the type of crossover operator used, that appears to 

encourage the exploration of the search space. A comparison between one of the most 

successful evolutionary algorithms that currently exists, NSGA-II, and the new 

algorithm, indicates that MOEA-DAP is more powerful to solve multi-objective design 

allocation problems based on the example problems considered. 

 Chapter 6 introduces a multi-objective multi-state genetic algorithm (MOMS-GA) to 

solve multiple objective multi-state reliability and availability optimization design 
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problems. MOMS-GA was developed as an extension of MOEA-DAP, which was 

developed to consider binary-state reliability. That is, the evolutionary algorithm assumed 

that the system and its components could be in either a working or a failed state only. In 

contrast, the developed MOMS-GA works under the assumption that both, the system 

and its components, experience more than two possible states of performance. The 

universal moment generating function (UMGF) approach was implemented in the 

algorithm to obtain the system availability.  

 Analogous to the allocation of redundant components to meet high reliability 

specifications in reliability optimization, there are many other engineering design and 

development projects that require the allocation of redundant components such as in the 

machine allocation phase in production systems. Despite the clear relationship between 

the two types of allocation problems, production scheduling and reliability optimization 

are typically treated independently in the research literature and in practice. Chapter 7 

shows how system availability can be used within the context of multi-task production 

systems. For this purpose, this chapter presents a new multiple objective evolutionary 

algorithm to determine optimal configurations of multi-state, multi-task production 

systems based on availability analysis. The performance of a manufacturing system is 

greatly influenced by its configuration. In the algorithm, availability is used in the context 

of multi-task production systems to select a particular configuration that maximizes the 

probability of meeting a required demand for each specific task, or the expected 

productivity for each task. 

 Chapter 8 introduces a multiple objective prioritized genetic algorithm (MoPriGA). 

MoPriGA conceptually combines the idea of the working mechanism of MOEA-DAP 
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and post-Pareto pruning. This algorithm incorporates the knowledge of the decision-

maker objective function preferences based on the inclusion of the uncertain weight 

function, fw(w), into the search process. MoPriGA is a powerful algorithm that searches 

extensively in the region of interest without reducing the capability of the search, but 

simply focusing intensely on the region of the Pareto set of most interest to the decision-

maker. 

 There are numerous opportunities for developing novel and original research in the 

evolutionary multi-objective optimization area. Chapter 9 presents a discussion of some 

of these research opportunities to extend the current research. One of them is the 

development of new multipurpose MOEAs with the ability of finding homogeneously 

distributed solutions in the final Pareto front with the robustness of balancing proximity 

and diversity during the searching process.  

 One of the most important tasks in the future research is the incorporation of 

uncertainties in MOEAs. Several risk measures, currently used to manage uncertainties in 

portfolio optimization, such as value-at-risk, conditional-value-at risk, and expected 

shortfall are intended to be adapted in the searching process in order to incorporate risk in 

the solution of multi-objective optimization problems. This is an entirely new research 

area, and if successful, it will be a great contribution to the research community. 
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2. Metaheuristics literature review 

 This dissertation involves the use of metaheuristics to obtain solutions for multiple 

objective optimization problems. Solutions from existing metaheuristics are pruned to 

obtain smaller, promising Pareto sub-sets and new metaheuristics are designed. In this 

chapter, an overview of existing metaheuristic methods is given. 

 Metaheuristics can be considered as high level strategies for exploring search spaces 

by using different methods. This chapter introduces four of these metaheuristic 

optimization techniques: Genetic Algorithms (GAs), Ant Colony Optimization (ACO), 

Simulated Annealing (SA) and Tabu Search (TS). GAs locate optima using processes 

similar to those in natural selection and genetics. The ACO algorithm consists of a set of 

artificial “ants” that incrementally construct solutions by adding components to their 

solutions. SA operates analogously to the searching of minimum energy configurations in 

metal annealing. TS is a metaheuristic procedure that employs dynamically generated 

constraints or tabus to guide the search for optimum solutions (Pham & Karaboga, 2000).  

 This thesis is concerned with the development of new multiple objective genetic 

algorithms (MOGAs) as solution methods to multiple objective optimization problems. 

Therefore, a more detailed description of GAs is presented throughout this chapter. 

Although single-objective GAs are different from multiple objective GAs, they both 

share basic design characteristics such as the crossover and mutation operators among 

others. 
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2.1 Combinatorial optimization problems 

 Many optimization problems consist of the search for a “best” configuration of a set 

of variables to achieve some goals. Optimization problems generally divide naturally into 

two categories: those with continuous decision variables and those with discrete decision 

variables, which we call combinatorial. According to Papadimitriou & Steiglitz (1982), 

in Combinatorial Optimization (CO) problems, we are searching for an object from a 

finite - or possibly countably infinite - set. This object is typically an integer number, a 

subset, a permutation, or a graph structure. 

 A single objective combinatorial optimization problem, P=(S, f), can be 

mathematically defined by: 

- a set of variables X=(x1, …, xn); 

- variable domains D1, …, Dn; 

- constraints among variables; 

- an objective function f to be minimized 

 The set S of all possible feasible assignments is usually called the search (or solution) 

space, as each element of the set can be seen as a candidate solution. To solve a

combinatorial optimization problem, one has to find a solution s*�S with minimum

objective function value, that is, f(s*) � f(s) 
s � S. s* is called a global optimal solution 

of (S, f ).  

 Finding a global optimal solution to an instance of some problems can be 

prohibitively difficult, but it is often possible to find a solution s' which is best in the 

sense that there is nothing better in its neighborhood N(s'), such a solution is called local

optimal with respect to N(s'). 
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 To illustrate the difference between local optima and global optima, consider the 

instance of an optimization problem (S,f) defined by 

F=[0,1] 
 R 

And the cost function c sketched in Figure 2.1. Let the neighborhood be defined simply 

by closeness in Euclidean distance for some �>0. 

N(s') = {x: x � F and | x – s' | � � } 

Then, if � is suitably small, the points A, B and C are all local optima, but only B is global 

optima (Papadimitriou & Steiglitz ,1982) . 
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Figure 2.1 Local optima and global optima 

2.2 Metaheuristic optimization approaches 

 Due to the practical importance of CO problems, many algorithms have been 

developed to provide solutions for these types of problems. These algorithms can be 

classified as either complete or approximate algorithms. Complete algorithms are 

guaranteed to find, for every finite size instance of a CO problem, an optimal solution in 

bounded time (see Papadimitriou & Steiglitz (1982) and Nemhauser & Wolsey (1988)).  

 Complete methods might need exponential computation time which may be too 

computationally expensive for practical purposes. Thus, the use of approximate methods 

to solve CO problems has received more and more attention during the last years. In 
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approximate methods, we sacrifice the guarantee of finding optimal solutions for the sake 

of getting good solutions in a significantly reduced amount of time. 

 In the last 20 to 25 years, a new kind of approximate algorithm has emerged which 

basically tries to combine basic heuristic methods in higher level frameworks aimed at 

efficiently and effectively exploring a search space (Blum & Roli, 2003). These methods 

are commonly called metaheuristics. The term metaheuristic, first introduced in Glover 

(1986), derives from the composition of two Greek words. Heuristic derives from the 

verb heuriskein which means “to find”, while the suffix meta means “beyond, in an upper 

level.” 

 In general, metaheuristics can be loosely defined as high level strategies for exploring 

search spaces by using different methods. Some of the fundamental properties which 

characterize metaheuristics are: 

	 Metaheuristics are strategies that “guide” the search process. 

	 The goal is to efficiently explore the search space in order to find (near) optimal 

solutions. 

	 Metaheuristics are not problem-specific. 

	 Techniques which constitute metaheuristics algorithms range from simple local 

search procedures to complex learning processes. 

	 Metaheuristic algorithms are approximate and usually non-deterministic. 

	 They may incorporate mechanisms to avoid getting trapped in confined areas of the 

search space. 

 There are different ways to classify metaheuristics. One of the most common ways is 

to classify them as single point local-search methods (or trajectory methods) in which a 
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single solution is improved incrementally by making small changes to it; and population-

based methods, where a population of solutions is evolved in parallel, describing the 

evolution of a set of points in the search space.  

 Some of the most traditional and important metaheuristics representative of each class 

are: 

	 Population-based methods: Ant Colony Optimization (ACO) and Evolutionary 

Computation (EC) including Genetic Algorithms (GAs) 

	 Trajectory methods:  Simulated Annealing (SA) and Tabu Search (TS) 

 

 Since this thesis proposal is concerned with the solutions and applications of the most 

recent versions of the last method, more emphasis is devoted to its explanation and 

understanding, although a brief overview of the other algorithms is also described to 

outline the different concepts that are used in the trajectory vs. population-based search 

methods. 

2.2.1 Population-based methods 

2.2.1.1 Ant colony optimization (ACO) 
 
 Ant colony optimization (ACO) is a metaheuristic approach firstly proposed by 

Dorigo (1992) for solving discrete combinatorial optimization problems. ACO is inspired 

by the behavior of ants when finding the shortest path between a food source and their 

nest. Ants deposit a substance called pheromone while exploring paths and also use the 

level of concentration of pheromone to decide which path to follow. Since the pheromone 

evaporates as time passes, the concentration is strongest in the shortest paths, making 

them more attractive for other ants that also contribute to enhance the attractiveness of 
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the path. The ACO algorithm consists of a set of artificial ants that incrementally 

construct solutions by adding components to their solutions. 

 ACO has been applied successfully to a large number of difficult combinatorial 

optimization problems such as the traveling salesman problem, as in Dorigo & 

Gambardella (1997), scheduling problems, and routing problems in telecommunication 

networks. Further research on the ACO metaheuristic can be found in Dorigo et al. 

(1996, 1999). 

2.2.1.2 Evolutionary computation (EC)  

 Evolutionary computation (EC) algorithms are inspired by nature’s capability to 

evolve well adapted living beings to their environment. There has been a variety of 

slightly different EC algorithms proposed over the years. Basically they fall into three 

different categories which have been developed independently from each other. These are 

Evolutionary Programming (EP) developed by Fogel (1962) and Fogel et al. (1966), 

Evolutionary Strategies (ES) proposed by Rechenberg (1973) and Genetic Algorithms 

(GAs) initially proposed by Holland (1975). 

 Evolutionary computation algorithms have been successfully applied to numerous 

problems from different domains, including optimization, automatic programming, 

machine learning, economics, operations research, ecology, population genetics, studies 

of evolution and learning, and social systems (Mitchell, 1996). 

 

 Since, in part, this thesis is concerned with the development of new multiple objective 

genetic algorithms (MOGAs) a more detailed description of Genetic Algorithms will be 

presented, since they represent the basis for a strong understanding of the current state-of-

the-art multiple objective evolutionary algorithms (MOEAs). 
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2.2.1.3 Genetic algorithms (GAs) 

GAs, developed by Holland (1975), are nondeterministic stochastic 

search/optimization methods that simulate the process of natural evolution to solve 

problems with a complex solution space. GAs are computer-based algorithms that mimic 

some of the known mechanisms in evolution, as key elements in their design and 

implementation. 

In its general form, a GA works as follows: an initial population of individuals is 

generated at random or heuristically. At every generation, the individuals in the current 

population are decoded and evaluated according to some predefined quality criterion, 

referred to as the fitness function.  

Creation of new members is done by crossover and mutation operations. The 

effectiveness of the crossover operator dictates the rate of convergence; while the 

mutation operator prevents the algorithm from prematurely converge to a local optimum.  

During the selection procedure, individuals are chosen according to their fitness 

value. Individuals with high-fitness values have better chances of reproducing, while 

low-fitness ones are more likely to disappear. The procedure is terminated either when 

the search process stagnates or when a predefined number of generations is reached. 

Genetic algorithms are advanced search mechanisms ideal for exploring large and 

complex problem spaces. However, it is important to not forget that GAs are stochastic 

iterative processes and they are not guaranteed to converge to the global optimal solution. 

Hence, the termination condition may be specified as some fixed maximal number of 

generations or as the attainment of an acceptable fitness level. 
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Some of the essential differences between GAs and other forms of optimization, 

according to Goldberg (1989) are: 

	 GAs search a population of points in parallel, not a single point. This gives the GAs the 

power to search “noisy” spaces. That is, instead of relying on a single point to search 

through the space, the GAs look at many different areas of the problem space at once. 

	 GAs use probabilistic transition rules, not deterministic ones. This is a direct result of the 

randomization techniques used by GAs. 

	 GAs work on an encoded form of the solution parameters rather than their actual values. 

Besides the computational advantage that this represents, it also provides the 

possibility of crossover and mutation. 

	 GAs use only payoff information to guide themselves to the problem space. GAs do not 

require derivative information, or other auxiliary knowledge; only the objective 

function and corresponding fitness levels influence the direction of search. 

A pseudocode of a basic GA is as follows: 

1. [Start] Generate random population of n chromosomes  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

3. [New population] Create a new population by repeating following steps until the 

 new population is complete 

3.1 [Selection] Select two parent chromosomes from a population according to 

 their fitness (the better fitness, the bigger chance to be selected)  

3.2 [Crossover] With a crossover probability, crossover the parents to form new 

 offspring (children) solutions. If no crossover was performed, offspring is the 

 exact copy of parents. 
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3.3 [Mutation] With a mutation probability, mutate new offspring at each locus 

 (position in chromosome).  

3.4 [Accepting] Place new offspring in the new population  

4. [Replace] Use new generated population for a further run of the algorithm  

5. [Test] If a defined stopping criterion is satisfied, stop, and return the best solution 

 in current population  

6. [Loop] Go to Step 2  

2.2.1.3.1 Genetic algorithms: basic principles and design issues 

 GAs remain the most recognized form of evolutionary computation algorithms. In 

GA terminology, a solution vector x�X is called an individual or a chromosome. 

Chromosomes are made of discrete units called genes. Each gene controls one or more 

features of the chromosome. In the original implementation of GA by Holland (1975), 

genes are assumed to be binary digits. In later implementations, more varied gene types 

have been introduced. Normally, a chromosome corresponds to a unique solution x in the 

solution space. This requires a mapping mechanism between the solution space and the 

chromosomes. This mapping is called an encoding. In fact, GA works on the encoding of 

a problem, not on the problem itself (Konak et al., 2006).  

2.2.1.3.1.1 Encoding or chromosome implementation 

 One of the first issues that must be resolved when designing the GA is to decide the 

type of encoding to use, which is simply the form of the basic chromosome. This 

determines the requirements and complexity of the genetic operators and directly affects 

the performance of those operators. In part, the chromosome implementation will be 

driven by the type of problem to be solved. (Is it number based; integer or real?, what are 
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the precision requirements? Is it symbolic; arbitrary symbol length or fixed, encoded or 

pre-decoded? etc.) 

 There are many other ways of encoding: binary encoding, permutation encoding, 

value encoding, and tree encoding are among the most used encoding systems. These 

encoding schemes are discussed below. 

Binary encoding 

 Binary encoding is the most common encoding scheme, primarily because the first 

research of GA used this type of encoding and because of its relative simplicity. In binary 

encoding, every chromosome is a string of bits - 0 or 1.

 
Figure 2.2 Binary encoding example 

 Each chromosome has one binary string and each bit in this string can represent some 

characteristic of the solution or the whole string can represent a number. 

Permutation encoding 

 In permutation encoding, every chromosome is a string of numbers that represent a 

position in a sequence. Sometimes, the use of this representation provides a convenient 

and natural way of expressing the mapping from representation to problem domain.  

 For instance, consider the traveling salesman problem, the task being to find the 

shortest route visiting all the cities from a given set exactly once. By using integer labels, 

each candidate solution can be uniquely represented as a permutation of these elements. 

For example, in a seven-city tour {2, 7, 1, 3, 5, 6, 4} and {6, 4, 7, 1, 5, 3, 2} represent 

1 1 0 1 0 0 1 0 1 1 Chromosome 1:

Chromosome 2: 1 0 0 1 1 0 1 0 0 1 

1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 Chromosome 1:

Chromosome 2: 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 
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paths between the cities. Thus the chromosomes used in a GA to solve this problem 

would contain seven integers, each integer corresponding to a city in the tour. 

 
Figure 2.3 Permutation encoding example 

 Note that permutation encoding and value (integer) encoding differ in the aspect that 

in permutation encoding there are no genes with the same value in a given chromosome, 

while in value encoding such a situation is allowed. 

Value encoding

 Value encoding can be used in problems where some complicated values, such as real 

numbers, are used and where binary encoding would not suffice. While value encoding is 

very good for some problems, it is often necessary to develop some specific crossover 

and mutation techniques for these chromosomes. 

 Under the value encoding scheme, every chromosome is a sequence of some values. 

Values can be anything connected to the problem, such as (real) numbers, characters, or 

any objects.  

1.23 2.15 5.683.412.204.921.23 2.15 5.683.412.204.92Chromosome 1:

Chromosome 2:

Chromosome 3:

A B CBDEA B CBDE

N W NENSN W NENS
 

Figure 2.4 Value encoding example 

2 7 1 3 5 6 4 Chromosome 1:

Chromosome 2: 6 4 7 1 5 3 2 

2 7 1 3 5 6 4 2 7 1 3 5 6 4 Chromosome 1:

Chromosome 2: 6 4 7 1 5 3 2 6 4 7 1 5 3 2 
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 In chromosome 1 (Figure 2.4), A represents a real value for specific variables; in 

chromosome 2, A could represent a particular task, B another, etc. In chromosome 3, N 

could be north, S south, etc. 

Tree encoding

 Tree encoding is useful for evolving programs (i.e. genetic programming) or any 

other structures that can be encoded in trees. In the tree encoding every chromosome is a 

tree of some objects, such as functions or commands in the programming language. 

IF

anX

Y X

IF

ANDX

Y X
 

Figure 2.5 Example of a chromosome with tree encoding  

 Tree encoding has been used, for example, in heuristics for computing constrained 

minimum spanning trees – minimum-weight spanning trees satisfying an additional 

constraint, such as on the number of leaves, maximum degree, or diameter of the tree 

(Edelson & Gargano, 2000; Zhou & Gen, 1997). 

2.2.1.3.1.2 Selection and fitness assignment  

 According to Darwin's evolution theory, the fittest members of a population should 

survive to create new offspring. The selection operator is intended to improve the average 

quality of the population by giving higher quality individual a higher probability of 

survival. There are many methods in selecting the best chromosomes. Examples are 

roulette wheel selection, stochastic universal sampling selection, rank selection, 

tournament selection, steady-state selection and some others.  
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Roulette wheel selection  

 First, parents are selected according to their fitness. The better the chromosomes are, 

the more chances to be selected they have. The simplest selection scheme is roulette-

wheel selection, also called stochastic sampling with replacement (Baker, 1987). This is a 

stochastic algorithm and involves the following technique: 

1. The individuals are mapped to contiguous segments of a line, such that each 

individual's segment is equal in size to its fitness.  

2. A random number is generated and the individual whose segment spans the random 

number is selected.  

3. The process is repeated until the desired number of individuals is obtained (called 

mating population).  

 This technique is analogous to a roulette wheel with each slice proportional in size to 

the fitness function of every chromosome. The bigger the value is, the larger the section 

is. 

 As an example, Table 2.1 shows the selection probability for seven individuals. 

Individual 1 is the fittest individual and occupies the largest interval, whereas individual 

6, as the second least fit individual, has the smallest interval on the line (see Figure 2.6). 

Individual 7, the least fit interval, has a fitness value of 0 and get no chance for 

reproduction. 

Table 2.1 Selection probability and fitness value 

Individual 1 2 3 4 5 6 7 
Fitness value 3.0 2.5 2.0 1.5 1.0 0.5 0 
Selection probability 0.2857 0.2381 0.1905 0.1429 0.0952 0.0476 0 
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 For selecting the mating population, the appropriate number of uniformly distributed 

random numbers (uniform distributed between 0.0 and 1.0) is independently generated, 

i.e. consider a sample of 5 random numbers: 0.42, 0.86, 0.99, 0.05, 0.78. 

 Figure 2.6 shows the selection process of the individuals for the example in table 

together with the above sample trials. After selection, the mating population consists of 

the individuals: 2, 5, 6, 1, 4. The roulette-wheel selection algorithm provides a zero bias 

but does not guarantee minimum spread. 

0                                 0.2857                   0.5238            0.7143       0.8572   0.9524    1

individual 1 2 3 4 5 6

trial 1 trial 2 trial 3trial 4 trial 5
 

Figure 2.6 Roulette-wheel selection 

Stochastic universal sampling 

 Stochastic universal sampling provides zero bias and minimum spread (Baker, 1987). 

The individuals are mapped to contiguous segments of a line, such that each individual's 

segment is equal in size to its fitness exactly as in roulette-wheel selection. Here equally 

spaced pointers are placed over the line as many as there are individuals to be selected. 

Consider NPointer to be the number of individuals to be selected. Then, the distance 

between the pointers are 1/NPointer and the position of the first pointer is given by a 

randomly generated number in the range [0, 1/NPointer]. 

 Using the information from Table 2.2, consider four individuals to be selected. Thus, 

the distance between the pointers is 1/4=0.25. Figure 2.7 shows the selection for the 

above example. 
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 Randomly sample 1 number in the range [0, 0.25]: 0.22. After selection the mating 

population consists of the individuals: 1, 2, 4, 6. 

0                                 0.2857                   0.5238            0.7143        0.8572   0.9524    1

individual 1 2 3 4 5 6

Random number

pointer 1 pointer 2 pointer 3 pointer 4

 
Figure 2.7 Stochastic universal sampling 

Rank selection  

 Rank selection ranks the population first and then every chromosome receives fitness 

value determined by this ranking. The worst will have the fitness 1, the second worst 2, 

etc. and the best will have fitness N (number of chromosomes in the population). The 

fitness assigned to each individual depends only on its position in the individuals rank 

and not on the actual objective value. 

 Rank-based fitness assignment overcomes the scaling problems of the proportional 

fitness assignment. (Stagnation in the case where the selective pressure is too small, or 

premature convergence where selection has caused the search to narrow down too 

quickly.) The reproductive range is limited, so that no individuals generate an excessive 

number of offspring. Ranking introduces a uniform scaling across the population and 

provides a simple and effective way of controlling selective pressure. 

 Rank-based fitness assignment behaves in a more robust manner than proportional 

fitness assignment and, thus, is a good method to choose. (Whitley, 1989 and Bäch & 

Hoffmeister, 1991).  
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Tournament selection 

 Tournament selection involves randomly choosing two candidates from the current 

population. Then, the fitness of these two candidates are compared and the one with the 

highest one is selected for mating. Tournament selection can be generalized to include 

more than two individuals being chosen for competition and the best of this group is 

selected to reproduce. 

 To illustrate, consider one round of tournament selection with k=2 as in Figure 2.8, in 

which individuals 132 and 28 are chosen for competition. Individual 28 would then be 

selected since its fitness (0.125) is larger than the fitness of individual 132 (0.056). Thus, 

individual 28 would be considered for mating purposes. This process is repeated a 

specified number of times or until the mating pool is complete.  

1 3 2 4 7 9 5 6

6 2 7 1 3 0 1 4

1 3 2 4 7 9 5 6

6 2 7 1 3 0 1 46 2 7 1 3 0 1 4

6 2 7 1 3 0 1 4
7 2 6 0 4 9 5 1

4 2 2 1 3 0 5 84 2 2 1 3 0 5 8

7 2 6 0 4 9 5 1

3 9 2 2 7 0 5 4

8 1 3 4 5 2 2 68 1 3 4 5 2 2 6

5 3 8 4 2 9 1 7

2 3 7 6 5 8 4 92 3 7 6 5 8 4 9

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

9 3 7 0 2 0 4 5

6 9 3 1 4 2 8 09 3 1 4 2 8 0

3 9 2 1 3 4 6 53 9 2 1 3 4 6 5

8 1 3 4 5 2 2 6

9 3 7 0 2 0 4 5

2 3 7 6 5 8 4 9

6 9 3 1 4 2 8 0

Mating pool

Ind. 132- fitness value: 0.056

Ind. 28- fitness value: 0.125

Ind. 19- fitness value: 0.12

Ind. 86- fitness value: 0.19

Ind. 44- fitness value: 0.024

Ind. 123- fitness value: 0.27

Ind. 11- fitness value: 0.283

Ind. 17- fitness value: 0.095

Ind. 39- fitness value: 0.047

Ind. 101- fitness value: 0.142

Ind. 92- fitness value: 0.34

Ind. 5- fitness value: 0.112

Ind. 11

Ind. 28

Ind. 86

Ind. 101

Ind. 123

Ind. 92

 

Figure 2.8 Tournament selection, k=2 
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Steady-state selection

 The steady-state selection GA works in the following way. In every generation a few 

good (with higher fitness) chromosomes are selected for creating new offspring. Then 

some bad (with lower fitness) chromosomes are removed and the new offspring is placed 

in their place. The rest of population survives to new generation.  

2.2.1.3.1.3 Elitism

Elitism is the name of the method that first copies the best chromosome (or few best 

chromosomes) to the new population. The rest of the population is constructed in ways 

described above. Elitism can rapidly increase the performance of GA, because it prevents 

the loss of the best found solutions. 

2.2.1.3.1.4 Crossover and mutation 

 Crossover and mutation are the most important part of a GA. The performance of the 

algorithm is mainly influenced by these two operators. The primary purpose of the 

crossover operator is to get genetic material from the previous generation to the 

subsequent generation, while the main purpose of the mutation operator is to introduce a 

certain amount of randomness to the search. It can help in the search to find solutions that 

crossover alone might not encounter. 

 Usually, there is a predefined probability of procreation via each of these operators. 

Traditionally, these probability values are selected such that crossover is the most 

frequently used, with mutation being resorted to only relatively rarely. This is because the 

mutation operator is a random operator and serves to introduce diversity in the 

population. 
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 Crossover is made in the hope that new chromosomes contain good parts of old 

chromosomes, and therefore, the new chromosomes are better. However, it is good to 

leave some part of the old population to survive to the next generation.  

 Mutation generally prevents the GA from falling into local extremes. Mutation should 

not occur very often, because then GA will in fact change to random search.  

 There are many different types of crossover operators presented in the literature. 

Some of them are: single-point crossover, two-point crossover, uniform crossover, order 

crossover, position based crossover (Syswerda, 1990), partially mapped crossover 

(Goldberg & Lingle, 1985), etc. However, the type of encoding in most cases dictates the 

type of crossover to utilize. Some of the most common crossover operators and type of 

mutation used in binary, permutation, value, and tree encoded individuals are presented 

next: 

2.2.1.3.1.4.1 Crossover and mutation for binary encoded individuals 

For binary encoded chromosomes, there can be distinguished several types of 

crossover techniques, some of them are: 

Single-point crossover: a crossover position is selected at random, then the first child 

contains the first part of parent 1 and, the rest is copied from the other parent as shown in 

Figure 2.9.

1 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Offspring 1

Offspring 2

Parent 1

Parent 2

1 0 1 0 0 1 01 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Offspring 1

Offspring 2

1 0 1 0 1 1 0

0 0 1 0 0 1 0

1 0 1 0 1 1 01 0 1 0 1 1 0

0 0 1 0 0 1 00 0 1 0 0 1 0

Offspring 1

Offspring 2

Parent 1

Parent 2

 
Figure 2.9 Single-point crossover 
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Double-point crossover: in double-point crossover two crossover positions are selected 

uniformly at random and the variables exchanged between the individuals between these 

points, then two new offspring are produced as seen in Figure 2.10. 

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Parent 1

Parent 2

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Parent 1

Parent 2

1 0 1 0 0 1 01 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

1 0 1 0 1 1 01 0 1 0 1 1 0

0 0 1 0 0 1 00 0 1 0 0 1 0

Parent 1

Parent 2

 
Figure 2.10 Double-point crossover 

Multi-point crossover: For multi-point crossover, k crossover positions are selected, 

then the variables between successive crossover points are exchanged between the two 

parents to produce two new offspring. Figure 2.11 illustrates an example of multi-point 

crossover.

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 0 1

1 0 1 0 1 1 0

0 0 1 0 0 0 1

Parent 1

Parent 2

1 1

1 0

1 0

1 1

Offspring 1

Offspring 2

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 0 1

1 0 1 0 1 1 0

0 0 1 0 0 0 1

Parent 1

Parent 2

1 1

1 0

1 0

1 1

 
Figure 2.11 Multi-point crossover 

 The idea behind multi-point, and indeed many of the variations on the crossover 

operator, is that parts of the chromosome representation that contribute most to the 

performance of a particular individual may not necessarily be contained in adjacent 

substrings (Booker, 1987). Furthermore, the disruptive nature of multi-point crossover 

appears to encourage the exploration of the search space, rather than favoring the 

convergence to highly fit individuals early in the search, thus making the search more 

robust (Spears & De Jong, 1991). 
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Mutation for binary encoded individuals: 

 Bit inversion is one mutation technique for binary encoded chromosomes. 

Bit inversion - Selected bits are inverted (one or more). For binary valued individuals 

mutation means the flipping of variable values, because every variable has only two 

states. Thus, the size of the mutation step is always one. For every individual, the variable 

value to change is chosen (mostly uniform at random). In Figure 2.12, the individual is 

mutated in position k=4. 

1 1 0 1 0 0 1 01 1 0 1 0 0 1 0 1 1 0 0 0 0 1 01 1 0 0 0 0 1 0

mutated chromosome

 

Figure 2.12 Mutation in binary encoded individuals 

2.2.1.3.1.4.2 Crossover and mutation for permutation encoded individuals 

Single point crossover and order changing are presented as the crossover and 

mutation techniques for permutation encoded individuals. 

Single point crossover – as shown in Figure 2.13, one crossover point is selected, the 

permutation is copied from the first parent till the crossover point, then the other parent is 

scanned and if the number is not yet in the offspring, it is added. 

4 5 3 6 8 9 7 2 14 5 3 6 8 9 7 2 1 1 2 3 4 5 6 8 9 71 2 3 4 5 6 8 9 7+ =

Parent 1 Parent 2 Offspring

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

 
Figure 2.13 Single-point crossover for permutation encoded individuals 

Mutation for permutation encoded individuals: 

Order changing - Two numbers in the string are selected and exchanged as shown in 

Figure 2.14.  
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1 2 3 4 5 6 7 8 9 1 7 3 4 5 6 2 8 9

mutated chromosome

 

Figure 2.14 Order changing mutation for permutation encoded individuals 

2.2.1.3.1.4.3 Crossover and mutation for value encoded individuals 

 All crossovers from binary encoding can be used here as well. Figure 2.15 shows an 

example of double-point crossover for chromosomes encoded with integer variables. 

2 7 1 3 5 6 4

6 4 7 1 5 3 2

2 7 7 1 5 6 4

6 4 1 3 5 3 2

Offspring 1

Offspring 2

Parent 1

Parent 2

2 7 1 3 5 6 42 7 1 3 5 6 4

6 4 7 1 5 3 26 4 7 1 5 3 2

2 7 7 1 5 6 4

6 4 1 3 5 3 2

Offspring 1

Offspring 2

2 7 7 1 5 6 4

6 4 1 3 5 3 2

2 7 7 1 5 6 42 7 7 1 5 6 4

6 4 1 3 5 3 26 4 1 3 5 3 2

Offspring 1

Offspring 2

Parent 1

Parent 2

 

Figure 2.15 Double-point crossover 

Mutation for value encoded individuals: 

 In the case of having integer encoded chromosomes, mutation can be similar to the 

one for permutation encoded individuals (order changing) if the problem allows this type 

of change. 

 For the case of having real encoded individuals, a small number is added to (or 

subtracted from) selected values with a low probability. Thus, the probability of mutating 

a variable (mutation rate) and the size of the changes for each mutated variable (mutation 

step) must be defined. Figure 2.16 shows the case in which randomly selected, positions 

3 and 4 of the chromosome are selected to be mutated. For the first selected gene, a small 

number (0.12) was subtracted from the current value in that gene, and for the second 

selected gene, the same quantity was added, instead of subtracted, to the current value. 
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1.23 2.15 5.683.412.204.921.23 2.15 5.683.412.204.92 1.23 2.15 5.683.412.324.801.23 2.15 5.683.412.324.80

mutated chromosome

 
Figure 2.16 Real value mutation 

 The mutation rate is independent of the size of the population, and the size of the 

mutation step, is usually difficult to choose. The optimal step-size depends on the 

problem considered and may even vary during the optimization process. It is known that 

small steps (small mutation steps) are often successful, especially when the individual is 

already well adapted. However, larger changes (large mutation steps) can, when 

successful, produce good results much quicker. Thus, a good mutation operator should 

often produce small step-sizes with a high probability and large step-sizes with a low 

probability. 

 Generally, the probability of mutating a variable is inversely proportional to the 

number of variables (dimensions). The more dimensions one individual has, the smaller 

is the mutation probability. Different papers reported results for the optimal mutation 

rate. In Mühlenbein & Schlierkamp-Voosen (1993), it is reported that a mutation rate of 

1/n (n = number of variables of an individual) produced good results for a wide variety of 

test functions. Similar results are reported in (Bäck, 1993) and (Bäck, 1996) for a binary 

valued representation.  

2.2.1.3.1.4.4 Crossover and mutation for tree encoded individuals 

Tree crossover – One crossover point is selected in both parents, and parents are divided 

at that point and the parts below the crossover points are exchanged to produce new 

offspring.  
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Parent 1 Parent 2 Offspring  
Figure 2.17 Crossover for tree encoded individuals 

Mutation for tree encoded individuals: 

Changing operator (number) mutation – in this type of mutation, some nodes are selected 

to be changed. 

2.2.1.3.1.5 Optimal crossover and mutation rates in genetic search 

 There are no universally accepted general rules to choose the values of basic GA 

operators for solving specific optimization problems. The best way to determine the 

proper combination of these values is by experimental comparison between GAs with 

different parameters (Lisnianski & Levitin, 2003).  

 However, numerous experimental studies have developed some rules of thumb 

concerning ranges of GA parameters. For example, De Jong (1975) suggests that the 

mutation probability, which is a bit reversal event, should occur with small probability, 

pmut � 0.001. Grefenstette (1986) suggests a pmut � 0.01, while in Schaffer et al. (1989) a 

range is considered, pmut � [0.005, 0.01]. Analogously, for the crossover rate, De Jong 

(1975) suggests that the crossover should occur with probability, pcross � 0.6. Grefenstette 

(1986) suggests a pcross � 0.95, while in Schaffer et al. (1989) a range is again considered

pcross � [0.75, 0.95]. 
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2.2.1.3.1.6 Reinsertion 

When less offspring are produced than the size of the original population, then to 

maintain the size of the original population, the offspring have to be reinserted into the 

old population. Similarly, if not all offspring are to be used at each generation or if more 

offspring are generated than the size of the old population, then a reinsertion scheme 

must be used to determine which individuals are to exist in the new population. There are 

different schemes of global reinsertion: 

	 Pure reinsertion: Produce as many offspring as parents and replace all parents by the 

offspring. 

	 Uniform reinsertion: Produce less offspring than parents and replace parents 

uniformly at random. 

	 Elitist reinsertion: Produce less offspring than parents and replace the worst parents. 

	 Fitness-based reinsertion: Produce more offspring than needed for reinsertion and 

reinsert only the best offspring. 

 Pure reinsertion is the simplest reinsertion scheme. Every individual lives one 

generation only. This scheme is used in the simple genetic algorithm. However, it is very 

likely, that very good individuals are replaced without producing better offspring, and 

thus, good information is lost. 

2.2.2 Trajectory methods 

2.2.2.1 Simulated annealing (SA) 

 Simulated Annealing (SA) is commonly said to be the oldest among the 

metaheuristics and surely one of the first algorithms that had an explicit strategy to 

escape from local minima. The origins of the algorithm are in statistical mechanics 
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(Metropolis algorithm) and it was first presented as a search algorithm for CO problems 

in Kirkpatrick et al. (1983) and Cerny (1985). The fundamental idea is that improving 

candidate solutions are always accepted while non-improving solutions are accepted with 

a certain probability. The probability of accepting non-improving solutions is calculated 

according to the current temperature of the algorithm. 

 This process is analogous to the annealing process of metals and glass, which assume 

a low energy configuration when cooled with an appropriate cooling schedule. Regarding 

the search process, this means that the algorithm is the result of two combined strategies: 

random walk and iterative improvement. 

 The algorithm starts by generating an initial solution (either randomly or heuristically 

constructed) and with a high initial temperature, T, which corresponds to a high 

probability of accepting non-improving solutions. The temperature is gradually decreased 

as the search progresses so that the probability of accepting non-improving solutions is 

also reduced. At temperature zero, T0, the algorithm operates like an improving heuristic, 

i.e., only improving solutions are accepted. The pseudo-code of the SA metaheuristic is 

shown below: 

1. Generate initial solution x 

2. Set initial temperature 

3. Generate candidate solution x’ from current solution x 

4. If fitness (x’) > fitness(x), then x=x’ 

5. If fitness (x’) � fitness(x), then calculate Acceptance Probability 

 5.1 If Acceptance Probability > random [0,1] then x=x’ 

6. Update temperature according to cooling schedule 
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7. If stopping condition is reached, stop, otherwise go to step 3. 

 The choice of an appropriate cooling schedule is crucial for the performance of the 

algorithm. The cooling schedule defines the value of T at each iteration k. The cooling 

schedule and the initial temperature should be adapted to the particular problem instance, 

since the cost of escaping from local minima depends on the structure of the search 

landscape. A simple way of empirically determining the starting temperature T0 is to 

initially sample the search space with a random walk to roughly evaluate the average and 

the variance of objective function values. 

 Generally, SA can find good solutions for a wide variety of problems, it is easy to 

implement and is capable of handling almost any optimization problem and any 

constraint. However, some of the difficulties reported with this method are long run 

times. SA is nowadays used as a component in more advanced metaheuristics, rather than 

applied as stand-alone search algorithm. 

2.2.2.2 Tabu search (TS) 

 Tabu search is in many ways similar to simulated annealing: they both move from 

one solution to another with the next solution being possibly worse than the one before. 

However, the basic difference between SA and TS lies in the mechanism used for 

approving a candidate solution. In TS the mechanism is not probabilistic, but rather of a 

deterministic nature (Pinedo & Chao, 1999).  

 Generally speaking, TS is a meta-heuristic that guides a local heuristic search strategy 

to explore the solution space beyond local optimality. It was originally proposed by 

Glover (1989, 1990). 
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 The local procedure is a search that uses an operation called a move to define the 

neighborhood of any given solution. The neighborhood of the current solution is explored 

and the best solution is selected as the new current solution. The best solution in the 

neighborhood is selected, even if it is worse than the current solution.  

 In TS the Tabu List plays an important role. It keeps track of previously explored 

solutions and prohibits TS from revisiting them again. In this way, TS can overcome 

local minima by forcing the acceptance of solutions worse than the current solution. 

 The general framework of TS consists of several steps which are shown below: 

1. Initialization: a starting solution s is generated by choosing random values for x. 

This solution is evaluated by the evaluation function, and solution s is stored in 

the algorithm’s memory. This memory is called the Tabu List. 

2. Neighborhood exploration: all possible neighbors of solution s are generated and 

evaluated. Neighboring solutions are solutions which can be reached from the 

current solution by a simple, basic transformation of the current solution. 

Solutions which are present in the Tabu List are considered unreachable 

neighbors. 

3. New current solution: a new current solution is chosen from the explored 

neighborhood. This solution cannot be in the Tabu List and has to have the best 

evaluation value from all reachable neighbors. The evaluation value can be worse 

compared with the current solution. In this way the algorithm is able to overcome 

local minima. The new current solution is added to the Tabu List. 
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4. Stop: if no more neighbors are present (all are tabu) or a certain evaluation value 

or a predetermined number of iterations is reached, the algorithm stops, otherwise 

the algorithm continues with step 2. 

 The flexibility and variety of principles that are incorporated in the Tabu Search have 

made this Metaheuristic very appealing to the research community. A wide range of 

combinatorial problems have been solved using TS (Glover & Laguna, 1997). Since Tabu 

Search can be conceptualized as a framework rather than a method, many of its 

components can be designed specifically for target applications just by following its 

principles. Therefore, recently, more powerful versions of TS have been proposed, these 

versions retain more information. 

 

 

2.3 Summary

 Metaheuristics can be loosely defined as high level strategies for exploring search 

spaces by using different methods. 

 This section provided a brief overview of some of the most well-known metaheuristic

algorithms and their classification. Also, a general introduction to single objective GAs 

was given, as well as a reasonable description of their design issues. 

 There are several different philosophies apparent in the existing metaheuristics. Some 

of them can be seen as “intelligent” extensions of local search algorithms. The goal of 

this kind of metaheuristic is to escape from local minima in order to proceed in the 

exploration of the search space and to move on to find other hopefully better local 

minima. This is, for example, the case in Tabu Search and Simulated Annealing. These 
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metaheuristics (also called trajectory methods) work on one or several neighborhood 

structure(s) imposed on the members (the solutions) of the search space. 

 We can find a different philosophy in algorithms like Ant Colony Optimization and 

Evolutionary Computation. They incorporate a learning component in the sense that they 

implicitly or explicitly try to learn correlations between decision variables to identify 

high quality areas in the search space. In Evolutionary Computation algorithms, a 

population of individuals is modified by recombination and mutation operators, and in 

Ant Colony Optimization a colony of artificial ants is used to construct solutions guided 

by the pheromone trails and heuristic information. 

 The most recognized form of evolutionary computation algorithms are Genetic 

Algorithms (GAs) which in general, can be more efficient and out-perform gradient 

search methods if your search space has many local optima. Since the genetic algorithm 

traverses the search space using the genotype rather than the phenotype, it is less likely to 

prematurely converge to a local high or low.  

 Although GAs use the idea of randomness when performing a search, it must be 

clearly understood that GAs are not simply random search algorithms. Random search 

algorithms can be inherently inefficient due to the directionless nature of the search. The 

GAs are not directionless. They utilize knowledge from previous generations of strings in 

order to construct new strings that will approach the optimal solution. Thus, GAs are a 

form of a randomized search and the way that the strings are chosen and combined 

comprise a stochastic process (Lisnianski & Levitin, 2003). 

 In Chapter 4, a multi-purpose multiple objective evolutionary algorithm (NSGA-II) is 

used to solve two-well known multiple objective problems and, in Chapters 5 through 8, 
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new multiple objective evolutionary algorithms to solve different multiple objective 

optimization problems are developed. 
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3. Multi-objective optimization 

In this chapter, the two primary approaches to identify solution(s) to multiple 

objective problems are reviewed. The first approach involves determining the relative 

importance of the attributes, and aggregating the attributes into some kind of overall 

composite objective function; while the second approach involves populating a number 

of feasible solutions along a Pareto frontier and the final solution is a set of non-

dominated solutions. Multi-objective evolutionary algorithms (MOEAs) are the most 

notable methods of this second approach. 

In Chapter 2, the basic design issues in single-objective GAs were introduced, and 

thus, some of the aspects that make single-objective genetic algorithms different from 

multiple-objective genetic algorithms are also reviewed. However, due to their 

importance, most of the effort is concentrated to present an extensive overview of some 

of the currently state-of-the-art MOEAs. 

3.1 Multi-objective optimization solution methods 

 Although there are several approaches to solve multi-objective problems, the two 

most common are: 1) combine them into a single objective function such as the weighted 

sum method, goal programming or utility functions and apply methods for single 

objective optimization, or 2) obtain a set of non-dominated Pareto-optimal solutions. For 

the first approach, a single “optimal” solution is generally found, whereas in the second 

approach, a potentially large Pareto-optimal set is identified.  
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3.1.1 Single-objective approaches 

The presence of several conflicting objectives is typical for engineering problems. 

The most common approach for multi-objective optimization is by aggregating the 

different objectives into one composite objective function. Optimization is then 

conducted with one optimal solution as the result. The weighted sum method, goal 

programming, utility theory, etc., are examples of this approach.  

The weighted sum method consists of combining all the objective functions together 

using different weighting coefficients for each one. This method is the simplest possible 

approach to solve the multi-objective problem, but the challenge with this approach is 

determining the appropriate set of weights when the user does not have enough 

information about the problem or has only an intuition of the importance of one objective 

over the other. In practice, it is difficult to establish a relationship between these weights 

and the real outcome in terms of objective functions values.  

Goal programming deals with the achievement of prescribed goals or targets. In this 

method, the user has to assign targets or goals that he/she wishes to achieve for each 

objective. This technique yields a dominated solution if the goal point is chosen in the 

feasible domain. However, the decision-maker must devise the appropriate weights for 

the objectives. This can also be a difficult task in many cases, unless there is prior 

knowledge about the shape of the search space, the relative importance of the objectives 

and meaningful goals. 

 For modeling designer’s preference structure, one of the commonly used methods is 

based on the utility theory (Keeney and Raifa, 1976). A utility or value function 

combines all objectives into one composite function, and then any appropriate single 
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objective function method can be used. Although utility functions offer the ideal way to 

solve a multiple objective problem (Steuer 1989), one difficulty associated with using the 

utility function approach is that, in practice, no precise approach exists to obtain the 

mathematical representation of the decision-maker’s true preference or utility function in 

a multi-objective setting. This can be problematic for the non-specialist. 

3.1.2 Multiple objective evolutionary algorithms (MOEAs) 

 Evolutionary algorithms are the standard tool for many multi-objective optimization 

problems. Their parallel search leads to an approximation of the Pareto front in a single 

optimization run. This is a major advantage compared to traditional optimization 

algorithms like gradient-based methods that converge to a single Pareto solution. 

Furthermore, traditional methods require an aggregation of all objectives to a single 

objective. This is difficult if the shape of the Pareto front is unknown before optimization. 

Evolutionary algorithms can exploit the population-based feature and converge in 

parallel to the Pareto front. While optimizing, different solutions in the population 

converge to different areas of the Pareto front, and thus an approximation of the Pareto 

front can be obtained in a single optimization run. The research interest has increased 

over the past twenty years on the development and application of evolutionary algorithms 

for Pareto optimization. Several promising methods have been proposed and compared 

by several researchers, e.g.: 

	 VEGA (vector evaluated genetic algorithm) by Shaffer (1985) 

	 MOGA (multi-objective genetic algorithm) by Fonseca and Flemming (1993)  

	 NPGA (niched-Pareto genetic algorithm) by Horn et al. (1994).
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	 NSGA (nondominated sorting genetic algorithm) developed by Srinivas & Deb 

(1995).

	 SPEA (strength Pareto evolutionary algorithm) by Zitzler & Thiele (1999).  

	 NSGA-II by Deb et al. (2002). 

	 PAES (Pareto-Archived Evolutionary Strategy) by Knowles & Corne (2000). 

In general, MOEAs are suited to multi-objective optimization because they are able to 

capture multiple Pareto-optimal solutions in a single simulation run and may exploit 

similarities of solutions by recombination. Summaries and comparisons of different 

MOEAs are described by Konak et al. (2006). 

3.1.3 Differences between MOGAs and single GAs 

 In single-objective GAs, individual performance, as measured by the objective 

function and individual fitness, are so closely related that the objective function is 

sometimes referred to as the fitness function. The two are, however, not the same. In fact, 

whereas the objective function characterizes the problem and cannot be changed at will, 

assigned fitness is a direct measure of individual reproductive ability, forming an integral 

part of the GA search strategy. 

 Generally, multi-objective evolutionary algorithms use standard genetic operators as 

described in Section 2 and the differences between these algorithms concentrates on the 

strategies used for selection and diversification. The alternative approaches employ 

neighborhood search, which needs to be specifically designed according to the problem. 

 One of the desirable characteristics that all MOGAs try to achieve is diversity. 

Diversity is the term used to describe the relative uniqueness of each individual in the 

population. Typically diversity refers to genetic variation, such that evenly-spaced 
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solutions in the final Pareto front are obtained. Figures 3.1 and 3.2 illustrate the cases in 

which diversity of solutions is achieved and not achieved, respectively.
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 Diversity is considered favorable as the greater the variety of genes available to the 

genetic algorithm the greater the likelihood of the system identifying alternate solutions. 

Moreover, maintaining diversity of individuals within a population is necessary for the 

long term success of any evolutionary system. Genetic diversity helps a population adapt 

quickly to changes in the environment, and it allows the population to continue searching 

for productive niches (neighborhoods), avoiding becoming trapped at local optima.  

3.2 State-of-the-art multi-objective evolutionary algorithms 

 Hertz & Klober (2000) state that there is not a clear and widely accepted definition of  

evolutionary algorithms. However, they suggest that in a strict sense, an evolutionary 

algorithm involves a population of solutions, evolves this population by means of 

cooperation (recombination) and self-adaptation (mutation), and uses a coded 

representation of the solutions.

 A number of different MOEAs have been proposed in recent years and the increasing 

interest on these methods has motivated the extension of evolutionary algorithms 

Figure 3.1 Population diversity is achieved Figure 3.2 Population diversity is not achieved
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originally proposed for single-objective optimization to multi-objective variants. Some of 

these MOEAs are described next. 

3.2.1 Vector Evaluated Genetic Algorithm (VEGA) [Schaffer 1984, 1985] 

VEGA is perhaps the first genetic algorithm in which the concept of dominance was 

implemented for the evaluation and selection of individuals. The name of the algorithm 

results from the optimization of a vector of objectives instead of a scalar in single 

objective optimization The VEGA algorithm divides the population into k subpopulations 

according to k objective functions. The individuals in each subpopulation are assigned a 

fitness value based on the corresponding objective function. In this algorithm, selection is 

done for each of the k objectives separately, filling equally sized portions of the mating 

pool. Afterwards, the matting pool is shuffled, and crossover and mutation are performed. 

A drawback of this algorithm is that it tends to bias selection in favor to those 

individuals at the extreme (that solely minimize/maximize one objective), and thus, the 

algorithm fails to sustain diversity among the Pareto-optimal solutions and converges 

near one of the individual solutions. Figure 3.3 shows the VEGA selection mechanism 

considering two objective functions.
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Figure 3.3 The VEGA selection mechanism 

3.2.2 Multi-objective Genetic Algorithm (MOGA) [Fonseca & Fleming 1993] 

 In the Fonseca & Fleming MOGA, each individual is ranked according to their degree 

of dominance. The more population members that dominate an individual, the higher the 

ranking for the individual. An individual’s ranking equals the number of individuals that 

it is dominated by plus one (as in Figure 3.4). Thus, individuals on the Pareto front have a 

ranking of one, as they are non-dominated. The rankings are then scaled to score 

individuals in the population. The fitness is assigned to each individual using an 

interpolation between the best and the worst rank. A scheme for niche (neighborhood) 

formation is used in which fitness in the objective domain is shared among non-

dominated individuals in order to maintain a uniform distribution of individuals over the 

trade-off surface. The fitness of all individuals in the same rank is averaged and this value 

is assigned to all of them. A summary of MOGA as presented in Coello Coello et al.

(2002) is presented in Figure 3.5. 
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Figure 3.4 Population ranking according to MOGA 

1. Initialize Population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute Niche count
5. Assign linearly scaled fitness
6. Assign Shared fitness
7. For i=1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance
- Compute niche count
- Assign linearly scaled fitness
- Assign shared fitness

8. End loop

1. Initialize Population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute Niche count
5. Assign linearly scaled fitness
6. Assign Shared fitness
7. For i=1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance
- Compute niche count
- Assign linearly scaled fitness
- Assign shared fitness

8. End loop

Figure 3.5 MOGA overview 

3.2.3 Niched Pareto Genetic Algorithm (NPGA) [Horn et al. 1994] 

The Niched Pareto Genetic Algorithm (NPGA) (Horn et al., 1994; Horn, 1997) uses 

the concept of Pareto dominance and tournament selection to solve multiple objective 

optimization problems. This was one of the first algorithms to directly address the 
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diversity of the approximation set. The main difference between NPGA and traditional 

GAs is localized in the selection mechanism. In this algorithm the selection of individuals 

is conducted using a Pareto domination tournament selection in conjunction with fitness 

sharing to maintain a diverse population.

Pareto domination tournaments are binary tournaments in which the domination of 

each candidate is assessed with respect to a randomly chosen sample, Tdom, typically 10% 

of the population. The two individuals competing for selection are compared against this 

subset, Tdom, of the population, and if one of the competing individuals is dominated by 

any member of the set and the other is not, then the latter is chosen as winner of the 

tournament. If both individuals are dominated (or not dominated), the result of the 

tournament is decided by sharing: i.e., the individual that has the least individuals in its 

niche (defined by �share) is selected for reproduction. 

In Figure 3.6, individuals in a niche “share” the niche fitness and Figure 3.7 presents 

a summary of NPGA as presented in Coello Coello et al. (2002). NPGA has been shown 

to be inferior to most of the more recent MOEAs. A comparison by Zitzler et al. (2000) 

ranked NPGA fifth out of six considered MOEAs. 
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Figure 3.6 Niche count in NPGA 
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1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament selection
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament selection
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

Figure 3.7 NPGA overview 

An improved version of NPGA, called NPGA II, was presented by Erickson et al.

(2001). They use Pareto ranking but keep tournament selection. Niche counts in NPGA II 

are calculated using individuals in the partially filled next generation which is known as 

continuously updated fitness sharing, and was proposed by Oei et al. (1991). Figure 3.8 

presents a summary of NPGA 2, as in Coello Coello et al. (2002). 
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1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament Selection
•Using Degree of Domination as Rank
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament Selection
•Using Degree of Domination as Rank
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

Figure 3.8 NPGA 2 overview 

3.2.4 Nondominated Sorting Genetic Algorithm (NSGA) [Srinivas & Deb 1995] 

NSGA also classifies individuals according to dominance in a ranking scheme similar 

to the one used in by Fonseca & Flemming (1993). NSGA was proposed by Srinivas & 

Deb (1995). The idea behind NSGA is that a ranking selection method is used to 

emphasize good solutions and a niche method is used to maintain stable subpopulations. 

While it follows the standard GA for parent selection and offspring generation, it varies 

in the manner in which the selection operator works. In NSGA the fitness of the 

individuals is determined by using the concept of Pareto dominance as follows. At the 

beginning of the search, an initial population is created, and then, the non-dominated 

individuals in the current population are identified. All of these non-dominated solutions 

belong to the first rank and the same high fitness value is assigned to them to ensure that 

they have equal reproductive potential. Figure 3.9 depicts the nondominated fronts 

according to NSGA for a two-objective problem to minimize f1 and to maximize f2.
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Figure 3.9 Nondominated fronts according to NSGA 

 To maintain diversity, solutions found in the first front, undergo a fitness sharing 

procedure. Fitness sharing encourages the search in unexplored sections of a Pareto front.

Sharing is achieved by performing selection operation using degraded fitness values 

obtained by dividing the original fitness value of an individual by a quantity proportional 

to the number of individuals around it. After sharing their fitness value, the individuals 

are temporarily ignored, and the rest of the population is processed in the same way to 

identify a new set of non-dominated individuals. A fitness value that is smaller than the 

previous one is assigned to all the individuals belonging to the second non-dominated 

front. This process continues until the whole population is classified into non-dominated 

fronts with different fitness values. 

 Once fitness has been assigned, the population is reproduced according to the fitness 

values. Since individuals in the first front have the maximum fitness value, they receive 

more copies than the rest of the population. The efficiency of NSGA mainly is due to the 

way multiple objectives are reduced to a dummy fitness function using non-dominated 

sorting procedures.
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 The parameter, �share, can be calculated as follows, as in Deb & Goldberg (1989).

pshare q
5.0

��

 Where q is the desired number of distinct Pareto-optimal solutions and p is the 

number of decision variables. A summary of the NSGA algorithm is shown in Figure 

3.10.

1. Initialize population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute niche count
5. Assign shared fitness
6. For i =1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance 
- Compute Niche count
- Assign shared fitness

7. End loop

1. Initialize population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute niche count
5. Assign shared fitness
6. For i =1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance 
- Compute Niche count
- Assign shared fitness

7. End loop

Figure 3.10 NSGA overview 

3.2.5 Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler & Thiele 1998, 1999] 

SPEA was proposed as an approach to incorporate several of the desirable features of 

other multi-objective evolutionary algorithms. SPEA uses two populations, P and P'.

Throughout the process, copies of all non-dominated individuals are stored in P'. Each 

individual is given a fitness value, fi, based on Pareto dominance. The fitness of the 

members of P' is calculated as a function of how many individuals in P they dominate. 

That is, each solution i in P' is assigned a real value si �[0,1), called strength. Let n

denote the number of individuals in P that are dominated by i and assume N is the size of 

P. Then si is defined by: 
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Thus, the fitness fi of i is equal to its strength i.e., fi = si. Then, those individuals in P' or 

those that are nondominated are ranked as indicated in Figure 3.11. A summary of the 

SPEA algorithm is shown in Figure 3.12. 
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Figure 3.11 Population ranking according to SPEA 

1. Initialize Population P
2. Create empty external set P'
3. For i = 1 to G

- Copy nondominated members of P to P'
- Remove elements from P' which are covered by any other member of P'
- prune P‘ (using clustering) when the maximum capacity of P' has been exceeded
- Compute fitness of each individual in P and in P'
- Use binary tournament selection with replacement to select individuals

from P+P' (multiset union) until the mating pool is full
- Apply Crossover and Mutation

4. End loop

1. Initialize Population P
2. Create empty external set P'
3. For i = 1 to G

- Copy nondominated members of P to P'
- Remove elements from P' which are covered by any other member of P'
- prune P‘ (using clustering) when the maximum capacity of P' has been exceeded
- Compute fitness of each individual in P and in P'
- Use binary tournament selection with replacement to select individuals

from P+P' (multiset union) until the mating pool is full
- Apply Crossover and Mutation

4. End loop

Figure 3.12 SPEA overview 
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 The improved version of this technique, called SPEA2 was proposed by Zitzler et al.

(2001). The main differences of SPEA2 in comparison to SPEA are: 

	 An improved fitness assignment scheme is used, which takes into account for 

each individual how many other individuals it dominates and it is dominated by. 

	 A nearest neighbor density estimation technique is incorporated which allows a 

more precise guidance of the search process. 

	 A new archive truncation method to guarantee the preservation of boundary 

solutions. 

3.2.6 Fast Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) [Deb et al.,

2002]

 The NSGA-II algorithm is an improved version of the NSGA. This algorithm does 

not have the problems of using the sharing function method, including the appropriate 

selection of the sharing parameter �share.

 In NSGA-II, the selection of individuals is performed as follows: First, an offspring 

population Qt is created by using the parent population Pt. However, instead of finding 

the nondominated front of Qt only, the two populations are first combined together to 

form Rt of size 2N. Then, a nondominated sorting is used to classify the entire population 

Rt. Although this requires more effort compared to performing a nondominated sorting on 

Qt alone, it allows a global nondomination check among the offspring and parent 

solutions. Once the nondominated sorting is over, the new population is filled by 

solutions of different nondominated fronts, one at a time. 

 The filling starts with the best nondominated front and continues with solutions of the 

second nondominated front, to be followed by the third nondominated front and so on. 
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After all solutions have been assigned a rank based on the nondomination criterion, a 

niching strategy, called crowding distance, is employed to estimate the distance between 

the closest two members for each solution. 

 The crowding distance parameter that is incorporated in this algorithm serves as an 

estimate of the perimeter of the cuboids formed by using the nearest neighbors as the 

vertices. Figure 3.13 shows how the crowding distance of an individual is calculated. It is 

performed by obtaining the average Euclidean distance of two points in either side of the 

point in question along each of the objectives. 
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Figure 3.13 Crowding distance calculation 

 NSGA-II uses the concept of controlled elitism to tune the mutation rate and the 

elitism rate to attain equilibrium between the two. Controlled elitism limits the maximum 

number of individuals in the population. This algorithm is efficient in obtaining good 

Pareto-optimal fronts for any number of objectives and can accommodate any number of 

constraints as well. A schematic representation of the NSGA-II algorithm is shown in 

Figure 3.14, and a general summary for the algorithm is shown in Figure 3.15.  
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Figure 3.14 Working mechanism of the NSGA-II algorithm 

1. Initialize Population P
2. Generate random population – size M
3. Evaluate objective values
4. Assign rank based on Pareto dominance – “sort”
5. Generate child population

-Binary tournament selection
-Recombination and Mutation

6. For i = 1 to G
- With parent and child population

Assign rank based on Pareto dominance – “sort” starting from the first front
until M individual fount

Determine crowding distance between points on each front
- Select points (elitism) on the lower front (with lower rank) and that are outside   

the crowding distance
- Create next generation

Binary tournament selection
Recombination and Mutation

- Increment generation index
7. End loop

Figure 3.15 NSGA-II overview 
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3.2.7 Pareto-Archived Evolutionary Strategy (PAES) [Knowles & Corne, 1999; 

2000]

The algorithm PAES was proposed by Knowles & Corne (1999, 2000). PAES is a 

multi-objective optimizer which uses (� “population size” + � “number of solutions per 

generation”) local search evolution strategy. PAES has three variants, which are  

(1+1)-PAES, (1+�)-PAES and (�+�)-PAES.

The algorithm in its simplest form is a (1+1) evolution strategy employing local 

search but using a reference archive of previously found solutions in order to identify the 

approximate dominance ranking of the current candidate solution vectors. Nonetheless, it 

is capable of finding diverse solutions in the Pareto optimal set because it maintains an 

archive of non-dominated solutions which it exploits to accurately estimate the quality of 

new candidate solutions.

At any iteration t, a candidate solution ct and a mutated solution mt must be compared 

for dominance. Acceptance is simple if one solution dominates the other. If neither 

solution dominates the other, the new candidate solution is compared with the reference 

population of previously archived non-dominated solutions. If the comparison fails to 

favor one solution over the other, the chosen solution is the one which resides in the least 

crowded region of the space. The PAES algorithm has three main parts; the candidate 

solution generator, the candidate solution acceptance and the non-dominated solutions 

archive. Figure 3.16 presents a summary of PAES algorithm. 
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1. Initialize Single Population parent c and add to Archive
2. Mutate c to produce child m and evaluate fitness

-If (c dominates m) discard m
-else if (m dominates c): replace c with m, and add m to Archive
-else if (m is dominated by any member of the Archive) discard m
-else apply test (c, m, Archive) to determine which becomes the new current 
solution and whether to add m to the Archive

3. Until a termination criterion has been reached, return to 2

Figure 3.16 PAES pseudocode 

The main feature of PAES is the use of an adaptive grid on which the objective 

function space is located using a coordinate system. Such a grid is the diversity 

maintenance mechanism of PAES and it is the main feature of this algorithm. The grid is 

created by bisecting k times the function space of dimension d = g + 1. The control of 2kd

grid cells means the allocation of a large amount of physical memory for even small 

problems. For instance, 10 functions and 5 bisections of the space produce 250 cells. 

3.3 Summary

A description of the two primary approaches to identify solution(s) to this particular 

type of problems was briefly introduced in this section. However, this chapter was more 

devoted to present the working mechanism of several state-of-the-art multi-objective 

evolutionary algorithms.

 The MOEAs described in this chapter are just a sample of the vast number of 

algorithms proposed in the literature in recent years. Other approaches not discussed in 

this section include the multi-objective messy genetic algorithm (MOMGA) developed 

by Van Valdhuizen & Lamont (2000b). A revised extension of MOMGA (called 
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MOMGA-II) has been proposed by Zydallis et al. (2001). Essentially, in the recent years, 

many other extensions of evolutionary algorithms for multi-objective optimization have 

been proposed. For example, variants of micro-genetic algorithms, cellular genetic 

algorithms, particle swarm optimization methods, agent-based algorithms among others. 

For a more detailed review of the principles of evolutionary multi-objective optimization 

and recent developments in this field the reader may refer to Coello Coello et al. (2002) 

and Van Valdhuizen & Lamont (2000a).

 In this thesis, several MOEAs are used and some developed to solve engineering 

optimization problems and we extend MOEAs to achieve balance between single 

solutions and Pareto-optimal solutions. In next chapter, two new approaches are 

presented which offer distinct benefits, which are pruning by using data clustering and 

the non-numerical ranking preferences method. 
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4. Post-Pareto optimality

For multi-objective optimization problems, there are two primary approaches to 

identify solution(s) to these particular types of problems. The first involves determining 

the relative importance of the attributes and aggregating the attributes into some kind of 

overall objective function, e.g., utility or value function. Then, any appropriate single-

objective optimization or mathematical programming algorithm can be applied. Solving 

the optimization problem with this approach generates an “optimal” solution, but only for 

a specified set of quantified weights or specific utility function. Unfortunately, the precise 

value of the objective function weights used or the form of the selected utility function 

dictates the final solution, and thus, broad and detailed knowledge of the system is 

demanded. 

The second approach involves determining a number of feasible solutions along a 

Pareto frontier and the final solution is a set of non-dominated solutions. In this case, the 

Pareto set can contain a large number (in some cases, thousands) of solutions. From the 

decision-maker’s perspective, consideration of all the nondominated solutions can be 

prohibitive and inefficient. 

The methods developed and presented in this chapter take the view that, for many 

multi-objective engineering design optimization problems, a balance between single 

solutions and Pareto-optimal sets can be advantageous. Thus, the post-Pareto optimality 

analysis methods proposed in this chapter represent a compromise between the two 
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extremes in Figure 4.1 with the aim to achieve a smaller practical set, called the pruned 

Pareto set that can be more easily analyzed by the decision maker. 

Single solution Pareto optimalityContinuumSingle solution Pareto optimalityContinuum
 

Figure 4.1 Achieving a balance between single solutions and Pareto optimal solutions 

 The two pruning methods presented in this Chapter are applied after the 

determination of Pareto-optimal sets by a MOEA. However, in Chapter 8, one of the 

pruning techniques presented in this chapter is incorporated as part of the MOEA body. 

This aspect makes the analysis of the solution of multiple objective problems more 

efficient. 

4.1 Post-Pareto optimality analysis 

Although, several methods for solving multi-objective optimization problems have 

been developed and studied as seen in Chapter 3, little prior work has been done on the 

evaluation of results obtained in multi-objective optimization. Korhonen & Halme (1990) 

suggested the use of a value function to help the decision-maker identify the most 

preferred solution in multi-objective optimization problems. Venkat et al. (2004) 

introduced and analyzed the Greedy Algorithm (GR) to obtain a sub-set of Pareto optima 

from a large set of the Pareto set. The selection of the sub-set was based on maximizing a 

scalarized function of the vector of percentile ordinal rankings of the Pareto optima 

within the large set. 

The two main objectives of the post-Pareto optimality analysis are: i) obtain a smaller 

sub-set of preferred solutions from the large Pareto-optimal set, and ii) the evaluation and 

interpretation of the results obtained from any optimization method. 
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The post-Pareto analysis and the selection of one solution over the others can be quite 

a challenging problem since, in the absence of subjective or judgmental information, 

none of the corresponding trade-offs can be said to be better than the others. Thus, the 

motivation for the work presented next stems from challenges encountered during the 

post-Pareto analysis phase. To reduce or limit intelligently the size of the Pareto-optimal 

set, we proposed the following two methods: 1) pruning by using non-numerical 

objective function ranking preferences method, and 2) pruning by using data clustering, 

as presented in Taboada et al. (2005, 2007a).  

 As in Taboada et al. (2007a), Figure 4.2 shows how to select the preferred Pareto 

optimal set pruning procedure once the Pareto-optimal set or sub-set has been obtained. 

The decision-maker should select the first method if he/she knows in advance the 

objective function preferences as shown in Figure 4.2. Essentially, this method should be 

chosen by more experienced decision-makers that are familiar with the importance of the 

objective functions. On the other hand, if the decision-maker does not know a priori the 

objective function preferences, he/she may prefer to use the second method to cluster 

solutions in regions, and then, just analyze k solutions or focus on the most interesting 

regions to concentrate his/her efforts. 
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Figure 4.2 Methods to prune the Pareto-optimal set 

 The combination of the two proposed methods is ideally suited to address complex 

multi-objective optimization problems in which the Pareto-optimal set is very large. For 

this type of problem, where the Pareto-optimal set can contain thousands of solutions, the 

combination of the two pruning methods is preferred. In such cases, the pruning by using 

the non-numerical objective function ranking preferences method should be initially 

applied to obtain a Pareto sub-set that reflects the decision-maker’s objective function 

preference, and then, the pruning by using data clustering can be applied to further reduce 

the size of the Pareto sub-set. Thus, the decision-maker gets a smaller set of solutions to 

analyze and select one solution for implementation (Taboada & Coit, 2007). 

 

4.2 Pruning by using the non-numerical ranking preferences method 

The first method is based on a non-numerical ranking of the objective functions based 

on their relative importance. The strength of this method is precisely that the decision-

maker only ranks non-numerically (in order of relative importance) the objective 
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functions but does not have to select specific weight values. Instead, he/she prioritizes or 

ranks the objective functions (ties allowed) based on their relative importance. This 

pruning method helps the decision-maker select solutions that reflect his/her preferences. 

In a broader sense, this method is a pseudo-ranking scheme that accommodates 

preferences but it is different from assigning preselected weights or utility functions. This 

method allows objectives to have the same rank. One example of ranking objective 

functions is: 

Objective f1(x) is more important than objective f3(x) 

Objective f3(x) is more important than objective f2(x) 

Ranked objectives = { f1(x),  f3(x),  f2(x)}  :   f1(x) �  f3(x) �  f2(x) 

Based on the objective function rankings, a weight function fw(w) is developed, 

indicating the likelihood of different weight combinations. The weight function fw(w) is 

derived from a region where all the weights in this set sum up to one as shown in Figure 

4.3 for a case with three objective functions. 

To illustrate, consider a case where the objective function preference is f1 � f2 � f3, 

and the objectives have all been similarly scaled. The exact value of the weights is not 

known but we know that w1>w2>w3. The resulting region where the weights are sampled, 

and then combined with the objective functions, is shown in Figure 4.4. 



 66

 
Figure 4.3 Plane containing set of possible eeights 

 
Figure 4.4 Weight region for the f1 � f2 � f3 objective function preference 

The weights are uniformly sampled from the region of interest with a weight function 

that is defined as follows: 

1 2 3(w)
0, elsewherew

c w w w
f


 � ��
� �

�
 

The marginal distribution of w1 (for w1>w2>w3) has been derived, in which fw(w) is 

integrated over w2, where c is a constant.  For three objective functions, 
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Solving for c we get that c = 12, thus the probability density function of w1 is given by: 
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The marginal cumulative distribution function of w1 is: 
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The distribution function for w2 conditioning on w1 is given by: 
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 Finally, by knowing the values of w1 and w2, the value of w3 is just 1 - w1 - w2. 

Then, random, but ranked, weights sets can be generated using Monte Carlo 

simulation methods. These weights adhere to the ranking pattern used for the objective 

functions. A substantially large set of weights is generated, with each set containing one 

weight for each objective. As an example, Figure 4.5 shows the distribution of 5,000 

randomly generated weights. The y-axis represents the frequency or number of times a 

specific weight was generated and the x-axis represents the value of each individual 

weight. As can be seen, the possible values for the weights in the case f1 �  f2 �  f3 are: 

1
3
1

1 �� w , 
2
10 2 �� w  and 

3
10 3 �� w .  
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Figure 4.5 Distribution of random weights used for a three objective problem 

These weight sets are used to repeatedly combine the scaled objectives into a single 

objective function using the randomly generated weight sets. For all minimization 

objectives, without loss of generality, he solution that yields the minimum value for f ' is 

recorded and gets a counter of 1. This is repeated with the next set of weights, and the 

best solution for that combination is identified. This process is repeated many times (e.g., 

several thousand), and at the end, the solutions that have non-zero counter values will be 

those solutions that form the pruned Pareto set.  

This method has been observed to achieve as much as a 90% reduction of the entire 

Pareto-optimal set (Taboada et al., 2005; 2007a; Taboada & Coit, 2006a). In Section 

4.6.2.1.2, a more formally mathematical formulation is presented to demonstrate the 

strength of the non-numerical ranking preferences method and, to show that some of the 

Pareto-optimal solutions will never be preferred given the objective function preferences. 

This approach is an extension of earlier research considering multi-criteria decision 

making with a finite set of alternatives. Lahdelma et al. (1998) considered uncertainty in 

weight selection similar to the uncertain weight function proposed here. Rietveld & 
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Ouwersloot (1992) and Hinloopen et al. (2004) also describe solution methods where 

solutions must be selected based on ordinal data. The uncertain weight function 

combined with Tabu search was demonstrated by Kultural-Konak et al. (2006). This is an 

effective approach but it is potentially inefficient, and later, in Chapter 8, a new 

integrated algorithm is presented. 

4.3 Pruning by using data clustering 

This second method is a new approach based on the concepts of data clustering after 

determination of a Pareto-optimal set. This new approach offers benefits compared to 

previous approaches because it provides practical support to the decision-maker during 

the selection step. The main idea of this approach is to systematically assist the decision-

maker during the post-Pareto analysis stage to select his/her choice without precise 

quantified knowledge of the relative importance of the objective functions. 

In multicriteria optimization, data clustering can be a useful exploratory technique in 

knowledge discovery. Since it groups similar solutions together, it allows the decision-

maker to identify potentially meaningful trade-offs among the solutions contained in the 

Pareto-optimal set without requiring the decision-maker to explicitly define objective 

function weights or utility functions. 

 

4.3.1 Data clustering background 

Cluster analysis is a multivariate analysis technique that is defined as the process of 

organizing objects in a database into clusters/groups such that objects within the same 

cluster have a high degree of similarity, while objects belonging to different clusters have 

a high degree of dissimilarity (Kaufman & Rousseeuw, 1990). 
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Probably, the most popular nonhierarchical partitioning method is the “k-means” 

clustering algorithm. The general algorithm was introduced by Cox (1957) and 

MacQueen (1967) first named it “k-means.” Since then it has become widely used and is 

classified as a partitional or non-hierarchical clustering method (Jain & Dubes, 1988). 

 The k-means algorithm is well known for its efficiency in clustering data sets. The 

grouping is done by calculating the centroid for each group, and assigning each 

observation to the group with the closest centroid. For the membership function, each 

data point belongs to its nearest center, forming a partition of the data. The objective 

function that the k-means algorithm optimizes is:  
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where: 

vi = ith data vector 

cj = jth cluster centroid 

X = set of data vectors 

C = set of centroids 

 This objective function is used in the algorithm to minimize the within-cluster 

variance (the squared distance between each center and its assigned data points). This 

algorithm involves the iterative assignment of cluster membership and re-calculation of 

centroids. The membership function for k-means is as follows, where mKM(cl|vi) is a 0-1 

function, taking the value of 1 if data vector vi is assigned to cluster cl, and 0 otherwise. 
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The performance of the k-means clustering algorithm may be improved by estimating 

the ideal number of clusters represented in the data. Thus, different cluster validity 

indices have been suggested to address this problem. A cluster validity index indicates 

the quality of a resulting clustering process.  Then, the clustering partition that optimizes 

the validity index under consideration is chosen as the best partition. The silhouette plot 

method is one of these cluster validity techniques. 

Rousseeuw (1987) and Rousseeuw et al. (1989) suggested a graphical display, the 

silhouette plot, to evaluate the quality of a clustering allocation, independently of the 

clustering technique that is used. The silhouette value for each point is a measure of how 

similar that point is to points in its own cluster compared to points in other clusters. s(i) is 

known as the silhouette width. This value is a confidence indicator on the membership of 

the ith sample in cluster Xj and it is defined as: 

)}(),(max{
)()()(
ibia

iaibis !
�  

where a(i) is the average distance from the ith point to all the other points in its cluster, 

and b(i) is the average distance from the ith point to all the points in the nearest neighbor 

cluster. 

The value of s(i) ranges from +1 to –1. A value of +1, indicates points that are very 

distant from neighboring clusters; a value of 0, indicates points that are not distinctly in 

one cluster or another, and a value of –1, indicates points that are probably assigned to 

the wrong cluster. 

For a given cluster, Xj, it is possible to calculate a cluster silhouette Sj, which 

characterizes the heterogeneity and isolation properties of such a cluster. It is calculated 

as the average of the sum of all samples’ silhouette widths in Xj. 
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Moreover, for any partition, a global silhouette value or silhouette index, GSu, can be 

used as an effective validity index for a partition U. 
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It has been demonstrated that this equation can be applied to estimate the “optimal” or 

preferred number of clusters for a partition U (Rousseeuw, 1987). In this case the 

partition with the maximum silhouette index value is taken as the optimal partition.  

4.3.2 Description of the new approach 

The developed approach is based on the following steps: 

1. Obtain the entire Pareto-optimal set or sub-set of Pareto solutions by using a multi-

purpose MOEA (such as NSGA-II).  

2.  Apply the k-means algorithm to form clusters on the solutions contained in the Pareto 

set. The solution vectors are defined by the specific objective function values, fi(x), 

for each prospective solution. Normalization of the objective function values is 

recommended to have comparable units. Several replicates are needed to avoid local 

optima. The solution to consider is the one with the lowest total sum of distances over 

all replicates.  

3.  To determine the “optimal” or preferred number of clusters, k, in this set, silhouette 

plots are used. A value of the silhouette width, s(i), is obtained for several values of k. 

The clustering with the highest average silhouette width, GSu, is selected as the 

“optimal” or preferred number of clusters in the Pareto-optimal set. 
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4.  For each cluster, select a representative solution. To do this, the solution that is 

closest to its respective cluster centroid is chosen as a good representative solution. 

This results in a dramatic reduction in the number of solutions that the decision-

maker must consider. 

5.  Analyze the representative solutions based on the priorities and preferences of the 

decision-maker. At this stage, the decision-maker can either select one solution 

among the k representative solutions, or he/she can decide to perform further 

investigation on the cluster that he/she is most interested. An unbiased suggestion is 

to focus on the cluster that has the solutions that conform to the “knee” region (Das, 

1999; Branke et al., 2004). The “knee” is formed by those solutions of the Pareto-

optimal front where a small improvement in one objective would lead to a large 

deterioration in at least one other objective.  

6. Then, Steps 2, 3 and 4 are applied again on this reduced space formed by the 

solutions in the selected “knee” cluster. 

 By following this approach, one systematically contracts the subspace in the direction 

of the most relevant solutions for the decision-maker until a unique selection can be 

made. 

4.3.3 MATLAB� implementation 

 After obtaining the Pareto set from a particular MOEA, e.g., from the NSGA-II in the 

preliminary research results, a MATLAB� code was developed to perform the steps of 

the proposed technique. From normalized data, the code runs the k-means algorithm, 

from two to a specified number of means; it calculates average silhouette values and the 

clustering with the highest average silhouette width, GSu, is selected as the “optimal” 



 75

number of clusters in the Pareto-optimal set. An overview of the algorithmic 

implementation is shown in Figure 4.6. 

For C=2 to MC *maximum number of centroids*
For Z=1 to R *number of replicates*

Randomly select initial values for C
For each vi � X, assign all vi to cj � C according to nearest cj

Recompute cj
Until no change in cj
Return C, KM(X,C) and membership 
Store values for C, KM(X,C) and membership 
Z=Z+1

end 
end
Select the minimum KM(X,C) obtained for all replicates 

end
Obtain silhouette values, s(i) 
Choose the cluster with the maximum silhouette width, GSu, of all centroids considered

For C=2 to MC *maximum number of centroids*
For Z=1 to R *number of replicates*

Randomly select initial values for C
For each vi � X, assign all vi to cj � C according to nearest cj

Recompute cj
Until no change in cj
Return C, KM(X,C) and membership 
Store values for C, KM(X,C) and membership 
Z=Z+1

end 
end
Select the minimum KM(X,C) obtained for all replicates 

end
Obtain silhouette values, s(i) 
Choose the cluster with the maximum silhouette width, GSu, of all centroids considered

 
Figure 4.6 Overview of clustering algorithmic implementation 

 
 Notice that k-means can converge to a local optimum, in this case, a partition of 

points in which moving any single point to a different cluster increases the total sum of 

distances. This problem can be solved by performing several replicates, each with a new 

set of initial cluster centroid positions. That is, each of the replicates begins from a 

different randomly selected set of initial centroids. The final solution is the one with the 

lowest total sum of distances over all replicates. 

4.4 Numerical examples 

 Three examples of two different multi-objective problems are used to illustrate the 

two proposed methods to narrow the search space. The first example presented is the 

well-known redundancy allocation problem (RAP) which was formulated as a multi-

objective problem to maximize the system reliability and to minimize cost and weight of 

the system. The second and third examples address the scheduling of a Printed Wiring 

Board (PWB) manufacturing line (Yu et al., 2002) formulated with four objectives.
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4.5 Redundancy allocation problem (RAP) 

4.5.1 Description of the RAP 

The RAP is a system design optimization problem. This system has a total of s 

subsystems arranged in series. For each subsystem, there are ni functionally equivalent 

components arranged in parallel, thus ni is a decision variable. Each component has 

potentially different levels of cost, weight, reliability and other characteristics. The ni 

components are to be selected from mi available component types, where multiple copies 

of each type can be selected. An example of a series-parallel system is depicted in Figure 

4.7.  
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Figure 4.7 General series-parallel redundancy system 

The use of redundancy improves system reliability but also adds cost, weight, etc., to 

the system. There are generally system-level constraints and the problem is to select the 

design configuration that maximizes some stated objective functions. 

4.5.2 Previous research  

Solving the redundancy allocation problem has been shown to be NP-hard by Chern 

(1992).  Different optimization approaches have been previously used to determine 

optimal or good solutions to this problem. 

It has been solved using dynamic programming by Bellman (1957) and Bellman & 

Dreyfus (1958) to maximize reliability for a system given a single cost constraint. For 
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each subsystem, there was only one component choice so the problem was to identify the 

optimal levels of redundancy, ni. Fyffe et al. (1968) also used a dynamic programming 

approach and solved a more difficult design problem. They considered a system with 14 

subsystems, and constraints on both cost and weight. For each subsystem, there were 

three or four different component choices each with different reliability, cost and weight. 

Bulfin & Liu (1985) used integer programming and they formulated the problem as a 

knapsack problem using surrogate constraints. 

Unfortunately, the mathematical programming approaches are only applicable to a 

limited or restricted problem domain and require simplifying assumptions, which limits 

the search to an artificially restricted search space. In these formulations, once a 

component selection is made, only the same component type can be used to provide 

redundancy. This restriction is required so the selected mathematical programming tool 

can be applied, but it is not an actual imposition of the engineering design problem. Thus, 

the resulting solution is only “optimal” for a restricted solution space, and better solutions 

can be found if the restriction is no longer imposed.  

GAs offer many advantages compared to alternative methods used to solve the RAP. 

Coit & Smith (1996a, 1996b) used GAs to obtain solutions to the redundancy allocation 

problem. In their research, they solved 33 variations of the Fyffe’s problem using a GA. 

Several techniques considering multiple criteria have been presented in the literature. 

A multi-objective formulation of a reliability allocation problem to maximize system 

reliability and minimize the system cost was considered by Sakawa (1978) using the 

surrogate worth trade-off method. Inagaki et al. (1978) used interactive optimization to 

design a system with minimum cost and weight and maximum reliability. 
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Dhingra (1992) used goal programming and goal-attainment to generate Pareto-

optimal solutions to solve a special case of a multi-objective RAP. Busacca et al. (2001) 

proposed a multi-objective GA approach that was applied to a design problem with the 

aim to identify the optimal system configuration and components with respect to 

reliability and cost objectives. 

Kulturel-Konak et al. (2003) solved this problem using Tabu Search method 

considering three objective functions; maximization of system reliability and 

minimization of cost and weight of the system. 

The following notation is used throughout the remainder of this example: 

Notation: 

R, C, W = system level reliability, cost and weight or constraint limits 

s  = number of subsystems 

xij = quantity of the jth available component used in subsystem i

� �
imiiii xxx ,2,1, ,...,,�x

mi = total number of available components for subsystem i 

nmax,i = user defined maximum number of components in parallel used in subsystem i 

Ri (xi) = reliability of subsystem i 

cij, wij, rij = cost, weight and reliability for the jth available component for subsystem i 

# i = weight used for objective i in the weighted sum method  

 
 It is important to highlight that # i and wij, are conceptually very different and only 

for this current example (RAP) the w’s are used to refer to component weights and the 

#'s to refer to objective function weights. 

4.5.3 Problem formulation 

It is well known that redundant elements increase system reliability, but also increase 

the procurement cost and system weight. A non-trivial question arises then regarding how 
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to optimally allocate redundant elements. The answer depends on the criterion of 

optimality and on the structure of the designed system. 

Different problem formulations of the RAP have been presented in the literature. For 

instance, Problem P1 maximizes the system reliability given restrictions on the system 

cost, C, and the system weight, W.  Alternatively, Problem P2 is formulated as a multi-

objective optimization problem by using a weighted sum approach.  Problem P3 is a 

multi-criteria formulation of the redundancy allocation problem, in which a Pareto-

optimal set of solutions is obtained. The formulation of the three problems is shown 

below: 

Problem P1: Reliability maximization 
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Given the overall restrictions on system cost of C and weight of W, the problem is to 

determine which design alternative to select with the specified level of component 

reliability, and how many redundant components to use in order to achieve the maximum 

reliability. 
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Problem P2: Weighted sum method formulation 
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The solution for this multi-objective formulation is determined by combining the 

three objectives into a single objective problem. This requires the user to a priori specify 

objective function weights to represent the relative importance to the individual objective 

function and one single set of weighting coefficients yields only one “optimal” solution. 

Therefore, choosing the correct set of weights, that provide the decision-maker an 

attractive set of solutions can be highly challenging, yet it will dictate the final solution. 

Often, decision-makers lack the training or detailed knowledge to precisely select the 

weights. This is undesirable because even small alterations to the weights can lead to 

very different final solutions. 

Problem P3: Multi-objective formulation 
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 For the multi-objective RAP, the objectives are to determine the optimal design 

configuration that will maximize system reliability, minimize the total cost and minimize 

the system weight, for a series-parallel system. A Pareto-optimal set of solutions can be 

obtained by using any multi-objective evolutionary algorithm (MOEA) available. 

However, there may be too many prospective solutions for the decision-maker to fully 

consider before ultimately select a unique design configuration to implement. This P3 

problem formulation is the one addressed in this chapter. 

4.5.4 Multi-objective RAP example 

To illustrate how pruning can be of great aid for the decision-maker on the post-

Pareto analysis stage, a RAP was solved. For this example, the configuration selected 

consists of 3 subsystems, with an option of 5, 4 and 5 types of components in each 

subsystem, respectively. The optimization involves selection from among these 

component types. The minimum number of components in each subsystem is 1, for the 

system to function, and the maximum number of components is 8 in each subsystem. 

Table 4.1 defines the component choices for each subsystem.  

Table 4.1 Component choices for each subsystem 

Subsystem  i 
1  2  3  

Design 
Alternative 

j rij cij wij rij cij wij rij cij wij

1 0.95 2 5 0.99 4 4 0.90 6 5 

2 0.93 1 4 0.98 3 6 0.85 5 4 

3 0.91 2 2 0.97 1 5 0.82 3 3 

4 0.90 1 3 0.96 2 7 0.79 3 5 

5 0.95 2 8  0.99 2 4 

 
For this case, NSGA was solved with a population size of 100. There were 46 

solutions in the Pareto-optimal set. This is likely to be too many possibilities for a 

decision-maker to select one preferred solution. This set is shown in Figure 4.8. The 
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Pareto set was then pruned using both methods previously described. 

 
Figure 4.8 Pareto-optimal set 

4.5.4.1 Pruned results by using the non-numerical ranking preferences method 

Pareto optimal solutions were obtained using NSGA and the pruned solutions 

identified by using the proposed method. The objective function priorities used on these 

solutions were: (R� C� W), (C� R� W), (R� W� C) and (W� R� C). Figure 4.9 shows 

the pruned solution set for w1>w2>w3 and w2>w1>w3, compared to the original Pareto 

optimal set (obtained by using NSGA), and Figure 4.10 shows the pruned solution set for 

w1>w3>w2 and w3>w1>w2, compared to the original Pareto-optimal set. Considering two 

objective functions at a time, the charts maps reliability versus cost. The pruned solution 

sets for all four possibilities are shown in the figures. Pruning the solutions caused almost 

a 90% reduction in the size of the Pareto-optimal set.  
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Comparing Pruned solutions with Pareto Optimal solutions
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Figure 4.9 Comparing pruned Pareto solution with the Pareto-optimal solution set for reliability versus cost 
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Figure 4.10 Comparing pruned Pareto solution with the Pareto-optimal solution set for reliability versus cost 

 

4.5.4.2 Pruned results by using data clustering 

The k-means algorithm was then used to cluster the original 46 solutions found in the 

Pareto set. Normalization of the objective function values was performed to have 

comparable units. Thus, the three objective functions were normalized using the 
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following linear normalization equation; although other types of normalizing equations 

can be used, i.e., logarithmic. 
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where  fi
min = minimum value for fi(x) found in the Pareto optimal set. 

 fi
max = maximum value for fi(x) found in the Pareto optimal set. 

 
 To use the above equation, all the objective functions were considered to be 

minimized, thus reliability was multiplied by -1. It is important to remark that by using a 

different type of normalization function, the clustering outcome is potentially different. 

To determine the optimal number of clusters, silhouette plots were used as suggested 

by Rousseeuw (1987), and several runs were performed for different values of k with 

several replicates for each value of k. For this particular data set, we found three to be the 

optimum number of clusters. The three clusters are shown in Figure 4.11 from 

normalized data. Cluster 1 contained 22 solutions; there were 19 solutions in cluster 2 

and five in cluster 3.  

 
Figure 4.11 Clustered Pareto-optimal set 

The clusters formed are highly internally homogeneous. That is, members within a 

cluster are similar to one another. One way for the decision maker to select one solution, 
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among the solutions contained in a cluster, is to identify what solution is the closest to its 

centroid. Table 4.2 shows the summary of results obtained by the cluster analysis. The 

representative solutions are those that are closest to their corresponding centroid; each 

solution is shown with its corresponding reliability, cost and weight. With the 

information from Table 4.2, the decision maker now has a small set of solutions, and it is 

thus, easier to make his/her choice regarding the importance of the different objectives. 

Table 4.2 Summary of results obtained with the clustering analysis 

 # of 
solutions 

Representative
solutions 

Reliability Cost Weight 

Cluster 1 22 #39 0.9978541 22 34 
Cluster 2 19 #91 0.984265 15 25 
Cluster 3 5 #87 0.819216 11 24 

Another way to take advantage of this method is that, once having the optimal 

number of clusters selected (three in our case), then we looked for the cluster that 

contained the most interesting solutions of the Pareto optimal set. These are the solutions 

where a small improvement in one objective would lead to a large deterioration in at least 

one other objective. These solutions are sometimes called “knees.” In this case, as we can 

see from Figure 4.11, solutions in cluster 2 are likely to be more relevant to the decision 

maker. Thus, solution #91 can be chosen as a good representative solution of this 

mentioned knee region. 

4.6 Scheduling of unrelated parallel machines 

4.6.1 Multiple objective scheduling problems 

There are numerous cases where scheduling problems have more than one, often 

conflicting objectives. For instance, flow-shop scheduling (minimizing completion time, 

tardiness, mean-flow-time), project scheduling (minimizing the projects completion time, 

the tardiness of orders), examination time-tabling (minimizing total number of violations 
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of each type of constraints) and JIT sequencing (minimizing total utility work, 

minimizing set-up cost) and many others. Recent and comprehensive surveys on theory 

and applications of multi-criteria scheduling are provided by T’kindt & Billaut (2002) 

and Hoogeveen (2005). 

Over the years, there have been several approaches used to model the various 

objectives in such problems. MOGAs have been recognized to be well-suited for solving 

multiple objective optimization problems because of their abilities to exploit and explore 

multiple solutions in parallel and find a widespread set of non-dominated solutions in a 

single run. Thus, scheduling with multiple objectives has been one of the most attractive 

applications of the MOGAs. 

Murata et al. (1996) proposed a MOGA and applied it to a flowshop scheduling 

problem with two objectives; minimization of makespan and minimization of the total 

flowtime. Ponnambalam et al. (2001) proposed a MOGA for scheduling job shops. The 

performance criterion considered was the weighed sum of the multiple objectives 

minimization of makespan, minimization of total idle time of machines and minimization 

of total tardiness. Arroyo & Armentano (2005) proposed a multi-objective local search 

(MOGLS) genetic algorithm, which was applied to the flowshop scheduling problem for 

the following two pairs of objectives; (i) makespan and maximum tardiness; (ii) 

makespan and total tardiness. 

4.6.2 Scheduling of unrelated parallel machines: multi-objective formulation 

 The second and third examples addressed the drilling of Printed Wiring Boards 

(PWBs) which is performed by a group of unrelated parallel machines (Yu et al., 2002) 

which must be scheduled. The processing time of each lot may be different for different 
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machines, and a machine that has a shorter processing time for a particular lot may have a 

longer processing time for another lot. There are multiple criteria that need to be 

considered to determine the best schedule. Parallel machine scheduling problems are 

generally NP-hard problems (Karp, 1972). In terms of the complexity hierarchy of 

deterministic scheduling, unrelated machines scheduling problems are some of the most 

difficult to solve.  

 Yu et al. (2002) proposed a Lagrangian Relaxation Heuristic (LRH) method to solve 

the PWB scheduling problem. They constructed an integer programming model with a 

special structure called unimodularity. In order to account for multiple objectives of the 

scheduling system, they introduced preference constraints and brought them into the 

objective function by using Lagrangian relaxation. 

This PWB scheduling problem was formulated as a multi-objective problem 

considering four objectives to be minimized; minimize overtime, minimize average finish 

time, minimize the variance of the finish time and minimize the total cost. The multi-

objective formulation is as follows: 
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xij � {0, 1} 

where: 

1, if lot  is assigned to machine 
0,otherwiseij

j i
x �

� �
�

 

Oi = Overtime on machine i

m = number of parallel machines 

n = number of lots to schedule 

ijp = processing time of lot j on machine i 

ijc = cost of processing a lot j on machine i 

T = lot release interval time  

4.6.2.1 Scheduling of unrelated parallel machines: example 1 

 The processing times and the processing costs are shown in Tables 4.3 and 4.4 

respectively (Yu et al., 2002). The release interval time, T, is equal to 3 time units. To 

satisfy feasibility, a large cost is assumed for processing a lot that cannot be processed by 

certain machines, such as in the cases of lot 1 on machine 1 and machine 2, forcing them 

to be scheduled on a machine that can perform the job. 

Table 4.3 Processing times for PWB scheduling problem 

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 
M1 � 1.7 2.4 1.3 � 3.5 
M2 � 1.5 2.2 0.8 3.2 1.9 
M3 1.1 0.7 3.2 1.8 3.1 0.4 

 
Table 4.4 Processing costs for PWB scheduling problem 

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 
M1 6000 14 28 29 6000 13 
M2 6000 23 16 13 25 10 
M3 11 27 10 12 24 11 

 
The multi-objective scheduling of PWB problem was initially solved, using the 

NSGA-II algorithm, to determine a Pareto optimal set. The algorithm was run for 150 

generations with a population size of 500, with the probability of crossover as 0.7, and 

taking the probability of mutation to be 0.03. There were 28 solutions in the Pareto-
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optimal set. The post-Pareto analysis was then performed on these 28 solutions to provide 

the decision-maker a workable sub-set of solutions by using the two proposed methods. 

 

4.6.2.1.1 Pruned results by using the non-numerical ranking preferences method 

 The non-numerical ranking preference combination selected to illustrate this example 

is the case in which overtime (O) is more important than average finish time (AFT) , 

which is more important than variance of finish time (VFT), which is more important 

than cost (C) (O� AFT� VFT� C: w1>w2>w3>w4). Figure 4.12 shows, in a three-

dimensional space, the 28 solutions contained in the Pareto-optimal set. 
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Figure 4.12 Pareto-optimal set of Example 1 (PWB) in a three-dimensional space 

Table 4.5 shows the pruned solutions obtained by applying the proposed method to 

narrow the search space using 5000 randomly generated weight sets. Of the original 28 

solutions, the pruned set only includes three; solution 1 has the minimum overtime but it 

is achieved at a higher cost than solutions 2 and 5. On the other hand, solution 5 presents 

the minimum cost but it has the highest average finish time as well as the highest 

variance of the average finish time. 
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Table 4.5 Pruned solutions 

Ranking preferences: w1>w2>w3>w4

Minimize 
Sol No.  Overtime Avg. finish time Var. Avg. finish time Cost 

2 1.0000000 2.8333370 0.6488890 115 
5 1.6000000 3.1000000 1.4066670 89 
1 0.9000000 3.0333330 0.3888890 131 

 The pruned solutions obtained considering the w1>w2>w3>w4 objective function 

preference are shown as triangles in Figure 4.13. In this case, by using this method, a 

89.2% reduction was achieved in the solutions obtained from the Pareto-optimal set. 

These pruned solutions would then be further analyzed by the decision-maker. Solution 2 

is shown as an example of a schedule for the PWB scheduling problem in Figure 4.14.
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Figure 4.13 Pruned solutions for the w1>w2>w3>w4 objective function preference in a two-dimensional space 
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Figure 4.14 Schedule for solution 2 

 This pruning method gives as a result the solutions, contained in the Pareto-optimal 

set, that clearly reflect the decision-maker objective function preferences. For this 
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example, these three solutions obtained are the best solutions that reflect the

w1>w2>w3>w4 decision-maker’s objective function preference.  

 To empirically demonstrate that the pruning method is repeatable and reliable, and 

there is no sacrifice for the non-numerically ranking preferences method, ten simulation 

runs have been performed. In each of the ten runs, 5000 different weights sets, randomly 

selected from fw(w), were used. Table 4.6 shows the results for the ten simulation runs. In 

this table, we can observe that given this objective function preference, besides the three 

solutions found in the pruning set, there is no other solution in the Pareto-optimal set that 

satisfies this objectives preference. The other solutions that do not appear on the table it is 

because they had a counter value of zero, meaning that they did not minimize the value of 

f ': f '= w1f1(x) + w2f2(x) + w3f3(x) + w4f4(x). However, a more formal mathematical 

formulation to demonstrate the accuracy and optimality of the non-numerical ranking 

preferences method is presented in the next section. 

Table 4.6 Solutions found in the pruned Pareto set in ten simulation runs 

 Counter on Simulation Run # 
Solution # 1 2 3 4 5 6 7 8 9 10 

1 156 155 146 143 142 156 156 156 134 149 
2 4545 4538 4539 4577 4559 4558 4525 4568 4579 4539 
5 299 307 315 280 299 286 319 276 287 312 

 
4.6.2.1.2 Mathematical demonstration of the non-numerical ranking preferences 

method: example 1 

 A more formally mathematical formulation was developed to demonstrate the 

strength of the non-numerical ranking preferences method. For this pruning method, the 

objective to minimize (for all objectives converted to minimization) the following 

combined objective function. Remember that the weights have not been selected, but 

there ordering has been specified. The objective is to find all solutions that could 
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conceivably minimize this function for some feasible weight combination. 

i
i

i fw"min  

s.t. w(1) > w(2) >… > w(n) 
 w(1) + w(2) +… + w(n) = 1 
 w(i) � 0 for i = 1, 2, …, n 

 Given the objective function preferences, we developed the algorithm shown in 

Figure 4.15 to analytically determine the pruned Pareto set for Example 1 (PWB). This 

set represents all solutions that possibly could be preferred given the new constraints 

caused by the prioritization. 

 
Figure 4.15 Algorithm to prune the Pareto set given objective functions preferences 

Where, 

P = Pareto set 

PP = pruned Pareto set 

l = individual solution from P

c = total number of solutions in P 

W = set of weights 

 This works as follows. For a solution l to be a member of the pruned-Pareto set, there 

must be some weight combination (adhering to the prioritization constraints) where the 
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combined objective function is lower than all other solutions, i.e., all differences in 

objective functions must be negative. Therefore, if there exists some weight combination 

where even the maximum difference is negative, then the solution belongs in the pruned-

Pareto set. Therefore we minimize this maximum objective function difference to see 

whether there is some weight combination where it is the best. This then must be repeated 

individually for all solutions in the Pareto-optimal set. Example 1 only had 28 solutions 

so we can check the pruned Pareto set and compare it to the results from the simulation. 

 Table 4.7 shows the solutions for the four objective functions in a normalized space. 

Column 6 shows the z values obtained by applying algorithm shown in Figure 4.15 As 

can be seen, only solutions 1, 2 and 5 have z values less than zero, and thus, only these 

solutions can minimize the objective function given the f1� f2� f3 objective function 

preferences. Therefore, there is no sacrifice for this example. This confirms that, with the 

non-numerical ranking preferences method, we are only obtaining those solutions that 

clearly satisfy the decision maker’s objective function preferences. 
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Table 4.7 Analytical pruning results 

sol. #  Min Overtime Min AFT Min Var(AFT) Min cost z
1 0 0.129029 0.019612 1 -0.01478
2 0.017544 0.048387 0.034512 0.68 -0.04979
3 0.052632 0.209676 0.021778 0.66 0.037485 
4 0.122807 0.161289 0.061895 0.58 0.056338 
5 0.122807 0.161289 0.077942 0.16 -0.05884
6 0.122807 0.241936 0.054382 0.48 0.059696 
7 0.122807 0.370966 0.006619 0.40 0.060775 
8 0.175439 0.419353 0.030311 0.38 0.096721 
9 0.192982 0.338711 0.048651 0.58 0.12384 
10 0.245614 0 0.267192 0.42 0.060139 
11 0.245614 0.032255 0.196127 0.66 0.096737 
12 0.245614 0.435485 0.024196 0.38 0.13085 
13 0.245614 0.483873 0.003565 0.88 0.21081 
14 0.385965 0.129029 0.261077 0.34 0.13743 
15 0.403509 0.629034 0.007387 0.38 0.22623 
16 0.438596 0.661289 0.040243 0.36 0.24681 
17 0.438596 0.661289 0.043682 0.20 0.20909 
18 0.491228 0.5 0.227711 0.04 0.18913 
19 0.578947 0.580647 0.169002 0.04 0.21771 
20 0.596491 0.806451 0.036042 0.28 0.30407 
21 0.614035 0.564515 0.351249 0.02 0.26302 
22 0.631579 0.838711 0.012224 0.10 0.27202 
23 0.684211 0.322578 0.551450 0.04 0.27472 
24 0.684211 0.887098 0 0.60 0.41233 
25 0.754386 0.741936 0.200586 0.02 0.30690 
26 0.807018 1 0.081507 0.08 0.37054 
27 0.929825 0.725809 0.695110 0 0.46593 
28 1 0.483873 1 0.02 0.50352 

  
4.6.2.1.3 Pruned results by using data clustering: example 1 

 Using the k-means algorithm, clustering analysis was performed on the 28 solutions 

contained in the Pareto-optimal set and k = 3 was found to be the optimal number of 

clusters with the aid of the silhouette plots. Figure 4.16 shows the three clusters in a 

three-dimensional space, for minimizing overtime, minimizing average finish time and 

minimizing cost. Figure 4.17 shows the same clusters in a three-dimensional space for 

minimizing overtime, minimizing average finish time and minimizing the variance of the 

average finish time. In Figures 4.16 and 4.17, the fourth objective (minimize variance of 

average finish time and minimize cost, respectively) is not shown but it is still considered 

in the analysis. The objective functions have been normalized from 0 to 1. 
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Figure 4.16 Clustered data in a three-dimensional space 
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Figure 4.17 Clustered data in a three-dimensional space 

Table 4.8 shows the summary of the results obtained by using the k-means algorithm. 

This table includes the representative solutions that were closest to their corresponding 

centroid. As we can see from Table 4.8, solution number 6 from cluster 2 gives the 

minimum overtime, average finish time and variance of the average finish time but it has 

the highest cost. On the other hand, solution 28 from cluster 1 has the lowest cost but it 

also gives the highest overtime and variance of the average finish time. Figure 4.18 

shows, as an example, the schedule for solution 6. 
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Table 4.8 Results obtained with the cluster analysis 

 # of solutions Representative 
Solution 

Min  
Overtime 

Min 
Avg. Finish time 

Min 
Var. Avg. finish time 

Min 
Cost 

Cluster 1 3 28 6.2000000 4.2666670 12.1755550 81 
Cluster 2 14 6 1.5000000 3.2333333 0.9955560 105 
Cluster 3 11 21 4.3000000 4.4333330 0.6755560 95 
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 Figure 4.18 Schedule for solution number 6 

 For both pruning methods, the decision-maker only needs to consider three solutions 

(instead of 28). It is much easier and convenient to select from among 3. The first pruning 

method is most appropriate when the decision-maker can prioritize their objectives, while 

the second does not require the decision-maker to a priori specify any objective function 

preference. 

4.6.2.2 Scheduling of unrelated parallel machines: example 2 

In this case, the PWB scheduling problem was formulated as a multi-objective 

problem considering three objectives to be minimized: minimize overtime, minimize 

average finish time and minimize the total cost. The multi-objective formulation is as 

follows: 
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 The processing times and the processing costs are shown in Tables 4.9 and 4.10 

respectively. The release interval time, T, is equal to 4 time units.  

Table 4.9. Processing times for PWB scheduling problem 

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 Lot 7 
M1 2.5 1.3 2.7 4.3 3.5 1.8 1.7 
M2 1.8 1.4 1.2 5.2 3.0 2.4 1.6 
M3 3.8 2.2 3.4 6.8 4.4 6.2 4.4 
M4 3.0 1.0 1.4 4.6 2.8 2.2 1.2 
M5 5.2 2.4 6.2 8.4 6.6 7.0 4.8 

 
Table 4.10 Processing costs for PWB scheduling problem 

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 Lot 7 
M1 16 24 18 22 26 20 22 
M2 22 18 30 20 28 18 26 
M3 12 12 15 18 22 12 16 
M4 18 28 16 26 34 18 18 
M5 14 14 11 16 18 10 12 

 
The multi-objective scheduling of PWB problem was initially solved using the 

NSGA-II algorithm, to determine a Pareto-optimal set; with a population size of 500 and 

the algorithm was run for 150 generations, with a probability of crossover of 0.8, and 

probability of mutation of 0.02. There were 48 solutions in the Pareto-optimal set. The 

post-Pareto analysis was then performed on these 48 solutions to provide the decision-

maker a workable sub-set of solutions by using the two proposed methods. 

4.6.2.2.1 Pruned results by using the non-numerical ranking preference method: 

example 2 

 Three objectives were considered to be minimized in this example: overtime (O), 

average finish time (AFT) and cost (C). The non-numerical ranking preference 

combination selected to illustrate this example is the case in which overtime is more 
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important than cost, which is more important that average finish time (O� C� AFT: 

w1>w3>w2). These preferences were selected to demonstrate the pruning process. Figure 

4.19 shows the 48 solutions contained in the Pareto-optimal set. 

 
 Figure 4.19 Pareto-optimal set of Example 2 

 Table 4.11 shows the pruned solutions obtained by applying the proposed method to 

narrow the search space using 5000 weights sets randomly selected from fw(w). Of the 

original 48 solutions, the pruned set only includes 2. Of the two solutions found in the 

pruned set, solution 48 has the lowest overtime; however it is achieved at the highest 

cost. In contrast, solution 26 presents the minimum cost but it possesses the highest 

overtime.  

Table 4.11 Pruned solutions 

Ranking preferences: w1>w3>w2

Minimize 
Sol No.  Overtime Avg. finish time Cost 

26 4 4.62 116 
48 0.9 3.58 132 

 The pruned solutions obtained, considering the f1� f3� f2 objective function 

preference, are shown in triangles in Figure 4.20 in two different two-dimensional 
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perspectives. By using this method, a 95.83% reduction was achieved in the solutions 

obtained from the Pareto-optimal set. These pruned solutions would then be further 

analyzed by the decision-maker. Solution 48 is shown as an example of a schedule for the 

PWB scheduling problem in Figure 4.21. 
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Figure 4.20 Pruned solutions for the f1� f3� f2 objective function preference in a two-dimensional space 
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Figure 4.21 Schedule for solution 48 

 For this example, the two solutions found in the pruned Pareto set are the best 

solutions that reflect the decision-maker’s f1� f3� f2 objective function preference. Ten 

simulation runs were performed using the developed pruning algorithm. In each of the ten 

runs, 5000 different weights sets, randomly selected from fw(w), were used. Table 4.12 

shows the results for the ten simulation runs. In this table, we can observe that given this 

objective function preference, besides the two solutions found in the pruning set, there is 
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no other solution in the Pareto-optimal set that satisfies this objectives preference. The 

other solutions that do not appear on the table it is because they had a counter value of 

zero, meaning that they did not minimize the value of f ': f '= w1f1(x) + w2f2(x) + w3f3(x). 

Table 4.12 Solutions found in the pruned Pareto set in ten simulation runs  

 Counter on Simulation Run # 
Solution # 1 2 3 4 5 6 7 8 9 10 

26 97 93 86 88 94 101 90 92 95 98 
48 4903 4907 4914 4912 4906 4899 4910 4908 4905 4902 

 
4.6.2.2.2 Pruned results by using data clustering: example 2 

 Using the k-means algorithm, clustering analysis was performed on the 48 solutions 

contained in the Pareto-optimal set and we found k = 3 to be the optimal number of 

clusters with the aid of the silhouette plots. Figure 4.22 shows the three clusters in a 

normalized space.  
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Figure 4.22 Clustered data for the second PWB example 

 Table 4.13 shows the summary of the results obtained by using the k-means 

algorithm. This table includes the representative solutions that were closest to their 

corresponding centroid. As we can see from Table 4.13, solution number 31 from cluster 

1 gives the minimum overtime and average finish time but it has the highest cost. On the 

other hand, solution 2, from cluster 2, has the lowest cost but it also gives the highest 
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overtime and average finish time. In this case, solution 15, which is found in the “knee

cluster”, seems to be a good compromise.  

Table 4.13 Results obtained with the cluster analysis 

 # of 
solutions 

Representative 
Solution 

Min  
Overtime 

Min 
Avg. Finish time 

Min 
Cost 

Cluster 1 21 31 3.5 3.1 144 
Cluster 2 4 2 14.6 5.6 106 
Cluster 3 23 15 5.4 4.12 120 

 
 For this second example, in the first pruning method, the decision-maker only needs 

to consider two solutions (instead of 48). On the other hand, in the second pruning 

method, the decision-maker only needs to analyze three solutions. However, as it was 

mentioned earlier, for the first pruning method the decision-maker needs to be able to 

state the objective function preferences, while for the second pruning method there is no 

such need. Thus, this second method is helpful for those decision-makers with less 

knowledge about the problem domain. However, in the later method, once clustered the 

Pareto set, the decision-maker can analyze only the solutions found in the “knee cluster” 

and/or directly choose the representative solution of this cluster. In this manner, both 

methods, offer different advantages as reduction or pruning techniques. 

4.7 Summary

In this chapter we saw that a popular method of “solving” multi-objective problems is 

to determine a Pareto-optimal set or sub-set. However, this then requires the decision-

maker to select from among this set of solutions, which is often large when there is more 

than two objective functions. To reduce or limit intelligently the size of the Pareto-optimal 

set, two methods were presented: 1) pruning by using non-numerical objective function 

ranking preferences method, and 2) pruning by using data clustering.  
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The main difference between the two pruning methods is that the first pruning method is 

most appropriate when the decision-maker can prioritize their objectives, while the second does 

not require the decision-maker to a priori specify any objective function preference. 

The first method, pruning by using non-numerical ranking preferences, provides the 

decision-maker a set of solutions that match his/her preferences and compare solutions 

with different objective function combinations. This method, in contrast with the 

weighted sum method, does not require the decision-maker to specify precise weight 

values or equivalent cost metrics. The different weight combinations are generated using 

the weight function, fw(w), which reflects the decision-maker preferences. 

 In the second method, pruning by using data clustering, we made use of clustering 

techniques used in data mining. In this case, we grouped the Pareto-optimal solutions by 

using the k-means algorithm to find groups of similar solutions. A clustering validation 

technique has been integrated into the k-means clustering algorithm to give a relatively 

automatic clustering process. The only parameters defined by the user are the maximum 

number of clusters to be analyzed and the desired number of replicates. This is to avoid 

the bias due to the selection of the initial centroids that has been observed. This was 

performed by selecting different values as initial centroids, and then, comparing the 

results obtained until a minimum was found.  To determine the “optimal” or preferred 

number of clusters, k, in the set, the silhouette method was applied. A value of the 

silhouette width, s(i), was obtained for the several values of k desired to investigate. The 

clustering with the highest average silhouette width, GSu, was selected as the “optimal” 

or preferred number of clusters in the Pareto-optimal set. 

 With this second approach, the decision-maker obtained a pruned Pareto-subset of 

just k particular solutions. Moreover, clustering analysis was useful to focus search on the 
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“knee” region of the Pareto front. The “knee” region is characterized by those solutions 

of the Pareto-optimal set where a small improvement in one objective would lead to a 

large deterioration in at least one other objective. The clusters formed in this region 

contain those solutions that are likely to be more relevant for the decision-maker. By 

using this approach the decision-maker is not required to specify any objective function 

preferences 

The two methods were demonstrated on two well-known multi-objective problems: the 

redundancy allocation problem (RAP) and the scheduling of the bottleneck operation of a 

Printed Wiring Board (PWB) manufacturing line.  

 The two pruning methods presented in this Chapter were applied after the 

determination of Pareto-optimal sets by a MOEA. However, in Chapter 8, the non-

numerical ranking preferences method is incorporated within the MOEA code. This 

aspect makes the analysis of the solution of multiple objective problems more efficient. 
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5. Developed MOEA for design allocation problems

 In this chapter, a new MOEA for solving system design allocation problems is 

developed and tested. The algorithm uses a GA based on rank selection and elitist 

reinsertion, and a modifying genetic operator constraint handling method. Because GAs 

are appropriate for high-dimension stochastic problems with many nonlinearities or 

discontinuities, they are suited for solving reliability design problems. This new MOEA 

will be combined with the post-Pareto screening methods to develop a new approach to 

multiple objective optimization and it will be extended to develop an entirely new MOEA 

with integrated solution screening to achieve a balance between existing methods. 

The developed algorithm, MOEA-DAP (Taboada & Coit, 2006b), mainly differs 

from other MOEAs in the crossover operation performed and in the selection procedure. 

In the crossover step, several offspring are created through multi-parent recombination. 

As a result, from n parents, denoted as Npar, considered for mating, in our algorithm 

there are s/[Npar(Npar-1)] number of children produced, where s is the number of 

subsystems considered. Thus, the mating pool contains a great amount of diversity of 

solutions. This disruptive nature of our proposed type of crossover, called subsystem 

rotation crossover (SURC) appears to encourage the exploration of the search space. 

 Additionally, for the selection step, the fitness metric 1 proposed is based on the 

cumulative Euclidean distance from one solution to the rest of the nondominated 

solutions. In this way, we assign the highest fitness to those nondominated solutions that 
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are the farthest away with respect to the rest of the solutions. This is also to promote a 

good spread along the Pareto front.  

 To validate the performance of the developed MOEA-DAP, ten experimental runs 

were obtained from our algorithm and they are compared against ten runs obtained from 

one of the most successful evolutionary algorithms that currently exists: the NSGA-II 

algorithm. The NSGA-II algorithm is noticeably more efficient than its previous version 

(NSGA), but there are possible concerns regarding its exploratory capability. Although 

the algorithm tends to spread quickly and appropriately when a certain nondominated 

region is found, it seems to have difficulties in generating nondominated solution vectors 

that lie in certain (isolated) regions of the search space (Coello Coello & Toscano Pulido, 

2001). 

 As it will be described in Section 5.9, the results of the performance comparison 

based on two different performance metrics, Overall Nondominated Vector Generation 

(ONVG) and Overall true Nondominated Vector Generation (OTNVG), indicate that our 

proposed algorithm is more effective for solving this type of problem. The MOEA-DAP 

algorithm obtains more solutions that contribute to the true Pareto-optimal front, and the 

solutions obtained are also more uniformly distributed along the Pareto frontier than 

those solutions coming from the NSGA-II.  

5.1 Description of the problem addressed 

 This chapter describes the use of a multiple objective evolutionary algorithm to solve 

engineering design allocation problems. The problem addressed in this chapter arises in 

many real engineering optimization problems, where managers and/or decision-makers 

have to efficiently allocate components from among of a set of predefined component 
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choices to determine the optimal configuration to be implemented. There are numerous 

application areas of the redundancy allocation problem, such as in the case of electrical 

power systems (Ouiddir et al., 2004), transportation systems (Levitin & Lisnianski, 

2001), telecommunications (Lyu et al., 2002), among others.  

 This chapter addresses the problem of designing a hardware system structure. In the 

problem formulation presented, there is a specified number of subsystems and, for each 

subsystem, there are multiple component choices which can be selected and used in 

parallel. This formulation pertains to the well-known redundancy allocation problem 

(RAP). In this chapter, the RAP is modeled as a multi-objective problem with the system 

reliability to be maximized, cost and weight of the system to be minimized, and no 

constraints limiting the possible values of reliability, making this problem a multiple 

objective combinatorial optimization (MOCO) problem. 

 MOEA-DAP represents a new alternative for the solution of a difficult MOCO 

reliability-design problem. This new approach has the strength of a problem-oriented 

technique. The selection of components is advantageously combined to create a multiple 

objective evolutionary algorithm (MOEA) which can tackle the problem in the most 

efficient way. Since MOCO problems contain information derived from their specific 

combinatorial structure, this can be advantageously exploited during the search. To take 

advantage of the combinatorial structure within the search algorithm, a problem 

dependent customized crossover operator is used, called the subsystem rotation crossover 

(SURC)  

 To be most efficient, the solution of a multiple objective problem seems to 

necessarily require a hybrid algorithm, i.e., an integration of standard evolutionary 
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algorithms and problem dependent components. This is particularly true for MOCO 

problems, where the adaptation of a universal method to a problem can not compete with 

a method specifically designed for this problem. 

5.2 Multi-criteria formulation of the RAP using GAs 

 Multicriteria formulations using GAs can be found over the Literature. Busacca et al. 

(2001) proposed a multi-objective GA approach that was applied to a safety system of a 

nuclear power plant. Huang et al. (2006) proposed a new method of system reliability 

multi-objective optimization using GAs. They considered a reliability optimization model 

obtained from a transformation of Dhingra’s over-speed protection system model (1992) 

which contains two objective functions, simultaneously maximizing system reliability 

and minimizing system cost subject to limits on weight and volume.  

 As shown in Chapter 4, Taboada & Coit (2007) and Taboada et al. (2007a) 

formulated the redundancy allocation problem (RAP) as a multi-objective problem with 

the system reliability to be maximized, and cost and weight of the system to be 

minimized. The Pareto-optimal set was initially obtained using the fast elitist 

nondominated sorting genetic algorithm (NSGA-II) originally proposed by Deb et al. 

(2002). Then, the decision-making stage was performed by applying two proposed 

pruning methods to reduce the size of the Pareto-optimal set and obtain a smaller 

representation of the multi-objective design space. For those studies, NSGA-II was 

effective. However, NSGA-II is a general MOEA for any type of problem. This implies 

that the problem formulation needs to be adapted. Moreover, in these studies, the final 

Pareto front found by NSGA-II contained many repeated solutions, so to obtain a large 

number of solutions; several runs had to be performed. Thus, if a decision-maker must 
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solve many similar RAP problems, then a custom MOEA, especially designed to solve 

multi-objective design allocation problems, offers great advantage. 

5.3 The proposed algorithm: MOEA-DAP 

 MOEA-DAP is a multiple objective evolutionary algorithm specifically designed for 

solving design allocation problems The multi-objective formulation that we considered is 

shown in Equation 5.1, with the system reliability to be maximized, cost and weight of 

the system to be minimized, and no constraints in the possible values of reliability. In 

practice, MOEA-DAP could be generalized to accommodate any number of constraints. 
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Where: 

s  = number of subsystems 

� �
imiiii xxx ,2,1, ,...,,�x  

xij = quantity of the jth available component used in subsystem i

mi = total number of available components for subsystem i 

nmax,i = user defined maximum number of components in parallel used in subsystem i 

Ri (xi) = reliability of subsystem i 

cij, wij, rij = cost, weight and reliability for the jth available component for subsystem i 

 For the multi-objective RAP, the objectives for MOEA-DAP are to determine the 

optimal design configuration that maximizes system reliability, minimizes the total cost, 

and minimizes the system weight, for a series-parallel system. The pseudo-code and the 
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flowchart of the developed MOEA-DAP are shown below and in Figures 5.1, 

respectively. The specific steps are further explained in the following sections.

1. [Start] Generate random population of n chromosomes  

2. [Fitness] Evaluate the aggregated fitness function of each chromosome x in the 

population  

3. [Selection] With a given crossover probability select individuals with the highest 

aggregated fitness to perform recombination.  

4. [Crossover] With a pre-defined crossover probability, cross-over the parents to form 

new offspring (children).  

5. [Mutation] With a pre-defined mutation probability, mutate new offspring at a 

random position in the chromosome  

6. [Reinsertion] Place new offspring + a specified percentage of the most elite parents to 

form the new population 

7. [Replace] Use new generated population for a further run of the algorithm  

8. [Test] If the Generation i = Generation ‘max’, stop, and return the best solutions in 

current population, otherwise return to step 2. 
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Figure 5.1 Flowchart of MOEA-DAP 

 
5.3.1 Chromosomal representation 

 Although binary-coded GAs are commonly used, there is an increasing interest in 

alternative encoding strategies, such as integer and real-valued representations. For some 

problem domains, it is argued that the binary representation is in fact deceptive since it 

obscures the nature of the search (Bramlette, 1991).  
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 Thus, in our MOEA we used an integer chromosomal representation. For instance, 

consider the following example to illustrate a chromosome used in our algorithm to solve 

the multi-objective-RAP problem. 

The following chromosome contains fourteen integers for a configuration which 

consists of 3 subsystems, with an option of 5, 4 and 5 types of components in each 

subsystem, respectively, with 1 as the minimum number of components in each 

subsystem, for the system to function, and 8 as the maximum number of components in 

each subsystem. Each integer corresponds to the number of redundant components of that 

type. For example, for subsystem 1; two copies of the first component type, four 

components of the second component type, one copy of the third component type and one 

copy of the fifth component type are used in parallel. For subsystem 2; three copies of the 

second component type, two copies of the third component type and one copy of the 

fourth component type are used in parallel. And, finally, for subsystem 3; one copy of the 

first component type, three copies of the second component type and two copies of the 

fifth component type are used in parallel. 

2 4 1 0 1 0 3 2 1 1 3 0 0 2

subsystem 1 subsystem 2 subsystem 3

Chromosome 1 2 4 1 0 1 0 3 2 1 1 3 0 0 2

subsystem 1 subsystem 2 subsystem 3

2 4 1 0 1 0 3 2 1 1 3 0 0 22 4 1 0 1 0 3 2 1 1 3 0 0 2

subsystem 1 subsystem 2 subsystem 3

Chromosome 1

 

 From above, it can be seen that for the multi-objective-RAP, the use of an integer 

representation provides a convenient and natural way of expressing the mapping from 

chromosomal representation to the problem domain. Alternatively, a binary 

representation would require 126 different 0-1 values. 
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5.3.2 Constraint-handling method 

 Our proposed MOEA uses the modifying genetic operator strategy.  In this approach 

the genetic operators are crafted to always produce feasible solutions. The main reason 

we used this constraint handling strategy is because evolutionary computation techniques 

have huge potential for incorporating specialized operators that search the boundary of 

both, feasible and infeasible, regions in an efficient way. However, it is commonly 

acknowledged that restricting the size of the search space in evolutionary algorithms (as 

in most search algorithms) is generally beneficial. Hence, it seems natural in the context 

of constrained optimization to restrict the search for the solution to the boundary of the 

feasible part of the space (Michalewicz & Shoenauer, 1996). 

 The most common approach for GAs to accommodate constraints is to use penalty 

functions to penalize constraint violations. Although conceptually very simple, in practice 

it is quite difficult to implement, because the exact location of the boundary between the 

feasible and infeasible regions is unknown in most problems (Coello Coello, 2002).  

 The formulation addressed in the MOEA-DAP development had s constraints to limit 

the total components within each subsystem. If additional constraints are imposed (e.g., 

fuel consumption, volume), then the existing modifying genetic operator strategy could 

be readily expanded to accommodate these constraints by using repair operators. 

 

5. 3.3 Determination of the initial generation  

 EAs are population-based algorithms, thus, MOEA-DAP begins its search with a 

population of random solutions. Immediately, thereafter, objective function values are 

evaluated and the Pareto dominance criterion is checked in the initially created solutions. 

Those solutions that are dominated by other solutions are eliminated. Thus, in this way, 
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MOEA-DAP ensures that the resulting population will only contain Pareto-optimal 

solutions.  

 For instance, consider an example configuration which consists of four subsystems, 

with an option of three types of components in each subsystem, respectively, with one as 

the minimum number of components in each subsystem, for the system to function, and 

five as the maximum number of components in each subsystem. 

 First, a random initial population, Npop, is created. That is, n number of strings are 

created. And, as explained in Section 5.2, only feasible solutions are created. The length 

of each string will depend on the number of options of different components in each 

subsystem, that is: 

L = m(1) + m(2) + …+ m(i) = "
i

im )(  

Where:  

L= length of string 

m(i) = number of available components for subsystem i 

 For the example that we are considering, say that 12 individuals are randomly 

created. Then, the objective functions values are calculated for the three objective 

functions. Next, Pareto dominance criterion is checked in this initial population. The 

problem is treated as a minimization problem, thus, reliability is multiplied by -1. Then, 

without loss of generality, for this minimization problem for all objectives, a solution x1 

dominates a solution x2, if and only if, the two following conditions are true: 

	 x1 is no worse than x2 in all objectives, i.e.,  fi(x1) � fi(x2) �   
 i, � �ni ...,,2,1�

	 x1 is strictly better than x2 in at least one objective, i.e.,  fi(x1) < fi(x2) for at least one i.  
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 Before obtaining a count of how many of these 12 individuals are dominated, we 

count how many individuals are dominated by each of the 12 individuals forming the 

initial population. Table 5.1 shows the objective function values for the first 12 

chromosomes created, and in the last column, the number of individuals that each 

individual dominates is presented. This is often referred as ‘dominance count.’ 

Table 5.1 Dominance count in initial population 

First
population Reliability Cost Weight 

Dominance
 count 

1 -0.90112 76 81 0 
2 -0.89779 63 78 0 
3 -0.98734 60 75 3 
4 -0.68228 69 73 0 
5 -0.94814 52 75 3 
6 -0.96703 55 97 0 
7 -0.98699 68 62 3 
8 -0.95267 52 80 1 
9 -0.79624 29 41 1 

10 -0.84937 68 76 0 
11 -0.89678 42 56 2 
12 -0.92673 46 68 4 

 

 As we can see from Table 5.1, solution number 12 is the most dominating solution, 

with a dominance count of 4. Then after this, we copy the nondominated solutions to a 

separate set and we discard those solutions that are dominated. Thus, Table 5.1, is now 

reduced to Table 5.2. 

Table 5.2 Dominance count in the first nondominated set 

Nondominated
set Reliability Cost Weight 

Dominance
 count 

1 -0.98734 60 75 3 
2 -0.94814 52 75 3 
3 -0.96703 55 97 0 
4 -0.98699 68 62 3 
5 -0.95267 52 80 1 
6 -0.79624 29 41 1 
7 -0.89678 42 56 2 
8 -0.92673 46 68 4 

  
 As we can see from Table 5.2, solution number 3 does not dominate any of the 

solutions but it still is a nondominated solution. To easily explain this phenomenon, 
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consider the case of a bi-objective problem presented in Figure 5.2, in which we try to 

minimize weight and minimize cost.  Certainly, from the Figure 5.2, and from the 

information in Tables 5.3 and 5.4, we can observe that solution number 1 pertains to the 

nondominated set of solutions although it does not dominate any solution. 
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Figure 5.2 Dominance in a bi-objective problem 
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5.3.4 Aggregated fitness function 

 After obtaining the nondominated solutions and having each of these marked with its 

corresponding dominance count, we proceed to assign fitness to these solutions. In our 

algorithm, we used two different methods to assign fitness to the solutions. The first 

fitness, f1(i), is intended for maintaining population diversity. The second fitness, f2(i),  

aims to select those individuals which are more dominating. The two different fitness 

metrics are then aggregated weighting each of the fitness metrics equally, aiming to 

achieve proximity and diversity, which are the two most common desirable 
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characteristics in MOEAs. The two fitness metrics used in the algorithm are described 

next.  

5.3.4.1 Fitness metric 1: distance-based,  f1(i)

 This fitness metric gives highest fitness to those solutions that are farther away from 

other solutions in the Pareto front, giving those solutions a greater possibility to be 

chosen later for reproduction. With this fitness function, we aim to maintain diversity of 

the Pareto optimal solutions. To illustrate how this fitness works, let’s continue 

considering the information from Table 5.2, which contains only those solutions that 

were nondominated. The next step consists in standardizing the solutions. The three 

objective functions were scaled from 0 to 1 using the following equation: 
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where  fi
min = minimum value for fi(x) in the nondominated set. 

 fi
max = maximum value for fi(x) in the nondominated set. 

 As we can notice, we need to multiply column 2 by (-1) to be able to use the above 

equation properly. Now, the 8 nondominated solutions from Table 5.2 are presented as 

Table 5.5: 

Table 5.5. Standardized nondominated set 

Nondominated
set Reliability Cost Weight 

Dominance
 count 

1 1 0.79487 0.60714 3 
2 0.79487 0.58974 0.60714 3 
3 0.89369 0.66667 1 0 
4 0.99813 1 0.375 3 
5 0.81856 0.58974 0.69643 1 
6 0 0 0 1 
7 0.52609 0.33333 0.26786 2 
8 0.68281 0.4359 0.48214 4 
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 From here, we compute the Euclidean distance from each solution to the others, i.e., 

from solution 1 to the rest of the solutions, from solution 2 to the rest of the solutions, and 

so on. Next, the sum of the distances from each solution to the rest of the solutions is 

obtained, and the maximum and minimum value of all the sums is determined. Table 5.6 

presents these calculations. Since for calculating fitness 1, we do not use the fifth column 

of Table 5.5, we can just keep it aside.  

Table 5.6. Distance from each solution to the rest of the solutions 

solution 1 2 3 4 5 6 7 8 
1 0 0.290090 0.42670 0.30979 0.288050 1.41440 0.74345 0.49507 
2 0.29009 0 0.41233 0.51334 0.092373 1.16110 0.50310 0.22771 
3 0.42670 0.412330 0 0.71599 0.322050 1.49770 0.88447 0.60490 
4 0.30979 0.513340 0.71599 0 0.551250 1.46180 0.82386 0.65507 
5 0.28805 0.092373 0.32205 0.55125 0 1.22590 0.57875 0.29667 
6 1.41440 1.161100 1.49770 1.46180 1.22590 0 0.67796 0.94271 
7 0.74345 0.503100 0.88447 0.82386 0.57875 0.67796 0 0.28461 
8 0.49507 0.227710 0.60490 0.65507 0.29667 0.94271 0.28461 0 

 

"
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jid ),(
3.9675 3.2001 4.8642 5.0311 3.3551 8.3816 4.4962 3.5067 

"
ij

jid ),(max
    8.3816   

"
ij

jid ),(min
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 To calculate the fitness that we are going to assign to each solution, from Table 5.6, 

the difference (Diff) between maximum and minimum value of the sum of distances is 

initially obtained. 

Diff =  "" !
ijij

jidjid ),(min),(max  

Where d(i,j) is the Euclidean distance between i and j. 

 Our algorithm considers five possible intervals for each of this fitness 1 metric, then 

this difference is divided by five and we obtain the increment, denoted by I. 

I = Diff / number of intervals 
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 Thus, the values in which each of the fitness 1, f1(i), ranges can be calculated as 

follows:  
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 In this example case, the difference is 5.1815, thus the increment is 1.0363. Table 5.7 

shows the fitness 1 metric bounds, as well as the assigned fitness to each of the 8 

nondominated solutions. This means that, from the nondominated set, now we have the 

following fitness 1 values for each of the solutions presented in Table 5.8. 

Table 5.7. Fitness value 1 for the nondominated set 

Fitness 1  
value Fitness 1 value ranges solution 

1 3.2001 � "
i

jid ),(  < 4.2364 
1, 2, 5 and 8 

2 4.2364 � "
i

jid ),(  < 5.2727 
3, 4 and 7 

3 5.2727 � "
i

jid ),(  < 6.3090 
0 

4 6.3090 � "
i

jid ),(  < 7.3453 
0 

5 7.3453 � "
i

jid ),(  � 8.3816 
6 
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Table 5.8. Fitness value 1 for the nondominated set (standardized space) 

Nondominated 
set Reliability Cost Weight 

Fitness
value 1 

1 1 0.79487 0.60714 1 
2 0.79487 0.58974 0.60714 1 
3 0.89369 0.66667 1 2 
4 0.99813 1 0.375 2 
5 0.81856 0.58974 0.69643 1 
6 0 0 0 5 
7 0.52609 0.33333 0.26786 2 
8 0.68281 0.4359 0.48214 1 

 

 From Table 5.8, it can be noticed that we are assigning the highest fitness to those 

nondominated solutions that are the farthest away with respect to the rest of the solutions. 

This is to promote diversity in the population. This is critical to prevent premature 

convergence and to assure that the solution space is thoroughly considered. In this way, 

during the selection step, solution number 6 has highest possibilities of being chosen for 

reproduction, directing the search to the least crowded areas of the search space. 

 

 In Figure 5.3, it is observed that, as expected, solution number 6 is the farthest of all 

solutions. It can be noticed also that the rest of the solutions are almost equally separated. 

In Figure 5.4, the solutions are plotted in a bi-objective space to better visualize the 

solutions.  
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Figure 5.3. First nondominated set in a normalized space 
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Figure 5.4. First nondominated set in a bi-objective normalized space 

 

5.3.4.2 Fitness metric 2: dominance count-based, f2(i)

 The second fitness metric, f2(i), is based on the dominance count concept. 

Determination of the intervals for this metric is similar to the one explained previously 

for Fitness Metric 1. Using the information from Table 5.5, maximum and minimum 

values of dominance count are calculated for the nondominated solutions. Table 5.9 

presents the data for the example. 
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Table 5.9. Dominance count in the nondominated set. 

Nondominated 
set

Reliability Cost Weight 

Dominance
 Count 
DC(i)

1 1 0.79487 0.60714 3 
2 0.79487 0.58974 0.60714 3 
3 0.89369 0.66667 1 0 
4 0.99813 1 0.37500 3 
5 0.81856 0.58974 0.69643 1 
6 0 0 0 1 
7 0.52609 0.33333 0.26786 2 
8 0.68281 0.43590 0.48214 4 

    
)(max iDC

i    4
)(min iDC

i    0
 
 In this case, the difference and the increment are calculated as follows: 

Diff = )(min)(max iDCiDC
ii

!  

 For this metric we also consider discrete intervals. Five intervals were chosen for the 

example. The increment (I) is calculated in the same way as in fitness metric 1. Thus, the 

values in which each of the fitness i ranges can be calculated as follows:  

�
�
�
�
�
�
�

�

��
�
�
�
�
�

�

�

���

����

����

����

���

�

)(max)(4)(minif,5

4)(min)(3)(minif,4

3)(min)(2)(minif,3

2)(min)()(minif,2

)(min)()(minif,1

)(2

iDCiDCIiDC

IiDCiDCIiDC

IiDCiDCIiDC

IiDCiDCIiDC

IiDCiDCiDC

if

ii

ii

ii

ii

ii

 

 In this case, the difference is 4, thus the increment is 0.8. Table 5.10 shows the fitness 

2 metric bounds, as well as the assigned fitness to each of the 8 nondominated solutions. 
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This means that, from the nondominated set now we have, as in Table 5.11, the following 

fitness 2 values for each of the solutions: 

Table 5.10. Fitness value 2  bounds for the nondominated set 

Fitness 1  
value Fitness 2 value ranges solution 

1 0  � DC(i) < 0.8 3 
2 0.8 � DC(i) < 1.6 5 and 6 
3 1.6 � DC(i) < 2.4 7 
4 2.4 � DC(i) < 3.2 1, 2 and 4 
5 3.2 � DC(i) � 4.0 8 

 

Table 5.11. Fitness value 2 for the nondominated set (standardized space) 

Nondominated 
set Reliability Cost Weight 

Fitness
value 2 

1 1 0.79487 0.60714 4
2 0.79487 0.58974 0.60714 4
3 0.89369 0.66667 1 1
4 0.99813 1 0.375 4
5 0.81856 0.58974 0.69643 2
6 0 0 0 2
7 0.52609 0.33333 0.26786 3
8 0.68281 0.4359 0.48214 5

 

 In this way, the highest fitness is assigned to those solutions that are more 

dominating. Now, that the two fitness metrics that our multi-objective optimization have 

been explained, the selection step takes place. 

5.3.5 Selection step 

 In the selection step, rank selection was used. In Whitley (1989) and Bäch & 

Hoffmeister (1991), it has been observed that rank-based fitness assignment overcomes 

the scaling problems of the proportional fitness assignment. Ranking introduces a 

uniform scaling across the population and provides a simple and effective way of 

controlling selective pressure. Moreover, rank-based fitness assignment behaves in a 

more robust manner than proportional fitness assignment, and thus, is an appropriate 

method to choose.  



 

 

123

In our multi-objective optimization algorithm, values assigned in fitness metric 1 

(Table 5.8) and values in fitness metric 2 (Table 5.11) are summed to form the total 

fitness value, as shown in Table 5.12.  

Table 5.12. Total Fitness value of nondominated solutions 

Solution 

Fitness
metric 1 

f1(i)

Fitness
metric 2 

f2(i)

Aggregated 
Fitness value

fa(i)= f1(i) + f2(i)
1 1 4 5 
2 1 4 5 
3 2 1 3 
4 2 4 6 
5 1 2 3 
6 5 2 7 
7 2 3 5 
8 1 5 6 

 
 Then, in rank selection every nondominated individual receives an aggregated fitness 

value, fa(i), determined by their ranking from fitness metric 1 and 2. From here, the 

nondominated solutions are ranked in descending order, according to their aggregated 

fitness value fa(i) as in Table 5.13. 

Table 5.13. Ranked nondominated individuals 

Aggregated 
Fitness value

fa(i)

Ranked
Solutions 

7 6 
6 4 
6 8 
5 1 
5 2 
5 7 
3 3 
3 5 

 
 As can be seen, solutions with the same aggregated fitness value, fa(i), are allowed, 

and thus, the worst individuals have the lowest total fitness values, and the best have the 

highest total fitness value. Then, the number of individuals to be selected for the 

recombination step is dictated by the desired crossover probability. For instance, in Table 

5.13, we have 8 nondominated solutions (Nnon-dom). If the crossover probability, 
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Pcross, is 0.7, then the number of solutions to be selected to perform recombination will 

be Nparents = round(Pcross / Nnon-dom). In this case, there are: round(0.7/8) = 6 

parents. 

5.3.6 Crossover operator 

 To be efficient, an approximation method for solving a MOP seems to be necessarily 

an hybrid algorithm, i.e., a combination of evolutionary algorithms and problem 

dependent components. This is particularly true for MOCO problems, where the 

adaptation of a universal method to a problem can generally not compete with a method 

specifically designed for this problem. For the exploitation of the combinatorial structure 

within the search algorithm, the problem dependent component used in this paper is the 

specific crossover operator: subsystem rotation crossover (SURC). In this step, multi-

parent recombination is allowed. This action, and the way that SURC works, produces a 

large number of children in the mating pool, creating a large number of diverse solutions 

to choose from. Diversity is considered favorable, as the greater the variety of genes 

available to the genetic algorithm, the greater the likelihood of the system identifying 

alternate solutions. Moreover, maintaining diversity of individuals within a population is 

necessary for the long term success of any evolutionary system. This customized 

crossover operator is fully described next. 

 In MOEA-DAP, each solution, represented as a chromosome, has s number of sub-

chromosomes. That is, if we want to solve a problem with three subsystems, as in Figure 

5.5, then each individual that can be selected for recombination has three sub-

chromosomes. 
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Figure 5.5. Sub-chromosome representation of individuals 

 To illustrate how the recombination operation was performed, consider the case in 

which three parents were selected for cross-over. As explained above, each parent has, in 

this case, three sub-chromosomes. Then to produce the children, we kept fixed 

subchromosomes 2 and 3 in the three parents and we perform circular rotation of sub-

chromosomes 1, as shown in Figure 5.6. 
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1 3 32 1 3 0 1 50 4 3

2 1 16 0 1 0 4 30 2 1

fixed

 
Figure 5.6 Crossover Operation Example 

 Thus, as we can see, from only three parents, there are (3)(2)(3) = 18 children in the 

mating pool. To calculate the number of children in the mating pool, we use the 

following equation: 

Nmp = s [Npar (Npar - 1)] 
Where: 

Nmp = number of children in the mating pool 

Npar = number of parents 

s = number of subsystems 

 The next decision is to determine how many of these children in the mating pool are 

to be selected to undergo mutation. This number is going to depend on the crossover 

probability and on the percentage of elitism (%elitism) desired. To prevent the loss of the 

best found solutions and to increase the performance of our algorithm, we keep a 

percentage of the best nondominated solutions (those with the highest aggregated fitness, 
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fa(i)) for next generation. These individuals are directly copied to the elite list and they 

form part of the population in next generation.  

 

 For instance, consider a case in which the input parameters are as follows: Npop= 20, 

Pcross=0.75, %elitism=25%, s=3. Let’s say that after checking Pareto dominance, only 

16 individuals are nondominated. Then these individuals are ranked in descending order 

of aggregated fitness value, fa(i), and with 25% of elitism, the best 0.25/16 = 4 

individuals, denoted as Nelite, are selected to form the next population. With the 

specified crossover probability of 0.75, 16/0.75 = 12 individuals are selected as parents 

to perform crossover. After the procedure explained above, the recombination is carried 

out, and now we have in the mating pool 3(12/11) = 396 children produced. Thus, the 

number of children selected from the mating pool to form the next population is: 

Ncsmp = Npop – Nelite
Where: 

Ncsmp = number of children selected from the mating pool 

Npop    = population size 

Nelite  = number in the elite list 

 In this case, 16 children are randomly selected to undergo mutation, and finally, these 

individuals plus the ones already in the elite list will form the next population. 

 

5.3.7 Mutation 

 There are no universally accepted general rules to choose the values of basic GA 

operators for solving specific optimization problems. However, numerous experimental 

studies have developed some rules of thumb concerning ranges of GA parameters. For 

example, in the case of choosing the mutation rate, De Jong (1975) suggests that the 

mutation probability, which is a bit reversal event, should occur with small probability, 
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pmut � 0.001. Grefenstette (1986) suggests a pmut � 0.01, while in Schaffer et al. (1989) a 

range is considered, pmut � [0.005, 0.01]. Hence, in MOEA-DAP, with a specified 

probability of mutation, one gene in the chromosome is selected at random and that gene 

undergoes mutation.  Figure 5.7 shows the genetic string for an example child, before and 

after mutation. 

0 36 345

Chromosome string before mutation

0 36 342

Chromosome string after mutation

0 36 345

Chromosome string before mutation

0 36 342

Chromosome string after mutation

 
Figure 5.7. Example of mutation 

 Since our proposed MOEA uses the modifying genetic operator strategy as a 

constraint handling method, we are always interested in producing only feasible 

solutions. Consider, for instance, if the maximum number of components in each 

subsystem is 8 and if the gene selected to mutate is gene number 4, as shown in Figure 

5.7, then we can only change that value (currently 5) to a smaller number and not for a 

higher one, in order to not violate the constraint on the maximum number of components 

allowed per subsystem. Notice that, if the gene selected to mutate had been gene number 

1, and if after mutating, the value randomly generated would have been a zero, then 

subsystem number 1 would no longer have any component. Thus, when this is the case, 

the algorithm creates another random number to ensure that all subsystems have 

components, and thus the evaluation of reliability can properly be obtained. 
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5.3.8 Elitist reinsertion

 As explained in the crossover step, our algorithm uses elitist reinsertion in the aim of 

preventing the loss of the best solutions. The user specifies the desired percentage of 

elitism, %elitism, and individuals from the previous population that contain the ranked 

nondominated individuals (see Table 5.13) are chosen to pertain to an elite list according 

with this percentage.  

 

5.4 Performance comparison of MOEA-DAP 

 To validate the performance of the developed MOEA-DAP, ten experimental runs are 

obtained from our algorithm and they are compared against ten runs obtained from one of 

the most successful evolutionary algorithms that currently exists:  NSGA-II. For each 

run, both algorithms used the following input parameters: Npop= 50, Generations=100 

Pcross=0.8, Pmut=0.007937; and additionally our algorithm considered %elitism=60%. 

The output of the individual runs can be found in Appendix A. 

 The example considered consists of a configuration of 3 subsystems, with an option 

of 5, 4 and 5 types of components in each subsystem, respectively. The optimization 

involves selection from among these component types. The minimum number of 

components in each subsystem is 1, for the system to function, and the maximum number 

of components is 8 in each subsystem. Table 5.14 defines the component choices for each 

subsystem. 

Table 5.14. Component choices for each subsystem 
 
Subsystem  i

1 2 3 
Design

Alternative 
j R C W R C W R C W 
1 0.94 9 9 0.97 12 5 0.96 10 6 
2 0.91 6 6 0.86 3 7 0.89 6 8 
3 0.89 6 4 0.70 2 3 0.72 4 2 
4 0.75 3 7 0.66 2 4 0.71 3 4 
5 0.72 2 8  0.67 2 4 
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 As happens in most multi-objective optimization problems, the true Pareto front is not 

known, and then a good approximation of the true Pareto-optimal front, Ytrue, can be built 

by gathering all non-dominated individuals from all sets or runs. In other words, for the 

performance comparison that is presented next, the real Pareto-optimal front is 

approximated by the best known solutions of all our experiments. 

 Two metrics are used to compare the performance of the MOEA-DAP algorithm 

against the NSGA-II. The following two metrics, as in Van Veldhuisen (1999), are the 

Overall Nondominated Vector Generation (ONVG) and Overall true Nondominated 

Vector Generation (OTNVG). 

1. Overall Nondominated Vector Generation (ONVG): simply counts the number of 

solutions in the Pareto front Yknown 

ONVG = |Yknown | 

where | | denotes cardinality, i.e., the number of elements or objects in a set. 

 
2. Overall true Nondominated Vector Generation (OTNVG): counts the number of 

solutions in the Pareto front Yknown that are also in the true Pareto-optimal front Ytrue. 

 

OTNVG = | {y | y � Yknown   0  y � Ytrue  } | 
 

 Table 5.15 presents the performance comparison summary of both algorithms. As can 

be seen, from the 20 runs carried out, 389 nondominated solutions were obtained, which 

is denoted by the sum in ONVG obtained by NSGA-II and MOEA-DAP. As can be 

observed, only 96 nondominated solutions were obtained when using the NSGA-II 

algorithm; in contrast to the 293 solutions obtained by the new MOEA-DAP algorithm. 
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 These 389 solutions are nondominated in their individual runs, thus to form the true 

Pareto-optimal front, Ytrue, these solutions are joined together and the Pareto dominance 

criterion is checked to eliminate dominated solutions, as shown in Section 5.3.  

Table 5.15 Performance comparison 
 

Algorithm
Population 

Size 
(A) 

Run ONVG OTNVG 

1 12 5 
2 13 4 
3 11 0 
4 10 2 
5 4 0 
6 13 2 
7 6 0 
8 12 2 
9 3 0 

NSGA-II 

 
 
 
 

50 

10 12 5 
  1 = 96 1 = 20 

1 27 15 
2 28 13 
3 36 17 
4 36 11 
5 28 20 
6 29 13 
7 25 11 
8 37 20 
9 26 12 

Our algorithm 
MOEA-RAP 

 
 
 
 

50 

10 21 13 
   1 = 293 1 = 145 

 
 

 After checking the Pareto dominance criterion, the true Pareto front is formed by 139 

solutions, that is Ytrue= |139 |. To obtain the values in the fifth column of Table 5.15, we 

count the number of nondominated solutions in each individual run, Yknown, and check 

how many of these are also in the true Pareto-optimal front, Ytrue (see Table B.21 in 

Appendix B). 

 The true Pareto-optimal front is formed by 139 nondominated solutions. From these, 

124 solutions were obtained with our algorithm (MOEA-DAP), and only 15 solutions 
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were obtained by using the NSGA-II algorithm. The maximum and minimum values 

found in Ytrue are presented in Table 5.16. 

Table 5.16. Maximum and minimum values found in Ytrue 
 Reliability Cost Weight 

max 0.999999 � 1 129 129 
min 0.33768 6 11 

 

 To make a visual comparison of the solutions in Ytrue obtained by both algorithms, 

Figure 5.8 shows the 15 solutions obtained by the NSGA-II that contributed to the true 

Pareto-optimal front and to better visualize the solutions Figures 5.9, 5.10 and 5.11 plot 

reliability vs. cost, reliability vs. weight and cost vs. weight, respectively. In the same 

way, Figure 5.12 shows the 124 solutions found in Ytrue and obtained by the MOEA-DAP 

algorithm. Figures 5.13, 5.14 and 5.15 show also the two dimensional representation of 

the solutions. 
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Figure 5.8 Nondominated solutions in Ytrue obtained from NSGA-II algorithm 
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        Figure 5.9 Nondominated solutions in Ytrue        Figure 5.10 Nondominated solutions in Ytrue         Figure 5.11 Nondominated solutions in Ytrue  
   obtained from NSGA-II algorithm. Rel vs Cost     obtained from NSGA-II algorithm. Rel vs Weight   obtained from NSGA-II algorithm. Cost vs Weight 
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Figure 5.12 Nondominated solutions in Ytrue obtained from MOEA-DAP algorithm 
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        Figure 5.13 Nondominated solutions in Ytrue        Figure 5.14 Nondominated solutions in Ytrue         Figure 5.15 Nondominated solutions in Ytrue  
           obtained from MOEA-DAP. Rel vs Cost             obtained from MOEA-DAP. Rel vs Weight          obtained from MOEA-DAP. Rel vs Weight 
 
 
 As can be seen in Figures 5.8, through 5.11 the nondominated solutions obtained by 

the NSGA-II algorithm are not uniformly distributed along the Pareto front and mostly 

are extreme solutions, with very high reliability but also with large cost and weight. In 
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contrast, we can observe that our new MOEA-DAP algorithm is able to obtain a set of 

non-dominated solutions fairly uniformly spreading along the Pareto frontier (Ytrue). 

 Thus, as stated in Coello Coello & Toscano Pulido (2001), although the NSGA-II 

algorithm tends to spread quickly and appropriately when a certain nondominated region 

is found, it seems to have difficulties to generate nondominated solution vectors that lie 

in certain regions of the search space. For this particular problem, the MOEA-DAP offers 

distinct advantages and in the example, the performance was better. However, it can not 

be concluded that the performance will be better for all problems. 

 The results of the performance comparison were based on two different performance 

metrics, ONVG and OTNVG. The results indicate that MOEA-DAP is more effective for 

solving this type of problem. Since our algorithm obtains more solutions that contribute 

to the true Pareto-optimal front, the solutions are also more uniformly distributed along 

the Pareto frontier than those solutions coming from the NSGA-II. 

 The performance comparison show that MOEA-DAP, which is a problem specific 

multi-objective algorithm, is superior at obtaining diverse solutions and a uniform spread 

along the Pareto front. In contrast, the solutions obtained by the NSGA-II algorithm are 

not uniformly distributed along the Pareto front and are mainly extreme solutions. This, 

however, is not surprising, since NSGA-II is a general multi-objective algorithm it can 

hardly compete with a method specifically designed to solve this particular MOCO 

reliability-design problem. As mentioned before, MOEA-DAP has the strength of a 

problem-oriented technique. 
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5.5 Summary

 In this section, the methodology involving the sequential operations of a newly 

developed multi-objective evolutionary algorithm for solving system design allocation 

problems is presented. Our algorithm (MOEA-DAP) uses a GA based on rank selection 

and elitist reinsertion, and a modifying genetic operator constraint handling method. 

 MOEA-DAP, mainly differs from other MOEAs in the type of crossover operation 

performed. In this step, several offspring are created through multi-parent recombination. 

As a result, from n parents, denoted as Npar, considered for mating, in our algorithm 

there will be s [Npar (Npar-1)] number of children produced, where s is the number of 

subsystems considered. Thus, the mating pool contains a great amount of diversity of 

solutions. This disruptive nature of our proposed type of crossover, subsystem rotation 

crossover (SURC), appears to encourage the exploration of the search space. 

 A performance comparison between one of the most successful evolutionary 

algorithms that currently exists: NSGA-II and our algorithm, shows that our algorithm is 

more powerful to solve multi-objective redundant design allocation problems. This shows 

that one challenge still remains for current multi-purpose MOEAs, which is the 

scalability problem, that is, the efficient solution of large scale problem instances. 
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6. MOMS-GA: an extension to MOEA-DAP to consider 

multi-state system performance

 In this chapter, a custom genetic algorithm was developed and implemented to solve 

multiple objective multi-state reliability optimization design problems. Many real-world 

engineering design problems are multi-objective in nature, and among those, several of 

them have various levels of system performance ranging from perfectly functioning to 

completely failed. This multi-objective genetic algorithm uses the universal moment 

generating function approach to evaluate the different reliability or availability indices of 

the system. The components are characterized by having different performance levels, 

cost, weight and reliability. The solution to the multi-objective multi-state problem is a 

set of solutions, known as the Pareto-front, from which the analyst may choose one 

solution for system implementation. Two illustrative examples are presented to show the 

performance of the algorithm, and the multi-objective formulation considered for both of 

them, is the maximization of system availability and the minimization of both system cost 

and weight.

6.1. Introduction 

 Most realistic optimization problems, particularly those in system design, require the 

simultaneous optimization of more than one objective function. In this chapter, I present 

a multi-objective multi-state genetic algorithm (MOMS-GA) to solve multiple objective 

multi-state reliability and availability optimization design problems (Taboada et al.,
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2006). The objectives considered are the maximization of the system availability, and the 

minimization of system cost and weight. The components and the system considered 

have a range of different states and the universal moment generating function (UMGF) 

approach is used to obtain the system availability.  

 Reliability is defined as the probability that a device or system is able to perform its 

intended functions satisfactorily under specified conditions for a specified period of time. 

However, traditional reliability assumes that a system and its components can be in either 

a completely working or a completely failed state only (Birnbaum et al., 1961), i.e., no 

intermediate states allowed. This condition has facilitated the development of a robust 

and extensive theory to analyze system performance. However, in some cases, traditional 

reliability theory fails to represent the true behavior of the system. Failure to 

acknowledge this situation can represent a major deficiency when systems have a range 

of intermediate states that are not accounted for by traditional reliability estimation. 

 To describe the satisfactory performance of a device or system, we may need to use 

more than two levels of satisfaction, for example, excellent, average, and poor. Multi-

state reliability (El-Neweihi et al., 1978; Barlow & Wu, 1978; Lisniaski & Levitin, 2003) 

has been proposed as a complementary theory to cope with the problem of analyzing 

systems where traditional reliability theory and models become insufficient. Then, in a 

multi-state system, both the system and its components are allowed to experience more 

than two possible states, e.g., completely working, partially working or partially failed, 

and completely failed.  

6.2 Previous research on multi-state systems (MSS) 

 When considering multi-state systems (MSS), there are generally four methods for 
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MSS reliability assessment, which are, (1) the structure function approach (Brunelle & 

Kapur, 1998; Pourret et al., 1999), (2) the stochastic processes “Markov” approach (Xue 

& Yang, 1995), (3) The Monte Carlo simulation technique (Ramirez-Marquez & Coit, 

2005) and (4) the universal moment generating function approach (Levitin & Lisnianski, 

2001; Ushakov 1986, 1988).

 Research that considers the RAP for MSS considering one objective and several 

constraints have been presented recently. Ramirez-Marquez & Coit (2004), proposed a 

heuristic to solve a multi-state series-parallel system with binary capacitated components. 

In their study, the RAP is formulated with the objective of minimizing the total cost 

associated with a system design constrained by a reliability performance index. In their 

heuristic, once a component selection is made, only the same component type can be used 

to provide redundancy. Levitin et al. (1998) used a GA for solving the multi-state RAP, 

where the system and its components have a range of performance levels. Based on the 

UMGF, they determined the system availability. Levitin (2000) addressed the multi-stage 

expansion problem for multi-state series-parallel systems. In this problem, the system-

study period is divided into several stages. Later, Levitin (2001) solved a redundancy

optimization problem for multi-state systems with fixed resource-requirements and 

unreliable sources, subject to availability constraints. Later, Tian & Zuo (2006) applied 

GA together with physical programming to solve the RAP.  

6.3 Evolutionary approaches in multi-objective optimization 

 Evolutionary algorithms, as shown in Chapter 3, have been recognized to be well-

suited to solve multi-objective optimization problems. Their ability to accommodate 

complex problems, involving features such as discontinuities, multimodality, disjoint 
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feasible spaces, etc., reinforces the potential effectiveness of EAs in multi-objective 

search and optimization.  

 These universal methods, although capable of solving many multi-objective 

problems, are not specifically designed to be efficient in the solution of large-scale multi-

objective system design combinatorial problems. Therefore, in this chapter, a specific 

MOEA, called MOMS-GA, is presented as a method exclusively designed to solve 

multiple objective multi-state reliability-design optimization problems. Thus, MOMS-GA 

has the strength of a problem-oriented technique, in which the selection of components is 

advantageously combined to create a MOEA which can undertake the problem in the 

most efficient way. This is the first reported multi-objective evolutionary framework for 

solving multiple objective multi-state reliability-design optimization problems. The 

fundamental operations of MOMS-GA are presented in Section 6.5. 

6.4 Multi-state system availability estimation method 

 The procedure used in this chapter for system-availability evaluation is based on the 

universal z-transform, originally introduced by Ushakov (1986). In the literature, the 

universal z-transform is also called universal moment generating function (UMGF) or 

simply u-transform, which has proven to be very effective for high dimension 

combinatorial problems. The UMGF represents an extension of the widely known 

moment generating function (Ross, 1993). The UMGF of a discrete random variable G is 

defined as a polynomial 

jg
J

j
j zpzu "

�

�
1

)(          (1) 

Where the discrete random variable G has J possible values and pj is the probability that 

G is equal to gj.
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 The probabilistic characteristics of the random variable G can be found using the 

function u(z). In particular, if the discrete random variable G is the MSS stationary output 

performance, then availability A is given by the probability P(G2D), which can be 

defined as: 

P(G2D) = 3 (u(z)z -D)         (2) 

 Where 3 is the disruptive operator defined by the following expressions: 
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 It can be easily shown that equations (1)-(4) meet condition P(G2D) = ."
2Dg

j
j

p  By 

using the operator 3, the coefficients of polynomial u(z) are summed for every term with 

gj2D, and the probability that G is not less than some specified value D is systematically 

obtained.

 Consider single components with total failures and each component i has nominal 

performance Gi and availability Ai. The UMGF of such a component has only two terms 

and can be defined as: 

ii G
ii

G
iii zAAzAzAzu �!��!� )1()1()( 0       (5) 

 To evaluate the MSS availability of a series-parallel system, two basic composition 

operators are introduced. These operators determine the polynomial u(z) for a group of 

components. 

6.4.1 Parallel components 

 The systems considered in this section pertain to flow transmission multi-state 
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systems, in which the flow can be dispersed and transferred by parallel components 

simultaneously. Therefore, for a system containing n elements connected in parallel, the 

total capacity is equal to the sum of capacities of all its elements. Therefore, its u-

function can be calculated using the 4 operator: 

))(),...,(),(()( 21 zuzuzuzu np 4�
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 The parameters ai and bj are physically interpreted as the performances of the two 

components, k1 and k2 are numbers of possible performance levels for these components, 

while pi and qj are steady-state probabilities of possible performance levels for the 

components. One can see that the 4 operator is simply a product of the individual u-

functions. For a system with multiple components, the operator can for two components 

can be iteratively applied to accommodate any number of components. 

6.4.2 Series components 

 When the components are connected in series in flow transmission multi-state 

systems, the component with the least performance becomes the bottleneck of the system. 

This component, therefore, defines the total system productivity. To calculate the u-

function for a system with m elements connected in series, the � operator should be used: 
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 Using 4 and � operators, the u-function of the entire system can be defined. To do 

this, we must first determine the individual u-functions of each element. 

6.4.3 Total system reliability evaluation 

 Let us consider the general case where failures may either cause total failure or 

reduction of the component capacities, and therefore, different capacity degradation 

levels must be considered. In this case, the u-function of such a component is: 
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Where the index l represents the subsystem, i denotes the component (within subsystem l)

and j the component state. gij is the capacity of the element in state j, and l
ijp  is the 

probability of this state.  

 We obtain the UMGF of the lth subsystem containing Hi parallel components of 

different versions by, 
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Where the ith component in subsystem l has Ji different states, each state has a 

probability l
ijp .

 Thus, the UMGF of the entire system containing m subsystems connected in series is: 
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 Once all terms are considered and terms with the same exponents are grouped 

together, N represents the total number of possible system states, ai represents the 
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different possible performance levels with probability pi.

 To evaluate the availability A of the entire system, )( DGP 2 considering the 

cumulative demand curve is given by Equation (9). The corresponding UMGF, ud(z), for 

the random demand load is defined as: 
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qs is the vector of the steady-state probabilities of the corresponding load demand level 

Ds and S is the maximum number of different intervals from the cumulative demand 

curve.
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6.5 Multi-objective multi-state genetic algorithm (MOMS-GA) 

 MOMS-GA was developed as an extension of MOEA-DAP (Taboada & Coit, 

2006b), a multi-objective evolutionary algorithm for design allocation problems, 

introduced in last chapter. In MOEA-DAP, the multi-objective formulation was to 

maximize system reliability, minimize the total cost, and minimize the system weight, for 

a series-parallel system. However, MOEA-DAP was developed to consider binary-state 

reliability. That is, the evolutionary algorithm assumed that the system and its 

components could be in either a working or a failed state only. Thus, MOMS-GA, is a 

natural extension of MOEA-DAP. The developed MOMS-GA works under the 

assumption that both the system and its components experience more than two possible 

states of performance. Thus, in general, MOMS-GA differs from MOEA-DAP in the 

evaluation of the first objective function. MOEA-DAP evaluated system reliability 

(binary-state), while in MOMS-GA, the evaluation of the first objective function is 
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system availability (multi-state). The UMGF approach was implemented in the algorithm 

code to obtain the system availability.

 A detailed explanation of the characteristics of the solution encoding, evolution 

parameters and genetic operators are as described in Chapter 5 (Taboada & Coit, 2006b). 

However, the fundamental operations of MOMS-GA are summarized next.  

1.  [Start] Generate random population of n chromosomes. MOMS-GA uses 

an integer chromosomal representation. 

2. [Objective function values evaluation] Evaluate system availability 

using the UMGF. Evaluate system cost and system weight. 

3. [Pareto dominance evaluation] Pareto dominance criterion is checked 

in the initially created solutions. Those solutions that are 

dominated by other solutions are eliminated. Thus, in this way, 

MOMS-GA ensures that the resulting population only contains Pareto-

optimal solutions. 

4. [Fitness evaluation] Evaluate the following fitness functions of

each chromosome x in the population. 
4.1 Fitness Metric 1: Distance-based, f1(i). It gives highest fitness 

to those solutions that are farther away from other solutions in the 

Pareto front. It is intended for maintaining population diversity. 

4.2 Fitness Metric 2: Dominance count-based, f2(i). It aims to select 

those individuals which are more dominating (intended to achieve 

proximity).

4.3 Aggregated Fitness Metric, fa(i): Fitness Metric 1 + Fitness 

Metric 2, fa(i)= f1(i) + f2(i). It aims to weight both metrics 

equally.

5. [Selection] Rank selection is used. With a given crossover 

probability, select individuals with the highest aggregated fitness 

to perform recombination.

6. [Crossover] With a pre-defined crossover probability, crossover the 

parents to form new offspring (children). For the exploitation of 

the combinatorial structure within the search algorithm, a problem-

dependent component is developed in MOMS-GA: a specific crossover 

operator called subsystem rotation crossover (SURC). In this step,

multi-parent recombination is allowed. This action, and the way that 

SURC works, produces a large number of children in the mating pool, 
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creating a large number of diverse solutions to choose from. 

Diversity is considered favorable, as the greater the variety of 

genes available to the genetic algorithm, the greater the likelihood 

of the system identifying good alternate solutions. 

7. [Mutation] Single-point mutation is used. With a pre-defined 

mutation probability, mutate new offspring at a random position in 

the chromosome. 

8. [Reinsertion] MOMS-GA uses elitist reinsertion in the aim of 

preventing the loss of the best-found solutions. New offspring plus 

a specified percentage of the most elite individuals from the 

previous population are chosen to form the new population. 

9. [Replace] Use new generated population for a further run 

(generation) of the algorithm

10.[Test] If the Generation i = Generation ‘max’, stop, and return the 
 best solutions in current population, otherwise return to step 2. 

6.6 Numerical examples 

 Two examples are considered. They pertain to the type of flow transmission multi-

state systems with flow dispersion. The main characteristic in these systems is that the 

parallel elements in each subsystem can transmit the flow simultaneously. The first 

example considers binary capacitated components and multi-state system performance, 

while the second example considers multi-state components and multi-state system 

performance. 

 The first example consists of five main units connected in series. For each unit, there 

are several components available to choose from to provide redundancy. Each component 

of the system is binary capacitated. This problem has been previously solved as a single 

objective problem considering the minimization of total system cost, subject to a desired 

level of reliability by using a GA in Levitin & Lisnianski (2001), and later by Ramirez-

Marquez & Coit (2004) using a heuristic. Recently, Gupta & Agarwal (2006) considered 

the same example using a GA which incorporates a dynamic adaptive penalty function.  



146

 The second example presented consists of three main units connected in series. For 

each unit, there are several components available that can be chosen to provide 

redundancy. Each component of the system can have different levels of performance, 

which range from maximum capacity to total failure. 

6.6.1 Example 1 

 Table 6.1 shows the example considered, consisting of five main units connected in 

series. For each unit, there are several components available in the market that can be 

chosen to provide redundancy. Each component of the system is considered to be binary 

capacitated, meaning that it can have only two states, functioning with the nominal 

capacity or total failure, corresponding to capacity 0. The collective performance of these 

binary components leads to multi-state system behavior. Each component is characterized 

by its availability, nominal capacity, cost and weight. Without loss of generality, 

component capacities can be measured as a percentage of the maximum demand. Table 

6.2 presents different demand levels for a given period, known as the cumulative demand 

curve.
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Table 6.1. Characteristics of the system elements available 

Subsystem  
Component 

Type  Availability  
Feeding
Capacity 

(%)  
Cost  Weight 

1  0.980 120 0.590 35.4 
2  0.977 100 0.535 34.9 
3  0.982 85 0.470 34.1 
4  0.978 85 0.420 33.9 
5  0.983 48 0.400 34.2 
6  0.92 31 0.180 34.3 

1

7  0.984 26 0.220 32.6 
1  0.995 100 0.205 26.5 
2  0.996 92 0.189 22.4 
3  0.997 53 0.091 20.3 
4  0.997 28 0.056 21.7 

2

5  0.998 21 0.042 25.2 
1  0.971 100 7.525 42.1 
2  0.973 60 4.720 41.7 
3  0.971 40 3.590 40.8 3

4  0.976 20 2.420 39.6 
1  0.977 115 0.180 25.4 
2  0.978 100 0.160 23.9 
3  0.978 91 0.150 24.7 
4  0.983 72 0.121 24.6 
5  0.981 72 0.102 23.6 
6  0.971 72 0.096 26.2 
7  0.983 55 0.071 25.5 
8  0.982 25 0.049 22.6 

4

9  0.977 25 0.044 24.8 
1  0.984 128 0.986 15.4 
2  0.983 100 0.825 15.3 
3  0.987 60 0.490 14.9 

5

4  0.981 51 0.475 15.0 

Table 6.2. Parameters of the cumulative demand curve 

Demand (%) 100 80 50 20 
Duration (h) 4203 788 1228 2536 
Duration (%) 0.48 0.09 0.14 0.29 

 The problem was solved using the developed algorithm, MOMS-GA, with a 

population size of 200 and 50 generations. MOMS-GA, fully coded in MATLAB� 7.0, 

was run on a Sony VAIO computer, with an Intel Pentium processor operating at 1.86 

GHz and 1 GB of RAM. The computation time was 595.25 seconds. The problem 
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considered was a multi-objective problem with system availability to be maximized and, 

cost and weight of the system to be minimized.  

 Figure 6.1 shows the 118 solutions found in the Pareto-front. To better visualize the 

solutions obtained, Figure 6.2 show the two dimensional representation of the same 

solutions. 

0.92
0.93

0.94
0.95

0.96
0.97

0.98
0.99

1

0
10

20
30

40
50

60
100

200

300

400

500

600

700

800

Max AvailabilityMin Cost

M
in

 W
ei

gh
t

Figure 6.1 Pareto front of example 1 
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Figure 6.2 Pareto front of example 1 in a two dimensional space 

 Once the Pareto-optimal set is obtained, the decision-maker has to decide which of 

the non-dominated points to choose as the solution to the problem. For instance, the 

regions of the Pareto set which express good compromises according to problem-specific 

knowledge can be identified. More detail on methods to be applied in the decision-
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making stage to reduce the size of the Pareto-optimal set, and obtain a smaller 

representation of the multi-objective design space can be found in Taboada & Coit (2007) 

and Taboada et al. (2007a). In this case, example solutions from the “knee” region (Das, 

1999; Branke et al., 2004) are presented as good compromises. The “knee” is formed by 

those solutions of the Pareto-optimal front where a small improvement in one objective 

would lead to a large deterioration in at least one other objective. Table 6.3 shows three 

example design configurations from this region with their respective system availability, 

cost and weight. 

Table 6.3. Example design configurations of Example 1 
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6.6.2 Example 2 

 Table 6.4 shows the second example considered, which consists of three main units 

connected in series. For each unit, there are several components available in the market 

that can be chosen to provide redundancy. Each component of the system can have 

different levels of performance, which range from maximum capacity to total failure. 
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Each component is characterized by its availability (pij), nominal capacity, cost and 

weight. Table 6.5 presents the system cumulative demand curve.  

Table 6.4. Characteristics of the system elements available 

Subsystem  Component 
Type  Availability 

(pij)

Feeding
Capacity 

(%)

Cost  Weight 

0.70 130 
0.20 100 1
0.10 0 

65 80

0.65 100 
0.25 80 2
0.10 0 

60 70

0.60 95 
0.30 90 3
0.10 0 

50 75

0.90 135 
0.05 80 

1

4
0.05 0 

80 100 

0.50 200 
0.25 140 
0.20 100 

1

0.05 0 

120 70

0.60 220 
0.30 140 2
0.10 0 

130 100 

0.90 300 

2

3
0.10 0 

200 100 

0.80 160 
0.15 90 1
0.05 0 

200 60

0.85 140 2
0.15 0 

160 100 

0.90 200 3
0.10 0 

250 90 

0.65 100 
0.30 80 4
0.05 0 

100 70

0.50 130 
0.30 100 
0.15 50 

3

5

0.05 0 

60 50

Table 6.5. Parameters of the cumulative demand curve 

Demand (%) 100 80 60 20 
Duration (h) 4380 2628 876 876 
Duration (%) 0.5 0.3 0.1 0.1 



151

 MOMS-GA was run considering a population size of 100 and 50 generations. The 

computation time was 606.20 seconds. The multi-objective formulation seeks to 

maximize system availability, while minimizing system cost and weight. Figure 6.4 

shows the 57 solutions found in the Pareto front. To better visualize the solutions 

obtained, Figure 6.4 show the two dimensional representation of the same solutions. 

Table 6.6 shows three example design configurations with its respective system 

availability, cost and weight. These three solutions were selected as good compromise 

solutions by considering the “knee” of the Pareto-front. 
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Figure 6.3 Pareto front of example 2 
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Table 6.6 Example design configurations of example 2 
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6.7 Summary

MOMS-GA was developed to solve multiple objective multi-state reliability 

optimization design problems. Many real-world engineering design problems are multi-

objective in nature, and among those, several of them have various levels of system 

performance. The multi-objective GA developed uses the UMGF to evaluate the different 

reliability indices of the system. The use of a fast UMGF-based procedure for system 

availability evaluation within a multi-objective evolutionary algorithm allows 

identification of the entire multi-state performance distribution based on the performance 

of its components. The components are characterized for having different performance 

levels, cost, weight, and availability. The solution to the MOMS problem is a set of 

solutions, known as the Pareto-front, from which the analyst may choose one solution for 

system implementation. 
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7. A multi-objective evolutionary algorithm for determining 

optimal configurations of multi-task production systems 

This chapter presents a new multiple objective evolutionary algorithm to determine 

optimal configurations of multi-state, multi-task production systems based on availability 

analysis. A multi-task production system is one in which different subsets of machines 

can be used to perform distinct functions or tasks. The performance of a manufacturing 

system is greatly influenced by its configuration. Availability can be used in the context 

of multi-task production systems to select a particular configuration that maximizes the 

probability of meeting a required demand for each specific task, or the expected 

productivity for each task. A particular configuration may not simultaneously maximize 

the probability of meeting demand for each of the individual tasks, and thus, the problem 

is treated as a multi-objective optimization problem. The solution to this problem is a set 

of promising solutions that provides a trade-off among the different objective functions 

considered.

7.1 Introduction 

 Many modern systems operate in a multi-task mode. A multi-task production system 

is one in which different subsets of machines can be used to perform distinct functions or 

tasks. Multi-task machining has been adopted in an increasing number of manufacturing 

job shops, especially by companies facing competition from lower cost markets. Some of 

the most interesting and important examples of multi-task systems occur in flexible 
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manufacturing systems (FMSs). Flexibility is a major consideration in the design of 

manufacturing systems, and FMSs have been developed over the last two decades to help 

manufacturing industries move towards the goal of flexibility. Many examples can be 

found in flexible production facilities and flexible assembly systems. For instance, in a 

flexible assembly system, there are typically a limited number of different product types, 

and the system has to produce a given quantity of each product type (Pinedo & Chao, 

1999).

 The development of effective and efficient FMS scheduling strategies remains an 

important and active research area. However, the selection of a system configuration is a 

frequent difficulty which arises during the early stages of the manufacturing system 

development (during the machine allocation phase). At this stage, manufacturers must 

choose, not only machine specifications and vendors, but also the configuration of the 

system. However, because of their nature, multi-task manufacturing systems can be 

designed in many different ways. The chosen configuration has a profound impact on the 

overall performance of the system in terms of reliability, productivity, cost, etc.

 Significative research has been done in the area of configuration selection for 

manufacturing systems. For instance, Koren et al. (1998) analyzed how reliability, 

productivity, and quality were affected by different system configurations assuming 

known machine level reliability and process capability. Later, Altumi et al. (2001) 

presented a model to determine the spare tooling allocation requirement for the tooling 

system in a FMS, so that the desired system reliability is achieved and the cost is 

minimized. Cochran et al. (2001) analyzed how the selection of a manufacturing system 

configuration can impact the ability to meet different types of objectives such as cost, 
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performance, and quality. By considering several design configurations, Freiheit et al.

(2004) examined the importance of design configuration on system productivity. They 

showed how improvements can be obtained by using bufferless series-parallel 

configuration arrangements. Later, Youssef et al. (2006) used the universal generating 

function for evaluating the availability of multi-state manufacturing systems capable of 

producing more than one part type. Seward & Nachlas (2004) considered availability in 

the analysis of manufacturing systems and developed models for the operational 

reliability and availability of multi-task systems.  

 Analogous to the machine allocation phase in production systems, there are many 

other engineering design and development projects that require the allocation of 

redundant components to meet high reliability specifications. Perhaps, the most 

representative problem in reliability design is the well-known redundancy allocation 

problem (RAP). In the RAP, as shown in previous chapters, one considers a system with 

a total of m subsystems arranged in series. For each subsystem, there are n functionally 

equivalent components arranged in parallel, with potentially different levels of cost, 

weight, reliability and other characteristics. The n components are to be selected from 

several available component types, where multiple copies of each type can be selected. 

While there are many forms of the RAP, it generally involves the selection of 

components and redundancy levels with the objective to maximize the overall system 

reliability or availability while satisfying a constraint for some other system 

characteristics such as system cost and system weight. The RAP has been solved using 

dynamic programming (Fyffe et al., 1968; Nakagawa & Miyazaki, 1981), integer 

programming (Bulfin & Liu, 1985; Gen et al., 1990), genetic algorithms (Ida et al., 1994; 
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Painton & Campbell, 1995; Coit & Smith, 1996a; Tian & Zuo, 2006; Taboada & Coit, 

2006b), among others. 

 Despite the clear relationship between the two types of allocation problems, 

production scheduling and reliability optimization are typically treated independently in 

the research literature and in practice. This chapter shows how system availability can be 

used in the context of multi-task production systems to select a particular configuration 

that maximizes the probability of meeting a given demand for each of the individual 

tasks. The problem is treated as a multi-objective problem, and it is solved using a multi-

objective evolutionary algorithm. 

7.2. Problem description 

 The problem addressed in this chapter is one that pertains to a flexible flow shop 

environment with L stages arranged in series. At each stage l (l=1, …, L) several 

machines work in  parallel, such that the total performance of the stage is equal to the 

sum of performances of the available machines. The system is aimed at performing K

different tasks. Any task k (k=1,…, K) can be processed at each stage on any machine. 

For each stage l, there are Il types of machines available in the market. Each type i

(i=1,…, Il) is characterized by its cost l
ic , nominal performance l

ikg  and availability l
ikp

when performing task k. For example, a particular manufacturing stage may involve 

processing on a lathe, and the nominal performance is the cutting speed and there may be 

several alternative lathes with different cutting speeds. 

 Any possible system structure can be represented by a matrix of integer numbers 

h={hil , i=1, …, Il, l=1, …, L }, where hil is the number of machines of type i chosen for 

the stage l. The problem is to build a series-parallel system (by choosing the machines of 
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available types for each stage) that maximizes the probability of meeting a required 

system performance level (demand) Dk for each task k and minimizes the total system 

cost:

 maximize Ak(h, Dk) for k=1, …, K ,

 minimize � � l
i

L

l

I

i
il chC

l

""
� �

�
1 1

h

 The system is assumed to be a bufferless manufacturing system. The presence of 

multiple parallel machines per stage reduces the effect of breakdown of any of the 

machines, and thus, the use of buffers is not always necessary. Since a particular 

configuration may not simultaneously maximize the probability of meeting demand for 

each of the individual tasks, the problem becomes a multi-objective problem with K

objectives to be maximized, i.e., the performance level for each task. Another objective 

that was additionally considered in two examples presented in this paper is the 

minimization of the overall system configuration cost. This multi-objective problem has a 

set of Pareto-optimal solutions. 

7.3 Multi-state system availability estimation method 

 As shown in chapter 6, many practical systems can perform their intended functions 

at more than two different levels of performance. These kinds of systems are known as 

multi-state systems. Within the context of multi-task production systems, system 

availability is used as criteria to select a particular configuration that maximizes the 

probability of meeting a given demand for each of the individual tasks.  

The universal moment generating function (UMGF) is used again to evaluate the 

availability of the multi-task multi-state manufacturing system. Therefore, in this chapter, 
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the UMGF introduced in the previous chapter, is adapted to be used within the context of 

multi-task production systems.  

 The u-function representing the probability mass function (pmf) of a discrete random 

variable Y is defined as a polynomial 
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where the variable Y has  J possible values and, 5j is the probability that  Y is equal to yj.

 To obtain the u-function representing the pmf of a function of two independent 

random variables, composition operators are introduced. Considering a function 6(Ym,

Yn), the composition operators determine the u-function for 6(Ym, Yn) using simple 

algebraic operations on the individual u-functions of the variables. All of the composition 

operators take the following form, 
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 The u-function, U(z), represents all of the possible mutually exclusive combinations 

of realizations of the variables by relating the probabilities of each combination to the 

value of function 6(Ym, Yn) for this combination. For example, for functions Ym+Yn and 

min(Ym, Yn) operator (2) takes the form 
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 Note that in the case of summation (3), the composition operator constitutes simple 
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product of polynomials.  

 Consider u-function representing the pmf of random performance of a single machine 

used within a specific manufacturing stage. When the system performs task k, any 

machine of type i belonging to stage l can be in one of two states: normal functioning 

with nominal performance l
ikg  (probability of this state is equal to the machine 

availability, l
ikp ) and total failure with performance 0 (probability of this state is equal to 

1- l
ikp ). The UMGF representing the performance distribution of this machine is 

.)1()( 0 l
ikgl

ik
l
ik

l
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 Having the u-function representing the pmf of any random variable Y in the form (1), 

the probability that Y is not less then any fixed value D can be easily determined by 

summing the coefficients of polynomial u(z) for every term with yj 2 D. This can be done 

by applying the following operator 3 to u(z).
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 Applying operator 3(Uk(z),Dk) to the u-function Uk(z), representing the pmf of system 

performance for task k, availability can be determined, i.e., probability that the demand 

Dk is met. 

 The multi-task production system considered in this chapter pertains to flow 

transmission multi-state systems (Levitin, 2005), in which the product can be dispersed 

and processed by parallel machines simultaneously. Therefore, for a production system 

containing several elements connected in parallel, the total capacity is equal to the sum of 

the capacities of all its elements. Therefore, its u-function can be calculated using the 
�
7
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operator.

 The u-function representing the pmf of the cumulative performance of hil identical 

machines of type i (when performing task k) can be obtained by applying operator (3) 

over hil identical u-functions ).(zu l
ik  The resulting u-function takes the form 
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 Having the number of machines of each type in the stage l, one can obtain the u-

function representing the pmf of the cumulative performance of all of the machines in this 

stage (when performing task k) as 
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 When the stages are connected in series in flow transmission multi-state systems, the 

stage with the least performance becomes the bottleneck of the system. This machine, 

therefore, dictates the total system productivity. To calculate the u-function representing 

the pmf of the performance of the entire system performing task k, the 
min
7 operator (4) 

should be used. 
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 Having the u-function )(zU k  that represents the pmf of the performance of the entire 

system performing task k, one can obtain the system availability for task k as, 

 Ak=3(Uk(z),Dk)            (10) 

 If the demand Dk is random, it can be represented by its pmf, qs=P(Dk=dks), for s=1, 

…, S, and the availability Ak can be obtained as, 
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7.4 Description of the multi-objective evolutionary algorithm

 The evolutionary algorithm developed uses an integer chromosomal representation. 

For instance, consider the following example to illustrate a particular chromosome 

generated by the algorithm. Each integer corresponds to the number of redundant 

machines of that type. For example, Figure 7.1 shows a chromosome (genotype) and the 

mapping to its corresponding system configuration (phenotype). In this chromosome, for 

subsystem 1, there are only two copies of the first machine type. For subsystem 2, 1 copy 

of the first machine type, two copies of the second machine type and one copy of the 

third machine type are used in parallel. Finally, for subsystem 3, one copy of the first 

machine type, one copy of the second machine type and one copy of the third machine 

type are used in parallel. 

2 0 0 1 2 1 1 1 1

subsystem 1 subsystem 2 subsystem 3

2 0 0 1 2 1 1 1 1

subsystem 1 subsystem 2 subsystem 3

M1
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M2

M3

M1

M2

M3

M1

M1

M1

M2

M2

M3

M1

M2

M3

M1

M1

Chromosome representation Corresponding system configuration

Figure 7.1 Representation of solutions 

 The general steps of the algorithm are briefly explained below. 

Step 1. Randomly generate an initial population of solutions. 

Step 2. Decode each solution and evaluate objective function values pertaining to the 

availability for each task. That is, for each of the solutions, the probability of meeting the 

required demand of each of the individual tasks is evaluated by using the UMGF; and, 
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finally, the overall system cost is computed. 

Step 3. Check Pareto dominance criterion. Of the initial randomly generated 

solutions, eliminate those solutions that are dominated. 

Step 4. Evaluate the following fitness functions of each chromosome x in the 

population.

4.1. Fitness Metric 1: Distance-based, f1(i). It gives highest fitness to those 

solutions that are farther away from other solutions in the Pareto front. It is 

intended for maintaining population diversity. 

4.2. Fitness Metric 2: Dominance count-based, f2(i). It aims to select those 

individuals which are more dominating (intended to achieve proximity to the true 

Pareto frontier).

4.3. Aggregated Fitness Metric, fa(i): Fitness Metric 1 + Fitness Metric 2, fa(i)=

f1(i) + f2(i). It aims to weight both metrics equally. 

Step 5. Rank selection is used. To perform recombination, with a given crossover 

probability, individuals with the highest aggregated fitness are selected.  

5.1 The algorithm uses elitist reinsertion. A percentage of the best ranked (most 

elite) individuals are directly copied to the next population. This is done with the 

aim of preventing the loss of the best-found solutions. 

Step 6. With a pre-defined crossover probability, new offspring (children) are 

generated using a problem-specific crossover operation. For the exploitation of the 

combinatorial structure within the search algorithm, a specific crossover operator 

denominated subsystem rotation crossover, SURC, was used (as shown in Chapter 5). In 

this step, multi-parent recombination is allowed. This action, and the way that SURC 
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works, produces a large number of children in the mating pool, creating a large number 

of diverse solutions to choose from.  

Step 7. Single-point mutation is used. With a pre-defined mutation probability, 

mutate new offspring at a random position in the chromosome. 

Step 8. The algorithm uses elitist reinsertion in the aim of preventing the loss of the 

best-found solutions. New offspring plus a specified percentage of the most elite 

individuals from the previous population are chosen to form the new population. 

Step 9. Use new generated population for a further run (generation) of the algorithm  

Step 10. If the Generation i = Generation ‘max’, stop, and return the best solutions in 

current population, otherwise return to step 2. 

7.5 Examples 

 Thee examples are presented to illustrate the problem addressed. The three examples 

consider three main manufacturing stages connected in series.

7.5.1 Example 1 

 This example considers three main units connected in series. For each series 

subsystem, there are several machines available in the market that can be chosen to 

provide redundancy. Each of the machines can perform three different tasks. Each task is 

considered to be binary capacitated, meaning that it can have only two states, functioning 

with the nominal capacity or total failure, corresponding to capacity 0. The collective 

performance of these binary components leads to a multi-state multi-task system 

behavior. Each task is characterized by its availability and nominal capacity (production 

rate in parts/hour). Table 7.1 shows the characteristics of the available machines. Without 

loss of generality, task capacities can be measured as a percentage of the maximum 
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demand. Table 7.2 presents different demand levels for each task, for a given period, 

known as the cumulative demand curve.  

Table 7.1. Characteristics of the machines available

Subsystem 
l

Machine 
i

Task 
k

Availability 
l
ikp

Production rate
(parts/hour) 

l
ikg

1 0.50 30 
2 0.80 20 1
3 0.60 40 
1 0.80 30 
2 0.45 16 2
3 0.60 50 
1 0.90 25 
2 0.85 18 

1
3

3 0.65 44 
1 0.80 40 
2 0.90 24 1
3 0.60 60 
1 0.70 32 
2 0.80 28 2
3 0.60 50 
1 0.50 24 
2 0.60 12 

2

3
3 0.90 52 
1 0.85 28 
2 0.80 28 

1

3 0.75 42 
1 0.65 38 
2 0.70 20 

2

3 0.60 48 
1 0.90 30 
2 0.60 28 

3

3

3 0.70 56 

Table 7.2. Parameters of the cumulative demand curve 

Task 1 Task 2 Task 3 
Demand (%) Duration (%) Demand (%) Duration (%) Demand (%) Duration (%) 

100 0.60 70 0.65 140 0.50 
60 0.30 50 0.25 95 0.35 
40 0.10 20 0.10 40 0.16 

 The multi-objective formulation considers three objectives to be satisfied 

simultaneously: maximization of the availability of producing task 1, maximization of the 

availability of producing task 2 and maximization of the availability of producing task 3. 
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Since a particular configuration may not simultaneously maximize the probability of 

meeting demand for each of the individual tasks, the problem becomes a multi-objective 

problem with K objectives to be maximized.  

 The problem was solved using the developed algorithm, with a population size of 100 

and 20 generations, and a restriction that the maximum number of machines to be used 

was six. The algorithm was fully coded in MATLAB� 7.0 and run on a Sony VAIO 

computer, with an Intel Pentium processor operating at 1.86 GHz and 1 GB of RAM. The 

computation time was 1,115.73 seconds. 

 Figure 7.2 shows the 29 solutions found in the Pareto front. To better visualize the 

solutions obtained, Figure 7.3 shows different two dimensional representations of the 

same solutions. 
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Figure 7.2. Pareto front of example 1  
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Figure 7.3. Pareto front of example 1 in a two dimensional space 

Once the Pareto-optimal set is obtained, the decision-maker has to decide which of 

the non-dominated points to choose as the solution to the problem. For this example, if 

the three tasks are considered to be equally important, among the 29 solutions found in 

the final Pareto-optimal set, the decision-maker can choose the solution that is closest to 

the ideal vector. In multi-objective optimization, for each of the objectives there exists an 

ideal value in the objective value search space (Deb, 2002). Since in this case, we want to 

maximize simultaneously the three objective functions (task availability), the ideal vector 

would be zideal=(1, 1, 1). For this example, solution number 7 is the closest solution to 

this ideal vector. The system design configuration corresponding to solution number 7 is 

shown in Table 7.3. 

 However, in many multi-objective problems, there exists the case in which the 

achievement of one objective is more important than the others. If, for this particular 

example, the maximization of task 2 is considered to be more important than the 

maximization of task 1, and if the maximization of task 1 is more important than the 

maximization of task 3; that is, f2� f1� f3, then by applying the non-numerical ranking 

preferences method (Taboada & Coit, 2006a; Taboada et al., 2007a), a preferred sub-set 

of Pareto solutions can be selected. Based on this analysis, a solution that would clearly 
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reflect these objective function preferences would be solution number 5 as shown in 

Table 7.4. 

Table 7.3. Chosen design configuration for example 1 

0.91584 0.86234
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M3

0.70937

Availability task 2 Availability task 3System configuration diagramSol No.

7

Table 7.4. Chosen design configuration for example 1 when considering f2� f1� f3

0.93295 0.95100

Availability task 1
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5

M1

M3

M3

M3

M3

M3

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M3

M3

M3

M3

M3

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

7.5.2 Example 2 

 The second example is similar except that system cost has been added as an objective 

to be minimized. This example also consists of three main units connected in series. For 

each series subsystem, there are several machines available in the market that can be 

chosen to provide redundancy. Each of the machines can perform three different tasks. 

Each task is considered to be binary capacitated, meaning that it can have only two states, 

functioning with the nominal capacity or total failure, corresponding to capacity 0. The 

collective performance of these binary components leads to multi-state multi-task system 

behavior. Each task is characterized by its availability, nominal capacity (production rate 

in parts/hour), and cost. Table 7.5 shows the characteristics of the machines available. 
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Table 6 presents different demand levels for each individual task, for a given period. 

Table 7.5. Characteristics of the machines available 

Subsystem 
l

Machine 
i

Task 
k

Availability 
l
ikp

Production rate,
(parts/hour) 

l
ikg

Machine
Cost 

1 0.80 100 
2 0.60 200 1
3 0.80 120 

65

1 0.65 90 
2 0.75 160 2
3 0.77 180 

60

1 0.90 75 
2 0.85 180 3
3 0.65 200 

50

1 0.60 100 
2 0.90 150 

1

4
3 0.75 160 

80

1 0.70 120 
2 0.65 160 1
3 0.87 150 

120

1 0.77 100 
2 0.58 178 2
3 0.76 100 

150

1 0.60 130 
2 0.80 150 

2

3
3 0.53 180 

200

1 0.85 400 
2 0.86 200 

1

3 0.85 150 
200

1 0.65 450 
2 0.78 220 

2

3 0.61 270 
190

1 0.90 300 
2 0.63 280 

3

3

3 0.70 220 
240

Table 7.6. Parameters of the cumulative demand curve 

Task 1 Task 2 Task 3 

Demand (%) Duration (%) Demand (%) Duration (%) Demand (%) Duration (%) 
250 0.60 190 0.70 280 0.70 
220 0.20 150 0.20 200 0.20 
170 0.15 100 0.10 150 0.10 
150 0.05   

 In this case, the multi-objective formulation considered four objectives to be satisfied 

simultaneously: maximization of the availability of producing task 1, maximization of the 

availability of producing task 2, maximization of the availability of producing task 3, and 
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minimization of the overall system cost. The problem was solved using the developed 

algorithm, with a population size of 200 and 20 generations, and 5 as the maximum 

number of machines to be used. The computation time was 1,270.35 seconds. 

 Figure 7.4 shows, in a three dimensional perspective, the 134 solutions found in the 

Pareto front. To better visualize the solutions obtained, Figure 7.5 shows different 

representations of the two dimensional plots of the same solutions. 

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Max A(task 1)Max A(task 2)

M
ax

 A
(ta

sk
 3

)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Max A(task 1)Max A(task 2)

M
ax

 A
(ta

sk
 3

)

Figure 7.4. Pareto front of example 2 in a three dimensional space 
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Figure 7.5. Pareto front of example 2 in a two dimensional space

 To choose a solution from this Pareto set, the decision-maker may have a more 

difficult decision because now, with four objectives, the solutions are harder to visualize. 

However, according to problem-specific knowledge, there are regions in the Pareto set 

which express good compromises and these regions can be identified. More detail on 

methods to be applied in the decision-making stage to reduce the size of the Pareto-

optimal set, and obtain a smaller representation of the multi-objective design space can be 

found in Taboada & Coit (2007) and Taboada et al. (2007a). In this case, an example 

solution from the “knee” region (Das, 1999; Branke et al., 2004; Taboada & Coit, 2007) 

is presented as a good compromise. The “knee” is formed by those solutions of the 

Pareto-optimal front where a small improvement in one objective would lead to a large 

deterioration in at least one other objective. Table 7.7 shows an example design 

configuration from this region with its respective objective function values obtained. 
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Table 7.7. Compromised example design configuration for example 2 

0.83353 0.93668

Availability task 1
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Availability task 2 Availability task 3System configuration diagramSol No.
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M1
1310

Cost

7.5.3 Example 3 

 The third example considers more complex system behavior because each available 

machine can exhibit degraded system performance. This is also a realistic formulation 

because many actual components degrade with time. The example consists of three main 

units connected in series. For each unit, there are several machines available to choose 

from to provide redundancy. Three different tasks need to be completed. For each unit, 

there are several components available in the market that can be chosen to provide 

redundancy. Each machine can perform three different tasks. Each of these tasks can 

have different levels of performance, which range from maximum capacity to total 

failure. Each component is characterized by its availability ( l
ikp ), nominal capacity 

(production rate in parts/hour), and cost. Table 7.8 shows the characteristics of the 

machines available and Table 7.9 presents the system cumulative demand curve.  
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Table 7.8. Characteristics of the system elements available 

Subsystem 1 Subsystem 2 Subsystem 3 

Machine 
i

Task
k

Availability 
l
ikp

Production
rate 

(parts/hour) 
l
ikg

Cost Machine 
i

Task
k

Availability 
l
ikp

Production
rate 

(parts/hour) 
l
ikg

Cost Machine 
i

Task
k

Availability 
l
ikp

Production
rate 

(parts/hour) 
l
ikg

Cost

0.70 90 0.75 80 0.80 120 

0.20 30 0.15 50 0.15 60 1

0.10 20 

1

0.10 10 

1

0.05 20 

0.60 100 0.65 110 0.80 60 

0.30 40 0.25 20 0.15 40 2

0.10 10 

2

0.10 10 

2

0.05 10 

0.80 120 0.85 90 0.75 95 

0.10 20 0.10 60 0.15 50 

1

3

0.10 15 

60 1

3

0.05 10 

100 1

3

0.10 25 

100

0.90 110 0.80 110 0.85 90 

0.05 40 0.15 30 0.10 50 1

0.05 20 

1

0.05 5 

1

0.05 10 

0.80 80 0.78 90 0.75 120 

0.15 30 0.12 15 0.20 30 2

0.05 10 

2

0.10 10 

2

0.05 10 

0.70 90 0.65 130 0.65 100 

0.20 60 0.25 40 0.30 50 

2

3

0.10 5 

80 2

3

0.10 15 

70 2

3

0.05 30 

150

0.60 80 0.90 130 0.75 100 

0.30 50 0.05 50 0.20 40 1

0.10 20 

1

0.05 10 

1

0.05 30 

0.85 120 0.85 90 0.85 70 

0.10 20 0.10 20 0.10 40 2

0.05 10 

2

0.05 5 

2

0.05 20 

0.75 70 0.70 80 0.80 140 

0.15 30 0.20 50 0.15 20 

3

3

0.10 10 

90 3

3

0.10 10 

80 3

3

0.05 10 

130
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Table 7.9. Parameters of the cumulative demand curve 

Task 1 Task 2 Task 3 
Demand (%) Duration (%) Demand (%) Duration (%) Demand (%) Duration (%) 

160 0.60 130 0.65 140 0.50 
120 0.20 90 0.15 100 0.20 
80 0.15 60 0.10 80 0.15 
40 0.05 30 0.10 50 0.10 

  20 0.05 

 The multi-objective formulation again considered four objectives to be satisfied 

simultaneously: maximization of the availability of producing task 1, maximization of the 

availability of producing task 2 and maximization of the availability of producing task 3, 

and minimization of the system cost. The problem was solved using the developed 

algorithm, with a population size of 200 and 20 generations. 110 solutions were found in 

the final Pareto-optimal set. Figure 6 shows the Pareto front obtained in a three 

dimensional perspective, and to better visualize the solutions obtained, Figure 7.7 shows 

different representations of the two dimensional plots of the same solutions. Table 7.10 

shows three example design configurations chosen from the “knee” region with their 

respective objective function values. 
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Figure 7.6. Pareto front of example 3 in a three dimensional space 
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Figure 7.7. Pareto front of example 3 in a two dimensional space

Table 7.10. Example design configurations of Example 3 

0.92104 0.85079
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Availability task 2 Availability task 3System configuration diagramSol No.
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Cost
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7.6 Summary

This chapter presented a multiple objective evolutionary algorithm to determine 

manufacturing system configurations of multi-state multi-task production systems based on 

availability analysis. Availability was used in the context of multi-task production systems 

to select a particular configuration that maximized the probability of meeting a required 

demand for each specific task, or the expected productivity for each task. A particular 

configuration may not simultaneously maximize the probability of meeting demand for 

each of the individual tasks, and thus, the problem was treated as a multi-objective 

optimization problem. A multi-objective evolutionary algorithm was developed to solve 

the problem. Three different examples were presented to illustrate the problem. 
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8. A multi-objective prioritized evolutionary algorithm (MoPriGA)

 This chapter presents a new MOEA that conceptually combines the idea of the 

working mechanism of MOEA-DAP and post-Pareto pruning, introduced in Chapters 5 

and 4, respectively. MoPriGA, incorporates the knowledge of the DM objective function 

preferences based on direct exploitation of the uncertain weight function, fw(w), into the 

search process. The initial pruning selection criterion, as well as the two different fitness 

metrics that are incorporated in the algorithm, enable the search process to explore the 

most promising region of the solution space based on the DM objective function 

preferences. This MOEA directly searches in the most promising region, and thus, no 

pruning is required, resulting in a much more efficient search for good solutions. 

8.1 Introduction 

 A new MOEA that conceptually combines the MOEA-DAP and post-Pareto pruning 

has been developed. In Chapters 5 through 7, different MOEAs were developed to solve a 

wide variety of multi-objective optimization problems that share some similar 

characteristics. In these MOEAs, the optimization was initially performed without the 

input of the DM. That is, the solutions obtained in the final Pareto front were independent 

from the DM objective function preferences. MOEAs, as shown in previous chapters, 

offer many advantages to solve MOPs. However, the biggest disadvantage of these 

methods can be that the DM has potentially too many solutions in the final Pareto set. 

Therefore, he/she needs to perform additional steps before obtaining or selecting a trade-
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off solution. To satisfy this new requirement, post-Pareto analysis was introduced. 

Chapter 4 presented two different techniques to perform post-Pareto analysis. Both 

methods presented in that chapter supported screening in the final Pareto set and, in 

different manners, efficiently determined a smaller and an attractive Pareto sub-set from 

which later, the DM could easily select the most desirable solution for system 

implementation.  

 In the first method, the non-numerical ranking preferences method, the DM was only 

asked to rank non-numerically (in order of relative importance) the objective functions 

but did not have to select specific weight values. Based on the DM objective function 

preferences, an uncertain weight function was generated. Then, different weight 

combinations reflecting the DM preferences were generated numerous times from the 

uncertain weight function. The solutions that this method yielded are those that clearly

satisfied the given objective function preferences (see Figure 8.1). The second method, 

post-Pareto clustering, showed the capacity to automatically identify an optimal number 

of clusters in the Pareto-optimal set, clustering optimal solutions that shared similar 

properties and, providing the DM with representative solutions of each cluster. Although 

both of these methods to perform post-Pareto analysis have shown to be effective, their 

use, in practice, can be potentially inefficient.  

 
Figure 8.1 Approach to obtain solutions that reflect DM objective function preferences (after the search) 

 This chapter presents a new MOEA that conceptually combines the working 

mechanism of MOEA-DAP (introduced in Chapter 5) and post-Pareto pruning (using the 
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non-numerically ranking preferences method). This newly developed algorithm enables 

the search process to move along predefined objective function preferences without the 

burden of having to select specific weight values. An early pruning selection criterion, as 

well as the two different fitness metrics that are incorporated into the algorithm, enable 

the search process to move according to the DM preferred solutions (see Figure 8.2). 

Consequently, the biggest advantage of this algorithm is that reducing the size of the 

solution set does not really require higher level decision making to be incorporated into 

the algorithm to direct the search, such as in the case of having to specify a reliable utility 

function. 

 Moreover, the idea of this algorithm is not to reduce the capability of the search, but 

simply to more intensely focus on the region of the Pareto set of interest to the DM. This 

is accomplished by providing external initial objective function preferences information 

but still ensuring that the preference relationships introduced in the MOEA preserve 

existing dominance relationships. Otherwise, the search would be biased towards 

undesired, or sub-optimal, regions of the search space. 

 
Figure 8.2 New approach to incorporate DM objective function preferences (during the EA search) 

8.2 Previous research on post-optimality selection 

 Most of the current research on evolutionary multi-objective optimization has 
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concentrated on issues related to the design of evolutionary algorithms to search for 

nondominated solutions. However, these nondominated solutions do not provide any 

insight into the process of decision making itself. Once the Pareto set is obtained, post-

Pareto analysis has been proposed as an afterward required step to help in the decision-

making process. In this area, little, but significative, research has been done. When 

performing post-Pareto analysis, two different areas can be distinguished. The first one 

involves the analysis of the Pareto set when all the attributes are considered to have equal 

importance or, in other words, when the DM does not express any preferences of the 

attributes. In this case, the research efforts have been focused in locating the region(s) of 

the solution space where balanced trade-offs can be found, either by locating the “knee” 

solutions or by presenting to the DM a considerably smaller number of solutions that are 

still representative of all of the solution space. The second area directs its efforts to find 

those solutions of the Pareto set that satisfy objective function preferences. In practice, if 

objective function preferences are known, the decision-maker wishes to evaluate a 

limited number of Pareto-optimal solutions. In theory, these solutions should be a sub-set 

of the Pareto front that satisfies the DM objective function preferences. 

8.3 Defining preferences in MOEAs 

 As presented by Horn (1997), when using EAs, preferences can be expressed a priori, 

a posteriori, or during the search. If preferences are expressed a priori, the DM has to 

define his/her preferences in advance (before actually performing the search). The most 

classical examples of this category are the aggregating approaches in which weights are 

specified beforehand to combine all the objectives into a single objective function. The 

second approach pertains to the search-first-and-decide later case. This is the category in 
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which most evolutionary multi-objective approaches can be classified. In this case, EAs 

are used to search for the “best possible” solutions, and this normally implies that the EA 

attempts to find the nondominated or Pareto-optimal solutions. Then, as presented in 

Section 8.2, the DM has to further investigate these solutions to do post-optimal 

selection. As explained before, post-Pareto optimality is a challenging problem by itself. 

The third category is the least common in the EA literature. The articulation of 

preferences during the search (information incorporated within the EA) can be further 

divided into two sub-classes:  

(i) approaches that allow guiding the search of the EA using preferences from the 

DM but require interaction with the DM, and 

(ii) approaches that allow guiding the search of the EA using preferences from the 

DM without the need of interaction with the DM. 

 The proposed algorithm, MoPriGA, pertains to this second sub-class of algorithms. In 

reality, little attention has been devoted to the development of methods that incorporate 

the DM objective preferences within (during) the EA. However, a brief overview on 

these methods is presented next. 

 As described in Coello Coello (2000), Fonseca & Fleming (1993) presented the 

earliest attempt to incorporate preferences from the DM into an EA. They basically 

extended their developed MOGA to accommodate goal information as an additional 

criterion for non-dominance to assign ranks to the population. The goal attainment 

method was used for this purpose, so that the DM could specify goals at each generation. 

As can be noticed, this is an interactive approach. Shawn & Fleming (1997) discussed 

how a similar approach could be used to incorporate preferences into a production 
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schedule algorithm, but in their case, the preferences were defined a priori. As discussed 

in Coello Coello (2000), the main disadvantage of this approach is that it requires the user 

to know beforehand the ranges of variation of each objective. 

 Cvetkovic & Parmee (2000) developed a preference algorithm to transform linguistic 

(qualitative) information into real numbers to obtain the ranking of several objectives. 

Their method helps to find a specific set of weights that, in theory, satisfies the ranking of 

preferences by the DM. Then, this specific set of weights can be used in a GA to guide 

the search to preferred solutions. Wang et al. (2005) proposed a method to solve multi-

objective and multi-constraint problems. In their method, the DM has to specify his/her 

objective function preferences by means of weights since the very start of the process. 

Their algorithm considers the satisfaction of the constraints as a new objective and uses a 

multi-criteria method to rank the members of the EA population at each generation based 

on the weights specified by the DM. These two methods are considered to be also a

priori approaches, since the weights are assumed constant throughout the optimization 

process; however nothing in these approaches really excludes their use in an interactive 

way. 

8.4 Description of the multi-objective prioritized GA (MoPriGA) 

 MoPriGA begins its search with a population of random, but feasible, solutions. This 

initial set of solutions is called the W set (for simple explanation of the working 

mechanism of this algorithm, consider that the W set, has a population size of 20 

individuals). Immediately, thereafter, objective function values are evaluated. Then, the 

number of individuals that each individual dominates (dominance count) is recorded, and 

the Pareto dominance criterion is evaluated for the initially created solutions. Thus, the 
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solutions that are dominated by other solutions are eliminated. In MoPriGA, this set of 

non-dominated solutions is called the X set. To continue with on this example, consider 

that after applying the non-dominance criterion there are only 10 solutions in the X set. 

Then, pruning selection is applied to the initial set based on DM preferences. This 

pruning selection uses the uncertain weight function fw(w), initially introduced in Chapter 

4, that is generated based on the DM objective function preferences. As mentioned in that 

chapter, the strength of this method is precisely that the DM only ranks non-numerically 

(in order of relative importance) the objective functions but does not have to select 

specific weight values or value or utility functions. Then, a large number of random but 

ranked weights are generated, with each set containing one weight for each objective. 

These weights are uniformly sampled from the region of interest that satisfies the 

following: w(1) > w(2) >… > w(n) , w(1) + w(2) +… + w(n) = 1 and w(i) � 0 for i = 1, 2, …, n. 

After obtaining the set of ranked weights (for instance, consider 5,000), the first set of 

weights is multiplied by each of the nondominated solutions in a normalized space: f '= 

w1f1(x) + w2f2(x) + … wnfn(x). The solution that yields the minimum value for f ', for the 

first random weight set is recorded, and gets a counter of 1. Thus, we do the same with 

the remaining set of weights. At the end, the solutions that have non-zero counter values 

are those solutions that form the pruned Pareto set. In MoPriGA, this set of preferred 

solutions is called the Z set and, for purposes of this example assume that this set 

contains three solutions. The rest of the solutions (7), which are not in the preferred set, 

are placed in the Y set. Then, MoPriGA uses the Z set for two different purposes. The 

first purpose is to place this set to the very top of the list of ranked solutions. In this way, 

once selection is performed, the solutions in the Z set are always chosen for reproduction. 
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The second purpose of the Z set is to be used as a form of elitism. That is, to prevent the 

loss of the best found solutions (solutions that clearly reflect the DM objective function 

preferences), the Z set is directly copied to be part of the population in next generation.  

 As described earlier, the Y set contains the nondominated and non-preferred solutions 

(7 solutions in this example), and, for each of these, its corresponding dominance count 

has been retained from a previous step. With this Y set, we proceed to assign fitness to 

these solutions. In MoPriGA, two different methods are used to assign fitness to the 

solutions. In this case, the first fitness metric, f1(i), aims to select those individuals which 

are more dominating, and they are classified into discrete intervals. The way that this is 

done follows the same steps explained in Chapter 5. But in simple words, we can say that 

solutions with highest dominance count receive highest fitness. Then, for the second 

fitness metric, the Euclidean distance, d(zbest , Y), is calculated between the “best” 

solution , zbest, (the solution with the largest non-zero counter value) in the Z set and, the 

rest of the solutions in the Y set. In this way, the solutions in Y that are closest to zbest 

receive highest fitness. For this second fitness metric, we again considered discrete 

intervals. Next, the two different fitness metrics are then aggregated weighting each of 

the fitness metrics equally. Based on this aggregated fitness, the strongest solutions are 

copied to complete the list of ranked solutions, which already contains the Z set. Thus, 

following our example, in the list of ranked solutions, there are three solutions from the Z 

set and, the seven strongest solutions (based on the aggregated fitness values) from the Y 

set . 

 The subsequent steps (selection, recombination, and mutation) in the MoPriGA 

algorithm follow the same behavior explained in Chapter 5 for the construction of 
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MOEA-DAP. As it can be noticed, from Figure 8.3, for the selection step, rank selection 

was used. The number of individuals to be selected for the recombination step is dictated 

by the desired crossover probability. For instance, in our example, the ranked list has 10 

solutions (Nranked), and if the specified crossover probability, Pcross, is 0.7, then the 

number of parents to be selected to perform recombination is Nparents = round(Pcross / 

Nranked). In this specific example, there are round(0.7/10) = 7 parents. Then the 

crossover step takes place. In this step, multi-parent recombination is allowed. This 

action produces a large number of children in the mating pool, creating a large number of 

diverse solutions to choose from. Diversity is considered favorable, as the greater the 

variety of genes available to the GA, the greater the likelihood of the system identifying 

alternate solutions. Moreover, maintaining diversity of individuals within a population is 

necessary for the long term success of any evolutionary system. Finally, in this case, 17 

children are randomly selected from the mating pool to undergo mutation, and these 

individuals, plus the ones already in the elite list, form the next population. 
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Figure 8.3 Working mechanism of MoPriGA 

 In this way, MoPriGA, incorporates the knowledge of the DM objective function 

preferences, based on the formulation of the uncertain weight function, fw(w), into the 

search process. That is, this newly developed algorithm enables the search process to 

move according to the DM preferred solutions without asking the DM to select specific 

weight values. The initial pruning selection criterion, as well as the both fitness metrics 

incorporated in the algorithm guide the search considering the DM objective preferences. 

The examples in Section 8.5 show that MoPriGA is a powerful algorithm that searches 

extensively in the region of interest without reducing the capability of the search, but 

simply intensifying the search on the region of the Pareto set of interest to the DM. 

8.5 Examples 

 The multi-objective formulation that we considered is the same that was used in 

Chapter 5 and, it is again shown in Equation 8.1, with the system reliability to be 
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maximized, cost and weight of the system to be minimized, and no constraints in the 

possible values of reliability.  
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 The example considered consists of a configuration of 3 subsystems, with an option 

of 5, 4 and 5 types of components in each subsystem, respectively. The optimization 

involves selection from among these component types. For the three cases presented next, 

2 was considered to be the minimum number of components per subsystem and, the 

maximum possible number of components is 4 in each subsystem. Table 8.1 defines the 

component choices for each subsystem. For the three examples presented next, MoPriGA 

was run considering a population size of 150, and it was run for 100 generations.  

Table 8.1 Component choices for each subsystem 

Subsystem  i
1 2 3 

Design
Alternative 

j R C W R C W R C W 
1 0.80 24 30 0.95 26 30 0.70 20 25 
2 0.92 30 40 0.75 10 28 0.67 20 20 
3 0.60 15 20 0.80 15 35 0.85 30 40 
4 0.70 28 26 0.85 18 40 0.75 40 20 
5 0.90 30 45  0.80 35 30 

 
8.5.1 Case when f1� f2� f3

 The example in this case considers that f1�  f2�  f3; that is, reliability is more 

important than cost, and cost is more important than weight. In this case, 11 solutions 

were found in final preferred Pareto set. These solutions are shown in Figure 8.4. The 
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same solutions are shown in Figure 8.5 in a two-dimensional perspective. The solution 

that had the maximum counter for the given preferences is emphasized in these figures. 
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Figure 8.4 Preferred solutions found in the final Pareto set: Case when f1�  f2�  f3 
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Figure 8.5 Preferred solutions found in the final Pareto set in a two-dimensional perspective 

8.5.2 Case when f2� f1� f3

 The example in this case considers that f2� f1� f3; that is, cost is more important than 

reliability, and reliability is more important than weight. In this case, four solutions were 

found in final preferred Pareto set. These solutions are shown in Figure 8.6. The same 

solutions are shown in Figure 8.7 in a two-dimensional perspective. The solution that had 

the maximum counter value for the given preferences is emphasized in these figures. 
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Figure 8.6 Preferred solutions found in the final Pareto set: Case when f2�  f1�  f3 
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Figure 8.7 Preferred solutions found in the final Pareto set in a two-dimensional perspective 

8.5.3 Case when f1 � f2� f3

 The example in this case considers that f1 �  f2 � f3; that is, reliability is equally 

important than cost, and reliability and cost are both more important than weight. In this 

case, three solutions were found in final preferred Pareto set. These solutions are shown 

in Figure 8.8. The same solutions are shown in Figure 8.9 in a two-dimensional 

perspective. The solution that had the maximum counter value for the given preferences 

is emphasized in these figures. 
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Figure 8.8 Preferred solutions found in the final Pareto set: Case when f1 �  f2�  f3 
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Figure 8.9 Preferred solutions found in the final Pareto set in a two-dimensional perspective 

 Table 8.2 shows three example design configurations with its respective system 

reliability, cost, and weight. Each of the presented design configurations corresponds to 

the solution with the largest counter value in each specific case. 
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Table 8.2 Example design configurations  

Case when: System Design Configuration Diagram Reliability Cost Weight

� �f1 f2 f3

� �f2 f1 f3

�f1 f2 f3�

0.997852              262                 353

0.825820              105                 166

0.912880              131                 183
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8.6 Summary

 This chapter presented a multi-objective prioritized GA (MoPriGA). MoPriGA is a 

powerful algorithm that searches extensively in the region of interest for the DM. 

MoPriGA incorporates the knowledge of the DM objective function preferences based on 

the inclusion of the uncertain weight function, fw(w), into the search process. This initial 

pruning selection criterion, as well as the two different fitness metrics that are 

incorporated into the algorithm, enable the search process to explore the most promising 

region of the solution space based on the DM objective function preferences. The 

strength of the algorithm is that it does not reduce the capability of the search, but simply 

intensifies the search on the region of the Pareto set that is of interest for the DM. 
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9. Future research

 There are numerous opportunities for developing novel and original research in the 

evolutionary multi-objective optimization area. These opportunities can focus on (1) 

extending the existing results and models to address general problems, and (2) 

incorporating methods to accommodate uncertain problem decision variables. 

9.1 Development of a multi-purpose MOEA 

 One challenge still remains for current multi-purpose MOEAs, which is the 

scalability problem, that is, the efficient solution of large scale problem instances. New 

multi-purpose MOEA are needed to analyze general combinatorial optimization 

problems.  

 Recently, various MOEAs have been proposed and applied, some of them are the 

non-dominated sorting genetic algorithms, (NSGA and NSGA-II), the strength Pareto 

evolutionary algorithm (SPEA), the Pareto archived evolutionary algorithm (PAES), 

among others. Although these MOEAs differ from each other, the common objective in 

all of them is to search for a near-optimal and uniformly diversified Pareto front. 

However, this ultimate goal is far from being accomplished by the existing MOEAs 

(Yang et al., 2005). Thus, it is required to develop MOEAs with the ability of finding 

homogeneously distributed solutions in the final Pareto front with the robustness of 

balancing proximity and diversity during the searching process. 
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9.2 Handling uncertainties in MOEAs 

 In future research tasks, specific methods will be determined to accommodate 

uncertainties. Traditional MOEAs assume that information about the objectives can be 

obtained with total certainty. However, in real-world applications is very commonly the 

case that one must work with uncertainties (Parmee, 2001). This extension will pertain to 

the most realistic class of problems, multiple objective stochastic optimization problems. 

The new approach will incorporate additional risk metrics, to be minimized, into the 

multiple objective optimization framework. 

 Variance and standard deviation have been traditional risk measures in economics 

and finance since the pioneering work of Markowitz (1952). The two risk measures 

exhibit a number of nice technical properties. For example, the variance of a portfolio 

return is the sum of the variance and covariance of the individual returns. Furthermore, 

variance can be used as a standard optimization function. Finally, there is a well 

established statistical method to estimate variance and covariance. However, variance 

does not account for fat tails of the underlying distribution and therefore is inappropriate 

to describe the risk of low probability events, such as default risks. 

 Secondly, variance penalizes ups and downs equally. For instance, consider the 

example in Figure 9.1. In this case, reducing the standard deviation may happen but at the 

cost of eliminating good outcomes as well as bad ones
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Figure 9.1 Variance as a Risk measure 

 Then, more appropriate measures of risk that recognize the logic of eliminating good 

outcomes from bad outcomes. Several risk measures have been developed in the past that 

overcome the deficiencies of variance or standard deviation to measure risk. However, 

they are mainly used in portfolio optimization, and one of the ideas is to develop or 

extend one risk measure that can be incorporated into a multiple objective evolutionary 

algorithm. This extension can be developed in such a way that this measure will be 

search-based, and the concept of risk will be incorporated in the search, i.e., a risk-based 

dominance criterion can be implemented in the selection step. 

 A prevalent method to measure risk is Value-at-Risk (VaR). The formal definition by 

Frey & McNeil (2002) which is derived from Artzner et al. (1999) is as follows: Given a 

loss L with probability distribution P, the VaR of a portfolio at the given confidence level 

5�[0,1] is represented by the smallest number l such that the probability that the loss L

exceeds l is no larger than (1-5). Formally, 

VaR5=inf{l�R, P(L>l)�1-5}
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 Moreover, VaR is a measure which captures the risk aspect of a low-probability/high-

impact event. Thus, VaR may be a suitable risk measure, which can be adapted to the 

search in order to incorporate risk in the solution of multiple objective optimization 

problems. 
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Appendix A 
This Appendix contains the runs performed to asses the performance of the developed MOEA-DAP algorithm. Tables A.1 through 
A.10 present the single runs from the NSGA-II algorithm. . While Tables A.11 through A.20 present the single runs from the MOEA-
DAP algorithm. Table A.21. contains the true Pareto-optimal front, Ytrue.

Table A.1 Nondominated solutions in last Pareto front. Run 1, NSGA-II 

 Original output Non-duplicated nondominated solutions 
Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.99513 64 60 0.99513 64 60 
2 0.99789 81 88    
3 0.99513 78 68    
4 0.99789 82 72 0.99789 82 72 
5 0.99789 94 77    
6 0.99513 76 65    
7 0.9999 87 90 0.9999 87 90 
8 0.99785 73 81 0.99785 73 81 
9 0.99789 84 75    
10 0.99782 73 71 0.99782 73 71 
11 0.99997 96 91 0.99997 96 91 
12 0.99993 87 100    
13 0.99789 82 72    
14 0.99782 73 71    
15 0.99789 79 85 0.99789 79 85 
16 0.99513 66 63    
17 0.99997 93 104 0.99997 93 104 
18 0.99786 75 84 0.99786 75 84 
19 0.99997 93 104    
20 0.99997 106 93    
21 0.99782 75 74    
22 0.99785 73 81    
23 0.99789 94 77    
24 0.99513 76 65    
25 0.99789 81 88    
26 0.9976 82 69 0.9976 82 69 
27 0.99789 96 80    
28 0.99996 91 101 0.99996 91 101 
29 0.99513 76 65    
30 0.99782 75 74    
31 0.99997 106 93    
32 0.99997 106 93    
33 0.99997 108 96    
34 0.99513 78 68    
35 0.99997 106 93    
36 0.99513 66 63    
37 0.99996 91 101    
38 0.99993 85 97 0.99993 85 97 
39 0.99786 75 84    
40 0.99789 79 85    
41 0.9999 87 90    
42 0.9976 82 69    
43 0.99789 84 75    
44 0.99513 78 68    
45 0.99993 87 100    
46 0.99993 85 97    
47 0.99997 93 104    
48 0.99789 96 80    
49 0.99789 84 75    
50 0.99996 91 101    

      
Non-
duplicated
nondominated 
solutions

    
12
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Table A.2 Nondominated solutions in last Pareto front. Run 2, NSGA-II 

 Original output Non-duplicated nondominated 
solutions

Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.99773 75 95 0.99773 75 95 
2 0.99971 81 113 0.99971 81 113 
3 0.99983 93 119    
4 0.9999997 � 1 117 129 0.9999997 � 1 117 129 
5 0.9999999 � 1 129 123 0.9999999 � 1 129 123 
6 0.99983 93 107 0.99983 93 107 
7 0.99999 120 124    
8 0.9999999 � 1 129 123    
9 0.9999997 � 1 117 129    

10 0.99999 120 124    
11 0.99999 117 117 0.99999 117 117 
12 0.99985 84 120 0.99985 84 120 
13 0.99997 96 114 0.99997 96 114 
14 0.99997 96 126    
15 0.99997 96 126    
16 0.99773 75 95    
17 � 1 120 136    
18 0.9979 99 105 0.9979 99 105 
19 0.99984 105 113 0.99984 105 113 
20 0.99998 108 120 0.99998 108 120 
21 0.99983 93 107    
22 0.99998 108 120    
23 0.99999 117 117    
24 0.99984 105 113    
25 0.99998 108 120    
26 0.99788 78 102 0.99788 78 102 
27 � 1 132 130    
28 � 1 132 130    
29 0.99983 93 119    
30 0.9979 99 105    
31 � 1 128 142    
32 0.99985 84 120    
33 0.99984 105 113    
34 0.90415 63 89 0.90415 63 89 
35 0.99997 96 114    
36 0.99788 78 102    
37 0.99999 120 124    
38 � 1 128 142    
39 0.99983 93 107    
40 0.99971 81 113    
41 0.99983 93 107    
42 0.9999999 � 1 129 123    
43 � 1 128 142    
44 0.99773 75 95    
45 � 1 120 136    
46 0.99999 120 124    
47 0.99984 105 113    
48 0.99999 117 117    
49 0.99773 75 95    
50 0.99788 78 102    

       
Non-
duplicated
nondomina
ted
solutions

    
13
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Table A.3 Nondominated solutions in last Pareto front. Run 3, NSGA-II 

 Original output Non-duplicated nondominated solutions 
Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.99991 104 100 0.99991 104 100 
2 0.99997 106 108 0.99997 106 108 
3 0.9989 88 92 0.9989 88 92 
4 0.99995 102 106 0.99995 102 106 
5 0.99359 79 71 0.99359 79 71 
6 0.99986 96 108 0.99986 96 108 
7 0.99986 96 108    
8 0.99991 104 100    
9 0.99989 100 98 0.99989 100 98 
10 0.99896 90 100 0.99896 90 100 
11 0.99995 102 106    
12 0.99991 104 100    
13 0.99997 106 108    
14 0.9946 97 85 0.9946 97 85 
15 0.99896 90 100    
16 0.99997 106 108    
17 0.9998 94 100 0.9998 94 100 
18 0.9998 94 100    
19 0.99986 96 108    
20 0.99896 90 100    
21 0.99997 106 108    
22 0.99989 100 98    
23 0.9989 88 92    
24 0.99989 100 98    
25 0.9998 94 100    
26 0.99995 102 106    
27 0.9946 97 85    
28 0.99359 79 71    
29 0.99995 102 106    
30 0.9989 88 92    
31 0.99997 106 108    
32 0.9989 88 92    
33 0.99997 108 114    
34 0.9989 88 92    
35 0.99989 100 98    
36 0.99995 102 106    
37 0.9998 94 100    
38 0.99989 100 98    
39 0.9946 97 85    
40 0.99997 106 108    
41 0.99989 100 98    
42 0.99995 102 106    
43 0.99986 96 108    
44 0.9989 88 92    
45 0.99896 90 100    
46 0.9946 97 85    
47 0.99458 91 77 0.99458 91 77 
48 0.99896 90 100    
49 0.99991 104 100    
50 0.99997 108 114    

       
Non-
duplicated
nondominated 
solutions

   
11
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Table A.4 Nondominated solutions in last Pareto front. Run 4, NSGA-II 

 Original output Non-duplicated nondominated solutions 
Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.85988 59 98 0.85988 59 98 
2 0.99973 83 108 0.99973 83 108 
3 0.99952 69 113 0.99952 69 113 
4 0.99985 89 120 0.99985 89 120 
5 0.99973 83 108    
6 0.99962 73 115 0.99962 73 115 
7 0.99446 69 112 0.99446 69 112 
8 0.85996 63 100 0.85996 63 100 
9 0.99962 73 115    
10 0.99962 73 115    
11 0.99973 83 108    
12 0.99952 69 113    
13 0.85996 63 100    
14 0.99436 65 110 0.99436 65 110 
15 0.99983 87 110 0.99983 87 110 
16 0.85988 59 98    
17 0.99985 89 120    
18 0.99973 83 108    
19 0.85996 63 100    
20 0.99983 87 110    
21 0.99962 73 115    
22 0.99985 89 120    
23 0.99995 93 122 0.99995 93 122 
24 0.99973 83 108    
25 0.99446 69 112    
26 0.99995 93 122    
27 0.99952 69 113    
28 0.99973 83 108    
29 0.99983 87 110    
30 0.99995 93 122    
31 0.99962 73 115    
32 0.99436 65 110    
33 0.99985 89 120    
34 0.99446 69 112    
35 0.85988 59 98    
36 0.99983 87 110    
37 0.99962 73 115    
38 0.85996 63 100    
39 0.85996 63 100    
40 0.85996 63 100    
41 0.99995 93 122    
42 0.99983 87 110    
43 0.99436 65 110    
44 0.99446 69 112    
45 0.99436 65 110    
46 0.99962 73 115    
47 0.99962 73 115    
48 0.85988 59 98    
49 0.85996 63 100    
50 0.99952 69 113    

       
Non-
duplicated
nondominated 
solutions

   
10
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Table A.5 Nondominated solutions in last Pareto front. Run 5, NSGA-II 

 Original output Non-duplicated nondominated 
solutions

Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.96945 67 88 0.96945 67 88 
2 0.99141 71 90 0.99141 71 90 
3 0.96949 69 91 0.96949 69 91 
4 0.99141 71 90    
5 0.99141 71 90    
6 0.96945 67 88    
7 0.99141 71 90    
8 0.99141 71 90    
9 0.96945 67 88    
10 0.99141 71 90    
11 0.99141 71 90    
12 0.96949 69 91    
13 0.96949 69 91    
14 0.99141 71 90    
15 0.99145 73 93 0.99145 73 93 
16 0.99141 71 90    
17 0.99145 73 93    
18 0.99141 71 90    
19 0.96949 69 91    
20 0.99145 73 93    
21 0.99141 71 90    
22 0.96945 67 88    
23 0.99145 73 93    
24 0.99141 71 90    
25 0.96949 69 91    
26 0.96949 69 91    
27 0.99145 73 93    
28 0.99141 71 90    
29 0.99145 73 93    
30 0.99145 73 93    
31 0.99141 71 90    
32 0.96949 69 91    
33 0.99145 73 93    
34 0.99145 73 93    
35 0.99145 73 93    
36 0.96949 69 91    
37 0.99141 71 90    
38 0.99145 73 93    
39 0.99141 71 90    
40 0.96945 67 88    
41 0.99145 73 93    
42 0.96949 69 91    
43 0.96949 69 91    
44 0.96949 69 91    
45 0.96949 69 91    
46 0.99145 73 93    
47 0.99145 73 93    
48 0.96945 67 88    
49 0.99141 71 90    
50 0.96949 69 91    

       
Non-
duplicated
nondominated 
solutions

   
4
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Table A.6 Nondominated solutions in last Pareto front. Run 6, NSGA-II 

 Original output Non-duplicated nondominated solutions 
Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.99082 63 82 0.99082 63 82 
2 0.99996 95 100 0.99996 95 100 
3 0.91581 53 68 0.91581 53 68 
4 0.9999 93 92 0.9999 93 92 
5 0.99998 101 106    
6 0.99998 99 98 0.99998 99 98 
7 0.99989 96 91 0.99989 96 91 
8 0.99996 95 100    
9 0.99082 63 82    
10 0.99981 90 85 0.99981 90 85 
11 0.99998 99 98    
12 0.99989 96 91    
13 0.91581 53 68    
14 0.9908 59 84 0.9908 59 84 
15 0.99065 54 69 0.99065 54 69 
16 0.99074 57 76 0.99074 57 76 
17 0.91581 53 68    
18 0.99082 65 90    
19 0.99082 63 82    
20 0.9999 93 92    
21 0.9999 93 92    
22 0.9158 56 67 0.9158 56 67 
23 0.99998 105 114    
24 0.99073 60 75 0.99073 60 75 
25 0.9908 59 84    
26 0.99065 54 69    
27 0.99074 57 76    
28 0.99082 65 90    
29 0.99073 60 75    
30 0.99989 96 91    
31 0.99074 57 76    
32 0.99989 96 91    
33 0.99996 95 100    
34 0.99998 101 106    
35 0.99981 90 85    
36 0.9999 93 92    
37 0.99998 101 106    
38 0.99065 54 69    
39 0.99996 95 100    
40 0.91581 53 68    
41 0.91573 50 61 0.91573 50 61 
42 0.99996 95 100    
43 0.9158 56 67    
44 0.99981 90 85    
45 0.99998 99 98    
46 0.99998 101 106    
47 0.9908 59 84    
48 0.99998 101 106    
49 0.99082 65 90    
50 0.9908 59 84    

       
Non-
duplicated
nondominated 
solutions

   
13
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Table A.7 Nondominated solutions in last Pareto front. Run 7, NSGA-II 

 Original output Non-duplicated nondominated 
solutions

Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.9732 79 85 0.9732 79 85 
2 0.99222 82 89 0.99222 82 89 
3 0.99223 85 96 0.99223 85 96 
4 0.99223 85 96    
5 0.99222 82 89    
6 0.99223 85 96    
7 0.99223 85 96    
8 0.99789 87 89 0.99789 87 89 
9 0.99938 90 93 0.99938 90 93 
10 0.99222 82 89    
11 0.99938 90 93    
12 0.99223 85 96    
13 0.99789 87 89    
14 0.99789 87 89    
15 0.99938 90 93    
16 0.99222 82 89    
17 0.99223 85 96    
18 0.99789 87 89    
19 0.99222 82 89    
20 0.99939 93 100 0.99939 93 100 
21 0.99222 82 89    
22 0.99938 90 93    
23 0.99222 82 89    
24 0.99939 93 100    
25 0.99222 82 89    
26 0.99223 85 96    
27 0.99938 90 93    
28 0.99222 82 89    
29 0.99939 93 100    
30 0.99938 90 93    
31 0.99222 82 89    
32 0.99939 93 100    
33 0.99223 85 96    
34 0.99938 90 93    
35 0.9732 79 85    
36 0.99789 87 89    
37 0.99939 93 100    
38 0.99222 82 89    
39 0.9732 79 85    
40 0.99223 85 96    
41 0.99222 82 89    
42 0.99223 85 96    
43 0.99789 87 89    
44 0.99939 93 100    
45 0.99222 82 89    
46 0.99938 90 93    
47 0.99939 93 100    
48 0.9732 79 85    
49 0.99938 90 93    
50 0.99939 93 100    

       
Non-
duplicated
nondominated 
solutions

   
6
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Table A.8 Nondominated solutions in last Pareto front. Run 8, NSGA-II 

 Original output Non-duplicated nondominated solutions 
Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.71265 49 41 0.71265 49 41 
2 0.9988 77 89 0.9988 77 89 
3 0.98871 61 69 0.98871 61 69 
4 0.9988 77 89    
5 0.9988 77 89    
6 0.99654 65 61 0.99654 65 61 
7 0.98871 61 69    
8 0.71989 57 57 0.71989 57 57 
9 0.71914 53 49 0.71914 53 49 
10 0.98754 61 53 0.98754 61 53 
11 0.99772 65 77 0.99772 65 77 
12 0.99876 69 85 0.99876 69 85 
13 0.98754 61 53    
14 0.71989 57 57    
15 0.71989 57 57    
16 0.99876 69 85    
17 0.99881 89 77 0.99881 89 77 
18 0.99876 69 85    
19 0.99758 69 69 0.99758 69 69 
20 0.99876 69 85    
21 0.99772 65 77    
22 0.98871 61 69    
23 0.99772 65 77    
24 0.99758 69 69    
25 0.71914 53 49    
26 0.71989 57 57    
27 0.99654 65 61    
28 0.71265 49 41    
29 0.99772 65 77    
30 0.71914 53 49    
31 0.99772 65 77    
32 0.71914 53 49    
33 0.99984 81 97 0.99984 81 97 
34 0.99984 81 97    
35 0.9988 77 89    
36 0.71265 49 41    
37 0.99772 65 77    
38 0.99984 81 97    
39 0.99758 69 69    
40 0.99876 69 85    
41 0.98871 61 69    
42 0.99772 65 77    
43 0.99654 65 61    
44 0.71914 53 49    
45 0.9988 77 89    
46 0.98871 61 69    
47 0.99876 69 85    
48 0.99984 81 97    
49 0.99881 89 77    
50 0.9988 77 89    

       
Non-
duplicated
nondominated 
solutions

   
12
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Table A.9 Nondominated solutions in last Pareto front. Run 9, NSGA-II 

 Original output Non-duplicated nondominated solutions 
Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.99875 82 95 0.99875 82 95 
2 0.99984 106 119    
3 0.99984 106 119    
4 0.99984 106 119    
5 0.99984 106 119    
6 0.99984 106 119    
7 0.99978 91 104 0.99978 91 104 
8 0.99984 106 119    
9 0.99978 91 104    
10 0.99978 91 104    
11 0.99984 106 119    
12 0.99984 106 119    
13 0.99875 82 95    
14 0.99984 106 119    
15 0.99984 106 119    
16 0.99984 106 119    
17 0.99984 106 119    
18 0.99978 91 104    
19 0.99984 106 111 0.99984 106 111 
20 0.99984 106 111    
21 0.99984 106 111    
22 0.99984 106 119    
23 0.99984 106 111    
24 0.99984 106 111    
25 0.99978 91 104    
26 0.99984 106 119    
27 0.99984 106 111    
28 0.99984 106 111    
29 0.99984 115 120    
30 0.99984 115 120    
31 0.99984 106 119    
32 0.99978 91 104    
33 0.99875 82 95    
34 0.99875 82 95    
35 0.99984 115 120    
36 0.99978 91 104    
37 0.99984 106 111    
38 0.99875 82 95    
39 0.99978 91 104    
40 0.99984 115 120    
41 0.99984 106 119    
42 0.99978 91 104    
43 0.99984 106 111    
44 0.99984 106 119    
45 0.99978 91 104    
46 0.99984 115 120    
47 0.99875 82 95    
48 0.99984 115 120    
49 0.99984 106 119    
50 0.99978 91 104    

       
Non-
duplicated
nondominated 
solutions

   
3
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Table A.10 Nondominated solutions in last Pareto front. Run 10, NSGA-II 

 Original output Non-duplicated nondominated 
solutions

Solution
number 

Reliability Cost Weight Reliability Cost Weight 

1 0.99513 64 60 0.99513 64 60 
2 0.99789 81 88    
3 0.99513 78 68    
4 0.99789 82 72 0.99789 82 72 
5 0.99789 94 77    
6 0.99513 76 65    
7 0.9999 87 90 0.9999 87 90 
8 0.99785 73 81 0.99785 73 81 
9 0.99789 84 75    
10 0.99782 73 71 0.99782 73 71 
11 0.99997 96 91 0.99997 96 91 
12 0.99993 87 100    
13 0.99789 82 72    
14 0.99782 73 71    
15 0.99789 79 85 0.99789 79 85 
16 0.99513 66 63    
17 0.99997 93 104 0.99997 93 104 
18 0.99786 75 84 0.99786 75 84 
19 0.99997 93 104    
20 0.99997 106 93    
21 0.99782 75 74    
22 0.99785 73 81    
23 0.99789 94 77    
24 0.99513 76 65    
25 0.99789 81 88    
26 0.9976 82 69 0.9976 82 69 
27 0.99789 96 80    
28 0.99996 91 101 0.99996 91 101 
29 0.99513 76 65    
30 0.99782 75 74    
31 0.99997 106 93    
32 0.99997 106 93    
33 0.99997 108 96    
34 0.99513 78 68    
35 0.99997 106 93    
36 0.99513 66 63    
37 0.99996 91 101    
38 0.99993 85 97 0.99993 85 97 
39 0.99786 75 84    
40 0.99789 79 85    
41 0.9999 87 90    
42 0.9976 82 69    
43 0.99789 84 75    
44 0.99513 78 68    
45 0.99993 87 100    
46 0.99993 85 97    
47 0.99997 93 104    
48 0.99789 96 80    
49 0.99789 84 75    
50 0.99996 91 101    

       
Non-
duplicated
nondominated 
solutions

   
12
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      Table A.11 Nondominated solutions in final                 Table A.12 Nondominated solutions in final   
             Pareto front. Run 1, MOEA-DAP         Pareto front. Run 2, MOEA-DAP 

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.99981 77 68 
2 0.90598 48 32 
3 0.96026 40 37 
4 0.87971 36 33 
5 0.99819 74 54 
6 0.99894 78 48 
7 0.87959 36 27 
8 0.99799 74 52 
9 0.95929 42 35 
10 0.99906 73 74 
11 0.9992 73 80 
12 0.80704 36 20 
13 0.78353 24 15 
14 0.98734 52 37 
15 0.99762 61 64 
16 0.99675 62 44 
17 0.973 38 41 
18 0.99177 50 39 
19 0.98313 39 39 
20 0.99885 70 80 
21 0.99429 45 47 
22 0.94609 27 45 
23 0.98342 44 34 
24 0.9516 30 34 
25 0.99514 56 50 
26 0.87106 34 21 
27 0.97596 50 26 

Non-
duplicated
nondominated 
solutions

27

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.78353 24 15 
2 0.99642 62 36 
3 0.98734 52 37 
4 0.87106 34 21 
5 0.97745 39 40 
6 0.99799 74 52 
7 0.99762 61 64 
8 0.99006 51 68 
9 0.97596 50 26 
10 0.98714 52 35 
11 0.984 45 64 
12 0.98683 56 32 
13 0.97967 42 39 
14 0.95821 37 36 
15 0.78499 24 21 
16 0.99728 61 56 
17 0.98142 46 39 
18 0.87771 33 26 
19 0.99064 56 40 
20 0.87878 37 28 
21 0.87134 30 25 
22 0.95809 44 27 
23 0.79952 26 19 
24 0.98112 50 36 
25 0.9877 55 52 
26 0.98802 55 60 
27 0.94753 38 21 
28 0.76929 22 17 

Non-
duplicated
nondominated 
solutions

28
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      Table A.13 Nondominated solutions in final                Table A.14 Nondominated solutions in final   
             Pareto front. Run 3 MOEA-DAP         Pareto front. Run 4, MOEA-DAP 

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.97843 46 31 
2 0.63179 19 25 
3 0.9516 30 34 
4 0.99514 56 50 
5 0.97774 41 45 
6 0.95826 31 54 
7 0.97326 36 38 
8 0.98549 48 34 
9 0.96763 33 49 
10 0.98559 47 36 
11 0.97564 41 36 
12 0.9949 46 55 
13 0.94609 27 45 
14 0.97829 43 43 
15 0.98769 52 44 
16 0.80586 30 26 
17 0.98921 54 46 
18 0.80541 28 28 
19 0.8313 24 34 
20 0.98342 44 34 
21 0.96043 37 30 
22 0.99305 52 50 
23 0.98577 40 47 
24 0.78749 22 24 
25 0.96311 39 34 
26 0.79773 24 26 
27 0.97381 38 36 
28 0.97531 40 38 
29 0.96383 34 43 
30 0.91857 27 29 
31 0.96153 38 30 
32 0.94001 35 31 
33 0.95597 35 41 
34 0.9871 49 38 
35 0.98397 46 32 
36 0.98227 42 46 

Non-
duplicated
nondominated 
solutions

36

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.89929 24 42 
2 0.97632 34 52 
3 0.94059 29 40 
4 0.88833 23 42 
5 0.874 22 38 
6 0.87444 30 30 
7 0.99182 50 46 
8 0.9863 42 50 
9 0.98556 42 46 
10 0.99673 53 70 
11 0.9444 34 33 
12 0.97815 44 33 
13 0.98172 39 55 
14 0.78175 17 26 
15 0.86837 25 32 
16 0.9773 38 44 
17 0.98847 44 49 
18 0.94021 28 42 
19 0.99664 50 63 
20 0.98962 42 59 
21 0.86747 27 26 
22 0.97955 39 41 
23 0.86335 21 38 
24 0.98681 49 45 
25 0.78339 18 20 
26 0.97275 34 43 
27 0.99549 52 53 
28 0.98921 44 53 
29 0.98571 44 48 
30 0.80437 27 22 
31 0.9678 31 44 
32 0.97134 35 39 
33 0.79623 19 24 
34 0.99045 45 70 
35 0.98275 37 61 
36 0.99438 47 56 

Non-
duplicated
nondominated 
solutions

36
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      Table A.15 Nondominated solutions in final                 Table A.16 Nondominated solutions in final   
             Pareto front. Run 5 MOEA-DAP         Pareto front. Run 6, MOEA-DAP 

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.94977 28 36 
2 0.99177 50 39 
3 0.98313 39 39 
4 0.99885 70 80 
5 0.99429 45 47 
6 0.69149 44 29 
7 0.99957 80 51 
8 0.98084 44 33 
9 0.99954 73 65 
10 0.99874 73 51 
11 0.99538 64 45 
12 0.95132 29 39 
13 0.99975 82 55 
14 0.99594 66 45 
15 0.96192 35 45 
16 0.99409 45 45 
17 0.9961 58 48 
18 0.98398 54 33 
19 0.99484 47 49 
20 0.99771 59 51 
21 0.99858 74 45 
22 0.99879 71 61 
23 0.68897 30 23 
24 0.99532 62 45 
25 0.98154 38 36 
26 0.99495 60 39 
27 0.99846 61 55 
28 0.96211 35 47 

Non-
duplicated
nondominated 
solutions

28

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.98046 44 44 
2 0.98097 32 62 
3 0.99662 52 64 
4 0.98319 38 50 
5 0.65037 24 38 
6 0.9675 46 36 
7 0.99664 51 66 
8 0.98875 59 36 
9 0.99692 64 46 
10 0.98451 46 44 
11 0.99657 50 66 
12 0.98502 34 62 
13 0.99802 65 50 
14 0.9919 56 46 
15 0.95698 38 35 
16 0.64572 22 30 
17 0.64916 28 26 
18 0.93434 28 35 
19 0.85736 30 31 
20 0.97798 32 54 
21 0.98976 52 40 
22 0.97043 28 38 
23 0.98926 47 54 
24 0.93214 29 32 
25 0.99853 53 68 
26 0.65316 37 30 
27 0.9862 38 58 
28 0.64769 22 38 
29 0.98269 50 32 

Non-
duplicated
nondominated 
solutions

29
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      Table A.17 Nondominated solutions in final                 Table A.18 Nondominated solutions in final  
             Pareto front. Run 7 MOEA-DAP         Pareto front. Run 8, MOEA-DAP 

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.88673 23 28 
2 0.86259 23 25 
3 0.96315 50 34 
4 0.96232 34 47 
5 0.93853 22 46 
6 0.94972 26 57 
7 0.92266 28 33 
8 0.91428 22 31 
9 0.93422 35 28 
10 0.90531 24 27 
11 0.93887 27 46 
12 0.75874 17 23 
13 0.87114 21 29 
14 0.85578 26 21 
15 0.95947 32 39 
16 0.61152 18 15 
17 0.6128 17 22 
18 0.96317 51 32 
19 0.9892 48 43 
20 0.85843 20 25 
21 0.94259 37 37 
22 0.96613 44 38 
23 0.6513 20 21 
24 0.70056 19 22 
25 0.63183 16 25 

Non-
duplicated
nondominated 
solutions

25

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.93806 32 37 
2 0.85561 21 29 
3 0.97708 42 35 
4 0.8745 27 31 
5 0.9827 40 39 
6 0.95945 36 36 
7 0.95482 35 32 
8 0.90864 35 26 
9 0.87176 33 22 
10 0.77474 20 24 
11 0.97859 61 35 
12 0.70539 17 15 
13 0.98849 68 37 
14 0.85798 22 28 
15 0.99076 46 47 
16 0.97728 36 42 
17 0.96048 30 40 
18 0.78473 23 21 
19 0.93354 31 33 
20 0.99007 43 46 
21 0.97286 33 37 
22 0.9959 71 44 
23 0.97893 43 37 
24 0.89276 31 25 
25 0.92876 31 31 
26 0.88819 31 23 
27 0.90426 34 22 
28 0.92739 32 28 
29 0.81678 29 20 
30 0.89029 30 26 
31 0.98016 36 44 
32 0.90711 28 31 
33 0.75652 22 21 
34 0.8154 22 25 
35 0.98304 64 40 
36 0.81013 20 32 
37 0.86904 25 25 

Non-
duplicated
nondominated 
solutions

37
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      Table A.19 Nondominated solutions in final                Table A.20 Nondominated solutions in final   
             Pareto front. Run 9 MOEA-DAP         Pareto front. Run 10, MOEA-DAP 

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.9629 40 41 
2 0.98279 42 41 
3 0.99273 56 45 
4 0.98746 41 62 
5 0.9217 26 59 
6 0.92274 27 57 
7 0.96132 39 37 
8 0.98907 42 66 
9 0.90753 32 33 
10 0.99582 54 62 
11 0.86698 21 32 
12 0.96181 39 43 
13 0.88734 25 34 
14 0.9233 34 31 
15 0.91288 35 29 
16 0.99745 55 66 
17 0.93571 44 35 
18 0.76929 22 17 
19 0.97843 46 31 
20 0.98397 46 32 
21 0.97632 34 52 
22 0.94977 28 36 
23 0.99177 50 39 
24 0.98319 38 50 
25 0.9862 38 58 
26 0.86259 23 25 

Non-
duplicated
nondominated 
solutions

26

 Original output = Non-
duplicated nondominated 

solutions
Solution
number 

Reliability Cost Weight 

1 0.95894 42 32 
2 0.73478 19 17 
3 0.48973 10 22 
4 0.92701 33 34 
5 0.33768 6 15 
6 0.92441 29 36 
7 0.51282 11 15 
8 0.59808 18 13 
9 0.95625 38 34 
10 0.54343 12 15 
11 0.84671 30 18 
12 0.89135 23 28 
13 0.41741 10 11 
14 0.75977 15 22 
15 0.60456 14 23 
16 0.44233 11 11 
17 0.76418 29 23 
18 0.76203 25 25 
19 0.46214 9 22 
20 0.85126 31 26 
21 0.62621 23 16 

Non-
duplicated
nondominated 
solutions

21
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Table A.21. True Pareto-optimal front, Ytrue.

Solution 
number 

Reliability Cost Weight Solution 
number 

Reliability Cost Weight 

1 0.9999 87 90 71 0.9961 58 48 
2 0.99997 96 91 72 0.98398 54 33 
3 0.99997 93 104 73 0.99484 47 49 
4 0.99996 91 101 74 0.99771 59 51 
5 0.99993 85 97 75 0.99858 74 45 
6 0.9999997 � 1 117 129 76 0.99879 71 61 
7 0.9999999 � 1 129 123 77 0.98154 38 36 
8 0.99999 117 117 78 0.99495 60 39 
9 0.99985 84 120 79 0.99846 61 55 
10 0.99952 69 113 80 0.98097 32 62 
11 0.99962 73 115 81 0.98319 38 50 
12 0.99996 95 100 82 0.98875 59 36 
13 0.99998 99 98 83 0.99692 64 46 
14 0.99876 69 85 84 0.98451 46 44 
15 0.99984 81 97 85 0.98502 34 62 
16 0.99981 77 68 86 0.99802 65 50 
17 0.99894 78 48 87 0.93434 28 35 
18 0.78353 24 15 88 0.97798 32 54 
19 0.98734 52 37 89 0.97043 28 38 
20 0.99675 62 44 90 0.93214 29 32 
21 0.99177 50 39 91 0.99853 53 68 
22 0.98313 39 39 92 0.9862 38 58 
23 0.99885 70 80 93 0.86259 23 25 
24 0.99429 45 47 94 0.93853 22 46 
25 0.94609 27 45 95 0.94972 26 57 
26 0.98342 44 34 96 0.92266 28 33 
27 0.9516 30 34 97 0.91428 22 31 
28 0.99514 56 50 98 0.93422 35 28 
29 0.87106 34 21 99 0.90531 24 27 
30 0.97596 50 26 100 0.87114 21 29 
31 0.99642 62 36 101 0.85578 26 21 
32 0.98714 52 35 102 0.9892 48 43 
33 0.98683 56 32 103 0.85843 20 25 
34 0.78499 24 21 104 0.97708 42 35 
35 0.87134 30 25 105 0.95945 36 36 
36 0.95809 44 27 106 0.95482 35 32 
37 0.79952 26 19 107 0.90864 35 26 
38 0.94753 38 21 108 0.87176 33 22 
39 0.76929 22 17 109 0.70539 17 15 
40 0.97843 46 31 110 0.97728 36 42 
41 0.97326 36 38 111 0.78473 23 21 
42 0.98549 48 34 112 0.93354 31 33 
43 0.98559 47 36 113 0.99007 43 46 
44 0.9949 46 55 114 0.97286 33 37 
45 0.96043 37 30 115 0.89276 31 25 
46 0.98577 40 47 116 0.92876 31 31 
47 0.96311 39 34 117 0.88819 31 23 
48 0.91857 27 29 118 0.90426 34 22 
49 0.96153 38 30 119 0.92739 32 28 
50 0.94001 35 31 120 0.81678 29 20 
51 0.9871 49 38 121 0.89029 30 26 
52 0.98397 46 32 122 0.98016 36 44 
53 0.97632 34 52 123 0.86904 25 25 
54 0.9863 42 50 124 0.98746 41 62 
55 0.98556 42 46 125 0.99582 54 62 
56 0.9444 34 33 126 0.99745 55 66 
57 0.78175 17 26 127 0.73478 19 17 
58 0.99664 50 63 128 0.48973 10 22 
59 0.98962 42 59 129 0.33768 6 15 
60 0.78339 18 20 130 0.51282 11 15 
61 0.99549 52 53 131 0.59808 18 13 
62 0.79623 19 24 132 0.54343 12 15 
63 0.98275 37 61 133 0.84671 30 18 
64 0.94977 28 36 134 0.89135 23 28 
65 0.99957 80 51 135 0.41741 10 11 
66 0.98084 44 33 136 0.75977 15 22 
67 0.99954 73 65 137 0.60456 14 23 
68 0.99874 73 51 138 0.44233 11 11 
69 0.99975 82 55 139 0.46214 9 22 
70 0.99409 45 45     
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