

© [2007]

HEIDI ARLENE TABOADA JIMENEZ

ALL RIGHTS RESERVED

MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS CONSIDERING

OBJECTIVE PREFERENCES AND SOLUTION CLUSTERS

by

HEIDI ARLENE TABOADA JIMENEZ

A Dissertation submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Industrial and Systems Engineering

written under the direction of

Dr. David W. Coit

and approved by

New Brunswick, New Jersey

October, 2007

ii

ABSTRACT OF THE DISSERTATION

Multi-objective Optimization Algorithms Considering

Objective Preferences and Solution Clusters

by HEIDI ARLENE TABOADA JIMENEZ

Dissertation director: Dr. David W. Coit

This thesis presents the development of new methods for the solution of multiple

objective problems. One of the main contributions of this thesis is that it presents new

approaches that provide a balance between the determination of single solutions and a set

of Pareto-optimal solutions. Existing solution methodologies for multiple objective

problems can generally be categorized as single solution methods or Pareto optimality

methods. However, for many problems and decision-makers, a balanced approach is

more appropriate, and this thesis provides new approaches to meet those needs. Other

main contributions are that several novel multi-objective evolutionary algorithms are

presented, which offer distinct advantages compared to existing algorithms.

Two different new approaches are introduced which can efficiently determine an

attractive Pareto set or organize and reduce the size of the Pareto-optimal set. This makes

it easier for the decision-maker to comparatively analyze a smaller set of solutions, and

finally, select the most desirable one for system implementation.

In the first approach, the developed algorithm has the capability to automatically

identify an optimal number of clusters in the Pareto-optimal set and provide the decision-

iii

maker with representative solutions of each cluster. The second approach is a method that

yields efficient results for any user who can prioritize the objective functions. In this

method, the objective functions are ranked ordinally based on their importance to the

decision-maker, and a reduced Pareto set is determined based on randomly generated

weight sets, reflecting the decision-maker preferences.

 Different new multiple objective evolutionary algorithms (MOEAs) are designed as

the result of this research and they are described and tested. New ideas have been

incorporated into these MOEAs to provide the research community with new alternatives.

One of the developed MOEAs is MoPriGA, a multi-objective prioritized genetic

algorithm. MoPriGA incorporates the knowledge of the decision-maker objective

function preferences directly within the evolutionary algorithm. The idea behind this

algorithm is to more intensely focus on the region of the Pareto set of interest to the

decision-maker.

Acknowledgments

Pursuing a PhD is a life changing experience, and I cannot properly express my

happiness to have gotten to this stage. This is by far the most important part of my thesis,

so it is ironic that I am having difficulty expressing my thoughts. Perhaps, because I

know that words will fail to express my deep appreciation that I feel for some of the

people who have helped me in all kinds of ways throughout these years. However, it is

with tremendous gratitude that I write these acknowledgements.

 First, I would like to thank my PhD advisor, Dr. David W. Coit, for his great

supervision, support, and encouragement during this work. Throughout my thesis-writing

period, he not only provided encouragement, sound advice and good teaching but also

good company.

 I would like to express my special gratitude to Dr. James T. Luxhøj. I deeply

appreciate his enthusiasm, encouragement, and valuable comments throughout the course

of my PhD study. My gratitude is extended to all members of my PhD committee for

their help and support. I also wish to express my gratitude to all my professors in the IE

department. Thank you for sharing your experience, knowledge, and expertise.

 Life blessed me with the opportunity to meet an exceptional woman, Dr. Susan Albin,

her courage, determination and strength with which she responds to life’s challenges has

led me to profoundly value life and its many gifts. I am deeply thankful for her

encouragement during the times when my own faith grew thin. Thank you for always

believing in me.

iv

 I am very grateful to have gained some extraordinary friends during these years.

Especially, I would like to thank Abdullah Karaman, Erol Zeren and Frank Chen. I have

no words to thank all your love, moral support, and friendship during all these years. In

the same way, my appreciation is extended to all my colleagues of the IE department.

Thanks for the warm atmosphere and support that you always provided.

 Funding for this work was provided by the Mexican National Council of Science and

Technology (CONACYT) and is gratefully acknowledged.

 I am forever grateful to my family. My appreciation goes to my parents, whose

foresight and values paved the way for a privileged education. Thank you for your

unconditional support at each turn of the road. I also want to thank my brother for being

such a wonderful friend. I only hope that you realize how much I love you. In the same

manner, I would like to thank my extended family, especially my parents-in-law. They

have always believed in me. Despite the distance, we were always very close to each

other.

 Finally, but most of all, I wish to thank the person who has been closest to my endless

questions, tears and joy, my husband José Espíritu, coauthor of a number of papers in this

thesis. Thank you for always taking my problems as your own, and help me to overcome

them. Thank you so much for being my constant source of love and encouragement. I am

so lucky to have such a good friend and partner at home as well as at work. With all the

‘cells’ passing in this world it is a fortune that ours ‘collided’.

From the deepest of my heart, I thank all of you,

[x|w| TA gtuÉtwt

v

 vi

Table of Contents

Abstract …………………………………………………………………...….……… ii

Acknowledgements …………………………………………………………………. iv

Chapter 1 Introduction ……………………………………………………....…...... 1

1.1 Multiple objective problems ……………………………………………….…….. 2

 1.1.1 Existing methods for the solution of multiple objective problems ….......….… 5

1.1.2 Research contributions …………………….………..………………..….….… 5

1.2 Thesis organization ………..……………………………..………………...….…. 7

Chapter 2 Metaheuristics literature review …………………………….………… 11

2.1 Combinatorial optimization problems ……………..………..…………………... 12

2.2 Metaheuristic optimization approaches ………………..…..…………….…......... 13

 2.2.1 Population-based methods …………………………………….…...…............ 15

 2.2.1.1 Ant colony optimization (ACO) …………...………….……..................... 15

 2.2.1.2 Evolutionary computation (EC) ……………………………….…………. 16

 2.2.1.3 Genetic algorithms (GAs) …………………...……………….……........... 17

 2.2.1.3.1 Genetic algorithms: basic principles and design issues ……...………. 19

 2.2.1.3.1.1 Encoding or chromosome implementation ….................................... 19

 2.2.1.3.1.2 Selection and fitness assignment ………………………………… 22

 2.2.1.3.1.3 Elitism ……………………………………………………………. 27

 2.2.1.3.1.4 Crossover and mutation ………….………………………………. 27

 2.2.1.3.1.4.1 Crossover and mutation for binary encoded individuals …….. 28

 2.2.1.3.1.4.2 Crossover and mutation for permutation encoded individuals 30

 vii

 2.2.1.3.1.4.3 Crossover and mutation for value encoded individuals ……… 31

 2.2.1.3.1.4.4 Crossover and mutation for tree encoded individuals …......... 32

 2.2.1.3.1.5 Optimal crossover and mutation rates in genetic search ……......... 33

 2.2.1.3.1.6 Reinsertion …………………………………………...…………... 34

 2.2.2 Trajectory methods …………………………………………………………... 34

 2.2.2.1 Simulated annealing (SA) ……………………………………...………… 34

 2.2.2.2 Tabu search (TS) ………………………………………………………… 36

2.3 Summary ………………………………………………………………….……... 38

Chapter 3 Multi-objective optimization ………………………….……...………... 41

3.1 Multi-objective optimization solution methods ………………....…..…………… 41

3.1.1 Single-objective approaches …………………………………...…………..... 42

3.1.2 Multiple objective evolutionary algorithms (MOEAs) …………….…............ 43

3.1.3 Differences between MOGAs and single GAs ………………………………. 44

3.2 State-of-the-art multi-objective evolutionary algorithms ………………………... 45

3.2.1 Vector Evaluated Genetic Algorithm (VEGA) ……………….……………… 46

3.2.2 Multi-Objective Genetic Algorithm (MOGA) ………………...……………... 47

3.2.3 Niched Pareto Genetic Algorithm (NPGA) …………………………………. 48

3.2.4 Nondominated Sorting Genetic Algorithm (NSGA) ……….………………... 51

3.2.5 Strength Pareto Evolutionary Algorithm (SPEA) ………………….………… 53

3.2.6 Fast Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) …….……. 55

3.2.7 Pareto-Archived Evolutionary Strategy (PAES) …………………….………. 58

3.3 Summary ……………………………………..……………..…………………… 59

 viii

Chapter 4 Post-Pareto optimality …………………………..………..…………….. 61

4.1 Post-Pareto optimality analysis …………………………………..……..………... 62

4.2 Pruning by using the non-numerical ranking preferences method ……….……… 64

4.3 Pruning by using data clustering ………………...………..……………………… 70

 4.3.1 Data clustering background …………………………….……………………. 70

 4.3.2 Description of the new approach ………………..…………………………… 73

 4.3.3 MATLAB� implementation …………………………………………………. 74

4.4 Numerical examples …………………………………...…….……………………75

4.5 Redundancy allocation problem (RAP) ……………………….…………………. 76

 4.5.1 Description of the RAP …………………………………….………………… 76

 4.5.2 Previous research ………………………………………...….……………….. 76

 4.5.3 Problem formulation ………………………………………….……………… 78

 4.5.4 Multi-objective RAP example ………….....................................……………. 81

4.5.4.1 Pruned results by using the non-numerical ranking preferences method ... 82

4.5.4.2 Pruned Results by using data clustering ……………………….………… 83

4.6 Scheduling of unrelated parallel machines ……………….……………….……... 85

 4.6.1 Multiple objective scheduling problems ……………………………….…….. 85

 4.6.2 Scheduling of unrelated parallel machines: multi-objective formulation ….… 86

4.6.2.1 Scheduling of unrelated parallel machines: example 1 …………….…….. 88

4.6.2.1.1 Pruned results by using the non-numerical

ranking preferences method ……………….................….…………… 89

4.6.2.1.2 Mathematical demonstration of the non-numerical ranking

preferences method: example 1 ……………………………………… 91

 ix

4.6.2.1.3 Pruned results by using data clustering: example 1 ……….…………. 94

4.6.2.2 Scheduling of unrelated parallel machines: example 2 ………….………. 96

4.6.2.2.1 Pruned results by using the non-numerical ranking

preference method: example 2 …………….……………………….… 97

4.6.2.2.2 Pruned results by using data clustering: example 2 …….……………. 100

4.7 Summary ……………………………………………………………….………… 101

Chapter 5 Developed MOEA for design allocation problems ……….………….. 104

5.1 Description of the problem addressed ………………………………….………… 105

5.2 Multi-criteria formulation of the RAP using GA’s ………...……….……………. 107

5.3 The proposed algorithm: MOEA-DAP ………………………………………….. 108

5.3.1 Chromosomal representation ………………………….……………………... 110

5.3.2 Constraint-handling method …….………………….………………............... 112

 5.3.3 Determination of the initial generation ………………….…….………........... 112

 5.3.4 Aggregated fitness function ………………….…………..…….…….............. 115

 5.3.4.1 Fitness metric 1: distance- based, f1(i) ………………..………................. 116

5.3.4.2 Fitness metric 2: dominance count- based, f2(i) ………….….................... 120

5.3.5 Selection step ………………….………………………………….….............. 122

5.3.6 Crossover operator …………………………………………………...…......... 124

5.3.7 Mutation ………………………………………………………………........... 127

5.3.8 Elitist reinsertion ………………………………………..…………................ 129

5.4 Performance Comparison of MOEA-DAP …………….…..……….…................. 129

5.5 Summary ……………………………………………………………..................... 135

 x

Chapter 6 MOMS-GA: An extension to MOEA-DAP to consider

 multi-state system performance ……………..…………........................ 136

6.1 Introduction ……………………………………………………………................. 136

6.2 Previous research on multi-state systems (MSS) …………………….……........... 137

6.3 Evolutionary approaches in multi-objective optimization …………..……............ 138

6.4 Multi-state system availability estimation method ……………..……..…............. 139

6.4.1 Parallel components …………………………………...…………................... 140

6.4.2 Series components ……………………………………………….................... 141

6.4.3 Total system reliability evaluation …………………………………................ 142

6.5 Multi-objective multi-state genetic algorithm (MOMS-GA) …………................. 143

6.6 Numerical examples …………………………………………………....................145

6.6.1 Example 1 ……………………………………………………......................... 146

6.6.2 Example 2 ………………………………………………………..................... 149

6.7 Summary …………………………………………………………......................... 152

Chapter 7 A multi-objective evolutionary algorithm for determining

 optimal configurations of multi-task production systems …................ 153

7.1 Introduction ………………………………………………………..…................... 153

7.2. Problem description …………………………………………………................... 156

7.3 Multi-state system availability estimation method ……………………................. 157

7.4 Description of the multi-objective evolutionary algorithm ……………................ 161

7.5 Examples ………………………………………………………………................. 163

7.5.1 Example 1 ……………………………………………………......................... 163

7.5.2 Example 2 ……………………………………... 167

 xi

7.5.3 Example 3 ………………………………………………………..................... 171

7.6 Summary ……………………………………………………………..................... 175

Chapter 8 A multi-objective prioritized evolutionary algorithm (MoPriGA) ….. 176

8.1 Introduction ………………………………………………………………............. 176

8.2 Previous research on post-optimality selection …………………………............... 178

8.3 Defining preferences in MOEAs …………………………………………............ 179

8.4 Description of the multi-objective prioritized GA (MoPriGA) ……….................. 181

8.5 Examples …………………………………………………………..…................... 185

8.5.1 Case when f1� f2� f3 ………………………………………………............... 186

8.5.2 Case when f2� f1� f3 ………………………………………………............... 187

8.5.3 Case when f1 � f2� f3 ………………………………………………............... 188

8.6 Summary …………………………………………………………………............. 190

Chapter 9 Future Research ………………………………………………............... 191

9.1 Development of a multi-purpose MOEA ………………………………................ 191

9.2 Handling uncertainties in MOEAs …………………………………….................. 192

Appendix A: Runs for Performance Comparison …………………………................ 195

References ……………………………………………………………….................... 211

Vita ………………………………………………………………………................... 225

xii

List of tables

Table 2.1 Selection probability and fitness value ………………………………...23

Table 4.1 Component choices for each subsystem …………………………….....81

Table 4.2 Summary of results obtained with the clustering analysis ………….85

Table 4.3 Processing times for PWB scheduling problem ……………… …….....88

Table 4.4 Processing costs for PWB scheduling problem ………………….….....88

Table 4.5 Pruned solutions ………………………………………………………..90

Table 4.6 Solutions found in the pruned Pareto set in ten simulation runs ….…....91

Table 4.7 Analytical pruning results ……………………………………….……..94

Table 4.8 Results obtained with the cluster analysis ………………………..……96

Table 4.9 Processing times for PWB scheduling problem ………………………..97

Table 4.10 Processing costs for PWB scheduling problem …………………..…....97

Table 4.11 Pruned solutions ………………………………………………………..98

Table 4.12 Solutions found in the pruned Pareto set in ten simulation runs ……...100

Table 4.13 Results obtained with the cluster analysis ……….……………......….101

Table 5.1 Dominance count in initial population ……………………...….……..114

Table 5.2 Dominance count in the first nondominated set …………….………..114

Table 5.3 Initial solutions …….……………………………………………….....115

Table 5.4 Nondominated solutions …………………………………………...…115

Table 5.5 Standardized nondominated set ……………………………………....116

Table 5.6 Distance from each solution to the rest of the solutions ……………...117

Table 5.7 Fitness value 1 for the nondominated set …………………………......118

Table 5.8 Fitness value 1 for the nondominated set (standardized space) ……....119

xiii

Table 5.9 Dominance count in the nondominated set …………………………...121

Table 5.10 Fitness value 2 bounds for the nondominated set …………………....122

Table 5.11 Fitness value 2 for the nondominated set (standardized space) ……....122

Table 5.12 Total Fitness value of nondominated solutions ………………………123

Table 5.13 Ranked nondominated individuals …….……………………………...123

Table 5.14 Component choices for each subsystem ……………………………...129

Table 5.15 Performance comparison ……………………………………………..131

Table 5.16 Maximum and minimum values found in Ytrue …………………….....132

Table 6.1 Characteristics of the system elements available ………………...…...147

Table 6.2 Parameters of the cumulative demand curve ………………………....147

Table 6.3 Example design configurations of Example 1 ………………………..149

Table 6.4 Characteristics of the system elements available …………………......150

Table 6.5 Parameters of the cumulative demand curve …………………………150

Table 6.6 Example design configurations of example 2 ………………………...152

Table 7.1 Characteristics of the machines available …………………………….164

Table 7.2 Parameters of the cumulative demand curve ………………………....164

Table 7.3 Chosen design configuration for example 1 ……………………….....167

Table 7.4 Chosen design configuration for example 1

 when considering f2� f1� f3 ……………………………………….....167

Table 7.5 Characteristics of the machines available ………………………….....168

Table 7.6 Parameters of the cumulative demand curve …………………..……..168

Table 7.7 Compromised example design configuration for example 2 …….…...171

Table 7.8 Characteristics of the system elements available …………………......172

xiv

Table 7.9 Parameters of the cumulative demand curve ………………………...173

Table 7.10 Example design configurations of Example 3 ………………………..174

Table 8.1 Component choices for each subsystem ……………………………...186

Table 8.2 Example design configurations …………………………………….....190

xv

List of illustrations

Figure 1.1 Pareto Front of a bi-objective minimization problem ……..…………….3

Figure 1.2 Achieving a balance between single solutions and

 Pareto-optimal solutions ………………………………………….…......5

Figure 2.1 Local optima and global optima ……………………………………….13

Figure 2.2 Binary encoding example ………………………………………...……20

Figure 2.3 Permutation encoding example ……………………..………………….21

Figure 2.4 Value encoding example ……………………………………………….21

Figure 2.5 Example of a chromosome with tree encoding …………………….......22

Figure 2.6 Roulette-wheel selection ……………………………………….……....24

Figure 2.7 Stochastic universal sampling ………………………………….……....25

Figure 2.8 Tournament selection, k=2 …………………………………….….…....26

Figure 2.9 Single-point crossover ………………………………….…….….….....28

Figure 2.10 Double-point crossover ……………………………………..…....….....29

Figure 2.11 Multi-point crossover ………………………………………….…….....29

Figure 2.12 Mutation in binary encoded individuals ………………………….…....30

Figure 2.13 Single-point crossover for permutation encoded individuals ……….....30

Figure 2.14 Order changing mutation for permutation encoded individuals …….....31

Figure 2.15 Double-point crossover …………………………………………….......31

Figure 2.16 Real value mutation …………………………………………………....32

Figure 2.17 Crossover for tree encoded individuals …………………………….......33

Figure 3.1 Population diversity is achieved …………………………………….....45

Figure 3.2 Population diversity is not achieved ……………………………...........45

xvi

Figure 3.3 The VEGA selection mechanism …………………………….…….......47

Figure 3.4 Population ranking according to MOGA …………………….…...…....48

Figure 3.5 MOGA overview ………………………………….............……….......48

Figure 3.6 Niche count in NPGA ……………………………….....…….…...…....49

Figure 3.7 NPGA overview …………………………..............………….…...…....50

Figure 3.8 NPGA 2 overview ……………………………...........…………....…....51

Figure 3.9 Nondominated fronts according to NSGA ……………………......…....52

Figure 3.10 NSGA overview ………………………………..............………....…....53

Figure 3.11 Population ranking according to SPEA ……………………..........…....54

Figure 3.12 SPEA overview …………………………...............………………........54

Figure 3.13 Crowding distance calculation ………………………………….….......56

Figure 3.14 Working mechanism of the NSGA-II algorithm ……………………....57

Figure 3.15 NSGA-II overview ……………………………..........………….….......57

Figure 3.16 PAES pseudocode ……………………………………………….…......59

Figure 4.1 Achieving a balance between single solutions and

 Pareto-optimal solutions …………………………………………….....62

Figure 4.2 Methods to prune the Pareto-optimal set ……………………………....64

Figure 4.3 Plane containing set of possible weights ………………...………….....66

Figure 4.4 Weight region for the f1 � f2 � f3 objective function preference …........66

Figure 4.5 Distribution of random weights used for a three objective problem …....69

Figure 4.6 Overview of clustering algorithmic implementation …………….….....75

Figure 4.7 General series-parallel redundancy system ………………….………....76

Figure 4.8 Pareto-optimal set ……………………………………………………...82

xvii

Figure 4.9 Comparing pruned Pareto solution with the Pareto-optimal

 solution set for reliability versus cost …………………………….…....83

Figure 4.10 Comparing pruned Pareto solution with the Pareto-optimal

 solution set for reliability versus cost ……………………………….....83

Figure 4.11 Clustered Pareto-optimal set ……………………………………….......84

Figure 4.12 Pareto-optimal set of Example 1 (PWB) in a

 three-dimensional space ……………………………………….…….....89

Figure 4.13 Pruned solutions for the w1>w2>w3>w4 objective function

 preference in a two-dimensional space ……………………….…..…....90

Figure 4.14 Schedule for solution 2 …………………………………………….......90

Figure 4.15 Algorithm to prune the Pareto set given objective

 functions preferences …………………………………………..............92

Figure 4.16 Clustered data in a three-dimensional space ……………………….......95

Figure 4.17 Clustered data in a three-dimensional space ……………………….......95

Figure 4.18 Schedule for solution number 6 ………………………………….….....96

Figure 4.19 Pareto-optimal set of Example 2 ……………………………….……....98

Figure 4.20 Pruned solutions for the f1� f3� f2 objective function

 preference in a two-dimensional space ………………………….…......99

Figure 4.21 Schedule for solution 48 ………………………………………….…....99

Figure 4.22 Clustered data for the second PWB example ………………………....100

Figure 5.1 Flowchart of MOEA-DAP …………………………………………....110

Figure 5.2 Dominance in a bi-objective problem ………………………………...115

Figure 5.3 First nondominated set in a normalized space …………………...…...120

xviii

Figure 5.4 First nondominated set in a bi-objective normalized space ……...…...120

Figure 5.5 Sub-chromosome representation of individuals ……………………....125

Figure 5.6 Crossover operation example ……………………..……………...…...126

Figure 5.7 Example of mutation ……………………………………………….....128

Figure 5.8 Nondominated solutions in Ytrue obtained from

 NSGA-II algorithm …………………………………………………...132

Figure 5.9 Nondominated solutions in Ytrue obtained from

 NSGA-II algorithm. Rel vs Cost …….………………………………..133

Figure 5.10 Nondominated solutions in Ytrue obtained from

 NSGA-II algorithm. Rel vs Weight …….…………………………….133

Figure 5.11 Nondominated solutions in Ytrue obtained from

 NSGA-II algorithm. Cost vs Weight ………………………………....133

Figure 5.12 Nondominated solutions in Ytrue obtained from

 MOEA-DAP algorithm ……………………………………………....133

Figure 5.13 Nondominated solutions in Ytrue obtained from

 MOEA-DAP. Rel vs Cost …………………………………………....133

Figure 5.14 Nondominated solutions in Ytrue obtained from

 MOEA-DAP. Rel vs Weight ………………………………………...133

Figure 5.15 Nondominated solutions in Ytrue obtained from

 MOEA-DAP. Cost vs Weight ………………………………………..133

Figure 6.1 Pareto front of example 1 ………………………………………….....148

Figure 6.2 Pareto front of example 1 in a two dimensional space …………….....148

Figure 6.3 Pareto front of example 2 ………………………………………...…..151

xix

Figure 6.4 Pareto front of example 2 in a two dimensional space …………...…..151

Figure 7.1 Representation of solutions …………………………………….……..161

Figure 7.2 Pareto front of example 1 ………………………………………....…..165

Figure 7.3 Pareto front of example 1 in a two dimensional space …………….....166

Figure 7.4 Pareto front of example 2 in a three dimensional space ……………...169

Figure 7.5 Pareto front of example 2 in a two dimensional space …………….....170

Figure 7.6 Pareto front of example 3 in a three dimensional space ……………...173

Figure 7.7 Pareto front of example 3 in a two dimensional space …………….....174

Figure 8.1 Approach to obtain solutions that reflect DM

 objective function preferences (after the search) ……………………..177

Figure 8.2 New approach to incorporate DM objective function

 preferences within the EA (during the search) ……………………….178

Figure 8.3 Working mechanism of MoPriGA …………………………….……...185

Figure 8.4 Preferred solutions found in the final Pareto set:

 Case when f1� f2� f3 ………………………………………….……..187

Figure 8.5 Preferred solutions found in the final Pareto set in a

 two-dimensional perspective ………………………………………....187

Figure 8.6 Preferred solutions found in the final Pareto set:

 Case when f2� f1� f3 ………………………………………….……..188

Figure 8.7 Preferred solutions found in the final Pareto set in a

 two-dimensional perspective ……………………………………..…..188

Figure 8.8 Preferred solutions found in the final Pareto set:

 Case when f1 � f2� f3 ………………………………………………...189

xx

Figure 8.9 Preferred solutions found in the final Pareto set in a

 two-dimensional perspective ……………………………………..…..189

Figure 9.1 Variance as a Risk measure …………………………………………..193

 1

1. Introduction

 This thesis is focused on the development of new methods for the solution and

analysis of multiple objective optimization problems. These new methods provide a

balance between commonly existing methods, and for decision-makers, these new

methods more appropriately offer practical solutions. In the same way, novel

evolutionary algorithms are presented. These algorithms offer distinct advantages

compared to existing algorithms. Moreover, the developed algorithms are intended to be

used on a wide range of optimization problems rather than any specific one.

 Most real-world engineering optimization problems involve the achievement of

several objectives, normally conflicting with each other. These problems are called

“multi-objective,” “multi-criteria,” or “vector” optimization problems, and were

originally studied in the context of economics. However, scientists and engineers soon

realized the importance of solving multi-objective optimization problems, and the

development of techniques to model and solve such problems became an important area

within operations research.

 Because of the conflicting nature of their objectives, multi-objective optimization

problems do not normally have a single optimal solution, and in fact, they even require

the definition of a new notion or interpretation of “optimum.” The most commonly

adopted notion of optimality in multi-objective optimization is that originally proposed

 2

by Edgeworth (1881) and later generalized by Pareto (1896). Such a notion is called

Edgeworth-Pareto optimality or, more commonly, Pareto optimality.

 Classical methods are often not efficient in solving multiple objective problems

because they require repetitive applications to find multiple Pareto-optimal solutions, and

in some occasions, repetitive applications do not guarantee finding distinct Pareto-

optimal solutions. These methods are also susceptible to the shape or continuity of the

Pareto-optimal set, and therefore, their applicability may be severely limited in many

real-world applications. This context gives the main motivation for using evolutionary

algorithms for solving multi-objective optimization problems, which provide an efficient

approach to find multiple Pareto-optimal solutions simultaneously in a single run.

Recently, several methods for solving multi-objective optimization problems have

been developed and studied. However, relatively little prior work has been done on the

evaluation of the solutions obtained by these algorithms. These algorithms give as a

result, a non-dominated set of solutions. If this set has a relatively small number of

solutions, then standard decision-making tools, such as the Analytic Hierarchy Process

(AHP), exist. However, this set often contains a large number of solutions, from which

the decision-maker has to finally select one solution for system implementation and the

selection of one solution over the others may become an arduous task.

1.1 Multiple objective problems

The complexity of solving multi-objective problems involves two types of problem

difficulties: i) multiple, conflicting objectives, and ii) a highly complex search space. For

instance, consider a production planning example with two objectives, cost (f1) and

makespan (f2), to be minimized under a set of constraints. For this bi-objective problem,

 3

an optimum design should ideally be a solution that achieves the minimum makespan at

the minimum cost without violating the constraints. If such a solution exists, then it is

necessary to solve just a single-objective optimization problem, because the optimal

solution for the first objective is also optimal for the second objective. However, this

rarely happens in real multi-objective problems.

Multi-objective optimization refers to the solution of problems with two or more

objectives to be satisfied simultaneously. Often, such objectives are in conflict with each

other and are expressed in different units. Because of their nature, multi-objective

optimization problems normally have not one, but a set of solutions, which are called

Pareto-optimal solutions or nondominated solutions (Chankong & Haimes 1983; Hans

1988). When such solutions are represented in the objective function space, the graph

produced is called the Pareto front of the problem, as shown in Figure 1.1.

Figure 1.1 Pareto Front of a bi-objective minimization problem

 4

A general formulation of a multi-objective optimization problem consists of a number

of objectives and is associated with a number of inequality and equality constraints.

Mathematically, the problem can be written as follows (Rao, 1991):

Minimize/Maximize fi (x) for i = 1, 2, …, n

Subject to:

� � 0�xjg j = 1, 2, …, J

� � 0�xqh q = 1, 2, …, Q

In the vector function, fi(x), some of the objectives are generally in conflict with

others, and some may have to be minimized while others are maximized. Thus, the multi-

objective optimization problem is defined as the problem to find the vector x = (x1,

x2,..,xn) , i.e., solution which optimize the vector function, fi (x).

The constraints define some feasible region X, and any point x � X defines a feasible

solution. Normally, we rarely have a situation in which all the fi (x) values have an

optimum in X at a common point x. Therefore, it is necessary to establish certain criteria

to determine what is considered as an optimal solution, and this criteria is nondominance.

Thus, solutions to a multi-objective optimization problem are mathematically expressed

in terms of nondominance.

Without loss of generality, for a minimization problem for all objectives, a solution x1

dominates a solution x2, if and only if, the two following conditions are true:

	 x1 is no worse than x2 in all objectives, i.e., fi (x1) � fi (x2) �
 i, � �ni ...,,2,1�

	 x1 is strictly better than x2 in at least one objective, i.e., fi (x1) < fi (x2) for at least one i.

 5

Then, the optimal solutions to a multi-objective optimization problem are the set of

nondominated solutions X and they are usually known as Pareto-optimal set (Zeleny,

1982).

1.1.1 Existing methods for the solution of multiple objective problems

 Existing methods require either the aggregation of the objectives into an overall

objective function or the determination of a Pareto set. The first method, in which one

single solution is obtained, requires precise knowledge of the objective function priorities

and relative importance, and thus, very broad and very detailed knowledge of the system

is demanded, i.e., systems usage, customer priorities and tendencies management

priorities, etc. Some methods that belong to this first approach are the weighted sum

method, goal programming, and utility theory among others. These methods are further

discussed in Chapter 3. In contrast, in the second method a Pareto-optimal set is obtained.

This set usually contains a large number (in some cases, thousands) of solutions and from

the decision-maker’s perspective, consideration of all the nondominated solutions can be

prohibitive and inefficient. Generally, Multiple Objective Evolutionary Algorithms

(MOEAs) are used to determine a Pareto-optimal set.

1.1.2 Research contributions

 From the discussion above, it can be seen that there is a need for the development of

new methods that provide a balance between single solutions and Pareto optimality, as

shown in Figure 1.2.

Single solution Pareto optimalityContinuumSingle solution Pareto optimalityContinuum

Figure 1.2 Achieving a balance between single solutions and Pareto-optimal solutions

 6

The contributions of this thesis are summarized as follows:

	 Development of new methods for the solution of multi-objective optimization

problems that achieve a balance between single solutions and Pareto-optimal

solutions.

	 A method developed for decision-makers that can prioritize the objective functions to

find appropriate smaller sets of solutions that clearly reflect his/her objective function

preferences.

	 Development of a practical method that allows the decision-maker to obtain a

comparably smaller set of solutions when he/she does not have any a priori

information of the objective function preferences. This method represents the

integration of existing data mining techniques into a new approach for analyzing

Pareto-optimal sets.

	 A new multiple objective evolutionary algorithm that, when tested on design

allocation problems, is observed to be superior to one of the most successful

evolutionary algorithms that currently exists.

	 New multi-objective evolutionary algorithms that consider, not only multi-state, but

also multi-state multi-task systems.

	 A new multi-objective evolutionary algorithm that incorporates the knowledge of the

decision-maker objective function preferences directly into the search process for the

first time.

 7

1.2 Thesis organization

 This thesis is organized as follows:

 In Chapter 2, a brief overview of some of the most well-known metaheuristic

algorithms and their classification is presented. Also, the basic design issues in single-

objective genetic algorithms are introduced.

 In Chapter 3, a description of the two primary approaches to identify solution(s) to

multiple objective problems is introduced. Since in Chapter 2, the basic design issues in

single-objective genetic algorithms were introduced, in Chapter 3, some of the aspects

that make single-objective genetic algorithms different from multiple-objective genetic

algorithms are reviewed. Due to their importance, most of the effort is concentrated on an

extensive overview of some of the currently most successful state-of-the-art MOEAs.

In Chapter 4, several methods are presented, which can efficiently organize and

reduce the size of the Pareto-optimal set, and thus, make it easier for the decision-maker

to comparatively analyze a small set of solutions, and finally, select the most desirable

one for system implementation.

The primary idea is based on an unsupervised data mining technique, in which the

solutions in the Pareto-optimal set are clustered so that the Pareto-optimal front is

reduced to a set of k disjoint clusters or to the solutions contained in the “knee cluster”.

These are likely to be the most interesting solutions, instead of having to analyze the

entire Pareto set.

The second idea is based on an approach analogous to the weighted sum method on

the Pareto-optimal set except that specific numerical objective function weights or

penalties are not required. The objective functions are ranked ordinally based on their

 8

importance to the decision-maker (ties allowed). To determine a promising set of

recommended solutions, a pruning process is introduced. In this process, the objective

functions are scaled and repeatedly combined into a single objective function using

numerous randomly generated weight sets. Each random weight set adheres to the

decision-maker preferences and is generated from a multi-dimensional weight function

analogous to a multiple dimension probability density function. This is a simple method

that yields efficient results for any user who can prioritize the objective functions to find

appropriate solutions.

In the present work, different multi-objective optimization problems are presented

which (in different ways) incorporate the ideas that are outlined above.

 Chapter 5 presents a newly developed multi-objective evolutionary algorithm for

solving system design allocation problems, MOEA-DAP. Because EAs are appropriate

for high-dimension stochastic problems with many nonlinearities or discontinuities, they

are suited for solving many different problems, including reliability design problems.

This new algorithm uses a genetic algorithm based on rank selection and elitist

reinsertion, and a modifying genetic operator constraint handling method. MOEA-DAP,

mainly differs from other MOEAs in the type of crossover operator used, that appears to

encourage the exploration of the search space. A comparison between one of the most

successful evolutionary algorithms that currently exists, NSGA-II, and the new

algorithm, indicates that MOEA-DAP is more powerful to solve multi-objective design

allocation problems based on the example problems considered.

 Chapter 6 introduces a multi-objective multi-state genetic algorithm (MOMS-GA) to

solve multiple objective multi-state reliability and availability optimization design

 9

problems. MOMS-GA was developed as an extension of MOEA-DAP, which was

developed to consider binary-state reliability. That is, the evolutionary algorithm assumed

that the system and its components could be in either a working or a failed state only. In

contrast, the developed MOMS-GA works under the assumption that both, the system

and its components, experience more than two possible states of performance. The

universal moment generating function (UMGF) approach was implemented in the

algorithm to obtain the system availability.

 Analogous to the allocation of redundant components to meet high reliability

specifications in reliability optimization, there are many other engineering design and

development projects that require the allocation of redundant components such as in the

machine allocation phase in production systems. Despite the clear relationship between

the two types of allocation problems, production scheduling and reliability optimization

are typically treated independently in the research literature and in practice. Chapter 7

shows how system availability can be used within the context of multi-task production

systems. For this purpose, this chapter presents a new multiple objective evolutionary

algorithm to determine optimal configurations of multi-state, multi-task production

systems based on availability analysis. The performance of a manufacturing system is

greatly influenced by its configuration. In the algorithm, availability is used in the context

of multi-task production systems to select a particular configuration that maximizes the

probability of meeting a required demand for each specific task, or the expected

productivity for each task.

 Chapter 8 introduces a multiple objective prioritized genetic algorithm (MoPriGA).

MoPriGA conceptually combines the idea of the working mechanism of MOEA-DAP

 10

and post-Pareto pruning. This algorithm incorporates the knowledge of the decision-

maker objective function preferences based on the inclusion of the uncertain weight

function, fw(w), into the search process. MoPriGA is a powerful algorithm that searches

extensively in the region of interest without reducing the capability of the search, but

simply focusing intensely on the region of the Pareto set of most interest to the decision-

maker.

 There are numerous opportunities for developing novel and original research in the

evolutionary multi-objective optimization area. Chapter 9 presents a discussion of some

of these research opportunities to extend the current research. One of them is the

development of new multipurpose MOEAs with the ability of finding homogeneously

distributed solutions in the final Pareto front with the robustness of balancing proximity

and diversity during the searching process.

 One of the most important tasks in the future research is the incorporation of

uncertainties in MOEAs. Several risk measures, currently used to manage uncertainties in

portfolio optimization, such as value-at-risk, conditional-value-at risk, and expected

shortfall are intended to be adapted in the searching process in order to incorporate risk in

the solution of multi-objective optimization problems. This is an entirely new research

area, and if successful, it will be a great contribution to the research community.

11

2. Metaheuristics literature review

 This dissertation involves the use of metaheuristics to obtain solutions for multiple

objective optimization problems. Solutions from existing metaheuristics are pruned to

obtain smaller, promising Pareto sub-sets and new metaheuristics are designed. In this

chapter, an overview of existing metaheuristic methods is given.

 Metaheuristics can be considered as high level strategies for exploring search spaces

by using different methods. This chapter introduces four of these metaheuristic

optimization techniques: Genetic Algorithms (GAs), Ant Colony Optimization (ACO),

Simulated Annealing (SA) and Tabu Search (TS). GAs locate optima using processes

similar to those in natural selection and genetics. The ACO algorithm consists of a set of

artificial “ants” that incrementally construct solutions by adding components to their

solutions. SA operates analogously to the searching of minimum energy configurations in

metal annealing. TS is a metaheuristic procedure that employs dynamically generated

constraints or tabus to guide the search for optimum solutions (Pham & Karaboga, 2000).

 This thesis is concerned with the development of new multiple objective genetic

algorithms (MOGAs) as solution methods to multiple objective optimization problems.

Therefore, a more detailed description of GAs is presented throughout this chapter.

Although single-objective GAs are different from multiple objective GAs, they both

share basic design characteristics such as the crossover and mutation operators among

others.

12

2.1 Combinatorial optimization problems

 Many optimization problems consist of the search for a “best” configuration of a set

of variables to achieve some goals. Optimization problems generally divide naturally into

two categories: those with continuous decision variables and those with discrete decision

variables, which we call combinatorial. According to Papadimitriou & Steiglitz (1982),

in Combinatorial Optimization (CO) problems, we are searching for an object from a

finite - or possibly countably infinite - set. This object is typically an integer number, a

subset, a permutation, or a graph structure.

 A single objective combinatorial optimization problem, P=(S, f), can be

mathematically defined by:

- a set of variables X=(x1, …, xn);

- variable domains D1, …, Dn;

- constraints among variables;

- an objective function f to be minimized

 The set S of all possible feasible assignments is usually called the search (or solution)

space, as each element of the set can be seen as a candidate solution. To solve a

combinatorial optimization problem, one has to find a solution s*�S with minimum

objective function value, that is, f(s*) � f(s)
s � S. s* is called a global optimal solution

of (S, f).

 Finding a global optimal solution to an instance of some problems can be

prohibitively difficult, but it is often possible to find a solution s' which is best in the

sense that there is nothing better in its neighborhood N(s'), such a solution is called local

optimal with respect to N(s').

13

 To illustrate the difference between local optima and global optima, consider the

instance of an optimization problem (S,f) defined by

F=[0,1]
 R

And the cost function c sketched in Figure 2.1. Let the neighborhood be defined simply

by closeness in Euclidean distance for some �>0.

N(s') = {x: x � F and | x – s' | � � }

Then, if � is suitably small, the points A, B and C are all local optima, but only B is global

optima (Papadimitriou & Steiglitz ,1982) .

F

A

B

C

10

c

F

A

B

C

10

c

A

B

C

10

c

Figure 2.1 Local optima and global optima

2.2 Metaheuristic optimization approaches

 Due to the practical importance of CO problems, many algorithms have been

developed to provide solutions for these types of problems. These algorithms can be

classified as either complete or approximate algorithms. Complete algorithms are

guaranteed to find, for every finite size instance of a CO problem, an optimal solution in

bounded time (see Papadimitriou & Steiglitz (1982) and Nemhauser & Wolsey (1988)).

 Complete methods might need exponential computation time which may be too

computationally expensive for practical purposes. Thus, the use of approximate methods

to solve CO problems has received more and more attention during the last years. In

14

approximate methods, we sacrifice the guarantee of finding optimal solutions for the sake

of getting good solutions in a significantly reduced amount of time.

 In the last 20 to 25 years, a new kind of approximate algorithm has emerged which

basically tries to combine basic heuristic methods in higher level frameworks aimed at

efficiently and effectively exploring a search space (Blum & Roli, 2003). These methods

are commonly called metaheuristics. The term metaheuristic, first introduced in Glover

(1986), derives from the composition of two Greek words. Heuristic derives from the

verb heuriskein which means “to find”, while the suffix meta means “beyond, in an upper

level.”

 In general, metaheuristics can be loosely defined as high level strategies for exploring

search spaces by using different methods. Some of the fundamental properties which

characterize metaheuristics are:

	 Metaheuristics are strategies that “guide” the search process.

	 The goal is to efficiently explore the search space in order to find (near) optimal

solutions.

	 Metaheuristics are not problem-specific.

	 Techniques which constitute metaheuristics algorithms range from simple local

search procedures to complex learning processes.

	 Metaheuristic algorithms are approximate and usually non-deterministic.

	 They may incorporate mechanisms to avoid getting trapped in confined areas of the

search space.

 There are different ways to classify metaheuristics. One of the most common ways is

to classify them as single point local-search methods (or trajectory methods) in which a

15

single solution is improved incrementally by making small changes to it; and population-

based methods, where a population of solutions is evolved in parallel, describing the

evolution of a set of points in the search space.

 Some of the most traditional and important metaheuristics representative of each class

are:

	 Population-based methods: Ant Colony Optimization (ACO) and Evolutionary

Computation (EC) including Genetic Algorithms (GAs)

	 Trajectory methods: Simulated Annealing (SA) and Tabu Search (TS)

 Since this thesis proposal is concerned with the solutions and applications of the most

recent versions of the last method, more emphasis is devoted to its explanation and

understanding, although a brief overview of the other algorithms is also described to

outline the different concepts that are used in the trajectory vs. population-based search

methods.

2.2.1 Population-based methods

2.2.1.1 Ant colony optimization (ACO)

 Ant colony optimization (ACO) is a metaheuristic approach firstly proposed by

Dorigo (1992) for solving discrete combinatorial optimization problems. ACO is inspired

by the behavior of ants when finding the shortest path between a food source and their

nest. Ants deposit a substance called pheromone while exploring paths and also use the

level of concentration of pheromone to decide which path to follow. Since the pheromone

evaporates as time passes, the concentration is strongest in the shortest paths, making

them more attractive for other ants that also contribute to enhance the attractiveness of

16

the path. The ACO algorithm consists of a set of artificial ants that incrementally

construct solutions by adding components to their solutions.

 ACO has been applied successfully to a large number of difficult combinatorial

optimization problems such as the traveling salesman problem, as in Dorigo &

Gambardella (1997), scheduling problems, and routing problems in telecommunication

networks. Further research on the ACO metaheuristic can be found in Dorigo et al.

(1996, 1999).

2.2.1.2 Evolutionary computation (EC)

 Evolutionary computation (EC) algorithms are inspired by nature’s capability to

evolve well adapted living beings to their environment. There has been a variety of

slightly different EC algorithms proposed over the years. Basically they fall into three

different categories which have been developed independently from each other. These are

Evolutionary Programming (EP) developed by Fogel (1962) and Fogel et al. (1966),

Evolutionary Strategies (ES) proposed by Rechenberg (1973) and Genetic Algorithms

(GAs) initially proposed by Holland (1975).

 Evolutionary computation algorithms have been successfully applied to numerous

problems from different domains, including optimization, automatic programming,

machine learning, economics, operations research, ecology, population genetics, studies

of evolution and learning, and social systems (Mitchell, 1996).

 Since, in part, this thesis is concerned with the development of new multiple objective

genetic algorithms (MOGAs) a more detailed description of Genetic Algorithms will be

presented, since they represent the basis for a strong understanding of the current state-of-

the-art multiple objective evolutionary algorithms (MOEAs).

17

2.2.1.3 Genetic algorithms (GAs)

GAs, developed by Holland (1975), are nondeterministic stochastic

search/optimization methods that simulate the process of natural evolution to solve

problems with a complex solution space. GAs are computer-based algorithms that mimic

some of the known mechanisms in evolution, as key elements in their design and

implementation.

In its general form, a GA works as follows: an initial population of individuals is

generated at random or heuristically. At every generation, the individuals in the current

population are decoded and evaluated according to some predefined quality criterion,

referred to as the fitness function.

Creation of new members is done by crossover and mutation operations. The

effectiveness of the crossover operator dictates the rate of convergence; while the

mutation operator prevents the algorithm from prematurely converge to a local optimum.

During the selection procedure, individuals are chosen according to their fitness

value. Individuals with high-fitness values have better chances of reproducing, while

low-fitness ones are more likely to disappear. The procedure is terminated either when

the search process stagnates or when a predefined number of generations is reached.

Genetic algorithms are advanced search mechanisms ideal for exploring large and

complex problem spaces. However, it is important to not forget that GAs are stochastic

iterative processes and they are not guaranteed to converge to the global optimal solution.

Hence, the termination condition may be specified as some fixed maximal number of

generations or as the attainment of an acceptable fitness level.

18

Some of the essential differences between GAs and other forms of optimization,

according to Goldberg (1989) are:

	 GAs search a population of points in parallel, not a single point. This gives the GAs the

power to search “noisy” spaces. That is, instead of relying on a single point to search

through the space, the GAs look at many different areas of the problem space at once.

	 GAs use probabilistic transition rules, not deterministic ones. This is a direct result of the

randomization techniques used by GAs.

	 GAs work on an encoded form of the solution parameters rather than their actual values.

Besides the computational advantage that this represents, it also provides the

possibility of crossover and mutation.

	 GAs use only payoff information to guide themselves to the problem space. GAs do not

require derivative information, or other auxiliary knowledge; only the objective

function and corresponding fitness levels influence the direction of search.

A pseudocode of a basic GA is as follows:

1. [Start] Generate random population of n chromosomes

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps until the

 new population is complete

3.1 [Selection] Select two parent chromosomes from a population according to

 their fitness (the better fitness, the bigger chance to be selected)

3.2 [Crossover] With a crossover probability, crossover the parents to form new

 offspring (children) solutions. If no crossover was performed, offspring is the

 exact copy of parents.

19

3.3 [Mutation] With a mutation probability, mutate new offspring at each locus

 (position in chromosome).

3.4 [Accepting] Place new offspring in the new population

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test] If a defined stopping criterion is satisfied, stop, and return the best solution

 in current population

6. [Loop] Go to Step 2

2.2.1.3.1 Genetic algorithms: basic principles and design issues

 GAs remain the most recognized form of evolutionary computation algorithms. In

GA terminology, a solution vector x�X is called an individual or a chromosome.

Chromosomes are made of discrete units called genes. Each gene controls one or more

features of the chromosome. In the original implementation of GA by Holland (1975),

genes are assumed to be binary digits. In later implementations, more varied gene types

have been introduced. Normally, a chromosome corresponds to a unique solution x in the

solution space. This requires a mapping mechanism between the solution space and the

chromosomes. This mapping is called an encoding. In fact, GA works on the encoding of

a problem, not on the problem itself (Konak et al., 2006).

2.2.1.3.1.1 Encoding or chromosome implementation

 One of the first issues that must be resolved when designing the GA is to decide the

type of encoding to use, which is simply the form of the basic chromosome. This

determines the requirements and complexity of the genetic operators and directly affects

the performance of those operators. In part, the chromosome implementation will be

driven by the type of problem to be solved. (Is it number based; integer or real?, what are

20

the precision requirements? Is it symbolic; arbitrary symbol length or fixed, encoded or

pre-decoded? etc.)

 There are many other ways of encoding: binary encoding, permutation encoding,

value encoding, and tree encoding are among the most used encoding systems. These

encoding schemes are discussed below.

Binary encoding

 Binary encoding is the most common encoding scheme, primarily because the first

research of GA used this type of encoding and because of its relative simplicity. In binary

encoding, every chromosome is a string of bits - 0 or 1.

Figure 2.2 Binary encoding example

 Each chromosome has one binary string and each bit in this string can represent some

characteristic of the solution or the whole string can represent a number.

Permutation encoding

 In permutation encoding, every chromosome is a string of numbers that represent a

position in a sequence. Sometimes, the use of this representation provides a convenient

and natural way of expressing the mapping from representation to problem domain.

 For instance, consider the traveling salesman problem, the task being to find the

shortest route visiting all the cities from a given set exactly once. By using integer labels,

each candidate solution can be uniquely represented as a permutation of these elements.

For example, in a seven-city tour {2, 7, 1, 3, 5, 6, 4} and {6, 4, 7, 1, 5, 3, 2} represent

1 1 0 1 0 0 1 0 1 1 Chromosome 1:

Chromosome 2: 1 0 0 1 1 0 1 0 0 1

1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 Chromosome 1:

Chromosome 2: 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1

21

paths between the cities. Thus the chromosomes used in a GA to solve this problem

would contain seven integers, each integer corresponding to a city in the tour.

Figure 2.3 Permutation encoding example

 Note that permutation encoding and value (integer) encoding differ in the aspect that

in permutation encoding there are no genes with the same value in a given chromosome,

while in value encoding such a situation is allowed.

Value encoding

 Value encoding can be used in problems where some complicated values, such as real

numbers, are used and where binary encoding would not suffice. While value encoding is

very good for some problems, it is often necessary to develop some specific crossover

and mutation techniques for these chromosomes.

 Under the value encoding scheme, every chromosome is a sequence of some values.

Values can be anything connected to the problem, such as (real) numbers, characters, or

any objects.

1.23 2.15 5.683.412.204.921.23 2.15 5.683.412.204.92Chromosome 1:

Chromosome 2:

Chromosome 3:

A B CBDEA B CBDE

N W NENSN W NENS

Figure 2.4 Value encoding example

2 7 1 3 5 6 4 Chromosome 1:

Chromosome 2: 6 4 7 1 5 3 2

2 7 1 3 5 6 4 2 7 1 3 5 6 4 Chromosome 1:

Chromosome 2: 6 4 7 1 5 3 2 6 4 7 1 5 3 2

22

 In chromosome 1 (Figure 2.4), A represents a real value for specific variables; in

chromosome 2, A could represent a particular task, B another, etc. In chromosome 3, N

could be north, S south, etc.

Tree encoding

 Tree encoding is useful for evolving programs (i.e. genetic programming) or any

other structures that can be encoded in trees. In the tree encoding every chromosome is a

tree of some objects, such as functions or commands in the programming language.

IF

anX

Y X

IF

ANDX

Y X

Figure 2.5 Example of a chromosome with tree encoding

 Tree encoding has been used, for example, in heuristics for computing constrained

minimum spanning trees – minimum-weight spanning trees satisfying an additional

constraint, such as on the number of leaves, maximum degree, or diameter of the tree

(Edelson & Gargano, 2000; Zhou & Gen, 1997).

2.2.1.3.1.2 Selection and fitness assignment

 According to Darwin's evolution theory, the fittest members of a population should

survive to create new offspring. The selection operator is intended to improve the average

quality of the population by giving higher quality individual a higher probability of

survival. There are many methods in selecting the best chromosomes. Examples are

roulette wheel selection, stochastic universal sampling selection, rank selection,

tournament selection, steady-state selection and some others.

23

Roulette wheel selection

 First, parents are selected according to their fitness. The better the chromosomes are,

the more chances to be selected they have. The simplest selection scheme is roulette-

wheel selection, also called stochastic sampling with replacement (Baker, 1987). This is a

stochastic algorithm and involves the following technique:

1. The individuals are mapped to contiguous segments of a line, such that each

individual's segment is equal in size to its fitness.

2. A random number is generated and the individual whose segment spans the random

number is selected.

3. The process is repeated until the desired number of individuals is obtained (called

mating population).

 This technique is analogous to a roulette wheel with each slice proportional in size to

the fitness function of every chromosome. The bigger the value is, the larger the section

is.

 As an example, Table 2.1 shows the selection probability for seven individuals.

Individual 1 is the fittest individual and occupies the largest interval, whereas individual

6, as the second least fit individual, has the smallest interval on the line (see Figure 2.6).

Individual 7, the least fit interval, has a fitness value of 0 and get no chance for

reproduction.

Table 2.1 Selection probability and fitness value

Individual 1 2 3 4 5 6 7
Fitness value 3.0 2.5 2.0 1.5 1.0 0.5 0
Selection probability 0.2857 0.2381 0.1905 0.1429 0.0952 0.0476 0

24

 For selecting the mating population, the appropriate number of uniformly distributed

random numbers (uniform distributed between 0.0 and 1.0) is independently generated,

i.e. consider a sample of 5 random numbers: 0.42, 0.86, 0.99, 0.05, 0.78.

 Figure 2.6 shows the selection process of the individuals for the example in table

together with the above sample trials. After selection, the mating population consists of

the individuals: 2, 5, 6, 1, 4. The roulette-wheel selection algorithm provides a zero bias

but does not guarantee minimum spread.

0 0.2857 0.5238 0.7143 0.8572 0.9524 1

individual 1 2 3 4 5 6

trial 1 trial 2 trial 3trial 4 trial 5

Figure 2.6 Roulette-wheel selection

Stochastic universal sampling

 Stochastic universal sampling provides zero bias and minimum spread (Baker, 1987).

The individuals are mapped to contiguous segments of a line, such that each individual's

segment is equal in size to its fitness exactly as in roulette-wheel selection. Here equally

spaced pointers are placed over the line as many as there are individuals to be selected.

Consider NPointer to be the number of individuals to be selected. Then, the distance

between the pointers are 1/NPointer and the position of the first pointer is given by a

randomly generated number in the range [0, 1/NPointer].

 Using the information from Table 2.2, consider four individuals to be selected. Thus,

the distance between the pointers is 1/4=0.25. Figure 2.7 shows the selection for the

above example.

25

 Randomly sample 1 number in the range [0, 0.25]: 0.22. After selection the mating

population consists of the individuals: 1, 2, 4, 6.

0 0.2857 0.5238 0.7143 0.8572 0.9524 1

individual 1 2 3 4 5 6

Random number

pointer 1 pointer 2 pointer 3 pointer 4

Figure 2.7 Stochastic universal sampling

Rank selection

 Rank selection ranks the population first and then every chromosome receives fitness

value determined by this ranking. The worst will have the fitness 1, the second worst 2,

etc. and the best will have fitness N (number of chromosomes in the population). The

fitness assigned to each individual depends only on its position in the individuals rank

and not on the actual objective value.

 Rank-based fitness assignment overcomes the scaling problems of the proportional

fitness assignment. (Stagnation in the case where the selective pressure is too small, or

premature convergence where selection has caused the search to narrow down too

quickly.) The reproductive range is limited, so that no individuals generate an excessive

number of offspring. Ranking introduces a uniform scaling across the population and

provides a simple and effective way of controlling selective pressure.

 Rank-based fitness assignment behaves in a more robust manner than proportional

fitness assignment and, thus, is a good method to choose. (Whitley, 1989 and Bäch &

Hoffmeister, 1991).

26

Tournament selection

 Tournament selection involves randomly choosing two candidates from the current

population. Then, the fitness of these two candidates are compared and the one with the

highest one is selected for mating. Tournament selection can be generalized to include

more than two individuals being chosen for competition and the best of this group is

selected to reproduce.

 To illustrate, consider one round of tournament selection with k=2 as in Figure 2.8, in

which individuals 132 and 28 are chosen for competition. Individual 28 would then be

selected since its fitness (0.125) is larger than the fitness of individual 132 (0.056). Thus,

individual 28 would be considered for mating purposes. This process is repeated a

specified number of times or until the mating pool is complete.

1 3 2 4 7 9 5 6

6 2 7 1 3 0 1 4

1 3 2 4 7 9 5 6

6 2 7 1 3 0 1 46 2 7 1 3 0 1 4

6 2 7 1 3 0 1 4
7 2 6 0 4 9 5 1

4 2 2 1 3 0 5 84 2 2 1 3 0 5 8

7 2 6 0 4 9 5 1

3 9 2 2 7 0 5 4

8 1 3 4 5 2 2 68 1 3 4 5 2 2 6

5 3 8 4 2 9 1 7

2 3 7 6 5 8 4 92 3 7 6 5 8 4 9

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

9 3 7 0 2 0 4 5

6 9 3 1 4 2 8 09 3 1 4 2 8 0

3 9 2 1 3 4 6 53 9 2 1 3 4 6 5

8 1 3 4 5 2 2 6

9 3 7 0 2 0 4 5

2 3 7 6 5 8 4 9

6 9 3 1 4 2 8 0

Mating pool

Ind. 132- fitness value: 0.056

Ind. 28- fitness value: 0.125

Ind. 19- fitness value: 0.12

Ind. 86- fitness value: 0.19

Ind. 44- fitness value: 0.024

Ind. 123- fitness value: 0.27

Ind. 11- fitness value: 0.283

Ind. 17- fitness value: 0.095

Ind. 39- fitness value: 0.047

Ind. 101- fitness value: 0.142

Ind. 92- fitness value: 0.34

Ind. 5- fitness value: 0.112

Ind. 11

Ind. 28

Ind. 86

Ind. 101

Ind. 123

Ind. 92

Figure 2.8 Tournament selection, k=2

27

Steady-state selection

 The steady-state selection GA works in the following way. In every generation a few

good (with higher fitness) chromosomes are selected for creating new offspring. Then

some bad (with lower fitness) chromosomes are removed and the new offspring is placed

in their place. The rest of population survives to new generation.

2.2.1.3.1.3 Elitism

Elitism is the name of the method that first copies the best chromosome (or few best

chromosomes) to the new population. The rest of the population is constructed in ways

described above. Elitism can rapidly increase the performance of GA, because it prevents

the loss of the best found solutions.

2.2.1.3.1.4 Crossover and mutation

 Crossover and mutation are the most important part of a GA. The performance of the

algorithm is mainly influenced by these two operators. The primary purpose of the

crossover operator is to get genetic material from the previous generation to the

subsequent generation, while the main purpose of the mutation operator is to introduce a

certain amount of randomness to the search. It can help in the search to find solutions that

crossover alone might not encounter.

 Usually, there is a predefined probability of procreation via each of these operators.

Traditionally, these probability values are selected such that crossover is the most

frequently used, with mutation being resorted to only relatively rarely. This is because the

mutation operator is a random operator and serves to introduce diversity in the

population.

28

 Crossover is made in the hope that new chromosomes contain good parts of old

chromosomes, and therefore, the new chromosomes are better. However, it is good to

leave some part of the old population to survive to the next generation.

 Mutation generally prevents the GA from falling into local extremes. Mutation should

not occur very often, because then GA will in fact change to random search.

 There are many different types of crossover operators presented in the literature.

Some of them are: single-point crossover, two-point crossover, uniform crossover, order

crossover, position based crossover (Syswerda, 1990), partially mapped crossover

(Goldberg & Lingle, 1985), etc. However, the type of encoding in most cases dictates the

type of crossover to utilize. Some of the most common crossover operators and type of

mutation used in binary, permutation, value, and tree encoded individuals are presented

next:

2.2.1.3.1.4.1 Crossover and mutation for binary encoded individuals

For binary encoded chromosomes, there can be distinguished several types of

crossover techniques, some of them are:

Single-point crossover: a crossover position is selected at random, then the first child

contains the first part of parent 1 and, the rest is copied from the other parent as shown in

Figure 2.9.

1 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Offspring 1

Offspring 2

Parent 1

Parent 2

1 0 1 0 0 1 01 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Offspring 1

Offspring 2

1 0 1 0 1 1 0

0 0 1 0 0 1 0

1 0 1 0 1 1 01 0 1 0 1 1 0

0 0 1 0 0 1 00 0 1 0 0 1 0

Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 2.9 Single-point crossover

29

Double-point crossover: in double-point crossover two crossover positions are selected

uniformly at random and the variables exchanged between the individuals between these

points, then two new offspring are produced as seen in Figure 2.10.

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Parent 1

Parent 2

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

Parent 1

Parent 2

1 0 1 0 0 1 01 0 1 0 0 1 0

0 0 1 0 1 1 0

1 0 1 0 1 1 0

0 0 1 0 0 1 0

1 0 1 0 1 1 01 0 1 0 1 1 0

0 0 1 0 0 1 00 0 1 0 0 1 0

Parent 1

Parent 2

Figure 2.10 Double-point crossover

Multi-point crossover: For multi-point crossover, k crossover positions are selected,

then the variables between successive crossover points are exchanged between the two

parents to produce two new offspring. Figure 2.11 illustrates an example of multi-point

crossover.

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 0 1

1 0 1 0 1 1 0

0 0 1 0 0 0 1

Parent 1

Parent 2

1 1

1 0

1 0

1 1

Offspring 1

Offspring 2

Offspring 1

Offspring 2

1 0 1 0 0 1 0

0 0 1 0 1 0 1

1 0 1 0 1 1 0

0 0 1 0 0 0 1

Parent 1

Parent 2

1 1

1 0

1 0

1 1

Figure 2.11 Multi-point crossover

 The idea behind multi-point, and indeed many of the variations on the crossover

operator, is that parts of the chromosome representation that contribute most to the

performance of a particular individual may not necessarily be contained in adjacent

substrings (Booker, 1987). Furthermore, the disruptive nature of multi-point crossover

appears to encourage the exploration of the search space, rather than favoring the

convergence to highly fit individuals early in the search, thus making the search more

robust (Spears & De Jong, 1991).

30

Mutation for binary encoded individuals:

 Bit inversion is one mutation technique for binary encoded chromosomes.

Bit inversion - Selected bits are inverted (one or more). For binary valued individuals

mutation means the flipping of variable values, because every variable has only two

states. Thus, the size of the mutation step is always one. For every individual, the variable

value to change is chosen (mostly uniform at random). In Figure 2.12, the individual is

mutated in position k=4.

1 1 0 1 0 0 1 01 1 0 1 0 0 1 0 1 1 0 0 0 0 1 01 1 0 0 0 0 1 0

mutated chromosome

Figure 2.12 Mutation in binary encoded individuals

2.2.1.3.1.4.2 Crossover and mutation for permutation encoded individuals

Single point crossover and order changing are presented as the crossover and

mutation techniques for permutation encoded individuals.

Single point crossover – as shown in Figure 2.13, one crossover point is selected, the

permutation is copied from the first parent till the crossover point, then the other parent is

scanned and if the number is not yet in the offspring, it is added.

4 5 3 6 8 9 7 2 14 5 3 6 8 9 7 2 1 1 2 3 4 5 6 8 9 71 2 3 4 5 6 8 9 7+ =

Parent 1 Parent 2 Offspring

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

Figure 2.13 Single-point crossover for permutation encoded individuals

Mutation for permutation encoded individuals:

Order changing - Two numbers in the string are selected and exchanged as shown in

Figure 2.14.

31

1 2 3 4 5 6 7 8 9 1 7 3 4 5 6 2 8 9

mutated chromosome

Figure 2.14 Order changing mutation for permutation encoded individuals

2.2.1.3.1.4.3 Crossover and mutation for value encoded individuals

 All crossovers from binary encoding can be used here as well. Figure 2.15 shows an

example of double-point crossover for chromosomes encoded with integer variables.

2 7 1 3 5 6 4

6 4 7 1 5 3 2

2 7 7 1 5 6 4

6 4 1 3 5 3 2

Offspring 1

Offspring 2

Parent 1

Parent 2

2 7 1 3 5 6 42 7 1 3 5 6 4

6 4 7 1 5 3 26 4 7 1 5 3 2

2 7 7 1 5 6 4

6 4 1 3 5 3 2

Offspring 1

Offspring 2

2 7 7 1 5 6 4

6 4 1 3 5 3 2

2 7 7 1 5 6 42 7 7 1 5 6 4

6 4 1 3 5 3 26 4 1 3 5 3 2

Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 2.15 Double-point crossover

Mutation for value encoded individuals:

 In the case of having integer encoded chromosomes, mutation can be similar to the

one for permutation encoded individuals (order changing) if the problem allows this type

of change.

 For the case of having real encoded individuals, a small number is added to (or

subtracted from) selected values with a low probability. Thus, the probability of mutating

a variable (mutation rate) and the size of the changes for each mutated variable (mutation

step) must be defined. Figure 2.16 shows the case in which randomly selected, positions

3 and 4 of the chromosome are selected to be mutated. For the first selected gene, a small

number (0.12) was subtracted from the current value in that gene, and for the second

selected gene, the same quantity was added, instead of subtracted, to the current value.

32

1.23 2.15 5.683.412.204.921.23 2.15 5.683.412.204.92 1.23 2.15 5.683.412.324.801.23 2.15 5.683.412.324.80

mutated chromosome

Figure 2.16 Real value mutation

 The mutation rate is independent of the size of the population, and the size of the

mutation step, is usually difficult to choose. The optimal step-size depends on the

problem considered and may even vary during the optimization process. It is known that

small steps (small mutation steps) are often successful, especially when the individual is

already well adapted. However, larger changes (large mutation steps) can, when

successful, produce good results much quicker. Thus, a good mutation operator should

often produce small step-sizes with a high probability and large step-sizes with a low

probability.

 Generally, the probability of mutating a variable is inversely proportional to the

number of variables (dimensions). The more dimensions one individual has, the smaller

is the mutation probability. Different papers reported results for the optimal mutation

rate. In Mühlenbein & Schlierkamp-Voosen (1993), it is reported that a mutation rate of

1/n (n = number of variables of an individual) produced good results for a wide variety of

test functions. Similar results are reported in (Bäck, 1993) and (Bäck, 1996) for a binary

valued representation.

2.2.1.3.1.4.4 Crossover and mutation for tree encoded individuals

Tree crossover – One crossover point is selected in both parents, and parents are divided

at that point and the parts below the crossover points are exchanged to produce new

offspring.

33

+

-x

y 3

+

-x

y 3

+

^

*5

x 2

^

*5

x 2

=

+

*x

x 2

+

*x

x 2

Parent 1 Parent 2 Offspring
Figure 2.17 Crossover for tree encoded individuals

Mutation for tree encoded individuals:

Changing operator (number) mutation – in this type of mutation, some nodes are selected

to be changed.

2.2.1.3.1.5 Optimal crossover and mutation rates in genetic search

 There are no universally accepted general rules to choose the values of basic GA

operators for solving specific optimization problems. The best way to determine the

proper combination of these values is by experimental comparison between GAs with

different parameters (Lisnianski & Levitin, 2003).

 However, numerous experimental studies have developed some rules of thumb

concerning ranges of GA parameters. For example, De Jong (1975) suggests that the

mutation probability, which is a bit reversal event, should occur with small probability,

pmut � 0.001. Grefenstette (1986) suggests a pmut � 0.01, while in Schaffer et al. (1989) a

range is considered, pmut � [0.005, 0.01]. Analogously, for the crossover rate, De Jong

(1975) suggests that the crossover should occur with probability, pcross � 0.6. Grefenstette

(1986) suggests a pcross � 0.95, while in Schaffer et al. (1989) a range is again considered

pcross � [0.75, 0.95].

34

2.2.1.3.1.6 Reinsertion

When less offspring are produced than the size of the original population, then to

maintain the size of the original population, the offspring have to be reinserted into the

old population. Similarly, if not all offspring are to be used at each generation or if more

offspring are generated than the size of the old population, then a reinsertion scheme

must be used to determine which individuals are to exist in the new population. There are

different schemes of global reinsertion:

	 Pure reinsertion: Produce as many offspring as parents and replace all parents by the

offspring.

	 Uniform reinsertion: Produce less offspring than parents and replace parents

uniformly at random.

	 Elitist reinsertion: Produce less offspring than parents and replace the worst parents.

	 Fitness-based reinsertion: Produce more offspring than needed for reinsertion and

reinsert only the best offspring.

 Pure reinsertion is the simplest reinsertion scheme. Every individual lives one

generation only. This scheme is used in the simple genetic algorithm. However, it is very

likely, that very good individuals are replaced without producing better offspring, and

thus, good information is lost.

2.2.2 Trajectory methods

2.2.2.1 Simulated annealing (SA)

 Simulated Annealing (SA) is commonly said to be the oldest among the

metaheuristics and surely one of the first algorithms that had an explicit strategy to

escape from local minima. The origins of the algorithm are in statistical mechanics

35

(Metropolis algorithm) and it was first presented as a search algorithm for CO problems

in Kirkpatrick et al. (1983) and Cerny (1985). The fundamental idea is that improving

candidate solutions are always accepted while non-improving solutions are accepted with

a certain probability. The probability of accepting non-improving solutions is calculated

according to the current temperature of the algorithm.

 This process is analogous to the annealing process of metals and glass, which assume

a low energy configuration when cooled with an appropriate cooling schedule. Regarding

the search process, this means that the algorithm is the result of two combined strategies:

random walk and iterative improvement.

 The algorithm starts by generating an initial solution (either randomly or heuristically

constructed) and with a high initial temperature, T, which corresponds to a high

probability of accepting non-improving solutions. The temperature is gradually decreased

as the search progresses so that the probability of accepting non-improving solutions is

also reduced. At temperature zero, T0, the algorithm operates like an improving heuristic,

i.e., only improving solutions are accepted. The pseudo-code of the SA metaheuristic is

shown below:

1. Generate initial solution x

2. Set initial temperature

3. Generate candidate solution x’ from current solution x

4. If fitness (x’) > fitness(x), then x=x’

5. If fitness (x’) � fitness(x), then calculate Acceptance Probability

 5.1 If Acceptance Probability > random [0,1] then x=x’

6. Update temperature according to cooling schedule

36

7. If stopping condition is reached, stop, otherwise go to step 3.

 The choice of an appropriate cooling schedule is crucial for the performance of the

algorithm. The cooling schedule defines the value of T at each iteration k. The cooling

schedule and the initial temperature should be adapted to the particular problem instance,

since the cost of escaping from local minima depends on the structure of the search

landscape. A simple way of empirically determining the starting temperature T0 is to

initially sample the search space with a random walk to roughly evaluate the average and

the variance of objective function values.

 Generally, SA can find good solutions for a wide variety of problems, it is easy to

implement and is capable of handling almost any optimization problem and any

constraint. However, some of the difficulties reported with this method are long run

times. SA is nowadays used as a component in more advanced metaheuristics, rather than

applied as stand-alone search algorithm.

2.2.2.2 Tabu search (TS)

 Tabu search is in many ways similar to simulated annealing: they both move from

one solution to another with the next solution being possibly worse than the one before.

However, the basic difference between SA and TS lies in the mechanism used for

approving a candidate solution. In TS the mechanism is not probabilistic, but rather of a

deterministic nature (Pinedo & Chao, 1999).

 Generally speaking, TS is a meta-heuristic that guides a local heuristic search strategy

to explore the solution space beyond local optimality. It was originally proposed by

Glover (1989, 1990).

37

 The local procedure is a search that uses an operation called a move to define the

neighborhood of any given solution. The neighborhood of the current solution is explored

and the best solution is selected as the new current solution. The best solution in the

neighborhood is selected, even if it is worse than the current solution.

 In TS the Tabu List plays an important role. It keeps track of previously explored

solutions and prohibits TS from revisiting them again. In this way, TS can overcome

local minima by forcing the acceptance of solutions worse than the current solution.

 The general framework of TS consists of several steps which are shown below:

1. Initialization: a starting solution s is generated by choosing random values for x.

This solution is evaluated by the evaluation function, and solution s is stored in

the algorithm’s memory. This memory is called the Tabu List.

2. Neighborhood exploration: all possible neighbors of solution s are generated and

evaluated. Neighboring solutions are solutions which can be reached from the

current solution by a simple, basic transformation of the current solution.

Solutions which are present in the Tabu List are considered unreachable

neighbors.

3. New current solution: a new current solution is chosen from the explored

neighborhood. This solution cannot be in the Tabu List and has to have the best

evaluation value from all reachable neighbors. The evaluation value can be worse

compared with the current solution. In this way the algorithm is able to overcome

local minima. The new current solution is added to the Tabu List.

38

4. Stop: if no more neighbors are present (all are tabu) or a certain evaluation value

or a predetermined number of iterations is reached, the algorithm stops, otherwise

the algorithm continues with step 2.

 The flexibility and variety of principles that are incorporated in the Tabu Search have

made this Metaheuristic very appealing to the research community. A wide range of

combinatorial problems have been solved using TS (Glover & Laguna, 1997). Since Tabu

Search can be conceptualized as a framework rather than a method, many of its

components can be designed specifically for target applications just by following its

principles. Therefore, recently, more powerful versions of TS have been proposed, these

versions retain more information.

2.3 Summary

 Metaheuristics can be loosely defined as high level strategies for exploring search

spaces by using different methods.

 This section provided a brief overview of some of the most well-known metaheuristic

algorithms and their classification. Also, a general introduction to single objective GAs

was given, as well as a reasonable description of their design issues.

 There are several different philosophies apparent in the existing metaheuristics. Some

of them can be seen as “intelligent” extensions of local search algorithms. The goal of

this kind of metaheuristic is to escape from local minima in order to proceed in the

exploration of the search space and to move on to find other hopefully better local

minima. This is, for example, the case in Tabu Search and Simulated Annealing. These

39

metaheuristics (also called trajectory methods) work on one or several neighborhood

structure(s) imposed on the members (the solutions) of the search space.

 We can find a different philosophy in algorithms like Ant Colony Optimization and

Evolutionary Computation. They incorporate a learning component in the sense that they

implicitly or explicitly try to learn correlations between decision variables to identify

high quality areas in the search space. In Evolutionary Computation algorithms, a

population of individuals is modified by recombination and mutation operators, and in

Ant Colony Optimization a colony of artificial ants is used to construct solutions guided

by the pheromone trails and heuristic information.

 The most recognized form of evolutionary computation algorithms are Genetic

Algorithms (GAs) which in general, can be more efficient and out-perform gradient

search methods if your search space has many local optima. Since the genetic algorithm

traverses the search space using the genotype rather than the phenotype, it is less likely to

prematurely converge to a local high or low.

 Although GAs use the idea of randomness when performing a search, it must be

clearly understood that GAs are not simply random search algorithms. Random search

algorithms can be inherently inefficient due to the directionless nature of the search. The

GAs are not directionless. They utilize knowledge from previous generations of strings in

order to construct new strings that will approach the optimal solution. Thus, GAs are a

form of a randomized search and the way that the strings are chosen and combined

comprise a stochastic process (Lisnianski & Levitin, 2003).

 In Chapter 4, a multi-purpose multiple objective evolutionary algorithm (NSGA-II) is

used to solve two-well known multiple objective problems and, in Chapters 5 through 8,

40

new multiple objective evolutionary algorithms to solve different multiple objective

optimization problems are developed.

41

3. Multi-objective optimization

In this chapter, the two primary approaches to identify solution(s) to multiple

objective problems are reviewed. The first approach involves determining the relative

importance of the attributes, and aggregating the attributes into some kind of overall

composite objective function; while the second approach involves populating a number

of feasible solutions along a Pareto frontier and the final solution is a set of non-

dominated solutions. Multi-objective evolutionary algorithms (MOEAs) are the most

notable methods of this second approach.

In Chapter 2, the basic design issues in single-objective GAs were introduced, and

thus, some of the aspects that make single-objective genetic algorithms different from

multiple-objective genetic algorithms are also reviewed. However, due to their

importance, most of the effort is concentrated to present an extensive overview of some

of the currently state-of-the-art MOEAs.

3.1 Multi-objective optimization solution methods

 Although there are several approaches to solve multi-objective problems, the two

most common are: 1) combine them into a single objective function such as the weighted

sum method, goal programming or utility functions and apply methods for single

objective optimization, or 2) obtain a set of non-dominated Pareto-optimal solutions. For

the first approach, a single “optimal” solution is generally found, whereas in the second

approach, a potentially large Pareto-optimal set is identified.

42

3.1.1 Single-objective approaches

The presence of several conflicting objectives is typical for engineering problems.

The most common approach for multi-objective optimization is by aggregating the

different objectives into one composite objective function. Optimization is then

conducted with one optimal solution as the result. The weighted sum method, goal

programming, utility theory, etc., are examples of this approach.

The weighted sum method consists of combining all the objective functions together

using different weighting coefficients for each one. This method is the simplest possible

approach to solve the multi-objective problem, but the challenge with this approach is

determining the appropriate set of weights when the user does not have enough

information about the problem or has only an intuition of the importance of one objective

over the other. In practice, it is difficult to establish a relationship between these weights

and the real outcome in terms of objective functions values.

Goal programming deals with the achievement of prescribed goals or targets. In this

method, the user has to assign targets or goals that he/she wishes to achieve for each

objective. This technique yields a dominated solution if the goal point is chosen in the

feasible domain. However, the decision-maker must devise the appropriate weights for

the objectives. This can also be a difficult task in many cases, unless there is prior

knowledge about the shape of the search space, the relative importance of the objectives

and meaningful goals.

 For modeling designer’s preference structure, one of the commonly used methods is

based on the utility theory (Keeney and Raifa, 1976). A utility or value function

combines all objectives into one composite function, and then any appropriate single

43

objective function method can be used. Although utility functions offer the ideal way to

solve a multiple objective problem (Steuer 1989), one difficulty associated with using the

utility function approach is that, in practice, no precise approach exists to obtain the

mathematical representation of the decision-maker’s true preference or utility function in

a multi-objective setting. This can be problematic for the non-specialist.

3.1.2 Multiple objective evolutionary algorithms (MOEAs)

 Evolutionary algorithms are the standard tool for many multi-objective optimization

problems. Their parallel search leads to an approximation of the Pareto front in a single

optimization run. This is a major advantage compared to traditional optimization

algorithms like gradient-based methods that converge to a single Pareto solution.

Furthermore, traditional methods require an aggregation of all objectives to a single

objective. This is difficult if the shape of the Pareto front is unknown before optimization.

Evolutionary algorithms can exploit the population-based feature and converge in

parallel to the Pareto front. While optimizing, different solutions in the population

converge to different areas of the Pareto front, and thus an approximation of the Pareto

front can be obtained in a single optimization run. The research interest has increased

over the past twenty years on the development and application of evolutionary algorithms

for Pareto optimization. Several promising methods have been proposed and compared

by several researchers, e.g.:

	 VEGA (vector evaluated genetic algorithm) by Shaffer (1985)

	 MOGA (multi-objective genetic algorithm) by Fonseca and Flemming (1993)

	 NPGA (niched-Pareto genetic algorithm) by Horn et al. (1994).

44

	 NSGA (nondominated sorting genetic algorithm) developed by Srinivas & Deb

(1995).

	 SPEA (strength Pareto evolutionary algorithm) by Zitzler & Thiele (1999).

	 NSGA-II by Deb et al. (2002).

	 PAES (Pareto-Archived Evolutionary Strategy) by Knowles & Corne (2000).

In general, MOEAs are suited to multi-objective optimization because they are able to

capture multiple Pareto-optimal solutions in a single simulation run and may exploit

similarities of solutions by recombination. Summaries and comparisons of different

MOEAs are described by Konak et al. (2006).

3.1.3 Differences between MOGAs and single GAs

 In single-objective GAs, individual performance, as measured by the objective

function and individual fitness, are so closely related that the objective function is

sometimes referred to as the fitness function. The two are, however, not the same. In fact,

whereas the objective function characterizes the problem and cannot be changed at will,

assigned fitness is a direct measure of individual reproductive ability, forming an integral

part of the GA search strategy.

 Generally, multi-objective evolutionary algorithms use standard genetic operators as

described in Section 2 and the differences between these algorithms concentrates on the

strategies used for selection and diversification. The alternative approaches employ

neighborhood search, which needs to be specifically designed according to the problem.

 One of the desirable characteristics that all MOGAs try to achieve is diversity.

Diversity is the term used to describe the relative uniqueness of each individual in the

population. Typically diversity refers to genetic variation, such that evenly-spaced

45

solutions in the final Pareto front are obtained. Figures 3.1 and 3.2 illustrate the cases in

which diversity of solutions is achieved and not achieved, respectively.

min f1

m
in

 f 2

True Pareto front

Last known Pareto front

min f1

m
in

 f 2

True Pareto front

Last known Pareto front

min f1

m
in

 f 2

True Pareto front

Last known Pareto front

min f1

m
in

 f 2

True Pareto front

Last known Pareto front

True Pareto front

Last known Pareto front

min f1

m
in

 f 2

True Pareto front

Last known Pareto front

True Pareto front

Last known Pareto front

 Diversity is considered favorable as the greater the variety of genes available to the

genetic algorithm the greater the likelihood of the system identifying alternate solutions.

Moreover, maintaining diversity of individuals within a population is necessary for the

long term success of any evolutionary system. Genetic diversity helps a population adapt

quickly to changes in the environment, and it allows the population to continue searching

for productive niches (neighborhoods), avoiding becoming trapped at local optima.

3.2 State-of-the-art multi-objective evolutionary algorithms

 Hertz & Klober (2000) state that there is not a clear and widely accepted definition of

evolutionary algorithms. However, they suggest that in a strict sense, an evolutionary

algorithm involves a population of solutions, evolves this population by means of

cooperation (recombination) and self-adaptation (mutation), and uses a coded

representation of the solutions.

 A number of different MOEAs have been proposed in recent years and the increasing

interest on these methods has motivated the extension of evolutionary algorithms

Figure 3.1 Population diversity is achieved Figure 3.2 Population diversity is not achieved

46

originally proposed for single-objective optimization to multi-objective variants. Some of

these MOEAs are described next.

3.2.1 Vector Evaluated Genetic Algorithm (VEGA) [Schaffer 1984, 1985]

VEGA is perhaps the first genetic algorithm in which the concept of dominance was

implemented for the evaluation and selection of individuals. The name of the algorithm

results from the optimization of a vector of objectives instead of a scalar in single

objective optimization The VEGA algorithm divides the population into k subpopulations

according to k objective functions. The individuals in each subpopulation are assigned a

fitness value based on the corresponding objective function. In this algorithm, selection is

done for each of the k objectives separately, filling equally sized portions of the mating

pool. Afterwards, the matting pool is shuffled, and crossover and mutation are performed.

A drawback of this algorithm is that it tends to bias selection in favor to those

individuals at the extreme (that solely minimize/maximize one objective), and thus, the

algorithm fails to sustain diversity among the Pareto-optimal solutions and converges

near one of the individual solutions. Figure 3.3 shows the VEGA selection mechanism

considering two objective functions.

47

N/2 considering

N/2 considering f2

f1

max f1

m
ax

 f 2

N/2 considering

N/2 considering f2

f1

max f1

m
ax

 f 2

Figure 3.3 The VEGA selection mechanism

3.2.2 Multi-objective Genetic Algorithm (MOGA) [Fonseca & Fleming 1993]

 In the Fonseca & Fleming MOGA, each individual is ranked according to their degree

of dominance. The more population members that dominate an individual, the higher the

ranking for the individual. An individual’s ranking equals the number of individuals that

it is dominated by plus one (as in Figure 3.4). Thus, individuals on the Pareto front have a

ranking of one, as they are non-dominated. The rankings are then scaled to score

individuals in the population. The fitness is assigned to each individual using an

interpolation between the best and the worst rank. A scheme for niche (neighborhood)

formation is used in which fitness in the objective domain is shared among non-

dominated individuals in order to maintain a uniform distribution of individuals over the

trade-off surface. The fitness of all individuals in the same rank is averaged and this value

is assigned to all of them. A summary of MOGA as presented in Coello Coello et al.

(2002) is presented in Figure 3.5.

48

1

1

1

1

1

2

2

5
2

max f
1

1

1

1

1

2

2

5

m
ax

 f
2

1

1

1

1

1

2

2

5
2

max f
1

1

1

1

1

2

2

5

m
ax

 f
2

Figure 3.4 Population ranking according to MOGA

1. Initialize Population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute Niche count
5. Assign linearly scaled fitness
6. Assign Shared fitness
7. For i=1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance
- Compute niche count
- Assign linearly scaled fitness
- Assign shared fitness

8. End loop

1. Initialize Population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute Niche count
5. Assign linearly scaled fitness
6. Assign Shared fitness
7. For i=1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance
- Compute niche count
- Assign linearly scaled fitness
- Assign shared fitness

8. End loop

Figure 3.5 MOGA overview

3.2.3 Niched Pareto Genetic Algorithm (NPGA) [Horn et al. 1994]

The Niched Pareto Genetic Algorithm (NPGA) (Horn et al., 1994; Horn, 1997) uses

the concept of Pareto dominance and tournament selection to solve multiple objective

optimization problems. This was one of the first algorithms to directly address the

49

diversity of the approximation set. The main difference between NPGA and traditional

GAs is localized in the selection mechanism. In this algorithm the selection of individuals

is conducted using a Pareto domination tournament selection in conjunction with fitness

sharing to maintain a diverse population.

Pareto domination tournaments are binary tournaments in which the domination of

each candidate is assessed with respect to a randomly chosen sample, Tdom, typically 10%

of the population. The two individuals competing for selection are compared against this

subset, Tdom, of the population, and if one of the competing individuals is dominated by

any member of the set and the other is not, then the latter is chosen as winner of the

tournament. If both individuals are dominated (or not dominated), the result of the

tournament is decided by sharing: i.e., the individual that has the least individuals in its

niche (defined by �share) is selected for reproduction.

In Figure 3.6, individuals in a niche “share” the niche fitness and Figure 3.7 presents

a summary of NPGA as presented in Coello Coello et al. (2002). NPGA has been shown

to be inferior to most of the more recent MOEAs. A comparison by Zitzler et al. (2000)

ranked NPGA fifth out of six considered MOEAs.

max f1

m
ax

 f
2

Niche count = 4

Niche count = 3

Niche count = 6

max f1

m
ax

 f
2

Niche count = 4

Niche count = 3

Niche count = 6

Figure 3.6 Niche count in NPGA

50

1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament selection
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament selection
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

Figure 3.7 NPGA overview

An improved version of NPGA, called NPGA II, was presented by Erickson et al.

(2001). They use Pareto ranking but keep tournament selection. Niche counts in NPGA II

are calculated using individuals in the partially filled next generation which is known as

continuously updated fitness sharing, and was proposed by Oei et al. (1991). Figure 3.8

presents a summary of NPGA 2, as in Coello Coello et al. (2002).

51

1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament Selection
•Using Degree of Domination as Rank
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

1. Initialize Population
2. Evaluate objective values
3. For i = 1 to G

- Specialized Binary Tournament Selection
•Using Degree of Domination as Rank
•Only Candidate 1 Dominated: Select Candidate 2
•Only Candidate 2 Dominated: Select Candidate 1
•Both Candidates Dominated or Both Not Dominated:

-Perform Specialized fitness Sharing
-Return Candidate with Lower Niche count

- Single point crossover
- Mutation
- Evaluate objective values

4. End loop

Figure 3.8 NPGA 2 overview

3.2.4 Nondominated Sorting Genetic Algorithm (NSGA) [Srinivas & Deb 1995]

NSGA also classifies individuals according to dominance in a ranking scheme similar

to the one used in by Fonseca & Flemming (1993). NSGA was proposed by Srinivas &

Deb (1995). The idea behind NSGA is that a ranking selection method is used to

emphasize good solutions and a niche method is used to maintain stable subpopulations.

While it follows the standard GA for parent selection and offspring generation, it varies

in the manner in which the selection operator works. In NSGA the fitness of the

individuals is determined by using the concept of Pareto dominance as follows. At the

beginning of the search, an initial population is created, and then, the non-dominated

individuals in the current population are identified. All of these non-dominated solutions

belong to the first rank and the same high fitness value is assigned to them to ensure that

they have equal reproductive potential. Figure 3.9 depicts the nondominated fronts

according to NSGA for a two-objective problem to minimize f1 and to maximize f2.

52

Rank 1
Rank 2
Rank 3

min f
1

2
m

ax
 f

m
ax

 f Rank 1
Rank 2
Rank 3

min f
1

2
m

ax
 f

m
ax

 f
2

m
ax

 f
m

ax
 f

m
ax

 f
m

ax
 f

Figure 3.9 Nondominated fronts according to NSGA

 To maintain diversity, solutions found in the first front, undergo a fitness sharing

procedure. Fitness sharing encourages the search in unexplored sections of a Pareto front.

Sharing is achieved by performing selection operation using degraded fitness values

obtained by dividing the original fitness value of an individual by a quantity proportional

to the number of individuals around it. After sharing their fitness value, the individuals

are temporarily ignored, and the rest of the population is processed in the same way to

identify a new set of non-dominated individuals. A fitness value that is smaller than the

previous one is assigned to all the individuals belonging to the second non-dominated

front. This process continues until the whole population is classified into non-dominated

fronts with different fitness values.

 Once fitness has been assigned, the population is reproduced according to the fitness

values. Since individuals in the first front have the maximum fitness value, they receive

more copies than the rest of the population. The efficiency of NSGA mainly is due to the

way multiple objectives are reduced to a dummy fitness function using non-dominated

sorting procedures.

53

 The parameter, �share, can be calculated as follows, as in Deb & Goldberg (1989).

pshare q
5.0

��

 Where q is the desired number of distinct Pareto-optimal solutions and p is the

number of decision variables. A summary of the NSGA algorithm is shown in Figure

3.10.

1. Initialize population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute niche count
5. Assign shared fitness
6. For i =1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance
- Compute Niche count
- Assign shared fitness

7. End loop

1. Initialize population
2. Evaluate objective values
3. Assign rank based on Pareto dominance
4. Compute niche count
5. Assign shared fitness
6. For i =1 to G

- Selection via stochastic universal sampling
- Single point crossover
- Mutation
- Evaluate objective values
- Assign rank based on Pareto dominance
- Compute Niche count
- Assign shared fitness

7. End loop

Figure 3.10 NSGA overview

3.2.5 Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler & Thiele 1998, 1999]

SPEA was proposed as an approach to incorporate several of the desirable features of

other multi-objective evolutionary algorithms. SPEA uses two populations, P and P'.

Throughout the process, copies of all non-dominated individuals are stored in P'. Each

individual is given a fitness value, fi, based on Pareto dominance. The fitness of the

members of P' is calculated as a function of how many individuals in P they dominate.

That is, each solution i in P' is assigned a real value si �[0,1), called strength. Let n

denote the number of individuals in P that are dominated by i and assume N is the size of

P. Then si is defined by:

54

1�
�

N
nsi

Thus, the fitness fi of i is equal to its strength i.e., fi = si. Then, those individuals in P' or

those that are nondominated are ranked as indicated in Figure 3.11. A summary of the

SPEA algorithm is shown in Figure 3.12.

1)(
bydominatedsindividualofnumber

�
�

Psize
if i

Individual in P’

Individual in P

max f1

m
ax

 f
2

max f1

4/6

m
ax

 f
2

2/6

4/6

1/6

Individual in P’

Individual in P

max f1

m
ax

 f
2

max f1

4/6

m
ax

 f
2

2/6

4/6

1/6

max f1

m
ax

 f
2

max f1

4/6

m
ax

 f
2

2/6

4/6

1/6

Figure 3.11 Population ranking according to SPEA

1. Initialize Population P
2. Create empty external set P'
3. For i = 1 to G

- Copy nondominated members of P to P'
- Remove elements from P' which are covered by any other member of P'
- prune P‘ (using clustering) when the maximum capacity of P' has been exceeded
- Compute fitness of each individual in P and in P'
- Use binary tournament selection with replacement to select individuals

from P+P' (multiset union) until the mating pool is full
- Apply Crossover and Mutation

4. End loop

1. Initialize Population P
2. Create empty external set P'
3. For i = 1 to G

- Copy nondominated members of P to P'
- Remove elements from P' which are covered by any other member of P'
- prune P‘ (using clustering) when the maximum capacity of P' has been exceeded
- Compute fitness of each individual in P and in P'
- Use binary tournament selection with replacement to select individuals

from P+P' (multiset union) until the mating pool is full
- Apply Crossover and Mutation

4. End loop

Figure 3.12 SPEA overview

55

 The improved version of this technique, called SPEA2 was proposed by Zitzler et al.

(2001). The main differences of SPEA2 in comparison to SPEA are:

	 An improved fitness assignment scheme is used, which takes into account for

each individual how many other individuals it dominates and it is dominated by.

	 A nearest neighbor density estimation technique is incorporated which allows a

more precise guidance of the search process.

	 A new archive truncation method to guarantee the preservation of boundary

solutions.

3.2.6 Fast Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) [Deb et al.,

2002]

 The NSGA-II algorithm is an improved version of the NSGA. This algorithm does

not have the problems of using the sharing function method, including the appropriate

selection of the sharing parameter �share.

 In NSGA-II, the selection of individuals is performed as follows: First, an offspring

population Qt is created by using the parent population Pt. However, instead of finding

the nondominated front of Qt only, the two populations are first combined together to

form Rt of size 2N. Then, a nondominated sorting is used to classify the entire population

Rt. Although this requires more effort compared to performing a nondominated sorting on

Qt alone, it allows a global nondomination check among the offspring and parent

solutions. Once the nondominated sorting is over, the new population is filled by

solutions of different nondominated fronts, one at a time.

 The filling starts with the best nondominated front and continues with solutions of the

second nondominated front, to be followed by the third nondominated front and so on.

56

After all solutions have been assigned a rank based on the nondomination criterion, a

niching strategy, called crowding distance, is employed to estimate the distance between

the closest two members for each solution.

 The crowding distance parameter that is incorporated in this algorithm serves as an

estimate of the perimeter of the cuboids formed by using the nearest neighbors as the

vertices. Figure 3.13 shows how the crowding distance of an individual is calculated. It is

performed by obtaining the average Euclidean distance of two points in either side of the

point in question along each of the objectives.

min f1

m
in

 f
2

min f1

m
in

 f
2

i

i + 1

i - 1

cuboid

min f1

m
in

 f
2

min f1

m
in

 f
2

i

i + 1

i - 1

cuboid

Figure 3.13 Crowding distance calculation

 NSGA-II uses the concept of controlled elitism to tune the mutation rate and the

elitism rate to attain equilibrium between the two. Controlled elitism limits the maximum

number of individuals in the population. This algorithm is efficient in obtaining good

Pareto-optimal fronts for any number of objectives and can accommodate any number of

constraints as well. A schematic representation of the NSGA-II algorithm is shown in

Figure 3.14, and a general summary for the algorithm is shown in Figure 3.15.

57

F3

Parent
Pt

Offspring

Qt

Rt

Nondominated

sorting
F1

F2

F3

F4

F5

Crowding distance

sorting

Rejected

F1

F2

F3

Parent

Pt+1

Offspring
Qt+1

selection
crossover, mutation

Parent

Pt+1

Offspring

Qt+1

F3

Parent
Pt

Offspring

Qt

Rt

Nondominated

sorting
F1

F2

F3

F4

F5

Crowding distance

sorting

Rejected

F1

F2

F3

Parent

Pt+1

Offspring
Qt+1

selection
crossover, mutation

Parent

Pt+1

Offspring

Qt+1

Figure 3.14 Working mechanism of the NSGA-II algorithm

1. Initialize Population P
2. Generate random population – size M
3. Evaluate objective values
4. Assign rank based on Pareto dominance – “sort”
5. Generate child population

-Binary tournament selection
-Recombination and Mutation

6. For i = 1 to G
- With parent and child population

Assign rank based on Pareto dominance – “sort” starting from the first front
until M individual fount

Determine crowding distance between points on each front
- Select points (elitism) on the lower front (with lower rank) and that are outside

the crowding distance
- Create next generation

Binary tournament selection
Recombination and Mutation

- Increment generation index
7. End loop

Figure 3.15 NSGA-II overview

58

3.2.7 Pareto-Archived Evolutionary Strategy (PAES) [Knowles & Corne, 1999;

2000]

The algorithm PAES was proposed by Knowles & Corne (1999, 2000). PAES is a

multi-objective optimizer which uses (� “population size” + � “number of solutions per

generation”) local search evolution strategy. PAES has three variants, which are

(1+1)-PAES, (1+�)-PAES and (�+�)-PAES.

The algorithm in its simplest form is a (1+1) evolution strategy employing local

search but using a reference archive of previously found solutions in order to identify the

approximate dominance ranking of the current candidate solution vectors. Nonetheless, it

is capable of finding diverse solutions in the Pareto optimal set because it maintains an

archive of non-dominated solutions which it exploits to accurately estimate the quality of

new candidate solutions.

At any iteration t, a candidate solution ct and a mutated solution mt must be compared

for dominance. Acceptance is simple if one solution dominates the other. If neither

solution dominates the other, the new candidate solution is compared with the reference

population of previously archived non-dominated solutions. If the comparison fails to

favor one solution over the other, the chosen solution is the one which resides in the least

crowded region of the space. The PAES algorithm has three main parts; the candidate

solution generator, the candidate solution acceptance and the non-dominated solutions

archive. Figure 3.16 presents a summary of PAES algorithm.

59

1. Initialize Single Population parent c and add to Archive
2. Mutate c to produce child m and evaluate fitness

-If (c dominates m) discard m
-else if (m dominates c): replace c with m, and add m to Archive
-else if (m is dominated by any member of the Archive) discard m
-else apply test (c, m, Archive) to determine which becomes the new current
solution and whether to add m to the Archive

3. Until a termination criterion has been reached, return to 2

Figure 3.16 PAES pseudocode

The main feature of PAES is the use of an adaptive grid on which the objective

function space is located using a coordinate system. Such a grid is the diversity

maintenance mechanism of PAES and it is the main feature of this algorithm. The grid is

created by bisecting k times the function space of dimension d = g + 1. The control of 2kd

grid cells means the allocation of a large amount of physical memory for even small

problems. For instance, 10 functions and 5 bisections of the space produce 250 cells.

3.3 Summary

A description of the two primary approaches to identify solution(s) to this particular

type of problems was briefly introduced in this section. However, this chapter was more

devoted to present the working mechanism of several state-of-the-art multi-objective

evolutionary algorithms.

 The MOEAs described in this chapter are just a sample of the vast number of

algorithms proposed in the literature in recent years. Other approaches not discussed in

this section include the multi-objective messy genetic algorithm (MOMGA) developed

by Van Valdhuizen & Lamont (2000b). A revised extension of MOMGA (called

60

MOMGA-II) has been proposed by Zydallis et al. (2001). Essentially, in the recent years,

many other extensions of evolutionary algorithms for multi-objective optimization have

been proposed. For example, variants of micro-genetic algorithms, cellular genetic

algorithms, particle swarm optimization methods, agent-based algorithms among others.

For a more detailed review of the principles of evolutionary multi-objective optimization

and recent developments in this field the reader may refer to Coello Coello et al. (2002)

and Van Valdhuizen & Lamont (2000a).

 In this thesis, several MOEAs are used and some developed to solve engineering

optimization problems and we extend MOEAs to achieve balance between single

solutions and Pareto-optimal solutions. In next chapter, two new approaches are

presented which offer distinct benefits, which are pruning by using data clustering and

the non-numerical ranking preferences method.

 61

4. Post-Pareto optimality

For multi-objective optimization problems, there are two primary approaches to

identify solution(s) to these particular types of problems. The first involves determining

the relative importance of the attributes and aggregating the attributes into some kind of

overall objective function, e.g., utility or value function. Then, any appropriate single-

objective optimization or mathematical programming algorithm can be applied. Solving

the optimization problem with this approach generates an “optimal” solution, but only for

a specified set of quantified weights or specific utility function. Unfortunately, the precise

value of the objective function weights used or the form of the selected utility function

dictates the final solution, and thus, broad and detailed knowledge of the system is

demanded.

The second approach involves determining a number of feasible solutions along a

Pareto frontier and the final solution is a set of non-dominated solutions. In this case, the

Pareto set can contain a large number (in some cases, thousands) of solutions. From the

decision-maker’s perspective, consideration of all the nondominated solutions can be

prohibitive and inefficient.

The methods developed and presented in this chapter take the view that, for many

multi-objective engineering design optimization problems, a balance between single

solutions and Pareto-optimal sets can be advantageous. Thus, the post-Pareto optimality

analysis methods proposed in this chapter represent a compromise between the two

 62

extremes in Figure 4.1 with the aim to achieve a smaller practical set, called the pruned

Pareto set that can be more easily analyzed by the decision maker.

Single solution Pareto optimalityContinuumSingle solution Pareto optimalityContinuum

Figure 4.1 Achieving a balance between single solutions and Pareto optimal solutions

 The two pruning methods presented in this Chapter are applied after the

determination of Pareto-optimal sets by a MOEA. However, in Chapter 8, one of the

pruning techniques presented in this chapter is incorporated as part of the MOEA body.

This aspect makes the analysis of the solution of multiple objective problems more

efficient.

4.1 Post-Pareto optimality analysis

Although, several methods for solving multi-objective optimization problems have

been developed and studied as seen in Chapter 3, little prior work has been done on the

evaluation of results obtained in multi-objective optimization. Korhonen & Halme (1990)

suggested the use of a value function to help the decision-maker identify the most

preferred solution in multi-objective optimization problems. Venkat et al. (2004)

introduced and analyzed the Greedy Algorithm (GR) to obtain a sub-set of Pareto optima

from a large set of the Pareto set. The selection of the sub-set was based on maximizing a

scalarized function of the vector of percentile ordinal rankings of the Pareto optima

within the large set.

The two main objectives of the post-Pareto optimality analysis are: i) obtain a smaller

sub-set of preferred solutions from the large Pareto-optimal set, and ii) the evaluation and

interpretation of the results obtained from any optimization method.

 63

The post-Pareto analysis and the selection of one solution over the others can be quite

a challenging problem since, in the absence of subjective or judgmental information,

none of the corresponding trade-offs can be said to be better than the others. Thus, the

motivation for the work presented next stems from challenges encountered during the

post-Pareto analysis phase. To reduce or limit intelligently the size of the Pareto-optimal

set, we proposed the following two methods: 1) pruning by using non-numerical

objective function ranking preferences method, and 2) pruning by using data clustering,

as presented in Taboada et al. (2005, 2007a).

 As in Taboada et al. (2007a), Figure 4.2 shows how to select the preferred Pareto

optimal set pruning procedure once the Pareto-optimal set or sub-set has been obtained.

The decision-maker should select the first method if he/she knows in advance the

objective function preferences as shown in Figure 4.2. Essentially, this method should be

chosen by more experienced decision-makers that are familiar with the importance of the

objective functions. On the other hand, if the decision-maker does not know a priori the

objective function preferences, he/she may prefer to use the second method to cluster

solutions in regions, and then, just analyze k solutions or focus on the most interesting

regions to concentrate his/her efforts.

 64

Pareto-optimal set

D E C I S I O N – M A K I N G S T A G E

objective function
preference

information?

Non-numerical
Ranking

Preferences
method

Data
Clustering

Still large
number of
solutions?

Pruned Pareto-optimal set

yes no

yes

no

Figure 4.2 Methods to prune the Pareto-optimal set

 The combination of the two proposed methods is ideally suited to address complex

multi-objective optimization problems in which the Pareto-optimal set is very large. For

this type of problem, where the Pareto-optimal set can contain thousands of solutions, the

combination of the two pruning methods is preferred. In such cases, the pruning by using

the non-numerical objective function ranking preferences method should be initially

applied to obtain a Pareto sub-set that reflects the decision-maker’s objective function

preference, and then, the pruning by using data clustering can be applied to further reduce

the size of the Pareto sub-set. Thus, the decision-maker gets a smaller set of solutions to

analyze and select one solution for implementation (Taboada & Coit, 2007).

4.2 Pruning by using the non-numerical ranking preferences method

The first method is based on a non-numerical ranking of the objective functions based

on their relative importance. The strength of this method is precisely that the decision-

maker only ranks non-numerically (in order of relative importance) the objective

 65

functions but does not have to select specific weight values. Instead, he/she prioritizes or

ranks the objective functions (ties allowed) based on their relative importance. This

pruning method helps the decision-maker select solutions that reflect his/her preferences.

In a broader sense, this method is a pseudo-ranking scheme that accommodates

preferences but it is different from assigning preselected weights or utility functions. This

method allows objectives to have the same rank. One example of ranking objective

functions is:

Objective f1(x) is more important than objective f3(x)

Objective f3(x) is more important than objective f2(x)

Ranked objectives = { f1(x), f3(x), f2(x)} : f1(x) � f3(x) � f2(x)

Based on the objective function rankings, a weight function fw(w) is developed,

indicating the likelihood of different weight combinations. The weight function fw(w) is

derived from a region where all the weights in this set sum up to one as shown in Figure

4.3 for a case with three objective functions.

To illustrate, consider a case where the objective function preference is f1 � f2 � f3,

and the objectives have all been similarly scaled. The exact value of the weights is not

known but we know that w1>w2>w3. The resulting region where the weights are sampled,

and then combined with the objective functions, is shown in Figure 4.4.

 66

Figure 4.3 Plane containing set of possible eeights

Figure 4.4 Weight region for the f1 � f2 � f3 objective function preference

The weights are uniformly sampled from the region of interest with a weight function

that is defined as follows:

1 2 3(w)
0, elsewherew

c w w w
f

 � ��
� �

�

The marginal distribution of w1 (for w1>w2>w3) has been derived, in which fw(w) is

integrated over w2, where c is a constant. For three objective functions,

 67

�

�
�
�

�

�
�
�

�

�

���
�
�

�
�
 !

���
�
�

�
�
 !

��

��
2

1

1
2
1,

2
1

2
112

2
1

3
1,

2
1

2
312

3
10,0

),()(

11

11

1

2211
w

ww

ww

ww

w

dwwwfwf

Knowing that:

1)(
1

3/1
111
�� dwwfw

Then,

1
2
1

2
1

2
1

2
3

1

2/1

3/1

1

2/1
111 ��
�
�

�
�
 !��

�
�

�
�
 !� � dwwcdwwc

Solving for c we get that c = 12, thus the probability density function of w1 is given by:

�

�
�
�

�

�
�
�

�

�

���
�
�

�
�
 !

���
�
�

�
�
 !

��

��
2

1

1
2
1

2
1

2
112

2
1

3
1

2
1

2
312

3
100

),()(

11

11

1

2211
w

ww

ww

ww

w

dwwwfwf

The marginal cumulative distribution function of w1 is:

�

�
�
�

�

��
�

�

�

��!�!

���!

��

��
2

1

1
2
1263

2
1

3
1169

3
100

),()(

11
2
1

11
2
1

1

2211
w

ww

www

www

w

dwwwfwF

The distribution function for w2 conditioning on w1 is given by:

1

12

),(
)|(21

12|
w

w
ww f

wwfwwf �

For
2
1

3
1

1 �� w , we get:

 68

�
�

�
�

�

��!!

!��
�

1211

12

12|

2
1

2
1

2
1

2
3

2
1

2
100

)|(
12

wwww

ww
wwf ww

And for 1
2
1

1 �� w :

�
�

�
�

�

��!!

!��
�

1211

12

12|

2
1

2
1

2
1

2
1

2
1

2
100

)|(
12

wwww

ww
wwf ww

 Finally, by knowing the values of w1 and w2, the value of w3 is just 1 - w1 - w2.

Then, random, but ranked, weights sets can be generated using Monte Carlo

simulation methods. These weights adhere to the ranking pattern used for the objective

functions. A substantially large set of weights is generated, with each set containing one

weight for each objective. As an example, Figure 4.5 shows the distribution of 5,000

randomly generated weights. The y-axis represents the frequency or number of times a

specific weight was generated and the x-axis represents the value of each individual

weight. As can be seen, the possible values for the weights in the case f1 � f2 � f3 are:

1
3
1

1 �� w ,
2
10 2 �� w and

3
10 3 �� w .

 69

Distribution of three weights generated using uncertain
weight function

0

50

100

150

200

250

300

350

0.01 0.1 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1

weights

fr
eq

ue
nc

y

w1 w2 w3

Distribution of three weights generated using uncertain
weight function

0

50

100

150

200

250

300

350

0.01 0.1 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1

weights

fr
eq

ue
nc

y

w1 w2 w3

Distribution of three weights generated using uncertain
weight function

0

50

100

150

200

250

300

350

0.01 0.1 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1

weights

fr
eq

ue
nc

y

w1 w2 w3

Distribution of three weights generated using uncertain
weight function

0

50

100

150

200

250

300

350

0.01 0.1 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1

weights

fr
eq

ue
nc

y

w1 w2 w3

Figure 4.5 Distribution of random weights used for a three objective problem

These weight sets are used to repeatedly combine the scaled objectives into a single

objective function using the randomly generated weight sets. For all minimization

objectives, without loss of generality, he solution that yields the minimum value for f ' is

recorded and gets a counter of 1. This is repeated with the next set of weights, and the

best solution for that combination is identified. This process is repeated many times (e.g.,

several thousand), and at the end, the solutions that have non-zero counter values will be

those solutions that form the pruned Pareto set.

This method has been observed to achieve as much as a 90% reduction of the entire

Pareto-optimal set (Taboada et al., 2005; 2007a; Taboada & Coit, 2006a). In Section

4.6.2.1.2, a more formally mathematical formulation is presented to demonstrate the

strength of the non-numerical ranking preferences method and, to show that some of the

Pareto-optimal solutions will never be preferred given the objective function preferences.

This approach is an extension of earlier research considering multi-criteria decision

making with a finite set of alternatives. Lahdelma et al. (1998) considered uncertainty in

weight selection similar to the uncertain weight function proposed here. Rietveld &

 70

Ouwersloot (1992) and Hinloopen et al. (2004) also describe solution methods where

solutions must be selected based on ordinal data. The uncertain weight function

combined with Tabu search was demonstrated by Kultural-Konak et al. (2006). This is an

effective approach but it is potentially inefficient, and later, in Chapter 8, a new

integrated algorithm is presented.

4.3 Pruning by using data clustering

This second method is a new approach based on the concepts of data clustering after

determination of a Pareto-optimal set. This new approach offers benefits compared to

previous approaches because it provides practical support to the decision-maker during

the selection step. The main idea of this approach is to systematically assist the decision-

maker during the post-Pareto analysis stage to select his/her choice without precise

quantified knowledge of the relative importance of the objective functions.

In multicriteria optimization, data clustering can be a useful exploratory technique in

knowledge discovery. Since it groups similar solutions together, it allows the decision-

maker to identify potentially meaningful trade-offs among the solutions contained in the

Pareto-optimal set without requiring the decision-maker to explicitly define objective

function weights or utility functions.

4.3.1 Data clustering background

Cluster analysis is a multivariate analysis technique that is defined as the process of

organizing objects in a database into clusters/groups such that objects within the same

cluster have a high degree of similarity, while objects belonging to different clusters have

a high degree of dissimilarity (Kaufman & Rousseeuw, 1990).

 71

Probably, the most popular nonhierarchical partitioning method is the “k-means”

clustering algorithm. The general algorithm was introduced by Cox (1957) and

MacQueen (1967) first named it “k-means.” Since then it has become widely used and is

classified as a partitional or non-hierarchical clustering method (Jain & Dubes, 1988).

 The k-means algorithm is well known for its efficiency in clustering data sets. The

grouping is done by calculating the centroid for each group, and assigning each

observation to the group with the closest centroid. For the membership function, each

data point belongs to its nearest center, forming a partition of the data. The objective

function that the k-means algorithm optimizes is:

� �
2

1 ,..,1
||||min),(ji

n

i kj
CXKM cv !� "

�
�

where:

vi = ith data vector

cj = jth cluster centroid

X = set of data vectors

C = set of centroids

 This objective function is used in the algorithm to minimize the within-cluster

variance (the squared distance between each center and its assigned data points). This

algorithm involves the iterative assignment of cluster membership and re-calculation of

centroids. The membership function for k-means is as follows, where mKM(cl|vi) is a 0-1

function, taking the value of 1 if data vector vi is assigned to cluster cl, and 0 otherwise.

��

�
�
� !�

�

otherwise;0

||||minargif;1
)|(

2
ji

j
ilKM

l
m

cv
vc

 72

The performance of the k-means clustering algorithm may be improved by estimating

the ideal number of clusters represented in the data. Thus, different cluster validity

indices have been suggested to address this problem. A cluster validity index indicates

the quality of a resulting clustering process. Then, the clustering partition that optimizes

the validity index under consideration is chosen as the best partition. The silhouette plot

method is one of these cluster validity techniques.

Rousseeuw (1987) and Rousseeuw et al. (1989) suggested a graphical display, the

silhouette plot, to evaluate the quality of a clustering allocation, independently of the

clustering technique that is used. The silhouette value for each point is a measure of how

similar that point is to points in its own cluster compared to points in other clusters. s(i) is

known as the silhouette width. This value is a confidence indicator on the membership of

the ith sample in cluster Xj and it is defined as:

)}(),(max{
)()()(
ibia

iaibis !
�

where a(i) is the average distance from the ith point to all the other points in its cluster,

and b(i) is the average distance from the ith point to all the points in the nearest neighbor

cluster.

The value of s(i) ranges from +1 to –1. A value of +1, indicates points that are very

distant from neighboring clusters; a value of 0, indicates points that are not distinctly in

one cluster or another, and a value of –1, indicates points that are probably assigned to

the wrong cluster.

For a given cluster, Xj, it is possible to calculate a cluster silhouette Sj, which

characterizes the heterogeneity and isolation properties of such a cluster. It is calculated

as the average of the sum of all samples’ silhouette widths in Xj.

 73

Moreover, for any partition, a global silhouette value or silhouette index, GSu, can be

used as an effective validity index for a partition U.

||

)(

j

Xi
j X

is
S j

"
�

�

"
�

�
c

j
ju S

c
GS

1

1

It has been demonstrated that this equation can be applied to estimate the “optimal” or

preferred number of clusters for a partition U (Rousseeuw, 1987). In this case the

partition with the maximum silhouette index value is taken as the optimal partition.

4.3.2 Description of the new approach

The developed approach is based on the following steps:

1. Obtain the entire Pareto-optimal set or sub-set of Pareto solutions by using a multi-

purpose MOEA (such as NSGA-II).

2. Apply the k-means algorithm to form clusters on the solutions contained in the Pareto

set. The solution vectors are defined by the specific objective function values, fi(x),

for each prospective solution. Normalization of the objective function values is

recommended to have comparable units. Several replicates are needed to avoid local

optima. The solution to consider is the one with the lowest total sum of distances over

all replicates.

3. To determine the “optimal” or preferred number of clusters, k, in this set, silhouette

plots are used. A value of the silhouette width, s(i), is obtained for several values of k.

The clustering with the highest average silhouette width, GSu, is selected as the

“optimal” or preferred number of clusters in the Pareto-optimal set.

 74

4. For each cluster, select a representative solution. To do this, the solution that is

closest to its respective cluster centroid is chosen as a good representative solution.

This results in a dramatic reduction in the number of solutions that the decision-

maker must consider.

5. Analyze the representative solutions based on the priorities and preferences of the

decision-maker. At this stage, the decision-maker can either select one solution

among the k representative solutions, or he/she can decide to perform further

investigation on the cluster that he/she is most interested. An unbiased suggestion is

to focus on the cluster that has the solutions that conform to the “knee” region (Das,

1999; Branke et al., 2004). The “knee” is formed by those solutions of the Pareto-

optimal front where a small improvement in one objective would lead to a large

deterioration in at least one other objective.

6. Then, Steps 2, 3 and 4 are applied again on this reduced space formed by the

solutions in the selected “knee” cluster.

 By following this approach, one systematically contracts the subspace in the direction

of the most relevant solutions for the decision-maker until a unique selection can be

made.

4.3.3 MATLAB� implementation

 After obtaining the Pareto set from a particular MOEA, e.g., from the NSGA-II in the

preliminary research results, a MATLAB� code was developed to perform the steps of

the proposed technique. From normalized data, the code runs the k-means algorithm,

from two to a specified number of means; it calculates average silhouette values and the

clustering with the highest average silhouette width, GSu, is selected as the “optimal”

 75

number of clusters in the Pareto-optimal set. An overview of the algorithmic

implementation is shown in Figure 4.6.

For C=2 to MC *maximum number of centroids*
For Z=1 to R *number of replicates*

Randomly select initial values for C
For each vi � X, assign all vi to cj � C according to nearest cj

Recompute cj
Until no change in cj
Return C, KM(X,C) and membership
Store values for C, KM(X,C) and membership
Z=Z+1

end
end
Select the minimum KM(X,C) obtained for all replicates

end
Obtain silhouette values, s(i)
Choose the cluster with the maximum silhouette width, GSu, of all centroids considered

For C=2 to MC *maximum number of centroids*
For Z=1 to R *number of replicates*

Randomly select initial values for C
For each vi � X, assign all vi to cj � C according to nearest cj

Recompute cj
Until no change in cj
Return C, KM(X,C) and membership
Store values for C, KM(X,C) and membership
Z=Z+1

end
end
Select the minimum KM(X,C) obtained for all replicates

end
Obtain silhouette values, s(i)
Choose the cluster with the maximum silhouette width, GSu, of all centroids considered

Figure 4.6 Overview of clustering algorithmic implementation

 Notice that k-means can converge to a local optimum, in this case, a partition of

points in which moving any single point to a different cluster increases the total sum of

distances. This problem can be solved by performing several replicates, each with a new

set of initial cluster centroid positions. That is, each of the replicates begins from a

different randomly selected set of initial centroids. The final solution is the one with the

lowest total sum of distances over all replicates.

4.4 Numerical examples

 Three examples of two different multi-objective problems are used to illustrate the

two proposed methods to narrow the search space. The first example presented is the

well-known redundancy allocation problem (RAP) which was formulated as a multi-

objective problem to maximize the system reliability and to minimize cost and weight of

the system. The second and third examples address the scheduling of a Printed Wiring

Board (PWB) manufacturing line (Yu et al., 2002) formulated with four objectives.

 76

4.5 Redundancy allocation problem (RAP)

4.5.1 Description of the RAP

The RAP is a system design optimization problem. This system has a total of s

subsystems arranged in series. For each subsystem, there are ni functionally equivalent

components arranged in parallel, thus ni is a decision variable. Each component has

potentially different levels of cost, weight, reliability and other characteristics. The ni

components are to be selected from mi available component types, where multiple copies

of each type can be selected. An example of a series-parallel system is depicted in Figure

4.7.

s

1

2

ns

1

1

2

n1

s

1

2

ns

s

1

2

ns

1

2

ns

1

2

ns

1

1

2

n1

1

1

2

n1

1

2

n1

1

2

n1

Figure 4.7 General series-parallel redundancy system

The use of redundancy improves system reliability but also adds cost, weight, etc., to

the system. There are generally system-level constraints and the problem is to select the

design configuration that maximizes some stated objective functions.

4.5.2 Previous research

Solving the redundancy allocation problem has been shown to be NP-hard by Chern

(1992). Different optimization approaches have been previously used to determine

optimal or good solutions to this problem.

It has been solved using dynamic programming by Bellman (1957) and Bellman &

Dreyfus (1958) to maximize reliability for a system given a single cost constraint. For

 77

each subsystem, there was only one component choice so the problem was to identify the

optimal levels of redundancy, ni. Fyffe et al. (1968) also used a dynamic programming

approach and solved a more difficult design problem. They considered a system with 14

subsystems, and constraints on both cost and weight. For each subsystem, there were

three or four different component choices each with different reliability, cost and weight.

Bulfin & Liu (1985) used integer programming and they formulated the problem as a

knapsack problem using surrogate constraints.

Unfortunately, the mathematical programming approaches are only applicable to a

limited or restricted problem domain and require simplifying assumptions, which limits

the search to an artificially restricted search space. In these formulations, once a

component selection is made, only the same component type can be used to provide

redundancy. This restriction is required so the selected mathematical programming tool

can be applied, but it is not an actual imposition of the engineering design problem. Thus,

the resulting solution is only “optimal” for a restricted solution space, and better solutions

can be found if the restriction is no longer imposed.

GAs offer many advantages compared to alternative methods used to solve the RAP.

Coit & Smith (1996a, 1996b) used GAs to obtain solutions to the redundancy allocation

problem. In their research, they solved 33 variations of the Fyffe’s problem using a GA.

Several techniques considering multiple criteria have been presented in the literature.

A multi-objective formulation of a reliability allocation problem to maximize system

reliability and minimize the system cost was considered by Sakawa (1978) using the

surrogate worth trade-off method. Inagaki et al. (1978) used interactive optimization to

design a system with minimum cost and weight and maximum reliability.

 78

Dhingra (1992) used goal programming and goal-attainment to generate Pareto-

optimal solutions to solve a special case of a multi-objective RAP. Busacca et al. (2001)

proposed a multi-objective GA approach that was applied to a design problem with the

aim to identify the optimal system configuration and components with respect to

reliability and cost objectives.

Kulturel-Konak et al. (2003) solved this problem using Tabu Search method

considering three objective functions; maximization of system reliability and

minimization of cost and weight of the system.

The following notation is used throughout the remainder of this example:

Notation:

R, C, W = system level reliability, cost and weight or constraint limits

s = number of subsystems

xij = quantity of the jth available component used in subsystem i

� �
imiiii xxx ,2,1, ,...,,�x

mi = total number of available components for subsystem i

nmax,i = user defined maximum number of components in parallel used in subsystem i

Ri (xi) = reliability of subsystem i

cij, wij, rij = cost, weight and reliability for the jth available component for subsystem i

i = weight used for objective i in the weighted sum method

 It is important to highlight that # i and wij, are conceptually very different and only

for this current example (RAP) the w’s are used to refer to component weights and the

#'s to refer to objective function weights.

4.5.3 Problem formulation

It is well known that redundant elements increase system reliability, but also increase

the procurement cost and system weight. A non-trivial question arises then regarding how

 79

to optimally allocate redundant elements. The answer depends on the criterion of

optimality and on the structure of the designed system.

Different problem formulations of the RAP have been presented in the literature. For

instance, Problem P1 maximizes the system reliability given restrictions on the system

cost, C, and the system weight, W. Alternatively, Problem P2 is formulated as a multi-

objective optimization problem by using a weighted sum approach. Problem P3 is a

multi-criteria formulation of the redundancy allocation problem, in which a Pareto-

optimal set of solutions is obtained. The formulation of the three problems is shown

below:

Problem P1: Reliability maximization

)(max
1

i

s

i
iR x$

�

Subject to:

Cxc
s

i
ij

m

j
ij

i

�""
� �1 1

Wxw
s

i

m

j
ijij

i

�""
� �1 1

"
�

�
��
im

j
iij sifornx

1
max, ,..,2,11

� �,..2,1,0�ijx

Given the overall restrictions on system cost of C and weight of W, the problem is to

determine which design alternative to select with the specified level of component

reliability, and how many redundant components to use in order to achieve the maximum

reliability.

 80

Problem P2: Weighted sum method formulation

%
&

'
(
)

*
!%

&

'
(
)

*
!%

&

'
(
)

*
�!! """"$

� �� ��

s

i

m

j
ijij

s

i

m

j
ijij

s

i
ii

ii

xwxcxRWCR
1 1

3
1 1

2
1

1321)(max ######

Subject to:

"
�

�
��
im

j
iij sinx

1
max, ,..,2,1for1

"
�

�
n

i
i

1
1#

� �,..2,1,0�ijx

The solution for this multi-objective formulation is determined by combining the

three objectives into a single objective problem. This requires the user to a priori specify

objective function weights to represent the relative importance to the individual objective

function and one single set of weighting coefficients yields only one “optimal” solution.

Therefore, choosing the correct set of weights, that provide the decision-maker an

attractive set of solutions can be highly challenging, yet it will dictate the final solution.

Often, decision-makers lack the training or detailed knowledge to precisely select the

weights. This is undesirable because even small alterations to the weights can lead to

very different final solutions.

Problem P3: Multi-objective formulation

%
&

'
(
)

*
%
&

'
(
)

*
%
&

'
(
)

* """"$
� �� ��

s

i

m

j
ijij

s

i

m

j
ijij

s

i
ii

ii

xwxcxR
1 11 11

min,min,)(max

 Subject to

"
�

�
��
im

j
iij sinx

1
max, ,..,2,1for1

� �,..2,1,0�ijx

 81

 For the multi-objective RAP, the objectives are to determine the optimal design

configuration that will maximize system reliability, minimize the total cost and minimize

the system weight, for a series-parallel system. A Pareto-optimal set of solutions can be

obtained by using any multi-objective evolutionary algorithm (MOEA) available.

However, there may be too many prospective solutions for the decision-maker to fully

consider before ultimately select a unique design configuration to implement. This P3

problem formulation is the one addressed in this chapter.

4.5.4 Multi-objective RAP example

To illustrate how pruning can be of great aid for the decision-maker on the post-

Pareto analysis stage, a RAP was solved. For this example, the configuration selected

consists of 3 subsystems, with an option of 5, 4 and 5 types of components in each

subsystem, respectively. The optimization involves selection from among these

component types. The minimum number of components in each subsystem is 1, for the

system to function, and the maximum number of components is 8 in each subsystem.

Table 4.1 defines the component choices for each subsystem.

Table 4.1 Component choices for each subsystem

Subsystem i
1 2 3

Design
Alternative

j rij cij wij rij cij wij rij cij wij

1 0.95 2 5 0.99 4 4 0.90 6 5

2 0.93 1 4 0.98 3 6 0.85 5 4

3 0.91 2 2 0.97 1 5 0.82 3 3

4 0.90 1 3 0.96 2 7 0.79 3 5

5 0.95 2 8 0.99 2 4

For this case, NSGA was solved with a population size of 100. There were 46

solutions in the Pareto-optimal set. This is likely to be too many possibilities for a

decision-maker to select one preferred solution. This set is shown in Figure 4.8. The

 82

Pareto set was then pruned using both methods previously described.

Figure 4.8 Pareto-optimal set

4.5.4.1 Pruned results by using the non-numerical ranking preferences method

Pareto optimal solutions were obtained using NSGA and the pruned solutions

identified by using the proposed method. The objective function priorities used on these

solutions were: (R� C� W), (C� R� W), (R� W� C) and (W� R� C). Figure 4.9 shows

the pruned solution set for w1>w2>w3 and w2>w1>w3, compared to the original Pareto

optimal set (obtained by using NSGA), and Figure 4.10 shows the pruned solution set for

w1>w3>w2 and w3>w1>w2, compared to the original Pareto-optimal set. Considering two

objective functions at a time, the charts maps reliability versus cost. The pruned solution

sets for all four possibilities are shown in the figures. Pruning the solutions caused almost

a 90% reduction in the size of the Pareto-optimal set.

 83

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions:Reliability Vs Cost comparing solutions: w1>w2>w3
Comparing solutions:w2>w1>w3

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions: Reliability vs Cost comparing solutions: w1 >w2 >w3

Comparing solutions:w2 >w1 >w3

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions:Reliability Vs Cost comparing solutions: w1>w2>w3
Comparing solutions:w2>w1>w3

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions:Reliability Vs Cost comparing solutions: w1>w2>w3
Comparing solutions:w2>w1>w3

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions: Reliability vs Cost comparing solutions: w1 >w2 >w3

Comparing solutions:w2 >w1 >w3

Figure 4.9 Comparing pruned Pareto solution with the Pareto-optimal solution set for reliability versus cost

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions:Reliability Vs Cost Comparing Solutions: w1>w3>w2
Comparing Solutions: w3>w1>w2

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions: Reliability vs Cost Comparing Solutions: w1 >w3 >w2

Comparing Solutions: w3 >w1 >w2

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions:Reliability Vs Cost Comparing Solutions: w1>w3>w2
Comparing Solutions: w3>w1>w2

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions:Reliability Vs Cost Comparing Solutions: w1>w3>w2
Comparing Solutions: w3>w1>w2

Comparing Pruned solutions with Pareto Optimal solutions

5

10

15

20

25

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Reliability

C
os

t

Pareto Optimal Solutions: Reliability vs Cost Comparing Solutions: w1 >w3 >w2

Comparing Solutions: w3 >w1 >w2

Figure 4.10 Comparing pruned Pareto solution with the Pareto-optimal solution set for reliability versus cost

4.5.4.2 Pruned results by using data clustering

The k-means algorithm was then used to cluster the original 46 solutions found in the

Pareto set. Normalization of the objective function values was performed to have

comparable units. Thus, the three objective functions were normalized using the

 84

following linear normalization equation; although other types of normalizing equations

can be used, i.e., logarithmic.

ni
ff
ff

ii

ii ,,2,1
)(

minmax

min

��

!
!x

where fi
min = minimum value for fi(x) found in the Pareto optimal set.

 fi
max = maximum value for fi(x) found in the Pareto optimal set.

 To use the above equation, all the objective functions were considered to be

minimized, thus reliability was multiplied by -1. It is important to remark that by using a

different type of normalization function, the clustering outcome is potentially different.

To determine the optimal number of clusters, silhouette plots were used as suggested

by Rousseeuw (1987), and several runs were performed for different values of k with

several replicates for each value of k. For this particular data set, we found three to be the

optimum number of clusters. The three clusters are shown in Figure 4.11 from

normalized data. Cluster 1 contained 22 solutions; there were 19 solutions in cluster 2

and five in cluster 3.

Figure 4.11 Clustered Pareto-optimal set

The clusters formed are highly internally homogeneous. That is, members within a

cluster are similar to one another. One way for the decision maker to select one solution,

 85

among the solutions contained in a cluster, is to identify what solution is the closest to its

centroid. Table 4.2 shows the summary of results obtained by the cluster analysis. The

representative solutions are those that are closest to their corresponding centroid; each

solution is shown with its corresponding reliability, cost and weight. With the

information from Table 4.2, the decision maker now has a small set of solutions, and it is

thus, easier to make his/her choice regarding the importance of the different objectives.

Table 4.2 Summary of results obtained with the clustering analysis

 # of
solutions

Representative
solutions

Reliability Cost Weight

Cluster 1 22 #39 0.9978541 22 34
Cluster 2 19 #91 0.984265 15 25
Cluster 3 5 #87 0.819216 11 24

Another way to take advantage of this method is that, once having the optimal

number of clusters selected (three in our case), then we looked for the cluster that

contained the most interesting solutions of the Pareto optimal set. These are the solutions

where a small improvement in one objective would lead to a large deterioration in at least

one other objective. These solutions are sometimes called “knees.” In this case, as we can

see from Figure 4.11, solutions in cluster 2 are likely to be more relevant to the decision

maker. Thus, solution #91 can be chosen as a good representative solution of this

mentioned knee region.

4.6 Scheduling of unrelated parallel machines

4.6.1 Multiple objective scheduling problems

There are numerous cases where scheduling problems have more than one, often

conflicting objectives. For instance, flow-shop scheduling (minimizing completion time,

tardiness, mean-flow-time), project scheduling (minimizing the projects completion time,

the tardiness of orders), examination time-tabling (minimizing total number of violations

 86

of each type of constraints) and JIT sequencing (minimizing total utility work,

minimizing set-up cost) and many others. Recent and comprehensive surveys on theory

and applications of multi-criteria scheduling are provided by T’kindt & Billaut (2002)

and Hoogeveen (2005).

Over the years, there have been several approaches used to model the various

objectives in such problems. MOGAs have been recognized to be well-suited for solving

multiple objective optimization problems because of their abilities to exploit and explore

multiple solutions in parallel and find a widespread set of non-dominated solutions in a

single run. Thus, scheduling with multiple objectives has been one of the most attractive

applications of the MOGAs.

Murata et al. (1996) proposed a MOGA and applied it to a flowshop scheduling

problem with two objectives; minimization of makespan and minimization of the total

flowtime. Ponnambalam et al. (2001) proposed a MOGA for scheduling job shops. The

performance criterion considered was the weighed sum of the multiple objectives

minimization of makespan, minimization of total idle time of machines and minimization

of total tardiness. Arroyo & Armentano (2005) proposed a multi-objective local search

(MOGLS) genetic algorithm, which was applied to the flowshop scheduling problem for

the following two pairs of objectives; (i) makespan and maximum tardiness; (ii)

makespan and total tardiness.

4.6.2 Scheduling of unrelated parallel machines: multi-objective formulation

 The second and third examples addressed the drilling of Printed Wiring Boards

(PWBs) which is performed by a group of unrelated parallel machines (Yu et al., 2002)

which must be scheduled. The processing time of each lot may be different for different

 87

machines, and a machine that has a shorter processing time for a particular lot may have a

longer processing time for another lot. There are multiple criteria that need to be

considered to determine the best schedule. Parallel machine scheduling problems are

generally NP-hard problems (Karp, 1972). In terms of the complexity hierarchy of

deterministic scheduling, unrelated machines scheduling problems are some of the most

difficult to solve.

 Yu et al. (2002) proposed a Lagrangian Relaxation Heuristic (LRH) method to solve

the PWB scheduling problem. They constructed an integer programming model with a

special structure called unimodularity. In order to account for multiple objectives of the

scheduling system, they introduced preference constraints and brought them into the

objective function by using Lagrangian relaxation.

This PWB scheduling problem was formulated as a multi-objective problem

considering four objectives to be minimized; minimize overtime, minimize average finish

time, minimize the variance of the finish time and minimize the total cost. The multi-

objective formulation is as follows:

"
�

m

i
iO

1
min , min c� ,

� �2

1
min

m
i c

i

C
m
�

�

!
" , ""

� �

m

i

n

j
ijij xc

1 1
min

subject to:

"
�

�
m

i
ijx

1
1

��
�

�
��
�

!� "

�

n

j
ijiji TxpO

1
0,max

"
�

�
n

j
ijiji xpC

1

C� = 1

m

i
i

C

m
�
"

 88

xij � {0, 1}

where:

1, if lot is assigned to machine
0,otherwiseij

j i
x �

� �
�

Oi = Overtime on machine i

m = number of parallel machines

n = number of lots to schedule

ijp = processing time of lot j on machine i

ijc = cost of processing a lot j on machine i

T = lot release interval time

4.6.2.1 Scheduling of unrelated parallel machines: example 1

 The processing times and the processing costs are shown in Tables 4.3 and 4.4

respectively (Yu et al., 2002). The release interval time, T, is equal to 3 time units. To

satisfy feasibility, a large cost is assumed for processing a lot that cannot be processed by

certain machines, such as in the cases of lot 1 on machine 1 and machine 2, forcing them

to be scheduled on a machine that can perform the job.

Table 4.3 Processing times for PWB scheduling problem

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6
M1 � 1.7 2.4 1.3 � 3.5
M2 � 1.5 2.2 0.8 3.2 1.9
M3 1.1 0.7 3.2 1.8 3.1 0.4

Table 4.4 Processing costs for PWB scheduling problem

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6
M1 6000 14 28 29 6000 13
M2 6000 23 16 13 25 10
M3 11 27 10 12 24 11

The multi-objective scheduling of PWB problem was initially solved, using the

NSGA-II algorithm, to determine a Pareto optimal set. The algorithm was run for 150

generations with a population size of 500, with the probability of crossover as 0.7, and

taking the probability of mutation to be 0.03. There were 28 solutions in the Pareto-

 89

optimal set. The post-Pareto analysis was then performed on these 28 solutions to provide

the decision-maker a workable sub-set of solutions by using the two proposed methods.

4.6.2.1.1 Pruned results by using the non-numerical ranking preferences method

 The non-numerical ranking preference combination selected to illustrate this example

is the case in which overtime (O) is more important than average finish time (AFT) ,

which is more important than variance of finish time (VFT), which is more important

than cost (C) (O� AFT� VFT� C: w1>w2>w3>w4). Figure 4.12 shows, in a three-

dimensional space, the 28 solutions contained in the Pareto-optimal set.

Min OvertimeMin Avg. finish time

M
in

 C
os

t

Min OvertimeMin Avg. finish time

M
in

 C
os

t

Figure 4.12 Pareto-optimal set of Example 1 (PWB) in a three-dimensional space

Table 4.5 shows the pruned solutions obtained by applying the proposed method to

narrow the search space using 5000 randomly generated weight sets. Of the original 28

solutions, the pruned set only includes three; solution 1 has the minimum overtime but it

is achieved at a higher cost than solutions 2 and 5. On the other hand, solution 5 presents

the minimum cost but it has the highest average finish time as well as the highest

variance of the average finish time.

 90

Table 4.5 Pruned solutions

Ranking preferences: w1>w2>w3>w4

Minimize
Sol No. Overtime Avg. finish time Var. Avg. finish time Cost

2 1.0000000 2.8333370 0.6488890 115
5 1.6000000 3.1000000 1.4066670 89
1 0.9000000 3.0333330 0.3888890 131

 The pruned solutions obtained considering the w1>w2>w3>w4 objective function

preference are shown as triangles in Figure 4.13. In this case, by using this method, a

89.2% reduction was achieved in the solutions obtained from the Pareto-optimal set.

These pruned solutions would then be further analyzed by the decision-maker. Solution 2

is shown as an example of a schedule for the PWB scheduling problem in Figure 4.14.

Min Overtime

M
in

 A
vg

. f
in

is
h

tim
e

Pareto-optimal
Pruned solutions: w1>w2>w3>w4

a)

Min Overtime

M
in

 C
os

t
Pareto-optimal
Pruned solutions: w1>w2>w3>w4

b)

Min Overtime

M
in

 A
vg

. f
in

is
h

tim
e

Pareto-optimal
Pruned solutions: w1>w2>w3>w4

a)

Min Overtime

M
in

 C
os

t
Pareto-optimal
Pruned solutions: w1>w2>w3>w4

b)

Figure 4.13 Pruned solutions for the w1>w2>w3>w4 objective function preference in a two-dimensional space

Time

0 1 2 3 4 5

Machine 1 L3

L4 L5

L1Machine 3

Machine 2

L2 L6

Figure 4.14 Schedule for solution 2

 This pruning method gives as a result the solutions, contained in the Pareto-optimal

set, that clearly reflect the decision-maker objective function preferences. For this

 91

example, these three solutions obtained are the best solutions that reflect the

w1>w2>w3>w4 decision-maker’s objective function preference.

 To empirically demonstrate that the pruning method is repeatable and reliable, and

there is no sacrifice for the non-numerically ranking preferences method, ten simulation

runs have been performed. In each of the ten runs, 5000 different weights sets, randomly

selected from fw(w), were used. Table 4.6 shows the results for the ten simulation runs. In

this table, we can observe that given this objective function preference, besides the three

solutions found in the pruning set, there is no other solution in the Pareto-optimal set that

satisfies this objectives preference. The other solutions that do not appear on the table it is

because they had a counter value of zero, meaning that they did not minimize the value of

f ': f '= w1f1(x) + w2f2(x) + w3f3(x) + w4f4(x). However, a more formal mathematical

formulation to demonstrate the accuracy and optimality of the non-numerical ranking

preferences method is presented in the next section.

Table 4.6 Solutions found in the pruned Pareto set in ten simulation runs

 Counter on Simulation Run #
Solution # 1 2 3 4 5 6 7 8 9 10

1 156 155 146 143 142 156 156 156 134 149
2 4545 4538 4539 4577 4559 4558 4525 4568 4579 4539
5 299 307 315 280 299 286 319 276 287 312

4.6.2.1.2 Mathematical demonstration of the non-numerical ranking preferences

method: example 1

 A more formally mathematical formulation was developed to demonstrate the

strength of the non-numerical ranking preferences method. For this pruning method, the

objective to minimize (for all objectives converted to minimization) the following

combined objective function. Remember that the weights have not been selected, but

there ordering has been specified. The objective is to find all solutions that could

 92

conceivably minimize this function for some feasible weight combination.

i
i

i fw"min

s.t. w(1) > w(2) >… > w(n)
 w(1) + w(2) +… + w(n) = 1
 w(i) � 0 for i = 1, 2, …, n

 Given the objective function preferences, we developed the algorithm shown in

Figure 4.15 to analytically determine the pruned Pareto set for Example 1 (PWB). This

set represents all solutions that possibly could be preferred given the new constraints

caused by the prioritization.

Figure 4.15 Algorithm to prune the Pareto set given objective functions preferences

Where,

P = Pareto set

PP = pruned Pareto set

l = individual solution from P

c = total number of solutions in P

W = set of weights

 This works as follows. For a solution l to be a member of the pruned-Pareto set, there

must be some weight combination (adhering to the prioritization constraints) where the

Initialize: PP = {+}
For l=1 to c
 Solve

 � �
{ } 1

min max
n

i il ijj P l i
z w f f

� ! �

� ,
� !� -

� .
"w

 s.t.
 w(1) > w(2) > … > w(n)

 "
�

��
n

i
i niw

1
},..,1,0{1

 If z � 0, then l joins PP
 If z > 0, remove l, does not join PP
end
 set PP is the final pruned set

 93

combined objective function is lower than all other solutions, i.e., all differences in

objective functions must be negative. Therefore, if there exists some weight combination

where even the maximum difference is negative, then the solution belongs in the pruned-

Pareto set. Therefore we minimize this maximum objective function difference to see

whether there is some weight combination where it is the best. This then must be repeated

individually for all solutions in the Pareto-optimal set. Example 1 only had 28 solutions

so we can check the pruned Pareto set and compare it to the results from the simulation.

 Table 4.7 shows the solutions for the four objective functions in a normalized space.

Column 6 shows the z values obtained by applying algorithm shown in Figure 4.15 As

can be seen, only solutions 1, 2 and 5 have z values less than zero, and thus, only these

solutions can minimize the objective function given the f1� f2� f3 objective function

preferences. Therefore, there is no sacrifice for this example. This confirms that, with the

non-numerical ranking preferences method, we are only obtaining those solutions that

clearly satisfy the decision maker’s objective function preferences.

 94

Table 4.7 Analytical pruning results

sol. # Min Overtime Min AFT Min Var(AFT) Min cost z
1 0 0.129029 0.019612 1 -0.01478
2 0.017544 0.048387 0.034512 0.68 -0.04979
3 0.052632 0.209676 0.021778 0.66 0.037485
4 0.122807 0.161289 0.061895 0.58 0.056338
5 0.122807 0.161289 0.077942 0.16 -0.05884
6 0.122807 0.241936 0.054382 0.48 0.059696
7 0.122807 0.370966 0.006619 0.40 0.060775
8 0.175439 0.419353 0.030311 0.38 0.096721
9 0.192982 0.338711 0.048651 0.58 0.12384
10 0.245614 0 0.267192 0.42 0.060139
11 0.245614 0.032255 0.196127 0.66 0.096737
12 0.245614 0.435485 0.024196 0.38 0.13085
13 0.245614 0.483873 0.003565 0.88 0.21081
14 0.385965 0.129029 0.261077 0.34 0.13743
15 0.403509 0.629034 0.007387 0.38 0.22623
16 0.438596 0.661289 0.040243 0.36 0.24681
17 0.438596 0.661289 0.043682 0.20 0.20909
18 0.491228 0.5 0.227711 0.04 0.18913
19 0.578947 0.580647 0.169002 0.04 0.21771
20 0.596491 0.806451 0.036042 0.28 0.30407
21 0.614035 0.564515 0.351249 0.02 0.26302
22 0.631579 0.838711 0.012224 0.10 0.27202
23 0.684211 0.322578 0.551450 0.04 0.27472
24 0.684211 0.887098 0 0.60 0.41233
25 0.754386 0.741936 0.200586 0.02 0.30690
26 0.807018 1 0.081507 0.08 0.37054
27 0.929825 0.725809 0.695110 0 0.46593
28 1 0.483873 1 0.02 0.50352

4.6.2.1.3 Pruned results by using data clustering: example 1

 Using the k-means algorithm, clustering analysis was performed on the 28 solutions

contained in the Pareto-optimal set and k = 3 was found to be the optimal number of

clusters with the aid of the silhouette plots. Figure 4.16 shows the three clusters in a

three-dimensional space, for minimizing overtime, minimizing average finish time and

minimizing cost. Figure 4.17 shows the same clusters in a three-dimensional space for

minimizing overtime, minimizing average finish time and minimizing the variance of the

average finish time. In Figures 4.16 and 4.17, the fourth objective (minimize variance of

average finish time and minimize cost, respectively) is not shown but it is still considered

in the analysis. The objective functions have been normalized from 0 to 1.

 95

M
in

 C
os

t
Min Overtime

Min Avg. finish time

M
in

 C
os

t
Min Overtime

Min Avg. finish time

Figure 4.16 Clustered data in a three-dimensional space

Min OvertimeMin Avg. finish time

M
in

 V
ar

. A
vg

fin
is

h
tim

e

Min OvertimeMin Avg. finish time

M
in

 V
ar

. A
vg

fin
is

h
tim

e

Figure 4.17 Clustered data in a three-dimensional space

Table 4.8 shows the summary of the results obtained by using the k-means algorithm.

This table includes the representative solutions that were closest to their corresponding

centroid. As we can see from Table 4.8, solution number 6 from cluster 2 gives the

minimum overtime, average finish time and variance of the average finish time but it has

the highest cost. On the other hand, solution 28 from cluster 1 has the lowest cost but it

also gives the highest overtime and variance of the average finish time. Figure 4.18

shows, as an example, the schedule for solution 6.

 96

Table 4.8 Results obtained with the cluster analysis

 # of solutions Representative
Solution

Min
Overtime

Min
Avg. Finish time

Min
Var. Avg. finish time

Min
Cost

Cluster 1 3 28 6.2000000 4.2666670 12.1755550 81
Cluster 2 14 6 1.5000000 3.2333333 0.9955560 105
Cluster 3 11 21 4.3000000 4.4333330 0.6755560 95

Time

0 1 2 3 4 5

Machine 1 L2

L3

L1Machine 3

Machine 2

L5 L6

L4

 Figure 4.18 Schedule for solution number 6

 For both pruning methods, the decision-maker only needs to consider three solutions

(instead of 28). It is much easier and convenient to select from among 3. The first pruning

method is most appropriate when the decision-maker can prioritize their objectives, while

the second does not require the decision-maker to a priori specify any objective function

preference.

4.6.2.2 Scheduling of unrelated parallel machines: example 2

In this case, the PWB scheduling problem was formulated as a multi-objective

problem considering three objectives to be minimized: minimize overtime, minimize

average finish time and minimize the total cost. The multi-objective formulation is as

follows:

"
�

m

i
iO

1

min , min c� , ""
� �

m

i

n

j
ijij xc

1 1
min

subject to:

"
�

�
m

i
ijx

1
1

��
�

�
��
�

!� "

�

n

j
ijiji TxpO

1
0,max

 97

 "
�

�
n

j
ijiji xpC

1

C� = 1

m

i
i

C

m
�
"

 The processing times and the processing costs are shown in Tables 4.9 and 4.10

respectively. The release interval time, T, is equal to 4 time units.

Table 4.9. Processing times for PWB scheduling problem

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 Lot 7
M1 2.5 1.3 2.7 4.3 3.5 1.8 1.7
M2 1.8 1.4 1.2 5.2 3.0 2.4 1.6
M3 3.8 2.2 3.4 6.8 4.4 6.2 4.4
M4 3.0 1.0 1.4 4.6 2.8 2.2 1.2
M5 5.2 2.4 6.2 8.4 6.6 7.0 4.8

Table 4.10 Processing costs for PWB scheduling problem

Machine Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 Lot 7
M1 16 24 18 22 26 20 22
M2 22 18 30 20 28 18 26
M3 12 12 15 18 22 12 16
M4 18 28 16 26 34 18 18
M5 14 14 11 16 18 10 12

The multi-objective scheduling of PWB problem was initially solved using the

NSGA-II algorithm, to determine a Pareto-optimal set; with a population size of 500 and

the algorithm was run for 150 generations, with a probability of crossover of 0.8, and

probability of mutation of 0.02. There were 48 solutions in the Pareto-optimal set. The

post-Pareto analysis was then performed on these 48 solutions to provide the decision-

maker a workable sub-set of solutions by using the two proposed methods.

4.6.2.2.1 Pruned results by using the non-numerical ranking preference method:

example 2

 Three objectives were considered to be minimized in this example: overtime (O),

average finish time (AFT) and cost (C). The non-numerical ranking preference

combination selected to illustrate this example is the case in which overtime is more

 98

important than cost, which is more important that average finish time (O� C� AFT:

w1>w3>w2). These preferences were selected to demonstrate the pruning process. Figure

4.19 shows the 48 solutions contained in the Pareto-optimal set.

 Figure 4.19 Pareto-optimal set of Example 2

 Table 4.11 shows the pruned solutions obtained by applying the proposed method to

narrow the search space using 5000 weights sets randomly selected from fw(w). Of the

original 48 solutions, the pruned set only includes 2. Of the two solutions found in the

pruned set, solution 48 has the lowest overtime; however it is achieved at the highest

cost. In contrast, solution 26 presents the minimum cost but it possesses the highest

overtime.

Table 4.11 Pruned solutions

Ranking preferences: w1>w3>w2

Minimize
Sol No. Overtime Avg. finish time Cost

26 4 4.62 116
48 0.9 3.58 132

 The pruned solutions obtained, considering the f1� f3� f2 objective function

preference, are shown in triangles in Figure 4.20 in two different two-dimensional

 99

perspectives. By using this method, a 95.83% reduction was achieved in the solutions

obtained from the Pareto-optimal set. These pruned solutions would then be further

analyzed by the decision-maker. Solution 48 is shown as an example of a schedule for the

PWB scheduling problem in Figure 4.21.

Pareto-optimal
Pruned solutions: w1>w3>w2Pruned solutions: w1>w3>w2

a)

Min Overtime

M
in

 A
vg

. f
in

is
h

tim
e

Pareto-optimal
Pruned solutions: w1>w3>w2Pruned solutions: w1>w3>w2

b)

Min Overtime
M

in
 C

os
t

Figure 4.20 Pruned solutions for the f1� f3� f2 objective function preference in a two-dimensional space

Machine 1 L4

L1 L6

L5

L3 L7

L2

Time

0 1 2 3 4 5

Machine 5

Machine 4

Machine 3

Machine 2

Figure 4.21 Schedule for solution 48

 For this example, the two solutions found in the pruned Pareto set are the best

solutions that reflect the decision-maker’s f1� f3� f2 objective function preference. Ten

simulation runs were performed using the developed pruning algorithm. In each of the ten

runs, 5000 different weights sets, randomly selected from fw(w), were used. Table 4.12

shows the results for the ten simulation runs. In this table, we can observe that given this

objective function preference, besides the two solutions found in the pruning set, there is

 100

no other solution in the Pareto-optimal set that satisfies this objectives preference. The

other solutions that do not appear on the table it is because they had a counter value of

zero, meaning that they did not minimize the value of f ': f '= w1f1(x) + w2f2(x) + w3f3(x).

Table 4.12 Solutions found in the pruned Pareto set in ten simulation runs

 Counter on Simulation Run #
Solution # 1 2 3 4 5 6 7 8 9 10

26 97 93 86 88 94 101 90 92 95 98
48 4903 4907 4914 4912 4906 4899 4910 4908 4905 4902

4.6.2.2.2 Pruned results by using data clustering: example 2

 Using the k-means algorithm, clustering analysis was performed on the 48 solutions

contained in the Pareto-optimal set and we found k = 3 to be the optimal number of

clusters with the aid of the silhouette plots. Figure 4.22 shows the three clusters in a

normalized space.

M
in

 C
os

t

Min Avg. finish time
Min Overtime

Figure 4.22 Clustered data for the second PWB example

 Table 4.13 shows the summary of the results obtained by using the k-means

algorithm. This table includes the representative solutions that were closest to their

corresponding centroid. As we can see from Table 4.13, solution number 31 from cluster

1 gives the minimum overtime and average finish time but it has the highest cost. On the

other hand, solution 2, from cluster 2, has the lowest cost but it also gives the highest

 101

overtime and average finish time. In this case, solution 15, which is found in the “knee

cluster”, seems to be a good compromise.

Table 4.13 Results obtained with the cluster analysis

 # of
solutions

Representative
Solution

Min
Overtime

Min
Avg. Finish time

Min
Cost

Cluster 1 21 31 3.5 3.1 144
Cluster 2 4 2 14.6 5.6 106
Cluster 3 23 15 5.4 4.12 120

 For this second example, in the first pruning method, the decision-maker only needs

to consider two solutions (instead of 48). On the other hand, in the second pruning

method, the decision-maker only needs to analyze three solutions. However, as it was

mentioned earlier, for the first pruning method the decision-maker needs to be able to

state the objective function preferences, while for the second pruning method there is no

such need. Thus, this second method is helpful for those decision-makers with less

knowledge about the problem domain. However, in the later method, once clustered the

Pareto set, the decision-maker can analyze only the solutions found in the “knee cluster”

and/or directly choose the representative solution of this cluster. In this manner, both

methods, offer different advantages as reduction or pruning techniques.

4.7 Summary

In this chapter we saw that a popular method of “solving” multi-objective problems is

to determine a Pareto-optimal set or sub-set. However, this then requires the decision-

maker to select from among this set of solutions, which is often large when there is more

than two objective functions. To reduce or limit intelligently the size of the Pareto-optimal

set, two methods were presented: 1) pruning by using non-numerical objective function

ranking preferences method, and 2) pruning by using data clustering.

 102

The main difference between the two pruning methods is that the first pruning method is

most appropriate when the decision-maker can prioritize their objectives, while the second does

not require the decision-maker to a priori specify any objective function preference.

The first method, pruning by using non-numerical ranking preferences, provides the

decision-maker a set of solutions that match his/her preferences and compare solutions

with different objective function combinations. This method, in contrast with the

weighted sum method, does not require the decision-maker to specify precise weight

values or equivalent cost metrics. The different weight combinations are generated using

the weight function, fw(w), which reflects the decision-maker preferences.

 In the second method, pruning by using data clustering, we made use of clustering

techniques used in data mining. In this case, we grouped the Pareto-optimal solutions by

using the k-means algorithm to find groups of similar solutions. A clustering validation

technique has been integrated into the k-means clustering algorithm to give a relatively

automatic clustering process. The only parameters defined by the user are the maximum

number of clusters to be analyzed and the desired number of replicates. This is to avoid

the bias due to the selection of the initial centroids that has been observed. This was

performed by selecting different values as initial centroids, and then, comparing the

results obtained until a minimum was found. To determine the “optimal” or preferred

number of clusters, k, in the set, the silhouette method was applied. A value of the

silhouette width, s(i), was obtained for the several values of k desired to investigate. The

clustering with the highest average silhouette width, GSu, was selected as the “optimal”

or preferred number of clusters in the Pareto-optimal set.

 With this second approach, the decision-maker obtained a pruned Pareto-subset of

just k particular solutions. Moreover, clustering analysis was useful to focus search on the

 103

“knee” region of the Pareto front. The “knee” region is characterized by those solutions

of the Pareto-optimal set where a small improvement in one objective would lead to a

large deterioration in at least one other objective. The clusters formed in this region

contain those solutions that are likely to be more relevant for the decision-maker. By

using this approach the decision-maker is not required to specify any objective function

preferences

The two methods were demonstrated on two well-known multi-objective problems: the

redundancy allocation problem (RAP) and the scheduling of the bottleneck operation of a

Printed Wiring Board (PWB) manufacturing line.

 The two pruning methods presented in this Chapter were applied after the

determination of Pareto-optimal sets by a MOEA. However, in Chapter 8, the non-

numerical ranking preferences method is incorporated within the MOEA code. This

aspect makes the analysis of the solution of multiple objective problems more efficient.

104

5. Developed MOEA for design allocation problems

 In this chapter, a new MOEA for solving system design allocation problems is

developed and tested. The algorithm uses a GA based on rank selection and elitist

reinsertion, and a modifying genetic operator constraint handling method. Because GAs

are appropriate for high-dimension stochastic problems with many nonlinearities or

discontinuities, they are suited for solving reliability design problems. This new MOEA

will be combined with the post-Pareto screening methods to develop a new approach to

multiple objective optimization and it will be extended to develop an entirely new MOEA

with integrated solution screening to achieve a balance between existing methods.

The developed algorithm, MOEA-DAP (Taboada & Coit, 2006b), mainly differs

from other MOEAs in the crossover operation performed and in the selection procedure.

In the crossover step, several offspring are created through multi-parent recombination.

As a result, from n parents, denoted as Npar, considered for mating, in our algorithm

there are s/[Npar(Npar-1)] number of children produced, where s is the number of

subsystems considered. Thus, the mating pool contains a great amount of diversity of

solutions. This disruptive nature of our proposed type of crossover, called subsystem

rotation crossover (SURC) appears to encourage the exploration of the search space.

 Additionally, for the selection step, the fitness metric 1 proposed is based on the

cumulative Euclidean distance from one solution to the rest of the nondominated

solutions. In this way, we assign the highest fitness to those nondominated solutions that

105

are the farthest away with respect to the rest of the solutions. This is also to promote a

good spread along the Pareto front.

 To validate the performance of the developed MOEA-DAP, ten experimental runs

were obtained from our algorithm and they are compared against ten runs obtained from

one of the most successful evolutionary algorithms that currently exists: the NSGA-II

algorithm. The NSGA-II algorithm is noticeably more efficient than its previous version

(NSGA), but there are possible concerns regarding its exploratory capability. Although

the algorithm tends to spread quickly and appropriately when a certain nondominated

region is found, it seems to have difficulties in generating nondominated solution vectors

that lie in certain (isolated) regions of the search space (Coello Coello & Toscano Pulido,

2001).

 As it will be described in Section 5.9, the results of the performance comparison

based on two different performance metrics, Overall Nondominated Vector Generation

(ONVG) and Overall true Nondominated Vector Generation (OTNVG), indicate that our

proposed algorithm is more effective for solving this type of problem. The MOEA-DAP

algorithm obtains more solutions that contribute to the true Pareto-optimal front, and the

solutions obtained are also more uniformly distributed along the Pareto frontier than

those solutions coming from the NSGA-II.

5.1 Description of the problem addressed

 This chapter describes the use of a multiple objective evolutionary algorithm to solve

engineering design allocation problems. The problem addressed in this chapter arises in

many real engineering optimization problems, where managers and/or decision-makers

have to efficiently allocate components from among of a set of predefined component

106

choices to determine the optimal configuration to be implemented. There are numerous

application areas of the redundancy allocation problem, such as in the case of electrical

power systems (Ouiddir et al., 2004), transportation systems (Levitin & Lisnianski,

2001), telecommunications (Lyu et al., 2002), among others.

 This chapter addresses the problem of designing a hardware system structure. In the

problem formulation presented, there is a specified number of subsystems and, for each

subsystem, there are multiple component choices which can be selected and used in

parallel. This formulation pertains to the well-known redundancy allocation problem

(RAP). In this chapter, the RAP is modeled as a multi-objective problem with the system

reliability to be maximized, cost and weight of the system to be minimized, and no

constraints limiting the possible values of reliability, making this problem a multiple

objective combinatorial optimization (MOCO) problem.

 MOEA-DAP represents a new alternative for the solution of a difficult MOCO

reliability-design problem. This new approach has the strength of a problem-oriented

technique. The selection of components is advantageously combined to create a multiple

objective evolutionary algorithm (MOEA) which can tackle the problem in the most

efficient way. Since MOCO problems contain information derived from their specific

combinatorial structure, this can be advantageously exploited during the search. To take

advantage of the combinatorial structure within the search algorithm, a problem

dependent customized crossover operator is used, called the subsystem rotation crossover

(SURC)

 To be most efficient, the solution of a multiple objective problem seems to

necessarily require a hybrid algorithm, i.e., an integration of standard evolutionary

107

algorithms and problem dependent components. This is particularly true for MOCO

problems, where the adaptation of a universal method to a problem can not compete with

a method specifically designed for this problem.

5.2 Multi-criteria formulation of the RAP using GAs

 Multicriteria formulations using GAs can be found over the Literature. Busacca et al.

(2001) proposed a multi-objective GA approach that was applied to a safety system of a

nuclear power plant. Huang et al. (2006) proposed a new method of system reliability

multi-objective optimization using GAs. They considered a reliability optimization model

obtained from a transformation of Dhingra’s over-speed protection system model (1992)

which contains two objective functions, simultaneously maximizing system reliability

and minimizing system cost subject to limits on weight and volume.

 As shown in Chapter 4, Taboada & Coit (2007) and Taboada et al. (2007a)

formulated the redundancy allocation problem (RAP) as a multi-objective problem with

the system reliability to be maximized, and cost and weight of the system to be

minimized. The Pareto-optimal set was initially obtained using the fast elitist

nondominated sorting genetic algorithm (NSGA-II) originally proposed by Deb et al.

(2002). Then, the decision-making stage was performed by applying two proposed

pruning methods to reduce the size of the Pareto-optimal set and obtain a smaller

representation of the multi-objective design space. For those studies, NSGA-II was

effective. However, NSGA-II is a general MOEA for any type of problem. This implies

that the problem formulation needs to be adapted. Moreover, in these studies, the final

Pareto front found by NSGA-II contained many repeated solutions, so to obtain a large

number of solutions; several runs had to be performed. Thus, if a decision-maker must

108

solve many similar RAP problems, then a custom MOEA, especially designed to solve

multi-objective design allocation problems, offers great advantage.

5.3 The proposed algorithm: MOEA-DAP

 MOEA-DAP is a multiple objective evolutionary algorithm specifically designed for

solving design allocation problems The multi-objective formulation that we considered is

shown in Equation 5.1, with the system reliability to be maximized, cost and weight of

the system to be minimized, and no constraints in the possible values of reliability. In

practice, MOEA-DAP could be generalized to accommodate any number of constraints.

%
&

'
(
)

*
%
&

'
(
)

*
%
&

'
(
)

* """"$
� �� ��

s

i

m

j
ijij

s

i

m

j
ijij

s

i
ii

ii

xwxcR
1 11 11

min,min,)(max x (5.1)

 Subject to:

"
�

�
��
im

j
iij sinx

1
max, ,..,2,1for1

� �,..2,1,0�ijx

Where:

s = number of subsystems

� �
imiiii xxx ,2,1, ,...,,�x

xij = quantity of the jth available component used in subsystem i

mi = total number of available components for subsystem i

nmax,i = user defined maximum number of components in parallel used in subsystem i

Ri (xi) = reliability of subsystem i

cij, wij, rij = cost, weight and reliability for the jth available component for subsystem i

 For the multi-objective RAP, the objectives for MOEA-DAP are to determine the

optimal design configuration that maximizes system reliability, minimizes the total cost,

and minimizes the system weight, for a series-parallel system. The pseudo-code and the

109

flowchart of the developed MOEA-DAP are shown below and in Figures 5.1,

respectively. The specific steps are further explained in the following sections.

1. [Start] Generate random population of n chromosomes

2. [Fitness] Evaluate the aggregated fitness function of each chromosome x in the

population

3. [Selection] With a given crossover probability select individuals with the highest

aggregated fitness to perform recombination.

4. [Crossover] With a pre-defined crossover probability, cross-over the parents to form

new offspring (children).

5. [Mutation] With a pre-defined mutation probability, mutate new offspring at a

random position in the chromosome

6. [Reinsertion] Place new offspring + a specified percentage of the most elite parents to

form the new population

7. [Replace] Use new generated population for a further run of the algorithm

8. [Test] If the Generation i = Generation ‘max’, stop, and return the best solutions in

current population, otherwise return to step 2.

110

Figure 5.1 Flowchart of MOEA-DAP

5.3.1 Chromosomal representation

 Although binary-coded GAs are commonly used, there is an increasing interest in

alternative encoding strategies, such as integer and real-valued representations. For some

problem domains, it is argued that the binary representation is in fact deceptive since it

obscures the nature of the search (Bramlette, 1991).

111

 Thus, in our MOEA we used an integer chromosomal representation. For instance,

consider the following example to illustrate a chromosome used in our algorithm to solve

the multi-objective-RAP problem.

The following chromosome contains fourteen integers for a configuration which

consists of 3 subsystems, with an option of 5, 4 and 5 types of components in each

subsystem, respectively, with 1 as the minimum number of components in each

subsystem, for the system to function, and 8 as the maximum number of components in

each subsystem. Each integer corresponds to the number of redundant components of that

type. For example, for subsystem 1; two copies of the first component type, four

components of the second component type, one copy of the third component type and one

copy of the fifth component type are used in parallel. For subsystem 2; three copies of the

second component type, two copies of the third component type and one copy of the

fourth component type are used in parallel. And, finally, for subsystem 3; one copy of the

first component type, three copies of the second component type and two copies of the

fifth component type are used in parallel.

2 4 1 0 1 0 3 2 1 1 3 0 0 2

subsystem 1 subsystem 2 subsystem 3

Chromosome 1 2 4 1 0 1 0 3 2 1 1 3 0 0 2

subsystem 1 subsystem 2 subsystem 3

2 4 1 0 1 0 3 2 1 1 3 0 0 22 4 1 0 1 0 3 2 1 1 3 0 0 2

subsystem 1 subsystem 2 subsystem 3

Chromosome 1

 From above, it can be seen that for the multi-objective-RAP, the use of an integer

representation provides a convenient and natural way of expressing the mapping from

chromosomal representation to the problem domain. Alternatively, a binary

representation would require 126 different 0-1 values.

112

5.3.2 Constraint-handling method

 Our proposed MOEA uses the modifying genetic operator strategy. In this approach

the genetic operators are crafted to always produce feasible solutions. The main reason

we used this constraint handling strategy is because evolutionary computation techniques

have huge potential for incorporating specialized operators that search the boundary of

both, feasible and infeasible, regions in an efficient way. However, it is commonly

acknowledged that restricting the size of the search space in evolutionary algorithms (as

in most search algorithms) is generally beneficial. Hence, it seems natural in the context

of constrained optimization to restrict the search for the solution to the boundary of the

feasible part of the space (Michalewicz & Shoenauer, 1996).

 The most common approach for GAs to accommodate constraints is to use penalty

functions to penalize constraint violations. Although conceptually very simple, in practice

it is quite difficult to implement, because the exact location of the boundary between the

feasible and infeasible regions is unknown in most problems (Coello Coello, 2002).

 The formulation addressed in the MOEA-DAP development had s constraints to limit

the total components within each subsystem. If additional constraints are imposed (e.g.,

fuel consumption, volume), then the existing modifying genetic operator strategy could

be readily expanded to accommodate these constraints by using repair operators.

5. 3.3 Determination of the initial generation

 EAs are population-based algorithms, thus, MOEA-DAP begins its search with a

population of random solutions. Immediately, thereafter, objective function values are

evaluated and the Pareto dominance criterion is checked in the initially created solutions.

Those solutions that are dominated by other solutions are eliminated. Thus, in this way,

113

MOEA-DAP ensures that the resulting population will only contain Pareto-optimal

solutions.

 For instance, consider an example configuration which consists of four subsystems,

with an option of three types of components in each subsystem, respectively, with one as

the minimum number of components in each subsystem, for the system to function, and

five as the maximum number of components in each subsystem.

 First, a random initial population, Npop, is created. That is, n number of strings are

created. And, as explained in Section 5.2, only feasible solutions are created. The length

of each string will depend on the number of options of different components in each

subsystem, that is:

L = m(1) + m(2) + …+ m(i) = "
i

im)(

Where:

L= length of string

m(i) = number of available components for subsystem i

 For the example that we are considering, say that 12 individuals are randomly

created. Then, the objective functions values are calculated for the three objective

functions. Next, Pareto dominance criterion is checked in this initial population. The

problem is treated as a minimization problem, thus, reliability is multiplied by -1. Then,

without loss of generality, for this minimization problem for all objectives, a solution x1

dominates a solution x2, if and only if, the two following conditions are true:

	 x1 is no worse than x2 in all objectives, i.e., fi(x1) � fi(x2) �
 i, � �ni ...,,2,1�

	 x1 is strictly better than x2 in at least one objective, i.e., fi(x1) < fi(x2) for at least one i.

114

 Before obtaining a count of how many of these 12 individuals are dominated, we

count how many individuals are dominated by each of the 12 individuals forming the

initial population. Table 5.1 shows the objective function values for the first 12

chromosomes created, and in the last column, the number of individuals that each

individual dominates is presented. This is often referred as ‘dominance count.’

Table 5.1 Dominance count in initial population

First
population Reliability Cost Weight

Dominance
 count

1 -0.90112 76 81 0
2 -0.89779 63 78 0
3 -0.98734 60 75 3
4 -0.68228 69 73 0
5 -0.94814 52 75 3
6 -0.96703 55 97 0
7 -0.98699 68 62 3
8 -0.95267 52 80 1
9 -0.79624 29 41 1

10 -0.84937 68 76 0
11 -0.89678 42 56 2
12 -0.92673 46 68 4

 As we can see from Table 5.1, solution number 12 is the most dominating solution,

with a dominance count of 4. Then after this, we copy the nondominated solutions to a

separate set and we discard those solutions that are dominated. Thus, Table 5.1, is now

reduced to Table 5.2.

Table 5.2 Dominance count in the first nondominated set

Nondominated
set Reliability Cost Weight

Dominance
 count

1 -0.98734 60 75 3
2 -0.94814 52 75 3
3 -0.96703 55 97 0
4 -0.98699 68 62 3
5 -0.95267 52 80 1
6 -0.79624 29 41 1
7 -0.89678 42 56 2
8 -0.92673 46 68 4

 As we can see from Table 5.2, solution number 3 does not dominate any of the

solutions but it still is a nondominated solution. To easily explain this phenomenon,

115

consider the case of a bi-objective problem presented in Figure 5.2, in which we try to

minimize weight and minimize cost. Certainly, from the Figure 5.2, and from the

information in Tables 5.3 and 5.4, we can observe that solution number 1 pertains to the

nondominated set of solutions although it does not dominate any solution.

min weight

m
in

 c
os

t

0 10 20 30 40 50

10

20

30

40
1

2 3

4

min weight

m
in

 c
os

t

0 10 20 30 40 50

10

20

30

40
1

2 3

4

Figure 5.2 Dominance in a bi-objective problem

 Table 5.3. Initial solutions Table 5.4. Nondominated solutions

110304

030403

130202

040101

Dominance
count

costweightsolution

110304

130202

040101

Dominance
count

costweightsolution

110304

030403

130202

040101

Dominance
count

costweightsolution

110304

130202

040101

Dominance
count

costweightsolution

110304

130202

040101

Dominance
count

costweightsolution

5.3.4 Aggregated fitness function

 After obtaining the nondominated solutions and having each of these marked with its

corresponding dominance count, we proceed to assign fitness to these solutions. In our

algorithm, we used two different methods to assign fitness to the solutions. The first

fitness, f1(i), is intended for maintaining population diversity. The second fitness, f2(i),

aims to select those individuals which are more dominating. The two different fitness

metrics are then aggregated weighting each of the fitness metrics equally, aiming to

achieve proximity and diversity, which are the two most common desirable

116

characteristics in MOEAs. The two fitness metrics used in the algorithm are described

next.

5.3.4.1 Fitness metric 1: distance-based, f1(i)

 This fitness metric gives highest fitness to those solutions that are farther away from

other solutions in the Pareto front, giving those solutions a greater possibility to be

chosen later for reproduction. With this fitness function, we aim to maintain diversity of

the Pareto optimal solutions. To illustrate how this fitness works, let’s continue

considering the information from Table 5.2, which contains only those solutions that

were nondominated. The next step consists in standardizing the solutions. The three

objective functions were scaled from 0 to 1 using the following equation:

ni
ff
ff

ii

ii ,,2,1
)(

minmax

min

��

!
!x

where fi
min = minimum value for fi(x) in the nondominated set.

 fi
max = maximum value for fi(x) in the nondominated set.

 As we can notice, we need to multiply column 2 by (-1) to be able to use the above

equation properly. Now, the 8 nondominated solutions from Table 5.2 are presented as

Table 5.5:

Table 5.5. Standardized nondominated set

Nondominated
set Reliability Cost Weight

Dominance
 count

1 1 0.79487 0.60714 3
2 0.79487 0.58974 0.60714 3
3 0.89369 0.66667 1 0
4 0.99813 1 0.375 3
5 0.81856 0.58974 0.69643 1
6 0 0 0 1
7 0.52609 0.33333 0.26786 2
8 0.68281 0.4359 0.48214 4

117

 From here, we compute the Euclidean distance from each solution to the others, i.e.,

from solution 1 to the rest of the solutions, from solution 2 to the rest of the solutions, and

so on. Next, the sum of the distances from each solution to the rest of the solutions is

obtained, and the maximum and minimum value of all the sums is determined. Table 5.6

presents these calculations. Since for calculating fitness 1, we do not use the fifth column

of Table 5.5, we can just keep it aside.

Table 5.6. Distance from each solution to the rest of the solutions

solution 1 2 3 4 5 6 7 8
1 0 0.290090 0.42670 0.30979 0.288050 1.41440 0.74345 0.49507
2 0.29009 0 0.41233 0.51334 0.092373 1.16110 0.50310 0.22771
3 0.42670 0.412330 0 0.71599 0.322050 1.49770 0.88447 0.60490
4 0.30979 0.513340 0.71599 0 0.551250 1.46180 0.82386 0.65507
5 0.28805 0.092373 0.32205 0.55125 0 1.22590 0.57875 0.29667
6 1.41440 1.161100 1.49770 1.46180 1.22590 0 0.67796 0.94271
7 0.74345 0.503100 0.88447 0.82386 0.57875 0.67796 0 0.28461
8 0.49507 0.227710 0.60490 0.65507 0.29667 0.94271 0.28461 0

"
i

jid),(
3.9675 3.2001 4.8642 5.0311 3.3551 8.3816 4.4962 3.5067

"
ij

jid),(max
 8.3816

"
ij

jid),(min
 3.2001

 To calculate the fitness that we are going to assign to each solution, from Table 5.6,

the difference (Diff) between maximum and minimum value of the sum of distances is

initially obtained.

Diff = "" !
ijij

jidjid),(min),(max

Where d(i,j) is the Euclidean distance between i and j.

 Our algorithm considers five possible intervals for each of this fitness 1 metric, then

this difference is divided by five and we obtain the increment, denoted by I.

I = Diff / number of intervals

118

 Thus, the values in which each of the fitness 1, f1(i), ranges can be calculated as

follows:

�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�

�

���

����

����

����

���

�

" " "

" " "

" " "

" " "

" " "

i i ijj

i i ijj

i i ijj

i i ijj

i i ijj

jidjidIjidif

IjidjidIjidif

IjidjidIjidif

IjidjidIjidif

Ijidjidjidif

if

),(max),(4),(min,5

4),(min),(3),(min,4

3),(min),(2),(min,3

2),(min),(),(min,2

),(min),(),(min,1

)(1

 In this example case, the difference is 5.1815, thus the increment is 1.0363. Table 5.7

shows the fitness 1 metric bounds, as well as the assigned fitness to each of the 8

nondominated solutions. This means that, from the nondominated set, now we have the

following fitness 1 values for each of the solutions presented in Table 5.8.

Table 5.7. Fitness value 1 for the nondominated set

Fitness 1
value Fitness 1 value ranges solution

1 3.2001 � "
i

jid),(< 4.2364
1, 2, 5 and 8

2 4.2364 � "
i

jid),(< 5.2727
3, 4 and 7

3 5.2727 � "
i

jid),(< 6.3090
0

4 6.3090 � "
i

jid),(< 7.3453
0

5 7.3453 � "
i

jid),(� 8.3816
6

119

Table 5.8. Fitness value 1 for the nondominated set (standardized space)

Nondominated
set Reliability Cost Weight

Fitness
value 1

1 1 0.79487 0.60714 1
2 0.79487 0.58974 0.60714 1
3 0.89369 0.66667 1 2
4 0.99813 1 0.375 2
5 0.81856 0.58974 0.69643 1
6 0 0 0 5
7 0.52609 0.33333 0.26786 2
8 0.68281 0.4359 0.48214 1

 From Table 5.8, it can be noticed that we are assigning the highest fitness to those

nondominated solutions that are the farthest away with respect to the rest of the solutions.

This is to promote diversity in the population. This is critical to prevent premature

convergence and to assure that the solution space is thoroughly considered. In this way,

during the selection step, solution number 6 has highest possibilities of being chosen for

reproduction, directing the search to the least crowded areas of the search space.

 In Figure 5.3, it is observed that, as expected, solution number 6 is the farthest of all

solutions. It can be noticed also that the rest of the solutions are almost equally separated.

In Figure 5.4, the solutions are plotted in a bi-objective space to better visualize the

solutions.

120

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

ReliabilityCost

W
ei

gh
t

7

6

8

2
5

3

1

4

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

ReliabilityCost

W
ei

gh
t

7

6

8

2
5

3

1

4

Figure 5.3. First nondominated set in a normalized space

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reliability

C
os

t

7

6

8

2 5
3

1

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reliability

C
os

t

7

6

8

2 5
3

1

4

Figure 5.4. First nondominated set in a bi-objective normalized space

5.3.4.2 Fitness metric 2: dominance count-based, f2(i)

 The second fitness metric, f2(i), is based on the dominance count concept.

Determination of the intervals for this metric is similar to the one explained previously

for Fitness Metric 1. Using the information from Table 5.5, maximum and minimum

values of dominance count are calculated for the nondominated solutions. Table 5.9

presents the data for the example.

121

Table 5.9. Dominance count in the nondominated set.

Nondominated
set

Reliability Cost Weight

Dominance
 Count
DC(i)

1 1 0.79487 0.60714 3
2 0.79487 0.58974 0.60714 3
3 0.89369 0.66667 1 0
4 0.99813 1 0.37500 3
5 0.81856 0.58974 0.69643 1
6 0 0 0 1
7 0.52609 0.33333 0.26786 2
8 0.68281 0.43590 0.48214 4

)(max iDC

i 4
)(min iDC

i 0

 In this case, the difference and the increment are calculated as follows:

Diff =)(min)(max iDCiDC
ii

!

 For this metric we also consider discrete intervals. Five intervals were chosen for the

example. The increment (I) is calculated in the same way as in fitness metric 1. Thus, the

values in which each of the fitness i ranges can be calculated as follows:

�
�
�
�
�
�
�

�

��
�
�
�
�
�

�

�

���

����

����

����

���

�

)(max)(4)(minif,5

4)(min)(3)(minif,4

3)(min)(2)(minif,3

2)(min)()(minif,2

)(min)()(minif,1

)(2

iDCiDCIiDC

IiDCiDCIiDC

IiDCiDCIiDC

IiDCiDCIiDC

IiDCiDCiDC

if

ii

ii

ii

ii

ii

 In this case, the difference is 4, thus the increment is 0.8. Table 5.10 shows the fitness

2 metric bounds, as well as the assigned fitness to each of the 8 nondominated solutions.

122

This means that, from the nondominated set now we have, as in Table 5.11, the following

fitness 2 values for each of the solutions:

Table 5.10. Fitness value 2 bounds for the nondominated set

Fitness 1
value Fitness 2 value ranges solution

1 0 � DC(i) < 0.8 3
2 0.8 � DC(i) < 1.6 5 and 6
3 1.6 � DC(i) < 2.4 7
4 2.4 � DC(i) < 3.2 1, 2 and 4
5 3.2 � DC(i) � 4.0 8

Table 5.11. Fitness value 2 for the nondominated set (standardized space)

Nondominated
set Reliability Cost Weight

Fitness
value 2

1 1 0.79487 0.60714 4
2 0.79487 0.58974 0.60714 4
3 0.89369 0.66667 1 1
4 0.99813 1 0.375 4
5 0.81856 0.58974 0.69643 2
6 0 0 0 2
7 0.52609 0.33333 0.26786 3
8 0.68281 0.4359 0.48214 5

 In this way, the highest fitness is assigned to those solutions that are more

dominating. Now, that the two fitness metrics that our multi-objective optimization have

been explained, the selection step takes place.

5.3.5 Selection step

 In the selection step, rank selection was used. In Whitley (1989) and Bäch &

Hoffmeister (1991), it has been observed that rank-based fitness assignment overcomes

the scaling problems of the proportional fitness assignment. Ranking introduces a

uniform scaling across the population and provides a simple and effective way of

controlling selective pressure. Moreover, rank-based fitness assignment behaves in a

more robust manner than proportional fitness assignment, and thus, is an appropriate

method to choose.

123

In our multi-objective optimization algorithm, values assigned in fitness metric 1

(Table 5.8) and values in fitness metric 2 (Table 5.11) are summed to form the total

fitness value, as shown in Table 5.12.

Table 5.12. Total Fitness value of nondominated solutions

Solution

Fitness
metric 1

f1(i)

Fitness
metric 2

f2(i)

Aggregated
Fitness value

fa(i)= f1(i) + f2(i)
1 1 4 5
2 1 4 5
3 2 1 3
4 2 4 6
5 1 2 3
6 5 2 7
7 2 3 5
8 1 5 6

 Then, in rank selection every nondominated individual receives an aggregated fitness

value, fa(i), determined by their ranking from fitness metric 1 and 2. From here, the

nondominated solutions are ranked in descending order, according to their aggregated

fitness value fa(i) as in Table 5.13.

Table 5.13. Ranked nondominated individuals

Aggregated
Fitness value

fa(i)

Ranked
Solutions

7 6
6 4
6 8
5 1
5 2
5 7
3 3
3 5

 As can be seen, solutions with the same aggregated fitness value, fa(i), are allowed,

and thus, the worst individuals have the lowest total fitness values, and the best have the

highest total fitness value. Then, the number of individuals to be selected for the

recombination step is dictated by the desired crossover probability. For instance, in Table

5.13, we have 8 nondominated solutions (Nnon-dom). If the crossover probability,

124

Pcross, is 0.7, then the number of solutions to be selected to perform recombination will

be Nparents = round(Pcross / Nnon-dom). In this case, there are: round(0.7/8) = 6

parents.

5.3.6 Crossover operator

 To be efficient, an approximation method for solving a MOP seems to be necessarily

an hybrid algorithm, i.e., a combination of evolutionary algorithms and problem

dependent components. This is particularly true for MOCO problems, where the

adaptation of a universal method to a problem can generally not compete with a method

specifically designed for this problem. For the exploitation of the combinatorial structure

within the search algorithm, the problem dependent component used in this paper is the

specific crossover operator: subsystem rotation crossover (SURC). In this step, multi-

parent recombination is allowed. This action, and the way that SURC works, produces a

large number of children in the mating pool, creating a large number of diverse solutions

to choose from. Diversity is considered favorable, as the greater the variety of genes

available to the genetic algorithm, the greater the likelihood of the system identifying

alternate solutions. Moreover, maintaining diversity of individuals within a population is

necessary for the long term success of any evolutionary system. This customized

crossover operator is fully described next.

 In MOEA-DAP, each solution, represented as a chromosome, has s number of sub-

chromosomes. That is, if we want to solve a problem with three subsystems, as in Figure

5.5, then each individual that can be selected for recombination has three sub-

chromosomes.

125

Chromosome x

sub-chromosome 1

subsystem 1

sub-chromosome 3

sub-chromosome 2

subsystem 2 subsystem 3

3 21 125Chromosome x

sub-chromosome 1

subsystem 1

sub-chromosome 3

sub-chromosome 2

subsystem 2 subsystem 3

3 21 1253 21 125

Figure 5.5. Sub-chromosome representation of individuals

 To illustrate how the recombination operation was performed, consider the case in

which three parents were selected for cross-over. As explained above, each parent has, in

this case, three sub-chromosomes. Then to produce the children, we kept fixed

subchromosomes 2 and 3 in the three parents and we perform circular rotation of sub-

chromosomes 1, as shown in Figure 5.6.

126

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Child 1

Child 2

Child 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

fixed

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50 1 5

6 0 16 0 1 0 4 30 4 3

Chromosome 2

Chromosome 3

3 parents

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Child

Child

Child

Child

Child

Child

1

2

3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

fixed

1

2

3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

fixed

6 0 26 0 2 5 2 15 2 1

1 3 31 3 3 0 1 50 1 5

2 1 12 1 1 0 4 30 4 3

fixed

Rotation 2:
Only

individuals in
sub-chromosomes 1

rotate

Child

Child

Child

Child 4

Child

Child

5

6

fixedfixed

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 22 1 2 5 2 15 2 1

1 3 36 0 3 0 1 50 1 5

2 1 11 3 1 0 4 30 4 3

fixed

In the third rotation of individuals in sub-chromosomes 1, chromosomes return to the initial accommodation

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

initial accommodation

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50 1 5

6 0 16 0 1 0 4 30 4 3

Chromosome 2

Chromosome 3

Rotation 4:
Only

individuals in
sub-chromosomes 2

rotate

Rotation 5:
Only

individuals in
sub-chromosomes 2

rotate

Child 7

Child 8

Child 9

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

Child

Child

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 1 5 2 10 2 1

1 3 32 1 2 0 1 55 1 5

2 1 16 0 3 0 4 30 4 3

fixedfixed

Child 10

Child 11

Child 12

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 3 5 2 10 2 1

1 3 32 1 1 0 1 50 1 5

2 1 16 0 2 0 4 35 4 3

fixedfixed

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

initial accommodation

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50 1 5

6 0 16 0 1 0 4 30 4 3

Chromosome 2

Chromosome 3

Rotation 7:
Only

individuals in
sub-chromosomes 3

rotate

Rotation 8:
Only

individuals in
sub-chromosomes 3

rotate

In the sixth rotation of individuals in sub-chromosomes 2, chromosomes return to the initial accommodation

Child 13

Child 14

Child 15

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 2 5 2 15 4 3

1 3 32 1 3 0 1 50 2 1

2 1 16 0 1 0 4 30 1 5

fixed

Child 16

Child 17

Child 18

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 2 5 2 15 1 5

1 3 32 1 3 0 1 50 4 3

2 1 16 0 1 0 4 30 2 1

fixed

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Child 1

Child 2

Child 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

fixed

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Child 1

Child 2

Child 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

fixed

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

3 parents

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50 1 5

6 0 16 0 1 0 4 30 4 3

Chromosome 2

Chromosome 3

3 parents

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Child

Child

Child

Child

Child

Child

1

2

3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

fixed

1

2

3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

fixed

6 0 26 0 2 5 2 15 2 1

1 3 31 3 3 0 1 50 1 5

2 1 12 1 1 0 4 30 4 3

fixed

Rotation 2:
Only

individuals in
sub-chromosomes 1

rotate

Rotation 2:
Only

individuals in
sub-chromosomes 1

rotate

Child

Child

Child

Child 4

Child

Child

5

6

fixedfixed

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 22 1 2 5 2 15 2 1

1 3 36 0 3 0 1 50 1 5

2 1 11 3 1 0 4 30 4 3

fixed

In the third rotation of individuals in sub-chromosomes 1, chromosomes return to the initial accommodation

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

initial accommodation

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50 1 5

6 0 16 0 1 0 4 30 4 3

Chromosome 2

Chromosome 3

Rotation 4:
Only

individuals in
sub-chromosomes 2

rotate

Rotation 5:
Only

individuals in
sub-chromosomes 2

rotate

Child 7

Child 8

Child 9

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

Child

Child

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 1 5 2 10 2 1

1 3 32 1 2 0 1 55 1 5

2 1 16 0 3 0 4 30 4 3

fixedfixed

Child 10

Child 11

Child 12

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 3 5 2 10 2 1

1 3 32 1 1 0 1 50 1 5

2 1 16 0 2 0 4 35 4 3

fixedfixed

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

initial accommodation

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50 1 5

6 0 16 0 1 0 4 30 4 3

Chromosome 2

Chromosome 3

Rotation 4:
Only

individuals in
sub-chromosomes 2

rotate

Rotation 4:
Only

individuals in
sub-chromosomes 2

rotate

Rotation 5:
Only

individuals in
sub-chromosomes 2

rotate

Rotation 5:
Only

individuals in
sub-chromosomes 2

rotate

Child 7

Child 8

Child 9

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

Child

Child

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 1 5 2 10 2 1

1 3 32 1 2 0 1 55 1 5

2 1 16 0 3 0 4 30 4 3

fixedfixed

Child 10

Child 11

Child 12

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 3 5 2 10 2 1

1 3 32 1 1 0 1 50 1 5

2 1 16 0 2 0 4 35 4 3

fixedfixed

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Rotation 1:
Only

individuals in
sub-chromosomes 1

rotate

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

initial accommodation

Chromosome 1 1 3 2 5 2 1

2 1 3 0 1 5

6 0 1 0 4 3

Chromosome 2

Chromosome 3

Chromosome 1 1 3 21 3 2 5 2 15 2 1

2 1 32 1 3 0 1 50 1 5

6 0 16 0 1 0 4 30 4 3

Chromosome 2

Chromosome 3

Rotation 7:
Only

individuals in
sub-chromosomes 3

rotate

Rotation 7:
Only

individuals in
sub-chromosomes 3

rotate

Rotation 8:
Only

individuals in
sub-chromosomes 3

rotate

Rotation 8:
Only

individuals in
sub-chromosomes 3

rotate

In the sixth rotation of individuals in sub-chromosomes 2, chromosomes return to the initial accommodation

Child 13

Child 14

Child 15

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 2 5 2 15 4 3

1 3 32 1 3 0 1 50 2 1

2 1 16 0 1 0 4 30 1 5

fixed

Child 13

Child 14

Child 15

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 2 5 2 15 4 3

1 3 32 1 3 0 1 50 2 1

2 1 16 0 1 0 4 30 1 5

fixed

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 2 5 2 15 4 3

1 3 32 1 3 0 1 50 2 1

2 1 16 0 1 0 4 30 1 5

fixed

Child 16

Child 17

Child 18

Child

Child

Child

Child

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 2 5 2 1

1 3 3 0 1 5

2 1 1 0 4 3

6 0 21 3 2 5 2 15 1 5

1 3 32 1 3 0 1 50 4 3

2 1 16 0 1 0 4 30 2 1

fixed

Figure 5.6 Crossover Operation Example

 Thus, as we can see, from only three parents, there are (3)(2)(3) = 18 children in the

mating pool. To calculate the number of children in the mating pool, we use the

following equation:

Nmp = s [Npar (Npar - 1)]
Where:

Nmp = number of children in the mating pool

Npar = number of parents

s = number of subsystems

 The next decision is to determine how many of these children in the mating pool are

to be selected to undergo mutation. This number is going to depend on the crossover

probability and on the percentage of elitism (%elitism) desired. To prevent the loss of the

best found solutions and to increase the performance of our algorithm, we keep a

percentage of the best nondominated solutions (those with the highest aggregated fitness,

127

fa(i)) for next generation. These individuals are directly copied to the elite list and they

form part of the population in next generation.

 For instance, consider a case in which the input parameters are as follows: Npop= 20,

Pcross=0.75, %elitism=25%, s=3. Let’s say that after checking Pareto dominance, only

16 individuals are nondominated. Then these individuals are ranked in descending order

of aggregated fitness value, fa(i), and with 25% of elitism, the best 0.25/16 = 4

individuals, denoted as Nelite, are selected to form the next population. With the

specified crossover probability of 0.75, 16/0.75 = 12 individuals are selected as parents

to perform crossover. After the procedure explained above, the recombination is carried

out, and now we have in the mating pool 3(12/11) = 396 children produced. Thus, the

number of children selected from the mating pool to form the next population is:

Ncsmp = Npop – Nelite
Where:

Ncsmp = number of children selected from the mating pool

Npop = population size

Nelite = number in the elite list

 In this case, 16 children are randomly selected to undergo mutation, and finally, these

individuals plus the ones already in the elite list will form the next population.

5.3.7 Mutation

 There are no universally accepted general rules to choose the values of basic GA

operators for solving specific optimization problems. However, numerous experimental

studies have developed some rules of thumb concerning ranges of GA parameters. For

example, in the case of choosing the mutation rate, De Jong (1975) suggests that the

mutation probability, which is a bit reversal event, should occur with small probability,

128

pmut � 0.001. Grefenstette (1986) suggests a pmut � 0.01, while in Schaffer et al. (1989) a

range is considered, pmut � [0.005, 0.01]. Hence, in MOEA-DAP, with a specified

probability of mutation, one gene in the chromosome is selected at random and that gene

undergoes mutation. Figure 5.7 shows the genetic string for an example child, before and

after mutation.

0 36 345

Chromosome string before mutation

0 36 342

Chromosome string after mutation

0 36 345

Chromosome string before mutation

0 36 342

Chromosome string after mutation

Figure 5.7. Example of mutation

 Since our proposed MOEA uses the modifying genetic operator strategy as a

constraint handling method, we are always interested in producing only feasible

solutions. Consider, for instance, if the maximum number of components in each

subsystem is 8 and if the gene selected to mutate is gene number 4, as shown in Figure

5.7, then we can only change that value (currently 5) to a smaller number and not for a

higher one, in order to not violate the constraint on the maximum number of components

allowed per subsystem. Notice that, if the gene selected to mutate had been gene number

1, and if after mutating, the value randomly generated would have been a zero, then

subsystem number 1 would no longer have any component. Thus, when this is the case,

the algorithm creates another random number to ensure that all subsystems have

components, and thus the evaluation of reliability can properly be obtained.

129

5.3.8 Elitist reinsertion

 As explained in the crossover step, our algorithm uses elitist reinsertion in the aim of

preventing the loss of the best solutions. The user specifies the desired percentage of

elitism, %elitism, and individuals from the previous population that contain the ranked

nondominated individuals (see Table 5.13) are chosen to pertain to an elite list according

with this percentage.

5.4 Performance comparison of MOEA-DAP

 To validate the performance of the developed MOEA-DAP, ten experimental runs are

obtained from our algorithm and they are compared against ten runs obtained from one of

the most successful evolutionary algorithms that currently exists: NSGA-II. For each

run, both algorithms used the following input parameters: Npop= 50, Generations=100

Pcross=0.8, Pmut=0.007937; and additionally our algorithm considered %elitism=60%.

The output of the individual runs can be found in Appendix A.

 The example considered consists of a configuration of 3 subsystems, with an option

of 5, 4 and 5 types of components in each subsystem, respectively. The optimization

involves selection from among these component types. The minimum number of

components in each subsystem is 1, for the system to function, and the maximum number

of components is 8 in each subsystem. Table 5.14 defines the component choices for each

subsystem.

Table 5.14. Component choices for each subsystem

Subsystem i

1 2 3
Design

Alternative
j R C W R C W R C W
1 0.94 9 9 0.97 12 5 0.96 10 6
2 0.91 6 6 0.86 3 7 0.89 6 8
3 0.89 6 4 0.70 2 3 0.72 4 2
4 0.75 3 7 0.66 2 4 0.71 3 4
5 0.72 2 8 0.67 2 4

130

 As happens in most multi-objective optimization problems, the true Pareto front is not

known, and then a good approximation of the true Pareto-optimal front, Ytrue, can be built

by gathering all non-dominated individuals from all sets or runs. In other words, for the

performance comparison that is presented next, the real Pareto-optimal front is

approximated by the best known solutions of all our experiments.

 Two metrics are used to compare the performance of the MOEA-DAP algorithm

against the NSGA-II. The following two metrics, as in Van Veldhuisen (1999), are the

Overall Nondominated Vector Generation (ONVG) and Overall true Nondominated

Vector Generation (OTNVG).

1. Overall Nondominated Vector Generation (ONVG): simply counts the number of

solutions in the Pareto front Yknown

ONVG = |Yknown |

where | | denotes cardinality, i.e., the number of elements or objects in a set.

2. Overall true Nondominated Vector Generation (OTNVG): counts the number of

solutions in the Pareto front Yknown that are also in the true Pareto-optimal front Ytrue.

OTNVG = | {y | y � Yknown 0 y � Ytrue } |

 Table 5.15 presents the performance comparison summary of both algorithms. As can

be seen, from the 20 runs carried out, 389 nondominated solutions were obtained, which

is denoted by the sum in ONVG obtained by NSGA-II and MOEA-DAP. As can be

observed, only 96 nondominated solutions were obtained when using the NSGA-II

algorithm; in contrast to the 293 solutions obtained by the new MOEA-DAP algorithm.

131

 These 389 solutions are nondominated in their individual runs, thus to form the true

Pareto-optimal front, Ytrue, these solutions are joined together and the Pareto dominance

criterion is checked to eliminate dominated solutions, as shown in Section 5.3.

Table 5.15 Performance comparison

Algorithm
Population

Size
(A)

Run ONVG OTNVG

1 12 5
2 13 4
3 11 0
4 10 2
5 4 0
6 13 2
7 6 0
8 12 2
9 3 0

NSGA-II

50

10 12 5
 1 = 96 1 = 20

1 27 15
2 28 13
3 36 17
4 36 11
5 28 20
6 29 13
7 25 11
8 37 20
9 26 12

Our algorithm
MOEA-RAP

50

10 21 13
 1 = 293 1 = 145

 After checking the Pareto dominance criterion, the true Pareto front is formed by 139

solutions, that is Ytrue= |139 |. To obtain the values in the fifth column of Table 5.15, we

count the number of nondominated solutions in each individual run, Yknown, and check

how many of these are also in the true Pareto-optimal front, Ytrue (see Table B.21 in

Appendix B).

 The true Pareto-optimal front is formed by 139 nondominated solutions. From these,

124 solutions were obtained with our algorithm (MOEA-DAP), and only 15 solutions

132

were obtained by using the NSGA-II algorithm. The maximum and minimum values

found in Ytrue are presented in Table 5.16.

Table 5.16. Maximum and minimum values found in Ytrue
 Reliability Cost Weight

max 0.999999 � 1 129 129
min 0.33768 6 11

 To make a visual comparison of the solutions in Ytrue obtained by both algorithms,

Figure 5.8 shows the 15 solutions obtained by the NSGA-II that contributed to the true

Pareto-optimal front and to better visualize the solutions Figures 5.9, 5.10 and 5.11 plot

reliability vs. cost, reliability vs. weight and cost vs. weight, respectively. In the same

way, Figure 5.12 shows the 124 solutions found in Ytrue and obtained by the MOEA-DAP

algorithm. Figures 5.13, 5.14 and 5.15 show also the two dimensional representation of

the solutions.

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0
20

40
60

80
100

120

20

40

60

80

100

120

Max ReliabilityMin Cost

M
in

 W
ei

gh
t

Figure 5.8 Nondominated solutions in Ytrue obtained from NSGA-II algorithm

133

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Max Reliability

M
in

 C
os

t

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

120

M
in

 W
ei

gh
t

Max Reliability
0 20 40 60 80 100 120

20

40

60

80

100

120

M
in

 W
ei

gh
t

Min Cost
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Max Reliability

M
in

 C
os

t

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

120

M
in

 W
ei

gh
t

Max Reliability
0 20 40 60 80 100 120

20

40

60

80

100

120

M
in

 W
ei

gh
t

Min Cost

 Figure 5.9 Nondominated solutions in Ytrue Figure 5.10 Nondominated solutions in Ytrue Figure 5.11 Nondominated solutions in Ytrue
 obtained from NSGA-II algorithm. Rel vs Cost obtained from NSGA-II algorithm. Rel vs Weight obtained from NSGA-II algorithm. Cost vs Weight

0.4
0.5

0.6
0.7

0.8
0.9

1

0
20

40
60

80
100

120

20

40

60

80

100

120

Max ReliabilityMin Cost

M
in

 W
ei

gh
t

Figure 5.12 Nondominated solutions in Ytrue obtained from MOEA-DAP algorithm

0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Max Reliability

M
in

 C
os

t

0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

120

140

Max Reliability

M
in

 W
eig

ht

0 20 40 60 80 100 120

20

40

60

80

100

120

140

Min Cost

M
in

 W
eig

ht

0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Max Reliability

M
in

 C
os

t

0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

120

140

Max Reliability

M
in

 W
eig

ht

0 20 40 60 80 100 120

20

40

60

80

100

120

140

Min Cost

M
in

 W
eig

ht

 Figure 5.13 Nondominated solutions in Ytrue Figure 5.14 Nondominated solutions in Ytrue Figure 5.15 Nondominated solutions in Ytrue
 obtained from MOEA-DAP. Rel vs Cost obtained from MOEA-DAP. Rel vs Weight obtained from MOEA-DAP. Rel vs Weight

 As can be seen in Figures 5.8, through 5.11 the nondominated solutions obtained by

the NSGA-II algorithm are not uniformly distributed along the Pareto front and mostly

are extreme solutions, with very high reliability but also with large cost and weight. In

134

contrast, we can observe that our new MOEA-DAP algorithm is able to obtain a set of

non-dominated solutions fairly uniformly spreading along the Pareto frontier (Ytrue).

 Thus, as stated in Coello Coello & Toscano Pulido (2001), although the NSGA-II

algorithm tends to spread quickly and appropriately when a certain nondominated region

is found, it seems to have difficulties to generate nondominated solution vectors that lie

in certain regions of the search space. For this particular problem, the MOEA-DAP offers

distinct advantages and in the example, the performance was better. However, it can not

be concluded that the performance will be better for all problems.

 The results of the performance comparison were based on two different performance

metrics, ONVG and OTNVG. The results indicate that MOEA-DAP is more effective for

solving this type of problem. Since our algorithm obtains more solutions that contribute

to the true Pareto-optimal front, the solutions are also more uniformly distributed along

the Pareto frontier than those solutions coming from the NSGA-II.

 The performance comparison show that MOEA-DAP, which is a problem specific

multi-objective algorithm, is superior at obtaining diverse solutions and a uniform spread

along the Pareto front. In contrast, the solutions obtained by the NSGA-II algorithm are

not uniformly distributed along the Pareto front and are mainly extreme solutions. This,

however, is not surprising, since NSGA-II is a general multi-objective algorithm it can

hardly compete with a method specifically designed to solve this particular MOCO

reliability-design problem. As mentioned before, MOEA-DAP has the strength of a

problem-oriented technique.

135

5.5 Summary

 In this section, the methodology involving the sequential operations of a newly

developed multi-objective evolutionary algorithm for solving system design allocation

problems is presented. Our algorithm (MOEA-DAP) uses a GA based on rank selection

and elitist reinsertion, and a modifying genetic operator constraint handling method.

 MOEA-DAP, mainly differs from other MOEAs in the type of crossover operation

performed. In this step, several offspring are created through multi-parent recombination.

As a result, from n parents, denoted as Npar, considered for mating, in our algorithm

there will be s [Npar (Npar-1)] number of children produced, where s is the number of

subsystems considered. Thus, the mating pool contains a great amount of diversity of

solutions. This disruptive nature of our proposed type of crossover, subsystem rotation

crossover (SURC), appears to encourage the exploration of the search space.

 A performance comparison between one of the most successful evolutionary

algorithms that currently exists: NSGA-II and our algorithm, shows that our algorithm is

more powerful to solve multi-objective redundant design allocation problems. This shows

that one challenge still remains for current multi-purpose MOEAs, which is the

scalability problem, that is, the efficient solution of large scale problem instances.

136

6. MOMS-GA: an extension to MOEA-DAP to consider

multi-state system performance

 In this chapter, a custom genetic algorithm was developed and implemented to solve

multiple objective multi-state reliability optimization design problems. Many real-world

engineering design problems are multi-objective in nature, and among those, several of

them have various levels of system performance ranging from perfectly functioning to

completely failed. This multi-objective genetic algorithm uses the universal moment

generating function approach to evaluate the different reliability or availability indices of

the system. The components are characterized by having different performance levels,

cost, weight and reliability. The solution to the multi-objective multi-state problem is a

set of solutions, known as the Pareto-front, from which the analyst may choose one

solution for system implementation. Two illustrative examples are presented to show the

performance of the algorithm, and the multi-objective formulation considered for both of

them, is the maximization of system availability and the minimization of both system cost

and weight.

6.1. Introduction

 Most realistic optimization problems, particularly those in system design, require the

simultaneous optimization of more than one objective function. In this chapter, I present

a multi-objective multi-state genetic algorithm (MOMS-GA) to solve multiple objective

multi-state reliability and availability optimization design problems (Taboada et al.,

137

2006). The objectives considered are the maximization of the system availability, and the

minimization of system cost and weight. The components and the system considered

have a range of different states and the universal moment generating function (UMGF)

approach is used to obtain the system availability.

 Reliability is defined as the probability that a device or system is able to perform its

intended functions satisfactorily under specified conditions for a specified period of time.

However, traditional reliability assumes that a system and its components can be in either

a completely working or a completely failed state only (Birnbaum et al., 1961), i.e., no

intermediate states allowed. This condition has facilitated the development of a robust

and extensive theory to analyze system performance. However, in some cases, traditional

reliability theory fails to represent the true behavior of the system. Failure to

acknowledge this situation can represent a major deficiency when systems have a range

of intermediate states that are not accounted for by traditional reliability estimation.

 To describe the satisfactory performance of a device or system, we may need to use

more than two levels of satisfaction, for example, excellent, average, and poor. Multi-

state reliability (El-Neweihi et al., 1978; Barlow & Wu, 1978; Lisniaski & Levitin, 2003)

has been proposed as a complementary theory to cope with the problem of analyzing

systems where traditional reliability theory and models become insufficient. Then, in a

multi-state system, both the system and its components are allowed to experience more

than two possible states, e.g., completely working, partially working or partially failed,

and completely failed.

6.2 Previous research on multi-state systems (MSS)

 When considering multi-state systems (MSS), there are generally four methods for

138

MSS reliability assessment, which are, (1) the structure function approach (Brunelle &

Kapur, 1998; Pourret et al., 1999), (2) the stochastic processes “Markov” approach (Xue

& Yang, 1995), (3) The Monte Carlo simulation technique (Ramirez-Marquez & Coit,

2005) and (4) the universal moment generating function approach (Levitin & Lisnianski,

2001; Ushakov 1986, 1988).

 Research that considers the RAP for MSS considering one objective and several

constraints have been presented recently. Ramirez-Marquez & Coit (2004), proposed a

heuristic to solve a multi-state series-parallel system with binary capacitated components.

In their study, the RAP is formulated with the objective of minimizing the total cost

associated with a system design constrained by a reliability performance index. In their

heuristic, once a component selection is made, only the same component type can be used

to provide redundancy. Levitin et al. (1998) used a GA for solving the multi-state RAP,

where the system and its components have a range of performance levels. Based on the

UMGF, they determined the system availability. Levitin (2000) addressed the multi-stage

expansion problem for multi-state series-parallel systems. In this problem, the system-

study period is divided into several stages. Later, Levitin (2001) solved a redundancy

optimization problem for multi-state systems with fixed resource-requirements and

unreliable sources, subject to availability constraints. Later, Tian & Zuo (2006) applied

GA together with physical programming to solve the RAP.

6.3 Evolutionary approaches in multi-objective optimization

 Evolutionary algorithms, as shown in Chapter 3, have been recognized to be well-

suited to solve multi-objective optimization problems. Their ability to accommodate

complex problems, involving features such as discontinuities, multimodality, disjoint

139

feasible spaces, etc., reinforces the potential effectiveness of EAs in multi-objective

search and optimization.

 These universal methods, although capable of solving many multi-objective

problems, are not specifically designed to be efficient in the solution of large-scale multi-

objective system design combinatorial problems. Therefore, in this chapter, a specific

MOEA, called MOMS-GA, is presented as a method exclusively designed to solve

multiple objective multi-state reliability-design optimization problems. Thus, MOMS-GA

has the strength of a problem-oriented technique, in which the selection of components is

advantageously combined to create a MOEA which can undertake the problem in the

most efficient way. This is the first reported multi-objective evolutionary framework for

solving multiple objective multi-state reliability-design optimization problems. The

fundamental operations of MOMS-GA are presented in Section 6.5.

6.4 Multi-state system availability estimation method

 The procedure used in this chapter for system-availability evaluation is based on the

universal z-transform, originally introduced by Ushakov (1986). In the literature, the

universal z-transform is also called universal moment generating function (UMGF) or

simply u-transform, which has proven to be very effective for high dimension

combinatorial problems. The UMGF represents an extension of the widely known

moment generating function (Ross, 1993). The UMGF of a discrete random variable G is

defined as a polynomial

jg
J

j
j zpzu "

�

�
1

)((1)

Where the discrete random variable G has J possible values and pj is the probability that

G is equal to gj.

140

 The probabilistic characteristics of the random variable G can be found using the

function u(z). In particular, if the discrete random variable G is the MSS stationary output

performance, then availability A is given by the probability P(G2D), which can be

defined as:

P(G2D) = 3 (u(z)z -D) (2)

 Where 3 is the disruptive operator defined by the following expressions:

, if
()

0, if
j j jg D

j
j

p g D
p z

g D
3 ! 2�

� � ��
 (3)

� �""
�

!

�

! ���
�

�
��
�

 J

j

Dg
j

J

j

Dg
j

jj zpzp
11
33 (4)

 It can be easily shown that equations (1)-(4) meet condition P(G2D) = ."
2Dg

j
j

p By

using the operator 3, the coefficients of polynomial u(z) are summed for every term with

gj2D, and the probability that G is not less than some specified value D is systematically

obtained.

 Consider single components with total failures and each component i has nominal

performance Gi and availability Ai. The UMGF of such a component has only two terms

and can be defined as:

ii G
ii

G
iii zAAzAzAzu �!��!�)1()1()(0 (5)

 To evaluate the MSS availability of a series-parallel system, two basic composition

operators are introduced. These operators determine the polynomial u(z) for a group of

components.

6.4.1 Parallel components

 The systems considered in this section pertain to flow transmission multi-state

141

systems, in which the flow can be dispersed and transferred by parallel components

simultaneously. Therefore, for a system containing n elements connected in parallel, the

total capacity is equal to the sum of capacities of all its elements. Therefore, its u-

function can be calculated using the 4 operator:

))(),...,(),(()(21 zuzuzuzu np 4�

where

"
�

�
n

i
igG

1

Therefore for a pair of components connected in parallel we have:

1 2 1 2

1 2
1 1 1 1

((), ()) , j i ji

k k k k
b a ba

i j i j
i j i j

u z u z p z q z p q z4 4 �

� � � �

 �
� �� �

� �
" " "" (6)

 The parameters ai and bj are physically interpreted as the performances of the two

components, k1 and k2 are numbers of possible performance levels for these components,

while pi and qj are steady-state probabilities of possible performance levels for the

components. One can see that the 4 operator is simply a product of the individual u-

functions. For a system with multiple components, the operator can for two components

can be iteratively applied to accommodate any number of components.

6.4.2 Series components

 When the components are connected in series in flow transmission multi-state

systems, the component with the least performance becomes the bottleneck of the system.

This component, therefore, defines the total system productivity. To calculate the u-

function for a system with m elements connected in series, the � operator should be used:

))(),...,(),(()(21 zuzuzuzu ms ��

For which

},...,,min{ 21 mgggG �

142

So that,

� �jiji ba
j

n

i

m

j
i

n

i

m

j

b
j

a
i zqpzqzpzuzu ,min

1 11 1
21 ,))(),((""" "

� �� �

���
�

�
��
�

��� (7)

 Using 4 and � operators, the u-function of the entire system can be defined. To do

this, we must first determine the individual u-functions of each element.

6.4.3 Total system reliability evaluation

 Let us consider the general case where failures may either cause total failure or

reduction of the component capacities, and therefore, different capacity degradation

levels must be considered. In this case, the u-function of such a component is:

1
() ij

J
gl l

i ij
j

u z p z
�

� "

Where the index l represents the subsystem, i denotes the component (within subsystem l)

and j the component state. gij is the capacity of the element in state j, and l
ijp is the

probability of this state.

 We obtain the UMGF of the lth subsystem containing Hi parallel components of

different versions by,

11 1

() ()
i i i

ij

H H J
gl l

i i ij
ji i

u z u z p z
�� �

� � "$ $ (8)

Where the ith component in subsystem l has Ji different states, each state has a

probability l
ijp .

 Thus, the UMGF of the entire system containing m subsystems connected in series is:

1
1

11 1 1

() (),..., (),..., ()
i m

i

H HH N
al m

s i i i i
ii i i

u z u z u z u z p z�
�� � �

 �
� �� �

� �
"$ $ $ (9)

 Once all terms are considered and terms with the same exponents are grouped

together, N represents the total number of possible system states, ai represents the

143

different possible performance levels with probability pi.

 To evaluate the availability A of the entire system,)(DGP 2 considering the

cumulative demand curve is given by Equation (9). The corresponding UMGF, ud(z), for

the random demand load is defined as:

� � sD
S

s
sd zqzu !

�
"�

1

qs is the vector of the steady-state probabilities of the corresponding load demand level

Ds and S is the maximum number of different intervals from the cumulative demand

curve.

1 1 1 1
() (() ()) i s i s

n S n S
a D a D

n s s d i s i s
i s i s

A P G D u z u z p z q z p q z3 3 3! !

� � � �

 � �
� 2 � � �� � � �

� � � �
" " "" (10)

6.5 Multi-objective multi-state genetic algorithm (MOMS-GA)

 MOMS-GA was developed as an extension of MOEA-DAP (Taboada & Coit,

2006b), a multi-objective evolutionary algorithm for design allocation problems,

introduced in last chapter. In MOEA-DAP, the multi-objective formulation was to

maximize system reliability, minimize the total cost, and minimize the system weight, for

a series-parallel system. However, MOEA-DAP was developed to consider binary-state

reliability. That is, the evolutionary algorithm assumed that the system and its

components could be in either a working or a failed state only. Thus, MOMS-GA, is a

natural extension of MOEA-DAP. The developed MOMS-GA works under the

assumption that both the system and its components experience more than two possible

states of performance. Thus, in general, MOMS-GA differs from MOEA-DAP in the

evaluation of the first objective function. MOEA-DAP evaluated system reliability

(binary-state), while in MOMS-GA, the evaluation of the first objective function is

144

system availability (multi-state). The UMGF approach was implemented in the algorithm

code to obtain the system availability.

 A detailed explanation of the characteristics of the solution encoding, evolution

parameters and genetic operators are as described in Chapter 5 (Taboada & Coit, 2006b).

However, the fundamental operations of MOMS-GA are summarized next.

1. [Start] Generate random population of n chromosomes. MOMS-GA uses

an integer chromosomal representation.

2. [Objective function values evaluation] Evaluate system availability

using the UMGF. Evaluate system cost and system weight.

3. [Pareto dominance evaluation] Pareto dominance criterion is checked

in the initially created solutions. Those solutions that are

dominated by other solutions are eliminated. Thus, in this way,

MOMS-GA ensures that the resulting population only contains Pareto-

optimal solutions.

4. [Fitness evaluation] Evaluate the following fitness functions of

each chromosome x in the population.
4.1 Fitness Metric 1: Distance-based, f1(i). It gives highest fitness

to those solutions that are farther away from other solutions in the

Pareto front. It is intended for maintaining population diversity.

4.2 Fitness Metric 2: Dominance count-based, f2(i). It aims to select

those individuals which are more dominating (intended to achieve

proximity).

4.3 Aggregated Fitness Metric, fa(i): Fitness Metric 1 + Fitness

Metric 2, fa(i)= f1(i) + f2(i). It aims to weight both metrics

equally.

5. [Selection] Rank selection is used. With a given crossover

probability, select individuals with the highest aggregated fitness

to perform recombination.

6. [Crossover] With a pre-defined crossover probability, crossover the

parents to form new offspring (children). For the exploitation of

the combinatorial structure within the search algorithm, a problem-

dependent component is developed in MOMS-GA: a specific crossover

operator called subsystem rotation crossover (SURC). In this step,

multi-parent recombination is allowed. This action, and the way that

SURC works, produces a large number of children in the mating pool,

145

creating a large number of diverse solutions to choose from.

Diversity is considered favorable, as the greater the variety of

genes available to the genetic algorithm, the greater the likelihood

of the system identifying good alternate solutions.

7. [Mutation] Single-point mutation is used. With a pre-defined

mutation probability, mutate new offspring at a random position in

the chromosome.

8. [Reinsertion] MOMS-GA uses elitist reinsertion in the aim of

preventing the loss of the best-found solutions. New offspring plus

a specified percentage of the most elite individuals from the

previous population are chosen to form the new population.

9. [Replace] Use new generated population for a further run

(generation) of the algorithm

10.[Test] If the Generation i = Generation ‘max’, stop, and return the
 best solutions in current population, otherwise return to step 2.

6.6 Numerical examples

 Two examples are considered. They pertain to the type of flow transmission multi-

state systems with flow dispersion. The main characteristic in these systems is that the

parallel elements in each subsystem can transmit the flow simultaneously. The first

example considers binary capacitated components and multi-state system performance,

while the second example considers multi-state components and multi-state system

performance.

 The first example consists of five main units connected in series. For each unit, there

are several components available to choose from to provide redundancy. Each component

of the system is binary capacitated. This problem has been previously solved as a single

objective problem considering the minimization of total system cost, subject to a desired

level of reliability by using a GA in Levitin & Lisnianski (2001), and later by Ramirez-

Marquez & Coit (2004) using a heuristic. Recently, Gupta & Agarwal (2006) considered

the same example using a GA which incorporates a dynamic adaptive penalty function.

146

 The second example presented consists of three main units connected in series. For

each unit, there are several components available that can be chosen to provide

redundancy. Each component of the system can have different levels of performance,

which range from maximum capacity to total failure.

6.6.1 Example 1

 Table 6.1 shows the example considered, consisting of five main units connected in

series. For each unit, there are several components available in the market that can be

chosen to provide redundancy. Each component of the system is considered to be binary

capacitated, meaning that it can have only two states, functioning with the nominal

capacity or total failure, corresponding to capacity 0. The collective performance of these

binary components leads to multi-state system behavior. Each component is characterized

by its availability, nominal capacity, cost and weight. Without loss of generality,

component capacities can be measured as a percentage of the maximum demand. Table

6.2 presents different demand levels for a given period, known as the cumulative demand

curve.

147

Table 6.1. Characteristics of the system elements available

Subsystem
Component

Type Availability
Feeding
Capacity

(%)
Cost Weight

1 0.980 120 0.590 35.4
2 0.977 100 0.535 34.9
3 0.982 85 0.470 34.1
4 0.978 85 0.420 33.9
5 0.983 48 0.400 34.2
6 0.92 31 0.180 34.3

1

7 0.984 26 0.220 32.6
1 0.995 100 0.205 26.5
2 0.996 92 0.189 22.4
3 0.997 53 0.091 20.3
4 0.997 28 0.056 21.7

2

5 0.998 21 0.042 25.2
1 0.971 100 7.525 42.1
2 0.973 60 4.720 41.7
3 0.971 40 3.590 40.8 3

4 0.976 20 2.420 39.6
1 0.977 115 0.180 25.4
2 0.978 100 0.160 23.9
3 0.978 91 0.150 24.7
4 0.983 72 0.121 24.6
5 0.981 72 0.102 23.6
6 0.971 72 0.096 26.2
7 0.983 55 0.071 25.5
8 0.982 25 0.049 22.6

4

9 0.977 25 0.044 24.8
1 0.984 128 0.986 15.4
2 0.983 100 0.825 15.3
3 0.987 60 0.490 14.9

5

4 0.981 51 0.475 15.0

Table 6.2. Parameters of the cumulative demand curve

Demand (%) 100 80 50 20
Duration (h) 4203 788 1228 2536
Duration (%) 0.48 0.09 0.14 0.29

 The problem was solved using the developed algorithm, MOMS-GA, with a

population size of 200 and 50 generations. MOMS-GA, fully coded in MATLAB� 7.0,

was run on a Sony VAIO computer, with an Intel Pentium processor operating at 1.86

GHz and 1 GB of RAM. The computation time was 595.25 seconds. The problem

148

considered was a multi-objective problem with system availability to be maximized and,

cost and weight of the system to be minimized.

 Figure 6.1 shows the 118 solutions found in the Pareto-front. To better visualize the

solutions obtained, Figure 6.2 show the two dimensional representation of the same

solutions.

0.92
0.93

0.94
0.95

0.96
0.97

0.98
0.99

1

0
10

20
30

40
50

60
100

200

300

400

500

600

700

800

Max AvailabilityMin Cost

M
in

 W
ei

gh
t

Figure 6.1 Pareto front of example 1

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
5

10

15

20

25

30

35

40

45

50

55

Max Availability

M
in

 C
os

t

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
100

200

300

400

500

600

700

800

Max Availability

M
in

 W
ei

gh
t

5 10 15 20 25 30 35 40 45 50 55
100

200

300

400

500

600

700

800

Min Cost

M
in

 W
ei

gh
t

Figure 6.2 Pareto front of example 1 in a two dimensional space

 Once the Pareto-optimal set is obtained, the decision-maker has to decide which of

the non-dominated points to choose as the solution to the problem. For instance, the

regions of the Pareto set which express good compromises according to problem-specific

knowledge can be identified. More detail on methods to be applied in the decision-

149

making stage to reduce the size of the Pareto-optimal set, and obtain a smaller

representation of the multi-objective design space can be found in Taboada & Coit (2007)

and Taboada et al. (2007a). In this case, example solutions from the “knee” region (Das,

1999; Branke et al., 2004) are presented as good compromises. The “knee” is formed by

those solutions of the Pareto-optimal front where a small improvement in one objective

would lead to a large deterioration in at least one other objective. Table 6.3 shows three

example design configurations from this region with their respective system availability,

cost and weight.

Table 6.3. Example design configurations of Example 1

297.719.1320.99516456

323.716.6770.99456234

286.518.8720.99343931

WeightCostAvailabilitySystem Design Configuration DiagramSol. No.

297.719.1320.99516456

323.716.6770.99456234

286.518.8720.99343931

WeightCostAvailabilitySystem Design Configuration DiagramSol. No.

1

2
1

1

1

1

2

1

1

1

1

2
1

1

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

3

2

3

2

1

1

1

2

1

1

1

1

1

3

1

3

2

3

2

2

3

2

1

1

1

1

1

2

1

2

1

2

1

3

1

1

1

1

1

3

2

1

2

1

2

1

3

1

3

1

1

1

1

1

1

1

1

1

3

2

1

3

2

6.6.2 Example 2

 Table 6.4 shows the second example considered, which consists of three main units

connected in series. For each unit, there are several components available in the market

that can be chosen to provide redundancy. Each component of the system can have

different levels of performance, which range from maximum capacity to total failure.

150

Each component is characterized by its availability (pij), nominal capacity, cost and

weight. Table 6.5 presents the system cumulative demand curve.

Table 6.4. Characteristics of the system elements available

Subsystem Component
Type Availability

(pij)

Feeding
Capacity

(%)

Cost Weight

0.70 130
0.20 100 1
0.10 0

65 80

0.65 100
0.25 80 2
0.10 0

60 70

0.60 95
0.30 90 3
0.10 0

50 75

0.90 135
0.05 80

1

4
0.05 0

80 100

0.50 200
0.25 140
0.20 100

1

0.05 0

120 70

0.60 220
0.30 140 2
0.10 0

130 100

0.90 300

2

3
0.10 0

200 100

0.80 160
0.15 90 1
0.05 0

200 60

0.85 140 2
0.15 0

160 100

0.90 200 3
0.10 0

250 90

0.65 100
0.30 80 4
0.05 0

100 70

0.50 130
0.30 100
0.15 50

3

5

0.05 0

60 50

Table 6.5. Parameters of the cumulative demand curve

Demand (%) 100 80 60 20
Duration (h) 4380 2628 876 876
Duration (%) 0.5 0.3 0.1 0.1

151

 MOMS-GA was run considering a population size of 100 and 50 generations. The

computation time was 606.20 seconds. The multi-objective formulation seeks to

maximize system availability, while minimizing system cost and weight. Figure 6.4

shows the 57 solutions found in the Pareto front. To better visualize the solutions

obtained, Figure 6.4 show the two dimensional representation of the same solutions.

Table 6.6 shows three example design configurations with its respective system

availability, cost and weight. These three solutions were selected as good compromise

solutions by considering the “knee” of the Pareto-front.

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0

500

1000

1500

2000
200

300

400

500

600

700

800

900

1000

Max AvailabilityMin Cost

M
in

 W
ei

gh
t

Figure 6.3 Pareto front of example 2

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
200

400

600

800

1000

1200

1400

1600

Max Availability

M
in

 C
os

t

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
200

300

400

500

600

700

800

900

1000

M
in

 W
ei

gh
t

Max Availability
200 400 600 800 1000 1200 1400 1600

200

300

400

500

600

700

800

900

1000

Mi
n

W
eig

ht

Min Cost

Figure 6.4 Pareto front of example 2 in a two dimensional space

152

Table 6.6 Example design configurations of example 2

4004300.93269812

3605250.9306288

3303700.92545224

WeightCostAvailabilitySystem Design Configuration DiagramSol. No.

4004300.93269812

3605250.9306288

3303700.92545224

WeightCostAvailabilitySystem Design Configuration DiagramSol. No.

5

5
1

1

1

5

5
1

1

1

1

1

1

5
1

1

4

1

5
1

1

4

1

4

5

5

1

2

1 1

5

5

5

5

1

2

1

1

2

1 1

6.7 Summary

MOMS-GA was developed to solve multiple objective multi-state reliability

optimization design problems. Many real-world engineering design problems are multi-

objective in nature, and among those, several of them have various levels of system

performance. The multi-objective GA developed uses the UMGF to evaluate the different

reliability indices of the system. The use of a fast UMGF-based procedure for system

availability evaluation within a multi-objective evolutionary algorithm allows

identification of the entire multi-state performance distribution based on the performance

of its components. The components are characterized for having different performance

levels, cost, weight, and availability. The solution to the MOMS problem is a set of

solutions, known as the Pareto-front, from which the analyst may choose one solution for

system implementation.

153

7. A multi-objective evolutionary algorithm for determining

optimal configurations of multi-task production systems

This chapter presents a new multiple objective evolutionary algorithm to determine

optimal configurations of multi-state, multi-task production systems based on availability

analysis. A multi-task production system is one in which different subsets of machines

can be used to perform distinct functions or tasks. The performance of a manufacturing

system is greatly influenced by its configuration. Availability can be used in the context

of multi-task production systems to select a particular configuration that maximizes the

probability of meeting a required demand for each specific task, or the expected

productivity for each task. A particular configuration may not simultaneously maximize

the probability of meeting demand for each of the individual tasks, and thus, the problem

is treated as a multi-objective optimization problem. The solution to this problem is a set

of promising solutions that provides a trade-off among the different objective functions

considered.

7.1 Introduction

 Many modern systems operate in a multi-task mode. A multi-task production system

is one in which different subsets of machines can be used to perform distinct functions or

tasks. Multi-task machining has been adopted in an increasing number of manufacturing

job shops, especially by companies facing competition from lower cost markets. Some of

the most interesting and important examples of multi-task systems occur in flexible

154

manufacturing systems (FMSs). Flexibility is a major consideration in the design of

manufacturing systems, and FMSs have been developed over the last two decades to help

manufacturing industries move towards the goal of flexibility. Many examples can be

found in flexible production facilities and flexible assembly systems. For instance, in a

flexible assembly system, there are typically a limited number of different product types,

and the system has to produce a given quantity of each product type (Pinedo & Chao,

1999).

 The development of effective and efficient FMS scheduling strategies remains an

important and active research area. However, the selection of a system configuration is a

frequent difficulty which arises during the early stages of the manufacturing system

development (during the machine allocation phase). At this stage, manufacturers must

choose, not only machine specifications and vendors, but also the configuration of the

system. However, because of their nature, multi-task manufacturing systems can be

designed in many different ways. The chosen configuration has a profound impact on the

overall performance of the system in terms of reliability, productivity, cost, etc.

 Significative research has been done in the area of configuration selection for

manufacturing systems. For instance, Koren et al. (1998) analyzed how reliability,

productivity, and quality were affected by different system configurations assuming

known machine level reliability and process capability. Later, Altumi et al. (2001)

presented a model to determine the spare tooling allocation requirement for the tooling

system in a FMS, so that the desired system reliability is achieved and the cost is

minimized. Cochran et al. (2001) analyzed how the selection of a manufacturing system

configuration can impact the ability to meet different types of objectives such as cost,

155

performance, and quality. By considering several design configurations, Freiheit et al.

(2004) examined the importance of design configuration on system productivity. They

showed how improvements can be obtained by using bufferless series-parallel

configuration arrangements. Later, Youssef et al. (2006) used the universal generating

function for evaluating the availability of multi-state manufacturing systems capable of

producing more than one part type. Seward & Nachlas (2004) considered availability in

the analysis of manufacturing systems and developed models for the operational

reliability and availability of multi-task systems.

 Analogous to the machine allocation phase in production systems, there are many

other engineering design and development projects that require the allocation of

redundant components to meet high reliability specifications. Perhaps, the most

representative problem in reliability design is the well-known redundancy allocation

problem (RAP). In the RAP, as shown in previous chapters, one considers a system with

a total of m subsystems arranged in series. For each subsystem, there are n functionally

equivalent components arranged in parallel, with potentially different levels of cost,

weight, reliability and other characteristics. The n components are to be selected from

several available component types, where multiple copies of each type can be selected.

While there are many forms of the RAP, it generally involves the selection of

components and redundancy levels with the objective to maximize the overall system

reliability or availability while satisfying a constraint for some other system

characteristics such as system cost and system weight. The RAP has been solved using

dynamic programming (Fyffe et al., 1968; Nakagawa & Miyazaki, 1981), integer

programming (Bulfin & Liu, 1985; Gen et al., 1990), genetic algorithms (Ida et al., 1994;

156

Painton & Campbell, 1995; Coit & Smith, 1996a; Tian & Zuo, 2006; Taboada & Coit,

2006b), among others.

 Despite the clear relationship between the two types of allocation problems,

production scheduling and reliability optimization are typically treated independently in

the research literature and in practice. This chapter shows how system availability can be

used in the context of multi-task production systems to select a particular configuration

that maximizes the probability of meeting a given demand for each of the individual

tasks. The problem is treated as a multi-objective problem, and it is solved using a multi-

objective evolutionary algorithm.

7.2. Problem description

 The problem addressed in this chapter is one that pertains to a flexible flow shop

environment with L stages arranged in series. At each stage l (l=1, …, L) several

machines work in parallel, such that the total performance of the stage is equal to the

sum of performances of the available machines. The system is aimed at performing K

different tasks. Any task k (k=1,…, K) can be processed at each stage on any machine.

For each stage l, there are Il types of machines available in the market. Each type i

(i=1,…, Il) is characterized by its cost l
ic , nominal performance l

ikg and availability l
ikp

when performing task k. For example, a particular manufacturing stage may involve

processing on a lathe, and the nominal performance is the cutting speed and there may be

several alternative lathes with different cutting speeds.

 Any possible system structure can be represented by a matrix of integer numbers

h={hil , i=1, …, Il, l=1, …, L }, where hil is the number of machines of type i chosen for

the stage l. The problem is to build a series-parallel system (by choosing the machines of

157

available types for each stage) that maximizes the probability of meeting a required

system performance level (demand) Dk for each task k and minimizes the total system

cost:

 maximize Ak(h, Dk) for k=1, …, K ,

 minimize � � l
i

L

l

I

i
il chC

l

""
� �

�
1 1

h

 The system is assumed to be a bufferless manufacturing system. The presence of

multiple parallel machines per stage reduces the effect of breakdown of any of the

machines, and thus, the use of buffers is not always necessary. Since a particular

configuration may not simultaneously maximize the probability of meeting demand for

each of the individual tasks, the problem becomes a multi-objective problem with K

objectives to be maximized, i.e., the performance level for each task. Another objective

that was additionally considered in two examples presented in this paper is the

minimization of the overall system configuration cost. This multi-objective problem has a

set of Pareto-optimal solutions.

7.3 Multi-state system availability estimation method

 As shown in chapter 6, many practical systems can perform their intended functions

at more than two different levels of performance. These kinds of systems are known as

multi-state systems. Within the context of multi-task production systems, system

availability is used as criteria to select a particular configuration that maximizes the

probability of meeting a given demand for each of the individual tasks.

The universal moment generating function (UMGF) is used again to evaluate the

availability of the multi-task multi-state manufacturing system. Therefore, in this chapter,

158

the UMGF introduced in the previous chapter, is adapted to be used within the context of

multi-task production systems.

 The u-function representing the probability mass function (pmf) of a discrete random

variable Y is defined as a polynomial

,)(
1

"
�

�
J

j

y
j

jzzu 5 (1)

where the variable Y has J possible values and, 5j is the probability that Y is equal to yj.

 To obtain the u-function representing the pmf of a function of two independent

random variables, composition operators are introduced. Considering a function 6(Ym,

Yn), the composition operators determine the u-function for 6(Ym, Yn) using simple

algebraic operations on the individual u-functions of the variables. All of the composition

operators take the following form,

U(z) = " " ""
� � ��

�7�7
n m n

nhmjnh
m

mj

J

i

J

j

J

h

yy
nhmj

y
nh

J

j

y
mjnm zzzzuzu

1 1 1

),(

1

)()(65555
66

 (2)

 The u-function, U(z), represents all of the possible mutually exclusive combinations

of realizations of the variables by relating the probabilities of each combination to the

value of function 6(Ym, Yn) for this combination. For example, for functions Ym+Yn and

min(Ym, Yn) operator (2) takes the form

)()()()(
1 1

zuzuzzuzu nm

J

j

J

h

yy
nhmjnm

m n
nhmj ��7 " "

� �

�
�

55 (3)

and

" "
� �

�7
m n

nhmj

J

j

J

h

yy
nhmjnm zzuzu

1 1

),min()()(
min

55 (4)

 Note that in the case of summation (3), the composition operator constitutes simple

159

product of polynomials.

 Consider u-function representing the pmf of random performance of a single machine

used within a specific manufacturing stage. When the system performs task k, any

machine of type i belonging to stage l can be in one of two states: normal functioning

with nominal performance l
ikg (probability of this state is equal to the machine

availability, l
ikp) and total failure with performance 0 (probability of this state is equal to

1- l
ikp). The UMGF representing the performance distribution of this machine is

.)1()(0 l
ikgl

ik
l
ik

l
ik zpzpzu �!� (5)

 Having the u-function representing the pmf of any random variable Y in the form (1),

the probability that Y is not less then any fixed value D can be easily determined by

summing the coefficients of polynomial u(z) for every term with yj 2 D. This can be done

by applying the following operator 3 to u(z).

"
�

2��2
J

j
jj DyDzuDYP

1
).(1)),(()(53 (6)

 Applying operator 3(Uk(z),Dk) to the u-function Uk(z), representing the pmf of system

performance for task k, availability can be determined, i.e., probability that the demand

Dk is met.

 The multi-task production system considered in this chapter pertains to flow

transmission multi-state systems (Levitin, 2005), in which the product can be dispersed

and processed by parallel machines simultaneously. Therefore, for a production system

containing several elements connected in parallel, the total capacity is equal to the sum of

the capacities of all its elements. Therefore, its u-function can be calculated using the
�
7

160

operator.

 The u-function representing the pmf of the cumulative performance of hil identical

machines of type i (when performing task k) can be obtained by applying operator (3)

over hil identical u-functions).(zu l
ik The resulting u-function takes the form

.))(())(,...,)()(()(21
ilhl

ik
l
ik

l
k

l
k

l
ik zuzuzuzuzU �777�

���
 (7)

 Having the number of machines of each type in the stage l, one can obtain the u-

function representing the pmf of the cumulative performance of all of the machines in this

stage (when performing task k) as

� � � � .)()(),...,()(
1

1
ill

l

hl
ik

I

i

l
kI

l
k

l
k zuzUzUzU $

�
�7�

�
 (8)

 When the stages are connected in series in flow transmission multi-state systems, the

stage with the least performance becomes the bottleneck of the system. This machine,

therefore, dictates the total system productivity. To calculate the u-function representing

the pmf of the performance of the entire system performing task k, the
min
7 operator (4)

should be used.

� � � � � � .)(,...,)()(),...,()(
1

1

1

1 11

minmin �
�
�

�
�
�
�

7�7� $$

��

immi hm
ik

I

i

h
ik

I

i

m
kkk zuzuzUzUzU (9)

 Having the u-function)(zU k that represents the pmf of the performance of the entire

system performing task k, one can obtain the system availability for task k as,

 Ak=3(Uk(z),Dk) (10)

 If the demand Dk is random, it can be represented by its pmf, qs=P(Dk=dks), for s=1,

…, S, and the availability Ak can be obtained as,

161

 Ak= � �ksk

S

s
s dzUq),(

1

3"
�

 (11)

7.4 Description of the multi-objective evolutionary algorithm

 The evolutionary algorithm developed uses an integer chromosomal representation.

For instance, consider the following example to illustrate a particular chromosome

generated by the algorithm. Each integer corresponds to the number of redundant

machines of that type. For example, Figure 7.1 shows a chromosome (genotype) and the

mapping to its corresponding system configuration (phenotype). In this chromosome, for

subsystem 1, there are only two copies of the first machine type. For subsystem 2, 1 copy

of the first machine type, two copies of the second machine type and one copy of the

third machine type are used in parallel. Finally, for subsystem 3, one copy of the first

machine type, one copy of the second machine type and one copy of the third machine

type are used in parallel.

2 0 0 1 2 1 1 1 1

subsystem 1 subsystem 2 subsystem 3

2 0 0 1 2 1 1 1 1

subsystem 1 subsystem 2 subsystem 3

M1

M2

M2

M3

M1

M2

M3

M1

M1

M1

M2

M2

M3

M1

M2

M3

M1

M1

Chromosome representation Corresponding system configuration

Figure 7.1 Representation of solutions

 The general steps of the algorithm are briefly explained below.

Step 1. Randomly generate an initial population of solutions.

Step 2. Decode each solution and evaluate objective function values pertaining to the

availability for each task. That is, for each of the solutions, the probability of meeting the

required demand of each of the individual tasks is evaluated by using the UMGF; and,

162

finally, the overall system cost is computed.

Step 3. Check Pareto dominance criterion. Of the initial randomly generated

solutions, eliminate those solutions that are dominated.

Step 4. Evaluate the following fitness functions of each chromosome x in the

population.

4.1. Fitness Metric 1: Distance-based, f1(i). It gives highest fitness to those

solutions that are farther away from other solutions in the Pareto front. It is

intended for maintaining population diversity.

4.2. Fitness Metric 2: Dominance count-based, f2(i). It aims to select those

individuals which are more dominating (intended to achieve proximity to the true

Pareto frontier).

4.3. Aggregated Fitness Metric, fa(i): Fitness Metric 1 + Fitness Metric 2, fa(i)=

f1(i) + f2(i). It aims to weight both metrics equally.

Step 5. Rank selection is used. To perform recombination, with a given crossover

probability, individuals with the highest aggregated fitness are selected.

5.1 The algorithm uses elitist reinsertion. A percentage of the best ranked (most

elite) individuals are directly copied to the next population. This is done with the

aim of preventing the loss of the best-found solutions.

Step 6. With a pre-defined crossover probability, new offspring (children) are

generated using a problem-specific crossover operation. For the exploitation of the

combinatorial structure within the search algorithm, a specific crossover operator

denominated subsystem rotation crossover, SURC, was used (as shown in Chapter 5). In

this step, multi-parent recombination is allowed. This action, and the way that SURC

163

works, produces a large number of children in the mating pool, creating a large number

of diverse solutions to choose from.

Step 7. Single-point mutation is used. With a pre-defined mutation probability,

mutate new offspring at a random position in the chromosome.

Step 8. The algorithm uses elitist reinsertion in the aim of preventing the loss of the

best-found solutions. New offspring plus a specified percentage of the most elite

individuals from the previous population are chosen to form the new population.

Step 9. Use new generated population for a further run (generation) of the algorithm

Step 10. If the Generation i = Generation ‘max’, stop, and return the best solutions in

current population, otherwise return to step 2.

7.5 Examples

 Thee examples are presented to illustrate the problem addressed. The three examples

consider three main manufacturing stages connected in series.

7.5.1 Example 1

 This example considers three main units connected in series. For each series

subsystem, there are several machines available in the market that can be chosen to

provide redundancy. Each of the machines can perform three different tasks. Each task is

considered to be binary capacitated, meaning that it can have only two states, functioning

with the nominal capacity or total failure, corresponding to capacity 0. The collective

performance of these binary components leads to a multi-state multi-task system

behavior. Each task is characterized by its availability and nominal capacity (production

rate in parts/hour). Table 7.1 shows the characteristics of the available machines. Without

loss of generality, task capacities can be measured as a percentage of the maximum

164

demand. Table 7.2 presents different demand levels for each task, for a given period,

known as the cumulative demand curve.

Table 7.1. Characteristics of the machines available

Subsystem
l

Machine
i

Task
k

Availability
l
ikp

Production rate
(parts/hour)

l
ikg

1 0.50 30
2 0.80 20 1
3 0.60 40
1 0.80 30
2 0.45 16 2
3 0.60 50
1 0.90 25
2 0.85 18

1
3

3 0.65 44
1 0.80 40
2 0.90 24 1
3 0.60 60
1 0.70 32
2 0.80 28 2
3 0.60 50
1 0.50 24
2 0.60 12

2

3
3 0.90 52
1 0.85 28
2 0.80 28

1

3 0.75 42
1 0.65 38
2 0.70 20

2

3 0.60 48
1 0.90 30
2 0.60 28

3

3

3 0.70 56

Table 7.2. Parameters of the cumulative demand curve

Task 1 Task 2 Task 3
Demand (%) Duration (%) Demand (%) Duration (%) Demand (%) Duration (%)

100 0.60 70 0.65 140 0.50
60 0.30 50 0.25 95 0.35
40 0.10 20 0.10 40 0.16

 The multi-objective formulation considers three objectives to be satisfied

simultaneously: maximization of the availability of producing task 1, maximization of the

availability of producing task 2 and maximization of the availability of producing task 3.

165

Since a particular configuration may not simultaneously maximize the probability of

meeting demand for each of the individual tasks, the problem becomes a multi-objective

problem with K objectives to be maximized.

 The problem was solved using the developed algorithm, with a population size of 100

and 20 generations, and a restriction that the maximum number of machines to be used

was six. The algorithm was fully coded in MATLAB� 7.0 and run on a Sony VAIO

computer, with an Intel Pentium processor operating at 1.86 GHz and 1 GB of RAM. The

computation time was 1,115.73 seconds.

 Figure 7.2 shows the 29 solutions found in the Pareto front. To better visualize the

solutions obtained, Figure 7.3 shows different two dimensional representations of the

same solutions.

0.5
0.6

0.7
0.8

0.9
1

0.2
0.4

0.6
0.8

1

0.6

0.7

0.8

0.9

1

Max A(task 1)Max A(task 2)

M
ax

 A
(ta

sk
 3

)

Figure 7.2. Pareto front of example 1

166

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max A(task 1)

M
ax

 A
(ta

sk
 2

)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
ax

 A
(ta

sk
 3

)

Max A(task 1)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
ax

 A
(ta

sk
 3

)

Max A(task 2)

Figure 7.3. Pareto front of example 1 in a two dimensional space

Once the Pareto-optimal set is obtained, the decision-maker has to decide which of

the non-dominated points to choose as the solution to the problem. For this example, if

the three tasks are considered to be equally important, among the 29 solutions found in

the final Pareto-optimal set, the decision-maker can choose the solution that is closest to

the ideal vector. In multi-objective optimization, for each of the objectives there exists an

ideal value in the objective value search space (Deb, 2002). Since in this case, we want to

maximize simultaneously the three objective functions (task availability), the ideal vector

would be zideal=(1, 1, 1). For this example, solution number 7 is the closest solution to

this ideal vector. The system design configuration corresponding to solution number 7 is

shown in Table 7.3.

 However, in many multi-objective problems, there exists the case in which the

achievement of one objective is more important than the others. If, for this particular

example, the maximization of task 2 is considered to be more important than the

maximization of task 1, and if the maximization of task 1 is more important than the

maximization of task 3; that is, f2� f1� f3, then by applying the non-numerical ranking

preferences method (Taboada & Coit, 2006a; Taboada et al., 2007a), a preferred sub-set

of Pareto solutions can be selected. Based on this analysis, a solution that would clearly

167

reflect these objective function preferences would be solution number 5 as shown in

Table 7.4.

Table 7.3. Chosen design configuration for example 1

0.91584 0.86234

Availability task 1

M1

M3

M3

M3

M3

M3

M1

M1

M1

M2

M2

M3

M1

M3

M3

M3

M3

M3

0.70937

Availability task 2 Availability task 3System configuration diagramSol No.

7

Table 7.4. Chosen design configuration for example 1 when considering f2� f1� f3

0.93295 0.95100

Availability task 1

0.64605

Availability task 2 Availability task 3System configuration diagramSol No.

5

M1

M3

M3

M3

M3

M3

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M3

M3

M3

M3

M3

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

7.5.2 Example 2

 The second example is similar except that system cost has been added as an objective

to be minimized. This example also consists of three main units connected in series. For

each series subsystem, there are several machines available in the market that can be

chosen to provide redundancy. Each of the machines can perform three different tasks.

Each task is considered to be binary capacitated, meaning that it can have only two states,

functioning with the nominal capacity or total failure, corresponding to capacity 0. The

collective performance of these binary components leads to multi-state multi-task system

behavior. Each task is characterized by its availability, nominal capacity (production rate

in parts/hour), and cost. Table 7.5 shows the characteristics of the machines available.

168

Table 6 presents different demand levels for each individual task, for a given period.

Table 7.5. Characteristics of the machines available

Subsystem
l

Machine
i

Task
k

Availability
l
ikp

Production rate,
(parts/hour)

l
ikg

Machine
Cost

1 0.80 100
2 0.60 200 1
3 0.80 120

65

1 0.65 90
2 0.75 160 2
3 0.77 180

60

1 0.90 75
2 0.85 180 3
3 0.65 200

50

1 0.60 100
2 0.90 150

1

4
3 0.75 160

80

1 0.70 120
2 0.65 160 1
3 0.87 150

120

1 0.77 100
2 0.58 178 2
3 0.76 100

150

1 0.60 130
2 0.80 150

2

3
3 0.53 180

200

1 0.85 400
2 0.86 200

1

3 0.85 150
200

1 0.65 450
2 0.78 220

2

3 0.61 270
190

1 0.90 300
2 0.63 280

3

3

3 0.70 220
240

Table 7.6. Parameters of the cumulative demand curve

Task 1 Task 2 Task 3

Demand (%) Duration (%) Demand (%) Duration (%) Demand (%) Duration (%)
250 0.60 190 0.70 280 0.70
220 0.20 150 0.20 200 0.20
170 0.15 100 0.10 150 0.10
150 0.05

 In this case, the multi-objective formulation considered four objectives to be satisfied

simultaneously: maximization of the availability of producing task 1, maximization of the

availability of producing task 2, maximization of the availability of producing task 3, and

169

minimization of the overall system cost. The problem was solved using the developed

algorithm, with a population size of 200 and 20 generations, and 5 as the maximum

number of machines to be used. The computation time was 1,270.35 seconds.

 Figure 7.4 shows, in a three dimensional perspective, the 134 solutions found in the

Pareto front. To better visualize the solutions obtained, Figure 7.5 shows different

representations of the two dimensional plots of the same solutions.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Max A(task 1)Max A(task 2)

M
ax

 A
(ta

sk
 3

)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Max A(task 1)Max A(task 2)

M
ax

 A
(ta

sk
 3

)

Figure 7.4. Pareto front of example 2 in a three dimensional space

170

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

Max A(task 1)

M
in

 C
os

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500

1000

1500

2000

Max A(task 2)

M
in

 C
os

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1500

1000

1500

2000

Max A(task 3)
M

in
 C

os
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max A(task 1)

M
ax

 A
(ta

sk
 3

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

Max A(task 1)

M
in

 C
os

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500

1000

1500

2000

Max A(task 2)

M
in

 C
os

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1500

1000

1500

2000

Max A(task 3)
M

in
 C

os
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max A(task 1)

M
ax

 A
(ta

sk
 3

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

Max A(task 1)

M
in

 C
os

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500

1000

1500

2000

Max A(task 2)

M
in

 C
os

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1500

1000

1500

2000

Max A(task 3)
M

in
 C

os
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max A(task 1)

M
ax

 A
(ta

sk
 3

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

Max A(task 1)

M
in

 C
os

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500

1000

1500

2000

Max A(task 2)

M
in

 C
os

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1500

1000

1500

2000

Max A(task 3)
M

in
 C

os
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max A(task 1)

M
ax

 A
(ta

sk
 3

)

Figure 7.5. Pareto front of example 2 in a two dimensional space

 To choose a solution from this Pareto set, the decision-maker may have a more

difficult decision because now, with four objectives, the solutions are harder to visualize.

However, according to problem-specific knowledge, there are regions in the Pareto set

which express good compromises and these regions can be identified. More detail on

methods to be applied in the decision-making stage to reduce the size of the Pareto-

optimal set, and obtain a smaller representation of the multi-objective design space can be

found in Taboada & Coit (2007) and Taboada et al. (2007a). In this case, an example

solution from the “knee” region (Das, 1999; Branke et al., 2004; Taboada & Coit, 2007)

is presented as a good compromise. The “knee” is formed by those solutions of the

Pareto-optimal front where a small improvement in one objective would lead to a large

deterioration in at least one other objective. Table 7.7 shows an example design

configuration from this region with its respective objective function values obtained.

171

Table 7.7. Compromised example design configuration for example 2

0.83353 0.93668

Availability task 1

0.72435

Availability task 2 Availability task 3System configuration diagramSol No.

85

M1

M1

M3

M3

M4

M1

M1

M1

M1

M1

M1

M1
1310

Cost

7.5.3 Example 3

 The third example considers more complex system behavior because each available

machine can exhibit degraded system performance. This is also a realistic formulation

because many actual components degrade with time. The example consists of three main

units connected in series. For each unit, there are several machines available to choose

from to provide redundancy. Three different tasks need to be completed. For each unit,

there are several components available in the market that can be chosen to provide

redundancy. Each machine can perform three different tasks. Each of these tasks can

have different levels of performance, which range from maximum capacity to total

failure. Each component is characterized by its availability (l
ikp), nominal capacity

(production rate in parts/hour), and cost. Table 7.8 shows the characteristics of the

machines available and Table 7.9 presents the system cumulative demand curve.

172

Table 7.8. Characteristics of the system elements available

Subsystem 1 Subsystem 2 Subsystem 3

Machine
i

Task
k

Availability
l
ikp

Production
rate

(parts/hour)
l
ikg

Cost Machine
i

Task
k

Availability
l
ikp

Production
rate

(parts/hour)
l
ikg

Cost Machine
i

Task
k

Availability
l
ikp

Production
rate

(parts/hour)
l
ikg

Cost

0.70 90 0.75 80 0.80 120

0.20 30 0.15 50 0.15 60 1

0.10 20

1

0.10 10

1

0.05 20

0.60 100 0.65 110 0.80 60

0.30 40 0.25 20 0.15 40 2

0.10 10

2

0.10 10

2

0.05 10

0.80 120 0.85 90 0.75 95

0.10 20 0.10 60 0.15 50

1

3

0.10 15

60 1

3

0.05 10

100 1

3

0.10 25

100

0.90 110 0.80 110 0.85 90

0.05 40 0.15 30 0.10 50 1

0.05 20

1

0.05 5

1

0.05 10

0.80 80 0.78 90 0.75 120

0.15 30 0.12 15 0.20 30 2

0.05 10

2

0.10 10

2

0.05 10

0.70 90 0.65 130 0.65 100

0.20 60 0.25 40 0.30 50

2

3

0.10 5

80 2

3

0.10 15

70 2

3

0.05 30

150

0.60 80 0.90 130 0.75 100

0.30 50 0.05 50 0.20 40 1

0.10 20

1

0.05 10

1

0.05 30

0.85 120 0.85 90 0.85 70

0.10 20 0.10 20 0.10 40 2

0.05 10

2

0.05 5

2

0.05 20

0.75 70 0.70 80 0.80 140

0.15 30 0.20 50 0.15 20

3

3

0.10 10

90 3

3

0.10 10

80 3

3

0.05 10

130

173

Table 7.9. Parameters of the cumulative demand curve

Task 1 Task 2 Task 3
Demand (%) Duration (%) Demand (%) Duration (%) Demand (%) Duration (%)

160 0.60 130 0.65 140 0.50
120 0.20 90 0.15 100 0.20
80 0.15 60 0.10 80 0.15
40 0.05 30 0.10 50 0.10

 20 0.05

 The multi-objective formulation again considered four objectives to be satisfied

simultaneously: maximization of the availability of producing task 1, maximization of the

availability of producing task 2 and maximization of the availability of producing task 3,

and minimization of the system cost. The problem was solved using the developed

algorithm, with a population size of 200 and 20 generations. 110 solutions were found in

the final Pareto-optimal set. Figure 6 shows the Pareto front obtained in a three

dimensional perspective, and to better visualize the solutions obtained, Figure 7.7 shows

different representations of the two dimensional plots of the same solutions. Table 7.10

shows three example design configurations chosen from the “knee” region with their

respective objective function values.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

200

400

600

800

1000

1200

1400

Max A(task 1)Max A(task 2)

M
in

 C
os

t

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

200

400

600

800

1000

1200

1400

Max A(task 1)Max A(task 2)

M
in

 C
os

t

Figure 7.6. Pareto front of example 3 in a three dimensional space

174

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max A(task 1)

M
ax

 A
(ta

sk
 3

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Max A(task 1)

M
in

 C
os

t
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Max A(task 3)

M
in

 C
os

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200

300

400

500

600

700

800

900

1000

1100

Max A(task 2)

M
in

 C
os

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max A(task 1)

M
ax

 A
(ta

sk
 3

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Max A(task 1)

M
in

 C
os

t
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Max A(task 3)

M
in

 C
os

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200

300

400

500

600

700

800

900

1000

1100

Max A(task 2)

M
in

 C
os

t

Figure 7.7. Pareto front of example 3 in a two dimensional space

Table 7.10. Example design configurations of Example 3

0.92104 0.85079

Availability task 1

0.95908

Availability task 2 Availability task 3System configuration diagramSol No.

22 740

Cost

0.80647 0.71388 0.77134101 630

0.84999 0.85571 0.94427107 700

M1

M1

M2

M1

M2

M2

M1

M1

M1

M1

M1

M1

M2

M3

M1

M1

M1

M1

M1

M1

M1

M1

M1

M2

M2

M3

175

7.6 Summary

This chapter presented a multiple objective evolutionary algorithm to determine

manufacturing system configurations of multi-state multi-task production systems based on

availability analysis. Availability was used in the context of multi-task production systems

to select a particular configuration that maximized the probability of meeting a required

demand for each specific task, or the expected productivity for each task. A particular

configuration may not simultaneously maximize the probability of meeting demand for

each of the individual tasks, and thus, the problem was treated as a multi-objective

optimization problem. A multi-objective evolutionary algorithm was developed to solve

the problem. Three different examples were presented to illustrate the problem.

176

8. A multi-objective prioritized evolutionary algorithm (MoPriGA)

 This chapter presents a new MOEA that conceptually combines the idea of the

working mechanism of MOEA-DAP and post-Pareto pruning, introduced in Chapters 5

and 4, respectively. MoPriGA, incorporates the knowledge of the DM objective function

preferences based on direct exploitation of the uncertain weight function, fw(w), into the

search process. The initial pruning selection criterion, as well as the two different fitness

metrics that are incorporated in the algorithm, enable the search process to explore the

most promising region of the solution space based on the DM objective function

preferences. This MOEA directly searches in the most promising region, and thus, no

pruning is required, resulting in a much more efficient search for good solutions.

8.1 Introduction

 A new MOEA that conceptually combines the MOEA-DAP and post-Pareto pruning

has been developed. In Chapters 5 through 7, different MOEAs were developed to solve a

wide variety of multi-objective optimization problems that share some similar

characteristics. In these MOEAs, the optimization was initially performed without the

input of the DM. That is, the solutions obtained in the final Pareto front were independent

from the DM objective function preferences. MOEAs, as shown in previous chapters,

offer many advantages to solve MOPs. However, the biggest disadvantage of these

methods can be that the DM has potentially too many solutions in the final Pareto set.

Therefore, he/she needs to perform additional steps before obtaining or selecting a trade-

177

off solution. To satisfy this new requirement, post-Pareto analysis was introduced.

Chapter 4 presented two different techniques to perform post-Pareto analysis. Both

methods presented in that chapter supported screening in the final Pareto set and, in

different manners, efficiently determined a smaller and an attractive Pareto sub-set from

which later, the DM could easily select the most desirable solution for system

implementation.

 In the first method, the non-numerical ranking preferences method, the DM was only

asked to rank non-numerically (in order of relative importance) the objective functions

but did not have to select specific weight values. Based on the DM objective function

preferences, an uncertain weight function was generated. Then, different weight

combinations reflecting the DM preferences were generated numerous times from the

uncertain weight function. The solutions that this method yielded are those that clearly

satisfied the given objective function preferences (see Figure 8.1). The second method,

post-Pareto clustering, showed the capacity to automatically identify an optimal number

of clusters in the Pareto-optimal set, clustering optimal solutions that shared similar

properties and, providing the DM with representative solutions of each cluster. Although

both of these methods to perform post-Pareto analysis have shown to be effective, their

use, in practice, can be potentially inefficient.

Figure 8.1 Approach to obtain solutions that reflect DM objective function preferences (after the search)

 This chapter presents a new MOEA that conceptually combines the working

mechanism of MOEA-DAP (introduced in Chapter 5) and post-Pareto pruning (using the

178

non-numerically ranking preferences method). This newly developed algorithm enables

the search process to move along predefined objective function preferences without the

burden of having to select specific weight values. An early pruning selection criterion, as

well as the two different fitness metrics that are incorporated into the algorithm, enable

the search process to move according to the DM preferred solutions (see Figure 8.2).

Consequently, the biggest advantage of this algorithm is that reducing the size of the

solution set does not really require higher level decision making to be incorporated into

the algorithm to direct the search, such as in the case of having to specify a reliable utility

function.

 Moreover, the idea of this algorithm is not to reduce the capability of the search, but

simply to more intensely focus on the region of the Pareto set of interest to the DM. This

is accomplished by providing external initial objective function preferences information

but still ensuring that the preference relationships introduced in the MOEA preserve

existing dominance relationships. Otherwise, the search would be biased towards

undesired, or sub-optimal, regions of the search space.

Figure 8.2 New approach to incorporate DM objective function preferences (during the EA search)

8.2 Previous research on post-optimality selection

 Most of the current research on evolutionary multi-objective optimization has

179

concentrated on issues related to the design of evolutionary algorithms to search for

nondominated solutions. However, these nondominated solutions do not provide any

insight into the process of decision making itself. Once the Pareto set is obtained, post-

Pareto analysis has been proposed as an afterward required step to help in the decision-

making process. In this area, little, but significative, research has been done. When

performing post-Pareto analysis, two different areas can be distinguished. The first one

involves the analysis of the Pareto set when all the attributes are considered to have equal

importance or, in other words, when the DM does not express any preferences of the

attributes. In this case, the research efforts have been focused in locating the region(s) of

the solution space where balanced trade-offs can be found, either by locating the “knee”

solutions or by presenting to the DM a considerably smaller number of solutions that are

still representative of all of the solution space. The second area directs its efforts to find

those solutions of the Pareto set that satisfy objective function preferences. In practice, if

objective function preferences are known, the decision-maker wishes to evaluate a

limited number of Pareto-optimal solutions. In theory, these solutions should be a sub-set

of the Pareto front that satisfies the DM objective function preferences.

8.3 Defining preferences in MOEAs

 As presented by Horn (1997), when using EAs, preferences can be expressed a priori,

a posteriori, or during the search. If preferences are expressed a priori, the DM has to

define his/her preferences in advance (before actually performing the search). The most

classical examples of this category are the aggregating approaches in which weights are

specified beforehand to combine all the objectives into a single objective function. The

second approach pertains to the search-first-and-decide later case. This is the category in

180

which most evolutionary multi-objective approaches can be classified. In this case, EAs

are used to search for the “best possible” solutions, and this normally implies that the EA

attempts to find the nondominated or Pareto-optimal solutions. Then, as presented in

Section 8.2, the DM has to further investigate these solutions to do post-optimal

selection. As explained before, post-Pareto optimality is a challenging problem by itself.

The third category is the least common in the EA literature. The articulation of

preferences during the search (information incorporated within the EA) can be further

divided into two sub-classes:

(i) approaches that allow guiding the search of the EA using preferences from the

DM but require interaction with the DM, and

(ii) approaches that allow guiding the search of the EA using preferences from the

DM without the need of interaction with the DM.

 The proposed algorithm, MoPriGA, pertains to this second sub-class of algorithms. In

reality, little attention has been devoted to the development of methods that incorporate

the DM objective preferences within (during) the EA. However, a brief overview on

these methods is presented next.

 As described in Coello Coello (2000), Fonseca & Fleming (1993) presented the

earliest attempt to incorporate preferences from the DM into an EA. They basically

extended their developed MOGA to accommodate goal information as an additional

criterion for non-dominance to assign ranks to the population. The goal attainment

method was used for this purpose, so that the DM could specify goals at each generation.

As can be noticed, this is an interactive approach. Shawn & Fleming (1997) discussed

how a similar approach could be used to incorporate preferences into a production

181

schedule algorithm, but in their case, the preferences were defined a priori. As discussed

in Coello Coello (2000), the main disadvantage of this approach is that it requires the user

to know beforehand the ranges of variation of each objective.

 Cvetkovic & Parmee (2000) developed a preference algorithm to transform linguistic

(qualitative) information into real numbers to obtain the ranking of several objectives.

Their method helps to find a specific set of weights that, in theory, satisfies the ranking of

preferences by the DM. Then, this specific set of weights can be used in a GA to guide

the search to preferred solutions. Wang et al. (2005) proposed a method to solve multi-

objective and multi-constraint problems. In their method, the DM has to specify his/her

objective function preferences by means of weights since the very start of the process.

Their algorithm considers the satisfaction of the constraints as a new objective and uses a

multi-criteria method to rank the members of the EA population at each generation based

on the weights specified by the DM. These two methods are considered to be also a

priori approaches, since the weights are assumed constant throughout the optimization

process; however nothing in these approaches really excludes their use in an interactive

way.

8.4 Description of the multi-objective prioritized GA (MoPriGA)

 MoPriGA begins its search with a population of random, but feasible, solutions. This

initial set of solutions is called the W set (for simple explanation of the working

mechanism of this algorithm, consider that the W set, has a population size of 20

individuals). Immediately, thereafter, objective function values are evaluated. Then, the

number of individuals that each individual dominates (dominance count) is recorded, and

the Pareto dominance criterion is evaluated for the initially created solutions. Thus, the

182

solutions that are dominated by other solutions are eliminated. In MoPriGA, this set of

non-dominated solutions is called the X set. To continue with on this example, consider

that after applying the non-dominance criterion there are only 10 solutions in the X set.

Then, pruning selection is applied to the initial set based on DM preferences. This

pruning selection uses the uncertain weight function fw(w), initially introduced in Chapter

4, that is generated based on the DM objective function preferences. As mentioned in that

chapter, the strength of this method is precisely that the DM only ranks non-numerically

(in order of relative importance) the objective functions but does not have to select

specific weight values or value or utility functions. Then, a large number of random but

ranked weights are generated, with each set containing one weight for each objective.

These weights are uniformly sampled from the region of interest that satisfies the

following: w(1) > w(2) >… > w(n) , w(1) + w(2) +… + w(n) = 1 and w(i) � 0 for i = 1, 2, …, n.

After obtaining the set of ranked weights (for instance, consider 5,000), the first set of

weights is multiplied by each of the nondominated solutions in a normalized space: f '=

w1f1(x) + w2f2(x) + … wnfn(x). The solution that yields the minimum value for f ', for the

first random weight set is recorded, and gets a counter of 1. Thus, we do the same with

the remaining set of weights. At the end, the solutions that have non-zero counter values

are those solutions that form the pruned Pareto set. In MoPriGA, this set of preferred

solutions is called the Z set and, for purposes of this example assume that this set

contains three solutions. The rest of the solutions (7), which are not in the preferred set,

are placed in the Y set. Then, MoPriGA uses the Z set for two different purposes. The

first purpose is to place this set to the very top of the list of ranked solutions. In this way,

once selection is performed, the solutions in the Z set are always chosen for reproduction.

183

The second purpose of the Z set is to be used as a form of elitism. That is, to prevent the

loss of the best found solutions (solutions that clearly reflect the DM objective function

preferences), the Z set is directly copied to be part of the population in next generation.

 As described earlier, the Y set contains the nondominated and non-preferred solutions

(7 solutions in this example), and, for each of these, its corresponding dominance count

has been retained from a previous step. With this Y set, we proceed to assign fitness to

these solutions. In MoPriGA, two different methods are used to assign fitness to the

solutions. In this case, the first fitness metric, f1(i), aims to select those individuals which

are more dominating, and they are classified into discrete intervals. The way that this is

done follows the same steps explained in Chapter 5. But in simple words, we can say that

solutions with highest dominance count receive highest fitness. Then, for the second

fitness metric, the Euclidean distance, d(zbest , Y), is calculated between the “best”

solution , zbest, (the solution with the largest non-zero counter value) in the Z set and, the

rest of the solutions in the Y set. In this way, the solutions in Y that are closest to zbest

receive highest fitness. For this second fitness metric, we again considered discrete

intervals. Next, the two different fitness metrics are then aggregated weighting each of

the fitness metrics equally. Based on this aggregated fitness, the strongest solutions are

copied to complete the list of ranked solutions, which already contains the Z set. Thus,

following our example, in the list of ranked solutions, there are three solutions from the Z

set and, the seven strongest solutions (based on the aggregated fitness values) from the Y

set .

 The subsequent steps (selection, recombination, and mutation) in the MoPriGA

algorithm follow the same behavior explained in Chapter 5 for the construction of

184

MOEA-DAP. As it can be noticed, from Figure 8.3, for the selection step, rank selection

was used. The number of individuals to be selected for the recombination step is dictated

by the desired crossover probability. For instance, in our example, the ranked list has 10

solutions (Nranked), and if the specified crossover probability, Pcross, is 0.7, then the

number of parents to be selected to perform recombination is Nparents = round(Pcross /

Nranked). In this specific example, there are round(0.7/10) = 7 parents. Then the

crossover step takes place. In this step, multi-parent recombination is allowed. This

action produces a large number of children in the mating pool, creating a large number of

diverse solutions to choose from. Diversity is considered favorable, as the greater the

variety of genes available to the GA, the greater the likelihood of the system identifying

alternate solutions. Moreover, maintaining diversity of individuals within a population is

necessary for the long term success of any evolutionary system. Finally, in this case, 17

children are randomly selected from the mating pool to undergo mutation, and these

individuals, plus the ones already in the elite list, form the next population.

185

Figure 8.3 Working mechanism of MoPriGA

 In this way, MoPriGA, incorporates the knowledge of the DM objective function

preferences, based on the formulation of the uncertain weight function, fw(w), into the

search process. That is, this newly developed algorithm enables the search process to

move according to the DM preferred solutions without asking the DM to select specific

weight values. The initial pruning selection criterion, as well as the both fitness metrics

incorporated in the algorithm guide the search considering the DM objective preferences.

The examples in Section 8.5 show that MoPriGA is a powerful algorithm that searches

extensively in the region of interest without reducing the capability of the search, but

simply intensifying the search on the region of the Pareto set of interest to the DM.

8.5 Examples

 The multi-objective formulation that we considered is the same that was used in

Chapter 5 and, it is again shown in Equation 8.1, with the system reliability to be

186

maximized, cost and weight of the system to be minimized, and no constraints in the

possible values of reliability.

%
&

'
(
)

*
%
&

'
(
)

*
%
&

'
(
)

* """"$
� �� ��

s

i

m

j
ijij

s

i

m

j
ijij

s

i
ii

ii

xwxcR
1 11 11

min,min,)(max x (8.1)

 Subject to:

"
�

�
��
im

j
iij sinx

1
max, ..,,2,1for2

� �,..2,1,0�ijx

 The example considered consists of a configuration of 3 subsystems, with an option

of 5, 4 and 5 types of components in each subsystem, respectively. The optimization

involves selection from among these component types. For the three cases presented next,

2 was considered to be the minimum number of components per subsystem and, the

maximum possible number of components is 4 in each subsystem. Table 8.1 defines the

component choices for each subsystem. For the three examples presented next, MoPriGA

was run considering a population size of 150, and it was run for 100 generations.

Table 8.1 Component choices for each subsystem

Subsystem i
1 2 3

Design
Alternative

j R C W R C W R C W
1 0.80 24 30 0.95 26 30 0.70 20 25
2 0.92 30 40 0.75 10 28 0.67 20 20
3 0.60 15 20 0.80 15 35 0.85 30 40
4 0.70 28 26 0.85 18 40 0.75 40 20
5 0.90 30 45 0.80 35 30

8.5.1 Case when f1� f2� f3

 The example in this case considers that f1� f2� f3; that is, reliability is more

important than cost, and cost is more important than weight. In this case, 11 solutions

were found in final preferred Pareto set. These solutions are shown in Figure 8.4. The

187

same solutions are shown in Figure 8.5 in a two-dimensional perspective. The solution

that had the maximum counter for the given preferences is emphasized in these figures.

0
0.2

0.4
0.6

0.8
1

200
220

240
260

280
300

320
250

300

350

400

Max ReliabilityMin Cost

M
in

 W
ei

gh
t solution with the

largest counter

Figure 8.4 Preferred solutions found in the final Pareto set: Case when f1� f2� f3

0.98 0.982 0.984 0.986 0.988 0.99 0.992 0.994 0.996 0.998 1
200

220

240

260

280

300

320

Max Reliability

M
in

 C
os

t

solution with the
largest counter

200 220 240 260 280 300 320
250

300

350

400

M
in

 W
ei

gh
t

Min Cost

solution with the
largest counter

Figure 8.5 Preferred solutions found in the final Pareto set in a two-dimensional perspective

8.5.2 Case when f2� f1� f3

 The example in this case considers that f2� f1� f3; that is, cost is more important than

reliability, and reliability is more important than weight. In this case, four solutions were

found in final preferred Pareto set. These solutions are shown in Figure 8.6. The same

solutions are shown in Figure 8.7 in a two-dimensional perspective. The solution that had

the maximum counter value for the given preferences is emphasized in these figures.

188

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100
105

110
115

120
125

130
140

150

160

170

180

190

200

210

Max ReliabilityMin Cost

M
in

 W
ei

gh
t

solution with the
largest counter

Figure 8.6 Preferred solutions found in the final Pareto set: Case when f2� f1� f3

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
100

105

110

115

120

125

130

Max Reliability

M
in

 C
os

t

100 105 110 115 120 125 130
140

150

160

170

180

190

200

210
M

in
 W

ei
gh

t

M in Cost

solution with the
largest counter

solution with the
largest counter

Figure 8.7 Preferred solutions found in the final Pareto set in a two-dimensional perspective

8.5.3 Case when f1 � f2� f3

 The example in this case considers that f1 � f2 � f3; that is, reliability is equally

important than cost, and reliability and cost are both more important than weight. In this

case, three solutions were found in final preferred Pareto set. These solutions are shown

in Figure 8.8. The same solutions are shown in Figure 8.9 in a two-dimensional

perspective. The solution that had the maximum counter value for the given preferences

is emphasized in these figures.

189

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

120

125

130

135

140
170

180

190

200

210

220

Max ReliabilityMin Cost

M
in

 W
ei

gh
t

solution with the
largest counter

Figure 8.8 Preferred solutions found in the final Pareto set: Case when f1 � f2� f3

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
120

122

124

126

128

130

132

134

136

138

140

Max Reliability

M
in

 C
os

t

120 122 124 126 128 130 132 134 136 138 140
175

180

185

190

195

200

205

210

215

220
M

in
 W

ei
gh

t

Min Cost

solution with the
largest counter

solution with the
largest counter

Figure 8.9 Preferred solutions found in the final Pareto set in a two-dimensional perspective

 Table 8.2 shows three example design configurations with its respective system

reliability, cost, and weight. Each of the presented design configurations corresponds to

the solution with the largest counter value in each specific case.

190

Table 8.2 Example design configurations

Case when: System Design Configuration Diagram Reliability Cost Weight

� �f1 f2 f3

� �f2 f1 f3

�f1 f2 f3�

0.997852 262 353

0.825820 105 166

0.912880 131 183

2

2

2

1

1

2

2

2

2

2

2

3

2

2

1

1

2

3

1

2

1

3

Case when: System Design Configuration Diagram Reliability Cost Weight

� �f1 f2 f3

� �f2 f1 f3

�f1 f2 f3�

0.997852 262 353

0.825820 105 166

0.912880 131 183

2

2

2

1

1

2

2

2

2

2

2

3

2

2

1

1

2

3

1

2

1

3

8.6 Summary

 This chapter presented a multi-objective prioritized GA (MoPriGA). MoPriGA is a

powerful algorithm that searches extensively in the region of interest for the DM.

MoPriGA incorporates the knowledge of the DM objective function preferences based on

the inclusion of the uncertain weight function, fw(w), into the search process. This initial

pruning selection criterion, as well as the two different fitness metrics that are

incorporated into the algorithm, enable the search process to explore the most promising

region of the solution space based on the DM objective function preferences. The

strength of the algorithm is that it does not reduce the capability of the search, but simply

intensifies the search on the region of the Pareto set that is of interest for the DM.

191

9. Future research

 There are numerous opportunities for developing novel and original research in the

evolutionary multi-objective optimization area. These opportunities can focus on (1)

extending the existing results and models to address general problems, and (2)

incorporating methods to accommodate uncertain problem decision variables.

9.1 Development of a multi-purpose MOEA

 One challenge still remains for current multi-purpose MOEAs, which is the

scalability problem, that is, the efficient solution of large scale problem instances. New

multi-purpose MOEA are needed to analyze general combinatorial optimization

problems.

 Recently, various MOEAs have been proposed and applied, some of them are the

non-dominated sorting genetic algorithms, (NSGA and NSGA-II), the strength Pareto

evolutionary algorithm (SPEA), the Pareto archived evolutionary algorithm (PAES),

among others. Although these MOEAs differ from each other, the common objective in

all of them is to search for a near-optimal and uniformly diversified Pareto front.

However, this ultimate goal is far from being accomplished by the existing MOEAs

(Yang et al., 2005). Thus, it is required to develop MOEAs with the ability of finding

homogeneously distributed solutions in the final Pareto front with the robustness of

balancing proximity and diversity during the searching process.

192

9.2 Handling uncertainties in MOEAs

 In future research tasks, specific methods will be determined to accommodate

uncertainties. Traditional MOEAs assume that information about the objectives can be

obtained with total certainty. However, in real-world applications is very commonly the

case that one must work with uncertainties (Parmee, 2001). This extension will pertain to

the most realistic class of problems, multiple objective stochastic optimization problems.

The new approach will incorporate additional risk metrics, to be minimized, into the

multiple objective optimization framework.

 Variance and standard deviation have been traditional risk measures in economics

and finance since the pioneering work of Markowitz (1952). The two risk measures

exhibit a number of nice technical properties. For example, the variance of a portfolio

return is the sum of the variance and covariance of the individual returns. Furthermore,

variance can be used as a standard optimization function. Finally, there is a well

established statistical method to estimate variance and covariance. However, variance

does not account for fat tails of the underlying distribution and therefore is inappropriate

to describe the risk of low probability events, such as default risks.

 Secondly, variance penalizes ups and downs equally. For instance, consider the

example in Figure 9.1. In this case, reducing the standard deviation may happen but at the

cost of eliminating good outcomes as well as bad ones

193

Expected
cost

better than
expected

costs

worse than
expected

costsC
ou

nt
pr

ob
ab

ili
ty

 (l
ik

el
ih

oo
d)

200 220 240 260 280 300180160140120100

Expected production cost
in thousand of dollars, 8

1�+1� -

Expected
cost

better than
expected

costs

worse than
expected

costsC
ou

nt
pr

ob
ab

ili
ty

 (l
ik

el
ih

oo
d)

200 220 240 260 280 300180160140120100

Expected production cost
in thousand of dollars, 8

Expected
cost

better than
expected

costs

worse than
expected

costsC
ou

nt
pr

ob
ab

ili
ty

 (l
ik

el
ih

oo
d)

200 220 240 260 280 300180160140120100

Expected production cost
in thousand of dollars, 8

1�+1� - 1�+1� -

Figure 9.1 Variance as a Risk measure

 Then, more appropriate measures of risk that recognize the logic of eliminating good

outcomes from bad outcomes. Several risk measures have been developed in the past that

overcome the deficiencies of variance or standard deviation to measure risk. However,

they are mainly used in portfolio optimization, and one of the ideas is to develop or

extend one risk measure that can be incorporated into a multiple objective evolutionary

algorithm. This extension can be developed in such a way that this measure will be

search-based, and the concept of risk will be incorporated in the search, i.e., a risk-based

dominance criterion can be implemented in the selection step.

 A prevalent method to measure risk is Value-at-Risk (VaR). The formal definition by

Frey & McNeil (2002) which is derived from Artzner et al. (1999) is as follows: Given a

loss L with probability distribution P, the VaR of a portfolio at the given confidence level

5�[0,1] is represented by the smallest number l such that the probability that the loss L

exceeds l is no larger than (1-5). Formally,

VaR5=inf{l�R, P(L>l)�1-5}

194

 Moreover, VaR is a measure which captures the risk aspect of a low-probability/high-

impact event. Thus, VaR may be a suitable risk measure, which can be adapted to the

search in order to incorporate risk in the solution of multiple objective optimization

problems.

195

Appendix A
This Appendix contains the runs performed to asses the performance of the developed MOEA-DAP algorithm. Tables A.1 through
A.10 present the single runs from the NSGA-II algorithm. . While Tables A.11 through A.20 present the single runs from the MOEA-
DAP algorithm. Table A.21. contains the true Pareto-optimal front, Ytrue.

Table A.1 Nondominated solutions in last Pareto front. Run 1, NSGA-II

 Original output Non-duplicated nondominated solutions
Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.99513 64 60 0.99513 64 60
2 0.99789 81 88
3 0.99513 78 68
4 0.99789 82 72 0.99789 82 72
5 0.99789 94 77
6 0.99513 76 65
7 0.9999 87 90 0.9999 87 90
8 0.99785 73 81 0.99785 73 81
9 0.99789 84 75
10 0.99782 73 71 0.99782 73 71
11 0.99997 96 91 0.99997 96 91
12 0.99993 87 100
13 0.99789 82 72
14 0.99782 73 71
15 0.99789 79 85 0.99789 79 85
16 0.99513 66 63
17 0.99997 93 104 0.99997 93 104
18 0.99786 75 84 0.99786 75 84
19 0.99997 93 104
20 0.99997 106 93
21 0.99782 75 74
22 0.99785 73 81
23 0.99789 94 77
24 0.99513 76 65
25 0.99789 81 88
26 0.9976 82 69 0.9976 82 69
27 0.99789 96 80
28 0.99996 91 101 0.99996 91 101
29 0.99513 76 65
30 0.99782 75 74
31 0.99997 106 93
32 0.99997 106 93
33 0.99997 108 96
34 0.99513 78 68
35 0.99997 106 93
36 0.99513 66 63
37 0.99996 91 101
38 0.99993 85 97 0.99993 85 97
39 0.99786 75 84
40 0.99789 79 85
41 0.9999 87 90
42 0.9976 82 69
43 0.99789 84 75
44 0.99513 78 68
45 0.99993 87 100
46 0.99993 85 97
47 0.99997 93 104
48 0.99789 96 80
49 0.99789 84 75
50 0.99996 91 101

Non-
duplicated
nondominated
solutions

12

196

Table A.2 Nondominated solutions in last Pareto front. Run 2, NSGA-II

 Original output Non-duplicated nondominated
solutions

Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.99773 75 95 0.99773 75 95
2 0.99971 81 113 0.99971 81 113
3 0.99983 93 119
4 0.9999997 � 1 117 129 0.9999997 � 1 117 129
5 0.9999999 � 1 129 123 0.9999999 � 1 129 123
6 0.99983 93 107 0.99983 93 107
7 0.99999 120 124
8 0.9999999 � 1 129 123
9 0.9999997 � 1 117 129

10 0.99999 120 124
11 0.99999 117 117 0.99999 117 117
12 0.99985 84 120 0.99985 84 120
13 0.99997 96 114 0.99997 96 114
14 0.99997 96 126
15 0.99997 96 126
16 0.99773 75 95
17 � 1 120 136
18 0.9979 99 105 0.9979 99 105
19 0.99984 105 113 0.99984 105 113
20 0.99998 108 120 0.99998 108 120
21 0.99983 93 107
22 0.99998 108 120
23 0.99999 117 117
24 0.99984 105 113
25 0.99998 108 120
26 0.99788 78 102 0.99788 78 102
27 � 1 132 130
28 � 1 132 130
29 0.99983 93 119
30 0.9979 99 105
31 � 1 128 142
32 0.99985 84 120
33 0.99984 105 113
34 0.90415 63 89 0.90415 63 89
35 0.99997 96 114
36 0.99788 78 102
37 0.99999 120 124
38 � 1 128 142
39 0.99983 93 107
40 0.99971 81 113
41 0.99983 93 107
42 0.9999999 � 1 129 123
43 � 1 128 142
44 0.99773 75 95
45 � 1 120 136
46 0.99999 120 124
47 0.99984 105 113
48 0.99999 117 117
49 0.99773 75 95
50 0.99788 78 102

Non-
duplicated
nondomina
ted
solutions

13

197

Table A.3 Nondominated solutions in last Pareto front. Run 3, NSGA-II

 Original output Non-duplicated nondominated solutions
Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.99991 104 100 0.99991 104 100
2 0.99997 106 108 0.99997 106 108
3 0.9989 88 92 0.9989 88 92
4 0.99995 102 106 0.99995 102 106
5 0.99359 79 71 0.99359 79 71
6 0.99986 96 108 0.99986 96 108
7 0.99986 96 108
8 0.99991 104 100
9 0.99989 100 98 0.99989 100 98
10 0.99896 90 100 0.99896 90 100
11 0.99995 102 106
12 0.99991 104 100
13 0.99997 106 108
14 0.9946 97 85 0.9946 97 85
15 0.99896 90 100
16 0.99997 106 108
17 0.9998 94 100 0.9998 94 100
18 0.9998 94 100
19 0.99986 96 108
20 0.99896 90 100
21 0.99997 106 108
22 0.99989 100 98
23 0.9989 88 92
24 0.99989 100 98
25 0.9998 94 100
26 0.99995 102 106
27 0.9946 97 85
28 0.99359 79 71
29 0.99995 102 106
30 0.9989 88 92
31 0.99997 106 108
32 0.9989 88 92
33 0.99997 108 114
34 0.9989 88 92
35 0.99989 100 98
36 0.99995 102 106
37 0.9998 94 100
38 0.99989 100 98
39 0.9946 97 85
40 0.99997 106 108
41 0.99989 100 98
42 0.99995 102 106
43 0.99986 96 108
44 0.9989 88 92
45 0.99896 90 100
46 0.9946 97 85
47 0.99458 91 77 0.99458 91 77
48 0.99896 90 100
49 0.99991 104 100
50 0.99997 108 114

Non-
duplicated
nondominated
solutions

11

198

Table A.4 Nondominated solutions in last Pareto front. Run 4, NSGA-II

 Original output Non-duplicated nondominated solutions
Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.85988 59 98 0.85988 59 98
2 0.99973 83 108 0.99973 83 108
3 0.99952 69 113 0.99952 69 113
4 0.99985 89 120 0.99985 89 120
5 0.99973 83 108
6 0.99962 73 115 0.99962 73 115
7 0.99446 69 112 0.99446 69 112
8 0.85996 63 100 0.85996 63 100
9 0.99962 73 115
10 0.99962 73 115
11 0.99973 83 108
12 0.99952 69 113
13 0.85996 63 100
14 0.99436 65 110 0.99436 65 110
15 0.99983 87 110 0.99983 87 110
16 0.85988 59 98
17 0.99985 89 120
18 0.99973 83 108
19 0.85996 63 100
20 0.99983 87 110
21 0.99962 73 115
22 0.99985 89 120
23 0.99995 93 122 0.99995 93 122
24 0.99973 83 108
25 0.99446 69 112
26 0.99995 93 122
27 0.99952 69 113
28 0.99973 83 108
29 0.99983 87 110
30 0.99995 93 122
31 0.99962 73 115
32 0.99436 65 110
33 0.99985 89 120
34 0.99446 69 112
35 0.85988 59 98
36 0.99983 87 110
37 0.99962 73 115
38 0.85996 63 100
39 0.85996 63 100
40 0.85996 63 100
41 0.99995 93 122
42 0.99983 87 110
43 0.99436 65 110
44 0.99446 69 112
45 0.99436 65 110
46 0.99962 73 115
47 0.99962 73 115
48 0.85988 59 98
49 0.85996 63 100
50 0.99952 69 113

Non-
duplicated
nondominated
solutions

10

199

Table A.5 Nondominated solutions in last Pareto front. Run 5, NSGA-II

 Original output Non-duplicated nondominated
solutions

Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.96945 67 88 0.96945 67 88
2 0.99141 71 90 0.99141 71 90
3 0.96949 69 91 0.96949 69 91
4 0.99141 71 90
5 0.99141 71 90
6 0.96945 67 88
7 0.99141 71 90
8 0.99141 71 90
9 0.96945 67 88
10 0.99141 71 90
11 0.99141 71 90
12 0.96949 69 91
13 0.96949 69 91
14 0.99141 71 90
15 0.99145 73 93 0.99145 73 93
16 0.99141 71 90
17 0.99145 73 93
18 0.99141 71 90
19 0.96949 69 91
20 0.99145 73 93
21 0.99141 71 90
22 0.96945 67 88
23 0.99145 73 93
24 0.99141 71 90
25 0.96949 69 91
26 0.96949 69 91
27 0.99145 73 93
28 0.99141 71 90
29 0.99145 73 93
30 0.99145 73 93
31 0.99141 71 90
32 0.96949 69 91
33 0.99145 73 93
34 0.99145 73 93
35 0.99145 73 93
36 0.96949 69 91
37 0.99141 71 90
38 0.99145 73 93
39 0.99141 71 90
40 0.96945 67 88
41 0.99145 73 93
42 0.96949 69 91
43 0.96949 69 91
44 0.96949 69 91
45 0.96949 69 91
46 0.99145 73 93
47 0.99145 73 93
48 0.96945 67 88
49 0.99141 71 90
50 0.96949 69 91

Non-
duplicated
nondominated
solutions

4

200

Table A.6 Nondominated solutions in last Pareto front. Run 6, NSGA-II

 Original output Non-duplicated nondominated solutions
Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.99082 63 82 0.99082 63 82
2 0.99996 95 100 0.99996 95 100
3 0.91581 53 68 0.91581 53 68
4 0.9999 93 92 0.9999 93 92
5 0.99998 101 106
6 0.99998 99 98 0.99998 99 98
7 0.99989 96 91 0.99989 96 91
8 0.99996 95 100
9 0.99082 63 82
10 0.99981 90 85 0.99981 90 85
11 0.99998 99 98
12 0.99989 96 91
13 0.91581 53 68
14 0.9908 59 84 0.9908 59 84
15 0.99065 54 69 0.99065 54 69
16 0.99074 57 76 0.99074 57 76
17 0.91581 53 68
18 0.99082 65 90
19 0.99082 63 82
20 0.9999 93 92
21 0.9999 93 92
22 0.9158 56 67 0.9158 56 67
23 0.99998 105 114
24 0.99073 60 75 0.99073 60 75
25 0.9908 59 84
26 0.99065 54 69
27 0.99074 57 76
28 0.99082 65 90
29 0.99073 60 75
30 0.99989 96 91
31 0.99074 57 76
32 0.99989 96 91
33 0.99996 95 100
34 0.99998 101 106
35 0.99981 90 85
36 0.9999 93 92
37 0.99998 101 106
38 0.99065 54 69
39 0.99996 95 100
40 0.91581 53 68
41 0.91573 50 61 0.91573 50 61
42 0.99996 95 100
43 0.9158 56 67
44 0.99981 90 85
45 0.99998 99 98
46 0.99998 101 106
47 0.9908 59 84
48 0.99998 101 106
49 0.99082 65 90
50 0.9908 59 84

Non-
duplicated
nondominated
solutions

13

201

Table A.7 Nondominated solutions in last Pareto front. Run 7, NSGA-II

 Original output Non-duplicated nondominated
solutions

Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.9732 79 85 0.9732 79 85
2 0.99222 82 89 0.99222 82 89
3 0.99223 85 96 0.99223 85 96
4 0.99223 85 96
5 0.99222 82 89
6 0.99223 85 96
7 0.99223 85 96
8 0.99789 87 89 0.99789 87 89
9 0.99938 90 93 0.99938 90 93
10 0.99222 82 89
11 0.99938 90 93
12 0.99223 85 96
13 0.99789 87 89
14 0.99789 87 89
15 0.99938 90 93
16 0.99222 82 89
17 0.99223 85 96
18 0.99789 87 89
19 0.99222 82 89
20 0.99939 93 100 0.99939 93 100
21 0.99222 82 89
22 0.99938 90 93
23 0.99222 82 89
24 0.99939 93 100
25 0.99222 82 89
26 0.99223 85 96
27 0.99938 90 93
28 0.99222 82 89
29 0.99939 93 100
30 0.99938 90 93
31 0.99222 82 89
32 0.99939 93 100
33 0.99223 85 96
34 0.99938 90 93
35 0.9732 79 85
36 0.99789 87 89
37 0.99939 93 100
38 0.99222 82 89
39 0.9732 79 85
40 0.99223 85 96
41 0.99222 82 89
42 0.99223 85 96
43 0.99789 87 89
44 0.99939 93 100
45 0.99222 82 89
46 0.99938 90 93
47 0.99939 93 100
48 0.9732 79 85
49 0.99938 90 93
50 0.99939 93 100

Non-
duplicated
nondominated
solutions

6

202

Table A.8 Nondominated solutions in last Pareto front. Run 8, NSGA-II

 Original output Non-duplicated nondominated solutions
Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.71265 49 41 0.71265 49 41
2 0.9988 77 89 0.9988 77 89
3 0.98871 61 69 0.98871 61 69
4 0.9988 77 89
5 0.9988 77 89
6 0.99654 65 61 0.99654 65 61
7 0.98871 61 69
8 0.71989 57 57 0.71989 57 57
9 0.71914 53 49 0.71914 53 49
10 0.98754 61 53 0.98754 61 53
11 0.99772 65 77 0.99772 65 77
12 0.99876 69 85 0.99876 69 85
13 0.98754 61 53
14 0.71989 57 57
15 0.71989 57 57
16 0.99876 69 85
17 0.99881 89 77 0.99881 89 77
18 0.99876 69 85
19 0.99758 69 69 0.99758 69 69
20 0.99876 69 85
21 0.99772 65 77
22 0.98871 61 69
23 0.99772 65 77
24 0.99758 69 69
25 0.71914 53 49
26 0.71989 57 57
27 0.99654 65 61
28 0.71265 49 41
29 0.99772 65 77
30 0.71914 53 49
31 0.99772 65 77
32 0.71914 53 49
33 0.99984 81 97 0.99984 81 97
34 0.99984 81 97
35 0.9988 77 89
36 0.71265 49 41
37 0.99772 65 77
38 0.99984 81 97
39 0.99758 69 69
40 0.99876 69 85
41 0.98871 61 69
42 0.99772 65 77
43 0.99654 65 61
44 0.71914 53 49
45 0.9988 77 89
46 0.98871 61 69
47 0.99876 69 85
48 0.99984 81 97
49 0.99881 89 77
50 0.9988 77 89

Non-
duplicated
nondominated
solutions

12

203

Table A.9 Nondominated solutions in last Pareto front. Run 9, NSGA-II

 Original output Non-duplicated nondominated solutions
Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.99875 82 95 0.99875 82 95
2 0.99984 106 119
3 0.99984 106 119
4 0.99984 106 119
5 0.99984 106 119
6 0.99984 106 119
7 0.99978 91 104 0.99978 91 104
8 0.99984 106 119
9 0.99978 91 104
10 0.99978 91 104
11 0.99984 106 119
12 0.99984 106 119
13 0.99875 82 95
14 0.99984 106 119
15 0.99984 106 119
16 0.99984 106 119
17 0.99984 106 119
18 0.99978 91 104
19 0.99984 106 111 0.99984 106 111
20 0.99984 106 111
21 0.99984 106 111
22 0.99984 106 119
23 0.99984 106 111
24 0.99984 106 111
25 0.99978 91 104
26 0.99984 106 119
27 0.99984 106 111
28 0.99984 106 111
29 0.99984 115 120
30 0.99984 115 120
31 0.99984 106 119
32 0.99978 91 104
33 0.99875 82 95
34 0.99875 82 95
35 0.99984 115 120
36 0.99978 91 104
37 0.99984 106 111
38 0.99875 82 95
39 0.99978 91 104
40 0.99984 115 120
41 0.99984 106 119
42 0.99978 91 104
43 0.99984 106 111
44 0.99984 106 119
45 0.99978 91 104
46 0.99984 115 120
47 0.99875 82 95
48 0.99984 115 120
49 0.99984 106 119
50 0.99978 91 104

Non-
duplicated
nondominated
solutions

3

204

Table A.10 Nondominated solutions in last Pareto front. Run 10, NSGA-II

 Original output Non-duplicated nondominated
solutions

Solution
number

Reliability Cost Weight Reliability Cost Weight

1 0.99513 64 60 0.99513 64 60
2 0.99789 81 88
3 0.99513 78 68
4 0.99789 82 72 0.99789 82 72
5 0.99789 94 77
6 0.99513 76 65
7 0.9999 87 90 0.9999 87 90
8 0.99785 73 81 0.99785 73 81
9 0.99789 84 75
10 0.99782 73 71 0.99782 73 71
11 0.99997 96 91 0.99997 96 91
12 0.99993 87 100
13 0.99789 82 72
14 0.99782 73 71
15 0.99789 79 85 0.99789 79 85
16 0.99513 66 63
17 0.99997 93 104 0.99997 93 104
18 0.99786 75 84 0.99786 75 84
19 0.99997 93 104
20 0.99997 106 93
21 0.99782 75 74
22 0.99785 73 81
23 0.99789 94 77
24 0.99513 76 65
25 0.99789 81 88
26 0.9976 82 69 0.9976 82 69
27 0.99789 96 80
28 0.99996 91 101 0.99996 91 101
29 0.99513 76 65
30 0.99782 75 74
31 0.99997 106 93
32 0.99997 106 93
33 0.99997 108 96
34 0.99513 78 68
35 0.99997 106 93
36 0.99513 66 63
37 0.99996 91 101
38 0.99993 85 97 0.99993 85 97
39 0.99786 75 84
40 0.99789 79 85
41 0.9999 87 90
42 0.9976 82 69
43 0.99789 84 75
44 0.99513 78 68
45 0.99993 87 100
46 0.99993 85 97
47 0.99997 93 104
48 0.99789 96 80
49 0.99789 84 75
50 0.99996 91 101

Non-
duplicated
nondominated
solutions

12

205

 Table A.11 Nondominated solutions in final Table A.12 Nondominated solutions in final
 Pareto front. Run 1, MOEA-DAP Pareto front. Run 2, MOEA-DAP

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.99981 77 68
2 0.90598 48 32
3 0.96026 40 37
4 0.87971 36 33
5 0.99819 74 54
6 0.99894 78 48
7 0.87959 36 27
8 0.99799 74 52
9 0.95929 42 35
10 0.99906 73 74
11 0.9992 73 80
12 0.80704 36 20
13 0.78353 24 15
14 0.98734 52 37
15 0.99762 61 64
16 0.99675 62 44
17 0.973 38 41
18 0.99177 50 39
19 0.98313 39 39
20 0.99885 70 80
21 0.99429 45 47
22 0.94609 27 45
23 0.98342 44 34
24 0.9516 30 34
25 0.99514 56 50
26 0.87106 34 21
27 0.97596 50 26

Non-
duplicated
nondominated
solutions

27

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.78353 24 15
2 0.99642 62 36
3 0.98734 52 37
4 0.87106 34 21
5 0.97745 39 40
6 0.99799 74 52
7 0.99762 61 64
8 0.99006 51 68
9 0.97596 50 26
10 0.98714 52 35
11 0.984 45 64
12 0.98683 56 32
13 0.97967 42 39
14 0.95821 37 36
15 0.78499 24 21
16 0.99728 61 56
17 0.98142 46 39
18 0.87771 33 26
19 0.99064 56 40
20 0.87878 37 28
21 0.87134 30 25
22 0.95809 44 27
23 0.79952 26 19
24 0.98112 50 36
25 0.9877 55 52
26 0.98802 55 60
27 0.94753 38 21
28 0.76929 22 17

Non-
duplicated
nondominated
solutions

28

206

 Table A.13 Nondominated solutions in final Table A.14 Nondominated solutions in final
 Pareto front. Run 3 MOEA-DAP Pareto front. Run 4, MOEA-DAP

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.97843 46 31
2 0.63179 19 25
3 0.9516 30 34
4 0.99514 56 50
5 0.97774 41 45
6 0.95826 31 54
7 0.97326 36 38
8 0.98549 48 34
9 0.96763 33 49
10 0.98559 47 36
11 0.97564 41 36
12 0.9949 46 55
13 0.94609 27 45
14 0.97829 43 43
15 0.98769 52 44
16 0.80586 30 26
17 0.98921 54 46
18 0.80541 28 28
19 0.8313 24 34
20 0.98342 44 34
21 0.96043 37 30
22 0.99305 52 50
23 0.98577 40 47
24 0.78749 22 24
25 0.96311 39 34
26 0.79773 24 26
27 0.97381 38 36
28 0.97531 40 38
29 0.96383 34 43
30 0.91857 27 29
31 0.96153 38 30
32 0.94001 35 31
33 0.95597 35 41
34 0.9871 49 38
35 0.98397 46 32
36 0.98227 42 46

Non-
duplicated
nondominated
solutions

36

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.89929 24 42
2 0.97632 34 52
3 0.94059 29 40
4 0.88833 23 42
5 0.874 22 38
6 0.87444 30 30
7 0.99182 50 46
8 0.9863 42 50
9 0.98556 42 46
10 0.99673 53 70
11 0.9444 34 33
12 0.97815 44 33
13 0.98172 39 55
14 0.78175 17 26
15 0.86837 25 32
16 0.9773 38 44
17 0.98847 44 49
18 0.94021 28 42
19 0.99664 50 63
20 0.98962 42 59
21 0.86747 27 26
22 0.97955 39 41
23 0.86335 21 38
24 0.98681 49 45
25 0.78339 18 20
26 0.97275 34 43
27 0.99549 52 53
28 0.98921 44 53
29 0.98571 44 48
30 0.80437 27 22
31 0.9678 31 44
32 0.97134 35 39
33 0.79623 19 24
34 0.99045 45 70
35 0.98275 37 61
36 0.99438 47 56

Non-
duplicated
nondominated
solutions

36

207

 Table A.15 Nondominated solutions in final Table A.16 Nondominated solutions in final
 Pareto front. Run 5 MOEA-DAP Pareto front. Run 6, MOEA-DAP

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.94977 28 36
2 0.99177 50 39
3 0.98313 39 39
4 0.99885 70 80
5 0.99429 45 47
6 0.69149 44 29
7 0.99957 80 51
8 0.98084 44 33
9 0.99954 73 65
10 0.99874 73 51
11 0.99538 64 45
12 0.95132 29 39
13 0.99975 82 55
14 0.99594 66 45
15 0.96192 35 45
16 0.99409 45 45
17 0.9961 58 48
18 0.98398 54 33
19 0.99484 47 49
20 0.99771 59 51
21 0.99858 74 45
22 0.99879 71 61
23 0.68897 30 23
24 0.99532 62 45
25 0.98154 38 36
26 0.99495 60 39
27 0.99846 61 55
28 0.96211 35 47

Non-
duplicated
nondominated
solutions

28

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.98046 44 44
2 0.98097 32 62
3 0.99662 52 64
4 0.98319 38 50
5 0.65037 24 38
6 0.9675 46 36
7 0.99664 51 66
8 0.98875 59 36
9 0.99692 64 46
10 0.98451 46 44
11 0.99657 50 66
12 0.98502 34 62
13 0.99802 65 50
14 0.9919 56 46
15 0.95698 38 35
16 0.64572 22 30
17 0.64916 28 26
18 0.93434 28 35
19 0.85736 30 31
20 0.97798 32 54
21 0.98976 52 40
22 0.97043 28 38
23 0.98926 47 54
24 0.93214 29 32
25 0.99853 53 68
26 0.65316 37 30
27 0.9862 38 58
28 0.64769 22 38
29 0.98269 50 32

Non-
duplicated
nondominated
solutions

29

208

 Table A.17 Nondominated solutions in final Table A.18 Nondominated solutions in final
 Pareto front. Run 7 MOEA-DAP Pareto front. Run 8, MOEA-DAP

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.88673 23 28
2 0.86259 23 25
3 0.96315 50 34
4 0.96232 34 47
5 0.93853 22 46
6 0.94972 26 57
7 0.92266 28 33
8 0.91428 22 31
9 0.93422 35 28
10 0.90531 24 27
11 0.93887 27 46
12 0.75874 17 23
13 0.87114 21 29
14 0.85578 26 21
15 0.95947 32 39
16 0.61152 18 15
17 0.6128 17 22
18 0.96317 51 32
19 0.9892 48 43
20 0.85843 20 25
21 0.94259 37 37
22 0.96613 44 38
23 0.6513 20 21
24 0.70056 19 22
25 0.63183 16 25

Non-
duplicated
nondominated
solutions

25

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.93806 32 37
2 0.85561 21 29
3 0.97708 42 35
4 0.8745 27 31
5 0.9827 40 39
6 0.95945 36 36
7 0.95482 35 32
8 0.90864 35 26
9 0.87176 33 22
10 0.77474 20 24
11 0.97859 61 35
12 0.70539 17 15
13 0.98849 68 37
14 0.85798 22 28
15 0.99076 46 47
16 0.97728 36 42
17 0.96048 30 40
18 0.78473 23 21
19 0.93354 31 33
20 0.99007 43 46
21 0.97286 33 37
22 0.9959 71 44
23 0.97893 43 37
24 0.89276 31 25
25 0.92876 31 31
26 0.88819 31 23
27 0.90426 34 22
28 0.92739 32 28
29 0.81678 29 20
30 0.89029 30 26
31 0.98016 36 44
32 0.90711 28 31
33 0.75652 22 21
34 0.8154 22 25
35 0.98304 64 40
36 0.81013 20 32
37 0.86904 25 25

Non-
duplicated
nondominated
solutions

37

209

 Table A.19 Nondominated solutions in final Table A.20 Nondominated solutions in final
 Pareto front. Run 9 MOEA-DAP Pareto front. Run 10, MOEA-DAP

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.9629 40 41
2 0.98279 42 41
3 0.99273 56 45
4 0.98746 41 62
5 0.9217 26 59
6 0.92274 27 57
7 0.96132 39 37
8 0.98907 42 66
9 0.90753 32 33
10 0.99582 54 62
11 0.86698 21 32
12 0.96181 39 43
13 0.88734 25 34
14 0.9233 34 31
15 0.91288 35 29
16 0.99745 55 66
17 0.93571 44 35
18 0.76929 22 17
19 0.97843 46 31
20 0.98397 46 32
21 0.97632 34 52
22 0.94977 28 36
23 0.99177 50 39
24 0.98319 38 50
25 0.9862 38 58
26 0.86259 23 25

Non-
duplicated
nondominated
solutions

26

 Original output = Non-
duplicated nondominated

solutions
Solution
number

Reliability Cost Weight

1 0.95894 42 32
2 0.73478 19 17
3 0.48973 10 22
4 0.92701 33 34
5 0.33768 6 15
6 0.92441 29 36
7 0.51282 11 15
8 0.59808 18 13
9 0.95625 38 34
10 0.54343 12 15
11 0.84671 30 18
12 0.89135 23 28
13 0.41741 10 11
14 0.75977 15 22
15 0.60456 14 23
16 0.44233 11 11
17 0.76418 29 23
18 0.76203 25 25
19 0.46214 9 22
20 0.85126 31 26
21 0.62621 23 16

Non-
duplicated
nondominated
solutions

21

210

Table A.21. True Pareto-optimal front, Ytrue.

Solution
number

Reliability Cost Weight Solution
number

Reliability Cost Weight

1 0.9999 87 90 71 0.9961 58 48
2 0.99997 96 91 72 0.98398 54 33
3 0.99997 93 104 73 0.99484 47 49
4 0.99996 91 101 74 0.99771 59 51
5 0.99993 85 97 75 0.99858 74 45
6 0.9999997 � 1 117 129 76 0.99879 71 61
7 0.9999999 � 1 129 123 77 0.98154 38 36
8 0.99999 117 117 78 0.99495 60 39
9 0.99985 84 120 79 0.99846 61 55
10 0.99952 69 113 80 0.98097 32 62
11 0.99962 73 115 81 0.98319 38 50
12 0.99996 95 100 82 0.98875 59 36
13 0.99998 99 98 83 0.99692 64 46
14 0.99876 69 85 84 0.98451 46 44
15 0.99984 81 97 85 0.98502 34 62
16 0.99981 77 68 86 0.99802 65 50
17 0.99894 78 48 87 0.93434 28 35
18 0.78353 24 15 88 0.97798 32 54
19 0.98734 52 37 89 0.97043 28 38
20 0.99675 62 44 90 0.93214 29 32
21 0.99177 50 39 91 0.99853 53 68
22 0.98313 39 39 92 0.9862 38 58
23 0.99885 70 80 93 0.86259 23 25
24 0.99429 45 47 94 0.93853 22 46
25 0.94609 27 45 95 0.94972 26 57
26 0.98342 44 34 96 0.92266 28 33
27 0.9516 30 34 97 0.91428 22 31
28 0.99514 56 50 98 0.93422 35 28
29 0.87106 34 21 99 0.90531 24 27
30 0.97596 50 26 100 0.87114 21 29
31 0.99642 62 36 101 0.85578 26 21
32 0.98714 52 35 102 0.9892 48 43
33 0.98683 56 32 103 0.85843 20 25
34 0.78499 24 21 104 0.97708 42 35
35 0.87134 30 25 105 0.95945 36 36
36 0.95809 44 27 106 0.95482 35 32
37 0.79952 26 19 107 0.90864 35 26
38 0.94753 38 21 108 0.87176 33 22
39 0.76929 22 17 109 0.70539 17 15
40 0.97843 46 31 110 0.97728 36 42
41 0.97326 36 38 111 0.78473 23 21
42 0.98549 48 34 112 0.93354 31 33
43 0.98559 47 36 113 0.99007 43 46
44 0.9949 46 55 114 0.97286 33 37
45 0.96043 37 30 115 0.89276 31 25
46 0.98577 40 47 116 0.92876 31 31
47 0.96311 39 34 117 0.88819 31 23
48 0.91857 27 29 118 0.90426 34 22
49 0.96153 38 30 119 0.92739 32 28
50 0.94001 35 31 120 0.81678 29 20
51 0.9871 49 38 121 0.89029 30 26
52 0.98397 46 32 122 0.98016 36 44
53 0.97632 34 52 123 0.86904 25 25
54 0.9863 42 50 124 0.98746 41 62
55 0.98556 42 46 125 0.99582 54 62
56 0.9444 34 33 126 0.99745 55 66
57 0.78175 17 26 127 0.73478 19 17
58 0.99664 50 63 128 0.48973 10 22
59 0.98962 42 59 129 0.33768 6 15
60 0.78339 18 20 130 0.51282 11 15
61 0.99549 52 53 131 0.59808 18 13
62 0.79623 19 24 132 0.54343 12 15
63 0.98275 37 61 133 0.84671 30 18
64 0.94977 28 36 134 0.89135 23 28
65 0.99957 80 51 135 0.41741 10 11
66 0.98084 44 33 136 0.75977 15 22
67 0.99954 73 65 137 0.60456 14 23
68 0.99874 73 51 138 0.44233 11 11
69 0.99975 82 55 139 0.46214 9 22
70 0.99409 45 45

211

References

1. Altumi, A. A., Philipose, A. M. and Taboun, S. M. (2001). Reliability Optimisation of
Flexible Manufacturing Systems with Spare Tooling. International Journal of
Advanced Manufacturing Technology, 17:69-77.

2. Arroyo, J. E. C. and Armentano, V.A. (2005). Genetic local search for multi-
objective flowshop scheduling problems. European Journal of Operational Research,
167, 717–738.

3. Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of
risk. Mathematical Finance, 9, 203-228.

4. Bäck, T. and Hoffmeister, F. (1991). Extended Selection Mechanisms in Genetic
Algorithms. Proceedings of the Fourth International Conference on Genetic
Algorithms, San Mateo, California, USA: Morgan Kaufmann Publishers

5. Bäck, T. (1993). Optimal Mutation Rates in Genetic Search. Proceedings of the Fifth
International Conference on Genetic Algorithms, San Mateo, California, USA:
Morgan Kaufmann Publishers.

6. Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice - Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. New York, Oxford:
Oxford University Press.

7. Baker, J. E. (1987). Reducing Bias and Inefficiency in the Selection Algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms and their
Application, Hillsdale, New Jersey, USA: Lawrence Erlbaum Associates.

8. Barlow, R. E. and Wu, A. S. (1978) Coherent systems with multi-state components.
Mathematics of Operations Research, 3:275-281.

9. Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

10. Bellman, R. E. and Dreyfus, E. (1958). Dynamic programming and reliability of
multicomponent devices. Operations Research, 6, 200-206.

11. Birnbaum, Z. W., Esary, J.D. and Saunders, S.C. (1961) Multi-component systems
and structures and their reliability. Techno-metrics, 3:55-77.

12. Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: overview
and conceptual comparison. ACM Computing Surveys, 35(3): 268-308.

13. Booker, L. (1987). Improving search in genetic algorithms. Genetic Algorithms and
Simulated Annealing. San Mateo, California, USA: Morgan Kaufmann Publishers.

212

14. Bramlette, M. F. (1991). Initialization, mutation and selection methods in genetic
algorithms for function optimization. In Proccedings of the 4th international
conference on Genetic algorithms.

15. Branke, J., Deb, K., Dierolf, H. and Osswald, M. (2004). Finding Knees in Multi-
objective Optimization. In the Eighth Conference on Parallel Problem Solving from
Nature (PPSN VIII). Lecture Notes in Computer Science. pp. 722-731.

16. Brunelle R. D. and Kapur K. C. (1998). Continuous-State System-Reliability: An
Interpolation Approach. IEEE Transactions on Reliability, 47(2):181-187.

17. Bulfin, R. L. and Liu, C. Y. (1985). Optimal allocation of redundant components for
large systems. IEEE Transactions on Reliability, 34, 241-247.

18. Busacca, P.G., Marseguerra, M. and Zio, E. (2001). Multiobjective optimization by
genetic algorithms: application to safety systems. Reliability Engineering and System
Safety, 72, 59-74.

19. Cerny, V. (1985). A thermodynamical approach to the travelling salesman problem:
An efficient simulation algorithm. Journal of Optimization Theory and Application,
45, 41–51.

20. Chern, M. S. (1992). On the computational complexity of reliability redundancy
allocation in a series system, Operations Research Letters, 11, 309-315.

21. Chankong, V. and Haimes, Y. (1983). Multiobjective decision making theory and
methodology. New York: North-Holland.

22. Cochran, D. S., Arinez, J. F., Duda, J. W. and Linck, J. (2001). A Decomposition
Approach for Manufacturing System Design. Journal of Manufacturing Systems,
20(6):371-389.

23. Coello Coello, C. A. (2000). Handling preferences in evolutionary multiobjective
optimization: a survey. In Proceedings of the 2000 Congress on Evolutionary
Computation, 1:30-37.

24. Coello Coello, C. A. and Toscano, P. G. (2001). A Micro-Genetic Algorithm for
multiobjective optimization. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO): 274-282. San Francisco, California. Morgan
Kaufmann Publishers.

25. Coello Coello, C. A., Van Veldhuizen, D. A. and Lamont, G. B. (2002). Evolutionary
Algorithms for solving Multiobjective Problems. Kluwer Academics Publishers.

26. Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state of the art.
Computer Methods in Applied Mechanics and Engineering, 191(11-12):1245-1287.

213

27. Coit, D. W. and Smith A. (1996a). Reliability optimization of series-parallel systems
using a genetic algorithm. IEEE Transactions on Reliability, 45(2): 254-260.

28. Coit, D. W. and Smith A. (1996b). Penalty guided genetic search for reliability design
optimization. Computers and Industrial Engineering, 30(4): 895-904.

29. Cox D. (1957): Note on grouping. Journal of the American Statistical Association, 52,
543–547.

30. Cvetkovic, D. and Parmee, I. C. (2000). Preferences and their Application in
Evolutionary Multiobjective Optimisation. IEEE Transactions on Evolutionary
Computation, 6(1):42-57.

31. Das, I. (1999). On characterizing the ‘knee’ of the Pareto curve based on normal-
boundary intersection. Structural Optimization, 18(2/3):107-115.

32. De Jong, K. A. (1975). An analysis of the behaviour of a class of genetic adaptive
systems. PhD thesis, University of Michigan. Diss. Abstr. Int. 36(10), 5140B,
University Microfilms No. 76-9381.

33. Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation
in genetic function. In Proceedings of 3rd d International Conference on Genetic
Algorithms: 42–50.

34. Deb, K., Agarwal, S., Pratap, A. and Meyarivan, T. (2000a). A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II.
KanGAL Report Number 200001, Indian Institute of Technology. Kanpur, India.

35. Deb, K., Agarwal, S., Pratap, A. and Meyarivan, T. (2000b). A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II.
Proceedings of the Parallel Problem Solving from Nature VI Conference, 849-858.
Paris, France.

36. Deb, K. Multi-objective optimization using evolutionary algorithms. (2002). John
Wiley & Sons. Ltd., Chichester, England.

37. Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2002). A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182-197.

38. Dhingra, Anoop K. (1992). Optimal apportionment of reliability and redundancy in
series systems under multiple objectives. IEEE Transactions on Reliability, 41(4),
576-582.

214

39. Dorigo, M. (1992). Optimization, learning and natural algorithms (in italian). Ph.D.
thesis, DEI, Politecnico di Milano, Italy.

40. Dorigo, M., Di Caro, G., and Gambardella, L. M. (1999). Ant algorithms for discrete
optimization. Artificial Life, 5(2), 137–172.

41. Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions on
Evolutionary Computation 1, 1 (Apr.), 53–66.

42. Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics—
Part B 26, 1, 29–41.

43. Edelson, W. and Gargano, M. L. (2000). Feasible encodings for GA solutions of
constrained minimal spanning tree problems. Proceedings of GECCO- 2000, Las
Vegas, Nevada.

44. Edgeworth, F. Y. (1881). Mathematical Physics. London, U.K. P.Keagan.

45. El-Neweihi, E., Proschan, F. and Sethuraman, J. (1978) Multi- state coherent systems.
Journal of Applied Probability, 15: 675-688.

46. Erickson, M., Mayer, A. and Horn, J. (2001). The Niched Pareto Genetic Algorithm 2
Applied to the Design of Groundwater Remediation Systems. First International
Conference on Evolutionary Multi-Criterion Optimization, 681-695.

47. Fogel, L. J. (1962). Toward inductive inference automata. Proceedings of the
International Federation for Information Processing Congress. Munich, 395–399.

48. Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence through
Simulated Evolution. Wiley, New York.

49. Fogel, D. B. and Ghozeil, A. (1997). A note on representations and variation
operators. IEEE Transactions on Evolutionary Computation, 1(2):159-161.

50. Fonseca, C. M. and Fleming, P. J. (1993). Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. Proceedings of the Fifth
International Conference on Genetic Algorithms, 416-423. San Mateo, California.

51. Freiheit, T., Shpitalni, M. and Hu, S. J. (2004). Productivity of paced parallel-serial
manufacturing lines with and without crossover. Journal of Manufacturing Science
and Engineering, 126:361-367.

215

52. Frey, R. and McNeil, A. (2002). VaR and expected shortfall in portfolios of
dependent credit risks: conceptual and practical insights. Journal of Banking and
Finance, 1317-1334.

53. Fyffe, D. E., Hines, W. W. and Lee, N. K. (1968). System reliability allocation and a
computational algorithm, IEEE Transactions on Reliability, 17, 64-69.

54. Gen, M., Ida, K. and Lee, J. U. (1990). A computational algorithm for solving 0-1
goal programming with GUB structures and its application for optimization problems
in system reliability. Electronics and Communications in Japan, Part 3, 73, 88-96.

55. Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Comput. Oper. Res. 13, 533–549.

56. Glover, F. (1989). Tabu search Part I. ORSA Journal on Computing, : 190-206.

57. Glover, F. (1990). Tabu search Part II. ORSA Journal on Computing, 2: 4-32.

58. Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

59. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

60. Goldberg, D. and Lingle, R. (1985). Alleles, loci, and the traveling salesman problem.
Proceedings of the International Conference of Genetic Algorithms and their
Applications, 154-159.

61. Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic
Algorithms. IEEE Transactions on Systems, Man and Cybernetics SMC-16(1), 122-
128.

62. Gupta, R. and Agarwal, M. (2006). Penalty guided genetic search for redundancy
optimization in multi-state series-parallel power system. Journal of Combinatorial
Optimization, 12:257-277.

63. Hans, A. E. (1988). Multicriteria optimization for highly accurate systems.
Multicriteria Optimization in Engineering and Sciences. W. Stadler (Ed.),
Mathematical concepts and methods in science and engineering, 19: 309-352.

64. Hertz, A. and Klober, D. (2000). A Framework for the Description of Evolutionary
Algorithms. European Journal of Operational Research, 126 (1): 1-12.

65. Hinloopen, E., Nijkamp, P. and Rietveld P. (2004). Integration of ordinal and cardinal
information in multi-criteria ranking with imperfect compensation. European journal
of Operational Research, 158(2): 317-338.

216

66. Holland J. (1975). Adaptation in natural and artificial systems. U. Michigan Press,
MI.

67. Hoogeveen, Han. (2005). Multicriteria Scheduling. European Journal of Operational
Research, 167, 592–623.

68. Horn, J., Nafpliotis, N. and Goldberg, D. E. (1994). A Niched Pareto Genetic
Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, 1, 82-87, Piscataway, New Jersey. IEEE Service Center.

69. Horn, J. (1997). Multicriterion decision making. In Thomas Bäch, David Fogel, and
Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation, volume 1,
pages F1.9:1-F1.9:15. IOP. Publishing Ltd. And Oxford University Press.

70. Huang, H-Z., Qu, J. and Zuo, M. J. (2006). A New Method of System Reliability
Multi-objective Optimization using Genetic Algorithms. RAMS conference
proceedings.

71. Ida, K., Gen M. and Yokota, T. (1994). System reliability optimization with several
failure modes by genetic algorithm. In Proceedings of 16th International Conference
on Computers and Industrial Engineering, 349-352.

72. Inagaki T., Inoue, K. and Akashi, H. (1978). Interactive optimization of system
reliability under multiple objectives. IEEE Transactions on Reliability, 27, 264-267.

73. Jain A. K. and Dubes R. C. (1988). Algorithms for Clustering Data. Englewood
Cliffs: Prentice Hall.

74. Karp, R. M. (1972) Reducibility among combinatorial problems, in Complexity of
Computer Computations, Miller, R.E. and Thatcher, J.W. (eds.), Plenum Press, New
York. 85– 103.

75. Kaufman L. and Rousseeuw P. J. (1990). Finding groups in data. An introduction to
Cluster Analysis. Wiley-Interscience

76. Keeney, R. L. and Raiffa H. (1976). Decisions with Multiple Objectives: Preferences
and Tradeoffs. John Wiley & Sons.

77. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 13 May 1983 220, 4598, 671–680.

78. Knowles, J. D. and Corne, D. W. (1999) The Pareto archived evolution strategy: a
new baseline algorithm for Pareto multiobjective optimization. In Proc. Congress on
Evolutionary Computation. vol. 1, pp. 98–105. Piscataway, NJ: IEEE Press.

217

79. Knowles, J. D. and Corne, D. W. (2000). Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2): 149-
172.

80. Konak, A., Coit, D. and Smith, A. (2006). Multi-Objective Optimization Using
Genetic Algorithms: A Tutorial. Reliability Engineering & System Safety, 91(9).

81. Koren Y., Hu S. J. and Weber T. (1998). Impact of Manufacturing System
Configuration on Performance. Annals of the CIRP (College International pour la
Recherche en Productique). 47(1):369-372.

82. Korhonen P. and Halme M. (1990). Supporting the decision maker to find the most
preferred solutions for a MOLP-problem. Proceedings of the 9th International
Conference on Multiple Criteria Decision Making. Fairfax, Virginia, USA, 173-183.

83. Kulturel-Konak, S., Smith, A. and Coit D. W. (2003): Efficiently Solving the
Redundancy Allocation problem using Tabu Search. IEE Transactions, 35(6), 515-
526.

84. Kulturel-Konak, S., Coit, D. and Baheranwala, F. (2006). Pruned Pareto-Optimal Sets
for the System Redundancy Allocation Problem Based on Multiple Prioritized
Objectives. Journal of Heuristics (in print).

85. Lahdelma, R., Hokkanen J. and Salminen P. (1998). SMAA- Stochastic
Multiobjective Acceptability Analysis. European Journal of Operational Research,
106(1), 137-143.

86. Levitin G. and Lisnianski A. (1998). Structure Optimization of Power System with
Bridge Topology. Electric Power Systems Research. 45(3):201-208.

87. Levitin, G., Lisnianski, A., Ben-Haim, H. and Elmakis, D. (1998). Redundancy
Optimization for Series-Parallel Multi-State Systems. IEEE Transactions on
Reliability, 47(2):165-172.

88. Levitin, G. (2000). Multi-state series-parallel system expansion-scheduling subject to
availability constraints. IEEE Transactions on Reliability, 49(1):71-79.

89. Levitin, G. and Lisnianski A. (2000). Optimization of Imperfect Preventive
Maintenance for Multi-state Systems. Reliability Engineering and Systems Safety.
67(2):193–203.

90. Levitin, G. (2001). Redundancy optimization for multi-state system with fixed
resource-requirements and unreliable sources. IEEE Transactions on Reliability,
50(1):52-59.

218

91. Levitin G. and Lisninaski A. (2001). A New Approach to Solving Problems of
Multistate System Reliability Optimization. Quality and Reliability Engineering
International, 17:93-104.

92. Levitin, G. (2003). Linear Multi-state Sliding-window Systems. IEEE Transactions
on Reliability. 52(2):263-269.

93. Levitin, G. (2005). Universal generating function in reliability analysis and
optimization, Springer-Verlag, London, 2005.

94. Liang, Y-C and Smith, A. E. (2004). An ant colony optimization algorithm for the
redundancy allocation problem (RAP). IEEE Transactions on Reliability, 53(3):417-
423.

95. Lisnianski, A. and Levitin, G. (2003). Multi-state system reliability. Assessment,
Optimization and Applications. Series on Quality, Reliability and Engineering
Statistics, Vol. 6. Ed. World Scientific.

96. Lyu, R. M., Rangarajan, S., and Van Moorsel, P.A. (2001). Optimal Allocation of
Test Resources for Software Reliability Growth Modeling in Software Development.
IEEE Transactions on Reliability, 51(2):183-192.

97. MacQueen J. (1967): Some methods for classification and analysis of multivariate
observations. In L. M. LeCam and J. Neyman, editors, Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability, 1, 281–297.

98. Markowitz, H. M. (1952). Portfolio Selection. Journal of Finance, 7, 77-91.

99. Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary Computation, 4(1).

100. Misra K. B. (1971). Dynamic programming formulation of redundancy allocation
problem. International Journal of Mathematical Education in Science and
Technology, 2:207-215.

101. Misra K. B. and Sharma U. (1991). An Efficient Algorithm to Solve Integer
Programming Problems Arising in System Reliability Design. IEEE Transactions on
Reliability, 40:81-91.

102. Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA.

103. Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). Predictive Models for the
Breeder Genetic Algorithm, I: Continuous Parameter Optimization. Evolutionary
Computation, 1(1).

219

104. Murata, T., Ishibuchi, H. and Tanaka H. (1996). Multi-objective genetic algorithm
and its applications to flowshop scheduling. Computers in Industrial Engineering,
30(4), 957-968.

105. Nakagawa, Y. and Miyazaki, S. (1981). Surrogate constraints algorithm for
reliability optimization problems with two constraints. IEEE Transactions on
Reliability, R-30, 175-180.

106. Nemhauser, G. L. and Wolsey, A. L. (1988). Integer and Combinatorial
Optimization. Wiley, New York.

107. Oei, C. K., Goldberg, D. E. and Chang, S. (1991). Tournament selection, niching
and the preservation of diversity. IlliGal Report No. 91011. Urbana-Champaign, Il.
Department of general engineering, University of Illinois at Urbana Champaign.

108. Ouiddir, R., Rahli, M., Meziane, R., and Zeblah, A. (2004). Ant colony
optimization for new redesign problem of multi-state electrical power systems.
Journal of Electrical Engineering, 55(3-4):57-63.

109. Painton L. and Campbell, J. (1995). Genetic algorithms in optimization of system
reliability. IEEE Transactions on Reliability, 44:172–178.

110. Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, Inc., New York.

111. Pareto, V. (1896). Cours D’Economie Politique. Lausanne, Switzerland: F.
Rouge, vol. I and II.

112. Parmee, I. C. (2001). Poor-definition, uncertainty and human-factors: Satisfying
multiple objectives in real-world decision-making environments. First international
conference on evolutionary multi-criterion optimization. Springer-Verlag. Lecture
notes in Computer Science No. 1993.

113. Pham, D. T. and Karaboga, D. (2000). Intelligent Optimisation Techniques:
Genetic Algorithms, Tabu Search, Simulated Annealing and Neural networks. Ed.
Springer.

114. Pinedo, M. and Chao, X. (1999). Operations scheduling with applications in
manufacturing and services. Irwin/McGraw-Hill.

115. Ponnambalam, S. G., Ramkumar V. and Jawahar N. (2001). A multiobjective
genetic algorithm for job shop scheduling. Production Planning and Control, 12(8),
764-774.

220

116. Pourret O., Collet J. and Bon J-L. (1999). Evaluation of the unavailability of a
multistate-component system using a binary model. Reliability Engineering and
System Safety, 64(1):13–17.

117. Ramirez-Marquez, J. E. and Coit, D. (2004). A Heuristic for Solving the
Redundancy Allocation Problem for Multistate Series-Parallel Systems. Reliability
Engineering & System Safety, 83(3): 341-349.

118. Ramirez-Marquez, J. E. and Coit, D. W. (2005). A Monte-Carlo Simulation
Approach for Approximating Multistate Two-Terminal Reliability. Reliability
Engineering and System Safety, 87(2):253-264.

119. Rao, S. S. (1991). Optimization theory and application. New Delhi: Wiley Eastern
Limited.

120. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann- Holzboog.

121. Rietveld P. and Ouwersloot H. (1992). Ordinal data in multicriteria decision
making, a stochastic dominance approach to siting nuclear power plants. European
Journal of Operational Research, 56, 249-262.

122. Ross, S. M. (1993). Introduction to probability models. Academic Press, New
York.

123. Rousseeuw, P. J. (1987): Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics, 20,
53-65.

124. Rousseeuw P., Trauwaert E. and Kaufman L. (1989): Some silhouette-based
graphics for clustering interpretation. Belgian Journal of Operations Research,
Statistics and Computer Science, 29(3).

125. Sakawa, M. (1978). Multiobjective optimization by the surrogate worth trade-off
method. IEEE Transactions on Reliability, 27, 311-314.

126. Schaffer, J. D., Caruana, R. A., Eshelman, L. J. and Das, R. (1989). A study of
control parameters affecting online performance of genetic algorithms for function
optimization. In Schaffer (1989), 51-60.

127. Schaffer, J. D. (1984). Some experiments in machine learning using Vector
Evaluated Genetic Algorithms. Ph.D. dissertation, Vanderbilt Univ., Nashville, TN,
1984.

128. Schaffer, J. D. (1985). Multiple Objective Optimization with Vector Evaluated
Genetic Algorithms. In Genetic Algorithms and their Applications: Proceedings of

221

the First International Conference on Genetic Algorithms, 93-100. Hillsdale, New
Jersey.

129. Seward L. E and Nachlas J. A. (2004). Availability Analysis for Multitask
Production Systems. The International Journal of Flexible Manufacturing Systems.
16:91-110.

130. Shaw, K. J. and Fleming, P. J. (1997). Including real-life preferences in genetic
algorithms to improve optimization of production schedules. In Proceedings of the
GALESIA ’97. Glasgow, Scotland.

131. Spears, W. M. and De Jong, K. A. (1991). An Analysis of Multi-Point Crossover.
Foundations of Genetic Algorithms. San Mateo, California, USA: Morgan Kaufmann
Publishers.

132. Srinivas, N. and Deb, K. (1995). Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248.

133. Steuer, R. E. (1989). Multiple Criteria Optimization: Theory, Computation, and
Application. Reprint Edition, Krieger Publishing Company, Malabar, Florida.

134. Syswerda, G. (1990). Schedule Optimization using Genetic Algorithms. In
Handbook of genetic Algorithms, Van Nostrand Reinhold, New York.

135. Taboada, H., Baheranwala, F., Coit, D. W. and Wattanapongsakorn, N. (2005).
Practical Solutions of Multi-objective System Reliability Design Problems using
Genetic Algorithms. Proceedings of the Fourth International Conference on Quality
& Reliability (ICQR4), Beijing, China, August 2005.

136. Taboada, H. and Coit, D. (2006a). Multiple Objective Scheduling Problems:
Determination of Pruned Pareto Sets, Rutgers University IE Working Paper 06-02.

137. Taboada, H. and Coit, D. (2006b). MOEA-DAP: A New Multiple Objective
Evolutionary Algorithm for Solving Design Allocation Problems. Rutgers University
IE Working Paper 06-026.

138. Taboada, H., Espiritu, J. and Coit, D. (2006). MOMS-GA: A Multiobjective
Multi-State Genetic Algorithm for System Reliability Optimization Design Problems.
Rutgers University IE Working Paper 06-027.

139. Taboada, H., Baheranwala, F., Coit, D. W. and Wattanapongsakorn, N. (2007a).
Practical Solutions of Multi-Objective Optimization: An Application to System
Reliability Design Problems. Reliability Engineering & System Safety, 92(3):314-322.

222

140. Taboada, H., Espiritu, J., Coit, D. and Levitin, G. (2007b). A multi-objective
evolutionary algorithm for determining optimal configurations of multi-task
production systems. Rutgers University IE Working Paper 07-014.

141. Taboada, H. A. and Coit, D. W. (2007) Data Clustering of Solutions for Multiple
Objective System Reliability Optimization Problems, Quality Technology &
Quantitative Management Journal, 4(2):35-54.

142. Tian, Z. and Zuo, M. (2006). Redundancy allocation for multi-state systems using
physical programming and genetic algorithms. Reliability Engineering and System
Safety, 91:1049-1056.

143. Tillman, F. A., Hwang, C. L., and Kuo, W. (1977). Determining component
reliability and redundancy for optimum system reliability. IEEE Transactions on
Reliability, 26(3):162–165.

144. T’kindt, V., Billaut, J.-C. (2002). Multicriteria Scheduling: Theory, Models and
Algorithms. Springer, Berlin.

145. Ushakov, I. (1986). A Universal Generating Function. Soviet Journal of Computer
and System Sciences, 24(5):37-49.

146. Ushakov, I. A. (1987). Optimal standby problems and a universal generating
function. Soviet Journal of Computing System Science, 25(4):79-82.

147. Ushakov, I. (1988). Reliability Analysis of Multistate Systems by Means of a
Modified Generating Function. Journal of Information Process, 24(3):131-135.

148. Van Veldhuisen, D. A. (1999). Multiobjective Evolutionary Algorithms:
Classifications, Analyses and New Innovations. PhD thesis, Department of Electrical
and Computer Engineering. Graduate School of Engineering. Air Force Institute of
Technology.,Ohio.

149. Van Veldhuizen, D. A. and Lamont, G. B. (2000a). Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art. Evolutionary computation, 8(2):125-147.

150. Van Veldhuizen, D. A. and Lamont, G. B. (2000b). Multiobjective optimization
with messy genetic algorithms. In Proceedings of the 2000 ACM symposium on
applied computing: 470-476. Villa Olmo, Como, Italy. ACM.

151. Venkat V., Jacobson, S. and Stori J. (2004). A post-Optimality Analysis
Algorithm for Multi-Objective Optimization. Computational Optimization and
Applications, 28, 357-372.

152. Wang J-W., Zhang Q., Zhang J-M. and Wei X-P. (2005). An approach to
Evolutionary Multiobjective Optimization Algorithm with Preference. Proceedings of

223

the Fourth International Conference on Machine Learning and Cybernetics,
Guangzhou, China, 5:2966-2970.

153. Whitley, D. (1989) The GENITOR Algorithm and Selection Pressure: Why Rank-
Based Allocation of Reproductive Trials is best. Proceedings of the Third
International Conference on Genetic Algorithms, San Mateo, California, USA:
Morgan Kaufmann Publishers.

154. Xue J. and Yang K. (1995). Dynamic Reliability Analysis of Coherent Multistate
Systems. IEEE Transactions on Reliability, 44(4):683-688.

155. Yang, S. M., Shao, D. G. and Luo, Y. J. (2005). Dynamic Archive Evolution
Strategy for Multiobjective Optimization. In Coello et al., editors. Evolutionary
Multiobjective Optimization. Springer-Verlag.

156. Youssef A. M. A., Mohib A. and ElMaraghy H. A. (2006). Availability
Assesment of Multi-State Manufacturing Systems Using Universal Generating
Functions. Annals of the CIRP (College International pour la Recherche en
Productique). 55(1):445-448.

157. Yu Lian, Shih H. M, Pfund M., Carlyle W. M. and Fowler J. W. (2002).
Scheduling of Unrelated Parallel Machines: an Application to PWB manufacturing.
IIE Transactions, 34, 921-931.

158. Zeleny, M. (1982). Multiple Criteria Decision Making. McGraw-Hill series in
Quantitative Methods for Management.

159. Zhou, G. and Gen, M. (1997) A note on genetic algorithms for degree-constrained
spanning tree problems. Networks, 30.

160. Zitzler, E. and Thiele, L. (1998). An evolutionary algorithm for multiobjective
optimization: The strength Pareto approach. Technical Report 43, Computer
Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.

161. Zitzler, E. and Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4), 257-271.

162. Zitzler, E., Deb K. and Thiele L. (2000). Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173-195.

163. Zitzler, E., Laumanns, M. and Thiele L. (2001). SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical report 103, Gloriastrasse 35, CH-8092
Zurich, Switzerland.

224

164. Zydallis, J. B, Van Veldhuizen, D. A. and Lamont, G. B. (2001). A statistical
comparison of multiobjective evolutionary algorithms including the MOMGA-II. In
Zitzler, E., Deb K., Thiele, L., Coello, C. A. C., and Corne, D., editors. First
International conference on Evolutionary Multi-criterion optimization: 226-240.
Springer-Verlag. Lecture notes in Computer science No. 1993.

 225

Curriculum Vita

Heidi Arlene Taboada Jiménez

2007 Rutgers, The State University of New Jersey. New Brunswick, NJ.
 January 2003 – June 2007. Ph D. in Industrial & Systems Engineering

2005 Rutgers, The State University of New Jersey. New Brunswick, NJ.
 January 2003 – January 2005. MS. in Industrial & Systems Engineering

2002 Instituto Tecnológico de Celaya. Guanajuato, México.
 September 2000 – June 2002. MS. in Industrial Engineering

2000 Instituto Tecnológico de Zacatepec. Morelos, México.
 September 1994 – January 2000. B.S. in Biochemical Engineering

Publications

2007 Heidi Taboada, Fatema Baheranwala, David Coit and Naruemon
 Wattanapongsakorn. (2007). Practical Solutions for Multi-Objective
 Optimization: An Application to System Reliability Design Problems. Reliability
 Engineering & System Safety, 92(3):314-322.

2007 Heidi Taboada and David Coit. (2007). Data Clustering of Solutions for Multiple
 Objective System Reliability Optimization Problems. Quality Technology &
 Quantitative Management Journal, 4(2):35-54.

2007 David Coit and Heidi Taboada. (2007). Genetic Algorithms in Reliability. In
 Encyclopedia of Statistics in Quality and Reliability. John Wiley & Sons, Ltd. (to
 appear).

2007 Heidi Taboada, José Espiritu, David Coit and Gregory Levitin. (2007). A multi-
 objective evolutionary algorithm for determining optimal configurations of multi-
 task production systems. European Journal of Operational Research (under
 review).

2007 Heidi Taboada and David Coit. (2007). Multiple Objective Design Allocation
 Problems: Development of New Evolutionary Algorithms. In Proceedings of the
 European Safety & Reliability Conference (ESREL), Stavanger, Norway, June
 2007 (in print).

 226

2006 Heidi Taboada and David Coit. (2006). Multiple Objective Scheduling Problems:
 Determination of Pruned Pareto Sets. IIE Transactions (under review).

2006 Heidi Taboada and David Coit. (2006). MOEA-DAP: A new Multiple Objective
 Evolutionary Algorithm for solving Design Allocation Problems. Engineering
 Applications of Artificial Intelligence (under review).

2006 Heidi Taboada, José Espiritu and David Coit. (2006). MOMS-GA: A
 Multiobjective Multi-State Genetic Algorithm for System Reliability
 Optimization Design Problems. IEEE Transactions on Reliability (under review).

2006 Heidi Taboada and David Coit. (2006). Data Mining Techniques to Facilitate the
 Analysis of the Pareto-Optimal Set for Multiple Objective Problems. In
 Proceedings of the Industrial Engineering Research Conference (IERC), Orlando,
 Florida, May 2006.

2005 Heidi Taboada, Fatema Baheranwala, David Coit and Naruemon
 Wattanapongsakorn. (2005). Practical Solutions of Multi-objective System
 Reliability Design Problems using Genetic Algorithms. In Proceedings of the
 Fourth International Conference on Quality & Reliability (ICQR4), Beijing,
 China, August 2005.

