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ABSTRACT OF THE DISSERTATION

Probabilistic Distance Clustering

by Cem Iyigun

Dissertation Director: Professor Adi Ben—Israel

We present a new iterative method for probabilistic clustering of data. Given clusters,
their centers, and the distances of data points from these centers, the probability
of cluster membership at any point is assumed inversely proportional to the distance
from (the center of) the cluster in question. This assumption is our working principle.

The method is a generalization, to several centers, of the Weiszfeld method for
solving the Fermat—Weber location problem. At each iteration, the distances (Eu-
clidean, Mahalanobis, etc.) from the cluster centers are computed for all data points,
and the centers are updated as convex combinations of these points, with weights de-
termined by the above principle. Computations stop when the centers stop moving.

Progress is monitored by the joint distance function (JDF), a measure of dis-
tance from all cluster centers, that evolves during the iterations, and captures the data
in its low contours.

There are problems where the cluster sizes are given (as in capacitated facility
location problems) and there are problems where the cluster sizes are unknowns to be
estimated. The probabilistic distance clustering approach works well in both cases. The
probabilistic distance clustering method adjusted for cluster size (called PDQ method)
method is described, and applied to location problems, and mixtures of distributions,

where it is a viable alternative to the EM method.
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The method is simple, fast (requiring a small number of cheap iterations) and in-
sensitive to outliers.

An important issue in clustering is the “right” number of clusters that best fits a
data set. The JDF is used successfully to settle this issue and determine the correct

number of clusters for a given data set.
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Chapter 1

Introduction

This thesis presents a new approach to clustering, called probabilistic distance cluster-

ing, its algorithms, and selected applications. The thesis is divided into five parts.

Part I: Preliminaries

The present chapter contains a description of the thesis.
Chapter 2 gives a brief survey of the clustering concepts, notation and terminology
that are relevant for this thesis. The approaches of center—based clustering and

hierarchical clustering are compared, and the main algorithms are described briefly.

Part II: Probabilistic Distance Clustering

This part develops the models and algorithms for probabilistic clustering of data.

The main idea is presented in Chapter 3, with a new iterative method for prob-
abilistic clustering of data. The method is based on a principle, or a model of the
relationship between distances and probabilities. Given the clusters, their centers, and
the distances of data points from these centers, the probability of cluster membership
at any point is assumed inversely proportional to the distance from (the center of) the
cluster in question. The cluster centers and cluster membership probabilities of the
data points are updated using this principle. This is the basis of the probabilistic
distance clustering method described in Section 3.4.

The progress of the algorithm is monitored by the joint distance function (JDF),

a measure of distance from all cluster centers, that evolves during the iterations, and



captures the data in its low contours, see Subsection 3.2.2. The proposed method is sim-
ple, fast (requiring a small number of cheap iterations) and insensitive to outliers. We
also discuss various relations between probabilities and distances, resulting in different
ways of clustering.

The algorithm presented in Section 3.4 takes no account of the cluster size. In cases
where the cluster sizes differ greatly, or the cluster sizes themselves are unknowns that
need to be estimated, the above algorithm can be modified to take into account the
cluster sizes. This is done in Chapter 4, Section 4.3.

The probabilistic distance clustering adjusted for the cluster size is called here PDQ
Method, where P stands for probability, D for distance and Q for cluster size in short.

Chapter 5 is about finding the “right” number of clusters that best fits a data set
which is an important issue in clustering, called as clustering validity. The JDF,
introduced in Chapter 3 is used successfully to settle this issue and determines the
correct number of clusters for a given data set. This is illustrated in different examples,
using simulated data sets. In the remainder of the chapter, we briefly survey other

validity criteria used in the literature.

Part III: Related Problems

This part studies two problems which are closely related to distance clustering, and can
be solved using the results of Part II with few modifications.

In Chapter 6, an important application of PDQ method in estimating the parameters
of a mixture of distributions is presented. In such problems the cluster sizes are
unknown and need to be estimated. We first describe the problem of mixtures of
distributions and introduce the EM Algorithm, a well-known method for the solution
of this type of problems. The PDQ method may serve as an alternative to that method,
or as a preprocessor giving the EM Method a good start. We apply the algorithm to the
estimation of the parameters of Gaussian mixtures, and compare it to the EM method.
We conclude the chapter with the results of a number of computational experiments,

comparing the running time and solution quality of our algorithm with the EM Method.



In Chapter 7, we present an iterative method for multiple—facility location prob-
lems, based on the PDQ method. The multiple facility location problem is to locate
certain facilities so as to serve optimally a given set of customers, whose locations and
demands are known. In some situations, there are upper bounds (capacities) on the
demands that a facility can handle where the problem is called as capacitated multiple—
facility location problem. The chapter starts with the Fermat—Weber Location problem,
which is a single facility location problem and describe the Weizsfeld Method, the
standard, best—known method for the solving Fermat—Weber problem. The probabilis-
tic distance clustering in Chapter 3 is presented as a generalization to several facilities
of the classical Weiszfeld Method. In the case where the facilities have the capacity
constraints, the cluster size in the PD(Q algorithm plays the role of facility capacity
and the algorithm gives an approximate solutions to the capacitated multiple—facility

location problem. The chapter ends with several numerical examples.

Part IV: Applications

This part is devoted to two applications, representing the diverse uses of probabilistic
distance clustering.

In Chapter 8, we apply our method to clustering similarity data. Two examples
of this type are considered and analyzed. The first example is the liberal-conservative
clustering of the Rehnquist Supreme Court. The data used in the analysis is given
as a similarity matrix, showing the percentages of non—unanimous decisions in which
pairs of judges agreed with each other. The second example is from a political science
study where pairwise dissimilarity measures between 12 countries are given.

Chapter 9 deals with determining the spatial clusters of accidents along a highway
using different weights for the types of accidents. Identifying such spatial clusters of
accidents can provide useful insights to various operational and safety issues. This

study uses the New Jersey Turnpike (NJTPK) crash data sets for various years.



Part V: Semi—Supervised Clustering

Chapter 10 presents an approach to reconcile clustering (unsupervised learning) and

classification (supervised learning, i.e. with prior information on the data.)



Chapter 2

Basics of Clustering

2.1 Introduction

Clustering can be defined as follows

Clustering is the classification of objects into different groups, or more
precisely, the partitioning of a data set into subsets (clusters), so that the
data in each subset (ideally) share some common trait - often proximity ac-
cording to some defined distance measure. Data clustering is a common
technique for statistical data analysis, which is used in many fields, includ-
ing machine learning, data mining, pattern recognition, image analysis and

bioinformatics. [1]

The ideas and methods of clustering are used in many areas, including statis-
tics [56], machine learning [32], data mining [31], operations research ( [16], [38]),
medical diagnostics, facility location, and across multiple application areas includ-
ing genetics, taxonomy, medicine, marketing, finance and e-commerce (see [12], [9], [35]
and [52] for applications of clustering). It is therefore useful to begin by stating our
notation and terminology. We then survey some of the methods, and results, that are

relevant for our study.

2.2 Notation and Terminology

2.2.1 Data

The objects of clustering are data points (also observations, and in facility location,

customers.) Each data point is an ordered list of attributes (or features), such as



height, weight, blood pressure, etc. Assuming p attributes, a data point x is thus a
p-dimensional vector, x = (21,2, ...,xp), with the attributes z; for components.

The vector analogy cannot be carried too far, since in general vector operations
(such as vector addition, scalar multiplication) do not apply to data points. Also, the
attributes are not necessarily of the same algebraic type, some may be categorical, and
some are reals. However, we can always imbed the data points in a p—dimensional real
vector space RP, and for convenience we denote by x € R? the fact that the data point
X has p attributes.

We assume N data points x;, collected in a set
D ={x1,Xx2,...,xy} CRP, (2.1)
called the data set. We sometimes represent D by an N X p matrix
D = (x;;), where z;; is the j'" component of the data point x;. (2.2)

2.2.2 The Problem

Given the data set D, and integer K, 1 < K < N, the clustering problem is to

partition the data set D into K disjoint clusters
D=CUCU---UCk, with C;NC,=0ifj#k, (2.3)

each cluster consisting of points that are similar (in some sense) and points of different
clusters are dissimilar. We take here similar to mean close in the sense of distances
d(x,y) between points x,y € RP. The number of clusters denoted by K is given,
however there are problems where the “right” number of clusters (to fit best the data)
is to be determined. The cases K = 1 (the whole D is one cluster) and K = N (every

point is a separate cluster) are included for completeness.



2.2.3 Cluster Membership

A clustering is hard (or crisp, rigid, deterministic) if each data point x is assigned
to one, and only one, cluster C, so that the statement x € C is unambiguous.

A point x is labeled if its cluster C is known, in which case C is the label of x.

In soft (or fuzzy, probabilistic) clustering the rigid assignment x € C is replaced
by a cluster membership function u(x, C) representing the belief that 2 belongs to

C. The numbers u(x,Cy) are often taken as probabilities that x belongs to Cg, so that

K
Z u(x,Cr) =1, and u(x,C;) >0 forall k=1,--- | K . (2.4)
k=1

2.2.4 Classification

In classification, or supervised learning, the number K of clusters is given, and a
certain subset 7 of the data set D is given as labeled, i.e. for each point x € 7 it is
known to which cluster it belongs. The subset 7 is called the training set.

The information obtained from the training set, is then used to find a rule of clas-
sifying the remaining data D\ 7 (called the testing set), and any future data of the
same type, to the K clusters. The classification rule r is a function from D (and by

extension RP) to the integers {1,2,---, K}, so that
r(x)=k<=x€C(.

In analogy, clustering is called unsupervised learning to emphasize the absence of

prior information.

2.2.5 Distances

Assuming a norm || - || on the space RP, a distance between two points x,y € RP is

defined by

d(x,y) =[x =yl (2.5)



for example, the Euclidean norm gives the distance between x = (z1,...,2,) and

y:(yla"'7yp) as

P
d(x,y) := (Z (xj — yj)2)1/2 , the Euclideam distance , (2.6)

Jj=1
and the /1—norm gives

p
d(x,y) == Z |z; —y;| , the {;-distance , (2.7)
j=1
also called the Manhattan or taxicab distance.
The standard inner product of x = (z1,...,2,) and y = (y1,...,¥p) is defined
by

(x,y) = Z LiYi - (2.8)
i=1

If @ is a positive—definite p x p matrix, then /(x,@x) is a norm on RP, and the

corresponding distance is

d(x,y) =/ (x —y,Q(x —y)), an elliptic distance, (2.9)

depending on the choice of Q). For @ = I, the identity matrix, (2.9) gives the Euclidean
distance (2.6). Another common choice is Q = 7!, where ¥ is the covariance matrix

of the data in question, in which case (2.9) gives

d(x,y) ;= (x —y,2 ! (x —y)) , the Mahalanobis distance, (2.10)

that is used commonly in multivariate statistics.

Distances associated with norms satisfy the triangle inequality,

d(x,y) < d(x,z) + d(z,y) , for all x,y,z . (2.11)

However distance functions violating (2.11) are also used.



2.2.6 Similarity Data

Given a distance function d(-,-) in RP, and the data set D, the similarity (or prox-

imity) matrix of the data is the N x N matrix

S = (d;j) , where d;j = d(x;,%;), i,j=1,...,N. (2.12)
It is sometimes convenient to work with the dissimilarity matrix,

N = (g(d;j)) , where g(-) is a decreasing function. (2.13)

2.2.7 Representatives of Clusters

In many clustering methods a cluster is represented by a typical point, called its center
(also representative, prototype, and in facility location, facility.) A common choice
for the center is the centroid of the points in the cluster. In general the center does
not fall on any of the data points in the cluster.!

The center of the k' cluster Cj, is denoted by cj, and the distance d(x,Ci) of a

point x from that cluster is defined as its distance from the center cy,
d(x,C) :=d(x,cg) , (2.14)
and denoted dj(x) if the center is understood.

2.3 Objective Based Clustering

Sometimes the “goodness” of clustering can be expressed by an objective function

of the given data D and the clusters {Ci,...,Cx}. For example,

K
fAC..Cx}) =) D d(xi,cp) (2.15)

k=1 x;€Cy,

'In facility location problems, such a case requires special analysis.
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is the sum of distances of data points to the centers of their respective clusters, while

K
FDACL, ... .Cx}) =D > dlxi,cp) (2.16)

k=1 x;€Cy,

is the sum of squares of these distances. Both of these objectives are in use, and we
call them the d-model, and the d>-model, respectively. See section 3.2.7.
In such cases, clustering reduces to an optimization problem, that without loss

of generality, is considered a minimization problem,

min  f(D,{C1,...,Cx}) (2.17)

1,-CK

that is often hard (combinatorial, non-smooth), but approximate solutions of (2.17)

may be acceptable.

2.4 Center—Based Clustering Methods

Center—based clustering algorithms construct the clusters using the distances of
data points from the cluster centers.
The best—known and most commonly used center—based algorithm is the k—means

algorithm ( [63], [39]) which (implicitly) minimizes the objective

K
ST lxi— el (2.18)

k=1 x;€ Ck

where ¢y, is the centroid of the k" cluster. Other names like hard k-means, ISODATA

( [7], [8]), etc. have also been used in the literature.

Algorithm 2.1. k-means Clustering Algorithm
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Step 0 Initialization: Given data set D, integer K, 2 < K < N,
select K initial centers {cy}

Step 1 compute the distances d(x;,cx) , i=1,...,N, k=1,... K.

Step 2 partition the data set D =Cy UCy U ---UCk by assigning
each data point to the cluster whose center is the nearest

Step 3 re—compute the cluster centers.

Step 4 if the centers have not changed, stop.

else go to Step 1.

Notes:

(a) The initial “centers” in Step 0 are just points, and not yet associated with clusters.
They can be selected randomly as any K points of D.

(b) In Step 3 the center of each cluster is computed using the points assigned to that
cluster.

(c) The stopping rule in Step 4 implies that there are no further re-assignments.

(d) The center updates in the iterations are computed by

N
> Uik Xi
= k=1,...,K (2.19)

Ci = N
Z Uik
=1

where u;, = 1 if x; € Cg, and wu;; = 0 otherwise. Equation (2.19) gives the centers as
the geometrical centroids of the data points of the cluster.
(e) Using Euclidean distances, iterating Steps 2 and 3 leads to the minimization of the

objective (2.18).

2.4.1 Variants of the k—means Algorithm

Several variants of k-means algorithm have been reported in the literature ( [33], [4]).
Some of them attempt to select a good initial partition so that the algorithm is more
likely to find the global minimum value [27]. An important variant of the algorithm
is to permit splitting and merging of the resulting clusters ( see [7]) in Step 2 of the

algorithm.
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Some variants of the algorithm use different criteria. Diday [24] used different
representatives of the clusters (other than the cluster centers), and the Mahalanobis
distance is used instead of the Euclidean distance in [61], [18] and elsewhere.

The k-modes algorithm [44] is a recent center—based algorithm for categorical
data. Another variant, the k-prototypes algorithm [44], incorporates real and cate-

gorical data.

2.4.2 Fuzzy k—means

The k—means algorithm can be adapted to soft clustering, see section 2.2.3. A well-
known center—based algorithm for soft clustering is the Fuzzy k—means algorithm,

( [15], [72]).

The objective function minimized in this algorithm is:

N K N K
F=200 widy =Y > uiflxi—vill?

i=1 k=1 i=1 k=1

where wu;; are the membership functions of x; € Ci, and typically satisfy (2.4), and m
is a real number, m > 1, known as fuzzifier.
The equation for finding the centers is similar to equation (2.19) of k—means algo-

rithm, but wu;; takes values between 0 and 1.

N
Z u% X
=", k=1.. K (2.20)

2 uig
i=1

When m tends to 1, the algorithm converges to the k—means method.

2.4.3 Probabilistic Methods

The title refers to data sets whose points come from a known statistical distribution,
whose parameters have to be estimated. Specifically, the data may come from a mixture
of several distributions and the weights of the distributions in the mixture, and their

parameters, have to be determined.
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The best—known probabilistic method is the Expectation-Maximization (EM)
algorithm [62] where log-likelihood of the data points drawn from a given mixture
model. The underlying probability model and its parameters determine the membership
function of the data points. The algorithm starts with initial guesses for the mixture
model parameters. These values are then used to calculate the cluster membership
functions for the data points. In turn, these membership functions are used to re—
estimate the parameters, and the process is repeated, see section 6.2.

Probabilistic methods depend critically on their assumed priors. If the assump-
tion are correct, one gets good results. A drawback of these algorithms is that they
are computationally expensive. Another problem found in this approach is called the

overfitting, see [40].

2.5 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms are an important class of clustering methods
that are not center—based, but instead use similarity data.

These algorithms transform a similarity data set into a tree-like structure which is
called a dendogram [53]. The dendogram is constructed as a sequence of partitions
such that its root is a cluster covering all the points and the leaves are clusters contain-
ing only one point. In the middle, child clusters partition the points assigned to their
common parent according to a dissimilarity level. This is illustrated in Figure 2.1 (Note
that the dendogram is not a binary tree.) The dendogram is most useful up to a few
levels deep, as the clustering becomes more trivial as the tree depth increases. Hierar-
chical clustering methods are categorized into two major methods as agglomerative
and divisive methods ( [52] & [56]).

Agglomerative clustering is a bottom—up way of constructing the dendogram. The
hierarchical structure begins with N clusters, one per point, and grows a sequence of
clusterings until all N observations are in a single cluster. Divisive clustering on the
other hand is a top—down way of constructing the dendogram. The structure begins

with one cluster containing all N points and successively divides clusters until NV clusters
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Figure 2.1: An example of the dendogram that might be produced by a hierarchical al-
gorithm from the data shown on the right. The dotted lines indicate different partitions
at different levels of dissimilarity.

are achieved.

Agglomerative hierarchical clustering is computationally less complex and, for this
reason, it is more commonly used than divisive hierarchical clustering. For agglomer-
ative hierarchical techniques, the criterion is typically to merge the “closest” pair of
clusters, where “close” is defined by a specified measure of cluster proximity. There are
three definitions of the closeness between two clusters: single-link, complete-link
and average—link. The single—link similarity between two clusters is the similarity
between the two most similar instances, one of which appears in each cluster. Single
link is good at handling non—elliptical shapes, but is sensitive to noise and outliers. The
complete—link similarity is the similarity between the two most dissimilar instances, one
from each cluster. Complete link is less susceptible to noise and outliers, but can break
large clusters, and has trouble with convex shapes. The average—link similarity is a
compromise between the two.

The advantages of agglomerative and divisive algorithms are: (i) they do not require
the number of clusters to be known in advance, (ii) they compute a complete hierarchy
of clusters, (iii) good result visualizations are integrated into the methods, and (iv)
a “flat” partition can be derived afterwards (using a cut through the dendrogram).
However, both methods suffer from their inability to perform adjustments once the
splitting or merging decision is made.

In both methods if, say, at one point during the construction of the dendogram, a
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misclassification is made, it is built on until the end of the process. At some point of the
dendograms growth an observation may be designated as belonging to a cluster in the
hierarchy. It remains associated with the successors of that cluster till the dendogram
is finished. It is impossible to correct this misclassification while the clustering process
is still on.

After the tree has been produced, a multitude of possible clustering interpretations
are available. A practical problem with hierarchical clustering, thus, is: at which value
of dissimilarity should the dendogram be cut, or in other words, at which level should
the tree be cut. One heuristic commonly used is to choose that value of dissimilarity
where there is a large “gap” in the dendogram. This assumes that a cluster that
merges at a much higher value of dissimilarity than that at which it was formed is more
“meaningful”. However, this heuristic does not work all the time [51].

Some of the hierarchical clustering algorithms recently presented in the literature
are: Balanced Iterative Reducing and Clustering using Hierarchies - BIRCH [86], Clus-
tering Using Representatives - CURE [36], and CHAMELEON [55]. More recently, a
novel incremental hierarchial clustering algorithm (GRIN) for numerical data sets is

presented in [17]. A survey and comparison of these algorithms are in [57] and [11].

2.6 Dispersion Statistics

The partitioning (2.3) of the data points x; (which are the rows of the N x p data

matrix D of (2.2)), gives rise to the p x p total dispersion matrix,

K
T=> Y (xi—%)(xi— %), (2.21)

k=1x,;€Cy

where the p—dimensional vector X is the mean of all the data points. The total dispersion
matrix T can be partitioned as

T=W+B (2.22)
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where W is the within—cluster dispersion matrix,

K
W=> ") (xi — X)(xix — Xp) (2.23)

k=1 x;€Cy

here X, is the mean of the data points in the cluster C, and B is the between—clusters

dispersion matrix,
K

B=) Ni(X%—%) (% — %), (2.24)
k=1

where N} is the number of data points in Cy.

For univariate data (p = 1), equation (2.22) represents the division of the total
sum of squares of a variable into the within- and between-clusters sum of squares. In
the univariate case a natural criterion for grouping would be to choose the partition
corresponding to the minimum value of the within-group sum of squares or, equivalently,
the maximum value of the between-cluster sum of squares.

In the multivariate case (p > 1) the derivation of a clustering criterion from the
equation (2.22) is not so clear-cut as the univariate case, and several alternatives have

been suggested.

2.7 Dispersion Objectives

The dispersion statistics of section 2.6 suggest several different objectives for clustering.

2.7.1 Minimization of trace (W)

The trace of the matrix W in (2.23) is the sum of the within—cluster variances. Mini-

mizing this trace works to make the clusters more homogeneous, thus the problem,
min{trace W}, (2.25)
which, by (2.22) is equivalent to

max{trace B}. (2.26)
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This can be shown to be equivalent to minimizing the sum of the squared Euclidean
distances between data points and their cluster mean which is used in k-means algo-

rithms. The criterion can also be derived on the basis of the distance matrix:

K 1 N N
— 2
Sk e oam
k=1 i=1 j=1,j#1i

where d;; is the Euclidean distance between ith and jth data points in cluster Cj. Thus
the minimization of trace(W) is equivalent to the minimization of the homogeneity

criterion hq(Ci)/Nj for Euclidean distances and n = 2 [30].

2.7.2 Minimization of det (W)

The differences in cluster mean vectors are based on the ratio of the determinants of the
total and within-cluster dispersion matrices. Large values of det(7")/det(W) indicate
that the cluster mean vectors differ. Thus, a clustering criterion can be constructed as

the maximization of this ratio;

det(T)
. 2.28
! { det (W) } (2.28)
Since T is the same for all partitions of IV data points into K clusters, this problem is

equivalent to
min{det(W)}. (2.29)

2.7.3 Maximization of trace(BW 1)

A further criterion considered is a combination of dispersion matrices:

max{trace ( (2.30)

)
This criterion is obtained from the product of the between-clusters dispersion matrix
and the inverse of the within-clusters dispersion matrix. This function is also a further

test criterion used in the context of multivariate analysis of variance, with large values
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of trace (BW 1) indicating that the cluster mean vectors differ.

2.7.4 Comparison of the Clustering Criteria

Of the three clustering criteria mentioned above, the criterion (2.30) is perhaps the one
most commonly used. However it suffers from some serious problems [30]. Firstly, the
method is not scale-invariant. Different solutions may be obtained from the raw data
and from the data standardized in some way. Clearly this is of considerable practical
importance because of the need for standardization in many applications. Another
problem with the use of this criterion is that it may impose a spherical structure on the
observed clusters even when the natural clusters in the data are of other shapes. The
alternative criteria in equations (2.25) and (2.30) are not affected by scaling which is
the main motivation behind of these criteria. Moreover, the criterion in equation (2.29)
which has been widely used does not restrict clusters to being spherical. It can also
identify elliptical clusters. On the other hand, this criteria assumes that all clusters
in the data have the same shape i.e. the same orientation. Finally, both the criteria
in equations (2.25) and (2.29) produce clusters that contain roughly equal numbers of

data points.

2.8 Other Clustering Methods

In this section, we briefly describe other clustering methods developed in the data
clustering area. For comprehensive explanations and further details, see the cited ref-

erences.

2.8.1 Density—based Clustering

Density—based methods consider that clusters are dense sets of data points sepa-
rated by less dense regions; clusters may have arbitrary shape and data points can
be arbitrarily distributed. Many methods, such as DBSCAN [29] (further improved
in [57]), rely on the study of the density of points in the neighborhood of each point.

One can consider within the category of density-based methods the grid—based
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solutions, such as DENCLUE [42] or CLIQUE [3], mostly developed for spatial data
mining. These methods quantize the space of the data points into a finite number of
cells (attention is shifted from data points to space partitioning) and only retain for
further processing the cells having a high density of points; isolated data points are
thus ignored. Quantization steps and density thresholds are common parameters for

these methods.

2.8.2 Graph—Theoretic Clustering

Another clustering method is the graph—theoretic clustering method where the data
points are represented as nodes in a graph and the dissimilarity between two points is the
”length“ of the edge between the corresponding nodes. In several methods, a cluster
is a subgraph that remains connected after the removal of the longest edges of the
graph [52]; for example, in [85] (the best—known graph—theoretic clustering algorithm)
the minimal spanning tree of the original graph is built and then the longest edges are
deleted. Some other graph—theoretic methods rely on the extraction of cliques and are

then more related to center—based methods, see [66].

2.8.3 Volume Based Clustering

To overcome the difficulties like clustering with equal size or spherical shapes, we can
use Mahalanobis distances (see section 2.2.5) instead of Euclidean distance [76]. For
example, if the covariance ¥ is known, then the similarity within that cluster, with
center ¢ would be measured by |x — c|lx-1 . This measure is scale invariant and
can deal with asymmetric, non-spherical clusters. A difficulty in using Mahalanobis
distances is getting a good estimate of the covariance matrices in question.

A promising alternative scale—invariant metric of cluster quality is minimum vol-
ume ellipsoids, where data points are allocated into clusters so that the volumes of the
covering ellipsoids for each cluster is minimized. The problem of finding the minimum
volume ellipsoid can be formulated as a semidefinite programming problem and an

efficient algorithm for solving the problem has been proposed by [77].
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2.9 Support Vector Machines

Support vector machines (SVMSs) are a set of related supervised learning methods
(see section 2.2.4) used for classification and regression [2]. Support Vector Machines
(SVMs) is to find an optimal plan that separates data into two groups, say X and ).
The optimal plane is first obtained from training data that has been labeled, which
means we know which group each entity comes from. Then the plane can be used for
classifying new observations. All entities from X and ) will be separated by the plan
under the assumption that X and ) are separable. This assumption can be achieved if
there exits a proper kernel function that projects all entities from X and ) into a high
dimensional space. The projection into sufficiently high dimensional space will lead to
a separable data set. A set of data of two groups may have many possible separating
plans. However, there is one optimal SVM hyperplane for a data set.

The support vector machine algorithm can be interpreted as the construction of a
linear classifier in a very high-dimensional space (called the feature space), obtained by
transformation of the original input space.

The key ingredient of the algorithm is a kernel function that allows the training
phase and the classification of new observations to be carried out in the feature space
without the need to actually perform the transforming computations.

The typical support vector classifier (for two-class problems) consists of a linear
discriminant function that separates the training data. A quadratic optimization model
is used to optimize the weights, so that the margin of separation between the two classes
if maximized. The margin of separation is simply the smallest distance from a point in
one of the classes to the separating hyperplane, plus the smallest distance from a point
in the other class to the separating hyperplane.

The formulation of the underlying optimization model is such that the only informa-
tion required about the feature space utilized is the inner product between every pair
of (transformed) observations in the training data set. The kernel function is chosen in
such a way that it provides, with low computational costs, the inner product between

two observations mapped into the feature space. Clearly, one is interested in choosing
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a feature space in which a better separation of the two classes is possible than that
obtained in the input space.

In practice, the optimization model takes into account a penalty term, in order
to allow some observations in the training data set to be incorrectly classified. The
so—called v-parameter dictates how much importance the model should give to the
perfect separation of the training data, as opposed to the maximization of the margin
of separation of “most” observations. The value of v is a critical parameter in tuning
the support vector machines algorithm.

Another important parameter of the algorithm is the kernel function used, or in other
words the feature space chosen. Many different kernel functions have been proposed
for specific types of data. Among the general-purpose kernel functions frequently used
we cite the polynomial and radial basis function kernels.

A very similar variant of the optimization model utilized for training allows the use
of the same algorithm for regression tasks, resulting in the so—called support vector
regression algorithm. For a comprehensive treatment of support vector machines, the

reader is referred to [73].
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Chapter 3

Probabilistic Distance Clustering

3.1 Introduction

A cluster is a set of data points that are similar, in some sense, and clustering is a
process of partitioning a data set into disjoint clusters.
We take data points to be vectors x = (z1,...,x,) € RP, and interpret “similar” as

“close”, in terms of a distance function d(x,y) in RP, such as

d(x,y) =[x -yl Vx,y € R?, (3.1)
where the norm || - || is elliptic, defined for u = (u;) by
lull = (u, Qu)"/2, (3.2)

with (-,-) the standard inner product, and @ a positive definite matrix. In particular,

Q = I gives the Euclidean norm,

| = (u,w)"/?, (3-3)
and the Mahalanobis distance corresponds to Q = ¥ ~!, where ¥ is the covariance
matrix of the data involved.

Example 3.1. A data set in R? with N = 200 data points is shown in Figure 3.1. The

data was simulated, from normal distributions N (p;, ¥;), with:
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Figure 3.1: A data set in R?

01 O
p = (0,0), ¥ = , (100 points) ,

0 1

1 0
po = (3,0), g = , (100 points) .
0 0.1

This data will serve to illustrate Examples 3.2-3.5 below.

The clustering problem is, given a dataset D consisting of N data points
{x1, X2, ... , Xy} C RP,

and an integer K, 1<K <N, to partition D into K clusters Cy,...,Ck.

Data points are assigned to clusters using a clustering criterion. In distance
clustering, abbreviated d—clustering, the clustering criterion is metric: With each
cluster Cp we associate a center cg, for example its centroid, and each data point is
assigned to the cluster to whose center it is the nearest. After each such assignment,
the cluster centers may change, resulting in re—assignments. Such an algorithm will

therefore iterate between updating the centers and re—assignments.
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A commonly used clustering criterion is the sum—of-squares of Euclidean distances,

K
Yo xi—e | (3.4)

k=1x;€Cy

to be minimized by the sought clusters C1,...,Cx. The well known k—means cluster-
ing algorithm [39] uses this criterion.

In probabilistic clustering the assignment of points to clusters is “soft”, in the
sense that the membership of a data point x in a cluster Ci is given as a probability,
denoted by pr(x). These are subjective probabilities, indicating strength of belief in
the event in question.

Let a distance function

d (-, ) (3.5)

be defined for each cluster Cx. These distance functions are, in general, different from
one cluster to another. For each data point x € D, we then compute:
e the distance di(x,cy), also denoted by di(x) (since dj is used only for distances
from cy), or just dj if x is understood, and
e a probability that x is a member of Ci, denoted by p(x), or just py.

Various relations between probabilities and distances can be assumed, resulting in
different ways of clustering the data. In our experience, the following assumption has

proved useful: For any point x, and all k=1,--- | K
pr(x) d(x) = constant, depending on x .

This model is our working principle in what follows, and the basis of the proba-
bilistic d—clustering approach of section 3.2.

The above principle owes its versatility to the different ways of choosing the distances
di (). It is also natural to consider increasing functions of such distances, and one useful
choice is

Dk (x)edk (%) = constant, depending on x ,
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giving the probabilistic exponential d—clustering approach of section 3.3.

The probabilistic d—clustering algorithm is presented in section 3.4. It is a gen-
eralization, to several centers, of the Weizsfeld method for solving the Fermat—Weber
location problem, see section 3.2.5, and convergence follows as in [59]. The updates
of the centers use an extremal principle, described in section 3.2.3. The progress of
the algorithm is monitored by the joint distance function, a distance function that
captures the data in its low contours, see section 3.2.2. The centers updated by the
algorithm are stationary points of the joint distance function.

For other approaches to probabilistic clustering see the surveys in [43], [78], and the
seminal article [79] unifying clustering methods in the framework of modern optimiza-

tion theory.

3.2 Probabilistic d—clustering

There are several ways to model the relationship between distances and probabilities.

The simplest model, and our working principle (or axiom), is the following:

Principle 3.1. For each x € D, and each cluster Cy,

pr(x) di(x) = constant, depending on x . (3.6)

Cluster membership is thus more probable the closer the data point is to the cluster

center. Note that the constant in (3.6) is independent of the cluster k.

3.2.1 Probabilities
From Principle 3.1, and the fact that probabilities add to one, we get

Theorem 3.1. Let the cluster centers {ci, c2, ..., cx} be given, let x be a data

point, and let {di(x) : k =1,..., K} be its distances from the given centers. Then the
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membership probabilities of x are
I1 dj(x)
J#k

K

>, [Tdj(x)

t=1 j£t

pr(x) =

Proof. Using (3.6) we write for ¢, k

pi(x) = <m<x>dk<x>> |

K
Since Y pi(x) =1,
=1

1T d;(x)
R I
k(X (x
tgl (dt(x)> tgl jl;é[t () -
In particular, for K=2,
_ da(x) o= G
"X = T+’ P2 T G+ da) (3:8)
and for K = 3,
pi(x) = da(x)d3 (x) , etc. (3.9)

dq (X)dg (X) + dy (X)dg (X) + ds (X)dg (X)

Note: See [41] for related work in a different context. In particular, our equation (3.8)

is closely related to [41, Eq. (5)].
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3.2.2 The Joint Distance Function

We denote the constant in (3.6) by D(x), a function of x. Then

D(x)= =% (3.10)

The function D(x), called the joint distance function (abbreviated JDF) of x,
has the dimension of distance, and measures the distance of x from all cluster centers.

Here are special cases of (3.10), for K = 2,

_ di(x) da(x)
D(x) = 0x) + da() (3.11)
and for K = 3,
D(x) = () d{x) ds x) (3.12)

dl (X) dg (X) + dl (X) dg (X) + Clz (X) d3 (X) '

The JDF of the whole data set D is the sum of (3.10) over all points, and is a

function of the K cluster centers, say,

K
H dk‘(xiack‘)
F(er g, o) =Y == . (3.13)
=13 11 dj(xi, )
t=1 j#t

Example 3.2. Figure 3.2 shows level sets of the JDF (3.11), with Mahalanobis dis-

tances

di(x. e) =/ (x — ) TS (x — ) | (3.14)

C1 = 1, C2 = My, and X1, X9 as in Example 3.1.
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Figure 3.2: Level sets of a joint distance function

Notes:

(a) The JDF D(x) of (3.10) is a measure of the classifiability of the point x in question.
It is zero if and only if x coincides with one of the cluster centers, in which case x
belongs to that cluster with probability 1. If all the distances di(x, c) are equal, say
equal to d, then D(x) = d/k and all pg(x) = 1/K, showing indifference between the
clusters. As the distances di(x) increase, so does D(x), indicating greater uncertainty
about the cluster where x belongs.

(b) The JDF (3.10) is, up to a constant, the harmonic mean of the distances involved,
see [5] for an elucidation of the role of the harmonic mean in contour approximation
of data. A related concept in ecology is the home range, shown in [25] to be the

harmonic mean of the area moments in question.

3.2.3 An Extremal Principle

For simplicity consider the case of two clusters (the results are easily extended to the
general case.)

Let x be a given data point with distances d;(x), da(x) to the cluster centers. Then
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the probabilities in (3.8) are the optimal solutions p1, p2 of the extremal problem

Minimize d(x) p? + da(x) p3 (3.15)
subject to p1+p2 =1

p1,p2 >0

Indeed, the Lagrangian of this problem is

L(p1,p2,\) = di(x) p} + da(x) p3 — Mp1 +p2 — 1) (3.16)

and setting the partial derivatives (with respect to p1, p2) equal to zero gives the prin-

ciple (3.6),

p1di(x) = p2da(x) .

Substituting the probabilities (3.8) in the Lagrangian (3.16) we get the optimal
value of (3.15),

di(x) da(x)
Lr ) A = —————— 3.17
(pl(X) p2(x) ) dl(X) —I—dQ(X) ( )
which is the JDF (3.11) again.
The extremal problem for a data set D = {x1, X2, ..., xy} C RP? is, accordingly,
N
Minimize Y (d1(xi) p1(x:)? + da(xi) pa(xi)?) (3.18)
i=1
subject to  p1(x;) + p2(x;) = 1,
p1(xi), p2(x;) >0, i=1,...,N.
This problem separates into N problems like (3.15), and its optimal value is
N
1 d 1
Z X—2X> (3.19)

Xz + d2 (Xz)
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the JDF (3.13) of the data set, with K = 2.
Note: The explanation for the strange appearance of “probabilities squared” above, is

that (3.15) is a smoothed version of the “real” clustering problem, namely,
min {d;, da2},
which is nonsmooth, see [79] for a unified development of smoothed clustering methods.

3.2.4 Centers

We write (3.18) as a function of the cluster centers cy, ¢,

N
C17C2 Z dl X1701 pl(Xz) +d2(xz‘702)P2(Xz’)2) . (3-20)
=1

If a point x; coincides with a center, say x; = c1, then di(x;) = 0, p1(x;) = 1 and
p2(x;) = 0. This point contributes zero to the summation.
For the special case of Euclidean distances, the minimizers of (3.20) assume a simple

form as convex combinations of the data points.

Theorem 3.2. Let the distance functions dj,dz in (3.20) be Euclidean,

dk(xv Ck) = ||X - CkH ) k= 172 5 (321)
so that
fler,e) = > (lIxi — el pr(xi)® + [[xi — 2l pa(xi)?) (3.22)
i=1,...,N

and let the probabilities p1(x;), p2(x;) be given for i = 1,..., N. We make the following

assumption about the minimizers c;, ca of (3.22):

c1, ¢y do not coincide with any of the points x;, i =1,..., N. (3.23)
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Then the minimizers ¢y, cy are given by

uk(xz)
cr = Xi , (3.24)
1—;71\7 ;Z ug (X;)
7j=1,...,N
where
pk(Xi)Q
) = e 2
() dk(xi, cx) (3.25)
for k = 1,2, or equivalently, using (3.8),
i (x1) = da(xi, c2)?
Y di(xi,e1) (di(x4, €1) + da(xi, €2))?
di (x4, ¢1)?
U2(X;) = . 3.26
2(xi) da(x4, €2) (d1(x4, €1) + da(x, €2))? (3.26)
Proof. The gradient of d(x,c) = ||x — c|| with respect to c is, for x # c,
X—c X—c
lx—cll = — S , 2
Vel el = e T T (327
By Assumption (3.23), the gradient of (3.22) with respect to ¢ is
X; — Ck
Ve, f(ei,c2) = — Z mpk(xi)Q
i=1,..N 17T Tk
— Ck 9
7 7k — ].7 2 . 2
~ IZ: dk i ch) pk(X) (3.28)
Setting the gradient equal to zero, and summing like terms, we get
pk(Xz’)Q > Pk(Xz')Q
~ 7 X’i p— B — C s 329
Z (dkz(xz‘,ck) ZIZN di(xicr) | (3.29)

i=1,..,N
proving (3.24)—(3.26). O

The same formulas for the centers ¢y, ca hold if the norm used in (3.22) is elliptic
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Corollary 3.1. Let the distance functions dj, d2 in (3.20) be elliptic,

dip(x, cx) = ((x — cx), Qr(x — cx))/?, (3.30)

with positive—definite matrices Q. Then the minimizers c;, cy of (3.20) are given by

(3.24)—(3.26).

Proof. The gradient of d(x,¢) = ((x — ¢), Q(x — ¢))'/? with respect to c is, for x # c,

Qx—c)
Vc d(X, C) = —m .
Therefore the analog of (3.28) is
—C
Vckf(cl,CQ Z dk X C]Z; pk(xi)2 s (331)

zl,,

and since Qi is nonsingular, it can be “cancelled” when we set the gradient equal to

zero. The rest of the proof is as in Theorem 3.2. O

Corollary 3.1 applies, in particular, to the Mahalanobis distance (3.14)

dp(x,¢c) = \/(X — ck)TEEI(x —ck),

where Y is the covariance matrix of the cluster Cy.
The formulas (3.24)—(3.25) are also valid in the general case of K clusters, where

the analog of (3.20) is

K
f(cl,CQ, s ,CK) = Z Z dk Xzack pk Xz)2 . (3'32)
1

i=1,..,.N k=1

Corollary 3.2. Let the distance functions dj in (3.32) be elliptic, as in (3.30), and
let the probabilities pg(x;) be given. Then the minimizers ci,ca,- -+ ,cx of (3.32) are

given by (3.24)—(3.25) for k =1,2,--- | K.

Proof. The proof of Corollary 3.1 holds in the general case, since the minimizers are
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calculated separately. O

3.2.5 The Weiszfeld Method

In the case of one cluster (where the probabilities are all 1 and therefore of no interest)

the center formulas (3.24)—(3.25) reduce to

= 1/d(x;,c) .
o z‘:;w > 1/d(xj,c) | 77 (3.33)

j=1,..,.N

giving the minimizer of f(c) = é\f: d(x;,c). Formula (3.33) can be used iteratively to
update the center ¢ (on the left)Z;; a convex combination of the points x; with weights
depending on the current center. This iteration is the Weiszfeld method [82] for
solving the Fermat—Weber location problem, see [82], [60]. Convergence of Weiszfeld’s
method was established in Kuhn [59] by modifying the gradient V f(c) so that it is
always defined, see [54] for further details. However, the modification is not carried out
in practice since, as shown by Kuhn, the set of initial points ¢ for which it ever becomes
necessary is denumerable.

In what follows we use the formulas (3.24)—(3.25) iteratively to update the centers.
Convergence can be proved by adapting the arguments of Kuhn [59], but as there it

requires no special steps in practice.

3.2.6 The Centers and the Joint Distance Function

The centers given by (3.24)—(3.25) are related to the JDF (3.13) of the data set. Con-

sider first the case of K = 2 clusters, where (3.13) reduces to

N
di(xj,¢1) d2(x, c2)
= . 3.34
Fleve2) ; (xi; €1) + da(xi, €2) (334

The points ¢, where V¢, F((c1,¢2) = 0,k = 1,2, are called stationary points of (3.34).

Theorem 3.3. Let the distances dy,ds in (3.34) be elliptic, as in (3.30). Then the

stationary points of F'(ci,c2) are given by (3.24)-(3.26).
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Proof. Let the distances dj, be Euclidean, di(x) = ||x — cg||. It is enough to prove the

theorem for one center, say c;. Using (3.27) we derive

Vcl F(Cl,CQ) -

X;—C1

(0 + o)) o) (20 o) o) (22 )

= —da(xi)* (xi — c1)
- ; dl(xi) (dl(Xi) + dZ(Xi))Q . (3.35)

Setting (3.35) equal to zero, and summing like terms, we get
N

da(x;)” o da(xi)? -
Z di(xj) (di (%) + da(x;))2 | 1 2 <d1(Xz‘) (d1(x;) +d2(Xz‘))2> "

i=1

duplicating (3.24)—(3.26). If the distances are elliptic, as in (3.30), then the analog of
(3.35) is,

_d2 Ql (Xz - Cl)
= 2 () (dr ) + o) P

and since () is nonsingular, it can be “cancelled” when the gradient is set equal to

Zero. O

In the above proof the stationary points ci,co are calculated separately, and the

calculation does not depend on there being 2 clusters. We thus have:

Corollary 3.3. Consider a data set with K clusters, and elliptic distances d;. Then

the stationary points of the JDF (3.13) are the centers ¢ given by (3.24)—(3.25). O

Note: The JDF (3.10) is zero exactly at the K centers {ci}, and is positive elsewhere.
These centers are therefore the global minimizers of (3.10). However, the function (3.10)
is not convex, not even quasi—convex, and may have other stationary points, that are

necessarily saddle points.
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3.2.7 Why d and not d??

The extremal principle (3.18), which is the basis of our work, is linear in the distances
dp,

Minimize Z dy, p}.
k

We refer to this as the d—model.
In clustering, and statistics in general, it is customary to use the distances squared

in the objective function,

Minimize g dz.
k

We call this the d>~model.

The d?>-model has a long tradition, dating back to Gauss, and is endowed with a rich
statistical theory. There are geometrical advantages (Pythagoras Theorem), as well as
analytical (linear derivatives).

The d—model is suggested by the analogy between clustering and location problems,
where sums of distances (not distances squared) are minimized. Our center formulas
(3.24)—(3.25) are thus generalizations of the Weiszfeld Method to several facilities, see
section 3.2.5.

An advantage of the d-model is its robustness. Indeed the formula (3.25), which
does not follow from the d?>~model, guarantees that outliers will not affect the center

locations.

3.2.8 Other Principles

There are alternative ways of modelling the relations between distances and probabili-

ties. For example:

Principle 3.2. For each x € D, and each cluster Ci, the probability pr = pi(x) and

distance dj = di(x) are related by

Py dg = constant, depending on x . (3.36)



36

where the exponents «, 0 are positive.

For the case of 2 clusters we get, by analogy with (3.8) and (3.18) respectively, the

probabilities
dy(x)P/ dy (x)P/
_ , = , 3.37
and an extremal principle,
N
Minimize Y (dl (%)% p1 ()2 + do(x;)° pQ(i)aH) (3.38)

=1

subject to  p1(i) +pa(i) =1

p1(), p2(i) > 0

where p; (i), p2(i) are the cluster probabilities at x;.
The Fuzzy Clustering Method [14], [15], which is an extension of k-means
method, uses B = 2 and allows different choices of . For o = 2, it gives the same

probabilities as (3.7), however the center updates are different than (3.24)—(3.25).

3.3 Probabilistic Exponential d—clustering

Any increasing function of the distance can be used in Principle 3.1. The following
model, with probabilities decaying exponentially as distances increase, has proved useful

in our experience.

Principle 3.3. For each x € D, and each cluster C, the probability py(x) and distance

di(x) are related by

pr(x) e*™ = B(x), a constant depending on x . (3.39)

Most results of section 3.2 hold also for Principle 3.3, with the distance dj(x) replaced



by %), Thus the analog of the probabilities (3.8) is

€d2 (X) €d1 (X)
P13 = Cie e * P20 = Gty odt
or equivalently
e—d1(x) e %209
pi(x) =  Palx) =

e—d1 (x) + e—dg(x)

Similarly, since the probabilities add to 1, the constant in (3.39) is

edl (X)+d2 (x)
E(X) — gdl(x) + edQ(X) )

called the exponential JDF.

3.3.1 An Extremal Principle

The probabilities (3.40) are the optimal solutions of the problem

min {edlp? +e®2pd i prdpa=1, p1,p2> 0} ,

e—dl(x) + e—dg(x) :

37

(3.40)

(3.41)

(3.42)

(3.43)

whose optimal value, obtained by substituting the probabilities (3.40), is again the

exponential JDF (3.42).

The extremal problem for a data set D = {x1, X2, ..., Xy} C RP, partitioned into

2 clusters, is the following analog of (3.18)

N
Minimize Z (edl(xi)pl (i)* + €d2(xi)p2(i)2)

=1

subject to  p1(i) + p2(i) =1

p1(i), p2(i) > 0

(3.44)
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where p1(i),p2(i) are the cluster probabilities at x;. The problem separates into N

problems like (3.43), and its optimal value is

di1(x;)+d2(x;)

D St 1 ot (3.45)

=1

the exponential JDF of the whole data set.
Alternatively, (3.39) follows from the “smoothed” extremal principle
2 2

' a log p : =1 >0 3.46
. {;pk k+;pk Ogpk * P1+ P2 , D1, P2 > }, (3.46)

obtained by adding an entropy term to ) pi di. Indeed the Lagrangian of (3.46) is

2 2

L(py,p2,A) =Y pede+ Y pilogpe — Apr+p2 — 1) .
k=1 k=1

Differentiation with respect to pg, and equating to 0, gives
dip +1+logp, —A=0
which is (3.39).

3.3.2 Centers

We write (3.44) as a function of the cluster centers cy, co,

Mz

flens2) = 3 (00 pa () + €00 ) (3.47)

i=1

and for elliptic distances we can verify, as in Theorem 3.2, that the minimizers of (3.47)

are given by,

=3 ) (3.48)
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where (compare with (3.25)),

()2 e (x)

e (5) , (3.49)

uk(xl) =

or equivalently,

e~ (Xi)/dl (Xz)
(e—d1(xi) +e_d2(xi)>2 I

€*d2(xi)/d2 (Xz)
(e‘dl(xi) +€_d2(xi))2 .

U1<XZ’) = UQ(Xi) = (3.50)

As in Theorem 3.3, these minimizers are the stationary points of the JDF, given here

as
N di (x4,¢1)+d2(x4,¢2)
e
Fley,e2) = 2 ed1(xi,e1) 4 eda(xise2) (3:51)
1=

Finally we can verify, as in Corollary 3.2, that the results hold in the general case of K

clusters.

3.4 A Probabilistic d—clustering Algorithm

The ideas of section 3.2-3.3 are implemented in the following algorithm for unsupervised
clustering of data. A schematic description, presented — for simplicity — for the case of

2 clusters, follows.

Algorithm 3.1. Probabilistic D—clustering

Initialization: given data D, any two points c1,co, and € > 0

Iteration:
Step 1 compute distances d;(x), da2(x) for all x € D
Step 2 update the centers cf, c;
Step 3 if |[cf —c1]| + |lcj —c2f| <€ stop

return to step 1

The algorithm iterates between the cluster centers, (3.24) or (3.48), and the dis-
tances of the data points to these centers. The cluster probabilities, (3.8) or (3.40),

are not used explicitly.
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Notes:

(a) The distance used in Step 1 can be Euclidean or elliptic (the formulas (3.24)-(3.26),

and (3.48)—(3.50), are valid in both cases.)

(b) In Step 2, the centers are updated by (3.24)—(3.26) if Principle 3.1 is used, and by
(3.48)—(3.50) for Principle 3.3.

(c) In particular, if the Mahalanobis distance (3.14)

d(x,ck) = \/(x —cp) TS (x — cp)

is used, the covariance matrix X of the k™ —cluster, can be estimated at each iteration

by N
> un(xi) (x5 — ex) (xi — ep)
¥, = = - (3.52)
;uk(xz)

with ug(x;) given by (3.26) or (3.50)

(d) The computations stop (in Step 3) when the centers stop moving, at which point
the cluster membership probabilities may be computed by (3.8) or (3.40). These proba-
bilities are not needed in the algorithm, but may be used for classifying the data points,

after the cluster centers have been computed.

(e) Using the arguments of [59] it can be shown that the objective function (3.32) de-

creases at each iteration, and the Algorithm converges.

(f) The cluster centers and distance functions change at each iteration, and so does the
function (3.13) itself, which decreases at each iteration. The JDF may have stationary
points that are not minimizers, however such points are necessarily saddle points, and

will be missed by the Algorithm with probability 1.

Example 3.3. We apply the algorithm, using d—clustering as in section 3.2 and Ma-
halanobis distance, to the data of Example 3.1. Figure 3.3 shows the evolution of the
joint distance function, represented by its level sets. The initial function, shown in the
top-left pane, corresponds to the (arbitrarily chosen) initial centers and initial covari-

ances Y1 = X9 = I. The covariances are updated at each iteration using (3.52), and by
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Figure 3.3: The level sets of the evolving joint distance function at iteration 0 (top
left), iteration 1 (top right), iteration 2 (bottom left) and iteration 12 (bottom
right)
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iteration 8 the function is already very close to its final form, shown in the bottom-right

pane. For a tolerance of € = 0.01 the algorithm terminated in 12 iterations.

Example 3.4. In Figure 3.4 we illustrate the movement of the cluster centers for
different initial centers. The centers at each run are shown with the final level sets of
the joint distance function found in Example 3.3.

The algorithm gives the correct cluster centers, for all initial starts. In particular,

the two initial centers may be arbitrarily close, as shown in the top—left pane of Fig. 3.4.

Figure 3.4: Movements of the cluster centers for different starts. The top-right pane
shows the centers corresponding to Fig. 3.3. The top-left pane shows very close initial
centers.

Example 3.5. The class membership probabilities (3.8) were then computed using the
centers determined by the algorithm. The level sets of the probability p;(x) are shown

in Figure 3.5. The curve p;(x) = 0.5, the thick curve shown in the left pane of Fig. 3.5,
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may serve as the clustering rule. Alternatively, the 2 clusters can be defined as

C1={x: pi(x) > 0.6}, Co ={x: pi1(x) <04},

with points {x: 0.4 < p1(x) < 0.6} left unclassified, see the right pane of Fig. 3.5.

Figure 3.5: The level sets of the probabilities p;(x) and two clustering rules.

3.5 Related Work

There are applications where the cluster sizes (ignored here) need to be estimated.
An important example is parameter estimation in mixtures of distributions. The above
method, adjusted for cluster sizes, is applicable, and in particular presents a viable
alternative to the EM method, see [49] and [50].

As noted at the end of section 3.2.4, our method allows an extension of the classical
Weiszfeld method to several facilities. This is the subject of [46], giving the solution of
multi-facility location problems, including the capacitated case (which corresponds
to given cluster sizes.)

A simple and practical criterion for clustering validity, determining the “right”
number of clusters that fit a given data, is given in [47]. This criterion is based on the

monotonicity of the JDF (3.13) as a function of the number of clusters.



44

Semi—supervised clustering is a framework for reconciling supervised learn-
ing, using any prior information (“labels”) on the data, with unsupervised cluster-
ing, based on the intrinsic properties and geometry of the data set. A new method
for semi-supervised clustering, combining probabilistic distance clustering for the unla-

belled data points and a least squares criterion for the labelled ones, is given in [48].

3.6 Conclusions

The probabilistic distance clustering algorithm presented here is simple, fast
(requiring a small number of cheap iterations), robust (insensitive to outliers), and
gives a high percentage of correct classifications.

It was tried on hundreds of problems with both simulated and real data sets. In
simulated examples, where the answers are known, the algorithm, starting at random
initial centers, always converged — in our experience — to the true cluster centers.

Results of our numerical experiments, and comparisons with other distance-based

clustering algorithms, will be reported elsewhere.
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Chapter 4

Probabilistic Clustering Adjusted for Cluster Size

4.1 Introduction

A method for probabilistic clustering of data, proposed in [10], is based on the assump-
tion that the probability of a point belonging to a cluster is inversely proportional to its
distance from the cluster center. The resulting clustering algorithm is fast and efficient,
and works best if the cluster sizes are about equal.

In cases where the cluster sizes differ greatly, or the cluster sizes themselves are
unknowns that need to be estimated (as in de-mixing problems), the above assumption
can be modified to take into account the cluster sizes. This modification is the objective
of this chapter.

We take data points to be vectors x = (z1,...,x,) € RP, and consider a dataset
D consisting of N data points {x1, X2, ... Xxn}. A cluster is a set of data points that
are similar, in some sense, and clustering is a process of partitioning a data set into
disjoint clusters.

In distance clustering (or d—clustering), “similarity” is interpreted in terms of a

distance function d(x,y) in RP, for example,
dx,y) = |x-yl, Vx,y € R?,
where || - || is a norm. A common choice is the Mahalanobis distance with the norm
hall = (u, 57" w2,

where Y is the covariance matrix of the data in question.
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Figure 4.1: A data set in R?

Example 4.1. A data set in R? with N = 1100 data points is shown in Figure 4.1.

The data on the left was simulated from a normal distribution N(u, ), with

0.0005 0
py = (2,0), ¥ = , (100 points) ,
0 0.05
and the data on the right consist of 1000 points simulated in a circle of diameter 1

centered at py = (3,0), from a radially symmetric distribution with Prob {||x — p]| <

r} = 2r. This data will serve as illustration in Examples 4.2-4.3 below.

Points are assigned to clusters using a clustering criterion. In d—clustering each
point is assigned to the cluster with the nearest center. After each assignment, the
cluster centers may change, resulting in further re—classifications. A d—clustering algo-
rithm will therefore iterate between centers and re—assignments. The best known such
method is the k—means clustering algorithm (see section 2.4 and also [39]).

In probabilistic clustering the assignment of points to clusters is “soft”, and
cluster membership is replaced by probabilities pi(x) = Prob{x € Cy}, that a data
point x belongs to the cluster C;. Probabilistic d—clustering is when the probabilities
depend on the relevant distances.

Probabilistic d—clustering adjusted for the cluster size is called probabilistic dq—

clustering, or PDQ clustering for short.
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An algorithm for probabilistic dq—clustering is presented in section 4.3. The centers
are updated as optimal solutions of the extremal problem in section 4.2.3. These centers
are also stationary points of the joint distance function, a function that approximates
the data in its lowest level sets, see section 4.2.2. The cluster sizes (if not given) are
updated using the extremal problem of section 4.2.4

For other approaches to probabilistic clustering see sections 2.4.2, 2.4.3 and the

surveys in Hoppner et al. [43], Tan et al. [78].

4.2 Probabilistic dg—clustering

Let a data set D C RP be partitioned into K clusters {Cy: k=1,--- , K},

and let c; be the center (in some sense) of the cluster Cx. The size g of Cy is known
in some applications, and is an unknown to be estimated in others. Here the cluster
size, or its estimate, is assumed given wherever it appears in the right hand side of a
formula.

With each data point x € D and a cluster Cg, we associate:

e a distance di(x,cy), also denoted dy(x), and

e a probability of membership in Cj, denoted pg(x).

The distance functions di(-), associated with different clusters, are different in gen-

eral. In particular, we may use a different Mahalanobis distance for each cluster
di(x) = (x — ¢, T (x — ep))'/2, (4.1)

where ;. is an estimate of the cluster covariance.
There are several ways to model the relationship between distances and probabilities

[10], see chapter 3. The following assumption is our basic principle.
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Principle 4.1. For each x € D and cluster C, the probability py(x) satisfies

Pr(x) di(x)
dk

= constant, say D(x), depending on x . (4.2)

Cluster membership is thus more probable the closer the data point is to the cluster
center and the bigger is the cluster.
4.2.1 Probabilities
From Principle 4.1 and the fact that probabilities add to one we get:

Theorem 4.1. Let the cluster centers {ci, ca, ..., cx} be given, let x be a data
point, and let {di(x) : k =1,..., K} be its distances from the given centers. Then the

membership probabilities of x are

L k=1,....K. (4.3)

Proof. Using (4.2) we write for i, k,

Pr(%)di (%) /qr ‘

PO =

K

Since i(x) =1,
i;p( ) i di(x)/qk _1
w3 (He7e) =1
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In particular, for K = 2,

da(x)/q2 di(x)/q1
X) = , X) = , 4.4
)= G0 + e P T @/ + 60/ 4
and for K = 3,
da(x)d3(x)/q2q3
X) = , etc. 4.5
P09 = 0000 + (X)) s + o)) 4
4.2.2 The Joint Distance Function
We denote the constant in (4.2) by D(x), a function of x. Since the probabilities
D(x)
X)= % 1. K,
Pi(x) di(x)/ax
add to 1 we get, ﬁ dj(x)
D(x) = 4 (4.6)

D(x) is called the joint distance function of x, and is, up to a constant, the
harmonic mean of the K weighted distances {dp(x)/qx}. D(x) has the dimension of
distance.

Special cases: for K =2,

di1(x) d2(x)/q192

Do) = G + /e

(4.7)

di(x) d2(x) d3(x)/q192q3

D(x) = di(x) da2(x)/q1q2 + d1(x) d3(x)/q1q3 + d2(x) d3(x)/q2q3

(4.8)

Example 4.2. Figure 4.2(a) shows level sets of the joint distance function (4.7) for the
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(a) Level sets of the joint distance function (b) Probability level sets

Figure 4.2: Results for the data of Example 4.1

data of Example 4.1.

4.2.3 An Extremal Principle

Equation (4.2) may be derived from an extremal principle. For notational simplicity
we consider the case of 2 clusters, with analogous results readily available for several
clusters.

Let x be a given data point with distances d;(x), d2(x) to the cluster centers, and
assume the cluster sizes ¢1, g2 known. Then the probabilities in (4.4) are the optimal

solutions of the extremal problem

. di(x)p?  do(x) p3
min { 1(q)p1 + 2(q)p2 cpitp2=1,p1,p2 2 0} ‘ (4.9)
1 2

Indeed, the Lagrangian of this problem is

di(x)p?  da(x) p3
1(ql)p1 i 2(q2)p2 —Apr+p2—1), (4.10)

L(p17p27)\) -

and zeroing the partials dL/0p; gives the principle (4.2).
Substituting the probabilities (4.4) in the Lagrangian (4.10) we get the optimal

value of (4.9)
di(x) d2(x)/q162

di(x)/q1 + da(x)/q2 ' (4.11)

L*(p1(x), pa(x),A) =
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which is again the joint distance function (4.7).

The corresponding extremal problem for the data set D = {x1, X2, ..., XN} is

N
min Z <d1(Xi)p1(Xi)2 + dQ(Xi)pQ(Xi)2> (4.12)

i—1 a1 q2
s.t. pl(Xi) +p2(xi) =1,

pl(xi)7p2<xi)20, i=1,...,N,

where p1(x;), p2(x;) are the cluster probabilities at x; and dj(x;),d2(x;) are the corre-
sponding distances. The problem separates into N problems like (4.9), and its optimal

value is

il 1(x) do(x%4) /q192
Z: xi)/q + da(x5) /g2 (4.13)

the sum of the joint distance functions of all points.
Note: An explanation for the terms p? (squares of probabilities) in the problem (4.9)

is that this problem is a smoothed version of the “real” problem, min {d;, ds2}, which is

non-smooth, see [79] for this and other smoothing schemes.

4.2.4 An Extremal Principle for the Cluster Sizes

Taking the cluster sizes as variables in the extremal principle (4.12),

N
. {Z <d1<xi>p1<xi>2 . d2<xi>p2<x,->2> tm Noa g > 0}

i1 a1 42

with p1(x;), p2(x;) assumed known, we have the Lagrangian

B Y di(x) pi(x0)? | da(x) pa(xi)?
L(QI;CI%)‘)—; < m + - ) +Aqg1+q2— N)

Zeroing the partials OL/0qy, gives,

= (de (x7) pr(x4) ) k=12, (4.14)
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N
showing that the cluster size g is proportional to /> di(x;) px(x;)2. This holds for
i=1

any number of clusters. In particular, for 2 clusters we have,

(2 d1<xi>p1<xi>2)1/2

g =N =1

. 7z . 77 (4.15a)
(z d1<xi>p1<xi>2) T (z d2<xi>p2<xi>2)
i=1 i=1

©=N-q, (4.15Db)
since ¢ + g2 = .

4.2.5 Centers

Dealing first with the case of 2 clusters, we rewrite (4.12) as a function of the cluster

centers,
N

flere) =Y <d1(xi’c1)pl(xi>2 - dQ(X“”)p?(X")Z) (4.16)

i—1 il a2

and look for centers c1, co minimizing f.

Theorem 4.2. Let the distance functions dj, ds in (4.16) be elliptic,

d(x,cr) = ((x — cx), Qr(x —cp))?, k=1,2, (4.17)

where 01, Q2 are positive definite, so that

3 pi(x)?
fler,e2) = ; <\/<(Xi — 1), Qi(xi —c1)) qlz

+ \/<(Xi — ¢2), Q2(xi — ¢2)) W) , (4.18)

q2

and let the probabilities py(x;) and cluster sizes g be given. If the minimizers cq, co of

(4.18) do not coincide with any of the data points x;, they are given by

= Z (M)X, , Cg= iv: (M%cZ , (4.19)



53

where
(Clz(xz',cz))2 1 (d1(xz‘7c1)>2 1
(%) = q2 di(x;,c1) us(x;) = qQ d2(xi,¢2) (4.20)
’ <d1(Xi,C1) 4 dz(xl-702)>2 ’ ’ (d1(xz 1) | dz(qu2)) ’ '
a a2 a1 a2
or equivalently, in terms of the probabilities (4.4),
p1(xi)° p2(x;)°
)= , )= , 1.21
w (i) di(x;,c1) ua (i) da(x;, C2) (4.21)
Proof. The gradient of d(x,c) = ((x — ¢), Q(x — c)>1/2 with respect to c is
Ve <(X—C),Q(X—C)>1/2 = — Qkx—c) = —Q(X_C) , (4.22)

((x—c),Q(x — )"/ d(x,c)

assuming x # c¢. Therefore if ¢1, co do not coincide with any of the data points x;, we

have

Y (x pr(x;)°
Ve fler,e2) = —Qx Z AN (4.23)

dy, (Xz, cr)

Setting the gradient equal to zero, “cancelling” the matrix 3 and the common factor

qx, and summing like terms, we get
([ pelx pr(xi)
k&4 k i
; (dk(xz;ck ) (Z dy(Xi, ck) > ko

proving (4.19) and (4.21). Substituting (4.4) in (4.21) then gives (4.20). O

Note: The theorem holds also if a center coincides with a data point, if we interpret
oo/oo as 1 in (4.19).

Theorem 4.2 applies, in particular, to the Mahalanobis distance (4.1)

d(x,c) = \/(X — ck)TElzl(x —ck),

where X, is the (given or computed) covariance matrix of the cluster Cy.
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For the general case of K clusters it is convenient to use the probabilistic form

(4.21).

Corollary 4.1. Consider a function of K centers

K N
flereaoer) =3 > (d’“ i G pk(xl)z) , (4.24)

k=1 =1

an analog of (4.16). Then, under the hypotheses of Theorem 4.2, the minimizers of f

are
N 2
Uk (X; . X5
cr = Z (#) x; , with ug(x;) = dfl(q)((ik) , (4.25)
= u(xi) "
=1
fork=1,..., K.
Proof. Same as the proof of Theorem 4.2. O

Note: Formula (4.25) is an optimality condition for the centers ¢, expressing them
as convex combinations of the data points x;, with weights uy(x;) depending on the
centers cg. It is used iteratively in Step 3 of Algorithm 4.1 below to update the centers,
and is an extension to several facilities of the well-known Weiszfeld iteration for facility
location, see [60], [82]. This formula, and the corresponding formulas (4.15) for the
cluster sizes, are applied in [46] for solving multi—facility location problems, subject to

capacity constraints.

4.2.6 The Centers and the Joint Distance Function

The centers obtained in Theorem 4.2 are stationary points for the joint distance function

(4.13), written as a function of the cluster centers ¢y, ¢,

d1(x4,c1) d2(xi,¢2)

N
111112
Cl,CQ Z dl(xz,cl - . (426)

(X’L 702)
+ q2

Theorem 4.3. Let the distances dj(x;, cx) in (4.26) be elliptic. Then the stationary

points of the function F' are ¢, cy given by (4.19)—(4.21).
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Proof. Using (4.22) we derive,

1 i (méfi) n dzé;ci)) da(x;) (—%) T di(x;) dax) (%{f”)
0192 (M n M)Q
a q2

da(x;)2 (_ Ql(xrcl))

N
_ Z q2 . dl(x.i) ;

Setting V¢, F(c1,c2) equal zero, and summing like terms, we obtain the center c; as

(4.27)

in (4.19)—(4.21). The statements about cg are proved similarly. O

4.3 The PDQ Algorithm

The above results are used in an algorithm for unsupervised clustering of data, called
the PDQ Algorithm (P for probability, D for distance and Q for the cluster sizes).

For simplicity, we describe the algorithm for the case of 2 clusters.

Algorithm 4.1. The PDQ Algorithm.

Initialization: given data set D with N points,
any two centers cq, co,

any two cluster sizes q1,q2, g1 +q2 = N,

e>0
Iteration:
Step 1 compute distances from cq, co for all x € D
Step 2 update the cluster sizes q,q5 (using (4.15))
Step 3 update the centers cf,c; (using (4.19)—(4.20))
Step 4 if |[cf —ci1]| + |lcf — 2| <€ stop

return to Step 1

The algorithm iterates between the cluster size estimates (4.15), the cluster cen-

ters (4.19) expressed as minimizers of the objective function (4.18), and the distances
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of the data points to these centers.
Notes:

(a) The distances used in Step 1 are elliptic, and may be different functions, depending

on the cluster.

(b) In particular, if the Mahalanobis distance (4.1)

A, ) = 1/ (x — ) TS x — )

is used, the covariance matrix X of the kth_cluster can be estimated at each iteration

by N
> (%) (xi — ep)(x; — cx)”
5y = = - : (4.28)
; up (%)

with ug(x;) given by (4.20).
(c) If the cluster sizes qi, g2 are known, they are used as the initial estimates and are

not updated thereafter, in other words Step 2 is absent.

(d) The computations stop (in Step 4) when the centers stop moving, at which point
the cluster membership probabilities may be computed by (4.4). These probabilities

are not needed by the algorithm, and may be used afterwards for classifying the data.

(e) Having the probabilities corresponding to the final centers, rigid clusters can be

determined, and used to refine the estimates of the covariance matrices.

(f) Step 3 of the algorithm is a generalization of the Weiszfeld iteration, [82], to several
centers. As in the classical case, to establish convergence it is necessary to modify the
gradient in question, if a center coincides with one of the data points, see [59], [54].
However, the set of initial centers for which such a modification ever becomes necessary

is denumerable, and this issue can be safely ignored in practice.

Example 4.3. Figure 4.2(b) shows probability level sets for the data of Example 4.1

as determined by (4.4), using the centers and covariances computed by Algorithm 4.1.



57

4.4 Conclusions

The PDQ Algorithm is a probabilistic clustering method based on distances (of data
points from cluster centers) and on the cluster sizes. At each iteration the method
updates the cluster centers, and the cluster sizes (if unknown.) The method uses cheap
iterations, and converges fast.

We present two different applications of PDQ Method in the following chapters. An
important application is estimating the parameters of a mixture of distributions. In
this problem, the PDQ Method may serve as an alternative to the EM Method, or as a
preprocessor giving the EM Method a good start. In section 6.2 we apply the algorithm
to the estimation of the parameters of Gaussian mixtures, and compare it to the EM
method. Some numerical results are given in section 6.3. The reader find the details in
Chapter 6.

Another application of PDQ Method introduced in chapter 7 is the multi-facility
location problems where the cluster sizes are known. The method is a generalization

to several facilities of the classical Weiszfeld Method.
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Chapter 5

Clustering Validity and Joint Distance Function

5.1 Introduction

Clustering is perceived as an unsupervised process(see chapter 2) since there are no
predefined classes and no examples that would show what kind of desirable relations
should be valid among the data. As a consequence, the final partitions of a data
set require some sort of evaluation in most applications [71]. For instance questions
like “how many clusters are there in the data set?”, “does the resulting clustering
scheme fits our data set?”, “is there a better partitioning for our data set?” call for
clustering results validation and are the subjects of a number of methods discussed in
the literature. They aim at the quantitative evaluation of the results of the clustering
algorithms and are known under the general term cluster validity methods.

It is obvious that a problem we face in clustering is to decide the optimal number of
clusters that fits a data set. In most algorithms’ experimental evaluations 2D-data sets
are used in order that the reader is able to visually verify the validity of the results (i.e.,
how well the clustering algorithm discovered the clusters of the data set). It is clear
that visualization of the data set is a crucial verification of the clustering results. In
the case of large multidimensional data sets (e.g. more than three dimensions) effective
visualization of the data set would be difficult. Moreover the perception of clusters using
available visualization tools is a difficult task for humans that are not accustomed to

higher dimensional spaces.
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5.2 JDF as a Validity Criterion

The joint distance function (see 3.2.2) helps resolve the issue of cluster validity. Indeed,
the value of the JDF decreases monotonically with K, the number of clusters, and the
decrease is precipitous (which appears as “knee”) until the “right” number is reached,
and after that the rate of decrease is small. This is illustrated in Example 5.1 and
Figures 5.1-5.3 below. The synthetically generated 2D data sets are used in order that
the results can be verified visually.

This approach is useful because the PDQ algorithm is fast, and clustering for several

values of K is feasible if finding the correct K is important.

Example 5.1. Figure 5.1(a) shows a data set with 2 clusters. The PDQ algorithm was
applied to this data set, and the values of the JDF are computed for values of K from
1 to 10, the results are plotted in Figure 5.1(b). Note the change of slope of the JDF
at K = 2, the correct number of clusters.

Figures 5.2(a) and 5.3(a) show similarly data sets with K = 3 and K = 4 clusters,
respectively. The JDF, computed by the PDQ algorithm, shown in Figures 5.2(b) and

5.3(b), reveal the correct number of clusters.
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(a) A data set with K = 2 clusters (b) The JDF as a function of K

Figure 5.1: Results of Example 5.1 for 2 clusters.
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(b) The JDF as a function of K

Figure 5.2: Results of Example 5.1 for 3 clusters

(a) A data set with K = 4 clusters
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(b) The JDF as a function of K

Figure 5.3: Results of Example 5.1 for 4 clusters
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The following examples illustrate that the JDF decreases monotonically and there
is no significant change in its value (which appears as a “knee”) if the data set don’t

have a cluster structure.

Example 5.2. Figure 5.4(a) shows a data set without a cluster structure. The PDQ
algorithm was applied to this data set, and the values of the JDF are computed for
values of K from 1 to 42, the results are plotted in Figure 5.4(b). Note there is no

significant change of slope of the JDF.
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(a) A data set with no cluster structure (b) The JDF as a function of K

Figure 5.4: The change of slope of the JDF in example 5.2

Example 5.3. Figure 5.5(a) shows the data set of Example 7.2 with N = 1000 random
points in [—10,10]? points without a cluster structure. The values of the JDF are
computed for different values of K and the results are plotted in Figure 5.5(b). Note

there is no significant change of slope of the JDF.

5.3 Other Approaches to Cluster Validity Problem

The general approach, called as relative criteria, to clustering validity is the evaluation
of a clustering structure by comparing it to other clustering schemes, resulting by the

same algorithm but with different input parameter values.
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Figure 5.5: The change of slope of the JDF in example 5.3

The fundamental idea of this approach is to choose the best clustering scheme of
a set of defined schemes according to a pre—specified criterion. More specifically, the

problem can be stated as follows in [37]:

“Let Py be the set of parameters associated with a specific clustering al-
gorithm (e.g. the number of clusters K ). Among the clustering schemes
Si,1=1,..., K, defined by a specific algorithm, for different values of the

parameters in Pyq, choose the one that best fits the data set.”

Then, we can consider the following cases of the problem:

I) Py, does not contain the number of clusters, K, as a parameter. In this
case, the choice of the optimal parameter values are described as follows: We run the
algorithm for a wide range of its parameters values and we choose the largest range for
which K remains constant (usually K << N (number of data points)). Then we choose
as appropriate values of the P, parameters the values that correspond to the middle
of this range. Also, this procedure identifies the number of clusters that underlie our
data set.

II) Py, contains K as a parameter. The procedure of identifying the best

clustering scheme is based on a validity index. Selecting a suitable performance index,



63

A, we proceed with the following steps:

e the clustering algorithm is run for all values of K between a minimum K,,;, and a
maximum K,,q,. The minimum and maximum values have been defined a-priori

by user.

e For each of the values of K, the algorithm is run r times, using different set of

values for the other parameters of the algorithm (e.g. different initial conditions).

e The best values of the index A obtained by each K is plotted as the function of

K.

Based on this plot we may identify the best clustering scheme. We have to stress that
there are two approaches for defining the best clustering depending on the behavior
of A with respect to K. Thus, if the validity index does not exhibit an increasing or
decreasing trend as K increases we seek the maximum (minimum) of the plot. On the
other hand, for indices that increase (or decrease) as the number of clusters increase
we search for the values of K at which a significant local change in value of the index
occurs. This change appears as a “knee” in the plot and it is an indication of the
number of clusters underlying the data set. Moreover, the absence of a knee may be an
indication that the data set possesses no clustering structure.

In the following subsections, some representative validity indices for crisp (hard)

and soft (fuzzy) clustering (see section 2.2.3) are presented.

5.4 Crisp Clustering Indices

Crisp(hard) clustering, considers non—overlapping partitions meaning that a data point
either belongs to a cluster or not. In this section we introduce validity indices suitable

for crisp clustering.

5.4.1 The Modified Hubert [' Statistic

The definition of the modified Hubert I' [80] statistic is given by the equation



64

N-1 N
D= (1/M)Y " > Pi,)Q,j) (5.1)
i=1 j=i+1

where N is the number of data points in a dataset, M = N(N — 1)/2, P is the
proximity matrix of the data set, whose (7, j) element is the distance between the data
points x; and x;, and @ is an N x N matrix whose (7, j) element is equal to the distance
between the centers of the clusters where the data points x; and x; belong respectively.

The modified Hubert I statistic describes the degree of a partition fitting the data
set. We note, only when two data points lie in different clusters, they have an effect on
the value of T', otherwise, they do not contribute to the I" because Q(i,j) =0 . When
all data lie in a cluster, I' is equal to 0, and with the partition number increasing, the
more non—zero elements are in the matrix ¢, the higher is the value of I’

Similarly, we can define the normalized Hubert I" statistic, given by the equation
[(1/20) S5 S04 (P ) — 1p) QUi ) — hig)]

- = (5.2)
opoQ

=

where P(i,j) and Q(, j) are the (i, j) element of the matrices P and @) respectively
that we have to compare. Also pp, g, op,0q are the respective means and variances
of P, matrices. This index takes values between -1 and 1.

For two data points x; and x;, 4,5 = 1,..., N, belonging different clusters, if the
distance between them is close to that between the centers of clusters which they belong
to respectively, it is indicated that the data points in a cluster are close to their center
the values of I' and I'(normalized I') will be high. A high value of I (and T) indicates
the existence of compact clusters. Thus, in the plot of normalized I" versus K , we seek
a significant “knee” that corresponds to a significant increase of normalized I". The
number of clusters at which the knee occurs is an indication of the number of clusters

that occurs in the data. We note that for K =1 and K = N, the index is not defined.



65

5.4.2 Dunn Family of Indices

A cluster validity index for crisp clustering proposed in [28], aims at the identification
of “compact and well separated clusters”. The index is defined in equation (5.3) for a

specific number of clusters

- . d(Ck, Ct)
Dk = kfﬁ“{[{ { t:kT}?K ( ‘max diam(Ck)> } (5.3)

=1,..,

where d(Cy,C;) is the dissimilarity function between two clusters C;, and C; defined

as d(Cg,Ct) = (I:nin c d(x,y), and diam(Cy) is the diameter of a cluster, which may
XECE,y€elt

be considered as a measure of clusters’ dispersion. The diameter of a cluster Cp can be

defined as follows:

diam(C;) = max d(x,y) (5.4)
x,y€eC

If the dataset contains compact and well-separated clusters, the distance between
the clusters is expected to be large and the diameter of the clusters is expected to be
small. Thus, based on the Dunn’s index definition, we may conclude that large values
of the index indicate the presence of compact and well-separated clusters.

Index Dg does not exhibit any trend with respect to number of clusters. Thus, the
maximum in the plot of Dg versus the number of clusters can be an indication of the
number of clusters that fits the data.

However, it is very difficult to evaluate the clustering validity by the Dunn index
directly because of its considerable time complexity and its sensitivity to the presence
of noise in data sets.

In the literature, three indices, are proposed in [70] that are known as Dunn-like
indices since they are based on Dunn index. Moreover, these three indices use, for their
definition, the concepts of Minimum Spanning Tree (MST), the relative neighbourhood
graph (RNG) and the Gabriel graph(GG) respectively [80].
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5.4.3 The Davies—Bouldin(DB) Index.

A similarity measure Rjy; between the clusters Cp and C; is defined based on a measure
of dispersion, s of a cluster Cy, and a dissimilarity measure, di; between between the

clusters C and C;. The Ry; index is defined to satisfy the following conditions:
1. Rigy >0
2. Ry = Ry
3. if s =0 and sy = 0 then Ry, =0
4. if s, > s and djp=dj; then Ry, > Ry
5. s = s and dj < di then Ry, > Ry.

These conditions state that Ry is non—negative and symmetric.

A simple choice for Ry; that satisfies the above conditions is

Ryt = (sk, + s¢)/dys- (5.5)

Then the DB index is defined as

K
1
DBK = E kE_l Rk (56)
R, = max Ry, k=1,....K
t=1,....K
t#k

It is clear for the above definition that DBy is the average similarity between each
cluster Cg, k = 1,..., K and its most similar one. It is desirable for the clusters to
have the minimum possible similarity to each other; therefore we seek clusterings that
minimize DB. The DB index exhibits no trends with respect to the number of clusters
and thus we seek the minimum value of DB in its plot versus the number of clusters.

Some alternative definitions of the dissimilarity between two clusters as well as the
dispersion of a cluster, Cj, is defined in [23].

Three variants of the DBk index are proposed in [70]. They are also based on MST,

RNG and GG concepts similarly to the cases of the Dunn—like indices.
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5.4.4 RMSSDT, SPR, RS,CD

This family of validity indices is applicable in the cases that hierarchical clustering
algorithms are used to cluster the data sets. Here, we introduce the definitions of
four validity indices, which have to be used simultaneously to determine the number
of clusters existing in the data set. These four indices are applied to each step of a

hierarchical clustering algorithm and they are known as [74]:
e Root-mean-square standard deviation (RMSSTD) of the new cluster
e Semi-partial R-squared (SPR)
e R-squared (RS)
e Distance between two clusters (CD).

The Root-mean-square standard deviation(RMSSTD) of a new clustering scheme
defined at a level of a clustering hierarchy is the square root of the variance of all the
variables (attributes used in the clustering process). This index measures the homo-
geneity of the formed clusters at each step of the hierarchical algorithm. Since the
objective of cluster analysis is to form homogeneous groups the RMSSTD of a cluster
should be as small as possible. In case that the values of RMSSTD are higher than
the ones of the previous step, we have an indication that the new clustering scheme is
worse.

In the following definitions we shall use the term S.S, which means sum of squares

and refers to the equation:
N

S8 =) (xi—x)? (5.7)

i=1
Along with this we shall use some additional notation like:
i) S8, referring to the sum of squares within group,

ii) S5, referring to the sum of squares between groups,

iii) SS; referring to the total sum of squares, of the whole data set.
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Semi-partial R-squared (SPR) for a the new cluster is the difference between SS,, of
the new cluster and the sum of the SS,, values of the clusters joined to obtain the new
cluster (loss of homogeneity), divided by the SS; for the whole data set. This index
measures the loss of homogeneity after merging the two clusters of a single algorithm
step. If the index value is zero then the new cluster is obtained by merging two perfectly
homogeneous clusters. If its value is high then the new cluster is obtained by merging
two heterogeneous clusters.

R-squared(RS) of the new cluster is the ratio of SS, over SS;. SSp is a measure of
difference between groups. Since SS; = 5SS, + 5SS, the greater the S, the smaller the
SS, and vise versa. As a result, the greater the differences between groups are the more
homogenous each group is and vise versa. Thus, RS may be considered as a measure
of dissimilarity between clusters. Furthermore, it measures the degree of homogeneity
between groups. The values of RS range between 0 and 1. In the case that the value of
RS is zero indicates that no difference exists among groups. On the other hand, when
RS equals 1 there is an indication of significant difference among groups.

The Distance between two clusters (CD) index measures the distance between the
two clusters that are merged in a given step of the hierarchical clustering. This distance
depends on the selected representatives for the hierarchical clustering we perform. For
instance, in case of centroid hierarchical clustering the representatives of the formed
clusters are the centers of each cluster, so CD is the distance between the centers of the
clusters. In the case that we use single linkage CD measures the minimum Euclidean
distance between all possible pairs of points, whereas in complete linkage CD is the
maximum Euclidean distance between all pairs of data points.

Using these four indices we determine the number of clusters that exist in a data
set, plotting a graph of all these indices values for a number of different stages of the
clustering algorithm. In this graph we search for the steepest knee, or in other words,
the greater jump of these indices values from higher to smaller number of clusters.

In the case of nonhierarchical clustering (i.e. k-means) it is also possible to use
some of these indices in order to evaluate the resulting clustering. The indices that are

more meaningful to use in this case are RMSSTD and RS. The idea, here, is to run
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the algorithm a number of times for different number of clusters each time. Then the
respective graphs of the validity indices is plotted for these clusterings and we search
for the significant “knee” in these graphs. The number of clusters at which the “knee”

is observed indicates the optimal clustering for the data set.

5.4.5 The SD Validity Index

The SD walidity index [37] definition is based on the concepts of average scattering
for clusters and total separation between clusters. Below, we give the fundamental
definition for this index.

The average scattering for clusters is defined as

Scatt(K ZHU ci)ll/lle (D) (5.8)

Ng

where o(ci) = N%c S (x; — cx)? is the variance of cluster k and o(D) =
i=1

is the variance of the data set.

2=
|
o

s
I
—_

(x; — X)

The definition of total separation (scattering) between clusters is given by the fol-

lowing equation

K K
Dis(K N ler — ell) (5.9)

Ny =1
where Dy, = max(||ck — cf|), Vk,t € {1,..., K} is the maximum distance between
cluster centers and D, = min(||ck —c¢||), Vk,t € {1,..., K} is the minimum distance
between cluster centers.

Now, we can define a validity index based on equations (5.8) and (5.9) as follows
SD(K) = aScatt(K) + Dis(K) (5.10)

where a is a weighting factor equal to Dis(Kyq,) where K, is the maximum
number of input clusters.
The first term in equation (5.10) indicates the average compactness of the clusters

(i.e., intra—cluster distances). A small value for this term indicates compact clusters
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and as the scattering within clusters increases (i.e., they become less compact) the value
of Scatt(K) also increases. The second term, Dis(K), indicates the total separation
between the K clusters (i.e., an indication of inter—cluster distances). Contrary to the
first term, the second term, Dis(K), is influenced by the geometry of the clusters and
increase with the number of clusters. The two terms of SD are of the different range,
thus a weighting factor is needed in order to incorporate both terms in a balanced way:.

The number of clusters, K, that minimizes the above index is an optimal value.

5.5 Soft Clustering Indices

In this section, we present validity indices suitable for soft clustering. The objective is
to seek clustering schemes where most of the vectors of the dataset exhibit high degree
of membership in one cluster. As it is presented in chapter 2.4, soft(fuzzy) clustering is
defined by a matrix U = [u;x], where u;; denotes the degree of membership of the vector
x; in cluster k. Similarly to crisp(hard) clustering case a validity index, A, is defined
and we search for the minimum or maximum in the plot of A versus K. Also, in case
that A exhibits a trend with respect to the number of clusters, we seek a significant
knee of decrease (or increase) in the plot of A.

We will discuss two categories of soft validity indices. The first category uses only
the memberships values, u;;, of a soft partition of data. The second involves both the

U matrix and the dataset itself.

5.5.1 Validity Indices Involving the Membership Values

Bezdek proposed in [13] the partition coefficient, which is defined as

K
PC = %Zzui (5.11)

i=1 k=1
where N is the number of data points and K is the number of clusters.
The PC index values range in [1/K, 1]. The closer to unity the index the “crisper”
the clustering is. In case that all membership values to a soft partition are equal, that

is, u;x = 1/K, the PC obtains its lower value. Thus, the closer the value of PC is to
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1/K, the fuzzier the clustering is. Furthermore, a value close to 1/K indicates that
there is no clustering tendency in the considered data set or the clustering algorithm
failed to reveal it.

The partition entropy coefficient is another index of this category. It is defined as

follows

1 N K
= sz Uik Logq (k) (5.12)
i=1 k=1

where « is the base of the logarithm. The index is computed for values of K greater
than 1 and its values ranges in [0,log,K]. The closer the value of PE to 0, the crisper
the clustering is. As in the previous case, index values close to the upper bound (i.e.,
log, K), indicate absence of any clustering structure in the data set or inability of the
algorithm to extract it.

The drawbacks of these indices are [37]:

(i) their monotonous dependency on the number of clusters. Thus, we seek significant
knees of increase (for PC) or decrease (for PE) in the plots of the indices versus

the number of clusters,

(ii) their sensitivity to the fuzzifier, m in fuzzy clustering. The fuzzifier is a parameter
of the fuzzy clustering algorithm and indicates the fuzziness of clustering results.
Then, as m — 1 the indices give the same values for all values of K. On the other

hand when m — oo, both PC and PE exhibit significant knee at K = 2.

(iii) the lack of direct connection to the geometry of the data [22], since they do not
use the data itself.

5.5.2 Indices Involving the Membership Values and the Dataset

In this section, we introduce three indices; Xie—-Beni index, Fuguyama-Sugeno index

and indices based on concept of hypervolume and density.
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5.5.3 Xie—Beni Index

The Xie—Beni index , XB index [83] is also called the compactness and separation
validity function, uses the membership values and the data set.

Consider a fuzzy partition of the data set D = {x;;i = 1,...,N} with ¢ (k =
1,..., K) the centers of each cluster and wu;; the membership of data point i with
regards to cluster k. The fuzzy deviation of x; from cluster k is defined as the distance,
d;1, between x; and the center of cluster k, weighted by the fuzzy membership of data

point ¢ belonging to cluster k.
dit, = wik||x; — el

Also, for a cluster k, the sum of the squares of fuzzy deviation of the data point
in D, o) = fo\i1 d;r, 1s called variation of cluster k. The sum of the variations of all
clusters, o = Zszl ok, is called total variation of the data set.

The term ¢ = (o /Ny), is called compactness of data set D. The less its value, the
more compact clusters are.

The separation of the fuzzy partitions is defined as the minimum distance between
cluster centers, that is

dmm = min ||Ck - Ct”Q
1<k <K
k#t

Then XB indez is defined as

N K
Doim1 k=1 ukaxi —ci?
N min |lcg — c)?
1<k <K
kAt

XB = ¢/(N dpin) =

(5.13)

where N is the number of data points in the data set.
It is clear that small values of XB are expected for compact and well-separated
clusters. We note, however, that XB is monotonically decreasing when the number of

clusters K gets very large and close to V.
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5.5.4 Fukuyama—Sugeno Index

. Another index of this category is the Fukuyama—Sugeno index, which is defined as

N K

FSy =% > (Ixi — cilfa = llex — x[1%) (5.14)

i=1 k=1

where X is the mean vector of D and A is a positive definite, symmetric matrix.
When A = I, the above distance becomes the Euclidean distance. It is clear that for
compact and well-separated clusters we expect small values for F'S,,,. The first term in
brackets measures the compactness of the clusters while the second one measures the

distances of the clusters representatives.

5.5.5 Indices Based on Hypervolume and Density

. Other soft validity indices are proposed in [34], which are based on the concepts of

hypervolume and density. Let ¥j the fuzzy covariance matrix of the k& cluster defined

as
N
SRR LALLM (5.15)
D im1 Ui
The fuzzy hyper volume of k" cluster is given by equation:
Ve = ISV (5.16)

where ||3g|| is the determinant of the ¥ and is the measure of cluster compactness.

Then the total fuzzy hyper volume (FH) is given by the equation

FH=> W (5.17)

Small values of FH indicate the existence of compact clusters.
The average partition density (PA) can also used as an index of this category which

is defined as follows:
k
k

‘ n

1 K
PA=— ; (5.18)

<
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Then S, = erDk u;,, where Dy, is the set of data points that are within a pre—specified
region around cy, is called the sum of the central members of the cluster k.

A few other indices are proposed and discussed in [58,65].
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Chapter 6

Mixtures of Distributions and PDQ Algorithm

6.1 Introduction

Given observations from a density ¢(x), that is itself a mixture of two densities,

$(x) = mP1(x) + (1 =) pa(x) , (6.1)

it is required to estimate the weight 7, and the relevant parameters of the distributions
¢1 and ¢s.
A common situation is when the distribution ¢ is a mixture of normal distributions

¢k, each with its mean c; and covariance X; that need to be estimated,

or(x) = (27r1)"|2k exp{—2(x—cp)'S (x—cp)} , k=12 (6.2)

A well-known method for de-mixing distributions is the EM Method, [40]. The

PDQ Algorithm is a viable alternative to that method.

6.2 Estimation of Parameters in Mixtures of Distributions

For the purpose of comparison with the PDQ Algorithm, we present here in schematic

form the EM Method for a Gaussian mixture (6.1)—(6.2).

Algorithm 6.1. The EM Method.



Iteration:

Step 1:

Step 2

Step 3

Step 4

Initialization:

given data set D with N points,

initial guesses for the parameters ¢1, o, X1, 29,7

For all x; € D compute the “responsibilities” :
Th1(xi)

Tor(xi) + (1 — 7)da(xi)

p2(xi) =1 —pi(xs) .

p1(x;) =

update the centers and covariances:

update the mixing probabilities (weights):

N
Zizl p1(x:)
N
stop or return to Step 1

7}:

Notes:
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(a) The “responsibilities” in Step 1 correspond to the cluster membership probabilities

in Algorithm 4.1.

(b) Step 1 requires both the Mahalanobis distance (4.1) and the evaluation of the

density (6.2).

(c) Step 2 is computationally similar to Step 3 of Algorithm 4.1.

(d) The stopping rule (Step 4) is again the convergence of centers as in Algorithm 4.1.

For further details see, e.g., Hastie et al [40].

6.2.1 A Comparison of the PDQ Algorithm and the EM Method

(a) The EM Algorithm is based on maximum likelihood, and therefore depends on the
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density functions in the mix, requiring different computations for different densities.
The PDQ Algorithm is parameter free, making no assumptions about the densities,

and using the same formulas in all cases.

(b) In each EM iteration the density functions must be evaluated, requiring (in Step
1) KN function evaluations, where K is the number of densities in the mixture. In

comparison, the PDQ iterations are cheaper, requiring no function evaluations.

(c) Because the EM iterations are costly, it is common to use another method, e.g., the
K—means method, as a preprocessor, to get closer to the centers before starting EM.

The PDQ Algorithm need no preprocessing, and works well from a cold start.

(d) If correct assumptions are made about the mixing distributions, then the EM
method has an advantage over the PD(Q method, as illustrated in Example 6.3 be-

low.

(e) While the numerical comparison of the two algorithms should best be done by oth-
ers, our preliminary tests show the two algorithms to be roughly equivalent in terms of

the returned results, with the PDQ Algorithm somewhat faster.

6.3 Numerical Examples

In Examples 6.3-6.3 below the PDQ and EM Algorithms were applied to the same
data, in order to compare their performance. The results are reported in Tables 6.1
6.4. These examples are typical representatives of many numerical tests we did.

Both programs used here were written in MATLAB, the EM code by Tsui [81], and
the PDQ code by the first author.

The comparison is subject to the following limitations:

(a) The EM program code [81] uses the K-means method (Hartigan [39]) as a prepro-
cessor to get a good start. The number of iterations, and running time, reported for
this program (in Table 6.4) is just for the EM part, not including the preprocessing by

the K—means part.
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True Parameters The PDQ Algorithm The EM Method
(Algorithm 4.1) (Algorithm 6.1)
Centers ni=(2,0) ¢1=(2.0036 , -0.0542) ¢1=(2.0011 , -0.0284)
ny=(3,0) ¢2=(2.9993 , -0.0010) ¢2=(3.0033 , -0.0018)
Covariance 21:<0.0005 0 ) 21:( 0.0004 —0.0001) 21:( 0.0004 —0.0001)
0 0.5 —0.0001  0.0446 —0.0001  0.0442
Matrices
s <0.0402 0.0014) 22:( 0.0399 —0.0020) 22:( 0.0398 —0.0020)
0.0014 0.0430 —0.0020 0.0432 —0.0020 0.0431
Weights (0.0909 , 0.9090) (0.0932 , 0.9068) (0.0909 , 0.9091)

Table 6.1: A comparison of methods for the data of Example 4.1

(b) Our PDQ code is the first, un—finessed version, a verbatim implementation of Al-

gorithm 4.1.

(¢) The number of iterations depends on the stopping rule. In the PDQ Algorithm, the
stopping rule is Step 4 of Algorithm 4.1, and the number of iterations will increase the
smaller is €. In the EM Algorithm the stopping rule does involve also the convergence

of the likelihood function, and the effect of the tolerance € is less pronounced.

(d) The number of iterations depends also on the initial estimates, the better the esti-
mates — the fewer iterations will be required. In our PDQ code the initial solutions can
be specified, or are randomly chosen. The EM program gets its initial solution from its

K—means preprocessor.

Example 6.1. Algorithms 4.1 and 6.1 were applied to the data of Example 4.1. Both
algorithms give good estimates of the true parameters, see Table 6.1. The comparison

of running time and iterations is inconclusive, see Table 6.4.

Example 6.2. Consider the data set shown in Figure 6.1. The points of the right
cluster were generated in a circle of diameter 1.5 centered at gy = (1,0), using a radially
symmetric distribution function, Prob{||x —p;|| < r} = (4/3) r, and the smaller cluster
on the left was similarly generated in a circle of diameter 0.1 centered at p, = (0,0).

The ratio of sizes is 1:20.

The EM Method gives bad estimates of the left center, and of the weights, see Table
6.2 and the right panel of Figure 6.2. The estimates provided by the PDQ Algorithm

are better, see Figure 6.2, left panel.
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Figure 6.2: A comparison of the PDQ Algorithm (left), and the EM Method (right)

The EM Method also took longer, see Table 6.4. In repeated trials, it did not work

for e = 0.1, and sometimes for ¢ = 0.01.

Example 6.3. Consider the data set shown in Figure 6.3, left. It consists of three
clusters of equal size, 200 points each, generated from Normal distributions N (u;, %),
with parameters p,, >; given in the left column of Table 6.3. A similar example appears

as Fig. 9.6 in Tan et al, [78, p. 593].

As noted in section 6.2.1(d), if the assumptions on the mixing distributions are
justified, the EM Method gives good estimates of the relevant parameters. The PDQ
Algorithm, does not require or depend on such assumptions, and still gives decent

estimates. This is illustrated in Table 6.3.



True Parameters

The PDQ Algorithm
(Algorithm 4.1)

The EM Method
(Algorithm 6.1)

Centers | p;=(0,0) ¢1=(0.0023 ,-0.0022) | €1=(0.5429 ,-0.0714)
1,=(1,0) 2=(1.0080 , 0.0063) | &2=(1.0603 , 0.02451)
Weights | (0.0476 , 0.9524) | (0.0534 , 0.9466) (0.1851 , 0.8149)

Table 6.2: A comparison of methods for the data of Example 6.2

051
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Figure 6.3: The data of Example 6.3 (left) and level sets of the joint distance function
(right)
True Parameters The PDQ Algorithm The EM Method
(Algorithm 4.1) (Algorithm 6.1)
Centers =00, 1) &,=(0.0053 , 1.0239) ¢:=(0.0049 , 0.9916)
po=(1,0.7) &,=(0.9604 , 0.7146) é,=(0.9855 , 0.6939)
pa=(1,1.3) é3=(1.0735 , 1.2748) é5=(1.0376 , 1.3083)
Covariance 21:(0.01 0 ) 21:( 0.0134 —0.0006) 21:( 0.0091 —0.0018)
0 0.1 —0.0006 0.1074 —0.0018 0.1059
Matrices
22:(0.1 0 ) 22:(0.0828 0.0023) 22:(0.1012 0.0053)
0 0.01 0.0023 0.0117 0.0053 0.0122
Sy 0.1 0 ) 23:( 0.0907 —0.0040) 23:( 0.0981 —0.0005)
0 0.01 —0.0040 0.0123 —0.0005  0.0090
Weights (0.333, 0.333, 0.333) | (0.3297, 0.3345 , 0.3358) (0.3318 , 0.3351 , 0.3331)

Table 6.3: A comparison of methods for the data of Example 6.3
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PDQ Algorithm

EM Algorithm

Example € Iterations | Time (sec.) || Iterations | Time (sec.)
Example 4 | 0.01 5 3.32 1 1.783
0.1 2 1.42 1 1.682
Example 5 | 0.01 8 3.89 55 37.73
0.1 2 1.02 9 7.28
Example 6 | 0.01 11 2.29 7 3.28

Table 6.4: Summary of computation results for 3 examples.
explanation of the EM running time and iterations count.
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See section 6.3(a) for
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Chapter 7

Multi—facility Location Problems

7.1 Introduction

A location problem is to locate a facility, or facilities, to serve optimally a given set of
customers.

The customers are given by their coordinates and demands. The coordinates are
points a in RP (usually n = 2), and the demands are positive numbers w.

Assuming N customers, the data of the problem is a set of points (coordinates)
X = {x1,x2,...,xn} in R? and a corresponding set of positive weights (demands)
{wy,we, ..., wy}.

We use the Euclidean norm in R?
lull = (u,w)'/2, (7.1)
with (-, -) the standard inner product, and the Euclidean distance
d(x,y) = lIx -yl (7.2)

between any two points x,y in RP.
If the customers are served by one facility located at ¢, then the weighted sum of

distances travelled by all the customers is
N
> wille — x| -

i=1

The Fermat—Weber location problem is to find the point ¢ that minimizes the



83

above expression, i.e.,

i e —x; 7.3
a2 le =il , (7.3)
1=

see the survey in [26].
If the customers are served by K facilities, for given K, we denote by A} be the
set of customers allocated (or assigned) to the k™ facility. Then the weighted sum of

distances travelled by these customers is

> willex — x|
X EXp
where ¢y, is the location of the k™ facility.
Given the customers X = {x1,...,xx}, their demands {w1,...,wyx} and an integer
1 < K < N, the Location—Allocation Problem (LAP) (also Multi—Facility Lo-
cation Problem) is to determine the locations {ci,...,cx} of the facilities, and the
allocations X7, ..., Xk of customers to these facilities, so as to minimize the weighted

sum of distances travelled by all the customers,

K
min  min Z Z w; |lck — x| - (7.4)

C1,...,CK X1,...,X
LK1 %X

The al