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ABSTRACT OF THE DISSERTATION

Probabilistic Distance Clustering

by Cem Iyigun

Dissertation Director: Professor Adi Ben–Israel

We present a new iterative method for probabilistic clustering of data. Given clusters,

their centers, and the distances of data points from these centers, the probability

of cluster membership at any point is assumed inversely proportional to the distance

from (the center of) the cluster in question. This assumption is our working principle.

The method is a generalization, to several centers, of the Weiszfeld method for

solving the Fermat–Weber location problem. At each iteration, the distances (Eu-

clidean, Mahalanobis, etc.) from the cluster centers are computed for all data points,

and the centers are updated as convex combinations of these points, with weights de-

termined by the above principle. Computations stop when the centers stop moving.

Progress is monitored by the joint distance function (JDF), a measure of dis-

tance from all cluster centers, that evolves during the iterations, and captures the data

in its low contours.

There are problems where the cluster sizes are given (as in capacitated facility

location problems) and there are problems where the cluster sizes are unknowns to be

estimated. The probabilistic distance clustering approach works well in both cases. The

probabilistic distance clustering method adjusted for cluster size (called PDQ method)

method is described, and applied to location problems, and mixtures of distributions,

where it is a viable alternative to the EM method.
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The method is simple, fast (requiring a small number of cheap iterations) and in-

sensitive to outliers.

An important issue in clustering is the “right” number of clusters that best fits a

data set. The JDF is used successfully to settle this issue and determine the correct

number of clusters for a given data set.
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Chapter 1

Introduction

This thesis presents a new approach to clustering, called probabilistic distance cluster-

ing, its algorithms, and selected applications. The thesis is divided into five parts.

Part I: Preliminaries

The present chapter contains a description of the thesis.

Chapter 2 gives a brief survey of the clustering concepts, notation and terminology

that are relevant for this thesis. The approaches of center–based clustering and

hierarchical clustering are compared, and the main algorithms are described briefly.

Part II: Probabilistic Distance Clustering

This part develops the models and algorithms for probabilistic clustering of data.

The main idea is presented in Chapter 3, with a new iterative method for prob-

abilistic clustering of data. The method is based on a principle, or a model of the

relationship between distances and probabilities. Given the clusters, their centers, and

the distances of data points from these centers, the probability of cluster membership

at any point is assumed inversely proportional to the distance from (the center of) the

cluster in question. The cluster centers and cluster membership probabilities of the

data points are updated using this principle. This is the basis of the probabilistic

distance clustering method described in Section 3.4.

The progress of the algorithm is monitored by the joint distance function (JDF),

a measure of distance from all cluster centers, that evolves during the iterations, and
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captures the data in its low contours, see Subsection 3.2.2. The proposed method is sim-

ple, fast (requiring a small number of cheap iterations) and insensitive to outliers. We

also discuss various relations between probabilities and distances, resulting in different

ways of clustering.

The algorithm presented in Section 3.4 takes no account of the cluster size. In cases

where the cluster sizes differ greatly, or the cluster sizes themselves are unknowns that

need to be estimated, the above algorithm can be modified to take into account the

cluster sizes. This is done in Chapter 4, Section 4.3.

The probabilistic distance clustering adjusted for the cluster size is called here PDQ

Method, where P stands for probability, D for distance and Q for cluster size in short.

Chapter 5 is about finding the “right” number of clusters that best fits a data set

which is an important issue in clustering, called as clustering validity. The JDF,

introduced in Chapter 3 is used successfully to settle this issue and determines the

correct number of clusters for a given data set. This is illustrated in different examples,

using simulated data sets. In the remainder of the chapter, we briefly survey other

validity criteria used in the literature.

Part III: Related Problems

This part studies two problems which are closely related to distance clustering, and can

be solved using the results of Part II with few modifications.

In Chapter 6, an important application of PDQ method in estimating the parameters

of a mixture of distributions is presented. In such problems the cluster sizes are

unknown and need to be estimated. We first describe the problem of mixtures of

distributions and introduce the EM Algorithm, a well–known method for the solution

of this type of problems. The PDQ method may serve as an alternative to that method,

or as a preprocessor giving the EM Method a good start. We apply the algorithm to the

estimation of the parameters of Gaussian mixtures, and compare it to the EM method.

We conclude the chapter with the results of a number of computational experiments,

comparing the running time and solution quality of our algorithm with the EM Method.
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In Chapter 7, we present an iterative method for multiple–facility location prob-

lems, based on the PDQ method. The multiple facility location problem is to locate

certain facilities so as to serve optimally a given set of customers, whose locations and

demands are known. In some situations, there are upper bounds (capacities) on the

demands that a facility can handle where the problem is called as capacitated multiple–

facility location problem. The chapter starts with the Fermat–Weber Location problem,

which is a single facility location problem and describe the Weizsfeld Method, the

standard, best–known method for the solving Fermat–Weber problem. The probabilis-

tic distance clustering in Chapter 3 is presented as a generalization to several facilities

of the classical Weiszfeld Method. In the case where the facilities have the capacity

constraints, the cluster size in the PDQ algorithm plays the role of facility capacity

and the algorithm gives an approximate solutions to the capacitated multiple–facility

location problem. The chapter ends with several numerical examples.

Part IV: Applications

This part is devoted to two applications, representing the diverse uses of probabilistic

distance clustering.

In Chapter 8, we apply our method to clustering similarity data. Two examples

of this type are considered and analyzed. The first example is the liberal–conservative

clustering of the Rehnquist Supreme Court. The data used in the analysis is given

as a similarity matrix, showing the percentages of non–unanimous decisions in which

pairs of judges agreed with each other. The second example is from a political science

study where pairwise dissimilarity measures between 12 countries are given.

Chapter 9 deals with determining the spatial clusters of accidents along a highway

using different weights for the types of accidents. Identifying such spatial clusters of

accidents can provide useful insights to various operational and safety issues. This

study uses the New Jersey Turnpike (NJTPK) crash data sets for various years.
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Part V: Semi–Supervised Clustering

Chapter 10 presents an approach to reconcile clustering (unsupervised learning) and

classification (supervised learning, i.e. with prior information on the data.)
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Chapter 2

Basics of Clustering

2.1 Introduction

Clustering can be defined as follows

Clustering is the classification of objects into different groups, or more

precisely, the partitioning of a data set into subsets (clusters), so that the

data in each subset (ideally) share some common trait - often proximity ac-

cording to some defined distance measure. Data clustering is a common

technique for statistical data analysis, which is used in many fields, includ-

ing machine learning, data mining, pattern recognition, image analysis and

bioinformatics. [1]

The ideas and methods of clustering are used in many areas, including statis-

tics [56], machine learning [32], data mining [31], operations research ( [16], [38]),

medical diagnostics, facility location, and across multiple application areas includ-

ing genetics, taxonomy, medicine, marketing, finance and e-commerce (see [12], [9], [35]

and [52] for applications of clustering). It is therefore useful to begin by stating our

notation and terminology. We then survey some of the methods, and results, that are

relevant for our study.

2.2 Notation and Terminology

2.2.1 Data

The objects of clustering are data points (also observations, and in facility location,

customers.) Each data point is an ordered list of attributes (or features), such as
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height, weight, blood pressure, etc. Assuming p attributes, a data point x is thus a

p–dimensional vector, x = (x1, x2, . . . , xp), with the attributes xi for components.

The vector analogy cannot be carried too far, since in general vector operations

(such as vector addition, scalar multiplication) do not apply to data points. Also, the

attributes are not necessarily of the same algebraic type, some may be categorical, and

some are reals. However, we can always imbed the data points in a p–dimensional real

vector space Rp, and for convenience we denote by x ∈ Rp the fact that the data point

x has p attributes.

We assume N data points xi, collected in a set

D = {x1,x2, . . . ,xN} ⊂ Rp , (2.1)

called the data set. We sometimes represent D by an N × p matrix

D = (xij), where xij is the jth component of the data point xi. (2.2)

2.2.2 The Problem

Given the data set D, and integer K, 1 ≤ K ≤ N , the clustering problem is to

partition the data set D into K disjoint clusters

D = C1 ∪ C2 ∪ · · · ∪ CK , with Cj ∩ Ck = ∅ if j 6= k , (2.3)

each cluster consisting of points that are similar (in some sense) and points of different

clusters are dissimilar. We take here similar to mean close in the sense of distances

d(x,y) between points x,y ∈ Rp. The number of clusters denoted by K is given,

however there are problems where the “right” number of clusters (to fit best the data)

is to be determined. The cases K = 1 (the whole D is one cluster) and K = N (every

point is a separate cluster) are included for completeness.
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2.2.3 Cluster Membership

A clustering is hard (or crisp, rigid, deterministic) if each data point x is assigned

to one, and only one, cluster C, so that the statement x ∈ C is unambiguous.

A point x is labeled if its cluster C is known, in which case C is the label of x.

In soft (or fuzzy, probabilistic) clustering the rigid assignment x ∈ C is replaced

by a cluster membership function u(x, C) representing the belief that x belongs to

C. The numbers u(x, Ck) are often taken as probabilities that x belongs to Ck, so that

K∑

k=1

u(x, Ck) = 1 , and u(x, Ck) ≥ 0 for all k = 1, · · · ,K . (2.4)

2.2.4 Classification

In classification, or supervised learning, the number K of clusters is given, and a

certain subset T of the data set D is given as labeled, i.e. for each point x ∈ T it is

known to which cluster it belongs. The subset T is called the training set.

The information obtained from the training set, is then used to find a rule of clas-

sifying the remaining data D \ T (called the testing set), and any future data of the

same type, to the K clusters. The classification rule r is a function from D (and by

extension Rp) to the integers {1, 2, · · · ,K}, so that

r(x) = k ⇐⇒ x ∈ Ck .

In analogy, clustering is called unsupervised learning to emphasize the absence of

prior information.

2.2.5 Distances

Assuming a norm ‖ · ‖ on the space Rp, a distance between two points x,y ∈ Rp is

defined by

d(x,y) = ‖x− y‖ , (2.5)
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for example, the Euclidean norm gives the distance between x = (x1, . . . , xp) and

y = (y1, . . . , yp) as

d(x,y) := (
p∑

j=1

(xj − yj)2)1/2 , the Euclideam distance , (2.6)

and the `1–norm gives

d(x,y) :=
p∑

j=1

|xj − yj | , the `1–distance , (2.7)

also called the Manhattan or taxicab distance.

The standard inner product of x = (x1, . . . , xp) and y = (y1, . . . , yp) is defined

by

〈x,y〉 =
p∑

i=1

xi yi . (2.8)

If Q is a positive–definite p × p matrix, then
√
〈x, Qx〉 is a norm on Rp, and the

corresponding distance is

d(x,y) :=
√
〈x− y, Q(x− y)〉 , an elliptic distance, (2.9)

depending on the choice of Q. For Q = I, the identity matrix, (2.9) gives the Euclidean

distance (2.6). Another common choice is Q = Σ−1, where Σ is the covariance matrix

of the data in question, in which case (2.9) gives

d(x,y) := 〈x− y, Σ−1(x− y)〉 , the Mahalanobis distance, (2.10)

that is used commonly in multivariate statistics.

Distances associated with norms satisfy the triangle inequality,

d(x,y) ≤ d(x, z) + d(z,y) , for all x,y, z . (2.11)

However distance functions violating (2.11) are also used.
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2.2.6 Similarity Data

Given a distance function d(·, ·) in Rp, and the data set D, the similarity (or prox-

imity) matrix of the data is the N ×N matrix

S = (dij) , where dij = d(xi,xj), i, j = 1, . . . , N. (2.12)

It is sometimes convenient to work with the dissimilarity matrix,

N = (g(dij)) , where g(·) is a decreasing function. (2.13)

2.2.7 Representatives of Clusters

In many clustering methods a cluster is represented by a typical point, called its center

(also representative, prototype, and in facility location, facility.) A common choice

for the center is the centroid of the points in the cluster. In general the center does

not fall on any of the data points in the cluster.1

The center of the kth cluster Ck is denoted by ck, and the distance d(x, Ck) of a

point x from that cluster is defined as its distance from the center ck,

d(x, Ck) := d(x, ck) , (2.14)

and denoted dk(x) if the center is understood.

2.3 Objective Based Clustering

Sometimes the “goodness” of clustering can be expressed by an objective function

of the given data D and the clusters {C1, . . . , CK}. For example,

f(D, {C1, . . . , CK}) =
K∑

k=1

∑

xi∈Ck

d(xi, ck) (2.15)

1In facility location problems, such a case requires special analysis.
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is the sum of distances of data points to the centers of their respective clusters, while

f(D, {C1, . . . , CK}) =
K∑

k=1

∑

xi∈Ck

d(xi, ck)2 (2.16)

is the sum of squares of these distances. Both of these objectives are in use, and we

call them the d–model, and the d2–model, respectively. See section 3.2.7.

In such cases, clustering reduces to an optimization problem, that without loss

of generality, is considered a minimization problem,

min
C1,...,CK

f(D, {C1, . . . , CK}) , (2.17)

that is often hard (combinatorial, non–smooth), but approximate solutions of (2.17)

may be acceptable.

2.4 Center–Based Clustering Methods

Center–based clustering algorithms construct the clusters using the distances of

data points from the cluster centers.

The best–known and most commonly used center–based algorithm is the k–means

algorithm ( [63], [39]) which (implicitly) minimizes the objective

K∑

k=1

∑

xi∈Ck

‖xi − ck‖2 (2.18)

where ck is the centroid of the kth cluster. Other names like hard k–means, ISODATA

( [7], [8]), etc. have also been used in the literature.

Algorithm 2.1. k-means Clustering Algorithm
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Step 0 Initialization: Given data set D, integer K, 2 ≤ K < N ,

select K initial centers {ck}
Step 1 compute the distances d(xi, ck) , i = 1, . . . , N, k = 1, . . . , K.

Step 2 partition the data set D = C1 ∪ C2 ∪ · · · ∪ CK by assigning

each data point to the cluster whose center is the nearest

Step 3 re–compute the cluster centers.

Step 4 if the centers have not changed, stop.

else go to Step 1.

Notes:

(a) The initial “centers” in Step 0 are just points, and not yet associated with clusters.

They can be selected randomly as any K points of D.

(b) In Step 3 the center of each cluster is computed using the points assigned to that

cluster.

(c) The stopping rule in Step 4 implies that there are no further re–assignments.

(d) The center updates in the iterations are computed by

ck =

N∑
i=1

uik xi

N∑
i=1

uik

, k = 1, . . . , K (2.19)

where uik = 1 if xi ∈ Ck, and uik = 0 otherwise. Equation (2.19) gives the centers as

the geometrical centroids of the data points of the cluster.

(e) Using Euclidean distances, iterating Steps 2 and 3 leads to the minimization of the

objective (2.18).

2.4.1 Variants of the k–means Algorithm

Several variants of k–means algorithm have been reported in the literature ( [33], [4]).

Some of them attempt to select a good initial partition so that the algorithm is more

likely to find the global minimum value [27]. An important variant of the algorithm

is to permit splitting and merging of the resulting clusters ( see [7]) in Step 2 of the

algorithm.
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Some variants of the algorithm use different criteria. Diday [24] used different

representatives of the clusters (other than the cluster centers), and the Mahalanobis

distance is used instead of the Euclidean distance in [61], [18] and elsewhere.

The k-modes algorithm [44] is a recent center–based algorithm for categorical

data. Another variant, the k-prototypes algorithm [44], incorporates real and cate-

gorical data.

2.4.2 Fuzzy k–means

The k–means algorithm can be adapted to soft clustering, see section 2.2.3. A well–

known center–based algorithm for soft clustering is the Fuzzy k–means algorithm,

( [15], [72]).

The objective function minimized in this algorithm is:

f =
N∑

i=1

K∑

k=1

um
ik d2

ik =
N∑

i=1

K∑

k=1

um
ik ‖xi − vk‖2

where uik are the membership functions of xi ∈ Ck, and typically satisfy (2.4), and m

is a real number, m > 1, known as fuzzifier.

The equation for finding the centers is similar to equation (2.19) of k–means algo-

rithm, but uik takes values between 0 and 1.

ck =

N∑
i=1

um
ik xi

N∑
i=1

um
ik

, k = 1, . . . , K. (2.20)

When m tends to 1, the algorithm converges to the k–means method.

2.4.3 Probabilistic Methods

The title refers to data sets whose points come from a known statistical distribution,

whose parameters have to be estimated. Specifically, the data may come from a mixture

of several distributions and the weights of the distributions in the mixture, and their

parameters, have to be determined.
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The best–known probabilistic method is the Expectation-Maximization (EM)

algorithm [62] where log–likelihood of the data points drawn from a given mixture

model. The underlying probability model and its parameters determine the membership

function of the data points. The algorithm starts with initial guesses for the mixture

model parameters. These values are then used to calculate the cluster membership

functions for the data points. In turn, these membership functions are used to re–

estimate the parameters, and the process is repeated, see section 6.2.

Probabilistic methods depend critically on their assumed priors. If the assump-

tion are correct, one gets good results. A drawback of these algorithms is that they

are computationally expensive. Another problem found in this approach is called the

overfitting, see [40].

2.5 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms are an important class of clustering methods

that are not center–based, but instead use similarity data.

These algorithms transform a similarity data set into a tree–like structure which is

called a dendogram [53]. The dendogram is constructed as a sequence of partitions

such that its root is a cluster covering all the points and the leaves are clusters contain-

ing only one point. In the middle, child clusters partition the points assigned to their

common parent according to a dissimilarity level. This is illustrated in Figure 2.1 (Note

that the dendogram is not a binary tree.) The dendogram is most useful up to a few

levels deep, as the clustering becomes more trivial as the tree depth increases. Hierar-

chical clustering methods are categorized into two major methods as agglomerative

and divisive methods ( [52] & [56]).

Agglomerative clustering is a bottom–up way of constructing the dendogram. The

hierarchical structure begins with N clusters, one per point, and grows a sequence of

clusterings until all N observations are in a single cluster. Divisive clustering on the

other hand is a top–down way of constructing the dendogram. The structure begins

with one cluster containing all N points and successively divides clusters until N clusters
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Figure 2.1: An example of the dendogram that might be produced by a hierarchical al-
gorithm from the data shown on the right. The dotted lines indicate different partitions
at different levels of dissimilarity.

are achieved.

Agglomerative hierarchical clustering is computationally less complex and, for this

reason, it is more commonly used than divisive hierarchical clustering. For agglomer-

ative hierarchical techniques, the criterion is typically to merge the “closest” pair of

clusters, where “close” is defined by a specified measure of cluster proximity. There are

three definitions of the closeness between two clusters: single-link, complete-link

and average–link. The single–link similarity between two clusters is the similarity

between the two most similar instances, one of which appears in each cluster. Single

link is good at handling non–elliptical shapes, but is sensitive to noise and outliers. The

complete–link similarity is the similarity between the two most dissimilar instances, one

from each cluster. Complete link is less susceptible to noise and outliers, but can break

large clusters, and has trouble with convex shapes. The average–link similarity is a

compromise between the two.

The advantages of agglomerative and divisive algorithms are: (i) they do not require

the number of clusters to be known in advance, (ii) they compute a complete hierarchy

of clusters, (iii) good result visualizations are integrated into the methods, and (iv)

a “flat” partition can be derived afterwards (using a cut through the dendrogram).

However, both methods suffer from their inability to perform adjustments once the

splitting or merging decision is made.

In both methods if, say, at one point during the construction of the dendogram, a
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misclassification is made, it is built on until the end of the process. At some point of the

dendograms growth an observation may be designated as belonging to a cluster in the

hierarchy. It remains associated with the successors of that cluster till the dendogram

is finished. It is impossible to correct this misclassification while the clustering process

is still on.

After the tree has been produced, a multitude of possible clustering interpretations

are available. A practical problem with hierarchical clustering, thus, is: at which value

of dissimilarity should the dendogram be cut, or in other words, at which level should

the tree be cut. One heuristic commonly used is to choose that value of dissimilarity

where there is a large “gap” in the dendogram. This assumes that a cluster that

merges at a much higher value of dissimilarity than that at which it was formed is more

“meaningful”. However, this heuristic does not work all the time [51].

Some of the hierarchical clustering algorithms recently presented in the literature

are: Balanced Iterative Reducing and Clustering using Hierarchies - BIRCH [86], Clus-

tering Using Representatives - CURE [36], and CHAMELEON [55]. More recently, a

novel incremental hierarchial clustering algorithm (GRIN) for numerical data sets is

presented in [17]. A survey and comparison of these algorithms are in [57] and [11].

2.6 Dispersion Statistics

The partitioning (2.3) of the data points xi (which are the rows of the N × p data

matrix D of (2.2)), gives rise to the p× p total dispersion matrix,

T =
K∑

k=1

∑

xi∈Ck

(xi − x)(xi − x)′, (2.21)

where the p–dimensional vector x is the mean of all the data points. The total dispersion

matrix T can be partitioned as

T = W + B (2.22)
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where W is the within–cluster dispersion matrix,

W =
K∑

k=1

∑

xi∈Ck

(xik − xk)(xik − xk) (2.23)

here xk is the mean of the data points in the cluster Ck, and B is the between–clusters

dispersion matrix,

B =
K∑

k=1

Nk(xk − x)(xk − x)′ , (2.24)

where Nk is the number of data points in Ck.

For univariate data (p = 1), equation (2.22) represents the division of the total

sum of squares of a variable into the within- and between-clusters sum of squares. In

the univariate case a natural criterion for grouping would be to choose the partition

corresponding to the minimum value of the within-group sum of squares or, equivalently,

the maximum value of the between-cluster sum of squares.

In the multivariate case (p > 1) the derivation of a clustering criterion from the

equation (2.22) is not so clear-cut as the univariate case, and several alternatives have

been suggested.

2.7 Dispersion Objectives

The dispersion statistics of section 2.6 suggest several different objectives for clustering.

2.7.1 Minimization of trace (W )

The trace of the matrix W in (2.23) is the sum of the within–cluster variances. Mini-

mizing this trace works to make the clusters more homogeneous, thus the problem,

min{traceW}, (2.25)

which, by (2.22) is equivalent to

max{traceB}. (2.26)
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This can be shown to be equivalent to minimizing the sum of the squared Euclidean

distances between data points and their cluster mean which is used in k-means algo-

rithms. The criterion can also be derived on the basis of the distance matrix:

E =
K∑

k=1

1
2Nk

Nk∑

i=1

Nk∑

j=1,j 6=i

d2
ij , (2.27)

where dij is the Euclidean distance between ith and jth data points in cluster Ck. Thus

the minimization of trace(W) is equivalent to the minimization of the homogeneity

criterion h1(Ck)/Nk for Euclidean distances and n = 2 [30].

2.7.2 Minimization of det (W )

The differences in cluster mean vectors are based on the ratio of the determinants of the

total and within-cluster dispersion matrices. Large values of det(T )/det(W ) indicate

that the cluster mean vectors differ. Thus, a clustering criterion can be constructed as

the maximization of this ratio;

min
{

det(T )
det(W )

}
. (2.28)

Since T is the same for all partitions of N data points into K clusters, this problem is

equivalent to

min{det(W )}. (2.29)

2.7.3 Maximization of trace(BW−1)

A further criterion considered is a combination of dispersion matrices:

max{trace (
B

W
)}. (2.30)

This criterion is obtained from the product of the between-clusters dispersion matrix

and the inverse of the within-clusters dispersion matrix. This function is also a further

test criterion used in the context of multivariate analysis of variance, with large values



18

of trace (BW−1) indicating that the cluster mean vectors differ.

2.7.4 Comparison of the Clustering Criteria

Of the three clustering criteria mentioned above, the criterion (2.30) is perhaps the one

most commonly used. However it suffers from some serious problems [30]. Firstly, the

method is not scale–invariant. Different solutions may be obtained from the raw data

and from the data standardized in some way. Clearly this is of considerable practical

importance because of the need for standardization in many applications. Another

problem with the use of this criterion is that it may impose a spherical structure on the

observed clusters even when the natural clusters in the data are of other shapes. The

alternative criteria in equations (2.25) and (2.30) are not affected by scaling which is

the main motivation behind of these criteria. Moreover, the criterion in equation (2.29)

which has been widely used does not restrict clusters to being spherical. It can also

identify elliptical clusters. On the other hand, this criteria assumes that all clusters

in the data have the same shape i.e. the same orientation. Finally, both the criteria

in equations (2.25) and (2.29) produce clusters that contain roughly equal numbers of

data points.

2.8 Other Clustering Methods

In this section, we briefly describe other clustering methods developed in the data

clustering area. For comprehensive explanations and further details, see the cited ref-

erences.

2.8.1 Density–based Clustering

Density–based methods consider that clusters are dense sets of data points sepa-

rated by less dense regions; clusters may have arbitrary shape and data points can

be arbitrarily distributed. Many methods, such as DBSCAN [29] (further improved

in [57]), rely on the study of the density of points in the neighborhood of each point.

One can consider within the category of density-based methods the grid–based
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solutions, such as DENCLUE [42] or CLIQUE [3], mostly developed for spatial data

mining. These methods quantize the space of the data points into a finite number of

cells (attention is shifted from data points to space partitioning) and only retain for

further processing the cells having a high density of points; isolated data points are

thus ignored. Quantization steps and density thresholds are common parameters for

these methods.

2.8.2 Graph–Theoretic Clustering

Another clustering method is the graph–theoretic clustering method where the data

points are represented as nodes in a graph and the dissimilarity between two points is the

”length“ of the edge between the corresponding nodes. In several methods, a cluster

is a subgraph that remains connected after the removal of the longest edges of the

graph [52]; for example, in [85] (the best–known graph–theoretic clustering algorithm)

the minimal spanning tree of the original graph is built and then the longest edges are

deleted. Some other graph–theoretic methods rely on the extraction of cliques and are

then more related to center–based methods, see [66].

2.8.3 Volume Based Clustering

To overcome the difficulties like clustering with equal size or spherical shapes, we can

use Mahalanobis distances (see section 2.2.5) instead of Euclidean distance [76]. For

example, if the covariance Σ is known, then the similarity within that cluster, with

center c would be measured by ‖x − c‖Σ−1 . This measure is scale invariant and

can deal with asymmetric, non-spherical clusters. A difficulty in using Mahalanobis

distances is getting a good estimate of the covariance matrices in question.

A promising alternative scale–invariant metric of cluster quality is minimum vol-

ume ellipsoids, where data points are allocated into clusters so that the volumes of the

covering ellipsoids for each cluster is minimized. The problem of finding the minimum

volume ellipsoid can be formulated as a semidefinite programming problem and an

efficient algorithm for solving the problem has been proposed by [77].
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2.9 Support Vector Machines

Support vector machines (SVMs) are a set of related supervised learning methods

(see section 2.2.4) used for classification and regression [2]. Support Vector Machines

(SVMs) is to find an optimal plan that separates data into two groups, say X and Y.

The optimal plane is first obtained from training data that has been labeled, which

means we know which group each entity comes from. Then the plane can be used for

classifying new observations. All entities from X and Y will be separated by the plan

under the assumption that X and Y are separable. This assumption can be achieved if

there exits a proper kernel function that projects all entities from X and Y into a high

dimensional space. The projection into sufficiently high dimensional space will lead to

a separable data set. A set of data of two groups may have many possible separating

plans. However, there is one optimal SVM hyperplane for a data set.

The support vector machine algorithm can be interpreted as the construction of a

linear classifier in a very high-dimensional space (called the feature space), obtained by

transformation of the original input space.

The key ingredient of the algorithm is a kernel function that allows the training

phase and the classification of new observations to be carried out in the feature space

without the need to actually perform the transforming computations.

The typical support vector classifier (for two-class problems) consists of a linear

discriminant function that separates the training data. A quadratic optimization model

is used to optimize the weights, so that the margin of separation between the two classes

if maximized. The margin of separation is simply the smallest distance from a point in

one of the classes to the separating hyperplane, plus the smallest distance from a point

in the other class to the separating hyperplane.

The formulation of the underlying optimization model is such that the only informa-

tion required about the feature space utilized is the inner product between every pair

of (transformed) observations in the training data set. The kernel function is chosen in

such a way that it provides, with low computational costs, the inner product between

two observations mapped into the feature space. Clearly, one is interested in choosing



21

a feature space in which a better separation of the two classes is possible than that

obtained in the input space.

In practice, the optimization model takes into account a penalty term, in order

to allow some observations in the training data set to be incorrectly classified. The

so–called ψ-parameter dictates how much importance the model should give to the

perfect separation of the training data, as opposed to the maximization of the margin

of separation of “most” observations. The value of ψ is a critical parameter in tuning

the support vector machines algorithm.

Another important parameter of the algorithm is the kernel function used, or in other

words the feature space chosen. Many different kernel functions have been proposed

for specific types of data. Among the general–purpose kernel functions frequently used

we cite the polynomial and radial basis function kernels.

A very similar variant of the optimization model utilized for training allows the use

of the same algorithm for regression tasks, resulting in the so–called support vector

regression algorithm. For a comprehensive treatment of support vector machines, the

reader is referred to [73].
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Chapter 3

Probabilistic Distance Clustering

3.1 Introduction

A cluster is a set of data points that are similar, in some sense, and clustering is a

process of partitioning a data set into disjoint clusters.

We take data points to be vectors x = (x1, . . . , xn) ∈ Rp, and interpret “similar” as

“close”, in terms of a distance function d(x,y) in Rp, such as

d(x,y) = ‖x− y‖, ∀x,y ∈ Rp, (3.1)

where the norm ‖ · ‖ is elliptic, defined for u = (ui) by

‖u‖ = 〈u, Qu〉1/2, (3.2)

with 〈·, ·〉 the standard inner product, and Q a positive definite matrix. In particular,

Q = I gives the Euclidean norm,

‖u‖ = 〈u,u〉1/2, (3.3)

and the Mahalanobis distance corresponds to Q = Σ−1, where Σ is the covariance

matrix of the data involved.

Example 3.1. A data set in R2 with N = 200 data points is shown in Figure 3.1. The

data was simulated, from normal distributions N(µi,Σi), with:
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Figure 3.1: A data set in R2

µ1 = (0, 0), Σ1 =


0.1 0

0 1


 , (100 points) ,

µ2 = (3, 0), Σ2 =


1 0

0 0.1


 , (100 points) .

This data will serve to illustrate Examples 3.2–3.5 below.

The clustering problem is, given a dataset D consisting of N data points

{x1, x2, . . . ,xN} ⊂ Rp,

and an integer K, 1<K <N , to partition D into K clusters C1, . . . , CK .

Data points are assigned to clusters using a clustering criterion. In distance

clustering, abbreviated d–clustering, the clustering criterion is metric: With each

cluster Ck we associate a center ck, for example its centroid, and each data point is

assigned to the cluster to whose center it is the nearest. After each such assignment,

the cluster centers may change, resulting in re–assignments. Such an algorithm will

therefore iterate between updating the centers and re–assignments.
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A commonly used clustering criterion is the sum–of–squares of Euclidean distances,

K∑

k=1

∑

xi∈Ck

‖ xi − ck ‖2, (3.4)

to be minimized by the sought clusters C1, . . . , CK . The well known k–means cluster-

ing algorithm [39] uses this criterion.

In probabilistic clustering the assignment of points to clusters is “soft”, in the

sense that the membership of a data point x in a cluster Ck is given as a probability,

denoted by pk(x). These are subjective probabilities, indicating strength of belief in

the event in question.

Let a distance function

dk( · , · ) (3.5)

be defined for each cluster Ck. These distance functions are, in general, different from

one cluster to another. For each data point x ∈ D, we then compute:

• the distance dk(x, ck), also denoted by dk(x) (since dk is used only for distances

from ck), or just dk if x is understood, and

• a probability that x is a member of Ck, denoted by pk(x), or just pk.

Various relations between probabilities and distances can be assumed, resulting in

different ways of clustering the data. In our experience, the following assumption has

proved useful: For any point x, and all k = 1, · · · ,K

pk(x) dk(x) = constant, depending on x .

This model is our working principle in what follows, and the basis of the proba-

bilistic d–clustering approach of section 3.2.

The above principle owes its versatility to the different ways of choosing the distances

dk(·). It is also natural to consider increasing functions of such distances, and one useful

choice is

pk(x)edk(x) = constant, depending on x ,



25

giving the probabilistic exponential d–clustering approach of section 3.3.

The probabilistic d–clustering algorithm is presented in section 3.4. It is a gen-

eralization, to several centers, of the Weizsfeld method for solving the Fermat–Weber

location problem, see section 3.2.5, and convergence follows as in [59]. The updates

of the centers use an extremal principle, described in section 3.2.3. The progress of

the algorithm is monitored by the joint distance function, a distance function that

captures the data in its low contours, see section 3.2.2. The centers updated by the

algorithm are stationary points of the joint distance function.

For other approaches to probabilistic clustering see the surveys in [43], [78], and the

seminal article [79] unifying clustering methods in the framework of modern optimiza-

tion theory.

3.2 Probabilistic d–clustering

There are several ways to model the relationship between distances and probabilities.

The simplest model, and our working principle (or axiom), is the following:

Principle 3.1. For each x ∈ D, and each cluster Ck,

pk(x) dk(x) = constant, depending on x . (3.6)

Cluster membership is thus more probable the closer the data point is to the cluster

center. Note that the constant in (3.6) is independent of the cluster k.

3.2.1 Probabilities

From Principle 3.1, and the fact that probabilities add to one, we get

Theorem 3.1. Let the cluster centers {c1, c2, . . . , cK} be given, let x be a data

point, and let {dk(x) : k = 1, . . . , K} be its distances from the given centers. Then the
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membership probabilities of x are

pk(x) =

∏
j 6=k

dj(x)

K∑
t=1

∏
j 6=t

dj(x)
, k = 1, . . . ,K. (3.7)

Proof. Using (3.6) we write for t, k

pt(x) =
(

pk(x)dk(x)
dt(x)

)
.

Since
K∑

t=1
pt(x) = 1,

pk(x)
K∑

t=1

(
dk(x)
dt(x)

)
= 1.

∴ pk(x) =
1

K∑
t=1

(
dk(x)
dt(x)

) =

∏
j 6=k

dj(x)

K∑
t=1

∏
j 6=t

dj(x)
.

In particular, for K=2,

p1(x) =
d2(x)

d1(x) + d2(x)
, p2(x) =

d1(x)
d1(x) + d2(x)

, (3.8)

and for K = 3,

p1(x) =
d2(x)d3(x)

d1(x)d2(x) + d1(x)d3(x) + d2(x)d3(x)
, etc. (3.9)

Note: See [41] for related work in a different context. In particular, our equation (3.8)

is closely related to [41, Eq. (5)].
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3.2.2 The Joint Distance Function

We denote the constant in (3.6) by D(x), a function of x. Then

pk(x) =
D(x)
dk(x)

, k = 1, . . . , K.

Since the probabilities add to one we get,

D(x) =

K∏
k=1

dk(x, ck)

K∑
t=1

∏
j 6=t

dj(x, cj)
. (3.10)

The function D(x), called the joint distance function (abbreviated JDF) of x,

has the dimension of distance, and measures the distance of x from all cluster centers.

Here are special cases of (3.10), for K = 2,

D(x) =
d1(x) d2(x)

d1(x) + d2(x)
, (3.11)

and for K = 3,

D(x) =
d1(x) d2(x) d3(x)

d1(x) d2(x) + d1(x) d3(x) + d2(x) d3(x)
. (3.12)

The JDF of the whole data set D is the sum of (3.10) over all points, and is a

function of the K cluster centers, say,

F (c1, c2, · · · , cK) =
N∑

i=1

K∏
k=1

dk(xi, ck)

K∑
t=1

∏
j 6=t

dj(xi, cj)
. (3.13)

Example 3.2. Figure 3.2 shows level sets of the JDF (3.11), with Mahalanobis dis-

tances

dk(x, ck) =
√

(x− ck)T Σ−1
k (x− ck) , (3.14)

c1 = µ1, c2 = µ2, and Σ1, Σ2 as in Example 3.1.
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Figure 3.2: Level sets of a joint distance function

Notes:

(a) The JDF D(x) of (3.10) is a measure of the classifiability of the point x in question.

It is zero if and only if x coincides with one of the cluster centers, in which case x

belongs to that cluster with probability 1. If all the distances dk(x, ck) are equal, say

equal to d, then D(x) = d/k and all pk(x) = 1/K, showing indifference between the

clusters. As the distances dk(x) increase, so does D(x), indicating greater uncertainty

about the cluster where x belongs.

(b) The JDF (3.10) is, up to a constant, the harmonic mean of the distances involved,

see [5] for an elucidation of the role of the harmonic mean in contour approximation

of data. A related concept in ecology is the home range, shown in [25] to be the

harmonic mean of the area moments in question.

3.2.3 An Extremal Principle

For simplicity consider the case of two clusters (the results are easily extended to the

general case.)

Let x be a given data point with distances d1(x), d2(x) to the cluster centers. Then



29

the probabilities in (3.8) are the optimal solutions p1, p2 of the extremal problem

Minimize d1(x) p2
1 + d2(x) p2

2 (3.15)

subject to p1 + p2 = 1

p1, p2 ≥ 0

Indeed, the Lagrangian of this problem is

L(p1, p2, λ) = d1(x) p2
1 + d2(x) p2

2 − λ(p1 + p2 − 1) (3.16)

and setting the partial derivatives (with respect to p1, p2) equal to zero gives the prin-

ciple (3.6),

p1 d1(x) = p2 d2(x) .

Substituting the probabilities (3.8) in the Lagrangian (3.16) we get the optimal

value of (3.15),

L∗(p1(x), p2(x), λ) =
d1(x) d2(x)

d1(x) + d2(x)
, (3.17)

which is the JDF (3.11) again.

The extremal problem for a data set D = {x1, x2, . . . , xN} ⊂ Rp is, accordingly,

Minimize
N∑

i=1

(
d1(xi) p1(xi)2 + d2(xi) p2(xi)2

)
(3.18)

subject to p1(xi) + p2(xi) = 1,

p1(xi), p2(xi) ≥ 0, i = 1, . . . , N.

This problem separates into N problems like (3.15), and its optimal value is

N∑

i=1

d1(xi) d2(xi)
d1(xi) + d2(xi)

(3.19)
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the JDF (3.13) of the data set, with K = 2.

Note: The explanation for the strange appearance of “probabilities squared” above, is

that (3.15) is a smoothed version of the “real” clustering problem, namely,

min {d1, d2},

which is nonsmooth, see [79] for a unified development of smoothed clustering methods.

3.2.4 Centers

We write (3.18) as a function of the cluster centers c1, c2,

f(c1, c2) =
N∑

i=1

(
d1(xi, c1) p1(xi)2 + d2(xi, c2) p2(xi)2

)
. (3.20)

If a point xi coincides with a center, say xi = c1, then d1(xi) = 0, p1(xi) = 1 and

p2(xi) = 0. This point contributes zero to the summation.

For the special case of Euclidean distances, the minimizers of (3.20) assume a simple

form as convex combinations of the data points.

Theorem 3.2. Let the distance functions d1, d2 in (3.20) be Euclidean,

dk(x, ck) = ‖x− ck‖ , k = 1, 2 , (3.21)

so that

f(c1, c2) =
∑

i=1,...,N

(‖xi − c1‖ p1(xi)2 + ‖xi − c2‖ p2(xi)2
)

, (3.22)

and let the probabilities p1(xi), p2(xi) be given for i = 1, . . . , N . We make the following

assumption about the minimizers c1, c2 of (3.22):

c1, c2 do not coincide with any of the points xi, i = 1, . . . , N . (3.23)
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Then the minimizers c1, c2 are given by

ck =
∑

i=1,...,N


 uk(xi)∑

j=1,...,N

uk(xj)


xi , (3.24)

where

uk(xi) =
pk(xi)2

dk(xi, ck)
, (3.25)

for k = 1, 2, or equivalently, using (3.8),

u1(xi) =
d2(xi, c2)2

d1(xi, c1) (d1(xi, c1) + d2(xi, c2))2
,

u2(xi) =
d1(xi, c1)2

d2(xi, c2) (d1(xi, c1) + d2(xi, c2))2
. (3.26)

Proof. The gradient of d(x, c) = ‖x− c‖ with respect to c is, for x 6= c,

∇c ‖x− c‖ = − x− c
‖x− c‖ = − x− c

d(x, c)
. (3.27)

By Assumption (3.23), the gradient of (3.22) with respect to ck is

∇ck
f(c1, c2) = −

∑

i=1,...,N

xi − ck

‖xi − ck‖ pk(xi)2

= −
∑

i=1,...,N

xi − ck

dk(xi, ck)
pk(xi)2 , k = 1, 2 . (3.28)

Setting the gradient equal to zero, and summing like terms, we get

∑

i=1,...,N

(
pk(xi)2

dk(xi, ck)

)
xi =


 ∑

i=1,...,N

pk(xi)2

dk(xi, ck)


 ck , (3.29)

proving (3.24)–(3.26).

The same formulas for the centers c1, c2 hold if the norm used in (3.22) is elliptic.
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Corollary 3.1. Let the distance functions d1, d2 in (3.20) be elliptic,

dk(x, ck) = 〈(x− ck), Qk(x− ck)〉1/2 , (3.30)

with positive–definite matrices Qk. Then the minimizers c1, c2 of (3.20) are given by

(3.24)–(3.26).

Proof. The gradient of d(x, c) = 〈(x− c), Q(x− c)〉1/2 with respect to c is, for x 6= c,

∇c d(x, c) = −Q(x− c)
d(x, c)

.

Therefore the analog of (3.28) is

∇ck
f(c1, c2) = −Qk

∑

i=1,...,N

xi − ck

dk(xi, ck)
pk(xi)2 , (3.31)

and since Qk is nonsingular, it can be “cancelled” when we set the gradient equal to

zero. The rest of the proof is as in Theorem 3.2.

Corollary 3.1 applies, in particular, to the Mahalanobis distance (3.14)

dk(x, ck) =
√

(x− ck)T Σ−1
k (x− ck) ,

where Σk is the covariance matrix of the cluster Ck.

The formulas (3.24)–(3.25) are also valid in the general case of K clusters, where

the analog of (3.20) is

f(c1, c2, · · · , cK) =
∑

i=1,...,N

K∑

k=1

dk(xi, ck) pk(xi)2 . (3.32)

Corollary 3.2. Let the distance functions dk in (3.32) be elliptic, as in (3.30), and

let the probabilities pk(xi) be given. Then the minimizers c1, c2, · · · , cK of (3.32) are

given by (3.24)–(3.25) for k = 1, 2, · · · ,K.

Proof. The proof of Corollary 3.1 holds in the general case, since the minimizers are
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calculated separately.

3.2.5 The Weiszfeld Method

In the case of one cluster (where the probabilities are all 1 and therefore of no interest)

the center formulas (3.24)–(3.25) reduce to

c =
∑

i=1,...,N


 1/d(xi, c)∑

j=1,...,N

1/d(xj , c)


xi , (3.33)

giving the minimizer of f(c) =
N∑

i=1
d(xi, c). Formula (3.33) can be used iteratively to

update the center c (on the left) as a convex combination of the points xi with weights

depending on the current center. This iteration is the Weiszfeld method [82] for

solving the Fermat–Weber location problem, see [82], [60]. Convergence of Weiszfeld’s

method was established in Kuhn [59] by modifying the gradient ∇f(c) so that it is

always defined, see [54] for further details. However, the modification is not carried out

in practice since, as shown by Kuhn, the set of initial points c for which it ever becomes

necessary is denumerable.

In what follows we use the formulas (3.24)–(3.25) iteratively to update the centers.

Convergence can be proved by adapting the arguments of Kuhn [59], but as there it

requires no special steps in practice.

3.2.6 The Centers and the Joint Distance Function

The centers given by (3.24)–(3.25) are related to the JDF (3.13) of the data set. Con-

sider first the case of K = 2 clusters, where (3.13) reduces to

F (c1, c2) =
N∑

i=1

d1(xi, c1) d2(xi, c2)
d1(xi, c1) + d2(xi, c2)

. (3.34)

The points ck where ∇ck
F (c1, c2) = 0, k = 1, 2, are called stationary points of (3.34).

Theorem 3.3. Let the distances d1, d2 in (3.34) be elliptic, as in (3.30). Then the

stationary points of F (c1, c2) are given by (3.24)–(3.26).
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Proof. Let the distances dk be Euclidean, dk(x) = ‖x− ck‖. It is enough to prove the

theorem for one center, say c1. Using (3.27) we derive

∇c1 F (c1, c2) =

N∑

i=1

(d1(xi) + d2(xi)) d2(xi)
(
−xi − c1

d1(xi)

)
+ d1(xi) d2(xi)

(
xi − c1

d1(xi)

)

(d1(xi) + d2(xi))2

=
N∑

i=1

−d2(xi)2 (xi − c1)
d1(xi) (d1(xi) + d2(xi))2

. (3.35)

Setting (3.35) equal to zero, and summing like terms, we get




N∑

j=1

d2(xj)2

d1(xj) (d1(xj) + d2(xj))2


 c1 =

N∑

i=1

(
d2(xi)2

d1(xi) (d1(xi) + d2(xi))2

)
xi ,

duplicating (3.24)–(3.26). If the distances are elliptic, as in (3.30), then the analog of

(3.35) is,

∇c1 F (c1, c2) =
N∑

i=1

−d2(xi)2 Q1 (xi − c1)
d1(xi) (d1(xi) + d2(xi))2

and since Q1 is nonsingular, it can be “cancelled” when the gradient is set equal to

zero.

In the above proof the stationary points c1, c2 are calculated separately, and the

calculation does not depend on there being 2 clusters. We thus have:

Corollary 3.3. Consider a data set with K clusters, and elliptic distances dk. Then

the stationary points of the JDF (3.13) are the centers ck given by (3.24)–(3.25). 2

Note: The JDF (3.10) is zero exactly at the K centers {ck}, and is positive elsewhere.

These centers are therefore the global minimizers of (3.10). However, the function (3.10)

is not convex, not even quasi–convex, and may have other stationary points, that are

necessarily saddle points.
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3.2.7 Why d and not d2?

The extremal principle (3.18), which is the basis of our work, is linear in the distances

dk,

Minimize
∑

k

dk p2
k.

We refer to this as the d–model.

In clustering, and statistics in general, it is customary to use the distances squared

in the objective function,

Minimize
∑

k

d2
k.

We call this the d2–model.

The d2–model has a long tradition, dating back to Gauss, and is endowed with a rich

statistical theory. There are geometrical advantages (Pythagoras Theorem), as well as

analytical (linear derivatives).

The d–model is suggested by the analogy between clustering and location problems,

where sums of distances (not distances squared) are minimized. Our center formulas

(3.24)–(3.25) are thus generalizations of the Weiszfeld Method to several facilities, see

section 3.2.5.

An advantage of the d–model is its robustness. Indeed the formula (3.25), which

does not follow from the d2–model, guarantees that outliers will not affect the center

locations.

3.2.8 Other Principles

There are alternative ways of modelling the relations between distances and probabili-

ties. For example:

Principle 3.2. For each x ∈ D, and each cluster Ck, the probability pk = pk(x) and

distance dk = dk(x) are related by

pα
k dβ

k = constant, depending on x . (3.36)
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where the exponents α, β are positive.

For the case of 2 clusters we get, by analogy with (3.8) and (3.18) respectively, the

probabilities

p1(x) =
d2(x)β/α

d1(x)β/α + d2(x)β/α
, p2(x) =

d1(x)β/α

d1(x)β/α + d2(x)β/α
, (3.37)

and an extremal principle,

Minimize
N∑

i=1

(
d1(xi)β p1(i)α+1 + d2(xi)β p2(i)α+1

)
(3.38)

subject to p1(i) + p2(i) = 1

p1(i), p2(i) ≥ 0

where p1(i), p2(i) are the cluster probabilities at xi.

The Fuzzy Clustering Method [14], [15], which is an extension of k-means

method, uses β = 2 and allows different choices of α. For α = 2, it gives the same

probabilities as (3.7), however the center updates are different than (3.24)–(3.25).

3.3 Probabilistic Exponential d–clustering

Any increasing function of the distance can be used in Principle 3.1. The following

model, with probabilities decaying exponentially as distances increase, has proved useful

in our experience.

Principle 3.3. For each x ∈ D, and each cluster Ck, the probability pk(x) and distance

dk(x) are related by

pk(x) edk(x) = E(x), a constant depending on x . (3.39)

Most results of section 3.2 hold also for Principle 3.3, with the distance dk(x) replaced
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by edk(x). Thus the analog of the probabilities (3.8) is

p1(x) =
ed2(x)

ed1(x) + ed2(x)
, p2(x) =

ed1(x)

ed1(x) + ed2(x)
, (3.40)

or equivalently

p1(x) =
e−d1(x)

e−d1(x) + e−d2(x)
, p2(x) =

e−d2(x)

e−d1(x) + e−d2(x)
. (3.41)

Similarly, since the probabilities add to 1, the constant in (3.39) is

E(x) =
ed1(x)+d2(x)

ed1(x) + ed2(x)
, (3.42)

called the exponential JDF.

3.3.1 An Extremal Principle

The probabilities (3.40) are the optimal solutions of the problem

min
p1,p2

{
ed1p2

1 + ed2p2
2 : p1 + p2 = 1 , p1, p2 ≥ 0

}
, (3.43)

whose optimal value, obtained by substituting the probabilities (3.40), is again the

exponential JDF (3.42).

The extremal problem for a data set D = {x1, x2, . . . , xN} ⊂ Rp, partitioned into

2 clusters, is the following analog of (3.18)

Minimize
N∑

i=1

(
ed1(xi) p1(i)2 + ed2(xi) p2(i)2

)
(3.44)

subject to p1(i) + p2(i) = 1

p1(i), p2(i) ≥ 0
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where p1(i), p2(i) are the cluster probabilities at xi. The problem separates into N

problems like (3.43), and its optimal value is

N∑

i=1

ed1(xi)+d2(xi)

ed1(xi) + ed2(xi)
, (3.45)

the exponential JDF of the whole data set.

Alternatively, (3.39) follows from the “smoothed” extremal principle

min
p1,p2

{
2∑

k=1

pk dk +
2∑

k=1

pk log pk : p1 + p2 = 1 , p1, p2 ≥ 0

}
, (3.46)

obtained by adding an entropy term to
∑

pk dk. Indeed the Lagrangian of (3.46) is

L(p1, p2, λ) =
2∑

k=1

pk dk +
2∑

k=1

pk log pk − λ (p1 + p2 − 1) .

Differentiation with respect to pk, and equating to 0, gives

dk + 1 + log pk − λ = 0

which is (3.39).

3.3.2 Centers

We write (3.44) as a function of the cluster centers c1, c2,

f(c1, c2) =
N∑

i=1

(
ed1(xi,c1) p1(xi)2 + ed2(xi,c2) p2(xi)2

)
(3.47)

and for elliptic distances we can verify, as in Theorem 3.2, that the minimizers of (3.47)

are given by,

ck =
N∑

i=1




uk(xi)
N∑
j=1

uk(xj)


xi , (3.48)
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where (compare with (3.25)),

uk(xi) =
pk(xi)2 edk(xi)

dk(xi)
, (3.49)

or equivalently,

u1(xi) =
e−d1(xi)/d1(xi)

(e−d1(xi) + e−d2(xi))2
, u2(xi) =

e−d2(xi)/d2(xi)
(e−d1(xi) + e−d2(xi))2

. (3.50)

As in Theorem 3.3, these minimizers are the stationary points of the JDF, given here

as

F (c1, c2) =
N∑

i=1

ed1(xi,c1)+d2(xi,c2)

ed1(xi,c1) + ed2(xi,c2)
. (3.51)

Finally we can verify, as in Corollary 3.2, that the results hold in the general case of K

clusters.

3.4 A Probabilistic d–clustering Algorithm

The ideas of section 3.2–3.3 are implemented in the following algorithm for unsupervised

clustering of data. A schematic description, presented – for simplicity – for the case of

2 clusters, follows.

Algorithm 3.1. Probabilistic D–clustering

Initialization: given data D, any two points c1, c2, and ε > 0

Iteration:

Step 1 compute distances d1(x), d2(x) for all x ∈ D
Step 2 update the centers c+

1 , c+
2

Step 3 if ‖c+
1 − c1‖+ ‖c+

2 − c2‖ < ε stop

return to step 1

The algorithm iterates between the cluster centers, (3.24) or (3.48), and the dis-

tances of the data points to these centers. The cluster probabilities, (3.8) or (3.40),

are not used explicitly.
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Notes:

(a) The distance used in Step 1 can be Euclidean or elliptic (the formulas (3.24)–(3.26),

and (3.48)–(3.50), are valid in both cases.)

(b) In Step 2, the centers are updated by (3.24)–(3.26) if Principle 3.1 is used, and by

(3.48)–(3.50) for Principle 3.3.

(c) In particular, if the Mahalanobis distance (3.14)

d(x, ck) =
√

(x− ck)T Σ−1
k (x− ck)

is used, the covariance matrix Σk of the k th–cluster, can be estimated at each iteration

by

Σk =

N∑
i=1

uk(xi)(xi − ck)(xi − ck)T

N∑
i=1

uk(xi)
(3.52)

with uk(xi) given by (3.26) or (3.50)

(d) The computations stop (in Step 3) when the centers stop moving, at which point

the cluster membership probabilities may be computed by (3.8) or (3.40). These proba-

bilities are not needed in the algorithm, but may be used for classifying the data points,

after the cluster centers have been computed.

(e) Using the arguments of [59] it can be shown that the objective function (3.32) de-

creases at each iteration, and the Algorithm converges.

(f) The cluster centers and distance functions change at each iteration, and so does the

function (3.13) itself, which decreases at each iteration. The JDF may have stationary

points that are not minimizers, however such points are necessarily saddle points, and

will be missed by the Algorithm with probability 1.

Example 3.3. We apply the algorithm, using d–clustering as in section 3.2 and Ma-

halanobis distance, to the data of Example 3.1. Figure 3.3 shows the evolution of the

joint distance function, represented by its level sets. The initial function, shown in the

top-left pane, corresponds to the (arbitrarily chosen) initial centers and initial covari-

ances Σ1 = Σ2 = I. The covariances are updated at each iteration using (3.52), and by
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Figure 3.3: The level sets of the evolving joint distance function at iteration 0 (top
left), iteration 1 (top right), iteration 2 (bottom left) and iteration 12 (bottom
right)
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iteration 8 the function is already very close to its final form, shown in the bottom-right

pane. For a tolerance of ε = 0.01 the algorithm terminated in 12 iterations.

Example 3.4. In Figure 3.4 we illustrate the movement of the cluster centers for

different initial centers. The centers at each run are shown with the final level sets of

the joint distance function found in Example 3.3.

The algorithm gives the correct cluster centers, for all initial starts. In particular,

the two initial centers may be arbitrarily close, as shown in the top–left pane of Fig. 3.4.
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Figure 3.4: Movements of the cluster centers for different starts. The top–right pane
shows the centers corresponding to Fig. 3.3. The top–left pane shows very close initial
centers.

Example 3.5. The class membership probabilities (3.8) were then computed using the

centers determined by the algorithm. The level sets of the probability p1(x) are shown

in Figure 3.5. The curve p1(x) = 0.5, the thick curve shown in the left pane of Fig. 3.5,
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may serve as the clustering rule. Alternatively, the 2 clusters can be defined as

C1 = {x : p1(x) ≥ 0.6}, C2 = {x : p1(x) ≤ 0.4} ,

with points {x : 0.4 < p1(x) < 0.6} left unclassified, see the right pane of Fig. 3.5.
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Figure 3.5: The level sets of the probabilities p1(x) and two clustering rules.

3.5 Related Work

There are applications where the cluster sizes (ignored here) need to be estimated.

An important example is parameter estimation in mixtures of distributions. The above

method, adjusted for cluster sizes, is applicable, and in particular presents a viable

alternative to the EM method, see [49] and [50].

As noted at the end of section 3.2.4, our method allows an extension of the classical

Weiszfeld method to several facilities. This is the subject of [46], giving the solution of

multi-facility location problems, including the capacitated case (which corresponds

to given cluster sizes.)

A simple and practical criterion for clustering validity, determining the “right”

number of clusters that fit a given data, is given in [47]. This criterion is based on the

monotonicity of the JDF (3.13) as a function of the number of clusters.
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Semi–supervised clustering is a framework for reconciling supervised learn-

ing, using any prior information (“labels”) on the data, with unsupervised cluster-

ing, based on the intrinsic properties and geometry of the data set. A new method

for semi-supervised clustering, combining probabilistic distance clustering for the unla-

belled data points and a least squares criterion for the labelled ones, is given in [48].

3.6 Conclusions

The probabilistic distance clustering algorithm presented here is simple, fast

(requiring a small number of cheap iterations), robust (insensitive to outliers), and

gives a high percentage of correct classifications.

It was tried on hundreds of problems with both simulated and real data sets. In

simulated examples, where the answers are known, the algorithm, starting at random

initial centers, always converged – in our experience – to the true cluster centers.

Results of our numerical experiments, and comparisons with other distance–based

clustering algorithms, will be reported elsewhere.
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Chapter 4

Probabilistic Clustering Adjusted for Cluster Size

4.1 Introduction

A method for probabilistic clustering of data, proposed in [10], is based on the assump-

tion that the probability of a point belonging to a cluster is inversely proportional to its

distance from the cluster center. The resulting clustering algorithm is fast and efficient,

and works best if the cluster sizes are about equal.

In cases where the cluster sizes differ greatly, or the cluster sizes themselves are

unknowns that need to be estimated (as in de–mixing problems), the above assumption

can be modified to take into account the cluster sizes. This modification is the objective

of this chapter.

We take data points to be vectors x = (x1, . . . , xn) ∈ Rp, and consider a dataset

D consisting of N data points {x1, x2, . . . xN}. A cluster is a set of data points that

are similar, in some sense, and clustering is a process of partitioning a data set into

disjoint clusters.

In distance clustering (or d–clustering), “similarity” is interpreted in terms of a

distance function d(x,y) in Rp, for example,

d(x,y) = ‖x− y‖, ∀x,y ∈ Rp,

where ‖ · ‖ is a norm. A common choice is the Mahalanobis distance with the norm

‖u‖ = 〈u,Σ−1u〉1/2,

where Σ is the covariance matrix of the data in question.



46

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4.1: A data set in R2

Example 4.1. A data set in R2 with N = 1100 data points is shown in Figure 4.1.

The data on the left was simulated from a normal distribution N(µ, Σ), with

µ1 = (2, 0), Σ1 =


0.0005 0

0 0.05


 , (100 points) ,

and the data on the right consist of 1000 points simulated in a circle of diameter 1

centered at µ2 = (3, 0), from a radially symmetric distribution with Prob {‖x− µ2‖ ≤
r} = 2 r. This data will serve as illustration in Examples 4.2–4.3 below.

Points are assigned to clusters using a clustering criterion. In d–clustering each

point is assigned to the cluster with the nearest center. After each assignment, the

cluster centers may change, resulting in further re–classifications. A d–clustering algo-

rithm will therefore iterate between centers and re–assignments. The best known such

method is the k–means clustering algorithm (see section 2.4 and also [39]).

In probabilistic clustering the assignment of points to clusters is “soft”, and

cluster membership is replaced by probabilities pk(x) = Prob {x ∈ Ck}, that a data

point x belongs to the cluster Ck. Probabilistic d–clustering is when the probabilities

depend on the relevant distances.

Probabilistic d–clustering adjusted for the cluster size is called probabilistic dq–

clustering, or PDQ clustering for short.
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An algorithm for probabilistic dq–clustering is presented in section 4.3. The centers

are updated as optimal solutions of the extremal problem in section 4.2.3. These centers

are also stationary points of the joint distance function, a function that approximates

the data in its lowest level sets, see section 4.2.2. The cluster sizes (if not given) are

updated using the extremal problem of section 4.2.4

For other approaches to probabilistic clustering see sections 2.4.2, 2.4.3 and the

surveys in Höppner et al. [43], Tan et al. [78].

4.2 Probabilistic dq–clustering

Let a data set D ⊂ Rp be partitioned into K clusters {Ck : k = 1, · · · ,K},

D =
K⋃

k=1

Ck ,

and let ck be the center (in some sense) of the cluster Ck. The size qk of Ck is known

in some applications, and is an unknown to be estimated in others. Here the cluster

size, or its estimate, is assumed given wherever it appears in the right hand side of a

formula.

With each data point x ∈ D and a cluster Ck, we associate:

• a distance dk(x, ck), also denoted dk(x), and

• a probability of membership in Ck, denoted pk(x).

The distance functions dk(·), associated with different clusters, are different in gen-

eral. In particular, we may use a different Mahalanobis distance for each cluster

dk(x) = 〈x− ck,Σ−1
k (x− ck)〉1/2, (4.1)

where Σk is an estimate of the cluster covariance.

There are several ways to model the relationship between distances and probabilities

[10], see chapter 3. The following assumption is our basic principle.
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Principle 4.1. For each x ∈ D and cluster Ck, the probability pk(x) satisfies

pk(x) dk(x)
qk

= constant, say D(x), depending on x . (4.2)

Cluster membership is thus more probable the closer the data point is to the cluster

center and the bigger is the cluster.

4.2.1 Probabilities

From Principle 4.1 and the fact that probabilities add to one we get:

Theorem 4.1. Let the cluster centers {c1, c2, . . . , cK} be given, let x be a data

point, and let {dk(x) : k = 1, . . . , K} be its distances from the given centers. Then the

membership probabilities of x are

pk(x) =

∏
j 6=k

dj(x)
qj

K∑
i=1

∏
j 6=i

dj(x)
qj

, k = 1, . . . , K. (4.3)

Proof. Using (4.2) we write for i, k,

pi(x) =
pk(x)dk(x)/qk

di(x)/qi
.

Since
K∑

i=1
pi(x) = 1,

pk(x)
K∑

i=1

(
dk(x)/qk

di(x)/qi

)
= 1.

∴ pk(x) =
1

K∑
i=1

(
dk(x)/qk

di(x)/qi

) =

∏
j 6=k

dj(x)/qj

K∑
i=1

∏
j 6=i

dj(x)/qj

.
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In particular, for K = 2,

p1(x) =
d2(x)/q2

d1(x)/q1 + d2(x)/q2
, p2(x) =

d1(x)/q1

d1(x)/q1 + d2(x)/q2
, (4.4)

and for K = 3,

p1(x) =
d2(x)d3(x)/q2q3

d1(x)d2(x)/q1q2 + d1(x)d3(x)/q1q3 + d2(x)d3(x)/q2q3
, etc. (4.5)

4.2.2 The Joint Distance Function

We denote the constant in (4.2) by D(x), a function of x. Since the probabilities

pk(x) =
D(x)

dk(x)/qk
, k = 1, . . . , K,

add to 1 we get,

D(x) =

K∏
j=1

dj(x)
qj

K∑
i=1

∏
j 6=i

dj(x)
qj

. (4.6)

D(x) is called the joint distance function of x, and is, up to a constant, the

harmonic mean of the K weighted distances {dk(x)/qk}. D(x) has the dimension of

distance.

Special cases: for K = 2 ,

D(x) =
d1(x) d2(x)/q1q2

d1(x)/q1 + d2(x)/q2
, (4.7)

and K = 3 ,

D(x) =
d1(x) d2(x) d3(x)/q1q2q3

d1(x) d2(x)/q1q2 + d1(x) d3(x)/q1q3 + d2(x) d3(x)/q2q3
. (4.8)

Example 4.2. Figure 4.2(a) shows level sets of the joint distance function (4.7) for the
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(a) Level sets of the joint distance function (b) Probability level sets

Figure 4.2: Results for the data of Example 4.1

data of Example 4.1.

4.2.3 An Extremal Principle

Equation (4.2) may be derived from an extremal principle. For notational simplicity

we consider the case of 2 clusters, with analogous results readily available for several

clusters.

Let x be a given data point with distances d1(x), d2(x) to the cluster centers, and

assume the cluster sizes q1, q2 known. Then the probabilities in (4.4) are the optimal

solutions of the extremal problem

min
{

d1(x) p2
1

q1
+

d2(x) p2
2

q2
: p1 + p2 = 1, p1, p2 ≥ 0

}
. (4.9)

Indeed, the Lagrangian of this problem is

L(p1, p2, λ) =
d1(x) p2

1

q1
+

d2(x) p2
2

q2
− λ(p1 + p2 − 1) , (4.10)

and zeroing the partials ∂L/∂pi gives the principle (4.2).

Substituting the probabilities (4.4) in the Lagrangian (4.10) we get the optimal

value of (4.9)

L∗(p1(x), p2(x), λ) =
d1(x) d2(x)/q1q2

d1(x)/q1 + d2(x)/q2
, (4.11)
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which is again the joint distance function (4.7).

The corresponding extremal problem for the data set D = {x1, x2, . . . , xN} is

min
N∑

i=1

(
d1(xi) p1(xi)2

q1
+

d2(xi) p2(xi)2

q2

)
(4.12)

s.t. p1(xi) + p2(xi) = 1 ,

p1(xi), p2(xi) ≥ 0 , i = 1, . . . , N ,

where p1(xi), p2(xi) are the cluster probabilities at xi and d1(xi), d2(xi) are the corre-

sponding distances. The problem separates into N problems like (4.9), and its optimal

value is
N∑

i=1

d1(xi) d2(xi)/q1q2

d1(xi)/q1 + d2(xi)/q2
, (4.13)

the sum of the joint distance functions of all points.

Note: An explanation for the terms p2
k (squares of probabilities) in the problem (4.9)

is that this problem is a smoothed version of the “real” problem, min {d1, d2}, which is

non–smooth, see [79] for this and other smoothing schemes.

4.2.4 An Extremal Principle for the Cluster Sizes

Taking the cluster sizes as variables in the extremal principle (4.12),

min

{
N∑

i=1

(
d1(xi) p1(xi)2

q1
+

d2(xi) p2(xi)2

q2

)
: q1 + q2 = N, q1, q2 ≥ 0

}

with p1(xi), p2(xi) assumed known, we have the Lagrangian

L(q1, q2, λ) =
N∑

i=1

(
d1(xi) p1(xi)2

q1
+

d2(xi) p2(xi)2

q2

)
+ λ(q1 + q2 −N)

Zeroing the partials ∂L/∂qk gives,

q2
k =

1
λ

(
N∑

i=1

dk(xi) pk(xi)2
)

, k = 1, 2 , (4.14)
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showing that the cluster size qk is proportional to

√
N∑

i=1
dk(xi) pk(xi)2. This holds for

any number of clusters. In particular, for 2 clusters we have,

q1 = N

(
N∑

i=1
d1(xi) p1(xi)2

)1/2

(
N∑

i=1
d1(xi) p1(xi)2

)1/2

+
(

N∑
i=1

d2(xi) p2(xi)2
)1/2

, (4.15a)

q2 = N − q1 , (4.15b)

since q1 + q2 = N .

4.2.5 Centers

Dealing first with the case of 2 clusters, we rewrite (4.12) as a function of the cluster

centers,

f(c1, c2) =
N∑

i=1

(
d1(xi, c1) p1(xi)2

q1
+

d2(xi, c2) p2(xi)2

q2

)
(4.16)

and look for centers c1, c2 minimizing f .

Theorem 4.2. Let the distance functions d1, d2 in (4.16) be elliptic,

d(x, ck) =
〈
(x− ck), Qk(x− ck)

〉1/2
, k = 1, 2, (4.17)

where Q1, Q2 are positive definite, so that

f(c1, c2) =
N∑

i=1

(√〈
(xi − c1), Q1(xi − c1)

〉 p1(xi)2

q1

+
√〈

(xi − c2), Q2(xi − c2)
〉 p2(xi)2

q2

)
, (4.18)

and let the probabilities pk(xi) and cluster sizes qk be given. If the minimizers c1, c2 of

(4.18) do not coincide with any of the data points xi, they are given by

c1 =
N∑

i=1

( u1(xi)
N∑
t=1

u1(xt)

)
xi , c2 =

N∑

i=1

( u2(xi)
N∑

t=1
u2(xt)

)
xi , (4.19)
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where

u1(xi) =

(
d2(xi,c2)

q2

)2
1

d1(xi,c1)(
d1(xi,c1)

q1
+ d2(xi,c2)

q2

)2 , u2(xi) =

(
d1(xi,c1)

q1

)2
1

d2(xi,c2)(
d1(xi,c1)

q1
+ d2(xi,c2)

q2

)2 , (4.20)

or equivalently, in terms of the probabilities (4.4),

u1(xi) =
p1(xi)2

d1(xi, c1)
, u2(xi) =

p2(xi)2

d2(xi, c2)
. (4.21)

Proof. The gradient of d(x, c) =
〈
(x− c), Q(x− c)

〉1/2 with respect to c is

∇c

〈
(x− c), Q(x− c)

〉1/2 = − Q(x− c)
〈
(x− c), Q(x− c)

〉1/2
= −Q(x− c)

d(x, c)
, (4.22)

assuming x 6= c. Therefore if c1, c2 do not coincide with any of the data points xi, we

have

∇ck
f(c1, c2) = −Qk

N∑

i=1

(xi − ck)
dk(xi, ck)

pk(xi)2

qk
. (4.23)

Setting the gradient equal to zero, “cancelling” the matrix Qk and the common factor

qk, and summing like terms, we get

N∑

i=1

(
pk(xi)2

dk(xi, ck)

)
xi =

(
N∑

i=1

pk(xi)2

dk(xi, ck)

)
ck ,

proving (4.19) and (4.21). Substituting (4.4) in (4.21) then gives (4.20).

Note: The theorem holds also if a center coincides with a data point, if we interpret

∞/∞ as 1 in (4.19).

Theorem 4.2 applies, in particular, to the Mahalanobis distance (4.1)

d(x, ck) =
√

(x− ck)T Σ−1
k (x− ck) ,

where Σk is the (given or computed) covariance matrix of the cluster Ck.
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For the general case of K clusters it is convenient to use the probabilistic form

(4.21).

Corollary 4.1. Consider a function of K centers

f(c1, c2, . . . , cK) =
K∑

k=1

N∑

i=1

(dk(xi, ck) pk(xi)2

qk

)
, (4.24)

an analog of (4.16). Then, under the hypotheses of Theorem 4.2, the minimizers of f

are

ck =
N∑

i=1

( uk(xi)
N∑

t=1
uk(xt)

)
xi , with uk(xi) =

pk(xi)2

dk(xi, ck)
, (4.25)

for k = 1, . . . , K.

Proof. Same as the proof of Theorem 4.2.

Note: Formula (4.25) is an optimality condition for the centers ck, expressing them

as convex combinations of the data points xi, with weights uk(xi) depending on the

centers ck. It is used iteratively in Step 3 of Algorithm 4.1 below to update the centers,

and is an extension to several facilities of the well–known Weiszfeld iteration for facility

location, see [60], [82]. This formula, and the corresponding formulas (4.15) for the

cluster sizes, are applied in [46] for solving multi–facility location problems, subject to

capacity constraints.

4.2.6 The Centers and the Joint Distance Function

The centers obtained in Theorem 4.2 are stationary points for the joint distance function

(4.13), written as a function of the cluster centers c1, c2,

F (c1, c2) =
N∑

i=1

d1(xi,c1) d2(xi,c2)
q1q2

d1(xi,c1)
q1

+ d2(xi,c2)
q2

. (4.26)

Theorem 4.3. Let the distances dk(xi, ck) in (4.26) be elliptic. Then the stationary

points of the function F are c1, c2 given by (4.19)–(4.21).
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Proof. Using (4.22) we derive,

∇c1 F (c1, c2) =

=
1

q1q2

N∑

i=1

(
d1(xi)

q1
+ d2(xi)

q2

)
d2(xi)

(
−Q1(xi−c1)

d1(xi)

)
+ d1(xi) d2(xi) 1

q1

(
Q1(xi−c1)

d1(xi)

)

(
d1(xi)

q1
+ d2(xi)

q2

)2

=
N∑

i=1

d2(xi)
2

q2

(
−Q1(xi−c1)

d1(xi)

)

(
d1(xi)

q1
+ d2(xi)

q2

)2 (4.27)

Setting ∇c1 F (c1, c2) equal zero, and summing like terms, we obtain the center c1 as

in (4.19)–(4.21). The statements about c2 are proved similarly.

4.3 The PDQ Algorithm

The above results are used in an algorithm for unsupervised clustering of data, called

the PDQ Algorithm (P for probability, D for distance and Q for the cluster sizes).

For simplicity, we describe the algorithm for the case of 2 clusters.

Algorithm 4.1. The PDQ Algorithm.

Initialization: given data set D with N points,

any two centers c1, c2,

any two cluster sizes q1, q2, q1 + q2 = N ,

ε > 0

Iteration:

Step 1 compute distances from c1, c2 for all x ∈ D
Step 2 update the cluster sizes q+

1 ,q+
2 (using (4.15))

Step 3 update the centers c+
1 , c+

2 (using (4.19)–(4.20))

Step 4 if ‖c+
1 − c1‖+ ‖c+

2 − c2‖ < ε stop

return to Step 1

The algorithm iterates between the cluster size estimates (4.15), the cluster cen-

ters (4.19) expressed as minimizers of the objective function (4.18), and the distances
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of the data points to these centers.

Notes:

(a) The distances used in Step 1 are elliptic, and may be different functions, depending

on the cluster.

(b) In particular, if the Mahalanobis distance (4.1)

d(x, ck) =
√

(x− ck)T Σ−1
k (x− ck)

is used, the covariance matrix Σk of the k th–cluster can be estimated at each iteration

by

Σk =

N∑
i=1

uk(xi)(xi − ck)(xi − ck)T

N∑
i=1

uk(xi)
, (4.28)

with uk(xi) given by (4.20).

(c) If the cluster sizes q1, q2 are known, they are used as the initial estimates and are

not updated thereafter, in other words Step 2 is absent.

(d) The computations stop (in Step 4) when the centers stop moving, at which point

the cluster membership probabilities may be computed by (4.4). These probabilities

are not needed by the algorithm, and may be used afterwards for classifying the data.

(e) Having the probabilities corresponding to the final centers, rigid clusters can be

determined, and used to refine the estimates of the covariance matrices.

(f) Step 3 of the algorithm is a generalization of the Weiszfeld iteration, [82], to several

centers. As in the classical case, to establish convergence it is necessary to modify the

gradient in question, if a center coincides with one of the data points, see [59], [54].

However, the set of initial centers for which such a modification ever becomes necessary

is denumerable, and this issue can be safely ignored in practice.

Example 4.3. Figure 4.2(b) shows probability level sets for the data of Example 4.1

as determined by (4.4), using the centers and covariances computed by Algorithm 4.1.
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4.4 Conclusions

The PDQ Algorithm is a probabilistic clustering method based on distances (of data

points from cluster centers) and on the cluster sizes. At each iteration the method

updates the cluster centers, and the cluster sizes (if unknown.) The method uses cheap

iterations, and converges fast.

We present two different applications of PDQ Method in the following chapters. An

important application is estimating the parameters of a mixture of distributions. In

this problem, the PDQ Method may serve as an alternative to the EM Method, or as a

preprocessor giving the EM Method a good start. In section 6.2 we apply the algorithm

to the estimation of the parameters of Gaussian mixtures, and compare it to the EM

method. Some numerical results are given in section 6.3. The reader find the details in

Chapter 6.

Another application of PDQ Method introduced in chapter 7 is the multi-facility

location problems where the cluster sizes are known. The method is a generalization

to several facilities of the classical Weiszfeld Method.
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Chapter 5

Clustering Validity and Joint Distance Function

5.1 Introduction

Clustering is perceived as an unsupervised process(see chapter 2) since there are no

predefined classes and no examples that would show what kind of desirable relations

should be valid among the data. As a consequence, the final partitions of a data

set require some sort of evaluation in most applications [71]. For instance questions

like “how many clusters are there in the data set?”, “does the resulting clustering

scheme fits our data set?”, “is there a better partitioning for our data set?” call for

clustering results validation and are the subjects of a number of methods discussed in

the literature. They aim at the quantitative evaluation of the results of the clustering

algorithms and are known under the general term cluster validity methods.

It is obvious that a problem we face in clustering is to decide the optimal number of

clusters that fits a data set. In most algorithms’ experimental evaluations 2D-data sets

are used in order that the reader is able to visually verify the validity of the results (i.e.,

how well the clustering algorithm discovered the clusters of the data set). It is clear

that visualization of the data set is a crucial verification of the clustering results. In

the case of large multidimensional data sets (e.g. more than three dimensions) effective

visualization of the data set would be difficult. Moreover the perception of clusters using

available visualization tools is a difficult task for humans that are not accustomed to

higher dimensional spaces.
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5.2 JDF as a Validity Criterion

The joint distance function (see 3.2.2) helps resolve the issue of cluster validity. Indeed,

the value of the JDF decreases monotonically with K, the number of clusters, and the

decrease is precipitous (which appears as “knee”) until the “right” number is reached,

and after that the rate of decrease is small. This is illustrated in Example 5.1 and

Figures 5.1–5.3 below. The synthetically generated 2D data sets are used in order that

the results can be verified visually.

This approach is useful because the PDQ algorithm is fast, and clustering for several

values of K is feasible if finding the correct K is important.

Example 5.1. Figure 5.1(a) shows a data set with 2 clusters. The PDQ algorithm was

applied to this data set, and the values of the JDF are computed for values of K from

1 to 10, the results are plotted in Figure 5.1(b). Note the change of slope of the JDF

at K = 2, the correct number of clusters.

Figures 5.2(a) and 5.3(a) show similarly data sets with K = 3 and K = 4 clusters,

respectively. The JDF, computed by the PDQ algorithm, shown in Figures 5.2(b) and

5.3(b), reveal the correct number of clusters.
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(a) A data set with K = 2 clusters
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(b) The JDF as a function of K

Figure 5.1: Results of Example 5.1 for 2 clusters.
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(b) The JDF as a function of K

Figure 5.2: Results of Example 5.1 for 3 clusters
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(b) The JDF as a function of K

Figure 5.3: Results of Example 5.1 for 4 clusters
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The following examples illustrate that the JDF decreases monotonically and there

is no significant change in its value (which appears as a “knee”) if the data set don’t

have a cluster structure.

Example 5.2. Figure 5.4(a) shows a data set without a cluster structure. The PDQ

algorithm was applied to this data set, and the values of the JDF are computed for

values of K from 1 to 42, the results are plotted in Figure 5.4(b). Note there is no

significant change of slope of the JDF.
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(a) A data set with no cluster structure
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(b) The JDF as a function of K

Figure 5.4: The change of slope of the JDF in example 5.2

Example 5.3. Figure 5.5(a) shows the data set of Example 7.2 with N = 1000 random

points in [−10, 10]2 points without a cluster structure. The values of the JDF are

computed for different values of K and the results are plotted in Figure 5.5(b). Note

there is no significant change of slope of the JDF.

5.3 Other Approaches to Cluster Validity Problem

The general approach, called as relative criteria, to clustering validity is the evaluation

of a clustering structure by comparing it to other clustering schemes, resulting by the

same algorithm but with different input parameter values.
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Figure 5.5: The change of slope of the JDF in example 5.3

The fundamental idea of this approach is to choose the best clustering scheme of

a set of defined schemes according to a pre–specified criterion. More specifically, the

problem can be stated as follows in [37]:

“Let Palg be the set of parameters associated with a specific clustering al-

gorithm (e.g. the number of clusters K). Among the clustering schemes

Si, i = 1, . . . , K, defined by a specific algorithm, for different values of the

parameters in Palg, choose the one that best fits the data set.”

Then, we can consider the following cases of the problem:

I) Palg does not contain the number of clusters, K, as a parameter. In this

case, the choice of the optimal parameter values are described as follows: We run the

algorithm for a wide range of its parameters values and we choose the largest range for

which K remains constant (usually K << N (number of data points)). Then we choose

as appropriate values of the Palg parameters the values that correspond to the middle

of this range. Also, this procedure identifies the number of clusters that underlie our

data set.

II) Palg contains K as a parameter. The procedure of identifying the best

clustering scheme is based on a validity index. Selecting a suitable performance index,
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∆, we proceed with the following steps:

• the clustering algorithm is run for all values of K between a minimum Kmin and a

maximum Kmax. The minimum and maximum values have been defined a-priori

by user.

• For each of the values of K, the algorithm is run r times, using different set of

values for the other parameters of the algorithm (e.g. different initial conditions).

• The best values of the index ∆ obtained by each K is plotted as the function of

K.

Based on this plot we may identify the best clustering scheme. We have to stress that

there are two approaches for defining the best clustering depending on the behavior

of ∆ with respect to K. Thus, if the validity index does not exhibit an increasing or

decreasing trend as K increases we seek the maximum (minimum) of the plot. On the

other hand, for indices that increase (or decrease) as the number of clusters increase

we search for the values of K at which a significant local change in value of the index

occurs. This change appears as a “knee” in the plot and it is an indication of the

number of clusters underlying the data set. Moreover, the absence of a knee may be an

indication that the data set possesses no clustering structure.

In the following subsections, some representative validity indices for crisp (hard)

and soft (fuzzy) clustering (see section 2.2.3) are presented.

5.4 Crisp Clustering Indices

Crisp(hard) clustering, considers non–overlapping partitions meaning that a data point

either belongs to a cluster or not. In this section we introduce validity indices suitable

for crisp clustering.

5.4.1 The Modified Hubert Γ Statistic

The definition of the modified Hubert Γ [80] statistic is given by the equation
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Γ = (1/M)
N−1∑

i=1

N∑

j=i+1

P (i, j)Q(i, j) (5.1)

where N is the number of data points in a dataset, M = N(N − 1)/2, P is the

proximity matrix of the data set, whose (i, j) element is the distance between the data

points xi and xj , and Q is an N×N matrix whose (i, j) element is equal to the distance

between the centers of the clusters where the data points xi and xj belong respectively.

The modified Hubert Γ statistic describes the degree of a partition fitting the data

set. We note, only when two data points lie in different clusters, they have an effect on

the value of Γ, otherwise, they do not contribute to the Γ because Q(i, j) = 0 . When

all data lie in a cluster, Γ is equal to 0, and with the partition number increasing, the

more non–zero elements are in the matrix Q, the higher is the value of Γ

Similarly, we can define the normalized Hubert Γ statistic, given by the equation

Γ̂ =
[(1/M)

∑N−1
i=1

∑N
j=i+1(P (i, j)− µP )(Q(i, j)− µQ)]

σP σQ
(5.2)

where P (i, j) and Q(i, j) are the (i, j) element of the matrices P and Q respectively

that we have to compare. Also µP , µQ, σP , σQ are the respective means and variances

of P, Q matrices. This index takes values between -1 and 1.

For two data points xi and xj , i, j = 1, . . . , N , belonging different clusters, if the

distance between them is close to that between the centers of clusters which they belong

to respectively, it is indicated that the data points in a cluster are close to their center

the values of Γ and Γ̂(normalized Γ̂) will be high. A high value of Γ (and Γ̂) indicates

the existence of compact clusters. Thus, in the plot of normalized Γ versus K , we seek

a significant “knee” that corresponds to a significant increase of normalized Γ. The

number of clusters at which the knee occurs is an indication of the number of clusters

that occurs in the data. We note that for K = 1 and K = N , the index is not defined.
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5.4.2 Dunn Family of Indices

A cluster validity index for crisp clustering proposed in [28], aims at the identification

of “compact and well separated clusters”. The index is defined in equation (5.3) for a

specific number of clusters

DK = min
k=1,...,K

{
min

t=k+1,...,K

(
d(Ck, Ct)

max
k=1,...,K

diam(Ck)

)}
(5.3)

where d(Ck, Ct) is the dissimilarity function between two clusters Ck and Ct defined

as d(Ck, Ct) = min
x∈Ck,y∈Ct

d(x,y), and diam(Ck) is the diameter of a cluster, which may

be considered as a measure of clusters’ dispersion. The diameter of a cluster Ck can be

defined as follows:

diam(Ck) = max
x,y∈C

d(x,y) (5.4)

If the dataset contains compact and well–separated clusters, the distance between

the clusters is expected to be large and the diameter of the clusters is expected to be

small. Thus, based on the Dunn’s index definition, we may conclude that large values

of the index indicate the presence of compact and well-separated clusters.

Index DK does not exhibit any trend with respect to number of clusters. Thus, the

maximum in the plot of DK versus the number of clusters can be an indication of the

number of clusters that fits the data.

However, it is very difficult to evaluate the clustering validity by the Dunn index

directly because of its considerable time complexity and its sensitivity to the presence

of noise in data sets.

In the literature, three indices, are proposed in [70] that are known as Dunn–like

indices since they are based on Dunn index. Moreover, these three indices use, for their

definition, the concepts of Minimum Spanning Tree (MST), the relative neighbourhood

graph (RNG) and the Gabriel graph(GG) respectively [80].
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5.4.3 The Davies–Bouldin(DB) Index.

A similarity measure Rkt between the clusters Ck and Ct is defined based on a measure

of dispersion, sk of a cluster Ck and a dissimilarity measure, dkt between between the

clusters Ck and Ct. The Rkt index is defined to satisfy the following conditions:

1. Rkt ≥ 0

2. Rkt = Rtk

3. if sk = 0 and st = 0 then Rkt = 0

4. if sk > st and dlk=dlt then Rlk > Rlt

5. sk = st and dlk < dlt then Rlk > Rlt.

These conditions state that Rkt is non–negative and symmetric.

A simple choice for Rkt that satisfies the above conditions is

Rkt = (sk + st)/dkt. (5.5)

Then the DB index is defined as

DBK =
1
K

K∑

k=1

Rk (5.6)

Rk = max
t=1,...,K

t 6=k

Rkt, k = 1, . . . , K

It is clear for the above definition that DBK is the average similarity between each

cluster Ck, k = 1, . . . , K and its most similar one. It is desirable for the clusters to

have the minimum possible similarity to each other; therefore we seek clusterings that

minimize DB. The DBK index exhibits no trends with respect to the number of clusters

and thus we seek the minimum value of DBK in its plot versus the number of clusters.

Some alternative definitions of the dissimilarity between two clusters as well as the

dispersion of a cluster, Ck is defined in [23].

Three variants of the DBK index are proposed in [70]. They are also based on MST,

RNG and GG concepts similarly to the cases of the Dunn–like indices.
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5.4.4 RMSSDT, SPR, RS,CD

This family of validity indices is applicable in the cases that hierarchical clustering

algorithms are used to cluster the data sets. Here, we introduce the definitions of

four validity indices, which have to be used simultaneously to determine the number

of clusters existing in the data set. These four indices are applied to each step of a

hierarchical clustering algorithm and they are known as [74]:

• Root–mean–square standard deviation (RMSSTD) of the new cluster

• Semi-partial R-squared (SPR)

• R-squared (RS)

• Distance between two clusters (CD).

The Root–mean–square standard deviation(RMSSTD) of a new clustering scheme

defined at a level of a clustering hierarchy is the square root of the variance of all the

variables (attributes used in the clustering process). This index measures the homo-

geneity of the formed clusters at each step of the hierarchical algorithm. Since the

objective of cluster analysis is to form homogeneous groups the RMSSTD of a cluster

should be as small as possible. In case that the values of RMSSTD are higher than

the ones of the previous step, we have an indication that the new clustering scheme is

worse.

In the following definitions we shall use the term SS, which means sum of squares

and refers to the equation:

SS =
N∑

i=1

(xi − x̄)2 (5.7)

Along with this we shall use some additional notation like:

i) SSw referring to the sum of squares within group,

ii) SSb referring to the sum of squares between groups,

iii) SSt referring to the total sum of squares, of the whole data set.



68

Semi-partial R-squared (SPR) for a the new cluster is the difference between SSw of

the new cluster and the sum of the SSw values of the clusters joined to obtain the new

cluster (loss of homogeneity), divided by the SSt for the whole data set. This index

measures the loss of homogeneity after merging the two clusters of a single algorithm

step. If the index value is zero then the new cluster is obtained by merging two perfectly

homogeneous clusters. If its value is high then the new cluster is obtained by merging

two heterogeneous clusters.

R-squared(RS) of the new cluster is the ratio of SSb over SSt. SSb is a measure of

difference between groups. Since SSt = SSb +SSw, the greater the SSb the smaller the

SSw and vise versa. As a result, the greater the differences between groups are the more

homogenous each group is and vise versa. Thus, RS may be considered as a measure

of dissimilarity between clusters. Furthermore, it measures the degree of homogeneity

between groups. The values of RS range between 0 and 1. In the case that the value of

RS is zero indicates that no difference exists among groups. On the other hand, when

RS equals 1 there is an indication of significant difference among groups.

The Distance between two clusters (CD) index measures the distance between the

two clusters that are merged in a given step of the hierarchical clustering. This distance

depends on the selected representatives for the hierarchical clustering we perform. For

instance, in case of centroid hierarchical clustering the representatives of the formed

clusters are the centers of each cluster, so CD is the distance between the centers of the

clusters. In the case that we use single linkage CD measures the minimum Euclidean

distance between all possible pairs of points, whereas in complete linkage CD is the

maximum Euclidean distance between all pairs of data points.

Using these four indices we determine the number of clusters that exist in a data

set, plotting a graph of all these indices values for a number of different stages of the

clustering algorithm. In this graph we search for the steepest knee, or in other words,

the greater jump of these indices values from higher to smaller number of clusters.

In the case of nonhierarchical clustering (i.e. k-means) it is also possible to use

some of these indices in order to evaluate the resulting clustering. The indices that are

more meaningful to use in this case are RMSSTD and RS. The idea, here, is to run
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the algorithm a number of times for different number of clusters each time. Then the

respective graphs of the validity indices is plotted for these clusterings and we search

for the significant “knee” in these graphs. The number of clusters at which the “knee”

is observed indicates the optimal clustering for the data set.

5.4.5 The SD Validity Index

The SD validity index [37] definition is based on the concepts of average scattering

for clusters and total separation between clusters. Below, we give the fundamental

definition for this index.

The average scattering for clusters is defined as

Scatt(K) =
1
K

K∑

k=1

‖σ(ck)‖/‖σ(D)‖ (5.8)

where σ(ck) = 1
Nk

Nk∑
i=1

(xi − ck)2 is the variance of cluster k and σ(D) = 1
N

N∑
i=1

(xi − x̄)2

is the variance of the data set.

The definition of total separation (scattering) between clusters is given by the fol-

lowing equation

Dis(K) =
Dmax

Dmin

K∑

k=1

(
K∑

t=1

‖ck − ct‖)−1 (5.9)

where Dmax = max(‖ck − ct‖), ∀k, t ∈ {1, . . . , K} is the maximum distance between

cluster centers and Dmin = min(‖ck−ct‖), ∀k, t ∈ {1, . . . ,K} is the minimum distance

between cluster centers.

Now, we can define a validity index based on equations (5.8) and (5.9) as follows

SD(K) = aScatt(K) + Dis(K) (5.10)

where a is a weighting factor equal to Dis(Kmax) where Kmax is the maximum

number of input clusters.

The first term in equation (5.10) indicates the average compactness of the clusters

(i.e., intra–cluster distances). A small value for this term indicates compact clusters
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and as the scattering within clusters increases (i.e., they become less compact) the value

of Scatt(K) also increases. The second term, Dis(K), indicates the total separation

between the K clusters (i.e., an indication of inter–cluster distances). Contrary to the

first term, the second term, Dis(K), is influenced by the geometry of the clusters and

increase with the number of clusters. The two terms of SD are of the different range,

thus a weighting factor is needed in order to incorporate both terms in a balanced way.

The number of clusters, K, that minimizes the above index is an optimal value.

5.5 Soft Clustering Indices

In this section, we present validity indices suitable for soft clustering. The objective is

to seek clustering schemes where most of the vectors of the dataset exhibit high degree

of membership in one cluster. As it is presented in chapter 2.4, soft(fuzzy) clustering is

defined by a matrix U = [uik], where uik denotes the degree of membership of the vector

xi in cluster k. Similarly to crisp(hard) clustering case a validity index, ∆, is defined

and we search for the minimum or maximum in the plot of ∆ versus K. Also, in case

that ∆ exhibits a trend with respect to the number of clusters, we seek a significant

knee of decrease (or increase) in the plot of ∆.

We will discuss two categories of soft validity indices. The first category uses only

the memberships values, uij , of a soft partition of data. The second involves both the

U matrix and the dataset itself.

5.5.1 Validity Indices Involving the Membership Values

Bezdek proposed in [13] the partition coefficient, which is defined as

PC =
1
N

N∑

i=1

K∑

k=1

u2
ik (5.11)

where N is the number of data points and K is the number of clusters.

The PC index values range in [1/K, 1]. The closer to unity the index the “crisper”

the clustering is. In case that all membership values to a soft partition are equal, that

is, uik = 1/K, the PC obtains its lower value. Thus, the closer the value of PC is to
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1/K, the fuzzier the clustering is. Furthermore, a value close to 1/K indicates that

there is no clustering tendency in the considered data set or the clustering algorithm

failed to reveal it.

The partition entropy coefficient is another index of this category. It is defined as

follows

PE = − 1
N

N∑

i=1

K∑

k=1

uik loga(uik) (5.12)

where a is the base of the logarithm. The index is computed for values of K greater

than 1 and its values ranges in [0, logaK]. The closer the value of PE to 0, the crisper

the clustering is. As in the previous case, index values close to the upper bound (i.e.,

logaK), indicate absence of any clustering structure in the data set or inability of the

algorithm to extract it.

The drawbacks of these indices are [37]:

(i) their monotonous dependency on the number of clusters. Thus, we seek significant

knees of increase (for PC) or decrease (for PE) in the plots of the indices versus

the number of clusters,

(ii) their sensitivity to the fuzzifier, m in fuzzy clustering. The fuzzifier is a parameter

of the fuzzy clustering algorithm and indicates the fuzziness of clustering results.

Then, as m → 1 the indices give the same values for all values of K. On the other

hand when m →∞, both PC and PE exhibit significant knee at K = 2.

(iii) the lack of direct connection to the geometry of the data [22], since they do not

use the data itself.

5.5.2 Indices Involving the Membership Values and the Dataset

In this section, we introduce three indices; Xie–Beni index, Fuguyama-Sugeno index

and indices based on concept of hypervolume and density.
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5.5.3 Xie–Beni Index

The Xie–Beni index , XB index [83] is also called the compactness and separation

validity function, uses the membership values and the data set.

Consider a fuzzy partition of the data set D = {xi; i = 1, . . . , N} with ck (k =

1, . . . , K) the centers of each cluster and uik the membership of data point i with

regards to cluster k. The fuzzy deviation of xi from cluster k is defined as the distance,

dik, between xi and the center of cluster k, weighted by the fuzzy membership of data

point i belonging to cluster k.

dik = uik‖xi − ck‖

Also, for a cluster k, the sum of the squares of fuzzy deviation of the data point

in D, σk =
∑N

i=1 dik, is called variation of cluster k. The sum of the variations of all

clusters, σ =
∑K

k=1 σk, is called total variation of the data set.

The term φ = (σk/Nk), is called compactness of data set D. The less its value, the

more compact clusters are.

The separation of the fuzzy partitions is defined as the minimum distance between

cluster centers, that is

dmin = min
1≤k,t≤K

k 6=t

‖ck − ct‖2

Then XB index is defined as

XB = φ/(N dmin) =
∑N

i=1

∑K
k=1 u2

ik‖xi − ck‖2

N min
1≤k,t≤K

k 6=t

‖ck − ct‖2
(5.13)

where N is the number of data points in the data set.

It is clear that small values of XB are expected for compact and well–separated

clusters. We note, however, that XB is monotonically decreasing when the number of

clusters K gets very large and close to N .
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5.5.4 Fukuyama–Sugeno Index

. Another index of this category is the Fukuyama–Sugeno index, which is defined as

FSm =
N∑

i=1

K∑

k=1

um
ik

(‖xi − ck‖2
A − ‖ck − x̄‖2

A

)
(5.14)

where x̄ is the mean vector of D and A is a positive definite, symmetric matrix.

When A = I, the above distance becomes the Euclidean distance. It is clear that for

compact and well–separated clusters we expect small values for FSm. The first term in

brackets measures the compactness of the clusters while the second one measures the

distances of the clusters representatives.

5.5.5 Indices Based on Hypervolume and Density

. Other soft validity indices are proposed in [34], which are based on the concepts of

hypervolume and density. Let Σk the fuzzy covariance matrix of the kth cluster defined

as

Σk =
∑N

i=1 um
ik(xi − ck)(xi − ck)T

∑N
i=1 um

ik

(5.15)

The fuzzy hyper volume of kth cluster is given by equation:

Vk = ‖Σk‖1/2 (5.16)

where ‖Σk‖ is the determinant of the Σk and is the measure of cluster compactness.

Then the total fuzzy hyper volume (FH) is given by the equation

FH =
K∑

k=1

Vk (5.17)

Small values of FH indicate the existence of compact clusters.

The average partition density (PA) can also used as an index of this category which

is defined as follows:

PA =
1
K

K∑

k=1

Sk

Vk
(5.18)
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Then Sk =
∑

x∈Dk
uik, where Dk is the set of data points that are within a pre–specified

region around ck, is called the sum of the central members of the cluster k.

A few other indices are proposed and discussed in [58,65].
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Chapter 6

Mixtures of Distributions and PDQ Algorithm

6.1 Introduction

Given observations from a density φ(x), that is itself a mixture of two densities,

φ(x) = π φ1(x) + (1− π) φ2(x) , (6.1)

it is required to estimate the weight π, and the relevant parameters of the distributions

φ1 and φ2.

A common situation is when the distribution φ is a mixture of normal distributions

φk, each with its mean ck and covariance Σk that need to be estimated,

φk(x) =
1√

(2π)n|Σk|
exp

{−1
2 (x− ck)T Σ−1

k (x− ck)
}

, k = 1, 2. (6.2)

A well–known method for de–mixing distributions is the EM Method, [40]. The

PDQ Algorithm is a viable alternative to that method.

6.2 Estimation of Parameters in Mixtures of Distributions

For the purpose of comparison with the PDQ Algorithm, we present here in schematic

form the EM Method for a Gaussian mixture (6.1)–(6.2).

Algorithm 6.1. The EM Method.
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Initialization: given data set D with N points,

initial guesses for the parameters ĉ1, ĉ2, Σ̂1, Σ̂2,π̂

Iteration:

Step 1: For all xi ∈ D compute the “responsibilities” :

p1(xi) =
π̂φ1(xi)

π̂φ1(xi) + (1− π̂)φ2(xi)
,

p2(xi) = 1− p1(xi) .

Step 2 update the centers and covariances:

ĉk =
N∑

i=1

(
pk(xi)∑N

j=1 pk(xj)

)
xi,

Σ̂k =
N∑

i=1

(
pk(xi)∑N

j=1 pk(xj)

)
(xi − ĉk)(xi − ĉk)T , k = 1, 2

Step 3 update the mixing probabilities (weights):

π̂ =
∑N

i=1 p1(xi)
N

Step 4 stop or return to Step 1

Notes:

(a) The “responsibilities” in Step 1 correspond to the cluster membership probabilities

in Algorithm 4.1.

(b) Step 1 requires both the Mahalanobis distance (4.1) and the evaluation of the

density (6.2).

(c) Step 2 is computationally similar to Step 3 of Algorithm 4.1.

(d) The stopping rule (Step 4) is again the convergence of centers as in Algorithm 4.1.

For further details see, e.g., Hastie et al [40].

6.2.1 A Comparison of the PDQ Algorithm and the EM Method

(a) The EM Algorithm is based on maximum likelihood, and therefore depends on the
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density functions in the mix, requiring different computations for different densities.

The PDQ Algorithm is parameter free, making no assumptions about the densities,

and using the same formulas in all cases.

(b) In each EM iteration the density functions must be evaluated, requiring (in Step

1) KN function evaluations, where K is the number of densities in the mixture. In

comparison, the PDQ iterations are cheaper, requiring no function evaluations.

(c) Because the EM iterations are costly, it is common to use another method, e.g., the

K–means method, as a preprocessor, to get closer to the centers before starting EM.

The PDQ Algorithm need no preprocessing, and works well from a cold start.

(d) If correct assumptions are made about the mixing distributions, then the EM

method has an advantage over the PDQ method, as illustrated in Example 6.3 be-

low.

(e) While the numerical comparison of the two algorithms should best be done by oth-

ers, our preliminary tests show the two algorithms to be roughly equivalent in terms of

the returned results, with the PDQ Algorithm somewhat faster.

6.3 Numerical Examples

In Examples 6.3–6.3 below the PDQ and EM Algorithms were applied to the same

data, in order to compare their performance. The results are reported in Tables 6.1–

6.4. These examples are typical representatives of many numerical tests we did.

Both programs used here were written in MATLAB, the EM code by Tsui [81], and

the PDQ code by the first author.

The comparison is subject to the following limitations:

(a) The EM program code [81] uses the K–means method (Hartigan [39]) as a prepro-

cessor to get a good start. The number of iterations, and running time, reported for

this program (in Table 6.4) is just for the EM part, not including the preprocessing by

the K–means part.
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True Parameters The PDQ Algorithm The EM Method
(Algorithm 4.1) (Algorithm 6.1)

Centers µ1=(2 , 0) ĉ1=(2.0036 , -0.0542) ĉ1=(2.0011 , -0.0284)
µ2=(3 , 0) ĉ2=(2.9993 , -0.0010) ĉ2=(3.0033 , -0.0018)

Covariance Σ1=

(
0.0005 0

0 0.5

)
Σ̂1=

(
0.0004 −0.0001
−0.0001 0.0446

)
Σ̂1=

(
0.0004 −0.0001
−0.0001 0.0442

)

Matrices

Σ2=

(
0.0402 0.0014
0.0014 0.0430

)
Σ̂2=

(
0.0399 −0.0020
−0.0020 0.0432

)
Σ̂2=

(
0.0398 −0.0020
−0.0020 0.0431

)

Weights (0.0909 , 0.9090) (0.0932 , 0.9068) (0.0909 , 0.9091)

Table 6.1: A comparison of methods for the data of Example 4.1

(b) Our PDQ code is the first, un–finessed version, a verbatim implementation of Al-

gorithm 4.1.

(c) The number of iterations depends on the stopping rule. In the PDQ Algorithm, the

stopping rule is Step 4 of Algorithm 4.1, and the number of iterations will increase the

smaller is ε. In the EM Algorithm the stopping rule does involve also the convergence

of the likelihood function, and the effect of the tolerance ε is less pronounced.

(d) The number of iterations depends also on the initial estimates, the better the esti-

mates – the fewer iterations will be required. In our PDQ code the initial solutions can

be specified, or are randomly chosen. The EM program gets its initial solution from its

K–means preprocessor.

Example 6.1. Algorithms 4.1 and 6.1 were applied to the data of Example 4.1. Both

algorithms give good estimates of the true parameters, see Table 6.1. The comparison

of running time and iterations is inconclusive, see Table 6.4.

Example 6.2. Consider the data set shown in Figure 6.1. The points of the right

cluster were generated in a circle of diameter 1.5 centered at µ1 = (1, 0), using a radially

symmetric distribution function, Prob{‖x−µ1‖ ≤ r} = (4/3) r, and the smaller cluster

on the left was similarly generated in a circle of diameter 0.1 centered at µ2 = (0, 0).

The ratio of sizes is 1:20.

The EM Method gives bad estimates of the left center, and of the weights, see Table

6.2 and the right panel of Figure 6.2. The estimates provided by the PDQ Algorithm

are better, see Figure 6.2, left panel.
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Figure 6.1: Data set of Example 6.2
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Figure 6.2: A comparison of the PDQ Algorithm (left), and the EM Method (right)

The EM Method also took longer, see Table 6.4. In repeated trials, it did not work

for ε = 0.1, and sometimes for ε = 0.01.

Example 6.3. Consider the data set shown in Figure 6.3, left. It consists of three

clusters of equal size, 200 points each, generated from Normal distributions N(µi, Σi),

with parameters µi, Σi given in the left column of Table 6.3. A similar example appears

as Fig. 9.6 in Tan et al, [78, p. 593].

As noted in section 6.2.1(d), if the assumptions on the mixing distributions are

justified, the EM Method gives good estimates of the relevant parameters. The PDQ

Algorithm, does not require or depend on such assumptions, and still gives decent

estimates. This is illustrated in Table 6.3.
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True Parameters The PDQ Algorithm The EM Method
(Algorithm 4.1) (Algorithm 6.1)

Centers µ1=(0,0) ĉ1=(0.0023 ,-0.0022) ĉ1=(0.5429 ,-0.0714)
µ2=(1,0) ĉ2=(1.0080 , 0.0063) ĉ2=(1.0603 , 0.02451)

Weights (0.0476 , 0.9524) (0.0534 , 0.9466) (0.1851 , 0.8149)

Table 6.2: A comparison of methods for the data of Example 6.2
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Figure 6.3: The data of Example 6.3 (left) and level sets of the joint distance function
(right)

True Parameters The PDQ Algorithm The EM Method
(Algorithm 4.1) (Algorithm 6.1)

Centers µ1=(0 , 1) ĉ1=(0.0053 , 1.0239) ĉ1=(0.0049 , 0.9916)
µ2=(1 , 0.7) ĉ2=(0.9604 , 0.7146) ĉ2=(0.9855 , 0.6939)
µ3=(1 , 1.3) ĉ3=(1.0735 , 1.2748) ĉ3=(1.0376 , 1.3083)

Covariance Σ1=

(
0.01 0
0 0.1

)
Σ̂1=

(
0.0134 −0.0006
−0.0006 0.1074

)
Σ̂1=

(
0.0091 −0.0018
−0.0018 0.1059

)

Matrices

Σ2=

(
0.1 0
0 0.01

)
Σ̂2=

(
0.0828 0.0023
0.0023 0.0117

)
Σ̂2=

(
0.1012 0.0053
0.0053 0.0122

)

Σ3=

(
0.1 0
0 0.01

)
Σ̂3=

(
0.0907 −0.0040
−0.0040 0.0123

)
Σ̂3=

(
0.0981 −0.0005
−0.0005 0.0090

)

Weights (0.333 , 0.333 , 0.333) (0.3297 , 0.3345 , 0.3358) (0.3318 , 0.3351 , 0.3331)

Table 6.3: A comparison of methods for the data of Example 6.3



81

PDQ Algorithm EM Algorithm
Example ε Iterations Time (sec.) Iterations Time (sec.)

Example 4 0.01 5 3.32 1 1.783
0.1 2 1.42 1 1.682

Example 5 0.01 8 3.89 55 37.73
0.1 2 1.02 9 7.28

Example 6 0.01 11 2.29 7 3.28

Table 6.4: Summary of computation results for 3 examples. See section 6.3(a) for
explanation of the EM running time and iterations count.
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Chapter 7

Multi–facility Location Problems

7.1 Introduction

A location problem is to locate a facility, or facilities, to serve optimally a given set of

customers.

The customers are given by their coordinates and demands. The coordinates are

points a in Rp (usually n = 2), and the demands are positive numbers w.

Assuming N customers, the data of the problem is a set of points (coordinates)

X = {x1,x2, . . . ,xN} in Rp and a corresponding set of positive weights (demands)

{w1, w2, . . . , wN}.
We use the Euclidean norm in Rp

‖u‖ = 〈u,u〉1/2, (7.1)

with 〈 · , · 〉 the standard inner product, and the Euclidean distance

d(x,y) = ‖x− y‖ , (7.2)

between any two points x,y in Rp.

If the customers are served by one facility located at c, then the weighted sum of

distances travelled by all the customers is

N∑

i=1

wi ‖c− xi‖ .

The Fermat–Weber location problem is to find the point c that minimizes the
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above expression, i.e.,

min
c∈Rp

N∑

i=1

wi ‖c− xi‖ , (7.3)

see the survey in [26].

If the customers are served by K facilities, for given K, we denote by Xk be the

set of customers allocated (or assigned) to the k th– facility. Then the weighted sum of

distances travelled by these customers is

∑

xi∈Xk

wi ‖ck − xi‖

where ck is the location of the k th– facility.

Given the customers X = {x1, . . . ,xN}, their demands {w1, . . . , wN} and an integer

1 < K < N , the Location–Allocation Problem (LAP) (also Multi–Facility Lo-

cation Problem) is to determine the locations {c1, . . . , cK} of the facilities, and the

allocations X1, . . . ,XK of customers to these facilities, so as to minimize the weighted

sum of distances travelled by all the customers,

min
c1,...,cK

min
X1,...,XK

K∑

k=1

∑

xi∈Xk

wi ‖ck − xi‖ . (7.4)

The allocation sets Xk are a disjoint partition of X ,

X = X1 ∪ · · · ∪ XK , Xk ∩ Xt = ∅ if k 6= t . (7.5)

Since the points in Xk are served by the same facility ck, we expect them to be in the

proximity of that facility, and therefore close to each other. Similarly, points served by

different facilities need not to be neighbors and in general are not. Using the terminology

of Clustering Theory, the allocation sets {Xk : k = 1, . . . ,K} are clusters in X , i.e., a

disjoint partitions of X , where each set consists of nearby points.

The Location–Allocation Problem (7.4) is therefore closely related to the Cluster-

ing Problem, of partitioning the set X into K clusters, where the locations of the

facilities are at the centers of the clusters.
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In some situations there are upper bounds (capacities) on the demands that a facility

can handle. If the k th facility has capacity Qk, then the sum of demands allocated to

it cannot exceed it,
∑

xi∈Xk

wi ≤ Qk . (7.6)

The Capacitated LAP (CLAP) is a problem (7.4) with some capacity constraints like

(7.6). In CLAP it may be necessary to split the demand of a customer between two or

more facilities, so it is no longer the case that each customer takes all his business to

the nearest facility.

7.2 The Fermat–Weber location problem

The problem is to find a point c in Rn that minimizes

f(c) =
N∑

i=1

wi ‖c− xi‖ , (7.7)

the sum of the weighted Euclidean distances between the customers xi and the facility

c. The gradient of f

∇ f(c) =
N∑

i=1

wi
c− xi

‖c− xi‖ (7.8)

exists for all c 6∈ X . A point c∗ is optimal iff 0 ∈ ∂f(c∗), which reduces to ∇f(c∗) = 0

if f is differentiable at c∗. It follows then from (7.8) that c∗ is a convex combination of

the points of X ,

c∗ =
N∑

i=1

λi(c)xi , (7.9)

with weights

λi(c) =
wi ‖c− xi‖−1

N∑
j=1

wj ‖c− xj‖−1

. (7.10)

The Weiszfeld Method [82] for solving this problem is an iterative method with

updates

c+ :=
N∑

i=1

λi(c)xi , (7.11)
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giving the next iterate c+ as a convex combination, with weights λi(c) computed by

(7.10) for the current iterate c. Note that λi(c) is undefined if c = xi. If the Weiszfeld

iterates converge to a point c∗, then x∗ is optimal by (7.9).

The Weiszfeld method is the best–known method for solving the Fermat–Weber

location problem, see the history in [60, section 1.3] and [26].

7.3 The Probabilistic Location-Allocation Problem and a Weiszfeld

Method for the Approximate Solution of LAP

The Weiszfeld method, (7.11), expresses the facility location as a convex combination

of the customers’ coordinates.

The extremal principle (3.15) (see, chapter 3) is given for K clusters as,

min
N∑

i=1

(
d1(xi) p1(xi)2 + d2(xi) p2(xi)2 + · · ·+ dK(xi) pK(xi)2

)
(7.12)

s.t. p1(xi) + p2(xi) = 1

p1(xi), p2(xi) ≥ 0

When K = 1, it reduces to

min
N∑

i=1

‖c− xi‖ ,

where the probabilities are all 1 and therefore of no interest, and the centers coincides

with the Weiszfeld center (7.9),

c =
N∑

i=1




u(xi)
N∑
j=1

u(xj)


xi ,where u(xi) =

1
‖c− xi‖ . (7.13)

For K > 1 the center formulas (7.14) represent each facility as a convex combination

of the customers’ coordinates, which is a generalization of the Weiszfeld formula for
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several facilities.

ck =
N∑

i=1




uk(xi)
N∑
j=1

uk(xj)


xi , where uk(xi) =

pk(xi)2

‖c− xi‖ . (7.14)

e.g., for K = 2,

c1 =
N∑

i=1




u1(xi)
N∑
j=1

u1(xj)


xi , c2 =

N∑

i=1




u2(xi)
N∑

j=1
u2(xj)


xi ,

where

u1(xi) =
d2(xi)2/d1(xi)

(d1(xi) + d2(xi))2
, u2(xi) =

d1(xi)2/d2(xi)
(d1(xi) + d2(xi))2

.

Thus the D-Clustering Algorithm (see chapter 3) is an extension of Weiszfeld’s

Method when it is applied to solve LAP.

7.3.1 The Capacitated Location Allocation Problem

In PDQ method presented in chapter 4, the cluster size qk serves as the facility capacity.

Similar to (7.14), the center formulas are the convex combination of the customer

locations with weights including not only the distance but also the capacity of the

facility.

ck =
N∑

i=1

( uk(xi)
N∑
j=1

uk(xj)

)
xi , where uk(xi) =

pk(xi)2 qk

dk(xi, ck)
,

e.g., for K = 2,

u1(xi) =

(
d2(xi,c2)

q2

)2
q1

d1(xi,c1)(
d1(xi,c1)

q1
+ d2(xi,c2)

q2

)2 , u2(xi) =

(
d1(xi,c1)

q1

)2
q2

d2(xi,c2)(
d1(xi,c1)

q1
+ d2(xi,c2)

q2

)2 ,
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Thus PDQ method is an extension of the Weizsfeld Method where the cluster sizes

resemble the facility capacities and normalize the distances. The PDQ algorithm pre-

sented in chapter 4 solves the Capacitated LAP’s and gives the approximate solutions.

When capacity values are given, the PDQ Algorithm simplifies further, see section 4.3,

note (c). This is illustrated in Example 7.3 and Figure 7.3 below.

7.4 Numerical Examples

Examples 7.1 and 7.2 illustrate the D-Clustering Algorithm for solving LAP’s.

Example 7.1. (Cooper, [21] p. 47) It is required to locate 3 facilities to serve the

following 15 customers and there is no capacity constraints for the facilities.

Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x–coordinate 5 5 5 13 12 13 28 21 25 31 39 39 45 41 49
y–coordinate 9 25 48 4 19 39 37 45 50 9 2 16 22 30 31

Table 7.1: Data for Example 7.1

These data points are shown in Fig. 7.1(a). The PDQ algorithm, with ε = 0.001 (in

Step 4), required 14 iterations to determine the three clusters, with approximate centers.

The final centers, computed after the clusters were determined (see Remark 3.4(e)), are

shown in Fig. 7.1(b). In the top left cluster, the facility practically coincides with one

of the customers.

Example 7.2. Fig. 7.2 shows a data set with N = 1000 random points in [−10, 10]2,

representing the customers. It is required to locate K = 4 facilities to serve the cus-

tomers. The algorithm starts with 4 random initial locations (centers.) Using different

symbols: o, x, +, * for 4 clusters, Figure 7.2(a) illustrates the convergence from arbitrary

initial points. The final clusters, obtained by truncating the cluster probabilities, allow

better estimates of the facilities locations (centers), see Remark 3.4(e). Figure 7.2(b)

shows the final clusters and facilities.

Example 7.3. Consider the same 1000 random data points of Example 7.2, and 4

facilities with capacities given in percentages as 35%, 25%, 15%, and 25% of the total
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Figure 7.1: Illustration of Example 7.1
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Figure 7.2: Results for Example 7.2

demand. The PDQ Algorithm starts with 4 random initial facilities (centers). Fig-

ure 7.3(a) shows the level sets of the JDF computed by the PDQ algorithm, and Fig-

ure 7.3(b) shows the final facilities and their clusters.
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Figure 7.3: Results for Example 7.3
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Chapter 8

Clustering with Similarity Data

8.1 Introduction

Many applications use similarity data, see section 2.2.6. Two examples of this type are

considered below.

8.2 The Liberal-Conservative Divide of the Rehnquist Court

The Rehnquist Supreme Court was analyzed by Hubert and Steinley in [45], where

the justices were ranked as follows, from most liberal to most conservative.

Liberals Conservatives

1. John Paul Stevens (St) 5. Sandra Day O’Connor (Oc)

2. Stephen G.Breyer (Br) 6. Anthony M. Kennendy (Ke)

3. Ruth Bader Ginsberg (Gi) 7. William H. Rehnquist (Re)

4. David Souter (So) 8. Antonin Scalia (Sc)

9. Clarence Thomas (Th)

The data used in the analysis is a 9× 9 similarity matrix, giving the percentages

of non-unanimous cases in which justices agreed, see Table 8.1 (a mirror image of 8.1

in [45], listing the disagreements.)

Hubert and Steinley used two methods, unidimensional scaling (mapping the

data from R9 to R), and hierarchical classification, see [45] for details.

We applied our method to the Rehnquist Court, with Justices represented by points

x in R9 (the columns of Table 8.1), using the Euclidean distance in R9. Our results are

given in the following table, listing the clusters and their membership probabilities.
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St Br Gi So Oc Ke Re Sc Th
1 St 1.00 .62 .66 .63 .33 .36 .25 .14 .15
2 Br .62 1.00 .72 .71 .55 .47 .43 .25 .24
3 Gi .66 .72 1.00 .78 .47 .49 .43 .28 .26
4 So .63 .71 .78 1.00 .55 .50 .44 .31 .29
5 Oc .33 .55 .47 .55 1.00 .67 .71 .54 .54
6 Ke .36 .47 .49 .50 .67 1.00 .77 .58 .59
7 Re .25 .43 .43 .44 .71 .77 1.00 .66 .68
8 Sc .14 .25 .28 .31 .54 .58 .66 1.00 .79
9 Th .15 .24 .26 .29 .54 .59 .68 .79 1.00

Table 8.1: Similarities among the nine Supreme Court justices

Cluster Justice Membership
Probability

Liberal Ruth Bader Ginsburg 0.8685
David Souter 0.8390
Stephen Breyer 0.7922
John Paul Stevens 0.7144

Conservative William Rehnquist 0.8966
Anthony Kennedy 0.7540
Clarence Thomas 0.7220
Antonin Scalia 0.7173
Sandra Day O’Connor 0.6740

Table 8.2: The liberal–conservative divide of the Rehnquist Court

The membership probability of a Justice in a cluster is, by equation (3.6), propor-

tional to the proximity to the cluster center, and is thus a measure of the agreement of

the Justice with others in the cluster.

Since not all non–unanimous cases were equally important, or equally revealing of

ideology, we should not read into these probabilities more than is supported by the data.

For example, Justice Kennedy (probability 0.7540) is not “more conservative” than Jus-

tice Scalia (probability 0.7173), but perhaps “more conformist” with the “conservative

center”.

Similarly, Justice Stevens, ranked “most liberal” in [45], is in our analysis the “least

conformist” in the liberal cluster.
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Overall, the liberal cluster is tighter, and more conformist, than the conservative

cluster.

8.3 Country Dissimilarities

This example is presented in [40], page 469. The data (taken from [56]) comes from a

study in which political science students were asked to provide pairwise dissimilarity

measures (1–10) for 12 countries. The average dissimilarity scores are given in the

following table. The abbreviations used here are

BEL: Belgium

BRA: Brazil

CHI: China

CUB: Cuba

EGY: Egypt

FRA: France

IND: India

ISR: Israel

USA: United States of America

USS: The Soviet Union, now Russian Federation

YUG: Yugoslavia, now Serbia

ZAI: Zaire, now Democratic Republic of Congo.

We construct the corresponding similarity matrix by subtracting each entry from

10. We run the D-clustering algorithm for 3 clusters. The membership function values

for each data point are listed in table 8.4. Final clusters are formed based on the highest

membership function values of the data points. Cluster-1 is { BEL, FRA, ISR, USA},
cluster-2 is {BRA, EGY, IND, ZAI} and cluster-3 is {CHI, CUB, USS, YUG}.

Although EGY is in the second cluster with BRA,IND, ZAI, it is also close to the

first cluster. It almost falls about halfway between two clusters.
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BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG ZAI
BEL 0 5.58 7 7.08 4.83 2.17 6.42 3.42 2.5 6.08 5.25 4.75
BRA 5.58 0 6.50 7 5.08 5.75 5 5.5 4.92 6.67 6.83 3
CHI 7 6.5 0 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.5 6.08
CUB 7.08 7 3.83 0 5.83 6.92 6 6.42 7.33 2.67 3.75 6.67
EGY 4.83 5.08 8.17 5.83 0 4.92 4.67 5 4.5 6 5.75 5
FRA 2.17 5.75 6.67 6.92 4.92 0 6.42 3.92 2.25 6.17 5.42 5.58
IND 6.42 5 5.58 6 4.67 6.42 0 6.17 6.33 6.17 6.08 4.83
ISR 3.42 5.5 6.42 6.42 5 3.92 6.17 0 2.75 6.92 5.83 6.17
USA 2.5 4.92 6.25 7.33 4.5 2.25 6.33 2.75 0 6.17 6.67 5.67
USS 6.08 6.67 4.25 2.67 6 6.17 6.17 6.92 6.17 0 3.67 6.5
YUG 5.25 6.83 4.5 3.75 5.75 5.42 6.08 5.83 6.67 3.67 0 6.92
ZAI 4.75 3 6.08 6.67 5 5.58 4.83 6.17 5.67 6.5 6.92 0

Table 8.3: Dissimilarity matrix for countries

Probability-1 Probability-2 Probability-3
BEL 0.69398 0.17810 0.12793
FRA 0.71699 0.16032 0.12270
ISR 0.52237 0.27169 0.20594
USA 0.66277 0.19733 0.13990
BRA 0.20590 0.62920 0.16490
EGY 0.35136 0.39239 0.25625
IND 0.26331 0.43734 0.29935
ZAI 0.17042 0.68736 0.14222
CHI 0.22799 0.27278 0.49923
CUB 0.15209 0.17664 0.67127
USS 0.11936 0.13206 0.74857
YUG 0.23153 0.23433 0.53414

Table 8.4: The membership function values and the final clusters of the countries
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Chapter 9

Determining The Spatial Clusters Of Accidents

9.1 Introduction

This chapter deals with determining the spatial clusters of accidents along a contin-

uous highway using different objectives. Identifying such spatial clusters of accidents

according to different objectives can provide useful insights to various operational and

safety issues.

The knowledge of the spatial clusters of accidents can be advantageous in the fol-

lowing applications:

(1) Incident management: Incidents are random events such as vehicle crashes,

spilled loads and hazardous materials, vehicle disablement and other random activities

that disrupt traffic flow. Timely detection, verification and clearance of incidents are

of utmost importance, not only for minimizing congestion, but also for reducing the

number of fatalities [69].

Within the incident management context, location of emergency service depots,

the number of patrolling units and their patrolling area, and the optimal locations of

tow-truck facilities are important factors that affect the incident clearance time [68].

Incident clearance is more efficient, when the responders are located closer to the inci-

dent locations. Furthermore, the location and the number of traffic surveillance units

such as roadside detectors, closed-circuit cameras and call boxes also affect the incident

detection time. Thus, it is beneficial to deploy this kind of equipment at locations

where concentration of future incidents is expected to be highest.

(2) Accident prevention and mitigation: Traffic agencies can undertake different

safety measures to reduce or eliminate incidents by identifying the features that makes
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roadway segments hazardous [20, 64]. The important step is to determine which road

segments require safety treatments the most. As the network size increases, the process

of identifying such hot spots and prioritizing them can be an infeasible task. It is

therefore useful for the agencies to automatically generate incident “hot spot” and

identify their characteristics for more timely and effective safety considerations.

(3) Travel time variability: Travel time variability has emerged as a new perfor-

mance measure in traffic networks. Knowing approximately how long it would take

to travel between specific points is very important information for almost all drivers.

Empirical evidence shows that the major cause of travel time variability is traffic in-

cidents, including major accidents that block traffic lanes [19]. However, estimating

travel time variability is not a simple task. There have been studies that have investi-

gated which segments of the network and how many to select to measure travel time

variability [6,75,84]. The proposed methodology can give useful guidelines as to where

to measure travel time variability in a large-scale network.

Although vehicle crashes are random and non-recurrent events, the analysis of his-

torical data shows that the frequency of vehicle crashes in space show high spatial

correlation from one year to another.

In this chapter, we propose that given the network and traffic characteristics there

exists an optimal spatial distribution of accident clusters along a continuous highway.

Historical crash datasets can be analyzed to determine the location of these accident

clusters and thus to gain valuable insight to various traffic management and safety

issues describe above.

New Jersey Turnpike (NJTPK) is selected as the study network due to the avail-

ability of extensive vehicle crash dataset and the authors familiarity with the facility.

However, similar datasets are readily available for most of the highways in many States,

which makes the proposed approach readily applicable to almost all types of highways

in the US.
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9.2 Determining Accident Clusters For Different Objectives

The proposed formulation allows the variation of cluster configurations with different

weights of each data point. Through the use of weight, it is possible to build clusters

for different objectives of interest. For example, for accident mitigation and reduction

purposes, analysts would be more interested in finding clusters of severe accidents and

implement measures to alleviate the number of accidents. The proposed algorithm

will be capable of build such clusters by changing the associated weight or assigning

more weight to this objective. This is a unique feature of our proposed clustering

algorithm that goes beyond well-known, but more limited “hot spot” identification

methods mainly based on the frequencies.

9.3 Numerical Analysis

This section undertakes the problem of identifying accident clusters discussed before.

The proposed clustering approach is tested using historical crash data available for

NJTPK. The feasibility of the clustering approach is quantified based on the objective

function of the clustering algorithm (refer:chapter-3).

9.3.1 Study Network and Data Description

NJTPK is a 148-mile toll facility. Toll collection is performed using a closed-ticked

system. Each interchange in the facility has entry and exit toll plazas. Vehicles enter

the facility at an interchanges entry toll plaza, and when they leave facility at another

interchange they pay the toll, which is based on their entry interchange. There exist

29 operational interchanges in NJTPK with average daily traffic exceeding 500,000

vehicles. It is one of the principal north-south highway corridors in New Jersey. It is

a direct connection between Delaware Memorial Bridge in the south and the George

Washington Bridge, Lincoln Tunnel and Holland Tunnel to the New York City in the

north. Figure 9.1 shows the NJTPK map.

The available database includes vehicle crash records between 2003 and 2005. These

records are based on the reports filled out by police officers at the accident scene. Each
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Figure 9.1: New Jersey Turnpike

record involves accident specific information such as time, day and location of the

accident, how many vehicles involved, vehicle type, the degree of severity and property

damage, crash type, etc.

For the brevity of the analysis, only the crashes that occurred on the mainline

between interchange 1 and interchange 14 are considered. At the north of interchange

14 traffic splits up to easterly and westerly roadways, and at the east the traffic extends

to Easter spur which leads to New York City. The same procedure as shown here can

be repeated for the sections at the north and east of interchange 14.

Table 1 shows the summary of accidents that occurred between interchange 1 and

14.

It should be mentioned the number of accidents in NJTPK becomes higher towards

the northern part of the network. For example, the total number of accidents between

interchange 11 and 14 comprise of 30% of all accidents in the network. This is directly

related to the higher traffic flow at the northern links. It is reasonable to assume that

accident occurrence is more probable where there is higher number of vehicles traveling

on a link.
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2003 2004 2005
Accidents 3,377 3,375 3,366
Number of Vehicles 5,884 5,890 5,844
Passenger Cars 4,872 4,754 4,699
Trucks 953 1,085 1,091
Buses 48 43 46
Motorcycles 11 8 8
Fatality Accidents 17 13 10
Injury Accidents 865 756 740
Property Damage Accidents 2,495 2,606 2,616
Number of Fatalities 20 12 15
Number of Injuries 1,448 1,300 1,152

Table 9.1: Summary of NJTPK accident database between interchange 1–14

9.3.2 Results

State agencies are always interested in a number of incident related decisions such as

prioritizing highest locations of accident concentration, or determination of the optimal

number and location of depot or the emergency response team or determining optimal

number and locations of traffic surveillance units for incident detection. Let us take

the first problem of the prioritization of 5 of the most serious hot spots (clusters)

with the ultimate goal of implementing engineering improvements. Figure 9.2(a) shows

the clustering results of this prioritization for years 2003, 2004 and 2005, where each

accident data point is regarded as identical (has the same weight), i.e. wi = 1 where wi

is the weight of accident-i. It can be observed from the results that the cluster centers

do not fluctuate substantially for different years. The figure also shows with shaded

area the sections within which accidents have more than 70% probability of being in

the selected cluster, i.e. pk(x) >= 0.70. These areas can be named as the “hot-spots”

or “points of interest” on the network.

The result that cluster centers do not vary substantially can be attributed to the

similar spatial distribution of accidents for different years. A simple analysis of accident

locations for three years shows that the correlations between the accidents frequencies

by location are 0.976 between years 2005 and 2004, 0.975 between years 2005 and 2003,

and 0.983 between years 2004 and 2003.
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The probability of a crash at a given traffic facility is directly related to the number

of conflict points. While conflict events differ for each traffic facility, the most common

conflict events for freeways are merging flows, following flows, adjacent flows and evasive

maneuvers. It is reasonable to expect accident occurrence rates obtained from historical

crash data over years follow the accident occurrence probabilities at these locations. For

example, accidents on US Route 1 in New Jersey are analyzed between 2001 and 2004.

The data were extracted from the online accident database obtained from the New

Jersey Department of Transportation [67]. The analysis shows that the frequencies

of accidents by location show a similar pattern for different years. The correlation

coefficients of these frequency data for different years fall between 0.97 and 0.99. These

similarities in the frequency plots suggest that although accidents are random events,

accident frequencies follow a pattern for a given traffic facility.

The fact that cluster centers do not vary much eliminates the question if the con-

figuration of segments based on one year of data would fail for subsequent years.

9.3.3 Weighing Accidents

Each accident has different characteristics. One would expect that certain type of

accidents have bigger impacts on traffic flow. This impact depends on several factors,

of which are the number of vehicles and the type of vehicles involved in the accident.

On the other hand, certain accidents are more severe than others due to the number of

fatalities and injuries involved. Clearly, if one would like to weigh accidents, the purpose

of weighing should be clearly defined. Here, two different objectives are considered. One

is the impact of an accident on traffic flow, and the latter is the severity of accident.

Based on our correspondence with the NJTPK traffic operations group, the following

accident weighting functions are formulated.

WI = 10NT + 10NB + NPC + 0.5NM (9.1)

WII = 7NF + 3NMajInj + 2NMinInj + NSI (9.2)
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Where, NT , NB, NPC , NM are the number of trucks, buses, passenger cars and mo-

torcycles involved in the accident, respectively; and NF , NMajInj , NMinInj , NSI are the

number of fatalities, major injuries, minor injuries and slight injuries, respectively.

Trucks and buses have higher parameter values because of (1) the possible load spills

from trucks, (2) the special towing required to remove these vehicles, and (3) the higher

number of emergency units that might be required for bus passengers.

It should be noted that these functions are by no means based on real–data. They

would not completely reflect the seriousness or severity of an accident, or its impact

on traffic flow. Nevertheless, they are based on the expertise and intuitiveness of the

authors, and are used for the sake of the analysis here.

Probabilistic Distance Clustering algorithm is performed for the accident dataset,

but this time with different weights given in equations 9.1 and 9.2. Figure 9.2(b) shows

the clustering results based on weight I. Although centers of cluster 1 and 2 are in

different locations compared to equal weight clustering, centers of cluster 3, 4 and 5

stay in approximately same locations (cluster numbers are in increasing order from left

to right).

Figure 9.2(c) shows the results based on weight II. The center locations, in particular

of cluster 1 and 2, appear in different locations compared to the locations in equal weight

and weight I results.

9.3.4 Discussion

As mentioned earlier, the configuration of clusters depends on “the objective” of the

analysis. The variation of cluster configurations with different weights has useful in-

sights for various applications of interest. For example, for accident mitigation and

reduction purposes, analysts would be more interested in finding clusters of severe ac-

cidents (weight II), and implement measures to alleviate the number of accidents. In

some cases, low–cost design implementations, such as proper signage, markings to chan-

nelize traffic or variable speed limits can reduce certain type of accidents. Similarly, for

more efficient incident management strategies, the agency would be interested in find-

ing clusters of higher number of vehicles involved (weight I) for optimally locating tow
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truck depots to reduce incident clearance times. Furthermore, clusters based on equal

weight can be utilized for locating traffic surveillance units, such as roadside detectors

or cameras for faster incident detection.

Similar analysis can be repeated with different variables to identify certain accident

characteristics. For example, if the planners analysts are specifically concerned with re-

ducing accidents that involve sideswiped or overturned vehicles, due to their high effect

on congestion then clusters of that type of accidents can be determined by adjusting the

weights of accident data points accordingly. Similarly, traffic operation center might be

only interested in accidents during peak–time periods since their impact on traffic flow

during those times is higher. Then higher weight wican be associated with peak–time

accidents. This is very unique and useful feature of our proposed algorithm and will be

further studied in the future.

9.3.5 Determining the Optimum Number of Segments

In the analysis results presented above, only 5 roadway segments were considered.

However, it is highly desirable to determine the optimum number of segments (clusters)

that needs to be considered.

The clustering approach is also well suited for this purpose. Clustering procedure

can be terminated when the cumulative gain from clustering becomes minimal. Here,

we associate the marginal gain with the percent decrease in the value of the objection

function by an additional cluster (see Chapter-7).

Figure 9.3 demonstrates the marginal gain versus the number of segments for each

three cases, namely accident points with no weight, weight I and weight II. It can be

observed that as the number of clusters increases, the marginal gain of adding a cluster

decreases. It should be reasonable to terminate the process of adding new clusters,

where the marginal gain is below a pre–determined threshold.

A flattening at each curve begins at 8–cluster solution ( 14%), and the curves become

essentially flat after 18–cluster solution (< 4%). It should be clear that the marginal

gain would converge to zero for each case, as the number of clusters approach the

number of data points.
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(a) Data points with equal weights

(b) Data points with weight I

(c) Data points with weight II

Figure 9.2: Clustering results for K = 5 with different weights of data points
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Figure 9.3: Marginal gain of clustering

Here the optimal number of cluster depends on the analyst. If we determine that

10% is the threshold, then for each of the three cases, 13–cluster solution becomes the

optimal number, since threshold for the 14–cluster solutions for each case is lower than

10% (8.3%, 8.7%, 8.9% for equal weight, weight I and weight II, respectively).

Figure 9.4 shows the configuration of cluster center and boundaries for 13–cluster

solution of equal weights, weight I and weight II. It can be seen that the discrepancy

between different weights are clearer in this figure. In particular, within the northern

sections of the mainline i.e. between interchanges 7A and 14, there appears higher num-

ber of clusters as compared to the southern sections. This can be related to the higher

volumes and therefore more number of accidents occurring in the northern sections of

the network.

An interesting observation in Figure 9.4 is the concentration of accidents around

interchange 8 and 8A for each three cases. Although the average annual daily traffic of

this section is not as high as the section at its north, there is more number of clusters

within this region. Indeed, this portion has a 2,400 ft mainline merging section that

drops from 5–lanes to 3–lanes. Not only does 11 this segment experience congestion

due to merging, but it also has high number of accidents per length. In fact, recently,

the NJTPK authority has proposed the widening of the Turnpike between interchange
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6 and 8A.

Figure 9.4: Optimal configuration of clusters for K = 13

Similarly, other locations with high density of clusters in the northern sections can

be further investigated to understand the characteristics of the roadway and alleviate

accidents by various means.

An interesting comparison is the comparison of homogeneous segments as deter-

mined by the clustering approach and the predefined segments on the mainline. By

predefined segments, we mean links between each interchanges, such as 1–2, 2–3, 8–

8A, etc. There are 16 segments on the selected mainline of the NJTPK. Figure 9.5

shows the configuration of homogeneous segments for 16 cluster solutions of each three

cases. It can be seen that the segments configuration based on clustering approach is

substantially different from the predefined segments.

9.4 Conclusion

In this chapter, probabilistic distance clustering algorithm is applied to determine the

spatial clusters of accidents along a continuous highway using different objectives and

is tested using historical accident data.

The most important advantage of the proposed clustering approach is the ease with
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Figure 9.5: Clustering results for K = 16

which various characteristics of incidents can be incorporated. It has been shown that

for different objectives of applications, different accident characteristics play important

roles in determining the clusters. In particular, three different cases have been analyzed:

(1) incidents of equal weight, (2) number of vehicles types involved, and (3) severity

of incident. The analysis have shown that for each case, the cluster configurations

change along the roadway; but for different years, the cluster configurations remain

approximately the same. Also, within each clusters,“hot-spot”, which correspond to

concentration of accident that have high probability of belonging to each cluster, have

been identified. Finally, a simple method for determining the optimal number of clusters

have been presented using the marginal gain of the objective function.

Similar clustering analysis can be carried out for a more general and complex high-

way network. For policy makers, state agencies and planners, a map that shows “hot-

spots” of accidents according to various factors of interest can be useful for determining

which highways need to be treated to reduce accidents, or where to deploy emergency

assistance centers for better incident response. Many State Departments of Trans-

portation, including NJDOT have historical accident data. See for instance NJDOT

online crash database [67]. These dataset are based on police accident reports and have

detailed information as the database used in our analysis. Using this extensive set of
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information, a network–wide map of “hot-spots” can be generated based on any desired

objective using clustering algorithm.

Another advantage of the clustering approach is that it does not rely on predeter-

mined highway segments, such as intersections, weaving areas, between interchanges,

curvatures, etc. Analysis based on such segments already impose a space discretization

error in the results. In the context of prioritization of highways based on safety, Miaou

and Song [64] describe such methods as nave methods; and show that predetermined

highway segments are bound to prioritization errors. Thus, the method described here

can help reduce such errors. Future work will be towards the use of the proposed clus-

tering algorithm to better understand the impact of reducing these prioritization errors

in terms of the effectiveness of statewide safety decisions.
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Chapter 10

Semi–Supervised Distance Clustering

10.1 Introduction

In this chapter, we introduce a new method for semi–supervised clustering, combining

probabilistic distance clustering (see chapter 3) for the unlabelled data points and a

least squares criterion for the labelled ones.

10.2 Semi–Supervised Clustering

Given a dataset S with N points, S = {x1, · · · ,xN} ⊂ Rn, we look at two extreme

ways of clustering the data set.

In supervised clustering, a subset T ⊂ S called the training set (or labelled

data) is given, already partitioned into L disjoint clusters, say T = T1 ∪ T2 ∪ · · · ∪ TL.

At a labelled point x ∈ T , the prior information (or label) is given as the cluster

membership functions,

ri(x) :=





1, if x ∈ Ti ;

0, otherwise,
(i = 1, · · · , L) , (10.1)

or as cluster membership probabilities, i.e.,

ri(x) := Prob {x ∈ Ti} , (i = 1, · · · , L) , (10.2)
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where,

L∑

i=1

ri(x) = 1 , ri(x) ≥ 0 . (10.3)

This information is used to design a clustering rule, which is then applied to the re-

maining data, S \ T , called the testing set.

In unsupervised clustering no prior information is given, and the data set is

clustered to disjoint clusters, S = S1 ∪ S2 ∪ · · · ∪ SK , using intrinsic properties of

the data. The number of clusters K, possibly different than L, is either given or is

determined by the clustering algorithm.

In the unsupervised case we use probabilistic distance clustering, where the cluster

membership probability as at point x,

pk(x) := Prob {x ∈ Sk} , (k = 1, · · · , K) , (10.4)

depends on the distance of x from the center of the k th–cluster, see chapter 3. These

probabilities are determined by the clustering algorithm, and are in general different

than the prior probabilities (10.2).

We propose a way to combine supervised and unsupervised clustering in a para-

metric model, using a parameter 0 ≤ θ ≤ 1 that measures the reliability of the prior

information.

To simplify notation we consider here the case K = L = 2.

10.3 An Extremal Principle for Semi–Supervised Clustering

With the i th–cluster we associate a center ci, and a distance function

di(x) := ‖x− ci‖ , (10.5)
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using an elliptical norm ‖ · ‖,

‖u‖ := 〈u, Qu〉 , (10.6)

where Q is a positive definite matrix, in particular, the Euclidean norm for Q = I, and

the Mahalanobis norm for Q = Σ−1
i , where Σi is the covariance of the cluster.

Let 0 ≤ θ ≤ 1 be a parameter measuring the importance of prior information, with

θ = 1 or θ = 0 corresponding to supervised or unsupervised clustering, respectively.

For any point x in the training set T consider the problem,

min
p1,p2

(1− θ)
(
d1 p2

1 + d2 p2
2

)
+ θ

(
(p1 − r1)2d1 + (p2 − r2)2d2

)
(10.7)

s.t. p1 + p2 = 1

p1, p2 ≥ 0

where pi = pi(x) and di = di(x). The numbers ri = ri(x) are the given labels. The

role of the second half of (10.7) is to reconcile the labels (prior probabilities) ri and the

computed probabilities pi.

The Lagrangian of this problem is

L(p1, p2, λ) = (1− θ)
(
d1 p2

1 + d2 p2
2

)
+ θ

(
(p1 − r1)2d1 + (p2 − r2)2d2

)
(10.8)

+ λ (1− p1 − p2)

and zeroing the gradient (with respect to p1, p2) we get

2 (1− θ) p1d1 + 2 θ(p1 − r1) = λ ,

2 (1− θ) p2d2 + 2 θ(p2 − r2) = λ ,

and the probabilities,

p1 =
λ + 2 θ r1d1

2d1
, p2 =

λ + 2 θ r2d2

2d2
.
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The probabilities add to 1,

λ + 2 θ r1d1

2d1
+

λ + θ r2d2

2d2
= 1 ,

and therefore,

λ = 2 (1− θ)
d1d2

d1 + d2
. (10.9)

Substituting (10.9) in the probabilities,

p1 = (1− θ)
d2

d1 + d2
+ θ r1 , (10.10)

p2 = (1− θ)
d1

d1 + d2
+ θ r2 . (10.11)

10.4 Cluster Centers

For simplicity we identify the data set D with the training set T , i.e. we assume labels

for the whole data set. Then the extremal problem is

min
p1,p2

(1− θ)
∑

x∈T

(
d1 p2

1 + d2 p2
2

)
+ θ

∑

x∈T

(
(p1 − r1)2d1 + (p2 − r2)2d2

)
(10.12)

The gradient of the objective function in (10.12) w.r.t. c1 is

−∇c1 = (1− θ)
∑
x

p2
1

x− c1

d1
+ θ

∑
x

(p1 − r1)2
x− c1

d1

Zeroing the gradient, we get

∑
x

[
(1− θ)

p2
1

d1
+ θ

(p1 − r1)2

d1

]
x = c1

∑
x

[
(1− θ)

p2
1

d1
+ θ

(p1 − r1)2

d1

]
.



111

An analogous expression can be written for the gradient with respect to c2, and therefore

ck =
N∑

i=1


uk(xi)

/ N∑

j=1

uk(xj)


 xi , (10.13)

where

uk(xi) = (1− θ)
p2

k

dk
+ θ

(pk − rk)2

dk
, k = 1, 2 . (10.14)

The coefficients uk(xi) in (10.14) depend on the parameter θ. We study the behavior

of the coefficient u1(xi) in the extreme cases θ = 0 and 1. For this we calculate first,

using (10.10),

p2
1 = (1− θ)2

(
d2

d1 + d2

)2

+ 2 θ(1− θ)
d2

d1 + d2
r1 + θ2 r2

1

(p1 − r1)2 = (1− θ)2
[(

d2

d1 + d2

)
− r1

]2

Therefore,

d1 u1(xi) = (1− θ)3
(

d2

d1 + d2

)2

+ 2 θ(1− θ)2
d2

d1 + d2
r1

+ θ2(1− θ)r2
1 + θ (1− θ)2

(
d2

d1 + d2

)2

− 2 θ(1− θ)2r1
d2

d1 + d2

+ θ(1− θ)2 r2
1 . (10.15)

The value for θ = 0, and the limit as θ → 1, are respectively,

u1(xi) =





(
d2

d1 + d2

)2

/d1 , θ = 0 ,

(
r2
1

d1

)
, θ → 1 .

(10.16)

Analogous results apply to the coefficient u2(xi).
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10.5 Semi–supervised Distance Clustering Algorithm

The above ideas are implemented in Algorithm 10.1 for semi–supervised distance clus-

tering of data. A schematic description, presented – for simplicity – for the case of 2

clusters, follows.

Algorithm 10.1. Semi-supervised Distance Clustering

Initialization: given data T , any two points c1, c2, a value θ, and ε > 0

Iteration:

Step 1 compute distances d1(x), d2(x) for all x ∈ T
Step 2 compute probabilities p1(x), p2(x), using (10.10)–(10.11) for all x ∈ T
Step 3 update the centers c+

1 , c+
2 , using (10.13)–(10.14)

Step 4 if ‖c+
1 − c1‖+ ‖c+

2 − c2‖ < ε stop

return to step 1

The following two examples, illustrate Algorithm 10.1 in simulated datasets.

Example 10.1. A data set in R2 with N = 200 data points in each of two clusters is

shown in Figure 10.1, where the labels are represented by different colors. The labels

are clearly in conflict with the intrinsic clusters.

Figure 10.2 shows the clusters obtained for diffenet values of θ. In particular, for

θ = 0.1 or 0.3 (Figures 10.2(a)–10.2(b)) the prior labels are ignored. As θ increases,

the prior information becomes more important, and for θ = 0.85 (Figure 10.2(f)) the

clusters agree with the given labels.

Example 10.2. In this example, a data set in the shape of Yin–Yang symbol with

N = 500 data points is simulated (shown in Figure 10.3). Clustering results using

different θ values are presented in Figure 10.4
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Figure 10.1: Original clusters in Example 10.1
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(a) Clusters with θ = 0.10
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(b) Clusters with θ = 0.30
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(c) Clusters with θ = 0.40
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(d) Clusters with θ = 0.50
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(e) Clusters with θ = 0.70
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(f) Clusters with θ = 0.85

Figure 10.2: Clusters in Example 10.1 for different θ values



115

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 10.3: Original clusters in Example 10.2
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(b) Clusters with θ = 0.10
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(c) Clusters with θ = 0.15
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(d) Clusters with θ = 0.30
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(e) Clusters with θ = 0.60
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(f) Clusters with θ = 0.75

Figure 10.4: Clusters in Example 10.2 for different θ values
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