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ABSTRACT OF THE DISSERTATION

Asymptotic Perturbation Formulas for the Effect of

Scattering by Small Objects: an Analysis over a Broad

Band of Frequencies

By DEREK HANSEN

Dissertation Director: Michael S. Vogelius

This thesis is a study of the asymptotic perturbation formulas that result from elec-

tromagnetic (or acoustic) wave scattering by small, penetrable objects. The ultimate

purpose of these formulas is to aid in solving the inverse problem of reconstructing

small inhomogeneities embedded within an otherwise known background medium. For

simplicity, we consider the time-harmonic, transverse magnetic setting, in which case

the scalar electric field satisfies a two-dimensional Helmholtz equation.

We first derive, in the case of fixed frequency, a rigorous asymptotic formula for

the boundary field perturbation caused by small inhomogeneities of arbitrary shape

within a bounded domain. We then derive formal asymptotic formulas in the case

where frequency is allowed to grow as the size of a single, smooth inhomogeneity tends

to zero. For high frequencies, we use the technique of geometric optics to derive an

integral formula for the scattered field, which we then simplify by a stationary phase

analysis. The resulting asymptotic formula is ripe with geometric information to aid in

solving the inverse problem. In a step toward a rigorous proof of this high frequency

asymptotic formula, we prove an estimate of a Sobolev norm of the scattered field in

the case of a penetrable, though conducting, circular scatterer.
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Chapter 1

Introduction

1.1 Synopsis

The ultimate purpose of this thesis is to provide tools for solving a particular inverse

problem—that of detecting and reconstructing electromagnetic inhomogeneities of low

volume-fraction within a bounded medium. For simplicity, we consider the time har-

monic, transverse magnetic setting, in which case the scalar electric field satisfies a

two-dimensional Helmholtz equation. To solve the inverse problem of determining the

location, size and electromagnetic profile of the inhomogeneities, one may prescribe Neu-

mann boundary data—that is, apply a tangential magnetic field to the boundary—and

then measure the resulting Dirichlet data. This resulting boundary data is a pertur-

bation of what it would be were the medium flawless. The key to reconstructing the

inhomogeneities is to study this perturbation.

Recent years have seen the development of noniterative reconstruction algorithms

based on asymptotic formulas for these boundary perturbations (for a survey, see

[AK04b]). An example of such an asymptotic formula follows: Suppose a finite number

of diametrically small inhomogeneities zj + ρDj lie within a domain Ω. Here Dj is

fixed, smooth domain, and the parameter ρ is small. Suppose that, at a given time

harmonic frequency ω, the permeability and complex permittivity1 are, respectively,

the constants µ0 and ǫ0 in the background medium and the constants µj and ǫj in

the jth inhomogeneity. Then, with u0 representing the background field and uρ the

1The complex permittivity ǫ = ε+ i σ
ω
, where ε is the permittivity and σ is the conductivity.
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perturbed field,

1

2µ0
(uρ − u0)(y) +

∫

∂Ω

1

µ0
∂νxΦω(x, y)(uρ − u0)(x) dσx

=
∑

j

ρ2|Dj |
{
−
( 1

µj
− 1

µ0

)
∇xΦ

ω(zj , y) ·
(
M(zj)∇u0(zj)

)

+ ω2(ǫj − ǫ0)Φ
ω(zj , y)u0(zj)

}
+ o(ρ2)

(1.1)

as ρ → 0, uniformly in y ∈ ∂Ω. Here Φω is the free-space Green’s function for the

background Helmholtz operator and the polarization tensors2 M(zj) are independent

of the prescribed boundary data [VV00]. A similar asymptotic expansion holds for the

related scattering problem, wherein Ω = R2 and a prescribed wave ui is incident upon

the small inhomogeneities zj + ρDj . In this case,

us

ρ(y) :=(uρ − ui)(y)

=
∑

j

ρ2|Dj |
{
−
( 1

µj
− 1

µ0

)
∇xΦ

ω(zj , y) ·
(
M(zj)∇ui(zj)

)

+ ω2(ǫj − ǫ0)Φ
ω(zj , y)u

i(zj)

}
+ o(ρ2)

(1.2)

as ρ → 0 for y bounded away from the inhomogeneities. This scattering problem

distills the essence of the conditions that give rise to formula (1.1) and is generally

more amenable to study.

The aforementioned reconstruction algorithms are based on a model where frequency

ω remains fixed as the inhomogeneity shrinks, and thus are meant to be applied in

situations where ρ ≪ ω−1. But at the higher frequencies, say in the regimes where

ρ ≈ ω−1 or ρ≫ ω−1, the interaction between the incident field and the inhomogeneity

is greater. This stronger interaction transmits a stronger, and therefore more detectable,

signal to the boundary. The plots in Figure 1.1 demonstrate that for higher frequencies

the leading term of the asymptotic expansion in ρ of the field perturbation would be

on the order of
√
ρ, which is much larger than the order ρ2 that results when frequency

is fixed. This suggests that a new analysis of high frequency asymptotics should lead

2The Pólya-Szëgo polarization tensor was first defined in [SS49]. See also [PS51].
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Figure 1.1: Plots of ‖us‖L2(∂B(0,2),dθ) as a function of ω, where us is the scattered field when a
plane wave of frequency ω is incident upon a penetrable disk of radius ρ centered at the origin.
Each group of three plots corresponds to a radius of the disk. From top to bottom: ρ = 0.01,
ρ = 0.004, ρ = 0.001. For each group, the solid graph corresponds to the value ǫ1 = 3+ i within
the disk, the dotted graph to ǫ1 = 2 + 2i and the dashed graph to ǫ1 = 1 + 3i. In all cases,
µ1 = 2 and ǫ0 = µ0 = 1.

to new detection algorithms that are more robust.

In Chapter 3 we derive the following high frequency approximation formula in the

case of a plane wave propagating in the direction η and incident upon a finite collection

of smooth, convex scatterers zj + ρDj that are well separated:

us(y) ≈
∑

j



√
ρ√
2

√
sin(θj/2)

µj

µ0
sin(θj/2) −

√
ǫj

ǫ0

µj

µ0
− 1 + sin2(θj/2)

µj

µ0
sin(θj/2) +

√
ǫj

ǫ0

µj

µ0
− 1 + sin2(θj/2)

× eiρω
√

ǫ0µ0(η−(by,η
j −zj)/|by,η

j −zj |)·(y−zj)

√
K(by,ηj )

eiω
√

ǫ0µ0 |y−zj |
√
|y − zj |


 ,

(1.3)

for y bounded away from the scatterers, where 0 < θj < 2π is the counterclockwise

angle of rotation between η and y−zj , K(·) > 0 is the curvature, and by,ηj is the unique

point on the boundary ∂Dj with outward normal pointing in the opposite direction of

η− (y− zj)/|y− zj |. While not a rigorous asymptotic formula, numerical computations

show this formula to be a close approximation in the backscattered region, which, in the

case of a single convex scatterer, is the semi-infinite region bounded by the illuminated

portion of the boundary of the scatterer and by the semi-infinite rays that follow the

normal vectors at the two points on the boundary that are grazed by the incidence wave

(in other words, the points on the boundary where the normal is perpendicular to the
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direction of propagation of the incident wave). We derive this approximation in the case

of one convex scatterer by way of the technique of geometric optics [FK55]: formally

expand the amplitude and phase parts of the appropriate ansatz (Aeiωφ) in powers of

(ωρ)−1 so that the highest order terms of the incident, transmitted and scattered fields

satisfy a certain transmission problem. The solution of this transmission problem is

inserted into the Green’s representation formula for the scattered field, and we arrive

at the above approximation formula after performing a stationary phase analysis.

In the case of fixed frequency, the known asymptotic formula for the scattered field

would be just as in (1.1), except with the left-hand side replaced by us(y) and u0

replaced by the incident plane wave ui . This formula lacks detailed geometric infor-

mation about the inhomogeneities—each polarization tensor holds information about

only the average curvature of the boundary of the corresponding inhomogeneity—and

therefore has limited use for shape reconstruction. This is not surprising given that it

arises in cases where the diameter of each scatterer is small relative to the wavelength

of the incident wave, and given that the polarization tensor is completely determined

by its action upon just two (any two) non-parallel incident waves. More detailed shape

information does appears in higher order terms of this fixed frequency expansion (de-

scribed in [AK04b]), but reconstruction algorithms that depend on these terms risk

being overwhelmed by noise.

The high frequency formula (1.3), on the other hand, contains local information

about the curvature of the boundary. With multiple testing from several incident

directions, this formula may serve as the basis for new methods of shape reconstruction.

If one only seeks the location and size of the inhomogeneities, the formula (1.3) may

also prove to be, in many cases, more useful than (1.1) since it is a stronger signal by

a factor of ρ−3/2 and is thus less prone to corruption by noise.

In Chapter 4 we rigorously estimate the size of the scattered field at high frequencies

in the case of a shrinking, penetrable disk. The L2-based bounds we find are consistent

with the formula (1.3) in that they are of the order
√
ρ. Though we prove such estimates

only in the case of circular scatterers, we expect our method, based on wave equation

factoring within the scatterer, could be modified to apply to general convex domains.
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Such bounds will likely serve as a step toward a proof that formula (1.3), or a slight

modification of it, is indeed the highest order term of a true asymptotic expansion.

But before we get to this high frequency analysis, we will first prove in Chapter 2 a

general asymptotic perturbation formula in the case of fixed frequency and a bounded

domain—general in that it applies to any sequence of inhomogeneities Iρ with Lebesgue

measure tending to zero. This formula is analogous to a similar formula for the conduc-

tivity problem (cf. [CV03a, CV03b, CV04]), and, like that formula, has applications to

size estimation of the inhomogeneous set in cases where this set is small in volume but

highly irregular in shape or not small in diameter.

1.2 Background

Let ε, µ and σ denote respectively the electric permittivity, magnetic permeability and

electric conductivity with a given medium, represented as a region in R3. Maxwell’s

equations take the form

∇x × E = −µ∂tH

∇x ×H = ε∂tE + J ,

where E is the electric field, H is the magnetic field and J is the electric current, which is

the sum of the free current, Jf = σE , and any prescribed current source [Gri98, Jac99].

The time-harmonic form of the Maxwell system is

∇× E = iωµH

∇× H = (−iωε+ σ)E + J.

(1.4)

If E and H solve this system, then

E(x, t) = Re
{
E(x)e−iωt

}
and H(x, t) = Re

{
H(x)e−iωt

}
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R
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Figure 1.2: TM symmetry

are solutions to the time-dependent Maxwell’s equations, with

J = Jf + Re
{
J(x)e−iωt

}
.

Now suppose the region is a cylinder of the form Ω × R, where Ω ⊂ R2 is a simply

connected domain (possibly all of R2). If µ, ε, σ, E, H and J are independent of the

variable x3 corresponding to the axis of the cylinder, the time-harmonic Maxwell system

may be decomposed into independent systems: one satisfied by E∗ = (0, 0, E3) and

H∗ = (H1, H2, 0) with the current source term J∗ = (0, 0, J3), and the other satisfied

by E∗∗ = (E1, E2, 0) and H∗∗ = (0, 0, H3) with the current source term J∗∗ = (J1, J2, 0).

A system of the first type is called transverse magnetic, as the magnetic field is always

transverse to the axis of the cylinder (see Figure 1.2). A system of the second type is

transverse electric. We will restrict our attention to transverse magnetic systems, and

so we necessarily assume the prescribed current travels only in the direction parallel to

the axis of the cylinder: J = (0, 0, J).3 By straightforward calculations one can show

3In many models the current source is taken to be a wire, or a collection of wires, carrying electrical
current (alternating at frequency ω) parallel to the axis of the cylinder.
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the scalar electric field E :=E3 satisfies the Helmholtz equation

∇ ·
(

1

µ
∇E

)
+ ω2

ǫE = −iωJ, (1.5)

where ǫ = ε+iσω is the complex permittivity. If Ω is a bounded domain, we may specify

a unique solution to (1.5) by imposing boundary conditions as long as the homogeneous

form of (1.5) admits only the trivial solution to the corresponding problem with zero

boundary data. Prescribing the Dirichlet data E|∂Ω is equivalent to prescribing the

data E∗ × ν to the boundary of the cylinder, which is typically how Dirichlet data

are assigned to a bounded domain in R3 in the case of the full Maxwell’s equations.

Prescribing the Neumann data ∂νE is equivalent to prescribing the tangential magnetic

field to the boundary of the cylinder, as

iµωH∗ · τ = (∇× E∗) · τ = ∇E · ν.

The scattering problem. Consider now the case where Ω = R2, J = 0 and ε, µ

and σ are constant except within a bounded scatterer. For simplicity, we assume the

background conductivity, i.e., the conductivity outside the scatterer, is zero. Let ε0 and

µ0 denote the constant background coefficients. The prescribed boundary condition is

replaced with a prescribed incident wave E i(x, t) = Re
{
Ei(x)e−iωt

}
, which is usually

taken to be a plane wave Ei(x) = ξEi(x) = ξeiω
√
ε0µ0 x·η, where the polarization vector

ξ ∈ S2 is parallel to the axis of the cylindrical inhomogeneity and the propagation

direction η ∈ S2 is perpendicular to ξ. To limit the number of solutions to one, we

require that the solution field satisfy Sommerfeld’s outgoing radiation condition

(∂r − iω
√
ε0µ0)(E − Ei) = o

(
r−1/2

)
as r = |x| → ∞.

1.2.1 The inverse problem

Suppose there is a (cylindrical) inhomogeneity within the medium, which manifests as

a discontinuity in at least one of the three parameters ε, µ and σ. We are interested in
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the inverse problem of determining information about this inhomogeneity—for instance,

its size, shape, location, or EM parameters—based on measurements at the boundary.

It has been shown in the case of a bounded domain in R3 with J = 0 that, at any

fixed frequency ω that is not a resonant frequency, full knowledge of the mapping

Λω : E × ν 7→ H × ν uniquely determines ε, µ and σ within the domain, assuming

these functions are sufficiently smooth [OPS93]. In the transverse magnetic setting, Λω

is equivalent to the Dirichlet-to-Neumann map Λω : H1/2(∂Ω) → H−1/2(∂Ω), which

maps E|∂Ω 7→ σ∂νE|∂Ω. For this two dimensional problem, it can be shown that full

knowledge of Λω at two distinct frequencies is sufficient to determine the coefficients µ,

ε and ω, provided they are sufficiently smooth [GC96, VV00]. Such a result extends

what has previously been shown in the context of the related conductivity problem,

i.e.,





∇ · (σ∇U) = 0 in Ω,

U = f on ∂Ω
(
or σ∂νU = g on ∂Ω

)
,

(1.6)

where U represents the voltage potential within the bounded, simply connected domain

Ω of conductivity profile σ, and f ∈ H1/2(∂Ω) (or g ∈ H
−1/2
⋄ (∂Ω) = {u ∈ H−1/2(∂Ω) :

∫
∂Ω u dσ = 0}) is prescribed. The inverse problem of determining the interior conduc-

tivity profile σ from boundary measurements has attracted significant attention since it

was posed by Calderón in 1980 [Cal80]. Presently, it is known in two dimensions that

full knowledge of the Dirichlet-to-Neumann map Λ : H1/2(∂Ω) → H−1/2(∂Ω), which

maps the boundary voltage U |∂Ω to the boundary current σ∂νU |∂Ω, uniquely determines

the isotropic conductivity σ ∈ L∞(Ω) within the domain, so long as c−1 ≤ σ ≤ c for

some c > 0 [AP06, Nac96, BU97]. In higher dimensions, such a result is known to hold

if σ is sufficiently regular, for instance, if σ is assumed piecewise analytic [KV84, KV85],

or if σ is assumed to belong to
⋃
α>1/2C

1,α(Ω) [Bro96, SU87] (see also [Isa88] for such

a uniqueness result in certain cases when σ is assumed piecewise C2).

In the case of the scattering problem, the inverse problem is to determine the coeffi-

cients ε, µ and σ from the measurements of E away from the inhomogeneity that result
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from a number of prescribed incident waves. Typically, the measured data is modeled

as the scattering amplitude (also called the far field pattern) Es
∞ : S1 → C, which is

the unique function satisfying

(E − Ei)(x) =
eiω

√
ε0µ0 |x|
√
|x|

{
Es∞(x̂) +O

(
1

|x|

)}
as |x| → ∞,

uniformly in all directions x̂ = x/|x|. In the way of general results on the solvability

of this inverse problem, it is known that, at a fixed frequency ω, the discontinuities in

the coefficient µ, ε and σ are completely determined by knowledge of the functions Es
∞

that result from every incident plane wave eiω
√
ε0µ0 x·η, that is, by the mapping η 7→ Es∞

[SU93].4 There are other such results (see [CK98, Ch. 10] for a discussion), but we

will not dwell on these, as our objective is to find tools that will aid in the practical

problem of reconstructing the inhomogeneity.

Many algorithms for solving inverse problems for the Helmholtz equation have been

developed; see, for example, [CK98] and the references therein. But these algorithms

typically are designed to reconstruct all of the unseen interior of the object, and are

thus not well suited for the distinct problem of detecting small inhomogeneities within

an otherwise known body.

1.2.2 Asymptotic perturbation formulas: diametrically small inclu-

sions

A class of methods for solving this special inverse problem, based on asymptotic for-

mulas akin to (1.1), began with the work of Friedman and Vogelius in 1989 [FV89]. In

[FV89], the authors derived an asymptotic formula of the boundary voltage perturba-

tion due to the presence of diametrically small inhomogeneities of extreme conductivity

(perfectly conducting or perfectly insulating) within a finite body for which the positive

conductivity profile, in the absence of the inhomogeneities, is known. Later, Cedio-

Fengya, Moskow and Vogelius [CFMV98] extended this result to diametrically small

4Stronger results are known for the three dimensional acoustic scattering problem. See [CK98, Ch.
10].
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inhomogeneities of finite conductivity, and they proposed an algorithm for detecting

the locations and sizes of the inhomogeneities based on the method of least squares.

A version of the expansion in [CFMV98] is as follows: suppose the bounded domain

Ω ⊂ Rn, n = 2 or 3, has background conductivity σ0 > 0 and conductivity σj > 0

within the inhomogeneity zj + ρDj , j = 1, 2, . . . ,m. suppose u0 is the background

voltage potential and uρ is the perturbed potential that has the same Neumann data

as u0 and is normalized so that
∫
∂Ω uρ =

∫
∂Ω u0. Then for y ∈ ∂Ω,

(uρ−u0)(y)

=
∑

j

ρn|Dj |
(
σ0(zj) − σj(zj)

)
∇xN(zj , y) ·

(
Mj(zj)∇u0(zj)

)
+ o
(
ρn
)
,

(1.7)

where N is a Neumann function satisfying

∇x ·
(
σ0∇xN(x, y)

)
= −δy(x) for x ∈ Ω

σ0∂νxN(x, y) = − 1

|∂Ω| for x ∈ ∂Ω

for all y ∈ Ω, and where the polarization tensors Mj are independent of the Neumann

data.

Analogous expansions for the Helmholtz problem, such as the formula (1.1), were

then obtained [VV00] and subsequently generalized to the full, three dimensional, time

harmonic Maxwell’s system [AVV01].5 In the case of a single diametrically small inho-

mogeneity, the full asymptotic perturbation expansion (all higher integral orders of ρ)

for the conductivity problem [AK03] and the expansion for the related elasticity problem

[AKNT02] were later obtained using layer potential techniques based on those developed

in [KS96]. These techniques are easily adapted to obtain a full asymptotic expansion

for the boundary perturbation in the context of the Helmholtz problem [AK04a]. It

should be noted, however, that these techniques require the parameters—ε and µ for

the Helmholtz problem, σ for the conductivity problem—to be piecewise constant, and

5In [VV00] and [AVV01] the EM parameters were assumed to be constant in the background medium
and within each inhomogeneity. But this assumption was made for simplicity—the results therein could
be generalized to smooth parameters.
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require that σ = 0 for the Helmholtz problem.

1.2.3 Reconstruction of diametrically small inclusions using asymp-

totic formulas

We will now illustrate the utility of asymptotic perturbation formulas such as (1.1) in

solving the inverse problem of detecting and reconstructing diametrically small elec-

tromagnetic inhomogeneities from boundary measurements. Methods similar to those

discussed below for fixed frequency testing, but based instead on formula (1.3), will

undoubtedly prove to be useful for high frequency testing.

In addition to (1.1), we also have the expansion

∫

∂Ω

1

µ0

{
Eρ(∂νv) − (∂νEρ)v

}
dσ

=
∑

j

ρ2|Dj |
{
−
( 1

µj
− 1

µ0

)
∇v(zj) ·

(
M(zj)∇E0(zj)

)

+ ω2(ǫj − ǫ0)v(zj)E0(zj)

}
+ o(ρ2),

(1.8)

which holds for any v ∈ H1(Ω) that solves the background Helmholtz equation,

∇ ·
(

1

µ0
∇v
)

+ ω2
ǫ0v = 0

[AMV03] (cf. Corollary 2.22). Suppose the background parameters µ0, ε0 and σ0 are

constant and also that the parameters µj , εj and σj within the jth inhomogeneity

zj + ρDj , j = 1, 2, . . . ,m, are constant. To determine the unknown values µj , εj , σj

and the entries of the M(zj) (which hold some information about the shape of the

inhomogeneities), one may choose E0 and v of the forms

E0(x) = eik0x·α and v(x) = eik0x·β , where k0 = ω
√
ε0µ0.

Evaluating the boundary integral from (1.8) for several appropriately chosen values of

α, β ∈ C2, and disregarding the o(ρ2) term, results in equations that may be solved
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simultaneously for the desired unknown values. For this process to be ultimately suc-

cessful, one must have additional a priori knowledge about the inhomogeneities, such

as their sizes ρ2|Dj |, or the knowledge that they all have the same rescaled polarization

tensor, or the values of some of the EM parameters. This method is described in detail

for the conductivity problem and for the full time harmonic Maxwell’s equations in

[AMV03].

The Fourier method. We now describe a method (based on ideas in [Cal80] for the

conductivity problem) for locating the positions of the small inhomogeneities, i.e., the

points zj . For any ξ ∈ R2, one may choose E0(x) = ei(ξ+γη̂)·x and v(x) = ei(ξ−γη̂)·x,

where η̂ is a unit vector perpendicular to ξ and γ ∈ C is such that ω2µ0ǫ0 = |ξ|2 + γ2.

The last condition ensures that E0 and v both solve the background Helmholtz equation.

Disregarding the o(ρ2) term in (1.8) then, the function ξ 7→
∫
∂Ω

(
∂νEρv − Eρ∂νv

)
dx

becomes a linear combination of the Fourier transforms F(∂αδzj )(ξ), |α| ≤ 2. Thus, to

locate the positions zj , one may perform a numerical Fourier inversion of the measured

data as a function ξ and see where the graph of this inversion “spikes” (cf. [AMV03],

[Vol01], [Vol03] and [AK04b, §13.2.1]).

One disadvantage of this approach is that the imaginary part of γ will cause the

test field E0 to grow (or decay) exponentially—E0(x) = eα·xp(x), where α ∈ R2 and

p is a plane wave—and therefore may yield measurements that are overwhelmed with

noise. A second disadvantage is the large number of measurements required to reach

adequate resolution when performing the numerical Fourier inversion. Fortunately, the

following algorithm does not suffer from these disadvantages.

The MUSIC algorithm. The MUSIC (MUltiple SIgnal Classification) algorithm,

which was originally developed for signal processing [Sch86], is based on the fact that

the range of a self-adjoint operator is orthogonal to the kernel. If the operator is slightly

perturbed, the original kernel is slightly perturbed and becomes the noise subspace

corresponding to negligibly small eigenvalues. The orthogonal complement of this noise

subspace is the so-called essential range of the perturbed operator. To test whether
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a given vector g is in the essential range, one may calculate ‖Pg‖−1, where P is the

projection onto the noise subspace, and see whether the value is large.

The essence of this method has been adapted to the inverse problem of determining

the locations of point scatterers within an infinite, homogeneous medium [Dev99], and

the problem of determining the support of a scatterer within an otherwise homoge-

neous medium [Kir02] (see [Che01] for a lucid description of the MUSIC algorithm and

its relevance to imaging). In the context of the conductivity problem, Brühl, Hanke,

and Vogelius [BHV03] developed a MUSIC-like algorithm for determining the location

of small inhomogeneities based on the asymptotic expansion (1.7). Using similar tech-

niques, Ammari, Iakovleva and Lesselier [AIL05] developed and successfully numerically

tested a MUSIC algorithm based on the asymptotic expansion (1.8) to determine the

locations of small electric inhomogeneities. We will outline an algorithm essentially the

same as that presented in [AIL05] and [Iak04].

Assume the background medium is nonconducting (σ0 = 0) with ε0 and µ0 constant.

Assume also that each εj , µj and σj are constant, j = 1, 2, . . . ,m, with each

µj 6= µ0 and ǫj 6= ε0.

In formula (1.8), if we take E0(x) = eik0x·η and v(x) = e−ik0x·ξ, with η and ξ unit

vectors in R2, we get

Pρ(ξ, η, ω) :=

∫

∂Ω

{
Eρ
(
∂νe

−ik0y·ξ)− (∂νEρ)e
−ik0y·ξ} dσy

(= a measurement of the boundary perturbation)

= ρ2k2
0

m∑

l=1

[
− al(ξ

TMl η) + bl
]
eik0(η−ξ)·zl +O(ρ3)

where al = −|Dl|
(

1
µl

− 1
µ0

)
and bl = |Dl|(ǫl − ε0)/ε0µ0. (Note that E0 is a pure plane

wave that does not grow exponentially, unlike in the Fourier method.) Given n distinct
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directions of incidence, η1, η2, . . . , ηn, we define the matrix A ∈ Cn×n by

Aij =
m∑

l=1

[
al η

i · (Ml η
j) + bl

]
eik0(ηj+ηi)·zl ,

so that

Pρ(−ηi, ηj , ω) = ρ2k2
0Aij +O(ρ3).

Because each Ml is symmetric, A is also symmetric, and therefore the matrix A :=AA

is positive semidefinite. The maximum possible rank of A is 3m, which can be seen by

representing A as

A = V DV T ,

where V T is the 3m× n matrix

V T =





η

1

1


 eik0η1·z1


η

2

1


 eik0η2·z1 · · ·


η

n

1


 eik0ηn·z1


η

1

1


 eik0η1·z2


η

2

1


 eik0η2·z2 · · ·


η

n

1


 eik0ηn·z2

...
...

. . .
...


η

1

1


 eik0η1·zm


η

2

1


 eik0η2·zm · · ·


η

n

1


 eik0ηn·zm




and D is the 3m× 3m block diagonal matrix

D = diag




a1M1 0

0 b1


 ,


a2M2 0

0 b2


 , . . . ,


amMm 0

0 bm




 .
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For z ∈ Ω and w ∈ R3, let gwz ∈ Cn denote the vector

gwz =


w ·


η

1

1


 eik0η1·z , w ·


η

2

1


 eik0η2·z , . . . , w ·


η

n

1


 eik0ηn·z


 . (1.9)

As each of the m matrices diag
(
ajMj , bj

)
is invertible, it follows that D is invertible.

Therefore, if n ≥ 3m and V achieves the maximal rank 3m then Ran(A) = Ran(V ),

which would imply that gwzj
∈ Ran(A) for every w ∈ C3, j = 1, 2, . . . ,m. Moreover, it

can be shown [AIL05, Kir02] that given a sequence of directions {ηj}∞j=1 dense in S1,

there exists an N ≥ 3m such that if n ≥ N then for any z ∈ Ω and nonzero w ∈ R3,

gwz defined by (1.9) satisfies

gwz ∈ Ran(A) ⇐⇒ z ∈ {z1, z2, . . . , zm}. (1.10)

Assume we have a sufficient number of directions {η1, η2, . . . , ηn} so that (1.10) holds.

Since A is Hermitian, Ran(A)⊥Ker(A), and therefore

gwz ∈ Ran(A) ⇐⇒ ProjKer(A) g
w
z =

(
I − ProjRan(A)

)
gwz = 0. (1.11)

Because A is positive semidefinite, it is diagonalizable with nonnegative eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding orthonormal eigenvectors v1, v2, . . . , vn. If we

let k denote the smallest index such that λk+1 = λk+2 = · · · = λn = 0, then for any

vector g ∈ Cn,
ProjRan(A)(g) =

k∑

j=1

([vj ]∗ g) vj .

Consider now the matrix

Bij = Pρ(−ηi, ηj , ω),

which is determined by measured data. B is a perturbation of ρ2k2
0A satisfying B =

ρ2k2
0A + O(ρ3). Likewise, B :=BB∗ = ρ4k4

0A + O(ρ5). We may numerically calculate

the eigenvalues of B—which are necessarily real since B is Hermitian—and arrange
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them in decreasing order: λρ,1 ≥ λρ,2 ≥ · · · ≥ λρ,n, with corresponding orthonormal

eigenvectors v1
ρ, v

2
ρ, . . . , v

n
ρ . By standard perturbation theory [Kat76],

λρ,j = ρ4k4
0λj +O(ρ5).

We may therefore determine the index k by seeing where the decreasing sequence of

eigenvalues λρ,j drops sharply to a tail of negligible values. vk+1
ρ , vk+2

ρ , . . . , vnρ span what

is known as the noise subspace. We define PR to be the projection onto the orthogonal

complement of the noise subspace,

PR(g) =
k∑

j=1

([vjρ]
∗ g) vjρ for g ∈ Cn,

and we define

Pnoise := I − PR.

By using standard results of perturbation theory [Kat76], it can be shown that

PR = ρ4k4
0 ProjRan(A) +O(ρ5). (1.12)

Choose any nonzero w ∈ R2 and plot z 7→ ‖(I − PR)gwz ‖−1. Assuming the number n

of test directions is sufficiently large, by a combination of (1.11) and (1.12), one should

expect sharp spikes in the graph at the locations of the inhomogeneities.6

Using similar methods, it is possible to also determine the EM parameters and cer-

tain geometric features of the inhomogeneities, in addition to their locations [AILP07].

(In [BHV03], the authors outline a procedure to recover geometric information about

the inhomogeneities from the polarization tensor in formula (1.7).)

6We should note that the N2 boundary measurements required for this algorithm to succeed is far
less than the number of measurements that would be needed to achieve a satisfactory resolution when
performing the numerical Fourier inversion of the Fourier method.



17

1.2.4 General asymptotic formulas

In the context of the conductivity problem, formula (1.7) applies to diametrically small

inhomogeneities that are well separated and away from the boundary.7 If an inhomo-

geneity of low volume fraction within a two dimensional conducting body has a high

aspect ratio such that its width is small but is length is not particularly small relative to

the larger body—a crack, for example—then formula (1.7) ceases to be a useful. If the

jth inhomogeneity is represented by a tubular neighborhood of width ρ about the curve

γj , then the appropriate asymptotic expansion of the boundary voltage perturbation is

(uρ − u0)(y) =
∑

j

ρ

∫

γj

(σj − σ0)(z)∇xN(z, y) ·
(
Mj(z)∇u0(z)

)
dσz + o(ρ) (1.13)

for all y ∈ ∂Ω, where the tensor Mj is a symmetric and positive definite dσ-a.e. on

γj [BMV01, BFV03]. The similarities between formulas (1.7) and (1.13) suggest that

they are special cases of a general asymptotic expansion. In fact, such a generalization

was achieved in [CV03a], where the following was shown: suppose the inhomogeneous

set is represented as any sequence of measurable sets Iρ that are well contained in Ω

(i.e., they do not approach the boundary) and satisfy |Iρ| → 0 as ρ→ 0. Let σ0 denote

the positive background conductivity and let σ1 denote that of the inhomogeneous set.

Then there exists a subsequence Iρn , a probability measure α supported on
⋃ Iρn , and

a polarization tensor M ∈ L2(Ω,dα) that is symmetric and positive definite dα-a.e.,

such that if the voltage functions uρ and u0 result from the same prescribed Neumann

data and are normalized so that
∫
∂Ω uρ =

∫
∂Ω u0, then

(uρ−u0)(y) = |Iρn |
∫

Ω
(σ1 − σ0)(z)∇xN(z, y) ·

(
M(z)∇u0(z)

)
dαz + o(|Iρn |) (1.14)

for all y ∈ ∂Ω. This formula, along with Hashin-Shtrikman bounds of the polarization

tensor, can be used to estimate from boundary measurements alone the volume of a very

7The o(ρ2) term from formula (1.7) depends on the distance between pairs of inhomogeneities and
the distance from the inhomogeneities to the boundary. There are known expansions that address the
case of small inclusions that are closely spaced [AAK05] and the case of inclusions that are close to the
boundary [AKKL05].
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general class of small inhomogeneities [CV03a, CV03b, CV04, CV06]. In Chapter 2 we

will derive an analogous asymptotic formula for the Helmholtz problem, in other words,

in the case of nonzero frequency. We will achieve this by following the same idea of

proof for the zero frequency case in [CV03a]. This proof requires certain L2 perturbation

estimates, which we will derive for the Helmholtz problem by borrowing techniques from

[VV00]. We will also show the polarization tensor arising from discontinuities in the

permeability satisfies bounds similar to those in [CV03b]. Thus it should be possible to

effectively estimate the volume of small electromagnetic inhomogeneities within a body

from boundary measurements, even if the background material is nonconducting.

1.2.5 Acoustic waves

It should be noted that the Helmholtz equation is more commonly used to model

acoustic waves. If

∇ ·
(
̺∇u

)
+
ω2

̺c2
u = 0

in R2 or R3, then p(x, t) := Re{u(x)e−iωt} represents a pressure wave8 of frequency ω in

a medium of equilibrium density ̺ and sound speed c [Che90, KFCS82]. As in the case

of time harmonic electromagnetic waves, absorbtion, due to, say, viscosity or thermal

conduction, can be modeled by ascribing a positive imaginary part to c−2 [Jon86, §6.5],

[KFCS82, Ch. 7]. In the electromagnetic setting, this imaginary part has a simple

inverse relationship with frequency (Im(ǫ) = σ/ω) that holds for all frequencies. In the

acoustic setting, however, though the rate of attenuation of acoustic waves does even-

tually decreases as frequency increases, the relationship of this absorption parameter

to frequency cannot simply be expected to obey the same simple inverse relationship.

Moreover, different acoustic absorption mechanisms give rise to different behaviors with

changing frequency (see [KFCS82, Ch. 7] for a discussion of this). Therefore, much of

our high frequency analysis of scattering by penetrable but absorbing objects may not

8In fact, p is a perturbation. If p0 denotes the equilibrium pressure, then the pressure function in
the presence of the wave is p0 + p.
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apply to an acoustic setting without appropriate modifications. That being said, the

case of a perfectly conducting scatterer embedded within a nonconducting background

medium does coincide with that of a perfectly sound-soft scatterer embedded within a

nonabsorbent medium: in both cases, the total field must vanish on the surface of the

scatterer, thus giving rise to exterior Dirichlet problems for the scattered fields that are

identical in form.

1.2.6 Nondimensionalization

Throughout this thesis, all quantities are assumed to be dimensionless. In other words,

we assume that the following procedure has been performed. Suppose
⋃
ρ Iρ ⊂ I, where

I ⊂⊂ Ω. Translate the coordinates, if necessary, so that 0 ∈ I. We first normalize E0

and Eρ, which may be achieved, for example, by taking

Ê0(x) = E0(x)
/

1
|I|
∫
I |E0(y)|dy,

Êρ(x) = Eρ(x)
/

1
|I|
∫
I |E0(y)|dy.

We then perform the rescaling

uρ(x) = Êρ(dx),

where d is the “size” of the set I in whichever units of length have been chosen. For

instance, we could take

d := sup{|x| : x ∈ I} or d := diam(I).

uρ then satisfies

∇ ·
( 1

µ̃ρ
∇uρ

)
+
(
ε̃ρ + i

σ̃ρ
ω̃

)
ω̃2uρ = 0 in Ω′,
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where

µ̃ρ(x) =





µ1(dx)

µ0(0)
in I ′

ρ

µ0(dx)

µ0(0)
in Ω′ \ I ′

ρ,

ε̃ρ(x) =





ε1(dx)

ε0(0)
in I ′

ρ

ε0(dx)

ε0(0)
in Ω′ \ I ′

ρ,

σ̃ρ(x) =





σ1(dx)d

[
µ0(0)

ε0(0)

]1/2

in I ′
ρ

σ0(dx)d

[
µ0(0)

ε0(0)

]1/2

in Ω′ \ I ′
ρ,

ω̃ = ωd
√
µ0(0)ε0(0),

and

Ω′ = 1
dΩ,

I ′
ρ = 1

dIρ.

The quantities µ̃ρ ε̃ρ σ̃ρ, ω̃, uρ and the argument of uρ are dimensionless. I ′ = 1
dI

represents, in a sense, a set of unit size. If Ω is a bounded domain, I should be taken

to be a set sufficiently large so that the rescaled set Ω′ has dimensionless size on the

order of 1.



21

Chapter 2

General asymptotic formulas in the case of fixed frequency

2.1 The problem

We consider a cylindrical object with transverse magnetic symmetry, the cross-section

of which is represented by the bounded, open and connected domain Ω ⊂ R2. This

domain contains a small inhomogeneous set denoted Iρ. This set is nearly arbitrary

in shape, the only restrictions being that it must be measurable and that it must be

compactly contained in the interior of Ω. 0 < ρ ≤ 1 is a parameter we introduce for our

asymptotic analysis: we assume {Iρ} is a family of measurable sets such that |Iρ| → 0

as ρ→ 0.
⋃
ρ Iρ is assumed to be bounded away from the boundary ∂Ω, and therefore

one may construct a smooth domain I depending only on
⋃
ρ Iρ and dist

(⋃
ρ Iρ, ∂Ω

)

such that

⋃
ρ Iρ ⊂⊂ I ⊂⊂ Ω.

The boundary ∂Ω is assumed to be smooth—or at least sufficiently regular for our

purposes1 (C1,1 regularity will suffice). The electromagnetic profile of the object is

given by

µρ =




µ1 in Iρ
µ0 in Ω \ Iρ

, ερ =




ε1 in Iρ
ε0 in Ω \ Iρ

, σρ =




σ1 in Iρ
σ0 in Ω \ Iρ

,

1We will require regularity of the boundary ∂Ω sufficient for certain elliptic estimates and sufficient
to properly pose, and prove the unique existence of solutions to, the problems (2.1a) and (2.1b).
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where µ > 0 is the magnetic permeability, ε > 0 the electric permittivity and σ ≥ 0

the conductivity. The background EM parameters ε0 and σ0 belong to C0(Ω),2 while

µ0 belongs to C0,1(Ω). The EM parameters of the inhomogeneity, µ1, ε1 and σ1, all

belong to C0(I). Let C denote the maximum of the suprema of µ0, ε0, σ0, µ1, ε1 and

σ1. The ellipticity constant

ϑ = min

{
inf
Ω

1

µ0
, inf

I
1

µ1

}

is assumed to be strictly positive. We consider the time harmonic situation and denote

the frequency by ω > 0. ǫ = ε + iσω will denote the complex permittivity, and we let

κ = ω
√

ǫ and k = ω
√
µǫ, where the square root is the principle square root, so that

the real and imaginary parts of κ and k are nonnegative.

Let ΓD ⊂ ∂Ω be a finite union of open, connected subsets of ∂Ω and let ΓN = ∂Ω\ΓD.

Given a source current J = 1
iωF in Ω, an electric field f on ΓD and a (tangentially

directed) magnetic field 1
iωµ0

g on ΓN , the resulting electric fields u0 and uρ—in the

absence and presence of the inhomogeneity, respectively—satisfy





∇ ·
( 1

µ0
∇u0

)
+ κ2

0u0 = F in Ω

u0 = f on ΓD

1

µ0
∂νu0 = g on ΓN

(2.1a)

and 



∇ ·
( 1

µρ
∇uρ

)
+ κ2

ρuρ = F in Ω

uρ = f on ΓD

1

µρ
∂νuρ = g on ΓN .

(2.1b)

Remark 2.1. The subsequent analysis of these problems does allow ω = 0, in which

case we take κ0 = 0 and κ1 = 0. This situation can be physically (re)interpreted as

a model for the conductivity problem, where 1
µρ

would represent conductivity, uρ the

voltage potential, f a boundary potential, g an applied current and F the divergence

2In fact, we need only assume that ε0 and σ0 in L∞(Ω) are continuous on I.
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of a source current.

2.1.1 Spaces for F, f and g

To properly pose these problems, we restrict the given functions to appropriate spaces.

With

H1
D(Ω) =

{
v ∈ H1(Ω) : v|ΓD

= 0
}
,

the restrictions are:

F ∈
(
H1
D(Ω)

)′
, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
, (2.2)

where V ′ denotes the antidual of the Hilbert space V , and

H
1/2
00 (ΓN ) =

{
v ∈ L2(ΓN ) : ∃w ∈ H1

D(Ω) such that w|ΓN
= v
}

=
{
v ∈ L2(ΓN ) : the trivial extension to ∂Ω belongs to H1/2(∂Ω)

}
,

with

‖f‖
H

1/2
00 (ΓN )

:= inf
{
‖w‖H1(Ω) : w ∈ H1

D(Ω) and w|ΓN
= f

}

(see, for instance, [BC84], [DL88] or [LM72]). Observe that H1
D(Ω) = H1

0 (Ω) when

ΓD = ∂Ω, H1
D(Ω) = H1(Ω) when ΓD = ∅, and

(
H

1/2
00 (∂Ω)

)′
=
(
H1/2(∂Ω)

)′
= H−1/2(∂Ω).

2.1.2 Variational formulation

To state problems (2.1a) and (2.1b) variationally, we define the following sesquilinear

form:
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Definition 2.2. For u, v ∈ H1
D(Ω) and 0 ≤ ρ ≤ 1 let

Hρ(u, v) =

∫

Ω

( 1

µρ
∇u · ∇v − κ2

ρuv
)
dx.

We will also use the notation Hρ(u, v) in cases where the integral is defined but u and

v are not necessarily in H1
D(Ω).

Suppose F , f and g lie within the appropriate spaces (2.2). Let f̃ ∈ H1/2(∂Ω) be

an extension of f with

‖f̃‖H1/2(∂Ω) ≤ C∂Ω,ΓD
‖f‖H1/2(ΓD).

Let h ∈ H1(Ω) satisfy 



h|∂Ω = f̃ ,

h|I = 0,

‖h‖H1(Ω) ≤ C‖f̃‖H1/2(∂Ω).

(Naturally, we take h = 0 if ΓD = ∅.) Problem (2.1b), for 0 ≤ ρ ≤ 1, reduces to the

following

Problem 2.3. Given F ∈ (H1
D(Ω))′, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
, find ũρ ∈

H1
D(Ω) such that

−Hρ(ũρ, v) = 〈F, v〉(H1
D(Ω))′ H1

D(Ω) + H0(h, v) − 〈g, v|ΓN
〉

(H
1/2
00 (ΓN ))′ H

1/2
00 (ΓN )

=: 〈F , v〉(H1
D(Ω))′ H1

D(Ω) for all v ∈ H1
D(Ω). (2.3)

We then interpret uρ = ũρ + h as a solution to (2.1b). To see why this is a proper

formulation of (2.1b), suppose we have F ∈ L2(Ω) and f ∈ H3/2(ΓD). We may then

choose h ∈ H1
µ0

(Ω), where

H1
µρ

(Ω) =
{
u ∈ H1(Ω) : ∇ ·

(
1
µρ
∇u
)
∈ L2(Ω)

}
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with

‖u‖2
H1

µρ
(Ω) := ‖u‖2

H1(Ω) + ‖∇ · ( 1
µρ
∇u)‖2

L2(Ω)

(see [BC84], [LM72] or [Lio61]). Consequently, any solution ũρ of Problem 2.3 will

belong to the space

H1
D,µρ

(Ω) = H1
µρ

(Ω) ∩H1
D(Ω).

The bounded trace operator

1

µρ
∂ν : H1

µρ
(Ω) −→ H−1/2(∂Ω)

is well defined and may be used in a generalized form of Green’s formula: for u ∈ H1
µρ

(Ω)

and v ∈ H1
D(Ω),

∫

Ω
∇ ·
( 1

µρ
∇u
)
v dx = −

∫

Ω

1

µρ
∇u · ∇v dx +

〈
1
µ0
∂νu, v

〉
(H

1/2
00 (ΓN ))′ H

1/2
00 (ΓN )

[BC84]. It follows that

∫

Ω

[
∇ ·
( 1

µρ
∇(ũρ + h)

)
+ κ2

ρ(ũρ + h)

]
v dx−

∫

Ω
Fv dx

=
〈

1
µρ
∂ν ũρ − g, v|ΓN

〉
(H

1/2
00 (ΓN ))′ H

1/2
00 (ΓN )

+
〈

1
µ0
∂νh, v|∂Ω

〉
H−1/2(∂Ω) H1/2(∂Ω)

for all v ∈ H1
D(Ω). If we also assume g ∈ L2(ΓN ), uρ = ũρ + h would satisfy

∇ ·
( 1

µρ
∇uρ

)
+ uρ = F in L2(Ω),

uρ = f in H1/2(ΓD),

1

µρ
∂νuρ = g in L2(ΓN ).
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Remark 2.4. Note that F ∈ (H1
D(Ω))′ as defined in (2.3) satisfies

‖F‖(H1
D(Ω))′ ≤ C

(
‖F‖(H1

D(Ω))′ + ‖f‖H1/2(ΓD) + ‖g‖
(H

1/2
00 (ΓN ))′

)
,

where C depends on C, ω and dist(∂Ω, I).3

Throughout this chapter, we assume ω and the EM parameters µ0, ε0, σ0, µ1, ε1 and

σ1 remain fixed as ρ → 0. The resulting asymptotic formulas will thus model physical

situations where ω|Iρ| ≪ 1.

2.2 Well-posedness of the problem

Consider the case where ΓD = ∂Ω, the EM parameters are all constant with µ0, µ1, ε0

and ε1 strictly positive, and the inhomogeneity is represented by a finite collection of

smooth, diametrically shrinking domains, Iρ =
⋃
j(zj + ρDj). We know from [VV00]

that, so long as k2
0 is not an eigenvalue for the operator −∆ with Dirichlet boundary

conditions in Ω, the problem (2.1b) is well-posed for ρ sufficiently small. We will follow

essentially the same argument to prove as much in the case of nonconstant coefficients,

mixed boundary conditions and inhomogeneous sets of arbitrary shape.

Definition 2.5. For 0 ≤ ρ ≤ 1 we define the operator

Lρ : H1
D(Ω) −→

(
H1
D(Ω)

)′

by

〈Lρ(u), ·〉(H1
D(Ω))′ H1

D(Ω) = −Hρ(u, ·).

Definition 2.6. Given µρ, ερ, σρ and ΓD, we call ω an eigenfrequency if there are

nontrivial solutions to the homogeneous form of (2.1b) (i.e., when F , f and g are zero).

As one would expect, we have the following

Lemma 2.7. Let µρ, ερ, σρ and ΓD be given. The following are equivalent:

3Recall that C is the maximum of the suprema of the functions µ0, ε0, σ0, µ1, ε1 and σ1.
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( a) ω is not an eigenfrequency.

(b) Lρ is invertible.

( c) Given any F ∈ (H1
D(Ω))′, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
, (2.1b) is uniquely

solvable.

Proof. We will show (c) ⇒ (a) ⇒ (b) ⇒ (c). (c) ⇒ (a) is immediate. Assume (a).

Then the only solution of Lρu = 0 is u = 0. From this, the injectivity of Lρ, a standard

argument using the Lax-Milgram theorem and the Fredholm alternative can be used to

show Lρ is invertible: Let

Hγ
ρ(u, v) = Hρ(u, v) + γ

∫

Ω
uv dx, ρ ≥ 0.

For γ > 0 satisfying

γ > ‖Re(κ2
ρ)‖L∞(Ω),

Hγ
ρ is bounded and coercive on H1

D(Ω). Consequently, by the Lax-Milgram theorem,

the operator

Lγρ : H1
D(Ω) −→ (H1

D(Ω))′

defined by

〈
Lγρ(u), v

〉
(H1

D(Ω))′ H1
D(Ω)

= −Hγ
ρ(u, v) for all v ∈ H1

D(Ω) (2.4)

is a continuous isomorphism of H1
D(Ω) onto (H1

D(Ω))′. Let

I : H1
D(Ω) −→ (H1

D(Ω))′ (2.5)
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be the natural injection

〈I(u), v〉(H1
D(Ω))′ H1

D(Ω) =

∫

Ω
uv dx.

Since

I = ı1ı2 : H1
D(Ω)

⊂⊂−−→ L2(Ω) −→ (H1
D(Ω))′,

I is compact, and so

(Lγρ)−1I : H1
D(Ω) −→ H1

D(Ω)

is compact as well. Since Lρ is injective,

(Lγρ)−1Lρ = 1 + γ(Lγρ)−1I

is also injective (here 1 is the identity operator on H1
D(Ω)). Therefore, by the Fredholm

alternative, (Lγρ)−1Lρ must be a continuous automorphism of H1
D(Ω). Consequently,

Lρ is invertible. Hence (a) ⇒ (b).

Now assume (b) and suppose that, for some given F , f and g, uρ = ũρ + h1 and

vρ = ṽρ + h2 both solve problem 2.3. Then

−Hρ(ũρ − ṽρ, v) = H0(h1 − h2, v) = Hρ(h1 − h2, v) for all v ∈ H1
D(Ω),

where the last equality follows from the fact that h1|I = h2|I = 0. Therefore, by the

assumption that Lρ is invertible and the fact that h1 − h2 ∈ H1
D(Ω), ũρ− ṽρ = h1 − h2.

Thus uρ = vρ, which concludes the proof that (b) ⇒ (c).

We are now ready to state

Theorem 1. If ω ≥ 0 is not an eigenfrequency relative to µ0, ε0, σ0 and ΓD (in other

words, if L0 is invertible) then there exists a ρ0 > 0 such that, given any F ∈ (H1
D(Ω))′,

f ∈ H1/2(ΓD) and g ∈
(
H

1/2
00 (ΓN )

)′
, problem (2.1b) has a unique solution in H1(Ω) for
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0 ≤ ρ ≤ ρ0. Furthermore,

‖uρ‖H1(Ω) ≤ C
(
‖F‖(H1

D(Ω))′ + ‖f‖H1/2(ΓD) + ‖g‖
(H

1/2
00 (ΓN ))′

)
, (2.6)

where C depends on ω, the ellipticity constant ϑ, the suprema of the EM parameter

functions (C), dist(I, ∂Ω), Ω, ΓD, and ‖L−1
0 ‖L ((H1

D(Ω))′,H1
D(Ω)), but is independent of ρ,

F , f and g.

Remark 2.8. The assumption that the EM parameter functions ε0, σ0, µ1, ε1 and σ1

are continuous, and the assumption that µ0 is Lipschitz continuous, are not necessary

for Theorem 1 to hold. All that is required of these functions is that they belong to L∞.

The continuity of these parameters will be needed later for the asymptotic expansion

that is the main result of this chapter (Theorem 3).

Before we prove this theorem, we must establish some preliminary results. With Lγρ
as defined at (2.4), we have the following

Property 2.9. Let

γ = max
{
‖Re(κ2

0)‖L∞(Ω), ‖Re(κ2
1)‖L∞(I)

}
+ 1. (2.7)

Then

‖Lγρ‖L (H1
D(Ω),(H1

D(Ω))′) ≤ C1, (2.8)

‖(Lγρ)−1‖L ((H1
D(Ω))′,H1

D(Ω)) ≤ C2 := max

{
1

ϑ
, 1

}
. (2.9)

where C1 depends only on ω and the L∞ norms of the EM parameter functions.

Proof. (2.8) is obvious, and (2.9) immediately follows from the fact that

min{ϑ, 1}‖u‖2
H1

D(Ω) ≤ Re{Hγ
ρ(u, u)}.
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Recall that

(Lγρ)−1I : H1
D(Ω) −→ H1

D(Ω)

is compact, where I : H1
D(Ω) → (H1

D(Ω))′ is the natural injection (2.5). This compact-

ness of the (Lγρ)−1I is uniform in ρ in a sense we shall now make precise.

Definition 2.10. A sequence of compact operators Tn on a Banach space V is collec-

tively compact if

⋃

n

Tn
(
{v ∈ V : ‖v‖ ≤ 1}

)

is precompact in V .

Lemma 2.11. Given a sequence of parameters ρn with ρn → 0, the operators (Lγρn)−1I

are collectively compact and converge pointwise to (Lγ0)−1I.

Proof. Our proof is essentially the same as that found in [VV00]. We first prove (Lγρn)−1

converges pointwise to (Lγ0)−1, which implies the pointwise convergence of (Lγρn)−1I to

(Lγ0)−1I. To do this, we will prove Lρn → L0 pointwise. From this the pointwise

convergence of (Lγρn)−1 to (Lγ0)−1 will follow: for given any G ∈ (H1
D(Ω))′,

Lγρn
(Lγ0)−1G −→ Lγ0(Lγ0)−1G = G,

and therefore

∥∥(Lγρn
)−1G− (Lγ0)−1G

∥∥
H1

D(Ω)
≤
∥∥(Lγρ)−1

∥∥∥∥G− Lγρn
(Lγ0)−1G

∥∥
(H1

D(Ω))′

≤ C
∥∥G− Lγρn

(Lγ0)−1G
∥∥

(H1
D(Ω))′

−→ 0,

where C = C2 from Property 2.9. To prove Lρn → L0 pointwise, observe that for any
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u, v ∈ H1
D(Ω),

∣∣∣ 〈(Lρn − L0)u, v〉(H1
D(Ω))′ H1

D(Ω)

∣∣∣ =
∣∣∣∣∣

∫

Iρn

{( 1

µ0
− 1

µ1

)
∇u · ∇v + (κ2

1 − κ2
0)uv

}
dx

∣∣∣∣∣

≤ C‖u‖H1(Iρn )‖v‖H1
D(Ω).

This means

‖(Lρn − L0)u‖(H1
D(Ω))′ ≤ C‖u‖H1(Iρn ) −→ 0,

which is the desired result.

As for the collective compactness of the (Lγρn)−1I : Suppose {uj} is a sequence

in H1
D(Ω) satisfying ‖uj‖H1

D(Ω) ≤ 1. We will show that any sequence of the form

(Lγρnj
)−1Iuj (here nj is an arbitrary sequence of indices, not necessarily a subsequence

of n) has a strongly convergent subsequence.

First note that in the possible case where the sequence nj is bounded, and thus

ranges over a finite set, the result is an immediate consequence of the fact that a finite

union of compact sets is itself compact. So we assume nj → ∞.

By passing to a subsequence if necessary, we may assume by the compactness of I

that Iuj converges strongly to some G ∈ (H1
D(Ω))′. We therefore have

‖(Lγρnj
)−1Iuj − (Lγ0)−1G‖H1

D(Ω)

≤ ‖(Lγρnj
)−1Iuj − (Lγρnj

)−1G‖H1
D(Ω) + ‖(Lγρnj

)−1G− (Lγ0)−1G‖H1
D(Ω)

≤ C‖Iuj −G‖(H1
D(Ω))′ + ‖(Lγρnj

)−1G− (Lγ0)−1G‖H1
D(Ω),

with C independent of j. The proof is finished since (Lγρnj
)−1 converges pointwise to

(Lγ0)−1.

To prove Theorem 1, we will need the following lemma concerning collectively com-

pact operators. For a proof, see Theorem 1.6, Corollary 1.8 and Theorem 1.11 in

[Ans71].
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Lemma 2.12. Assume the collectively compact sequence of operators {Tn} on the Ba-

nach space V converges pointwise to the (necessarily compact) operator T . Then

‖(Tn − T )Tn‖L (V ) −→ 0. (2.10)

Furthermore,

(a) 1 − T is invertible

if and only if

(b) there exists an N such that for n ≥ N , 1 − Tn is invertible and the norms ‖(1 −

Tn)
−1‖L (V ) are bounded uniformly.

If (a) and (b) hold,

(1 − Tn)
−1 pointwise−−−−−−→ (1 − T )−1 (2.11)

and

‖(1 − Tn)
−1‖L (V ) ≤

1 + ‖(1 − T )−1‖L (V )‖Tn‖L (V )

1 − ‖(1 − T )−1‖L (V )‖(Tn − T )Tn‖L (V )
. (2.12)

Proof of Theorem 1. Let F ∈ (H1
D(Ω))′, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
. Assume

L0 is invertible. With γ > 0 as in (2.7), Lγ0 and the Lγρ for ρ > 0 are isomorphisms of

H1
D(Ω) onto (H1

D(Ω))′ satisfying the uniform bounds of Property 2.9. Since L0 = Lγ0+γI

and Lγ0 are both invertible,

1 + γ(Lγ0)−1I

is a continuous automorphism of H1
D(Ω).

Let ρn → 0. With T = −γ(Lγ0)−1I and Tn = −γ(Lγρn)−1I, we apply Lemmas 2.11

and 2.12 to conclude there exists an N such that

1 + γ(Lγρn
)−1I
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is invertible for all n ≥ N .

Now, if the there did not exist a ρ0 as asserted in the statement of the theorem,

there would necessarily exist a sequence ρn → 0 and a sequence Fn ∈ (H1
D(Ω))′ such

that for each n the equation

(Lγρn
+ γI)u = Fn

either would have no solution or would have non-unique solutions in H1
D(Ω). Either

way, the operators 1+γ(Lγρn)−1I would each be non-invertible, which would contradict

the conclusion of the previous paragraph.

As for the bound (2.6), first note that, by (2.10), ρ0 can be chosen so that

‖(Tρ − T )Tρ‖ ≤ 1

2‖(1 − T )−1‖ for all 0 < ρ ≤ ρ0,

where T = −γ(Lγ0)−1I and Tρ = −γ(Lγρ)−1I. For these ρ,

‖L−1
ρ ‖ = ‖(1 + γ(Lγρ)−1I)−1(Lγρ)−1‖

≤ ‖(1 + γ(Lγρ)−1I)−1‖ ‖(Lγρ)−1‖

≤ C2‖(1 + γ(Lγρ)−1I)−1‖ (by Property 2.9)

≤ C2

(
1 + ‖(1 − T )−1‖ ‖Tρ‖

1 − ‖(1 − T )−1‖ ‖(Tρ − T )Tρ‖

)
(by Lemma 2.12)

≤ 2C2(1 + C2‖(1 − T )−1‖) (by Property 2.9)

= 2C2(1 + C2‖L−1
0 Lγ0‖)

≤ 2C2(1 + C1C2‖L−1
0 ‖) (by Property 2.9).

Now, if uρ is a solution to (2.1b) then uρ = ũρ+h for some ũρ ∈ H1
D(Ω) and h ∈ H1(Ω)

as in Problem 2.3. Since ũρ = (Lρ)−1F , where F ∈ (H1
D(Ω))′ is as defined in Problem

2.3,

‖ũρ‖H1
D(Ω) ≤ ‖L−1

ρ ‖‖F‖(H1
D(Ω))′ .
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The bound (2.6) now follows from Remark 2.4 concerning the bound on F , and also

from the fact that h must satisfy ‖h‖H1(Ω) ≤ C‖f‖ΓD
, with C depending only on ΓD,

∂Ω and dist(I, ∂Ω).

In the case where µ0, ε0 and σ0 are constant, the bound on ‖L−1
ρ ‖ in terms of ‖L−1

0 ‖

translates into a bound in terms of the distance between k2
0 and the spectrum of −∆

on Ω with homogeneous mixed boundary data. We define the operator L : H1
D(Ω) →

(H1
D(Ω))′ by

〈L(u), v〉(H1
D(Ω))′ H1

D(Ω) =

∫

Ω
∇u∇v dx for all v ∈ H1

D(Ω),

and note that the problem of finding u ∈ H1
D(Ω) solving

Lu = (F, ·)L2(Ω) given F ∈ L2(Ω)

is properly interpreted as the problem of finding u such that





−∆u = F in Ω

u = 0 on ΓD

∂νu = 0 on ΓN .

Assume for the moment ΓD 6= ∅. Using a standard Poincaré-type inequality, we may

take (u, v) 7→
∫
Ω ∇u∇v dx to be the inner-product for H1

D(Ω). Consequently, the Riesz

theorem implies that L is invertible. Let 1/λn ց 0, n = 1, 2 . . . , denote the decreasing

sequence of eigenvalues of L−1I with corresponding eigenfunctions φn, normalized so

that ‖φn‖L2(Ω) = 1. For any G ∈ (H1
D(Ω))′,

L0u = G

⇐⇒ (−L + k2
0I)u = µ0G

⇐⇒
∑

(k2
0 − λn)ûnv̂n = µ0〈G, v〉 for all v ∈ H1

D(Ω),
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where

ûn =

∫

Ω
uφn dx.

For the appropriate choice of v (that is, for the appropriate choice of θn, where we take

v̂n = eiθn ûn), ‖v‖H1
D(Ω) = ‖u‖H1

D(Ω) and

µ0‖G‖(H1
D(Ω))′‖u‖H1

D(Ω) ≥ µ0|〈G, v〉|

=
∑

|k2
0 − λn||ûn|2

≥
(

min
n

∣∣∣∣
k2

0

λn
− 1

∣∣∣∣
)∑

|λn||ûn|2

=

(
min
n

∣∣∣∣
k2

0

λn
− 1

∣∣∣∣
)
‖u‖2

H1
D(Ω).

Thus,

‖L−1
0 ‖L ((H1

D(Ω))′,H1
D(Ω)) ≤

µ0

min
n

∣∣∣ k
2
0
λn

− 1
∣∣∣
.

In the case where ΓD = ∅, kerL = {constants}, and the quotient map

L̃ : H1
⋄ (Ω) −→ (H1

⋄ (Ω))′

is invertible. Let 1/λn ց 0, n = 1, 2, . . . , be the sequence of eigenvalues of L̃−1I,

with corresponding eigenfunctions φn, normalized by ‖φn‖L2(Ω) = 1. With φ0 := 1/|Ω|,

{φn}∞n=0 is then an orthonormal basis of H1(Ω). The above argument (for the case

ΓD 6= ∅) can be easily modified to yield

µ0‖G‖(H1(Ω))′‖u‖H1(Ω) ≥ µ0|〈G, v〉|

= |k2
0||û0|2 +

∑

n≥1

|k2
0 − λn||ûn|2

≥ min

{
|k2

0| , min
n≥1

∣∣∣∣
k2

0

λn
− 1

∣∣∣∣
}(

|û0|2 +
∑

n≥1

|λn||ûn|2
)

= min

{
|k2

0| , min
n≥1

∣∣∣∣
k2

0

λn
− 1

∣∣∣∣
}
‖u‖2

H1(Ω).
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Thus we have

Corollary 2.13. Suppose the functions µ0, ε0 and σ0 are constants, and that k2
0 =

ω2µ0(ε0+iσ0/ω) /∈ {λn} = the spectrum of −∆ on Ω with homogeneous mixed boundary

data. With ρ0 as in the statement of Theorem 1, for 0 ≤ ρ ≤ ρ0, given any F ∈

(H1
D(Ω))′, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
, the solution uρ to (2.1b) satisfies

‖uρ‖H1
D(Ω) ≤ C

(
‖F‖(H1

D(Ω))′ + ‖f‖H1/2(ΓD) + ‖g‖
(H

1/2
00 (ΓN ))′

)
, (2.13)

where C depends on ω, ϑ, C, dist(I, ∂Ω), Ω, ΓD, and on

min
n

∣∣∣∣
k2

0

λn
− 1

∣∣∣∣ when ΓD 6= ∅

and

min

{
|k2

0|, min
λn 6=0

∣∣∣∣
k2

0

λn
− 1

∣∣∣∣
}

when ΓD = ∅.

Remark 2.14. The goal of this chapter, the asymptotic expansion of Theorem 3,

is similar to, and motivated by, a prior result for the conductivity problem with a

boundary condition of strictly Neumann type [CV03a]. That problem corresponds

to the eigenfrequency ω = 0 for problems (2.1a) and (2.1b) when ΓD = ∅, with 1
µ

reinterpreted as the conductivity profile and u as the voltage potential (cf. Remark

2.1). In this case, problems (2.1a) and (2.1b) each require an additional normalization

condition in order to be well-posed:





∇ ·
( 1

µ0
∇u0

)
= F in Ω

1

µ0
∂νu0 = g on ∂Ω

∫

∂Ω
u0 dσ = 0

(2.14a)
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and 



∇ ·
( 1

µρ
∇uρ

)
= F in Ω

1

µρ
∂νuρ = g on ∂Ω

∫

∂Ω
uρ dσ = 0.

(2.14b)

We must also require that F ∈ (H1(Ω))′ and g ∈ H−1/2(∂Ω) satisfy

∫

Ω
F dσ =

∫

∂Ω
g dσ (2.15)

(i.e., 〈F, 1|Ω〉 = 〈g, 1|∂Ω〉). To see that (2.14b) is well-posed for all ρ, consider the

operator

L̃ρ :=Lρ|H1⋄(Ω) : H1
⋄ (Ω) −→ U, (2.16)

where

H1
⋄ (Ω) =

{
u ∈ H1(Ω) :

∫
∂Ω u dσ = 0

}

and

U =
{
F ∈ (H1(Ω))′ : 〈F , 1〉 = 0

}
.

(Note: F ∈ (H1
D(Ω))′ and g ∈ H−1/2(∂Ω) satisfy condition (2.15) if and only if F as

defined in (2.3) lies in U.) Taking

((u, v)) :=

∫

Ω
∇u · ∇v dx+

(∫

∂Ω
u dσ

)(∫

∂Ω
v dσ

)

as the inner-product for H1(Ω), which is possible thanks to a simple Poincaré-type

inequality, H1
⋄ (Ω) is the orthogonal complement of the space of constants in H1(Ω),

and the mapping F 7→ F|H1⋄(Ω) is a linear isometry of U onto (H1
⋄ (Ω))′. We identify U

and (H1
⋄ (Ω))′, and then, noting that Hρ is bounded and coercive on H1

⋄ (Ω), we apply

the Lax-Milgram theorem to conclude L̃ρ is invertible.
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2.3 Convergence of the perturbed field to the background field

The following lemma was proved in [CV03a]:

Lemma 2.15. Suppose F ∈ (H1(Ω))′ and g ∈ H−1/2(∂Ω) with
∫
Ω F dx =

∫
∂Ω g dσ.

Let V0 denote the solution to





∇ ·
( 1

µ0
∇V0

)
= F in Ω

1

µ0
∂νV0 = g on ∂Ω

∫

∂Ω
V0 dσ = 0,

(2.17)

and let Vρ denote the solution to the perturbed problem





∇ ·
( 1

µρ
∇Vρ

)
= F in Ω

1

µρ
∂νVρ = g on ∂Ω

∫

∂Ω
Vρ dσ = 0.

(2.18)

Then

‖Vρ − V0‖H1
D(Ω) ≤ C|Iρ|1/2‖V0‖C0,1(Iρ) (2.19)

for some C independent of ρ. If we also assume µ0 ∈ C0,1(Ω) then for any δ > 0,

‖Vρ − V0‖L2(Ω) ≤ Cδ|Iρ|1−δ‖V0‖C0,1(Iρ). (2.20)

We will prove a similar result for the Helmholtz problem. Our proof of the analogue

of (2.19), namely (2.21), is essentially the same as that used to prove an energy estimate

in [VV00]. Our proof of the analogue of (2.20), namely (2.22), is an adaptation of the

proof of (2.20) found in [CV03a].

Before stating and proving these estimates of the strength of convergence of uρ to

u0, we present the following lemma, which is of central importance. The proof is a

simple exercise.
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Lemma 2.16. Let F ∈
(
H1
D(Ω)

)′
, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
. If U0 satisfies





∇ ·
( 1

µ0
∇U0

)
+ κ2

0U0 = F in Ω

U0 = f on ΓD

1

µ0
∂νU0 = g on ΓN

and Uρ satisfies the perturbed problem (that is, the problem in the presence of the inho-

mogeneity, with µ0 replaced by µρ) then for any φ ∈ H1
D(Ω),

H0(Uρ − U0, φ) =

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇Uρ · ∇φdx+

∫

Iρ

(κ2
1 − κ2

0)Uρφdx

and

Hρ(Uρ − U0, φ) =

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇U0 · ∇φdx+

∫

Iρ

(κ2
1 − κ2

0)U0φdx.

We now state the main result of this section.

Theorem 2. Suppose ω is not an eigenfrequency relative to µ0, ε0, σ0 and ΓD (in

other words, suppose L0 is invertible). Let ρ0 > 0 be as in Theorem 1 and suppose

F ∈ (H1
D(Ω))′, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
. For ρ ≤ ρ0, if u0 and uρ are the

solutions to problems (2.1a) and (2.1b) respectively, then

‖uρ − u0‖H1
D(Ω) ≤ C|Iρ|1/2‖u0‖C0,1(Iρ), (2.21)

where C depends on ω, the ellipticity constant ϑ, the suprema of the EM profile functions

(C), dist(I, ∂Ω), Ω, ΓD and ‖L−1
0 ‖L ((H1

D(Ω))′,H1
D(Ω)) but is independent of ρ, F , f and

g. Moreover, for any δ > 0 and ρ ≤ ρ0,

‖uρ − u0‖L2(Ω) ≤ C|Iρ|1−δ‖u0‖C0,1(Iρ), (2.22)

where C depends on ω, ϑ, C, ‖µ0‖C0,1(Ω), dist(I, ∂Ω), Ω, ΓD, ‖L−1
0 ‖ and δ but is

independent of ρ, F , f and g.
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Proof. By Lemma 2.16, if v ∈ H1
D(Ω) then

Hρ(uρ − u0, v) =

∫

Iρ

[
−
( 1

µ1
− 1

µ0

)
∇u0 · ∇v + (κ2

1 − κ2
0)u0v

]
dx

≤ C|Iρ|1/2‖u0‖C0,1(Iρ)‖v‖H1(Ω).

In other words,

Lρ(uρ − u0) = G

with

‖G‖(H1
D(Ω))′ ≤ C|Iρ|1/2‖u0‖C0,1(Iρ).

By Theorem 1, for ρ ≤ ρ0,

‖uρ − u0‖H1
D(Ω) = ‖(Lρ)−1G‖H1

D(Ω) ≤ C‖G‖(H1
D(Ω))′

with C as in the statement of that theorem. This completes the proof of (2.21). To

prove (2.22), let w ∈ H2
loc(Ω) ∩H1

D(Ω) solve





∇ ·
( 1

µ0
∇w
)

+ κ2
0w = u0 − uρ in Ω

w = 0 on ΓD

1

µ0
∂νw = 0 on ΓN .

Since I ⊂⊂ Ω, we may choose a smooth domain Ω′ depending only on Ω and dist(I, ∂Ω)

such that I ⊂⊂ Ω′ ⊂⊂ Ω. Using Lemma 2.16, we find that for any 1 < p, q < ∞
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satisfying 1
p + 1

q = 1,

∫

Ω
|uρ − u0|2 dx =

∫

Ω

1

µ0
∇w · ∇(uρ − u0) dx−

∫

Ω
κ2

0w(uρ − u0) dx

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇w dx+

∫

Iρ

(κ2
1 − κ2

0)uρw dx

≤ C
(
‖∇uρ‖Lq(Iρ)‖∇w‖Lp(Ω′) + ω2‖uρ‖L1(Iρ)‖w‖L∞(Ω′)

)

≤ C
(
‖∇uρ‖Lq(Iρ) + ω2‖uρ‖L1(Iρ)

)
‖w‖H2(Ω′), (2.23)

where C depends on Ω′ and C. (We note that the above use of Sobolev’s embedding

theorem requires that the ambient space be two dimensional, as we would like to choose

p arbitrarily large.) By elliptic estimates,

‖w‖H2(Ω′) ≤ C
(
‖w‖L2(Ω) + ‖uρ − u0‖L2(Ω)

)

≤ C
(
‖L−1

0 ‖ ‖I(uρ − u0)‖(H1
D(Ω))′ + ‖uρ − u0‖L2(Ω)

)

= C
(
‖L−1

0 ‖ + 1
)
‖uρ − u0‖L2(Ω) (2.24)

for some C depending on dist(Ω′, ∂Ω), ϑ, C, ‖µ0‖C0,1(Ω), ω and p. With the freedom

to choose p <∞ arbitrarily large, we make the appropriate choice so that 1− δ = 1/q,

hence

‖∇uρ‖Lq(Iρ) ≤ ‖∇(uρ − u0)‖Lq(Iρ) + ‖∇u0‖Lq(Iρ)

≤ |Iρ|
1
2
−δ‖∇(uρ − u0)‖L2(Iρ) + |Iρ|1−δ‖∇u0‖L∞(Iρ). (2.25)

Similarly, but more easily, we have

‖uρ‖L1(Iρ) ≤ ‖uρ − u0‖L1(Iρ) + ‖u0‖L1(Iρ)

≤ |Iρ|1/2‖uρ − u0‖L2(Iρ) + |Iρ|‖u0‖L∞(Iρ). (2.26)
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Combining (2.23), (2.24), (2.25) and (2.26), and then using (2.21), yields

‖uρ − u0‖L2(Ω) ≤ C
(
|Iρ|

1
2
−δ‖uρ − u0‖H1(Iρ) + |Iρ|1−δ‖u0‖C0,1(Iρ)

)

≤ C|Iρ|1−δ‖u0‖C0,1(Iρ).

Corollary 2.17. In addition to the hypotheses of Theorem 2, assume F |Ω′ ∈ Lp(Ω′)

for some p > 2 and some open set Ω′ with I ⊂⊂ Ω′ ⊂⊂ Ω. Let

‖(F, f, g)‖ = ‖F‖Lp(Ω′) + ‖F‖(H1
D(Ω))′ + ‖f‖H1/2(ΓD) + ‖g‖

(H
1/2
00 (ΓN ))′

.

Then for ρ ≤ ρ0, if u0 and uρ are the solutions to problems (2.1a) and (2.1b) respec-

tively,

‖uρ − u0‖H1
D(Ω) ≤ C|Iρ|1/2‖(F, f, g)‖, (2.27)

where C depends on ω, ϑ, C, dist(I, ∂Ω′), dist(Ω′, ∂Ω) Ω, ΓD and ‖L−1
0 ‖ but is inde-

pendent of ρ, F , f and g. Moreover, given any δ > 0,

‖uρ − u0‖L2(Ω) ≤ C|Iρ|1−δ‖(F, f, g)‖, (2.28)

with C depending on ω, ϑ, C, ‖µ0‖C0,1(Ω), dist(I, ∂Ω′), dist(Ω′, ∂Ω) Ω, ΓD and ‖L−1
0 ‖

and δ but is independent of ρ, F , f and g.

Proof. By interior elliptic estimates [GT01, Theorem 9.11],

‖u0‖W 2,p(I′) ≤ C
(
‖u0‖Lp(Ω′) + ‖F‖Lp(Ω′)

)

for some open set I ′ chosen to satisfy I ⊂⊂ I ′ ⊂⊂ Ω′. C depends on C, ‖µ0‖C0,1(Ω), ω

and dist(I, ∂Ω′). Since p > 2 = the dimension of the ambient space,

‖u0‖C0,1(Iρ) ≤ Cdist(I,I′)‖u0‖W 2,p(I′).

Remark 2.18. Theorem 2 and Corollary 2.17 continue to hold when the dimension n
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of the ambient space is greater than two. However, the factor |Iρ|1−δ must be replaced

with |Iρ|
1
2
+ 1

n
−δ, and p must be greater than n.

2.4 Derivation of the asymptotic formula

Before proceeding, we state a stronger form of Lemma 2.16.

Lemma 2.19. Let F ∈
(
H1
D(Ω)

)′
, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
.

(i) Suppose ω is not an eigenfrequency relative to µ0, ε0, σ0 and ΓD. If U0 is the

unique solution to





∇ ·
( 1

µ0
∇U0

)
+ κ2

0U0 = F in Ω

U0 = f on ΓD

1

µ0
∂νU0 = g on ΓN

and Uρ, 0 < ρ < ρ0, is the unique solution to the perturbed problem (that is, the

problem with µ0 and κ2
0 replaced by µρ and κ2

ρ) then for any φ ∈ H1(Ω),

H0(Uρ − U0, φ)−
∫

ΓD

1

µ0
∂ν(Uρ − U0)φ dσ

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇Uρ · ∇φ dx+

∫

Iρ

(κ2
1 − κ2

0)Uρφ dx

and

Hρ(Uρ − U0, φ)−
∫

ΓD

1

µ0
∂ν(Uρ − U0)φ dσ

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇U0 · ∇φ dx+

∫

Iρ

(κ2
1 − κ2

0)U0φ dx,

where

∫

ΓD

1

µ0
∂ν(Uρ − U0)φ dσ“ ” =

〈
1
µ0
∂ν(Uρ − U0), φ

〉
H−1/2(∂Ω) H1/2(∂Ω)

.
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(ii) If W0 satisfies 



∇ ·
( 1

µ0
∇W0

)
= F in Ω

W0 = f on ΓD

1

µ0
∂νW0 = g on ΓN

and Wρ, ρ > 0, satisfies the perturbed problem then for any φ ∈ H1(Ω),

∫

Ω

1

µ0
∇(Wρ −W0) · ∇φ dx−

∫

ΓD

1

µ0
∂ν(Wρ −W0)φ dσ

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇Wρ · ∇φ dx

and

∫

Ω

1

µρ
∇(Wρ −W0) · ∇φ dx−

∫

ΓD

1

µ0
∂ν(Wρ −W0)φ dσ

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇W0 · ∇φ dx.

Of course, (ii) is just a special case of (i).

Proof. These formulas clearly hold in the purely Neumann and purely Dirichlet cases,

hence we assume the boundary data is of strictly mixed type. We prove only the second

formula asserted in (i), as all other cases are similar. Observe that for v ∈ H1
D(Ω),

Hρ(Uρ − U0, v) =

∫

Iρ

[
−
( 1

µ1
− 1

µ0

)
∇U0 · ∇v + (κ2

1 − κ2
0)U0v

]
dx

=: 〈G, v〉(H1
D(Ω))′ H1

D(Ω) ,

as in the proof of Theorem 2. This means Uρ − U0 is the solution to





∇ ·
( 1

µρ
∇(Uρ − U0)

)
+ κ2

ρ(Uρ − U0) = G in Ω

Uρ − U0 = 0 on ΓD

1

µρ
∂ν(Uρ − U0) = 0 on ΓN ,

with G supported in I. As a result, Uρ−U0 ∈ H1
µ0

(Ω \ I), so that the trace 1
µ0
∂ν(Uρ−
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U0) ∈ H−1/2(∂Ω) is well-defined.

Choose open sets I ′ and Ω′ with I ⊂⊂ I ′ ⊂⊂ Ω′ ⊂⊂ Ω. Any φ ∈ H1(Ω) can

be decomposed as φ = φ1 + φ2 with φ1|I′ ≡ 0, φ2|Ω\Ω′ ≡ 0 and both φj ∈ H1(Ω).

Therefore,

Hρ(Uρ − U0, φ) =
〈

1
µ0
∂ν(Uρ − U0), φ|∂Ω

〉
H−1/2(∂Ω) H1/2(∂Ω)

+Hρ(Uρ − U0, φ2)

=

∫

ΓD

1

µ0
∂ν(Uρ − U0)φ dσ + 〈G,φ2〉(H1

D(Ω))′ H1
D(Ω)

=

∫

ΓD

1

µ0
∂ν(Uρ − U0)φ dσ +

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇U0 · ∇φ dx

+

∫

Iρ

(κ2
1 − κ2

0)U0φ dx.

Part of the significance of Lemma 2.19 is that is provides a way to equate boundary

measurements with integrals concentrated solely on the inhomogeneities. For instance,

if φ ∈ H1(Ω) solves the background Helmholtz equation then, after integrating by parts,

the first identity of Lemma 2.19(i) becomes

∫

∂Ω

{
Uρ

(
1

µ0
∂νφ

)
−
(

1

µ0
∂νUρ

)
φ

}
dσ

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇Uρ · ∇φ dx+

∫

Iρ

(κ2
1 − κ2

0)Uρφ dx. (2.29)

The left side of this equality represents a sort of measurement of the disturbance caused

by the presence of the inhomogeneity. Hidden within this measurement is information

about the inhomogeneity—its size, shape, etc. To extract this information, we ma-

nipulate the right-hand side to bring it to a simplified, asymptotic form. But before

proceeding with this manipulation, we will discuss another useful class of choices for

the test function φ, namely Green’s functions. Suppose G is a Green’s function for the

background operator:

∇x ·
( 1

µ0
∇xG(·, y)

)
+ κ2

0G(·, y) = −δy in Ω.
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Let u0 and uρ solve (2.1). Because uρ − u0 satisfies





∇ ·
( 1

µ0
∇(uρ − u0)

)
+ κ2

0(uρ − u0) = 0 in Ω \ I

uρ − u0 = 0 on ΓD

1

µ0
∂ν(uρ − u0) = 0 on ΓN ,

uρ − u0 is continuous on (Ω \ I)∪ ΓD ∪ ΓN , but not necessarily at the points where the

boundary condition changes type. Consequently, for y ∈ (Ω \ I),

(uρ − u0)(y) +

∫

ΓN

1

µ0
∂νxG(·, y)(uρ − u0) dσ = H0

(
uρ − u0, G(·, y)

)
. (2.30)

For many choices of G, this formula may be extended to y ∈ ∂Ω, in which case the

left-hand side represents a measurable perturbation in the boundary field caused by the

presence of the inhomogeneity. By an application4 of Lemma 2.19(i), for y ∈ (Ω \ I),

(uρ − u0)(y) −
∫

ΓD

1

µ0
∂ν(uρ − u0)G(·, y) dσ +

∫

ΓN

1

µ0
∂νxG(·, y)(uρ − u0) dσ

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇G(·, y) dx+

∫

Iρ

(κ2
1 − κ2

0)uρG(·, y) dx. (2.31)

2.4.1 Examples of Green’s functions

I. Suppose ω is not an eigenfrequency with respect to µ0, ε0, σ0 and a boundary

condition of strictly Neumann type. For y ∈ Ω we define the Neumann function

N (·, y) to be the solution to





∇ ·
( 1

µ0
∇N (·, y)

)
+ κ2

0N (·, y) = −δy in Ω

1

µ0
∂νN (·, y) = 0 on ∂Ω,

4Since G(·, y) /∈ H1(Ω), Lemma 2.19(i) cannot be applied directly. However, the result follows from
a straightforward limiting approximation argument.
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which extends to y ∈ ∂Ω as





∇ ·
( 1

µ0
∇N (·, y)

)
+ κ2

0N (·, y) = 0 in Ω

1

µ0
∂νN (·, y) = δy on ∂Ω.

Suppose ω is also not an eigenfrequency with respect to µ0, ε0, σ0 and ΓD, so that

(2.1a) and (2.1b) have unique solutions u0 and uρ for ρ > 0 sufficiently small.

With G = N , (2.30) holds for all y ∈ (Ω \ I) ∪ ΓD ∪ ΓN , and so we have

(uρ − u0)(y) −
∫

ΓD

1

µ0
∂ν(uρ − u0)N (·, y) dσ

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇N (·, y) dx+

∫

Iρ

(κ2
1 − κ2

0)uρN (·, y) dx. (2.32)

II. Suppose ω is not an eigenfrequency with respect to µ0, ε0, σ0 and a boundary

condition of strictly Dirichlet type. For y ∈ Ω, we define the Dirichlet function D

to be the solution to





∇ ·
( 1

µ0
∇D(·, y)

)
+ κ2

0D(·, y) = −δy in Ω

D(·, y) = 0 on ∂Ω.

In the case of a Dirichlet problem (ΓD = ∂Ω), for all y ∈ (Ω \ I),

(uρ − u0)(y) =

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇D(·, y) dx+

∫

Iρ

(κ2
1 − κ2

0)uρD(·, y) dx.

If ∂Ω is sufficiently smooth then for y ∈ ∂Ω,

∂ν(uρ − u0)(y)

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇x∂νyD(·, y) dx+

∫

Iρ

(κ2
1 − κ2

0)uρ∂νyD(·, y) dx.

(2.33)

III. If the background EM parameters ε0, µ0 and σ0 are constant, let Φk0 denote the
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free-space Green’s function for the Helmholtz operator ∆+k2
0 satisfying Sommer-

feld’s outgoing radiation condition.5 Then

Φk0(x, y) =
i

4
H

(1)
0 (k0|x− y|),

where H
(1)
0 is the 0th order Hankel function of the first kind [CK98, Néd01]. For

y ∈ Ω and φ ∈ C∞(Ω),

∫

Ω
∇φ · ∇Φk0(·, y) dx−

∫

Ω
k2

0φΦk0(·, y) dx

= φ(y) +

∫

∂Ω
∂νxΦk0(x, y)φ(x) dσx.

Assuming ∂Ω is sufficiently smooth (C1,α for example), the well-known limiting

formula for double-layer potentials [CK83] implies that for y ∈ ∂Ω,

∫

Ω
∇φ · ∇Φk0(·, y) dx−

∫

Ω
k2

0φΦk0(·, y) dx

=
1

2
φ(y) +

∫

∂Ω
∂νxΦk0(x, y)φ(x) dσx.

Suppose k2
0 is not an eigenvalue of −∆ on Ω with mixed boundary conditions.

Fix y ∈ ∂Ω such that y is a point of continuity of uρ − u0. Choose a sequence

φn ∈ C∞(Ω) with φn → (uρ−u0) in H1(Ω) and φn → (uρ−u0) uniformly in some

neighborhood B(y, ǫ)∩∂Ω of y.6 If ∂Ω is at least C1,α-regular, the above formula

5Recall Sommerfeld’s outgoing radiation condition: ∂ru− ik0u = o(r−1/2) as r = |x| → ∞.

6This can be done since (uρ − u0) ∈ C∞(B ∩ (Ω \ I)) for every open set B away from ∂ΓD.
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continues to hold in the limit.7 Then by Lemma 2.19(i)8, for y ∈ ΓD ∪ ΓN ,

1

2
(uρ − u0)(y) −

∫

ΓD

∂ν(uρ − u0)Φ
k0(·, y) dσ +

∫

ΓN

∂νxΦk0(·, y)(uρ − u0) dσ

= µ0

(∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇Φk0(·, y) dx+

∫

Iρ

(κ2
1 − κ2

0)uρΦ
k0(·, y) dx

)
.

(2.34)

2.4.2 The asymptotic formula

Assume u0 and uρ solve (2.1a) and (2.1b), and let

R(uρ, s0) :=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇s0 dx

︸ ︷︷ ︸
I1

+

∫

Iρ

(κ2
1 − κ2

0)uρs0 dx

︸ ︷︷ ︸
I2

. (2.35)

We have seen that for certain functions s0, namely the Green’s functions of the previous

section, R(uρ, s0) is equal to a boundary measurement. We now state our main

Goal: To find the asymptotic expansion of the right-hand side of (2.35) for any s0 ∈

H1(Ω), or for any s0 sufficiently regular, such as s0 = G(·, y), y ∈ Ω \ I, where G is a

Green’s function.

Tackling I2 is easy:

I2 =

∫

Iρ

(κ2
1 − κ2

0)u0s0 dx+

∫

Iρ

(κ2
1 − κ2

0)(uρ − u0)s0 dx

︸ ︷︷ ︸
R0

. (2.36)

7This is becauseH1/2(∂Ω) →֒ Lp(∂Ω) continuously for all p <∞ when |∂νxΦk0(x, y)| = O(|x−y|α−1)
as x→ y.

8Again, this application of Lemma 2.19(i) requires a limiting approximation argument because
Φk0(·, y) /∈ H1(Ω).
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As for I1:

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇s0 · ∇uρ dx

=

∫

Iρ


−

( 1

µ1
− 1

µ0

)
∇s0T


1 0

0 1


∇uρ


dx

=

∫

Iρ


−

( 1

µ1
− 1

µ0

)
∇s0T



(
∇v(1)

0

)T
(
∇v(2)

0

)T


∇uρ


 dx

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
(∇v(i)

0 · ∇uρ)∂is0 dx, (2.37)

where

v
(i)
0 = xi + Ci

with Ci any constant. We choose

Ci = − 1

|∂Ω|

∫

∂Ω
xi dσ,

so that

∫

∂Ω
v

(i)
0 dσ = 0.

Now consider the problem of finding the perturbation v
(i)
ρ satisfying





∇ ·
( 1

µρ
∇v(i)

ρ

)
= ∂i

( 1

µ0

)
in Ω

v(i)
ρ = xi + Ci on ΓD

1

µρ
∂νv

(i)
ρ =

1

µ0
νi on ΓN

(
and

∫
∂Ω v

(i)
ρ dσ = 0 if ΓN = ∂Ω

)
.

(2.38)

Such a v
(i)
ρ exists uniquely for all 0 ≤ ρ ≤ 1. (When ΓD = ∅, this follows from

Remark 2.14. Otherwise, it follows from the standard argument using the Lax-Milgram
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theorem.) Moreover, by Theorem 2 (Lemma 2.15 when ΓN = ∂Ω),

∥∥v(i)
ρ − v

(i)
0

∥∥
H1

D(Ω)
≤ C|Iρ|1/2 (2.39)

and

∥∥v(i)
ρ − v

(i)
0

∥∥
L2(Ω)

≤ Cδ|Iρ|1−δ (2.40)

for all δ > 0, where C and Cδ are independent of ρ. The next step toward our goal will

be to show that

∫

Iρ

−
( 1

µ1
− 1

µ0

)
(∇v(i)

0 · ∇uρ)∂is0 dx

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
(∇v(i)

ρ · ∇u0)∂is0 dx+ o(|Iρ|).

To achieve this, we will use the following

Lemma 2.20. Suppose ω is not an eigenfrequency with respect to µ0, ε0, σ0 and ΓD. Let

F ∈
(
H1
D(Ω)

)′
, f ∈ H1/2(ΓD) and g ∈

(
H

1/2
00 (ΓN )

)′
be given. Let u0 be the solution to

(2.1a) and uρ the solution to (2.1b) guaranteed for ρ > 0 sufficiently small by Theorem

1. Let F1 ∈
(
H1
D(Ω)

)′
, f1 ∈ H1/2(ΓD) and g1 ∈

(
H

1/2
00 (ΓN )

)′
be given (with

∫
Ω F1 dσ =

∫
∂Ω g1 dσ if ΓN = ∂Ω). Let v0 ∈ H1

D(Ω) denote the solution to





∇ ·
( 1

µ0
∇v0

)
= F1 in Ω

v0 = f1 on ΓD

1

µ0
∂νv0 = g1 on ΓN

(
and

∫
∂Ω v0 dσ = 0 if ΓN = ∂Ω

)
,

and let vρ denote the solution of the perturbed problem (that is, the problem with µ0
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replaced by µρ). Then for any φ ∈ C0,1(Ω),

∫

Iρ

−
( 1

µ1
− 1

µ0

)
(∇v0 · ∇uρ)φ =

∫

Iρ

−
( 1

µ1
− 1

µ0

)
(∇vρ · ∇u0)φ

+R1 +R2 +R3 +R4,

where

R1 =

∫

Ω

1

µρ

(
∇(vρ − v0) · ∇φ

)
(uρ − u0),

R2 =

∫

Iρ

( 1

µ1
− 1

µ0

)(
∇v0 · ∇φ

)
(uρ − u0),

R3 = −
∫

Ω

1

µρ

(
∇(uρ − u0) · ∇φ

)
(vρ − v0),

R4 = −
∫

Iρ

( 1

µ1
− 1

µ0

)(
∇u0 · ∇φ

)
(vρ − v0),

R5 =

∫

Iρ

(κ2
1 − κ2

0)u0(vρ − v0)φ,

R6 =

∫

Ω
κ2
ρ(uρ − u0)(vρ − v0)φ.

Proof.

∫

Ω

1

µρ

(
∇(vρ − v0) · ∇(uρ − u0)

)
φ =

∫

Ω

1

µρ
∇(vρ − v0) · ∇

(
(uρ − u0)φ

)
−R1

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇v0 · ∇

(
(uρ − u0)φ

)
−R1

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)(
∇v0 · ∇(uρ − u0)

)
φ

−R1 −R2

by Lemma 2.19(ii) with Wρ = vρ and W0 = v0. Similarly, but with the roles of vρ − v0
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and uρ − u0 switched, we apply Lemma 2.19(i) with Uρ = uρ and U0 = u0 to find

∫

Ω

1

µρ

(
∇(vρ − v0) · ∇(uρ − u0)

)
φ

=

∫

Ω

1

µρ
∇(uρ − u0) · ∇

(
(vρ − v0)φ

)
+R3

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)(
∇u0 · ∇(vρ − v0)

)
φ+R3 +R4 +R5 +R6.

We apply this lemma to (2.37) with vρ = v
(i)
ρ , v0 = v

(i)
0 and φ ∈ C0,1(Ω) satisfying

φ = ∂is0 in I. Doing this, of course, requires that we assume

s0|I ∈ C1,1(I), (2.41)

with ∂I sufficiently regular forW 1,∞-extension. Then, using (2.36) and (2.35), it follows

that with R as defined by (2.35),

R(uρ, s0) =

∫

Iρ

−
( 1

µ1
− 1

µ0

)
(∇v(i)

ρ · ∇u0)∂is0 dx+

∫

Iρ

(κ2
1 − κ2

0)u0s0 dx

+R0 +R
(i)
1 +R

(i)
2 +R

(i)
3 +R

(i)
4 +R

(i)
5 +R

(i)
6

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇s0 · (Mρ∇u0) dx+

∫

Iρ

(κ2
1 − κ2

0)u0s0 dx

+R0 +R
(i)
1 +R

(i)
2 +R

(i)
3 +R

(i)
4 +R

(i)
5 +R

(i)
6 ,

where the R2×2-valued function Mρ is defined by

[Mρ]ij = ∂jv
(i)
ρ .

Observe that |Iρ|−11Iρ is bounded in L1(Ω), and therefore bounded in (C0(Ω))′ as

ρ → 0. By the Banach-Alaoğlu theorem, the |Iρ|−11Iρ lie within a weak-∗ compact

subset of (C0(Ω))′. Since C0(Ω) is a separable space, weak-∗ compact subsets of its

dual are sequentially weak-∗ compact. Thus, by the Riesz representation theorem, there

exists a positive regular Borel measure α and a subsequence ρn → 0 such that

|Iρn |−11Iρn
dx

weak-∗−−−−→ dα in
(
C0(Ω)

)′
.
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As a consequence of this weak convergence,
∫
Ω dα = 1, and α is therefore a probability

measure. A simple argument (as in [CV03a]) using (2.19) shows

∥∥|Iρ|−11Iρ∂jv
(i)
ρ

∥∥
L1(Ω)

is bounded as ρ → 0, hence there exists a regular Borel measure Mij such that, after

passing to a further subsequence,

|Iρn |−11Iρn
∂jv

(i)
ρn

dx
weak-∗−−−−→ dMij in

(
C0(Ω)

)′
.

Another simple argument (as in [CV03a]), again using (2.19), shows the linear functional

on C0(Ω) defined by

φ 7→
∫

Ω
φ dMij

can be extended to a bounded linear functional on L2(Ω,dα). Consequently, there

exists a matrix M with entries Mij ∈ L2(Ω,dα) such that

dMij = Mij dα.

By taking any ψ ∈ C1,1(Ω) satisfying ψ|I = s0|I9, we have

H0(uρn − u0, s0) −
∫

ΓD

(
1

µ0
∂νuρn − 1

µ0
∂νu0

)
s0 dσ

= R(uρ, s0) :=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇s0 dx+

∫

Iρ

(κ2
1 − κ2

0)uρs0 dx

= |Iρn |
(∫

Ω
−
( 1

µ1
− 1

µ0

)
∇s0 · (M∇u0) dα+

∫

Ω
(κ2

1 − κ2
0)u0s0 dα

)

+R0 +R
(i)
1 +R

(i)
2 +R

(i)
3 +R

(i)
4 +R5 +R6,

9We do this because we do not want to restrict our choices for s0 to only functions that are C1,1(Ω).
Such a restriction would disqualify s0 = G(·, y), where G is any Green’s function for the background
Helmoltz equation and y ∈ Ω \ I.
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with

R0 =

∫

Iρn

(κ2
1 − κ2

0)(uρn − u0)s0 dx,

R
(i)
1 =

∫

Ω

1

µ0

(
∇(v(i)

ρn
− v

(i)
0 ) · ∇(∂iψ)

)
(uρn − u0) dx,

R
(i)
2 =

∫

Iρn

( 1

µ1
− 1

µ0

)(
∇v(i)

0 · ∇(∂is0)
)
(uρn − u0) dx,

R
(i)
3 = −

∫

Ω

1

µ0

(
∇(uρn − u0) · ∇(∂iψ)

)(
v(i)
ρn

− v
(i)
0

)
dx,

R
(i)
4 = −

∫

Iρn

( 1

µ1
− 1

µ0

)(
∇u0 · ∇(∂is0)

)(
v(i)
ρn

− v
(i)
0

)
dx,

R5 =

∫

Iρ

(κ2
1 − κ2

0)u0

(
v(i)
ρn

− v
(i)
0

)
s0 dx,

R6 =

∫

Ω
κ2
ρ(uρ − u0)

(
v(i)
ρn

− v
(i)
0

)
ψ dx,

R7 =

∫

Iρn

−
( 1

µ1
− 1

µ0

)
∇s0 ·

(
Mρn∇u0

)
dx

− |Iρn |
∫

Ω
−
( 1

µ1
− 1

µ0

)
∇s0 · (M∇u0) dα,

R8 =

∫

Iρn

(κ2
1 − κ2

0)u0s0 dx− |Iρn |
∫

Ω
(κ2

1 − κ2
0)u0s0 dα.

Both R7 and R8 are clearly o(|Iρn |) as ρn → 0. Using Hölder’s inequality followed by

the H1 and L2 estimates (2.39) and (2.40) of the error v
(i)
ρn − v

(i)
0 and the H1 and L2

estimates of uρ − u0 from Theorem 2, we see that the remainder terms R0 through R6

are each bounded in absolute value by

C|Iρn |
3
2
−δ‖ψ‖C1,1(Ω)‖u0‖C0,1(I).

If F |Ω′ ∈ Lp(Ω′) for some I ⊂⊂ Ω′ ⊂⊂ Ω and some p > 2, we may appeal to Corollary

2.17 to replace the above bound with

C|Iρn |
3
2
−δ‖ψ‖C1,1(Ω)‖(F, f, g)‖.

If s0|I ∈ C1,1(I), ψ may be chosen so that

‖ψ‖C1,1(Ω) ≤ Cdist(Ω′,∂Ω)‖s0|I‖C1,1(I).
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This brings us to the main theorem of this chapter.

Theorem 3. Assume ω ≥ 0 is not an eigenfrequency with respect to µ0, ε0, σ0 and

ΓD, (that is, suppose there are no nontrivial solutions to the homogeneous form of

(2.1a)) and let ρ0 > 0 be as in Theorem 1. Given any sequence ρn ≤ ρ0 satisfying

ρn → 0, there exists a subsequence—which we continue to denote by ρn—a regular Borel

probability measure α on Ω supported in I, and a polarization tensor M with real-valued

entries Mij ∈ L2(Ω,dα) such that the following holds: for any given f ∈ H1/2(ΓD),

g ∈
(
H

1/2
00 (ΓN )

)′
and F ∈ (H1

D(Ω))′ satisfying F |Ω′ ∈ Lp(Ω′) for some I ⊂⊂ Ω′ ⊂⊂ Ω

and some p > 2, and for any given function s0 defined on Ω with s0|I ∈ C1,1(I), we

have

R(uρ, s0) :=

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇uρ · ∇s0 dx+

∫

Iρ

(κ2
1 − κ2

0)uρs0 dx

= |Iρn |
(∫

Ω
−
( 1

µ1
− 1

µ0

)
∇s0 · (M∇u0) dα+

∫

Ω
(κ2

1 − κ2
0)u0s0 dα

)

+ o(|Iρn |), (2.42)

where u0 and uρ are the solutions to (2.1a) and (2.1b) respectively. The remainder

term satisfies

∣∣o(|Iρn |)
∣∣ ≤ |R7| + |R8| + C|Iρn |

3
2
−δ‖s0|I‖C1,1(I)‖(F, f, g)‖,

where

‖(F, f, g)‖ = ‖F‖Lp(Ω′) + ‖F‖(H1
D(Ω))′ + ‖f‖H1/2(ΓD) + ‖g‖

(H
1/2
00 (ΓN ))′

and C depends on ω, the ellipticity constant ϑ, the suprema of the EM parameters (µ0,

µ1, ε0, ε1, σ0 and σ1), dist(I, ∂Ω′), dist(Ω′, ∂Ω), Ω, ΓD and ‖L−1
0 ‖. The subsequence

Iρn and the measure α are independent of F , f and g (as well as ω, ε0, ε1, σ0 and σ1).

M depends on the subsequence Iρn and on µ0 and µ1, but is independent of F , f and g

(as well as ω, ε0, ε1, σ0 and σ1). M is symmetric and positive definite dα-a.e. in the
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set {µ0 6= µ1}, where it satisfies the bounds

min
{

1,
µ1

µ0

}
|ξ2| ≤ ξTMξ ≤ max

{
1,
µ1

µ0

}
|ξ2| for all ξ ∈ R2. (2.43)

Proof. All that remains to be shown is the symmetry and positive definiteness of M

with the stated bounds. The proofs in [CV03a] for the conductivity problem carry

over to the present context with essentially no change. We include these proofs for

completeness only.

To see that M is symmetric, observe that by Lemma 2.20 with v0 = v
(i)
0 , vρ = v

(i)
ρ ,

u0 = v
(j)
0 and uρ = v

(j)
ρ ,

∫

Iρ

( 1

µ1
− 1

µ0

)(
∇v(i)

0 · ∇v(j)
ρ

)
φdx =

∫

Iρ

( 1

µ1
− 1

µ0

)(
∇v(i)

ρ · ∇v(j)
0

)
φdx+ o(|Iρ|)

for all φ ∈ C0,1(Ω).10 Thus

∫

Ω

( 1

µ1
− 1

µ0

)
Mjiφ dσ = lim

1

|Iρn |

∫

Iρn

( 1

µ1
− 1

µ0

)(
∇v(i)

0 · ∇v(j)
ρn

)
φdx

= lim
1

|Iρn |

∫

Iρn

( 1

µ1
− 1

µ0

)(
∇v(i)

ρn
· ∇v(j)

0

)
φdx

=

∫

Ω

( 1

µ1
− 1

µ0

)
Mijφ dσ.

We now show that M is positive definite with the bounds (2.43). Recall from the proof

of Lemma 2.20 that, with u0, uρ, v0 and vρ as in the statement of that lemma, for any

φ ∈ C0,1(Ω),

∫

Ω

1

µρ

(
∇(vρ − v0) · ∇(uρ − u0)

)
φ dx

=

∫

Iρ

−
( 1

µ1
− 1

µ0

)(
∇v0 · ∇(uρ − u0)

)
φ dx−R1 −R2, (2.44)

10In the event that ΓN = ∂Ω, this choice of u0 solves (2.1a) (with the appropriate F and g) at the
eigenfrequency ω = 0, and therefore doesn’t meet the stated requirement for Lemma 2.20 to apply.
However, the proof of Lemma 2.20 is still valid in this case. To see that the remainder terms continue
to be o(|Iρ|), simply appeal to Lemma 2.15 instead of Theorem 2 to estimate the error uρ − u0.
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where

R1 =

∫

Ω

1

µρ

(
∇(vρ − v0) · ∇φ

)
(uρ − u0),

R2 =

∫

Iρ

( 1

µ1
− 1

µ0

)(
∇v0 · ∇φ

)
(uρ − u0).

As we have already noted, R1 and R2 are both o(Iρ). With

v
(i)
0 (x) = xi −

1

|∂Ω|

∫

∂Ω
xi dσ

and v
(i)
ρ as defined in (2.38), we take v0 = v

(j)
0 , vρ = v

(j)
ρ , u0 = v

(i)
0 , uρ = v

(i)
ρ in (2.44)

and get

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇v(j)

0 · ∇v(i)
ρ φ dx =

∫

Ω

1

µρ

[
∇
(
v(j)
ρ − v

(j)
0

)
· ∇
(
v(i)
ρ − v

(i)
0

)]
φ dx

−
∫

Iρ

( 1

µ1
− 1

µ0

)
∇v(i)

0 · ∇v(j)
0 φ dx+ o(Iρ)

(2.45)

for any fixed i, j ∈ {1, 2}. Fix any ξ = (ξ1, ξ2) ∈ R2, multiply both sides of this equation

by ξ1ξ2 and then sum over the indices. We may write the resulting equation as

∫

Iρ

−
( 1

µ1
− 1

µ0

)
[Mρ]ijξiξjφ dx =

∫

Ω

1

µρ
|∇(Vρ − V0)|2φ dx (2.46)

−
∫

Iρ

( 1

µ1
− 1

µ0

)
|∇V0|2φ dx+ o(Iρ),

where

Vρ = ξ1v
(1)
ρ + ξ2v

(2)
ρ and V0 = ξ1v

(1)
0 + ξ2v

(2)
0

(recall that [Mρ]ij := ∂jv
(i)
ρ = ∇v(j)

0 ·∇v(i)
ρ .) Note that |∇V0| = ξ. Along the subsequence

Iρn , we divide both sides of (2.46) by |Iρn | and get, in the limit,

∫

Ω
−
( 1

µ1
− 1

µ0

)
ξTMξφ dα ≥

∫

Ω
−
( 1

µ1
− 1

µ0

)
|ξ|2φ dα (2.47)



59

for all φ ∈ C0,1(Ω) such that φ ≥ 0.

Claim: For any nonnegative φ ∈ C0,1(Ω),

∫

Ω

1

µρ
|∇(Vρ − V0)|2φ dx ≤

∫

Iρ

µ1

( 1

µ1
− 1

µ0

)2
|∇V0|2φ dx+ o(Iρ). (2.48)

Assuming this were true, from (2.46) it would then follow that for any nonnegative

φ ∈ C0,1(Ω),

∫

Iρ

−
( 1

µ1
− 1

µ0

)
[Mρ]ijξiξjφ dx ≤

∫

Iρ

−
( 1

µ1
− 1

µ0

)µ1

µ0
|ξ|2φ dx+ o(Iρ).

This in turn implies that for any nonnegative φ ∈ C0,1(Ω),

∫

Ω
−
( 1

µ1
− 1

µ0

)
ξTMξφ dα ≤

∫

Ω
−
( 1

µ1
− 1

µ0

)µ1

µ0
|ξ|2φ dα.

The above inequality combined with (2.47) would yield that

−
( 1

µ1
− 1

µ0

)
|ξ|2 ≤ −

( 1

µ1
− 1

µ0

)
ξTMξ ≤ −

( 1

µ1
− 1

µ0

)µ1

µ0
|ξ|2

dα-a.e. in the set {µ0 6= µ1}, which would imply Property 2.43. To complete the proof,

then, we must verify (2.48). To this end, observe that by (2.45),

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇Vρ · ∇V0φ dx =

∫

Ω

1

µρ
|∇(Vρ − V0)|2φ dx

−
∫

Iρ

( 1

µ1
− 1

µ0

)
|∇V0|2φ dx+ o(Iρ),

and therefore

∫

Ω

1

µρ
|∇(Vρ − V0)|2φ dx =

∫

Iρ

−
( 1

µ1
− 1

µ0

)
∇V0 · ∇(Vρ − V0)φ dx+ o(Iρ)

≤
[ ∫

Iρ

µ1

( 1

µ1
− 1

µ0

)2
|∇V0|2φ dx

] 1
2

×
[ ∫

Iρ

1

µ1
|∇(Vρ − V0)|2φ dx

] 1
2

+ o(Iρ).
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(2.48) now follows from an application of the inequality ab ≤ (a2+b2)/2 for a, b ≥ 0.

Remark 2.21. The polarization tensor M is local; that is, it can be shown to be

independent of the type of boundary conditions and to depend only on µ0|Ω′ , µ1|Ω′

and the subsequence Iρn , where Ω′ is any smooth set satisfying
⋃ Iρ ⊂⊂ Ω′ ⊂⊂ Ω.

This was done in [CV03b] for the conductivity problem. The idea of the proof is

as follows: recall that v
(i)
ρ is defined on Ω to be the perturbation of v

(i)
0 :=xi + Ci

satisfying (2.38). Define w
(i)
ρ on Ω′ as a perturbation of v

(i)
0 |Ω′ with the same Neumann

data. Using elliptic estimates and the L2 estimate from Theorem 2, one can show that
∥∥∇(v

(i)
ρ − w

(i)
ρ )
∥∥
L2(Ω′) ≤ C|Iρ|1−δ. Consequently, for any sequence ρn → 0,

(
∂jv

(i)
ρn −

∂jw
(i)
ρn

) weak-∗−−−−→ 0 in (C0(Ω′))′.

Since M does not depend on the type of boundary conditions of the problem (2.38)

defining v
(i)
ρ , we now know that it is identical to the polarization tensor derived in

[CV03a] for the conductivity problem with a Neumann condition, except with the role

of σρ replaced by 1/µρ.

A consequence of this local dependence of M is the following: suppose Iρ =
⋃m
j=1 I

j
ρ

such that there exist mutually disjoint sets Ω′
j ⊂⊂ Ω with each

⋃
ρ I

j
ρ ⊂⊂ Ω′

j . Let

ρn → 0 be a subsequence for which |Iρ|−1dx
weak-∗−−−−→ dα and, for some probability

measures αj supported in Ω′
j , |Ijρ|−1dx

weak-∗−−−−→ dαj . (At least one such subsequence

must exist.) Suppose also that

|Ijρ|
|Iρ|

=
|Ijρ|∑
i |Iiρ|

−→ cj as ρ→ 0

for some cj > 0, so that

m∑

j=1

(
|Ijρ|∑
i |Iiρ|

)
1

|Ijρ|
dx

weak-∗−−−−→





dα,

∑
j cj dαj ,

and therefore

dα =
m∑

j=1

cj dαj .
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Then if M j ∈ L2(Ω,dαj) is the polarization tensor determined by µρ|Ij
ρ

and supported

in Ω′
j ,

M dα =
m∑

j=1

M j dαj .

From (2.29), (2.32), (2.33) and (2.34) we get the following corollaries.

Corollary 2.22. If s0 ∈ H1(Ω) solves the background Helmholtz equation,

∇ ·
(

1

µ0
∇s0

)
+ κ2

0s0 = 0,

and s0|I ∈ C1,1(I), then

∫

∂Ω

{
uρn

(
1

µ0
∂νs0

)
−
(

1

µ0
∂νuρn

)
s0

}
dσ

= |Iρn |
[∫

Ω
−
( 1

µ1
− 1

µ0

)
∇s0 · (M∇u0) dα+

∫

Ω

(
κ2

1 − κ2
0

)
u0s0 dα

]
+ o(|Iρn |).

Corollary 2.23. For all y ∈ (Ω \ I)∪ΓD ∪ΓN (but not necessarily at the points on ∂Ω

where the boundary condition changes type),

(uρ − u0)(y) −
∫

ΓD

1

µ0
∂ν(uρ − u0)N (·, y) dσ

= |Iρn |
(∫

Ω
−
( 1

µ1
− 1

µ0

)
∇xN (·, y) · (M∇u0) dα

+

∫

Ω
(κ2

1 − κ2
0)u0N (·, y) dα

)
+ o(|Iρn |).

Corollary 2.24. In the case of a purely Dirichlet problem, if ∂Ω is sufficiently smooth

then for all y ∈ ∂Ω,

∂ν(uρ − u0)(y) = |Iρn |
(∫

Ω
−
( 1

µ1
− 1

µ0

)(
∇x∂νyD(·, y)

)
· (M∇u0) dα

+

∫

Ω
(κ2

1 − κ2
0)u0

(
∂νyD(·, y)

)
dα

)
+ o(|Iρn |).

Corollary 2.25. When the background coefficients are constant, we have for all y ∈
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ΓD ∪ ΓN ,

1

2µ0
(uρ − u0)(y) −

∫

ΓD

1

µ0
∂ν(uρ − u0)Φ

k0(·, y) dσ

+

∫

ΓN

1

µ0
∂νxΦk0(·, y)(uρ − u0) dσ

= |Iρn |
(∫

Ω
−
( 1

µ1
− 1

µ0

)
∇xΦk0(·, y) · (M∇u0) dα

+

∫

Ω
(κ2

1 − κ2
0)u0Φ

k0(·, y) dα

)
+ o(|Iρn |).

Remark 2.26. In Corollaries 2.23, 2.24 and 2.25, by continuity we see that for any set

Γ ⊂⊂ (Ω \ I) ∪ ΓD ∪ ΓN ,

‖o(|Iρn |)‖L∞(Γ)/|Iρn | → 0

for any fixed f ∈ H1/2(ΓD), g ∈
(
H

1/2
00 (ΓN )

)′
and F ∈ (H1

D(Ω))′ satisfying F |I ∈ Lp(I).

In particular, if ΓD = ∂Ω or ΓN = ∂Ω, we may take Γ = ∂Ω.

Remark 2.27. Recalling Remark 2.18, it is clear that Theorem 1 and its corollaries

continue to hold when the dimension n of the ambient space is greater than two. How-

ever, p must be greater than n, and the factor |Iρ|
3
2
−δ (from the bound on the remainder

term) must be replaced with |Iρ|1+
1
n
−δ.

2.4.3 Particular cases

If Iρ =
⋃m
l=1(zl + ρDl), where each Dl is a smooth, simply connected domain, the

measure α = 1P
i |Di|

∑m
l=1 |Dl|δzl

(cf. Remark 2.21). In this case, we may calculate M

by the formula

Mij(zl) = |Dl|−1

∫

∂Dl

νiwj dσ = |Dl|−1

∫

Dl

∂yiwj dy,
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where wj is the solution to





∆wj = 0 in Dl and R2 \Dl,

wj
− = wj

+ on ∂Dl,

1

µ
∂

−
ν wj = ∂

+

ν wj on ∂Dl,

|wj(x) − xj | → 0 as |x| → ∞.

(This was proved in [CFMV98]. See also Section 3.2.3 of Chapter 3 for a justification.)

If Each Dj = B(0, 1) = the unit disk centered at the origin, the above formula can be

used to show M = 2
(
1 + µ0

µ1

)−1
I2×2 (cf. Remarks 3.1 and 3.4 of Chapter 3).

Another notable case is that when Iρ is a thin inhomogeneity, or a collection of thin

inhomogeneities. Given a smooth nonintersecting curve γ of finite length compactly

contained in Ω, let Iρ = [−ρ/2, ρ/2] × [0, length γ] in the local coordinate system de-

termined by the normal ν and tangent τ directions of γ. In this case it can be shown

that dα = 1
length γdσγ , where dσγ is the arc-length measure on γ [BFV03, CV03a].

Furthermore, it can be shown that for x ∈ γ,

M(x) in the basis determined by τ(x) and ν(x) =


1 0

0 µ1(x)
µ0(x)


 .

Note that the bounds (2.43) are achieved with ξ = τ(x) and ξ = ν(x).

2.4.4 Estimating the size of the inclusion

Techniques for using boundary voltage measurements to estimate the size of a small

conducting inhomogeneity within a bounded, conducting background medium were

provided in [CV03b] and [CV04]. These techniques, based on the analogue of Theorem

3 for the conductivity problem, do not directly apply when the background material

is nonconducting. In such a situation, we may apply Theorem 3 to see how to use

electromagnetic boundary measurements to estimate the size of the inhomogeneity.

Suppose µ0, µ1, ε0, ε1, σ1 and σ0 are all constant. Take any ξ ∈ R2 and apply

appropriate boundary data to produce the background field u0 = eik0x·ξ. Let s0 =
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eik0x·ξ. By Corollary 2.22,

Pξ :=

∫

∂Ω

{
uρn

(
1

µ0
∂νs0

)
−
(

1

µ0
∂νuρn

)
s0

}
dσ

= |Iρn |
[∫

Ω
−
( 1

µ1
− 1

µ0

)
∇s0 · (M∇u0) dα+

∫

Ω

(
κ2

1 − κ2
0

)
u0s0 dα+ o(1)

]

= |Iρn |
[
−
( 1

µ1
− 1

µ0

)
|k0|2

∫

Ω
ξTMξe−2 Im(k0)x·ξ dα

+
(
κ2

1 − κ2
0

) ∫

Ω
e−2 Im(k0)x·ξ dα+ o(1)

]
.

If Im(k0) = 0 (i.e., if σ0 = 0 or ω = 0), the above simplifies as

Pξ = |Iρn |
[
−
( 1

µ1
− 1

µ0

)
k2

0

∫

Ω
ξTMξ dα+

(
κ2

1 − κ2
0

)
+ o(1)

]
. (2.49)

Consider the case where Im(k0) = 0 and µ0 = µ1. (2.49) then becomes

Pξ = |Iρn |
[(
κ2

1 − κ2
0

)
+ o(1)

]

= |Iρn |
[
ω2(ε1 − ε0) + iωσ1 + o(1)

]
.

Taking real and imaginary parts gives

Re{Pξ} = |Iρn |
[
ω2(ε1 − ε0) + o(1)

]
,

Im{Pξ} = |Iρn |[ωσ1 + o(1)].

In the event that at least one of ε1 and σ1 are known, the equation corresponding

to the known quantity provides a simple and efficient tool for estimating the size of

the arbitrarily shaped small inhomogeneity from the boundary measurement Pξ. This

approximation of |Iρn | can then be used to solve for the unknown parameter ε1 or σ1,

if one of these is unknown.

If σ0 = 0 and σ1 > 0,

Im{Pξ} = |Iρn |
[
ωσ1 + o(1)

]
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holds even if µ1 6= µ0. Again, assuming σ1 is known, this equation can be used to

estimate the size of the inhomogeneity from Pξ.

The situation is more complicated when σ0 = σ1 = 0 and µ0 6= µ1. Fortunately,

the ideas of [CV03b] carry over with minor changes. The significance of the positive

definiteness bounds (2.43) will now become clear. By applying that inequality to (2.49),

we find

−
( 1

µ1
− 1

µ0

)
k2

0|ξ|2 ≤ Re{Pξ}
|Iρn |

− ω2(ε1 − ε0) + o(1) ≤ −
( 1

µ1
− 1

µ0

)µ1

µ0
k2

0|ξ|2. (2.50)

Assume |ξ| = 1. If Re{Pξ} > 0, the above inequality yields the lower bound

Re{Pξ}
−
(

1
µ1

− 1
µ0

)
µ1

µ0
k2

0 + ω2(ε1 − ε0) + o(1)
≤ |Iρn |. (2.51a)

If Re{Pξ} < 0, we instead get the lower bound

Re{Pξ}
−
(

1
µ1

− 1
µ0

)
k2

0 + ω2(ε1 − ε0) + o(1)
≤ |Iρn |. (2.51b)

As for upper bounds, we have: if

−
( 1

µ1
− 1

µ0

)
k2

0 + ω2(ε1 − ε0) > 0

(and therefore, by (2.50), Re{Pξ} > 0, assuming the o(1) term is sufficiently small)

then

|Iρn | ≤
Re{Pξ}

−
(

1
µ1

− 1
µ0

)
k2

0 + ω2(ε1 − ε0) + o(1)
. (2.51c)

If

−
( 1

µ1
− 1

µ0

)µ1

µ0
k2

0 + ω2(ε1 − ε0) < 0

(and therefore, by (2.50), Re{Pξ} < 0, assuming the o(1) term is sufficiently small)
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then

|Iρn | ≤
Re{Pξ}

−
(

1
µ1

− 1
µ0

)
µ1

µ0
k2

0 + ω2(ε1 − ε0) + o(1)
. (2.51d)

The bounds (2.51a-d) can be used to estimate the size of the inhomogeneity in the case

where σ0 = σ1 = 0 and µ0 6= µ1. These are analogous to similar single measurement

estimates in [CV03b]. In [CV03b] and [CV04] it was shown that, in the context of the

conductivity problem, better estimates can be made from multiple measurements using

bounds on the trace of M .

Property 2.28. Suppose µ0 and µ1 are C∞. With M as in Theorem 3,

4

1 + µ0

µ1

≤ trace(M) ≤ 1 +
µ1

µ0
,

4

1 + µ1

µ0

≤ trace(M−1) ≤ 1 +
µ0

µ1

dα-a.e. in the set {µ0 6= µ1}.

The proof of this property found in [CV06] (cf. [CV03b, CV04]) is based on a

variational approach in the spirit of the work of Hashin and Shtrikman [HS63]. To

illustrate the utility of the these bounds, we observe that by (2.49),

Pe1 + Pe2 = |Iρn |
[
−
( 1

µ1
− 1

µ0

)
k2

0

∫

Ω
trace(M) dα+ 2

(
κ2

1 − κ2
0

)
+ o(1)

]

(e1 = (1, 0) and e2 = (0, 1)), which can be used in conjunction with Property (2.28) to

estimate |Iρn | in the same manner as in the single measurement case.
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Chapter 3

The Scattering Problem

3.1 Introduction

In this chapter we consider the two-dimensional scattering problem, arising from a

three-dimensional problem with transverse-magnetic symmetry, wherein a given time-

harmonic wave traveling in a background medium is incident upon a diametrically small,

penetrable obstacle. The background medium is isotropic and nonconducting, and it is

assumed to occupy all of the space exterior to the inhomogeneity. The inhomogeneity is

also isotropic, though possibly conducting. We normalize the background permeability

and permittivity to be 1 and denote the (dimensionless) permeability, permittivity and

conductivity within the inhomogeneity by the constants µ, ε and σ, respectively. To

simplify our notation, we let q = µǫ = µ(ε+ iσω ). Also, we let µρ denote the piecewise

constant function that equals the permeability throughout R2 when the inhomogeneity

is present, and we do likewise for ερ, σρ and qρ.

The inhomogeneity (or, more precisely, the two-dimensional cross section of the

inhomogeneity) is represented by Iρ = ρD, whereD ⊂ R2 is a smooth, simply connected

domain with 0 ∈ D. The prescribed incident wave ui satisfies

(∆ + ω2)ui = 0 in R2.

We will usually take ui to be a plane wave propagating in the direction η:

ui(x) = eiωx·η,

where η ∈ R2, |η| = 1. The resulting scalar electric field uρ is the unique solution to
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the problem consisting of the equation

∇ ·
( 1

µρ
∇uρ

)
+ ω2 qρ

µρ
uρ = 0 (3.1a)

and Sommerfeld’s outgoing radiation condition,

(∂r − iω)(uρ − ui) = O(r−3/2) as r → ∞. (3.1b)

We define the transmitted and scattered fields utr
ρ and us

ρ by

uρ =





ui + us
ρ in R2 \ ρD,

utr

ρ in ρD.

Since D is smooth, we may rewrite (3.1) as the problem of finding (utr

ρ , u
s

ρ) satisfying





∆us

ρ + ω2us

ρ = 0 in R2 \ ρD,

∆utr

ρ + qω2utr

ρ = 0 in ρD,

(3.2a)

with the transmission conditions





utr = us

ρ + ui on ρ∂D,

1

µ
∂νu

tr

ρ = ∂ν(u
s

ρ + ui) on ρ∂D,
(3.2b)

along with the radiation condition

(∂r − iω)us

ρ = O(r−3/2) as r → ∞. (3.2c)

We remark that the radiation condition can be replaced with the weaker condition

(∂r − iω)us

ρ = o(r−1/2),
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or even

∫

∂B(0,r)

∣∣(∂r − iω)us

ρ

∣∣2 dσ → 0,

but any solution will automatically satisfy the stronger form, thanks to the Green’s

representation formula (3.27) (see [Wil56] or [CK98]). The unique existence of a solution

uρ to this problem can be proved by replacing the radiation condition with the boundary

condition

∂ru
s

ρ = ΛR
(
us

ρ

∣∣
∂BR

)
on ∂BR, (3.3)

for some R sufficiently large so that ρD ⊂⊂ BR, where ΛR : H1/2(∂BR) → H−1/2(∂BR)

is the Dirichlet-to-Neumann operator, which assigns to a given function f ∈ H1/2(∂BR)

the normal derivative of the solution of the exterior problem





(∆ + ω2)u = 0 in R2 \BR,

u = f on ∂BR,

(∂r − iω)u = O(r−3/2) as r → ∞,

which may easily be solved using the method of separation of variables. This equivalent

formulation of the problem, where the radiation condition (3.1b) is replaced with (3.3),

may then be solved variationally. This method applies just as well when the inhomo-

geneity Iρ is assumed only to be bounded and measurable. The scattered field us

ρ will

belong to the space

H :=

{
u :

u√
1 + r2

∈ L2(R2 \ Iρ),
∇u√
1 + r2

∈ L2(R2 \ Iρ),

(∂r − iω)u ∈ L2(R2 \ Iρ)
}
,

and the transmitted field utr will belong to H1(Iρ). Details can be found in [Néd01] for

the exterior Dirichlet and Neumann problems—that is, for the case when Iρ is perfectly

conducting (sound-soft) and for the case when Iρ is sound-hard. The ideas found there
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can be easily modified to accommodate penetrable scatterers.

Alternatively, in the case of a smooth scatterer and constant permeability, existence

and uniqueness can be proved using layer potential techniques, with the solution being

a convergent Born series (also called a Neumann series) [Roa92]. As such, this method

of proof spells out an iterative procedure for numerically computing the solution.1

Our goal in the chapter will be to derive approximation formulas for the scattered

field as ρ→ 0. In the case of a nonconducting inhomogeneity and fixed frequency, such

an approximation has been derived rigorously as the leading order term of an asymptotic

expansion [AIM03]. But here we will allow the frequency to vary as a function of ρ, and

we will derive formal asymptotic approximations for three separate regimes: ρω → 0,

ρω → λ0 (finite and nonzero), and ρω → ∞.

To illustrate the effect of changes in frequency, we consider the case of a plane

wave incident upon a disk of radius ρ centered at the origin. Let
∥∥us

ρ|∂B(0,2)

∥∥2

L2(T)
=

1
2π

∫ 2π
0

∣∣us
ρ|∂B(0,2)

∣∣2dθ, where ∂B(0, 2) is the circle of radius 2 centered at the origin.

In Figures 3.1 and 3.2 we show plots of
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

as a function of ω for various

values of ρ, µ, ε and σ/ω (σ is assumed to grow at a rate proportional to ω, which means

the scatterer is well absorbing). The asymptotic behavior as ρ→ 0 for a fixed small ω

0 100 250 1000 2000 3000

0.0135

0.027

0.043

0.06

Figure 3.1: Plots of the
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

as a function of ω. Of these nine plots, the cluster

of three at the top correspond to the scattering disk of radius ρ = 0.01, the middle cluster to
ρ = 0.004 and the bottom cluster to ρ = 0.001. The dotted graphs correspond to the values
ε = 2 and σ/ω = 2, the solid graphs to ε = 3 and σ/ω = 1 and the dashed graphs to ε = 1 and
σ/ω = 3. In all cases µ = 2. The three values of ρ−1 are labeled on the ω-axis.

1See also [CK98, Ch. 8] for a proof based on the principle of unique continuation.
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0  

0.001

0.002

0.003

0 5 10 15 20 25 
1.132e−005

1.811e−004

1.132e−003

Figure 3.2: The left frame is a close-up view of the plots from Figure 3.1 for ω small. The
right frame shows only those plots corresponding to the values ε = 2 and σ/ω = 2, which were
dotted in the left frame. On the vertical axis are the values of

∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

when ω = 5 for

ρ = 0.01, 0.004 and 0.001 (from top to bottom).

can be seen in Figure 3.2: at ω = 5, ρ−2
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

is nearly constant (≈ 11.32)

for the three values ρ = 0.01, ρ = 0.004 and ρ = 0.001. That
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

∼ ρ2 is

consistent with the asymptotic expansion we derived in Chapter 1 and with the rigorous

expansion in [AIM03]. If ω is allowed to vary as a function of ρ, Figure 3.1 suggests

that this asymptotic behavior as ρ → 0 is valid so long as ω ≪ ρ−1, but there is a

change when ω ∼ ρ−1. The plots suggest that if ω grows as ρ → 0 in such a way that

ω ∼ ρ−1 or ω ≫ ρ−1 then
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

∼ √
ρ. For instance, note that

0.0135√
0.001

≈ 0.027√
0.004

≈ 0.043√
0.01

= 0.43.

Figure 3.3 shows what happens when the scatterer has zero conductivity. The oscilla-

tions in the plots are due to resonance effects caused by the transmitted field, which,

in the absence of conductivity, does not rapidly attenuate within the scatterer. It is

not surprising then that the task of finding an asymptotic expression for the scattered

field when ω ≫ ρ−1 in the case of a nonconducting scatterer is more difficult than

in the case where σ/ω ≥ c > 0. We will avoid this complication by only considering

well absorbing scatterers. However, we note that the regularity of the oscillations in

Figure 3.3 suggests that testing over a broad band of high frequencies followed by an

appropriate averaging may yield stable data that will aid in solving the inverse problem
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Figure 3.3: Plots of the
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

as a function of ω in the case of a nonconducting

scatterer. The highest graph corresponds to the disk of radius ρ = 0.01, the middle to ρ = 0.004
and the bottom graph to ρ = 0.001. In each case, µ = 2, ε = 2 and σ = 0.
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Figure 3.4: Plots of the
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

as a function of ω in the case of a perfectly conducting

scatterer. The highest graph corresponds to the disk of radius ρ = 0.01, the middle to ρ = 0.004
and the bottom graph to ρ = 0.001. The right frame is a close-up view of for 1 ≤ ω ≤ 50.

even when the inhomogeneity has low, or zero, conductivity.

Figure 3.4 is just as in Figures 3.1 and 3.2 except now the scatterer is perfectly

conducting. That is, us

ρ solves the problem2





∆us

ρ + q0ω
2us

ρ = 0 in R2 \ ρD,

us

ρ = −ui on ρ∂D,

(∂r − i
√
q0ω)us

ρ = o(r−1/2) as r → ∞.

(3.4)

The asymptotic behavior as ρ → 0 for high frequencies ω ≫ ρ−1 is the same as in the

case of a moderately well absorbing scatterer (Figure 3.1):
∥∥us

ρ|∂B(0,2)

∥∥
L2(T)

∼ √
ρ. But

2The total electric field vanishes within the perfect conductor, hence the boundary condition uρ =
us

ρ + ui = 0 on ∂D.
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for low frequencies the magnitude shrinks on the order of | log ρ|−1:

0.176 × | log 0.01| ≈ 0.149 × | log 0.004| ≈ 0.122 × | log 0.001|.

3.2 Low to moderate frequency

By low frequency we of course mean low relative frequency: ω may tend to ∞, but it

must do so at a slow pace relative to ρ−1. Moderate frequency refers to the situation

where ω grows in such a way that 1/C ≤ ωρ ≤ C for some C > 0.

3.2.1 The case of a disk

Suppose the scatterer is the unit disk D = B(0, 1). In this case, the method of sepa-

ration of variables gives us an exact solution to problem (3.2). From the expression of

this solution it is not difficult to prove a rigorous expansion in ωρ of the scattered field.

For now, we may assume ui is of a more general form than simply that of a plane

wave. Since (∆ + ω2)ui = 0 in all of R2, ui must have the form

ui(x) =
∞∑

n=−∞
anJn(ωr)e

inθ, (3.5)

where Jn the Bessel function of the first kind of order n. We assume that {an}∞n=−∞

satisfies

‖{an}‖2
hα :=

∞∑

n=−∞
|an|2(1 + |n|)2α <∞ (3.6)

for some α ∈ R. Since

|Jn(t)| ≤
∣∣ z
2

∣∣|n|

|n|! e
1
4
|z|2 for all n ∈ Z, z ∈ C

(cf. [Wat44, §2.1]), the condition (3.6) guarantees that the sum (3.5) converges to a

C∞ function.3 We should note that this condition easily allows for ui to be a plane

3Here we use the identity zJ ′
n(z) = nJn(z)− zJn+1(z) to show that when the terms of the sum (3.5)

are all differentiated to any order of r and θ (all terms to the same order), the resulting sum converges
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wave: if η = (cos θ0, sin θ0) then

eiωx·η =
∞∑

n=−∞
Jn(ωr)e

in(θ−θ0+π/2),

so that |an| = 1 for each n. This follows from the fact that

̂(eiωx·η)n(r) =
1

2π

∫

T

eiωr cos(θ−θ0)e−inθ dθ

= ein(π/2−θ0) 1

2π

∫

T

eiω(r sin θ−nθ) dθ

= ein(π/2−θ0)Jn(ωr),

the last equality being a well known integral representation of Jn.

Theorem 4. Let us

ρ be the scattered field that results when a given wave ui is incident

on the scatterer ρD, as in (3.2), where D = B(0, 1). Assume ui is such that (3.5) and

(3.6) hold. As ρ→ 0, assume λ :=ωρ→ 0 and assume ω stays bounded away from zero.

We allow the possibility that σ varies as a function of ρ as ρ → 0, with the restriction

that σ/ω be bounded. Let r0 > 0. Then for x ∈ R2 \B(0, r0),

us

ρ(x) = ρ2ω2|B(0, 1)|
{
(ε+ iσ/ω) − 1

}
Φω(x, 0)ui(0)

+ ρ2|B(0, 1)|
{

1 − 1

µ

}
∇Φω(x, 0) ·

(
M∇ui(0)

)
+O(λ3), (3.7)

where the polarization tensor M = 2
(
1 + 1

µ

)−1
I2×2 and the remainder O(λ3) is uniform

in x.4

If the scatterer is perfectly conducting, that is, if us
ρ solves problem (3.4),

us

ρ(x) =
−ui(0)

1 + 2i
π

[
log(λ/2) + γ

] +O(λ2), (3.8)

uniformly in (r, θ) restricted to compact sets. Of course, one need only verify this convergence of
derivatives to order two—smoothness will then follow from elliptic regularity.

4Φω(x, y) = i
4
H

(1)
0 (ω|x − y|), where H

(1)
0 is the 0th order Hankel function of the first kind, is the

free-space Green’s function for the background Helmholtz operator ∆ + ω2 satisfying Sommerfeld’s
outgoing radiation condition.
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with the remainder O(λ2) uniform in x for |x| = r ≥ r0.

Remark 3.1. Formula (3.7) for the scattering problem is consistent with the remarks

of section 2.4.3 of Chapter 2 concerning the problem in a bounded domain. To see this,

suppose uρ solves the problem (3.1), except with the background constants µ0 and ε0

not necessarily equal to 1. With notation as in Chapter 2, observe that for any domain

Ω such that B(0, r0) ⊂⊂ Ω,

H0

(
uρ − u0,Φk0(x, ·)

)
=

1

µ0
(uρ − u0)(x) +

∫

∂Ω

1

µ0
(uρ − u0)(y)∂νyΦ

k0(x, y) dσy

for any x ∈ Ω \B(0, r0) (here ui = u0 and us
ρ = uρ − u0). But at the same time,

H0

(
uρ − u0,Φk0(x, ·)

)

=

∫

B(0,ρ)

{
−
( 1

µ1
− 1

µ0

)
∇uρ(y) · ∇Φk0(x, y) +

(
κ2

1 − κ2
0

)
uρ(y)Φ

k0(x, y)

}
dy

+

∫

∂Ω

1

µ0
∂ν(uρ − u0)(y)Φ

k0(x, y) dσy,

and consequently,

1

µ0
(uρ − u0)(x) =

∫

B(0,ρ)

{
as above

}
dy

+

∫

∂Ω

1

µ0

{
∂ν(uρ − u0)(y)Φ

k0(x, y) − (uρ − u0)(y)∂νyΦ
k0(x, y)

}
dσy.

Suppose Ω = B(0, R). Since us
ρ = uρ−u0 and Φk0(x, ·) both satisfy Sommerfeld’s outgo-

ing radiation condition, the above integral over ∂Ω is on the order of |∂Ω|R−3/2 log(R),

or R−1/2 logR, and therefore vanishes as R → ∞. In section 2.4.3 we remarked that

when when Iρ = B(0, ρ), the measure dα guaranteed by Theorem 3 is simply the Dirac

measure δ0, and the polarization tensor M = 2
(
1 + µ0

µ1

)−1
I2×2. As a result,

us

ρ(x) = ρ2ω2|B(0, 1)|
{
(ε1 + iσ1/ω) − ε0

}
Φk0(x, 0)ui(0)

+ ρ2|B(0, 1)|
{ 1

µ0
− 1

µ1

}
∇Φk0(x, 0) ·

(
M∇ui(0)

)
+ o(ρ2)

as ρ → 0 with ω fixed. The significance of Theorem 4 is that the same asymptotic
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formula is shown to hold even when ω is allowed to grow at any rate slower than ρ−1.

Proof of Theorem 4. We first consider the case of a penetrable scatterer. To begin, we

write5

us

ρ =

∞∑

n=−∞
αnHn(ωr)e

inθ, utr

ρ =

∞∑

n=−∞
βnJn(

√
qωr)einθ, (3.9)

where Hn denotes the Hankel function H
(1)
n := Jn + iYn. Using the transmission con-

ditions, we find a system of two equations for each pair (αn, βn), which we solve to

get

αn = an

√
q 1
µJ

′
n(
√
qλ)Jn(λ) − J ′

n(λ)Jn(
√
qλ)

H ′
n(λ)Jn(

√
qλ) −√

q 1
µJ

′
n(
√
qλ)Hn(λ)

(3.10)

= an



√
qλ 1

µ
J ′

n(
√
qλ)

Jn(
√
qλ) − λJ

′
n(λ)
Jn(λ)

λH
′
n(λ)

Hn(λ) −
√
qλ 1

µ
J ′

n(
√
qλ)

Jn(
√
qλ)


 Jn(λ)

Hn(λ)
, (3.11)

βn = an
H ′
n(λ)Jn(λ) − J ′

n(λ)Hn(λ)

H ′
n(λ)Jn(

√
qλ) −√

q 1
µJ

′
n(
√
qλ)Hn(λ)

,

= an
2i

πλ

(
1

H ′
n(λ)Jn(

√
qλ) −√

q 1
µJ

′
n(
√
qλ)Hn(λ)

)
, (3.12)

the last equality because of the well known identity: Wronsk(Jn(z), Yn(z)) = 2
πz . To

write the expression (3.11) for αn, we must assume that Jn(λ) and Jn(
√
qλ) are both

nonzero for all n. We therefore assume that λ, and
√
qλ, if q is real6, are less than the

smallest positive zero of J0. This will suffice since zn < zn+1 for all n ≥ 0, where zn

denotes the smallest positive zero of Jn.

Note: That the denominator in (3.10) and (3.12) remains nonzero for all λ and q is an

immediate consequence of the fact that the transmission problem (3.2) is well posed.

However, it also has a simple, direct proof: Suppose the expression in the denominator

of (3.10) is zero for some n, λ and q. Since the zeros of Jn away from the origin are all

5In other words, d(us
ρ)n

= αnHn(ωr) and (̂utr
ρ )

n
= βnJn(

√
qωr).

6We need not worry if q is not real since Jn has only real zeros [Wat44, 15.25].
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simple, either Jn(
√
qλ) 6= 0 or J ′

n(
√
qλ) 6= 0. If Jn(

√
qλ) 6= 0, let

v(r, θ) =





Hn(λ)
Jn(

√
qλ)Jn(

√
qr)einθ for r < λ,

Hn(r)e
inθ for r > λ.

If J ′
n(
√
qλ) 6= 0, let

v(r, θ) =





H′
n(λ)

1
µ
J ′

n(
√
qλ)
Jn(

√
qr)einθ for r < λ,

Hn(r)e
inθ for r > λ.

In either case, v is the solution to

∇ ·
( 1

µ∗
∇v
)

+
q∗

µ∗
v = 0 (3.13)

with the radiation condition

(∂r − i)v = O(r−3/2).

Here q∗ = q and µ∗ = µ for r < λ, and q∗ = µ∗ = 1 for r > λ. Multiply (3.13) by v,

then integrate by parts, and then use the radiation condition to get

lim
R→∞

[ ∫

BR

{
− 1

µ∗
|∇v|2 + q∗|v|2

}
dx+ i

∫

∂BR

|v|2 dσ

]
= 0,

which implies that limR→∞
∫
∂BR

|v|2 dσ = 0 since Im q∗ ≥ 0. However, using the well

known asymptotic formula for the Hankel function,

Hn(R) =

√
2

πR
ei(R−nπ/2−π/4) +O(R−3/2),

we calculate

lim
R→∞

∫

∂BR

|v|2 dσ = 4,
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a contradiction. Therefore, it must be the case that for all n ∈ Z and λ ≥ 0,

H ′
n(λ)Jn(

√
qλ) −√

q
1

µ
J ′
n(
√
qλ)Hn(λ) 6= 0.

Since any nth order Bessel function, or the derivative of such a function, satisfies

F−n = (−1)nFn , it follows that α−n/a−n = αn/an (and similarly for βn). Using the

identity zF ′
n(z) = nFn(z) − zFn+1(z), we find

αn = −an



(

1
µ − 1

)
n+ λJn+1(λ)

Jn(λ) − λ
√
q
µ
Jn+1(

√
qλ)

Jn(
√
qλ)

(
1
µ − 1

)
n+ λHn+1(λ)

Hn(λ) − λ
√
q
µ
Jn+1(

√
qλ)

Jn(
√
qλ)


 Jn(λ)

Hn(λ)
. (3.14)

In order to prove the asymptotic expansion (3.7) of us

ρ, we must first study the asymp-

totics of the ratios of Bessel functions that appear in (3.14).

First we consider the case of n ≥ 1. In the following steps we assume t ∈ C with

0 < |t| ≤ T for some finite T . The formula

Jn(t) =

(
t

2

)n ∞∑

j=0

(−1)j( t
2

4 )j

j!(n+ j)!
(3.15)

implies that, given any δ > 0, there exists some 0 < t0 < 1, independent of n, such that

for |t| < t0, Jn(t) = 1
n!

(
t
2

)n (
1 + tRJ

n

)
, with |RJ

n| ≤ |t|
4 e

|t|2/4 ≤ δ. The formula

Yn(t) =
2

π

(
log

t

2
+ γ
)
Jn(t) −

1

π

(
2

t

)n n−1∑

j=0

(n− 1 − j)!

j!

(
t

2

)2j

− 1

π

(
t

2

)n ∞∑

j=0

(
n+j∑

m=1

1

m
+

j∑

m=1

1

m

)
(−1)j

j!(n+ j)!

(
t

2

)2j

(3.16)

implies that, given any δ > 0, there exists some 0 < t0 < 1, independent of n, such that

for 0 < |t| < t0, Hn(t) = −i(n−1)!
π

(
2
t

)n (
1 + RH

n

)
, with |RH

n | ≤ 8
∣∣ t
2

∣∣ζ ≤ δ. Here ζ = 1

when n = 1 and ζ = 2 when n > 1. These two asymptotic formulas yield asymptotic
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expressions for the ratios of Bessel functions in (3.14):

Jn+1(t)

Jn(t)
=

1
(n+1)!

(
t
2

)n+1 (
1 + tRJ

n+1

)

1
n!

(
t
2

)n (
1 + tRJ

n

)

=
t

2(n+ 1)

{
1 + tAn

}
, (3.17)

where, given any δ > 0, |An| ≤ δ for all 0 < |t| ≤ t0, some 0 < t0 < 1 independent of n.

Hn+1(t)

Hn(t)
=

−in!
π

(
2
t

)n+1 (
1 + RH

n+1

)

−i(n−1)!
π

(
2
t

)n (
1 + RH

n

)

=
2n

t

{
1 + tζBn

}
, (3.18)

where, given any δ > 0, |Bn| ≤ δ for all 0 < |t| ≤ t0, some 0 < t0 < 1 independent of n.

Here ζ = 1 if n = 1 and ζ = 2 if n > 1.

Jn(t)

Hn(t)
=

1
n!

(
t
2

)n (
1 + tRJ

n

)

−i(n−1)!
π

(
2
t

)n (
1 + RH

n

)

=
iπ

n!(n− 1)!

(
t

2

)2n {
1 + tζCn

}
, (3.19)

where, given any δ > 0, |Cn| ≤ δ for all 0 < |t| ≤ t0, some 0 < t0 < 1 independent of n.

Using (3.17), (3.18) and (3.19) we get, for n ≥ 1,

αn = −an



(

1
µ − 1

)
n+ λ2

2(n+1)

{(
1 − q

µ

)
+ λ

[
An(λ) −√

qAn(
√
qλ)
]}

(
1
µ − 1

)
n+ 2n+ λζBn(λ) − λ2

2(n+1)
q
µ

[
1 + λ

√
qAn(

√
qλ)
]


 Jn(λ)

Hn(λ)

= an

(
1 − 1

µ

1 + 1
µ

)
1

n!

(
λ

2

)n {
1 + λζR1

n

} 1

Hn(λ)
(3.20a)

= an

(
1 − 1

µ

1 + 1
µ

)
iπ

n!(n− 1)!

(
λ

2

)2n {
1 + λζR2

n

}
, (3.20b)

where, given any δ > 0, |R1
n|, |R2

n| ≤ δ for all λ ≤ λ0, some 0 < λ0 < 1 depending

on qsup :=µ(ε + i sup{σ/ω}) and µ but independent of n. We use the formula (3.20b)
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when n = 1 to see that

α1H1(ωr)e
iθ + α−1H−1(ωr)e

−iθ

= H1(ωr)(α1e
iθ − α−1e

−iθ)

= H1(ωr)

(
1 − 1

µ

1 + 1
µ

)
iπ

(
λ

2

)2

(a1e
iθ − a−1e

−iθ) +O(λ3). (3.21)

Here we used the assumption that ω is bounded away from zero to ensure that H1(ωr)

can be absorbed into the O(λ3) term. The assumption that r ≥ r0 > 0 ensures O(λ3)

remains uniform in x. Now, observe that

ui(x) = (a1e
iθ − a−1e

−iθ)J1(ωr) + R1

=
ω

2

[
a1(x1 + ix2) − a−1(x1 − ix2)

]

+ (x1 + ix2)R2(r
2) + (x1 − ix2)R3(r

2) + R1︸ ︷︷ ︸
gradient vanishes at x = 0

.

As a result,

∇ui(0) =
ω

2

[
a1(1, i) − a−1(1,−i)

]
,

and so

∇ui(0) · x̂ =
ω

2

[
a1e

iθ − a−1e
−iθ].

Noting also that

∇yΦ
ω(x, 0) = ω

i

4
H1(ωr)x̂,

we may rewrite (3.21) as

α1H1(ωr)e
iθ + α−1H−1(ωr)e

−iθ

= ρ2|B(0, 1)|
{

1 − 1

µ

}
∇Φω(x, 0) ·

(
M∇ui(0)

)
+O(λ3), (3.22)

where the polarization tensor M = 2
(
1 + 1

µ

)−1
I2×2.

For the n = 0 term, we use the above asymptotic expressions for Jn(t) and Hn(t)
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when n = 1, as well as those corresponding to the n = 0 case,

J0(t) = 1 +O(t2)

and

H0(t) =
2i

π
log(t/2) +O(1),

to get

α0H0(ωr) = −a0




J1(λ)
J0(λ) −

√
q
µ
J1(

√
qλ)

J0(
√
qλ)

H1(λ) −
√
q
µ
J1(

√
qλ)

J0(
√
qλ)H0(λ)


J0(λ)H0(ωr)

= −ui(0)

[(
1 − q

µ

)
λ
2 +O(λ2)

− 2i
πλ +O(λ log λ)

]
(1 +O(λ2))H0(ωr)

= λ2|B(0, 1)|
{
(ε+ iσ/ω) − 1

}
Φω(x, 0)ui(0) +O(λ3), (3.23)

where O(λ3) is uniform in x for |x| ≥ r0. From (3.22) and (3.23) we get

us

ρ = ρ2ω2|B(0, 1)|
{
(ε+ iσ/ω) − 1

}
Φω(x, 0)ui(0)

+ ρ2|B(0, 1)|
{

1 − 1

µ

}
∇Φω(x, 0) ·

(
M∇ui(0)

)

+
∑

|n|≥2

αnHn(ωr)e
inθ +O(λ3).

To complete the proof, it remains to be shown that
∑

|n|≥2 αnHn(ωr)e
inθ = O(λ3)

uniformly in x as t→ 0. To this end, observe that

∣∣∣∣∣
∑

|n|≥2

αnHn(ωr)e
inθ

∣∣∣∣∣ =
∣∣∣∣∣
∑

|n|≥2

an

[(
1 − 1

µ

1 + 1
µ

)
iπ

n!(n− 1)!

(
λ

2

)2n

+
1

22nn!(n− 1)!
O(λ2n+2)

]
Hn(ωr)e

inθ

∣∣∣∣∣

≤
√

δ

ωr

(
λ

2

)4 ∑

|n|≥2

C|an|
n!(n− 1)!

(
λ

2

)2n−4

|Hn(δ)|,

where δ > 0 is a sufficiently small so that δ ≤ ωr0 for all ω (such a δ exists since ω is

assumed bounded away from zero). In forming the inequality, we used the fact that,
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for n ≥ 1, t 7→
√
t|Hn(t)| is a decreasing function of positive t [Wat44, 13.74]. Finally,

since ‖{an}‖hα <∞ (for some real α) and

|Hn(δ)| ≤ C(n− 1)!

[(
2

δ

)n
+

(
2

δ

)n−2 ]
, 7

it follows that
∑

|n|≥2 αnHn(ωr)e
inθ = O(λ4), and the proof of (3.7) is complete.

In the case of a perfectly conducting disk, since us

ρ

∣∣
r=ρ

= −ui
∣∣
r=ρ

,

αn = −an
Jn(λ)

Hn(λ)
.

Note that, as would be expected, this is the limit of (3.10) as Im q = µσ/ω → ∞. Using

(3.19) we can show

∑

|n|≥1

αnHn(ωr)e
inθ = O(λ2),

uniformly in x for |x| ≥ r0. Then since J0(λ) = 1 +O(λ2) and

H0(λ) = 1 +
2i

π

[
log(λ/2) + γ

]
+O(λ2 log λ),

we conclude

us

ρ(x) =
−a0

1 + 2i
π

[
log(λ/2) + γ

] +O(λ2),

where O(λ2) is bounded uniformly in x.

Remark 3.2. The above proof implies the following bound in the case of a penetrable

scatterer: there exists a λ0 > 0 depending only on qsup = µ(ε+ i sup{σ/ω}) such that

for any α ∈ R, v ∈ R, ρ > 0, r0 ≥ ρ and ω ≥ c > 0 with ωρ ≤ λ0, we have

∥∥us

ρ

∣∣
r=r0

∥∥
Hv(T)

≤ C
∥∥{an}

∥∥
hα(ωρ)2|H0(ωr0)| (3.24)

for some C > 0, depending on µ, ε, sup{σ/ω}, α, v and c, but independent of {an},

7This follows from the fact that Hn = Jn + iYn and from the expansions (3.15) and (3.16).
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ρ, r0 and ω. If the permeability is constant in all of R2, i.e., if µ = 1, then the above

bound holds uniformly in ω > 0. That is, we need not require that ω be bounded away

from zero.8 This is because (3.20a) becomes: for n ≥ 1,

αn = an
1

n(n+ 1)

(
λ

2

)n+2 1

n!

{
1 + λζR1

n

} 1

Hn(λ)
.

Therefore, for all λ > 0 sufficiently small,

∥∥us

ρ

∣∣
r=r0

∥∥2

Hv(T)
= 2π

∞∑

n=−∞
(1 + |n|)2v|αn|2|Hn(ωr0)|2

= 2π|α0|2|H0(ωr0)|2 + 2π
∑

|n|≥1

(
(1 + |n|)2v|αnHn(λ)|2

∣∣∣∣
Hn(ωr0)

Hn(ωρ)

∣∣∣∣
2
)

≤ Cλ4|a0|2|H0(ωr0)|2

+ Cλ4
∑

|n|≥1

(
|an|2(1 + |n|)2v
n2((n+ 1)!)2

(
λ

2

)2(n−1) ∣∣1 + λζR1
n

∣∣2
∣∣∣∣
Hn(ωr0)

Hn(ωρ)

∣∣∣∣
2
)

≤ Cλ4
∥∥{an}

∥∥2

hα

(
|H0(ωr0)|2 + λ2 ρ

r0

)
,

≤ Cλ4
∥∥{an}

∥∥2

hα |H0(ωr0)|2,

where we have used the fact that
∣∣1 + λζR1

n

∣∣ is bounded uniformly in n and λ (for λ

sufficiently small), and the fact that, when |n| ≥ 1, |Hn(ωr0)|2
/
|Hn(ωρ)|2 ≤ ρ/r0 since

t 7→ t|Hn(t)|2 is a decreasing function of positive t. We have also used the fact that

λ2 ρ

r0
≤ min

{
(ωr0)

2,
1

ωr0

}

≤ C|H0(ωr0)|2, for 0 < λ < 1, ρ ≤ r0.

The requirement that λ0 be sufficiently small is likely an artifact of the method that

is not actually necessary for the bound to hold. We conjecture that, given a λ0 > 0,

there exists a C depending on µ, qsup and λ0 but independent of ρ, ω and {an} such

8Though we still must require σ/ω be bounded, which means σ must approach zero as ω → 0.
Without such a condition, the frequency dependent conductivity σ

εω
could approach infinity. But the

asymptotic size of the scattered field in the case of a perfect conductor is of a larger order (cf. Remark
3.3).
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that for any r0 ≥ ρ,

∥∥us

ρ

∣∣
r=r0

∥∥
L2(T)

≤ C

√
ρ√
r0
‖{an}‖l∞

for all λ = ωρ ≥ λ0 (in the next chapter we will prove a weaker form of this). If this

were the case, we would then know that the bound (3.24), when v ≤ 0 and α < −1/2,

holds for any λ0 > 0, with C depending on λ0. The proof of this is immediate when we

assume ω is bounded away from zero. When µ = 1 and and ω is allowed to approach

zero, the straightforward proof relies on the fact that t 7→
√
t|H0(t)| is a decreasing

function of positive t.

Remark 3.3. For a perfectly conducting scatterer, we have the following bound: there

exists a λ0 > 0 such that for any α ∈ R, v ∈ R, ρ > 0, r0 ≥ ρ and ω > 0 with ωρ ≤ λ0,

we have

∥∥us

ρ

∣∣
r=r0

∥∥
Hv(T)

≤ C
∥∥{an}

∥∥
hα

|H0(ωr0)|
1 + | log(ωρ)| (3.25)

for some C > 0, depending on α and v but independent of {an}, ρ, r0 and ω. This is

because

∥∥us

ρ

∣∣
r=r0

∥∥2

Hv(T)
= 2π

∞∑

n=−∞
(1 + |n|)2v|αn|2|Hn(ωr0)|2

= 2π
∞∑

n=−∞
(1 + |n|)2v|an|2|Jn(ωρ)|2

|Hn(ωr0)|2
|Hn(ωρ)|2

≤ C|a0|2|J0(ωρ)|2
|H0(ωr0)|2
|H0(ωρ)|2

+ C
ρ

r0

∑

|n|≥1

(1 + |n|)2v|an|2|Jn(ωρ)|2.

Here we have used the fact that 0 < t 7→ t|Hn(t)|2 is decreasing for integers n 6= 0. To

estimate the n = 0 term, observe that given any λ0 > 0, there exists a constant Cλ0

such that for 0 < λ ≤ λ0,

|J0(λ)|2
|H0(λ)|2 ≤ Cλ0

1

(1 + | log λ|)2 .

For the n 6= 0 terms, observe that there exists a 0 < t0 < 1 independent of n such that
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for all |t| ≤ t0, |Jn(t)| ≤ 2 1
n!

(
1
2

)n
. Therefore, there exists a λq0 and a Cα,v such that for

0 < λ ≤ λq0 ,

∑

|n|≥1

(1 + |n|)2v|an|2|Jn(ωρ)|2 ≤ Cα,v‖{an}‖2
hα .

To finish the proof, observe that

ρ

r0
=

ωρ

ωr0
≤ |H0(ωr0)|2

|H0(ωρ)|2

since 0 < t 7→ t|H0(t)|2 is increasing, and observe that there exists a constant C such

that for 0 < ωρ ≤ 1,

|H0(ωr0)|2
|H0(ωρ)|2

≤ C
|H0(ωr0)|2

(1 + | log(ωρ)|)2 .

This establishes (3.25). In the next chapter we will prove that, given any λ0 > 0, there

exists a constant C = C(λ0), independent of ω > 0 and ρ > 0, such that for any r0 ≥ ρ,

∥∥us

ρ

∣∣
r=r0

∥∥
L2(T)

≤ C

√
ρ√
r0
‖{an}‖l∞ for ωρ ≥ λ0

(Theorem 7 of Chapter 4). From this it is not hard to see that when v ≤ 0 and

α < −1/2, (3.25) holds for any λ0 > 0, with C depending on λ0.

3.2.2 The case of a general simply connected domain

Assume D is a bounded, smooth domain. Let λ = ρω and define ũλ(x) :=uρ(ρx). The

subscript λ is warranted because ũλ is the solution to the transmission problem





∆ũλ + λ2ũλ = 0 in R2 \D,

∆ũλ + qλ2ũλ = 0 in D,

u−λ = u+
λ on ∂D,

1

µ
∂

−
ν ũλ = ∂

+

ν ũλ on ∂D,

(3.26a)
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along with the radiation condition

|(∂r − iλ)ũs

λ| = O(r−3/2) as r → ∞, (3.26b)

where

ũλ =





ũi

λ + ũs

λ in R2 \D,

ũtr

λ in D,

with

ũi

λ(x) = ui(ρx) =

∞∑

n=−∞
anJn(λr)e

inθ.

For simplicity, we assume the incident wave is a plane wave in the direction η, so that

ũi

λ(x) = eiλη·x.

Let Φλ(x, y) denote the free-space Green’s function for the Helmholtz operator ∆ + λ2

satisfying the outgoing radiation condition:





(∆x + λ2)Φλ(x, y) = −δy(x),
(
∂
∂|x| − iλ

)
Φλ(x, y) = O(|x|−3/2) as |x| → ∞ for fixed y.

One can easily verify that

Φλ(x, y) =
i

4
H(1)(|x− y|),

where H(1) is the Hankel function of the first kind. Owing to the radiation condition,

we have the representation formula

ũs

λ(x) =

∫

∂D

{
ũs

λ(y)∂νyΦ
λ(x, y) − ∂ν ũ

s

λ(y)Φ
λ(x, y)

}
dσy, x ∈ R2 \D, (3.27)
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or, equivalently,

ũλ(x) = ũi

λ(x) +

∫

∂D

{
ũλ(y)∂νyΦ

λ(x, y) − ∂
+

ν ũλ(y)Φ
λ(x, y)

}
dσy, x ∈ R2 \D.

We use the transmission condition for the normal derivative and then perform an inte-

gration by parts to get

ũλ(x) = ũi

λ(x) +

∫

D

{
ũλ(y)∆Φλ(x, y) − ∆ũλ(y)Φ

λ(x, y)
}

dy

+
(
1 − 1

µ

)∫

∂D
∂

−
ν ũλ(y)Φ

λ(x, y) dσy,

which simplifies as

ũλ(x) = ũi

λ(x) + λ2(q − 1)

∫

D
ũλ(y)Φ

λ(x, y) dy

+
(
1 − 1

µ

)∫

∂D
∂

−
ν ũλ(y)Φ

λ(x, y) dσy. (3.28)

A simple calculation verifies that this formula is in fact valid in the entire plane. Let

U(x) = ũi

λ(x) + λ2(q − 1)
1

µ

∫

D
ũλ(y)Φ

λ(x, y) dy

+
(
1 − 1

µ

)∫

∂D
ũλ(y)∂νyΦ

λ(x, y) dσy.

Using (3.28) and the jump property of the double layer potential, we find

U =





1
µ ũλ in D,

ũλ in R2 \D,
1
2

(
1 + 1

µ

)
ũλ on ∂D.

(3.29)
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3.2.3 Low frequency: λ → 0

The main result of this section will be a formal asymptotic approximation of the scat-

tered field: for ρ and λ = ωρ small9,

us

ρ(x) ≈ ρ2|D|
(
1 − 1

µ

)
∇yΦ

ω(x, 0) ·
[
M∇ui(0)

]

+ ρ2ω2
(
ε+ i

σ

ω
− 1
)
|D|Φω(x, 0)ui (0). (3.30)

Such a formula could be rigorously justified using the technique of [AIM03]. We present

a formal derivation here to unify the technique for the low frequency regime with those

of the moderate and high frequency regimes, which will be discussed in subsequent

sections. We begin by expressing

ũi

λ = eiλη·x = 1 + iλη · x− λ2(η · x)2 + · · · , (3.31)

Φλ(x, y) =
i

4
H

(1)
0 (λ|x− y|)

= − 1

2π
log λ+

[( i
4
− γ

2π
+

1

2π
log 2

)
+ Φ0(x, y)

]

+
1

2π
|x− y|2λ2 log λ+O(λ2)

(3.32)

and

∂νyΦ
λ(x, y) = ∂νyΦ0(x, y) +

1

4π

{
(y − x) · νy

}
λ2 log λ+O(λ2). (3.33)

The remainder is O(λ2) uniformly in x and y when restricted to bounded sets. γ denotes

Euler’s constant and

Φ0(x, y) = − 1

2π
log |x− y|

9Note that is includes the possibility that ω → ∞ as ρ→ 0, so long as ρ≪ ω−1.
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is the (radial) fundamental solution of Laplace’s equation:

∆xΦ0(x, y) = −δy(x).

Formally expand

ũtr

λ = ũtr

0 + iλũtr

1 − λ2ũtr

2 + · · · , (3.34)

ũs

λ = ũs

0 + iλũs

1 − λ2ũs

2 + · · · , (3.35)

and define the coefficients ũj for the total field in the obvious way, ũj := ũi

j+ũ
s

j inR2\D

and ũj := ũtr

j in D. Then insert these expansions into (3.26a) and collect coefficients.

Assuming

σ

ω
≪ 1

λ2

(
i.e., σ ≪ 1

ωρ2

)
, (3.36)

ũ0 solves the transmission problem





∆ũ0 = 0 in D and R2 \D,

ũ−0 = ũ+
0 on ∂D,

1

µ
∂

−
ν ũ0 = ∂

+

ν ũ0 on ∂D,

|ũ0(x) − 1| → 0 as |x| → ∞.

(3.37)

The asymptotic condition follows by substituting the expansions (3.31), (3.32), (3.33)

and the formal expansion of ũλ into (3.29) and then collecting coefficients. In fact, the

resulting integral equation10 for ũ0 implies all of (3.37)—the transmission condition for

the flux follows from the fact that the normal derivative of the double layer potential

does not “jump” [CK83]. ũ0 ≡ 1 uniquely solves (3.37) since the zero function is the

10The integral equation is ũ0(x) = 1 +
�
1 − 1

µ

� R
∂D

∂
−

ν ũ0(y)Φ0(x, y) dσy.
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unique solution to 



∆w = 0 in D and R2 \D,

w− = w+ on ∂D,

1

µ
∂

−
ν w = ∂

+

ν w on ∂D,

|w(x)| → 0 as |x| → ∞.

(3.38)

Uniqueness follows from the fact that w, being harmonic at ∞, satisfies |∂rw(x)| =

O
(
|x|−2

)
as |x| → ∞ [Fol95, Prop. 2.75]: for then

∫

∂B(0,R)

{
∂νw(y)Φ0(x, y) − w(y)∂νyΦ0(x, y)

}
dσy −→ 0 as R→ ∞

for any x ∈ R2 \D, and consequently,

w(x) = −
∫

∂D

{
∂

+

ν w(y)Φ0(x, y) − w(y)∂νyΦ0(x, y)
}

dσy

= −w(x) −
∫

∂D

{
∂

−
ν w(y)Φ0(x, y) − w(y)∂νyΦ0(x, y)

}
dσy

= −w(x).

ũ1 is the unique solution to the transmission problem





∆w = 0 in D and R2 \D,

w− = w+ on ∂D,

1

µ
∂

−
ν w = ∂

+

ν w on ∂D,

|w(x)−x · η| → 0 as |x| → ∞.

(3.39)

Uniqueness is a consequence of the the fact that (3.38) has only the trivial solution.

The existence of a solution can be easily demonstrated:

w(x) = (SDφ)(x) + η · x,
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with φ ∈ L2
⋄(∂D) :=

{
u ∈ L2(∂D) :

∫
∂D u dσ = 0

}
satisfying the integral equation

1

2

(
1 +

1

µ

)
φ(y) +

(
1 − 1

µ

)∫

∂D
φ(z)∂νzΦ0(y, z) dσz =

( 1

µ
− 1
)
η · νy. (3.40)

(Here SDφ is the single layer potential: (SDφ)(x) =
∫
∂D φ(z)Φ0(y, z) dσz.) The Fred-

holm alternative guarantees the unique existence of such a φ since a nonzero solution to

the homogeneous form of (3.40) would provide a nonzero11 solution to (3.38), namely

w = SDφ.

Equivalently, ũ1 = w · η, where w :=(w1, w2) with wj denoting the unique solution

to the transmission problem





∆wj = 0 in D and R2 \D,

wj
− = wj

+ on ∂D,

1

µ
∂

−
ν wj = ∂

+

ν wj on ∂D,

|wj(x) − xj | → 0 as |x| → ∞.

(3.41)

Assuming x ∈ R2 \D (therefore bounded away from zero) and y ∈ ∂D,

Φλ(x/ρ, y) =
i

4
H

(1)
0

(
λ
∣∣∣x
ρ
− y
∣∣∣
)

=
i

4
H

(1)
0 (ω|x| + δ)

= Φω(x, 0) +O(λ), (3.42)

where δ = −λx̂ · y +O(ρλ/|x|), and

∂νyΦ
λ(x/ρ, y) =

iλ

4

x− ρy

|x− ρy| · νy H
(1)
1 (ω|x− ρy|)

=
iλ

4|x|
{

1 + ρ
x̂ · y
|x| +O(ρ2/|x|2)

}
(x− ρy) · νy H(1)

1 (ω|x| + δ).

11Nonzero since φ = ∂
−

ν (SDφ) − ∂
+

ν (SDφ).
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With the aid of the identity

(
H

(1)
1

)′
(z) = H

(1)
0 (z) − 1

z
H

(1)
1 (z),

we see that

H
(1)
1 (ω|x| + δ) = H

(1)
1 (ω|x|) + δ

(
H

(1)
1

)′
(ω|x|) + δ2

(
H

(1)
1

)′′
(ω|x| + δ′)

=
(
1 − δ

ω|x|
)
H

(1)
1 (ω|x|) + δH

(1)
0 (ω|x|) + δ2

(
H

(1)
1

)′′
(ω|x| + δ′)

for some δ′ between zero and δ. Since

(
H

(1)
1

)′′
(z) =

( 2

z2
− 1
)
H

(1)
1 (z) − 1

z
H

(1)
0 (z),

(
H

(1)
1

)′′
(ω|x| + δ′) = O(1) as λ→ 0. Thus

H
(1)
1 (ω|x| + δ) =

(
1 +

λ

ω|x| x̂ · y
)
H

(1)
1 (ω|x|) − λx̂ · yH(1)

0 (ω|x|) +O(λ2),

and so

∂νyΦ
λ(x/ρ, y) =

iλ

4

{
H

(1)
1 (ω|x|)x̂ · νy −

ρ

|x|H
(1)
1 (ω|x|)y · νy

+ 2
ρ

|x|2H
(1)
1 (ω|x|)x̂ · y − λH

(1)
0 (ω|x|)(x̂ · y)(x̂ · νy)

}
+O(λ3)

= ρ∇yΦ
ω(x, 0) · νy − λ2Φω(x, 0)(x̂ · y)(x̂ · νy)

+ ρλ
{
− 1

|x|H
(1)
1 (ω|x|)y · νy + 2

1

|x|2H
(1)
1 (ω|x|)x̂ · y

}
+O(λ3). (3.43)

We now insert (3.42), (3.43) and

ũλ(y) ≍ 1 + iλw(y) · η +O(λ3) 12
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into the integral representation formula (3.29) for us
ρ, which we restate here:

us

ρ(x) = ũs

λ(x/ρ) = λ2(q − 1)
1

µ

∫

D
ũλ(y)Φ

λ(x/ρ, y) dy

+
(
1 − 1

µ

)∫

∂D
ũλ(y)∂νyΦ

λ(x/ρ, y) dσy.

Noting that the integral over ∂D of the expression from (3.43) within the curly braces

is zero, we find

us

ρ(x) ≍ λ2(q − 1)
1

µ
|D|Φω(x, 0) − λ2

(
1 − 1

µ

)
|D|Φω(x, 0)

+ ρ2
(
1 − 1

µ

)∫

∂D

(
∇ui(0) · w(y)

)(
∇yΦ

ω(x, 0) · νy
)
dσy

}
+O(λ3)

= ρ2ω2
( q
µ
− 1
)
|D|Φω(x, 0)

+ ρ2
(
1 − 1

µ

)
∇yΦ

ω(x, 0) ·
([∫

D
Dw dy

]T
∇ui(0)

)
+O(λ3),

or

us

ρ(x) ≍ |ρD|
{
ω2
{
(ε+ iσ/ω) − 1

}
Φω(x, 0)ui (0)

+
(
1 − 1

µ

)
∇yΦ

ω(x, 0) ·
(
M∇ui(0)

)}
+O(λ3), (3.44a)

where the polarization tensor M has entries

Mij = |D|−1

∫

∂D
νiwj dσ = |D|−1

∫

D
∂yiwj dy. (3.44b)

In the case of fixed frequency and zero conductivity, this is the same asymptotic formula

as that found in [AIM03] (see also [VV00] for essentially the same formula in the case of

a bounded domain and fixed frequency). Formula (3.44) serves as a good approximation

only as long as the scatterer is not too highly conducting, as noted in (3.36). For very

highly absorbing scatterers, we expect the intensity of the scattered field to decrease on

the order of (log ρ)−1 since this is the case when the scatterer is perfectly conducting.

12We use the symbol ≍ instead of ∼ to indicate that the asymptotic expansion is merely formal.
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Remark 3.4. When D = B(0, 1), formula (3.44) does reduce to the form we had

rigorously verified in Theorem 4. For in this case, a simple calculation shows that13

w =





2
1+ 1

µ

x in B(0, 1),

2
1+ 1

µ

x
|x|2 + x in R2 \B(0, 1).

Consequently, M = 2
(
1 + 1

µ

)−1
I2×2.

3.2.4 Comparison with an approximation formula of Jones

The method used by Jones [Jon79, Jon86] to derive a similar approximation formula

in the case of three dimensional acoustic scattering from a penetrable obstacle is as

follows: assume ũλ solves





∆ũλ + λ2ũλ = 0 in R3 \D,

∆ũλ + qλ2ũλ = 0 in D,

u−λ = u+
λ on ∂D,

1

µ
∂

−
ν ũλ = ∂

+

ν ũλ on ∂D,

(3.45a)

along with the radiation condition

|(∂r − iλ)ũs

λ| = O(r−2) as r → ∞. (3.45b)

Substitute

Φλ(x, y) =
eiλ|x−y|

4π|x− y| =
eiλ(r−x̂·y)

4πr
+O(λr−2) as r → ∞

into the approximation formula (3.28) to get

ũs

λ(x) ≈
eiλr

4πr

[
λ2(q − 1)

∫

D
ũλ(y)e

−iλx̂·y dy +
(
1 − 1

µ

)∫

∂D
∂

−
ν ũλ(y)e

−iλx̂·y dσy

]
,

13This was observed in [CFMV98] in the context of the conductivity problem.
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which should be valid for large r. An application of Green’s theorem yields the far field

pattern

ũs

λ(x) ≈
eiλr

4πr

[
λ2
( q
µ
− 1
)∫

D
ũλ(y)e

−iλx̂·y dy

− iλ
(
1 − 1

µ

)
x̂ ·
∫

D
∇ũλ(y)e−iλx̂·y dy

]
. (3.46)

Formally expand

ũλ = ũ0 + iλũ1 − λ2ũ2 + · · · ,

and note also that

ũi

λ = eiλη·x = 1 + iλη · x− λ2(η · x)2 + · · ·

and

Φλ(x, y) = Φ0(x, y) +
iλ

4π
+O(λ2) (3.47)

as λ→ 0, where Φ0(x, y) = 1
4π |x− y|−1 is the free-space Green’s function for Laplace’s

equation:

∆xΦ0(x, y) = −δy(x).

Inserting these expansions into (3.28) and equating coefficients gives

ũ0(x) = 1 +
(
1 − 1

µ

)∫

∂D
∂

−
ν ũ0(y)Φ0(x, y) dσy,

ũ1(x) = η · x+
(
1 − 1

µ

)∫

∂D

{
∂

−
ν ũ1(y)Φ0(x, y) +

1

4π
∂

−
ν ũ0(y)

}
dσy.

Jones notes that these formulas necessitate that ũ0 ≡ 1 and ũ1 = w · η, where w =

(w1, w2, w3) is defined just as it was in the two dimensional case. Inserting ũλ ≈
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1 + iλw · η into the far field pattern (3.46) yields the far field approximation formula

ũs

λ(x) ≈ λ2 e
iλr

4πr

{( q
µ
− 1
)
|D| +

(
1 − 1

µ

)
x̂ ·
([∫

D
Dw dy

]T
η

)}
.

This is essentially the formula derived in [Jon79, Jon86], though Jones expresses it in

terms of the content matrix C :=
∫
DDtdy, where w = x +

(
1 − 1

µ

)
t, instead of the

polarization tensor M . There it is asserted that this formula is applicable in the regime

of Rayleigh scattering, where λ diam(D) ≪ 1. To make this precise, we assume that

ũs

λ is a rescaling just as before, i.e. λ = ρω and ũλ(x) :=uρ(ρx), so that the formula

becomes

us

ρ(x) = ũs

λ(x/ρ) ≈ ρ3ω2
( q
µ
− 1
)
|D|Φω(x, 0)

+ ρ3
(
1 − 1

µ

)
∇yΦ

ω(x, 0) ·
([∫

D
Dw dy

]T
∇ui(0)

)
,

or

us

ρ(x) ≈ |ρD|
{
ω2
( q
µ
− 1
)
Φω(x, 0) +

(
1 − 1

µ

)
∇yΦ

ω(x, 0) ·
(
M∇ui(0)

)}
,

with

Mij = |D|−1

∫

D
∂yiwj dy.

The method used to derive this approximation suggests it is valid as long as λ ≪ 1

and r/ρ ≫ 1. However, the requirement that r/ρ ≫ 1 is unnecessary, as it was

unnecessary for the analogue in two dimensions, namely (3.44). In other words, the

method used to derive (3.44) applies just as well in three dimension (or better, since

Φλ(x, y) := eiλ|x−y|/|x− y| is then analytic in λ).

3.2.5 Moderate frequency: λ → λ0

Now we examine the case where, as ρ → 0, ω grows so that λ = ρω → λ0 for some

0 < λ0 < ∞. Assuming x ∈ R2 \ D ( and therefore bounded away from zero) and
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y ∈ ∂D,

Φλ(x/ρ, y) =
i

4
H

(1)
0

(
λ
∣∣∣x
ρ
− y
∣∣∣
)

=
i

4
H

(1)
0 (ω|x| − λx̂ · y +O(ρ))

≈ √
ρ

√
1

8πλ0|x|
ei(ω|x|−λ0x̂·y+π/4),

and

∂νyΦ
λ(x/ρ, y) =

iλ

4

x− ρy

|x− ρy| · νy H
(1)
1 (ω|x− ρy|)

≈ √
ρ x̂ · νy

√
λ0

8π|x|e
i(ω|x|−λ0x̂·y−π/4),

where we have used the well known asymptotic formula for the Hankel function of large

argument:

H(1)
n (z) ∼

√
2

πz
ei(z−nπ/2−π/4).

Noting that ũλ is continuous in λ, we arrive at the approximation

us

ρ(x) =

∫

∂D

{
ũs

λ(y)∂νyΦ
λ(x/ρ, y) − ∂ν ũ

s

λ(y)Φ
λ(x/ρ, y)

}
dσy

≈ √
ρ

√
λ0

8π|x|e
i(ω|x|−π/4)

∫

∂D

{
x̂ · νy ũs

λ0
(y) − i

λ0
∂ν ũ

s

λ0
(y)

}
e−iλ0x̂·y dσy. (3.48)

This asymptotic behavior, where the size of the scattered field is on the order of
√
ρ

when ω is on the order of ρ−1 as ρ → 0, is consistent with Figure 3.1, as the height

of the peaks of the plots decreases at roughly the rate
√
ρ, for ρ = 0.01, 0.004 and

0.001. Recall that the formula (3.44) for the scattered field has a magnitude on the

order of ρ2 as ρ → 0 for fixed ω. If we take into account ω when estimating the size

of formula (3.44), we find that it is an estimate of order ω3/2ρ2, since Φω(x, 0) is of

order 1/
√
ω and ∇yΦ

ω(x, 0) is of order
√
ω. If we let ω = ρ−α, 0 < α < 1, (3.44) is

therefore of order ρ2− 3
2
α, which transitions smoothly between ρ2 and

√
ρ as α goes from
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0 to 1. Thus we have consistency between our low frequency and moderate frequency

approximations—at least in terms of their magnitudes.

3.3 High frequency: λ → ∞

Here we must distinguish among different possible rates of growth of ω relative to ρ−1

as ρ→ 0. Listed in increasing orders of frequency, these distinct regimes are

ρω → ∞ but ρ2ω → 0,

ρ2ω → ∞ but ρ3ω → 0,

ρ3ω → ∞ but ρ4ω → 0,

and so on. We will derive an approximation that is applicable in lowest regime, but

our method can be easily modified for any higher order. One could derive a high

frequency approximation formula by letting λ0 tend to ∞ in (3.48) and performing

a stationary phase analysis on the boundary integral. Such an approach does in fact

yield a good approximation in the regime where ρω → ∞ but ρ2ω → 0. However,

to better understand this limitation and to better understand how to derive accurate

approximations for higher frequencies, we take a different approach. Our approach will

be to first find approximations of ũλ and ∂ν ũλ on ∂D using the technique of geometric

optics [Lun64, BW02, FK55], and to then approximate the limit as λ→ ∞ of

us

ρ(x) =

∫

∂D

{
ũs

λ(y)∂νyΦ
λ(x/ρ, y) − ∂ν ũ

s

λ(y)Φ
λ(x/ρ, y)

}
dσy

by using the method of stationary phase. Our analysis will not account for internal

reflections of the transmitted field, and will thus only apply to well absorbing scatterers.

Furthermore, to avoid trapping effects we will consider only convex scatterers. A similar

approach to ours appears in [Bru03] (see also [BGMR04, BGR05]), but there the goal

is a fast reconstruction algorithm, not a representation formula. Future work may

integrate our approach with the scheme for dealing with multiple scattering effects

presented in [BGR05] to construct a high frequency representation formula that is valid
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for scatterers that are neither convex nor well conducting.

3.3.1 The case of a half-space

Before we begin our formal asymptotic analysis, we will examine the special case of a

plane wave incident upon a half-space composed of a homogenous, isotropic material

distinct from the background medium. This example will serve as a guide in the coming

analysis.

Let D = R2
+ and suppose η2 > 0, so that ui is incident upon the interface x2 = 0

from the lower half plane. We assume us is a reflected plane wave of the form

us(x) = Aseiωx·η
s

with ηs = (η1,−η2), and also that for some possibly complex “direction” vector ξ

satisfying ξ · ξ = 1,

utr (x) = Atreiω
√
qx·ξ.

At the interface x2 = 0 we have the transmission conditions

Atreiω
√
qx1ξ1 = (1 +As)eiωx1η1 ,

1

µ
iω

√
qξ2A

treiω
√
qx1ξ1 = iωη2(1 −As)eiωx1η1 .

In order for these equations to hold, it is necessary that

Re
√
qRe ξ1 − Im

√
q Im ξ1 = η1,

Re
√
q Im ξ1 + Im

√
qRe ξ1 = 0,

which in turn imply

Atr = 1 +As ,

1

µ

√
qξ2A

tr = η2(1 −As).
(3.49)
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We therefore find ξ1 = η1
√
q/|q|. For ξ2 = ±

√
1 − ξ21 = ± 1√

q

√
q − η2

1, we choose the

sign so that the intensity of the transmitted field,

|utr (x)| = |Atr |e−ω Im(
√
qξ2)x2 = |Atr |e∓ωx2 Im

√
q−η2

1 ,

will decay, rather than grow exponentially, as it proceeds farther into the medium when

σ > 0; that is, we choose ξ2 = 1√
q

√
q − η2

1. Solving (3.49) leads to the solution [Jon86,

§6.5]

us(x) = Aseiωx·η
s

, (3.50a)

utr (x) = Atre−ωx2 Im
√
q−η2

1eiω(x1η1+x2 Re
√
q−η2

1), (3.50b)

where

As =
µη2 −

√
q − η2

1

µη2 +
√
q − η2

1

, (3.50c)

Atr =
2µη2

µη2 +
√
q − η2

1

. (3.50d)

The exponential attenuation of the intensity of the electric field within D when σ > 0

is the well known skin effect. The rate of this attenuation is

ω Im
√
q − η2

1 = ω

√
µε

2

√√√√
√(

1 − η2
1

µε

)2
+
( σ
ωε

)2
−
(
1 − η2

1

µε

)
. (3.51)

Now suppose that µ > 0 and ε > 0 are fixed with with respect to changing ω, but

that the nonnegative value of σ varies as a function of ω. As ω → ∞, we consider the

following three possibilities: σ ≪ ω, σ = Θ(ω) and σ ≫ ω.14 If σ ≪ ω then the rate of

14The Θ notation denotes asymptotic equivalence of order: f = Θ(g) if f = O(g) and g = O(f).
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this exponential attenuation of |ũρ| depends on the angle of incidence:

ω Im
√
q − η2

1 ≈





σ

4

√
µ/ε√

1 − η2
1
µε

if σ ≪ ω and
η2
1
µε < 1 with σ

ωε

/(
1 − η2

1
µε

)
≪ 1,

ω

√
σ

ω

√
µ

2
if σ ≪ ω and

η2
1
µε ≈ 1,

ω
√
µε
√

η2
1
µε − 1 if σ ≪ ω and

η2
1
µε > 1 with σ

ωε

/( η2
1
µε − 1

)
≪ 1.

Thus, for incident directions sufficiently close to normal (and, if µε > 1, for all possible

incident directions η ∈ S1 with η2 > 0), if σ = o(ω) as ω → ∞ then

ω Im
√
q − η2

1 = Θ(σ) as ω → ∞. (3.52a)

If σ = Θ(ω) as ω → ∞ then from (3.51) we see that for all incident directions,

ω Im
√
q − η2

1 = Θ(ω) as ω → ∞. (3.52b)

Likewise, if σ ≫ ω as ω → ∞ then for all incident directions,

ω Im
√
q − η2

1 = Θ
(
ω
√
σ/ω

)
as ω → ∞. (3.52c)

3.3.2 Geometric optics approximation

We assume that as ρ → 0, ε > 0 and µ > 0 are fixed, ω grows so that λ = ωρ → ∞,

and σ > 0 is allowed to vary as a function of ρ. If we represent the rescaled scattered

fields as

ũs

λ = |ũs

λ|eiϑ
s

,

it would be reasonable to expect that |ũs

λ(x)| = O(1) and ϑs(x) = O(λ) as λ → ∞ for

each fixed x. We therefore make the simplifying assumption that ϑs = λφs + ϑ̃, with

φs independent of λ and ϑ̃ = O(1). Let As = |ũλ|eiϑ̃ to get the high frequency ansatz
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that is the basis of the geometric optics technique:

ũs

λ(x) = As(x)eiλφ
s(x), (3.53)

where φs is independent of λ and where As may be approximated by a formal expansion

in powers of (iλ)−1:

As = As

0 +
As

1

iλ
− As

2

λ2
+ · · · .

This formal series is the well-known Luneburg-Kline expansion [BSU87, Lun64, Kli51].

Within the conducting inhomogeneity, the field is subject to the skin effect. Hence, in

light of (3.52), it is reasonable to suppose the transmitted field will decay in such a way

that

|utr

ρ (x)| ≈ e−α dist(x,ρΓI),

where ΓI is the illuminated portion of ∂D and

α =





Θ(σ) if σ ≪ ω,

Θ(ω) if σ = Θ(ω),

Θ
(
ω
√
σ/ω

)
if σ ≫ ω

as λ→ ∞. Rescaled, this becomes

|ũtr

λ (x)| = e−α̃ dist(x,ΓI),

where

α̃(·) = α(·/ρ) =





Θ(ρσ) if σ ≪ ω,

Θ(λ) if σ = Θ(ω),

Θ
(
λ
√
σ/ω

)
if σ ≫ ω.

In order, then, to ensure |ũtr

λ (x)| decays with sufficiently rapidity to avoid the compli-

cations strong backscattering would bring, we should (minimally) assume that σ grows
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sufficiently fast so that, as ρ→ 0 and λ = ωρ→ ∞,

ρσ → ∞. (3.54)

To simplify matters, we assume a stronger condition is met:

as ρ→ 0 and λ = ωρ→ ∞, σ grows so that σ/ω ≥ C > 0. (3.55)

Then, if we represent the rescaled transmitted field as

ũtr

λ = |ũtr

λ |eiϑ
tr

,

we suppose, in light of (3.50), that ϑtr = λ[β1 + dist(x, ∂D)β2], where β1 = O(1),

β2 = O
(
max

{√
σ/ω, 1

})
. A reasonable ansatz for ũtr

λ is then

ũtr

λ (x) = Atr (x)eiλφ
tr (x), (3.56)

where φtr = O
(
max

{√
σ/ω, 1

})
, Imφtr ≥ 0, and Atr depends on λ in such a way that

it can reasonably be approximated by a formal expansion in powers of (iλ)−1:

Atr = Atr

0 +
Atr

1

iλ
− Atr

2

λ2
+ · · · .

We recall that the field ũλ satisfies

∆ũtr

λ + qλ2ũtr

λ = 0 in D,

∆ũs

λ + λ2ũs

λ = 0 in R2 \D,
(3.57a)

along with the transmission conditions

ũtr

λ = ũi

λ + ũs

λ on ∂D, (3.57b)

1

µ
∂ν ũ

tr

λ = ∂ν(ũ
i

λ + ũs

λ) on ∂D, (3.57c)
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and the radiation condition

|(∂r − iλ)ũs

λ| = O
(
r−3/2

)
as r → ∞. (3.57d)

Noting that

∆(Aeiλφ) =
{
−λ2A∇φ · ∇φ+ iλ(2∇A · ∇φ+A∆φ) + ∆A

}
eiλφ,

the expressions (3.53) and (3.56) are inserted into (3.57a), whereupon As and Atr are

formally expanded in powers of (iλ)−1 and φtr is expressed as

φtr =





√
σ/ω φtr

0 +O(1) if σ ≫ ω,

φtr

0 + o(1) if σ = Θ(ω).

Collecting the coefficients of leading order, i.e. coefficients of λ2 for the scattered field

and of λ2σ/ω (or just λ2) for the transmitted field, yields the Eikonal equations

∇φs · ∇φs = 1 in R2 \D, (3.58a)

∇φtr

0 · ∇φtr

0 = q in D. (3.58b)

As a consequence of (3.57b), it is not hard to see that

Atr

0 = 1 +As

0 on ∂D (3.59)

and

φtr

0 (x) = φs(x) = x · η on ∂D. (3.60)

From (3.57c) we get

1

µ
Atr

0 ∂νφ
tr

0 = η · ν +As

0∂νφ
s on ∂D, (3.61)
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which combined with (3.59) gives

As

0 =
η · ν − 1

µ∂νφ
tr

0

1
µ∂νφ

tr

0 − ∂νφs
on ∂D. (3.62)

The Eikonal equations (3.58a) and (3.58b), together with the boundary conditions

(3.60), imply

∂νφ
tr

0 = ±
√
q − (η · τ)2 on ∂D

and

∂νφ
s = ±

√
1 − (η · τ)2 = ±η · ν on ∂D.

These equations each translate into separate possibilities, though only one is the

proper choice that best approximates the actual solution. We will first consider ∂νφ
s ,

for which their are four possible continuous expressions:

∂νφ
s = η · ν, ∂νφ

s = −η · ν, ∂νφ
s = |η · ν| or ∂νφ

s = −|η · ν|.

One way to identify the proper choice is by a principle of limiting absorption. Suppose

the background medium is a conductor such that σ0/ω = δ > 0. Then there are two

possible choices,

∂νφ
s =

√
iδ + (η · ν)2 (3.63)

or ∂νφ
s = −

√
iδ + (η · ν)2. (3.64)

Of these, only (3.63) has a positive imaginary part. Since Imφs |∂D = 0, this choice

corresponds to a situation where Imφs(x) > 0 for x ∈ R2 \D near ∂D. Consequently,

the ansatz (3.53) would decay exponentially as λ → ∞ near ∂D in accordance with

the skin effect. A negative exponent of ∂νφ
s would imply exponential growth, which

is physically unreasonable. We therefore choose (3.63) and then let the absorption
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parameter δ tend to zero, leaving

∂νφ
s = |η · ν|. (3.65)

This choice is further justified by the law of reflection. For x0 ∈ ∂D, λ ≫ 1 and

|x− x0| ≪ λ−1, the ansatz for ũs

λ satisfies

As(x)eiλφ
s(x) ≈ As

0(x0)e
iλ[φs(x0)+∇φs(x0)·(x−x0)],

which is to say that near any point x0 on ∂D, ũs

λ behaves like a plane wave propagating

in the direction ∇φs(x0). The choice (3.65) ensures that this direction of propagation

obeys the law of reflection in the illuminated region (Figure 3.5). The same is true of

η

Figure 3.5: The characteristic rays when D is a disk and η is directed upward, so that the
bottom half of the circle is illuminated. The characteristic ray originating at the point x0 ∈ ∂D
points in the direction ∇φs(x0) = (η · τ)τ + |η · ν|ν.

the choice ∂νφ
s = −η · ν, but this choice is unsatisfactory in the shadow. To see this,

note that in the case of a well absorbing (conducting) scatterer, the intensity of the

total field ũλ should be small in the shadow. In fact, it would be zero were it not for

the small contribution from creeping waves—a contribution that only decreases as λ

grows. Therefore, for λ large and x near ∂D in the shadow, ũs

λ(x) ≈ −ũi

λ(x), which
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means ũs

λ behaves like a plane wave propagating in the direction η.

To make the proper choice for ∂νφ
tr

0 , we again make the only choice consistent with

the skin effect. If we suppose Im q = δ > 0, then only the choice

∂νφ
tr

0 = −
√
q − (η · τ)2 on ∂D (3.66)

has a negative imaginary part. Since Imφ|∂D = 0, this choice corresponds to a situation

where Imφtr

0 (x) > 0 for x ∈ D near ∂D. The ansatz (3.56) for ũtr

λ therefore obeys the

expected exponential decay as λ → ∞. Since this argument applies for δ arbitrarily

small, we continue to choose (3.66) when the scatterer is nonconducting. Alternatively,

this choice can be justified by noting that it is the only choice consistent with Snell’s

law of refraction.

Combining (3.65), (3.66) and (3.62) results in the following

Approximation Assertion: Suppose D is bounded and convex and that as ρ → 0

ε and µ are fixed and ω → ∞ such that λ := ρω → ∞. For λ ≫ 1 we have the

approximations

ũs

λ|∂D ≈ [ũs

λ]geo :=As

0e
iλη·x (3.67a)

and

∂ν ũ
s

λ|∂D ≈ [∂ν ũ
s

λ]geo := iλ|η · ν|As

0e
iλη·x, (3.67b)

with

As

0 = − µη · ν +
√
q − (η · τ)2

µ|η · ν| +
√
q − (η · τ)2

. (3.67c)

Figure 3.7 shows numerical examples in the case of a plane wave incident upon a

disk (Figure 3.6).

Remark 3.5. We expect these to be good approximations only in the regime of mod-

erate to high (frequency dependent) conductivity, i.e. for σ/ω bounded away from zero.
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η

θ = 0

θ = π/2

θ = −π/2

B(0, ρ)

Figure 3.6: The orientation of the problem in our numerical computations. The plane wave
eiωx·η is incident upon the scatterer ρD, where D = B(0, 1) and η =

(
0
1

)
.

Since the boundary of the scatterer is not flat, a transmitted wave that does not attenu-

ate rapidly will transmit a sufficiently strong signal through the scatterer for which the

contributions following rays from different points of incidence will significantly interfere

with one another. Furthermore, there will be multiple internal reflections of the trans-

mitted waves, as well as refractions that will reemerge to augment the scattered field.

Hence the transmitted field cannot be expected to behave as it would in the case of a

half-plane (3.50). The ansatz (3.56) was motivated by (3.50) and therefore cannot be

trusted when σ/ω ≪ 1. This deficiency of our approach for poorly conducting scatters

is evident in Figure 3.7.

Also note that the error is greatest near the two points where the incident rays graze

the scatterer (only one is shown in the figure). This is not surprising as the diffraction

effects missed by the geometric optics method are greatest near these points.
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(a) µ = 2, ε = 2 and σ = 0.
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(b) µ = 2, ε = 1 and σ/ω = 1/50, so that q = 2 + i/50.
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(c) Here µ = 2, ε = 2 and σ/ω = 2, so that q = 4 + 4i.
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(d) µ = 2, ε = 2 and σ/ω = 106, so that q = 4 + 2 × 106 i.

Figure 3.7: Plots on the right half of the boundary of the scatterer ρD = B(0, ρ) running
counterclockwise from −π/2 to the highest point at π/2. The orientation is as in Figure 3.6.
The left half of the boundary has been omitted because of the obvious symmetry. The left
frames show the graphs of Re ũs

λ (solid) and Re[ũs

λ]geo (dotted). The right frames show the
error |ũs

λ − [ũs

λ]geo|. In all cases, ρ = 10−4 and ω = 106, so that λ = ρω = 100 and ρ2ω = 1/100.
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3.3.3 The case of a perfectly conducting scatterer

In the case of a perfectly conducting scatterer, the above analysis simplifies. The

scattered field satisfies

∆ũs

λ + λ2ũs

λ = 0 in R2 \D, (3.68a)

ũs

λ = −ũi

λ on ∂D, (3.68b)

along with the radiation condition

|(∂r − iλ)ũs

λ| = O(r−3/2) as r → ∞. (3.68c)

Here we find easily that As

0 = −1 on ∂D, and therefore (3.67) becomes

ũs

λ|∂D = [ũs

λ]geo :=−eiλη·x (3.69a)

and

∂ν ũ
s

λ|∂D ≈ [∂ν ũ
s

λ]geo :=−iλ|η · ν|eiλη·x. (3.69b)

This is the well known physical optics approximation [Jon86, Néd01]. In Figure 3.8 we

compare the physical optics approximation of the total field, [∂ν ũλ]geo = [∂ν ũ
s

λ]geo +

∂ν ũ
i

λ, with the actual total field, ∂ν ũλ|∂D.

3.3.4 Green’s formula and stationary phase

Once we have (3.67), the most obvious way to approximate the scattered field away from

the boundary is to construct φs and As

0. The approximation ũs

λ ≈ Aseiλφ
s

is known as

the geometric optics field. Finding φs is simple since it satisfies the Eikonal equation

(3.58a). Using the method of characteristics we find the solution: given x ∈ R2 \ D

uniquely represented as x = x0 + t∇φs(x0) for some t > 0 and x0 ∈ ∂D,

φs(x) = t+ φs(x0).
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0 pi/2 pi 3pi/2 2pi
−200

−100

0

100

200

Figure 3.8: Plots on the boundary of the perfectly conducting scatterer ρD = B(0, ρ), oriented
as in Figure 3.6 (with the convention that θ is defined modulo 2π). The graph of Re(∂ν ũλ|∂D) is
solid and the graph of the physical optics approximation, Re[∂ν ũλ]geo, is dotted. Here ρ = 10−4

and ω = 106, so that λ = ρω = 100 and ρ2ω = 1/100.

Once φs is known we find As

0 by solving the transport equation

2∇As

0 · ∇φs +As

0∆φ
s = 0 in R2 \D,

which follows by collecting the coefficients of iλ in the Hemholtz equation satisfied

by
(∑

As
n(iλ)−n

)
eiλφ

s

. This transport equation can be solved by integrating along

characteristic paths. The characteristic ODE is

ẋ(t) = ∇φs(x(t)),

ż(t) = −1

2
∆φs(x(t))z(t),

where z(t) = As

0(x(t)). The solution is

As

0(x) = As

0(x0)e
− 1

2

R t
0 ∆φs(x0+s∇φs(x0)) ds,

where As

0(x0) is given by (3.62). We therefore have the approximation

ũs

λ(x) ≈ As

0(x0)e
− 1

2

R t
0 ∆φs(x0+s∇φs(x0)) dseiλφ

s

.
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This approach can be useful when approximating the solution to the direct scattering

problem. However, since our ultimate goal is a tool for solving the inverse problem, we

will instead employ a method that will lead to a simpler representation formula for the

scattered field. In a sentence, our approach will be to substitute the approximations

(3.67) of ũs

λ|∂D and ∂ν ũ
s

λ|∂D into the Green’s representation

us

ρ(x) =

∫

∂D

{
ũs

λ(y)∂νyΦ
λ(x/ρ, y) − ∂ν ũ

s

λ(y)Φ
λ(x/ρ, y)

}
dσy (3.70)

and then perform a stationary phase analysis of this integral. The technique of sub-

stituting approximations of ũs

λ|∂D and ∂ν ũ
s

λ|∂D into the Green’s representation is often

used in the context of the physical optics approximation and in aperture calculations.

The physical optics approximation [Jon86, Néd01] applies in the case of perfectly

conducting (or sound-soft) scatterers. By treating the scattering at each point of inci-

dence on the illuminated portion of the boundary as though the scatterer were a half

space with boundary determined by the tangent line to the actual scatterer at that

point, and by assuming the total field in the shadow portion of the boundary vanishes,

we take ∂ν ũλ|∂D = 2∂νu
i (that is, ∂ν ũ

s

λ|∂D = ∂νu
i) on the illuminated side of the

boundary and ∂ν ũλ|∂D = 0 (or ∂ν ũ
s

λ|∂D = −∂νui) in the shadow.15 The physical optics

approximation then yields

us

ρ(x) ≈ −2

∫

ΓI

∂ν ũ
i

λ(y)Φ
λ(x/ρ, y) dσy

where ΓI is the illuminated portion of the boundary.16

When applied in the context of a light source on one side of an opaque screen with an

aperture, this method is often referred to as Kirchoff’s approximation [Jon86, BW02].

In this case, ∂D is replaced by S− ∪ A, where S− is the dark side of the screen and A

15This is the same approximation as (3.69b).

16Here we used the fact that
R

∂D
ũi

λ(y)∂νyΦλ(x/ρ, y) dσy =
R

∂D
∂ν ũ

i

λ(y)Φλ(x/ρ, y) dσy for x exterior

to D.
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is the aperture, so that the total field u satisfies

∫

S−∪A

{
∂

−
ν u(y)Φ

ω(x, y) − u(y)∂νyΦ
ω(x, y)

}
dσy

=




u(x) in the non-illuminated side of screen,

0 in the illuminated side,

where the normal vector ν is directed into the non-illuminated side of the screen (Figure

3.9). By taking u|A = ui |A, ∂νu|A = ∂νu
i |A and u|−S = ∂

−
ν u|S = 0, we arrive at

S
S−

A

ν

Figure 3.9: The infinite screen S with aperture A. S− is the dark (non-illuminated) side of
screen.

Kirchoff’s approximation

u(x) ≈
∫

A

{
∂

−
ν u

i(y)Φω(x, y) − ui(y)∂νyΦ
ω(x, y)

}
dσy (3.71)

for x in the non-illuminated side of the screen. For high frequencies, this integral can

be approximated using the technique of stationary phase [BW02]. We will apply this

technique in the similar but distinct context of scattering by a finite penetrable object.
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As ρ→ 0, the functions Φλ(x/ρ, y) and ∂νyΦ
λ(x/ρ, y) satisfy [Wat44]

Φλ(x/ρ, y) =
i

4
H

(1)
0

(
λ
∣∣∣x
ρ
− y
∣∣∣
)

=
(
8πλ

∣∣∣x
ρ
− y
∣∣∣
)−1/2

e
i(λ|x

ρ
−y|+π/4)

{
1 +O

([
λ
∣∣∣x
ρ
− y
∣∣∣
]−1)}

,

∂νyΦ
λ(x/ρ, y) =

iλ

4

x
ρ − y

|xρ − y| · νy H
1
1

(
λ
∣∣∣x
ρ
− y
∣∣∣
)

= λ

x
ρ − y

|xρ − y| · νy
(
8πλ

∣∣∣x
ρ
− y
∣∣∣
)−1/2

ei(λ|
x
ρ
−y|−π/4)

×
{

1 +O
([
λ
∣∣∣x
ρ
− y
∣∣∣
]−1)}

,

uniformly in y ∈ ∂D and x bounded away from ρD.17 Before inserting these approxi-

mations of Φλ(x/ρ, y) and ∂νyΦ
λ(x/ρ, y), along with the geometric optics approxima-

tions (3.67), into (3.70), we first refine the asymptotics to derive forms that are more

amenable to the coming stationary phase analysis. We expand

λ
∣∣∣x
ρ
− y
∣∣∣ = ω|x|

{
1 − ρ

x̂ · y
|x| + ρ2

[ |y|2 − (x̂ · y)2
2|x|2

]
+ ρ3

[
x̂ · y|y|2 − (x̂ · y)3

2|x|3
]

+O(ρ4)

}

= ω|x| − ωρ x̂ · y + ωρ2

[ |y|2 − (x̂ · y)2
2|x|

]
+ ωρ3

[
x̂ · y|y|2 − (x̂ · y)3

2|x|2
]

+O(ωρ4),

and note that at this point it is necessary to distinguish among the many possible high

frequency regimes. The above will suffice in the regime where ωρ3 → ∞ but ωρ4 → 0,

but in higher order regimes, more terms must be included. We will restrict our attention

to the lowest regime, where ωρ → ∞ but ωρ2 → 0, with the understanding that our

method could be easily modified to accommodate the higher order regimes. Hence we

will only need that

λ
∣∣∣x
ρ
− y
∣∣∣ = ω|x| − ωρ x̂ · y +O(ωρ2),

17Specifically, we must assume x is in the complement of a domain I independent of ρ satisfying
ρD ⊂⊂ I.
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which yields the asymptotic formulas

Φλ(x/ρ, y) =
1√

8πω|x|
e
i(λ|x

ρ
−y|+π/4)

(1 +O(ρ+ ω−1))

=
1√
ω

eiπ/4√
8π|x|

ei(ω|x|−λx̂·y)(1 +O(ρ+ ω−1 + ωρ2)) (3.72)

∂νyΦ
λ(x/ρ, y) = λ x̂ · νy

1√
8πω|x|

e
i(λ|x

ρ
−y|−π/4)

(1 +O(ρ+ ω−1))

= ρ
√
ω x̂ · νy

e−iπ/4√
8π|x|

ei(ω|x|−λx̂·y)(1 +O(ρ+ ω−1 + ωρ2)). (3.73)

The amplitude of the approximation (3.72) will have small absolute error in all high

frequency regimes. The amplitude of (3.73) will have small absolute error so long as

ωρ4 → 0, but the relative error will be small regardless of the relative growth of ω and

ρ−1. The phase, however, is sensitive to this relative rate of growth.

On substituting (3.72) and (3.73) along with the geometric optics approximations

(3.67) into (3.70) we obtain

us

ρ(x) ≈ ρ
√
ωe−iπ/4

eiω|x|√
8π|x|

x̂ ·
∫

∂D
νyA

s

0(y)e
iλ(η−x̂)·y dσy

− iλ√
ω
eiπ/4

eiω|x|√
8π|x|

∫

∂D
|η · νy|As

0(y)e
iλ(η−x̂)·y dσy

= ρ
√
ωe−iπ/4

eiω|x|√
8π|x|

∫

∂D

(
x̂ · νy + |η · νy|

)
As

0(y)e
iλ(η−x̂)·y dσy, (3.74)

with As

0 given by (3.67c). If ωρ2 is not small, say, for instance, ωρ3 → ∞ but ωρ4 → 0,

we would replace the phase λ(η − x̂) · y with

λ(η − x̂) · y + ωρ2

[ |y|2 − (x̂ · y)2
2|x|

]
+ ωρ3

[
x̂ · y|y|2 − (x̂ · y)3

2|x|2
]
.

We will now perform a stationary phase analysis on the integral in the formula (3.74).

We begin with

Lemma 3.6. Let D be a bounded, smooth, strictly convex domain. Let x be a nonzero
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vector and let η be a unit vector such that x̂ 6= η. The function

y 7→ ψη(x, y) :=(η − x̂) · y, y ∈ ∂D,

has two stationary points: y1 and y2 satisfying

ψη(x, y1) = min
y∈∂D

ψη(x, y) and ψη(x, y2) = max
y∈∂D

ψη(x, y). (3.75)

y1 and y2 are also the unique points on ∂D satisfying

νy1 = − η − x̂

|η − x̂| and νy2 =
η − x̂

|η − x̂| .

Proof. The stationary points of y 7→ ψη(x, y) are the points where ∂τyψη(x, y) = (η −

x̂) · τy = 0. These are precisely the points y where νy = ±(η − x̂)/|η − x̂|. That there

are exactly two such points follows from the strict convexity of D. Since there are only

two stationary points, they must be the stationary points characterized by (3.75).

We now evaluate the density of the oscillatory integral in (3.74) at the stationary

points.

Lemma 3.7. Let D, η, x, ψη, y1 and y2 be as in Lemma 3.6 and let As

0 be given by

(3.62). Let ϑ represent the angle of counterclockwise rotation from η to x̂, 0 < ϑ < 2π.

Then

(x̂ · νy1 + |η · νy1 |)As

0(y1) = 2 sin(ϑ/2)
µ sin(ϑ/2) −

√
q − 1 + sin2(ϑ/2)

µ sin(ϑ/2) +
√
q − 1 + sin2(ϑ/2)

and

(x̂ · νy2 + |η · νy2 |)As

0(y2) = 0.
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Proof. By Lemma 3.6,

x̂ · νy1 + |η · νy1 | = −x̂ · η − x̂

|η − x̂| + η · η − x̂

|η − x̂|

= |η − x̂|

=
√

2 − 2η · x̂

=
√

2(1 − cosϑ)

= 2 sin(ϑ/2)

and

x̂ · νy2 + |η · νy2 | = x̂ · η − x̂

|η − x̂| + η · η − x̂

|η − x̂|

= 0.

Since |η · νy1 | = η · νy1 = sin(ϑ/2) and |η · νy2 | = η · νy2 , we easily calculate

As

0(y1) = − µη · νy1 +
√
q − (η · τy1)2

µ|η · νy1 | +
√
q − (η · τy1)2

=
µ sin(ϑ/2) −

√
q − 1 + sin2(ϑ/2)

µ sin(ϑ/2) +
√
q − 1 + sin2(ϑ/2)

and

As

0(y2) = − µη · νy2 +
√
q − (η · τy2)2

µ|η · νy2 | +
√
q − (η · τy2)2

= −1.

The core of our stationary phase analysis relies on the following

Lemma 3.8. Let D, η, x, ψη, y1 and y2 be as in Lemma 3.6 and let ϑ be as in Lemma

3.7. Let K(x) denote the nonnegative curvature of ∂D at x ∈ ∂D, and suppose that
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K(y1) and K(y2) are both nonzero. For any piecewise C1 function a(·) on ∂D,

∫

∂D
a(y)eiλψη(x,y) dσy =

√
π√

λ
√

sin(ϑ/2)

(
eiπ/4√
K(y1)

eiλψη(x,y1)a(y1)

+
e−iπ/4√
K(y2)

eiλψη(x,y2)a(y2)

)
+ o(λ−1/2)

as λ→ ∞.

Proof. If Γ is connected segment of ∂D along which |∂τyψη(x, y)| > c > 0 then a

straightforward argument using an integration by parts yields

∫

Γ
a(y)eiλψη(x,y) dσy = O(λ−1).

It follows that

∫

∂D
a(y)eiλψη(x,y) dσy =

(∫

Γ1,δ

+

∫

Γ2,δ

)
a(y)eiλψη(x,y) dσy +O(λ−1),

where Γ1,δ and Γ2,δ are arbitrarily small ∂D-neighborhoods of y1 and y2, respectively.

We take

Γ1,δ = ∂D ∩ {y : ψη(x, y) < ψη(x, y1) + δ}

for some δ > 0. Let s denote the signed arclength of Γ1,δ beginning at y1 and proceeding

counterclockwise for s > 0 and clockwise for s < 0. Then

∫

Γ1,δ

a(y)eiλψη(x,y) dσy =

∫

Γ+
1,δ

a(y)eiλψη(x,y) dσy

︸ ︷︷ ︸
I1

+

∫

Γ−
1,δ

a(y)eiλψη(x,y) dσy

︸ ︷︷ ︸
I2

where

Γ+
1,δ = Γ1,δ ∩ {y(s) ∈ Γ1,δ : s > 0},

Γ−
1,δ = Γ1,δ ∩ {y(s) ∈ Γ1,δ : s < 0}.
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Because

y(s) = y(0) + sy′(0) +
1

2
s2y′′(0) +O(s3)

= y1 + sτy1 −
1

2
s2K(y1)νy1 +O(s3),

it follows from Lemma 3.6 that

ψη(x, y(s)) = (η − x̂) · y(s) = ψη(x, y1) + |η − x̂|K(y1)
1

2
s2 +O(s3)

= ψη(x, y1) + sin(ϑ/2)K(y1)s
2 +O(s3).

In the integral I1 we change to the variable t = ψη(x, y(s)) − ψη(x, y1) to get

∫

Γ+
1,δ

a(y)eiλψη(x,y) dσy = eiλψη(x,y1)

∫ δ

0
ã(t)eiλt

∣∣∣∣
dt

ds

∣∣∣∣
−1

dt

= eiλψη(x,y1)

∫ δ

0
ã(t)eiλt

1

2 sin(ϑ/2)K(y1)s
(1 +O(s)) dt

where ã(t) = a(y(s(t))). Since

s =

√
t√

sin(ϑ/2)K(y1)
+O(t),

the above integral becomes

∫

Γ+
1,δ

a(y)eiλψη(x,y) dσy =
eiλψη(x,y1)

2
√

sin(ϑ/2)K(y1)

∫ δ

0
ã(t)eiλt

(
1 +O(

√
t)
) dt√

t

=
eiλψη(x,y1)

2
√

sin(ϑ/2)K(y1)

∫ δ

0
ã(t)eiλt

dt√
t

+O(λ−1).

A standard asymptotic result [Olv97, Chapter 3, Theorem 13.1] for integrals of this

form is

∫ δ

0
ã(t)eiλt

dt√
t

=

√
π

λ
eiπ/4ã(0) + o(λ−1/2) as λ→ ∞.
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Therefore

∫

Γ+
1,δ

a(y)eiλψη(x,y) dσy =

√
π

2
√
λ

ei(λψη(x,y1)+π/4)

√
sin(ϑ/2)K(y1)

a(y1) + o(λ−1/2).

By symmetry, I2 has this same asymptotic formula, and thus

∫

Γ1,δ

a(y)eiλψη(x,y) dσy =

√
π√
λ

ei(λψη(x,y1)+π/4)

√
sin(ϑ/2)K(y1)

a(y1) + o(λ−1/2).

Finally, for Γ2,δ we take

Γ2,δ = ∂D ∩ {y : ψη(x, y) > ψη(x, y2) − δ}

and proceed as we did for y1 to find

∫

Γ2,δ

a(y)eiλψη(x,y) dσy =

√
π√
λ

ei(λψη(x,y1)−π/4)
√

sin(ϑ/2)K(y2)
a(y2) + o(λ−1/2).

Using (3.74), Lemma 3.6 and Lemma 3.8, we find the approximation

us

ρ(x) ≈ ρ
√
ωe−iπ/4

eiω|x|√
8π|x|

√
π√

λ
√

sin(ϑ/2)

eiπ/4√
K(y1)

eiλψη(x,y1)

× 2 sin(ϑ/2)
µ sin(ϑ/2) −

√
q − 1 + sin2(ϑ/2)

µ sin(ϑ/2) +
√
q − 1 + sin2(ϑ/2)

(3.76)

for x ∈ R2 \D, which is the main result of this section.

Approximation Assertion: In problem (3.2), assume D is a bounded, smooth, strictly

convex domain such that the nonnegative curvature function K on ∂D is strictly pos-

itive. Also assume that as ρ → 0, ε and µ are fixed, ω → ∞ in such a way that

λ := ρω → ∞, and σ → ∞ in such a way that σ/ω is bounded away from zero. Given

any x ∈ R2 \ D, let ϑ denote the angle measured counterclockwise from η to x, with

0 ≤ ϑ < 2π, and let y1 be the arg-min18 of ψη(x, ·), where ψη(x, y) = (η − x̂) · y. An

18the arg-min of ψη(x, ·) the solution y1 to ψη(x, y1) = min
y∈∂D

ψη(x, y).
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approximation to the scattered field at x bounded away from ρD satisfying x̂ 6= η is

us

ρ(x) ≈ [us

ρ]geo(x)

:=
√
ρ
eiω[|x|+ρ(η−x̂)·y1]

√
2|x|K(y1)

√
sin(ϑ/2)

µ sin(ϑ/2) −
√
q − 1 + sin2(ϑ/2)

µ sin(ϑ/2) +
√
q − 1 + sin2(ϑ/2)

. (3.77)

If D is perfectly conducting,

us

ρ(x) ≈ [us

ρ]geo(x) :=
√
ρ
eiω[|x|+ρ(η−x̂)·y1]

√
2|x|K(y1)

√
sin(ϑ/2). (3.78)

The formula (3.78) follows either as a limit of (3.77) as Im q → ∞ or by recalling

(3.69). Figure 3.10 provide numerical examples of this approximation. For comparison,

we include a graph (Figure 3.11) of the actual scattered field in the case corresponding

to Figure 3.10(b). The spike in the intensity of the scattered field within the narrow

shade region is missed by our geometric optics approach. We also provide an example

in the case of a perfectly conducting disk (Figure 3.12).

Figure 3.14 shows the graphs of the real part of the approximation (3.77) of the

scattered field on the circle r = 2 in the case when the scatterer is an ellipse of aspect

ratio 1:2 oriented as in Figure 3.13.

Remark 3.9. The formula (3.77) may also be derived from the formula (3.48) for

moderate frequencies by letting λ0 tend to ∞ and appealing to the method of stationary

phase. The disadvantage of such an approach, as compared to our approach based on

geometric optics, is that it sheds no light on why it fails for frequencies ω of order

greater than or equal to ρ−2.

3.3.5 The three dimensional problem

The procedure we followed to arrive at the approximation formula (3.77) as λ = ρω →

∞ but ρ2ω → 0 applies just as well to the scattering problem in three dimensions. In

this case, the radiating free space Green’s function Φλ(x, y) = 1
4πe

iλ|x−y|/|x− y|. We
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(a) ρ = 10−1 and ω = 103 so that ωρ = 100 and ωρ2 = 10.
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(b) ρ = 10−2 and ω = 105 so that ωρ = 1000 and ωρ2 = 10.
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(c) ρ = 10−4 and ω = 106 so that ωρ = 100 and ωρ2 = 10−2.

Figure 3.10: Plots on the right half of the circle r = 2. Here a plane wave is incident upon a
disk as in Figure 3.6. The plots run counterclockwise from θ = −π/2 to the highest point at
θπ/2, where θ is as in Figure 3.6 (which differs from the angle ϑ defined in the approximation
formula (3.77); the angle ϑ from (3.77) runs on the horizontal axis from π to 2π). The left
half of the circle has been omitted because of the obvious symmetry. The left frames show the
graph of Re[us

ρ]geo. The right frames show the error |us

ρ − [us

ρ]geo|. In each case, ε = 2, µ = 2
and σ/ω = 2. Only in the third example is ωρ2 small, and so it is not surprising that the error
is larger in the first two.
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Figure 3.11: Reus

ρ (top) and Imus

ρ (bottom) at r = 2 when ε = 2, µ = 2, ρ = 10−2 and
ω = 105, so that ρω = 1000. The lowest point corresponds to the angle θ = 3π/2. The shadow
portion of r = 2 is in a small neighborhood of θ = π/2. θ is as in Figure 3.6 (modulo 2π), which
differs from the angle ϑ in the approximation formula (3.78).
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Figure 3.12: The graphs of Imus

ρ and Im[us

ρ]geo (the latter in boldface) on the circle r = 2 in
the case of a plane wave incident upon a perfectly conducting disk D = B(0, ρ), as in Figure 3.6.
On the horizontal axis is the angle θ from Figure 3.6 (which differs from the angle ϑ defined
in the approximation formula (3.77)). Here ρ = 10−4 and ω = 106, so that ρω = 100 and
ρ2ω = 10−2. [us

ρ]geo is a good approximation of us

ρ on the circle r = 2 except in a narrow arc
around the shadow cast by the scatterer (centered at θ = π/2).
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Figure 3.13: Diagram of ellipse orientation and incident directions.
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Figure 3.14: The real part of [us

ρ]geo at r = 2 in the case of an elliptical scatterer as in Figure
3.13. The left frame corresponds to the incident direction η1, the middle frame to η2 and the
right frame to η3. In each case, ε = 2, µ = 2, σ/ω = 2, ω = 106 and ρ = 10−4 so that ωρ = 100
and ωρ2 = 10−2. One can see that the intensity of the approximate field shrinks to zero at the
point x in the shadow satisfying x̂ = η, which is a defect of this method.
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therefore find the following analogues to (3.72) and (3.73):

Φλ(x/ρ, y) =
1

4π

e
iλ|x

ρ
−y|

|xρ − y|

≈ 1

4π

ρ

|x|e
i(ω|x|−λx̂·y),

∂νyΦ
λ(x/ρ, y) ≈ −i

4π
ρ2ω

x̂ · νy
|x| ei(ω|x|−λx̂·y).

Then, inserting these approximations, along with the approximations [ũs

λ]geo and ∂ν ũ
s

λ|∂D
from (3.67) (which remain unchanged in three dimensions) into the Green’s represen-

tation formula (3.70) yields the approximation

us

ρ(x) ≈
−i
4π
ρ2ω

eiω|x|

|x|

∫

∂D

(
x̂ · νy + |η · νy|

)
As

0(y)e
iλ(η−x̂)·y dσy.

As λ→ ∞, the integral becomes concentrated near the arg-min y1 of ψ(y) = (η− x̂) ·y.

(The other stationary point, i.e., the arg-max of ψ, does not contribute to the highest

order term of the asymptotic expansion of the integral since the integrand at that point

is zero, just as in the two dimensional case). Write the integral as

∫

∂D
f(y)eiλψ(y) dσy,

f(y) =
(
x̂ · νy + |η · νy|

)
As

0(y). Rotate the coordinates so that νy1 = (0, 0,−1), and let

∂D near y1 be the graph of the function g, with g(ξ1) = y1. Then, since η − x̂ points

in the same direction as νy1 , ψ(y) = (η − x̂)g(ξ), and therefore

∫

∂D
f(y)eiλψ(y) dσy

(to highest order)
=

∫

Nξ1

f(ξ, φ(ξ))eiλ(η−x̂)g(ξ)√|∇g(ξ)|2 + 1 dξ,

where Nξ1 is a neighborhood of ξ1. We now use the method of stationary phase for

functions of two variables: if ξ0 is an isolated stationary point of the function h : R2 →R, then

∫

Nξ0

F (ξ)eiλh(ξ) dξ =
2π

λ
eiπ(δ+1)σ/4eiλh(ξ0)F (ξ0)

∣∣ det(D2h)(ξ0)
∣∣−1/2

+ o(λ−1)
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as λ → ∞, where δ = sgn
(
det(D2h)(ξ0)

)
and σ = sgn

(
∂2

1h(ξ0)
)

(second partial

derivative in a coordinate direction) [Coo82]. We therefore find

∫

Nξ1

f(ξ, φ(ξ))eiλ(η−x̂)g(ξ)√|∇g(ξ)|2 + 1 dξ

=
2πi

λ
eiλ(η−x̂)·y1f(y1)

1

|η − x̂|
√
K(y1)

+ o(λ−1),

where K(·) is the Gaussian curvature function on ∂Ω. This leads us to the approxima-

tion formula19

us

ρ(x) ≈ −ρ1

2

eiω|x|

|x|
eiλ(η−x̂)·y1
√
K(y1)

µ η · νy1 +
√
q(y1) − 1 + |η · νy1 |2

µ|η · νy1 | +
√
q(y1) − 1 + |η · νy1 |2

.

Noting that η · νy1 = −x̂ · νy1 , we may also write this formula as

us

ρ(x) ≈ ρ
1

2

eiω|x|

|x|
eiλ(η−x̂)·y1
√
K(y1)

µ x̂ · νy1 −
√
q(y1) − 1 + |x̂ · νy1 |2

µ x̂ · νy1 +
√
q(y1) − 1 + |x̂ · νy1 |2

. (3.79)

As in the two dimension case, this formula applies only when there is ample absorption

within the strictly convex scatterer.

Remark 3.10. Majda and Taylor [MT77] derived a similar approximation formula for

the scattering amplitude20 (or, more precisely, a convolution of the scattering amplitude

by a smoothing kernel, which they call the filtered scattering amplitude). Their result

applies in the context of the following three dimensional scattering problem: given

ui(x) = eiωη·x, with η ∈ R3 satisfying |η| = 1, determine (utr , us) such that





∆utr + ω2q(x)utr = 0 in Ω,

∆us + ω2us = 0 in R3 \ Ω,

19Here we have used the fact that x̂ · νy1
+ |η · νy1

| = |η − x̂|.
20For an exterior scattered field us satisfying (∆+ω2)us = 0, the scattering amplitude u∞, also called

the far field pattern, is defined on T for two dimensional problems as the unique function satisfying

us(x) = eiωr
√

r

�
u∞(x̂) +O(r−1)

�
, and on S2 for three dimensional problems as the unique function such

that us(x) = eiωr

r

�
u∞(x̂) +O(r−1)

�
.
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with the transmission conditions





utr = us + ui on ∂Ω,

∂νu
tr = ∂νu

s + ∂νu
i on ∂Ω,

and the radiation condition

(∂r − iω)us = o(r−1) as ω → ∞,

where Ω is a smooth, bounded, convex domain in R3 and the refractive index q > 1 is

a smooth function on Ω. They proved that the filtered scattering amplitude a(x̂, η, ω)

admits, for x̂ 6= η, the asymptotic expansion

a(x̂, η, ω) = − 1

4π

eiω(η−x̂)·y1
√
K(y1)

νy1 · x̂−
√
q(y1) − 1 + |νy1 · x̂|2

νy1 · x̂+
√
q(y1) − 1 + |νy1 · x̂|2

+O(ω−1) (3.80)

as ω → ∞, where y1 is the arg-min of y 7→ y · (η − x̂) on ∂Ω and K(·) is the Gaussian

curvature function on ∂Ω.21 This result is achieved by performing a microlocal analysis

of a Fourier integral operator associated with the scattering amplitude, which includes

a stationary phase analysis similar to ours. Such a method may perhaps be used to

prove that the approximation (3.77) is in fact the leading order term of an asymptotic

expansion of the scattered field as ωρ→ ∞, ωρ2 → 0.

3.3.6 An alternate approach for high frequencies

In the previous sections we: 1) found the geometric optics approximations (3.67) of

ũs

λ|∂D and ∂ν ũ
s

λ|∂D, 2) substituted these approximations into Green’s formula for the

scattered field, and then 3) performed a stationary phase analysis on this integral. It

would be natural to ask what would happen if we, in a sense, were to reverse the order

of 2) and 3). That is, if we were to perform a stationary phase analysis to calculate the

21This formula was presented as

a(x̂, η, ω) = − 1

2π

νy∗
· x̂

|η − x̂|
eiω(η−x̂)·y∗p

K(y∗)

νy∗
· x̂−

p
q(y∗) − 1 + |νy∗

· x̂|2
νy∗

· x̂+
p
q(y∗) − 1 + |νy∗

· x̂|2
+O(ω−1)

in [MT77], but note that 2(νy∗
· x̂) = |η − x̂| since νy∗

= −(η − x̂)/|η − x̂|.
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distributional limit of (3.67a) and (3.67b) and then insert the resulting sum of delta

functions into the Green’s representation formula for the scattered field.

By choosing x̂ = −η and then replacing λ with λ/2, we get

∫

∂D
a(y)eiλy·η dσy =

√
2π√
λ

(
eiπ/4√
K(y∗1)

eiλy
∗
1 ·ηa(y∗1)

+
e−iπ/4√
K(y∗2)

eiλy
∗
2 ·ηa(y∗2)

)
+ o(λ−1/2)

as λ→ ∞, where y∗1 is the arg-min of y · η on ∂D and y∗2 is the arg-max (νy∗1 = −η and

νy∗2 = η). At the points y∗1 and y∗2,

As

0(y
∗
1) =

µ−√
q

µ+
√
q

and As

0(y
∗
2) = −1.

Therefore, the distributional limits as λ→ ∞ of (3.67a) and (3.67b) are

[ũs

λ]geo →
√

2π

λ

(
µ−√

q

µ+
√
q

eiπ/4√
K(y∗1)

eiλy
∗
1 ·ηδy∗1 − e−iπ/4√

K(y∗2)
eiλy

∗
2 ·ηδy∗2

)
, (3.81)

[∂ν ũ
s

λ]geo → i
√

2πλ

(
µ−√

q

µ+
√
q

eiπ/4√
K(y∗1)

eiλy
∗
1 ·ηδy∗1 − e−iπ/4√

K(y∗2)
eiλy

∗
2 ·ηδy∗2

)
. (3.82)

We then insert (3.81) and (3.82) into Green’s formula (3.70) and find

us

ρ(x) ≈
√

2π

λ

[
µ−√

q

µ+
√
q

eiπ/4√
K(y∗1)

eiλy
∗
1 ·η
(
∂νyΦ

λ(x/ρ, y∗1) − iλΦλ(x/ρ, y∗1)
)

+
e−iπ/4√
K(y∗2)

eiλy
∗
2 ·η
(
∂νyΦ

λ(x/ρ, y∗2) − iλΦλ(x/ρ, y∗2)
)]
.

By (3.72) and (3.73),

∂νyΦ
λ(x/ρ, y) − iλΦλ(x/ρ, y)

= ρ
√
ω
e−iπ/4√

8π|x|
ei(ω|x|−λx̂·y)

[
x̂ · νy + 1

](
1 +O(ρ+ ω−1 + ωρ2)

)
,
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and so we have the approximation

us

ρ(x) ≈
√
ρ

2

eiω|x|√
|x|

(
µ−√

q

µ+
√
q
(1 − cosϑ)

eiλ(η−x̂)·y∗1
√
K(y∗1)

+ i(1 + cosϑ)
eiλ(η−x̂)·y∗1
√
K(y∗2)

)
. (3.83)

This approximation is far worse than (3.77), as demonstrated in Figure 3.15. The inad-
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Figure 3.15: The real parts of us

ρ|r=2 (in boldface) and the alternate approximation formula
(3.83) in the case of a plane wave incident upon a disk as in Figure 3.6. In this example, µ = 2,
ε = 2, σ/ω = 2, ρ = 10−4 and ω = 106, so that ωρ = 100 and ωρ2 = 10−2.

equacy of this alternate method stems from the fact that, unlike the prior method, the

oscillations in the Green’s function and the oscillations in the Cauchy data ([us
ρ]geo

∣∣
∂D

and [∂νu
s

ρ]geo
∣∣
∂D

) are not treated simultaneously. We have presented this alternative

method to illustrate the importance of this simultaneous treatment of the oscillations.
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3.3.7 Multiple scatterers

If there are multiple scatterers zj + ρDj , j = 1, 2, . . . ,m, then (3.77) can be replaced

with the sum

us(x) ≈
∑

j



√
ρ√
2

√
sin(ϑj/2)

µj sin(ϑj/2) −
√
qj − 1 + sin2(ϑj/2)

µj sin(ϑj/2) +
√
qj − 1 + sin2(ϑj/2)

× eiρω(η−(bx,η
j −zj)/|bx,η

j −zj |)·(x−zj)

√
K(bx,ηj )

eiω|x−zj |
√
|x− zj |


 ,

(3.84)

for x bounded away from the scatterers, where 0 < ϑj < 2π is the counterclockwise

angle of rotation between η and x − zj , K(·) > 0 is the curvature, and bx,ηj is the

unique point on the boundary ∂Dj with outward normal pointing in the direction of

(x− zj) − η. This formula should be valid as long as the scatterers are well separated

(i.e., the minimum distance between pairs of scatterers is on the order of 1) and the

observation point x is sufficiently far outside a convex set containing all the scatterers.

This is because the disturbance transmitted from any one scatterer to another will be of

the order
√
ρ/d, where d is the distance between the scatterers. The disturbance will be

transmitted, from the second scatter, back to the observation point will an amplitude

on the order of ρ. Adding together all other higher order multiply scattered signals

should amount to, at most, a total signal of order ρ + ρ3/2 + ρ2 + ρ5/2 + · · · = O(ρ).

This by no means rigorous argument. After all, the number of nth order signals grows

exponentially in n. Nonetheless, we are confident in the validity of (3.84).

We note that formula (3.84) may not be accurate if one scatterer lies in the shadow

of another. Testing from multiple directions will remedy this.

3.3.8 Future directions: the inverse problem

The (approximate) representation formula (3.77) for the scattered field is ripe with

information that should be useful in solving the inverse problem of determining char-

acteristics of the inhomogeneity (size, shape, etc.); for instance, the factors
√
ρ and

1/K(y1).
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In the context of the three dimensional scattering problem of Remark 3.10, Ma-

jda and Taylor [MT77] showed, using the asymptotic formula (3.80), that knowledge

of the high frequency asymptotics of the filtered differential scattering cross section,

|a(x̂, η, ω)|2, over a sufficient sample of values22 of x̂ and η, determines the unique con-

vex shape of the scatterer Ω, and the index of refraction q(·)
∣∣
Ω
, assuming, for the latter,

that q > 1. (See [Maj76a], [Maj77] and, for a brief overview, [Maj76b]). At the heart

of this proof is the observation that, given a function of the form

g(t, α, β) = α

(
t−

√
β + t2

t+
√
β + t2

)
, for t, α, β > 0,

if t1 and t2 are distinct positive numbers, the values g(t1, α, β) and g(t2, α, β) uniquely

determine α and β. If one can first show that (3.77) is indeed a genuine asymptotic

expansion, then this sort of approach would surely be useful in proving an analogous

theoretical result in the context of the problem of a two dimensional conducting scat-

terer.

22Specifically, the high frequency asymptotics must be known for all (x̂, η) ∈ V1 ∩ V2, where V1 and
V2 are complementary subsets of determinacy. A subset of determinacy V is a finite union of open
subsets of S2 × S2 \ {x̂ = η} such that the function (x̂, η) 7→ η−x̂

|η−x̂| maps V onto S2.
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Chapter 4

Rigorous norm estimates of the scattered field

In the previous chapter we derived a formal approximation of the scattered field when

ρ → 0 and ω → ∞ in such a way that λ = ωρ → ∞ based on a geometric optics

approach. This first step toward proving a rigorous asymptotic estimate is to show

that the scattered field is bounded in some Sobolev space as ρ→ 0, for then we would

know that a subsequence converges weakly to what would surely be the asymptotic

limit (cf. Chapter 2). This task turns out to surprisingly difficult. In this chapter we

will prove such bounds in the case where the scatterer is a disk. First we will use a

method based on separation of variables to establish a bound on

‖us

ρ|r=r0‖Hσ(T) =

[ ∞∑

n=−∞

∣∣ ̂(us
ρ|r=r0)n

∣∣2(1 + n2)2σ

]1/2

of order
√
ρ that depends on the incident field ui . (The order σ here has no relation to

conductivity.) The circular geometry of the scatterer is inherent to such a method, so

there is little hope that it will generalize to arbitrary convex scatterers. Fortunately,

there is another method, one based on wave equation factorization and pseudodiffer-

ential operators, that is very likely to generalize. We present this alternate method in

the latter part of this chapter.

4.1 A bound via separation of variables

Let µ0 > 0, ε0 > 0, and σ0 ≥ 0 denote, respectively, the magnetic permeability, the

electric permittivity and the conductivity of the background medium, and let µ > 0,

ε > 0 and σ > 0 denote those of the inhomogeneity ρD, D = B(0, 1). Let q = µǫ =
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µ(ε+ iσ/ω) and q0 = µ0ǫ0 = µ0(ε0 + iσ0/ω0). For simplicity, we write

q = a+ ib,

where a, b > 0. Recall the transmission problem: Given an incident wave ui satisfying

(∆+q0ω
2)ui = 0 in R2, the transmitted and scattered fields, utr

ρ and us
ρ, are the unique

solutions to 



∆utr

ρ + qω2utr

ρ = 0 (r < ρ),

∆us

ρ + q0ω
2us

ρ = 0 (r > ρ),

(4.1a)

satisfying the transmission conditions





1

µ
∂ru

tr

ρ

∣∣
r=ρ

=
1

µ0

(
∂ru

s

ρ

∣∣
r=ρ

+ ∂ru
i
∣∣
r=ρ

)
,

utr

ρ

∣∣
r=ρ

= us

ρ

∣∣
r=ρ

+ ui
∣∣
r=ρ

,

(4.1b)

as well as Sommerfeld’s outgoing radiation condition,

∂ru
s

ρ − i
√
q0ωu

s

ρ = O(r−3/2) as r → ∞ (4.1c)

(here we have not normalized q0 to be 1, as we did in Chapter 3).

Note: If we let γ = µ0

µ , the transmission condition for the normal derivative becomes

γ∂ru
tr

ρ

∣∣
r=ρ

=
(
∂ru

s

ρ

∣∣
r=ρ

+ ∂ru
i
∣∣
r=ρ

)
.

For the problem (4.1) to be properly posed, we need only require a given q, q0, γ, ω, ρ,

and a given incident wave ui satisfying (∆ + q0ω
2)ui = 0.

We suppose the incident wave has the form

ui(x) =
∞∑

n=−∞
anJn(

√
q0ωr)e

inθ, (4.2)
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where {an}∞n=−∞ satisfies

‖{an}‖2
hs :=

∞∑

n=−∞
|an|2(1 + |n|)2s <∞ (4.3)

for some s ∈ R (cf. (3.5) and (3.6) from Chapter 3). Recall from the proof of Theorem

4 of Chapter 3 that

us

ρ =
∞∑

n=−∞
αnHn(ωr)e

inθ, utr

ρ =
∞∑

n=−∞
βnJn(

√
qωr)einθ, (4.4)

where

αn = an
γ
√
qJ ′

n(
√
qλ)Jn(

√
q0λ) −√

q0J
′
n(
√
q0λ)Jn(

√
qλ)

√
q0H ′

n(
√
q0λ)Jn(

√
qλ) − γ

√
qJ ′

n(
√
qλ)Hn(

√
q0λ)

, (4.5)

βn = an
2i

πλ

(
1√

q0H ′
n(
√
q0λ)Jn(

√
qλ) − γ

√
qJ ′

n(
√
qλ)Hn(

√
q0λ)

)
, (4.6)

with λ = ωρ.

4.1.1 Incident waves with finitely many Fourier coefficients

We will first study the case of where the incident wave ui has only finitely many coeffi-

cients. To estimate the size of the scattered field us
ρ, we must estimate the coefficients

αn and βn. To do this, we appeal to the asymptotic properties of Bessel functions.

Lemma 4.1. Let c = α+ iβ, with β > 0. Then for any integer n ≥ 0, as 0 < t→ ∞,

H ′
n(t)Jn(ct) = i

eβtei(1−α)t

πt
√
c

(
1 +O(t−1)

)
,

J ′
n(ct)Hn(t) = −ie

βtei(1−α)t

πt
√
c

(
1 +O(t−1)

)
.

Furthermore, for each n ∈ Z there exists a constant Cn,c > 0 such that for all t > 0,

|J ′
n(t)Jn(ct)| ≤ Cn,c

eβt

t
,

|J ′
n(ct)Jn(t)| ≤ Cn,c

eβt

t
.
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Proof. We will use the Identity

F ′
n(z) =

1

2

[
Fn−1(z) − Fn+1(z)

]
,

which holds for both Jn and Hn, and the asymptotic formula

Hn(z) =

√
2

πz
ei(z−nπ/2−π/4)

(
1 +O(z−1)

)
as |z| → ∞

[Wat44, §7.21]. We will also use the formula

Jn(z) = c1

√
2

πz
ei(z−nπ/2−π/4)

(
1 +O(z−1)

)

+ c2

√
2

πz
e−i(z−nπ/2−π/4)

(
1 +O(z−1)

)
as |z| → ∞,

which is valid in the annular sector {| arg z| < π, |z| ≥ c > 0} (any c > 0) with

c1 = c2 = 1/2. In the annular sector {0 < arg z < 2π, |z| ≥ c > 0}, the formula, with

the branch of
√· changed appropriately, is valid with c1 = −1/2, c2 = 1/2 [Wat44,

§7.22].1 Because of this, and because of the continuity of Jn at zero, we obtain the

inequality

|Jn(z)| ≤ Cn

√
2

π|z|e
| Im z| (4.7)

for all z ∈ C.

We have

H ′
n(t)Jn(ct) =

1

2

[
Hn−1(t) −Hn+1(t)

]
Jn(ct)

=
1

2

√
2

πt
ei(t−nπ/2−π/4)

[
eiπ/2

(
1 +O(t−1)

)

− e−iπ/2
(
1 +O(t−1)

)]
Jn(ct)

= i

√
2

πt
ei(t−nπ/2−π/4)

(
1 +O(t−1)

)
Jn(ct).

1This discontinuity of the constants is known as Stokes’ phenomenon.
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Since β = Im t > 0, the asymptotic formula for Jn implies

Jn(ct) =
1

2

√
2

πct
e−i(ct−nπ/2−π/4)

(
1 +O(t−1)

)
as |t| → ∞.

Therefore,

H ′
n(t)Jn(ct) =

i

πt
√
c
ei(1−c)t

(
1 +O(t−1)

)
,

which is the first asymptotic identity. The proof of the second is similar. To prove the

first inequality, we use (4.7):

|J ′
n(t)Jn(ct)| =

∣∣∣1
2

[
Jn−1(t) − Jn+1(t)

]
Jn(ct)

∣∣∣

≤ Cn

√
2

πt

√
2

πct
e| Im ct|

= Cn,c
ebt

t
.

The proof of the second inequality is similar.

We may now estimate the size of αn and βn in terms of λ = ωρ.

Lemma 4.2. Suppose γ > 0, q0 > 0 and q = a + ib with a, b > 0, and let αn and

βn be defined as (4.5) and (4.6). Given any fixed n ∈ Z, there exists a constant

Dn = Dn(q, q0, γ), independent of λ > 0 and an, such that

|αn| ≤ Dn|an|.

Furthermore, given any fixed n ∈ Z and λ0 > 0, there exists a constant En depending

on q, q0, γ and λ0 but independent of λ and an, such that for all λ ≥ λ0,

|βn| ≤ En|an|e−λ Im
√
q.

Proof. Using Lemma 4.1 with c =
√
q/
√
q0 and t =

√
q0λ, we find that the denominator
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from (4.5) and (4.6),

√
q0H

′
n(
√
q0λ)Jn(

√
qλ)−γ√qJ ′

n(
√
qλ)Hn(

√
q0λ)

=
i

πλ

√
q0 + γ

√
q

(q0q)1/4
eλ(Im

√
q)ei(

√
q0−Re

√
q)λ
(
1 +O(λ−1)

)

as λ→ ∞. We also find, for the numerator from (4.5),

∣∣∣γ√qJ ′
n(
√
qλ)Jn(

√
q0λ) −√

q0J
′
n(
√
q0λ)Jn(

√
qλ)
∣∣∣ ≤ Cn,q,q0,γ

eλ(Im
√
q)

λ

for all λ > 0. Combining these, and appealing to the continuity of αn with respect to

λ, we get, for all λ ≥ c (any fixed c > 0),

|αn| =

∣∣∣∣an
γ
√
qJ ′

n(
√
qλ)Jn(

√
q0λ) −√

q0J
′
n(
√
q0λ)Jn(

√
qλ)

√
q0H ′

n(
√
q0λ)Jn(

√
qλ) − γ

√
qJ ′

n(
√
qλ)Hn(

√
q0λ)

∣∣∣∣

≤ D|an|,

with D = D(n, q, γ, c). But from the proof of Theorem 4 of Chapter 3 (adapted slightly

to accommodate q0 6= 1), we see easily that

|αn| ≤ Cq,q0,γλ
2|an|

for all n ∈ Z and all λ > 0 sufficiently small. It is therefore clear that D may be chosen

independently of c, and the desired estimate of |αn| follows. The desired estimate of

|βn| follows by a similar argument.

Remark 4.3. The requirement that Im q be positive turns out to be unnecessary. We

will defer the proof of this until Remark 4.6.

We are now ready to present a bound on the scattered field in the special case of an

incident wave with finitely many Fourier coefficients.

Theorem 5. Suppose γ > 0, q0 > 0 and q = a+ ib with a > 0, b ≥ 0. Let the incident
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wave be of the form

ui(x) =
∑

|n|≤N
anJn(

√
q0ωr)e

inθ (4.8)

for some fixed N > 0 and any coefficients an ∈ C, −N ≤ n ≤ N . Let (utr
ρ , u

s
ρ)

solve the transmission problem (4.1). Given any λ0 > 0, there exists a constant CN =

C(N, γ, q, q0, λ0), independent of ρ > 0, ω > 0 and {an}, such that for any r0 ≥ ρ,

∥∥us

ρ

∣∣
r=r0

∥∥
L2(T)

≤ CN

(
max
|n|≤N

|an|
) 1√

ωr0
for ωρ ≥ λ0.

(cf. Remark 3.2 of Chapter 3 for the L2 estimate when ωρ is near zero.)

Proof. Using the bound on αn from Lemma 4.2 (which holds even when b = 0; cf.

Remark 4.6), we get

∥∥us

ρ

∣∣
r=r0

∥∥2

L2(T)
= 2π

∑

|n|≤N
|αn|2|Hn(

√
q0ωr0)|2

≤ CN max
|n|≤N

{|an|2} max
|n|≤N

|Hn(
√
q0ωr0)|2.

The estimate follows from the fact that 0 < t 7→ t|Hn(t)|2 is decreasing for integers

n 6= 0, and the fact that t|H0(t)|2 ≤ 2/π for t > 0 [Wat44, 13.74].

The optimality of the estimate is illustrated by Figure 4.1.

Remark 4.4. This estimate will not hold in general for incident waves with infinite

Fourier series, as seen in Figure 3.1 of Chapter 3. However, this estimate does imply

that

∥∥us

ρ

∣∣
r=r0

∥∥
L2(T)

≤ CN
∥∥{an}

∥∥
l∞

√
ρ√
r0

for ωρ ≥ λ0 > 1,

and this sort of bound is consistent with Figure 3.1 of Chapter 3, and with the formal

asymptotics performed later in that chapter. We conjecture that such a bound holds

for general {an}n∈Z ∈ l∞, with CN replaced by a constant independent of n.
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Figure 4.1: Plots of
√
ω
∥∥us

ρ|∂B(0,ρ)

∥∥
L2(T)

as a function of ω when ui(r, θ) =
∑

|n|≤N Jn(ωr)einθ

(the truncated series of the plane wave eiωx·η when η =
(
0
1

)
), for N = 10, 25 and 50. In all cases,

q = 2 + 2i, q0 = 1 and γ :=µ0/µ = 1/2. Of these nine plots, the three that are solid correspond
to the scattering disk of radius ρ = 0.01, the three plots that are dotted to ρ = 0.004 and the
three that are dashed to ρ = 0.001. Each plot first reaches its asymptotic limit when ω is on
the order of N/ρ; that is, when λ ∼ N .

4.1.2 General incident waves

In order to estimate the size of us

ρ when ui has infinitely many Fourier coefficients, we

must find bounds on |αn| that are uniform in n. To this end, we have

Lemma 4.5. Suppose γ > 0, q0 > 0 and q = a+ ib with a > 0, b ≥ 0. There exists a

constant C > 0, depending on q but independent of γ, q0, n, ω and ρ, such that

∣∣√q0H ′
n(
√
q0λ)Jn(

√
qλ) − γ

√
qJ ′

n(
√
qλ)Hn(

√
q0λ)

∣∣

≥ C
√
b
√
γ

√
1 + |n|

1 + λ+ |n| |Jn(
√
qλ)| (4.9)

for all n ∈ Z and λ > 0. Furthermore, if we assume b > 0 then given any λ0 > 0, there

exists a constant C, depending on q, γ and λ0 but independent of q0, n, ω and ρ, such

that

|αn| ≤ C|an|
(√

1 + |n| + |Jn(
√
q0λ)|

)
|Hn(

√
q0λ)|−1, (4.10)

|βn| ≤ C|an|
√

1 + |n| |Jn(
√
qλ)|−1, (4.11)
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for all n ∈ Z and λ = ωρ ≥ λ0.

Proof. Let W = W(γ, q0, q, n, λ) denote the (Wronskian-like) expression we wish to

bound in modulus from below:

W :=
√
q0H

′
n(
√
q0λ)Jn(

√
qλ) − γ

√
qJ ′

n(
√
qλ)Hn(

√
q0λ).

By a well known identity for the Wronskian of Jn and Yn [Olv97, Ch. 7, §5.2],

Im
{√

q0H
′
n(
√
q0λ)Hn(

√
q0λ)

}
=

√
q0 Wronsk(Jn(

√
q0λ), Yn(

√
q0λ))

=
2

πλ
.

Using Green’s formula, and the fact that (∆ + qλ2)vn = 0, where

vn(r, θ) := Jn(
√
qλr)einθ,

we get

√
qJ ′

n(
√
qλ)Jn(

√
qλ) =

1

λ
(∂rvn)vn

∣∣
r=1

=
1

2πλ

∫

∂B
(∂rvn)vn dσ

=
1

2πλ
‖∇vn‖2

L2(B) +
1

2πλ

∫

B
∆vnvn dx

=
1

2πλ
‖∇vn‖2

L2(B) −
qλ

2π
‖vn‖2

L2(B).

Then, since

WJn(
√
qλ)Hn(

√
q0λ)

=
√
q0H

′
n(
√
q0λ)Hn(

√
q0λ)

∣∣Jn(
√
qλ)
∣∣2 − γ

√
qJ ′

n(
√
qλ)Jn(

√
qλ)
∣∣Hn(

√
q0λ)

∣∣2,

we obtain

Im
{
WJn(

√
qλ)Hn(

√
q0λ)

}
=

2

πλ

∣∣Jn(
√
qλ)
∣∣2 +

bγλ

2π
‖vn‖2

L2(B)

∣∣Hn(
√
q0λ)

∣∣2. (4.12)
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But since we may estimate

Im
{
WJn(

√
qλ)Hn(

√
q0λ)

}
≤
∣∣∣WHn(

√
q0λ)Jn(

√
qλ)
∣∣∣

≤ πλ

8
|W|2

∣∣Hn(
√
q0λ)

∣∣2 +
2

πλ

∣∣Jn(
√
qλ)
∣∣2,

it follows that

|W|2 ≥ 4bγ

π2
‖vn‖2

L2(B).

Note: We could just as well have estimated

Im
{
WJn(

√
qλ)Hn(

√
q0λ)

}
≤ πλ

4
|W|2

∣∣Hn(
√
q0λ)

∣∣2 +
1

πλ

∣∣Jn(
√
qλ)
∣∣2.

By (4.12), this implies the bound

|W| ≥ 2

πλ

∣∣Jn(
√
qλ)
∣∣

∣∣Hn(
√
q0λ)

∣∣ , (4.13)

which holds whether b is zero or positive. We will remark on the significance of this

after the proof of Lemma 4.5 is complete (Remark 4.6).

Our task now is to show that

‖vn‖2
L2(B) ≥ c

1 + |n|
(1 + λ+ |n|)2 |Jn(

√
qλ)|2, (4.14)

for some positive c independent of γ, q0, n, ω and ρ. Since

‖∆vn‖L2(B) = |q|λ2‖vn‖L2(B),

by elliptic regularity estimates we get

‖vn‖H2(B) ≤ C
(
λ2|q|‖vn‖L2(B) + ‖vn‖H3/2(∂B)

)

≤ C
(
λ2‖vn‖L2(B) + (1 + |n|)3/2|Jn(

√
qλ)|

)
.
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The logarithmic convexity of Sobolev norms2 therefore gives us

‖vn‖2
H1(B) ≤ C‖vn‖H2(B)‖vn‖L2(B)

≤ C
(
λ2‖vn‖L2(B) + (1 + |n|)3/2|Jn(

√
qλ)|

)
‖vn‖L2(B)

By the continuity of the trace operator from H1(B) to H1/2(∂B),

(1 + |n|)|Jn(
√
qλ)|2 ≤ C‖vn‖2

H1/2(∂B)

≤ C‖vn‖2
H1(B)

≤ C
(
λ2‖vn‖L2(B) + (1 + |n|)3/2|Jn(

√
qλ)|

)
‖vn‖L2(B)

≤ C
(
λ2 + (1 + |n|)2

)
‖vn‖2

L2(B) +
1

2
(1 + |n|)|Jn(

√
qλ)|2.

From this easily follows (4.14), and thus (4.9). Now assume b > 0. It follows from the

formula (4.6) for βn and the bound (4.9) that

|βn| ≤ |an|
2

πλ

1 + λ+ |n|√
1 + |n|

1

|Jn(√qλ)|

≤ C|an|
√

1 + |n| |Jn(
√
qλ)|−1,

for all n ∈ Z and all λ = ωρ ≥ λ0 > 0, where C depends on q, γ and λ0 but is

independent of q0, n, ω and ρ. Hence (4.11) holds, and (4.10) now follows from the

formula

αn =
(
βnJn(

√
qλ) − anJn(

√
q0λ)

) 1

Hn(
√
q0λ)

. (4.15)

Remark 4.6. Using (4.13) and the formula (4.6) for βn, we get the estimate

|βn| ≤ |an|
|Hn(

√
q0λ)|

|Jn(√qλ)| .

2If φ ∈ Hs0(Ω) is fixed, the function s 7→ log
�
‖φ‖Hs(Ω)

�
is convex for s ∈ (−∞, s0].
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This combined with (4.15) yields the estimate

|αn| ≤ 2|an|,

which holds for all n ∈ Z, ω > 0, ρ > 0 and q = a + ib with a > 0 and b ≥ 0. This

improves Lemma 4.2 and completes the proof of Theorem 5. However, these estimates

are not useful when the incident wave has infinitely many Fourier coefficients.

Though the estimate of αn in Lemma 4.5 is, for fixed n, weaker than that of Lemma

4.2 (when λ ≫ 1), it is better suited as a tool for estimating the size of us

ρ when the

incident wave has infinitely many Fourier coefficients.

Theorem 6. Suppose γ > 0, q0 > 0 and q = a + ib with a > 0, b > 0 (note the

requirement that Im q be strictly positive). Let the incident wave be of the form

ui(x) =
∞∑

n=−∞
anJn(

√
q0ωr)e

inθ (4.16)

for some coefficients an ∈ C. Let (utr

ρ , u
s

ρ) solve the transmission problem (4.1). Given

any λ0 > 0, there exists a constant C = C(γ, q, q0, λ0), independent of ρ > 0, ω > 0

and {an}, such that for any r0 ≥ ρ and any s ∈ R,

∥∥us

ρ

∣∣
r=r0

∥∥
Hs(T)

≤ C

√
ρ√
r0
‖{an}‖hs+1/2 for ωρ ≥ λ0.

3

(cf. Remark 3.2 of Chapter 3 for the corresponding estimate when λ = ωρ is near zero.)

3Here the s ∈ R has, of course, no relation to the superscript ‘s’ in us

ρ, which stands for “scattered.”
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Proof. Using Lemma the bound (4.10) from Lemma 4.5, we obtain

∥∥us

ρ

∣∣
r=r0

∥∥2

Hs(T)
= 2π

∞∑

n=−∞
|αn|2(1 + |n|)2s|Hn(

√
q0ωr0)|2

≤ C
1

ωr0
|a0|2 + C

∑

|n|≥1

(
|αn|2(1 + |n|)2s+1 |Hn(

√
q0ωr0)|2

|Hn(
√
q0ωρ)|2

)

+ C
∑

|n|≥1

(
|αn|2(1 + |n|)2s|Jn(

√
q0ωρ)|2

|Hn(
√
q0ωr0)|2

|Hn(
√
q0ωρ)|2

)

≤ C
1

ωr0
|a0|2 + C

ρ

r0
‖{an}‖2

hs+1/2 + C
ρ

r0
‖{an}‖2

hs

≤ C
ρ

r0
‖{an}‖2

hs+1/2

Here, as in the proof of Theorem 5, we have used the fact that 0 < t 7→ t|H0(t)|2

increases to the limit 2/π and the fact that 0 < t 7→ t|Hn(t)|2 is decreasing for integers

n 6= 0. We also used the bound |J(
√
q0λ)|2 ≤ 1, which is a simple consequence of the

well known fact4 that
∑ |Jn(t)|2 = 1 for all real t.

Corollary 4.7. With the same assumptions as in Theorem 6, we have that, given any

λ0 > 0, there exists a constant C = C(γ, q, q0, λ0), independent of ρ > 0, ω > 0 and

{an}, such that for any r0 ≥ ρ,

∥∥us

ρ

∣∣
r=r0

∥∥
L2(T)

≤ C

√
ρ√
r0
‖{an}‖h1/2 for ωρ ≥ λ0.

Furthermore, given any s < −1 and any λ0 > 0, there exists a constant Cs, depending

on γ, q, q0, λ0 and s, but independent of ρ > 0, ω > 0 and {an}, such that for any

r0 ≥ ρ,

∥∥us

ρ

∣∣
r=r0

∥∥
Hs(T)

≤ Cs

√
ρ√
r0
‖{an}‖l∞ for ωρ ≥ λ0.

Proof. The first estimate is simply Theorem 6 with s = 0. The second estimate follows

from the fact that ‖{an}‖h−1/2−δ ≤ Cδ‖{an}‖l∞ for all δ > 0.

4This is simply Parseval’s equality applied to a plane wave on the unit circle.
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As stated earlier, we expect the stronger estimate

∥∥us

ρ

∣∣
r=r0

∥∥
L2(T)

≤ C

√
ρ√
r0
‖{an}‖l∞ (4.17)

to hold. Though we do not have a proof of this, we do have a stronger estimate than

that of Theorem 6, which we will prove in the next section using methods likely to

generalize to arbitrary smooth, convex scatterers (Theorem 8).

In the case of a perfectly conducting (sound-soft) circular scatterer, we can easily

prove the estimate (4.17).

Theorem 7. Let the incident wave be of the form

ui(x) =
∞∑

n=−∞
anJn(

√
q0ωr)e

inθ

for some coefficients an ∈ C. Let us
ρ solve the problem





∆us

ρ + q0ω
2us

ρ = 0 (r > ρ),

us

ρ = −ui (r = ρ),

(∂r − i
√
q0ω)us

ρ = o(r−1/2) as r → ∞.

Given any λ0 > 0, there exists a constant C = C(q0, λ0), independent of ω > 0 and

ρ > 0, such that for any r0 ≥ ρ,

∥∥us

ρ

∣∣
r=r0

∥∥
L2(T)

≤ C

√
ρ√
r0
‖{an}‖l∞ for ωρ ≥ λ0.

(cf. Remark 3.3 of Chapter 3 for the corresponding estimate when ωρ is near zero.)

Proof. Since

us

ρ(r, θ) = −
∞∑

n=−∞
anJn(

√
q0ωρ)

Hn(
√
q0ωr0)

Hn(
√
q0ωρ)

einθ,
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it follows that

∥∥us

ρ

∣∣
r=r0

∥∥2

L2(T)
=

∞∑

n=−∞
|an|2|Jn(

√
q0ωρ)|2

|Hn(
√
q0ωr0)|2

|Hn(
√
q0ωρ)|2

≤ Cq0,λ0

ρ

r0
|a0|2 + Cq0,λ0

ρ

r0

∑

|n|≥1

|an|2|Jn(
√
q0ωρ)|2. (4.18)

For the n 6= 0 terms, we used the fact that 0 < t 7→ t|Hn(t)|2 is decreasing for integers

n 6= 0. For the n = 0 term, we used the fact that 0 < t 7→ t|H0(t)|2 increases to the

limit 2/π, and therefore

|J0(
√
q0ωρ)|2

|H0(
√
q0ωr0)|2

|H0(
√
q0ωρ)|2

≤ 2

π

1√
q0ωr0

|J0(
√
q0ωρ)|2

|H0(
√
q0ωρ)|2

.

Since the continuous function 0 < t 7→ |J0(t)|2
/
|H0(t)|2 is bounded as t → 0 and as

t→ ∞, it is bounded on (0,∞). We therefore have

|J0(
√
q0ωρ)|2

|H0(
√
q0ωr0)|2

|H0(
√
q0ωρ)|2

≤ C
1√
q0ωr0

≤ C√
q0λ0

ρ

r0
.

The theorem now follows from (4.18) and the identity
∑ |Jn(t)|2 = 1, t ∈ R.

4.2 A bound via pseudodifferential operators

In this section, we explore an alternative route to L2-based bounds on the scattered

field in the asymptotic regime wherein λ = ωρ ≫ 1. A brief outline of this alternative

route follows: We find a factorization L0 =
(
∂r − D̃

)(
∂r −D

)
of the rescaled Helmoltz

operator L := ∆ + qλ2 that well approximates L . The solution to the transmission

problem that results when L is replaced by L0 inside B = B(0, 1) (or, more precisely,

inside the annulus C = {x : 1/2 < r < 1}) is then equivalent to an exterior problem

with a sort of impedance boundary condition, involving a nonlocal operator on ∂B.

This means the transmitted signal is, in a sense, replaced by an impedance condition.

The approximate solution satisfying this exterior problem is then shown to satisfy the

desired L2-based bounds. Finally, we quantify the degree to which the solution to the

exterior problem approximates the actual scattered field, and thus prove that the actual
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solution also satisfies the desired L2-based estimates.

We will discuss how these methods may be extended to arbitrary smooth domains

of the form ρD at the end of this section.

In order to work in a fixed domain, we introduce the rescaled variable R = r/ρ, and

let U i(R) = ui(ρR), U tr (R) = utr

ρ (ρR) and U s(R) = us

ρ(ρR). U tr and U s are therefore

the unique solutions to





∆U tr + qλ2U tr = 0 (R < 1),

∆U s + q0λ
2U s = 0 (R > 1),

(4.19a)

satisfying the transmission conditions





1

µ
∂RU

tr
∣∣
R=1

=
1

µ0

(
∂RU

s
∣∣
R=1

+ ∂RU
i
∣∣
R=1

)
,

U tr
∣∣
R=1

= U s
∣∣
R=1

+ U i
∣∣
R=1

,

(4.19b)

as well as the radiation condition

∂RU
s − i

√
q0λU

s = O(R−3/2) as R→ ∞. (4.19c)

4.2.1 Factorization of Hemholtz operator in the unit disk

Denote by L the Helmholtz operator written in polar coordinates:

L = ∆ + qλ2

= ∂2
R +

1

R
∂R +

1

R2
∂2
θ + qλ2 on (0, 1) × T. (4.20)

In this section we find two pseudodifferential operators (cf. [Fol95], [Tay81] or [CP82])

on the Torus T = (0, 2π)per, denoted Dq and D̃q, such that the Helmholtz operator L

can be factorized as

L =
(
∂R + D̃q

)(
∂R −Dq

)
+R0

q ,
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where the operator R0
q is of order 0. To be precise, Dq and D̃q will each be functions

of R that assign, to each R, a pseudodifferential operator on T. To say that R0
q is of

order 0 means the symbol5 σ0 of R0
q will satisfy

‖∂mθ σ0(R,n, λ, θ)‖L∞(T) ≤ Cm(1 + |n|)−m

for all nonnegative integral m. We will also need the symbol of R0
q to be well controlled

in its dependence on λ.6 Our first step toward this goal will be to find an operator D1
q

such that

L =
(
∂R +D1

q

) (
∂R −D1

q

)
+R1

q ,

with R1
q an operator of order 1. Then using the expression of the symbol of R1

q , we will

find two operators D0
q and D̃0

q such that

L =
(
∂R +D1

q + D̃0
q

)(
∂R −D1

q −D0
q

)
+R0

q .

Denote by C the annulus

C = {(R, θ) : 1/2 ≤ R ≤ 1, θ ∈ T} .

In the two variables R and θ, we say that σ is the symbol of the operator O if

Ou(R, θ) =
1

(2π)2

∞∑

n=−∞

∫ ∞

−∞

∫ ∞

−∞

∫

T

σ(R, θ, ξ, n)ein(θ−ϑ)eiξ(R−S)u(S, ϑ) dϑ dS dξ

(4.21)

5σ is the symbol of the operator O if, and only if, Ou(θ) =
P∞

n=−∞ σ(θ, n)bune
inθ for all u sufficiently

smooth. Here, bun = 1
2π

R
T
u(θ)e−inθdθ.

6Since the qλ2 term in the Helmholtz operator L comes from the second derivative with respect
to time in the wave operator, the problem of finding a factorization of L with the (zeroth order)
error well controlled in its dependence on λ could be thought of as the equivalent problem of finding a
factorization of the wave operator with error of order zero.
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for all smooth and rapidly decaying7 u defined on (−∞,∞) × T. Now, any smooth u

defined on C can be extended to a smooth and rapidly decaying function on (−∞,∞)×

T. For such u, we have

L u(R, θ) =
1

(2π)2

∞∑

n=−∞

∫ ∞

−∞

∫ ∞

−∞

∫

T

LR,θ

(
ein(θ−ϑ)eiξ(R−S)

)
u(S, ϑ) dϑ dS dξ.

Therefore, the symbol σL of L in C is: for λ ≥ 1, n ∈ Z, R ∈ [1/2, 1] and ξ ∈ R,

σL (n,R, ξ, λ) = −ξ2 − n2

R2
+ qλ2 +

iξ

R
.

Define the symbol

d1
q(n,R, λ) =

√
n2

R2
− qλ2,

where
√· is the principal square root:

√
z =

√
|z|e(Arg z)/2, −π < Arg z ≤ π.

Accordingly, Re d1
q > 0. We then have the following factorization of σL :

σL =
(
iξ + d1

q

) (
iξ − d1

q

)
+
iξ

R
.

Denote by D1
q the operator whose symbol is d1

q and by R1
q the operator of order 1 defined

by

R1
q = L −

(
∂R +D1

q

)(
∂R −D1

q

)

= L −
(
∂2
R −D1

qD
1
q −

[
∂R, D

1
q

])
.

7∂m
S u(S, ϑ) must decay faster than |S|−l as |S| → ∞ for all orders m and l.
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The symbol of R1
q is then

σR1
q

=
iξ

R
+

d

dR
d1
q

=
iξ

R
− n2

R3d1
q

.

Now we seek two operators D0
q = Op(d0

q) and D̃0
q = Op

(
d̃0
q

)
such that

R0
q = L −

(
∂R +D1

q + D̃0
q

)(
∂R −D1

q −D0
q

)

is of order 0, with its symbol r0q independent of ξ and well controlled in its dependence

on n, R and λ ≥ 1. A simple computation leads to

R0
q = R1

q −
(
−D1

q

(
D̃0
q +D0

q

)
+
(
D̃0
q −D0

q

)
∂R −

[
∂R, D

0
q

]
− D̃0

qD
0
q

)
,

and therefore

r0q = σR1
q
−
(
− d1

q(d̃
0
q + d0

q) + iξ(d̃0
q − d0

q) −
d

dR
d0
q − d̃0

qd
0
q

)
.

Naturally, we define d0
q and d̃0

q by the following system:

d̃0
q − d0

q = 1/R,

d̃0
q + d0

q =
n2

R3(d1
q)

2
.

Solving, we find

d0
q =

qλ2

2R(d1
q)

2
,

d̃0
q =

1

2

(
1

R
+

n2

R3(d1
q)

2

)
.
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We now define the symbols dq and d̃q by

dq = d1
q + d0

q ,

d̃q = d1
q + d̃0

q ,

or, more precisely, for n ∈ Z, R ∈ [1/2, 1] and λ ≥ 1,

dq(n,R, λ) =

√
n2

R2
− qλ2 +

1

2R

q
n2

R2λ2 − q
, (4.22a)

d̃q(n,R, λ) =

√
n2

R2
− qλ2 +

1

2R

(
1 +

n2

R2λ2

n2

R2λ2 − q

)
. (4.22b)

We set Dq = Op (dq) and D̃q = Op(d̃q). Since dq and d̃q are independent of ξ, for each

fixed R these operators act on functions defined on the torus T. Let us define L0 by

L0 =
(
∂R + D̃q

)(
∂R −Dq

)
, (4.23)

so that

σL−L0 =
d

dR
d0
q + d̃0

qd
0
q

=
qλ2(n2 + qR2λ2)

2(n2 − qR2λ2)2
+
qλ2(n2 − qR2λ2/2)

2(n2 − qR2λ2)2

=
q

R2

(
n2

λ2R2 + q
8

)
(

n2

λ2R2 − q
)2 .

As a result, since b 6= 0, there exists8 a C depending only on b/a such that for all

R ∈ [1/2, 1] and λ ≥ 1,

|σL−L0 | ≤ C. (4.24)

Therefore, we have

8Take C = maxt≥0

��4(1 + ib/a)
�
t+ 1+ib/a

8

�Æ�
t− (1 + ib/a)

�2��.
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Lemma 4.8. There exists C depending only on b/a such that for all v ∈ L2(C),

‖(L − L0)v‖L2(C) ≤ C‖v‖L2(C).

Remark 4.9. σL does completely factorize (without remainder) as

σL =

(
iξ +

1

2R

(
1 +

√
1 + 4(n2 − qR2λ2)

))

×
(
iξ − 1

2R

(
− 1 +

√
1 + 4(n2 − qR2λ2)

))
.

However, this factorization will not meet our needs. For if L0 is defined to be the

operator

L0 =
(
∂R + D̃

)(
∂R −D

)
,

where D̃ has symbol

σ eD =
1

2R

(
1 +

√
1 + 4(n2 − qR2λ2)

)

and D has symbol

σD =
1

2R

(
− 1 +

√
1 + 4(n2 − qR2λ2)

)
,

then (4.24), and therefore Lemma 4.8, will no longer hold.

4.2.2 Properties of dq and d̃q

In this section we present some essential properties of dq and d̃q. The first is a simple

consequence of the definition (4.22a) of dq and the fact that Im q 6= 0.

Property 4.10. Upper bound for |dq|.

There exists a constant C > 0 depending on q (= a+ ib with a, b > 0) such that for all

R ∈ [1/2, 1], n ∈ Z and λ ≥ 1 we have

|dq| ≤ C (|n| + λ) . (4.25)

(We also have that
∣∣d̃q
∣∣ ≤ C (|n| + λ), but we will not need this bound.)
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Property 4.11. Lower bounds for Re dq and Re d̃q.

There exist constants C > 0 and λ0 ≥ 1, both depending only on q (= a + ib with

a, b > 0), such that for all R ∈ [1/2, 1], n ∈ Z and λ ≥ λ0 we have

Re{dq (n,R, λ)} ≥ C (λ+ |n|) , (4.26)

Re
{
d̃q (n,R, λ)

}
≥ C (λ+ |n|) . (4.27)

Proof. We will prove only (4.26), the proof of (4.27) being similar. Let s = n2

R2λ2 , so

that (4.22a) becomes

dq = λ
√
s− q +

1

2R

q

s− q
.

Write this as

dq = λ
(1

2

√
s− q +

1

2Rλ

q

s− q

)

︸ ︷︷ ︸
A

+
λ

2

√
s− q

︸ ︷︷ ︸
B

.

To complete the proof we will demonstrate that ReA > Cλ and ReB > C|n|. Observe

that

Re
√
s− q ≥ Re

√−q > 0

for all s ≥ 0. Observe also that, since Im q 6= 0, by simply choosing λ0 sufficiently

large the term 1
2Rλ

q
s−q can be bounded uniformly in s ≥ 0, R ∈ [1/2, 1] and λ ≥ λ0 by

an arbitrarily small bound. It follows that there exists a C > 0 and a λ0 ≥ 1, both

depending only on q, such that

ReA ≥ Cλ.

Now observe that

inf
s>0

{
Re
√

1 − q/s
}
> 0,
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which implies that

ReB =
|n|
2R

Re
√

1 − q/s (for l 6= 0)

≥ C|n|

for some C > 0 depending only on q.

Upper bound for Im(dq)

We denote by d and ν the following functions:

∀t > 0, ν(t) =
√

1 − qt2,

∀n ∈ Z∗, ∀t > 0, d(n, t) = |n|ν(t) −
(
1 − 1/ν2(t)

)
/2.

Property 4.12. Upper bound for Im dq.

There exist constants C > 0 and λ0 ≥ 1 depending only on q (= a + ib with a, b > 0)

such that for all n ∈ Z and λ ≥ λ0,

Im{dq(n,R, λ)}
∣∣
R=1

≤ −Cλmin(1, λ/|n|).

(When n = 0, we take min(1, λ/|n|) = 1.)

Proof. The case n = 0 is immediate, so we assume n 6= 0. Define for t > 0 and n ∈ Z∗

the functions

ν(t) =
√

1 − qt2,

d(n, t) = |n|ν(t) − 1

2

(
1 − 1

ν2(t)

)
,

so that

dq(n,R, λ)
∣∣
R=1

= d(n, λ/n).
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Since Im(1 − qt2) < 0 for all t > 0, we may write

ν(t) = ρeiθ, −π/2 < θ < 0,

so that

Im{d(n, t)} = |n|ρ sin(θ) − sin(2θ)

2ρ2

=
sin(θ)

ρ2

(
|n|ρ3 − cos(θ)

)
.

To prove Im{dq(n, 1, λ)} = Im{d(n, λ/|n|)} < 0, it suffices to prove there exists a λ0 ≥ 1

such that for every integer n 6= 0 and all λ ≥ λ0,

|n|ρ3 ≥ 2.

Since

|ν(t)|4 =
(
1 − at2

)2
+ b2t4,

there exists a t0 > 0 depending only on q such that for all t ≥ t0, |ν(t)|3 ≥ 2. Moreover,

a simple calculation shows that

∀t ≥ 0, |ν(t)| ≥ ab

a2 + b2
.

Therefore, if |n| ≥ 2
[
(a2 + b2)/ab

]3
then Im{d(n, λ/|n|)} < 0 for all λ. Otherwise, we

simply choose λ0 such that

λ0 ≥ t02
[
(a2 + b2)/ab

]3
.

We now have that Im{dq(n, 1, λ)} < 0 for n 6= 0, λ ≥ λ0. To finish the proof we let
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t = λ/|n| and observe that for λ ≥ λ0,

1

λ
Im{d(n, t)} ≤ 1

λ

sin(θ)

ρ2

|n|ρ3

2

=
1

2t
Im ν(t).

Since

Im ν(t) = − 1√
2

√√
(1 − at2)2 + b2t4 − (1 − at2),

the continuous and strictly negative function

f(t) := max{1, 1/t} 1

2t
Im(ν(t)), 0 < t <∞,

satisfies

f(t) → const(q) < 0 as t→ 0,

f(t) → const(q) < 0 as t→ ∞,

and therefore has a strictly negative supremum on [0,∞).

4.2.3 The factorized problem: approximation of U tr

In this section we suppose we know U tr (or an approximation of U tr ) on ∂B, which we

denote by g, and we study the solution U of the following Cauchy problem:





∂RU −Dq(R)U = 0 in (1/2, 1] × T,

U(R, θ)
∣∣
R=1

= g.

(4.28)

In Fourier space this becomes

d

dR
Ûn − dqÛn = 0 in (1/2, 1),

Ûn
∣∣
R=1

= ĝn,
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for all n ∈ Z, which implies

Ûn = ĝne
−
R 1

R dq(s) ds. (4.29)

Lemma 4.13. Let g be in H1/2(T). Then the solution U of (4.28) is in H1(C) and

the following estimates hold for a constant C > 0 depending only on q:

1

C
‖g‖H1/2(T) ≤ ‖U‖H1(C) ≤ C

√
λ ‖g‖H1/2(T) , (4.30)

and

1

C
‖g‖H−1/2(T) ≤

√
λ‖U‖L2(C) ≤ C ‖g‖L2(T) . (4.31)

Moreover, for all s, σ ∈ R there exists two constants Cs,σ > 0 and c > 0, which also

depend on q, such that

∥∥U |R=1/2

∥∥
Hσ(T)

≤ Cs,σe
−cλ‖g‖Hs(T).

9 (4.32)

Proof. After we prove these second inequality of (4.30), the first inequality will follow as

a direct consequence of the continuity of the trace operator from H1(C) into H1/2(∂B).

To prove the second inequality of (4.30), first observe that by the expression (4.29),

∫ 1

1/2

∣∣Ûn
∣∣2R dR ≤

∫ 1

1/2

∣∣Ûn
∣∣2dR =

∣∣ĝn
∣∣2
∫ 1

1/2
e−2

R 1
R Re{dq(s)}dsdR,

∫ 1

1/2

∣∣nÛn
∣∣2R dR ≤

∫ 1

1/2

∣∣nÛn
∣∣2dR =

∣∣ĝn
∣∣2
∫ 1

1/2
n2e−2

R 1
R Re{dq(s)}dsdR,

∫ 1

1/2

∣∣∂RÛn
∣∣2R dR ≤

∫ 1

1/2

∣∣∂RÛn
∣∣2dR =

∣∣ĝn
∣∣2
∫ 1

1/2
|dq(R)|2e−2

R 1
R Re{dq(s)}dsdR.

9Here σ ∈ R has no relation to conductivity.
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By Properties 4.11 and 4.10, there exists a C > 0 such that

∫ 1

1/2
e−2

R 1
R Re{dq(s)}dsdR ≤ C

|n| + λ
,

∫ 1

1/2
n2e−

R 1
R Re{dq(s)}dsdR ≤ Cn2

|n| + λ
,

∫ 1

1/2
|dq(R)|2e−2

R 1
R Re{dq(s)}dsdR ≤ C (|n| + λ) .

We have therefore proved

∫ 1

1/2

∣∣Ûn
∣∣2R dR ≤ C

|n| + λ

∣∣ĝn
∣∣2,

∫ 1

1/2

∣∣nÛn
∣∣2R dR ≤ Cn2

|n| + λ

∣∣ĝn
∣∣2,

∫ 1

1/2

∣∣∂RÛn
∣∣2R dR ≤ C

(
|n| + λ

)∣∣ĝn
∣∣2,

hence (4.30).

We now prove (4.31). By the expression (4.29) and Properties 4.10 and 4.11, there

exist constants C1, C2 > 0, both depending only on q, such that

∣∣ĝn
∣∣e−C1(|n|+λ)(1−R) ≤

∣∣Ûn
∣∣ ≤

∣∣ĝn
∣∣e−C2(|n|+λ)(1−R).

Consequently, there exists a C > 0 depending only on q such that for all λ ≥ 1 and

n ∈ Z,

∣∣ĝn
∣∣2

C
(
|n| + λ

) ≤
∫ 1

1/2

∣∣Ûn(R)
∣∣2R dR ≤ C

|n| + λ

∣∣ĝn
∣∣2,

which implies

1

C

∣∣ĝn
∣∣2

1 + |n| ≤ λ

∫ 1

1/2

∣∣Ûn(R)
∣∣2R dR ≤ C

∣∣ĝn
∣∣2,

which in turn implies (4.31). As for (4.32), we observe that

Ûn
∣∣
R=1/2

= ĝne
−
R 1
1/2 dq(s) ds

.
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By Property 4.11, there exists a c > 0 such that

∣∣∣e−
R 1
1/2 dq(s) ds

∣∣∣ ≤ e−c(|n|+λ).

Since, given any s, σ ∈ R, there exists a Cs,σ > 0 such that

|n|σ−se−c|n| ≤ Cs,σ

for all n ∈ Z∗, estimate (4.32) follows.

A natural way to extend U into B1/2 :=B(0, 1/2) is by defining it to be the solution

to the Dirichlet problem





∆U + qλ2U = 0 in B1/2,

U− = U+ on ∂B1/2.

(4.33)

Lemma 4.14. Let g ∈ H1/2(T) and let U solve (4.28) with the extension (4.33). Then

for every s, σ ∈ R, there exist constants Cσ > 0 and c > 0, both depending on q but

independent of s, such that

‖U‖Hσ(B1/2) ≤ Cσe
−cλ ‖g‖Hs(T) (4.34)

and

∥∥∂−
RU |R=1/2

∥∥
Hσ(T)

+
∥∥∂+

RU |R=1/2

∥∥
Hσ(T)

≤ Cσe
−cλ ‖g‖Hs(T) . (4.35)

Proof. (4.34) is a consequence of (4.32) and standard elliptic regularity estimates. As

for (4.35): the estimate

∥∥∂−
RU |R=1/2

∥∥
Hσ(T)

≤ Cσe
−cλ ‖g‖Hs(T)

follows from the continuity of the trace operator from Hσ+1/2(B1/2) to Hσ(∂B1/2) for
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σ ≥ 1/2, and the estimate

∥∥∂+

RU |R=1/2

∥∥
Hσ(T)

≤ Cσe
−cλ ‖g‖Hs(T)

follows by first observing that ∂
+

RU = DqU
+ at R = 1/2, then applying (4.32) and the

fact that |dq| ≤ Cq(|n| + λ).

4.2.4 Approximation of U s

Let (V tr , V s) be the approximation of (U tr , U s) that satisfies the following analogue of

problem (4.19):

∆V s + q0λ
2V s = 0 for (R, θ) ∈ (1,+∞) × T, (4.36a)

∂RV
tr −DqV

tr = 0 for (R, θ) ∈ (1/2, 1) × T, (4.36b)

with the transmission conditions

1

µ
∂RV

tr
∣∣
R=1

=
1

µ0

(
∂RV

s
∣∣
R=1

+ ∂RU
i
∣∣
R=1

)
, (4.36c)

V tr
∣∣
R=1

= V s
∣∣
R=1

+ U i
∣∣
R=1

, (4.36d)

and the radiation condition

(∂R − i
√
q0λ)V s = O(R−3/2). (4.36e)

The fact that problem (4.36) has a unique solution can be seen, for instance, by first

expanding V s and V tr as Fourier series then noting that the transmission conditions

uniquely determine V̂ tr

n

∣∣
R=1

for each n ∈ Z. Combining the transmission conditions,

along with the impedance relation

∂RV
tr
∣∣
R=1

−DqV
tr
∣∣
R=1

= 0,
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yields the following boundary condition for V s :

∂RV
s
∣∣
R=1

− µ0

µ
DqV

s
∣∣
R=1

=
µ0

µ
Dq U

i
∣∣
R=1

− ∂R U
i
∣∣
R=1

. (4.37)

This brings us to

Remark 4.15. The transmission problem (4.36) may be equivalently formulated as

follows. Let V s be the unique solution to the following exterior problem with impedance

condition: 



∆V s + q0λ
2V s = 0 for R > 1,

(
∂R − µ0

µ
Dq

)
V s = −

(
∂R − µ0

µ
Dq

)
U i for R = 1,

(∂R − i
√
q0λ)V s = O(R−3/2) as R→ ∞.

(4.38)

Then, with this V s , let V tr solve





∂RV
tr −DqV

tr = 0 for (R, θ) ∈ (1/2, 1) × T,

V tr
∣∣
R=1

= V s
∣∣
R=1

+ U i
∣∣
R=1

.

For convenience, we extend V tr into B1/2 by defining it to be the solution to the

Dirichlet problem 



∆V tr + qλ2V tr = 0 in B1/2,

(V tr )− = (V tr )+ on ∂B1/2.

We will soon demonstrate that this approximation V s of U s satisfies the H−1/2 bound

we seek for U s . But first we will need

Lemma 4.16. Let g be a given function in Hσ (T), σ ≥ −1/2. Let V s be the solution

of the following problem:





∆V s + q0λ
2V s = 0 for R > 1,

∂RV
s − (µ0/µ)DqV

s = g for R = 1,
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with the radiation condition

(∂R − i
√
q0λ)V s = O(R−3/2).

Then there exists a constant C = const(q, µ/µ0) > 0 and a λ0 ≥ 1 depending on q such

that for all λ ≥ λ0,

‖V s |R=1‖Hσ(T) ≤ C

(
1

λ
‖g‖Hσ(T) +

1

λ2
‖g‖Hσ+1(T)

)
.

Proof. The lth Fourier coefficient V̂ s
n of V s satisfies the following ordinary differential

equation:

1

R

d

dR

(
R

d

dR
V̂ s
n

)
+ λ2

(
q0 −

n2

(Rλ)2

)
V̂ s
n = 0 for 1 < R <∞, (4.39a)

d

dR
V̂ s
n − µ0

µ
dqV̂

s
n = ĝn at R = 1, (4.39b)

with the radiation condition as written in Fourier mode,

∂RV̂
s
n − i

√
q0λV̂

s
n = O(R−3/2). (4.39c)

We multiply (4.39a) by the conjugate of RV̂ s
n and then integrate over R ∈ [1,+∞).

Then integrate by parts using the boundary condition (4.39b) and the radiation condi-

tion. After taking the imaginary part of the resulting equation, we obtain

λ Im(
√
q0) lim

R→+∞

(
R
∣∣V̂ s
n

∣∣2
)
− µ0

µ
Im(dq|R=1)

∣∣V̂ s
n |R=1

∣∣2 = Im
(
ĝnV̂ s

n

∣∣
R=1

)
.

Therefore, since Im(
√
q0) > 0 and Im(dq|R=1) < 0,

∣∣∣V̂ s
n

∣∣
R=1

∣∣∣ ≤ − µ/µ0

Im(dq|R=1)
|ĝn| .

By Property 4.12, there exists a constant C and a λ0 ≥ 1, both depending on q, such
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that for all λ ≥ λ0,

1

[Im(dq)]2
≤ C

λ2

(
1 +

|n|2
λ2

)
,

and therefore

|n|2σ
∣∣∣V̂ s
n

∣∣
R=1

∣∣∣
2
≤ Cq,µ/µ0

( |n|2σ
λ2

+
|n|2σ+2

λ4

)
|ĝn|2 .

In the context of problem (4.36),

g =
(µ0

µ
Dq − ∂R

)
U i
∣∣
R=1

.

Using the bound dq|R=1 ≤ C (λ+ |n|) ( Lemma 4.10), we find

‖g‖Hσ(T) ≤ C
(
λ‖U i |R=1‖Hσ(T) + ‖U i |R=1‖Hσ+1(T)

)
+ ‖∂RU i |R=1‖Hσ(T), (4.40)

where C depends only on q and µ0/µ. To express this bound in terms of {an}, where

U i(x) =
∑

l∈Z

anJn(
√
q0λR)einθ,

we use the following

Lemma 4.17. For all σ ≥ 0,

∥∥U i|R=1

∥∥
Hσ(T)

≤ Cq0,σλ
σ‖{an}‖l∞ , (4.41a)

∥∥∂RU i|R=1

∥∥
Hσ(T)

≤ Cq0,σλ
σ+1‖{an}‖l∞ . (4.41b)

Proof. The second inequality is an easy consequence of the first inequality and the

identity

zJ ′
n(z) = nJn(z) − zJn+1(z).
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The first inequality will be a consequence of the identity

nJn(z) =
z

2

(
Jn−1(z) + Jn+1(z)

)
. (4.42)

By repeatedly applying (4.42), we find that for any positive integer m,

|n|m|Jn(z)| ≤
|z|m
2m

m∑

j=0

(
m

j

)
|Jn−m+2j(z)|,

which implies

|n|2m|Jn(z)|2 ≤ Cm|z|2m
m∑

j=0

|Jn−m+2j(z)|2,

which in turn implies10 (4.41a) for σ = m.

The case of non-integral σ > 0 follows by choosing any m > σ and using the

interpolation inequality

‖U i‖Hσ(T) ≤ ‖U i‖1−σ/m
L2(T)

‖U i‖σ/mHm(T).

Remark 4.18. Note that this proof of Lemma 4.17 requires that σ ≥ 0. In section

4.2.7 we will find a bound in the case where σ = −1/2 and U i is a plane wave.

Consequently, for σ ≥ 0,

‖g‖Hσ(T) ≤ C(q,q0,σ,µ/µ0)λ
σ+1‖{an}‖l∞ ,

and thus

‖V s |R=1‖Hσ(T) ≤ Cq

(
1

λ
‖g‖Hσ(T) +

1

λ2
‖g‖Hσ+1(T)

)
(4.43)

≤ C(q,q0,σ,µ/µ0)λ
σ‖{an}‖l∞ .

10Here we use the well known fact that
P |Jn(t)|2 = 1 for all real t, which is simply Parseval’s equality

applied to a plane wave on the unit circle.
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We have therefore proved

Proposition 4.19. Let (V tr , V s) solve problem (4.36) with the incoming wave U i sat-

isfying

U i(x) =
∑

l∈Z

anJn(
√
q0λR)einθ,

for some sequence {an} ∈ l∞. Then for all σ ≥ 0, there exists a constant C depending

only on q, q0, σ and µ/µ0, and a λ0 depending only on q, such that for all λ ≥ λ0,

‖V s |R=1‖Hσ(T) ≤ Cλσ‖{an}‖l∞ .

In particular, we have

‖V s |R=1‖L2(T) ≤ C‖{an}‖l∞ . (4.44)

4.2.5 The main estimate

Before proving our main theorem, we need the following

Lemma 4.20. Let q = a+ ib with a, b > 0. Suppose u ∈ H1(B) satisfies

∆u+ λ2qu = 0, in B.

Then there exists a constant C > 0 and a λ0 ≥ 1, both depending only on q, such that

for all λ ≥ λ0,

‖u|R=1‖H−1/2(T) ≤ Cλ1/2‖u‖L2(B).

Proof. Let us denote by g the trace of u on the boundary R = 1. Let v be the solution

of the factorized problem:

∂Rv −Dq(R)v = 0 in C,

v = g at R = 1,
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and in B1/2,

∆v + λ2qv = 0 in B1/2,

v− = v+ at R = 1/2.

By applying (4.31) from Lemma 4.13 with U = v, the proof is finished if we can show

‖v‖L2(B) ≤ C‖u‖L2(B) (4.45)

for λ sufficiently large. Recall that L denotes Helmholtz operator while L0 denotes its

factorization to order zero (4.23). Let w = u− v. w then satisfies

∆w + λ2qw = − (L − L0) v in C,

∆w + λ2qw = 0 in B1/2,

with transmission conditions

w− = w+ at R = 1/2,

∂Rw
− = ∂Rw

+ + ∂Rv
− − ∂Rv

+ at R = 1/2,

and boundary condition

w = 0 at R = 1.

From this we calculate

∫

B

(
− |∇w|2 + λ2q|w|2

)
dx =

∫

∂B1/2

(
∂Rv

− − ∂Rv
+
)
w dσ

−
∫

C

[
(L − L0)v

]
w dx. (4.46)
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Using Lemma 4.14 with U = v and s = σ = −1/2, we get

∣∣∣∣
∫

∂B1/2

(
∂Rv

− − ∂Rv
+
)
w dσ

∣∣∣∣ ≤ Ce−cλ‖v‖H−1/2(∂B)‖w‖H1/2(∂B)

≤ C
√
λe−cλ‖v‖L2(C)‖w‖H1(B),

where the second inequality follows from estimate (4.31) from Lemma 4.13. Then since

L − L0 : L2(C) → L2(C) is bounded independently of λ (Lemma 4.8), by taking the

imaginary part of (4.46) we find

‖w‖2
L2(B) ≤

Cq
λ2

‖v‖L2(C)‖w‖H1(B).

Appealing to (4.46) a second time therefore yields

‖w‖H1(B) ≤ Cq‖v‖L2(C).

which, combined with the previous inequality, yields

‖w‖L2(B) ≤
Cq
λ
‖v‖L2(C),

Since ‖v‖L2(B) − ‖u‖L2(B) ≤ ‖w‖L2(B), (4.45) now follows by choosing λ sufficiently

large.

Corollary 4.21. Let q = a+ ib with a, b > 0. Suppose f ∈ L2(B) and u ∈ H1(B) such

that

∆u+ λ2qu = f in B.

Then there exists a constant C > 0 and a λ0 ≥ 1, both depending only on q, such that

for all λ ≥ λ0,

‖u|R=1‖H−1/2(T) ≤ Cλ1/2

(
‖u‖L2(B) +

1

bλ2
‖f‖L2(B)

)
.
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Proof. Let u0 ∈ H1
0 (B) solve L u0 = f . We write this equation in the Fourier mode:

1

R

d

dR

(
R

d

dR
û0
n

)
+
(
λ2q − n2/R2

)
û0
n = f̂n for 0 < R < 1,

û0
n = 0 at R = 1.

Multiplying by Ru0, integrating over 0 < R < 1 and then taking imaginary parts, we

find

bλ2

(∫ 1

0
|û0

n|2R dR

)1/2

≤
(∫ 1

0
|f̂n|2R dR

)1/2

,

and therefore,

‖u0‖L2(B) ≤
1

bλ2
‖f‖L2(B).

The corollary follows by applying Lemma 4.20 to u− u0.

It remains to be shown that V s is sufficiently well approximated by U s , so that

the Sobolev bound of Proposition 4.19 on V s applies to U s as well. This will be

accomplished in the following

Proposition 4.22. Let U i be an incident wave of the form

U i(R, θ) =
∑

n∈Z anJn (
√
q0λR) einθ,

where {an} ∈ l∞. Let q = a+ ib with a, b > 0. Let (U tr , U s) be the solution of problem

(4.19) and let (V tr , V s) be that of problem (4.36). Then there exists a constant C > 0

depending on q and a λ0 depending only on q such that for all λ ≥ λ0,

∥∥U s |R=1

∥∥
H−1/2(T)

≤ C
∥∥V s |R=1

∥∥
H−1/2(T)

.

Proof. Denote by W s and W tr the following fields:

W s = U s − V s , W tr = U tr − V tr .
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They satisfy

∆W tr + qλ2W tr = 0 for (R, θ) ∈ (0, 1/2) × T,

∆W tr + qλ2W tr = − (L − L0)V
tr for (R, θ) ∈ (1/2, 1) × T,

∆W s + q0λ
2W s = 0 for (R, θ) ∈ (1,∞) × T,

with the transmission conditions

∂
+

RW
tr = ∂

−
RW

tr + ∂
+

RV
tr − ∂

−
RV

tr at R = 1/2,

(
W tr

)+
=
(
W tr

)−
at R = 1/2,

and
1

µ
∂RW

tr =
1

µ0
∂RW

s at R = 1,

W tr = W s at R = 1,

and the radiation condition

(∂R − i
√
q0λ)V s = O(R−3/2).

Claim: There exists C > 0 such that

λ2b‖W tr‖L2(B) ≤ C‖V tr‖H1(C). (4.47)

To prove this, note that because W tr and W s solve the above transmission problem,

we have

−
∫

B
|∇W tr |2 + qλ2

∫

B
|W tr |2

= −
∫

C

[(L − L0)V
tr ]W tr −

∫

∂B
∂νW

trW tr dσ

+

∫

T

(
∂

+

RV
tr
∣∣
R=1/2

− ∂
−
RV

tr
∣∣
R=1/2

)
W tr |R=1/2 dθ,

(4.48)
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and for any R > 1,

−
∫

A
|∇W s|2 + q0λ

2

∫

A
|W s|2 = −

∫

∂A
∂nW

sW s dσ

= −
∫

∂BR

∂νW
sW s dσ +

∫

∂B
∂νW

sW s dσ

= −i√q0λ
∫

∂BR

|W s|2 dσ +

∫

∂BR

O(R−3/2)W s dσ

+
µ0

µ

∫

∂B
∂νW

trW tr dσ,

(4.49)

where A = BR \B . Taking the imaginary part of (4.48) yields

bλ2‖W tr‖2
L2(B) = − Im

{∫

C

[(L − L0)V
tr ]W tr

}
− Im

{ ∫

∂B
∂νW

trW tr dσ

}

+ Im

{∫ 2π

0

(
∂

+

RV
tr
∣∣
R=1/2

− ∂
−
RV

tr
∣∣
R=1/2

)
W tr |R=1/2 dθ

}
,

and taking the imaginary part of (4.49) yields

Im{q0}λ2

∫

A
|W s|2 = − Im{i√q0}λ‖W s‖2

L2(∂BR)

+
µ0

µ
Im

{ ∫

∂B
∂νW

trW tr dσ

}
+ o(1)R→∞,

which implies

Im

{ ∫

∂B
∂νW

trW tr dσ

}
≥ 0,

since Im{q0} and Im{i√q0} are positive. We therefore get

λ2b‖W tr‖2
L2(B) ≤

∣∣∣∣
∫

C

[(L − L0)V
tr ]W tr

∣∣∣∣

+

∣∣∣∣
∫

T

(
∂

+

RV
tr
∣∣
R=1/2

− ∂
−
RV

tr
∣∣
R=1/2

)
W tr |R=1/2 dθ

∣∣∣∣ .
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Thus, for any s ≥ 0,

λ2b‖W tr‖2
L2(B) ≤ ‖(L − L0)V

tr‖L2(C)‖W tr‖L2(B)

+
∥∥∥∂+

RV
tr
∣∣
R=1/2

− ∂
−
RV

tr
∣∣
R=1/2

∥∥∥
Hs(T)

∥∥W tr |R=1/2

∥∥
H−s(T)

,

According to Lemma (4.8),

‖(L − L0)V
tr‖L2(C) ≤ Cq

∥∥V tr
∥∥
L2(C)

,

and by Lemmas 4.14 and 4.13, there exists a Cq,s > 0 such that

∥∥∥∂+

RV
tr
∣∣
R=1/2

− ∂
−
RV

tr
∣∣
R=1/2

∥∥∥
Hs(T)

≤ Cq,se
−Cλ ∥∥V tr

∥∥
L2(C)

.

Moreover, according to Lemma 4.20,

∥∥W tr |R=1/2

∥∥
H−1/2(T)

≤
√
λ
∥∥W tr

∥∥
L2(B1/2)

.

The Claim (4.47) follows by combining the last four inequalities.

Thus, for some constant C depending on q, we have

‖W tr‖L2(B) ≤
C

λ2
‖V tr‖L2(C),

hence

‖U tr‖L2(B) ≤ C‖V tr‖L2(C).

Now, by Lemma 4.20,

C√
λ
‖U tr |R=1‖H−1/2(T) ≤

∥∥U tr
∥∥
L2(B)

,

and by Lemma 4.13,

‖V tr‖L2(B) ≤
C√
λ

∥∥V tr |R=1

∥∥
L2(T)

.
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Putting the previous three inequalities together completes the proof.

Recall estimate (4.44) (that is, Proposition 4.19 with σ = 0):

∥∥V s |R=1

∥∥
L2(T)

≤ C‖{an}‖l∞ .

From this and Proposition 4.22 it follows that

‖U s |R=1‖H−1/2(∂B) ≤ C‖{an}‖l∞ .

We are now in a position to state and prove the main theorem of this chapter. For

convenience, we will assume the background medium is non-conducting, i.e., that q0 is

real and positive.

Theorem 8. Let q = a + ib with a, b > 0, and let q0 > 0. Let (utr

ρ , u
s

ρ) solve problem

(4.1), with the incident wave ui of the form

ui(r, θ) =
∑

n∈Z anJn (
√
q0ωr) e

inθ.

There exists a constant C = const(q, q0, µ/µ0) > 0 and a λ0 ≥ 1 depending only on q

such that, for any ρ > 0 and ω > 0 such that ωρ ≥ λ0, and for any r ≥ ρ,

∥∥us

ρ

∣∣
∂Br

∥∥
H−1/2(T)

≤ C

√
ρ√
r
‖{an}‖l∞ .

Proof.

∥∥us

ρ

∣∣
∂Br

∥∥2

H−1/2(T)
=
∑

n

∣∣∣∣ ̂[us
ρ

∣∣
|x|=ρ

]
n

Hn(
√
q0ωr)

Hn(
√
q0ωρ)

∣∣∣∣
2/

(1 + |n|)

≤ Cq0
ρ

r

∥∥us

ρ

∥∥2

H−1/2(∂Bρ)

= Cq0
ρ

r
‖U s‖2

H−1/2(∂B) ,



173

where the inequality follows from the fact that for n 6= 0,

∣∣∣∣
Hn(

√
q0ωr)

Hn(
√
q0ωρ)

∣∣∣∣
2

≤ ρ

r
,

and for n = 0,

∣∣∣∣
H0(

√
q0ωr)

H0(
√
q0ωρ)

∣∣∣∣
2

=
ρ

r

√
q0ωr

∣∣H0(
√
q0ωr)

∣∣2
√
q0ωρ

∣∣H0(
√
q0ωρ)

∣∣2

≤ ρ

r

2/π
√
q0
∣∣H0(

√
q0)
∣∣2 ,

since the function 0 < t 7→ t |Hn(t)|2 is decreasing for integers n 6= 0 and increasing

for n = 0 (to the limit 2/π) [Wat44, 13.74], and since we are assuming λ = ωρ ≥ 1.

The theorem follows from Proposition 4.22 and Proposition 4.19 (see the remarks just

before the statement of this theorem).

4.2.6 A refinement of the bound

Numerical evidence11 suggests that, for a fixed r0 > ρ,

‖us

ρ‖L2(∂Br0 ) ≤ C
√
ρ as ωρ→ ∞,

and this is indeed the bound we found for
∥∥us

ρ

∣∣
r=r0

∥∥
H−1/2(T)

in Theorem 8. The nu-

merical evidence, however, suggests that the optimal bound on the H−1/2 norm should

decrease as omega grows. In testing, this bound appears to be of the order such that

C√
r0

√
log λ√
λ

√
ρ≪

∥∥us

ρ

∣∣
r=r0

∥∥
H−1/2(T)

≪ 1

C
√
r0

log λ√
λ

√
ρ as λ = ωρ→ ∞

(see Figure 4.2), which is a stronger bound than that found in Theorem 8. While we

have not yet found the optimal bound, we do have the following

Theorem 9. Let q = a+ ib with a, b > 0. Let (utr
ρ , u

s
ρ) solve problem (4.1), where the

11See Figure 3.1 in Chapter 3.
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Figure 4.2: The left frame is a plot of
∥∥us

ρ|r=2

∥∥
H−1/2(T)

as a function of ω. The right frame

is a plot of s(ω)
∥∥us

ρ|r=2

∥∥
H−1/2(T)

, where s(ω) =
√
ω/(logω)0.7975. Here we have taken q0 = 1,

q1 = 4 + 4i, γ :=µ0/µ = 2 and ρ = 0.004. Numerical evidence suggests that (logω)0.8/
√
ω ≪∥∥us

ρ|r=2

∥∥
H−1/2(T)

≪ (logω)0.795/
√
ω as ω → ∞.

incident wave ui is a plane wave,

ui(r, θ) = ei
√
q0 ω x·η, η ∈ R2 satisfying |η| = 1,

and where q0 > 0. Then there exists a constant C = const(q, q0, µ/µ0) > 0 and a λ0 ≥ 1

depending only on q such that, for any ρ > 0 and ω > 0 such that ωρ ≥ λ0, and for

any r ≥ ρ,

∥∥us

ρ

∣∣
∂Br

∥∥
H−1/2(T)

≤ C
ρ1/12

ω5/12
= C

√
ρ

λ5/12
.

To prove this, we simply improve the bound on
∥∥V s |R=1

∥∥
H−1/2(T)

found in Propo-

sition 4.19, and use the estimate

∥∥U s |R=1

∥∥
H−1/2(T)

≤ C
∥∥V s |R=1

∥∥
H−1/2(T)

(Proposition 4.22), just as before. To improve the bound on
∥∥V s |R=1

∥∥
H−1/2(T)

found

in Proposition 4.19, recall that we have shown, using Lemma 4.16, that for σ ≥ −1/2,

‖V s |R=1‖Hσ(T) ≤ Cq

(
1

λ
‖g‖Hσ(T) +

1

λ2
‖g‖Hσ+1(T)

)
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(inequality (4.43)), where

g =
(µ0

µ
Dq − ∂R

)
U i
∣∣
R=1

.

Then since

‖g‖Hσ(T) ≤ C
(
λ‖U i |R=1‖Hσ(T) + ‖U i |R=1‖Hσ+1(T)

)
+ ‖∂RU i |R=1‖Hσ(T),

(inequality (4.40)), we have

‖V s |R=1‖H−1/2(T) ≤ Cq

(
‖U i |R=1‖H−1/2(T) +

1√
λ

)
.

Here we used Lemma 4.17 and the fact that

1

λ2
‖∂RU i |R=1‖H−1/2(T) ≤

|√q0|
λ2

‖U i |R=1‖H−1/2(T).

We therefore must find a bound on ‖U i |R=1‖H−1/2(T).

4.2.7 Estimating the incident wave via stationary phase

By rotating the coordinates, we may assume η =
(
0
1

)
, so that

U i(x) = ei
√
q0λR sin θ.

Now we use the method of stationary phase: as λ→ ∞,

‖U i|R=1‖2
H−1(T) ≤ C

∫ 2π

0

∣∣∣∣∣

∫ θ

0
ei
√
q0λ sin tdt

∣∣∣∣∣

2

dθ

=
2πC√
q0λ

∫ 2π

0

∣∣∣χ[π/2,2π]e
i(λ−π/4) + χ[3π/2,2π]e

−i(λ−π/4)
∣∣∣
2
dθ

+O(λ−3/2).
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By interpolating between H−1 and L2 we therefore get

‖U i |R=1‖H−1/2(T) ≤ Cq0λ
−1/4.

This is a rather rough estimate, but it can be improved by appealing directly to an

oscillatory integral expression of ‖U i‖H−1/2(T) on which to perform a stationary phase

analysis.

Proposition 4.23. Let (V t, V s) solve problem (4.36) with the incoming wave U i sat-

isfying

U i(x) = ei
√
q0λη·x

with |η| = 1. Then there exists a constant C depending only on q, q0, µ/µ0 and a λ0

depending only on q such that for all λ ≥ λ0,

‖V s|R=1‖H−1/2(T) ≤ Cλ−5/12.

Proof. Define the function F on T by

F (θ) =

∫ θ

0

(
U i|R=1(τ) − Û i0

)
dτ + Û i0

so that

‖U i|R=1‖H−1/2(T) = ‖F‖H1/2(T)

=

∫

T

∫

T

∣∣ ∫ θ
t e

i
√
q0λ sin s ds

∣∣2

|t− θ|2 dt dθ

(see [Gri85] or [Ada75]). For simplicity, assume q0 = 1 and let

I(t, θ) =

∫ θ

t
eiλ sin s ds.

From the Figure 4.3 representing T2, let A denote the the unshaded region, D1 the

lightly shaded region, and D2 the darkly shaded region. For (t, θ) ∈ A, it follows from
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−π/2 π/2

π/2

−π/2

Figure 4.3: T2, where the shaded region around the diagonal is {(t, θ) ∈ T2 : |t− θ| < δ}.

the method of stationary phase that

∫∫

A

|I(t, θ)|2
|t− θ|2 ≤ C

λ

∫∫

A

1

|t− θ|2

≤ C

δλ

(details omitted; cf. Lemma 3.8 of Chapter 3, or Chapter 3 of [Olv97]).

For (t, θ) ∈ D1 with θ < t < θ + δ,

I(t, θ) =
eiλ sin s

iλ

∣∣∣∣
s=θ

s=t

+
1

iλ

∫ θ

t
eiλ sin s sin s

cos2s
ds, (4.50)

so that

|I(t, θ)| ≤ C

λ

(
1 +

∣∣∣∣
1

cos θ
− 1

cos t

∣∣∣∣
)
.

Therefore,

∫ θ+δ

θ+1/(δλ)

|I(t, θ)|2
|t− θ|2 dt ≤ C

λ2
max

(t,θ)∈D1

(
1

cos2 t
+

1

cos2 θ

)∫ θ+δ

θ+1/(δλ)

1

|t− θ|2 dt

≤ C
1

λ2

1

δ2
δλ

≤ C

δλ
.
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Figure 4.4: Close-up on one half of D2. T denotes the shaded triangle.
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1

δ3λ

δ
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δ2λ
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T3

Figure 4.5: Close-up on T .

Since I also satisfies

|I(t, θ)| ≤ |t− θ|,

it follows that

∫∫

D1

|I(t, θ)|2
|t− θ|2 ≤ C

δλ
.

For the region D2, we need only consider the shaded triangle T from Figure 4.4. That

is, for some constant C,

∫∫

D2

|I(t, θ)|2
|t− θ|2 ≤ C

∫∫

T

|I(t, θ)|2
|t− θ|2 .

Let T = T1∪̇T2∪̇T3 as in Figure 4.5. Clearly,

∫∫

T1

|I(t, θ)|2
|t− θ|2 ≤ 1

δλ
.
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To unclutter our notation, let a = 1/(δ3λ) and b = 1/(δ2λ). Using the method of

stationary phase, we get

∫∫

T2

|I(t, θ)|2
|t− θ|2 ≤ C

λ

∫ π/2

π/2−a

∫ t−b

π/2−δ

1

|t− θ|2 dθdt

≤ C

λ

∫ π/2

π/2−a

(
1

b
− 1

t− (π/2 − δ)

)
dt

=
C

λ

(a
b

+ log
(
1 − a

δ

))

≤ C
a

λ

(
1

b
− 1

δ

)

= C

(
1

δλ
− 1

(δλ)2

)

≤ C

δλ
.

Finally, using (4.50),

∫∫

T3

|I(t, θ)|2
|t− θ|2 ≤ C

λ2

∫ π/2−b

π/2−δ+a

∫ t−a

π/2−δ

1

cos2t |t− θ|2 dθdt

≤ C

λ2

∫ π/2−b

π/2−δ+a

∫ t−a

π/2−δ

1

|t− π/2|2|t− θ|2 dθdt

=
C

λ2

∫ π/2−b

π/2−δ+a

(
1

|t− π/2|2(t− θ)

∣∣∣∣
θ=t−a

θ=π/2−δ

)
dt

=
C

λ2

∫ π/2−b

π/2−δ+a

1

|t− π/2|2
(

1

a
− 1

t− (π/2 − δ)

)
dt

=
C

λ2

[
1

a(π/2 − t)
− log(t− (π/2 − δ))

δ2
+

1

δ(t− π/2)

+
log(π/2 − t)

δ2

]π/2−b

π/2−δ+a

=
C

λ2

[
1

ab
− log(δ − b)

δ2
− 1

δb
+

log b

δ2

−
(

1

a(δ − a)
− log a

δ2
− 1

δ(δ − a)
+

log(δ − a)

δ2

)]

≤ C

λ2ab
(this holds if we assume δ5 ≫ log λ/λ2)

≤ Cδ5.
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Since,

δ5 ≤ 1

δλ
⇐⇒ δ ≤ 1

λ1/6
,

we let δ = λ−1/6 and conclude that

‖U i|R=1‖H−1/2(T) ≤ Cq0λ
−5/12.

The proof of Theorem 9 is now complete.

4.2.8 Extensions and future work

Even though the proof of Theorem 8 (and Theorem 9) relied somewhat on separation

of variables, there is good reason to believe these methods can be modified to apply in

the case of a general convex scatterer (cf. the microlocal analysis performed in [LL93],

which relies on results found in [Laf92]). Once such bounds are established, they should

prove useful in the construction of asymptotic formulas (as ρ → 0) for the scattered

field that are valid over a broad band of high frequencies (see Chapter 2 for such a

construction when frequency is fixed.)

The impedance boundary condition satisfied by the approximate field V s (see Re-

mark 4.38) is also of independent interest, in that it may be a helpful tool in the search

for approximations to the scattered field that are better at high frequencies than that

found in Chapter 3. We compare that geometric optics-based approximation of Chap-

ter 3 with the approximation vs
ρ :=V s(·/ρ) in Figures 4.6 and 4.7. In Figure 4.6 it is

clear that the vs
ρ is the closer approximation. In Figure 4.7 we see this that this is still

true, though less pronounced, when Im q is small. The approximation vs

ρ is, however,

not very useful by itself: attempts to numerically compute the solution to the exterior

problem (4.38)12 will be computationally expensive, owing to the fact that the operator

12Here we are referring to the exterior problem when the scatterer is an arbitrary convex domain D
and the nonlocal operator Dq on ∂D is defined appropriately to account for the local geometry of the
boundary.
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ρ}geo is the
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ρ based on geometric optics (see formula (3.67a) from Chapter
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Figure 4.6: Plots on the right half of the scatterer r = ρ when the plane wave is incident at the
point corresponding to the angle −π/2. Here we have taken q = 2+2i, q0 = 1, γ = 1, ρ = 10−4

and ω = 106.

Dq is nonlocal.13 Nevertheless, this impedance condition may potentially be used to

construct better approximation formulas. We cite relevant work developing on surface

radiation conditions (OSRC), notably [ABV01], [ABB99] and [AB01], which improve

upon the prior work in [KTU87] and [Jon92].

13A discretization of Dq by a finite element method results in a full matrix.
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Figure 4.7: As in Figure 4.6, but with q = 2 + i/50.
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