
AN INFRASTRUCTURE FOR PROGRAM POWER BEHAVIOR
CHARACTERIZATION AND OPTIMIZATION EVALUATION

BY CHUNLING HU

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Prof. Daniel A. Jiménez Prof. Ulrich Kremer

and approved by

New Brunswick, New Jersey

January, 2008

c© 2008

Chunling Hu

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

An Infrastructure for Program Power Behavior Characterization

and Optimization Evaluation

by Chunling Hu

Dissertation Director: Prof. Daniel A. Jiménez Prof. Ulrich Kremer

Fine-grained program power behavior is useful in both evaluating power optimizations and

observing power optimization opportunities. Detailed power simulation is time consuming

and often inaccurate. Physical power measurement is faster and objective. However, fine-

grained measurement generates enormous amounts of data in which locating important features

is difficult, while coarse-grained measurement sacrifices important detail.

This thesis presents a program power behavior characterization infrastructure that identi-

fies program phases, selects a representative interval of execution for each phase, and instru-

ments the program to enable precise and objective power measurement of these intervals to get

their time-dependent power behavior. This infrastructure is constituted of three components

for instrumentation, phase classification and power measurement, respectively. The Camino

compiler, a GCC post-processor, is used to instrument the assembly code of a program on

various levels. A phase classification algorithm using infrequent basic blocks and the combina-

tion of control-flow information and runtime event counts finds the representative intervals in

terms of time-dependent power behavior. These selected intervals accurately characterize the

fine-grained time-dependent behavior of the program, as well as accurately estimate the total

energy consumption of a program. The power measurement method enables users to measure

any specified region of program execution. A two-level profiling method implemented in this

ii

infrastructure maps the measured detailed power behavior back to source code. The accuracy

of this infrastructure is validated on a StrongARM SA110 through simulation, and on an Intel

Pentium 4 system through physical power measurement.

This thesis also presents the uses of this infrastructure in understanding the power behavior

of program components, such as procedures or loops, in finding good threshold for metrics

used in dynamic voltage and frequency scaling, and in scheduling simultaneous multi-threaded

programs for peak power optimization.

iii

Acknowledgements

I am deeply grateful to my advisers, Professor Daniel A. Jiménez and Professor Ulrich Kremer.

I was lucky to be supervised by them and it was a great pleasure to work with them. Their

knowledge, wisdom, and enthusiasm for research guided me into this thesis work and played

very important roles in the past 4 years. Their kindness, patience, humor, and understanding

made my Ph.D life very happy. This thesis is not possible without their support and help. I

thank my thesis defense committee member, Professor Ricardo Bianchini and Dr. Jack Liu, for

their review of my thesis and their comments.

I want to thank my labmates, Yang Ni, Jerry Hom, and John McCabe, for their kind help in

my research and life. I also want to thank many friends around for all the happy time we had

together.

I owe my parents. I thank them and my brother for their generous love and support, without

which my Ph.D study would not have been possible. Finally, I thank my dear husband, Weilei

Zhang, who always stands beside me, listens to me , and encourages me in my study and life.

iv

Dedication

To my parents and Weilei.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Motivation . 1

1.1.1. Detailed Time Dependent Power Behavior 2

1.1.2. Insufficiency of Several Efficient Simulation Methods in Characteriz-

ing Power Behavior . 5

1.1.3. Illustrating Time-Dependent Power Behavior 6

1.2. An Infrastructure for Characterizing Time-Dependent Power Behavior 8

1.3. Challenges . 9

1.4. Contribution . 10

1.5. Organization of this thesis . 11

2. Related Work . 13

2.1. Power Evaluation Techniques . 13

2.1.1. Transistor-level . 13

2.1.2. Cycle-accurate Microarchitecture-level 13

2.1.3. Instruction-level . 14

2.1.4. System-level . 14

2.2. Disadvantages of Energy Simulators . 15

vi

2.3. Program Behavior Profiling Tools . 16

2.4. Program Phase Behavior and Phase Classification 17

2.5. Dynamic Voltage and Frequency Scaling . 19

3. Program Power Phase Behavior . 21

3.1. Off-line Phase Clustering Analysis . 21

3.2. Feasibility Validation of the SimPoint Idea . 22

4. The Camino Compiler Infrastructure . 27

4.1. Camino Overview . 28

4.1.1. Using Camino . 28

4.1.2. Internal Representation . 29

4.1.3. Output . 30

4.2. Program Profiling Supported in Camino . 30

4.2.1. Basic Block and Edge Counts . 31

4.2.2. Interprocedural Path Profiling . 31

4.2.3. Basic Block Vector and Edge Vector Profiling 32

4.2.4. Event Counter Profiling . 32

4.2.5. Two-level Profiling . 33

5. Power Measurement Infrastructure . 36

5.1. Usage and Measured Parameters of Oscilloscope 37

5.2. Fine-granulated Power Measurement on a StrongARM Board 38

5.2.1. Measurement Setup . 38

5.2.2. Effect of Loop Unrolling and Instruction Scheduling 40

5.3. CPU Power Measurement on Pentium 4 and Conroe 43

5.3.1. Precise Power Measurement . 43

5.3.2. Measuring Whole Program Energy Consumption 45

6. Power Phase Classification Using Combination of Control-flow and Event Count 46

6.1. Correlation between IPC and Power Dissipation 46

vii

6.2. A two-stage Program Power Phase Classification 47

6.2.1. Using IPC to Refine Control-folw-based Phase Classification 48

6.2.2. Controlling Unnecessarily Fine Phase Classification 50

6.3. Experimental Results . 51

6.3.1. Benchmarks and Experimental Setup 51

6.3.2. Experimental Results . 52

BBV+IPC Method without Finer Classification Control 52

BBV+IPC Method with Finer Classification Control 54

BBV-based Classification with Larger K 54

7. Infrequent Basic Block-based Program Phase Classification 57

7.1. Which Basic Blocks are Infrequent? . 57

7.2. Basic Block Execution Frequency Profiling and Infrequent Basic Blocks Selection 59

7.3. BBV Profiling and Program Execution Partition 59

7.4. A SimPoint-like Method for Phase Classification 60

7.5. Low-overhead Instrumentation for Power Measurement 62

7.6. Benchmarks . 63

7.7. Instrumentation Overhead Evaluation . 64

7.8. Measuring Energy Consumption of Simpoints 64

7.9. Error Rates in Whole Program Energy Consumption Estimation 65

8. An Infrastructure for Efficient Power Behavior Characterization 70

8.1. A New Phase Classification Method . 70

8.1.1. Using EV as Fingerprint . 70

8.1.2. EV profiling . 72

8.1.3. Refining Phase Classification Using IPC 73

8.1.4. Linux Device Driver for Event Counter Profiling 73

8.1.5. Combining EV Clustering with IPC Clustering 73

8.2. Validation on Real System . 73

8.2.1. Comparing Error Rates in Energy Consumption Estimation 74

viii

8.2.2. Power Behavior Similarity Evaluation 74

Comparing in the Frequency Domain 74

A More Robust Sampling Approach for Verification 75

Instrumenting for Verification . 77

8.2.3. Interval Length Variance . 78

8.3. Experimental Results and Evaluation . 78

8.3.1. Instrumentation Overhead . 78

8.3.2. Total Energy Consumption Estimation 79

8.3.3. Time-dependent Power Behavior Similarity 80

8.3.4. Interval Length Variance . 83

9. Applications . 85

9.1. Peak Power Optimization . 85

9.2. DVFS Metric and Threshold Selection . 87

9.2.1. Selecting DVFS Metric . 87

9.2.2. Applying Selected Metric and Threshold in DVFS 89

9.3. Program Power Behavior Understanding . 92

10. Conclusion . 97

10.1. Static Program Instrumentation Tool . 98

10.2. Accurate Program Power Behavior Phase Classification 98

10.3. Infrequent Basic Block-based Interval Partitioning 99

10.4. Dynamic Voltage/Frequency Scaling . 99

References . 101

Vita . 107

ix

List of Tables

3.1. MediaBench benchmarks used in experiment. 23

3.2. Baseline configuration of Skiff board . 24

5.1. Instruction order of each version of the loop. 40

5.2. Simulated power and cycles for the unrolled loop in Figure 5.2. 42

7.1. SPEC CPU2000 INT benchmarks . 63

9.1. Validation experiments for DVFS metric and threshold. 90

x

List of Figures

1.1. Power curves with the same energy consumption but different time-dependent

power behavior. 3

1.2. Power dissipation of two intervals from the same cluster of jpegencode. 6

1.3. Measured power behavior of bzip2 with different granularity. 7

3.1. Energy consumption of each interval and phase clustering of epic. Interval

size=1million instruction. 25

3.2. Error rates of ipc and power for each benchmark and their average error rates. . 26

4.1. Compilation using Camino. 28

4.2. Natural loops identified by Camino. 35

5.1. Prototype power measurement infrastructure for the StrongARM based Skiff

board. 39

5.2. A simple program with loop. 41

5.3. Physical measurement results for the four versions in Table 5.1. 42

5.4. The physical measurement infrastructure used in the experiments. 44

5.5. The display window of the oscilloscope after the execution of a simpoint. The

dotted line is the trigger signal. The power curve for the measured simpoint is

surrounded by the trigger signal. 45

6.1. Correlation between power and IPC for intervals of jpegencode. 47

6.2. Dynamic power behavior characterization process 49

6.3. Decrease in RSD. The BBV+IPC method is the old one with fixed number of

clusters. 53

6.4. Decrease in RSD. The BBV+IPC method is the new one with flexible number

of clusters . 53

6.5. Power and IPC for each cluster of jpegencode after the BBV+IPC classification. 55

xi

6.6. Power and IPC for each cluster of jpegencode after the BBV-k classification. . . 55

7.1. Trade-off between Accuracy and Simulation/Measurement Workload. 58

7.2. Interval partitioning using infrequent basic blocks and interval length. 60

7.3. Normalized overhead in energy consumption of instrumented benchmarks us-

ing different thresholds. 65

7.4. Normalized overhead in execution time of instrumented benchmarks using dif-

ferent thresholds. 65

7.5. Error rates of energy consumption estimation when different thresholds are

used, based on comparison between estimated and measured energy of unin-

strumented benchmarks. 67

7.6. Error rates of energy consumption estimation when different thresholds are

used, based on comparison between estimated and measured energy of instru-

mented benchmarks shown in Figure 7.3. 67

7.7. The number of instrumentation per millisecond during the program execution

in simpoints. 68

8.1. Infrequent basic block-based phase classification and power measurement of

simpoints. 71

8.2. Several EVs are possible for the same BBV. 72

8.3. Power curve distances calculated using our similarity calculation method 76

8.4. Normalized instrumentation overhead in energy consumption. The difference

between the energy consumption of the instrumented and uninstrumented bench-

mark divided by the energy consumption of the latter. 79

8.5. Error rates in total energy consumption estimation, EV vs. BBV 81

8.6. Similarity between measured CPU current of intervals. 82

8.7. Root Mean Squared error of the FFT calculated based on RMS of FFT and the

weight of each phase. 83

8.8. RMS error of the interval length of the whole benchmark. 84

8.9. Weighted average of the RMS error of interval length in the same phase. 84

9.1. Implementation and use of semaphore in peak power optimization. 86

xii

9.2. MPU and UPC distribution for all representative intervals selected by our phase

classification. 89

9.3. Experimental results of the DVFS methods in Table 9.1. 91

9.4. Interval Vector of a loop in method price out impl of mcf. 93

9.5. CFG of a loop in method price out impl of mcf. 94

9.6. Power behavior of different phases of mcf, CPU frequency = 2.4GHz. 95

9.7. Power behavior of different phases of mcf, CPU frequency = 2.1GHz. 96

xiii

1

Chapter 1

Introduction

1.1 Motivation

Increased transistor density has supported performance improvement of computing systems,

but power has also emerged as a challenge for device scaling. Most of the power dissipation

of CMOS microprocessors comes from the switching power of transistors, which can be calcu-

lated as

P = f ∗ C ∗ V 2

dd (1.1)

Here, f is the switching frequency, C is the load capacitance of the transistor and Vdd is the

voltage. Frequency increases due to increasing pipeline depths. The increases in the number

of transistors and frequency dominate the decreases in load capacity and voltage, resulting in

power dissipation growth. Power is likely to become the major limitation in the development

of computer architecture [35]. Increasingly popular and capable hand-held devices give us

convenience, but the short battery life limits their usefulness. Increased energy consumption

is also a big environmental problem due to its requirement of cooling systems and its pressure

on resources. Low power and energy consumption is no longer a by-product of performance

improvements yielded by computer architecture, compiler, and operating system optimizations.

Research in power and energy optimizations focuses not only on reducing overall program

energy consumption, but also on improving time-dependent power behavior. Evaluating such

optimizations requires both accurate total energy consumption estimation and precise detailed

time-dependent power behavior. Simulators are often used for power and performance eval-

uation, but detailed power simulation is very time-consuming and often inaccurate. While

2

physical measurement is much faster, fine-grained power measurement requires proper mea-

surement equipment, a large amount of space to store measurement results, and a method to

extract useful information from the results. This thesis introduces a new strategy to enable

efficient time-dependent power behavior characterization based on physical measurements.

1.1.1 Detailed Time Dependent Power Behavior

Some power optimizations can not be evaluated through only simulating the program to get

the total energy consumption. Detailed power behavior is desired in many cases. An example

optimization that requires fine-grained, time-dependent power behavior information for its ex-

perimental evaluation is instruction scheduling for peak power and step power (dI/dt problem)

reduction, for instance in the context of VLIW architectures [70, 64, 62]. This previous work

relies on simulation to evaluate the impact of the proposed optimizations. The dI/dt problem is

caused by large variations of current in a short time. Large variations in CPU current requires

the power distribution network have sufficient capacitance, and small enough inductance and

resistance, to maintain the supply voltage to be stable. So such variations in CPU current may

cause undesired oscillation in CPU supply voltage, which may results in timing problems and

incorrect calculations [20]. In mobile applications, minimizing peak power can help reduce the

physical battery size [49]. The size of the battery depends on the storage capacity required, the

maximum discharge rate, the maximum charge rate, and the minimum temperature at which the

batteries will be used. When intermittent operation is added, it is the peak power rather than

the average power that determines capacity. There are various ways to save energy consump-

tion, but minimizing the energy consumption of a battery-powered system is not equivalent to

maximizing its battery life [51].

Figure 1.1 shows two power curves that have the same energy consumption but differ-

ent time-dependent power behavior. Estimating total energy consumption is not sufficient to

evaluate peak power optimization.

Another example is peak power reduction on hyper-threading and multi-core systems. In a

hyper-threading or multi-core system, multiple threads run simultaneously to improve overall

efficiency of CPU(s). During program execution, CPU-intensive regions and memory intensive

regions result in different CPU power, i.e. CPU current. When the high-power region of two

3

time
po

w
er

curve-1 curve-2

Figure 1.1: Power curves with the same energy consumption but different time-dependent
power behavior.

threads are executed simultaneously, the total CPU current is increased. Figure 1.1.1(a) is the

power curve of a simple benchmark running on a single CPU of a hyper-threading machine.

There are high-power and low-power regions during program execution. When two of such

benchmark run on the two virtual processors of a hyper-threading machine, the measured power

curve is shown in Figure 1.1.1(b). Since the two programs are in their high-power region

simultaneously, the measured CPU peak power is much higher than the peak power when only

one program is running. They are both in very low power region in between the high-power

regions.

Figure 1.1.1(c) shows the measured power curve the two simultaneous programs when they

are synchronized to avoid high peak-power. The CPU peak power is much lower than the one

shown in Figure 1.1.1(b). The power behavior of the regions other than the loop is not changed

because we only synchronized the iterations of the loop. The dotted line is the trigger signal

used to identify the power behavior of the four high-power regions in Figure 1.1.1(a).

If we can characterized the detailed time-dependent power behavior of program execution,

we can find its high-power regions and perform synchronization to avoid high peak-power.

Furthermore, detailed power information can expose more power and energy optimization

opportunities.

4

2

3

4

5

6

0 12 24 36 48 60 72 84 96
time (msec)

CP
U

 c
ur

re
nt

 (A
) CPU current

2

3

4

5

6

0 12 24 36 48 60 72 84 96
time (msec)

CP
U

 c
ur

re
nt

 (A
)

CPU current

2

3

4

5

6

0 12 24 36 48 60 72
time (msec)

CP
U

 cu
rre

nt
 (A

)

0

1

2

3

4

tri
gg

er

CPU current
triiger

(a) Measured CPU power of a small benchmark.

2

3

4

5

6

0 12 24 36 48 60 72 84 96
time (msec)

CP
U

 c
ur

re
nt

 (A
) CPU current

2

3

4

5

6

0 12 24 36 48 60 72 84 96
time (msec)

CP
U

 c
ur

re
nt

 (A
)

CPU current

2

3

4

5

6

0 12 24 36 48 60 72
time (msec)

CP
U

 cu
rre

nt
 (A

)

0

1

2

3

4

tri
gg

er

CPU current
triiger

(b) Measured CPU power when two copies of the same benchmark are running on two virtual
machines. The two programs are not synchronized.

2

3

4

5

6

0 12 24 36 48 60 72 84 96
time (msec)

CP
U

 c
ur

re
nt

 (A
) CPU current

2

3

4

5

6

0 12 24 36 48 60 72 84 96
time (msec)

CP
U

 c
ur

re
nt

 (A
)

CPU current

2

3

4

5

6

0 12 24 36 48 60 72
time (msec)

CP
U

 cu
rre

nt
 (A

)

0

1

2

3

4

tri
gg

er

CPU current
triiger

(c) Measured CPU power when two copies of the same benchmark are running on two virtual
machines. The two programs are synchronized.

5

1.1.2 Insufficiency of Several Efficient Simulation Methods in Characterizing

Power Behavior

Although detailed power simulation is useful, its cost in terms of time and space prevents it

from being used to collect the profile of a long-running program. Some power simulators are

built on SimpleScalar, a cycle-level simulator [1]. Many of the SPEC2000 programs have more

than 300 billion or more instructions. Simulation of such a benchmark by SimpleScalar takes

approximately 1 month of CPU time at a simulation rate of 400 million instructions per hour

[48]. Simulating power takes longer time due to the calculation of power consumption of each

modeled component in each step. Recording the power dissipation value for each cycle of the

execution of a long program requires even more time and a huge amount of space.

Researchers have developed many ways to handle the time cost problem, such as statistical

sampling [14] [68], smaller input set [36], and SimPoint [57]. These methods reduce simulation

time while keeping high accuracy, they are useful in estimation of the overall characteristics

of the simulated program, such as instructions-per-cycle (IPC), cache miss rate, branch mis-

prediction rate, etc. But it is not always true for time-dependent behavior. Figure 1.2 shows the

power behavior of two intervals from the same phase of jpegencode, one of the MediaBench

benchmarks [39], after the phase classification performed by SimPoint. Intervals in the same

phase are expected to have similar behavior. Due to the large number of cycles for an interval,

only a segment of the interval power behavior is shown here. The power behavior is from

the middle of the intervals, totally 25000 cycles, not the whole interval. Granularity is 50

cycle/point.

There is apparent difference between the two intervals in terms of power behavior. Interval-

1 has a larger power range and more dramatic fluctuation in power dissipation than interval-2.

Both have repeating power behavior, but interval-1 has a longer period. Furthermore, the two

intervals have different execution cycles and total power dissipation, which is not shown in

Figure 1.2. No matter which interval is selected as the simpoint for this cluster, it can not

represent the two intervals in power behavior.

It is even harder for statistical sampling to get the representative slices for power behavior.

To efficiently and accurately characterize program power behavior, we need another phase

6

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 15000 15050 15100 15150 15200 15250 15300 15350 15400 15450 15500

po
w

er
(W

at
t)

cycles (50 cycle/point)

interval-1

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 15000 15050 15100 15150 15200 15250 15300 15350 15400 15450 15500

po
w

er
(W

at
t)

cycles (50 cycle/point)

interval-1
interval-2

Figure 1.2: Power dissipation of two intervals from the same cluster of jpegencode.

classification method to find out the representative intervals for power simulation.

Another disadvantage of these methods is that they can not provide the relation between the

sampled power behavior and the corresponding code, while this relation can help in better un-

derstanding of program behavior and the impact of some specific optimization, and sometimes

inspire programmer or compiler researchers to do power optimizations.

1.1.3 Illustrating Time-Dependent Power Behavior

Figure 1.3 shows the measured CPU current of 256.bzip2 from SPEC CPU 2000 measured us-

ing an oscilloscope. Figure 1.3(a) shows that the program execution can be roughly partitioned

into 4 phases based on its power behavior. One representative slice from each phase can be

measured to characterize the detailed power behavior of the benchmark. Figure 1.3(b) is the

measured power behavior of half of a second in the first phase with a resolution that is 100

times higher than the one used for Figure 1.3(a). There is a repeated power behavior period of

300 milliseconds. Figure 1.3(c) shows the detailed power behavior of a piece of 0.05 second,

from 0.1 second to 0.15 second in Figure 1.3(b). It shows repeated power behavior periods of

less than 5 milliseconds, indicating possible finer phase classification than Figure 1.3(b). Also,

finer measurement gives more information of time-dependent CPU power due to the resolution

of the oscilloscope used for power measurement. The oscilloscope reports the average power

for a given time granularity. This is the reason why the difference between the observed peak

power (peak current) in Figure 1.3(a) and (c) is almost 6 Watts (0.5 amperes).

7

(a) Very coarse granularity

2

3

4

5

6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
time (second)

C
P

U
 c

ur
re

nt
 (A

)

(b) A slice in phase 1 of (a)

2

3

4

5

6

0.10 0.11 0.12 0.13 0.14time (second)

C
P

U
 c

ur
re

nt
 (

A
)

(c) Detailed CPU power behavior of a small slice in (b)

Figure 1.3: Measured power behavior of bzip2 with different granularity.

8

1.2 An Infrastructure for Characterizing Time-Dependent Power Behavior

Thesis: a phase classification method based on the combination of control-flow information and

runtime events accurately and efficiently characterize program time-dependent power behavior;

furthermore, a good interval partitioning method enables objective program power behavior

characterization on real systems.

This thesis presents our infrastructure for program time-dependent power behavior char-

acterization and optimization evaluation. It has three components for instrumentation, phase

classification, and physical power measurement, respectively. A two-level profiling method

implemented in this infrastructure enables the mapping between the measured power behavior

and the corresponding source code level structures, such as a procedure or loop.

Our Camino compiler statically instruments the assembly code of a program generated by

GCC. Instrumentation can be performed on various levels, from instruction-level to procedure-

level. Basic block-level instrumentation is needed for basic block vector (BBV) or edge vector

(EV) profiling and infrequent basic block filtering. Procedure-level and loop-level instrumenta-

tion supports a two-level profiling to setup semantic connection between physical measurement

result and source code.

The phase classification component partitions program execution into intervals, which are

demarcated by infrequent basic blocks. Unlike the phase classification methods based on fixed

length intervals, control-flow information, or runtime events, EV and event counters are com-

bined to be used as the fingerprint of each interval in our infrastructure. Phase classification is

based on both control-flow information and runtime event counts, and representative intervals

are selected for measurement. Since our objective is to characterize detailed time-dependent

power behavior of program execution, the selected intervals should be representative in terms

of not only energy consumption, but also time-dependent power behavior. That is, the power

curve of two intervals from the same phase should be similar to each other. We use the FFT

result of power curves to evaluate the similarity between two intervals. Experimental result

shows that our phase classification method can find out representative intervals in terms of

time-dependent power behavior, such that we can use this infrastructure for efficient power

behavior characterization.

9

The power measurement component measure the CPU current and voltage of any specified

program region or the whole program.

All of the operations in the three components are implemented as automatic processes.

The threshold for determining whether a basic block is infrequent, the minimum number of

instructions in each interval, and the number of phases are the input to this process. The imple-

mentation of each step will be presented in the following chapters.

We show that our method enables us to do power measurement for simpoints with very

low interference to program execution. To demonstrate the improved accuracy of using edge

vectors, instead of basic block vectors, for classification, we show that our infrastructure esti-

mates the total energy of a program with an average error of 7.8%, compared with 12.0% using

basic block vectors, an improvement of 35%. More importantly, in addition to chracterizing

overall metrics as IPC and total energy consumption, we want to find representative intervals

that represent the fine-grained time-dependent power profile of a phase. We develop a metric

for measuring the accuracy of estimating a power profile and show that using edge vectors with

event counter information improves accuracy by 22%.

This infrastructure can be used to efficiently characterize whole program power behavior

and evaluate optimizations for energy consumption or time-dependent power behavior, for ex-

ample, the impact on power behavior of pipeline gating or dynamic voltage/frequency scaling

[44, 22].

1.3 Challenges

Characterizing the time-dependent power behavior of whole program execution requires accu-

racy and efficiency. When phase classification is used to find representative intervals, these

intervals should be really representative in terms of runtime time-dependent power behavior, as

well as energy consumption and performance. A method is needed to evaluate power behavior

similarity among the intervals of the same phase. Without loss in accuracy, the number of the

selected intervals should be as few as possible to save simulation time or simplify analysis on

measurement result.

Control-flow graph constructing and runtime event counter profiling need instrumentation

10

on various levels of a program. The instrumentation should identify each traversed edge during

program execution and identify each interval for event counter profiling with low overhead.

The measurement result of a program region should be as close as possible to the real

power behavior of the region. That is, the region should be identified precisely during program

execution and the instrumentation overhead should have negligible impact on the measured

power behavior.

Measured power behavior is just raw data. Power behavior of the representative intervals

can be used to characterize the behavior of the whole program execution. However, without

information of the source code, it is hard to figure out the reason for some interesting behavior

and use the observed power behavior to direct compiler-level power optimization.

Validation of the infrastructure on real systems requires system-level support for event

counter access and processor voltage/frequency scaling.

1.4 Contribution

This thesis describes an infrastructure for program power behavior characterization and opti-

mization evaluation, as well as its uses in understanding program power behavior and power

optimizations. It makes the following contributions:

1. It demonstrates that there are phases in the power behavior of program execution and

validates the phase behavior through power physical measurement on real systems.

2. It uses infrequent basic block to demarcate intervals during program execution, which

significantly reduces instrumentation overhead for dynamic interval identification. This

low instrumentation overhead enables objective power behavior measurement of inter-

vals. It is crucial for the application of phase classification on program power behavior

on real systems.

11

3. It shows that using edge vectors significantly improves accuracy over using basic block

vectors for estimating total program energy as well as fine-grained power behavior. Com-

bining control-flow information such as edge vectors with runtime event counts can fur-

ther improve the phase classification accuracy. Distance between the Fast Fourier Trans-

form (FFT) results of the two power curves can be used to evaluate the similarity between

two intervals in terms of time-dependent power behavior, given that the two intervals

have similar edge vectors.

4. It presents the Camino compiler infrastructure, a GCC post-processor. Camino enables

instrumentation on various levels for profiling or power/performance measurement.

5. It proposes a power physical measurement method that can be used to measure the power

behavior of any interval of program execution. By using infrequent basic blocks to de-

marcate intervals, we efficiently measure the power profile of an interval with minimal

perturbation to the running program.

6. It implements a two-level profiling method to solve the problem of lack of semantic

meaning in power measurement result. This also provides possible feedback to compiler

researchers for further power optimizations.

7. It compares the benefit from using different metrics in Dynamic Voltage and Frequency

Scaling and shows the use of this infrastructure in power optimizations.

1.5 Organization of this thesis

The rest of this thesis is organized as the follows:

Chapter 2 describes previous work related to this thesis. Chapter 3 introduces SimPoint

[57] and demonstrates that there are phases in program power behavior. Chapter 4 describes

our Camino compiler, including its structure, supported program control-flow and runtime-

event profiling, and various levels of instrumentation function. A Linux device driver devel-

oped for event counter profiling and dynamic voltage/frequency scaling is also shown in this

chapter. Chapter 5 shows the physical power measurement setup used in the experiments of

this thesis. Measurement is performed on a StrongARM SA110-based Skiff board, an Intel

12

Pentium 4 machine, and an Intel Conroe E6600. We put the measurement description before

the details of our phase classification method for better understanding of the experimental re-

sults in the following chapters. Chapter 6 analyzes the correlation between power dissipation

and runtime event counts, presents a new phase classification method using the combination

of control-flow information and runtime event counts, and shows its improvement in power

phase classification accuracy. Chapter 7 presents a new interval partitioning method that using

infrequently executed basic blocks to demarcate intervals. This method significantly decreases

the instrumentation interference due to dynamic interval identification during program execu-

tion and makes it possible to validate program power phase behavior through physical power

measurement. Experimental result shows that this method has negligible instrumentation over-

head with no loss in phase classification accuracy. Chapter 8 presents the current state of our

infrastructure. Edge vectors, instead of Basic Block Vectors are used in control-flow-based

phase classification and instruction-per-cycle is used as runtime event. Through experiments

on a real system and power behavior similarity evaluation, we show that this infrastructure can

find representative intervals in terms of time-dependent power behavior. Chapter 9 shows the

application of this infrastructure in peak power optimization, dynamic voltage/frequency scal-

ing metric observation, and program power behavior understanding. Chapter 10 concludes this

thesis.

13

Chapter 2

Related Work

2.1 Power Evaluation Techniques

In simulation-based power evaluation methods, the system is abstracted into various compo-

nents and the energy consumption of a program is estimated as the sum of the energy consump-

tion of all the components during the program execution. Simulators can be classified into

different levels based on their levels of abstraction. They target different levels of detail and

make different trade-offs between simulation time and accuracy. Most simulators are parame-

terized so they can be used to estimate the energy consumption systems with different configu-

rations. Simulators are very important in the early stage of architecture design and evaluation.

Furthermore, many simulators can give details at a very fine level of semantic granularity.

2.1.1 Transistor-level

These simulators characterize models of transistors and estimate voltage and current behavior

over time [53]. Power dissipation of transistors comes from three sources: switching power,

short-circuit power, and leakage power. Such simulation is time-consuming but useful in inte-

grated circuit design. Transistor-level simulators are not suitable in evaluating power consump-

tion of large programs on complex systems.

2.1.2 Cycle-accurate Microarchitecture-level

A microarchitecture-level simulator simulates the execution of a program and estimates the en-

ergy consumption in each cycle. Cycle-level microarchitectural simulators can provide power

behavior changing with the execution of the program. They are suitable for simulations of

14

modern superscalar processors. Three examples of cycle-level simulator are Wattch [15], Sim-

plePower [46] and Sim-Panalyzer [2]. Sim-Panalyzer is used in this thesis work to estimate the

power dissipation of the benchmarks.

2.1.3 Instruction-level

Instruction-level simulators provide coarser power behavior than the above two. The simulation

is based on the instruction-level energy profiling of the instruction set of the target processors

and the assumption that the energy consumption of an instruction is mostly independent of the

addressing mode or operands. Instruction-level simulators are normally faster than cycle-level

simulators and useful when only total energy consumption is needed. One instruction-level

simulator is JouleTrack [5].

2.1.4 System-level

Hardware component system-level simulators characterize the energy consumption of each sys-

tem component in different states. The simulator records the transitions between states and the

time each component spends in each state during the simulation of the program execution and

calculates the energy consumption of the whole program. Such simulators do not provide de-

tailed power behavior of a program, but they are useful for component selection and system

partitioning phase. An example is the simulator from Duke University [65]. It is an extension

of POSE, a palm OS Simulator.

There are also some software component system-level evaluators. PowerScope [17] is a

time-driven statistical sampler that uses samples from a digital multimeter.An energy-driven

statistical sampler, energy profiling, from Compaq is similar to PowerScope except that the

sampling period is determined by energy quanta.

SoftWatt [63] is the first simulator to target the complete system power profile of high-end

system. It extends SimOS with validated analytical energy models for hardware components.

This simulator identifies power hotspots in system components, and captures the relative contri-

bution of the power profile to the user and kernel code and identifies power-hungry OS services.

ECOSystem [21] is a modified Linux that manages energy as an OS resource. Parameters

15

of its “currency model” can be changed to support different platforms.

Isci et al. [10] propose a coordinated measurement approach that combines real total power

measurement with performance-counter-based per-unit power estimation. This is useful for

dynamic power/energy management but it is not suitable for power measurement of small pro-

grams. This thesis work is different from this approach because our objective is an evaluation

infrastructure for OS/compiler optimizations. Our infrastructure can get the power measure-

ment of any small region of a program as well as the power behavior of a long program. Fur-

thermore, even through this previous work provides power breakdown for CPU components,

there is no semantic connection between the measurement result and the measured program,

which is important for observing power/energy optimization opportunities and will be an im-

portant contribution of our infrastructure.

2.2 Disadvantages of Energy Simulators

The above simulators have some common features. Energy models for various components

are characterized before the evaluation and energy consumption evaluations are done through

looking up values in many tables by the simulator. The higher the precision is, the larger the

tables are. So speed is usually decreased with the increase in precision. Simulator are valuable

for power and energy estimation of unavailable architectures. For OS and compiler level power

optimization on available architectures, physical measurement can be used for evaluation.

Performance modeling is subject to many sources of error [6]. Modeling errors are from the

incorrect coding of the desired functionality. Desikan et al. measured the experimental error in

microprocessor simulation and showed that the error in common simulators is often larger than

the performance gains yielded by new architecture ideas reported in the literature [50]. From the

construction of power simulators, we can see that power simulators are also subject to errors [6].

Some tables are usually simplified to accelerate simulation. There may be mismatches between

reality and the simulation of the program execution. The effect of the OS is not considered

in many simulators. All of these issues make accuracy a problem of simulators. Ghiasi et al.

compared two architectural power models, the Cai-Lim power model and Wattch, and found

that these models disagree on the efficacy of the design choices in each experiment and do not

16

always produce statistically significant results [58].

The disadvantages of power simulators and physical measurement show that we need a

faster, more precise power and energy evaluation infrastructure to correctly reflect the power

behavior of a program and evaluate the benefit of an optimization. This is the motivation of our

research.

2.3 Program Behavior Profiling Tools

There is a long history of program profiling tools, including static instrumentation tools, dy-

namic instrumentation tools, simulators, and built-in hardware monitors.

Static instrumentation tools modify a program prior to its execution with the purpose of

monitoring the behavior of the program during execution. Instrumentation can be done on

source code, assembly code, or binary code. ATOM is a commonly used static binary instru-

mentation tool [61]. An instrumentation file and an analysis file are needed to instrument a

program through ATOM. Due to its dependence on the huge gap between data segment and

code segment in memory address space, ATOM is not very portable. Another static binary

instrumentation tool is FIT [8], which has better portability. As an instrumentation tool, our

infrastructure, Camino, instruments assembly code.

Dynamic instrumentation tools insert profiling code in executable image during program

execution. They can instrument dynamic generated code, which is impossible for static instru-

mentation tools. Changes in the profiling method does not require recompiling the instrumented

program. Possible disadvantages are imprecise mapping between the profiling result and the

instrumented program, and high instrumentation overhead. Pin uses a just-in-time compiler for

dynamic instrumentation and does not change code and data addresses when instrumenting a

program [52]. It enables users to observe runtime processor state. DynamoRIO is another

powerful dynamic code modification infrastructure capable of running existing binaries [7].

Since runtime power behavior is time-dependent and sensitive to instrumentation interference,

we do not want to use dynamic instrumentation for power behavior measurement of specific

intervals.

Simulators are widely used in research for nonexistent architectures. Simulation is like

17

dynamic instrumentation, but much slower. It provides precise mapping between the profiling

result and the simulated program, but the difference between a real system and the modeled

one makes it infeasible in evaluating some low-level optimizations.

Hardware monitor measures resource utilization during program execution. It has separate

pieces of equipment that are attached to the system component being monitored. It does not

consume system sources and has low overhead. Hardware monitors include probes, perfor-

mance counters, and logic elements.

2.4 Program Phase Behavior and Phase Classification

Execution of a program tends to fall into repeating behaviors called phases. The behavior of a

phase can be characterized by simulating or measuring a representative slice of this phase. Var-

ious phase classification methods have been proposed to identify phases. Program execution

is partitioned into intervals, which are classified into phases. Some of them use control-flow

information [56, 3, 55, 32, 37], such as the executed instructions, basic blocks, loops, or func-

tions, as the fingerprint of program execution. This fingerprint depends on the executed source

code. Some methods depend on run-time event counters or other metrics [13, 16, 60, 30], such

as IPC, power, cache misses rate and branch misprediction, to identify phases. Research shows

that phase behavior also exists in Java applications [47].

SimPoint is a tool developed by a lab in UCSD [3, 56]. It partitions a program’s execution

into intervals, clusters the intervals into phases based on the similarity of their Basic Block

Vectors (BBV), and selects a representative interval for each phase, called a simpoint. It is

independent of the underlying microarchitecture and provides an idea to estimate whole pro-

gram metrics from the behavior of the simpoints. Sherwood et al. show the use of this idea

in estimating instructions per cycle (IPC), branch prediction, instruction cache, data cache, and

unified L2 cache miss rates of the SPEC 2000 benchmarks [3]. We show that SimPoint can also

be used to estimate the energy consumption of a program through simulation its simpoints [23].

We implement a method in Camino to profile BBVs during program execution, do phase clas-

sification, and select the simpoints. Physical CPU power measurement is performed for the

18

simpoints on a real system. Also, we propose a SimPoint-like method that does phase classi-

fication and selects representative intervals in terms of time-dependent power behavior, which

results in very low instrumentation overhead in power measurement.

Lau et al. compare different architecture-independent structures used for phase classifi-

cation [38], including basic blocks, loop branches, procedures, opcodes, register usage, and

memory address. They used cycle-per-instructions (CPI) as a metric to evaluate their ability

to create homogeneous phases and the accuracy of using these structures to pick simpoints.

BBVs perform almost the best among the structures in terms of CPI coefficient of variation and

calculated CPI error. Our work in this thesis compares BBVs and Edge Vectors (EV) by cal-

culating the error rate in energy consumption estimation. EVs perform better than BBVs. The

low coefficient of variation is important in power behavior characterization from the measured

result of selected intervals.

Shen et al. proposed a data locality phase identification method for run-time data locality

phase prediction [55]. They use variable distance sampling, wavelet filtering and optimal phase

partitioning in analyzing data accesses to identify locality phases. A basic block that is always

executed at the beginning of a phase is identified as the marker block of this phase. This results

in variable interval lengths. They use phase hierarchy to identify composite phases. We also

use variable interval lengths, but the basic block that marks a phase is not necessary to uniquely

mark the phase. It might be the mark for other phases. The infrequent basic blocks are selected

first, and the intervals are demarcated by these basic blocks, but limited by a pre-defined length.

Phases are identified by the execution times of the infrequent basic blocks that demarcate the

intervals, such that we implement precise physical measurement.

A new version of SimPoint supports variable length intervals. Lau et al. shows a hierarchy

of phase behavior in programs and the feasibility of variable length intervals in program phase

classification [37]. They break up variable length intervals based on procedure call and loop

boundaries. Experiments in this thesis show that the power behavior of the same procedure

or loop varies due to runtime events. We use basic blocks that are infrequently executed to

break up intervals and at the same time use a pre-defined length to avoid too long or too short

intervals. This satisfies our requirement for low-overhead instrumentation and accurate power

behavior measurement. Besides phase classification, we also generate statically instrumented

19

executables for physical power measurement of simpoints.

Isci et al. proposed a coordinated measurement approach to monitor runtime power be-

havior of a real architecture [11]. They showed that program power behavior also fell into

phases. We proposed using SimPoint to find representative program execution slices to sim-

plify power behavior characterization, and we validated the feasibility of SimPoint in power

consumption estimation through power simulation of some MediaBench benchmarks [23]. Isci

et al. compared two techniques of phase characterization for power and demonstrated that the

event-counter-based technique offers a lower average power phase classification errors of 1.9%

for SPEC benchmarks than the control-flow-based technique, which offers an average classifi-

cation error of 2.9% for SPEC benchmarks [31]. Our work is different from this one because

our objective is to characterize the time-dependent power behavior of programs and map the

observed behavior back to source code. We want to measure the fine-grained power behavior

of the representative intervals, so the result is very sensitive to instrumentation overhead. The

new interval demarcation method and the instrumentation and measurement infrastructure pro-

posed in this thesis causes negligible overhead for identification of an interval during program

execution, and the measurement result is very close to the real time-dependent power behavior

of the interval.

2.5 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) has emerged as an important technique for

runtime power optimization and is supported by more and more modern processors. DVFS

is applied in different levels that include architectural level, OS level, and static or dynamic

compilation level.

In the architectural level [45], hardware monitors certain system statistics, such as Instruc-

tion Per Cycle (IPC), cache misses or issue queue occupancy, in fixed time intervals to direct

frequency and voltage scaling.

In the operating system (OS) level, interval-based or task-based algorithms use heuristic

scheduling to perform dynamic voltage and frequency scaling. Grunwald et al. investigated

a number of OS-level clock scaling algorithms through implementation and measurement on

20

a real system [18, 43, 54]. They concluded that the investigated algorithms failed to achieve

their goal of saving power with little impact on program behavior. This is consistent to our

observations in the experiments on an Intel Conroe machine.

Both the architectural level and the OS level approaches use heuristics to predict the proces-

sor utilization and scale voltage or frequency according to the predicted results. The advantage

of these approaches is the global view of resource usage of the whole system. The disadvantage

is that they have no detailed information provided by the running applications, thus they can-

not explore the characteristics of the running programs to improve the accuracy of processor

utilization prediction.

Compilers can analyze program structure and thus are capable to perform DVFS at a finer

granularity level. Static compilation level DVFS approaches collect profiles before programs

execution and decide when and where to insert instructions to perform voltage scaling [22]. The

DVFS decisions are dependent on the input and configuration used for profiling. The gener-

ated executables are not portable to other architectures. Dynamic compilation level approaches

seem to be more reasonable and more flexible [69, 67, 29]. They consider the runtime infor-

mation and scale voltage or frequency based on both program structure and runtime system

statistics. Wu et al implemented DVFS in a dynamic compilation system and performed DVFS

based on the profiled relative CPU slack time of procedures and loops [67]. Isci al predict the

power requirement of each time-based interval of program execution using branch prediction-

like method and dynamically change the voltage and frequency of the processor according to

the prediction result [29].

A virtual machines (VM) creates a virtualized environment between the computer platform

and its operating system. Due to its knowledge of both the running applications and indepen-

dence of microarchitecture and operating system (OS), VM-level DVFS is also employed, as

shown in [19, 24].

In this thesis, our infrastructure is used to find good metrics and thresholds. Some DVFS

policies are implemented and measured for evaluation.

21

Chapter 3

Program Power Phase Behavior

As we mentioned before, sometimes it is necessary to get the power measurement of the whole

program in fine precision. But it is hard to get exact power behavior measurement if the exe-

cution time is longer than the length of a record. Even though we can run the program many

times to measure the power behavior of one small slice in each running and combine the re-

sults from the slices to get the final answer, it is time consuming and dealing with the overlap

between two slices is not trivial. In order to simplify the measurement work, we use off-line

phase classification from SimPoint [57] to find representative intervals to simulate/measure.

Figure 1.3(a) shows the measured CPU current of 256.bzip2 from SPEC CPU 2000. We

can see obvious phase behavior in the current curve, which can be roughly classified into 4

phases. In each phase, the program power behavior is consistent. If we can find a representative

interval for each phase in terms of power behavior, we can characterize the detailed power

behavior of a long-running program through simulating or measuring just small slices of the

program execution. In the first step of validating the feasibility of the SimPoint-like idea in

power behavior estimation, experiments are performed on a StrongARM SA110 board through

simulating 10 MediaBench [39] benchmarks.

3.1 Off-line Phase Clustering Analysis

The selection of simpoints includes the following steps:

1. Basic Block Profiling Code profiling is performed on a given program/input pair to get

the basic block vector(BBV) for each interval with fixed number of instructions.

2. BBV Dimension Reduction The dimension of a BBV from code profiling depends on

the source code. It can be as large as several thousands. It is time-consuming to do

22

comparison (get the distance) between two vectors of such dimension during clustering.

Random projection is used to reduce the dimension to 15 to speedup the third step.

3. Phase Classification Through K-Means Clustering In order to find the phases, the in-

tervals should be clustered into groups. K-means clustering algorithm is used for classi-

fication [57]. This is a recursive process and k is a parameter of the algorithm. Sherwood

et al. tried several k values for one program/behavior to find the best one [57]. K-means

clustering algorithm works as following:

• choose k intervals randomly as the initial centers for the k clusters

• for each interval, compare its distance to all the k cluster centers(centroid). Put it

into the “nearest” cluster

• recalculate the centroid of each cluster based on its current members

• repeat the above three steps until the clusters are stable After the process, k clusters

are formed.

In our experiments, for each interval size, several k values are tried. So we do

comparisons in both horizontal and vertical directions to get the best k/interval size

pair.

4. Picking Simulation/Measurement Points After getting the best k/interval size pair, we

can pick 1 interval from each cluster to simulate or measure. Perelman et. al proposed

a method to pick early points to save fast-forwarding time [48]. Weighted simulation

results of the picked points are summed to generate the final estimated program behavior.

3.2 Feasibility Validation of the SimPoint Idea

In order to do validation of the points selected by the above method, we did some experiment on

StrongARM SA110. We chose 10 benchmarks from MediaBench [39] and compiled them into

ARM executables. The description of the benchmarks is shown in Table 3.1. The SimPoint

release [3] provides an extended sim-fast.c based on the sim-fast.c of SimpleScalar, but sim-fast

doesn’t support ARM code. We extended sim-outorder of SimpleScalar to do BBV profiling

on ARM benchmarks. Also, we extended the sim-panalyzer.c program of sim-panalyzer and

23

made it record the power dissipation of each interval. The original SimPoint algorithm was also

extended to support fixed number of simpoints instead of choose the best one among several

numbers, so that we could investigate the impact of the number of simpoints on the error rate

of power/energy estimation. Table 3.2 shows the baseline configuration of StrongARM SA110

used in our experiment.

Table 3.1: MediaBench benchmarks used in experiment.

Benchmark Description
adpcmencode,adpcmdecode Adaptive differential pulse code modulation.
epic,unepic Experimental image compression utility.
g721encode,g721decode Reference implementations of the CCITT (International Tele-

graph and Telephone Consultative Committee) G.711, G.721
and G.723 voice compressions.

jpegencode,jpegdecode Standardized compression method for full-color and gray-
scale images.

mpeg2encode,mpeg2decode High-quality digital video transmission.

Then we explore the error rate of each benchmark in a 3-Dimension space, interval size,

number of simpoints and error rate.

For each benchmark, the following steps were performed:

1. Compile the benchmark locally on the skiff board with extended options -static and -

msoft-float. StrongARM has no Floating-point Unit(FPU). FP instructions are emulated

in the kernel with integer instructions. The compile output has library calls for floating

point instructions. In order to do future comparison between simulated and measured

results, we did not use cross-compiler.

2. Run the modified sim-outorder on the benchmark to get BBVs

3. Run the BBV analysis program on the BBVs from step 2 to get the simpoints and their

corresponding weights. We modified the BBV analysis program to get different number

of intervals for each benchmark to see the change of the error rate with the increase in

interval number.

4. Run sim-panalyzer to get the power consumption of each selected simpoints.

24

Table 3.2: Baseline configuration of Skiff board

Technology/Vdd /Frequency 0.35um/2.0v/233Mhz
Instruction Fetch Queue(IFQ) size 2 instructions
Extra Branch Mis-prediction latency 3
Branch Predictor Type nottaken
Instruction Decode Bandwidth 1
Instruction Issue Bandwidth 1
Run Pipeline with In-order Issue true
Instruction Commit Bandwidth 1
L1 Data Cache 16KB, 32-way(RR), 32B blocks, 1 cycle la-

tency
L1 Instruction Cache 16KB, 32-way(RR), 32B blocks, 1 cycle la-

tency
L2 Cache none
Register Update Unit (RUU) size 16
Load/Store Queue (LSQ) Size 8
Flush Caches on System Calls false
Memory 16MB
Memory Access Latency (〈 first chunk 〉 〈 in-
ter chunk 〉)

12 4

Memory Access Bus Width 4B
Memory Accesses fully pipelined
Instruction TLB 4KB, Fully-associative(RR), 32B blocks
Data TLB 4KB, Fully-associative(RR), 32B blocks
Instruction/Data TLB Miss Latency 10 cycles
Total Number of Integer ALU’s 1
Total Number of Integer Multiplier/Dividers 1
Total Number of Memory System Ports(to
CPU)

2

Total Number of FP ALU’s 0
Total Number of FP Multiplier/Dividers 0

25

5. Calculate whole-program power estimation based on the power values from step4 and

the weights from step 2

(a) 8 clusters are formed.

(b) 20 clusters are formed.

Figure 3.1: Energy consumption of each interval and phase clustering of epic. Interval
size=1million instruction.

Figure 3.1 shows the energy consumption of each interval and the clusters obtained from

the off-line phase clustering. From Figure 3.1(a), we can see that intervals with similar energy

consumption are clustered into the same cluster. In Figure 3.1(b), 20 simpoints are used and

we got better clustering result than when 8 simpoints are used.

Figure 3.2 shows the ipc and power error rates of the simulated benchmarks and the average

error rate. For each benchmark, the error rates of ipc and power are similar and the average

error rate is below 2%.

Figure 3.1 and Figure 3.2 show the simulation-validated feasibility of the SimPoint idea

26

0

1

2

3

4

5

6

IPC power
benchmarks

er
ro

r
ra

te
(%

)

adpcmdecode

adpcmencode

jpegencode

jpegdecode

epic

g721decode

g721encode

mpeg2decode

unepic

mpegencode

average

Figure 3.2: Error rates of ipc and power for each benchmark and their average error rates.

in total energy consumption evaluation. This is the first step of our infrastructure for efficient

program power behavior characterization.

27

Chapter 4

The Camino Compiler Infrastructure

This chapter introduces our program analysis and instrumentation tool, the Camino Compiler

Infrastructure [25]. The goal of Camino is to serve as a testbed for various low-level optimiza-

tions. It is currently used to study performance optimizations as well as power and energy

optimizations. Camino supports the x86 instruction set. Support for ARM is in our ongoing

work. Camino is the Spanish word for “path,” representing our lab’s focus on control-flow-

oriented optimizations.

Camino can be used as a static instrumentation tool for profiling. It parses the assembly

code generated by GCC and distinguishes data and code, thus bypassing one of the serious

disadvantages of static binary instrumentation [41]. Camino implements several types of pro-

filing, including basic block counts, edge profiling, and interprocedural path profiling. It also

includes a special technique that allows using a SimPoint-like methodology to efficiently char-

acterize the fine-grained power behavior of an application with very low overhead by sampling

specially chosen intervals [3].

Camino also supports a growing set of code placement optimizations such as branch align-

ment [9] and pattern history table partitioning [34]. Branch alignment improves instruction

fetch bandwidth by reordering code such that most conditional branches to be not taken and

thus do not incur a discontinuous fetch penalty. Pattern history table partitioning improves

branch prediction accuracy through a feedback-directed placement of conditional branches that

reduces the likelihood that they will interfere destructively with one another in branch predic-

tion tables.

A two-level profiling is implemented in Camino to support semantic connection between

the measured detailed power behavior of selected intervals and program source code.

28

The Camino infrastructure is currently implemented as a post-processor to GCC. It can the-

oretically handle programs in any language that can be compiled by GCC. Currently it supports

compiling C, C++, and FORTRAN 77.

4.1 Camino Overview

This section describes the basic organization and operation of the Camino Compiler Infrastruc-

ture. Figure 4.1 explains the compilation of a program using Camino.

gcc -S

gcc -static

parsing

Assembly code

CFG construction

optimization

instrumentation

code extraction

Lines, procedures, BBs

CFG

CFG

CFG

Camino

Assembly code

executable

driver
source code,
command line options

source code,
compiler options

profile options

Figure 4.1: Compilation using Camino.

4.1.1 Using Camino

Camino provides three drivers, ccc, ccpp, and cf77, for the compilation of programs in C, C++,

and FORTRAN 77, respectively. The driver wraps GCC compilation and the post-processing

provided by Camino. A user can invoke the driver with arguments at the command line to start

compiling a program. The driver invokes the corresponding front-end from GCC with the -S

29

option to generate assembly language output from the source file. It then invokes the Camino

post-processor, described later, on the assembly language file. The driver parses the command

line arguments, passing Camino-specific arguments to Camino and other options to the GCC

front-end program. These specific arguments control what kind of profiling will be inserted, as

well as which optimizations will be applied to the assembly code.

4.1.2 Internal Representation

The Camino post-processor is a C++ program that reads the assembly code generated by GCC

and the arguments passed by the driver. It first parses the assembly code into three basic ab-

stractions: procedures, basic blocks, and lines.

Functions implemented in an assembly program are parsed into a Standard Template Li-

brary (STL) list of procedures. For each procedure, the control-flow is analyzed and a control-

flow graph (CFG) is maintained with STL lists of basic blocks with pointers. There are two

distinguished basic blocks: entry and exit nodes. entry is the first executable basic block in the

procedure.

The basic block is probably the most important abstraction in the compiler. The intrapro-

cedural structure of the code is completely represented within basic blocks. Each CFG node is

the data structure of a basic block. It has a lists of lines and a number of pointers to predecessor

and successor nodes, the targets of a conditional branch at the end of the basic block, basic

blocks that this block dominates and postdominates, and the list of loops in which this basic

block appears. Also, each basic block has an edge profile and a list of path profiles that may be

read from a path profile file generated by certain profiling.

Camino distinguishes data and code from directives in the assembly output. Non-text items

such as string constants and other data are kept in special basic blocks that are included in

the nearest procedure but are not part of any CFG. Each executable basic block is assigned

a hash value calculated based on the name of the program, the name of the procedure this

basic block belongs to, and its sequence number in this procedure. This value is used by

the profiling instrumentation for reference. This value may be considered unique for most

purposes. Although collisions are possible, our tests show that they occur very infrequently

with no impact on the quality of profiling.

30

Lines in a basic block are represented with a list of line objects. Each line consists of an

optional label, an optional x86 opcode or assembler pseudo-op, and an optional set of operands.

Camino also has the ability to determine the byte offset of any given instruction in the final ex-

ecutable modulo a moderate power of two. This capability is useful in certain code placement

optimizations [34] where knowing the lower bits of the address of an instruction is important

in predicting how the microarchitecture will treat this instruction. We currently use this infor-

mation for a branch prediction optimization, but it could also be useful for instruction cache

optimizations.

In this internal representation, instrumentation and/or optimizations may be performed on

various level, from procedure to instruction. Since each basic block has a “unique” reference

value and the lines of a basic block are stored, a user can instrument or optimize only the basic

blocks that satisfy some special condition, instead of all basic blocks. This is also true for

instructions. Instrumentation using Camino is very simple. Only two routines are required, an

instrumentation routine and an analysis routine. The instrumentation routine inserts a call to

the analysis routine at proper positions in each basic block. The analysis routine is normally

implemented as a library function linked to the instrumented program at the last step of the

compilation. This sort of instrumentation is used to implement various types of profiling as

well as triggering power and energy measurement by an external device.

4.1.3 Output

Once Camino is finished with its transformations, it extracts the modified assembly code from

the internal representation and overwrites the original assembly file. Then the driver calls the

appropriate GCC component to complete the process of assembling the compilation unit and

possibly linking the program.

4.2 Program Profiling Supported in Camino

Camino currently implements four types of profiling: 1) basic block and edge counts, 2) in-

terprocedural path profiling, and 3) profiling in support of obtaining basic block vectors and

31

edge vectors for SimPoint-like clustering, 4) two-level profiling for procedure/loop power be-

havior characterization. Because of its clear internal representation on multiple levels, it is easy

for a user to insert instrumentation at proper positions, or just change the analysis routine, to

implement a new type of profiling.

4.2.1 Basic Block and Edge Counts

This type of profiling combines basic block counts and edge counts. For each basic block not

containing a conditional branch, a record is kept for the number of times it is encountered. For

basic blocks ending in a conditional branch, a basic block count is kept as well as a count of the

number of times the branch was taken. When this information is read back into the compiler

later to recompile the program with the guide of the profiling result, it is converted into counts

of the number of times CFG edges were traversed through conditional branches. The analysis

code also has the ability to simulate a simple branch predictor and record the number of times

the branch was correctly predicted; however, this option is usually turned off for efficiency.

4.2.2 Interprocedural Path Profiling

Many branch predictors use history tables. Camino implements a special form of path profiling

whose goal is to determine the path corresponding to the global history used by certain types

of branch predictors.

Interprocedural path profiling is implemented through the instrumentation of branch in-

structions. The analysis routine invoked during program execution maintains a record for a

global path of a given fixed length. The frequency with which this history is encountered, the

frequency with which this path is taken, and a sequence of branches identifiers along this path

are recorded. The taken and not taken information of a branch is stored in the profile data

structure of the basic block corresponding to this branch. Each time a branch is executed, the

analysis routine updates this information and determines if this branch should be shifted into

the global path record. If the frequency of a global path is higher than a given threshold, the

profile of this path is temporarily stored in some table. At the end of program execution, all of

the recorded path profiles are written to an output file. Camino provides a method for reading

in the output file for use in path-based optimizations.

32

4.2.3 Basic Block Vector and Edge Vector Profiling

As described in Section 4.1.2, instrumentation at the basic block (BB) level using Camino is

very simple. We instrument each basic block before its first instruction for BBV profiling. Dur-

ing program execution, the analysis routine is invoked for each BB, computing the execution

frequency of the BB in the current interval. The hash value of a BB is used as its identification

in BBVs. The BBV for each interval is output into a file.

Edge Vector profiling is similar to BBV profiling except that the taken frequency of each

edge is recorded. Each BB is still instrumented. The analysis routine identifies each edge

based on the previous BB and the current BB. In our implementation, we only record the edges

comming out of conditional branches, which cuts the vector size by almost a half compared to

when all edges are recorded. EVs are also written to a file for future analysis.

4.2.4 Event Counter Profiling

We developed a Device Driver as a Linux kernel module (LKM) to provide interfaces for

model-specific register (MSR) access and control. In Camino, routines are implemented to

open the device and read or write performance counters. This device driver supports Linux

2.6.9 on Intel Pentium 4 and AMD Athlon 64, and Linux 2.6.18 on an Intel Conroe E6600.

The Pentium 4 supports 48 event detectors and 18 event counters [59]. Up to 18 perfor-

mance count events can be concurrently collected. The event detectors form 4 groups, each of

which consists of event detectors and a block of counters. Each event detector contains an event

select control register (ESCR). Each counter contains a counter configuration control register

(CCCR). An ESCR selectes the desired event. It can qualify event detection by privilege mode

and thread ID. A CCCR choose the event detector output that the counter should use. It config-

ures the selected event detector to support threshold comparison, edge detection, thread mode

qualification, or performance monitor interrupts generation on counter overflow.

AMD Athlon 64 provides 4 48-bit performance counters [4]. Each counter monitors a

different event. Each counter has a corresponding Performance Event-Select register (Per-

fEvtSeli), which specifies the event counted by this counter and controls other aspects of its

operation. Up to 4 events can be concurrently monitored.

33

Intel Conroe E6600 is based on Intel Core microarchitecture [27]. It is much simpler per-

formance counter control compared to Pentium 4. It has 3 fixed function performance counters,

each of which is dedicated to count a pre-defined performance mornitoring event. A control

MSR enables that fixed function performance counters to use. Two other counters are con-

trolled by three MSRs. Event selection for each counter is performed using one of the two

IA32 PERFEVTSELx MSRS.

In addition to hardware event monitoring, our device driver also supports changing the

value of some MSRs. Voltage and frequency scaling is implemented through writing the target

voltage/frequecy configuration to a performance control MSR.

4.2.5 Two-level Profiling

We profile the Interval Vector (IV) for each invocation of procedures and loops when BBVs or

EVs are profiled. After phase classification, each interval has a phase number. Each interval

number in IV is replaced with its phase number. Now an IV is like a BBV or EV, but each

element is a phase number. Through classifying the IVs for a procedure or loop, we can find

its representative invocation and the variance in different invocations. Based on the measured

power behavior of representative intervals, the detailed time-dependent power behavior of a

procedure or loop can be characterized. In our current implementation, only natural loops are

considered. A natural loop is defined by a back-edge. Back-edge (n,d) is a control-flow edge

from node n to node d such that d dominates n. A natural loop of back-edge (n,d) has only one

loop header, d. The set of nodes of this loop are dominated by d and there is a path from any

node of this set to n that does not contain d. A node can the header of multiple natural loops.

An example of natural loops is shown in Figure 4.2.

To profile IVs of procedures, we maintain a call stack during program execution. At the

entrance of a procedure, the hash value of procedure, the current interval number and the num-

ber of executed instructions in the current interval are pushed onto the stack as a record. At the

exit of the procedure, its record is popped off the stack and the number of executed instructions

and interval information for this invocation are put into a linked list for this procedure. We set

thresholds to avoid profiling too small procedures and loops. For example, a size threshold of

an interval size is used and a frequency threshold of 100 is used. After a procedure or loop

34

is invoked 100 times, we calculate its average size, that is, the average number of executed

instructions. If its smaller than the predefined threshold, we mark the procedure or loop as

“not profiled” and its invocations are no longer recorded. The stacks are checked at the end

of program execution. If the loop stack is not empty, or the procedure stack has more than 1

element, the profiling result is incorrect.

Sometimes a procedure call is compiled into a “jump” to the callee, in which case the exit

of the caller can not be detected. In the instrumentation, we also pass the procedure call type to

the analysis routine, e.g. whether this call is a “jump” to the callee. When a record is popped

off the procedure call stack and this procedure is called through a “jump”, the next record on

the stack is also popped off the stack. This operation is repeated until a popped procedure is not

called through “jump”. This solutions enables us to accurately keep track of procedure calls.

Loop IV profiling is similar to procedure IV profiling, but the information for each invo-

cation of a loop, instead of each iteration of a loop is recorded. Loops are identified during

CFG construction. The unique hash value of the first BB of a loop is used as the identification

of this loop. In addition, the sequence number of a loop in the source code of a procedure

is also recorded for easy mapping between the profiling result and the corresponding source

code. The format is procname no. The exit edges of each loop are written to a file for future

use in profiling. At the entrance of a loop, if the top of the call stack is this loop, the analy-

sis routine does nothing; otherwise, the identification of the loop, the current interval number

and the number of executed instructions in the current interval are pushed onto the stack as a

record. When an exit edge of a loop is taken, its record is popped off the stack and the number

of executed instructions and interval information for this invocation are put into a linked list for

this loop. In our current implementation, all of the natural loops that have the same loop head

are treated as the same loop during profiling. In Figure 4.2, the loop with backedge DA and the

one with backedge EA are treated as the same loop, but the one with backedge CB is treated as

a different loop.

35

A

C

B

D

E

1 2 3

Figure 4.2: Natural loops identified by Camino.

36

Chapter 5

Power Measurement Infrastructure

For a physical power measurement-based infrastructure, the measurement result should be pre-

cisely the power curve of the measured program region. The measurement method should

be able to handle program regions with any execution time. In our infrastructure, we use

a TDS3014 oscilloscope to measure the current and voltage of a system component. Mea-

surement experiments performed on a StrongARM SA110 based Skiff board show how fine-

granulated power measurement helps in evaluating optimizations. All of experiments per-

formed on a Pentium 4 and a Conroe E6600 validate the accuracy of our power phase clas-

sification on real systems and show the uses of our infrastructure in program power behavior

characterization, power optimization evaluation and DVFS metric selection.

Most current computer architectures have cycle count registers and clocks that can be ac-

cessed by users or system programs. Physical execution time measurements are therefore easy

to obtain, for instance through the UNIX time command. This is not true for power and en-

ergy measurements. In order to measure the power dissipation of a system component such

as the CPU, the supply current and voltage for the component needs to be measured. This re-

quires a printed circuit board (PCB) design that has separate power planes for each component,

and each such power plane has an access point that allows a voltage and current measurement

probe. When separate power planes are not available, power and energy measurements can only

be done for the entire system. In this case, micro-benchmarking will be used that stress individ-

ual system components while keeping the activity levels in other system components the same.

The variations in overall power dissipation can then be attributed to the single component.

37

5.1 Usage and Measured Parameters of Oscilloscope

The TDS3014 oscilloscope has four channels. The longest record length for each channel

is 10,000 samples. Users can program to control its acquisition mode, record length, trigger

mode, data encoding and other configurations. Data collection can be done on one channel or

several channels in turn.

Record length is the number of points that comprise a complete waveform record. Record

length determines the amount of data that can be captured with each channel. TDS3014 has

two record length options: 500 samples and 10k samples. Since an oscilloscope can store only

a limited number of samples, the waveform duration (time) is inversely proportional to the

oscilloscope’s sample rate.

TDS3014 has two sample acquisition modes. We use different record length options in

the two modes due to the limit on the communication between the oscilloscope and the data

acquisition machine.

• Normal : record length=10k points, rate is up to 450 waveforms/s

• Fast trigger: 500 points, rate is up to 30000 waveforms/s

In our first step, we used fast trigger mode to collect the power behavior of the whole

measured program. But there are two problems:

• The oscilloscope keeps acquiring samples all the time, so it is hard to know the beginning

and the end of the measured program.

• The communication cost to collect 500 samples from the oscilloscope to the data-acquisition

machine is much longer than the time used to generate these samples when high resolu-

tion is used.

In our experiments, the communication cost is usually about 135ms, whereas the sample

generation time depends on sampling rate. Each time the data acquisition machine wants to

gather samples from the oscilloscope, a session should be set up between the two. If we adjust

the oscilloscope to generate 500 samples in 135ms, the resolution is 270us/sample. For a

233Mhz machine, each sample covers about 62910 cycles. Obviously, this resolution is not

38

enough if we want to have a close look at the power behavior of the measured program. If

we use higher resolution, some samples are lost because of the overwriting mechanism of the

sample buffers.

To solve the first problem, we used the normal acquisition mode by using the trigger module

of the oscilloscope. In this mode, the oscilloscope starts sample acquisition only after a trigger

event happens. The acquisition is stopped after a whole record is obtained. Since TDS3014

has no external trigger input, we used a dedicated channel to monitor the trigger event. Trigger

of starting measurement is generated by generating a signal, for example, setting some voltage

to a high value. At the end of the measurement, another signal is generated. Although normal

trigger mode can help us identify the beginning and the end of the measured program, it is still

hard to get the power behavior in high precision for programs with long execution time due to

the high communication cost. Larger memory for oscilloscope can help, but the problem is still

there if we want higher precision. This is why we plan to use the SimPoint-like idea to find

representative slices of a program and get power evaluation for the whole program based on the

physical measurement of the selected slices.

In our infrastructure, users can specify which region of the program to measure by adding

some comments before and after the region. trigger generation code is inserted into the source

code through MACRO extension and the generated executables will trigger the oscilloscope

at exactly the beginning of the measured region. By setting the trigger pin to low voltage at

the end of the region, we can get the precise mapping between the measurement result and the

source code. Since there is no interrupt during the execution of the measured region, we can

achieve non-intrusive power/energy measurement.

5.2 Fine-granulated Power Measurement on a StrongARM Board

5.2.1 Measurement Setup

As depicted in Figure 5.1 (a), our evaluation infrastructure for ARM has three components:

a Skiff board(a Compaq Personal Server PCB Board with a StrongARM SA110 CPU and

a 32MB SDRAM) [28], a Tektronix TDS3014 DPO oscilloscope with TDS3TRG advanced

trigger module and a data-acquisition machine, which is not shown in the picture. The Skiff

39

(a) measurement infrastructure

(b) communication among the three measurement components

Figure 5.1: Prototype power measurement infrastructure for the StrongARM based Skiff board.

40

board has separate power planes and current measurement points for CPU and memory. Trigger

signals are generated by setting a pin on the skiff board to a high or low voltage. We call this

pin “trigger pin”. Through running some specially designed benchmarks, we got the delays of

setting the high voltage and low voltage are 20ns and 47ns, respectively. The data-acquisition

machine is an Intel P4 2.8GHz Linux machine.

Figure 5.1(b) depicts the communication among the three components. The measured pro-

gram runs on the skiff board. Physical measurement is performed by the oscilloscope, which

measures the current or voltage of the components(CPU, memory) of the skiff board or the

whole board. A data-collecting machine communicates with the oscilloscope to gather data and

does offline analysis. Sampling is done by the oscilloscope and the data collecting machine only

communicates with the oscilloscope, so there is no interference between the measured program,

sampling and data collecting, correctness of the result is improved.

5.2.2 Effect of Loop Unrolling and Instruction Scheduling

Using this measurement setup, we can have a close look at the power behavior of a program.

Figure 5.2 shows a very simple program with a loop. The part in the gray lox is the measured

part. After the loop was unrolled eight times, we got a new version, version A, which generates

a basic block with 16 loads followed by 16 additions. By hand, the instructions of the assembly

of version A were reordered to get two other versions, version B and version CTable 5.1 shows

the instruction order for each version.

Table 5.1: Instruction order of each version of the loop.
Version Instruction Order
Original 2 loads followed by 2 additions in each loop, but 8 times of loops

compared to other versions
Version A 16 loads followed by 16 additions
Version B 2 loads, followed by 2 additions, followed by 14 loads, followed

by 14 additions
Version C alternating groups of 2 loads, followed by 2 additions

Figure 5.3 shows the measured CPU current for the StrongARM SA110 processor (2.0V,

233MHz). The line marked “trigger” represents the trigger signal for the oscilloscope. At

41

the beginning and end of the program region of interest, the trigger pin is set to high and low

voltage, respectively.

Figure 5.2: A simple program with loop.

In Figure 5.3 shows, we see what we expect for the current behavior of the program, one

cache miss every 8 iterations of the original version. Version C, the alternating schedule of

memory and CPU instructions, leads to the shortest execution time, the lowest energy con-

sumption and the smoothest power dissipation profile. Choosing this schedule over the alterna-

tives will lead to a fast program with low peak power dissipation and small variations in power

dissipation.

As comparison, we also simulated the same program using Sim-Panalyer,a cycle-accurate

architecture-level ARM power simulator. Since it is hard to identify the loop exactly in sim-

ulation, we simulated the power dissipation of the whole program. Only the loop is different

in different simulations, so we can say that the difference among simulation results are from

our modification to the loop. Table 3.2 gives the configuration of the StrongArm SA110 for

our simulation experiments. Most of the architectural configuration values are from the Stron-

gARM v4 data-sheet. Others are from the default configuration provided by Sim-Panalyzer.

We used the power configuration file provided by Sim-Panalyzer but changed the frequencies

to 233Mhz.

Table 5.2 gives the simulation results for the four versions of the program. Both the power

dissipation and simulated cycles are normalized by the results of the original version.

From Table 5.2, we can see that version A, B and C all brought better results compared

to the original version, no matter in power dissipation or execution cycles. But based on

42

Original Version A

Version B Version C

Figure 5.3: Physical measurement results for the four versions in Table 5.1.

Table 5.2: Simulated power and cycles for the unrolled loop in Figure 5.2.
Version power/cycles
Original 1.000/1.000
Version A 0.653/0.644
Version B 0.668/0.684
Version C 0.667/0.683

43

the simulation result, Version A is the best of the four versions. This is different from the

observation we got from the measurement result. Furthermore, even through we simulated the

whole program, the power consumption of the loop is a big part of that of the whole program

based on the comparison of the simulation results of the original version and version A. But

we can not see significant difference between the simulation results of version B and C, which

also disagree with the physical measurement result. We can not always trust the simulation

result.

5.3 CPU Power Measurement on Pentium 4 and Conroe

We validated our infrastructure on a Pentium 4 machine through measuring the current of the

CPU package. This machine runs Linux 2.6.9, GCC 3.4.2 and GCC 2.95.4. Pentium 4 has a

separate power cable for the CPU, and its voltage is 12V. We measure the current on this ca-

ble using a Tektronix TCP202 DC current probe, which is connected to a Tektronix TDS3014

oscilloscope. The experiment setup is shown in Figure 5.4. The data acquisition machine is

a Pentium 4 Linux machine that reads data from the oscilloscope when benchmark execution

time is larger than the window size of the oscilloscope and the measurement for the whole

benchmark execution is needed. Simultaneous benchmark execution and power data acquisi-

tion on different machines eliminates the interference to the measured benchmark. The picture

on the right of Figure 5.4 is our experimental setup, data acquisition machine is not shown in

the picture.

5.3.1 Precise Power Measurement

The oscilloscope has a TDS3TRG advanced trigger module. When it is in trigger mode, it

accepts trigger signals from one of its four channels. We use its edge trigger. It starts mea-

surement only after the voltage or current on the trigger channel increases to some predefined

threshold and stops when its window fills to its capacity of 10,000 data points. The data points

stay in the buffer until the next trigger signal comes. We generate the trigger signal through

controlling the numlock LED on the keyboard. A voltage probe is connected to the circuit of

the keyboard to measure the voltage on the led, as shown in Figure 5.4. The voltage difference

44

Mesured
System

Keyboard

Data
Acquisition

Machine

Oscilloscope

CPU current

trigger

Power data

Figure 5.4: The physical measurement infrastructure used in the experiments.

between when the light is on and off is more than 3.0V, which is big enough to trigger the

oscilloscope. The delay to set the trigger signal is small and does not affect our measurement

result.

The voltage on the trigger channel is set to high to trigger the oscilloscope at the beginning

of the program execution slice to measure. This voltage is consistently high until when it is set

to low at the end of this slice. Figure 5.5 shows the measurement result using trigger signals. It

is easy to identify the power behavior of the measured slice in the measurement result.

Data acquisition for a short program execution slice is easy since we can read the power

samples after the execution of this slice without loss of sample. When the oscilloscope is in its

trigger mode, the samples are stored in the oscilloscope until the next trigger signal is sent to

the oscilloscope.

45

0.0

1.5

3.0

4.5

6.0

Time

C
P
U

c
u
r
r
e
n
t
(
A
)

0

1

2

3

4

T
r
i
g
g
e
r

s
i
g
n
a
l
(
V
)

CPU Current Trigger Signal

2.33

1.54

1.14

1.00

1.65

2.55 1.98 2.18 1.94
1.80

1.65

0

1

2

gzi
p vp

r
gcc mcf

par
ser

per
lbm

k gap
vo

rte
x

bzi
p2

tw
olf

ave
rag

e

n
o
r
m
a
i
z
e
d

e
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

non-instru

Figure 5.5: The display window of the oscilloscope after the execution of a simpoint. The
dotted line is the trigger signal. The power curve for the measured simpoint is surrounded by
the trigger signal.

5.3.2 Measuring Whole Program Energy Consumption

The execution time of a benchmark is often much longer than the maximum measurement

record size in trigger mode of the oscilloscope, which is 100 seconds. We cannot cover the

power curve of the benchmark using trigger mode, so we use its auto mode to measure the

power behavior of the whole benchmark execution and still identify the exact power data points

for the benchmark by setting the voltage on the trigger channel to high and low before and after

the execution of each benchmark. But no instrumentation is needed to generate signals during

program execution. In auto mode, the oscilloscope records power data points continuously, the

data acquisition program is adjusted to read the data in each window without losing data points

or reading duplicated data points, due to too long or too short data reading period respectively.

This is validated through the comparison of the real benchmark execution time and the one

obtained from the measurement result.

Power measurement on the Conroe machine is similar to that on the Pentium 4 machine.

The power cable to the CPU package is measured and the keyboard is modified to generate

trigger signals.

46

Chapter 6

Power Phase Classification Using Combination of Control-flow and

Event Count

Experiments in Chapter 3 show that phase classification based on BBVs results in low error rate

in energy consumption estimation. However, two intervals that execute the same basic blocks

may generate different time-dependent power behavior due to run-time events, such as cache

misses and branch mispredictions. Phase classification only based on control flow informa-

tion can give us low error rate in estimating average metrics, but cannot precisely differentiate

these intervals, so the resulting simpoints may not really be representative in terms of power

behavior. Figure 1.2 in Chapter 1 shows the power curve of two intervals from the same phase

classified based on BBV. In order to accurately characterize the time-dependent power behav-

ior of a long-running program through simulating/measuring the selected simpoints, our phase

classification should be able to differentiate intervals as shown in Figure 1.2 and clssify them

into different phases. Through investigating the correlation between IPC and power dissipa-

tion, we propose a two-stage phase clssification method, which uses IPC to refine the phase

classification result based on control-flow information and validate this method on StrongARM

SA110 by simulation.

6.1 Correlation between IPC and Power Dissipation

From the results of profiling both IPC and power dissipation for each interval, we find a direct

correlation between these two. [12], [66] and [40] also mentioned similar correlation between

IPC and power. Power dissipation in each cycle depends on the work done in that cycle. Dy-

namic power behavior of an interval depends on execution cycles and power per cycle. Both

are proportional to IPC. If two intervals with similar executed basic blocks have different IPC,

we can say that they have different time-dependent power behavior since both power per cycle

47

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

777776444333332222222222222222211111
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65
77776544433333222222222222222221111

po
w

er
 d

is
si

pa
tio

n

IP
C

cluster number

IPC

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

777776444333332222222222222222211111
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65
77776544433333222222222222222221111

po
w

er
 d

is
si

pa
tio

n

IP
C

cluster number

IPC
power

Figure 6.1: Correlation between power and IPC for intervals of jpegencode.

and total execution cycles are different. Figure 6.1 shows this correlation for jpegencode. Clus-

ter numbers are the result of SimPoint phase classification. Not all of the cluster numbers are

shown here due to the limited space on x axes. They are shown every 7 clusters from the first

one on the primary x axes, and from the fifth cluster on the secondary x axes.

There are totally 247 intervals, each has 1 million instructions. The x axis is the cluster that

each interval belongs to. The primary y axis on left is the power dissipation of each interval.

The secondary y axis on right is the profiled IPC for each interval. Intervals are shown in the

order of their cluster number and their appearance in program execution, so that we can see the

difference of power dissipation and IPC among all the intervals from the same cluster generated

by SimPoint. Within each cluster, the correlation between power and IPC is obvious. For

instance, in cluster 2, the same basic blocks are executed, high IPC means low power dissipation

and vice versa. Similar correlation exists in the other benchmarks in our experiments. If we

can classify the intervals from the same BBV-based cluster based on IPC, intervals from a new

cluster will have higher similarity.

6.2 A two-stage Program Power Phase Classification

Based on the obaervation in 6.1, a new phase classification method, which combines BBV and

IPC to classify intervals, can be used to get the representative intervals for power behavior

characterization. By this method, intervals with similar BBVs but different IPCs are classified

into different phases. The difference level between IPCs is adjustable to balance the accuracy

48

and time cost.

An objective of this infrastructure is to find representative slices for the power behavior of a

program. Figure 6.2 shows the process used to characterize program dynamic power behavior.

The simulator used in step 1 is sim-outorder for ARM from SimpleScalar V4.0. The power

simulator used in step 3 is sim-panalyzer [2]. Sim-outorder is modified to apply BBV and IPC

profiling. Sim-panalyzer is modified to get the power dissipation of the specified piece of code

and record power values based on the given granularity.

The input to this process includes the ARM binary code of the program compiled with

the -static option, a script file showing the interval size and how to run the program, and the

granularity for recording the power values during simulation. Profiling of basic block vectors

and IPC is performed first to get the basic block vector and IPC value for each interval. The the

intervals are classified into different clusters and then a representative interval, calledppoint.

is selected from each cluster and simulated for detailed power information. Finally, the power

behavior of each ppoint is expressed graphically. The output of the tool includes the ppoints, the

power dissipation and number of occurrence for each ppoint, total power dissipation estimation,

sequence of ppoints in the occurrence order of their corresponding cluster, and the graph for

each ppoint. From the output of this tool, users can easily derive the overall power behavior of

the program, without high cost in time and space.

6.2.1 Using IPC to Refine Control-folw-based Phase Classification

Figure 6.2 illustrates the two-stage classification used to get the ppoints. Phase classification 1

and 2 are independent. Phase classification 1 generates clusters based on the similarity between

basic block vectors. The intervals clustered into the same phase execute similar binary code.

Phase classification 2 generates clusters based on similarity between IPCs. After the two-stage

classification, intervals from the same phase have similar IPC values. Intervals from different

phases must have different power behavior whether they execute the similar basic blocks or

not, since they have either different basic block vectors or different IPC.

The assumption of this power phase classification is that, if different executions of the

same basic blocks have different power dissipation, they have different power behavior. Our

tool combines the clusters from these two phase classification methods to do clustering. The

49

Profiling

Phase classification 1 Phase classification 2

Final phase
classification

Power
simulation and
data processing

step 1

step 2

step 3

step 4

binary code
granularity

script

ppoints
Simulation script

IPC-based
Clusters

IPC fileBBV file

BBV-based
Clusters

Experimental
result

Figure 6.2: Dynamic power behavior characterization process

50

correlation between IPC and power dissipation ensures that the intervals of the same cluster

of the BBV-based classification, but with different power consumption, are partitioned into

different clusters in step 3 of Figure 6.2.

In the current implementation of our tool, the number of phases identified in classification

1 is no more than 10. It is exactly the same phase classification as in SimPoint. The best

number between 1 and 10 is selected during the classification procedure. The number of phases

identified in classification 2 is 10.

In step 3 of Figure 6.2, the final clusters and ppoints are generated. Suppose the number

of clusters from classification 1 and classification 2 are Nbbv and Nipc respectively. The initial

number of final clusters is Nbbv×Nipc. Let Cbbv be the cluster ID of an interval in classification

1 and Cipc be the one in classification 2. The cluster of an interval C is determined by:

C = (Cbbv − 1) × Nipc + (Cipc − 1)) + 1 (6.1)

where Cbbv ranges from 1 to Nbbv and Cipc ranges from 1 to Nipc. It is unlikely that the

IPC values of every cluster in classification 1 fall into Nipc clusters in classification 2, so some

clusters are empty. These clusters are pruned and cluster IDs are adjusted to get the final

classification. Later experimental results show that the real number of final clusters is much

smaller than Nbbv × Nipc and 10 is too large in classification 2 for some benchmarks.

6.2.2 Controlling Unnecessarily Fine Phase Classification

Using a constant K value for the IPC-based phase classification of all programs results in un-

necessarily fine partitioning and more simpoints to simulate or measure when the IPC values

of the intervals in the same phase are already very close to each other. We control the number

of resulting phases based on IPC in two steps.

The first step controls the selection of the initial centers based on the maximum and min-

imum IPC of the program. A percentage of the minimum IPC value is used as the distance d

between the initial centers. This ensures that intervals with very close IPCs need no further par-

titioning and the final number of clusters does not explode with little benefit. This percentage

51

is adjustable in our infrastructure. The maximum value is divided by d. The value of quotient

plus 1 is then compared with the given k. The smaller one is used as number of clusters. This

value may be 1, meaning that the IPC values of all of the intervals are very close and no finer

partitioning is necessary.

The second step maintains the distance between centers during the initialization of the cen-

ters in case there is a IPC much higher than others, but there are only two different IPC values

during program execution. The first step does not know this and the number of clusters will

be k which results in unnecessarily more cluaters. This step is similar to the construction of

a minimum spanning tree except that we use the largest values in each step to choose the next

initial center. The first initial center is selected randomly. During the generation of the other

initial centers, each time the value with largest distance to the existing centers is the candidate.

If this distance value is less than half of d, no more initial centers are generated. This pre-

vents intervals with the similar BBVs and very close IPCs from being partitioned into different

clusters.

6.3 Experimental Results

6.3.1 Benchmarks and Experimental Setup

10 benchmarks from MediaBench [39] are used for the verification of this new phase classifica-

tion method. The description of the benchmarks and the baseline configuration for simulation

are shown in Table 3.1 and Table 3.2, respectively in Chapter 3. The power configuration is

almost the same as the default configuration provided with Sim-panalyzer.

We enlarge the input to adpcmencode, adpcmdecode, unepic and jpegencode to make them

run longer, so that a uniform interval size, 1 million, can be used. jpegencode does not work

on the large input and is removed from the final experimental results. These 10 benchmarks

are used because of hardware condition. These 10 benchmarks are the only ones that can be

compiled successfully and run on our Skiff board.

Each benchmark is compiled with -static and -msoft-float options by gcc2.95.2

on the Skiff board. Then the binary code, a script file, and a granularity of 10, are input to the

tool. After the process in Figure 6.2, the ppoints and other output files are generated.

52

This phase classificaiton method is also evaluated through experiments on a real system in

Chapter 8.

6.3.2 Experimental Results

To illustrate the improvement of our tool in finding representative points for power behavior, we

simulate the power dissipation of each interval for each benchmark and use the average relative

standard deviation(RSD) in power dissipation of each benchmark to evaluate the benefit from

our classification method. Higher average RSD means the classification method is worse. We

divide the standard deviation of each cluster by the average interval power dissipation of the

cluster to get the RSD of each cluster. Then the average of the RSDs of all of the clusters is the

average RSD for the benchmark.We compare three methods of getting representative intervals.

1. BBV the original SimPoint method. No more than 10 clusters are generated.

2. BBV-k the same classification method as in SimPoint, but is given the same number

of clusters as generated by the BBV+IPC method. The best number is selected by the

classification procedure.

3. BBV+IPC our new phase classification. Both the old method with fixed number of

clusters and the new one with flexible clusters are considered here.

In the following figures, There are three columns for each benchmark, corresponding to the

three methods, left to right.

BBV+IPC Method without Finer Classification Control

Figure 6.3(a) shows the decrease in normalized average relative standard deviation(RSD) of the

clusters for each benchmark. Figure 6.3 (b) shows the decrease in average RSD of the clusters

for each benchmark. The BBV+IPC method in Figure 6.3 is the old one with fixed number of

clusters. That is, there are 10 clusters based on IPC.

In Figure 6.3(a), our old IPC+BBV method aggressively decreases the RSD for most of

the benchmarks relative to the RSD of the BBV method. The average relative decrease is

68%. The average numbr of ppoints to simulate is 20.55, about twice of that generated in

53

BBV+IPCBBV-kBBV

0

0.2

0.4

0.6

0.8

1

ad
pc

m
en

co
de

ad
pc

m
de

co
de ep

ic

un
ep

ic

g7
21

en
co

de

g7
21

de
co

de

jpe
ge

nc
od

e

m
pe

g2
en

co
de

m
pe

g2
de

co
de

av
er

ag
e

N
or

m
al

iz
ed

 S
td

. D
ev

 in
 p

ow
er

BBV+IPCBBV-kBBV

0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

ad
pc

m
en

co
de

ad
pc

m
de

co
de ep

ic

un
ep

ic

g7
21

en
co

de

g7
21

de
co

de

jpe
ge

nc
od

e

m
pe

g2
en

co
de

m
pe

g2
de

co
de

av
er

ag
e

R
el

at
iv

e
S

td
. D

ev
 in

 p
ow

er

(a) (b)

Figure 6.3: Decrease in RSD. The BBV+IPC method is the old one with fixed number of
clusters.

BBV+IPCBBV-kBBV

0

0.2

0.4

0.6

0.8

1

ad
pc

m
en

co
de

ad
pc

m
de

co
de ep

ic

un
ep

ic

g7
21

en
co

de

g7
21

de
co

de

jpe
ge

nc
od

e

m
pe

g2
en

co
de

m
pe

g2
de

co
de

av
er

ag
e

N
or

m
al

iz
ed

 S
td

. D
ev

 in
 p

ow
er

BBV BBV-k BBV+IPC

0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

ad
pc

m
en

co
de

ad
pc

m
de

co
de ep

ic

un
ep

ic

g7
21

en
co

de

g7
21

de
co

de

jpe
ge

nc
od

e

m
pe

g2
en

co
de

m
pe

g2
de

co
de

av
er

ag
e

R
el

at
iv

e
S

td
. D

ev
 in

 p
ow

er

(a) (b)

Figure 6.4: Decrease in RSD. The BBV+IPC method is the new one with flexible number of
clusters

the BBV method. For the old IPC+BBV method, finer classification can be obtained through

increasing the number of clusters based on IPC. But there is a trade-off between the granularity

and simulation time.

For some benchmarks, such as adpcmencode, adpcmdecode, g721encode and g721decode,

although there is a big relative decrease in RSD in In Figure 6.3(a), Figure 6.3(b) shows that the

absolute decrease in RSD is very small. For example, BBV+IPC decreases the average RSD of

g721encode by almost 90%, but the change in absolute RSD is from 0.13% to 0.01%. The ben-

efit can not offset the extra time and space consumption of the unnecessary ppoints. Restriction

on number of IPC-based clusters is needed to control unnecessary finer classifications.

54

BBV+IPC Method with Finer Classification Control

Figure 6.4 shows the relative and absolute decrease in average RSD. Through the restriction

on phase classification based on IPC described in section 3, there is no finer classification

for the 4 benchmarks with already very low average RSD. The average number of ppoints

is reduced from 20.55 to 14.55, by about 30%. The average relative decrease by BBV+IPC

in Figure 6.4(a) is 38%, much less than the relative decrease of the old BBV+IPC. But the

relative improvement to the 6 benchmarks that have a high average RSD in SimPoint is 56%,

comparable to the 64% relative improvement for the same benchmarks by the old BBV+IPC.

Figure 6.4 (b) shows that when the refined phase classification is used, five out of the six

benchmarks with high RSD show the same improvement as when the BBV+IPC without finer

classification control is used. epic gets the same improvement from BBV-k. As to averaged

decrease in RSD for all of the benchmarks, the new BBV+IPC gets a decrease from 0.82% to

0.38%, while the old method gets a decrease from 0.82% to 0.31%. The difference is less than

10%. This is also acceptable considering the 30% reduction in number of ppoints. With the

increase in number of IPC-based clusters, the benefit from the unnecessary finer classificaiton

gets larger. The trade-off between the number of ppoints and the accuracy depends on the

requirement of the user.

For the two intervals in Figure 1.2, our BBV+IPC classifies them into two different phases.

They are identified to have different power behavior. Figure 6.5 shows the power and IPC for

each interval of jpegdecode. The same method is used to show the cluster numbers on the two x

axes as in Figure 6.1.We can see the power line for each cluster is smoother than in Figure 6.1.

The decrease in average RSD is 67% for jpegdecode.

BBV-based Classification with Larger K

The columns for the BBV-k method in Figure 6.3 and Figure 6.4 show the insufficiency of

SimPoint in find representative intervals for power behavior. Even though it is given the same

number of initial clusters as in BBV+IPC, its improvement in RSD is much less. Since the

phase classification of SimPoint is based on BBVs, it generates fewer clusters than the given

number. That is, only this number of phases can be identified. The improvement from BBV-k

55

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

1919191717151199888775555555554443332211111
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65
19191917161299988876555555554443332221111

po
w

er
 d

is
si

pa
tio

n

IP
C

cluster number

IPC

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

1919191717151199888775555555554443332211111
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65
19191917161299988876555555554443332221111

po
w

er
 d

is
si

pa
tio

n

IP
C

cluster number

IPC
power

Figure 6.5: Power and IPC for each cluster of jpegencode after the BBV+IPC classification.

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

121211111111111110108764433333333333222221111
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65
121211111111111110107764433333333333222221111

po
w

er
 d

is
si

pa
tio

n

IP
C

cluster number

IPC

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

121211111111111110108764433333333333222221111
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65
121211111111111110107764433333333333222221111

po
w

er
 d

is
si

pa
tio

n

IP
C

cluster number

IPC
power

Figure 6.6: Power and IPC for each cluster of jpegencode after the BBV-k classification.

remains the same in Figure 6.3 and Figure 6.4, although the given number of initial IPC centers

is changed by 30%. This again shows the limitation of SimPoint in find representative intervals

for power behavior characterization.

Figure 6.6 shows the power and IPC for the intervals of the clusters generated by the BBV-

k method. The same method is used to show the cluster numbers on the two x axes as in

Figure 6.1. This is different from Figure 6.1 because of the larger number of initial centers.

This K is the same as the number of clusters in Figure 6.5. Even when a k value of 19 is given

to BBV-k, it generates only 12 clusters. That is, only 12 phases are identified. The difference

of power and IPC among intervals from the same cluster is still large, e.g. cluster 1 and 11. The

two intervals in Figure 1.2 are still in the same cluster.

Error rates for estimation of total power dissipation are not shown here. Since our BBV+IPC

56

method only refines the clusters generated by SimPoint. The error rate should not be higher

than the values in Figure 3.2.

Through refining the BBV-based phase classification using runtime event counts, we get a

better classification method for program power behavior characterization.

57

Chapter 7

Infrequent Basic Block-based Program Phase Classification

Through simulation, we demonstrated that we can estimate the power consumption of a pro-

gram using the power consumption of the selected representative intervals. When we want to

validate the feasibility of SimPoint for power estimation on a real machine, we need to iden-

tify a representative interval during program execution to measure its power. In order to get the

power curve that is as close to the real power behavior of the interval as possible, the instrumen-

tation overhead should be very low so that it does not interfere the measured power behavior.

Intervals with a fixed number of instructions do not work now, since dynamically counting the

number of executed instructions brings high overhead.

Research in performance optimization often concentrates the optimization effort on fre-

quently executed code. However, a large part of most programs is infrequently executed. The

execution of an infrequently executed basic block often means a transition in program execu-

tion. It may be a transition from one phase to another, or a transition within the same phase, but

from one group of instructions to another group. Using infrequently executed basic blocks to

demarcate intervals may help us get better phase classification. What is more important is that

through instrumenting these infrequently executed basic blocks, we can dynamically identify

the beginning and the end of an interval during program execution with negligible overhead

[26].

We measure the power consumption of both whole program execution and representative

intervals using the measurement setup described in Chapter 5.

7.1 Which Basic Blocks are Infrequent?

Different program/input pairs execute different number of basic blocks. It is hard, if not im-

possible, to choose an absolute number as the best threshold for all programs to determine

58

infrequent basic blocks. After trying several methods of determining infrequent basic blocks,

we use a percentage to find relatively infrequent basic blocks for each benchmark, instead of

using an explicit frequency as the threshold. This percentage is the ratio of the total execution

times of all infrequent basic blocks in that of all basic blocks. We sort the basic blocks based on

their execution frequencies in decreasing order, then add up the numbers from the smallest one.

When the sum is larger than the specified threshold, for example, 5% of the total executions

times of all basic blocks, this procedure stops and the scanned basic blocks before the last one

are selected as infrequent basic blocks for this program/input pair. Intuition tells us that when

a low threshold is used, the selected infrequent basic blocks are distributed sparsely in program

execution and the difference in size among the resulting intervals is larger than when a higher

threshold is used.

Through simulating the MediaBench benchmarks, we also investigated the trade-off among

infrequency threshold, program energy consumption estimation error, simulation workload and

instrumentation overhead. Figure 7.1 shows the simulation result. The threshold on x axis is

defined as in Section 7.2. The values are averaged over all of the benchmarks.

0

15

30

45

60

75

0.001 0.005 0.01 0.05 0.1 1 5 10

threshold(%)

e
s
t
i
m
a
t
i
o
n

e
r
r
o
r
(
%
)

0

1

2

3

4

5

6

7

8

9

10

i
n
s
t
r
u
m
e
n
t
a
t
i
o
n

o
v
e
r
h
e
a
d
(
%
)

power_err1 sim_ratio overhead(BB) overhead(inst)

Figure 7.1: Trade-off between Accuracy and Simulation/Measurement Workload.

power err is the error rate of using the energy consumption of representative intervals to

estimate the energy consumption of the whole program. sim ratio is the ratio the number of

simulated instruction in the total number of instruction of the program execution. It means

59

the simulation workload. When the infrequency threshold is lower, the interval size is larger

due to the sparse infrequent basic blocks, which results in a large number of instructions being

simulated as instructions in the representative intervals. Estimation error rate is also higher

because of the largely variant interval size. When the threshold is increased, there are more

basic blocks that can be used to demarcate intervals and interval size is decreased. But instru-

mentation overhead is increased since more basic blocks should be instrumented in order to

identify an interval during program execution. Figure 7.1 show that threshold 1% is the best

one among the 8 ones we tried in experiments. This conclusion is consistent the one we draw

in the experiments performed on a real system through physical measurement.

7.2 Basic Block Execution Frequency Profiling and Infrequent Basic Blocks Se-

lection

Camino provides interfaces for basic block level instrumentation. At the entrance to each ba-

sic block, a call to a execution frequency counting library function is inserted. The distinct

reference value of the basic block is passed to the function that increments the frequency of

this basic block. Here we count the absolute execution frequency, that is, the number of times

that a basic block is executed. Counts for the basic blocks are available after the instrumented

program execution.

We try 3 different threshold values, 0.1%, 1%, and 5%, to investigate the trade-off between

interval size variance and instrumentation overhead.

7.3 BBV Profiling and Program Execution Partition

As in SimPoint 2.0, we use BBV of both frequent and infrequent basic blocks as the fingerprint

of an interval. Although infrequent basic blocks are used to demarcate intervals, partitioning

program execution just based on the number of executed infrequent basic blocks may generate

too small or too large intervals depending on the distribution of the infrequent basic blocks. Too

small intervals often result in too many phases. Too large intervals are hard to measure with

high precision using our measurement equipment. So we use a number of executed instructions

to make the final interval lengths as uniform as possible.

60

Instrumentation for BBV profiling is similar to that for basic block execution frequency

profiling, except that a different library function is called. All basic blocks are instrumented,

so that we can get the complete fingerprint of the basic blocks in an interval. An interval

size of 30 million instructions is used to avoid too large or too small intervals. The library

function counts both the number of executed instructions for each basic block and the total

number of executed instructions for the current interval. When an infrequent basic block is

encountered, if the current total number of instructions is larger than or equal to 30 million,

this basic block indicates the end of the current interval and it is the first basic block of the

next interval. Figure 7.2 illustrates the interval partition using the combination of infrequent

basic block and interval size. Here A, B, C, and D are basic blocks. C and D are infrequent

and used to demarcate intervals. The lengths of the intervals can vary significantly and depend

on the distribution of infrequently executed basic blocks across the program execution. Only

the occurrences of C and D in shadow mark intervals. Other occurrences do not mark intervals

because the interval size is smaller than 30 million when they are encountered. We get intervals

of similar size by using this method. An execution frequency counter of C and D can be used

to identify the exact execution of an interval. For example, the fourth interval starts when the

counter is 5 and ends when the counter is 6.

Jan. 30, 2007 HiPEAC 2007 8

Interval Partitioning

� Infrequent basic block selection
o BB execution frequency profiling
o Which BBs are infrequent?

Relative infrequency threshold
0.1%, 1% of total BB execution times

� Variable interval length
o Determined by infrequent BBs and pre-defined size
o Close to the pre-defined size for most intervals

C, D : selected infrequent based blocks
30M: pre-defined interval size

…….DABBBAABCBBCAAACAAAAAAABCAABBBDBADDACBBBCBAAABBABD ACCBBA ABAC……

30M 30M 30M 30M 30M 30M 30M 30M 30M 30M 30M

DD C C C D C

basic block sequence

number of instructions

C

Figure 7.2: Interval partitioning using infrequent basic blocks and interval length.

7.4 A SimPoint-like Method for Phase Classification

Since the intervals are demarcated by infrequently executed basic blocks, they may have vari-

able number of instructions. K-Means clustering is used for phase classification based on the

BBVs collected in Section 7.3. As in SimPoint, the BBV of each interval is projected to a

vector with much smaller dimension. Then k initial cluster centers are selected. The distance

61

between a vector and each center is calculated and each vector is classified into the cluster with

the shortest distance. A cluster center is changed to the average of the current cluster members

after each iteration. The iteration stops after the number of vectors in each cluster is stable. The

simpoint of a phase is the one that is closest to the center of the cluster.

Weighting a simpoint with just the number of intervals in its phase cannot reflect the real

proportion of this phase in whole program execution. We changed the weighting method such

that each simpoint has two weights. The first weight is based on the percentage of the number

of executed instructions of the corresponding phase in that of the whole program. Since we

also profile the number of executed instructions for each interval in Section 7.3, it is easy to

get this value and use it in the process of K-Means clustering. This weight is used to estimated

the behavior of the whole program. The second weight is based on the number of intervals in

the corresponding phase as in [3]. It tells us the number of occurrences of each simpoint in

behavior estimation for the whole program execution.

The calculation of BIC (Bayesian Information Criterion) score is also changed to take vari-

able interval lengths into account. We use the weights based on the number of executed in-

structions in each phase to calculate the log likelihood, such that phases with longer intervals

have larger influence. It is similar to the calculation used in SimPoint 3.1 [37], but instead of

using weight of each interval, we use the weight of each phase, which is simple since there are

usually much fewer simpoints than intervals, and the weights based on variable interval lengths

are already calculated.

Clustering is performed for different number of clusters and different cluster seeds. BIC

scores from different clustering are compared and the one with the best trade-off between BIC

score and number of phases is selected as the final clustering model. Intervals are clustered

based on this model, and the simpoints and weights are calculated. The distinct reference

values of the two infrequent basic blocks that demarcate each simpoint are recorded. These

basic blocks are the final infrequent basic blocks that are instrumented for power measurement.

62

7.5 Low-overhead Instrumentation for Power Measurement

We use physical power measurement to verify that the selected simpoints are representative in

energy consumption estimation. Instrumentation is needed to identify the data points for each

simpoint in the final measurement result. We choose static instrumentation instead of using a

dynamic instrumentation tool such as Pin [42] used in a previous work [31] because we want

to instrument the program on basic block level, and at the same time lower the interference to

the measured program as much as possible. We use Camino to instrument a program statically

to generate special signals at the beginning and at the end of a simpoint, so that we can get a

measurement result in high resolution and as close as possible to the real power behavior of

each simpoint.

To identify a simpoint, we use the execution frequency of each infrequent basic block pro-

filed in Section 7.3 and the final infrequent basic blocks recorded in Section 7.4. Our infras-

tructure supports two power measurement methods for any selected intervals.

One method is to measure the intervals selected by the phase classification, here the sim-

points, in one program execution. By counting the execution times of the final infrequent basic

blocks in all of the intervals, we get the number of execution times of the final infrequent ba-

sic blocks before each simpoint, and the number of execution times of these basic blocks in

each simpoint. This information is put into a file for future reference by a library function to

mark the beginning and the end of each simpoint. All of the final infrequent basic blocks are

instrumented to call this library function, which counts up the execution times of these basic

blocks and generates special signal to trigger the power measurement device when the counter

reaches the recorded number of execution times before the beginning or to mark the end of a

simpoint. To reduce comparison time, the simpoints are sorted in the order of their occurrence

in program execution and the corresponding numbers are read into a linked list at the beginning

of the program execution. A pointer to the node for the current simpoint moves one step after a

simpoint is finished, such that we avoid searching for the fast-forwarding information. Off-line

data analysis identifies each simpoint in the continuous measurement result based on the sig-

nals before and after the simpoint. The instrumentation overhead of this method is discussed in

the next section.

63

The other method is to generate one executable for each simpoint for power measurement.

Infrequent intervals that demarcate different simpoints are usually different, so this method has

even lower instrumentation overhead than the first one. For a simpoint, only the final infrequent

basic blocks that demarcate this simpoint are instrumented to call a library function, which in-

crements a counter and generates special signals. The numbers of executed basic blocks for

each simpoint are put into a separate file and are read into two variables at the beginning of

program execution. This method separates the measurement of the simpoints into independent

tasks. Users may choose to measure only the simpoints that represent long phases. It provides

more detailed power behavior of the measured simpoints using our power measurement infras-

tructure, but the program is executed one time for each measurement, although the execution

stops immediately after the measured simpoint.

7.6 Benchmarks

The benchmarks are from the members of SPEC CPU2000 INT that can be compiled by

Camino successfully, shown in Table 7.1. gzip, vpr, mcf, parser and twolf are compiled with

GCC 3.4.2. The other benchmarks are compiled with GCC 2.95.4 because the combination of

Camino and GCC 3.4.2 fails in compiling these benchmarks correctly.

Table 7.1: SPEC CPU2000 INT benchmarks
164.gzip Data compression using Lempel-Ziv coding (LZ77)
175.vpr Integrated circuit placement and routing in FPGAs)
176.gcc C compiler for Motorola 88100 based on gcc 2.7.2.2
181.mcf Combinatorial optimization/Single-depot vehicle scheduling
197.parser Syntactic parser that does grammar analysis for English text
253.perlbmk Cut-down version of Perl v5.005 03
254.gap Language and library designed for group-theoretic computation
255.vortex Single-user object-oriented database transaction
256.bzip2 Block-sorting compression
300.twolf Transistors placement and global connections

64

7.7 Instrumentation Overhead Evaluation

The original 10 SPEC CPU2000 integer benchmarks without any instrumentation are measured

to obtain their CPU energy consumption. To show the low overhead of our instrumentation

method, we also measure the CPU energy consumption with instrumentation on all final infre-

quent basic blocks obtained in Section 7.5. We control another LED instead of numlock in this

instrumentation, so that there is no impact on the signal on the trigger channel, and the energy

consumption is almost the same. Only the instrumentation overhead for the first method in

Section 7.5 is measured here. The second method has even lower overhead since fewer basic

blocks are instrumented. Figure 7.3 shows the overhead of the instrumentation using differ-

ent thresholds. It is normalized to the measured energy consumption of the uninstrumented

benchmarks. A positive value means the measured energy consumption for this configuration

is larger than that of the uninstrumented one. A negative value means the opposite. The mea-

sured energy consumption for any threshold is almost the same as that of the uninstrumented

ones. For some benchmarks, for example, perlbmk and bzip2, the energy consumption of the

instrumented program is even lower than the uninstrumented program. One possible reason

is that inserting instructions somewhere might accidentally improve the performance or power

consumption, possibly due to a reduction in conflict misses in the cache because of different

code placement. We notice that the four values are almost the same for mcf. The reason is that

the all the frequently executed basic blocks are in 4 of the 30 identified phases when SimPoint

is used. The final instrumented basic blocks for the large phases are mostly infrequent. Sim-

Point has a very high overhead for most benchmarks because the basic blocks demarcating the

intervals are executed frequently. Figure 7.4 shows the same trend in measured execution time

when different thresholds are used.

7.8 Measuring Energy Consumption of Simpoints

Energy consumption of each simpoint is measured using the trigger mode of the oscilloscope.

Measuring all simpoints in one program execution in auto mode takes shorter time, but the res-

olution is much lower than the other method because the communication latency between the

oscilloscope and the data acquisition machine put an upper bound on the resolution we can use,

65

0.17

0.10

0.971.071.351.251.880.790.631.68 0.75

-0.1

0.0

0.1

0.2

0.3

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageno
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

di
ffe

re
nc

e

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

0.14

0.00

0.800.941.180.981.550.650.541.33 0.65

-0.1

0.0

0.1

0.2

0.3

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf average

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
di

ffe
re

nc
e

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

Figure 7.3: Normalized overhead in energy consumption of instrumented benchmarks using
different thresholds.

0.17

0.10

0.971.071.351.251.880.790.631.68 0.75

-0.1

0.0

0.1

0.2

0.3

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageno
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

di
ffe

re
nc

e

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

0.14

0.00

0.800.941.180.981.550.650.541.33 0.65

-0.1

0.0

0.1

0.2

0.3

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf average

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
di

ffe
re

nc
e

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

Figure 7.4: Normalized overhead in execution time of instrumented benchmarks using different
thresholds.

otherwise, some data points will be lost. Measuring the simpoints one by one removes this lim-

itation, so we can get very high resolution. Program execution and data acquisition are on the

same machine. Reading data from the oscilloscope is always performed after the measurement

of a simpoints is done. There is still no interference to the measured program execution. We use

the second instrumentation method in Section 7.5, and implement an automatic measurement

and data acquisition process to do measurement of any number of simpoints as a single task.

7.9 Error Rates in Whole Program Energy Consumption Estimation

We tried three different thresholds to find infrequent basic blocks, 0.1%, 1%,and 5%. In each

case, the total absolute execution frequency of the selected infrequent basic blocks are less

than 0.1%, 1%, or 5% of total execution frequency of all basic blocks. The basic blocks in-

strumented for power measurement are a subset of these. Actually, at most two of them are

instrumented for physical measurement of each simpoint. A maximum number of clusters, 30,

is used to find the best clustering as in SimPoint [3]. We also show the experimental results

66

of SimPoint with a fixed interval length of 10 million instructions. We do not claim that our

phase classification method is more accurate than SimPoint. Rather, we show that we can also

find the representative slices for program execution using infrequent basic blocks to demarcate

intervals, and this method enables power physical measurement of simpoints with very low in-

strumentation overhead and provides a way to get fine-grained time-dependent power behavior

through measurement.

Using the power measurement infrastructure described in Section 5.3, we measured the

CPU power curves for the uninstrumented benchmarks, the ones with all final basic blocks

instrumented, the simpoints of the two instrumentation methods mentioned in Section 7.5. En-

ergy consumption is calculated as

E = U ×
∑

(I × t)

where E is energy consumption, U is the voltage of CPU, I is the measured current on the

CPU power cable, t is the time resolution of the power data points. The sum is over all of the

data points for one benchmark or simpoint.

Due to the variable interval lengths, we estimate the total energy consumption using the

weight based on our modified weighting scheme in Section 7.4. energy/instruction is calculated

for each simpoint, the products of this value and the weight are added up, and the estimated

energy consumption is the product of this weighted energy/instruction and the total number of

instructions. Energy estimation error rate is calculated as

error =
|energy estimated − energy measured|

energy measured

Time estimation is similar to energy estimation.

Figure 7.5 shows the error rates of the infrequent basic block-based phase classification

method with different thresholds and SimPoint with fixed interval size of 10M instructions.

Error rate is based on the comparison between estimated energy and measured energy of the

uninstrumented benchmarks. The columns show us the trade-off between interval size variance

and instrumentation overhead. Low threshold results in variable length intervals clustered into

the same cluster. But the interference to the program execution is also low since only a few

67

basic blocks are instrumented. The opposite is true when a high threshold of 5% is used. The

interval size is more stable in the same phase, but the instrumentation overhead is high. When

threshold 1% is used, we get the lowest error rate among the three. SimPoint has high error

rates due to the high frequency of the instrumented basic blocks. In our experiment result, the

number of intervals increases with the increase in the threshold used to find infrequent basic

blocks. Graphs are not shown here due to space limitation.

0. 29

74. 7369. 9396. 51123. 9379. 93122. 8458. 24105. 62
37. 58

52. 41

0

10

20

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageen
er

gy
 e

st
im

at
io

n
er

ro
r r

at
e(

%
)

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

40. 23
41. 38

0

10

20

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageen
er

gy
 e

xt
im

at
io

n
er

ro
r r

at
e(

%
)

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

3041.62 19692. 6715635. 765204. 0513077. 03 15417. 377232. 85 18275. 54

9498. 21

12685. 7011717. 9011105. 64

0

1000

2000

3000

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf average

#o
f i

ns
tru

m
en

ta
tio

ns
/m

se
c

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

Figure 7.5: Error rates of energy consumption estimation when different thresholds are used,
based on comparison between estimated and measured energy of uninstrumented benchmarks.

0. 29

74. 7369. 9396. 51123. 9379. 93122. 8458. 24105. 62
37. 58

52. 41

0

10

20

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageen
er

gy
 e

st
im

at
io

n
er

ro
r r

at
e(

%
)

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

40. 23
41. 38

0

10

20

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageen
er

gy
 e

xt
im

at
io

n
er

ro
r r

at
e(

%
)

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

3041.62 19692. 6715635. 765204. 0513077. 03 15417. 377232. 85 18275. 54

9498. 21

12685. 7011717. 9011105. 64

0

1000

2000

3000

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf average

#o
f i

ns
tru

m
en

ta
tio

ns
/m

se
c

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

Figure 7.6: Error rates of energy consumption estimation when different thresholds are used,
based on comparison between estimated and measured energy of instrumented benchmarks
shown in Figure 7.3.

To verify that the low error rates in Figure 7.5 are not obtained by accident and the selected

simpoints are really representative of the program execution, in Figure 7.6, we show the error

rates when the estimated energy consumption is calculated from the measured simpoints with

all final infrequent basic blocks instrumented and compare this estimation to the measured en-

ergy consumption of the whole benchmark with all final infrequent basic blocks instrumented.

Here SimPoint has very low average error rate since instrumentation overhead does not affect

68

0. 29

74. 7369. 9396. 51123. 9379. 93122. 8458. 24105. 62
37. 58

52. 41

0

10

20

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageen
er

gy
 e

st
im

at
io

n
er

ro
r r

at
e(

%
)

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

40. 23
41. 38

0

10

20

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf averageen
er

gy
 e

xt
im

at
io

n
er

ro
r r

at
e(

%
)

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

3041.62 19692. 6715635. 765204. 0513077. 03 15417. 377232. 85 18275. 54

9498. 21

12685. 7011717. 9011105. 64

0

1000

2000

3000

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf average

#o
f i

ns
tru

m
en

ta
tio

ns
/m

se
c

infrequent-0.1

infrequent-1

infrequent-5

SimPoint

Figure 7.7: The number of instrumentation per millisecond during the program execution in
simpoints.

the estimation accuracy now. It is less than 6% after gcc is removed from the benchmark group.

This error rate might be higher than the error rate evaluated through simulation because there

is an operation to set the voltage to a low value at the end of each simpoint, but there is no

such operation at the end of other intervals. This causes higher estimated energy consump-

tion, but does not affect the precision of the measured power behavior of simpoints. Our new

phase classification has lower error rates for some benchmarks. One possible reason is that the

program behavior of these benchmarks is hard to characterized by simpoints of the same size.

The low error rate in Figure 7.6 shows that the selected simpoints are truly representative of the

program execution and our low overhead instrumentation method enables us to get the program

time-dependent power behavior that is very close to the real power behavior.

Lau et. al proposed variable length intervals and hierarchical phase behavior [37]. We

did not validate the profiling and clustering in the new SimPoint version in energy estimation

consumption because time-dependent power behavior observation is our objective and thus

small and similar interval sizes, detailed BBVs, and low overhead are necessary.

Figure 7.7 shows the frequency of instrumented basic blocks during the program execu-

tion in simpoints. Here we can see that instrumentation overhead increases with the increased

threshold. This is consistent with our explanation of the trade-off between interval size variance

and instrumentation overhead. SimPoint has the highest value because of the high frequency of

the basic blocks that demarcate the simpoints.

Using infrequently executed BBs to demarcate intervals results in negligible instrumenta-

tion overhead and enables accurate and efficient program power behavior characterization on

69

real systems.

70

Chapter 8

An Infrastructure for Efficient Power Behavior Characterization

This chapter describes the current state of our infrastructure. Infrequent basic blocks are used

to demarcate intervals. Phase classification is based on the combination of control-flow in-

formation and runtime event count. To evaluate the phase classification accuracy in terms of

time dependent power behavior, we perform FFT on the measured power curves and use the

transformation results to evaluate the similarity between two intervals.

8.1 A New Phase Classification Method

The flowchart in Figure 8.1 illustrates the components in our current infrastructure. The two-

stage phase classification is similar to the one described in Chapter 6.

8.1.1 Using EV as Fingerprint

In Chapter 3 and Chapter 7, we show that using BBV as interval fingerprint results in low error

rate in energy consumption estimation through both simulation and physical measurement.

Compared to BBVs, EVs give us more information about the control behavior of the program

at run-time. BBVs contain information about what parts of a program were executed, but

EVs tell us what decisions were made in arriving at these parts of the program. This extra

information allows a classification of phases that more accurately reflects program behavior.

For the same BBV, it is possible that there are several EVs depending on the dynamic paths

taken during program execution. An example is shown in Figure 8.2.

In our current infrastructure, we use the EV of conditional edges as the fingerprint of an

interval. This vector is the absolute count for each control-flow edge traversed during the

execution of an interval [33].

71

Instrument assembly code for basic
block execution frequency profiling

Find infrequently executed basic blocks

Compile and run instrumented code

Instrument assembly code for EV
profiling

Phase classification based on
profiled EVs

Compile and run instrumented code

Select simpoints. Find final
infrequently basic blocks, calculate
their execution frequency for future

simpoint identification

Instrument final infrequent basic
blocks for each simpoint

Characterize whole program power
behavior using the measured power

of each simpoint and the
corresponding weight

Compile and run instrumented code,
measuring CPU power behavior for

the simpoint

Infrequent basic
block determination

Edge Vector
profiling and phase
classification

Power measurement
and characterization

Refine phases using profiled IPC

Figure 8.1: Infrequent basic block-based phase classification and power measurement of sim-
points.

72

Jan. 30, 2007 HiPEAC 2007 9

Edge Vector Profiling

� Basic block level instrumentation for profiling
� Pre-defined interval size: 30million
� EV as the fingerprint of interval execution

o Execution frequency of each conditional edge is recorded for each
interval

o EVs give us more runtime control behavior information than BBVs

1

2 3

4 5

6

1

63

7 8

4 5

2

BBV: <2N, N, N, N, N, 2N>
EV: <N, N, N, 0, 0, N, N, N>

<N, N, 0, N, N, 0, N, N>
……

Figure 8.2: Several EVs are possible for the same BBV.

8.1.2 EV profiling

Before we profile the EV for each interval, infrequent basic blocks are selected using a relative

threshold. Three thresholds, 0.05%, 0.1%, and 1%, are tried. We do not try 5% because 1%

is proved to be the best of the threshold tried in the experiments where 0.1%, 1%, and 5% are

tried. For lower instrumentation overhead as well as low error rate, we try the thresholds that

is no higher than 1% here. For each threashold, we perform infrequent basic block selection,

EV profiling, phase classification, power measurement of representative intervals and error rate

calculation, as described in Chapter 3.

Instrumentation for EV profiling is similar to that for basic block execution frequency pro-

filing shown in Section 7.3. A pre-defined interval size of 30 million instructions is used to

avoid too large or too small intervals. All basic blocks are instrumented so that we can get

the complete fingerprint of an interval. The analysis routine, a library function, remembers the

last executed basic block and knows the taken edge based on the last and the current executed

basic blocks. It counts each control flow edge originating in a basic block that ends in a con-

ditional branch. It counts the total number of executed instructions for the current interval as

well. When an infrequent basic block is encountered, if the count is larger than or equal to 30

million, this basic block indicates the end of the current interval and it is the first basic block of

the next interval.

Note that, because we only have coarse control over where the demarcating infrequent basic

blocks will occur, the actual interval might be somewhat longer than 30 million instructions;

thus, the intervals are variable-length. We use the adjusted BIC score calculation to take vari-

able interval lengths into account.

73

8.1.3 Refining Phase Classification Using IPC

In our current infrastructure, we use a two-stage phase classification method, as shown in Chap-

ter 6, which combines EV and IPC to get the representative intervals for power behavior char-

acterization. By this method, intervals with similar EVs but different IPCs are classified into

different phases. The difference level between IPCs is adjustable to balance the accuracy and

time cost.

8.1.4 Linux Device Driver for Event Counter Profiling

Through using the device driver mentioned in Section 4.2.4, profiling IPC is easy to do in our

infrastructure. The device driver is initialized to read the number of execution cycles for each

interval After the program execution is partitioned into intervals, all of the infrequent basic

blocks that demarcate the resulting intervals are instrumented to collect the number of clock

cycles taken by each interval. By running the instrumented program once, we can get the IPC

values of all intervals by dividing the number of instructions by the number of cycles. We al-

ready have the number of instructions executed from the edge vector profiling. This technique

very slightly underestimates IPC because of system activity that is not profiled, but we believe

this has no impact on the accuracy of the classification since IPC tends to vary significantly be-

tween phases. Since we identify intervals based on infrequent basic block counts, the overhead

is low and has a negligible impact on the accuracy of the profiling result.

8.1.5 Combining EV Clustering with IPC Clustering

For a program execution, we first perform the phase classification in Section 7.4 to group inter-

vals with similar EVs together. Then we do another phase classification based on the profiled

IPC values. The two-stage phase classification and refining control in Chapter 6 are used to get

phases in terms of both energy consumption and time-dependent power behavior.

8.2 Validation on Real System

We validate our infrastructure through physical power measurement of the CPU of a Pentium

4 machine, using the same experimental setup and benchmarks as described in Chapter 5 and

74

Chapter 7.

8.2.1 Comparing Error Rates in Energy Consumption Estimation

The first step to verify that this infrastructure is useful in power behavior characterization is

to calculate the error rate when the measurement result of the selected simpoints is used to

estimate the power consumption of the whole program. Although we use EVs as the fingerprint

of an interval in our infrastructure, we also measured the CPU power of the simpoints using

BBVs for comparison.

The energy consumption of each simpoint is measured using the trigger mode of the os-

cilloscope. We generate an executable for each simpoint and measure the simpoints one by

one so we can get very high resolution as well as the lowest possible instrumentation over-

head. Program execution and data acquisition are on the same machine. Reading data from the

oscilloscope is scheduled after the measurement of a simpoint is done. Data acquisition does

not interfere with the running program. We implement an automatic measurement and data

acquisition process to measure any number of simpoints as a single task.

8.2.2 Power Behavior Similarity Evaluation

Even though we can get low error rates in estimating whole program energy consumption,

energy consumption is the average behavior of an interval. Intervals that are classified into

the same phase may have different time-dependent power behavior. If intervals in the same

phase have largely different power behavior, we cannot characterize the time-dependent power

behavior of the whole program execution using the measurement result of the simpoints.

Comparing in the Frequency Domain

Energy consumption of an interval does not reflect time-dependent power behavior. The two

power curves in Figure 1.1, section 1.1.1, have the same energy consumption and the same

average power, but they are significantly different in time-dependent power behavior.

Our power measurements come in the form of discrete samples in the time domain. Power

behavior is characterized by periodic activity, so a comparison in the frequency domain is more

75

appropriate for determining whether two intervals are similar. Fast Fourier Transform (FFT)is

a computationally fast way to calculate the frequency, amplitude and phase of each sine wave

component of a signal. Thus, we compare the power behavior similarity of two intervals by

comparing their discrete Fourier transforms computed using FFT. After the FFT calculation of

a power curve, each frequency is represented by a complex number. In power curve similarity

comparison, the phase offset of the same frequency should not affect the similarity of two

curves. For instance, two power curves might be slightly out of phase with one another, but

have exactly the same impact on the system because they exhibit the same periodic behavior. So

when we compare two power curves, we calculate the absolute value of the complex number for

each frequency, the distance between two corresponding absolute values, and the Root Mean

Square (RMS) of the distances for all frequencies. The equation is given in a following section.

Figure 8.3 shows the FFT distance between the sine curves with different values in ampli-

tude, frequency and phase offset, calculated using our method mentioned above. We generate

4096 samples for each curve. Ideally, there is only one frequency in the FFT output of each sine

curve. But we get multiple frequencies due to the discrete data samples. This is the reason why

the calculated distance values are not 0’s in Figure 8.3 (c). The three curves in Figure 8.3 (a)

have the same frequency and phase offset, but different amplitude, which determines the simi-

larity of two curves. Figure 8.3 (b) shows the effect of frequency in our similarity calculation.

The small(compared to the values in (a) and (b)) distance between the curves in Figure 8.3 (c)

demonstrate that the effect of phase offset is eliminated.

All of the curves shown in Figure 8.3 have the same average power, such that they have the

same energy consumption. But they have significantly time-dependent power behavior. We can

not tell this difference based on total energy consumption. FFT distance can be used to evaluate

time-dependent power behavior similarity.

A More Robust Sampling Approach for Verification

Measuring every interval in a long-running program is infeasible because of time and space

constraints (indeed, this fact motivates our research). Thus, we use a more robust sampling

methodology to verify that power behavior is consistent within a phase. We choose 20 intervals

at random for each phase of each program to compare the FFT results of their curves. If

76

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1
current2

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1
current2
current3

(a) same frequency and phase offset, different amplitude. dist(1,2)=22.4,
dist(1,3)=89.8, dist(2,3)=67.3

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1
current2

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1
current2
current3

(b) same amplitude and phase offset, different frequency. dist(1,2)=119.6,
dist(1,3)=115.6, dist(2,3)=120.8

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1
current2

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000

C
ur

re
nt

time

current1
current2
current3

(c) same amplitude and frequency, different phase offset. dist(1,2)=6.5, dist(1,3)=8.1,
dist(2,3)=3.0

Figure 8.3: Power curve distances calculated using our similarity calculation method

77

the number of intervals in some phase is less than 20, all of the intervals are selected. The

selected intervals for each phase are selected from a uniformly random distribution among all

the intervals in the phase.

Instrumenting for Verification

Infrequent basic blocks demarcating the intervals from the same phase are instrumented to mea-

sure each interval in the same way we measure a simpoint. Each selected interval is measured

separately. Then the FFT is performed on the measured power curve of each interval. The

Root Mean Square (RMS) error of the FFT results is used to evaluate the variation of the power

behavior of the intervals in this phase. For each phase, we calculate the arithmetic average over

the frequencies in the FFT result of all measured intervals as the expected FFT of the phase.

The distance between an interval i and the expected FFT is:

Di =

√

√

√

√

√

√

N
∑

j=1

(
√

cj
2 + dj

2 −
√

aj
2 + bj

2)
2

N

cj and dj are the real and imaginary part of the jth frequency of interval i, respectively. aj and

bj are the real and imaginary part of the jth frequency of the expected FFT respectively. N is

the number of frequencies in the output of Fast Fourier Transform. Then the FFT RMS of a

phase is calculated as:

FFTRMS =

√

√

√

√

√

√

M
∑

i=1

Di
2

M

M is the number of measured intervals in the phase. The lower FFTRMS is, the high the

similarity among the time-dependent power behavior of the intervals in the phase.

The FFTRMS for each phase is then weighted by the weight of the corresponding phase

to get the RMS for the whole benchmark. We evaluated the weighted FFTRMS for all of the

10 benchmarks in two cases: when phase classification is based on EV only, and when IPC is

used to refine phase classification.

78

8.2.3 Interval Length Variance

Using infrequent basic blocks to partition program execution into intervals results in variable

interval length. We use a pre-specified interval size to avoid intervals that are too small. Inter-

vals of large size are still possible due to the distribution of the infrequent basic blocks during

program execution. We analyze the resulting size for each interval of each benchmark to show

the distribution of the interval sizes.

We evaluate the interval length variance of a benchmark as the weighted RMS of the inter-

val lengths in each phase. If this value is high, intervals that are of largely different number of

instructions are classified into the same phase, the simpoint for the phase can not be represen-

tative of the phase in terms of power behavior.

8.3 Experimental Results and Evaluation

Using the power measurement infrastructure for Pentium 4 described in Chapter 5, we mea-

sured the CPU power curves for the instrumented benchmarks, the ones with all final infrequent

basic blocks instrumented, the simpoints, and the selected intervals from each phase.

8.3.1 Instrumentation Overhead

Figure 8.4 shows the overhead of the instrumentation using different thresholds. It is nor-

malized to the measured energy consumption of the uninstrumented benchmarks. A positive

value means the measured energy consumption for this configuration is larger than that of the

uninstrumented one. A negative value means the opposite. For some benchmarks, for exam-

ple, perlbmk and gap, the energy consumption of the instrumented program is slightly lower

than the uninstrumented program. One possible reason is that inserting instructions somewhere

might accidentally improve the performance or power consumption, possibly due to a reduction

in conflict misses in the cache because of different code placement. Overhead in execution time

when different thresholds are used follow the same trend. Instrumentation overhead for power

measurement of a single simpoint is even lower because only one or two of the final infrequent

basic blocks are instrumented.

79

0

6

12

18

24

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg
benchmark

R
M

S
 o

f F
F

T bbv
ev
ev+ipc

0

6

12

18

24

30

gz
ip

vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

R
M

S
 o

f
F

F
T

bbv
ev
ev+ipc

-0.1

-0.05

0

0.05

0.1

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

N
or

m
al

iz
ed

 E
ne

rg
y

O
ve

rh
ea

d

threshold=0.05
threshold=0.1
threshold=1

832.94 1180.98

15.74

410.43 731.61 414.32

90.62

55.40

157.43

266.08 369.18

0

40

80

120

160

200

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

#i
ns

tr
um

en
ta

tio
n/

m
se

c threshold=0.05
threshold=0.1
threshold=1

833 1181

16

410 732 414

91

55

157

266 369

0

40

80

120

160

200

gz
ip

vp

r
gc

c

mcf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

#i
ns

tr
um

en
ta

tio
n/

m
se

c threshold=0.05

threshold=0.1

threshold=1

Figure 8.4: Normalized instrumentation overhead in energy consumption. The difference be-
tween the energy consumption of the instrumented and uninstrumented benchmark divided by
the energy consumption of the latter.

8.3.2 Total Energy Consumption Estimation

We investigate both BBV and EV as the fingerprint of intervals in phase classification. A

maximum number of clusters, 30, is used to find the best clustering in both cases. Simpoints

are measured and the whole program energy consumption is estimated as

Eest =

k
∑

i=1

Ei × Wi

Ei is the measured energy consumption of the ith simpoint, Wi is its weight, and k is the num-

ber of phases. Although intervals have variable sizes, we estimate the total energy consumption

using the weight based on the number of intervals in each phase.

For BBV-based phase classification, we use three percentage values 0.1%, 1%, and 5% to

get the threshold for infrequent basic blocks. The measured energy consumption of simpoints

are used to estimate the whole program energy consumption. The error rate is the lowest

when threshold is 1% due to the trade-off between uniform interval size and instrumentation

overhead. Then we use 1%, 0.1% and 0.05% as threshold in EV-based phase classification.

The calculation of energy consumption of a measured benchmark or simpoint, and the energy

estimation error rate are calculated as described in Section 7.9:

E = U ×
∑

(I × t)

80

error =
|energy estimated − energy measured|

energy measured

Execution time estimation is similar to energy estimation.

The error rate in total energy consumption estimation for each threshold is shown in Fig-

ure 8.5 (a).

For comparison, we perform the same operations for the 3 thresholds of BBV using the

same pre-defined interval size, 30 million. The calculated error rates is shown in Figure 8.5 (b).

Figure 8.5 (c) shows the error rates of the infrequent basic block-based phase classification

method using different program execution fingerprints. The error reported is that of the estimate

using the threshold that delivered the minimum overall error for each method: 1% for BBVs,

and 0.1% for EVs. The figure shows that EV performs better than BBV for almost all of the

benchmarks. EV improves the estimation accuracy on average by 35%. One possible reason

for the higher error rate of EV for some benchmarks is that we only record conditional edges

taken during program execution. Some benchmarks have many unconditional edges, such as

jmp, so it is possible that some information is lost in EV, although we significantly reduce the

edge vector size. For example, method sort basket of mcf is called 14683023 times and many of

its edges are non-conditional edges. We can improve the phase classification accuracy through

recording execution frequency of all edges, at the cost of larger edge vectors and slower phase

classification. All of the following analysis and evaluation are for the experimental results of

EV-based phase classification if there is no specification.

8.3.3 Time-dependent Power Behavior Similarity

As mentioned in Section 8.2.2, we use the distance between the FFT results of their power

curves to evaluate the similarity of two intervals in terms of power behavior. We use 4096

points in the Fast Fourier Transform. The maximum number of data points for a curve is

10,000 when the oscilloscope is in trigger mode. If the measured data points for the curve of an

intervals is less than 4096, the curve is repeated to reach the number of frequencies. Figure 8.6

(a) shows the measured CPU current curves of two intervals from the same identified phase,

while (b) shows that of two intervals from two different phases. Distance between the FFT

81

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

) threshold=0.1
threshold=1
threshold=5

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

) threshold=0.05
threshold=0.1
threshold=1

0

0.005

0.01

0.015

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

R
M

S
 o

f i
nt

er
va

l l
en

gt
h

bbv-0.1
ev-0.1
bbv-1
ev-1
bbv-5
ev-5

0

10

20

30

40

50

60

gz
ip vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2 tw

olf av
g

er
ro

r
ra

te
(%

) threshold=0.05
threshold=0.1
threshold=1

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg
er

ro
r

ra
te

(%
)

threshold=0.1
threshold=1
threshold=5

0

0.4

0.8

1.2

1.6

2

gz
ip vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2 tw

olf av
g

R
M

S
 o

f I
nt

er
va

l L
en

gt
h

threshold=0.1
threshold=1
threshold=5

(a) Error rate in total energy consumption estimation when EV is used as interval fingerprint.

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

) threshold=0.1
threshold=1
threshold=5

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

) threshold=0.05
threshold=0.1
threshold=1

0

0.005

0.01

0.015

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

R
M

S
 o

f i
nt

er
va

l l
en

gt
h

bbv-0.1
ev-0.1
bbv-1
ev-1
bbv-5
ev-5

0

10

20

30

40

50

60

gz
ip vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2 tw

olf av
g

er
ro

r
ra

te
(%

) threshold=0.05
threshold=0.1
threshold=1

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

)

threshold=0.1
threshold=1
threshold=5

0

0.4

0.8

1.2

1.6

2

gz
ip vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2 tw

olf av
g

R
M

S
 o

f I
nt

er
va

l L
en

gt
h

threshold=0.1
threshold=1
threshold=5

(b) Error rate in total energy consumption estimation when BBV is used as interval fingerprint.

0

10

20

30

40

50

60

gz
ip vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2 tw

olf av
g

er
ro

r
ra

te
(%

) BBV EV

0

0.4

0.8

1.2

1.6

2

gz
ip vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2 tw

olf av
g

R
M

S
 o

f I
nt

er
va

l L
en

gt
h

threshold=0.1
threshold=1
threshold=5

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

)

BBV EV

(c) Comparison between EV and BBV as interval fingerprint.

Figure 8.5: Error rates in total energy consumption estimation, EV vs. BBV

82

values is included to show the relation between time-dependent power behavior similarity and

FFT distance. In Figure 8.6 (a), the upper curve uses the left y axis, while the other one use the

right y axis, to avoid overlapping curves. The second column of each group in Figure 8.7 is the

weighted FFTRMS for each benchmark when EV is used for phase classification.

 2

 2.5

 3

 3.5

 4

 4.5

 5

191817161514131211109876543210

C
P

U
 C

ur
re

nt
 (

A
)

time (msec)

interval 712

 2

 2.5

 3

 3.5

 4

 4.5

 5

191817161514131211109876543210

C
P

U
 C

ur
re

nt
 (

A
)

time (msec)

interval 712
interval 1744

(a) Power curves of intervals from the same phase(distance=5.4).

 2

 2.5

 3

 3.5

 4

 4.5

 5

191817161514131211109876543210

C
P

U
 C

ur
re

nt
 (

A
)

time (msec)

interval 712

 2

 2.5

 3

 3.5

 4

 4.5

 5

191817161514131211109876543210

C
P

U
 C

ur
re

nt
 (

A
)

time (msec)

interval 712
interval 160

(b) Power curves of intervals from different phases(distance=55.1).

Figure 8.6: Similarity between measured CPU current of intervals.

We measure the IPC using performance counters for each interval and do phase classifi-

cation based on IPC to refine the EV-based phase classification. The third column in each

group in Figure 8.7 is the weighted FFTRMS for each benchmark when EV+IPC is used for

phase classification. The similarity among the intervals is improved by 22% over using BBVs.

Compared to the FFT distance between an interval and another interval from a different phase,

the distance inside a phase is much smaller. This shows that the combination of EV and IPC

enables us to classify intervals into phases in which the intervals have similar power behavior.

Thus the power behavior of the whole program can be characterized by the measured behavior

of the simpoints.

83

0

6

12

18

24

30

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg
benchmark

R
M

S
 o

f F
F

T bbv
ev
ev+ipc

0

6

12

18

24

30

gz
ip

vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

R
M

S
 o

f
F

F
T

bbv
ev
ev+ipc

-0.1

-0.05

0

0.05

0.1

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

N
or

m
al

iz
ed

 E
ne

rg
y

O
ve

rh
ea

d

threshold=0.05
threahols=0.1
threshold=1

832.94 1180.98

15.74

410.43 731.61 414.32

90.62

55.40

157.43

266.08 369.18

0

40

80

120

160

200

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

#i
ns

tr
um

en
ta

tio
n/

m
se

c threshold=0.05
threahols=0.1
threshold=1

833 1181

16

410 732 414

91

55

157

266 369

0

40

80

120

160

200

gz
ip

vp

r
gc

c

mcf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

#i
ns

tr
um

en
ta

tio
n/

m
se

c threshold=0.05

threahols=0.1

threshold=1

Figure 8.7: Root Mean Squared error of the FFT calculated based on RMS of FFT and the
weight of each phase.

8.3.4 Interval Length Variance

Figure 8.8 shows the variance of interval length when different thresholds are used. Higher

threshold results in more uniform interval size, but lower threshold has lighter instrumentation

overhead. When threshold is 1%, this trade-off reaches the best value.

Figure 8.9 shows the weighted average of interval length variance of each phase for each

benchmark when BBV and EV is used in phase classification respectively. A smaller number

means the intervals of the same phase have very close interval size. Again it shows that EV is

better for our infrastructure because, on average, it causes much lower interval length variance

than BBV no matter which threshold is used. Again One possible reason for the higher RMS

of EV for some benchmarks is that we only record conditional edges taken during program

execution, which results in information loss. Although the possible reason is the same as in

Section 8.3.2, the higher error rate or RMS happens to different benchmarks in these two set

of experiments. The reason is that total power consumption is an average metric, if the energy

consumption of the selected representative interval is close to the average energy consumption

of all of the intervals in the same phase, the error rate should be low. While RMS of interval

length is used to evaluate the similarity among intervals in the same phase, low error rate in

total energy consumption does not mean this RMS value is small. This also applies to time-

dependent power behavior and is also one of the motivation to use FFT to evaluate the time-

dependent power behavior similarity among intervals in the same phase.

84

0

10

20

30

40

50

60

gz
ip

vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

er
ro

r
ra

te
(%

) BBV EV

0

0.4

0.8

1.2

1.6

2

gz
ip

vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

R
M

S
 o

f I
nt

er
va

l L
en

gt
h

threshold=0.1
threshold=1
threshold=5

Figure 8.8: RMS error of the interval length of the whole benchmark.

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

) threshold=0.1
threahols=1
threshold=5

0

10

20

30

40

50

60

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

er
ro

r
ra

te
(%

) threshold=0.05
threahols=0.1
threshold=1

0.020.030.04 0.05

0

0.005

0.01

0.015

gzip vpr gcc mcf parser perlbmk gap vortex bzip2 twolf avg

R
M

S
 o

f i
nt

er
va

l l
en

gt
h

bbv-0.1
ev-0.1
bbv-1
ev-1
bbv-5
ev-5

0

10

20

30

40

50

60

gz
ip

vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

er
ro

r
ra

te
(%

) threshold=0.05
threahols=0.1
threshold=1

0

10

20

30

40

50

60

gz
ip

vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

er
ro

r
ra

te
(%

)
threshold=0.1

threahols=1

threshold=5

0

0.4

0.8

1.2

1.6

2

gz
ip

vp

r
gc

c
m

cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

av

g

R
M

S
 o

f I
nt

er
va

l L
en

gt
h

threshold=0.1
threahols=1
threshold=5

Figure 8.9: Weighted average of the RMS error of interval length in the same phase.

85

Chapter 9

Applications

9.1 Peak Power Optimization

In Section 1.1.1, Figure 1.1.1 shows the power behavior of two copies of a benchmark running

on a hyper-threading machine. The benchmark is described in Figure 9.1. It finds the primes

in the range of 1 to 20000, and then sleeps for 3 msec. This process is repeated 6 times. The

power curve of first two iterations is not as apparent as the last four iterations due to the power

behavior of the beginning of program execution. The CPU is very busy during the calculation

to find primes and almost idle between the calculations.

In order to lower the CPU peak power, it should be avoided that two simultaneous programs

are in their high-power region at the same time. These high-power regions can be treated as

critical sections in Operating Systems. Some synchronization mechanism is required at the

entry and exit of these regions. We use a semaphore to keep two simultaneous threads from

running in high-power regions at the same time. At the entry of a high-power region, a P

operation is performed to check if this region should be executed. At the exit, a V operation

is performed to free the semaphore for future use. Thus at any time only one program is

running in high-power region and peak power is controlled. The simplified implementation of

the semaphore is shown in Figure 9.1.

Figure 1.1.1(c) shows that peak power is significantly reduced.

Our infrastructure can get detailed power behavior of the representative intervals with high

resolution. Based on the power behavior similarity among intervals of the same phase that is

already proved in Section 8.3, it can be used to find out high-power regions of programs and

instrument the programs to be synchronized for lower peak power.

86

#define high_power 0 /* semaphore array index*/
int sem_init(void)
{
 /* create new semaphore set of 1 semaphore */
 int semid = semget (IPC_PRIVATE, 1, IPC_CREAT | 0600);
 /* initialize the semaphore to 1 */
 semctl (semid, high_power, SETVAL, 1);
 return semid;
}
/* perform a P or wait operation on a semaphorex */
void P(int semid, int index)
{

struct sembuf sema_op[1];
 sema_op[0].sem_num = index;
 sema_op[0].sem_op = -1;
 sema_op[0].sem_flg = 0;
 semop (semid, sema_op, 1);
}
/* perform a V or signal operation on semaphore */
void V(int semid, int index)
{

struct sembuf sema_op[1];
 sema_op[0].sem_num = index;
 sema_op[0].sem_op = 1;
 sema_op[0].sem_flg = 0;
 semop (semid, sema_op, 1);
}
int main (int argc, char** argv)
{ int semid; /* identifier for a semaphore set */
 int i, max_x, x, max_y, y, count = 0, fd;
 max_x = atoi(argv[1]);
 semid = sem_init();
 for(i=0; i<6; i++){
 P(semid, high_power);
 for (x=2; x<=max_x+1; x++){
 /*determine if x is a prime*/
 y = 2; max_y = sqrt(x);
 while (y <= max_y){
 if ((x % y) == 0){
 count++; break;
 }else
 y = y + 1;
 }
 }
 V(semid, high_power);
 usleep(3000);
 }
 printf("found %d primes\n", count);
 semctl (semid, 0, IPC_RMID); /*remove semaphore*/
 return;
}

Figure 9.1: Implementation and use of semaphore in peak power optimization.

87

9.2 DVFS Metric and Threshold Selection

DVFS is an important technique for runtime power optimization. DVFS is supported on various

levels, as described in Section 2.5. A typical DVFS method periodically profiles some runtime

events to predict the CPU computation ability requirement of the system in the next time inter-

val and make CPU frequency scaling decisions, that is, what is the CPU power state for the next

time interval? This requirement is usually determined by a metric and a pre-defined threshold.

For example, if IPC is the metric, the CPU computation ability requirement is predicted to be

high if the predicted IPC is higher than 1.0. If high CPU computation ability is not needed, the

CPU frequency can be lowered to save energy consumption without significant performance

loss.

Using the right runtime event and its corresponding threshold is critical for the efficiency

of a DVFS policy. Our infrastructure identifies the representative intervals in terms of power

behavior and measures the objective power consumption of any program region. Through pro-

filing runtime events of these selected intervals and evaluating their power behavior in different

power states, we can find out the right metric and its threshold to use in DVFS.

On an Intel Conroe E6600, we run the benchmarks listed in Table 7.1 under different CPU

frequencies and measure the power consumption of each representative interval found by our

current phase classification method. All benchmarks are compiled by GCC 4.1.1 and the OS

is Fedora 6. E6600 has four power states, the frequency is 2.4GHz, 2.1GHz, 1.8GHz, and

1.6GHz, respectively. We profile some event counters, including uop per cycle (UPC) and

memory access per uop (MPU), when CPU is running at 2.4GHz. Since E6600 is a dual core

machine but we only investigate single program execution, the tested benchmark is always

running on one of the two cores through using CPU affinity. The unused core is always set to

the 1.6GHz to ensure that the frequency of the core in use is effective.

9.2.1 Selecting DVFS Metric

Power consumption of the same interval when different CPU frequencies are used is compared

to estimate if we can reduce energy consumption without significant performance loss when

CPU frequency is scaled to a lower value. To take performance into consideration, we use

88

power-delay product (PDP), instead of power, as a metric in evaluating frequency/voltage scal-

ing benefit. If an interval has lower PDF when CPU runs at a lower frequency, it benefits from

frequency scaling down during program execution.

DVFS metric selection includes the following steps:

• Run phase classification to get representative intervals for each benchmark.

• Profile runtime events for the selected intervals, including number of cycles, number of

retired micro-instructions and number of memory accesses.

• Measure the power consumption and execution time of each selected interval under dif-

ferent frequencies.

• Calculate the PDP for each measured interval. All PDP values are normalized by the

PDP values under the highest frequency, 2.4GHz. If the normalized PDP is less than 1,

the interval benefits from running in a lower frequency.

• Calculate UPC and MPU for each selected interval based on event profiling results.

• Find the right metric and the corresponding threshold through analyzing the metric val-

ues, here UPC or MPU, for the intervals that benefit from a lower CPU frequency and

the other intervals, as shown in the following graph.

Figure 9.2 shows the experimental result. The representative intervals of 10 SPEC2000

integer benchmarks are partitioned into 2 groups. The triangles are intervals that have lower

PDP and the circles are those that have higher PDP. The result shows that UPC is not a good

metric for DVFS by itself, since it is hard to delimit the UPC of intervals based on whether

they benefit from lower CPU frequency or not. Although the triangles cover almost all possible

values of MPU, it is easy to find a MPU threshold, say 0.01 in this figure. When the MPU of an

interval is higher than 0.01, it benefits from lower CPU frequency with very high probability.

An even more conservative DVFS policy can use the combination of the two metrics. For

example, it lowers the CPU frequency for intervals with high MPU and low UPC. An analytical

procedure to find the right metric and threshold is in the future work.

Since the selected intervals are representative in terms of power behavior, the metrics and

thresholds found by this method can be used for whole program power optimization. The

89

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5UPC

M
PU

dvfs

nodvfs

Figure 9.2: MPU and UPC distribution for all representative intervals selected by our phase
classification.

exploration space of a threshold is usually big. With our infrastructure, it is easy to compare

the effect of different metrics and to find a good threshold for a metric.

9.2.2 Applying Selected Metric and Threshold in DVFS

To show that we can find the right metric and the corresponding threshold for dynamic volt-

age/frequency scaling, we examine the metrics shown in Figure 9.2. As discussed in Sec-

tion 9.2.1, MPU is a better metric than UPC, and 0.01 is a good threshold for MPU. Since most

representative intervals do not benefit from a lower CPU frequency when MPU is lower than

0.06, we increase CPU frequency to the highest level when MPU is lower than 0.06.

E6600 has a model-specific register (MSR) that controls the frequency and voltage of the

processor. We change CPU frequency through writing a specific value to this MSR using

our device driver. Due to the high CPU computation requirement of the benchmarks used in

our experiments, only two CPU frequencies, 2.4GHz and 2.1GHz are used. Increasing CPU

frequency means changing it from 2.1GHz to 2.4GHz, or keeping it unchanged if the frequency

is 2.4GHz. Decreasing CPU frequency means changing it from 2.4GHz to 2.1GHz, or keeping

it unchanged if the frequency is 2.1GHz.

Table 9.1 shows the metrics and threshold used in our validation experiments. The thresh-

olds are derived from Figure 9.2. A simple time-interval-based DVFS method is used. It checks

90

Table 9.1: Validation experiments for DVFS metric and threshold.
Method Description
dvfs-1 If MPU ≥ 0.012, decrease frequency; if MPU < 0.006, in-

crease frequency; for other MPU values, keep the current fre-
quency

dvfs-2 If MPU≥ 0.01, decrease frequency; if MPU < 0.006, increase
frequency; for other MPU values, keep the current frequency

dvfs-3 If UPC ≥ 0.8, decrease frequency; otherwise, increase fre-
quency

dvfs-4 If MPU ≥ 0.1, decrease frequency; if MPU < 0.006 and the
number of executed uops is smaller than the last time interval,
increase frequency; for other MPU values, if the number of
executed uops is smaller than the last time interval, increase
frequency; otherwise, decrease frequency

the metric of the current interval and decides the CPU frequency for the next time interval.

Figure 9.3 shows the experimental results. The regular column in each figure is the mea-

surement result without DVFS. The other four are corresponding to the four methods described

in Table 9.1, respectively. All measurement results are normalized by the result without DVFS.

Figure 9.3 (a) shows that using 0.01 as MPU threshold brings us more energy saving than

0.012, but performance loss is higher because lower CPU frequency is used for more inter-

vals, as shown in Figure 9.3 (b). Since we evaluate whether an interval benefits from lowering

CPU frequency based on the measured PDF, the better MPU threshold inferred from Figure 9.2

has a lower PDP. A UPC threshold 0.8 is used because it results in a better classification of

the representative intervals in terms of DVFS benefit. For twolf, this DVFS method results in

higher energy consumption with high performance loss. The possible reason is that the pro-

filed UPC of twolf is consistently low, but there are few memory access. We also examined

another threshold, 0.5. The experimental result is similar to that of threshold 0.8. Using UPC

as a metric results in more intervals suffering from false positive DVFS decision. That is, an

interval with low UPC is treated as one that benefits from lower CPU frequency, but the truth is

the opposite. dvfs-4 is more complicated than the other three. An additional event, number of

retired uops, is used to avoid high performance loss. Since the CPU utilization if already high

for these benchmarks, this method results in higher performance loss and less energy saving

than dvfs-2 due to more computation at the end of each time interval.

91

0.8

0.85

0.9

0.95

1

1.05

gzip vpr mcf parser perlbmk gap vortex bzip2 twolf avg
benchmark

no
rm

al
iz

ed
 en

er
gy

 co
ns

um
pt

io
n

regular
dvfs-1
dvfs-2

dvfs-3
dvfs-4

(a) Normalized energy consumption.

0.8

0.85

0.9

0.95

1

1.05

gzip vpr mcf parser perlbmk gap vortex bzip2 twolf avg
benchmark

no
rm

ali
ze

d
ex

ec
ut

io
n

tim
e

regular

dvfs-1
dvfs-2
dvfs-3

dvfs-4

(b) Normalized execution time.

0.8

0.85

0.9

0.95

1

1.05

gzip vpr mcf parser perlbmk gap vortex bzip2 twolf avg
benchmark

no
rm

al
iz

ed
 p

er
f-d

el
ay

 p
ro

du
ct

regular
dvfs-1

dvfs-2
dvfs-3
dvfs-4

(c) Normalized power-delay product.

Figure 9.3: Experimental results of the DVFS methods in Table 9.1.

92

The experimental results show that our infrastructure can be used in finding good DVFS

metrics and thresholds. It can help researchers in observing the relation between power opti-

mization and various runtime events. Furthermore, the detailed power behavior obtained for

each representative interval shows the impact of any power optimization method on program

power behavior.

9.3 Program Power Behavior Understanding

Characterizing the time-dependent power behavior of whole program execution is one objective

of our infrastructure. Measured power curves can give us a better understanding of dynamic

program power behavior if we can find the source code corresponding to a specific power curve.

Semantic relation between measurement result and source code can also help in understanding

the power behavior of program structures, such as procedures and loops. Interval partitioning

method based on fixed interval length or infrequent basic blocks makes it very hard to get

direct relation between the measured power curve of a representative interval and the source

code executed in this interval. We implemented a two-level profiling in the Camino compiler to

profile procedures and loops in addition to EV and event counter profiling, which is illustrated

in Section 4.2.5.

Although our procedure and loop profiling is performed when the EVs are profiled, which

means only the control-flow information is collected, we want to put a limit on the memory

space used by the profiling. Due to the high frequency of some short procedures and loops,

recording the information for each invocation of such a procedure or loop is time- and memory-

consuming. Furthermore, procedures and loops of size that is much smaller than interval size

are hard to be analyzed based on the measurement result. Smaller interval size can be used to

get the dynamic power behavior of more procedures and loops. We set two profiling thresholds.

One is for the execution frequency of a procedure or loop, and the other is for procedure or

loop size. When the invocation frequency of a procedure or loop reaches the first threshold, its

average number of instructions is compared to the second threshold. If higher, this procedure or

loop continues to be profiled, otherwise, it is no longer profiled. The size threshold is relative

to the interval size, such that the power behavior of a profiled procedure or loop is easy to

93

characterize.

Using the combination of the Interval Vector (IV) of a procedure/loop, the phase classifi-

cation result, and the measured power behavior of the representative interval, we can get the

power behavior of this procedure/loop. Definition of IV is in Section 4.2.5. Figure 9.4 shows

the profiled IVs of a loop of 181.mcf. Each number is the phase number for the correspond-

ing interval. The difference among the IVs indicates that different iterations of the same loop

have different power behavior or even they execute different source code. We can evaluate if a

procedure/loop has consistent or variant power behavior based on its IVs.

{14 14 14 14 13 14 14 14 25 25 25 24 24 25 24 25 25 25 25 25 19 18 18 18 18 18 18 18 18 18 18 18 18 19 18 19 18 19 19 19 19 25}
{14 14 14 13 14 14 14 24 24 24 24 24 24 25 25 25 25 25 25 18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5}
{14 14 25 25 25 25 25 25 25 25 25 19 25 19 18 18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5}
{25 25 24 18 18 18 24 24 24 18 18 18 18 18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5}
{16 24 18 18 18 24 24 24 24 24 18 18 18 5}
{15 6 5 5 5 5 12 12 18 18 18 18 18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5}
{16 6 5 5 5 5 5 18 18 5 18 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5}
{16 6 5}

{16 6 5}
{16 6 5}

{13:1 14:7 18:14 19:7 24:3 25:10}
{5:19 13:1 14:6 18:1 24:5 25:6}
{5:17 14:2 18:2 19:1 25:10}
{5:19 18:8 24:4 25:2}
{5:19 16:1 18:5 24:6}
{5:22 6:1 12:2 15:1 18:5}
{5:23 6:1 16:1 18:2}
{5:27 6:1 16:1}
{5:27 6:1 16:1}
{5:27 6:1 16:1}

Figure 9.4: Interval Vector of a loop in method price out impl of mcf.

As described in Section 4.2.5, it is easy to find the source code corresponding to this loop

based on identification of the loop and the recorded procname no information. Sometimes

GCC performs reordering optimization, so it is necessary to check the first BB of the loop

in the source code to ensure the sequence number is the same in both the assembly code and

the source code in C. The source code for this profiled loop is the second for loop in method

price out impl. Figure 9.5 shows that control flow graph of this loop, which is generated by our

Camino compiler. Since the identification of an edge is related to the hash value of the BB that

this edge originates from, it is easy to figure out the paths taken in different stages of program

execution based on EVs. The profiled EVs for each IV show that in each invocation of the loop,

which may have many iterations, the path taken in the first several iterations is different from

the one taken in the later iterations. Arcs are inserted into a graph and replaced later, shown

as the blue path (12-16-17-8) and the red path (12-13-14-15), respectively. This is the possible

reason that there are different EVs in an IV although the same loop is profiled.

94

1

2

3

4

5

6

7

8

9

10
11

12

13 16

17
14

15

Figure 9.5: CFG of a loop in method price out impl of mcf.

Variance in power behavior is even higher due to runtime events. In this example, intervals

in phase 14 have the highest MPU and those in phase 5 have the lowest MPU, as shown in

Figure 9.6. This fact shows that sometimes loop can not be used as an optimization unit for

DVFS. Some DVFS policies profile the CPU utilization of a loop in there first several iterations

and then perform DVFS on it. For the loop shown here, if a policy determines that this loop

has many memory accesses and the CPU frequency should be scaled down, it will cause per-

formance loss since many iterations have very low MPU as we measured; if a policy profiles

many iterations of the loop and concludes that CPU frequency should not be scaled down for

this loop, it will lose the opportunity to save energy during the iterations with high MPU. Fig-

ure 9.7 shows the measured power curve of the two intervals in Figure 9.6 when a lower CPU

frequency, 2.1GHz, is used.

95

2

3

4

5

0 6 12 18 24 30 36 42 48 54
time (msec)

CP
U

 c
ur

re
nt

 (A
)

0.5

1.5

2.5

3.5

tri
gg

er

CPU current trigger

(a) representative power curve of phase 5.

2

3

4

0 6 12 18 24 30 36 42 48 54

time (msec)

CP
U

 c
ur

re
nt

 (A
)

0.5

1.5

2.5

3.5

tri
gg

er
CPU current trigger

(b) representative power curve of phase 14.

Figure 9.6: Power behavior of different phases of mcf, CPU frequency = 2.4GHz.

96

2

3

4

5

0 6 12 18 24 30 36 42 48 54
time (msec)

CP
U

 c
ur

re
nt

 (A
)

0.5

1.5

2.5

3.5

tri
gg

er

CPU current trigger

(a) representative power curve of phase 5.

2

3

4

5

0 6 12 18 24 30 36 42 48 54
time (msec)

CP
U

 c
ur

re
nt

 (A
)

0.5

1.5

2.5

3.5

tri
gg

er
CPU current trigger

(b) representative power curve of phase 14.

Figure 9.7: Power behavior of different phases of mcf, CPU frequency = 2.1GHz.

97

Chapter 10

Conclusion

Detailed time-dependent power behavior is useful in both program power behavior analysis and

power optimization evaluation. However, existing simulation and physical power measurement

methods are inefficient because of high cost in time and space, imprecision, or lack of semantic

meanings in measured power curve.

This thesis describes our infrastructure for detailed time-dependent program power behav-

ior characterization. It enables instrumentation on various levels of program assembly code,

and provides routines for control-flow and runtime event profiling. Our new program power

phase classification method partitions program execution into intervals based on infrequently

executed basic blocks, uses the combination of Edge Vector and runtime events as the finger-

print of each interval, classifies intervals into phases, and selects a representative interval for

each phase. Our power measurement method used in this thesis overcomes hardware limitation

and provides precise and objective power behavior for any measured program region. Valida-

tion experiments on real systems show that using infrequent basic blocks to demarcate intervals

results in negligible instrumentation overhead in identifying intervals during program execu-

tion, and our new phase classification method can find the representative intervals in terms of

time-dependent power behavior. Our two-level profiling enables the semantic relation between

the measured time-dependent power behavior and the corresponding source code.

This infrastructure can be used in not only program power behavior characterization, but

also power/performance optimization opportunity observation and optimization evaluation. It

can be used to find the good metric and the corresponding threshold for DVFS. Its low in-

strumentation overhead and low error phase classification make it a useful tool for program

power/performance behavior analysis and optimization research on real systems.

This thesis work investigated static program instrumentation, control-flow and runtime

98

event profiling, program power phase behavior, phase classification and program power be-

havior characterization.

10.1 Static Program Instrumentation Tool

Assembly-level instrumentation supported by our infrastructure is useful in program profiling

and power measurement. It is easy to identify control-flow structures, such as basic blocks

and procedures, in assembly code. There are many static and dynamic instrumentation tools.

Dynamic instrumentation can instrument dynamically generated code, but its instrumentation

overhead is too high for our purpose of identifying an interval during program execution and

measuring its power behavior. Static instrumentation has advantages in our infrastructure, since

only the selected infrequent basic blocks are instrumented for interval power measurement, and

it is needed to profile procedures and loops for program detailed power behavior analysis and

understanding. It also enables the mapping between the measurement result and the corre-

sponding source code.

Our Camino compiler is used as the instrumentation tool in our infrastructure. Currently

Camino supports basic block count and edge count profiling, inter-procedural path profiling,

procedure and loop profiling, and EV/BBV profiling for SimPoint-like phase classification.

Implementation of new profiling or instrumentation is very easy because of the clear internal

representation of Camino. Camino is currently used as a test bed for low-level performance,

power or energy optimizations. We successfully use Camino in charactering program power

behavior with low error rates using a SimPoint-like phase classification method.

10.2 Accurate Program Power Behavior Phase Classification

There is phase behavior in physical power measurement of program execution. Although

control-flow-based classification achieves low error rate in estimating some overall metrics,

such as IPC, branch misprediction, and energy consumption, it is not a good classification in

terms of time-dependent power behavior. Different executions of the same source code may

generate different power curves due to runtime events. Similarly, runtime-event-based clas-

sification can not efficiently characterize program time-dependent power behavior, since two

99

intervals with the same runtime event reading may execute totally different source code and

their power curves are largely different.

Compared to BBVs, EVs give us more information of program execution since they track

the taken edges. Intervals with the same BBV may have different EVs. Through experiments

on real systems, we show that EV is better than BBV as interval fingerprint used in phase clas-

sification. Combination of EV and IPC can be used as interval fingerprint in time-dependent

power behavior classification. A robust validation shows that our new two-stage phase classi-

fication method can find representative intervals in terms of power behavior. Power behavior

similarity is evaluated as the distance between the FFT results of interval power curves. Phase

classification accuracy is evaluated as the RMS of FFT results of intervals that are classified

into the same phase.

10.3 Infrequent Basic Block-based Interval Partitioning

In order to characterize the power behavior of whole program execution, we measure the time-

dependent power behavior of the representative intervals selected by our phase classification

method. Different from simulation, physical power measurement is sensitive to instrumentation

overhead. Objective measurement requires dynamic identification of the beginning and end of

an interval during program execution. We use infrequent basic blocks to demarcate program

execution into intervals, and use a new similarity evaluation method to adapt to the variable

length intervals. By instrumenting only the basic blocks that are necessary for the identification

of an interval, we achieve negligible instrumentation overhead and get the objective power

curve of any measured interval.

10.4 Dynamic Voltage/Frequency Scaling

Voltage/frequency scaling is supported by more and more computing systems. There are many

policies of determining when to scale up/down CPU voltage/frequency, different in scaling unit

and metric. Using our infrastructure, we compared two metrics and found that MPU is a better

metric than UPC for DVFS decision making. Although high MPU results in low UPC, low

UPC is not always because of memory latency. Another possible reason is data dependency.

100

If memory access rate is low, slowing down CPU frequency does not hide any memory access

delay, instead, it harms performance with out energy saving.

It is possible that time-interval-based DVFS is better than procedure/loop-based DVFS. Our

experimental results show that there are phases in program time-dependent power behavior and

the same procedure/loop has largely different power behavior in different invocations, exposing

different DVFS opportunities as shown in Section 9.3.

101

References

[1] http://www.cs.w is c. ed u/ ∼ms ca la r/s im pl es ca lar .h tm l .

[2] http://www.eecs .u mi ch .e du/ ∼pan aly ze r/ .

[3] http://www.cs.u cs d. ed u/ ∼ca ld er /si mp oi nt /i nde x. ht m .

[4] AMD. BIOS and Kernel Developer’s Guide for AMD Athlon 64 and AMD Opteron Pro-
cessors.

[5] Anantha P. Chandrakasan Amit Sinha. Jouletrack - a web based tool for software energy
profiling the Seville statement on violence. Design Automation Conference, 2001.

[6] Bryan Black and John Paul Shen. Calibration of microprocessor performance models.
IEEE Computer, p59-65, 1998.

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic op-
timization. In 1st International Symposium on Code Generation and Optimization (CGO-
03), March 2003.

[8] Bruno De Bus, Dominique Chanet, Bjorn De Sutter, Ludo Van Put, and Koen De Boss-
chere. The design and implementation of fit: a flexible instrumentation toolkit. Proceed-
ings of the ACM-SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering(PASTE), pages 29–34, 2004.

[9] Brad Calder and Dirk Grunwald. Reducing branch costs via branch alignment. Pro-
ceedings of the 6th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’94), October 1994.

[10] Margaret Martonosi Canturk Isci. Runtime power monitoring in high-end processors:
Methodology and empirical data. Proceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, p93, 2003.

[11] Margaret Martonosi Canturk Isci. Runtime power monitoring in high-end processors:
Methodology and empirical data. Proceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’03), page 93, 2003.

[12] J. W. Chen, M. Dubois, and P. Stenstrm. Integrating complete-system and user-level
performance/power simulators: The simwattch approach. In Proceedings of International
Symposium on Performance Analysis of Systems and Software, 2003.

[13] Eric Chi, A. Michael Salem, and R. Iris Bahar. Combining software and hardware mon-
itoring for improved power and performance tuning. Proceedings of the Seventh An-
nual Workshop on Interaction between Compilers and Computer Architectures (INTER-
ACT’03), 2003.

102

[14] Thomas M. Conte, Mary Ann Hirsch, and Kishore N. Menezes. Reducing state loss for
effective trace sampling of superscalar processors, October 1996.

[15] Margaret Martonosi David Brooks, Vivek Tiwari. Wattch: a framework for architectural-
level power analysis and optimizations. Proceedings of the 27th annual international
symposium on Computer architecture, p83-94, 2000.

[16] Evelyn Duesterwald, Calin Cascaval, and Sandhya Dwarkadas. Characterizing and pre-
dicting program behavior and its variability. Proceedings of the 12th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT’03), page 220,
2003.

[17] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy usage
of mobile applicationthe. Second IEEE Workshop on Mobile Computing Systems and
Applications, 1999.

[18] Dirk Grunwald, Philip Levis, Keith I. Farkas, Charles B. Morrey III, and Michael Neufeld.
Policies for dynamic clock scheduling. In Fourth Symposium on Operating System Design
and. Implementation(OSDI 2000), pages 73–86, October 2000.

[19] Vivek Haldar, Christian W. Probst, Vasanth Venkatachalam, and Michael Franz. Vir-
tual machine driven dynamic voltage scaling. Technical Report, University of California,
Irvine, 2003.

[20] Kim Hazelwood and David Brooks. Eliminating voltage emergencies via microarchitec-
tural voltage control feedback and dynamic optimization. International Symposium on
Low-Power Electronics and Design, August 2004.

[21] Alvin R. Lebeck Amin Vahdat Heng Zeng, Carla S. Ellis. Ecosystem: Managing energy
as a first class operating system resource. Proceedings of the 10th international confer-
ence on Architectural support for programming languages and operating systems, 2002.

[22] Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation of a
compiler algorithm for cpu energy reduction. Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation (PLDI’03), pages 38–
48, 2003.

[23] Chunling Hu, Daniel A. Jiménez, and Ulrich Kremer. Toward an evaluation infrastructure
for power and energy optimizations. 19th International Parallel and Distributed Process-
ing Symposium (IPDPS 2005, Workshop 11), CD-ROM / Abstracts Proceedings, April
2005.

[24] Chunling Hu and Jack Liu. Vm + dbs: Dynamic power consumption and performance op-
timization. Proceedings of the International Conference on Thermal Issues in Emerging
Technologies Theory and Application (ThETA), January 2007.

[25] Chunling Hu, John McCabe, Daniel A. Jiménez, and Ulrich Kremer. The camino com-
piler infrastructure. SIGARCH Comput. Archit. News, 33(5):3–8, 2005.

[26] Chunling Hu, John McCabe, Daniel A. Jiménez, and Ulrich Kremer. Infrequent basic
block-based program phase classification and power behavior characterization. Proceed-
ings of The 10th IEEE Annual Workshop on Interaction between Compilers and Computer
ArchitecturesThe Camino Compiler Infrastructure, 2006.

103

[27] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System
Programming Guide.

[28] Intel. StrongARM SA-110/21285 Evaluation Board.

[29] Canturk Isci, Gilberto Contreras, and Margaret Martonosi. Live, runtime phase moni-
toring and prediction on real systems with application to dynamic power management.
MICRO 39: Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 359–370, 2006.

[30] Canturk Isci and Margaret Martonosi. Identifying program power phase behavior using
power vectors. Proceedings of the IEEE International Workshop on Workload Character-
ization (WWC-6), 2003.

[31] Canturk Isci and Margaret Martonosi. Phase characterization for power: Evaluating
control-flow-based and event-counter-based techniques. In 12th International Symposium
on High-Performance Computer Architecture (HPCA-12), Febrary 2006.

[32] A. Iyer and D. Marculescu. Power aware microarchitecture resource scaling. Proceedings
of the conference on Design, Automation and Test in Europe (DATE’01), pages 190–196,
2001.

[33] Chunling Hu Daniel A. Jiménez and Ulrich Kremer. Efficient power behavior character-
ization. 2007 International Conference on High Performance Embedded Architectures
and Compilers, January 2007.

[34] Daniel A. Jiménez. Code placement for improving dynamic branch prediction accuracy.
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI’05), pages 107–116, June 2005.

[35] David A. Patterson John L. Hennessy. Morgan Kaufmann, 2002.

[36] AJ KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja. Adapting the spec 2000 bench-
mark suite for simulation-based computer architecture research. Workload Characteriza-
tion of Emerging Computer Applications, pages 83–100, 2001.

[37] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for variable
length intervals and hierarchical phase behavior. In the Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS’05), pages
135–146, 2005.

[38] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classification. In the
Proceedings of the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’04), pages 57–67, 2004.

[39] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communicatons systems. International
Symposium on Microarchitecture, pages 330–335, 1997.

[40] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating system
power consumption. Proceedings of the 2003 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, 31(1):160–171, June 2003.

104

[41] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. Proceedings of the 2005 ACM
SIGPLAN conference on Programming Language Design and Implementation (PLDI’05),
pages 190–200, 2005.

[42] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. Proceedings of the 2005 ACM
SIGPLAN conference on Programming Language Design and Implementation (PLDI’05),
pages 190–200, 2005.

[43] Grigorios Magklis, Michael L. Scott, Greg Semeraro, David H. Albonesi, and Steven
Dropsho. Profile-based dynamic voltage and frequency scaling for a multiple clock do-
main microprocessor. ISCA ’03: Proceedings of the 30th annual international symposium
on Computer architecture, pages 14–27, 2003.

[44] Srilatha Manne, Artur Klauser, and Dirk Grunwald. Pipeline gating: speculation con-
trol for energy reduction. Proceedings of the 25th Annual International Symposium on
Computer Architecture (ISCA’98), pages 132–141, 1998.

[45] D. Marculescu. On the use of microarchitecture-driven dynamic voltage scaling. In Work-
shop on Complexity-Effective Design, June 2000.

[46] M. I. Irwin H. S. Kim W. Ye N. Vijaykrishnan, M. Kandemir. Energy-driven integrated
hardware-software optimizations using simplepower. Proceedings of the 27th annual in-
ternational symposium on Computer architecture, p95-106, 2000.

[47] Priya Nagpurkar and Chandra Krintz. Phase-based visualization and analysis of java
programs. Science of Computer Programming, 59(1-2):64–81, 2006.

[48] Erez Perelman, Greg Hamerly, and Brad Calder. Picking statistically valid and early sim-
ulation points. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), page 244, September 2003.

[49] Kambiz Rahimi. Minimizing peak power in synchronous logic circuits. GLSVLSI ’07:
Proceedings of the 17th great lakes symposium on Great lakes symposium on VLSI, pages
247–252, 2007.

[50] Stephen W. Keckler Rajagopalan Desikan, Doug Burger. Measuring experimental error
in microprocessor simulation. Proceedings of the 28th annual international symposium
on Computer architecture,p266-277, 2001.

[51] R. Rao and S. Vrudhula. Battery optimization vs energy optimization: which to choose
and when? ICCAD ’05: Proceedings of the 2005 IEEE/ACM International conference on
Computer-aided design, pages 439–445, 2005.

[52] Vijay Janapa Reddi, Alex Settle, and Daniel A. Connors. Pin: A binary instrumentation
tool for computer architecture research and education. Proceedings of the Workshop on
Computer Architecture Education, June 2004.

105

[53] K. Chen S. Huang, K. Cheng and T. Lee. A novel methodology for transistor-level power
estimation. ISLPED’96: Proceedings of the 1996 international symposium on Low power
electronics and design, pages 67–72, 1996.

[54] Greg Semeraro, David H. Albonesi, Steven G. Dropsho, Grigorios Magklis, Sandhya
Dwarkadas, and Michael L. Scott. Dynamic frequency and voltage control for a multiple
clock domain microarchitecture. MICRO 35: Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pages 356–367, 2002.

[55] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. Proceedings of
the 11th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’04), pages 165–176, 2004.

[56] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution analysis to
find periodic behavior and simulation points in applications. Proceedings of the 2001 In-
ternational Conference on Parallel Architectures and Compilation Techniques (PACT’01),
pages 3–14, 2001.

[57] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. 10th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 45–57, October
2002.

[58] Dirk Grunwald Soraya Ghiasi. A comparison of two architectural power models. Pro-
ceedings of the First International Workshop on Power-Aware Computer Systems, P137-
152, 2000.

[59] Brinkley Sprunt. Pentium 4 performance-monitoring features. IEEE Micro, 22(4):72–82,
2002.

[60] Ram Srinivasan, Jeanine Cook, and Shaun Cooper. Fast, accurate microarchitecture sim-
ulation using statistical phase detection. Proceedings of The 2005 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS’05), 2005.

[61] A. Srivastava and A. Eustace. Atom: A system for building customized program analysis
tools. Proceedings of the Conference on Programming Language Design and Implemen-
tation, pages 196–205, November 1994.

[62] C-L. Su, C-Y. Tsui, and A.M. Despain. Low power architecture and compilation tech-
niques for high-performance processors. IEEE COMPCON, pages 489–498, February
1994.

[63] Mary Jane Irwin N. Vijaykrishnan et al. Sudhanva Gurumurthi, Anand Sivasubramaniam.
Using complete machine simulation for software power estimation: The softwatt ap-
proach. International Symposium on High Performance Computer Architecture(HPCA),
2001.

[64] M.C. Toburen, T. Conte, and M. Reilly. Instruction scheduling for low power dissipation
in high performance microprocessors. Power Driven Microarchitecture Workshop, June
1998.

106

[65] Carla Schlatter Ellis Todd L. Cignetti, Kirill Komarov. Energy estimation tools for the
palm. International Workshop on Modeling Analysis and Simulation of Wireless and
Mobile Systems, 2000.

[66] Madhavi Valluri and Lizy John. Is compiling for performance == compiling for power?
The 5th Annual Workshop on Interaction between Compilers and Computer Architectures
(INTERACT-5), January 2001.

[67] Qiang Wu, Margaret Martonosi, Douglas W. Clark, V. J. Reddi, Dan Connors, Youfeng
Wu, Jin Lee, and David Brooks. A dynamic compilation framework for controlling
microprocessor energy and performance. MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture, pages 271–282, 2005.

[68] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. Smarts: Accelerating microarchitec-
ture simulation via rigorous statistical sampling, June 2003.

[69] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic voltage scaling
settings: Opportunities and limits. In the Proceedings of Programming Language Design
and Implementation (PLDI 2003), June 2003.

[70] H-S. Yun and J. Kim. Power-aware modulo scheduling for high-performance VLIW.
International Symposium on Low Power Electronics and Design (ISLPED’01), August
2001.

107

Vita

Chunling Hu

Education
2008 Ph.D. Computer Science, Rutgers University
2007 M.S. Computer Science, Rutgers University
2001 M.S. Computer Science, Beijing Univ of Posts&Telecom
1998 B.E. Computer Communications, Beijing Univ of Posts&Telecom

Research Experience
2004-2007 Research Assistant, Department of Computer Science, Rutgers Univ
2006 Technical Graduate Intern, Intel Corporation

Teaching Experience
2004 Computer Architecture (undergraduate level)
2003 Computer Architecture (graduate level)
2001-2002 Internet Technology (undergraduate level)

Publications

• Chunling Hu, Daniel A. Jiménez, Ulrich Kremer. Combining Edge Vector and Event
Counter for Time-dependent Power Behavior Characterization. Invited paper to LNCS
Transactions on High-Performance Embedded Architectures and Compilers(to appear).

• Chunling Hu, Daniel A. Jiménez, Ulrich Kremer. An Evaluation Infrastructure for Power
and Energy Optimizations. International Journal of Embedded Systems (IJES) (to ap-
pear).

• Chunling Hu, John McCabe, Daniel A. Jiménez and Ulrich Kremer. The Camino Com-
piler Infrastructure, ACM SIGARCH Computer Architecture News, Vol. 33, Issue 5, Dec.
2005.

• Chunling Hu, Jack Liu. JVM+DBS: Dynamic Power Consumption and Performance
Optimization. International Conference on Thermal Issues in Emerging Technologies,
Theory and Application-ThETA, Jan. 2007.

• Chunling Hu, Daniel A. Jiménez, Ulrich Kremer. Efficient Program Power Behavior
Characterization. International Conference on High Performance Embedded Architec-
tures & Compilers (HiPEAC2007), Jan. 2007.

108

• Chunling Hu, John McCabe, Daniel A. Jiménez and Ulrich Kremer. Infrequent Basic
Block-based Program Phase Classification and Power Behavior Characterization. Pro-
ceedings of The10th IEEE Annual Workshop on Interaction between Compilers and Com-
puter Architectures (INTERACT-10), Feb. 2006.

• Chunling Hu, John McCabe, Daniel A. Jiménez and Ulrich Kremer. The Camino Com-
piler Infrastructure, Proceedings of the 2005 Workshop on Binary Instrumentation and
Applications (WBIA), held in conjunction with PACT2005, Sept. 2005.

• Chunling Hu, Daniel A. Jiménez, Ulrich Kremer. Toward an Evaluation Infrastructure
for Power and Energy Optimizations. The First Workshop on High-Performance, Power-
Aware Computing (HP-PAC), Apr. 2005.

