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ABSTRACT OF THE DISSERTATION

Sequential Analysis of Clustered Survival Data by

Marginal Methods

by Bo Hou

Dissertation Director: Professor Zhiliang Ying

Clustered survival data are a type of multivariate survival data with naturally formed

clusters so that event times within a cluster are parallel to each other and correlated.

Lee, Wei and Amato (1992) introduced a semiparametric model for the analysis of

clustered survival data that assumes event times follow a proportional hazards model.

Sequential analysis of clustered survival data arises in clinical studies in which pa-

tients are followed over time and interim analyses are performed. This thesis studies

the sequential analysis of clustered survival data with staggered patient entry by adapt-

ing Lee, Wei and Amato’s approach. It is shown that the two-parameter score process

converges to a Gaussian random field irrespective of the correlation within clusters and

staggered patient entry. The regression parameter estimator obtained at each time

point has the desired properties including consistency and asymptotic normality. A

consistent estimator of the baseline cumulative hazard function is also given. More im-

portantly, we propose a novel optimal weighting strategy. We show that the resulting

score process not only produces a more efficient estimator, but also has the impor-

tant property of (asymptotically) independent increments. The latter can be used in

conjunction with the well-known error-spending functions to construct proper bound-

aries in group sequential testing. Finally a sample size calculation formula is given for
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designing clinical trials with clustered survival time as the endpoint.
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A.4. Distributions of scores Ũ1 and Ũ2 (ρ = 5) . . . . . . . . . . . . . . . . . 56
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Chapter 1

Introduction

The clustered survival data represent such a type of multivariate survival data that

there are naturally formed clusters and, within each cluster, multi-parallel event times

are observed. The event times within each cluster may be correlated due to the nature

of clusters.

1.1 Examples of clustered survival data

A typical example of clustered survival data is as follows. In a clinical trial experiment, a

medicine to help healing of wounds caused by type II diabetic mellitus is compared with

a standard wound care medicine. Instead of following one major wound per subject,

the trial tracks all eligible wounds of every subject until their healing or the end of the

study. The main focus of the trial is to compare the effect of the new medicine with

that of the standard wound care medicine on the healing time of wounds. Furthermore,

identifying factors that highly influence the healing of wounds is another major interest.

In this example each subject forms a cluster. There may be two or more event times

within each cluster if the subject has experienced more than one wound at the beginning

of the study or during the study. These event times are parallel to each other instead

of having natural time order between them. Another characteristic of the trial is that

every subject receives only one randomly assigned treatment for all his wounds, it is

not intended to compare the treatment effects within each cluster.

More examples of clustered survival data can be found in literature. In [25], Lee,

Wei and Amato presented an example of a diabetic retinopathy study, in which, patient

visual loss was studied. Patients took either oral sorbinil, or placebo, and, the time

from the admission of medicine to visual loss was observed for each patient, one for
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each eye. Here again each patient forms a cluster.

More generally, survival data from clinical trials with subjects recruited from multi-

ple study centers can also be viewed as clustered survival data, with each center being

a cluster. Group life insurance of employees sharing a common environment at their

workplace, survival studies about married couples can all be viewed as clustered survival

data.

1.2 Modeling of clustered survival data

As a type of common and important data, clustered survival data have been studied by

many researchers. A major difficulty in analyzing clustered survival data is the modeling

of the within cluster dependency. Two major methodologies regarding modeling of

clustered survival data exist. One is based on the introduction of a frailty to each

cluster, known as frailty model or mixed effects model. Another method is marginal

modeling approach which models the marginal distribution of each event time.

The frailty model specifies the within cluster dependency directly by assuming that

event times within each cluster share a common, cluster-specific risk. It is further

assumed that this common risk is the only factor governing the dependency: given

this risk, the event times in a cluster are independent. This common risk is called the

frailty of this cluster. Although we assume that frailties exist, they are at most times

unobservable. So it is usually assumed that frailties are i.i.d random variables, and are

independent of their corresponding covariates. Let ξi represent the frailty for cluster i.

Then given ξi, for a proportional hazards model, the hazard function λij(t|ξi) for the

jth event time in cluster i is assumed to be:

λij(t| ξi) = ξiλ0(t) exp(β′Zij), t ≥ 0, (1.1)

where λ0(t) is an unspecified baseline hazard function. In the setting of frailty model,

the random effects are assumed to have a known distribution. Vaupel et al. [39]

studied the frailty model for univariate case and gave the model the name. Clayton

[5] and Oakes [29] studied the bivariate model for frailty having gamma distribution.
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Clayton and Cuzick [4] generalized the above result to include covariates. Hougaard [18],

Hougaard [19] and Oakes [30] studied the bivariate case with frailty stable distributed.

Crowder [6] studied the PVF model. Whitmore and Lee [40] suggested the multivariate

model with inverse Gaussian frailty and exponential conditional distributions. Lu and

Bhattacharyya [23] presented several stable-Weibull model extensions.

The marginal proportional hazards model for survival data was introduced by Wei,

Lin and Weissfeld [41] in 1989 for multivariate survival data that are naturally ordered.

In 1992 Lee, Wei and Amato [25] introduced the marginal model to the clustered survival

data that all events are of the same type. This model was further applied by Spiekerman

and Lin [37] in 1998 to clustered survival data that include different types of event times

as well as multi-observations of each type. The marginal modeling method models the

marginal distribution of the survival times by assuming that the marginal distributions

of the survival times follow proportional hazards model. That is, given Zij = zij , the

marginal method assumes that the hazard function of Tij is of the form

λij(t | zij) = λ0(t)eβ
′zij ,

where λ0(t) is an unspecified baseline hazard function. In this modeling, no specification

is done on the dependence structure of Tij within clusters. The partial likelihood is

computed by assuming that all {Tij} are independent, and the regression parameter

estimator is the maximum partial likelihood estimator. So the regression parameter

estimator is obtained as if all {Tij} are independent. The dependence between {Tij}

is dealt with by adjusting the covariance matrix of the maximum partial likelihood

estimator to include the correlation. It has been shown that thus obtained regression

parameter estimator and the estimator of the covariance of the regression parameter

vector are all consistent estimator of the corresponding parameter.

The major difference between the marginal proportional hazard model and the

frailty model is that the additional term of frailty is included to the hazard function in

the frailty model. The frailty term describes the cluster effect, and changes the para-

meter estimation procedure and the interpretation of the results. In a frailty model, the

regression parameters represent the effects of covariate difference between two members
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of the same cluster, while in the marginal proportional hazard model, they represent

effects of covariate difference between two members in the whole population.

1.3 Group sequential analysis for clustered survival data

One common feature for controlled clinical trials, at least for Phase III clinical trials,

is to monitor the data periodically. That is, data up to some intermediate time points

are analyzed. The major method to accomplish these interim analyses is the method

of group sequential analysis.

A group sequential test is basically a sequence of repeated significance tests. It

requires the knowledge of the joint distribution of the test statistics so that the critical

values of the tests can be determined and the overall type I error can be well controlled.

According to these requirements there are various ways to decide the test boundaries

and the type I error allowed at each separate analysis.

Pocock (1977) [32] and O’Brian and Fleming (1979) [31] have made major impacts

on this field. These two papers introduce group sequential two-sided tests that are

easy to implement and can be applied to many response distributions. Pocock’s test

suggested to use a constant critical value for all analyses. O’Brian and Fleming proposed

a test in which the critical values decrease as the study proceeds.

In 1982, Slud and Wei [36] introduced a method which, theoretically, can be applied

to all situations that the joint distribution of the sequence of test statistics is known.

Assume that the interim analyses are to be performed at time points t1 < t2 < · · · < tK

and the pre-specified significance levels are α1, · · · , αK satisfying
∑K

i=1 αi = α. Let

Wt1 , · · · ,WtK be the test statistics with known joint distribution, then Slud and Wei

suggested that at time tl, the boundary point dl is determined as follows:

P (|Wt1 | ≥ d1) = α1 (1.2)

P (|Wt1 | ≤ d1, |Wt2 | ≥ d2) = α2

...

P
(
|Wt1 | ≤ d1, |Wt2 | ≤ d2, ..., |WtK−1 | ≤ dK−1, |WtK | ≤ dK

)
= αK .

Due to the minimum requirement, the Slud and Wei’s method has been applied widely
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in practice. But, on the other hand, when the joint distribution is complicated the

method is very computing-intensive.

Slud and Wei’s method requires that the maximum number of analyses and the

significance levels at all separate analyses are fixed in advance. However in many

studies, especially in survival studies, the increments of information are usually unequal

and unpredictable, so we may prefer to adjust the number of analyses or the Type I

error spent at analyses according to the actual accrual of information. Lan and DeMets

[22] introduced the error-spending method which allows the flexibility of choosing the

number of analyses and significance levels. Assume that a clinical trial is conducted on

[0, t]. Let f(t) be a pre-specified non-decreasing function which satisfies that f(0) = 0

and f(t) = α. This f(t) specifies the cumulative Type I error spent at time t. Suppose

that the first interim analysis is done at t1 ∈ [0, t], then the Type I error spent at t1 is

f(t1). The second analysis at t2 will spend Type I error f(t2)− f(t1) and so on. Once

the significance levels are determined, the boundaries of analyses are calculated by Slud

and Wei’s method.

In this thesis, we will study clustered survival data with covariates and staggered

patient entry. Researches on survival data with covariates and staggered patient entry

have been done by Tsiatis [38], Sellke and Siegmund [35] and Billias, Gu and Ying [2].

Tsiatis in 1981 studied the distributional properties of the score function U(β, t) derived

from a Cox partial likelihood function under the null hypothesis β = 0. He proved that

n−1/2U(0, t) converges to a limiting Gaussian process with independent increments.

Hence the joint distribution of standardized n−1/2U(0, t) at different time points is the

same as the distribution of a sequence of normalized partial sums of independent and

identically distributed standard normal random variables. Therefore standard results

for repeated significance testing of a Brownian motion can be used. Sellke and Siegmund

[35] suggested a transformation of time scale. Under the new time scale, they showed

that the score process converges weakly to a time scaled Brownian motion. Billias, Gu

and Ying [2] studied the distribution properties of the two-parameter score function

U(β, t, s) with t representing calender time and s survival time. Their results can be

applied to obtain distributional approximation to various testing statistics, under both
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the null an alternative hypotheses.

1.4 Lee, Wei and Amato’s model

Our thesis is based on Lee, Wei and Amato [25] model for clustered survival data and is

abbreviated as LWA model throughout this thesis. To be specific, suppose there are n

clusters with ki event times in cluster i. Let Tij be the jth event time of the ith cluster

associated with the p× 1 covariate vector Zij and the noncensoring indicator δij . The

LWA model is then as follows. Given Zij = zij , the marginal hazard function of Tij is

of the form

λij(t | zij) = λ0(t)eβ
′zij ,

where λ0(t) is an unspecified baseline hazard function.

This model gives only the marginal distribution of each Tij . To make inference for

β by Cox’s partial likelihood, Lee, Wei and Amato ignored the correlation between

Tij by adopting the working assumption that Tij are independent. Under the working

assumption, the Cox’s partial likelihood

L(β) =
n∏

i=1

ki∏
j=1

(
exp {β′Zij}∑

(l,m)∈R(i,j) exp {β′Zlm}

)δij

(1.3)

can be calculated. Here R(i, j) is the risk set for jth member in cluster i. The score

function

U(β) =
∂logL(β)

∂β
(1.4)

has the representation

U(β) =
n∑

i=1

ki∑
j=1

∫ ∞

0
(Zij − Z̄(β, t))dMij(β, t) (1.5)

with

Mij(β, t) = Nij(t)−
∫ t

0
Yij(u)λ0(u) exp (β′Zij)du.

This score process U(β) is no longer a martingale due to the staggered patient entry

and correlation between survival times within clusters. The usual martingale method

can not be applied here. Lee, Wei and Amato showed that, at the true regression
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parameters vector β0, n−1/2U(β0) is asymptotically equivalent to n−1/2Ũ(β0) with

Ũ(β0) =
n∑

i=1

ki∑
j=1

∫ ∞

0
(Zij − µ(β0, t))dMij(β0, t). (1.6)

Here µ(β0, t) is the the limit of Z̄(β0, t) as the sample size tends to infinity. Let

Ui(β) =
ki∑

j=1

∫ ∞

0
(Zij − µ(β, t))dMij(β, t).

Since µ(β, t) is a deterministic function, the replacement of Z̄(β, t) by µ(β, t) en-

ables U1(β), · · · , Un(β) are independent. More regularity conditions guarantee that

U1(β0), · · · , Un(β0) are independent and identically distributed. By multivariate cen-

tral limit theorem, n−1/2U(β0) is normal distributed with the limit variance-covariance

matrix

Σ(β0) = lim
n→∞

1
n

n∑
i=1

E(
ki∑

j=1

∫ ∞

0
(Zij − µ(β0, t))dMij(β0, t))⊗2. (1.7)

Let β̂ be the solution to the equation U(β) = 0. Although β̂ is calculated under the

assumption that Tij are independent, Lee, Wei and Amato has showed that under reg-

ularity conditions, β̂ is asymptotically normally distributed and a consistent estimator

of β0.

From the consistency of β̂, Lee, Wei and Amato proposed the following consistent

estimator of Σ(β0) :

Σ̂ = n−1
n∑

i=1

ki∑
j,k

(
∫ ∞

0
(Zij − µ(β̂, s))dM̂ij(β̂, s))(

∫ ∞

0
(Zik − µ(β̂, s))dM̂ik(β̂, s))>

where

M̂ij(β, s) = Nij(s)−
∫ ∞

0

Yij(s)∑n
i=1

∑ki
j=1 Yij(s) exp(β̂′Zij)

d

n∑
i=1

ki∑
j=1

Nij(s).

The limiting covariance matrix W (β0) of β̂ is calculated by the so-called sandwiched

matrix

W (β0) = lim
n→∞

nV ar(β̂) = A−1Σ(β0)(A−1)>, (1.8)

where

A = lim
n→∞

n−1∂
2logL(β∗)
∂2β

,

and β∗ is between β̂ and β0.
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1.5 Thesis outline

This thesis studies issues related with sequential analysis of clustered survival data,

based on the marginal proportional hazards model proposed by Lee, Wei and Amato

[25]. Based on the working assumption that all survival times are independent and

assume that they obey the marginal proportional hazards model, we obtain the score

process U(β, t, s) for 0 ≤ s ≤ t ≤ τ with t representing calender time, s survival time

and τ a boundary of t to satisfy stability conditions. An estimate of the regression

coefficient vector in the marginal model can be obtained from the following estimating

equation

U(β, t, t) = 0

for any fixed t ∈ [0, τ ]. The score process U(β, t, s) is no longer a martingale with

respect to survival time s due to the staggered patient entry and correlations between

survival times within clusters. More sophisticated method is needed in order to obtain

the asymptotic distribution of the score process and its limiting covariance matrix

function.

In Chapter 2, we investigate the asymptotic distribution properties of the score

process U(β, t, s). We will show that under regularity conditions, U(β, t, s) converges

to a Gaussian random field with mean vector 0, continuous sample paths and explicit

covariance function. With the asymptotic distribution of the score process known we

show in section 3 that, for every fixed t, the solution to the estimating equation is a

consistent estimator of the true regression vector. In section 4, we propose a consistent

estimate of the cumulative hazard function Λ0(t).

Chapter 3 investigates group sequential analysis of clustered survival data. In section

1 we show that, using Slud and Wei’s method, group sequential analysis can be done

based on sequence of standardized estimator β̂t calculated on chosen analysis time

points. In section 2, we introduce a partition method which produces estimators of

regression parameters that are more efficient than LWA estimators. The main idea

behind the approach is to break the score function into small blocks by chopping the

real line into pieces. The covariance matrix for these blocks can be estimated using
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a method similar to that of Wei et al. [41]. Then they are summed up reweighting

by the product of their second derivative and covariance matrix to form a new score.

We will show that this new score has the nice property of independent increments in

its limit. So this score process can be regarded as a time rescaled Brownian motion

, for which standard group sequential procedures are readily applicable. In section 4,

extensive simulations are done on the independent increments property, on the accuracy

of the estimators produced by partition method and the power of the sequential analysis

method using the new estimators.

In chapter 4, we derive a sample size formula for clinical trials designed with clus-

tered survival data. Discussions on the formula are given. Simulation results on the

type I error and power using sample size calculated from the formula are also presented.
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Chapter 2

Asymptotic distribution theory related to marginal

proportional hazards model

In this chapter, we study the asymptotic distribution properties related to the marginal

proportional hazards model. We will show in section 2 that under certain regularity

conditions, the partial likelihood score U(β, t, s) converges to a Gaussian random field.

The asymptotic distribution of the maximum partial likelihood estimator β̂ is derived

in section 3. We also derive the asymptotic normality of the estimator of the baseline

cumulative hazard function.

2.1 Introduction

Consider clustered event time data with n clusters. For cluster i, suppose there are ki

subjects, i = 1, · · · , n. For the jth subject in the ith cluster, let Rij be the study entry

time, Tij be the survival after entry, Cij be the time elapsed from entry to censoring,

and Zij be the p× 1 vector of covariates. We shall assume throughout this thesis that

{Zij} are time independent.

For validity of the proposed methods, we make the following assumptions. We

assume that {Rij} are i.i.d. random variables defined on a finite interval [0, r], 0 < r <

∞ and Zij are bounded by a nonrandom constant, say B. Within cluster i, {Tij , j =

1, · · · , ki} may be correlated. We assume independence between clusters, i.e., for i 6= j,

Tik is independent of Tjm for all k = 1, ..., ki and m = 1, .., kj . On entry times, Rij

are assumed to be independent of Zij and Cij . Survival times Tij are independent of

censoring times Cij conditional on covariates Zij and Rij . ki, the number of subjects

in cluster i, i = 1, · · · , n are assumed to be constant with bound K. Throughout the

sequel, we shall assume, without loss of generality, that Rij For simplicity, we require
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that K1 = limn→∞
1
n

∑n
i=1 ki and K2 = limn→∞

1
n

∑n
i=1 k

2
i exist.

Let t represent the calender time. At time t, Tij is not only censored by Cij , but

also by (t − Rij)+, as the failure has not occurred if Tij > t − Rij . Let Xij(t) =

min{Tij , Cij , (t−Rij)+}, then Xij(t) is the event time we observe at time t. Define the

failure indicator variable δij(t) as δij(t) = 1 if Xij(t) = Tij and δij(t) = 0 otherwise.

Let Rij(t) = {(l,m) : 1 ≤ l ≤ n,m = 1, · · · , kl, Xlm(t) ≥ Xij(t)}.

Two stochastic processes need to be defined. For x ≤ t, let Nij(t, x) = I(Xij(t) ≤

x, δij(t) = 1) and Yij(t, x) = I(Xij(t) ≥ x). Nij(t, x) = 1 means that the subject has

experienced his failure before t and the survival is no greater than x. Yij(t, x) = 1

represents that observed at time t, the subject has stayed in trial at least x units of

time. Notice that here we concern only information accumulated until time t. Any

information occurred after time t will be analyzed at later periods. So we always have

Xij(t, x) ≤ t.

In this thesis, we assume that the marginal hazard function for each event time has

a proportional hazards form, (see Lee, Wei and Amato [25]), that is, given the covariate

vector Zij = zij the hazard function for subject j in cluster i is,

λij(t|zij) = λ0(t) exp (β′zij), t ≥ 0. (2.1)

Here λ0(t) is an unspecified baseline hazard function and β = (β1, ..., βp)> is the re-

gression parameter vector.

Model (2.1) does not specify the joint distribution of {Tij}. Employing the working

assumption proposed by Lee, et al. [25] that all Tij are independent, the Cox partial

likelihood function at calender time t takes form:

L(β, t) =
n∏

i=1

ki∏
j=1

[
exp (β′Zij)∑

(l,m)∈Rij(t)
exp (β′Zlm)

]δij(t)

=
n∏

i=1

ki∏
j=1

∏
s≤t

[
exp (β′Zij)∑n

l=1

∑kl
m=1 Ylm(t, s) exp (β′Zlm)

]∆Nij(t,s)

. (2.2)

Taking into consideration of both survival time s and calender time t, define a

two-parameter score process

U(β, t, s) =
n∑

i=1

ki∑
j=1

∫ s

0

(
Zij − Z̄(β, t, u)

)
Nij(t, du), (2.3)
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where

Z̄(β, t, u) =
∑n

l=1

∑kl
m=1 Ylm(t, u) exp(β′Zlm)Zlm∑n

l=1

∑kl
m=1 Ylm(t, u) exp(β′Zlm)

.

Then

U(β, t, t) =
∂logL(β, t)

∂β
.

It is the score function at time t. In fact, if we generalize (2.2) to

L(β, t, s) =
n∏

i=1

ki∏
j=1

∏
u≤s

[
exp (β′Zij)∑n

l=1

∑kl
m=1 Ylm(t, u) exp (β′Zlm)

]∆Nij(t,u)

.

Then

U(β, t, s) =
∂logL(β, t, s)

∂β
.

Simple calculation shows that (2.3) can be written as

U(β, t, s) =
n∑

i=1

ki∑
j=1

∫ s

0

(
Zij − Z̄(β, t, u)

)
Mij(β, t, du), (2.4)

where

Mij(β, t, s) = Nij(t, s)−
∫ s

0
λ0(u)Yij(t, u) exp(β′Zij)du.

Due to the staggered patient entry and the intra-cluster correlation, (2.4) is no longer a

martingale. So the usual martingale method cannot be used here. In the next section,

we will show that with intra-cluster dependence and staggered patient entry, U(β, t, s)

still converges in distribution to a Gaussian random field with mean vector 0 and

continuous sample pathes.

2.2 The asymptotic distribution of the score process

Throughout this thesis, we use the following notation. Let β0 denote the true value of

the regression parameter vector in model (2.1). For a vector a, denote a⊗0 = 1, a⊗1 =

a, a⊗2 = aaτ . For a vector y or matrix Y let ‖y‖ = maxi |(y)i| and ‖Y ‖ = maxi,j |(Y )ij |.

For any vector y, |y| will denote the Euclidean norm |y| = (
∑n

i=1 y
2
i )

1/2.

Let

τ = sup{t : lim inf
n→∞

1
n

n∑
i=1

ki∑
j=1

P{(Rij + Tij) ∧ (Rij + Cij) ≥ t ≥ Rij} > 0.
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Defined this way, τ is the largest calendar time at which there is a positive proportion

of clusters which have at least one member that is under observation. We will restrict

the calender time t to be within the interval [0, τ ].

For any 0 < t ≤ τ, especially when t is large, it is possible that
∑n

i=1

∑ki
j=1 Yij(t, s) =

0 for some s ≤ t. This means that observed at time t, no subject’s observed survival

is longer than s. By the definition of τ, this does not mean that all subjects have

failed before time t. It simply represents the situation that many subjects enter the

study late, so their failures are not observed yet. When
∑n

i=1

∑ki
j=1 Yij(t, s) = 0, no

information on survival is provided by {Yij(t, s)}. It also causes difficulty in theoretical

investigation. These thoughts lead us to the following definition:

Let d > 0 is a fixed small number. Define if s > t, Yij(t, s) = Yij(t, t). Then define

s∗ = sup{s : lim inf
n→∞

1
n

n∑
i=1

ki∑
j=1

EYij(t, s∗) ≥ d, for all t ∈ [0, τ ]}. (2.5)

Such s∗ is a survival time that at least a d proportion of subjects stay in trial longer

than it. When d is very small, most of the data will satisfy (2.5). So from now on, we

will restrict our study on D∗ = {(t, s) : s ≤ t, s ≤ s∗, t ≤ τ.}

We begin with the following regularity conditions:

(2.1) λ0(t) is bounded on [0, τ ].

(2.2) Let

S(d)
n (β, t, s) = n−1

n∑
i=1

ki∑
j=1

Yij(t, s) exp (β′Zij)Z⊗d
ij , d = 0, 1, 2.

Then for all (t, s) ∈ D∗ and β ∈ B, there exits s(d)(β, t, s) such that

s(d)(β, t, s) = lim
n→∞

ES(d)
n (β, t, s),

and

sup
(t,s)∈D∗,β∈B

‖S(d)
n (β, t, s)− s(d)(β, t, s)‖ → 0, a.s, d = 0.1, 2.
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(2.3) Let

Hn((t1, s1), (t2, s2)) =

1
n

n∑
i=1

E[(
ki∑

j=1

∫ s1

0
(Zij − Z̄(β0, t1, u))dMij(β0, t1, u))(

ki∑
j=1

∫ s2

0
(Zij − Z̄(β0, t2, u))dMij(β0, t2, u))′].

Then Hn((t1, s1), (t2, s2)) converges uniformly on D∗ as n→∞.

(2.4) Let

Γ(β, t) =
∫ t

0
v(β, t, x)s(0)(β, t, x)λ0(x)dx, (2.6)

where

v(β, t, x) =
s(2)(β, t, x)
s(0)(β, t, x)

−

(
s(1)(β, t, x)
s(0)(β, t, x)

)2

. (2.7)

Then Γ(β0, t) is positive definite on [0, τ ].

Remark 2.2.1 From (2.5), for (t, s) ∈ D∗, there is a N > 0 such that when n > N,

1
n

n∑
i=1

ki∑
j=1

EYij(t, s) ≥
1
n

n∑
i=1

ki∑
j=1

EYij(t, s∗) ≥ d/2.

Since β is bounded on B, and Zij are bounded, so there is a constant c1 such that

exp (β′Zij) ≥ c1 for all β ∈ B. So

ES(0)
n (β, t, s) ≥ dc1

2
, (t, s) ∈ D∗, β ∈ B,

So

s(0)(β, t, s) ≥ dc1
2
, (t, s) ∈ D∗, β ∈ B. (2.8)

That is, s(0)(β, t, s) is bounded away from 0 on B ×D∗.

Remark 2.2.2 For d = 0, 1, 2

ES(d)(β, t, x)

=
1
n

n∑
i=1

ki∑
j=1

EZ⊗d
ij Yij(t, x) exp (β′Zij)

=
1
n

n∑
i=1

ki∑
j=1

E(Z⊗d
ij exp (β′Zij)E(Yij(t, x)|Zij))

= P ((t−R11)+ ≥ x)
1
n

n∑
i=1

ki∑
j=1

E(Z⊗d
ij exp (β′Zij)P (Tij ≥ x,Cij ≥ x|Zij)).
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So

s(d)(β, t, x)

= P ((t−R11)+ ≥ x) lim
n→∞

1
n

n∑
i=1

ki∑
j=1

E(Z⊗d
ij exp (β′Zij)P (Tij ≥ x,Cij ≥ x|Zij)).

Therefore s(d)(β, t, x), d = 0, 1, 2 depend on t through the common factor P ((t−R11)+ ≥

x). Hence

µ(β, t, x) =
s(1)(β, t, x)
s(0)(β, t, x)

and v(β, t, x) in (2.7) are in fact not dependent on the calender time t. So from now

on, we write µ(β, t, x) and v(β, t, x) as µ(β, x) and v(β, x).

Because of the intra-cluster correlation and staggered patient entry, there is not a

common filtration with which all {Mij(β0, t, s), i = 1, · · · , n, j = 1, · · · , ki} are martin-

gales. But for every fixed t > 0 and (i, j), Mij(β0, t, s), as a function of s, is still a

martingale related to a filtration specific to (i, j). This property can be seen from the

following representation

Mij(β, t, s) =
∫ ∞

0
I{s∧(t−Rij)+∧Cij≥u} dM

0
ij(β, u), (2.9)

where

M0
ij(β, u) = I(Tij≤u) −

∫ u

0
I(Tij≥x) exp (β′Zij)λ0(x)dx.

If β0 is the the true regression parameter vector, then M0
ij(β0, t) is a martingale with

respect to F(ij)t = σ(Zij , Cij , Rij , I(Tij≤t), I(Tij>t)), 0 ≤ t <∞. The indicator function

I{s∧(t−Rij)+∧Cij≥u} is F(ij)u predictable. So Mij(β0, t, s) is a martingale with respect

to F(ij)s. This ”local” martingale property makes subsequent computation and proof

much easier.

Our following effort will be devoted to show that the score process U(β0, t, s) con-

verges weakly to a Gaussian random field on D∗. To this end, we first show that

U(β0, t, s) is asymptotically equivalent to Ũ(β0, t, s) which is obtained by replacing

Z̄(β, t, x) by µ(β, t, x). This replacement eliminates the complexity caused by Z̄(β, t, x)

because every term in Ũ(β, t, s) is a function of only one member. It is then easier to
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prove the weak convergence of Ũ(β, t, s). The weak convergence to a Gaussian random

field of U(β0, t, s) comes then from the asymptotic equivalence of it to Ũ(β, t, s).

Lemma 2.2.1 Let

H̃n((t1, s1), (t2, s2))

=
1
n
E[

n∑
i=1

(
ki∑

j=1

∫ s1

0
(Zij − µ(β0, u))dMij(β0, t1, u))(

ki∑
j=1

∫ s2

0
(Zij − µ(β0, u))dMij(β0, t2, u))′].

Then H̃n((t1, s1), (t2, s2)) converges uniformly on D∗ to limn→∞Hn((t1, s1), (t2, s2)).

Proof. Notice that

H̃n((t1, s1), (t2, s2))−Hn((t1, s1), (t2, s2))

=
1
n

n∑
i=1

E[(
ki∑

j=1

∫ s1

0
(Zij − Z̄(β0, t1, u))dMij(β0, t1, u))⊗

(
ki∑

j=1

∫ s2

0
(µ(β0, u)− Z̄(β0, t2, u))dMij(β0, t2, u)) +

(
ki∑

j=1

∫ s1

0
(µ(β0, u)− Z̄(β0, t1, u))dMij(β0, t1, u))⊗

(
ki∑

j=1

∫ s2

0
(Zij − Z̄(β0, t2, u))dMij(β0, t2, u))].

We would like to prove that H̃n((t1, s1), (t2, s2)) − Hn((t1, s1), (t2, s2)) converges uni-

formly to 0 on D∗.

To this end, it is sufficient to show that

Dn((t1, s1), (t2, s2)) =
1
n

n∑
i=1

E[(
ki∑

j=1

∫ s1

0
(Zij − Z̄(β0, t1, u))dMij(β0, t1, u))⊗

(
ki∑

j=1

∫ s2

0
(µ(β0, u)− Z̄(β0, t2, u))dMij(β0, t2, u)]

converges uniformly to 0 on D∗. The convergence of the other part can be proved

similarly.
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From Cauchy Inequality,

|Dn((t1, s1), (t2, s2))|2

≤ [
1
n

n∑
i=1

E(
ki∑

j=1

∫ s1

0
(Zij − Z̄(β0, t1, u))dMij(β0, t1, u))2]

[
1
n

n∑
i=1

E(
ki∑

j=1

∫ s2

0
(µ(β0, u)− Z̄(β0, t2, u))dMij(β0, t2, u))2]

≤ [
1
n

n∑
i=1

ki(
ki∑

j=1

E(
∫ s1

0
(Zij − Z̄(β0, t1, u))dMij(β0, t1, u))2)]

[
1
n

n∑
i=1

ki(
ki∑

j=1

E

∫ s2

0
(µ(β0, u)− Z̄(β0, t2, u))dMij(β0, t2, u))2].

Since {Zij}, λ0(x) are all bounded, so it can be shown that there is a constant C > 0

such that

|E(
∫ s1

0
(Zij − Z̄(β0, t1, u))dMij(β0, t1, u))2| ≤ C, for all (t1, s1) ∈ D∗.

From Remark 2.2.1, there is a constant c such that when n is large enough,

s(0)(β0, t, s) ≥ c for all (t, s) ∈ D∗.

From this fact and Condition (2.2), for any ε > 0, there is a N , when n > N ,

sup
(t,s)∈D∗

‖Z̄(β0, t, s)− µ(β0, t, s)‖ ≤ ε.

So when n > N,

|Dn((t1, s1), (t2, s2))|2

≤ K2Cε

n

n∑
i=1

ki∑
j=1

(ENij(t2, s2) +
∫ s2

0
λ0(x)EYij(t2, x) exp (β′0Zij)dx).

So there is a constant C1 such that

|Dn((t1, s1), (t2, s2))|2 ≤
K2C1ε

n
.

Thus

|Dn((t1, s1), (t2, s2))| → 0 uniformly on D∗.

This completes the proof.
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Theorem 2.2.1 Under conditions (2.1) and (2.2), for every fixed (t, s) ∈ D∗,

limn→∞P ( 1√
n
U(β0, t, s) 6= 1√

n
Ũ(β0, t, s)) = 0.

Proof. It comes directly from the proof of Lemma 2.2.1.

Theorem 2.2.2 Assume that Conditions (2.1), (2.2) and (2.3) are satisfied. Then

{n−1/2Ũ(β0, t, s), (t, s) ∈ D∗} converges weakly to a Gaussian random field ξ that have

mean vector 0, continuous sample paths and covariance function

Σ((t1, s1), (t2, s2)) = lim
n→∞

Hn((t1, s1), (t2, s2)). (2.10)

Proof. We use Theorem 10.6 of Pollard [32] to show the weak convergence. Without

loss of generality, we assume that p = 1.

Let d be the usual Euclidean metric on D∗. Then (D∗, d) is a metric space.

Let

fni(t, s) = n−1/2
ki∑

j=1

∫ s

0
(Zij − µ(β0, s))Mij(β0, t, ds).

Then fn1(t, s), fn2(t, s), ..., fnn(t, s) are independent. We will show that fni(t, s) satisfy

the five conditions of Theorem 10.6 of Pollard.

Rewrite fni(t, s) as

fni(t, s)

= n−1/2
ki∑

j=1

(ZijNij(t, s)− µ(β0, Tij)Nij(t, s) +∫ s

0
Zijλ0(x)µ(β0, x)Yij(t, x) exp (β′0Zij)dx−

∫ s

0
λ0(x)µ(β0, x)Yij(t, x) exp (β′0Zij)dx).

By Lemma A.1 of Bilias, Gu and Ying [2] which indicates that a finite sum of measurable

functions that have common envelop is still manageable, we need to show that for every

(i, j), each term within the sum parentheses is manageable. Since Zij = Z+
ij − Z−ij and

µ(β0, x) = µ(β0, x)+ − µ(β0, x)−, by Lemma A.1 of Bilias, Gu and Ying [2] again, we

may assume that Zij , i = 1, · · · , n, j = 1, · · · , ki and µ(β0, x) is nonnegative.

For each fixed (i, j), ZijNij(t, s) = min {ZijI(Tij≤Cij ,Tij≤(t−Rij)+), ZijI(Tij≤Cij)I(Tij≤s)}.

The term ZijI(Tij≤Cij ,Tij≤(t−Rij)+) is a nondecreasing function of t, so it has pseudodi-

mension at most 1, whereas ZijI(Tij≤Cij)I(Tij≤s) is a nondecreasing function of s, so it
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has pseudodimension at most 1. From Lemma 5.1 of Pollard, ZijNij(t, s) has pseudodi-

mension at most 10. So it is Euclidean, and hence is manageable.

We can prove the manageability of µ(β0, Tij)Nij(t, s) similarly.

Notice that∫ s

0
λ0(x)ZijYij(t, x) exp (β′0Zij)dx

= min{
∫ s∧Tij∧Cij

0
λ0(x) exp (β′0Zij)Zijdx,

∫ (t−Rij)
+∧Tij∧Cij

0
λ0(x) exp (β′0Zij)Zijdx}.

The term
∫ s∧Tij∧Cij

0 λ0(x) exp (β′0Zij)Zijdx and
∫ (t−Rij)

+∧Tij∧Cij

0 λ0(x) exp (β′0Zij)Zijdx

are a nondecreasing function of s and t respectively. So both have pseudodimension at

most 1. Therefore
∫ s
0 λ0(x)ZijYij(t, x) exp (β′0Zij)dx is manageable.

By the same decomposition we can prove that
∫ s
0 λ0(x)µ(β0, x)Yij(t, x) exp (β′0Zij)dx

is manageable.

To verify (ii), notice that Efni(t, s) = 0, (t, s) ∈ D∗. Furthermore,

E[(
n∑

i=1

fni(t1, s1))(
n∑

i=1

fni(t2, s2))]

=
1
n
E[(

n∑
i=1

ki∑
j=1

∫ s1

0
(Zij − µ(β0, u))dMij(β0, t1, u))(

n∑
i=1

ki∑
j=1

∫ s2

0
(Zij − µ(β0, u))dMij(β0, t2, u))]

=
1
n

n∑
i=1

E[(
ki∑

j=1

∫ s1

0
(Zij − µ(β0, u))dMij(β0, t1, u))(

ki∑
j=1

∫ s2

0
(Zij − µ(β0, u))dMij(β0, t2, u))].

From Condition (2.3), limn→∞E[(
∑n

i=1 fni(t1, s1))(
∑n

i=1 fni(t2, s2))] exists for every

(s1, t1), (s2, t2) ∈ D∗.

Let Fni = KZB∗/
√
n for some positive constant B∗. Then Fni is the an envelop of

{fni} which satisfy (iii) and (iv) of Theorem 10.6 of Pollard.

To prove that condition (v) of Theorem 10.6 of Pollard is satisfied, define, for any

(t1, s1) ∈ D∗ and (t2, s2) ∈ D∗,

ρn((t1, s1), (t2, s2)) =

(
n∑

i=1

E|fni(t1, s1)− fni(t2, s2)|2
)1/2

.
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Then

ρ2
n((t1, s1), (t2, s2))

=
n∑

i=1

Ef2
ni(t1, s1) +

n∑
i=1

Ef2
ni(t2, s2)− 2

n∑
i=1

Efni(t1, s1)fni(t2, s2)

= Hn((t1, s1), (t1, s1)) +Hn((t2, s2), (t2, s2))−
2
n
Hn((t1, s1), (t2, s2)).

From Condition (2.3), ρ2
n((t1, s1), (t2, s2)) converges uniformly onD∗. So ρn((t1, s1), (t2, s2))

converges.

Suppose {(tm, sm)} and {(um, vm)} are two deterministic sequences such that

ρ((tm, sm), (um, vm)) → 0. Then for any small ε > 0, there is a N1 > 0, such that when

n > N1,

ρ((tn, sn), (un, vn)) < ε. (2.11)

On the other hand, since ρn converges uniformly to ρ, for the same ε, there is a N2 > 0,

such that when n > N2,

|ρn((t1, s1), (t2, s2))− ρ((t1, s1), (t2, s2)| < ε, (2.12)

for all (t1, s1) ∈ D∗ and (t2, s2) ∈ D∗. Therefore, let N = max(N1, N2). When n > N,

from (2.11) and (2.12),

ρn((tn, sn), (un, vn) ≤ |ρn((tn, sn), (un, vn)−ρ((tn, sn), (un, vn)|+ρ((tn, sn), (un, vn) ≤ ε+ε = 2ε.

So ρn((tn, sn), (un, vn) → 0. This proves that the Condition (v) of Theorem 10.6 of

Pollard is true.

Corollary 2.2.1 Under Condition (2.1) and (2.2), U(β0, t, s) converges in distribution

to a Gaussian random field with continuous sample paths, mean vector 0 and covariance

function (2.10).

2.3 Convergence of the regression parameter estimator

Let β0 be the true regression parameter vector. Let β̂t be a solution to the equation

U(β, t, t) = 0, t ∈ [0, τ ]. (2.13)
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We will show that under some regularity conditions, β̂t is consistent and asymptotically

normal.

Theorem 2.3.1 Suppose that Conditions (2.1) and (2.2) are satisfied. Then there is

a solution β̂t to equation (2.13) such that β̂t converges to β0 in probability.

Proof. Let

Xn(β, t) =
1
n

(log(L(β, t))− log(L(β0, t)))

= n−1

 n∑
i=1

ki∑
j=1

∫ t

0
[(β − β0)′Zij − log{ S

(0)(β, t, s)
S(0)(β0, t, s)

}]dNij(t, s)

 .
Let

An(β, t) = n−1

[∫ t

0
[(β − β0)′S(1)(β0, t, u)− log{ S

(0)(β, t, u)
S(0)(β0, t, u)

}S(0)(β0, t, u)]λ0(u)du

]
.

Then

Xn(β, t)−An(β, t)

= n−1

 n∑
i=1

ki∑
j=1

∫ t

0
[(β − β0)′Zij − log{ S

(0)(β, t, u)
S(0)(β0, t, u)

}]dMij(β0, t, u)


= n−1

 n∑
i=1

ki∑
j=1

∫ t

0
[(β − β0)′Zij − log{ s

(0)(β, t, u)
s(0)(β0, t, u)

}]dMij(β0, t, u)

+

n−1

 n∑
i=1

ki∑
j=1

∫ t

0
[log{ s

(0)(β, t, u)
s(0)(β0, t, u)

} − log{ S
(0)(β, t, u)

S(0)(β0, t, u)
}]dMij(β0, t, u)


= I + II.

Since (β − β0)′Zij is predictable with F(ij)u for any 0 ≤ u ≤ τ, and log { s(0)(β,t,u)

s(0)(β0,t,u)
}

is a deterministic function, we have that∫ s

0
[(β − β0)′Zij − log{ s

(0)(β, t, u)
s(0)(β0, t, u)

}]dMij(β0, t, u)

is a martingale. So

E

n∑
i=1

ki∑
j=1

∫ t

0
[(β − β0)′Zij − log{ s

(0)(β, t, u)
s(0)(β0, t, u)

}]dMij(β0, t, u) = 0.
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It is similar to the proof of Theorem 2.2.2 that we can show the sequence {fi(t)} which

is defined as

fi(t) =
ki∑

j=1

∫ t

0
[(β − β0)′Zij − log{ s

(0)(β, t, u)
s(0)(β0, t, u)

}]dMij(β0, t, u)

is independent and manageable with some constant envelop C. So from Theorem 8.3

of Pollard, we have that

I =
1
n

sup
(t,s)∈D∗

|[
n∑

i=1

ki∑
j=1

∫ t

0
[(β − β0)′Zij − log{ s

(0)(β, t, u)
s(0)(β0, t, u)

}]dMij(β0, t, u)]| → 0, a.s.

For β ∈ B, from Condition (2.2) and Remark 2.2.1, we have

sup
β∈B,(t,s)∈D∗

∣∣∣∣∣log{ s(0)(β, t, u)s(0)(β0, t, u)
} − log{ S

(0)(β, t, u)
S(0)(β0, t, u)

}

∣∣∣∣∣→ 0, a.s.

From the boundedness of λ0(x), we can show that

II =
1
n

sup
0≤t≤τ,β∈B

|
n∑

i=1

ki∑
j=1

∫ t

0
[log{ s

(0)(β, t, u)
s(0)(β0, t, u)

} − log{ S
(0)(β, t, u)

S(0)(β0, t, u)
}]dMij(β0, t, u)|

→ 0, a.s.

Therefore we have showed that Xn(β, t) converges almost surely to the same limit

of An(β, t) for all β ∈ B. By Condition (2.2), An(β, t) converges to

A(β, t) =
∫ t

0
[(β − β0)′s(1)(β0, t, u)− log{ s

(0)(β, t, u)
s(0)(β0, t, u)

}s(0)(β0, t, u)]λ0(u)du.

It is easy to see that A(β, t) is a concave function of β with a unique maximum at

β = β0 and Xn(β, t) is a concave function of β with a unique maximum β̂t. So from

Lemma 8.3.1 of Fleming and Harrington [12], β̂t → β0 in probability as n→∞.

Theorem 2.3.2 Let Σ(t, t) represent the limiting variance of 1√
n
U(β0, t, t). Then under

Conditions (2.1) and (2.2),

√
n(β̂t − β0)

d→ N(0,Wt), t ∈ [0, τ ]

where

Wt = Γ(β0, t)−1Σ(t, t)Γ(β0, t)−1. (2.14)
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Proof. From the Taylor series expansion of U(β̂t, t, t) around β0 it yields that

1√
n
U(β0, t, t) =

1
n

∂U(β, t)
∂β

|β=β∗
√
n(β̂t − β0), (2.15)

where β∗ is on line segment between β̂t and β0. Theorem 2.2.2 implies that 1√
n
U(β0, t, t)

is asymptotically normal with covariance matrix Σ(t, t). Since β̂t is consistent, β∗ → β0

in probability as n→∞.

By definition of U(β, t, t),

∂U(β, t, t)
∂β

=
n∑

i=1

ki∑
m=1

∫ t

0

(
S(2)(β, t, x)
S(0)(β, t, x)

− {S
(1)(β, t, x)

S(0)(β, t, x)
}⊗2

)
dNim(β, t, x).

Let

In(β, t) = − 1
n

∂U(β, t, t)
∂β

.

Similar to the proof in Lemma 2.2.1, we can show that

sup
0≤x≤t

∣∣∣∣∣
(
S(2)(β∗, t, x)
S(0)(β∗, t, x)

− {S
(1)(β∗, t, x)

S(0)(β∗, t, x)
}⊗2

)
−

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)∣∣∣∣∣→ 0, a.s..

So I(β∗, t) has the same limit with

An(t) = n−1
n∑

i=1

ki∑
j=1

∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
dNij(t, s).

Now since Mij(βt, t, x) is a martingale for each (i, j) and

s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

is a deterministic function,∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
dMij(β0, t, x)

is also a martingale. Therefore

E

∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
dNij(t, x)

= E

∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
λ0(t)Yij(t, x) exp (β′0Zij)dt.
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So,

1
n
E

n∑
i=1

ki∑
j=1

∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
dNij(t, x)

=
∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
λ0(x) E

 1
n

n∑
i=1

ki∑
j=1

Yij(t, x) exp (β′0Zij)

 dx

=
∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
λ0(x)ES(0)(β0, t, x)dx.

Therefore,

EAn(β0, t) →
∫ t

0

(
s(2)(β0, t, x)
s(0)(β0, t, x)

− {s
(1)(β0, t, x)
s(0)(β0, t, x)

}⊗2

)
λ0(x)s(0)(β0, t, x)dx = Γ(β0, t) a.s.

From Condition (2.4), Γ(β0, t) is positive definite on [0, τ ]. So for fixed t ∈ [0, τ ],

when n is large enough, An(β0, t) is positive definite. Since β̂t is a consistent estimator

of β0, we conclude that when n is large enough, In(β∗, t) is positive definite. Hence,

√
n(β̂t − β0) = In(β∗, t)−1 1√

n
U(β0, t, t). (2.16)

The asymptotic distribution of
√
n(β̂t−β0) comes then from the asymptotic distribution

of 1√
n
U(β0, t, t). This completes the proof.

The following theorem gives another form of the covariance of β̂t which will be useful

in the next chapter.

Theorem 2.3.3 The covariance matrix of β̂t can be rewritten as

W (t) = Γ(β0, t)−1 + Γ(β0, t)−1H∗(t)Γ(β0, t)−1, (2.17)

where

H∗(t) = lim
n→∞

1
n

n∑
i=1

ki∑
j 6=k

E(
∫ t

0
(Zij−µ(β0, x))dMij(β0, x)

∫ t

0
(Zik−µ(β0, x))dMik(β0, x)).

Proof. The sum

1
n

n∑
i=1

E(
ki∑

j=1

∫ t

0
(Zij − µ(β0, x))dMij(β0, x))⊗2
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can be decomposed as the sum of

1
n

n∑
i=1

ki∑
j=1

E(
∫ t

0
(Zij − µ(β0, x))dMij(β0, x))⊗2

and

1
n

n∑
i=1

ki∑
j 6=k

E(
∫ t

0
(Zij − µ(β0, x))dMij(β0, x)⊗

∫ t

0
(Zik − µ(β0, x))dMik(β0, x)).

But

1
n

n∑
i=1

ki∑
j=1

E(
∫ t

0
(Zij − µ(β0, x))dMij(β0, x))⊗2

= E

∫ t

0
[S(2)(β0, x)− 2µ(β0, x)⊗ S(1)(β0, x) + µ(β0, x)⊗2S(0)(β0, x)]dx.

So

Σ(t, t)

= lim
n→∞

E

∫ t

0
[S(2)(β0, x)− 2µ(β0, x)⊗ S(1)(β0, x) + µ(β0, x)⊗2S(0)(β0, x)]dx+

lim
n→∞

1
n

n∑
i=1

ki∑
j 6=k

E(
∫ t

0
(Zij − µ(β0, x))dMij(β0, x)⊗

∫ t

0
(Zik − µ(β0, x))dMik(β0, x))

= Γ(β0, t) +H∗(t).

This completes the proof.

2.4 The estimation of the baseline cumulative hazard function

Let

Λ0(s) =
∫ s

0
λ0(x)dx

be the baseline cumulative hazard function. For fixed time t ∈ [0, τ ], we define the

Breslow’s estimator of Λ0(s) as

Λ̂0(t, s) =
∫ s

0


n∑

i=1

ki∑
j=1

Yij(t, u) exp (β̂′tZij)


−1

dN̄(t, u), (2.18)

where

N̄(t, u) =
n∑

i=1

ki∑
j=1

Nij(t, u).
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Theorem 2.4.1 Assume that condition (2.1) - (2.4) hold. Then
√
n(Λ̂0(t, s)− Λ0(s))

converges weakly to a Gaussian random field ξ with mean zero.

Proof. Without loss of generality, we assume that p = 1. Notice that

Λ̂0(t, s) =
∫ s

0

dM̄(t, u)

nS(0)(β̂t, t, u)
+
∫ s

0

S(0)(β̂t, t, u)
S(0)(β0, t, u)

λ0(u)du.

So

√
n(Λ̂0(t, s)− Λ0(s)) =

1√
n

∫ s

0

dM̄(t, u)

S(0)(β̂t, t, u)
+
√
n

∫ s

0

(
S(0)(β̂t, t, u)
S(0)(β0, t, u)

− 1

)
λ0(u)du.

From the Taylor series expansion of S(0)(β̂t, t, u) at β = β0, we have

S(0)(β̂t, t, u) = S(0)(β0, t, u) + S(1)(β∗, t, u)(β̂t − β0),

where β∗ is on the line segment between β̂t and β0. So

√
n

∫ s

0

(
S(0)(β̂t, t, u)
S(0)(β0, t, u)

− 1

)
λ0(u)du =

√
n(β̂t − β0)

∫ s

0

S(1)(β∗, t, u)
S(0)(β0, t, u)

λ0(u)du

From Condition (2.2) and the consistency of β̂t, we have

S(1)(β∗, t, u)
S(0)(β0, t, u)

→ s(1)(β0, t, u)
s(0)(β0, t, u)

, a.s.

From Theorem 2.3.2,
√
n(β̂t−β0) converges in distribution to a normal random variable.

So
√
n

∫ s

0

(
S(0)(β̂t, t, u)
S(0)(β0, t, u)

− 1

)
λ0(u)du

d→ ξ

∫ s

0

s(1)(β0, t, u)
s(0)(β0, t, u)

λ0(u)du,

where ξ ∼ N(0,Wt).

As for the first term, from Condition (2.2), we can show that

1√
n

∫ s

0

dM̄(t, u)

S(0)(β̂t, t, u)

is asymptotically equivalent to

1√
n

∫ s

0

dM̄(t, u)
s(0)(β0, t, u)

,

which is a sum of independent zero-mean random variables. It can be shown similarly

that the process is tight. Combining this with the classical multivariate central limit

theorem gives the desired weak convergence.
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Chapter 3

Group sequential analysis of clustered survival data

3.1 Group Sequential analysis based on LWA estimator

Let 0 < t1 < t2 < ... < tN = τ be the predetermined analysis time points. We assume

that the type I errors, α1, α2, · · · , αN , spent at interim analyses which satisfy

N∑
i=1

αi = α

are also determined in advance. Let β̂k, k = 1, ..., N, be the LWA estimate of the pa-

rameter vector β = (β1, · · · , βp)> of model (2.1) at successive analyses. From Theorem

2.3.2,
√
n(β̂k − β0)

d→ N(0,Wk), t ∈ [0, τ ]

where

Wk = Γ(β0, tk)−1Σ(tk, tk)Γ(β0, tk)−1.

Since each β̂k is a linear combination of the score function U(β, t, t) which is asymptot-

ically a Gaussian random field, it is not hard to postulate that β̂1, · · · , β̂N follow the

multivariate normal distribution.

Theorem 3.1.1 Under model (2.1), the vectors
√
n(β̂1 − β0), · · · ,

√
n(β̂N − β0) follow

the multivariate normal distribution given by
√
n(β̂k − β0) ∼ N(0,Wk),

limn→∞Cov(
√
n(β̂k1 − β0),

√
n(β̂k2 − β0)) =

Γ(β0, tk1)
−1Σ((tk1 , tk1), (tk2 , tk2))Γ(β0, tk2)

−1, k1 ≤ k2.

(3.1)
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Proof. From expression

√
n(β̂k1 − β0) = n−1I(β∗1 , tk1)

1√
n
U(β, tk1 , tk1),

√
n(β̂k2 − β0) = n−1I(β∗2 , tk2)

1√
n
U(β, tk2 , tk2),

where β∗1 is between β̂k1 and β0, and β∗2 is between β̂k2 and β0, it follows that

lim
n→∞

Cov(
√
n(β̂k1 − β0),

√
n(β̂k2 − β0))

= lim
n→∞

n−1I(β∗1 , tk1) lim
n→∞

Cov(n−1/2U(β0, tk1 , tk1), n
−1/2U(β0, tk2 , tk2)) lim

n→∞
n−1I(β∗2 , tk2)

= Γ(β, 0, tk1)
−1Σ((tk1 , tk1), (tk2 , tk2)Γ(β0, tk2)

−1.

Assume that the null hypothesis we wish to test is H0 : c>β = γ for a given p× 1

vector c and scalar constant γ. Let

ξ̂k =
√
n(c>β̂k − γ) (3.2)

be the test statistic for the kth interim analysis. Then under null hypothesis,

ξ̂k =
√
nc>(β̂k − β).

So from Theorem 3.1.1, (ξ̂1, · · · , ξ̂N ) are asymptotically jointly normal distributed with

the covariance matrix

lim
n→

cov(ξ̂k, ξ̂l)

= c> lim
n→

1
n
cov((β̂k − β0), (β̂l − β0))c

= c>
[
Γ(β0, tk)−1Σ((tk, tk), (tl, tl))Γ(β0, tl)−1

]
c, k ≤ l. (3.3)

Hence Slud & Wei’s method [36] can be adopted here to calculate the boundaries of

the successive tests. At time tl, 1 ≤ l ≤ N , the boundary dl can be determined by the

following equations:

P (|ξ̂1| ≥ d1) = α1,

P (|ξ̂1| ≤ d1, |ξ̂2| ≥ d2) = α2,

...

P (|ξ̂1| ≤ d1, |ξ̂2| ≤ d2, ..., |ξ̂N | ≥ dN ) = αN .

(3.4)

There are no explicit expressions for values d2, .., dN . We need numerical calculation to

compute these values.
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3.2 Group sequential analysis based on partition method

As before we assume that a clinical trial has been planned with n clusters and k1, ..., kn

members. Let

0 < t1 < · · · < tN−1 < tN = τ

be some time points of the whole study interval [0, τ ]. For 1 ≤ k ≤ N , denote the

partition of time interval [0, tk]

0 = t0 < t1 < · · · < tk−1 < tk (3.5)

as Πk.

For a particular partition Πk, break the score function U(β, tk, tk) into k pieces:

Uk(β) =


U

(1)
k (β)

...

U
(k)
k (β)

 , (3.6)

where

U
(l)
k (β) =

n∑
i=1

ki∑
j=1

∫ tl

tl−1

(
Zij − Z̄(β, tk, s)

)
dMij(tk, s), l = 1, · · · , k.

The limiting covariance matrix of 1√
n
Uk(β) is

Σk(β) =


Σ(11)

k (β) · · · Σ(1k)
k (β)

... · · ·
...

Σ(k1)
k (β) · · · Σ(kk)

k (β)


pk×pk

,

where

Σ(ll′)
k (β) = lim

n→∞

1
n
EU

(l)
k (β)U (l′)

k (β)> =
(
σ

(ll′)
ss′

)
,

and

σ
(ll′)
ss′ (β) =

lim
n→∞

1
n

n∑
i=1

ki∑
u,v

E

∫ tl

tl−1

(Zius − Z̄s(β, tk, x))dMiu(tk, x)
∫ tl′

tl′−1

(Zivs′ − Z̄s′(β, tk, x))dMiv(tk, x).

Here Zijs and Z̄s(β, tk, u) are the sth components of Zij and Z̄(β, tk, u) respectively.
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Let β̂k be the LWA estimator of the true parameter β0 using data until time tk.

Then we can take an estimate of Σk as

Σ̂k =


Σ̂(11)

k · · · Σ̂(1k)
k

... · · ·
...

Σ̂(k1)
k · · · Σ̂(kk)

k


pk×pk

, (3.7)

where

Σ̂(ll′)
k =

(
σ̂

(ll′)
ss′

)
,

and

σ̂
(ll′)
ss′ =

1
n

n∑
i=1

ki∑
u,v

∫ tl

tl−1

(Zius − Z̄s(β̂k, tk, x))dM̂iu(tk, x)
∫ tl′

tl′−1

(Zivs′ − Z̄s′(β̂k, tk, x))dM̂iv(tk, x).

Here

M̂ij(tk, x) = Nij(tk, x)−
∫ x

0
Yij(tk, x) exp (β̂′kZij)λ̂0(x)dx,

with

λ̂0(x)dx = (
n∑

i=1

ki∑
j=1

Yij(tk, x) exp (β̂′kZij))−1dN̄(tk, x).

Let

Ψ̂k(β) = − 1
n

∂Uk(β)
∂β

=


ψ̂

(1)
k (β)

...

ψ̂
(k)
k (β)


pk×p

, (3.8)

where

ψ̂
(l)
k (β) =

1
n

n∑
i=1

ki∑
j=1

∫ tl

tl−1

(
S

(2)
n (β, tk, u)

S
(0)
n (β, tk, u)

− (S(1)
n (β, tk, u))⊗2

(S(0)
n (β, tk, u))2

)
dNij(tk, u), l = 1, ..., k.

Similar to the proof of Theorem 2.3.2, it can be shown that

ψ̂
(l)
k (β̂k) → ψ

(l)
k (β0), a.s.,

where

ψ
(l)
k (β) =

∫ tl

tl−1

(
s(2)(β, tk, x)
s(0)(β, tk, x)

− (s(1)(β, tk, x))⊗2

(s(0)(β, tk, x))2

)
s(0)(β, tk, x)λ0(x)dx.
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Let

Ψk(β) =


ψ

(1)
k (β)

...

ψ
(k)
k (β)


pk×p

, (3.9)

then Ψ̂k(β̂k) is a consistent estimator of Ψk(β0).

We assume that Σk(β0) is positive definite. Since β̂k is a consistent estimator of β0,

Σ̂k(β̂k) is a consistent estimator of Σk(β0). So when n is large enough, Σk(β̂k)−1 exits.

Define the estimating equation

ξ(β) = Ψ̂k(β̂k)>Σ̂k(β̂k)−1Uk(β) = 0. (3.10)

This equation is formed by cutting the score function U(β, tk, tk) into k pieces and

then combining them with standardizing coefficients. We will show in the following

that there exists a solution β̃k to (3.10) which is asymptotically normal distributed. It

will be further shown that estimators generated from (3.10) are better estimators in

the sense that they are more efficient than the corresponding LWA estimator.

Theorem 3.2.1 Under the Conditions (2.1) and (2.2), for every 1 ≤ k ≤ N, there

exists a solution to equation (3.10), β̃k, such that

√
n(β̃k − β0)

d→ N(0,Wk), (3.11)

where

Wk =
(
Ψk(β0)>Σk(β0)−1Ψk(β0)

)−1
. (3.12)

Proof. Similar to the proof of Theorem 2.2.1, we can show that

1√
n
U

(l)
k (β0) =

1√
n

n∑
i=1

ki∑
j=1

∫ tl

tl−1

(Zij − µ(β0, tk, u)) dMij(tk, u) + op(1). (3.13)

Note that for every fixed i,
∑ki

j=1

∫ tl
tl−1

(Zij − µ(β0, tk, u)) dMij(tk, u) has finite variance,

so the first term in (3.13) is a sum of independent random variables with finite variances.

By the multivariate central limit theorem, we have

1√
n
Uk(β0)

d→ N(0,Σk).
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Since Ψ̂k(β̂k) and Σ̂k(β̂k) are respectively consistent estimates for Ψk(β0) and

Σk(β0), we have

1√
n

Ψ̂k(β̂k)>Σ̂k(β̂k)−1Uk(β0)
d→ N(0,Ψk(β0)>Σk(β0)−1Ψk(β0)). (3.14)

In addition, for 1 ≤ k ≤ N we have

Ψ̂k(β̂) = − 1
n

∂Uk

∂β
→ Ψk(β0), in probability.

In fact, the above convergence holds uniformly over {β∗ : ‖β∗ − β0‖ ≤ εn} for any

εn → 0. Then

Ψ̂k(β̂)>Σ̂k(β̂)−1

(
− 1
n

∂Uk

∂β

∣∣∣∣
β=β∗

)
→ Ψ>

k Σ−1
k Ψk, in probability. (3.15)

Since ψkl, Σk are assumed to be nondegenrate, we have Ψ>
k Σ−1

k Ψk > 0. It is standard

to show that there exists a solution to the equation in any small and fixed neighborhood

of the true parameter β0, we denote it by β̃k. By Taylor expansion we have,

1√
n

Ψ̂k(β̂k)>Σ̂k(β̂k)−1U(β) = Ψ̂k(β̂k)>Σ̂k(β̂k)−1

(
− 1
n

∂Uk

∂β

∣∣∣∣
β=β∗

)
√
n
(
β̃k − β0

)
= Ψ̂k(β̂k)>Σ̂k(β̂k)−1Ψ̂k(β∗)

√
n
(
β̃k − β0

)
, (3.16)

for some β∗ lies between β0 and β̃k. Therefore from (3.16), (3.14) and (3.15) we have

√
n(β̃k − β0)

d→ N(0, (Ψ>
k Σ−1

k Ψk)−1).

The proof is completed.

Theorem 3.2.2 Let Qk be the asymptotic variance-covariance matrix of the LWA es-

timator β̂k. Then

Wk ≤ Qk

for all 1 ≤ k ≤ N, where A ≤ B for two matrices means A−B is non-positive definite.

Proof. Let

J =
(
Ip×p Ip×p · · · Ip×p

)
p×pk

.
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Then

U(β0, tk, tk) = JUk(β0) and Γ(β0, tk, tk) = JΨk(β0). (3.17)

So

lim
n→∞

1
n
Cov(U(β0, tk, tk)) = lim

n→∞

1
n
EJUk(β0)Uk(β0)>J> = JΣk(β0)J>.

Hence

Qk = Γ(β0, tk, tk)−1 lim
n→∞

1
n
Cov(U(β0, tk, tk))Γ(β0, tk)−1

= Γ(β0, tk, tk)−1JΣk(β0)J>(Γ(β0, tk)−1)>.

So

Q−1
k = Γ(β0, tk, tk)>(JΣk(β0)J>)−1Γ(β0, tk, tk) = Ψk(β0)>J>(JΣk(β0)J>)−1JΨk(β0).

The right hand side of above equality can be rewritten as

Ψk(β0)>Σk(β0)−
1
2 Σk(β0)

1
2J>(JΣk(β0)J>)−1JΣk(β0)

1
2 Σk(β0)−

1
2 Ψk(β0).

But

Σk(β0)
1
2J>(JΣk(β0)J>)−1JΣk(β0)

1
2

is a projection matrix. Hence

Q−1
k ≤ Ψk(β0)>Σk(β0)−1Ψk(β0) = W−1

k .

So

Wk ≤ Qk.

This completes the proof.

For every fixed 1 ≤ k ≤ N , define

Ũk(β) = Ψ̂k(β̂k)>Σ̂k(β̂k)−1Uk(β). (3.18)

Here β̂k is the estimator based on LWA model with data accumulated till time tk.

Many group sequential methods, including Pocock’s method, O’Brien and Fleming’s

method and Slud and Wei’s method, require that the score process to be approximately
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a Brownian Motion, i.e., Gaussian process with independent increments. The next

result shows that such an independent increments property holds to the rescaled score

process when the method of partitioning is applied and when there are simultaneous

entry times.

Theorem 3.2.3 Let β0 be the true regression parameter vector. Assuming that Rij =

0 for all 1 ≤ j ≤ ki, 1 ≤ i ≤ n. Then asymptotically, 1√
n
Ũ1(β0), 1√

n
(Ũ2(β0) −

Ũ1(β0)), · · · , 1√
n
(ŨN (β0)− ŨN−1(β0)) are independent, i.e.,

lim
n→∞

cov(
1√
n

(Ũk1(β0)− Ũk1−1(β0)),
1√
n

(Ũk2(β0)− Ũk2−1(β0))) = 0.

Proof. Let Ũ0(β0) = 0. We will show that for any 1 ≤ k1 < k2 ≤ N , 1√
n
(Ũk1(β0) −

Ũk1−1(β0)) is independent of 1√
n
(Ũk2(β0)− Ũk2−1(β0)).

When Rij = 0, 1 ≤ j ≤ ki, 1 ≤ i ≤ n, Yij(t, s) and Nij(t, s) become

Yij(t, s) = I(Tij ≥ s, Cij ≥ s)I(t ≥ s),

Nij(t, s) = I(Tij ≤ s, Tij ≤ Cij)I(Tij ≤ t).

So for tk1 < tk2 , it is true that U (l)
k1

(β0) = U
(l)
k2

(β0) for all 1 ≤ l ≤ k1. Therefore, let

J =
(
Ip×p Ip×p · · · Ip×p

)
p×pk1

.

Then

Uk1(β0) = JUk2(β0) and Ψk1(β0) = JΨk2(β0). (3.19)

So

1
n
cov(Ũk1(β0)Ũk2(β0)′) = Ψ̂>

k1
(β̂)Σ̂−1

k1
(β̂)Uk1(β0)Uk2(β0)′Σ̂−1

k2
(β̂)Ψ̂k2(β̂)

= Ψ̂>
k1

(β̂)Σ̂−1
k1

(β̂)JUk2(β0)Uk2(β0)′Σ̂−1
k2

(β̂)Ψ̂k2(β̂).

Hence

lim
n→∞

1
n
cov(Ũk1(β0)Ũk2(β0)′) = Ψ>

k1
(β0)Σ−1

k1
(β0)JΣk2(β0)Σ−1

k2
(β0)Ψk2(β0)

= Ψ>
k1

(β0)Σ−1
k1

(β0)JΨk2(β0)

= Ψ>
k1

(β0)Σ−1
k1

(β0)Ψk1(β0).
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Consequently,

lim
n→∞

cov(
1√
n

(Ũk1(β0)− Ũk1−1(β0)),
1√
n

(Ũk2(β0)− Ũk2−1(β0)))

= lim
n→∞

1
n

[cov(Ũk1(β0), Ũk2(β0))− cov(Ũk1(β0), Ũk2−1(β0))−

cov(Ũk1−1(β0), Ũk2(β0)) + cov(Ũk1−1(β0), Ũk2−1(β0))]

= W−1
k1

−W−1
k1

−W−1
k1−1 +W−1

k1−1

= 0.

This completes the proof.

Remark 3.2.1 In Phase III clinical trials, it is seldom the case that patients enter a

study at the same time. It would be desirable that the above result be extended to the

more general stagger entry case. Our simulation results in the next section do show this

independent increments property when the study entry time is uniformly distributed.

Sequential analysis can be done based on the standardized estimator β̃k and Slud

& Wei’s method [36]) which according to Theorem 3.2.2, improves the efficiency of the

test.

Theorem 3.2.4 For 1 ≤ k1 ≤ k2 ≤ N,

lim
n→∞

Cov(
√
n(β̃k1 − β0),

√
n(β̃k2 − β0)) = Wk2 , (3.20)

where Wk is given by (3.12).

Proof. It can be verified that for every 1 ≤ k ≤ N,

√
n(β̃k − β0) = Wk

1√
n
Ũk(β0) + op(1). (3.21)

So

lim
n→∞

Cov(
√
n(β̃k1 − β0),

√
n(β̃k2 − β0)) = Wk lim

n→∞

1
n
Cov(Ũk1(β0), Ũk2(β0))Wk2

= Wk1W
−1
k1
Wk2 = WK2 .
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Corollary 3.2.1 The vectors
√
n(β̃1− β0), · · · ,

√
n(β̃N − β0) follow asymptotically the

multivariate normal joint distribution with

lim
n→∞

Cov(
√
n(β̃k − β0),

√
n(β̃l − β0)) = Wl∨k, (3.22)

where Wk is given by (3.12).

3.3 Simulation

We evaluate the proposed sequential method by extensive simulations. Parameter esti-

mates and their accuracy, type I error and power are assessed by empirical studies and

are compared with existing methods. Results show that the proposed sequential method

based on partition gain efficiency in parameter estimating and hypothesis testing.

In our simulation, we consider the case that there are two members in each cluster

(i.e., ki = 2) and the two marginal survival times follow the same model, i.e., the two

survival times share the same covarites and the covariates have the same effects on

the marginal distributions. The shared covariate within cluster is taken to be a binary

variable. Let {(Ti1, Ti2), i = 1, · · · , n} be n paired failure times. They are generated

from the bivariate Frank copula family [13], that is, for each fixed i, (Ti1, Ti2) has the

joint distribution function

Fρ(t1, t2) =
(

1
F1(t1)ρ

+
1

F2(t2)ρ
− 1
)− 1

ρ

, ρ > 0. (3.23)

We denote the common covariate of Ti1 and Ti2 by zi. let λi = eβzi . Then Ti1 and Ti2

marginally have exponential distributions

Ti1 ∼ F1(t1) = 1− e−λit1

Ti2 ∼ F2(t2) = 1− e−λit2 ,

The tuning parameter ρ governs the dependence of the two survival times. The larger

ρ is, the more dependent the two variables are. In the simulation studies, we take two

values of it, ρ = 1 and ρ = 5, to represent a situation with small correlation and a large

correlation between the two survival times within one cluster. Figure 3.1 demonstrates

the role of ρ in characterizing the dependence of the two marginal variables.



37

Figure 3.1: Correlation coefficient of T1 and T2
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To apply our method, we partition the interval (0,∞) into two intervals (0, t1] and

(t1, t2] with t1 = 1, t2 = 8. Failure times greater than 8 are rare. The censoring variables

are generated from uniform distribution U(0, t2). The members in the same cluster have

the same entry time R which follows an uniform distributed U(0, 2).

Table 3.1 lists the parameter estimates, their empirical standard deviations (in

parentheses) and their estimates based on asymptotic variances. For this table, when

ρ = 1 for the Frank’s copula, the correlation coefficient of the two survival times within

each cluster is small (between 0.128 and 0.191, on average); for ρ = 5, the correlation

coefficient is larger (between 0.516 and 0.551 on average). From this table, the partial

likelihood estimates of the regression coefficient at both stage 1 and stage 2 are con-

sistent, though the estimates at the first stage have much larger variance or standard

deviation due to the smaller number of samples used in the first stage. In addition,

the empirical variances are greater than the variance estimates based on large sample

property. Our proposed partitioning method provides consistent parameter estimates

at stage 2. The empirical variances are slightly larger than the ones based on marginal
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approach. This is because the sample size, n = 100, is not large enough. But our as-

ymptotic variance estimates are smaller than those for the marginal method, indicating

an efficiency gain by applying the partitioning method.

Table 3.1: Parameter estimates and their standard deviations

Stage 1 Stage 2: Marginal approach Stage 2: Partitioning method
β β̂1

∗∗ σ̂1
∗ β̂2 σ̂2

∗ β̃2 σ̃2
∗

-0.6 -0.600 (0.434) 0.415 -0.609 (0.177) 0.170 -0.619 (0.179) 0.166
-0.4 -0.421 (0.412) 0.392 -0.397 (0.169) 0.165 -0.402 (0.171) 0.162
-0.2 -0.220 (0.395) 0.378 -0.208 (0.165) 0.163 -0.211 (0.168) 0.159

ρ = 1 0.0 0.001 (0.376) 0.362 0.012 (0.162) 0.161 0.013 (0.167) 0.158
0.2 0.196 (0.372) 0.350 0.202 (0.158) 0.161 0.207 (0.162) 0.157
0.4 0.405 (0.353) 0.338 0.408 (0.161) 0.161 0.418 (0.167) 0.158
0.6 0.620 (0.349) 0.332 0.606 (0.162) 0.163 0.619 (0.167) 0.160
-0.6 -0.622 (0.521) 0.490 -0.616 (0.202) 0.199 -0.626 (0.205) 0.192
-0.4 -0.439 (0.492) 0.465 -0.411 (0.206) 0.194 -0.418 (0.210) 0.187
-0.2 -0.197 (0.471) 0.447 -0.203 (0.189) 0.191 -0.209 (0.193) 0.184

ρ = 5 0.0 -0.014 (0.455) 0.429 -0.008 (0.195) 0.188 -0.007 (0.200) 0.181
0.2 0.196 (0.372) 0.350 0.202 (0.158) 0.161 0.207 (0.162) 0.157
0.4 0.404 (0.409) 0.405 0.415 (0.195) 0.188 0.425 (0.201) 0.181
0.6 0.617 (0.392) 0.392 0.607 (0.191) 0.191 0.621 (0.194) 0.183

∗ σ̂k and σ̃2 are estimated asymptotic standard deviations.
∗∗ Standard deviations are in parentheses.
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We have showed in section 3 of this chapter the independence increment property

for the scaled scores with simultaneous entry times. Simulation results show that this

property hold with staggered entry times. Figure A.1 shows that the scores are pretty

close to a normal distribution, and therefore the parameter estimates are asymptotically

normal. Figure A.2 illustrates scatter plot of Ũ2 versus Ũ1, a linear trend relationship

of them can be spotted implying the independent increment property is roughly true.

This can also be seen from Figure A.3 in which there is no linear relationship between

Ũ1 and Ũ2 − Ũ1. In fact, for this figure, the correlation coefficient of Ũ1 and Ũ2 − Ũ1 is

shown to be 0.018. As another example, we present A.4 - A.6 corresponding figures for

ρ = 5, consistency, asymptotic normality and independent increment can be seen to be

true from these figures.

As a tool to verify the independent increment property of the scaled score process,

for two stage partition, we have checked the type I error by using Pocock’s boundaries

and O’Brien and Fleming boundaries. We have used data generated from sample size

n = 100, n = 200 and n = 400 population. It can be seen from Table 3.2 the results for

n = 200 and n = 400 populations are quite close to intended type I error. This reflects

that Ũ1 and Ũ2 exhibits the property of scores when data are normal and independent.

Table 3.2: Empirical type I error of the proposed sequential test when the critical values
are determined by Pocock’s method and O’Brien-Fleming’s method

significance level (α)
n Methods 0.01 0.05 0.1

100 Pocock 0.016 0.082 0.130
O’Brien-Fleming 0.017 0.070 0.116

200 Pocock 0.011 0.056 0.115
O’Brien-Fleming 0.015 0.055 0.121

400 Pocock 0.010 0.055 0.107
O’Brien-Fleming 0.011 0.057 0.098

At the two stages, a normal z-test is applied. For testing H0 : β = β0, the Wald-type

test statistics are

Tk =
β̃k − β0

σ̂k
, k = 1, 2,
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where β̃k is the estimate of cox regression coefficient by the partitioning method and σ̂k

is the estimated standard deviation of β̃k at stage k. The overall type I error is taken

to be α = 0.05 and the significance levels are α1 and α2 = α − α1. In our simulation,

α1 = 0.02, α2 = 0.03, but other spending function of the overall significance level is

also investigated. Critical values, Cα1 and Cα2 , of the sequential test are determined by

the joint normal distribution of (T1, T2), utilizing the independent increment property

of Ũ1 and Ũ2 by noting the relationship of Tk with Ũk:

Tk = σ̂kŨk.

Namely, we assess value of Cαk
by Monte Carlo method. We first generate a batch of

independent normal variates Zki from N(0, σ̂k), k = 1, 2 and set Ũi1 = Zi1, Ũi2 = Zi1 +

Zi2 and let Ti1 = Ũi1/σ̂1 and Ti2 = Ũi2/σ̂2, then Cαk
is obtained as the (1−αk)×100%

quantile of Tik.

Power of the proposed partitioning method are assessed for small (ρ = 1) and

large (ρ = 5) within-cluster correlation. The sequential procedure are as described

below. The null hypothesis is H0 : β = 0.2. For overall significance level α = 0.05

and significance levels, α1 = 0.02 and α2 = 0.03, at the two stages, the critical values

are obtained by 10 million Monte Carlo computations under the null. For ρ = 1,

Cα1 = 2.326, Cα2 = 2.137; for ρ = 5, Cα1 = 2.326, Cα2 = 2.142. Figures A.7 and A.8

are the power of the sequential test based on our partitioning method and the marginal

method. It can be seen that there is power gain by applying the partitioning method.

The power gain is small for small sample size. We also conducted simulation for larger

sample sizes. For n = 200, the power gain is more evident, especially so when the two

survival times are more dependent.
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Chapter 4

Sample size calculation for clustered survival data

4.1 Introduction

Sample size calculation is a crucial step in the design of a clinical trial. Its appropriate

estimation ensures that the study has enough power to detect a significant treatment

effect. In this chapter we will study how to estimate sample size for clinical trials

designed with clustered event data.

4.2 Formula for sample size calculation

In this chapter, we are dealing with clustered survival data that associated with each

Tij , there is only one covariate Zij . We assume that Zij are identically distributed

with mean m and variance σ2. We assume that the censoring variables {Cij} are also

identically distributed. We use Yij(x), Nij(x) and Mij(β, x) to represent respectively

Yij(t, x), Nij(t, x) and Mij(β, t, x) at t = ∞. Let U(β) represent U(β, t, t) at t = ∞.

Let β be the true regression coefficient for the only co-variate in the model. The

null hypothesis is:

H0 : β = 0.

Under this hypothesis, the marginal proportional hazards model becomes

λij(t) = λ0(t), i = 1, .., n, j = 1, .., ki.

So all Tij have same marginal distribution.

Let Σ(β) be Σ(β, t, s) at t = s = ∞. The test statistic we use for the null hypothesis

is β̂ which is the solution of U(β) = 0. It has been shown by Spiekerman and Lin [37]

that β̂ is asymptotically normal and a consistent estimator of β. It can be shown that
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the asymptotic variance of
√
n(β̂ − β) is

W (β) =
1

Γ(β)2
lim

n→∞

1
n

n∑
i=1

E(
ki∑

j=1

∫ ∞

0
(Zij − µ(β, x))dMij(β, x))2, (4.1)

where

Γ(β) =
∫ ∞

0
v(β, x)λ0(x)s(0)(x)dx. (4.2)

We see from (4.1) that W (β) changes when β is different. So here we don’t have the

situation of a constant variance.

Let α be the significance level of the test for the null hypothesis. The two-sided

level α test of H0 : β = 0 against H1 : β 6= 0 is:

φ(β̂) =


√

n |β̂|√
W (0)

≥ zα/2 reject H0

otherwise accept H0,

here zα/2 is the upper α/2 profile of the standard normal distribution. Let βφ(β1)

denote the power of φ at any H1 : β = β1, then

βφ(β1) = Pβ1(
√
n |β̂|√
W (0)

≥ zα/2)

= Pβ1(
√
n (β̂ − β1)√
W (β1)

≥ zα/2

√
W (0)
W (β1)

−
√
n β1√
W (β1)

) +

Pβ1(
√
n (β̂ − β1)√
W (β1)

≤ −zα/2

√
W (0)
W (β1)

−
√
n β1√
W (β1)

)

= 1− Φ(zα/2

√
W (0)
W (β1)

−
√
n β1√
W (β1)

) + Φ(−zα/2

√
W (0)
W (β1)

−
√
n β1√
W (β1)

).

If β1 > 0, neglect the term Φ(−zα/2

√
W (0)
W (β1) −

√
n β1√
W (β1)

), then

βφ(β1) ≥ 1− Φ(zα/2

√
W (0)
W (β1)

−
√
n β1√
W (β1)

).

Let β∗ be the power we would like to attain at the alternative hypothesis. Then in

order to have

βφ(β1) ≥ β∗, (4.3)
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we must have

zα/2

√
W (0)
W (β1)

−
√
n β1√
W (β1)

≤ −z1−β∗ ,

thus
√
n ≥

zα/2

√
W (0) + z1−β∗

√
W (β1)

β1
. (4.4)

Similarly if β1 < 0, we will have

√
n ≥

zα/2

√
W (0) + z1−β∗

√
W (β1)

−β1
. (4.5)

Letting n be the minimum positive integer that satisfy (4.4) or (4.5), we get that the

no. of clusters required for an experiment with a clustered event data to satisfy the

power requirement is:

n =
(zα/2

√
W (0) + z1−β∗

√
W (β1))2

β2
1

. (4.6)

In practice, β1 usually represents the minimum treatment effect that is of clinical mean-

ing. Using the average cluster size K1 we get the total sample size

N = nK1. (4.7)

4.3 Estimation of W (0) and W (β1)

In formula (4.4), α, β1 and β∗ are pre-determined and known. So the major task in

estimating a sample size is to estimate W (0) and W (β1) as accurately as possible.

Let us assume that for a clinical trial with clustered survival data, some pilot studies

has been done. If these pilot studies don’t show any sign of treatment effect, then

this clinical trial will terminate and no further study will be planned. Therefore it is

reasonable to assume when we plan a new study, that pilot studies do show clinical

efficacy. That is, the data from pilot studies constitutes a population from β = β1 6= 0.

By this reasoning, data from pilot studies can be used to estimate W (β1) using the

following formula:

Ŵ (β1) =
1
n

∑n
j=1(

∑ki
j=1

∫∞
0 (Zij − Z̄(β̂, x))dM̂ij(β̂, x))2

Γ̂(β̂)2
(4.8)
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with

Γ̂(β1) =
1
n

n∑
j=1

ki∑
j=1

∫ ∞

0
(S(2)(β̂, x)− S(1)(β̂, x)

S(0)(β̂, x)
)λ̂0(x)dx. (4.9)

Usually only when a pilot study shows a treatment effect then a clinical trial con-

tinues. So the data of a pilot study represent a data population away from the null

hypothesis. It is therefore reasonable to use a pilot study data to estimate W (β1). On

the other hand, irrespective of the true regression coefficient of the treatment effect,

data from a pilot study reflects the basic data structure, such as the correlatedness of

event times. Hence we use (4.8) to estimate W (0) by inserting β̂ = 0.

4.4 Simulation

In our simulation, we consider again the clustered survival data generated from a Frank

copula family with n clusters and 2 members in every cluster. In each cluster the two

survival times share same covariate and same censoring variable. The covariate is taken

to be a binary variable with probability 0.5 to be one or 0.

Let {(Ti1, Ti2), i = 1, · · · , n} be n paired failure times. Then for each fixed i,

(Ti1, Ti2) has the joint distribution function

Fρ(t1, t2) =
(

1
F1(t1)ρ

+
1

F2(t2)ρ
− 1
)− 1

ρ

, ρ > 0. (4.10)

If we denote the common covariate of Ti1 and Ti2 by zi, then Ti1 and Ti2 have marginal

distributions

Ti1 ∼ F1(t1) = 1− e−λit1

Ti2 ∼ F2(t2) = 1− e−λit2 ,

where λi = eβzi . The parameter ρ characterizes the dependence of the two survival

times. The larger ρ is, the stronger the correlation would be. In simulations, we take

two values of ρ, 1 and 5, to represent a situation with small correlation and a large

correlation between the two survival times within one cluster.

In the following simulation, we take the alternative regression parameter β1 to be

0.1, 0.3, 0.5, 0.7 and 0.9 respectively, the type I error to be 0.05 and 0.1, and the power
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intended to be 80%, 85% and 90%. At each iteration, we take number of clusters to

be n = 100 to emulate the real situation at which a pilot study usually does not have

a large sample size. For each fixed type I error, β1 and the intended power β∗, we run

150 iterations. The mean sample size obtained from 150 iterations is then presented in

the following two tables.

Table 4.1: Sample size with rho = 1

β1

Power 0.1 0.3 0.5 0.7 0.9
0.8 2009 225 82 43 28

α = 0.05 0.85 2312 259 93 49 32
0.9 2714 298 109 58 38
0.8 1586 175 64 34 22

α = 0.10 0.85 1852 205 72 39 25
0.9 2200 242 89 47 30

Table 4.2: Sample size with rho = 5

β1

Power 0.1 0.3 0.5 0.7 0.9
0.8 2739 302 108 56 35

α = 0.05 0.85 3149 349 124 65 41
0.9 3688 405 145 77 48
0.8 2158 237 85 44 28

α = 0.10 0.85 2533 278 100 52 33
0.9 2989 332 120 61 39

Tables A.1 and A.2 list the powers achieved by the sample sizes for β1 = 0.1, 0.5

and 0.9.

4.5 Discussion

When Zij and Cij are all identically distributed, so are Yij exp (β′Zij) and YijZij exp (β′Zij).

So for d = 0, 1, 2

s(d)(β, x) = K1EZ
d
11Y11(x) exp (β′Z11).
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Therefore

µ(β, x) =
EZ11Y11(x) exp (β′Z11)
EY11(x) exp (β′Z11)

and

Γ(β, x) = K1

∫ ∞

0
(EZ⊗2

11 Y11(x) exp (β′Z11)−
(EZ11Y11(x) exp (β′Z11))2

EY11(x) exp (β′Z11)
)λ0(x)dx.

Let

Γ1(β, x) =
∫ ∞

0
(EZ2

11Y11(x) exp (β′Z11)−
(EZ11Y11(x) exp (β′Z11))2

EY11(x) exp (β′Z11)
)λ0(x)dx.

Then

Γ(β, x) = K1Γ1(β, x).

If we assume that for all 1 ≤ j 6= k ≤ ki, i = 1, ..., n

E(
∫ ∞

0
(Zij − µ(β, x))dMij(β, x)

∫ ∞

0
(Zik − µ(β, x))dMik(β, x))

= E(
∫ ∞

0
(Z11 − µ(β, x))dM11(β, x)

∫ ∞

0
(Z12 − µ(β, x))dM12(β, x)),

then

W (β) =
K1Γ1(β, x) + (K2 −K1)E(

∫∞
0 (Z11 − µ(β, x))dM11(β, x)

∫∞
0 (Z12 − µ(β, x))dM12(β, x))

(K1Γ1(β, x))2
.

For β = 0, Zij is independent of Yij , so µ(0, x) = m, v(0, x) = σ2 and s(0)(0, x) =

EY11(x). Hence

Γ(0) = K1Γ1(0) = K1σ
2E

∫ ∞

0
EY11(x)λ0(x)dx = K1σ

2EN11(∞) = K1σ
2P (T11 ≤ C11),

and

E

∫ ∞

0
(Z11 −m)dM11(0, x)

∫ ∞

0
(Z12 −m)dM12(0, x) = cov(Z11, Z12)EM11(0,∞)M12(0,∞).

So

W (0) =
K1σ

2P (T11 ≤ C11) + r(K2 −K1)EM11(0,∞)M12(0,∞)
(K1σ2P (T11 ≤ C11))2

= =
1

K1σ2P (T11 ≤ C11)
+
r(K2 −K1)EM11(0,∞)M12(0,∞)

(K1σ2P (T11 ≤ C11))2
,

where σ2 = var(Z11) and r = cov(Z11, Z12).
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When ki = 1 for all i = 1, .., n, (4.6) reduces to

n1 =
( zα/2√

Γ1(0)
+ zβ∗√

Γ1(β1)
)2

β2
1

. (4.11)

Here n1 is the no of clusters required for experiments with one subject per cluster. In

order to have

n ≤ n1,

we must have

zα/2

√
W (0) + zβ∗

√
W (β1) ≤

zα/2√
Γ1(0)

+
zβ∗√
Γ1(β1)

,

which will be satisfied when

W (0) ≤ 1
Γ1(0)

and W (β1) ≤
1

Γ1(β1)
. (4.12)

To satisfy (4.12), we must have

cov(Z11, Z12)E(M11(0,∞)M12(0,∞))
Γ1(0)

≤ K2
1 −K1

K2 −K1
, (4.13)

and

E(
∫∞
0 (Z11 − µ(β1, x))dM11(β1, x)

∫∞
0 (Z12 − µ(β1, x))dM12(β1, x))

Γ1(β1)
≤ K2

1 −K1

K2 −K1
.

(4.14)

The right hand side of (4.13) and (4.14) are related with the relationship between

K1 and K2, while the left hand side deals with the relationship between covariates, and

event times. The two sides are not intrinsically related. Depending on how large the

relatedness between covariates and event times is, either side of the inequalities may be

bigger than the other side.

Some special cases are:

1. All Zij , i = 1, .., n, j = 1, .., ki are independent.

In this case, the left hand of (4.13) and (4.14) are zero, and

w(0) =
1

K1Γ1(0)
and W (β1) =

1
K1Γ1(β1)

.
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So

n =
( zα/2√

Γ1(0)
+ zβ∗√

Γ1(β1)
)2

K1β2
1

=
n1

K1
.

2. ki are constant, ki = K, i = 1, .., n.

When the condition is true, K2 = K2
1 = K2, so the right hand sides of (4.13) and

(4.14) are 1. It is easy to show, under our assumptions, that the left hand sides of

(4.13) and (4.14) are less than 1. So in this case, we have

n ≤ n1.

3. ki are not all equal.

In this case, K2
1 < K2. So the right hand sides of (4.13) and (4.14) are strictly less

than 1.

When Zij = Zi1 a.s., j = 1, .., ki, that is, all members in the same cluster get the

same treatment, we have Cov(Z11Z12) = σ2. If the treatment is the primary factor that

affects the failure of patients, then Tij ≈ Ti1, so

EM11(0)M12(0) ≈ EM11(0)2 = P (T11 ≤ C11),

and

E(
∫ ∞

0
(Z11 − µ(β1, x))dM11(β1, x)

∫ ∞

0
(Z12 − µ(β1, x))dM12(β1, x)) = Γ1(β1).

So the left hand sides of (4.13) and (4.14) are equal to 1. In this situation, we have

n ≈ K2

K2
1

n1 > n1.

This is a strange result. From intuitive thinking, since within a cluster, every event

time is a representative of the others, we have a case equivalent to that of one event

time per subject. So the sample size required in this case should be no more than that

in one event time per subject case.

This phenomenon can be explained as this. Suppose {Xij , i = 1, ..., n, j = 1, ..., ki}

is a sequence of random variables which satisfies that Xij = Xi1, a.s, i = 1, ..., n, and
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Xik is independent of Xjl when i 6= j. k1, ..., kn is a sequence of constants. Each Xi1

has mean µ and variance σ2.

Define

X̄1 =
1

k1 + k2 + ...+ kn

n∑
i=1

ki∑
j=1

Xij ,

X̄2 =
1
n

n∑
i=1

Xi1.

Then

EX̄1 = µ, varX̄1 =
k2

1 + k2
2 + ...+ k2

n

(k1 + ...+ kn)2
σ2,

EX̄2 = µ, varX̄2 =
σ2

n
.

From Jensen’s Inequality, when ki are not all equal,

(k1 + ...+ kn)2 < n(k2
1 + k2

2 + ...+ k2
n),

we get

varX̄1 =
k2

1 + k2
2 + ...+ k2

n

(k1 + ...+ kn)2
σ2 >

1
n
σ2 = varX̄2.

This is a situation that is unlikely to occur in reality, since usually treatment is not

the only factor that affect the failure of a subject.
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Appendix A

Tables and Figures

Table A.1: Power achieved by sample size with rho = 1

β1

0.1 0.1 0.1 0.5 0.5 0.5 0.9 0.9 0.9
α = 0.05 Power intended 0.8 0.85 0.90 0.8 0.85 0.90 0.8 0.85 0.90

Power achieved 0.812 0.858 0.907 0.813 0.852 0.90 0.812 0.856 0.904
α = 0.10 Power intended 0.8 0.85 0.90 0.8 0.85 0.90 0.8 0.85 0.90

Power achieved 0.797 0.869 0.905 0.792 0.834 0.906 0.793 0.854 0.897

Table A.2: Power achieved by sample size with rho = 5

β1

0.1 0.1 0.1 0.5 0.5 0.5 0.9 0.9 0.9
α = 0.05 Power intended 0.8 0.85 0.9 0.8 0.85 0.90 0.8 0.85 0.90

Power achieved 0.797 0.857 0.897 0.795 0.835 0.898 0.792 0.874 0.91
α = 0.10 Power intended 0.8 0.85 0.9 0.8 0.85 0.90 0.8 0.85 0.90

Power achieved 0.808 0.873 0.897 0.788 0.845 0.908 0.795 0.838 0.914
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Figure A.1: Distributions of scores Ũ1 and Ũ2 (ρ = 1)
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Figure A.2: Scatter plot of Ũ2 versus Ũ1 (ρ = 1)
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Figure A.3: Scatter plot of Ũ2 − Ũ1 versus Ũ1 (ρ = 1)
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Figure A.4: Distributions of scores Ũ1 and Ũ2 (ρ = 5)
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Figure A.5: Scatter plot of Ũ2 versus Ũ1 (ρ = 5)
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Figure A.6: Scatter plot of Ũ2 − Ũ1 versus Ũ1 (ρ = 5)

●

●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

● ●
●

●
●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−5 0 5 10

−
20

−
10

0
10

U1

U
2−

U
1



58

Figure A.7: Power by marginal method and by partition method (ρ = 1)
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Figure A.8: Power by marginal method and by partition method (ρ = 5)
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