
STUDY OF THE MECHANICAL PROPERTIES AND
THE ELECTRICAL PROPERTIES OF SINGLE-WALLED
CARBON NANOTUBES THROUGH FINITE ELEMENT

ANALYSIS AND MOLECULAR DYNAMIC
SIMULATIONS

BY PAOLA JARAMILLO

A thesis submitted to the

Graduate School� New Brunswick

Rutgers, The State University of New Jersey

in partial ful�llment of the requirements

for the degree of

Master of Science

Graduate Program in Mechanical and Aerospace Engineering

Written under the direction of

Dr. Haym Benaroya

and approved by

New Brunswick, New Jersey

January, 2008



ABSTRACT OF THE THESIS

Study of the Mechanical Properties and the Electrical

Properties of Single-Walled Carbon Nanotubes through

Finite Element Analysis and Molecular Dynamic Simulations

by Paola Jaramillo

Thesis Director: Dr. Haym Benaroya

The primary motivation of the current research focuses on the ability to create simpli�ed

models that can accurately predict the response of carbon nanotube structures undergoing

di¤erent types of loading conditions. Moreover, the conductivity characteristics of these

structures under di¤erent geometrical arrangements are investigated. In this way, the me-

chanical characteristics regarding single-walled carbon nanotubes (SWCNTs) through �nite

element modeling are computed. This is followed by the determination of the electrical

properties of carbon nanotubes through molecular dynamic simulations.

A simpli�ed �nite element model is created for di¤erent types of SWCNTs with varying

input parameters. An input array for the elastic modulus and load is generated to control

the physical e¤ects of these parameters in the nanotube structure. The geometries of the

nanotubes are altered through various thicknesses employed for the construction of the C�

C bonds. The current work contributes to the generation of di¤erent model responses to

monitor the stress distribution employing a wide range of parameter values. The ability

to introduce variability in the parameters and boundary conditions without altering the

capabilities and computational time in the model represents the main contribution of the

thesis from the mechanical component.
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The electrical aspects of the simulations are carried using simple molecular dynamics

schemes taking into consideration �nite and in�nite SWCNTs modeled as isolated tubes,

triangular lattice con�gurations, and both curved and non-puri�ed structures. Through

optimized molecular models, the total energies of the carbon nanotubes are obtained along

with the virtual and occupied energy eigenvalues. From this analysis, the carbon nanotube

band structures can be computed to determine its conductivity capabilities.

Findings explaining the output from the mechanical and electrical simulations are sum-

marized. Furthermore, conceptual contributions for future work are listed to develop models

capable of physically interpreting the characteristics of single-walled carbon nanotubes.
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Chapter 1

Introduction

The scope of this research work can be divided into two main parts. First, the me-

chanical characteristics regarding single-walled carbon nanotubes (SWCNTs) are examined

through �nite element modeling. Second, the electrical properties of carbon nanotubes

assuming in�nite length and di¤erent types of con�gurations are studied through molecular

dynamic simulations.

For the mechanical modeling, a simpli�ed �nite element model is created for di¤erent

types of SWCNTs with varying input parameters. An input array for the elastic modulus

and load is generated to control the physical e¤ects of these parameters in the nanotube

structure. In addition, the geometries of the nanotubes are altered through various thick-

nesses employed for the construction and characterization of the C�C bonds.

The parameters considered in the current work are obtained from literature. The works

of Chen and Cao [8], Yakobson et al. [9], Kudin et al. [10], Pantano et al. [11], Tserpes and

Papanikos [12], and Ogata et al. [13] are employed to create simpli�ed �nite element models.

The current work contributes to the generation of di¤erent model responses to monitor the

stress distribution throughout the carbon nanotube structures employing a wide range of

parameter values. From a mechanical perspective, the ability to introduce variability in the

parameters and boundary conditions without altering the capabilities and computational

time in the model represents the main contribution of the thesis.

Additionally, the electrical aspects of the simulations are carried using simple molecu-

lar dynamics schemes considering �nite and in�nite SWCNTs modeled as isolated tubes,

triangular lattice con�gurations, and both curved and non-puri�ed structures. Through

optimized molecular models, the total energies of the carbon nanotubes are obtained along

with the virtual and occupied energy eigenvalues. From this analysis, the carbon nanotube
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band structures can be computed to determine conductivity capabilities. Consequently,

the �ndings obtained from these virtual experiments provide a preliminary picture that is

not only employed to predict simple carbon nanotube studies, but also more complex con-

�gurations with greater computational demands. In addition, identical carbon nanotubes

are simulated under di¤erent geometrical con�gurations so as to monitor the e¤ects of con-

ductivity characteristics. This represents the most important contribution in the current

study of the electrical characteristics found in SWCNTs.

The current work is presented by elaborating on a background review in Chapter 2

that summarizes the key aspects of the structure of SWCNTs, including their geometry,

strain energy, and growth. In addition, Chapter 2 provides a detailed review of atomistic

simulation methods and their implementation through di¤erent approaches in determining

the mechanical properties of SWCNTs from these simulations. Next, both a conceptual

and mathematical approach are presented including several di¤erent models, which provide

distinctive geometric con�gurations when describing the characteristics of SWCNTs through

�nite element analysis.

Following the mechanical aspect of this review, an overview regarding the electrical

properties of carbon nanotubes is presented in Chapter 3 by providing a mathematical

interpretation of molecular dynamic concepts including density functional theory and basis

sets. A process is followed to calculate the total energy in these systems. In this way,

relevant features are explained in the �eld of condensed matter physics by giving emphasis

to the Brillouin zone, band theory, and energy dispersion.

Concluding the background review, the contribution of the current research is explained.

The �nite element procedure is outlined in Chapter 4 containing details about the model

geometry, assumptions, and boundary conditions. This is followed by presentation of the

results obtained from the �nite element model. Moreover, Chapter 4 discusses the results

gathered from loading the carbon nanotube structures by tension (linear and multilinear),

bending, and torsion.

Continuing to Chapter 5, the setups for the molecular simulations are discussed along

with the results obtained from these virtual experiments. Firstly, graphical representation

of the energy per atom is presented for all the case studies. This is followed by similar
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representation of the energy bands and the electronic density of states.

Finally, conclusions (in Chapter 6) explaining the output from the mechanical and elec-

trical simulations are summarized, along with conceptual contributions for future work that

may enhance the capabilities of the �nite element model. For instance, proposed case

studies are given associating the molecular simulations output to mathematically-obtained,

input mechanical parameters required for the �nite element model. In this way, more elab-

orate models can accurately determine the characterization properties of SWCNTs through

the manipulation of parameters such as temperature and Poisson�s ratio.

Therefore, the primary motivation to develop the current research deals with the ability

to create simpli�ed models that can accurately predict the response of carbon nanotube

structures undergoing di¤erent types of loading conditions. At the same time, the con-

ductivity characteristics of these structures under di¤erent geometrical arrangements are

investigated. As a result, the current work explains the physical behavior of speci�ed SW-

CNTs while carrying on simpli�ed modeling considering the most critical characteristics

that can a¤ect the structure.



4

Chapter 2

Literature Review of the Mechanical Properties of Carbon
Nanotubes

Carbon nanotubes are composed of C�C covalent bonds, which are the strongest bonds

found in nature. Hence, carbon nanotubes are identi�ed as the �ultimate �ber�due to their

great strength in the direction of the nanotube axis and their ability to enhance the elastic

properties of materials [1]. The �rst indications of synthesizing carbon nanotubes date back

to 1952: Russian scientists Radushkevich and Lukyanovich [14, 15] were able to produce

nanosized hollow carbon �laments. Nevertheless, it was until 1991 that multi-walled carbon

nanotubes (MWCNTs) were discovered by Sumio Iijima at NEC Corporation Lab, which

was followed by his study and synthesis of single-walled carbon nanotubes (SWCNTs) in

1993 [16, 17].

Since their discovery, there has been a constant pursuit to understand the properties and

identify the optimal applications of these structures. The importance of carbon nanotubes

relies on their ability to enhance the mechanical and electrical properties of other materi-

als due to their unique elastic properties and conductivity characteristics. Additionally,

carbon nanotubes can improve the capabilities and properties of other materials, like poly-

mer composites [1]. Currently, there is an ongoing process to accurately understand the

fundamental characteristics of these structures, in particular, to develop the governing laws

necessary to control, predict, and manipulate these properties. This will eventually have an

impact on the bulk properties of materials where carbon nanotubes may be incorporated.

2.1 Structure of SWCNTs

Carbon nanotubes are created by rolling a graphene sheet to form either MWCNTs,

which are composed of coaxially situated SWCNTs of di¤erent radii, or SWCNTs, created
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by rolling the graphene sheet once [1, 12]. Thus, carbon nanotubes are viewed as hollow

cylinders consisting of sp2 bonds. The curvature presented in these structures causes ���

rehybridization where the three � bonds are considerably out of plane causing the � orbital

to be more delocalized outside the tube. As a result, carbon nanotubes are mechanically

stronger, electrically and thermally more conductive, and chemically and biologically more

active than graphite.

SWCNTs can be viewed as hollow cylinders composed of a carbon hexagon pattern

replicated throughout the entire structure. They are characterized by the chiral vector Ch

de�ned by two integers (n;m) that are related to graphite vectors a1 and a2 as described

by Eqn. 2.1: The atomic structure of carbon nanotubes depends on tube chirality1 [19].

The chiral vector Ch is de�ned as

Ch = na1 +ma2 � (n;m): (2.1)

The structure of the carbon nanotube, as displayed in Fig. 2.1, is determined by the equator

of the nanotube, that is, vector OA; which lies perpendicular to the tube axis. Conversely,

the vector OB lies in the direction of the nanotube axis. By rolling the equivalent sites

O; A; B; B0 so that the points O and A as well as B and B0 coincide allows the carbon

nanotube structure to be created [1].

The carbon nanotube has a diameter speci�ed by:

D = jChj =� = a(n2 + nm+m2)1=2=�; (2.2)

where a = ja1j = ja2j and refers to the lattice constant of graphite. SWCNTs are classi�ed

in three di¤erent types: (1) armchair (n; n), (2) zigzag (n; 0), and (3) chiral (n;m) [19].

Examples of SWCNTs types are presented in Fig. 2.2, which are de�ned distinctively by

the chiral angles. For the armchair and zigzag carbon nanotubes, the chiral angle � equals

30� and 0�, respectively, where n � m. For the chiral SWCNT, � is de�ned by

� = tan�1[31=2m=(m+ 2n)]: (2.3)

The translation vector T is de�ned as the unit vector of a 1D carbon nanotube. T is

1By chirality, it is meant that a molecule is not superimposable on its mirror image regardless of how it
is contorted [18].
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Figure 2.1: Unrolled lattice of a nanotube displaying the vectors OA and OB, which de�ne
the chiral vector Ch and translational vector T: R denotes the symmetry vector and
rectangle OAB0B represents the unit cell of the nanotube [1].
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Figure 2.2: Classi�cation of carbon nanotubes generated in GaussianTM simulation package.
Figures (a)-(c) represent zigzag, armchair and chiral SWCNTs, respectively.



8

parallel to the nanotube axis and perpendicular to the chiral vector Ch, as speci�ed in Fig.

2.1. T can be expressed in terms of basis vectors a1 and a2 as

T =t1a1 + t2a2 � (t1; t2); (2.4)

where t1 and t2 are integers determined by complying to orthogonality rules between T and

Ch, that is, from Ch �T = 0: These integers are de�ned as

t1 =
2m+ n

dR
; t2 = �

2n+m

dR
; (2.5)

where dR represents the greatest common divisor of (2m+ n) and (2n+m). Additionally,

the length of the translational vector T is given by

T = jTj =
p
3L

dR
: (2.6)

When the area of the nanotube unit cell jCh�Tj is divided by the area of the hexagon

(ja1�a2j), the number of hexagons per unit cell N is given as a function of n and m by

N =
jCh �Tj
ja1 � a2j

=
2(m2 + n2 + nm)

dR
=
2L2

a2dR
=
2LTp
3a2

; (2.7)

where L is the circumferential length of the carbon nanotube. The parameters L and dR

are governed by [1]:

L = 2�dt; (2.8)

dR =

8<: d if n�m is not a multiple of 3d

3d if n�m is a multiple of 3d

9=; ; (2.9)

where dt is the nanotube diameter and d is the greatest common divisor. The symmetry

vector R (see Fig. 2.1) is another relevant component for the coordinate generation of

carbon nanotube structures. Vector R is expressed in terms of its projections on the

orthogonal vectors Ch and T of the nanotube unit cell. It can also be de�ned in terms of

basis vectors a1 and a2 by

R = pa1 + qa2 � (p; q); (2.10)

where p and q are the selected coe¢ cients of the symmetry vector such that (t1q�t2p = 1):

Other important parameters for the generation of carbon nanotubes are the lattice

constant and intertube spacing, which depend on the tube diameter or radial direction.

Experimental and theoretical measurements agree that for a C�C bond length, dC�C =

0:142 nm or a = ja1j = ja2j = 0:246 nm; and intertube spacing df = 0:34 nm [19].
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2.2 Strain energy of SWCNTs

The strain energy E� of a SWCNT is related to the curvature of the nanotube. That

is, the strain energy increases with decreasing dt :

E� =
�ETd3f
6dt

; (2.11)

where E is the elastic modulus of the sheet, T is the length of the carbon nanotube in the

direction of the nanotube axis, and the interplanar distance between two graphene layers

df = 0:34 nm:

The unit cell of the 1D carbon nanotube can also be related to the strain energy per

carbon atom. There are 2N carbon atoms in each unit cell of the carbon nanotube. Hence,

the strain energy per carbon atom is inversely proportional to d2t through the relation

E�
N
=

p
3d3fa

2

24d2t
: (2.12)

Currently, an overview of the key parameters characterizing the SWCNT structure has

been explored. A summary describing the key methods for growth, synthesis, and puri�-

cation of carbon nanotubes is described in the following section.

2.3 Growth and synthesis of SWCNTs

SWCNTs are characterized by being sensitive to variations in the process parameters,

including light intensity, process temperature, geometry, carrier gas type, pressure and �ow

conditions. Growth time for SWCNTs produced in laser and arc processes is about 10ms

under optimal conditions. Both arc ablation and laser processes produce carbon in the

form of spallated graphitic particles and single-walled nanohorn aggregates. These factors

directly a¤ect the yield and properties of SWCNTs. The growth of carbon nanotubes can be

accomplished through three methods: carbon vapor generated by arc discharge of graphite,

carbon vapor generated by laser ablation of graphite, and the vapor growth method. The

arc discharge method remains the easiest and most inexpensive method to obtain signi�cant

quantities of SWCNTs; however, the nanotubes are less pure than those produced by the

laser ablation method.
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2.3.1 Arc discharge method for producing SWCNTs

SWCNTs are produced via the arc process using covaporization of graphite and metal

in a composite anode, commonly made by drilling an axial hole in the graphite rod and

densely packing it with a mixture of metal and graphite powders. Ni/Y and Co/Ni are

the most common catalysts utilized in SWCNT production. Thermogravimetric analysis

(TGA) and near-infrared (NIR) spectroscopy are utilized to accurately determine the metal

and SWCNT content in the arc material. These methods appear to be the most useful for

analyzing arc-product composition and structure.

SWCNTs are generally organized in bundles consisting of a few dozen tubes, tightly

compounded in a honeycomb lattice with an average separation between tube axes of ap-

proximately 1:7 nm: Bundles are covered with an amorphous carbon layer of approximately

2�5 nm thick, which contains embedded fullerenes. The majority of tubes have diameters

in the range of 1:2�1:5 nm and lengths reaching up to 5�m in the Ni/Y system and 20�m

in the Co/Ni system. SWCNT diameters depend on the temperature of the catalytic site

at which growth occurs. This temperature is regulated by many factors, including heating

of the reaction zone with an externally controlled heat source. The mean diameter of the

SWCNTs increases with the environment temperature [20].

2.3.2 Laser ablation method of carbon-metal target for producing SWC-

NTs

Implementing laser techniques for the production of SWCNTs can yield up to 70�90% by

conversion of graphite [1]. There are two methods to scale up the SWCNT production using

laser ablation: (1) the continuous wave laser-powder method of SWCNT synthesis, and (2)

the ultrafast pulses from a free electron laser (FEL) method. The SWCNT abundance in

a soot product is 20�40% while the tube diameter range from 1:2�1:3 nm:

For the second method, light pulses at a repetition rate of 75MHz are generated to

vaporize the graphite-metal target. The SWCNT soot is collected on a cold surface at a

rate of 1500mg=h. As a result, SWCNT bundles are produced from 8�200 nm thick with

diameter and length ranging from 0:4� 1 nm and 5�20�m, respectively.
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Transmission electron microscope (TEM) is employed to verify the presence of ropes of

SWCNTs consisting of bundles aligned along an axis. The SWCNTs are held in bundles by

the van der Waals forces forming a 2D triangular lattice with a lattice constant of 1:7 nm;

and an inter-tube separation of 0:315 nm [1].

2.3.3 Vapor growth method

The vapor growth method is bene�cial since it is a continuous production of carbon

nanotubes, which at optimal conditions can produce large quantities of these structures

under relatively controlled conditions. The equipment necessary for the synthesis of carbon

nanotubes is analogous to that used for vapor-grown carbon �bers. Carbon nanotubes

generated by the vapor-growth method show poor crystallinity, which is improved after a

heat treatment at 2500�3000�C in argon gas.

Other methods have been developed for the synthesis of carbon nanotubes, including the

use of carbon ion bombardment to create carbon whiskers, and the use of solar energy to

achieve temperatures of 3000K. Nevertheless, development of optimal and control synthesis

process is required for the higher production of puri�ed SWCNTs.

2.4 Puri�cation of SWCNTs

Carbon nanotubes, produced by any method, contain impurities. These impurities are

mostly catalyst metal particles and di¤erent forms of amorphous carbon. There have been

developed several postprocessing puri�cation methods with the goal of removing the metal

catalysts and other impurities.

The major impurity in carbon nanotubes are iron particles, which can be up to 30% by

weight. The most e¤ective procedure has been reported by Cinke et al. [21] by applying the

high pressure CO disproportionation (HiPco) process [1]. The (HiPco) process is based on

the decomposition of Fe(CO)5 to form iron clusters for the catalytic production of SWCNTs

from CO at about 1000 �C. The procedure consists of an acid treatment by removing the

metal �ltration, washing with water, and drying in vacuum. It has been found that high

vacuum heat treatment of HiPco tubes reduces Fe content to 2% while the diameter of
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SWCNTs increases substantially. Cinke et al. [21] utilize a two-step puri�cation process

for the HiPco SWCNTs, which reduces the iron content to less than 1%. Through this

approach, a high resolution transmission electron microscopy (HRTEM) is implemented in

the puri�cation process to monitor the quality of SWCNTs.

Another technique to enhance the puri�cation process in SWCNTs has been performed

by Laborde-Lahoz et al [22]. The authors execute a two-step re�ux process, which eliminates

the catalytic particles in the SWCNTs, optimally disperse the carbon nanotubes, and oxide

them through the addition of carboxylic functional groups, which help the SWCNTs adhere

to the polymer matrix using covalent bonding.

Providing an overall explanation about the structure and formation of carbon nanotubes

enable the study of simulation methods that are able to resemble and quantify the properties

by these structures. As a result, the two following sections provide a detailed overview of

the di¤erent atomistic simulations and �nite element methods employed for the study of

the SWCNT properties.

2.5 Atomistic simulation methods applied in SWCNTs

In exploring the mechanical and electrical properties of SWCNTs, there exist a variety

of molecular approaches that may be used for the atomistic investigation relating to these

structures. Two broad areas in computational chemistry are devoted to the molecular

structure and reactions, that is, molecular mechanics and electronic structure theory. Both

methods can be employed in energy computation and its properties, geometry optimizations

due to energy minimization, and computation of vibrational frequencies of molecules.

Molecular mechanics apply the laws of classical physics to predict the structures and

properties of molecules employing speci�c force �elds. Force �eld refers to the functional

form and parameter sets used to describe the potential energy of a system of particles, typ-

ically but not necessarily atoms. Force �eld functions and parameter sets are derived from

both experimental work and high-level quantum mechanical calculations [18]. Three com-

ponents are required in the force �eld: (1) equation set describing potential energy variation

of atoms, (2) de�nition of element characteristics within a speci�c chemical context, and
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(3) one or more parameter sets �tting the equations and atom types to experimental data.

These sets de�ne the force constants, which are values relating the atomic characteristics

to energy components and structural data.

The computations in molecular mechanics are based on the interactions among the

nuclei, and include the electronic e¤ects implicitly in the force �elds through parametrization

[23]. This technique is highly developed in the exploration of the mechanical properties

of carbon nanotubes since it is computational inexpensive as well as applicable to large

systems. The applicability of molecular mechanics in the study of SWCNTs can be found

in references [24�31].

Nevertheless, there exist some limitations when performing simulations in molecular

mechanics. First, the force �eld achieves accurate results for the limited class of molecules

for which it is parametrized. Also, the exclusion of electrons indicates that these methods

are unable to handle the electronic aspects regarding any structure. For these reasons,

molecular mechanics is not considered in the development of the present research [23].

On the other hand, the electronic structure methods such as molecular dynamics, apply

the laws of quantum mechanics as the basis of the computations. Quantum mechanics states

that the energy and its properties in a molecule are obtained by solving the Schrödinger

equation:

H	 = E	; (2.13)

however, exact solutions of Eqn. 2.13 are not computational practical. Hence, the electronic

structure methods represent approximations to the Schrödinger solution.

There are three main classes of electronic structure methods:

(1) Semi-empirical methods consider the parameters to be derived from experimental data

and an approximate solution of Eqn. 2.13 is solved considering the appropriate para-

meters for the chemical system. Di¤erent semi-empirical methods are characterized

by the di¤erent parameter sets.

(2) Ab initio (also known as �rst principles) methods consider no experimental parameters

in the computations. These methods are based on the laws of quantum mechanics

and on the value of physical constants, such as the speed of light, masses and charges
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of electrons and nuclei, Planck�s constant. Solutions of the Schrödinger equation are

developed through extensive mathematical approximations.

(3) Density functional methods2 may be regard as another method to approximate so-

lutions for the Schrödinger equation. These are similar to the ab initio methods,

including the high computation demands. These methods include the e¤ects of

instantaneous electron correlation, which causes it to be a very accurate electronic

structure method [23].

2.5.1 Study of the mechanical properties in SWCNTs

Atomistic simulations are performed to identify the stress-strain behavior, and in turn,

the elastic modulus of the carbon nanotube structure. Liu et al. [32] considers the second-

generation reactive empirical bond order3 (REBO) potential to determine correlations be-

tween the diameter, helicity, and the tensile deformation of SWCNTs. The procedure

requires end atoms to be displayed along the axial direction by small time steps. Relax-

ation of the entire tube through a velocity damping method allows the atoms to achieve a

mechanical equilibrium state with �xed boundary conditions at the other end. The stress

on each atom in the SWCNT is determined from Eqn. 2.14:

�mij =
1


0

@Um
@"mij

; (2.14)

where �mij is the �rst Piola-Kirchho¤ stress, Um refers to the potential energy, "mij equals

the Lagrange strain of atom m, and 
0 is the atomic volume at the reference state. As

a result, the stress and elastic modulus depend on the value of 
0: This value is given by

Eqn. 2.15:


0 =
3
p
3a20b0
4

; (2.15)

2There exits a debate on whether or not density functional methods represent another kind of atomistic
simulation rather than part of the ab initio methods. In this work, the method will be explained separately
from ab initio methods following the GaussianTM manual explanation Any debate on this issue is out of
the scope of this work [23].

3The improved REBO is a second-generation form of hydrocarbon potential energy expression, which
includes both modi�ed analytic functions for the intramolecular interactions and �tting database. As a
result, an enhanced description of bond energies, lengths, especially C�C bonds, as well as forces associated
with rotation about dihedral angles for C � C bonds and angular interactions are developed [33].
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where a0 refers to the C�C bond at the reference state and b0 = 0:34Å indicates the

wall-wall separation. The Lagrange strain is determined by Eqn. 2.16:

"mij =

�
Fmik F

m
kj � �ij

�
2

; (2.16)

where Fmij is the deformation gradient of atom m and �ij is the Kronecker symbol. The

deformation gradient is calculated from Eqn. 2.17:

Fmij =
NX
n=1

 
rmni
Rmnj

!
; (2.17)

where rmni and Rmnj are the distance between atoms m and n in the deformed and reference

state, respectively. N refers to the total number of atoms within the cut-o¤ distance of

atom m:

Through this atomistic approach, a uniform deformation results in a uniform stress and

uniform strain distribution for armchair, zigzag, and chiral SWCNTs. The simulations are

performed keeping a 3 : 1 length to diameter ratio. Liu et al. [32] research draw some

important conclusions regarding the helicity and diameter e¤ects on SWCNTs. First, the

helicity factor is signi�cant since it is noticed that the elastic moduli, tensile strength, and

stress-strain curves are higher for armchair SWCNTs than zigzag nanotubes. Second, the

nanotube diameter does not play any signi�cant role in the mechanical parameters. The

simulations calculate an elastic modulus range of 0:68�1:30 TPa, and tensile strength range

of 0:066�0:131 TPa.

In the same way, Agrawal et al. [34] incorporate second-generation REBO with van der

Waals (vdW) interactions between two carbon atoms, as quanti�ed in the Lennard-Jones

(LJ) interaction potential. The Hamilton equations are solved through an integration

method for SWCNTs (14; 14), which comprises 1372 atoms. The structures are simulated

using �ve di¤erent methods to determine the elastic modulus, Y : (1) determination of strain

for a �xed stress, (2) determination of stress for a �xed strain, (3) determination of strain

energy for a �xed strain, (4) longitudinal vibration method, and (5) transverse vibration

method.

Methods (1)�(3) are computed under �xed-free boundary conditions, assuming thickness

t = 3:4Å; and applied external force. Eqns. 2.18-2.19 indicate the formulations used in
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these methods,

� =
F

�Dt
; (2.18)

Y =
1

v

�
d2Vc
d"2

�
and v = �DtL; (2.19)

where Eqn. 2.18 corresponds to methods (1) and (2). F is the external force, D is the

diameter, and t = 3:4Å . In the same manner, Eqn. 2.19 corresponds to method (3). Vc

refers to the con�guration energy of the system, which is a function of strain "; v is the

volume, and L denotes the length of the nanotube.

Methods (4)�(5) consider the measurement of natural frequencies based on a uniform

rod. Formulations speci�ed in Eqns. 2.20-2.21 are employed in these methods, respectively

fn =
(2n� 1)
4L

p
Y=� and � =

�
M

�DtL

�
; (2.20)

fn =

�
�2n
2�L2

�p
Y I=�A and I = �

�
a4 � b4

�
=4; (2.21)

where n corresponds to the mode of vibration, fn is the natural frequency, M is the mass,

� equals the mass density of the nanotube, and I is the second moment inertia of the cross-

sectional area A. Finally, the outer and inner radii correspond to a and b, respectively [34].

From these simulations, the elastic modulus ranges from Y = 0:55�0:76 TPa [34]. As

in the work of Liu et al. [32], Y for the zigzag tube is higher than that for an armchair

SWCNT. In addition, these methods are very dependent on the nanotube diameter.

A short-range second generation REBO potential and a long-range LJ 12-6 potential

are assumed by Liew et al. as speci�ed in Eqn. 2.22

EREBO = VR(rij)� �bijVA(rij); (2.22)

where VR(r) and VA(r) are the repulsive and attractive potential pair terms, and �bij is the

reactive empirical bond order between atoms. As a result, the total energy ETOT becomes

ETOT =
X
i

X
i>j

[EREBO + EvdW ] ; (2.23)

where EvdW is de�ned as

EvdW =

8>>>><>>>>:
0 : rij < r0s;

c
3;k
(rij � rk)3 + c3;k(rij � rk)2 : r0s � rij � r0m;

4�
h��ij

r

�12 � ��ijr �6i : r0m � rij � r0b;

9>>>>=>>>>; ; (2.24)
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where EvdW represents the van der Waal interaction potentials mathematically correspond-

ing to cubic splines.

Simulations are conducted for (5; 5); (7; 7); (10; 10); and (12; 12) SWCNT bundles to

solve for the Hamiltonian equations assuming t = 0:34 nm. The nanotubes are subjected

to axial tension and compression at a constant rate 20m= s at both ends (free-free bound-

ary conditions). Total failure loads and critical strains are determined for both types of

simulations. From these simulations, Liew et al. [35] determined that the SWCNT bundles

are directly proportional to the average critical failure load per nanotube and the critical

strains are independent of the bundle size. On the other hand, the critical buckling load

increases exponentially with the increment of the individual SWCNT diameter size.

Considering a more classical approach, Cornwell et al. [36] perform MD simulations using

the Terso¤-Brenner potential, which accurately describes the bonding energies and elastic

properties of hydrocarbons. SWCNTs radius range from 5:56Å�16:63Å: The process

utilizes the Verlet algorithm and subjects the structures to a quasi�static compression under

free-free boundary conditions. A critical strain is calculated once the structure buckles,

and Hooke�s law is used to provide a good approximation for the tube�s response in axial

compression. As a result, a least squares curve-�tting calculates the elastic modulus as a

function of the nanotube radius.

Ab initio methods present another reliable approach to explore the mechanical prop-

erties of SWCNTs. The main challenge regarding these computations relies on the large

computational demand in solving the Schrödinger equation. Zhou et al. [37] employ a

molecular orbital cluster model, that is, the linear combination of atomic orbitals (LCAO-

MO) method. The authors focus on the study of geometrical structure and mechanical

properties, i.e, elastic modulus, theoretical tensile strength and Poisson�s ratio of the car-

bon nanotube. The simulation is conducted using an armchair SWCNT comprising 156 C

atoms attached to an H terminal to prevent the boundary e¤ects. The variational basis sets

employed are 2s2p and 1s for C and H, respectively. Additionally, the von Barth-Hedin

exchange-correlation potential is adapted for the calculations.

An optimized geometrical structure through energy minimization is obtained. The C�C

bond lengths become 1:466Å: The elastic modulus and tensile strength are calculated as
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Y = 0:764 TPa and �tensile = 6:249 GPa, while the Poisson�s ratio is � = 0:32.

Many techniques have been developed with the purpose of integrating molecular me-

chanics, molecular dynamics and continuum modeling. In the case of Chen and Cao [8],

a multiscale model relates these methods. The authors generate nine molecular dynamic

simulations for SWCNTs using COMPASS force �eld. These include four zigzag, (10; 0),

(12; 0), (14; 0), (16; 0), four armchair, (5; 5), (6; 6), (7; 7), (8; 8), and one chiral SWCNT,

(8; 4). All nanotube lengths are set approximately equal to L � 12:6 nm: The structures

are �rst optimized through molecular mechanics so that the total potential energy is min-

imized and the interatomic forces are zero at 0K [8]. The nanotubes experience uniaxial

tension, bending and torsion under �xed-free boundary conditions and controlled displace-

ment, so as to optimize the structure for each displacement increment and minimize the

potential energy of the system. The strain energy-deformation relationship obtained in the

simulations is then compared with continuum models to �t the key parameters.

The space-frame model is constructed using two di¤erent types of circular beams. The

primary beams (r1; E1) refer to the C�C bond model which considers the bond stretching

energy, while the secondary bonding (r2; E2) link the nearest carbon atoms to represent the

potential energy associated with angle variation. Di¤erent beam parameters are employed

so as to adequately match the strain energy-deformation relationship with the molecular

dynamics simulations. The primary and secondary beams are isotropic and Poisson�s ratio

is set to zero. All the calculations were carried out using ABAQUS [38] software. The

space-frame models are subjected to uniaxial tension, bending and torsion under �xed-free

boundary conditions. Poisson�s ratio of the space-frame SWCNT model is found to be

approximately � � 0:19; as in graphite. The optimal beam parameters are determined to

be r1;= 0:05 nm; E1 = 31:7 TPa and r2 = 0:04 nm; E2 = 86:5 TPa.

Additionally, a shell model is constructed and subjected to the same loads and boundary

conditions. This model approaches the behavior of beams by neglecting stress concentra-

tions near the ends. Poisson�s ratio, � � 0:19; and averaged elastic modulus-thickness

factor, Et = 548Pam; are determined to agree with the other two concept models. Fi-

nally, SWCNT (5; 5) is subjected to vibrational study by applying axial and transverse

vibration frequencies under �xed-free boundary conditions for the three conceptual models.
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The molecular dynamic simulation is carried out under a temperature of 800K: All three

models agree consistently with each other, which indicates a successful study of the dynamic

behavior of SWCNTs.

Ogata et al. [13] employ density functional theory based on local density approximation

as well as tight-binding calculations for three zigzag (8; 0); (9; 0); (10; 0); and one armchair

SWCNTs, (8; 8): The simulations investigate the structures under uniaxial tension and

compression. The relaxed ideal tensile strengths, de�ned as the maximum axial tensile

strength �Yzz, are evaluated. The axial stress �zz is indirectly calculated from the axial force

and the interlayer distance of graphite, t = 3:35Å: The density functional calculations are

performed using the Vienna ab initio simulation package along with the Cepley-Alder local

density approximation functional. The structures are relaxed before applying the axial

strains.

The elastic moduli are found to have an averaged value of Y = 972 GPa and Y = 1000

GPa for nanotube simulations performed using tight-binding and local density functional,

respectively. It is found that at 20% tensile strain, the SWCNTs in both simulations become

unstable. From the stress-strain curves, ideal tensile strength values, �Y Czz and �Y Tzz ; are

determined for compression and tension corresponding to the critical strain calculations

"critzz . However, the elastic modulus predictions from these results are only reliable for the

tensile cases.

At the same time, the electronic properties such as band gaps correlate with the �xed

strains undergone by these nanotubes. Very ductile behavior is observed in SWCNT (8; 8);

and zigzag nanotubes change their properties from metallic to semiconductor or vice versa

within the range of stable deformation [13].

Carbon nanotubes are also studied beyond the elastic range, focusing on the conse-

quences of permanent deformation. Work by Srivatasa et al. [39] explore the concept of

nanoplasticity of SWCNTs. This is studied under axial compression through the molecular

simulation of �nite (8; 0) SWCNTs. The structures are compressed via the quantum gener-

alized tight-binding molecular dynamics scheme. In this simulation, the edge atoms of the

nanotube are moved axially inward at a �xed rate to compress the structure. Once elastic

limit is reached, at 12% in compression, the relaxation causes plastic collapse. Plasticity of
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the structure through this strain relaxation triggers the localized deformations that result

in the inward collapse. Additionally, it is observed through these deformations that the

axial strain is primarily a¤ecting the bonds parallel to the tube axis, followed by the change

in the bond angle and increment of the tube radius. The strained bonds reduce in length

from 1:42Å to 1:33Å. And so, the inward collapse transforms the structure from sp2 to

sp3 type reconstruction at the location of the collapse. The calculated Young�s modulus

from this method is 1:8 TPa, considering t = 3:4Å for the nanotube.

Griebel and Hamaeckers [40] simulate carbon nanotube reinforcing polyethylene compos-

ite. The simulation is conducted under normal conditions with no external stress applied.

The systems studied by the authors include

� a polyethylene matrix consisting of 1330 CH2 units:

� a (10; 10) capped SWCNT embedded in 1420 CH2 units.

� a periodic (10; 10) SWCNT embedded in 1095 CH2 units.

Griebel and Hamaeckers concluded from the molecular simulations that the SWCNTs do

not provide reinforcement via transverse sti¤ness to the matrix. The rationale is that the

Young�s modulus of the composite is only in the range of the modulus of the polyethylene

matrix [40].

Altogether, these methods provide an extensive and thorough explanation for the me-

chanical properties observed in the atomistic scale. The output of these simulations enable

the further study of the carbon nanotube structure via �nite element analysis, which rep-

resents the main focus of the current work.

2.6 Structural mechanics analysis approach for modeling SWCNTs

The urge to develop simpli�ed structural methods to simulate the mechanical properties

of carbon nanotubes has created the need for hybrid modeling simulations combining mole-

cular methods such as molecular mechanics for the advance of nanoscale continuum models

in solid mechanics. The continuum structures are modeled in terms of bond energies and

di¤erent assumed force �elds.
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2.6.1 The �nite element method

The �nite element method provides an approximate solution to the equations of the

theory of elasticity. The main concept of this method is to divide the body into small parts

named elements. The displacement �eld is then approximated in each element through

interpolation between the values of the displacement at speci�c points on the element called

nodes. The displacement �eld, which is assumed to be continuous, is then substituted

into the potential energy expression. This condition generates a set of linear algebraic

equations for the nodal displacements through the condition of minimum potential energy.

The elements are numbered e = 1; 2; 3; :::M; and the unknown nodal displacements are

n = 1; 2; 3; :::; N:

Consider one element and one displacement component ui within an element. The

component ui is dependent on the nodal displacements DK for that element. However, the

dependency relies only on the displacements at nodes falling within the element or on its

boundary. The displacement component is described through the linear relation

ui(x) =
X
K�Im

NiK(x)DK ; (2.25)

where Im refers to the set of nodal displacements for the mth element, i = 1; 2; 3 for 3D

problems, and NiK are the shape functions for the element.

The shape functions must provide continuity to the generated displacement �eld, and

be approximated to the true solution so that the error tends to zero as the element size

tends to zero. Therefore, these functions must comply with the following:

(1) element boundary continuity for arbitrary nodal displacements

(2) exact representation of constant strain in the element.

Through the shape functions, the strains are determined by

"ij =
X
K�Im

AijKDK ; (2.26)

where AijK refers to

AijK =
1

2

�
@NiK
@xj

+
@NjK
@xi

�
: (2.27)
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The calculated stress is given by

� ij = lij +
X
K�Im

BijKDK ; (2.28)

where the coe¢ cient BijK is described as

BijK = cijkmAkmK; (2.29)

where cijkm and lij are characteristic of the structure.

For each element a function A(") is de�ned as

A(") =
1

2
cijkm"ij"km + lij"ij (2.30)

=
X
K�Im

X
M�Im

1

2
AijKBijMDKDM +

X
K�Im

lijAijKDK; (2.31)

in which indices K and M range over the index set for the particular element.

Considering the potential energy, the elements divide the region V into sub-regions Vm.

Let Sm indicate the part of the boundary of the sub-region Vm position on the loaded

exterior surface. Then, the potential energy becomes

P =
MX
m=1

Pm =
MX
m=1

0@Z
Vm

[A(")�biui] dV �
Z
Sm

Toi uidA

1A ; (2.32)

where bi represents the body forces per unit mass and Toi is the stress tensor.

Replacing Eqns. 2.25 and 2.31 in Eqn. 2.32, the potential energy for the element

becomes

P =
X
I;J�Im

1

2
kmIJDIDJ �

X
I�Im

fmI DI ; (2.33)

where kmIJ and f
m
I are de�ned as

kmIJ =

Z
Vm

BkiIAkiJdV (2.34)

fmI = �
Z
Vm

lkiAkiIdV+

Z
Vm

bkNkldV+

Z
Sm

TokNkIdA: (2.35)

As a result, the potential energy of the body becomes a summation as shown in Eqn. 2.33.

I and J depends on the element m: To perform the sum on m, Eqn. 2.33 can be extended
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to all displacement parameters by de�ning kmIJ to be zero for all I and J not included in

the set Im: Combining Eqn. 2.32 and Eqn. 2.33, the total potential equation simpli�es to

P =
NX
I=1

NX
J=1

1

2
KIJDIDJ �

NX
J=1

FJDJ ; (2.36)

where KIJ and FJ represent the sti¤ness and force matrix for N degrees of freedom, re-

spectively. These are de�ned as

KIJ =

MX
m=1

kmIJ (2.37)

FI =

MX
m=1

fmI : (2.38)

The system equations are solved by minimizing the potential energy, that is, @P
@DI

= 0: By

applying this condition, a set of N equations is generated with N unknowns:

NX
J=1

KIJDJ = FI : (2.39)

Eqn. 2.39 is solved numerically for DJ : Therefore, displacement, strain, and stress �elds

for an element are calculated using Eqns. 2.25-2.28 [41].

Through the solution of this system of equations, carbon nanotube structures are mod-

eled in a continuum environment, which focuses on developing a nanoscale continuum model

to simulate the mechanical behavior of these structures.

2.6.2 Molecular-continuum model

Kalamkarov et al. [42] presents two di¤erent continuum models to investigate the me-

chanical properties of carbon nanotubes, including single-walled, double-walled and multi-

walled nanotubes. Focused will be given only to the SWCNTs. The �rst model analytically

develops the constitutive relations for predicting the e¤ective mechanical properties of SW-

CNTs. The second model is a �nite element approach to determine the e¤ective properties

of these carbon nanotubes.

For the analytical model, SWCNTs are formed as a cylindrical network shell with a

hexagonal periodicity cell. This method is employed for the analysis of composite and

smart composite shells and plates. The shell is assumed to be a heterogeneous thin 3D

layer with no elastic properties in areas of perforation.
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In the �nite element approach, the C atoms are represented as material points connected

by load carrying beam elements. Correlations are established between molecular mechanics

and �nite element analysis. Hence, atoms are treated as forces acting between two junctions

separated by structural beam or spring elements. To determine the force constants of these

covalent bonds, the potential energies of the individual bonds are equated with the adequate

beam model. The beam elements are assumed to be isotropic with length L; cross-section

area A; and moment of inertia I:

The strain energies of the elements under pure axial load P; bending moment M; and

twisting moment T are denoted respectively by

UP =

Z L

0

P 2

2EA
dL =

EA

2L
(�L)2 (2.40)

UM =

Z L

0

M2

2EI
dL =

EA

2L
(2�)2 (2.41)

UT =

Z L

0

T 2

2GJ
dL =

GJ

2L
(��)2 : (2.42)

According to this approach, a direct relationship exists between the parameters from struc-

tural mechanics and those of molecular mechanics, kr; k�; k�, as described in Eqn. 2.43:

kr =
EA

L
; k� =

EI

L
; k� =

GJ

L
: (2.43)

The beam elements are assumed isotropic. The covalent bonds are modeled using a 3D

beam element. The beam contains six degrees of freedom at every node, three translations

(x; y; z) and three rotations about (x; y; z): The nonlinear spring elements refer to the non-

covalent interactions between carbon atoms able to undergo tension and compression. This

element type has three degrees of freedom, that is, translations at (x; y; z) at each node.

The results from this method generate a relationship for the e¤ective elastic and shear

moduli with respect to the material and geometric parameters, as described in Eqns. 2.44-

2.45:

ESWCNT =
�

6
p
3

�
�E

l

�
(2.44)

G12 =
�

32
p
3

�
�E

l

�
; (2.45)

where E = 5:488�10�6N=nm2, � = 0:147 nm, L = 0:142 nm. By employing Kalamarov et

al. [42] parameters, the results become ESWCNT = 1:71 TPa and GSWCNT = 0:32 TPa.



25

The �nite element method assumes a wall thickness t = 0:68 nm. The results obtained

from this method produce an elastic modulus ranging from 0:96�1:04 TPa, as the diameter

varies from 4Å to 35Å: Similarly, the shear moduli are found to be in the range 0:14�0:47

TPa.

Again, molecular mechanics and nanoscale continuum theory are incorporated in the

SWCNT model. In this case, Natsuki et al. [43] relates both methods through the Morse

potential by considering the atoms as individual bodies connected with bond energy. For

the model, the wall thickness is regarded as zero since the authors assume this parameter

does not a¤ect the governing equations. Stress and strain equations are then formulated

for the continuum theory, speci�cally for armchair and zigzag nanotube. These equations

are functions of the force, bond length, angle variation, and bond deformation.

The computer simulations are conducted for nanotubes (10; 10) and (17; 0): The results

for both structures indicate the elastic modulus is E = 0:94 TPa. The maximum stress for

the zigzag nanotubes is predicted at approximately 70 GPa with 11% failure strain. The

armchair nanotube has a maximum stress of 80 GPa at 15% failure strain. Similarly, the

compressive stresses are predicted to range from 110�125 GPa at the elastic limit of 12%

compression.

The approach for the carbon nanotube analysis developed by Li and Chou [44] presents

a geometrical frame-like structure, which employs molecular mechanics from AMBER force

�eld parameters. As in the work of Kalamkarov [42], Eqns. 2.40-2.43 are valid in repre-

senting a relation between molecular mechanics and structural mechanics. The method

simulates armchair and zigzag carbon nanotubes under �xed-free conditions by applying

two di¤erent loads: a tensile force and a torsional moment to the structures. A �xed wall

thickness is assumed as t = 0:34 nm: The elastic and shear moduli range are determined,

which display dependency on the nanotube diameter ranging from D = 0:4 to 2:0 nm.

The elastic modulus range for armchair and zigzag SWCNTs are Ea � 0:95�1:02 TPa and

Ez � 0:90�1:03 TPa. Similarly, the shear modulus range for armchair and zigzag SWCNTs

are Ga � 0:23�0:48 TPa and Gz � 0:28�0:48 TPa.

A slightly di¤erent kind of approach is employed in the work of Gao and Li [45]. Here,

the continuum model is developed for the computation of SWCNT strain energies as well
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as the estimation of the elastic modulus through the incorporation of molecular structures.

The concept of these properties is derived from a graphite sheet, which is represented by

a thin plate. The thin plate is then rolled to form the continuum model for the carbon

nanotube. Kinematic and constitutive relations at the continuum level are determined.

The strain energy, �s; is determined from the governing equation as

�s
2L

=
4�

3
E

�
r2i ln

� �
W
ri

�
+
1

4
(r2o � r2i )

�
(2.46)

dV = (2L)(2�r)dr; (2.47)

where dV refers to the volumetric element and W refers to the width of the continuum

plate. The strain energy and potential energy are determined and set equal to satisfy

energy equilibrium. An equation for the elastic modulus is analytically determined and

a parametric study is conducted. The elastic modulus determined is 5:5 TPa for radius

0:0375 nm. It was determined that there exists a dependency on the nanotube diameter rnt:

In addition, the elastic modulus is determined assuming plane strain case and dependence

on Poisson�s ratio. As a result, the elastic modulus determined is E = 7 TPa independent

of rnt: Therefore Gao and Li concluded that there is an inverse proportionality between

the cross-sectional area of the tube and the elastic modulus [45].

From the work of Saito et al. [1], the Young�s modulus for carbon nanotubes is, in

general, 1500 GPa. Values vary from 500 GPa to 1500 GPa, depending on the potential

model and the estimation of the cross-section. For calculations, a wall thickness is assumed

to be 0:344 nm, which is the interlayer separation. When the diameter of the SWCNT

increases, the nanotube becomes unstable and is prone to failure. The authors measure

Young�s modulus by determining the amplitude of a thermal vibration of a nanotube in

terms of the temperature. By this method, the estimated values for Y are approximately

1000 GPa [1].

Griebel and Hamaeckers [40] determine the Young�s modulus and the Poisson�s ratio via

molecular simulation for a polyethylene matrix embedded in SWCNTs and also established

the properties of a (10; 10) SWCNT. The results for the Young�s moduli and the Poisson�s

ratios range from 395:04 GPa�410:18 GPa and 0:22�0:24, respectively.

Experimental and theoretical models are employed by Laborde et al. [22] to identify
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the tensile strength and Young�s modulus of SWCNT/epoxy composite systems. For the

latter, the authors apply four models to approximate the properties of the systems including,

Poisson�s ratio contractions, three dimensional e¤ects, and the mixture law. According to

Laborde et al. [22], all the results obtained to determine the Young�s modulus are excellent

approximations to the experimental results with a low error of 2:3%:

A review referring to the di¤erent methods has been presented highlighting the atomistic

and �nite element approaches as well as hybrid scheme models relating both methodologies.

The main focus is to identify the mechanical properties characterizing SWCNTs. Subse-

quently, the overview presented in the following chapter aims to provide the key methods

to characterize the electrical properties of SWCNTs.
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Chapter 3

Overview of the Electrical Properties of Carbon Nanotubes

By exploring the electrical properties of carbon nanotubes, it is possible to explore the

noticeable distinctions regarding conductivity between metals and semiconductors presented

in carbon nanotube structures. Electrons in a crystal are arranged in energy bands sepa-

rated by regions in energy where there are no electron orbitals. These are known as band

gaps, which form through the interaction of the conduction electron waves with the ion cores

of the crystal. The de�nition of an energy band gap for insulators and semiconductors refer

to the di¤erence between the top of the valence band and the bottom of the conduction

band in which electrons are able to jump from one band to another [18]. It is possible

to observe the band gap di¤erences between metals and semiconductors. For instance, in

metals, 10%�90% of bands are partially �lled. On the other hand for semiconductors, one

or two bands are slightly �lled (or empty) [5].

In this chapter, a general overview of concepts associated with the electrical properties

of carbon nanotubes will be provided. This synopsis focused on the fundamentals and

applications of the numerical analysis done with the goal of determining the energy band

gap and the density of state (DOS) of several SWCNTs. By DOS, it is referred to the

property in statistical and condensed matter physics that quanti�es how closely packed

energy levels are in some physical system. It is often expressed as a function g(E) of the

internal energy E, or a function g(k) of the wavevector k [18].

3.1 Brillouin zones in SWCNTs

The Brillouin zone is de�ned as a primitive cell in the reciprocal lattice, speci�cally

the Fourier space. It provides a geometrical interpretation of the di¤raction condition as

well as exhibits all the wavevectors k which can be re�ected, assuming Bragg Law, by the
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crystal. The construction of the Brillouin zone produces a set of planes perpendicular

to the reciprocal lattice vectors satisfying the laws of di¤raction. The planes divide the

Fourier space of the crystal into fragments. The �rst Brillouin zone is the smallest volume

entirely enclosed by these planes that are the perpendicular bisectors of the reciprocal lattice

vectors. Their importance rely on the analysis of the electron energy band in a crystal

structure.

There are 2N carbon atoms in the SWCNT unit cell so that there exist N pairs of �

bonding represented by the valence bands and �� anti-bonding representing the conduction

energy bands. The phonon dispersion consists of 6N branches resulting from a vector

displacement of each carbon atom in the unit cell. The reciprocal lattice vectors K1 and

K2; as presented in Fig. 3.1, are obtained from the relation Ri �Kj = 2��ij , where Ri and

Kj are the lattice vectors in real and reciprocal space, respectively. The expressions for

K1 and K2 are given by

K1 =
1

N
(�t2b1 + t1b2) and K2 =

1

N
(mb1 � nb2); (3.1)

where b1 and b2 are the reciprocal lattice vectors of graphite. The �rst Brillouin zone is

depicted in line segment WW 0. Furthermore, K1 gives discrete k values represented by the

parallel lines in the Ch direction as indicated in Fig. 3.1. The N parallel lines conformed

through the quantization of wave vectors associated with the periodic boundary conditions

on Ch: Hence, for the N parallel lines, there are N energy bands [1]. These energy bands

provide a description regarding the electrical properties of SWCNTs, which can be assessed

through the molecular dynamics method.

3.2 Density Functional Theory

Carbon nanotubes can be either metallic or semiconducting, depending on its chirality.

The electronic structure of a SWCNT is analyzed implementing molecular dynamics (MD)

through the Density Functional Theory method (DFT). The DFT method is a ground-

state theory used in �rst-principle calculations, which models the electronic structure of

many-body systems. By the Hohenberg- Kohn theorem [23,46], it is possible to determine

one external potential V (r) yielding the density charge n(r). This charge density n(r) is
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Figure 3.1: The Brillouin zone of a carbon nanotube conformed by line segment WW 0:
Vectors K1 and K2 represent the reciprocal lattice vectors corresponding to Ch and T,
respectively [1].

de�ned as

n(r) = N

Z
j	(r; r2; r3; :::rN )j2dr2:::drN : (3.2)

The ground state energy E is determined by the ground-state charge density. Assuming

E is a functional E[n(r)]. It can be de�ned as

E[n(r)] = h	jT + U + V j	i = h	jT + U j	i+ h	jV j	i = F [n(r)]+

Z
n(r)V (r)dr; (3.3)

where T is the kinetic energy, U is the electron-electron interaction, V is the potential

energy, 	 is the ground-state wavefunction, F [n(r)] is the universal functional of charge

density n(r): In this way, DFT optimizes the N -body problem to the 3-D function n(r) so

as to minimize the functional E[n(r)].

Kohn and Sham (KS) reformulated the problem to provide applicability to DFT. For this

case, a system of interacting electrons is mapped on an auxiliary system of non-interacting

electrons, which remains constant. For the non-interacting system, the electrons ground-

state charge density are represented as a summation over one electron orbital, the KS
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orbitals,  i(r); as displayed in Eqn. 3.4:

n(r) = 2
X
i

j i (r) j2; (3.4)

where  i(r) are the solutions to the Schrödinger equation�
� h

2

2m
r2 + VKS(r)

�
 i (r) = �i i (r) ; (3.5)

obeying orthonormality constraintsZ
 i (r) j (r) dr =�ij ; (3.6)

where VKS(r) represents a unique potential with n(r) as its ground state charge density.

VKS(r) is determined through the variational property of energy. From this assumption,

it follows that the Schrödinger equation can be re-expressed as

�
h2

2m
r2 + VH(r)+Vxc[n(r)]+V (r)

�
 i(r) =

X
j

�ij j(r); (3.7)

Local Density Approximation (LDA) method, developed by Hohenberg & Kohn, pro-

vides an approximation of this energy term in an electronic system. In LDA, the exchange-

correlation is obtained by assuming that the exchange-correlation energy of an electronic

system per electron at point r; Exc(r); equals the exchange-correlation per electron in a

homogeneous electron gas, Ehomxc [n(r)]. That is, both have the same density at point r

Exc[n(r)] =

Z
Exc(r)n(r)d

3r; and

@Exc[n(r)]

@[n(r)]
=

@n(r)Exc(r)

@n(r)
;

where Exc(r) = Ehomxc [n(r)]:

In general, LDA provides simple computational and good accuracy of results since it

permits a single well-de�ned global minimum for the energy of a non-spin system of electrons

in a �xed potential. In this way, any energy minimization scheme produces the global

energy minimum of the electronic system [3]. On the other hand, DFT band gaps may

be underestimated since there is a reliance on the exact energy functional as well as the

inability to adequately estimate these functionals.
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The following detailed procedure is outlined for the DFT calculations to solve the Kohn-

Sham equations self-consistently since the Kohn-Sham eigenvalues represent the derivatives

of the total energy with respect to the occupation number of states.

3.3 DFT Calculations

The atomic DFT calculations assume a spherical averaged charge density; therefore,

the Kohn-Sham equations have spherical symmetry and can be separated into radial and

angular parts.

To determine the solution for the KS equations, the following procedure is engaged:

(1) for a given electronic con�guration, an initial guess of KS potential is assumed.

(2) radial KS equations are solved for those radial orbitals corresponding to occupied

states.

(3) the spherical averaged charge density is recalculated.

(4) a new KS potential is determined from step 3.

(5) process is iterated until self-consistency has been reached.

From this process, minimum energy is obtained for the ground state electronic con�gu-

ration of all atoms. In molecules, the KS equations are solved by expansion of KS orbitals

 i(r) into a suitable basis set. Localized basis sets are atomic-like wavefunctions centered

on atoms. Most common basis sets are linear combinations of atomic orbitals (LCAO),

Gaussian-type Orbitals (GTO), Slater-type Orbitals (STO), and atomic-independent Plane

Waves (PW) basis sets, just to mention a few [46].

3.4 Basis Sets

A basis set is the mathematical description of the orbitals in a system, which estimates

the electronic wavefunction of the entire system. The standard basis sets apply linear

combinations of the Gaussian functions to con�gure the orbitals [23, 47]. The two most

common choices of basis function are plane waves and Gaussian type orbitals. The functions
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�i are Cartesian Gaussian function consisting of polynomials of the position vector r shown

in Eqn. 3.8:

�i(r) = (x�Rix)n1(y �Riy)n2(z �Riz)n3e��i(r�Ri)
2
; (3.8)

where n1; n2; n3 are the integers. Linear combinations of these Cartesian Gaussian functions

can be chosen to form functions that transform into spherical harmonics under rotation.

Using basis sets and generating localized orbitals result in a very e¢ cient technique

applicable to all elements without any dependence on pseudopotentials1 [48]. There are

di¤erent types of basis sets used in the Gaussian03TM package. For this current work,

basis set 3�21G� has been utilized to generate the total minimum energy of the system.

3�21G� is considered a partially polarized split valence basis set as it has two sizes of basis

function for each valence orbital. For instance, carbon, the element conforming SWCNTs,

is represented as [23]:

C : 1s; 2s; 2s0; 2px; 2py; 2pz; 2p
0
x; 2p

0
y; 2p

0
z;

where the primed and unprimed orbitals refer to di¤erent sizes. A graphical representation

of basis set 3�21G� is found in Fig. 3.2.

Two parameters are needed for the speci�cation of a Gaussian basis per atom, that

is, the coe¢ cients of the functions and their exponents. Using basis sets for all electron

calculation can be very demanding for tightly bounded core states since it requires a large

amount of Gaussian orbitals to describe them accurately. Similarly, basis sets are typically

optimized for atoms and not solids or molecules. The addition of d or p-type functions

may improve the description of atoms such as carbon or silicon in a molecular or solid state

environment.

Another important criteria is the optimization of the structure, which is achieved by

moving atoms to minimize the total energy. A common approach is the use of the Conju-

gate Gradient method. The Conjugate Gradient method is an e¤ective scheme for symmetric

positive de�nite systems. This procedure generates vector sequences of iterates (i.e., suc-

cessive approximations to the solution), residuals corresponding to the iterates, and search

1Pseudopotential approximations are pseudo wavefunctions replacing the core electrons with ionic poten-
tial in the system [3].
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Figure 3.2: The linear combination of Gaussians is indicated by the row of dots (coming
out of paper). The dots indicated the basis function [2].
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directions used in updating the iterates and residuals. For each iteration of the method,

two inner products are performed in order to compute update scalars that are de�ned to

make the sequences satisfying orthogonality conditions. On a symmetric positive de�nite

linear system these conditions imply that the distance to the true solution is minimized in

some norm [49]. For instance, assuming a force fnam of atom a under direction m in the

nth iteration of structural optimization, the �rst conjugate direction dnim is described by

dnam = fnam � xdn�1am ; where (3.9)

x =

P
am f

n
am(fnam�fn�1am )P
am

�
fn�1am

�2 (when n = 1; then x = 0): (3.10)

At this point, the key elements employed to perform molecular dynamic simulations have

been de�ned. The following is a mathematical representation of the molecular dynamics

methodology for calculating the total energy of the SWCNT structure.

3.5 Density Functional Theory and Molecular Dynamics

The MD method is a dynamical method, which applies to the variational principle in

order to determine the eigenstates of all the lowest-energy electronic states [3]. Assumed

ions behave as classical particles and electrons are in the ground-state corresponding to

their instant positions. Using classical Lagrangian to describe the dynamical behavior or

ions, it follows:

L =
1

2

X
i

Mi
_R2i � Etot(fRg) (3.11)

where Mi are the mass of ions. The equation of motion becomes:

d

dt

@L

@ _Ri
� @L

@Ri
= 0; in particular, (3.12)X

i

Mi
�Ri �

@Etot(fRg)
@Ri

= 0: (3.13)

In classical MD, consider a mechanical system of N atoms enclosed in a volume constraint

by periodical boundary conditions.

The system contains mechanical energy E = T + Ep, where T = 1
2

P
Mi

_R2i (kinetic

energy) and Ep = EpfRg (interatomic potential). To solve the equation of motion numeri-

cally, the Verlet algorithm is employed. The Verlet algorithm is a �nite di¤erence algorithm
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Figure 3.3: Simulation of the evolution of coe¢ cients fcg, KS Hamiltonian H, and the total
energy, in the �nal two time steps of the MD method. The �nal time step reaches self
consistency [3].

for integrating the equation of motion. It is derived from second-order di¤erential equation.

Therefore, it provides the value of the ith electronic state at the next time  i(�t) de�ned

as

 i(�t) = 2 i(0)�  i(��t) + �t2� i(0); (3.14)

where �t is the length of the time step,  i(0) is the value of the state at current �t and

 i(��t) refer to the last time step [3].

And so, the Verlet algorithm becomes

 i(�t) = 2 i(0)�  i(��t)�
�t2

�
[H � �i] i(0); (3.15)

where the wave functions in Eqn. 3.15 approach the Kohn-Sham eigenstates to recalculate

the potentials. In this way, the coe¢ cients �i reach self-consistency, as in Fig. 3.3. In

summary, the Verlet algorithm is very e¢ cient and numerically stable since it produces

accurate energy outputs in comparison to other higher-order schemes.

Another widely used approach is the Car-Parinello dynamics approach [3]. This method
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also applies MD through �rst-principle interatomic potential calculated from DFT. A La-

grangian is introduced as

L =
�

2

X
k

Z
drj _ k(r)j2 +

1

2

X
i

Mi
_R2i � Etot(fRg) +

X
k;l

�kl

�Z
_ 
�
k(r) l(r)dr� �kl

�
;

(3.16)

which generates the equation of motions:

�� k = H k �
X

�kl l; (3.17)

Mi
�Ri = �@Etot

@Ri;
(3.18)

where � represents a �ctitious electronic mass, and �kl represents the Lagrange multipliers.

Most Car-Parrinello calculations are used for aperiodic systems as well as systems with

a large unit cell [46]. For the latter, it is imperative to handle the in�nite number of

non-interacting electrons moving in the static potential of the in�nite number of nuclei or

ions.

The Car-Parrinello method used to calculate the KS eigenstates of a system works

through a series of iterations to generate the wave functions. These iterations occurred

until the wave functions converge to the KS eigenstates [3].

The molecular dynamic method enables the determination of the energy bands char-

acterizing the di¤erent SWCNTs. The next section summarizes the main points in band

theory of solids.

3.6 Band theory of solids

The band gap, Eg, is the energy di¤erence between the conduction band and the valence

band, as shown in Fig. 3.4. Eg varies depending whether the solid is an insulator, semi-

conductor, or metal as shown in Fig. 3.5. Electrons occupy energy levels from the lowest

energies upward. As a result, the allowed energy levels form bands. The highest �lled

level (at 0K) is the valence band. The electrons in the valence band do not participate in

the conduction process. The �rst un�lled level above the valence band is the conduction

band. Thus, electrons are excited from the valence band to the conduction band. This

contribution promotes electrical conductivity.
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Figure 3.4: Energy gap representation of a semiconductor [4].

Figure 3.5: Schematic electron occupancy of allowed energy band gaps for an insulator,
semiconductor, and metal [4].

Band structure is explained by the Nearly Free Electron model, which suggests that

allowed energies are distributed continuously from zero to in�nity. The free electron wave-

functions are of the form

 
k
(r) = exp(ik � r); (3.19)

where  k(r) represent the running waves and carries a momentum p =hk: The model is

governed by

�F =
h
2m
(k2x + k

2
y + k

2
z); (3.20)

along with the respective boundary conditions. Band electrons are perturbed only by the

periodic potential of the ion cores. The energy gaps, as shown in Fig. 3.6, occurred by

the Bragg re�ection of the electron waves. Each subsequent Bragg re�ection generates

time-independent standing waves of the form exp(�i�x=a): The origin of the energy gap

develops as the standing waves assemble large amounts of electrons at di¤erent regions,

which allows for di¤erent values of potential energy [5].
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Figure 3.6: (a) Plot of energy � vs. k for a free electron. (b) Sample of energy band for an
electron in a monoatomic linear lattice of lattice constant a. First gap is associated with
the Bragg re�ection at k = ��

a [5]:

3.6.1 Fermi level

Electrons are fermions. In addition, the Fermi-Dirac distribution function follows:

f(E) =
1

exp((E � �)=kBT ) + 1
; (3.21)

where � is the fermi energy, �F ; or the chemical potential. The fermi function f(E) provides

the probability that an available electron energy state will be occupied at a given T .

For semiconductors, the fermi level is the energy at which the probability of occupation

by an electron is exactly 1=2: At the energy gap, there are no electrons because the density

of states (DOS) is zero. This is illustrated in Fig. 3.7. Consequently, �F becomes the sea

where no electrons have enough energy to rise above the surface.

In metals, �F provides information about the velocities of the electrons involve in elec-

trical conduction. The electrons close to �F participate in the conduction process. The

conductivity characteristics for both types of solids is presented in the following two sections.

3.6.2 Metals

Metals have the ability of easily conducting electricity since the conduction band and

the valence band are closely packed with more available energy levels, or because there are

more energy levels available than electrons to �ll them. In metals, there is no band gap,

Eg, since the conduction band and the valence band overlap so as to allow free electrons to
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Figure 3.7: Band gap for a semiconductor solid [6].

participate in the conduction process.

The electrical properties of metal are determined by the shape of the fermi surface.

The fermi surface separates the un�lled orbitals from the �lled orbitals at 0K. In addition,

these free electron fermi surfaces are developed from spheres of radius kF determined by

the valence concentration.

3.6.3 Semiconductors

Semiconductors have a band gap, Eg, approximately of 1�2 eV. There are two types

of semiconductors:

(1) intrinsic (pure) semiconductors, and

(2) extrinsic (added impurities) semiconductors.

The resistance of a semiconductor decreases with temperature. That is, as T increases,

the thermal energy of valence electrons increases; therefore, breaking the gap into conduction

band. When an electron (n) has enough energy to escape electrostatic attraction it creates

a hole (p). Holes are vacant orbitals in a conduction band.

For intrinsic semiconductors, n = p, the total number of charge carriers per unit vol-

ume. On the other hand, extrinsic semiconductors can be formed by doping an intrinsic

semiconductor. The dopants, which creates holes and contributes to the conduction band
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are known as p-type or acceptor semiconductor. Dopants which add electrons are known

as n-type or donor semiconductor [6].

The overall explanation regarding band structure in terms of SWCNTs with metallic or

semiconductor characteristics is explore in the next section of this chapter.

3.7 Energy dispersion of SWCNTs

Energy bands of SWCNTs can be acquired through two-dimensional graphite under

appropriate periodic boundary conditions in the direction of the chiral vector Ch. At the

same time, the direction of the translational vector continues along the nanotube axis. As

a result, the energy bands become sets of one-dimensional (1D) energy dispersion relations,

which in turn are cross sections of the ones from two-dimensional (2D) graphite.

The 1D energy dispersion relations are given by

E�(k) = Eg2D

�
k
K2

jK2j
+ �K1

�
;
�
� = 0; :::; N � 1; and � �

T
< k <

�

T

�
; (3.22)

which corresponds to the energy dispersion relations of a SWCNT. The N pairs associated

with Eqn. 3.22 represent the cross sections of the 2D energy dispersion surface of graphite

as shown in Fig. 3.8. The cutting lines in Fig. 3.8 represent the 2D Brillouin zone. If the

line passes through a K point of the 2D Brillouin zone in which � and �� energy bands of

2D graphite are degenerate by symmetry, then the 1D energy bands have zero energy gap

and a �nite Fermi level value making the nanotube metallic. Conversely, if the line does

not pass through a K point, then the nanotube will show semiconducting behavior. That

is, a �nite energy gap between valence and conduction bands.

The condition for obtaining a metallic energy band relies on the ratio of the vector

length
��!
Y K to that of K1 is an integer. The vector

��!
Y K is de�ned as

��!
Y K =

2n+m

3
K1; (3.23)

where the condition for metallic nanotubes relies on the result of (n�m) being a multiple of

3: Therefore, the armchair nanotubes (n; n) are always metallic while the zigzag nanotubes

are only metallic when n is divisible by 3: A complete picture of the energy bands for
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Figure 3.8: Graphite energy bands dispersion.for � and � bands [1].

semiconducting and metallic carbon nanotubes are shown in Fig. 3.9. These are generated

from a Gaussian03TM output in MATLABTM .

3.7.1 Energy Dispersion of Two Types of Single-Walled Carbon Nan-

otubes

The energy dispersion of SWCNTs is mainly focused on two types of nanotubes: arm-

chair and zigzag. Both are highly symmetric which constitutes a simple case to examine

the energy dispersion.

For armchair carbon nanotubes Ch = (n; n), the allowed wave vectors kx;q in the cir-

cumferential direction are given by:

n
p
3kx;qa = 2�q; (q = 1; :::; 2n): (3.24)

Using Eqn. 3.24, the energy dispersion relations Eaq (k) for the nanotube become

Eaq = �t
�
1� 4 cos

�q�
n

�
cos

�
ka

2

�
+ 4 cos 2

�
ka

2

��
; (3.25)

where ka = (��; �), q = 1; :::2n; and k is in the 1D direction K2 = (b1�b2)=2: For all

armchair nanotubes, the energy bands display large degeneracy at the boundary zone (ka =
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Figure 3.9: Band structures of single-walled carbon nanotubes for (a) (7; 0), with the dis-
tinctive gap between the virtual and occupied bands signifying that it is a semiconductor,
while (b) (5; 5) displays no gap and contact between both bands.

�). In general, the armchair carbon nanotubes generates 4n energy subbands comparable

to Eqn. 3.25, with 2n conduction and 2n valence bands. All armchair nanotubes have

a band degeneracy between the highest valence band and the lowest conduction band at

k = �2�=(3a), at which the bands cross the Fermi level. For this reason, all armchair

nanotubes display metallic behavior similar to the graphene sheet.

For the zigzag carbon nanotubes Ch = (n; 0), the energy dispersion Ezq (k) is obtained

by using the periodic boundary conditions on ky:

nky;qa = 2�q; (q = 1; :::; 2n): (3.26)

Consequently, the 1D energy dispersion for the 4n states of the (n; 0) zigzag nanotube

becomes:

Ezq (k) = �t
(
1� 4 cos

 p
3ka

2

!
cos
�q�
n

�
+ 4 cos2

�q�
n

�) 1
2

; (3.27)

where ka =
�
� �p

3
; �p

3

�
, and q = 1; :::; 2n:

The energy gap depends on the chirality of the zigzag nanotube as governed by Eqn.

3.23. That is, when n is divisible by 3, the energy gap at k = 0 becomes zero. On the

contrary, when n is not divisible by 3; the energy gap opens at k = 0 [1]:
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3.8 Density of states of SWCNTs

The Density of states (DOS) outputs the number of orbitals per unit energy range. Its

importance relies on using this information as a tool to calculate the number of available

states per unit volume per unit energy. First, the available states in k-space are determined.

Then, employ energy-momentum relation to determine DOS in terms of energy [4].

For all metallic carbon nanotubes, regardless of diameter and chirality, the density of

states per unit length along nanotube axis is a constant given by:

N(�F ) =
8p
3�ajtj

; (3.28)

where a is the lattice constant of the graphene layer and jtj is the nearest-neighbor C-C

tight binding overlap energy. DOS has a nonzero value for metallic nanotubes, but not for

semiconductors at the fermi level �F :

Experimental methods to calculate DOS have been conducted very accurately through

scanning tunneling spectroscopy (STS). Scanning tunneling spectroscopy (STS) studies the

local electronic structure of a sample�s surface. The electronic structure of an atom depends

upon its atomic species and also upon its local chemical environment. STS generates

�topographic�(constant-current) images using di¤erent bias voltages and comparing them,

taking current (constant-height) images at di¤erent heights, and ramping the bias voltage

with the tip positioned over a feature of interest while recording the tunneling current.

STMs can be set up to collect I�V curves at every point in a data set, providing a three-

dimensional map of electronic structure. With a lock-in ampli�er, dI=dV (conductivity)

or dI=dz (work function) vs. V curves can be collected directly. All of these are ways of

probing the local electronic structure of a surface using a scanning tunneling microscope.

As a result, STS is able to validate the fact that in nanotube bundles, there are about 1=3

SWCNTs that are metallic while 2=3 are semiconducting [1].

Currently, the background review highlighting the major components of the mechanical

and electrical properties about SWCNTs have been explained. The subsequent chapters

will concentrate on the contribution developed from this research work. Chapter 4 is mainly

focused on presenting the �nite element simulations done in ANSYSTM . First, the proce-

dure for two �nite element models are explained along with the graphical representation of
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its results. The ANSYSTM output is discussed starting with the linear model for the case

of loading by tension followed by the cases of bending and torsion. Next, the multilinear

model is introduced for the loading by tension to study the elastic�plastic response of the

SWCNTs. Thus, these simulations encompass the study of the mechanical characteristics

observed in carbon nanotubes.
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Chapter 4

Single-walled carbon nanotube (SWCNT) representation
using �nite element analysis

Finite element analysis is employed to simulate the carbon nanotube structure under

di¤erent types of loading conditions. By inputting adequate average parameters, the model

can be used to model the mechanical behavior of the structure as well as the interaction

of more complex nanostructure con�gurations. The following chapter describes the details

regarding the �nite element modeling of the SWCNTs for two types of models.

4.1 Finite element analysis

4.1.1 Linear Model

SWCNTs (5; 5), (7; 7), (10; 0), and (12; 0) are represented in ANSYSTM as space-frame

structures. The elements comprising the structure correspond to the C�C bonds propa-

gated in a carbon nanotube structure, as shown in Fig. 4.1. The depiction of each carbon

nanotube in ANSYSTM varies according to the chirality of the carbon nanotube, which in

turn a¤ects the number of elements in the �nite element analysis representation as speci�ed

in Table 4.1 and displayed in Fig. 4.2.

The C�C bond elements are modeled using BEAM4 [7] element. BEAM4 is a uniaxial

element with tension, compression, torsion, and bending as well as stress sti¤ening and

large de�ection capabilities. The element has six degrees of freedom at each node: x; y; z

nodal translational directions and rotations about the nodal x; y; z axes [7]. The speci�cs

of BEAM4 are displayed in Fig. 4.3. In the analysis, the nodes become the carbon atoms

while the elements represent the bonds. For this reason, the elements are meshed with zero

divisions.
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Figure 4.1: SWCNTs (5,5) and (12,0) space-frame representation in ANSYSTM . Elements
represent C-C covalent bonds while the nodes represent the C atoms.

Five di¤erent sets of input parameters are considered to model these structures. The

parameters are gathered from published literature, which vary depending on the approach

used and the representation of the carbon nanotube structure. Table 4.2 lists the input

data acquired for the �nite element simulations. At the same time, the values for density,

� = 2:68 � 10�27kg=Å3; and the Poisson�s ratio, � = 0:19; remain constant through the

di¤erent simulation runs. It is imperative to highlight the fact that the thicknesses employed

from the di¤erent input sets directly a¤ect the diameter as well as the cross-sectional area of

the C�C bond. Nevertheless, the C�C length remains constant in the structure for which

C�Cjlength = 1:4210Å.

The constraints applied to the SWCNT structures are �xed-free. For the �xed-free

boundary conditions (BCs), there are three di¤erent types of loading imposed on the struc-

ture: tension, bending, and torsion. Table 4.3 presents a tabulated speci�cation of the

di¤erent simulations that have been performed in this analysis. Eqns. 4.1�4.3 characterize

the properties of the elements since the beam formulations relating the strain energy U

and the elongation �, displayed in Figs. 4.4(a)�(c); are employed to calculate the input

parameters of the elastic modulus for the �nite element model.
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SWCNT No. of elements
(5; 5) 290

(7; 7) 406

(10; 0) 580

(12; 0) 696

Table 4.1: Number of elements employed to con�gure model in ANSYSTM

Figure 4.2: Representation of C�C bond in a molecular simulation as well as �nite element
modeling.

Figure 4.3: Geometric characteristics presented in element BEAM4 employed in ANSYSTM

to construct the space-frame elastic SWCNT model [7].
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Author Tkz=Tky (Å) Area (Å2) Izz (Å4) Iyy (Å4) Ixx (Å4)
Chen & Cao [8] 0:500 0:1963 0:003068 0:003068 0:006136

Yakobson et al. [8],
[9]

0:660 0:3421 0:009314 0:009314 0:01863

Kudin et al. [8],
[10]

0:890 0:6221 0:03080 0:03080 0:06160

Pantano et al. [8],
[11]

0:750 0:4418 0:01554 0:01554 0:03106

Tserpes & Pa-
panikos [8], [12]

1:470 1:6972 0:2292 0:2292 0:4584

Table 4.2: Tabulated data set inputs for the ANSYSTMparameters in the con�guration of
the di¤erent carbon nanotube simulations.

Linear model Loading
BCs Tension Bending Torsion

(5; 5) �xed-free
p p

(7; 7) �xed-free
p p

(10; 0) �xed-free
p p

(12; 0) �xed-free
p p

Table 4.3: Diagram of �nite element simulation analyses performed in ANSYSTM .

Utension = ��2Et
R

L
(4.1)

Ubending =
�

8
�2Et

R

L
(4R2 + t2) (4.2)

Utorsion =
�

8(1 + �)
�2Et

R

L
(4R2 + t2) (4.3)

4.1.2 Multilinear Elastic Model

The multilinear elastic (MELAS) model [7] approach represents a nonlinear relationship

allowing the structure�s sti¤ness to change at di¤erent load levels. The behavior of this

material property assumes a conservative, path-independent response in which unloading

follows the same stress-strain path as loading. To construct the solid model in ANSYSTM ,

tabulated data points are entered to approximate a curve with linear interpolation between

the points. In this way, the stress-strain curve of the material is used in ANSYSTM to

accurately model the plastic deformation of the material.

Using the total strain components f"ng provided as input data an equivalent total strain,
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Figure 4.4: Strain energy - deformation relations from Chen and Cao: molecular dynamics
and space-frame model results. (a) tension results, (b) bending results, and (c) torsion
results [8].
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"te; is computed

"te =
1p

2(1 + �)

�
("x � "y)2 + ("y � "z)2 + ("z � "x)2 +

3

2
("xy)

2 +
3

2
("yz)

2 +
3

2
("xz)

2

� 1
2

:

(4.4)

Next, "te along with the stress-strain curve similar to the one presented in Fig. 4.6 is

employed to compute the equivalent total stress �e. Then, the elastic (linear) component

of the strain,
�
"eln
	
; and plastic (nonlinear) part,

n
"pln
o
; are determined as:

n
"eln

o
=

�e
E"te

f"ng ; (4.5)n
"pln

o
= f"ng �

n
"eln

o
: (4.6)

Therefore, the ANSYSTM MELAS model is employed to simulate SWCNTs (8; 0), (8; 8),

(9; 0), and (10; 0) as continuum model structures. An example is displayed in Fig. 4.7.

In this case, the SWCNTs are hollow cylinders with constant thickness. The di¤erent

diameter input values, density �; and Poisson�s ratio � are also determined from Table 4.2.

The element type applied is SOLID45 [7], which is used for the 3D modeling of solid

structures. The element is de�ned by eight nodes, as displayed in Fig. 4.5 having three

degrees of freedom at each node: translations in the nodal x; y; z directions. The element

has plasticity, creep, swelling, stress sti¤ening, large de�ection, and large strain capabilities.

For these simulations, the stress-strain behavior is controlled from input data obtained in

Ogata et al. [13].

Although the data employed for both models, linear and multilinear, were previously

developed in other simulations, the carbon nanotube model responses are not been compared

to each other. The space-frame and hollow cylinder model exemplify a SWCNT, but

the schemes do not present the same fundamental characteristics. It is imperative to

emphasize that the space-frame model based its parameters in the characteristics of the

C�C bonds. On the other hand, the hollow cylinder treats the nanotubes as homogeneous

and continuous bodies. Therefore, every point in the enclosed system contains the same

mechanical properties. In the following sections of this chapter, it is the goal of the current

work to look for consistency and/or discrepancies in both simulations, but not to develop

any comparisons between the two systems.
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Figure 4.5: Geometric characteristics presented in element SOLID45 utilized in ANSYSTM

to construct the multilinear elastic SWCNT structure [7].

Figure 4.6: Stress-strain curve of the multilinear elastic material behavior (MELAS) as-
sumed for the modeling of SWCNT in ANSYSTM [7].

Multilinear model BCs Tension
(8; 0) �xed-free

p

(8; 8) �xed-free
p

(9; 0) �xed-free
p

(10; 0) �xed-free
p

Table 4.4: Diagram of �nite element simulation analyses performed in ANSYSTM .
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Figure 4.7: Scheme of the continuum model used in the multilinear elastic model for the
SWCNTs (8; 0), (8; 8), (9; 0), and (10; 0):

4.2 Loading by axial tension via linear model

SWCNTs (5; 5), (7; 7), (10; 0), and (12; 0) are modeled in ANSYSTM . For the simulation,

a more elaborate model is required due to the complexity of the system. Hence, each model

is con�gured using a space-frame structure that is a mechanical model of the characteristics

found in the C�C bond structure. Input arrays of the elastic modulus and tension load are

applied tin the system to determine the maximum axial stresses generated in the elements

conforming the space-frame structure. For the elastic modulus, the array values are called

before creating the geometry of the carbon nanotube. Once the nodes and elements are

generated in 3D space, the tension load array values are applied at the end nodes located in

the +z direction. For each of the four SWCNTs, a di¤erent tension load array is employed.

The di¤erent tensile loading values are shown in Fig. 4.8. Detailed FORTRAN-based code

is attached in Appendix B.

The elastic modulus array is derived from Eqns. 4.1�4.3. The values of the strain

energy U and elongation � are assumed from Fig. 4.4(a): The tension load array values,
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as displayed in Fig. 4.8, are arbitrarily selected for each carbon nanotube. The loads

vary between chiralities, but not signi�cantly since these are in the order of 10�9 with a

maximum value approximately of 8� 10�9 kgÅ= s2: The small tension loads are applied to

track the carbon nanotube response for each element under the �ve di¤erent models logged

in Table 4.2. Each carbon nanotube is simulated in ANSYSTM �ve times. In this way,

sets of 50 simulations are developed for each carbon nanotube to observe the e¤ects of the

structure�s output.

The maximum stress distribution for every element is determined by applying Eqn. 4.7:

�maxaxial =
Fx
A
+

����Myz

Iy

����+ ����Mzy

Iz

���� ; (4.7)

where Fx refers to the force component in the x; A is the cross-section area,M and I are the

moment component and moment of inertia, respectively, for y and z: In order to determine

the maximum element stress output using ANSYSTM , an element solution is computed

for each C�C bond. The data is gathered through element tables so as to calculate the

maximum stress distribution in each element. Element tables are a feature created in

ANSYSTM to access element results data that are not otherwise directly accessible. In

this case, element forces Fx; and element moments in the y and z direction My and Mz are

output in a log �le to compute the maximum axial stresses for each element.

The tabulated output for the di¤erent SWCNTs, �maxaxial; is plotted per element for each

elastic modulus and tensile loading pair. As a result, 200 �nite element simulations have

been performed. A representation set is shown in Figs. 4.10�4.14 while the other results

are displayed in Appendix A. The results indicate that the space-frame structure is essen-

tial for a �nite element method simulation of the carbon nanotube structure. The stress

distribution results between the two armchair nanotubes: (5; 5) and (7; 7); and zigzag nan-

otubes: (10; 0) and (12; 0) re�ect a uniform and distinctive pattern when undergoing the

same type of loading. Regardless of the geometric parameters input from the di¤erent

sources, as tabulated in Table 4.2, each SWCNT behaves in the same manner throughout

the �ve di¤erent �nite element simulations done per structure. For instance, the elements

enduring most of the loading in the SWCNTs remain consistent as the forces vary in the

di¤erent simulation runs, as shown in Figs. 4.10�4.14. Table 4.5 describes the elements
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undergoing the maximum amounts of stress in the system.

Referring to Figs. 4.10(a)�4.12(b), SWCNT (5; 5) has the highest maximum axial stress

for the case when t = 0:50Å where �maxaxial = 4� 10�7 kgÅ= s2. The highest peaks observed

are at the end of the structure since it can be tracked by the element numbers as seen in

Fig. 4.10(a): Elements lying on the xy plane at z = 0 were constrained with zero degrees

of freedom. The �xed boundary conditions a¤ected elements 1 to 100 consistently for the

�ve cases with very low stress output. Furthermore, the maximum axial stress tend to

decrease as the thickness of the C�C bond increases. This is observed in the stress value

range variations of the peaks for the �ve cases, where the lowest maximum axial stress is

found for the case t = 1:47Å where �maxaxial = 20 � 10�9 kgÅ= s2. The last case presented

in SWCNT (5; 5) as displayed in Fig. 4.15(b); allows the C�C bond to be represented as

a disk rather than a cylinder. The input criteria employed by the model underestimated

the C�C bonds maximum axial stresses in the order of 10�9; when compared to the other

thicknesses.

For the case of SWCNT (7; 7); the constraint elements at the xy plane for z = 0 re-

sponded slightly di¤erent to the tensile load when compared to SWCNT (5; 5): More than

half of the carbon nanotube elements remained constant at a steady maximum axial stress

output. Two peaks were observed near the free end of the nanotube where the tension

load was applied. The �ve di¤erent cases for SWCNT (7; 7) are displayed in Figs. 4.13(a)�

4.15(b). Furthermore, the maximum axial stress values decreased as the thickness value of

the C�C bond incremented. As in SWCNT (5; 5), the maximum axial stress output for

t = 1:470Å was the lowest in the order of 10�9:

The characteristics found in armchair SWCNTs (5; 5) and (7; 7); present a very similar

output to the axial loading as it is expected due to their chirality. The average maximum

axial stress range for both nanotubes is approximately �maxaxial = (0:72�3:80)� 10�7 kg=Å s2:

The lower stresses are obtained from t = 0:89Å [10], while the higher stresses are obtained

employing t = 0:50Å [8]. Considering the C�C bond length (L = 1:42Å) Table 4.6

indicates the t : L ratio for the computational characterization of the nanotube structure

properties. The highest stresses for the armchair SWCNTs are obtained from the lowest

ratio (t : L = 0:352), while the lowest stresses are determined from the highest ratio
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(t : L = 0:627), without considering the case for t : L > 1 for which t = 1:47Å as tabulated

in Table 4.6. The beam-column assumption predominates in the characterization of the

C�C bonds since the last case for both simulations t : L > 1 resembled a disk of constant

thickness. In general, the maximum axial stress values obtained for SWCNTs (5; 5) and

(7; 7) are adequately represented as beam columns rather than disks since the higher stress

values are expected for these carbon structures. Having the C�C bond being represented

by the criteria set from Tserpes and Papanikos [12] hinders its ability to simulate higher

axial stresses in the �nite element model.

For the zigzag SWCNTs (10; 0) and (12; 0), shown in the Appendix A (Figs. A.1�A.6),

the stress responded in a similar trend. For these structures, the average maximum stress

range is approximately �axial = (0:098�2:30) � 10�7 kg=Å s2: In these cases, the lower

stress is for t = 1:47Å, whereas the higher stress is for t = 0:50Å: Furthermore, for

these simulations the maximum axial stresses also decreased as the thickness of the C�C

bond increased as shown in Figs. A.1�A.6: The simulation for the two zigzag nanotubes

produced very low stress values at approximately 200 elements approaching the xy plane

at z = 0 . For the SWCNT (10; 0), elements greater than 200 and up to 580 underwent

a somewhat uniform stress, as shown in Figs. A.1(a) to A.3(b): At the same time, slight

peak values were observed in the middle and end of structure where the tension load in the

z direction was applied. Similarly, for SWCNT (12; 0) elements displayed very low stress

values approximately for the �rst 400 elements. The element numbers greater than 400 and

up to 696 remained at constant maximum axial stress as can be observed in the Appendix

A Figs. A.4�A.6:

One of the simulations carried out for SWCNT (12; 0) was not considered in the gen-

eration of Fig. A.4(b) for t = 0:66Å; which employs Yakobson et al. [9] criteria. The

axial stress output response is plotted in Fig. 4.16. The decision for removing the results

from Fig. A.4(b) is due to numerical discrepancies in the output of this particular sim-

ulation. In this way, skewed results were avoided since the axial output to tensile load

F9 = 0:015 � 10�7 kg=Å s2 unexpectedly generated maximum axial stresses in the order

10�6: Moreover when applying tensile loads greater than F9 to the SWCNT (12; 0) struc-

ture, the axial responses remain closely to the order of 10�7. As a result, to count this
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simulation run as part of the ten simulations performed for this case would have a¤ected

the validity of the whole �nite element case model.

In conclusion, the average values for maximum axial stresses observed in the four car-

bon nanotubes demonstrated a correlation between the carbon nanotube diameter and the

axial stress output. More speci�cally, there exists an inverse proportionality between the

structure�s diameter and the axial stress determined from the �nite element models. Fur-

thermore, there are also di¤erences presented in the simulations performed for armchair and

zigzag carbon nanotubes. The number of elements signi�cantly a¤ected by the tensile load

is higher for zigzag than for armchair carbon nanotubes. As a result, the maximum axial

stress output is higher for SWCNTs (5; 5) and (7; 7) when compared to SWCNTs (10; 0)

and (12; 0): Nevertheless, SWCNTs as observed in Figs. 4.10�4.15 and Figs. A.1�A.6 still

displayed similar inverse proportionality trends between the increased thickness values and

the maximum axial stress output per element calculated from the simulations.

The di¤erences in the response behavior of both types of carbon nanotubes, armchair

and zigzag, re�ect once again the importance of the geometric di¤erences between the

two models. For instance, the impact of the stress distribution in the models is clearly

distinguishable and can be observed in the member of elements a¤ected by the axial load.

Overall, the behavior observed for both armchair and zigzag SWCNTs is expected due

to geometric di¤erences, speci�cally regarding the orientation of the hexagonal unit cell

observed in Fig. 4.9. As pointed out by Liu et al. [32], in armchair nanotubes 1=3 of

the bonds are perpendicular to the loading direction which causes a stronger resistance to

lateral deformation. On the other hand, for zigzag nanotubes 1=3 of the bonds are aligned

with the loading direction so that all the bonds are stretched and the lateral resistance is

mainly caused by bond angle variation in the structure. In summary, greater deformations

of the elements representing C�C bonds occur in the armchair nanotubes when compared to

the zigzag nanotubes so the chiral di¤erences between these structures predominate in their

mechanical properties. Therefore, modeling carbon nanotube structures in a �nite element

package requires understanding regarding the properties and interactions of the C�C bonds.

From the space-frame �nite element model, di¤erent trends distinguished the stress output

between armchair and zigzag carbon nanotubes. In addition, correlations between the
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Figure 4.8: Tensile loading on SWCNTs (5; 5) to (12; 0) for the �nite element simulations
of the space-frame structure.

SWCNT Elements with �maxaxial Average �maxaxial � 107( kg=Å s2)
(5; 5) 174; 290 2:88

(7; 7) 254�278; 384 1:45

(10; 0) 363�380; 578 0:93

(12; 0) 628�630; 640�665 0:88

Table 4.5: Tabulated results for the average maximum stresses obtained from the di¤erent
�nite element simulations for SWCNTs (5,5) to (12,0)

SWCNT diameter and axial stress were identi�ed. For this reason, employing uniform

hollow cylinders to represent carbon nanotube structures does not adequately deliver the

information regarding the stress distribution between bond interactions and the e¤ects of

these stresses in the whole system.

4.3 Loading by bending via linear model

For this �nite element study, SWCNTs (7; 7) and (12; 0) are modeled in ANSYSTM

under �xed-free boundary conditions. The structures are simulated experiencing �exure

loads to determine the maximum axial stress distribution in the carbon nanotubes under

these conditions. The �exure loads, as displayed in Fig. 4.17, are created by imposing a

counterclockwise moment about the x�axis at the free end of the structure while restricting

all degrees of freedom at z = 0. The nanotubes are modeled as space-frame continuum
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Figure 4.9: Scheme of a hexagon cell resembling an armchair (n; n) and a zigzag (n; 0)
nanotube orientation.

Thickness t : L

0:500 [8] 0:352

0:660 [9] 0:465

0:750 [11] 0:528

0:890 [10] 0:627

1:470 [12] 1:035

Table 4.6: Values for the t:L ratio used in the di¤erent �nite element cases for SWCNTs
(5,5)-(12,0)
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Figure 4.10: Maximum axial stress response as a function of elements for SWCNT (5,5).
The maximum stress output is plotted for (a) t=0.50 Å and (b) t=0.66 Å.
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Figure 4.11: Maximum axial stress response as a function of elements for SWCNT (5,5).
The maximum stress output is plotted for t=0.75 Å.

structures for which �ve di¤erent case studies are compared through variations of geometric

parameters, �exural modulus and bending loads. The �exural moduli for these simulations

are obtained from the strain energy relations determined in Eqn. 4.2.

The di¤erent case studies are indicated in Table 4.2 for which the results are plotted in

Figs 4.18�4:23. The goal of these simulations is to understand the characteristic of two

di¤erent types of SWCNTs under �exural loading through the calculations of the maximum

axial stresses as functions of the structure�s elements.

The behavior of SWCNT (7; 7); as described in Figs. 4:18�4:20, for the di¤erent case

studies presents the same trend of behavior observed in all plots. There are two critical

areas with high stress peaks, pk1 and pk2, tabulated in Table 4.7. The critical high

stresses are a¤ecting the same elements in the structure; that is, element range 250�285 and

375�400 approximately. The peaks, as expected, are caused by the highest load applied

M10 = 6:85� 10�10 kgÅ
2
= s2 from Fig. 4.17.

As noticed in the tensile load case, there is also an inverse proportionality presented

between the axial stress output and the thickness of the C�C bond. However, in this case
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Figure 4.12: Maximum axial stress response as a function of elements for SWCNT (5,5).
The maximum stress output is plotted for (a) t=0.89 Å and (b) t=1.47 Å.
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Figure 4.13: Maximum axial stress response as a function of elements for SWCNT (7,7).
The maximum stress output is plotted for (a) t= 0.50 Å and (b) t= 0.66 Å.
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Figure 4.14: Maximum axial stress response as a function of elements for SWCNT (7,7).
The maximum stress output is plotted for t=0.75 Å.

the highest stresses occurred for two simulation case studies at t = 0:50Å and t = 0:66Å

in Figs. 4.18(a)�(b); where the stress peak values are almost identical. Furthermore,

there is a signi�cant drop in the stress values from models employing t = 0:66Å to t =

0:75Å; as noted in Fig. 4.19(a) having peak values pk1 �axialmax � 2:34 � 10�8 kg=Å s2 and

�axialmax � 1:54 � 10�8 kg=Å s2: This abrupt jump validates the importance of identifying

the proper characteristics to model C�C bonds in the space-frame structure through �nite

element analysis. Although the di¤erence between t values is 0:09, the impact of the stress

responses in the structure remains very signi�cant as observed in the axial stress values

found in Table 4.7.

The lowest stress peak values �axialmax = 0:30�10�8 kg=Å s2 and �axialmax = 0:20�10�8 kg=Å s2

are found in the simulations using t = 1:47Å as displayed in Fig. 4.20. The same case

is observed for the tensile load in SWCNT (7; 7). Comparing the axial stress output of

SWCNT (7; 7) due to tensile and bending loads, the peak stress values are concentrated in

the same range of elements. The pattern is noted in Figs. 4.13�4.15 and Figs. 4.18�4.20.

Therefore, the di¤erent loading type conditions observed for the maximum element stress
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Figure 4.15: Maximum axial stress response as a function of elements for SWCNT (7,7).
The maximum stress output is plotted for (a) t= 0.89 Å and (b) t= 1.47 Å.
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Figure 4.16: Maximum stress distribution as a function of elements for SWCNT (12,0)
considering the case for t=0.66Å.

distributions are located in the same critical areas of the structure. The distribution of the

stress output throughout the entire carbon nanotube remains constant.

The stress distribution presented in SWCNT (12; 0); as plotted in Figs. 4.21�4.23

presents two distinctive stress peak values caused by the bending moment M10, as in SW-

CNT (7; 7): The elements a¤ected by these high peak stress values range between element

numbers 200�250 and 600�675 approximately for the �ve case studies. The highest stress

peaks are obtained for the case t = 0:50Å (Fig. 4.21(a)) while the lowest stress peaks

remain for t = 1:47Å (Fig. 4.23). In this way, the inverse proportionality between axial

stress output and C�C bond is also applicable for these cases. Furthermore, a signi�cant

jump in the peak stress values is observed between t = 0:50Å and t = 0:66Å for the bending

load as displayed in Figs. 4.21(a)�(b). When compared to the tensile load cases, the stress

di¤erences between the two cases deliver similar results.

Thus, both types of carbon nanotubes responded similarly to bending loads regardless

of their chirality. Similar stress distributions were obtained from these simulations in terms

of the C�C bonds comprising the structure. At the same time, the variations of the C�C

bond thickness also poses a problem for this type of loading conditions. As in the tensile

load cases, there is a need to acquire better accuracy in the values that will be able to
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Figure 4.17: Plot of moment input array to cause �exural loading at end of the space-frame
SWCNTs (5; 5) to (12; 0).

Thickness (Å) pk1; pk2 �maxaxial � 108( kg=Å s2) Elements with �maxaxial

0:500 7:98; 5:23 258; 382

0:660 7:97; 5:21 258; 382

0:750 2:34; 1:54 258; 382

0:890 1:40; 0:92 258; 382

1:470 0:30; 0:20 258; 382

Table 4.7: Tabulated peak stress data output for cases applying SWCNT (7,7) in
ANSYSTMunder bending loads.

accurately quantify the characteristics observed in the C�C bonds.

4.4 Loading by torsion via linear model

The last �nite element analysis is conducted for SWCNTs (5; 5) and (10; 0). The

structures are modeled in ANSYSTM under �xed-free boundary conditions. The carbon

nanotubes are simulated by applying torsion loads at the end structure. The torsion loads,

as plotted in Fig. 4.24, are caused by a counterclockwise moment about the z�axis. In this

way, the maximum axial stress distribution of the carbon nanotubes is determined under

these boundary conditions. The nanotubes are again modeled as space-frame structures
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Figure 4.18: Maximum axial stress response as a function of elements for SWCNT (7,7).
The maximum stress output is plotted for (a) t= 0.50 Å and (b) t= 0.66 Å.
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Figure 4.19: Maximum axial stress response as a function of elements for SWCNT (7,7).
The maximum stress output is plotted for (a) t= 0.75 Å and (b) t= 0.89 Å.
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Figure 4.20: Maximum axial stress response as a function of elements for SWCNT (7,7).
The maximum stress output is plotted for t= 1.47 Å.

Thickness (Å) pk1; pk2 �maxaxial � 108( kg=Å s2) Elements with �maxaxial

0:500 7:58�5:30 218�240; 665
0:660 3:30�2:32 218�240; 665
0:750 2:25�1:58 218�240; 665
0:890 1:35�0:95 218�240; 665
1:470 0:30�0:22 218�240; 629

Table 4.8: Tabulated peak stress data output for cases applying SWCNT (12,0) in
ANSYSTMunder bending loads.
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Figure 4.21: Maximum axial stress response as a function of elements for SWCNT (12,0).
The maximum stress output is plotted for (a) t=0.50 Å and (b) t= 0.66 Å.
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Figure 4.22: Maximum axial stress response as a function of elements for SWCNT (12,0).
The maximum stress output is plotted for (a) t=0.75 Å and (b) t= 0.89 Å.
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Figure 4.23: Maximum axial stress response as a function of elements for SWCNT (12,0).
The maximum stress output is plotted for t=1.47 Å.

for which �ve di¤erent case studies are compared through variations of the geometric para-

meters, torsional modulus and loading caused by a moment about the z�axis. The �exural

moduli for these simulations are obtained through strain energy relations from Eqn. 4.3.

The di¤erent case studies are indicated in Table 4.2 for which the results are plotted in

Figs. 4.25�4.30. The goal of these simulations is to understand the characteristic of two

di¤erent types of SWCNTs under torsional loading in order to calculate the maximum axial

stresses generated for each C�C bond represented by elements.

The results gathered from SWCNTs (5; 5) display two distinctive peaks of maximum

stress values conformed by a total of 38 elements The highest maximum stress peak values

are obtained for the case t = 0:50Å as shown in Fig. 4.25(a) followed by a decay of the

peak stress values for t = 0:66Å until very low peak stresses are determined for the case

t = 1:47Å in Fig. 4.27. The peaks observed in these simulations are similar to those found

in the �nite element analysis undergoing tensile loads. The values of the maximum stress

peak values are documented in Table 4.9.

The main remark observed for the maximum axial stress outputs found in SWCNT (5; 5)
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emphasizes on the inverse proportionality between the C�C bond thickness and the max-

imum stress distribution of the carbon nanotube structure. This assumption is sustained

for the tensile and bending load cases. When comparing the stress peak outputs between

Figs. 4.25�4.27, the continuous decay of the peak values are clearly displayed in the plots.

At the same time, the case for SWCNT (10; 0); shown in Figs. 4.28�4.30, presents a

similar outcome to the outputs described in SWCNTs (5; 5): In these cases, the peak stress

values range from �axialmax = 1:32 kg=Å s2 for the case t = 0:50Å to �axialmax = 0:0531 kg=Å s2

for the case t = 1:47Å: The stress has dropped signi�cantly when comparing the limiting

values.

The main observation regarding the axial stress output to torsion loading refers to the

applicability of the correlation between C�C bond thickness and axial stress output. As

in the previous models considering tension and bending load, the assumption indicating

inverse proportionality between the thickness and the maximum axial stress is sustained

for the torsion load cases. For these particular simulations, the decline of the peak stress

values continue through the rest of the simulations for both SWCNTs. The results of the

peak values are logged in Tables 4.9 and 4.10.

An important di¤erence between armchair (5; 5) and zigzag (10; 0) involves the amount

of elements subjected to the peak maximum axial stresses. As mentioned earlier, an ap-

proximate total of 38 elements are subjected to the two peaks characterizing SWCNTs (5; 5)

for all the �ve cases. However, for SWCNT (10; 0) only a total of 16 elements are subjected

to the peak stress values. For the case of the �nite models undergoing bending loads, the

amount of elements enduring peak stress values was very di¤erent between armchair and

zigzag carbon nanotubes. For this type of analysis, SWCNT (7; 7) involved approximately

28 elements in the peak stress outputs, while SWCNT (12; 0) comprised approximately 58

elements for the two peak values. This presents a very contradictory result regarding the

response of armchair and zigzag carbon nanotubes, which suggests that there is no associa-

tion between the chirality of the nanotube and the type of loading applied under �xed-free

boundary conditions.

Consequently, the analysis of the nanotubes under torsional loading contributes to a

better understanding of the characteristics of the structure which are quanti�ed by the input
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Figure 4.24: Torsional loading values for SWCNTs (5; 5) and (10; 0) input in ANSYSTM

�nite element simulations [7].

Thickness (Å) pk1; pk2 �maxaxial ( kg=Å s
2) Elements with �maxaxial

0:500 1:39; 1:62 91�99; 171�201
0:660 0:602; 0:707 91�99; 171�201
0:750 0:409; 0:483 91�99; 171�201
0:890 0:243; 0:291 91�99; 171�201
1:470 0:0524; 0:0664 91�99; 171�201

Table 4.9: Tabulated data output from case studies of SWCNT (5,5) in ANSYSTM .

parameters and the e¤ects of the elements (C�C bonds) under torsional loading. Along

with tension and bending �nite element models, the simpli�ed models and its assumptions

provided more information regarding the variability of the bond characteristics as well as

the modulus. Nevertheless, the response of the carbon nanotube structures establishes the

need for a mechanical representation, such as the space-frame model, to be employed as a

con�guration of carbon nanotube structures when performing �nite element calculations.

Following the study of SWCNTs through �nite element analysis employing space�frame

structures, a graphical representation of the strain e¤ects is also reported in the following

section of this chapter. For these results, SWCNTs (5,5) in tension, SWCNT (7,7) in

bending, and SWCNT (10,0) in torsion are displayed in the deformed state.
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Figure 4.25: Maximum axial stress response as a function of elements for SWCNT (5,5).
The maximum stress output is plotted for (a) t=0.50 Å (b) t=0.66 Å.
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Figure 4.26: Maximum axial stress response as a function of elements for SWCNT (5,5).
The maximum stress output is plotted for (a) t=0.75 Å (b) t=0.89 Å.
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Figure 4.27: Maximum axial stress response as a function of elements for SWCNT (5,5).
The maximum stress output is plotted for t=1.47 Å.

Thickness (Å) pk1; pk2 �maxaxial ( kg=Å s
2) Elements with �maxaxial

0:500 1:32; 1:28 374; 579

0:660 0:575; 0:556 374; 579

0:750 0:393; 0:378 374; 579

0:890 0:236; 0:226 374; 579

1:470 0:0531; 0:0493 374; 579

Table 4.10: Tabulated data output from case studies of SWCNT (10,0) in ANSYSTM .
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Figure 4.28: Maximum axial stress response as a function of elements for SWCNT (10,0).
The maximum stress output is plotted for (a) t=0.50 Å (b) t=0.66 Å.
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Figure 4.29: Maximum axial stress response as a function of elements for SWCNT (10,0).
The maximum stress output is plotted for (a) t=0.75 Å (b) t=0.89 Å.
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Figure 4.30: Maximum axial stress response as a function of elements for SWCNT (10,0).
The maximum stress output is plotted for t=1.47 Å.

4.5 Graphical representation of the strain e¤ects for the space-frame

model

An example of the case studies performed for SWCNTs (5,5), (7,7), and (10,0) are

employed to graphically represent the strain distribution, speci�cally for the thickness

t = 0:66Å. Figs. 4.31(a)�(c) are the strain outputs re�ected in the �nite element models.

For the case of SWCNT (5,5) in tension, the peaks observed in Fig. 4.10(a) are not clearly

distinguished in Fig. 4.31(a) since all the higher strains are represented by the color red.

However, when comparing the information from both graphical representations and magni-

fying the output in ANSYSTM , the strain peak ranges are located close to the tension load

in the structure. The calculated maximum strain value for this case is "xx = 0:259� 10�8.

Strain response behaviors are also observed for the cases of bending and torsion. Both cases

present maximum strains close to the load end. For the case of bending, maximum strain

values are located at the top surface of the SWCNT as observed in Fig. 4.31(b) depicted by

the color yellow. The maximum strain value for this case is "xx = 0:205� 10�12: For the

case of torsion, the structure deformation behavior starts approximately from the middle to
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the load end of the structure. This is observed in Fig. 4.31(c) by the diameter increment

of the carbon nanotube. In addition, the average strain values are observed for C�C links

positioned perpendicular to the torsion load, as these elements are depicted by the color

green. The maximum strain value is also located close to the load and the strain value

obtained is "xx = 0:178� 10�8:

The outputs for the maximum stress distribution for all space-frame models as well as

the graphical representation of the strain behavior in the structure reinforce the relevance

of understanding the behavior and response of the carbon nanotube structures when un-

dergoing di¤erent types of loading. All three samples behave di¤erently. This is observed

in the stress distribution plots as well as the GUI strain plots.

Following the study of SWCNTs through �nite element analysis employing space�frame

structures, a continuum model is developed also in ANSYSTM for the next section of this

chapter. The solid hollow cylinder model complies with stress-strain curves determined

through molecular dynamics by Ogata et al. [13]. Thus, the simpli�ed model analyzes the

elastic and plastic behavior of the continuum carbon nanotube representation to follow the

de�ection of the model undergoing a tension load.

4.6 Loading by tension via the multilinear elastic model

Continuum schemes of the carbon nanotubes are speci�ed in ANSYSTM . The models are

de�ned as having multilinear elastic behavior, which implies a path independent response

in which unloading follows the same stress-strain path as loading (see Fig. 4.6). The

conservative material model, similar to the multilinear isotropic hardening option, allows

for the appropriate use of large step loads [7]. The models are created as speci�ed in Fig.

4.7. Using experimental data from Ogata et al. [13], SWCNTs (8; 0), (8; 8), (9; 0) and

(10; 0) are simulated as hollow cylinders under �xed-free boundary conditions. These are

then subjected to axial tension for comparison and observation of the elastic and plastic

behavior.
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Figure 4.31: Results graphically representing the elastic strain in ANSYSTMfor (a) SWCNT
(5,5) in tension, (b) SWCNT (5,5) in bending, and (c) SWCNT (10,0) in torsion. All these
cases are for t=0.66 Å.
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4.6.1 Speci�cations of the SWCNT setup using ANSYSTM

The carbon nanotubes are modeled while keeping in mind an approximate length for a

SWCNT con�guration range of 200�250 atoms. The length varies slightly depending on

the chirality and number of atoms conforming the structure. The element selected for this

simulation is SOLID451, as speci�ed in [7]. The solid structure is meshed keeping in mind

the length of the hexagon as displayed in Fig. 4.33. Nevertheless, for SWCNTs (9,0) and

(10,0), the hex_length is selected to be larger to prevent wedge formation during meshing

at the edges of the structure. This decision guarantees no distortion in the system. An

example of the meshed continuum model with appropriate boundary conditions is displayed

in Fig. 4.34. The density � and Poisson�s ratio � are the same as the space-frame model,

that is, � = 2:68� 10�27 kg=Å3 and � = 0:190.

A total of 19 ANSYSTM simulations are generated. The material geometric parameters

are speci�ed employing data from Chen and Cao [8], Yakobson et al. [9], Kudin et al.

[10], Pantano et al. [11], and Tserpes and Papanikos [12] as in the space-frame model.

Tabulated data of these runs are displayed in Tables 4.11�4.14. The multilinear material

behavior displayed in Fig. 4.6 is employed for the �nite element analysis to model the elastic

and plastic behavior. The stress-strain curves are obtained through molecular dynamic

simulations by Ogata et al. [13].

The simulations are done under a static analysis and the force is applied through load-

steps until reaching convergence of the structure. The axial loading Fz for SWCNTs (8; 0)

and (8; 8) are constant throughout the nine di¤erent schemes. The loading Fz applied for

the SWCNTs (9; 0) and (10; 0) increases proportionally with the thickness of the structure.

The purpose of these loading variations are to study the linear and nonlinear de�ections of

the nanotube structure through the elastic and plastic behavior of the di¤erent SWCNT

structures.

The loading speci�cations are displayed in Fig. 4.35. For the SWCNTs (8; 0) and (8; 8);

the tension applied to the structure is constant at Fz = 80 kg=Å s2 in all the case studies.

The loads applied to nanotubes (9; 0) and (10; 0) are variable for each case study since the

1Details of the SOLID45 properties are found in Section 4.1.
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increment of the thickness ranging from t = 0:50Å to t = 1:47Å requires higher applied

loads to cause nonlinear e¤ects in the model. The loads for all cases are applied in 100

load steps. In addition, the small increments do not cause any distortion in the model. In

this way, the elastic�plastic phase of the SWCNTs are graphically analyzed. The elastic�

plastic region refers to an intermediate state where the de�ections are not entirely elastic

or entirely plastic since both e¤ects are present. The output explained in the following

sections of this chapter refer to the de�ection as well as the stress-strain response of the

SWCNT continuum models.

4.6.2 De�ection output of the continuum models

The linearity of the de�ections observed in Figs. 4.36�4.37 is indicative of the model�s

elastic behavior for SWCNTs (8; 0) and (8; 8): The de�ections observed in both models are

di¤erent given that SWCNT (8; 0) displaces approximately twice as much as SWCNT (8; 8):

Through the multilinear model and the input characteristics from stress-strain relations [13],

the variability of the force and displacement response between armchair (8; 8) and zigzag

(8; 0) are validated. In this way, a continuum model is useful since it complies to the

criteria of the input stress�strain multilinear scheme determined through �rst principles.

Without the input stress-strain parameters, the continuum models for SWCNTs (8; 0) and

(8; 8) would have not presented signi�cant di¤erences in their response values expected for

zigzag and armchair carbon nanotubes.

For the continuum model, the cross-sectional di¤erences, which can be deduced from

Tables 4.11-4.12, between zigzag SWCNT (8; 0) and armchair SWCNT (8; 8) also contribute

to the displacement di¤erences of the structure in the z direction. In general, all the

de�ection outputs gathered from these structures reveal that regardless of the thickness

range assumed from t = 0:50Å�0:89Å; the higher displacements are observed for SWCNT

(8; 0): Nevertheless, there are no correlations identi�ed between the thicknesses assumed and

the displacements uz. From Fig. 4.36, t = 0:66Å output the highest de�ection in SWCNT

(8; 0) while t = 0:89Å remains the lowest. On the other hand, Fig. 4.37 shows that for

SWCNT (8; 8), the highest de�ections are obtained for t = 0:50Å and t = 0:66Å; whereas

the lowest values are found at t = 0:75Å: Consequently, the continuum model employed
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for these mechanical analysis lacks information concerning the bond characteristics and its

e¤ects when undergoing tension.

Continuing to the structures (9; 0) and (10; 0); higher load steps are considered for each

di¤erent thickness case to observe nonlinearity responses in terms of the displacement and

force in the z direction. The loads considered varied depending on the thickness to achieve

nonlinear behaviors in the structure. Figs. 4.38�4.39 explicitly display the nonlinear

de�ections of SWCNT (9; 0) and (10; 0): The larger displacements for SWCNT (9; 0) are

observed for the cases t = 0:50Å and t = 1:47Å at uz ' 7:00Å: SWCNT (10; 0) presents

the largest displacement also for the case t = 1:47Å at uz ' 7:00Å; however, for t = 0:89Å

de�ections remain linear: Thus, plasticity behavior is achieved through these nonlinearities

but there are no correlations between the load increments and the di¤erent thicknesses

employed in the ANSYSTM models.

4.6.3 Stress-strain analysis of the single-walled carbon nanotube

Elastic behavior of SWCNTs (8; 0), (8; 8), (9; 0), and (10; 0) are displayed in Figs. 4.40�

4.41. The structures (8,0) and (8,8) present a maximum elastic strain for the load condition

speci�ed at approximately 6%, both for the case t = 0:50Å: The highest elastic strain

response for SWCNT (8,0) remains closely at 6% for the �ve di¤erent thicknesses applied.

On the other hand, the maximum elastic strains for SWCNT (8,8) are inversely proportional

to the thickness of the C�C bond as presented in Table 4.15. The case for t = 1:47Å is not

considered for SWCNT (8,8) since the mesh imposed to represent the C�C hexagon ring

produced distortion in the model, which incur erroneous calculations in the �nite element

analysis. SWCNTs (9,0) and (10,0) show maximum elastic strains at approximately 13%.

No inverse correlation is observed between the thickness and the elastic strain of the di¤erent

simulation cases. The largest strains are presented at t = 1:47Å for SWCNT (9,0) and at

t = 0:50Å for SWCNT (10,0).

Although the multilinear model imposed in the �nite element method is obtained from

molecular dynamic simulations by Ogata et al. [13], the lack of information regarding the

C�C bond properties in these models question the accuracy of the output obtained from

the multilinear model. On the other hand, the adopted space-frame model continuously
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demonstrates a correlation between the stress response of the nanotube and the thickness

of the C�C bond which strengthens the validity of the model.

The thicknesses assumed for these simulations are within a range of 0:50Å�1:47Å. Nev-

ertheless, other sources [24, 44, 50] assumed an approximate thickness of 3:40Å;which can

alter signi�cantly the axial stress output. For this work, the latter thickness is not as-

sumed since the modeling is performed in a �nite element package (ANSYSTM). The

reason for such thickness relies on the distance between stacked graphite sheets [1], tak-

ing into consideration the electron interaction potential and its e¤ects on the structure.

These conditions can be assumed in a molecular dynamic simulation, but not in �nite el-

ement analysis. Therefore, modeling a structure in molecular dynamics and in a �nite

element software cannot be equally represented from a physical perspective. The modeling

parameters should be considered accordingly as it is attempted in this current work.

The plasticity e¤ects are highlighted in Fig. 4.42 for SWCNTs (9,0) and (10,0). For

both structures the higher plastic strain values occurred for thicknesses t = 0:50Å and

t = 1:47Å: SWCNT (9; 0) presented higher average plastic strain and stress values at

approximately "plzz =2.65% and �plzz = 10:4 kg=Å s2 for the cases simulated under the same

loading conditions. There is no correlation observed between the C�C bond and the

strain of the structure. This is corroborated through the similar behavior observed in

SWCNT (10,0). In this structure, the higher strain values also occurred for thicknesses

t = 0:50Å and t = 1:47Å: The higher average strain and stress values are "plzz =3.40%

and �plzz = 9:82 kg=Å s2. In both models the parameters speci�ed from Kudin et al. [10]

(t = 0:89Å) presented only elastic behavior regardless of the speci�ed loading conditions.

The observed elastic and elastic�plastic behaviors from these structures largely depend

on the nonlinear speci�cations input in the model used in the ANSYSTM software. For the

multilinear model, the density functional theory is considered for the determination of the

mechanical properties of the SWCNTs; however, there are other methods including tight�

binding and Hartree�Fock, which can explore the nonlinear behavior of these structures.

The key is to �nd consistency within these methods. At the same time, the geometric

modeling requires to be more speci�c as well as consistent to develop a reliable model

as observed in the space-frame structure. Assuming a constant thin hollow cylinder is
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Figure 4.32: Stress-strain curve obtained computationally from molecular dynamics using
Density Functional Theory in VASPTMsoftware.

not su¢ cient to physically simulate and visualize the mechanical di¤erences within the

parameters assumed for the SWCNT structure. Moreover, the large range of the thickness

values, densities, and Poisson�s ratios also poise a problem when representing the structure

in ANSYSTM �nite element software since it strengthens error in the results and hinders

the optimization of a reliable structural design.

Concluding the study regarding the mechanical properties of the speci�ed SWCNTs, the

following chapter focuses on the analysis of the electrical properties, speci�cally the electrical

conductivity presented in the SWCNT structures. To perform these calculations, molecular

dynamic simulation is employed for di¤erent SWCNT con�gurations and chiralities.
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CNT (8,0) in Tension
EX (kg/Å s2) 77:8475

Author Tkx=Tky(Å) radius �i(Å) radius �o(Å) length(Å)
Chen & Cao [8] 0:500 3:1355 3:6355 42:00

Yakobson et al.
[8], [9]

0:660 3:1355 3:7955 42:00

Kudin et al. [8],
[10]

0:890 3:1355 4:0255 42:00

Pantano et al. [8],
[11]

0:750 3:1355 3:8855 42:00

Tserpes et al. [8],
[12]

1:470 3:1355 4:6055 42:00

Table 4.11: Input parameters for simulations of CNT (8,0) used in ANSYSTM .

CNT (8,8) in Tension
EX (kg/Å s2) 76:9856

Author Tkx=Tky (Å) radius �i (Å) radius �o (Å) length(Å)
Chen & Cao [8] 0:500 5:4240 5:9240 23:39

Yakobson et al.
[8], [9]

0:660 5:4240 6:0840 23:39

Kudin et al. [8],
[10]

0:890 5:4240 6:3140 23:39

Pantano et al. [8],
[11]

0:750 5:4240 6:1740 23:39

Table 4.12: Input parameters for simulations of CNT (8,8) used in ANSYSTM .

CNT (9,0) in Tension
EX (kg/Å s2) 77:9894

Author Tkx=Tky(Å) radius �i(Å) radius �o(Å) length(Å)
Chen & Cao [8] 0:500 3:523 4:023 41:97

Yakobson et al.
[8], [9]

0:660 3:523 4:183 41:97

Kudin et al. [8],
[10]

0:890 3:523 4:413 41:97

Pantano et al. [8],
[11]

0:750 3:523 4:273 41:97

Tserpes et al. [8],
[12]

1:470 3:523 4:993 41:97

Table 4.13: Input parameters for simulations of CNT (9,0) used in ANSYSTM
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CNT (10,0) in Tension
EX (kg/Å s2) 88:2318

Author Tkx=Tky(Å) radius �i(Å) radius �o(Å) length(Å)
Chen & Cao [8] 0:500 3:914 4:414 41:96

Yakobson et al.
[8], [9]

0:660 3:914 4:574 41:96

Kudin et al. [8],
[10]

0:890 3:914 4:804 41:96

Pantano et al. [8],
[11]

0:750 3:914 4:664 41:96

Tserpes & Pa-
panikos [8], [12]

1:470 3:914 4:384 41:96

Table 4.14: Input parameters for simulations of CNT (10,0) used in ANSYSTM

Figure 4.33: Scheme of the hexagonal unit cell for the space frame representation and the
unit cell brick resulted from the volume mesh in the continuum model.

Figure 4.34: SWCNT represented as a continuum model with �xed-free boundary conditions
under axial tension.
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Figure 4.35: Loading conditions for the SWCNT structures simulated in the continuum
multilinear elastic model in ANSYSTM .

t % "elastic
0:50 6:1

0:66 4:5

0:75 4:0

0:89 3:4

Table 4.15: Maximum elastic strain percent results obtained for di¤erent carbon nanotube
thicknesses for the case of SWCNT (8,8).
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Figure 4.36: ANSYSTM plot results of linear de�ections (elastic regime) as a function of the
reaction force in the z direction for SWCNT(8; 0).
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Figure 4.37: ANSYSTM plot results of the linear de�ections (elastic regime) as a function
of the reaction force in the z direction for SWCNT (8; 8).
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Figure 4.38: ANSYSTM plot results of the nonlinear de�ections (elastic and plastic regime)
as a function of the reaction force in the z direction for SWCNT (9; 0).
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Figure 4.39: ANSYSTM plot results of the nonlinear de�ections (elastic and plastic regime)
as a function of the reaction force in the z direction for SWCNT (10; 0).
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Figure 4.40: ANSYSTMstress-strain behavior of the nodal solution in the elastic regime for
(a) SWCNT (8,0) and (b) SWCNT (8,8) under tensile load-step.
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Figure 4.41: ANSYSTMstress-strain behavior of the nodal solution in the elastic regime for
(a) SWCNT (9,0) and (b) SWCNT (10,0) under tensile load-step.



98

CNT (9,0) StressPlastic strain graph

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Stress SZ (kg/A*s^2)

Pl
as

tic
 S

tr
ai

n

Chen & Cao Yakobson et al. Kudin et al. Pantano et al. Tserpes et al.

(a)

StressPlastic Strain CNT (10,0)

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Stress (kg/Å*s^2)

Pl
as

tic
 S

tr
ai

n

Chen and Cao Yakobson et al. Kudin et al. Pantano et al. Tserpes et al.

(b)

Figure 4.42: ANSYSTMstress-strain behavior of the nodal solution in the plastic regime for
(a) SWCNT (9,0) and (b) SWCNT (10,0) under tensile load-step.
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Chapter 5

Molecular dynamic simulation results using Gaussian

Aside from the mechanical properties of SWCNTs explored in the previous chapter,

there is a great motivation to determine the electrical properties of SWCNTs; that is, re-

garding the electrical conductivity of the structure. For this reason, semiconductor and

metallic SWCNTs are generated through Gaussian03TM [23] in order to identify compu-

tationally the key properties and main di¤erences between the behavior of metallic and

semiconducting SWCNTs. Additionally, di¤erent con�gurations are simulated, speci�cally

triangular lattices and curved carbon nanotubes, so as to observe the variability of the

electrical properties through these arrangements in the structures.

5.1 Energy dispersion for metallic and semiconductor SWCNTs

For the electronic properties of SWCNTs, a wide range of the structures are simulated

in Gaussian03TM . The main objective of these simulations rely on analyzing the electrical

conductivity of the SWCNTs in terms of the band structure and density of states. In

this way, in�nite SWCNTs versus complex con�gurations of SWCNTs may be compared

to study the changes in the conductivity characteristics. Simulated SWCNTs are listed in

Table 5.1.

The isolated SWCNTs are modeled as having in�nite length for the Gaussian03TM

simulations. The number of atoms per structure vary according to the chirality of the

carbon nanotube. Nevertheless, carbon nanotubes are not simulated above 300 atoms due

to computational limitations. All calculations are performed using DFT-LSDA as well

as assuming a 3-21G* basis set. DFT refers to Density Functional Theory, which is a

ground-state theory used in �rst-principle calculations assuming the electronic structure

of many-body systems and the optimization of the ground state energy. In turn, LSDA
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approximates the ground state energy through the assumption of an exchange-correlation

term so that it results in a good estimate of energy minimization. Illustration of these

structures are displayed in Figs. 5.1(a)�(h). The more complex con�gurations include

triangular lattices of in�nite length for SWCNT (5; 5) and (5; 0), �nite SWCNT (5; 5) with

curvature � = 50Å; and in�nite impure SWCNTs (5; 0) and (5; 5) with carboxyl groups

attached. These schemes are shown in Figs. 5.2(a)-(d).

The total energy per atom of the carbon nanotubes are obtained, as displayed in Fig.

5.3. The energy per atom remains stable at around E � �1020 eV; however, it drops

signi�cantly for the triangular lattice con�guration of SWCNT (5; 5) as well as for impure

SWCNTs (5; 0) and (5; 5) with attached carboxyl groups. The energy change presented

in the triangular lattice is not expected since the model encompasses three in�nite and

straight SWCNTs, more speci�cally SWCNTs (5,5). Nevertheless, the result demonstrates

that network of nanotubes hinder their electrical capabilities when compared to the results

from the isolated models. For the case of impure SWCNTs, the functionalization of these

structures also a¤ects the stability of the energy minimization which originates a change in

the conductivity of the system.

On the other hand, the curvature nanotube (5,5) as displayed in Fig. 5.2(b) does not

display an e¤ect in the total energy per atom on the system. That is, the curvature imposed

on the structure does not cause instability in the strained SWCNT. Nevertheless, it has

been found from scanning electron microscope (SEM) that twisting maximize the bonding

interactions [51]. The energy minimization of the system would have not converged to

produce a solution. It can be speculated that the strained atoms in the structure were only

close to the instability limit since convergence of the simulation required more computation

time when compared to its corresponding straight SWCNT. Therefore, a more prominent

curvature requires the evaluation of an optimal length proposed for C�C bonds in the

system to guarantee adequate energy minimization and, in turn, convergence of the system.

The overall results demonstrate the relevance of imperfections presented in SWCNTs

as well as the need to produce highly puri�ed nanotubes that may adequately improve

conductivity [1, 20, 52, 53]. In this manner, the applications of nanotube meshes can be

controlled and manipulated to the functions of the system.



101

5.1.1 Energy bands

Energy bands are calculated for N wave vectors �K1 where � = 0; :::; N �1: N discrete

k vectors in the circumferential direction are produced. In this way, for each � discrete

value there is a 1D electronic band [51].

The metallic conduction in carbon nanotubes occurs when k wave vectors pass through

the K�point of the 2D Brillouin zone. As the nanotube increases, there are more wave

vectors for the circumferential direction that causes the band gap to disappear. Therefore

metallic SWCNTs present a distinctive pattern in the band structure as observed in Figs

5.4�5.6. To produce the band structures from Gaussian03TM output, a MATLABTM [54]

code is generated to display the bands for the carbon nanotube structures. The simulated

metallic nanotubes contain virtual and occupied bands which overlap each other across

their fermi level, EF : This is clearly observed for SWCNTs (5; 5), (9; 0) and (9; 9) in Figs.

5.4�5.5 For the case presented in SWCNT (30; 0) in Fig. 5.6, both band types convene at

EF as well despite the pronounced gap observed with the increment number of k points.

The band structure pattern for semiconductor SWCNTs presents a gap between the vir-

tual and occupied bands which can be manipulated through temperature changes. However,

the simulations performed in Gaussian03TM are assuming 0 K. The band structure is cor-

roborated through Fig. 5.8 for SWCNT (7,0) and (10,0). As expected in the band structure

of semiconductors, the virtual and occupied bands do not interact with each other. The

gap observed is more prominent in SWCNT (10,0) which validates a possible correlation

between chirality and semiconductivity. Nevertheless, there always exists a band gap to

prevent delocalized electrons from transferring between bands. A noticeable di¤erence is

observed between the band gaps generated from semiconductor triangular lattice (5; 0) and

SWCNTs (7; 0) and (10; 0): The gap observed in Fig. 5.7 for triangular lattice (5,0) is very

minimal which demonstrates instability in its conductivity properties. This may be caused

by the electron interactions between surrounding neighbor unit cells in the triangular lattice

as displayed in Fig. 5.2(a), which attract neighbor electrons in the structure.

Band structure of impure SWCNTs (5,0) and (5,5) as displayed in Fig. 5.9 present small

band gaps although SWCNT (5,5) is considered a metallic nanotube. The gap generated
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between the virtual and occupied bands in Fig. 5.9(b) is very minimal so the electronic

conductivity properties are inconclusive from these results. Nevertheless, the addition of

functional groups such as carboxyl groups causes the nanotube to respond di¤erently to

conductivity that can be veri�ed through the electronic density of states (DOS).

In conclusion, the band structure of metal and semiconductor SWCNTs are identi�ed

and validated through the comparative behavior of both types of band structures. However,

changes in con�guration, imperfections and chirality play a role in the conductivity of the

results as previously identi�ed in the output models.

5.1.2 Electronic density of states (DOS)

The electronic DOS are generated for single-walled metallic and semiconducting nan-

otubes, as speci�ed in Table 5.2. The DOS graphs are created through MATLABTM [54]

and GaussSumTM [55], which read the output eigenvalues from the Gaussian03TM log �le.

In general, de�ned van Hove singularities [56] are observed in the results represented by

the peaks displayed in the Figs. 5.10�5.16. The singularities are caused by logarithmic

peaks due to the existence of saddle points for each subband energy function. The band

gap energy is calculated from the di¤erence between the van Hove singularities. Moreover,

the peaks represent critical points at which all derivatives vanish.

Comparing the semiconductor SWCNTs (5,0), triangular lattice (5,0), (7,0), and (10,0)

in Figs. 5.10�5.15, the DOS Fermi energy level location are approaching zero. As a result, a

gap is observed between the band energies of the structures. On the contrary, the metallic

SWCNTs (5,5), triangular lattice (5,5), (7,7), (9,0), (9,9), (10,10), (15,15) and (30,0) in

Figs. 5.11�5.16 display a nonzero Fermi energy level for DOS.

Fig. 5.12 displays the DOS for SWCNT (5,5) with curvature as well as graphite (5,5).

The curved SWCNT exhibits some instability due to strain applied from the curvature.

On the other hand, the 2D graphite layer is completely not strained. Nevertheless, the

metallic behavior exhibited in both structures corroborates the experimental �ndings of

Saito et al. [1], which indicates that the electronic conductivity of carbon nanotubes is

dependent on the diameter and chiral angle since there is no di¤erence in the C�C chemical

bonding or any doping impurities. In this case, there will not be a signi�cant di¤erence
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between rolling a graphite layer to create a (5,5) SWCNT and generating a curved (5,5)

SWCNT.

The pronounced delimitations of the electronic conductivity of SWCNTs become more

noticeable as the chirality con�gurations are of higher order. For instance, the gap present

in nanotube (10; 0) as shown in Fig. 5.15 is more prominent when compared SWCNT (7,0)

in Fig. 5.13. In addition, the metallic characteristics are more prominent in SWCNTs

(15; 15) and (30; 0) displayed in Fig. 5.16. Generally, metallic energy bands are unstable

due to Peierls distortion [1]. The Peierls distortion refers to the distortion of a regular

one-dimensional structure with a partially occupied band to give bond alternation. Never-

theless, the Peierls gap is suppressed by increased carbon nanotube diameter, which causes

the structure to quickly converge to zero energy gap as in graphite (Fig. 5.12(b)). These

e¤ects are clearly demonstrated through the DOS determined for SWCNTs (15,15) and

(30,0) in Fig. 5.16.

The observed behavior of impure SWCNTs (5; 0) and (5; 5) in Fig. 5.9 due to attached

carboxyl groups a¤ect mostly the properties of nanotube (5; 0) since both structures exhibit

metallic behavior. The doping caused by the carboxyl groups clearly has an e¤ect in the

conductivity of both systems. Both structures portray metallic behavior which are rein-

forced by the addition of the carboxyl groups. The band structure results determined in the

previous section were not conclusive; however, the DOS results clearly display the crossing

of 1D energy bands at degenerate points in the structure. As pointed by Dresselhaus et

al. [51], the isolated SWCNTs with no interstices behave di¤erently from SWCNTs with

interstices since it a¤ects the stability due to absorbed dopants.

In conclusion, the band structure and DOS provide adequate information regarding

the conductivity of the SWCNT structures as well as more complex geometric con�gura-

tions. The results are not considering temperature changes; therefore, a temperature of

0K is assumed: Nevertheless, this parameter may potentially enable changes in the con-

ductivity of the systems. Moreover, important remarks can be deduced from these virtual

experiments. First, stability of the structure are key to assure convergence of the calcula-

tions since curvature incites metallic behavior. Second, the chirality and diameter of the

carbon nanotube is strongly correlated with the electronic conductivity of the structure.
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SWCNT Metallic Semiconductor
(5; 0)

p

(5; 5)
p

(7; 0)
p

(7; 7)
p

(8; 0)
p

(8; 8)
p

(9; 0)
p

(9; 9)
p

(10; 0)
p

(10; 10)
p

(15; 15)
p

(30; 0)
p

Table 5.1: Tabulated scheme of the SWCNTs simulated using Gaussian03TM .

DOS
(5; 0) (5; 5)

curved (5; 5) graphite

(7; 0) (7; 7)

(9; 0) (9; 9)

(10; 0) (10; 10)

(15; 15) (30; 0)

Table 5.2: Carbon nanotube cases for which DOS are generated using output from
Gaussian03TM .

Finally, carbon nanotube doping- in particular carboxyl groups- increases conductivity in

the structures. Therefore, these preliminary calculations regarding the electrical properties

of carbon nanotubes demonstrate the need to simulate more complex con�gurations consid-

ering other parameters to establish a pattern of response regarding the electrical properties

of these systems.
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Figure 5.1: SWCNT models developed in Gaussian03TM . All straight nanotubes (a)-(h)
are assumed to to have in�nite length.
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Figure 5.2: Con�gurations generated to determine band structure and density of states
using Gaussian03TMfor (a) SWCNT (5,0) triangular lattice, (b) curved (5,5) SWCNT, (c)
SWNCT (5,0) with attached carboxyl group, and (d) SWCNT (5,5) with attached carboxyl
groups.

Figure 5.3: Total energy per atom for all the di¤erent types of SWCNTs and SWCNT
con�gurations.
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Figure 5.4: Band structure of metallic SWCNT (5,5). The virtual and occupied bands are
in contact with each other at the Fermi level.
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Figure 5.5: Band structure of metallic SWCNTs (a) (9,0) and (b) (9,9). The virtual and
occupied bands are in contact with each other at the Fermi level.
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Figure 5.6: Band structure of metallic SWCNT (30,0). The virtual and occupied bands
come in contact at the Fermi level.

Figure 5.7: Band structure of semiconductor (5,0) SWCNTs (triangular lattice). There
exists a very minimal gap between the virtual and occupied bands at the Fermi level.
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Figure 5.8: Band structure of semiconductors SWCNTs (a) (7,0) and (b) (10,0). A promi-
nent gap between the virtual and occupied bands exist at the Fermi level.
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Figure 5.9: Band structure determined from Gaussian03TMoutput for SWCNTs (a) semi-
conductor (5,0) and (b) metallic (5,5) with attached carboxyl groups.
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Figure 5.10: DOS generated for semiconducting SWCNTs (a) (5,0) using GaussSumTMand
(b) triangular lattice (5,0) using MATLABTM . The solid line represents the Fermi level.
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Figure 5.11: DOS generated for metallic (a) SWCNTs (5,5) and (b) triangular lattice (5,5)
using GaussSumTM . The solid line represents the Fermi energy level.
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Figure 5.12: DOS generated for (a) metallic SWCNT (5,5) with curvature and (b) graphite
using GaussSumTM . The solid line represents the Fermi level.
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Figure 5.13: DOS generated for SWCNTs (a) semiconductor (7,0) using MATLABTMand
(b) metallic (7,7) using GaussSumTM . The solid line represents the Fermi level.
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Figure 5.14: DOS generated for metallic SWCNTs (a) (9,0) using MATLABTMand (b) (9,9)
GaussSumTM . The solid line represents the Fermi level.
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Figure 5.15: DOS generated for SWCNTs (a) metallic (10,0) using MATLABTMand (b)
semiconductor (10,10) using GaussSumTM . The solid line refers to the Fermi level.
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Figure 5.16: DOS generated for metallic SWCNTs (a) (15,15) using GaussSumTMand (b)
(30,0) using MATLABTM .
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The work accomplished in this research provides an overall analysis of the character-

istics observed when the carbon nanotube structure is treated as a mechanical problem.

Many challenges were met during this work due to the complexity of the model as well as

the variability of the geometric and material parameters. One of the main obstacles in

analyzing these structures was the lack of consistency regarding the properties of carbon

nanotubes, particularly the elastic modulus, Poisson�s ratio, moment of inertia, and C�C

bond length. For this reason, an adequate approach was selected from di¤erent criteria

models. Ultimately, the approach by Chen and Cao [8], which models the C�C bond as

beam elements, was employed and simulated through �nite element methods.

When developing the space-frame �nite element model, the main challenge relied on

physically reproducing the nanotube at a nanoscale level in a �nite element package. A

major concern for this calculation approach was the error accumulation when con�guring

a nanoscale model using a �nite element code. Nevertheless, the motivation to create

the �nite element model was to have a better understanding on the mechanical aspects of

SWCNTs and their behavior under certain loading types and boundary conditions. The

results obtained through the space-frame models revealed di¤erent and distinctive stress

distributions presented in the carbon nanotube structures. When comparing the response

of SWCNTs (5; 5); (7; 7), (10; 0) and (12; 0) under tension, as shown in Figs. 4.10�4.15 and

Figs. A.1�A.6, armchair carbon nanotubes displayed the higher stress values. However, for

the simulation runs performed in the same carbon nanotube, the stress calculations were

very similar to each other when di¤erent parameters were applied. The intention of these

simulations was to compare the element stress distribution responses of the same carbon
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nanotube applying di¤erent parameter sets, not to compare carbon nanotubes with di¤erent

chiralities.

Important conclusive remarks can also be gathered from the application of di¤erent

loading conditions to the space�frame model. The stress distribution of the carbon nan-

otubes could not be compared between the cases generated due to tension, bending, and

torsion. The stress responses of these load types produced di¤erent de�ection patterns

in carbon nanotube structures. For instance, the element stress distribution of SWCNT

(5,5) in Figs. 4.10 and 4.25 reiterate the importance of manipulating and controlling the

nanotube�s orientation. This may be accomplished by better understanding of the loading

conditions in the system.

In addition, the models in the space�frame structure resembled that of a beam, except

for the case when t = 1:47Å [12], where the beam becomes a solid disk of constant thickness.

The decision to assume this constant thickness in the simulation cases relied on modeling the

structures within a wide range of input geometric values. As a result, the stress distribution

obtained from this last model showed consistently lower stress values for all loading cases.

This is very important since an inverse proportionality was observed between the thickness

of the C�C bonds and the element stress distribution of the system.

The element strain distribution for all loading types was plotted for the space�frame

model in ANSYSTM . Small strain value responses were identi�ed for the cases of SWCNTs

(5,5), (7,7), and (10,0). The deformations were plotted in Figs. 4:31(a)�(c) which showed

small strain values ranging from 10�8�10�12:

Meanwhile, the multilinear continuum system focused on modeling the elastic�plastic

capabilities of the carbon nanotube structure. The input of the stress-strain values given by

Ogata et al. [13] were for the entire carbon nanotube structure; therefore, the most adequate

model was a continuous hollow cylinder. The space�frame model cannot assume these

input parameters since the parameters speci�ed are for the properties of C�C bonds. For

the space�frame �nite element model, values of stress, strain and e¤ective elastic modulus

needed to be speci�ed, which physically di¤ers from the multilinear continuum model.

Moreover, a major obstacle in applying the multilinear case was observed during the meshing

of the structure since meshing would cause collapse and severe structural deformation.



121

Although it was possible to model and closely observe the response of SWCNTs to di¤erent

loading conditions, there is a need for consistent mechanical parameters which will allow

better approximations for models of higher complexity.

Finally, the electrical contribution of this research work focused on carrying out vir-

tual experiments through molecular dynamic simulations to study the di¤erent electronic

properties pertaining to in�nitely straight, strained, impure and triangular con�guration

schemes of SWCNTs. The subsequent results demonstrated the dependency of carbon

nanotubes to chirality, diameter, and doping as displayed in Figs. 5.10�5:16. The charac-

teristic DOS for the doping nanotubes validated the importance of high purity structures,

while the triangular con�gurations corroborated the property di¤erences between isolated

SWCNTs and SWCNT bundles.

In conclusion, the main objectives of the current research were accomplished. Many

challenges in the con�guration of the structure regarding the modeling as well as assump-

tions had to be overcome. Nevertheless, the results gathered through these analyses satis�ed

a study of great depth to better understand the properties and, in turn, future applicabilities

of SWCNTs in science and technology.

6.2 Future work

There is still a need to develop a better understanding regarding the mechanical and

electrical properties of carbon nanotubes. In order to interpret the complexity of these

systems from a structural analysis perspective, the following models are proposed:

� A pre�stress �nite element model can be applied to the space-frame scheme so that the

interatomic forces between carbon atoms due to the � and � orbitals of the atoms are

considered. In this way, more detailed behavior regarding the delocalized electrons

of the atoms would be quanti�ed.

� A detailed stability analysis regarding the C�C bonds can be implemented to op-

timally model more stable carbon nanotube structures. The study may focus on

optimization of the bond length and the application of these �ndings to the carbon

structure.
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� Molecular dynamic models can be compared with di¤erent functionalizations. In

the current research only two models were considered, namely SWCNT (5,0) and

(5,5) with carboxyl groups. Although these models provided information regarding

impurities in the carbon structure, other groups should also be considered such as

metals, amino acids, and fullerenes.

� Temperature variability can be introduced into the �nite element and molecular dy-

namic models. It has been shown that temperature a¤ects the electronic conductivity

of semiconductor carbon nanotubes. As temperature e¤ects are not considered in the

current research, gradual changes in the structure to this parameter need to be ad-

dressed.

� Car-Parrinello molecular dynamic simulations should be conducted to determine the

mechanical properties (elastic modulus) and conductivity characteristics of SWCNTs.

The Car�Parinello approach is ideal for large unit cell systems such as nanotubes.

By including these considerations, an understanding of the C�C bond characteristics

as well as optimal proposed SWCNT models can be developed for better applicability and

optimal structure control.
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Appendix A

Additional Results

A.1 Results for SWCNTs (10; 0) and (12; 0) undergoing tensile load

Additional results for the space-frame models are displayed in Figs. A.1�A.6. The

maximum element stress distribution is determined under tension.

A.2 Maximum element stress outputs for SWCNTs (5,5)-(12,0)

The following tabulated data lists the maximum element stress outputs obtained for the

case of tensile loading assuming a space-frame structure. The tensile load as well as the

location of stress peaks are speci�ed (see Tables A.1�A.4).

SWCNT (5,5)
Author �axialmax � 107( kg=Å s2) Tensile load Element peak No.
Chen and Cao 3:9 F4 174; 290

Yakobson et al. 1:7 F4 174; 290

Pantano et al. 1:2 F4 174; 290

Kudin et al. 0:74 F4 174; 290

Tserpes et al. 0:12 F4 174; 290

Table A.1: Maximum tensile element stress, peak location and load type speci�ed for the
space-frame structure (5,5) determined in ANSYSTM .
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Figure A.1: Maximum axial stress response as a function of element and tensile load for
SWCNT (10,0). The maximum stress output is plotted for (a) t=0.50 Å and (b) t=0.66 Å.

SWCNT (7,7)
Author �axialmax � 107( kg=Å s2) Tensile load Element peak No.
Chen and Cao 3:7 F5 254�278; 384
Yakobson et al. 1:6 F5 254�278; 384
Pantano et al. 1:1 F5 254�278; 384
Kudin et al. 0:70 F5 254�278; 384
Tserpes et al. 0:17 F5 254�278; 384

Table A.2: Maximum tensile element stress, peak location and load type speci�ed for the
space-frame structure (7,7) determined in ANSYSTM .
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Figure A.2: Maximum axial stress response as a function of element and tensile load for
SWCNT (10,0). The maximum stress output is plotted for t=0.75 Å.

SWCNT (10,0)
Author �axialmax � 107( kg=Å s2) Tensile load Element peak No.
Chen and Cao 2:3 F5 363�380; 578
Yakobson et al. 1:1 F5 363�380; 578
Pantano et al. 0:70 F5 363�380; 578
Kudin et al. 0:42 F5 363�380; 578
Tserpes et al. 0:098 F5 363�380; 578

Table A.3: Maximum tensile element stress, peak location and load type speci�ed for the
space-frame structure (10,0) determined in ANSYSTM .

SWCNT (12,0)
Author �axialmax � 107( kg=Å s2) Tensile load Element peak N�.
Chen and Cao 2:3 F5 628�630; 640�665
Yakobson et al. 1:1 F5 628�630; 640�665
Pantano et al. 0:69 F5 628�630; 640�665
Kudin et al. 0:42 F5 628�630; 640�665
Tserpes et al. 0:097 F5 628�630; 640�665

Table A.4: Maximum tensile element stress, peak location and load type speci�ed for the
space-frame structure (12,0) determined in ANSYSTM .
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Figure A.3: Maximum axial stress response as a function of element and tensile load for
SWCNT (10,0). The maximum stress output is plotted for (a) t= 0.89 Å and (b) t=1.47
Å.
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Figure A.4: Maximum axial stress response as a function of element and tensile load for
SWCNT (12,0). The maximum stress output is plotted for (a) t= 0.50 Å and (b) t=0.66
Å.
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Figure A.5: Maximum axial stress response as a function of element and tensile load for
SWCNT (12,0). The maximum stress output is plotted for t= 0.75 Å.

A.3 Multilinear Model Graphic-User Interface Results in ANSYSTM

Maximum stress ANSYSTM output results for SWCNTs (8,0)�(10,0). For these cases,

a multilinear model is assumed to generate a nodal solution for the carbon nanotube con-

tinuum model (see Figs. A.7�A.16).
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Figure A.6: Maximum axial stress response as a function of element and tensile load for
SWCNT (12,0). The maximum stress output is plotted for (a) t= 0.89 Å and (b) t=1.47
Å.
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Figure A.7: SWCNT (8,0) maximum nodal stress distribution considering thickness para-
meters (a) t= 0.50 Å and (b) t=0.66 Å determined in ANSYSTM .
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Figure A.8: SWCNT (8,0) maximum nodal stress distribution considering thickness para-
meters (a) t= 0.75 Å and (b) t=0.89 Å determined in ANSYSTM .
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Figure A.9: SWCNT (8,0) maximum nodal stress distribution considering thickness para-
mete t= 1.47 Å determined in ANSYSTM .
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Figure A.10: SWCNT (8,8) maximum nodal stress distribution considering thickness para-
meters (a) t= 0.50 Å and (b) t=0.66 Å determined in ANSYSTM .
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Figure A.11: SWCNT (8,8) maximum nodal stress distribution considering thickness para-
meter t= 0.89 Å determined in ANSYSTM .
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Figure A.12: SWCNT (9,0) maximum nodal stress distribution considering thickness para-
meters (a) t= 0.50 Å and (b) t=0.66 Å determined in ANSYSTM .
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Figure A.13: SWCNT (9,0) maximum nodal stress distribution considering thickness para-
meters (a) t= 0.75 Å and (b) t=0.89 Å determined in ANSYSTM .
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Figure A.14: SWCNT (10,0) maximum nodal stress distribution considering thickness pa-
rameters (a) t= 0.50 Å and (b) t=0.66 Å determined in ANSYSTM .
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Figure A.15: SWCNT (10,0) maximum nodal stress distribution considering thickness pa-
rameters (a) t= 0.75 Å and (b) t=0.89 Å determined in ANSYSTM .
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Figure A.16: SWCNT (10,0) maximum nodal stress distribution considering thickness pa-
rameter t= 1.47 Å.



140

Appendix B

Sample ANSYS Code to Obtain Maximum Axial Stresses for
Space-Frame Model

B.1 ANSYSTM code sample to determine maximum axial stresses for a

SWCNT

/BATCH,LIST

*DEL,ALL

/PREP7

/COM, Structural

/�lename, cnt55_cc1

!This code is to calculate output for SWCNT (5; 5) with t = 0:50Å

!Mechanical Properties

ET,1,beam4

mp,prxy,1,0.190

mp,dens,1,2.68e-27

keyopt,1,2,0

keyopt,1,6,1

keyopt,1,7,0

keyopt,1,9,0

keyopt,1,10,0

R,1,0.3421194,0.0093142,0.0093142,0.660,0.6600,0,

RMORE, ,0.0186284, , , , ,

*DIM,Emod,ARRAY,10,1

*VREAD,Emod(1,1),mod,txt�,10,1,1,0
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(E11.5)

*CFOPEN,Emod_cc2,txt

*VWRITE,Emod(1,1)

(6E14.6)

*CFCLOSE

*DIM,force,ARRAY,10,1

*VREAD,force,morse_force,txt�,10,1,1,0

(E11.5)

*CFOPEN,force_cc2,txt

*VWRITE,force(1,1)

(6E14.6)

*CFCLOSE

elem=290

type,1

real,1

mat,1

!keypoint coordinates speci�ed here for SWCNT (5; 5)

k , kp_number, x� axis, y � axis, z � axis

!lines declared are speci�ed here for SWCNT (5; 5)

l , kp_number_1, kp_number_2

LESIZE,ALL�,1

LMESH,ALL

*DIM,elem_num,ARRAY,elem

*DO,i,1,elem !i refers to no. elements

elem_num(i)=i

*ENDDO

*DIM,axial_elstrain,ARRAY,elem

*DIM,bend_yelstrain,ARRAY,elem

*DIM,bend_zelstrain,ARRAY,elem
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*DIM,max_stress,ARRAY,elem

*DIM,min_stress,ARRAY,elem

*DIM,x_force,ARRAY,elem

*DIM,y_force,ARRAY,elem

*DIM,z_force,ARRAY,elem

*DIM,mom_x,ARRAY,elem

*DIM,mom_y,ARRAY,elem

*DIM,mom_z,ARRAY,elem

*DO,E_col,1,1

*DO,E_row,1,10 !item is the no. Emod

/PREP7

mp,ex,1,Emod(E_row,E_col)

/SOLU

!*

ANTYPE,0

FLST,2,10,1,ORDE,10

FITEM,2,1

FITEM,2,-2

FITEM,2,5

FITEM,2,-6

FITEM,2,9

FITEM,2,-10

FITEM,2,13

FITEM,2,-14

FITEM,2,17

FITEM,2,-18

!*

/GO

D,P51X, ,0, , , ,ALL, , , , ,
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FLST,2,10,1,ORDE,10

FITEM,2,183

FITEM,2,-184

FITEM,2,187

FITEM,2,-188

FITEM,2,191

FITEM,2,-192

FITEM,2,195

FITEM,2,-196

FITEM,2,199

FITEM,2,-200

/GO

F,P51X,FZ,force(E_row)

/STATUS,SOLU

SOLVE

FINISH

EPLOT

/POST1

/PNUM,ELEM,0

/REPLOT

!set up etable

ETABLE,epeldir,LEPEL, 1

ETABLE,epelbyb,LEPEL, 3

ETABLE,epelbzb,LEPEL, 5

ETABLE,smax,NMISC, 1

ETABLE,smin,NMISC,2

ETABLE,mforx,SMISC,1

ETABLE,mfory,SMISC,2

ETABLE,mforz,SMISC,3
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ETABLE,mmomx,SMISC,4

ETABLE,mmomy,SMISC,5

ETABLE,mmomz,SMISC,6

ESEL,ALL

*VGET,axial_elstrain,ELEM�ETAB,epeldir

*VGET,bend_yelstrain,ELEM�ETAB,epelbyb

*VGET,bend_zelstrain,ELEM�ETAB,epelbzb

*VGET,max_stress,ELEM�ETAB,smax

*VGET,min_stress,ELEM�ETAB,smin

*VGET,x_force,ELEM�ETAB,mforx

*VGET,y_force,ELEM�ETAB,mfory

*VGET,z_force,ELEM�ETAB,mforz

*VGET,mom_x,ELEM�ETAB,mmomx

*VGET,mom_y,ELEM�ETAB,mmomy

*VGET,mom_z,ELEM�ETAB,mmomz

*CFOPEN,cnt55_p1_%E_row%_%E_col%,dat

*VWRITE,elem_num(1),axial_elstrain(1),bend_yelstrain(1),

bend_zelstrain(1),max_stress(1), min_stress(1)

(F4.0,3X,E12.5,3X,E12.5,3X,E12.5,3X,E12.5,3X,E12.5)

*CFCLOSE

*CFOPEN,cnt55_p2_%E_row%_%E_col%,dat

*VWRITE,elem_num(1),x_force(1),y_force(1),z_force(1),

mom_x(1),mom_y(1),mom_z(1)

(F4.0,3X,E12.5,3X,E12.5,3X,E12.5,3X,

E12.5,3X,E12.5,3X,E12.5)

*CFCLOSE

FINISH

*ENDDO

*ENDDO
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Appendix C

Sample ANSYS Code to Obtain De�ections for the
Multilinear Model

C.1 ANSYSTM Code for the de�ection output of SWCNTs through the

multilinear model

/BATCH,LIST

*DEL,ALL

/PREP7

/COM, Structural

/PREP7

! The sample code refers to SWCNT (9; 0) for t = 0:50Å

!*

ET,1,SOLID45

!*

KEYOPT,1,1,0

KEYOPT,1,2,1

KEYOPT,1,4,0

KEYOPT,1,5,0

KEYOPT,1,6,0

!*

R,1, ,

!*

MPTEMP����

MPTEMP,1,0
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MPDATA,EX,1�77.9894 !youngs modulus

MPDATA,PRXY,1�0.19 !poissons ratio

MPTEMP����

MPTEMP,1,0

MPDATA,DENS,1�2.68e-27 !density

TB, MELA,1,1,11,

TBPT � 0.00000 , 0.00000

TBPT � 0.10678 , 8.32771

TBPT � 0.12115 , 8.99277

TBPT � 0.13450 , 9.62892

TBPT � 0.14836 , 10.06270

TBPT � 0.16170 , 10.43860

TBPT � 0.17557 , 10.69880

TBPT � 0.19199 , 10.95900

TBPT � 0.21561 , 10.90120

TBPT � 0.22998 , 10.66990

TBPT � 0.24435 , 10.23610

CYL4,0,0,3.5230�4.0230, ,41.970 !cylinder coords, ri, ro, length

/VIEW,1,1,1,1

/ANG,1

/REP,FAST

AESIZE,ALL,3, !length of the volume sweep

CM,_Y,VOLU

VSEL, , , , 1

CM,_Y1,VOLU

CHKMSH,�VOLU�

CMSEL,S,_Y

!*

VSWEEP,_Y1
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!*

CMDELE,_Y

CMDELE,_Y1

CMDELE,_Y2

/SOLU

NLGEOM,ON !NONLINEAR GEOMETRY ON

NSUBST,100,1000,1 ! LOAD STEPS

OUTRES,ALL, ALL !OUTPUT DATA FOR ALL LOAD STEPS

AUTOTS,ON !AUTO TIME SEARCH ON

LNSRCH,ON !LINE SEARCH ON

NEQIT,1000 !100 ITERACTION MAXIMUM

ANTYPE,STATIC !STATIC ANALYSIS
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Appendix D

Sample Gaussian03TM Input File

D.1 Sample Gaussian03TM input �le for SWCNT (7,0) 1440 k-points

%chk=C:n...n...n*.chk

%mem=276MW

%nproc=1

#p lsda/3-21g*/auto pbc=nkpoints=1440 scf=fermi iop(5/103=26)

0 1

C -0.71498400 0.00000000 -2.75934100

C -2.13598400 0.00000000 -2.75934100

C 1.42100000 1.19723300 -2.48608000

C 0.00000000 1.19723300 -2.48608000

C -0.71498400 2.15733900 -1.72042100

C -2.13598400 2.15733900 -1.72042100

C 1.42100000 2.69015800 -0.61401100

C 0.00000000 2.69015800 -0.61401100

C -0.71498400 2.69015800 0.61401100

C -2.13598400 2.69015800 0.61401100

C 1.42100000 2.15733900 1.72042100

C -0.00000000 2.15733900 1.72042100

C -0.71498400 1.19723300 2.48608000

C -2.13598400 1.19723300 2.48608000

C 1.42100000 0.00000000 2.75934100

C -0.00000000 0.00000000 2.75934100
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C -0.71498400 -1.19723300 2.48608000

C -2.13598400 -1.19723300 2.48608000

C 1.42100000 -2.15733900 1.72042100

C -0.00000000 -2.15733900 1.72042100

C -0.71498400 -2.69015800 0.61401100

C -2.13598400 -2.69015800 0.61401100

C 1.42100000 -2.69015800 -0.61401100

C 0.00000000 -2.69015800 -0.61401100

C -0.71498400 -2.15733900 -1.72042100

C -2.13598400 -2.15733900 -1.72042100

C 1.42100000 -1.19723300 -2.48608000

C 0.00000000 -1.19723300 -2.48608000

Tv 4.23000000 0.00000000 0.00000000
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