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ABSTRACT OF THE DISSERTATION

SENSITIVITY ANALYSIS FOR NONLINEAR

STRUCTURES

by Qiang Kong

Dissertation Director: Professor Hae Chang Gea

Sensitivity analysis of total strain energy for nonlinear structures is studied. Based on

the law of energy-consistent, the effective strain and stress have been defined to provide

scalar measures of the strain and stress for the two and three dimensional problems.

The total strain energy is transformed in the form of the effective stain and stress. A

closed-form approach for sensitivity calculation is derived. This method can also be

extended to large displacement, large rotation problems using the 2nd Piola-Kirchhoff

stress and Green-Langrange stress.

The numerical examples with both geometric and material nonlinearity are pre-

sented to demonstrate the applications for the proposed sensitivity analysis calculation

for strain energy. To evaluate the accuracy of the new method, numerical results ob-

tained by the proposed method are compared with those from both analytical solution

(for simple geometry) and finite differencing method.

The closed-form solution of design sensitivity is also applied for reliability-based

structural design. Specifically, the case study is performed for the problem for the

uncertain applied force performed, and uncertain Young’s modulus with nonlinear ma-

terials. The numerical results obtained by the close-formed solution are compared with

those from Monte Carlo simulation.
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Chapter 1

INTRODUCTION

In general, optimization is concerned with achieving the best outcome of a given ob-

jective while satisfying certain restrictions. The motivation is to exploit the available

limited resources in a manner that maximizes output or profit. The structural opti-

mization is the research of design that is defined as ” the rational establishment of a

structural design that is the best of all possible designs within a prescribed objective

and a given set of geometrical and/or behavioral limitations”(Olhoff and Taylor)[1].

The objective of this dissertation is to develop a systematic approach for design

sensitivity analysis for non-linear structures.

One of the most challenging problems that has inhibited the application of structural

optimization techniques to practical problems is the high computational cost required

for such applications. The high cost is typically associated with the evaluation of con-

straint functions and their derivatives with respect to design variables. For many struc-

tural optimization problems, the evaluation of stress, displacement, or other behavioral

constraint, requires the execution of costly finite element analyses. The optimization

process may require evaluating constraint functions hundreds or thousands of times.

The cost of repeating the finite element analysis so many times is usually prohibitive.

Design sensitivity analysis is the study of the determination of the rate of change

with respect to a set of design parameters of one or more performance measures that

are often expressed as functionals involving a combination of design and response fields.

Sensitivity analysis plays an important role in; structural optimization, reliability anal-

ysis, inverse problems, and parameter identification problems. It can also be useful in

guiding manual resign procedures. The central problem in sensitivity analysis is the

determination of the implicit variations in the response fields generated by a specified

design variation.

Due to an increasing demand for cost-efficient structures, computational methods
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for Design Sensitivity Analysis and optimization have made considerable progress in the

past decade. Most of the methods developed, however, are for linear systems. A general

methodology that can handle nonlinear optimization problems does not exist although

nonlinear structural analysis is a well-developed field. The development of optimization

has been always limited to the linear elastic structures while the compliant devices

undergo nonlinear deformation. When applying linear analysis based optimization to

nonlinear designs, the final design often needs to be verified using a nonlinear analysis

program(Nishiwaki, Min and Kikuchi, 1997). This approach carries an inherent defect:

the optimality that was built upon a linear analysis program cannot survive on the

nonlinear analysis. Therefore, the final design may satisfy the constraints, although it

can be suspect, but it does not present itself as the optimal solution.

1.1 Classification of Nonlinear Analysis

Nonlinearity of structures can be classified as material nonlinearity and kinematic non-

linearity. Material nonlinearity is due to the nonlinear elastic and plastic behavior of

the structural material. Kinematics nonlinearity occurs when the deflections are large

enough to change the equations of equilibrium. Therefore, it is also called kinematic,

or geometric nonlinearity. Table 1.1 gives a classification for different nonlinear effects

- material nonlinear and kinematic nonlinear.

Figures 1, 2 and 3 each present an example of the types of problem as listed in Table

1.1. It shows that in a materially-nonlinear-only analysis, the nonlinear effect lies solely

in the nonlinear stress-strain relation. The displacements and strains are infinitesimally

small; therefore the usual engineering stress and strain measures can be employed in

the response description. Considering the large displacements but small strain condi-

tion. We note that in essence the material is subjected to infinitesimally small strains

measured in a body-attached coordinate frame x′,y′ while this frame undergoes large

rigid body displacements and rotations. The stress-strain relation of the material can

be linear or nonlinear.

As shown in Fig 1, 2 and 3 and Table 1.1, the most general analysis case is the one

in which the material is subjected to large displacements and large strains. In this case

the stress-strain relation is also usually nonlinear.
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Type of Stress and strain
analysis Description measure

Materially- Infinitesimal displace- Engineering stress
nonlinear-only ments and strains; the and strain

strain-strain relation is
nonlinear

Large displace- Displacements and Second Piola-Kirchhoff
ments, large rotations of fibers are stress, Green-Lagrange

rotations, but large, but fiber strain
small strains extensions and angle Cauchy stress, Almansi

changes between fibers strain
are small; the

stress-strain relation may
be linear or nonlinear

Large displace- Fiber extensions and angle Second Piola-Kirchhoff
ments, large change between fibers stress, Green-Lagrange

rotations, and are large, fiber strain
large strains displacements and Cauchy stress, logarithmic

rotations may also be strain
large; the stress-strain

relation may be linear or
nonlinear

Table 1.1: Classification of nonlinear analysis

1.2 Review of Research in Sensitivity Analysis for Nonlinear Struc-

tures

In general, design sensitivity analysis and optimal design of structures have been classi-

fied in size design, shape design and topology design problems. In size design problems,

the cross-sectional dimensions or stiffness of members are treated as design variables. In

shape design problems, the configuration of the structure varies, so there are variable

domain problems. In topology design, design variables are commonly related to the

effective material properties.

Song(1986) used a simplified non-linear spring to study nonlinear elastic-plastic

problems. Design sensitivity of global plate thickness of an elastic-plastic structural

optimization problem was considered by Xu(1992) who carried out a direct differenti-

ation with geometric stiffness matrix with respect to the size design variable. Shape

optimization with geometric nonlinear continuum equations to obtain the first variation

that was then used for sensitivity computation. There are also some other works that

follow similar approaches for size and shape design variables, but a method that can be
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Figure 1.2: Large displacements and large rotations but small strains. Linear or non-
linear material behavior

directly used to solve nonlinear topology optimization has not yet been developed.

The theory of design sensitivity analysis in size design and shape design for non-

linear structural systems has been studied in recent years. The optimum design problem

structure is one of the simplest problems that is formulated as a linear programming

problem [1,2]. In the traditional approach, the material is idealized to be perfect plas-

tic. Kaneko and Maier[3] discussed the optimum design problem of plastic structures

with strain hardening. In their method, the optimum design problem is formulated as

a quadratic programming problem and the solution is found using a criteria approach

for optimization. Note that only a monotonic loading condition is considered in their

work. Bendsoe and Sokolowski[4,5] presented a method of design sensitivity analysis

and optimization of elastoplastic structures based on the analysis problem formulated

as a quadratic programming problem. It is well recognized that Design Sensitivity

Coefficients (DSC) of elastoplastic structures with linear kinematic hardening are not
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Figure 1.3: Large displacements, large rotations, and large strains. Linear or nonlinear
material behavior

path-dependent when only the monotonic loading condition is considered. For example,

DSCs do not depend on those at the previous incremental step. Therefore, DSCs can

be found without resorting to any incremental procedure. Note that geometrical non-

linearity cannot be taken into account in the methods presented in References 6 and

7. Since the analysis of structures with geometrical and material non-linearity should

be carried out incrementally, DSA should also be an incremental procedure. Ray (et

al.) presented a method for DSA of the dynamic response of frames with piecewise

linear constitutive relations and without geometrical non-linearity. They pointed out

that the time at which yielding occurs (yield time) in a member changes with design.

DSCs of the yield time, however, were not calculated. Ray’s method seems to be diffi-

cult to extend to DSA of distributed parameter structures with non-linear constitutive

relations and with geometrical non-linearity. Tsay and Arora [8 .9] presented a general

method for DSA for path-dependent problems. The application to specific problems

and the difficulty due to the discontinuity of the DSC were discussed. Their method

was successfully applied to an optimum design problem of an elastoplastic truss. How-

ever, implementation of the incremental form of DSA into an existing analysis code

was not discussed. Mukherjee and Chandral presented a similar method based on the

boundary element formulation. Recently, Arora and Lee and Lee et al. have discussed

and verified the accuracy of the procedures using numerical examples. Vidal et al. have

proposed an incremental method of DSA of path-dependent responses. It is noted in

Reference 10 that a consistent tangent operator should be used to obtain accurate sen-

sitivities. Their method has been successfully applied to a creep problem. Geometrical
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non-linearity is not included in the formulation. The return mapping algorithm, which

is necessary for elastoplastic problems, is not considered.

In general, there are four types of methods to solve nonlinear problem: the finite dif-

ference method, the adjoint variable method, the direct differentiation method[12] and

the closed-form solution. Finite difference sensitivity analysis methods are simple to im-

plement, but they can be computationally expensive and deficient in terms of accuracy

and reliability[13,14]. For this reason, the adjoint variable and direct differentiation

methods are generally preferred despite their relative complexity. One consequence of

history-dependent behavior is that the response sensitivity at a given time and position

depends on both the response and the response sensitivities at all previous times and

locations in the structures. Reu et al. [13] were among the first to point this out. Incre-

mental versions of the direct-differentiation method are natural choices for sensitivity

analyses of history-dependent problems, since these methods generate sensitivity infor-

mation for the complete response field at each step. Adjoint sensitivity formulations

are not well-suited for step-by-step methods because each adjoint solution yields the

sensitivity of only a single performance functional, rather than the sensitivities of the

full response fields [14].

On the other hand, adjoint sensitivity analysis procedures involving a transient,

terminal-value problem are feasible for a history-dependent problem. In this case,

the sensitivity analysis can not be carried out simultaneously with the forward solution

since the definition of the adjoint terminal-value problem depends on the solution of the

original initial-value problem. This substantially increases the computational expense

and complexity. Thus, the direct differentiation method is usually the method of choice

for history-dependent problems.

The main challenge in formulating the direct differentiation method is the derivation

of the incremental stress sensitivities as a function of the incremental response and total

response sensitivities evaluated at the beginning of the time step. Several methods

have been proposed over the past few years. Wu and Arora suggested that a semi-

analytical approach could be used in combination with the differentiation method [15].

In this approach, the response sensitivities for analytical expressions that are difficult to

derive are computed by the finite difference method. More recently, Tsay and co-worker

[16,17] and Mukherjee and co-workers [18,19] have presented formulations of incremental
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direct differentiation methods based on finite element and boundary element models.

Mukherjee and co-workers used explicit methods to integrate the constitutive equations.

This approach can be expensive since it requires the use of extremely small time steps

to ensure accuracy. Tsay and co-workers present only analytical solutions and do not

address the issue of numerical integration.

The main challenge of topology optimization for non-linear structures is the massive

computational requirement of design sensitivity analysis. To reduce computational

efforts, Taylor[20,21] presented a global extreme principle for softening and stiffening

structures. Pedersen and Taylor[22] and Pedersen[23] presented a secant formulation

using power-law model.

In this phase of evaluation, an attempt is made to determine the closed form solution

of design sensitivity for strain energy for the materially nonlinear problems and the

large displacement, large rotation but small strain problems. An effective strain and

stress is defined under the law of energy-consistency and the relations between the

effective strain and the effective stress are governed by a function which defines the

nonlinearity of the problem. The representation of the strain energy of the structure can

be transformed in the form of the effective strain and stress for sensitivity calculation.

Following the conventional topology optimization formulation, design variables for the

sensitivity calculation are chosen as volume fraction of ”composite material” and a

density function relating the design variable and material properties can be derived

from the ”composite material” model. Based on upon the ”composite” model, the

sensitivity analysis of strain energy for nonlinear structures is calculated. With this

closed form solution for design sensitivity analysis, non-linear topology optimization can

then be applied without excessive computational burden. Examples from simple power-

law stress-strain relation are presented to validate the proposed approach. Numerical

examples of other nonlinear structures compared with those from the finite difference

method are also presented.

1.3 Research Contributions

The main contribution of this dissertation is the development of a generalized and exact

solution of sensitivity analysis for nonlinear structures. The main achievements are as

follows:
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• Modeling of nonlinear elasticity

Based upon the law of energy-consistency, a scalar form of the effective strain

for nonlinear structures is defined and its corresponding effective stress is derived

from the energy-consistent relation.

• Study of sensitivity analysis for total strain energy for nonlinear structures

The closed form solutions of the total strain energy has been derived and verified

based on the modeling of nonlinear structures. The solution is extended to the

geometric nonlinearity.

• Study of application of structural reliability based optimization design

The closed-form solution of design sensitivity of structural reliability is derived

by the effective models defined from the energy consistent point of view.

1.4 The Chapters Ahead

In Chapter 2, a equivalent effective model is proposed to model nonlinear structures.

A scalar form of the effective strain for nonlinear structures is defined and its corre-

sponding effective stress is derived from an energy-consistent relation first. This model

can also be extended to geometric nonlinearity.

Chapter 3 deals with closed-form solution for sensitivity analysis of total strain

energy for nonlinear structures with generalized nonlinear material behaviors. With

this closed form solution for design sensitivity analysis, nonlinear topology optimization

can be applied without excessive computational burden. In this chapter, numerical

examples are presented to demonstrate the application for the proposed sensitivity

analysis calculation for strain energy.

In Chapter 4, a generalized closed form solution of sensitivity analysis for structures

with nonlinearity is used to study the sensitivity of strain energy for end-loaded, large

deflection beams. To verify the accuracy of sensitivity calculation by effective strain

based method, in this chapter, the expressions of sensitivity of total strain energy will

derived by both the classical approach and proposed method.

Chapter 5 extends the effective strain based sensitivity analysis to reliability design.

The goal of the chapter is to derive a closed-form solution of design sensitivity of
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structural reliability. That is, we want to deal with sensitivity for reliability-based

design problems by effective models from an energy consistent point of view.

Chapter 6 extends the modeling of non-linear elasticity to nonlinear hyper-elasticity.

In this study, the closed-form solution has been derived for sensitivity of total strain

energy for nonlinear hyper-elasticity. Several numerical examples are presented to verify

the results.

Chapter 7 is focused on the study of sensitivity of strain energy with uncertain

variables. In the chapter, both cases of uncertain applied force and uncertain Young’s

modulus are studied. Numerical examples are again presented to verify the results.

Finally in Chapter 8, a brief conclusion and discussion are presented, and further

extension of the current work is proposed.
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Chapter 2

Modeling of nonlinear elasticity

2.1 Introduction

In contrast to the situation with linear systems, out of the various area of interest

in structural optimization relatively little is available in the form of general results

for constitute nonlinear systems. A most notable exception to this is the extensive

set of classical work done in the area of optimal design relative to plastic collapse,

dated mostly from the decade starting in the mid-1950( the name Prager, Shield, and

Drucker figure prominently in this subject; Martin (1975) provides a comprehensive

overview of the research of the era). Developments from this period were based on

the specific model of a perfectly plastic solid material working in an isotropic and

homogeneous system.(Modeling for structural optimization in fact reflects design for

maximum collapse load). At the same time, clearly on practical grounds it would be

useful to have a better understanding of analysis and design for more general nonlinear

materials. This is justified most simply on the basis that the behavior of most ordinary

engineering materials is distinctly nonlinear. Clearly, knowledge of the means to predict

optimal structural design in the face of material degradation nonlinearity would have

immediate technical application as well.

As a step in the direction toward development of effective means for the treatment

of constitutive nonlinear problems, we present results from a study of analysis and

design related to a more general form of nonlinear material. Bell (1972) provides much

information on the use since antiquity of this still common material models identified

there as ’Exponential Law’. His earliest citation is to work of James Bernoulli done in

1694! Relatively more contemporary applications of power law type models are given

in Ramberg & Osgood(1943 ), Tvergaard (1983), and Ju and Kyriakides(1991). The

relation between this sort of modeling and reality is empirical, i.e., something realized

essentially through curve-fitting, and it is a convenient form for such application. The
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Figure 2.1: Modeling for nonlinear elasticity

work reported here is centered on the power law model because the simplicity in its

form provides conveniently for the kind of development undertaken in our study.

In this chapter, a number of independent, general results are obtained in connection

with the modeling for optimal design of structures made of generalized form nonlinear

behavior. In addition, the expression for energy densities associated this material are

discussed, and a useful relation between strain energy density and complementary strain

energy density is observed. The chapter also provides for the evaluation of the design

derivative of total strain energy in terms of local derivatives(sensitivities). These results

are extended in next section to define the problem for geometric non-linearity.

2.2 Constitutive matrices modeled by effective strains

For the two and three dimensional problems, we also need a scalar measure of the

strain(or stress) state, termed the effective strain. To be specific let us first show the

formulation in terms of strains.

The effective strain is defined in the form of strains as

ε2 = ε
T
C0ε (2.1)

where ε is the strain state and C0 is a symmetric, positive definite and dimension-less
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matrix. For isotropic materials, it can be expressed in terms of Poisson’s ratio as

C0 =
1 − ν

(1 + ν)(1 − 2ν)
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(2.2)

From the energy-consistent point of view, the strain energy density, u, should be a

consistent either derived from the effective strain and stress, ε and σ, or from the

structure strain and stress strain, ε and σ. Therefore, the following relation must hold,

u =

∫

σ
T dε =

∫

σdε (2.3)

Hereby, the effective stress is implicitly defined from Eq (2.3). Taking a total differential

for Eq (2.1) leads to

εdε = ε
T
C0dε (2.4)

combining Eq (2.3) and Eq (2.4), and noting the relation stated in Eq (2.3) remains

true for any strain state. The constitutive relation between the structure stress and

strain can be expressed as

σ =
σ

ε
C0ε (2.5)

By pre-multiplying σT C0
−1 to both sides of Eq (2.5) and utilizing the definition from

Eq (2.1), the effective stress can be expressed directly as

σ2 = σ
T
C0

−1
σ (2.6)
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This result agrees with the known definition of effective stress(Pedersen and Taylor

1993). Similar to Eq (2.4), a total differential to Eq (2.6) gives

σ
T
C0

−1dσ = σdσ (2.7)

From Eq (2.5), we also can get

ε
T =

ε

σ
σ

T
C0

−1 (2.8)

Considering the stress energy density uc of the structure is defined as

uc =

∫

εdσ (2.9)

Inserting Eq (2.7) and Eq (2.8), Eq (2.9) becomes

uc =

∫

ε

σ
σ

T
C0

−1dσ

=

∫

εdσ (2.10)

It is clear to see that the resulting relation agrees with our prior derivations in strain

energy.

2.3 Strain energy density, stress energy density and work equations

The relation between effective stress/strain and structure stress/strain can be correlated

from work equation. The work done by the external force can be obtained from

w = u + uc

= σ
T
ε (2.11)

Substituting Eq (2.1) and Eq (2.5) in Eq (2.11), we have,

w =
σ

ε
ε

T
C0ε

= σ ε (2.12)

Eq (2.12) simplifies to the work equation for a simple uniaxial tension problem repre-

sented by the effective stress and strain.

Generally, the nonlinear stress may be an arbitrary function of the strain, i.e,

σ = Ef(ε) (2.13)
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where E is the modulus for a reference state. Clearly, f(ε) should be a increasing

function with respect to ε. By substituting Eq (2.13) in Eq (2.3), Eq (2.5) and Eq (2.12),

the strain energy density, the stress energy density and the virtual work are expressed

as

u = E

∫

f(ε)dε

uc =

∫

Eεf ′(ε)dε

w = Eεf(ε) (2.14)

where f ′(ε) = df(ε)/dε.

For special case, when f(ε) = εn, inserting it to Eq (2.14), we obtain

u =
E

n + 1
εn+1

uc =
nE

n + 1
εn+1

w = Eεn+1 (2.15)

It can be seen that Eq (2.15) is reduced to the following known results for nonlinear

elasticity modeled by power-law stress-strain relation:

uc = nu

w = (n + 1)u (2.16)

2.4 Explicit relation between effective strains and real strains

For uniaxial problems, we know

εz = −νεx, εy = −νεx (2.17)

By substituting Eq (2.17) in Eq (2.1) and Eq (2.5), we obtain,

ε2 == εx
2 (2.18)

σx = σ (2.19)

We can observe that effective stress and strain are the same as real effective stress and

strain for one-dimensional problems

For plane stress problems, we have

εz = − ν

(1 − ν)
(εx + εy) (2.20)
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By substituting in Eq (2.1)and Eq (2.5), we obtain the relation between effective

stresses/strains and effective stresses/strains,

ε2 =
1

1 − ν2
[ε2

x + εy
2 + 2νεxεy +

1 − ν

2
γ2

xy] (2.21)

σx =
σ

ε

εx + νεy

(1 − ν)(1 + ν)
(2.22)

σy =
σ

ε

εy + νεx

(1 − ν)(1 + ν)
(2.23)

σxy =
σ

ε

1

1 + ν
γxy (2.24)

We also obtain the relations for 3-D solid

ε2 =
1

(1 − 2ν)(1 + ν)
[(1−ν)(ε2

h+ε2
y+ε2

z)+2ν(εhεy+εyεz+εzεh)+
(1 − 2ν)

2
(γ2

xy+γ2
yz+γ2

zx)]

(2.25)

σx =
σ

ε

(1 − ν)εh + ν(εy + εz)

(1 − 2ν)(1 + ν)
(2.26)

σy =
σ

ε

(1 − ν)εy + ν(εh + εz)

(1 − 2ν)(1 + ν)
(2.27)

σz =
σ

ε

(1 − ν)εz + ν(εy + εh)

(1 − 2ν)(1 + ν)
(2.28)

σxy =
σ

ε

1

1 + ν
γxy (2.29)

σxz =
σ

ε

1

1 + ν
γxz (2.30)

σyz =
σ

ε

1

1 + ν
γyz (2.31)

2.5 Modeling for geometric nonlinearity

The geometric nonlinearity occurs when the deflections are large enough to cause signif-

icant changes in the geometry of the structure, such that the equations of equilibrium

must be formulated for the deformed configuration.

Let dS and ds denote the length of a line element in reference and current configu-

ration, respectively. The lagrangian strain tensor S and its Cartesian components Eij

are then defined by

ds2 − dS2 = 2dXEX = 2EijdXidXj (2.32)

For a rigid-body motion the difference ds2 − dS2 is equal to zero. The components of

E must in that case be equal to zero, and E is thus an objective tensor.
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The Lagrangian strain tensor can be expressed in terms of the deformation gradient

tensor H as

E =
1

2
(HTH − I)

Eij =
1

2
(
∂xk

∂Xi

xk

Xj
− δij) (2.33)

The second Piola-Kirchhoff stress tensor E can be also shown to be an objective tensor.

It is related to the true, Cauchy stress tensor σ by

S =
ν0

ν
(H−1)σ(H−1)

T

Sij =
ν0

ν

∂Xi

∂xk
∂Xjσkl∂Xj∂xl (2.34)

where ν and ν0 are mass densities in current and reference configuration, respectively

Noticing the relation between the reference position vector X, the current position

vector x, and the displacement vector u,

x = X + u

xi = Xi + ui (2.35)

we can express the Lagrangian strain components Eij in terms of displacement gradients

as

Eij =
1

2
(ui,j + uj,i) +

1

2
(uk,iuk.j) = εij + θij (2.36)

where the comma denotes differentiation with respect to reference coordinates, and εij

is the linear Lagrangian or engineering strain tensor.

Consider now a small part of a continuum in a fixed Cartesian coordinate system

Xi, i = 1, 2, 3, with base vectors Ii. If you apply a finite rotation, defined by the

orthogonal rotation tensor R. Note that a vector dX turns into a new vector dX∗,

where dX∗ = RdX and |dX| = |dX∗ = dS. Furthermore, X∗
i , i = 1, 2, 3, can be

another Cartesian coordinate system with base vectors Ii, that is initially coinciding

with Xi, but rotating with the body.

Now, give the body an infinitesimal deformation so that the vector dX∗ turns into

dX. The vector dX has the component forms dX = dxiIi = dx∗
i I

∗
i . We, furthermore,

have the relation form dX + du = dX∗ + du, where du is the relative displacement

vector between two neighboring particles.
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Let’s see what occurs when |dX| = ds. The difference ds2 − dS2 can thus, in view

of Eq (2.32), be written as:

ds2 − dS2 = 2dXdEdX = 2EijdXidXj

= 2dX∗dE∗dX∗ = 2E∗
ijdX∗

i dX∗
j (2.37)

It should be emphasized that the displacement gradient dui/dXj is of finite magnitude,

while du∗
i /dX∗

j << 1. This implies that the quadratic part of the strain tensor E∗
ij can

be neglected, and we can write dXi = dxi. We find that Eij = Eij∗, and finally

Eij = ε∗ij (2.38)

In other words, in case of small strains, but large deformations, the Lagrangian strain

tensor components are equal to the engineering strain components in a system rigid-

body rotating with the practice.

According to the polar decomposition theorem, the deformation gradient tensor F

can be multiplicicatively decomposed into a rotation tensor R and a stretch tensor U

as

F = RU (2.39)

For infinitesimal strain the stretch tensor can be expressed as

U = I + εA (2.40)

where ε is a small number and A : A = II The deformation gradient can thus be

approximated by

F = R (2.41)

Noting that ν0/ν = 1 in the case of infinitesimal strain, we can express the second

Poila-Kirchhoff stress tensor as

S = (F −1)
T
σ(F −1) = RσRT (2.42)

The component forms of the Cauchy stress tensor σ are σ = σijIiIj = σ∗

ijI
∗
i I∗j , when I∗i

is a base vector in the previously introduced co-rotating Cartesian coordinate system.

The matrices of tensor components σij and σ∗
ij are thus related by

[σ] = [R]T [σ∗][R] (2.43)
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with [R] as the matrix of the components of R in the fixed system.

Combing Eq (2.42) and Eq (2.43), we finally get

[S] = [R([R]T [σ∗][R])[R]T = [σ∗] (2.44)

This result can be interpreted in case of small strain, the second Piola-Kirchhoff stress

components are equal to the Cauchy stress components in a system rigid-body rotating

with the particle.

The important conclusion one can draw from the above discussion is that a consti-

tutive relation, formulated for the case of infinitesimal strain and rotation, and relating

Cauchy stress and engineering strain or rates of these quantities, can be used unaltered

to related Lagrangian strain and second Piola-Kirchhoff stress.

The constitutive relation is expressed in terms of second Piola-Kirchoff stress tensor

and Lagrangian strain tensor as

S = Cnǫ (2.45)

when Cn is constitutive tangent matrix, S is the second Piola-Kirchoff stress tensor, ǫ

is and the Lagrangian finite strain tensor:

Eij =
1

2
(

∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj
) (2.46)

where ui denotes displacement.

We recognize that in infinitesimal displacement analysis, the relation of Eq (2.45)

is reduced to the description used in general small deformation analysis because under

these conditions the stress and strain variables reduces to the engineering stress and

strain measures. However, an important observation is that in large displacement and

large rotation but small strain analysis, the relation in Eq (2.45) provides a natural

material description because the components of the second Piola-Kirchoff stress and

Lagrangian strain tensors do not change under rigid rotation(Bathe 1996). Thus, only

the actual straining of material will yield an increase in the components of the stress

tensor. As long as this material straining(accompanied by large rotations and displace-

ments) is small, the use of the relation in the Eq (2.45) is completely equivalent to the

constitutive relation in infinitesimal displacement conditions. Cn depends only on the

material properties for large deformation with small strain problems.
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Similarly, for large deformation with small strain problems, the effective strain is

also defined as

ε2 = ǫ
T
C0ǫ (2.47)

where C0 has the same meaning as material nonlinearity. Constitutive matrices mod-

eled by the effective strain can be thus completely used in the formulation of large

deformation cases.
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Chapter 3

Sensitivity Analysis for Energy in Non-linear material

Nonlinearity

3.1 Introduction

Sensitivity analysis of strain energy involves a calculation of the variation in the strain

energy response with respect to the design variables. Following the conventional topol-

ogy optimization formulation, design variables for the sensitivity calculation are chosen

as a volume fraction of ”composite material” and a density function relating to the

design variable. Material properties can be derived from the ”composite material”

model. In this section, the sensitivity analysis of strain energy for nonlinear structures

is calculated based on the effective nonlinear elastic model discussed in chapter 2.

3.2 Sensitivity analysis for generalized material nonlinearity

Sensitivity for strain energy is defined as

dU(ε(h), h)

dh
(3.1)

where h is the design field, and U is the total strain energy. The total strain energy is

defined as:

U =

∫

udV (3.2)

where u is the strain energy density. From the analysis in chapter 2, for generalized

nonlinear materials, the relation between effective stress and strain is expressed as

σ = E(h)f(ε(h)) (3.3)

where E is the modulus and only dependent on design variables, and f is a function of

the effective strain. The strain energy density can thus be written as

u = E(h)

∫

f(ε)dε (3.4)
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Differentiating the total strain energy with respect to the design variable, sensitivity

can be written as

dU

dh
=

∫

V

du

dh
dV

=

∫

V
[(

∂u(ε(h), h)

∂h
)|ε + (

∂u(ε(h), h)

∂ε(h)
)(

∂ε(h)

∂h
)|h]dV

=

∫

[

∫

f(ε)dε
∂E

∂h
+ E(h)f(ε(h))(

∂ε(h)

∂h
)]dV (3.5)

From Eq (3.5) , a closed-form solution for the sensitivity calculation becomes a discovery

for the explicit expression of ∂ε(h)/∂h.

Let’s begin with the work equation for a dead load system in terms of effective strain

and stress, which was derived in chapter 2.

w = σ ε (3.6)

By substituting Eq (3.3) in Eq (3.6), we can get

w = E(h)ε(h)f(ε(h)) (3.7)

Differentiating Eq (3.7) with respect to design parameter h, one obtains

dw

dh
= εf(ε)

∂E

∂h
+ E(f(ε) + εf ′(ε))

∂ε

∂h
(3.8)

Let’s look at the left side of Eq (3.8), which may be written in greater detail by

means of

dw

dh
=

∂w

∂h
+

∂w

∂ε

∂ε

∂h
(3.9)

where ε represents the strain field in total. The principles of virtual work, that hold

for solid structures in equilibrium are

∂w

∂ε
=

∂u

∂ε
(3.10)

For design-independent loads

∂w

∂h
= 0 (3.11)

By inserting Eq (3.10) and Eq (3.11) and recognizing that ε is the only variable of the

function of ε, Eq (3.9) simplifies to

dw

dh
=

∂u

∂ε

∂ε

∂h
= Ef(ε)

∂ε

∂h
(3.12)
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By substituting Eq (3.12) in Eq (3.8), we get

Ef(ε)
∂ε

∂h
= εf(ε)

∂E

∂h
+ E(f(ε) + εf ′(ε))

∂ε

∂h
(3.13)

A reorganization of Eq (3.13) results in:

∂ε(h)

∂h
= −f(ε(h))

E(h)

∂E(h)
∂h

∂f(ε(h))
∂ε(h)

(3.14)

Finally, the closed-form solution, in terms of effective strains, can be obtained by sub-

stituting Eq (3.14) in the expression of design sensitivity, Eq (3.5),

dU

dh
=

∫

V
[

∫

ε
f(ε(h))dε

∂E(h)

∂h
− f2(ε(h))

df(ε(h))
dε

∂E(h)

∂h
]dV

= {
∫

V
[

∫

ε
f(ε(h))dε − f2(ε(h))

f ′(ε(h))
]dV }∂E(h)

∂h
(3.15)

3.2.1 Linear and power-law elasticity

To verify this closed-form solution, let’s consider the sensitivity analysis of minimum-

compliance design for linear elastic materials and nonlinear elastic materials modeled

by the power-law stress-strain relation.

For linear elasticity

f(ε) = ε (3.16)

By substituting it in the Eq (3.15),

dU

dh
=

∫

V
(
ε2

2
− ε2)dV

∂E

∂h
(3.17)

and reorganizing it, we get

dU

dh
= −

∫

V

ε2

2
dV

∂E

∂h
= −(

∂U

∂h
)|ε (3.18)

It can be seen from Eq (3.18) that Eq (3.15) is reduced to the known result for linear

elasticity (Pedersen 1991)

Similarly, for nonlinear elasticity, modeled by the power-law stress-strain relation of

f(ε) = εn (3.19)

and substituting Eq (3.19) in the Eq (3.15),

dU

dh
=

∫

V
(

∫

ε
εndε − ε2n

nεn−1 )dV
∂E

∂h
(3.20)
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after reorganizing it, we obtain

dU

dh
= − 1

n

∫

V

εn+1

n + 1
dV

∂E

∂h
(3.21)

So, our result also matches the known result(Pedersen 1991),

dU

dh
= − 1

n
(
∂U

∂h
)|ε (3.22)

3.2.2 Localized sensitivity

When design variable hi is a local design variable, related to design domain i, strain

energy outside this domain is changing and thus one would expect an accumulative

determination of dU/dhi to be necessary.

Total strain energy is written as the sum of the domain strain energies, i.e.:

U =
N

∑

i=1

∫

Vi

Ei

∫

ε
f(ε)dεdVi (3.23)

where Ei, Vi are modulus and the volume of the i-th domain. N is the number of

domains.

From Eq (3.15), the sensitivity of total strain energy to local change can be derived

as :

dU

dhi
= [

∫

Vi

(

∫

fdε − f2

f ′
)dVi]

∂Ei

∂hi
(3.24)

3.3 Numerical results

In this section, a 2-D and a 3-D numerical example with both geometric and material

nonlinearity are presented to demonstrate the application for the proposed method in

sensitivity analysis.

MSC/NASTRAN commercial finite element codes for geometric nonlinearity are

used to obtain standard structural analysis results.

To evaluate the accuracy of the new method, numerical results obtained by the

proposed method are compared with those from a finite difference derivative, whereas

the design sensitivity is expressed as ∆U/∆h. For each example, we assume the material

modulus is a function of design variables. For example,

Ei = Ei0g(h) (3.25)
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where Ei0 is modulus constant of i-th element,

g(h) = h2 with 0 ≤ h ≤ 1 (3.26)

The following three different material behaviors are studied for each example:

Case 1: The softening material modeled by the power-law stress-strain relation,

f(ε) = εn with n < 1. (3.27)

The stress-strain behavior is shown in Figure 1.

Case 2: The hardening material modeled by the power-law stress-strain relation,

f(ε) = εn with n > 1. (3.28)

The stress-strain behavior is shown in Figure 2.

Case 3: For typical rubber-like material behavior, stress-strain relation can be de-

scribed in the following form of a series expansion

f(ε) = ε − 40ε2 + 625ε3. (3.29)

The stress-strain behavior is shown in Figure 3.
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Figure 3.1: The stress-strain behavior: case 1(power law with n < 1)

3.3.1 Solution Algorithm

For the given nonlinear stress-strain relation presented in the curve along with material

property as Yong’s modulus and the Poisson’s ratio, the computation procedures is

described below:
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Figure 3.2: The stress-strain behavior: case 2(power law with n > 1)
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Figure 3.3: The stress-strain behavior: case 3(typical rubber behavior)
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Step 1. Input values: {σ}old, {ε}old, {∆ε}, E, ν

Step 2. Calculate the new strain as

{ε}new = {ε}old + {∆ε} (3.30)

Step 3. The effective strain (ε) is computed based on {ε}new by

ε2 =
1

E
< ε > {σe} (3.31)

where

{σe} = [De]{ε} (3.32)

or

ε =
1

1 − ν2
[ε2

x + ε2
y + 2νεxεy +

1 − ν

2
γ2

xy] for plane stress (3.33)

ε =
1

(1 − 2ν)(1 + ν)
[(1−ν)(ε2

x+ε2
y+ε2

x)+2ν(εxεy+εxεx+εyεz)+
1 − 2ν

2
(γ2

xy+γ2
xz+γ2

yz)] for 3-D

(3.34)

Step 4. The effective stress (σ) is determined by looking-up the stress-strain curve

for ε

Step 5. The new stress state is determined by

σnew =
σ

Eε
{σe} (3.35)

Step 6. The tangential matrix is determined by

[Dne] =
σ

Eε
[De] +

1

(Eε)2
(
∂σ

∂ε
− σ

ε
){σe}{σe}T (3.36)

for which ∂σ
∂ε is the slope at ε,

∂σ

∂ε
=

yk+1 − yk

xk+1 − xk
(3.37)

where (xk, yk) is the k-th data point for the strain-strain curve and k is determined

such that xk ≤ ε ≤ xk+1. It is noted that k = 1 for ε ≤ x1 and k = kmax − 1 for

ε ≥ xmax
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3.3.2 Adaptation of Uniaxial Compression Stress-Strain Curve

Since some materials exhibit appreciably different behaviors in compression from that

in tension even in the small strain range, the uniaxial compression data can not be

ignored.

For uniaxial loading, the magnitude of the strain in that direction becomes the

effective strain.

ε = εx for uniaxiable tension in x (3.38)

ε = −εx for uniaxiable compression in x (3.39)

We need to find the effective stress (σ) corresponding to ε. There are two known

data points, namely the effective stress for uniaxial tension (σt) and the effective stress

for uniaxial compression (σc). The method of interpolation or extrapolation is required

to predict the effective stress for the general stress state using two known data points.

The first stress invariant (I1) is adopted for interpolation/extrapolation.

I1 = σx + σy + σz (3.40)

Considering that the pure shear is in the midway between simple tension and simple

compression, it seems appropriate to use the first stress invariant. Hydrostatic tension

and compression cases will impose the lower and upper bounds for extrapolation.

I1 = σx for uniaxiable tension/compression (3.41)

I1 = 0 for pure shear (3.42)

I1 = 3p for hydrostatic pressure (3.43)

The instantaneous modulus (∂ε
∂ε) should be interpolated or extrapolated in the same

manner.
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3.3.3 Computational Procedure for Bilateral Stress-Strain Relations

The new stress state is proportional in magnitude to the effective stress (σ), which

should be determined as follows:

1. Compute the effective stress (σe) based on {σe}, i.e.,

{σe} = [De]{ε}new (3.44)

σ =

√

1

2
[(σx − σy)

2 + (σy − σz)
2 + (σx − σx)2] + 3(τ2

xy + τ2
yz + τ2

zx) for 3D (3.45)

σ =
√

σ2
x − σxσy + σ2

y + 3τ2
xy for plane stress (3.46)

σ =

√

1

2
[(σx − σy)

2 + (σy − σz)
2 + (σx − σx)2] + 3τ2

xy for plane strain (3.47)

2. Compute the first invariant of {σe}:

I1 = σx + σy + σz (3.48)

where σz = 0 for plane stress.

3. Determine the ratio (r) by normalizing I1 by σe,

r =
I1

σe
(3.49)

where r signifies the relative distance from the midpoint of σc and σt at ε. It would

be implausible to process with a large value of r (such is the case with a hydrostatic

load). Therefore, r will be confined to a plausible range, −1 ≤ r ≤ 1. The value will

be reset to the limit r = ±1 if r lies outside the range.

4. Look up the effective stress-strain curve and determine σt and σc.

σt = σ(ε) (3.50)

σt = −σ(−ε) (3.51)
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No. of elem New method Finite difference derivative The relative difference

1 -44.2424 -44.7733 1.2%
5 -17.3095 - 17.5864 1.6%
10 -25.3461 -25.8277 1.9%
15 -30.1345 -30.5865 1.5%

Table 3.1: Comparison of the results of plane for case 1

5. Determine σ based on σt, σc, and r.

σ =
σt + σc

2
+ r

σt − σc

2
(3.52)

For the tangent matrix, the instantaneous modulus (∂σ
∂ε ) should be determined using

the same ratio (r) as follows:

a) Compute the instantaneous slope at ε for tension.

(
∂σ

∂ε
)
t
=

yi+1 − yi

xi+1 − xi
for xi ≤ ε ≤ xi+1 (3.53)

where (xi, yi) is the i-th data point in the effective stress-strain curve.

b) Compute the instantaneous slop at −ε for compression.

(
∂σ

∂ε
)
c
=

yj+1 − yj

xj+1 − xj
forxj ≤ −ε ≤ xj+1 (3.54)

c) Determine (∂σ
∂ε ) based on (∂σ

∂ε )
t
, (∂σ

∂ε )
c
, and r.

∂σ

∂ε
=

1

2
[(

∂σ

∂ε
)
t
+ (

∂σ

∂ε
)
c
] +

r

2
[(

∂σ

∂ε
)
t
− (

∂σ

∂ε
)
c
] (3.55)

3.3.4 Example 1: two-dimensional plane

A simple two-dimensional plane is considered as a first example to study the application

and accuracy of the proposed approach. This example has 3 × 15 finite elements and

external loads that are applied to the free end of beam(Figure 3). The results in Tables

1, 2 and 3, represent the sensitivities of total strain energy of four different elements

calculated by the new method and finite difference derivative method, as well as their

relative differences for nonlinear material behaviors of cases 1, 2 and 3 respectively. As

shown in Tables 1, 2 and 3, sensitivity predictions are in close agreement with finite

difference results for three different material behaviors with large deformation.
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1 5 10 15

F
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Figure 3.4: Example 1: two dimensional plane

No. of elem New method Finite difference derivative The relative difference

1 -8.0211 -8.0932 0.9%
5 -3.4509 -3.4854 1.0%
10 -4.8777 -4.9460 1.4%
15 -7.3111 -7.4207 1.5%

Table 3.2: Comparison of the results of plane for case 2

No. of elem New method Finite difference derivative The relative difference

1 -7.2314 -7.2892 0.8%
5 -3.4987 -3.5442 1.3%
10 -4.5423 -4.6013 1.3%
15 -6.3409 -6.4170 1.2%

Table 3.3: Comparison of the results of plane for case 3
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Figure 3.5: Example 2: 3-D solid

No. of elem New method Finite difference derivative The relative difference

1 -10.0098 -10.2400 2.3%
5 -5.8861 -6.0921 3.5%
10 -6.6541 -6.7805 1.9%
15 -7.2311 -7.3757 2.0%

Table 3.4: Comparison of the results of 3-D solid for case 1

3.3.5 Example 2: 3-D solid

The second example presents a 3-D problem with 3× 3× 15 finite elements as external

loads are applied to the free end of beam(Figure 4).

The results in Tables 4, 5 and 6 represent the sensitivities of four different elements

for a 3-D solid obtained by the new method and finite different derivative method, as

well as their relative differences for cases 1, 2 and 3 nonlinear material behaviors re-

spectively. As shown in Table 4, 5 and 6, excellent agreement exists between sensitivity

prediction obtained from proposed method and finite differences that is obtained for

three dimensional model.

No. of elem New method Finite difference derivative The relative difference

1 -30.9982 -31.5252 1.7%
5 -10.2322 -10.5392 3.0%
10 -17.2154 -17.5941 2.2%
15 -22.6600 -23.1359 2.1%

Table 3.5: Comparison of the results of 3-D solid for case 2
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No. of elem New method Finite difference derivative The relative difference

1 -27.2398 -27.8118 2.1%
5 -10.0982 -13.6326 3.5%
10 -15.2321 -15.6434 2.7%
15 -20.3327 -20.8003 2.3%

Table 3.6: Comparison of the results of 3-D solid for case 3
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Chapter 4

Sensitivity Analysis for Geometric Nonlineararity

4.1 Introduction

The geometrically non-linear analysis and design of mechanical structures and compo-

nents is of importance in practical applications because there are a number of important

applications where large flexibility and deflection are desirable and necessary for the

system to function. The compliant mechanism is such an example. Since compliant

mechanisms depends on deflection for their motion, the deflections are often large, re-

sulting in geometric non-linearities. A considerable amount of work has been done

in non-linear mechanics to characterize the deflections of flexible beams(Bisshopp and

Drucker, 1945; Frisch-Fay, 1962; Gorski, 1976), but much remains to be done in light of

the applications introduced by the recent development of compliant mechanism theory.

There are several methods for sensitivity analysis that take into account the non-

linearities introduced by large deflection. A classical method is based on the direct dif-

ferentiation for deflection equation( Mattiasson, 1981; Howell and Leonard 1998). An

advantage of this method is that it provides closed-form solutions, but the derivatives

are cumbersome and solutions exist for only relatively simple geometries and loadings.

General design sensitivity analysis of nonlinear structures is studied by Aurora and his

co-workers(1985, 1990a, 1990b). Shape sensitivity analysis of non-linear structures has

been developed by Choi(1987 and 1992). However, the efficient method for sensitivity

analysis for topology design has not yet been developed.

In the chapter 1, a generalized closed form solution of design sensitivity for strain

energy was derived. This method is based on the law of energy-consistency and derived

from effective strain. It can be used for both materially and geometrical nonlinear

problems. In this chapter, the sensitivity of strain energy for end-loaded, large deflection



34

beam is studied to verify the accuracy of the proposed method.

4.2 Formulation of deflections

In this section, the equations of deflections will be derived for a end-loaded beam

with both non-follower and with follower loading . The derivation is based on the

fundamental Bernoulli-Euler theorem which states that the curvature is proportional

to the bending moment. It is assumed that bending does not alter the length of the

beam. A cantilever beam with both non-follower and follower end loads are discussed

in this section.

4.2.1 Cantilever beam with transverse(non-follower) end force

x

P

y

EI, l

a

0θ

b

Figure 4.1: Cantilever beam with end force(non-follower)

When considering a long, thin cantilever beam, let L denote the length of beam,

a the horizontal component of the displacement of the loaded end of the beam, b the

corresponding vertical displacement, P the concentrated vertical load at the free end,

using the exact equation for curvature, the beam equation can be written as

M = EI
dθ

ds
= EI

d2y
d2x

(1 + ( dy
dx)

2
)
3/2

(4.1)

where M is the moment, dθ/ds the rate of change of angular deflection along the length

of the beam, y the transverse deflection, x the coordinate along the undeformed beam

axis, and EI the flexural rigidity . For large deflection, the internal moment at any
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point in the beam is given by

M = P (a − x) (4.2)

The governing equation of the beam may be written as

dθ

ds
=

P

EI
(a − x) (4.3)

and

d2θ

ds2
= − P

EI

dx

ds
(4.4)

or

d2θ

ds2
= − P

EI
cos θ (4.5)

Integrating yields

1

2
(
dθ

ds
)
2

= − P

EI
sin θ + C1 (4.6)

The constant C1 can be evaluated by observing that the curvature at the loaded end is

zero. Then if θ0 is the corresponding angle of slope

dθ

ds
=

√
2
α

L

√

sin θ0 − sin θ (4.7)

where

α2 =
PL2

EI
(4.8)

The value of θ0 can not be found directly from this equation but it is implied by the

requirement that the beam be inextensible, so that

√
2α =

∫ θ0

0

dθ√
sin θ0 − sin θ

(4.9)

The angular deflection for any point, final vertical and horizontal positions may be

found by using the relation ds = dx/ cos θ = dy/ sin θ as

s

L
=

√
2 sin θ

α
(4.10)

a

L
=

√
2 sin θ0

α
(4.11)

b

L
=

1√
2α

∫ θ0

0

sin θdθ√
sin θ0 − sin θ

(4.12)

By similar derivations, we can obtain the expressions of nodal angular deflections

for the beam with discrete material properties(Fig. 2) as

√
2α1 =

∫ θ0

θ1

dθ√
sin θ0 − sin θ
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Figure 4.2: Cantilever beam with end force(non-follower)

√
2αi =

∫ θi−1

θi

dθ
√

∑i−1
j=1

Ei

Ej
(sin θj−1 − sin θj) + sin θj − sin θ

√
2αn =

∫ θn−1

0

dθ
√

∑n−1
j=1

En

Ej
(sin θj−1 − sin θj) + sin θj − sin θ

(4.13)

where l denotes the length of each element, Ei and θi Young’s Modulus and nodal

angular deflection, α2
i = Pl2

EiI
.

The angular deflection for any point can be obtained as

√
2α1(s − s1)

l
=

∫ θ0

θ

dθ√
sin θ0 − sin θ

when s1 ≤ s

√
2αi(s − si)

l
=

∫ θ

θi

dθ
√

∑i−1
j=1

Ei

Ej
(sin θj−1 − sin θj) + sin θj − sin θ

when si ≤ s ≤ si−1 i = 2, 3, ..., n − 1

√
2αn =

∫ θn−1

θ

dθ
√

∑n−1
j=1

En

Ej
(sin θj−1 − sin θj) + sin θj − sin θ

when s ≤ sn−1 (4.14)

The final vertical and horizontal positions may be found by using the relation ds =

dx/ cos θ = dy/ sin θ as

a

l
=

√

2(sin θ0 − sin θ1)

α1
(4.15)

b

l
=

1√
2α1

∫ θ0

θ1

sin θdθ√
sin θ0 − sin θ

(4.16)

4.2.2 Cantilever beam with transverse(with-follower) end force

For follower loading(Fig. 3), the internal moment at any point in the beam is given by

M = P [cos θ0(a − x) + sin θ0(b − y)] (4.17)

The governing equation of the beam may be written as

dθ

ds
=

P

EI
[cos θ0(a − x) + sin θ0(b − y)] (4.18)
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Figure 4.3: Cantilever beam with end force(with follower)

and

d2θ

ds2
= − P

EI
[
dx

ds
cos θ0 +

dy

ds
sin θ0] (4.19)

or

d2θ

ds2
= − P

EI
[cos θ cos θ0 + sin θ sin θ0] (4.20)

Integrating yields

1

2
(
dθ

ds
)
2

=
P

EI
sin(θ0 − θ) + C1 (4.21)

Boundary conditions for this problem are

s = 0, θ = 0

s = L, θ = θ0

θ = θ0, dθ/ds = 0 (4.22)

By substituting Eq (4.22) in Eq (4.21), we obtain,

√
2α =

∫ θ0

0

dθ
√

sin(θ0 − θ)
(4.23)

With the angular deflection of any point, the nonlinear solutions for a and b are

s

L
=

1√
2α

∫ θ0

θ

sin θdθ
√

sin(θ0 − θ)
(4.24)

a

L
=

1√
2α

∫ θ0

0

sin θdθ
√

sin(θ0 − θ)
(4.25)

b

L
=

1√
2α

∫ θ0

0

cos θdθ
√

sin(θ0 − θ)
(4.26)
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where

α2 =
PL2

EI
(4.27)

For the case with discrete material properties, we can obtain the nodal angular

deflection similarly

√
2α1 =

∫ θ0

θ1

dθ
√

sin(θ0 − θ)
√

2αi =

∫ θi−1

θi

dθ
√

∑i−1
j=1(

Ei

Ej
− Ei

Ej+1
) sin(θ0 − θj) + sin(θ0 − θ)

√
2αn =

∫ θn−1

0

dθ
√

∑n−1
j=1 (En

Ej
− En

Ej+1
) sin(θ0 − θj) + sin(θ0 − θ)

(4.28)

where α2
i = Pl2

EiI
, l the length of each element, Ei and θi Young’s Modulus and nodal

angular deflection. The angular deflection for any point is obtained as

√
2α1(s − s1)

l
al =

∫ θ0

θ

dθ
√

sin(θ0 − θ)
when s1 ≤ s

√
2αi(s − si)

l
=

∫ θi−1

θ

dθ
√

∑i−1
j=1(

Ei

Ej
− Ei

Ej+1
) sin(θ0 − θj) + sin(θ0 − θ)

when si ≤ s ≤ si−1 i = 2, 3, ..., n − 1
√

2αns

l
=

∫ θn−1

0

dθ
√

∑n−1
j=1 (En

Ej
− En

Ej+1
) sin(θ0 − θj) + sin(θ0 − θ)

when s ≤ sn−1 (4.29)

The final vertical and horizontal positions may be found as

a

l
=

1√
2α1

∫ θ0

θ1

cos θdθ
√

sin(θ0 − θ)
(4.30)

b

l
=

1√
2α1

∫ θ0

θ1

sin θdθ
√

sin(θ0 − θ)
(4.31)

Based on the above the results, we will discuss the sensitivity analysis of strain

energy in next section.

4.3 Sensitivity of total strain energy

To verify the accuracy of sensitivity calculation by the effective strain based method,

in this section, the expressions of sensitivity of total strain energy are derived by both

classical approach and proposed method.
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4.3.1 Classical approach of sensitivity of total strain energy

The sensitivity of total strain energy can be derived by directly differentiating the

equation of total strain energy. This results can give us an exact solution even though

the derivations are very lengthy.

Non-follower loading

The total strain energy for the beam may be written as

U =

∫ l

0

M2

2EI
ds

=
P 2

2EI

∫ L

0
(a − s cos θ)2ds (4.32)

Sensitivity of strain energy can be derived from the above equation as

dU

dh
=

P 2

2EI

∫ L

0
{[2(a − s cos θ)(

da

dh
+ s sin θ

dθ

dh
) − (a − s cos θ)2

E

dE

dh
}ds (4.33)

where h is the design variable, a and da/dθ are determined by Eq (4.11), and θ and

dθ/dh are determined by Eq (4.11) or Eq (4.12).

For discrete material properties, total strain energy is written as

U =
n

∑

i=1

∫ si

si−1

M2

2EiI
ds

=
n

∑

i=1

∫ si

si−1

P 2(a − x)2

2EiI
ds

=
n

∑

i=1

∫ si

si−1

P 2(a − s cos θ)2

2EiI
ds (4.34)

Sensitivity of strain energy can be derived from the above equation as

dU

dhj
=

n
∑

i=1,i6=j

∫ si

si−1

P 2(a − s cos θ)

EiI
(

da

dhj
+ s sin θ

dθ

dhj
)ds

+

∫ sj

sj−1

{P 2(a − s cos θ)

EjI
(

da

dhj
+ s sin θ

dθ

dhj
)

−P 2(a − s cos θ)2

2EjI

dEj

dhj
}ds (4.35)

In the Eq (4.35), a and da/dh are determined by Eq (4.15), and θ and dθ/dh are

determined by Eq (4.15) or Eq (4.16).
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Follower loading

The total strain energy for the beam may be written as

U =

∫ l

0

M2

2EI
ds

=
P 2

2EI

∫ L

0
[(a − s cos θ) cos θ0 + (b − s sin θ) sin θ0]

2ds (4.36)

Sensitivity of strain energy can be derived from the above equation as

dU

dh
=

P 2

2EI

∫ L

0
{2[(a − s cos θ) cos θ0 + (b − s sin θ) sin θ0][(

da

dh

+ sin θ0
dθ0

dh
) cos θ0 − (a − s cos θ) sin θ0

dθ0

dh
+ (

db

dh
− s cos θ

dθ

dh
) sin θ0

+(b − s sin θ) cos θ0
dθ0

dh
]

− [(a − s cos θ) cos θ0 + (b − s sin θ) sin θ0]
2

E

dE

dh
}ds (4.37)

where h is the design variable, a and da/dθ are determined by Eq (4.24), b and db/dθ

are determined by Eq (4.25), and θ and dθ/dh are determined by Eq (4.24) or Eq (4.25).

For discrete material properties, total strain energy is written as

U =
n

∑

i=1

∫ si

si−1

M2

2EiI
ds

=
n

∑

i=1

∫ si

si−1

P 2[cos θ0(a − x) + sin θ0(b − y)]2

2EiI
ds

=
n

∑

i=1

∫ si

si−1

P 2[cos θ0(a − s cos θ) + sin θ0(b − s sin θ)]2

2EiI
ds (4.38)

Sensitivity of strain energy can be derived from the above equation as

dU

dhj
=

n
∑

i=1,i6=j

∫ si

si−1

{2[(a − s cos θ) cos θ0 + (b − s sin θ) sin θ0][(
da

dhi

+ sin θ0
dθ0

dhi
) cos θ0 − (a − s cos θ) sin θ0

dθ0

dhi
}ds +

∫ sj

sj−1

{2[(a − s cos θ) cos θ0

+(b − s sin θ) sin θ0][(
da

dhj
+ sin θ0

dθ0

dhj
) cos θ0 − (a − s cos θ) sin θ0

dθ0

dhj

+(
db

dhj
− s cos θ

dθ

dhj
) sin θ0 + (b − s sin θ) cos θ0

dθ0

dhj
]

− [(a − s cos θ) cos θ0 + (b − s sin θ) sin θ0]
2

Ej

dEj

dhj
}ds (4.39)

In the Eq (4.39), a and da/dh are determined by Eq (4.15), b and db/dh are determined

by Eq (4.16), and θ and dθ/dh determined by Eq (4.15) or Eq (4.16).
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4.3.2 Effective-strain based method for sensitivity of total strain en-

ergy

General sensitivity of strain energy was derived in terms of effective strains by the point

of energy-consistent view as

dU

dh
= {

∫

V
[

∫

ε
f(ε(h))dε − f2(ε(h))

f ′(ε(h))
]dV }∂E(h)

∂h
(4.40)

where h is the design variable and f depends on the relation of effective stress and

effective strain. For large deflection beam with linear elastic materials, we have

f = ε = εx (4.41)

The Eq (4.40) thus can be reduced to

dU

dh
= −

∫

V

1

2
εx

2dV
dE

dh

= −
∫ L

0

M2

2E2I
ds

dE

dh
(4.42)

The localized sensitivity formulation is written as

dU

dhj
= −

∫ sj

sj−1

M2

2E2
j I

ds
dEj

dhj
(4.43)

Non-Follower loading

Sensitivity of strain energy can be derived from the above equation as

dU

dh
=

P 2

2E2I

∫ L

0
(a − s cos θ)2ds

dE

dh
(4.44)

Localized sensitivity of strain energy can be derived from the above equation as

dU

dhj
= − P 2

2E2
j I

∫ sj

sj−1

(a − s cos θ)2ds
dEj

dhj
(4.45)

Follower loading

Sensitivity of strain energy can be derived from the above equation as

dU

dh
=

P 2

2E2I

∫ L

0
[cos θ0(a − s cos θ) + sin θ0(b − s sin θ)]2ds

dE

dh
(4.46)

Localized sensitivity of strain energy can be derived from the above equation as

dU

dhj
= − P 2

2E2
j I

∫ sj

sj−1

[cos θ0(a − s cos θ) + sin θ0(b − s sin θ)]2ds
dEj

dhj
(4.47)
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4.4 Examples

In this section, to evaluate the accuracy of the new method, numerical results obtained

by the proposed method are compared with those from classical method and a finite

difference derivative. XMAPLE and MSC/NASTRAN commercial finite element codes

for geometric nonlinearity are used to obtain standard structural analysis results.

In this example, we assume the material modulus is a function of design variables.

Ei = Ei0g(h) with Ei0 as the modulus constant of i-th element. We choose g(h) = h2

for this example but any continuous function can be used.

The results in Table 1 represent the sensitivities of total strain energy of four different

elements calculated by the classical solution, effective based method and finite difference

derivative method for non-follower loading. Maximum vertical and horizontal deflection

at the end of beam are 0.55 and 0.2 times the total length of the beam.

1 3 8 10

P

Figure 4.4: Cantilever beam with end force

No. of elem Analytical(A) New method(N) Finite difference(F) A&N A&F

1 -7.492111e+01 -7.453414e+01 -7.604912e+01 0.5% 1.4%
3 -3.972313e+01 -3.952429e+01 -3.89443e+01 0.5% 1.9%
8 -2.159211e+01 -2.145332e+01 -2.183221e+01 0.6% 1.1%
10 -4.021334e-00 -4.002211e-00 -4.093211e-00 0.5% 1.7%

Table 4.1: Comparison of the results(non-follower)

No. of elem Analytical(A) New method(N) Finite difference(F) A&N A&F

1 -8.383412e+01 -8.341231e+01 -8.294231e+01 0.5% 1.1%
3 -4.230053e+01 -4.215674e+01 -4.174123e+01 0.4% 1.3%
8 -3.145299e+01 -3.122224e+01 -3.193111e+01 0.7% 1.5%
10 -6.942222e+00 -6.902113e-00 -6.792112e-00 0.6% 2.2%

Table 4.2: Comparison of the results (with-follower)
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The results in Table 2 represent the sensitivities of total strain energy of four different

elements calculated by the classical solution, effective based method and finite difference

derivative method with follower loading. Maximum vertical and horizontal deflection

at the end of beam are 0.63 and 0.27 times the total length of the beam.

From the results in Table 1 and 2, it is clear that sensitivity calculations from the

effective strain based method are in even closer agreement than finite difference results

with classical results.

4.5 Conclusion

The effective-strain sensitivity analysis method is based on the energy consistent view.

It is not only computationally efficient, but also of very good accuracy marker for large

deflection problems. The numerical results demonstrated a high incidence of agreement

between the results for effective-strain method, classical method and finite difference

approach.
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Chapter 5

Sensitivity Analysis for Reliability-based Structural

Design

5.1 Introduction

In a structural optimization problem with the external loads and the structural strengths

being treated as random variables, optimization becomes more complicated than ordi-

nary deterministic designs because of the difficulty in the sensitivity analysis of the

structural reliability or structural failure probability.

The first attempt to analyze the importance of sensitivity analysis in structural

reliability was made by Modes in 1970. In this chapter, special emphasis is placed on

cost sensitivity studies to illustrate the influence on the reliability-based design of the

idealizations of the probabilistic model, the analysis errors, and the choice of statistical

parameters. In 1985, Frangopol explored in depth the sensitivity of both the overall

reliability and the optimum solutions of redundant ductile structures with relation

structure of the random loads and strengths, and the method used for global reliability

evaluation. Recently, the hybrid design sensitivity analysis method (Chang et al. 1997)

was employed for the mixed approach for probabilistic structural durability.

In reliability analysis, the Monte Carlo simulation method is often employed when

the analytical solution is not attainable and the failure domain cannot be expressed or

approximated by an analytical form. This is mainly the case in problems of complex

nature with a large number of basic variables, to which all other reliability analysis

methods are not applicable. Although the mathematical formulation of the Monte

Carlo simulation method is relatively simple and the method has the capability of

handling practically any possible case regardless of its complexity, the computational

effort involved in conventional Monte Carlo simulation is excessive. The goal of this

chapter is to derive a closed-form solution of design sensitivity for structural reliability.

That is, we want to deal with sensitivity for reliability-based design problems by the
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effective models defined from an energy consistent point of view.

5.2 Evaluation of structural reliability

Assume that the random maximum stress, Sm and the random endurance strength, Se

are known and described by known probability distributions. If these distributions are

specified in terms of the probability density functions, fSm
(r) and fSe

(r), respectively,

then the measure of risk is the probability of the ”failure” event(Sm ≤ Se). Thus

Freundenthal stated in 1966:

pf = P (failure) = P (Sm ≤ Se)

=

∫ ∞

0
[

∫ S

0
fR(r)dr]fs(s)ds

=

∫ ∞

0
FR(s)fS(s)ds (5.1)

in which FR() = the cumulative distribution function of R. When the maximum stress

is Sm = s, the probability of failure is clearly FR(s). Eq (5.1) simply includes all

possible values of S, with their respective probabilities.

If Sm and Se follow normal distribution, reliability may be expressed as

R =
1√
2π

∫ ∞

z1

e−z2/2dz (5.2)

where the lower limit of integration, z1, is found from the principles of strength based

reliability as

z1 = − µSe
− µSm

√

σ2
Se

+ σ2
Sm

(5.3)

where µSm
and σ2

Sm
are mean and deviation of maximum stress, µSe

and σ2
Se

are mean

and deviation of endurance strength.

5.3 Modeling of nonlinear elasticity

In this section, the nonlinear elasticity modeled by effective strain and effective stress for

generalized material nonlinearity are briefly introduced. The effective strain is defined

as

ε2 = ε
T
C0ε (5.4)
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where C0 is a symmetric, positive definite and dimension-less matrix. Generally, the

nonlinear stress may be an arbitrary function of the strain.

σ = Ef(ε) (5.5)

where E is the modulus for a reference state and a function of design variable h. f(ε)

should be a increasing function with respect to ε. The strain energy density, the stress

energy density and the virtual work are expressed in terms of effective strains as

u = E

∫

f(ε)dε

uc =

∫

Eεf ′(ε)dε

w = Eεf(ε) (5.6)

where f ′(ε) = df(ε)/dε.

The derivative of effective strains can be derived as

∂ε(h)

∂h
= − f(ε)

E(h)

E′(h)

f ′(ε)
(5.7)

5.4 Sensitivity analysis of structural reliability

The reliability is determined by the means and deviations of the maximum stress and

the endurance strength. Generally, the deterministic form of endurance strength can

be presented by stochastic variables(Mischke, 1987). Therefore, the derivative for en-

durance strength can be obtain by the deterministic form. In the first part of this

section, we will discuss an approximate solution for means and standard deviations for

general nonlinear function of random variables. Then we will study the sensitivity so-

lution for the von Mises stress(normally used for measuring the maximum stress) based

on the effective strain introduced in section 3.

5.4.1 Means and standard deviations of general nonlinear function of

random variables

The approximations of the mean and standard deviations of a general nonlinear function

of several random variables can obtained by means of the “partial derivative rule”(Rao,

1992). Consider a nonlinear function of several random variables as

Y = g(X1, X2, ..., Xn) (5.8)
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Expanding the function in a Taylor’s series about the mean values and neglecting terms

involving second and higher order derivations yields

Y = g(µ1, µ2, ..., µn) +
n

∑

i=1

∂g

∂Xi
|µ1,µ2,...,µn(Xi − µi) (5.9)

Since g(µ1, µ2, ...µn) and ∂g/∂Xi|µ1,µ2,...,µn are constants, the mean value of Y may be

approximated as

µY = E[g(µ1, µ2, ..., µn) +
n

∑

i=1

∂g

∂Xi
|µ1,µ2,...,µn(Xi − µi)]

= g(µ1, µ2, ..., µn) +
n

∑

i=1

∂g

∂Xi
|µ1,µ2,...,µnE(Xi − µi)

= g(µ1, µ2, ..., µn) (5.10)

From Eq (5.10), we can obtain

Y 2 = g2(µ1, µ2, ..., µn) + 2g(µ1, µ2, ..., µn)
n

∑

i=1

∂g

∂Xi
|µ1,µ2,...,µnE(Xi − µi) +

[
n

∑

i=1

∂g

∂Xi
|µ1,µ2,...,µnE(Xi − µi)]

2

= g2(µ1, µ2, ..., µn) + 2g(µ1, µ2, ..., µn)
n

∑

i=1

∂g

∂Xi
|µ1,µ2,...,µnE(Xi − µi) +

n
∑

i=1

(
∂g

∂Xi
|µ1,µ2,...,µn)

2

E(X2
i − 2Xiµi + µ2

i ) +

n
∑

i=1

n
∑

j=1,j 6=i

∂g

∂Xi
|µ1,µ2,...,µn

∂g

∂Xj
|µ1,µ2,...,µnE(Xi − µi)E(Xj − µj) (5.11)

By reorganizing Eq (5.11), the variance Y may be approximated as

σ2
Y = E(Y2) − E(Y )2

=
n

∑

i=1

(
∂g

∂Xi
)
2

|µ1,µ2,...,µnσ2
Xi

+
n

∑

i=1

n
∑

j=1,i=j

∂g

∂Xi
|µ1,µ2,...,µn

∂g

∂Xj
σ2

XiXj
(5.12)

Since the variables involved are statistically independent

σ2
Y =

n
∑

i=1

(
∂g

∂Xi
)
2

|µ1,µ2,...,µnσ2
Xi

(5.13)

the mean and standard deviation for the endurance strength can be easily obtained

from the above results, and the deterministic form of endurance strength is given.

5.4.2 Sensitivity analysis based on the effective model

The maximum stress can be measured by the von Mises stress, defined by

S2
m =

3

2
Sd

T
Sd (5.14)
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where Sd is the vector of deviatoric stresses, i.e. the hydrostatic pressure is eliminated.

Pedersen(1987) showed that this deviatoric stress vector can be obtained by a projection

with the projection matrix P

S2
m =

3

2
S

T
PS (5.15)

where S is the vector of stresses,

P =



































2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3



































(5.16)

Recalling the definition of effective stress,

S
2

= S
T
C0

−1
S (5.17)

where

C0 =
1 − ν

(1 + ν)(1 − 2ν)



































1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)



































(5.18)

ν is the Poisson’s ratio. Comparing Eq (5.17) to Eq (5.15), S2
m = S

2
for the compliance

matrix that corresponds to an isotropic and incompressible material.

Generally, S can be expressed as a function of random variables(Modulus and size

parameters),

S = Ef(ε(E(h), t, ...)) (5.19)

where E is the Modulus, ε the effective strain and t is size parameter such as thickness.

Based on section 3, we already know

∂ε

∂H
= − f(ε)

Hf ′(ε)
(5.20)
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where H can be Modulus or size parameter. If H is Modulus, then the derivative of

effective stress to Modulus can be written as

dS

dh
= [

∫

f(ε)dε + Ef(ε)
∂ε

∂E
]
dE

dh
(5.21)

By inserting Eq (5.20) in Eq (5.21), we can get

dS

dh
= [

∫

f(ε)dε − f2(ε)]
dE

dh
(5.22)

We can also can write the following if H is size parameter such as thickness:

∂S

∂t
= Ef(ε)

∂ε

∂t
(5.23)

By inserting Eq (5.20) in Eq (5.23), we can get

∂S

∂t
= −E

t

f2(ε)

f ′(ε)
(5.24)

5.5 Numerical results

In this section, a 2-D and a 3-D numerical examples with both geometric and material

nonlinearity are presented to demonstrate the application for the proposed method in

sensitivity analysis. ANSYS commercial finite element codes for geometric nonlinearity

are used to obtain standard structural analysis results .

To evaluate the accuracy of the new method, numerical results obtained by the

proposed method are compared with those from a finite difference derivative. For each

example, we assume the material modulus is a function of design variables.

E = Ei0g(h) (5.25)

when Ei0 is random modulus constant of element i we only consider the mean of Ei0

as design variables.

g(h) = h2 with 0 ≤ h ≤ 1 (5.26)

The following three different material behaviors are studied in each example:

Case 1: The softening material modeled by the power-law stress-strain relation,

f(ε) = εn with n < 1. (5.27)

The stress-strain behavior is shown in Figure 1.
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Case 2: The stiffening material modeled by the power-law stress-strain relation,

f(ε) = εn with n > 1. (5.28)

The stress-strain behavior is shown in Figure 2.

Case 3: With typical rubber-like material behavior, the stress-strain relation can be

described in the following form of a series expansion

f(ε) = ε − 40ε2 + 625ε3. (5.29)

The stress-strain behavior is shown in Figure 3.
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Figure 5.1: The stress-strain behavior: case 1(power law with n < 1)

5.5.1 Example 1: two-dimensional plane

A simple two-dimensional plane is considered as a first example to study the application

and accuracy of the proposed approach. This example has 3 × 15 finite elements and

external loads are applied to the free end of beam(Figure 3). The results in Tables

1, 2, and 3, represent the sensitivities of effective strains for four different elements

calculated by the new method and finite difference derivative method, as well as their

relative differences for nonlinear material behaviors of cases 1, 2, and 3, respectively.

As shown in Tables 1, 2 and 3,
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Figure 5.2: The stress-strain behavior: case 2(power law with n > 1)
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Figure 5.3: The stress-strain behavior: case 3(typical rubber behavior)
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Figure 5.4: Example 1: two dimensional plane
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No. of elem New method Finite difference derivative The relative difference

1 -0.3244 -0.3205 1.2%
5 -0.1934 - 0.1906 1.4%
10 -0.2394 -0.2358 1.5%
15 -0.2732 -0.2694 1.4%

Table 5.1: Comparison of the results of plane for case 1

No. of elem New method Finite difference derivative The relative difference

1 -0.03212 -0.03193 0.5%
5 -0.01833 -0.01812 1.0%
10 -0.02421 -0.02398 1.2%
15 -0.02732 -0.02694 1.2%

Table 5.2: Comparison of the results of plane for case 2

No. of elem New method Finite difference derivative The relative difference

1 -0.0563 -0.05592 0.7%
5 -0.03942 -3.3898 1.1%
10 -0.04544 -0.04498 1.0%
15 -0.04922 -0.04867 1.1%

Table 5.3: Comparison of the results of plane for case 3
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Figure 5.5: Example 2: 3-D solid

No. of elem New method Finite difference derivative The relative difference

1 -0.2544 -0.2495 1.9%
5 -0.1322 -0.1284 2.8%
10 -0.1649 -0.1626 1.4%
15 -0.1817 -0.1786 1.7%

Table 5.4: Comparison of the results of 3-D solid for case 1

5.5.2 Example 2: 3-D solid

The second example presents a 3-D problem with 3× 3× 15 finite elements, as external

loads are applied to the free end of beam(Figure 4).

The results in Tables 4, 5, and 6 represent the sensitivities of effective strains for a

3-D solid obtained by the new method and finite different derivative method, as well as

their relative differences for cases 1, 2, and 3 nonlinear material behaviors, respectively.

No. of elem New method Finite difference derivative The relative difference

1 -0.03621 -0.03566 1.5%
5 -0.01034 -0.0101 2.6%
10 -0.01950 -0.01912 1.9%
15 -0.02181 -0.02141 1.8%

Table 5.5: Comparison of the results of 3-D solid for case 2
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No. of elem New method Finite difference derivative The relative difference

1 -0.04322 -0.04252 1.6%
5 -0.01934 -0.01877 2.9%
10 -0.02832 -0.02778 1.9%
15 -0.03834 -0.03761 1.9%

Table 5.6: Comparison of the results of 3-D solid for case 3

5.6 Conclusion

The chapter extends the effective strain based sensitivity analysis to reliability design.

This method is based on the general non-linear elastic structures. It can be widely used

to solve many practical problems. The advantage of this approach is its computational

efficiency and high accuracy. The numerical examples demonstrated a high incidence

of agreement between the results from the proposed method and those from the finite

difference method.
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Chapter 6

Sensitivity Analysis for Hyperelastic Material With Large

Strains

6.1 Introduction

The analysis of rubber-like elastic is a challenging task in optimization of structural de-

sign due to extremely large deformations and the nearly compressible nature of rubber.

In this chapter, we extend the modeling of non-linear elasticity to nonlinear hyper-

elasticity. In this study, we have derived closed-form solution for sensitivity of total

strain energy for nonlinear hyper-elasticity. Several numerical examples are presented

to verify the results.

6.2 Generalized Approach

Sensitivity for strain energy is defined as

dU(ǫ(h), h)

dh
(6.1)

where h is the design field and the U is total strain energy. The total strain energy is

defined as:

U =

∫

V 0

udV 0 (6.2)

where u is the strain energy density referred to in the original configuration. From the

analysis in chapters 2 and 3, for generalized nonlinear materials, the relation between

effective stress and strain is expressed as

S = E(h)f(ǫ(h)) (6.3)

where E is the modulus and only dependent on design variables and f is a function of

the effective strain. The strain energy density can thusly be written as

u = E(h)

∫

f(ǫ)dǫ (6.4)
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Differentiating the total strain energy with respect to the design variable, sensitivity

can be written as

dU

dh
=

∫

V 0

du

dh
dV 0

=

∫

V 0

[(
∂u(ǫ(h), h)

∂h
)
fixed−strain

+ (
∂u(ǫ(h), h)

∂ǫ(h)
)(

∂ǫ(h)

∂h
)
fixed−h

]dV 0

=

∫

V 0

[

∫

f(ǫ)dǫ
∂E

∂h
+ E(h)f(ǫ(h))(

∂ǫ(h)

∂h
)]dV 0 (6.5)

Using the same approach for the sensitivity analysis for nonlinear materials, the sensi-

tivity of total strain energy can be written as

dU

dh
=

∫

V 0

[

∫

ǫ
f(ǫ(h))dǫ

∂E(h)

∂h
− f2(ǫ(h))

df(ǫ(h))
dǫ

∂E(h)

∂h
]dV 0

= {
∫

V 0

[

∫

ǫ
f(ǫ(h))dǫ − f2(ǫ(h))

f ′(ǫ(h))
]dV 0}∂E(h)

∂h
(6.6)

A simple and widely used elastic material for large deformation analysis is the

Kirchhoff material,

f(ǫ) = ǫ (6.7)

By substituting it in the Eq (6.6),

dU

dh
=

∫

V
(
ǫ2

2
− ǫ2)dV

∂E

∂h
(6.8)

By reorganizing it, we get

dU

dh
= −

∫

V

ǫ2

2
dV

∂E

∂h
= −(

∂U

∂h
)
fixed−strain

(6.9)

It can be seen from Eq (6.9) that Eq (6.6) reduces itself to the known result for linear

elasticity (Pedersen, 1991)

The formulation of design sensitivity of total strain energy for finite element imple-

mentation can be obtained easily based on the above discussion.

Total strain energy for finite element forms may be represented by effective strains:

U =
N

∑

i=1

∫

Vi

Ei

∫

ǫ
f(ǫ)dǫdVi (6.10)

where Ei, Vi are modulus and the volume of the i-th element. N is the number of

elements.

From Eq (6.6), the sensitivity of total strain energy can be derived as :

dU

dhi
= [

∫

Vi

(

∫

fdǫ − f2

f ′
)dVi]

∂Ei

∂hi
(6.11)
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6.3 Numerical results

In this section, a 2-D and a 3-D numerical examples with both geometric and material

nonlinearity are presented to demonstrate the application for the proposed method in

sensitivity analysis. ANSYS commercial finite element codes for large deformations are

used to obtain standard structural analysis results.

To evaluate the accuracy of the new method, numerical results obtained by the

proposed method are compared with those from a finite difference derivative, whereas

the design sensitivity is expressed as ∆U/∆h. For each example, we assume the material

modulus is a function of design variables.

Ei = Ei0g(h) (6.12)

where Ei0 is modulus constant of i-th element,

g(h) = h2 with 0 ≤ h ≤ 1 (6.13)

The following three different material behaviors are studied in each example:

Case 1: The softening material modeled by the power-law stress-strain relation,

f(ε) = εn with n < 1. (6.14)

The stress-strain behavior is shown in Figure 1.

Case 2: The stiffening material modeled by the power-law stress-strain relation,

f(ε) = εn with n > 1. (6.15)

The stress-strain behavior is shown in Figure 2.

Case 3: With typical rubber-like material behavior, the stress-strain relation can be

described in the following form of a series expansion

f(ε) = ε − 40ε2 + 625ε3. (6.16)

The stress-strain behavior is shown in Figure 3.

6.3.1 Example 1: two-dimensional plane

A simple two-dimensional plane is considered as a first example to study the application

and accuracy of the proposed approach. This example has 5 × 5 finite elements and
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Figure 6.1: The stress-strain behavior: case 1(power law with n < 1)
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Figure 6.2: The stress-strain behavior: case 2(power law with n > 1)

external loads are applied to the free end of beam (Figure 3). The results in Tables

1, 2, and 3 represent the sensitivities of total strain energy of four different elements

calculated by the new method and finite difference derivative method, as well as their

relative differences for nonlinear material behaviors in cases 1, 2, and 3, respectively.

As shown in Tables 1, 2 and 3, sensitivity predictions are in close agreement with finite

difference results for three different material behaviors with large deformation.
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Figure 6.3: The stress-strain behavior: case 3(typical rubber behavior)
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Figure 6.4: Example 1: two dimensional plane

No. of elem New method Finite difference derivative The relative difference

1 -8.4221 -8.3825 0.47%
5 -4.5432 -4.5213 0.48%
10 -5.3244 -5.3015 0.43%
15 -6.8932 -6.8622 0.45%

Table 6.1: Comparison of the results of plane for case 1

No. of elem New method Finite difference derivative The relative difference

1 -9.4121 -9.3633 0.55%
5 -5.9747 -6.0171 0.71%
10 -6.2121 -6.2537 0.67%
15 -8.9955 -9.0395 0.49%

Table 6.2: Comparison of the results of plane for case 2
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No. of elem New method Finite difference derivative The relative difference

1 -9.5431 -9.6299 0.91%
5 -5.7771 -5.8181 0.71%
10 -6.7313 -6.7777 0.69%
15 -7.9991 -8.0694 0.88%

Table 6.3: Comparison of the results of plane for case 3

1 5 10 15

F

F1

2

F3

F4

Figure 6.5: Example 2: 3-D solid

6.3.2 Example 2: 3-D solid

The second example presents a 3-D problem with 5 × 5 × 5 finite elements as external

loads are applied to the free end of solid(Figure 4).

The results in Tables 4, 5, and 6 represent the sensitivities of four different elements

for a 3-D solid obtained by the new method and finite different derivative method,

as well as their relative differences for cases 1, 2, and 3 nonlinear material behavior

respectively. As shown in Tables 4, 5, and 6, excellent agreement between sensitivity

predictions is obtained from proposed method and finite differences are obtained for

the three dimensional model.

No. of elem New method Finite difference derivative The relative difference

1 -12.2422 - 12.1871 0.45%
5 -7.2311 - 7.1963 0.48%
10 -9.8843 - 9.8378 0.47%
15 -10.3211 -10.2725 0.44%

Table 6.4: Comparison of the results of 3-D solid for case 1
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No. of elem New method Finite difference derivative The relative difference

1 -13.3121 -13.4146 0.77%
5 -8.9312 - 9.0124 0.91%
10 -10.6662 -10.7601 0.88%
15 -11.4321 -11.5087 0.67%

Table 6.5: Comparison of the results of 3-D solid for case 2

No. of elem New method Finite difference derivative The relative difference

1 -13.3111 - 13.3990 0.66%
5 -8.3211 -8.3818 0.73%
10 -9.9976 -10.0776 0.80%
15 -11.8843 -11.9639 0.67%

Table 6.6: Comparison of the results of 3-D solid for case 3
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6.4 Conclusion

In this chapter, a generalized ”exact” method of sensitivity analysis for strain energy

is presented for material nonlinear models with large deformation. The examples show

the high incidence of agreement between the results of the proposed method and the

results of a finite difference method for different material behaviors with large strain.

The analysis applies as well in two and three-dimensional problems.
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Chapter 7

Sensitivity Analysis in Structure with Uncertainties

7.1 Introduction

In rather extensive literature on optimal design, major attention is paid to optimization

of constructions that are subject to a fixed loading. However, the typical situation for

the practical use of an optimal design is different: acting forces are either varying in

time, or varying from one sample to another, or are unpredictable. This motivates

a reformulation of the problem to account for possible variations and uncertainties in

loading.

One can foresee a significant change in the reformulated design if the loading is not

completely known. Indeed, the optimality requirement forces the structure to concen-

trate its resistivity against applied loading, since its abilities to resist other loadings are

limited. This high sensitivity to the loading restricts the applicability of most optimal

designs.

7.2 Means of general nonlinear function of single random variable

The approximations of the mean deviations of a general nonlinear function of random

variables can be obtained by means of the ”partial derivative rule”. Consider a nonlinear

function of a single random variable as

Y = g(X) (7.1)

Expanding the function in a Taylor’s series about the mean value and neglecting terms

involving third and higher order derivations yields

Y = g(µX) + g′µX
(X − µX) +

1

2
g′′µX

(X − µX)2 (7.2)

Since g(µX) and g′µX
are constants, the mean value of Y may be approximated as

µY = E[g(µX) + g′µX
(X − µX) +

1

2
g′′µX

(X − µX)2]
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= g(µX) +
1

2
g′′µX

σ2
X (7.3)

where µX and σ2
X are the mean and derivation of variable X

7.3 Uncertain Applied Force and Linear Material

F
t

F(t)

Figure 7.1: Uncertain Magnitude of External Forces

In this case, an object on which external forces are applied with the uncertain

magnitude follows a distribution with the mean µF1
and variation σF1

. The total strain

energy can be expressed as

U = F T [K]−1F (7.4)

where [K] is stiffness matrix, U is the total strain energy , and F =
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is the

vector of external forces. In order to obtain the mean value of the total strain energy

by using the result derived in section 2, we need to get the second derivation of the
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strain energy of external force. To simplify the problem, consider that there is only one

single uncertain external force F1. We can get

∂U

∂F1
= 2
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[K]−1F (7.5)

Therefore, we can get

∂2U

∂F 2
1

= 2
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[K]−1{1, 0, 0, 0, ..., 0} (7.6)

The result in fact gives the strain energy with unit external force. Therefore, according

to the result in section 1, the mean value of total strain energy can be expressed as:

µU = U(µF1) + U(F 0
1 )σ2

F1
(7.7)

where U(µF1) is the strain energy calculated with the mean value of F1, and U(F 0
1 ) is

the strain energy calculated with unit force of F1. For linear material, it is well-known

that:

dU

dh
= −∂U

∂h
|fix−strain (7.8)

where U is the strain energy and h is the design variable. So, the sensitivity of the

mean value of strain energy can be easily derived as:

dµU

dh
= −∂U

∂h
|fix−strain(µF1) −

∂U

∂h
|fix−strain(F 0

1 )σF1
(7.9)

7.4 Uncertain Young’s Modulus for Non-linear Structures

Consider nonlinear structures as represented by effective strain and effective stress as

σ = Ef(ε) (7.10)
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In this case, the modulus E is a uncertain variable. The strain energy density can thus

be written as

u = E(h)

∫

f(ε)dε (7.11)

For previous derivation of sensitivity analysis for non-linear structure, we already got

∂ε

∂E
= − 1

E

f(ε)

f ′(ε)
(7.12)

In order to get the mean value of strain energy density represented by the mean

value and variation of the modulus E, we need to obtain the second order derivative of

strain energy by the modulus E. Since the strain energy density can be expressed as:

u = E

∫

f(ε)dε (7.13)

we can obtain

du

dE
=

∫

f(ε)dε + Ef(ε)
∂ε

∂E
(7.14)

By substituting the result of Eq (7.12) into Eq (7.14), we have

du

dE
=

∫

f(ε)dε − f2(ε)

f ′(ε)
(7.15)

Taking the second derivative by the modulus E, we get

d2u

dE2
= [f(ε) − 2f(ε)f ′(ε) − f2(ε)f ′′(ε)

[f ′(ε)]2
]
∂ε

∂E

= −f2(ε)[f ′(ε)]2 − 2f2(ε)f ′(ε) + f(ε)f ′(ε)f ′′(ε)

E[f ′(ε)]3
(7.16)

Therefore, according to the result in section 1, the mean value of total strain energy

can be expressed as:

µU = U(µE) +
d2U

dE2
(µE)σ2

E (7.17)

Since this expression is the explicit form of the modulus E, it is straight-forward to

obtain the sensitivity of the mean of strain energy by taking the derivative of E.

Especially for linear material, we have

f(ε) = ε (7.18)

The result of Eq (7.16) can be reduced to

d2U

dE2
= −ε2

2
(7.19)
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Figure 7.2: Example 1: two dimensional plane

7.5 Numerical results for Uncertain Applied Force with Linear Ma-

terial

In this section, a 2-D example is presented to demonstrate the application for the

proposed method in sensitivity analysis. The Monte Carlo simulation is used to verify

the results from the analytical results .

7.5.1 Example: two-dimensional plane

A simple two-dimensional plane is considered as an example to study the application

and accuracy of the proposed approach. This example has 5 × 5 finite elements and

external loads are applied to the free end of beam (Figure 3). The results in Tables 7.1

represent the sensitivities of total strain energy of four different elements calculated by

the analytical method and Monte Carlo simulation, as well as their relative differences.

As shown in Tables 1, 2 and 3, sensitivity predictions are in close agreement with Monte

Carlo results.

7.6 Numerical results for Uncertain Young’s Modulus with Non-linear

Materials

In this section, a 2-D and 3-D numerical example with both geometric and material

nonlinearity are presented to demonstrate the application for the proposed method in
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No. of elem New method Monte Carlo Simulation The relative difference

1 -32.3112 -32.5697 0.8%
2 -25.4232 -25.6266 0.56%
4 -28.3452 -28.5720 0.91%
5 -20.1111 -20.2720 0.78%

Table 7.1: Comparison of the results of plane

sensitivity analysis. The Monte Carlo simulation is used to verify the results from the

analytical results .

For each example, we assume the material modulus is a function of design variables.

Ei = Ei0g(h) (7.20)

where Ei0 is the modulus constant of i-th element,

g(h) = h2 with 0 ≤ h ≤ 1 (7.21)

The following three different material behaviors are studied for each example.

Case 1: The softening material modeled by the power-law stress-strain relation,

f(ε) = εn with n < 1. (7.22)

The stress-strain behavior is shown in Figure 1.

Case 2: The stiffening material modeled by the power-law stress-strain relation,

f(ε) = εn with n > 1. (7.23)

The stress-strain behavior is shown in Figure 2.

Case 3: With typical rubber-like material behavior, the stress-strain relation can be

described in the following form of a series expansion

f(ε) = ε − 40ε2 + 625ε3. (7.24)

The stress-strain behavior is shown in Figure 3.

7.6.1 Example 1: two-dimensional plane

A simple two-dimensional plane is considered as a first example to study the application

and accuracy of the proposed approach. This example has 5 × 5 finite elements and
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Figure 7.3: The stress-strain behavior: case 1(power law with n < 1)
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Figure 7.4: The stress-strain behavior: case 2(power law with n > 1)

external loads are applied to the free end of beam (Figure 3). The external force is

applied with the uncertain magnitude following a distribution. The results in Tables

1, 2, and 3 represent the sensitivities of total strain energy of four different elements

calculated by the new method and Monte Carlo simulation, as well as their relative

differences for nonlinear material behaviors in cases 1, 2, and 3, respectively. As shown

in Tables 1, 2 and 3, sensitivity predictions are in close agreement with the results

derived by a Monte Carlo simulation.
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Figure 7.5: The stress-strain behavior: case 3(typical rubber behavior)
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Figure 7.6: Example 1: two dimensional plane

No. of elem New method Monte Carlo Simulation The relative difference

1 -8.4221 -8.3825 0.47%
2 -4.5432 -4.5213 0.48%
4 -5.3244 -5.3015 0.43%
5 -6.8932 -6.8622 0.45%

Table 7.2: Comparison of the results of plane for case 1
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No. of elem New method Monte Carlo Simulation The relative difference

1 -9.4111 -9.3631 0.51%
2 -5.3133 -5.2671 0.87%
4 -6.9881 -6.9343 0.77%
5 -7.3121 -7.2470 0.89%

Table 7.3: Comparison of the results of plane for case 2

No. of elem New method Monte Carlo Simulation The relative difference

1 -10.8777 -10.7787 0.91%
2 -5.0991 -5.0491 0.98%
4 -7.0011 -6.9339 0.96%
5 -8.9121 -8.8345 0.87%

Table 7.4: Comparison of the results of plane for case 3

7.6.2 Example 2: 3-D solid

The second example presents a 3-D problem with 5 × 5 × 5 finite elements as external

loads are applied to the free end of the solid(Figure 4). In the example, Yong’s Modulus

is an uncertain variable following a distribution.

The results in Tables 4, 5, and 6 represent the sensitivities of four different elements

for a 3-D solid obtained by the new method and Monte Carlo simulation, as well as

their relative differences. As shown in Tables 4,5 and 6, excellent agreement between

sensitivity prediction obtained from the proposed method and Monte Carlo method is

obtained for the three dimensional model.

No. of elem New method Monte Carlo Simulation The relative difference

1 -12.2422 -12.1871 0.45%
2 -7.2311 -7.1963 0.48%
4 -9.8843 -9.8378 0.47%
5 -10.3211 -10.2725 0.44%

Table 7.5: Comparison of the results of 3-D solid for case 1
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Figure 7.7: Example 2: 3-D solid

No. of elem New method Monte Carlo Simulation The relative difference

1 -14.1211 -14.0279 0.66%
2 -8.4321 -8.3494 0.98%
4 -10.3311 -10.2412 0.87%
5 -13.2122 -13.0973 0.87%

Table 7.6: Comparison of the results of 3-D solid for case 2

No. of elem New method Monte Carlo Simulation The relative difference

1 -15.3111 -15.1672 0.94%
2 -8.5432 -8.4774 0.77%
4 -11.3433 -11.2466 0.87%
5 -13.1211 -12.9964 0.95%

Table 7.7: Comparison of the results of 3-D solid for case 3
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7.7 Conclusion

In this chapter, a generalized ”exact” method of sensitivity analysis for strain energy

is presented for problems with uncertain variables . The term ”generalized” is used for

defining the method because it may be applied to nonlinear elastic structures with an

arbitrary relation between stress and strain and large deformation with small strains.

The method is ”exact” and computationally efficient because it is a closed-form solution.

The examples demonstrate the high incidence of agreement between the results of the

proposed method and the results of Monte Carlo method for both uncertain external

forces and uncertain Young’s Modulus. The analysis applies as well in two and three-

dimensional problems.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In the dissertation, sensitivity analysis of total strain energy for nonlinear structures

is studied. Based on the law of energy-consistent, the effective strain and stress have

been defined to provide scalar measures of the strain and stress for the two and three

dimensional problems. The total strain energy is transformed in the form of the effective

stain and stress. A closed-form approach for sensitivity calculation is derived which can

be generalized used for different material behaviors.

The effective model is extended to large deformation problems using the 2nd Piola-

Kirchhoff stress and Green-Langrange stress. The similar derivation of sensitivity anayl-

ysis for nonlinear material is used to derive a closed-form solution of sensitivity analysis

for large deformation

The numerical examples with both geometric and material nonlinearity are pre-

sented to demonstrate the applications for the proposed sensitivity analysis calculation

for strain energy. To evaluate the accuracy of the new method, numerical results ob-

tained by the proposed method are compared with those from both analytical solution

(for simple geometry) and from finite differencing method. The case studies are per-

formed for different material behaviors: strain softening material; strain stiffing material

and rubber-like material along with large deformation. The numerical results for both

two dimensional plate and three dimensional solid have been presented.

The closed-form solution of design sensitivity is also applied for reliability-based

structural design. Specifically, the case studies are performed for the problem for the

uncertain applied force performed, and uncertain Young’s modulus with nonlinear ma-

terials. The numerical results obtained by the close-formed solution are compared with

those from Monte Carlo simulation.

The numerical examples from different kind of problems have demonstrated a high
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incidence of agreement between the results from the proposed method and those from

the finite difference method.

8.2 Future Research Directions

To develop an optimal design process for nonlinear structures, it is necessary to develop

methods of design sensitivity analysis for nonlinear response. The methods should be

efficient, stable and reliable for general applications. The methods are usually related to

structural analysis procedures. Some nonlinear structural analysis methods may not be

suitable in the overall structural design optimization process. Therefore, development

of design design sensitivity analysis and hence the optimal design process for nonlinear

system is possible through a thorough understanding of the nonlinear structural analysis

procedures.

Design sensitivity analysis in this study has provided design derivatives that con-

stitute a major task for different kinds of structural optimization algorithm. These
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derivatives are also important in their own right as they represent trend for the struc-

tural performance functions. The future study should more focus on the application

of optimization for different problems that were addressed in the study. The Figure

8.1 give the general algorithm of optimization for nonlinear problems. The sensitivity

calculation is equivalent to the mathematical problem of obtaining the derivatives of

the solutions of those equation with respect to the design variables. Compared with

the traditional approaches of sensitivity analysis, i.e., the finite difference method, the

adjoint variable method or the direct differentiation method, the proposed closed form

solution will greatly reduce the calculation, and will be easily implemented.
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