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This study seeks to simulate soft tissue behavior with a custom finite element analysis. It is the 

eventual goal of this team to explore the inverse problem of soft tissues, and this simulation study 

will play an integral role in that process. It is hoped that new information regarding the elastic 

properties of soft tissue can be used to diagnose disease processes and improve health care 

delivery. 

 

In this investigation, soft tissue is modeled as a linear, isotropic, elastic, and nearly 

incompressible material.  A dynamic finite element problem was defined consistent with the 

experimental protocol of harmonic motion imaging, an elasticity imaging technique that utilizes 

acoustic radiation force to induce localized displacements within soft tissue samples. 

 

The finite element equations of motion in this investigation were solved using the Newmark 

method, an approach commonly used by engineers to determine the dynamic response of 

structures under the action of any general time-dependent loads. It was found that the 

displacement results obtained with the Newmark method made physical sense and agreed with 

the observations of other researchers in this field, suggesting that the current finite element 

analysis is a suitable simulation of soft tissue behavior. 
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Chapter 1 

Introduction 

 

1.1 Problem Statement 

From repeated clinical observations, the tactile characteristics of tumors are known to differ from 

those of normal surrounding tissues.  This accounts for the widespread use of palpatory exams to 

screen for cancer in accessible regions of the body, such as the breast and prostate.  

 

Physicians use palpation to qualitatively assess the stiffness parameters of tissue for a rough 

diagnosis.  These stiffness parameters relate to physical properties called elastic moduli, which 

quantify a tissue‟s resistance to deformation.  It is an accepted fact that these elastic moduli vary 

between tissue types.  This has motivated the development of many methods to investigate the 

mechanical properties of tissues. These methods are collectively known as “elasticity imaging” 

techniques. It is hoped that elasticity imaging techniques will yield new information about tissues 

that could be used to diagnose disease processes, as well as provide insight to the development of 

surgical simulators and biomechanical devices.  

 

There is a wide spectrum of elasticity imaging techniques. Some researchers perform mechanical 

compression tests on soft tissue specimens to determine Young‟s modulus in a specified strain 

range.  Still others are developing methods to perturb soft tissue remotely with acoustic radiation 

force.  In some instances, acoustic radiation force can be viewed as a “point-like” force, which is 

capable of inducing localized displacements within a tissue sample. These localized 

displacements can be used to qualitatively infer the relative stiffness distribution in the medium. 
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Finite element modeling (FEM) can be used as a suitable computational analog to experimental 

methods using point-like acoustic radiation force; the localized displacements obtained 

experimentally can be likened to nodal displacements in FEM.  These nodal displacements are 

determined through a “forward” finite element analysis, where the material properties and loading 

conditions for a given solid mechanics model must be specified.  In the study of soft tissues, 

however, localized displacements are measured experimentally and the loading conditions are 

essentially known; it is the material properties that must be determined.  This is an example of a 

classic inverse problem. 

 

The inverse problem cannot be solved with any commercial finite element package; these 

packages are built for forward analysis, only.  Thus, it is the mission of this research team to 

develop the custom software needed to provide this type of inverse analysis. 

 

This thesis documents the team‟s progress in developing a custom dynamic (forward) finite 

element analysis on a soft tissue model. The assumptions used are that for a linear, isotropic, 

elastic, and incompressible material.  This forward analysis is necessary to generate simulation 

data on which to test an inverse procedure.  The team‟s approach to addressing the inverse 

problem is a work-in-progress, and is discussed at the end of this thesis along with some 

preliminary results. Ideally, the inverse routine‟s eventual implementation into an experimental 

system will enable this team to determine the mechanical properties of soft tissue for the 

betterment of medical diagnosis and design. 

 

1.2 Motivation 

Breast cancer is the most commonly diagnosed form of cancer in women in the United States. 

According to statistics from the American Cancer Society for 2007, women in the United States 



3 

 

 

have a one in eight lifetime risk of developing breast cancer [1]. It is the second leading cause of 

cancer deaths in women, second only to cancers of the lung and bronchus [2]. 

 

At this time, there is no guaranteed way to prevent breast cancer from developing [1]. However, 

numerous studies have shown that early detection saves lives and increases treatment options. In 

the case of breast cancer, the American Cancer Society‟s guidelines for early detection vary 

depending upon on a woman‟s age, and include mammography and clinical breast examinations 

(CBEs). For high risk women, magnetic resonance imaging (MRI) is also recommended [1]. 

 

Mammography and MRI image tissue properties that are generally unrelated to the distinct 

hardness of pathological tissue, as detected by palpation [3]. However, palpation during CBEs is 

not very effective when lesions are small and/or deep beneath the skin. Improving upon the 

effectiveness of CBEs, elasticity imaging techniques seek to quantify the elastic contrast that has 

been qualitatively observed between normal, soft tissue and hard, cancerous nodules during 

palpation.  

 

In the doctoral research of Ladeji-Osias [4], performed under the direction of Dr. Noshir 

Langrana, single and multi-probe indentation tests were performed on commercial breast models 

and cadaveric specimens to investigate the biomechanics of palpation. The shortcomings of 

manual palpation (i.e., its inability to detect small and/or deep lesions) were observed in their 

mechanical testing as well. 
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1.3 Current State of the Art 

There is a wide spectrum of approaches used to explore the mechanical properties and behavior 

of tissues, all with the purpose of advancing health care delivery. These approaches are 

collectively known as elasticity imaging techniques.  

 

One such approach to elasticity imaging involves mechanical compression tests. Krouskop et al. 

[5] used a commercial materials testing system (Instron, Inc., Canton, MA) to subject breast and 

prostate tissue samples to compression loading. Other research groups, such as Wellman et al. [6] 

and Egorov et al. [7], constructed their own, portable indentation devices that could be used in the 

operating room immediately after excision. But regardless of the device used, and without refute, 

mechanical compression tests have shown that different tissue and cancer types exhibit different 

mechanical behaviors and elastic moduli.  

 

Aside from mechanical compression tests, other elasticity imaging methods can provide an actual 

“image” of internal tissue displacement under applied load. This displacement distribution 

qualitatively relates to the relative stiffness distribution within the tissue. Some of these methods, 

such as harmonic motion imaging (HMI), use acoustic radiation force generated inside tissue as a 

remote, dynamic mechanical stimulus. 

 

Harmonic motion imaging (HMI) [8-12] is an elasticity imaging technique that uses acoustic 

radiation force to induce oscillatory displacements at the focus of a focused ultrasound (FUS) 

transducer for the detection of localized stiffness changes. Since the focal volume of a focused 

transducer is usually small (on the order of mm
3 

[13]), the acoustic radiation force generated 

within the volume can be thought of as a point-like load applied to the tissue. The displacement 

induced in the tissue by this load is estimated in the direction of loading by a diagnostic 
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ultrasound transducer aligned directly with the focus of the FUS transducer. With this set-up, only 

one “point” in one direction can be loaded, and the corresponding displacement at that point only 

and in that direction only is monitored simultaneously. 

 

The transducer set-up can be shifted along a 2D x-y grid using a computer-controlled positioning 

system so that displacement measurements can be obtained for various points in a plane. 

Typically, the step size of such a computer-controlled positioning system is on the order of 

millimeters [9,11,12]. To obtain data for multiple planes, the depth of the tissue probed by the 

focus of the FUS transducer can be adjusted by repositioning the transducer set-up in the z-

direction. The displacement signal acquired at each point is then filtered to yield the amplitude of 

the displacement at the excitation frequency; all other frequencies in the response are disregarded. 

These amplitudes are then used to construct a 2D image that is related to the relative stiffness 

distribution in that plane. If multiple planes are combined, the stiffness distribution in the whole 

sample can be seen as a 3D image [9].  

 

Mechanical compression tests and harmonic motion imaging are just two types of many elasticity 

imaging techniques. It is stressed that the methods discussed here are only a few of the many in 

existence. Only harmonic motion imaging (HMI) was discussed in detail because it is the most 

pertinent to this investigation. 

 

1.4 Relevant Work 

The current investigation is focused upon simulating the experimental method of harmonic 

motion imaging (HMI) with finite element analysis. Most recently in 2007, Maleke et al. [9] 

performed a simulation of harmonic motion imaging using COMSOL (Comsol Multiphysics
TM

, 

Comsol Inc., Burlington, MA). They used a two-dimensional, linear, elastic, and nearly 
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incompressible (ν = 0.49) model of soft tissue 35mm by 30mm in size with triangular elements. 

The Young‟s modulus was varied from 20 – 60kPa. The acoustic pressure field generated by an 

FUS transducer was simulated and applied as the source of excitation. It was found that the 

resulting displacement was localized and was greatest at the center of the pressure field, spanning 

approximately ±3mm laterally from the focal zone.  

 

The inventors of HMI, Kullervo Hynynen and Elisa Konofagou [10], have performed their own 

finite element simulations using ALGOR (Algor, Inc., Pittsburg, PA). In a paper published in 

2003 [8], they used finite element simulations of a linear, elastic, nearly incompressible (ν = 

0.495) soft tissue model to study the effect of parameters such as loading frequency and tissue 

modulus on the resulting displacement estimate. They used a two-dimensional model 40x40mm 

in size with triangular elements and a stiffness of 30kPa. An inclusion with a diameter of 6.6mm 

was placed in the center, and its stiffness was varied between 20kPa to 50kPa. The center node of 

the inclusion was loaded with a harmonic force oscillating about a positive mean with frequencies 

ranging from 200Hz to 800Hz. Only the oscillation at the excitation frequency was considered; a 

low frequency component observed in each response was removed through high-pass filtering to 

preserve the consistency between simulations and experiments (where only the higher, excitation 

frequency was tracked). 

 

When the force was applied directly to the center of the inclusion, a decrease of the displacement 

amplitude with inclusion stiffness was observed at all frequencies investigated. A small upshift in 

the frequency of the oscillatory displacement signal (on the order of tens of Hz) was also 

observed with increasing stiffness. Lastly, for a given inclusion stiffness, a larger displacement 

amplitude was observed at smaller frequencies. 
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Aside from HMI, Konofagou and Hynynen, in addition to Jonathan Thierman, performed a finite 

element simulation study of ablation with ultrasound-stimulated acoustic emission imaging 

(USAE) in 2001 [14]. USAE is very similar to HMI, where the only marked difference is the 

method of displacement detection; HMI uses ultrasound, while USAE uses an external 

hydrophone [8]. However, this difference did not affect the gist of their finite element simulations 

in relation to the current investigation. In ALGOR simulations comparable to those performed in 

2003, the group examined the displacement amplitude as a function of excitation frequency for 

several inclusion-to-background stiffness ratios. They observed the general trend that over a 

range of 0 to 50kHz, the displacement amplitude decreased with excitation frequency. On the 

small scale, though, the amplitude values oscillated wildly and unpredictably in the range of 

excitation frequencies between 0 to 12kHz.   

 

The simulations discussed previously were performed with commercial finite element packages 

(COMSOL and ALGOR), so while the basis of those simulations is comparable to the current 

investigation, the intent is much different. The current simulation was built from the bottom up in 

MATLAB (The MathWorks Inc., Natick, MA) with the intent that an inverse routine could 

eventually be integrated seamlessly; the simulation data and inverse solution would all be 

available from the same program. With commercial finite element packages, an inverse routine 

cannot be integrated and must be performed separately. This is what sets this research and the 

current simulation apart from the others. 

 

1.5 Outline 

Chapter 1 of this thesis provides the reader with the background needed to understand the 

motivation of the current research. The current state of technology in relation to this research is 

also discussed, as are other soft tissue simulations similar to work presented here.   
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Chapter 2 details the formulation of the finite element method used in the current investigation 

from the basic equations of linear elasticity to approximate the behavior of soft tissue, while also 

addressing the provisions required for nearly incompressible materials. 

 

Chapter 3 discusses the basic architecture of the current finite element simulation, and that this 

source code was originally capable of solving the static problem for compressible material 

models, only. This chapter also documents the team‟s efforts in investigating the trustworthiness 

of the source code and the subsequent alterations for material incompressibility by comparing its 

results to that of a commercial finite element package. 

 

Chapter 4 discusses how the static problem of the previous chapter evolved into a dynamic 

problem with the definition of a time-varying force vector. The subsequent equations of motion 

were solved using the Newmark method, a popular approach with engineers to determine the 

dynamic response of structures under any general time-dependent loads. 

 

Chapter 5 examines the dynamic results obtained with the current analysis to determine its 

efficacy in simulating soft tissue behavior. The Newmark method was also compared to a “short-

cut” method as a rough measure of solution accuracy. 

 

Chapter 6 provides insight into the inverse problem at hand, addressing what some other groups 

in the field have done thus far. While it is mainly a work-in-progress, the inverse routine 

proposed is discussed and some preliminary results are presented. 

 

Chapter 7 discusses the conclusions drawn from the current research, while Chapter 8 suggests 

topics for future work. 
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Chapter 2 

Formulation of the Finite Element Method 

 

2.1 Basic Equations of Linear Elasticity 

For small deformations, it can be assumed that soft tissue behaves as a linear solid [15].  This is 

the basic assumption used in the subsequent formulation of the finite element method, which will 

be based upon the basic equations of linear elasticity.  The basic equations of linear elasticity are 

a set of differential equations governing the motion of infinitesimal, linearly elastic material 

volumes experiencing small deformations. A further assumption of material isotropy will also be 

made, although this property is generally not observed experimentally.  The basic equations of 

linear elasticity with the assumption of material isotropy are listed in Table (2.1) below and are 

described hereafter. 

 

 

Table 2.1 
The basic equations of linear elasticity used in the current formulation of the finite 

element method to model soft tissue. The assumptions of material isotropy and 
isothermal deformation were also made. 
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In Eqn (2.1) – Eqn (2.5), the subscripts i and j indicate Cartesian coordinate direction and surface, 

respectively.  In the balance of momentum equations (Eqn (2.1)), τ is the symmetric stress tensor 

acting on each surface of the volume, bi is the body force, ρ is material density, and iu  is the 

second time derivative of the displacement vector.  The geometric relations (Eqn (2.2)) relate the 

strain tensor ε to the displacement vector u and coordinate direction x.  In Eqn (2.3), Ti is the 

force per unit surface area (traction) in each direction i, where nj is the unit vector normal to each 

surface.  Tractions Ti and the displacement vector u can be constrained on each surface of the 

material volume, and are thus called the boundary (Eqn (2.3)) and support conditions (Eqn (2.4)), 

respectively.  The constitutive relations (Eqn (2.5)) relate the stress tensor τ to the strain tensor ε 

for an isotropic material experiencing isothermal deformation.  δ is the Kronecker delta, and μ 

and λ are the shear modulus and 1
st
 Lamé constant, respectively.  E is Young‟s modulus, and ν is 

Poisson‟s ratio. 

 

2.2 Finite Element Framework 

An approximate solution to the set of differential equations Eqn (2.1) – Eqn (2.5) can be achieved 

by using a numerical method known as the finite element method.  The fundamental idea is to 

divide a material body into a series of small subsections called elements.  Under applied loading, 

the object‟s deformation (i.e., continuous displacement field) can be approximated in each 

element by interpolating between the values of the displacement at specific points on each 

element called nodes.  These discrete nodal displacements are determined via finite element 

analysis; they are a necessary ingredient to approximating the material‟s displacement field, the 

solution to the elasticity problem. 

 

To construct the finite element framework, first define D , a vector of all the displacements at 

each node for a single element, such that 
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1

1

1

D     (2.6)   

where, in Cartesian coordinates, U, V, and W are the x-, y-, and z- displacements at nodes 1, 

2….N.  To attain the displacement field within the element, shape functions must be used to 

interpolate inside the body based on the nodal displacement values.  For an 8-node three-

dimensional (3D) quadrilateral, linear shape functions are of the form:  

    kkkkN  111
8

1
,  (2.7)   

where ξ-η-ζ comprise the local coordinate system of the element, originating at its center.  -1 ≤ ξ 

≤ 1, and the same is true for η and ζ. ξk , ηk , and ζk are the values of ξ, η, and ζ (either ± 1) of the 

k
th
 (1, 2, ….8) node.  Illustrated below in Figure 2.1 is a single element labeled with both x-y-z 

and ξ-η-ζ coordinate systems with nodes 1 through 8. 

 

Figure 2.1 
An 8-node, 3D quadrilateral element labeled with global x-y-z and local ξ-η-ζ coordinate 

systems. A global coordinate system is used for the whole model (multiple elements) 
while a local coordinate system is used for each particular element. The size of the model 

is also indicated with the length of its edges, denoted by „a‟, „b‟, and „c‟. 
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The displacement field in the element can be approximated by 

 

k
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k
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


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   ,   k

N

k

kVNv 



1

   ,   k

N

k

kWNw 



1

  (2.8)   

 

where u, v, and w represent the displacement field in the x, y, and z directions at any given ξ-η-ζ 

coordinate in the volume. In matrix form, the displacement field may be written as 

NDu  ,    (2.9)   

 

where 
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and 
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where N1 is the shape function at node 1 of the element, and so forth. 

 

2.3 Principle of Virtual Work 

The principle of virtual work may be used to establish the fundamental equations of the finite 

element methodology.  To derive the virtual work theorem, multiply the momentum equation 

(Eqn (2.1)) by an arbitrary function iu : 

0



iiiii

j

ij
uuubu

x



   (2.12)   

Define another function ij such that 



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



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







i

j

j

i
ij

x

u

x

u

2

1
 .   (2.13)   
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Since the stress tensor τ is symmetric ( jiij   ),  

j

i
ij

i

j

ij

j

i
ijijij

x

u

x

u

x

u














 

2

1

2

1
  (2.14)   

if the indices i → j and j → i in the second term between the equal signs. 

 

By taking the volume integral of Eqn (2.12) and using integration by parts on the first term, Eqn 

(2.15) below results: 

    0



 dVuubdVdVu

x
i

V

iiij

V

ijiij

V j

  (2.15)   

Eqn (2.15) could be further modified by applying Gauss‟ theorem on the transformation of 

integrals, stated below: 

dAfndV
x

f
j

S

j

V j

j

 



       (2.16)   

where iijj uf  in this case.  By applying Gauss‟ theorem to the integral in Eqn (2.15), the 

final resulting integral is: 

  dVdVuubdAuT ij

V

iji

V

iii

S

i       (2.17)   

where jiji nT  are the surface tractions as defined in Eqn (2.3).  This is the basic virtual work 

theorem of linear elasticity if iu and ij  represent virtual variations in displacement and strain, 

respectively, for the material volume.  The left-hand side of Eqn (2.17) represents the work done 

by external loads (surface tractions, body and inertial forces) and the right-hand side represents 

the work done by internal stresses ij . 
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2.4 Finite Element Equations of Linear Elasticity 

When applied to the assembly of finite elements, the virtual work formula in Eqn (2.17) for the 

whole material body becomes 

  dVdVdA
M

m V

T
M

m V

T
M

m S

T

mmm

τεubuTu   



111

  (2.18)   

for all elements 1…M.  τ is defined as 

 312312332211 T
τ ,  (2.19)   

 

such that the constitutive relations of Eqn (2.5) for an isotropic material can be written in matrix 

form as  

Cετ      (2.20)   

where C is defined as: 
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and  

 312312332211 222 T
ε   (2.22)   

The strain vector of Eqn (2.22) can be put in terms of displacement components via the geometric 

relations (Eqn (2.2)) as 
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Or, in terms of nodal displacement D , 

ADε      (2.24)   

where 
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The entries in A for the brick in Figure (2.1) (for example, in the x-direction) are defined as  

x

N

x

N kk









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
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
  ;   

  a

x

a

x 2

2
 .  (2.26)   
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The same is true for η and ζ with y and z, respectively.  „a‟ is the width of the element in the x-

direction from Figure (2.1).  Recall, the shape functions Nk can be differentiated with respect to 

the local ξ-η-ζ coordinate system with help from Eqn (2.7). 

 

In the virtual work formula of Eqn (2.18), u  and ε  represent virtual variations in the material‟s 

displacement and strain fields, respectively. They depend upon nodal displacement variations in 

the same manner as the displacement field u and strain ε depend on the actual nodal 

displacements.  In other words, 

Nδu      (2.27)   

Aδε      (2.28)   

where δ is the column matrix of virtual variations in nodal displacement arranged in the same 

convention as the actual nodal displacements D  (Eqn (2.6)). 

 

Substituting Eqn (2.27), Eqn (2.28), and Eqn (2.20) for u , ε , and τ , respectively, into the 

virtual work formula in Eqn (2.18) yields fF total , where the external nodal forces are 

DNNbNTNF 
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

dVdVdA
M

m V

T
M

m V

T
M

m S

T

total

mmm
111

  (2.29)   

where the first, second, and third right-hand side terms are the external nodal forces from surface 

tractions T , body forces b , and inertial forces D , respectively. D  is the global vector of 

nodal accelerations for the whole material body (elements 1…M). 

 

The internal nodal forces as a result of τ are 

KDf      (2.30)   
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where D now represents the global vector of nodal displacements for all elements 1…M, 

determined by 





M

m

m

localglobal

1

DD    (2.31)   

K is referred to as the global stiffness matrix, and is defined as 

dV
M

m V

T

m

CAAK  



1

   (2.32)   

 

2.5 Provisions for Nearly Incompressible Materials 

Soft tissue is regarded as a nearly incompressible material.  Unfortunately, the basic finite 

element equations fF total as defined in the previous section are poorly conditioned for 

numerical solution when a material‟s Poisson‟s ratio  approaches 0.5.  The problem arises due 

to C in the stiffness matrix, K ; C contains the 1
st
 Lamé constant  , which tends to infinity as 

ν approaches 0.5.  Thus, any small numerical errors are amplified when multiplied by  - terms 

in the C  matrix.  These now larger numerical errors can precipitate through the program to give 

erroneous values for the stress tensor τ  and the nodal displacement vector D .  This section 

discusses a way to remedy this situation, by going to the root of the problem and re-expressing 

terms in the basic equations of linear elasticity.  These alterations affect the principle of virtual 

work, and hence the finite element equations for incompressible materials. 

 

2.5.1 Principle of Virtual Work – Revisited  

One way to eliminate C  from the finite element equations is to revisit the basic equations of 

linear elasticity and break the strain field into its deviatoric (shape change) and dilatational 

(volume change) parts, as shown below. 
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ijvijij e 
3

1
    (2.33)   

where ije  is the deviatoric strain, v  is the volumetric strain ( 332211  v ), and   is the 

Kronecker delta. Note that Eqn (2.33) is merely a provision needed for incompressible materials:  

The geometric equations of Eqn (2.2) still apply. 

 

The new expression for strain may be substituted into the constitutive relations of Eqn (2.5) to 

yield 

ijijij Ps   ,   (2.34)   

where ijs  is the deviatoric stress, 

ijij es 2 ,    (2.35)   

and P is the pressure within the element, 

vP  ,    (2.36)   

where   is the bulk modulus given by 

 
3

2
    (2.37)   

This new representation for stress ij can be incorporated into the balance of momentum 

equations (Eqn (2.1)) and then multiplied by an arbitrary function iu  to begin deriving the 

theorem of virtual work.  However, the constraint equation 

0



P

v   ,    (2.38)   

which is just a form of Eqn (2.36), must also be added to the momentum equation with a 

Lagrange multiplier P .  Thus, the altered momentum equation becomes 
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If the same steps were taken as in Section 2.3 to derive the theorem of virtual work, one would 

find that  
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where ije  and v are defined, respectively, as 
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     (2.42)   

Eqn (2.40) is the virtual work theorem for linearly elastic, incompressible materials if iu , ije , 

v , and P   represent virtual variations in the displacement field, deviatoric strain, volumetric 

strain, and pressure, respectively, for the material body.   

 

2.5.2 The Revised Finite Element Equations 

As it applies to the assembly of finite elements, the virtual work formula of Eqn (2.40) becomes 
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(2.43)   

for all elements 1 …M. 
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In the finite element framework, there are only two true unknowns “hidden” in the virtual work 

formula of Eqn (2.43):  nodal displacements D  and nodal pressures P .  All other variables can 

be written in terms of these nodal vectors.   

 

There can be separate displacement nodes and pressure nodes in each element, which do not 

coincide.  Figure (2.2) below shows this distinction for the brick element pictured in Figure (2.1), 

with eight displacement nodes and one pressure node.   

 

Figure 2.2 
The eight node brick element used in the current investigation has one pressure node at 

its center, indicating that pressure is treated as a constant within each element of the 

model. Element pressure needs to be considered as part of the analysis for incompressible 

materials. 

 

Analogous to the relationship between displacement field u and nodal displacements D , an 

element‟s pressure P depends upon nodal pressures P  via shape functions H , shown below 

HPP     (2.44)   

For an element with one pressure node, pictured in Figure (2.2),  1H  for constant element 

pressure P.  The virtual variation in pressure, P , depends upon the variation in nodal pressure p  

in the same manner that u depends upon the variation in nodal displacement δ as defined in Eqn 

(2.27): 

HpP     (2.45)   
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If one defines  

 000111Tm ,   (2.46)   

volumetric strain v can be written in terms of nodal displacement D  as 

DAvv      (2.47)   

where the matrix vA is defined as 

AmA
T

v      (2.48)   

such that 332211  v , a 1x1 vector (scalar).  In the virtual work formula (Eqn (2.43)), 

the virtual variation of volumetric strain, v , depends upon δ  rather than D , as discussed for 

u  earlier. 

 

If deviatoric stress s and deviatoric strain e are defined, respectively, as 

 312312332211 ssssssT s   (2.49)   

 312312332211 222 eeeeeeT e   (2.50)   

Eqn (2.35) can be rewritten in matrix form as  

eCs d     (2.51)   

where the matrix dC is defined as 
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s  can be written in terms of nodal displacement D  by first rewriting e as 
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vmεe
3

1
 ,   (2.53)   

which is Eqn (2.33) rewritten in matrix form.  Substituting Eqn (2.47) for v , and using the 

definition of  ε from Eqn (2.24), e  can be rewritten in terms of D  as 

DAe d     (2.54)   

where the matrix dA is defined as 

AIA dd      (2.55)   

with dI defined as 

T

d mmII
3

1
    (2.56)   

Note, now, that e , the virtual variation of deviatoric strain in the element, depends upon the 

virtual variation in nodal displacement (δ ) by 

δAe d       (2.57)   

With e as defined in Eqn (2.54), s  can finally be written in terms of D as 

DACs dd     (2.58)   

Finally, with all variables of the virtual work theorem (Eqn (2.43)) expressed in terms of either 

D  or P , substitutions can be made similar to Section 2.4 to arrive at the finite element 

equations.  But now, since there are two variables ( D  and P ), terms containing the virtual 

displacements δ and pressures p can be grouped and written as a system of equations, shown 

below: 
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where D and P  are the global vectors of nodal displacement and pressure, respectively, and 

totalF  is defined the same as in Eqn (2.29).  The matrices DDK , DPK , PDK  and PPK are 

defined, respectively, below 
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If element pressure P is constant, nodal pressure P  can be condensed out of the system given in 

Eqn (2.59) so that an effective “incompressible” stiffness matrix is formed, shown below: 

totalinc FDK      (2.63)   

where incK is defined as 

PDPPDPDDinc KKKKK
1   (2.64)   

Formulating the finite element equations in this manner alleviates the difficulties associated with 

nearly incompressible materials.  Although the bulk modulus, , in the numerator of 
1

PPK  in 

incK  goes to infinity as  approaches 0.5, this apparently has no negative affect on global 

displacement D .   
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Chapter 3 

Static Analysis 

 

3.1 Source Code 

Free-access online source code designed in MATLAB (The MathWorks Inc., Natick, MA) by 

Zaicenco [16] was used as the basis from which to build a finite element model of soft tissue.  

This code was capable of building the global stiffness matrix derived in Section 2.4 for 

compressible material models.  Additionally, it was capable of solving the system of equations 

FKD  ,    (3.1)   

where K is the global stiffness matrix for compressible materials, D is the global vector of nodal 

displacements, and F is the first right-hand side term of totalF  in Eqn (2.29), which is repeated 

below for convenience. 
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If F is a static force, solving for D in Eqn (3.1) is called static analysis.  Before addressing the 

dynamic problem with F(t), static analyses were first  performed with the source code to assess 

the correctness of its original architecture and the subsequent alterations added for nearly 

incompressible materials. 

 

3.1.1 Model Parameters 

Since the original source code had been created by others, its accuracy was a matter of question.  

Therefore, it was necessary to first validate its results by some other means before moving 
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onward with the project.  For this purpose, ANSYS (ANSYS Inc., Canonsburg, PA) was 

employed.  

 

Table (3.1) below lists the parameters and specifications used to construct a compressible finite 

element model of soft tissue with the original source code.   

 

Table 3.1 
Specifications used to construct a compressible finite element model with the original 

source code. The original source code could not handle the case of material 
incompressibility, so for an initial gauge of its accuracy, the code was tested as 

downloaded for a compressible model of soft tissue. 

 

The element size (i.e.,  mesh size) was selected on the order of millimeters, which is comparable 

to the step size of the computer-controlled positioning system used by Maleke et al. [9,11,12] 

during HMI experiments (as explained previously in Section 1.3).  A total model size of 

40x40x40mm was chosen in accordance with a previous finite element simulation of USAE 

performed by Konofagou et al. [14]. This model size was also comparable to the size of excised 

tissue samples used by Konofagou and Hynynen [8] and Maleke et al. [11] in their experiments 

with HMI.  8-node brick elements were chosen to set up an easy node-numbering scheme, and 

linear shape functions were selected for simplicity.  A Young‟s modulus (E) of 20kPa was 

selected to represent normal breast fat, which is in the appropriate range as observed by Krouskop 

et al. [5]. Poisson‟s ratio was set to 0.3 for a typical compressible material.   
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With the bottom surface (z = 0) fixed, ux, uy, and uz for the first 11x11 nodes (due to the node-

numbering scheme) were zero; this corresponded to the first 363 entries in the global 

displacement vector, D.  Since these displacements were already known (zero), these entries were 

removed from the displacement vector.  Figure (3.1) provides an illustration of this procedure for 

the system of equations in Eqn (3.1). 

 

Figure 3.1 
An illustration of the reduction of the global stiffness matrix. Since the surface z = 0 of 

the model was fixed, the displacement at each node on that surface was known to be zero 

and could be removed from the displacement vector. The corresponding rows and 

columns of the stiffness matrix had to be removed as well because of linear algebra, 

thereby reducing the size of the problem. 

 

The model had 1,331 nodes with three degrees of freedom (DOF) at each node.  The global 

stiffness matrix K and displacement vector D had 3993x3993 and 3993x1 entries, respectively.  

However, since the first 363 entries of D were zero from the fixed surface at z = 0, these entries 

were ignored (above the horizontal line in Figure (3.1)) and instead a “reduced” 3630x1 

displacement vector was considered.  The stiffness matrix was also reduced to comply with the 

rules of matrix multiplication; it consisted of the lower right-hand region of the global matrix 

circled in Figure (3.1).  Thus, in the current investigation, static analysis actually consisted of 

determining the “reduced” displacement vector (D3630x1) using the “reduced” stiffness matrix 

(K3630x3630).  So overall, the assumption of a fixed lower surface (z = 0) helped save computational 

time by reducing the size of the stiffness matrix.   
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A model with the above specifications was also constructed in ANSYS 10.0 using the SOLID45 

element.  In ANSYS, the SOLID45 element is used for the 3D modeling of structural solids.  The 

element itself is defined by eight nodes having three DOF at each node: translations in the x, y, 

and z directions.  Table (3.2) contains the ANSYS parameters used to construct the model 

described in Table (3.1). 

 

Table 3.2 
ANSYS specifications used to construct the compressible material model identified in 

Table 3.1. 

 

 

3.1.2 Validating the Local Stiffness Matrix     

An illustration of the general architecture of the original algorithm is depicted in Figure (3.2). The 

algorithm first computed the local stiffness matrix, which, for a homogeneous medium, was the 

same for each element.  The construction of the local stiffness matrix thus provided a first step in 

assessing the accuracy of the source code.  Rather than constructing a 10x10x10 element model, a 

1x1x1 element model was made for this purpose instead.  The same was done in ANSYS 10.0.  

For the source code algorithm, obtaining the local stiffness matrix was simple; it was a workspace 

variable in MATLAB.  In ANSYS, however, the stiffness matrix was not obtainable; ANSYS 

does not consider the stiffness matrix a variable for viewing.  Therefore, a strategy was devised to 

view the local stiffness matrix constructed by ANSYS. 
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Figure 3.2 
General architecture of the original source code. First the local stiffness matrix was 

constructed from material properties and shape functions, and was then assembled into 

the global stiffness matrix. The static problem could then be solved using the boundary 

and support conditions. 

 

The single element MATLAB and ANSYS models are labeled with their nodes and coordinate 

systems in Figure (3.3) below.  Notice that the coordinate system orientations and node-

numbering schemes were different for each model. 

 

Figure 3.3 
8-node brick elements used in MATLAB and ANSYS. Each element is labeled with a 

global coordinate system and node numbering scheme unique to the program it was 

constructed in.  
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To view the stiffness matrix in ANSYS, the scheme depicted in Figure (3.4) was employed using 

the governing equations KD=F (Eqn (3.1)).  Note the use of a unit displacement; for this analysis, 

the models were 100x100x100 units in keeping with the assumption of small deformations. 

 

 

Figure 3.4 
An illustration of the scheme used to view the local stiffness matrix constructed in 

ANSYS. Since the stiffness matrix is not a variable for viewing in ANSYS, this scheme 

was devised using operations and variables possible in the program. This was needed to 

assess the validity of the local stiffness matrix constructed with the original source code. 

 

Figure (3.4) indicates that if all entries in vector D were zero except for one (and if that entry 

equals “1”), then by matrix multiplication, the force vector would equal the column in the 

stiffness matrix corresponding to the nonzero row entry of the displacement vector.  This scheme 

was executed in ANSYS; a unit displacement was applied to a given node and the reaction forces 

(force vector) were viewed in the post-processor. 

 

For example, if 12 xu was set in ANSYS, the resulting reaction forces corresponded to the 2
nd

 

column of the local stiffness matrix computed by MATLAB.  This was because the x-direction at 

node 2 in ANSYS equaled the y-direction at node 1 in MATLAB (see Figure (3.3)); in 

MATLAB, 
1

yu  was the 2
nd

 row entry of the displacement vector D (see Figure (3.4)), which 

corresponded to the 2
nd

 column of K.  Figure (3.5) shows some additional displacement 

equivalencies between MATLAB (left) and ANSYS (right), which can be inferred from Figure 

(3.3).  
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Figure 3.5 
Displacement equivalencies between MATLAB (left) and ANSYS (right). Since the 

orientation of the global coordinate systems and the node numbering schemes for each 

element are different in MATLAB and ANSYS, the displacement at one node in one 

direction in MATLAB is equivalent to the displacement at a node with another number in 

another direction in ANSYS. 

 

 

The first eight entries of the 2
nd

 column of the local stiffness matrix computed by MATLAB 

alongside the reaction forces from setting 12 xu  and all other DOF = 0 in ANSYS are depicted 

in Figure (3.6).  In the MATLAB node-numbering scheme, the corresponding row entries of the 

displacement and force vectors are denoted next to the stiffness column (see Figure (3.4)). 

Comparing the ANSYS reaction forces to the MATLAB stiffness entries was facilitated by the 

displacement equivalencies in Figure (3.5). These equivalencies also applied between the force 

entries in MATLAB and the reaction forces from ANSYS.  Since the forces computed by 

ANSYS were reaction forces, they were opposite in sign to the entries in the stiffness matrix. 

 

From Figure (3.6), it could be seen that the source code and ANSYS were in accordance for the 

2
nd

 column of K.  By repeating this process for other nodes in ANSYS, it was confirmed that the 

source code was capable of accurately generating the local stiffness matrix for a compressible 

material model.  
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Figure 3.6 
The reaction forces of ANSYS versus the corresponding column of the local 

compressible stiffness matrix from the MATLAB source code. Each row of the stiffness 
“column” is denoted by the corresponding row entry of the displacement and force 

vectors. The displacement equivalencies discussed in Figure (3.5) apply to forces as well 

and aid in the comparison. 

 

 

3.1.3. Validating the Global Stiffness Matrix 

Although the local stiffness matrix had been validated by ANSYS, the assembly routine used by 

the source code to create the global stiffness matrix was still up to question.  The only way to 

assess this routine was to perform static analyses with both the source code and ANSYS and then 

compare the displacement solution.  The models in both MATLAB and ANSYS were constructed 

according to the specifications shown in Table (3.1) and Table (3.2), respectively.   

 

A constant force was applied to the geometrically central node in each model.  For a 

40x40x40mm model, the force was placed at coordinate (20,20,20)mm.  The magnitude of this 

force was 0.01N, and it was applied in the z-direction towards the fixed surface.  Thus, the force 

vector F was zero everywhere except for Fz at the node with coordinates (20,20,20)mm. 
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Figure (3.7) illustrates the 10x10x10 element models used in MATLAB and ANSYS loaded at 

point (20,20,20)mm.  Note the orientation of the coordinate systems and force. 

 

Figure 3.7 
10x10x10 element models used in MATLAB and ANSYS. Each model is labeled with its 

global coordinate system unique to the program it was constructed in. A force was 

applied at the geometrically central node which, for a 4mm mesh, translates to coordinate 

(20,20,20)mm. The force was applied towards the fixed surface at z = 0 (in the negative 

z-direction). 

 

The source code solved Eqn (3.1) by  

D = K
-1

F    (3.2)   

where K
-1

 was computed using the inv(.) command in MATLAB.   

 

The source code determined D as a single column vector arranged in the standard form shown in 

Eqn (2.6), stated again below for convenience. 
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Recall that U, V, and W indicate the x, y, and z displacements, respectively, at nodes 1 – N.  In 

contrast, ANSYS did not incorporate the x, y, and z displacements into a single displacement 

vector, but instead used separate vectors for each direction, shown below. 
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The difficulty in comparing D from MATLAB and ANSYS arose from the fact that the nodes 

were not labeled using the same node-numbering convention (as seen in Figure (3.3)).  Thus, 

coordinates, not node numbers, were used as the index with which to compare the displacement 

results. 

 

By comparing the x, y, and z displacement at each nodal coordinate, a maximum percent error of 

0.0042% was found between MATLAB and ANSYS results.  This finding confirmed the 

correctness of the routine used by the source code to assemble the global stiffness matrix for a 

compressible material.  It also affirmed that the support and loading conditions were applied 

correctly in each program.   

 

3.2 Source Code Alterations 

The original source code‟s formulation of the local (compressible) stiffness matrix K was altered 

for material incompressibility, as discussed in Section 2.5.  Once these programming changes 

were implemented into the source code, ANSYS 10.0 had to be used once again in order to 

confirm the correctness of the alterations. 
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3.2.1 Model Parameters 

With the altered source code, a 1x1x1 element model 100x100x100 units in size was used to 

generate the local incompressible stiffness matrix. This model was identical to that described in 

Table (3.1), except Poisson‟s ratio now equaled 0.495 to mimic a nearly incompressible material. 

Table (3.3) shows the ANSYS parameters needed to construct this incompressible model.   

 

 

Table 3.3 
ANSYS specifications used to construct an incompressible material element. A model of 

this type in ANSYS was needed to assess the accuracy of the programming modifications 

added to the original source code to handle the case of material incompressibility. 

 

 

The SOLID185 element („ELEMENT TYPE‟ in Table (3.3)) had the same basic properties as the 

SOLID45 element, but it also had the capability of simulating the deformation of nearly 

incompressible materials with the „MIXED U/P‟ element option.  The term „mixed u/p‟ is used to 

describe the formulation of the stiffness matrix described in Section 2.5 for nearly incompressible 

materials, where displacement „u‟ and pressure „p‟ were treated as independent variables inside 

each element.   
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3.2.2 Validating the Altered Local Stiffness Matrix 

To compare the local incompressible stiffness matrices from both the altered source code and 

ANSYS, the same procedure was followed as in Section 3.1.2 for the compressible case.  All 

displacement equivalencies (see Figure 3.5)) between the MATLAB and ANSYS models still 

applied, as did the reasoning from that Section.  

 

The first eight entries of the 2
nd

 column of the local incompressible stiffness matrix computed by 

the altered source code alongside the reaction forces resulting from setting 12 xu  and all other 

DOF = 0 in ANSYS are depicted in Figure (3.8). In the MATLAB node-numbering scheme, the 

corresponding row entries of the displacement and force vectors are denoted next to the stiffness 

column (see Figure (3.4)). Comparing the ANSYS reaction forces to the MATLAB stiffness 

entries was facilitated by the displacement equivalencies in Figure (3.5). These equivalencies also 

applied between the force entries in MATLAB and the reaction forces from ANSYS.  Since the 

forces computed by ANSYS were reaction forces, they were opposite in sign to the entries in the 

stiffness matrix. 

 

From Figure (3.8), it was apparent that the source code (altered) and ANSYS were in accordance 

for the 2
nd

 column of incK . By repeating this process for other nodes in ANSYS, it was 

confirmed that the altered source code was capable of accurately generating the local stiffness 

matrix for a nearly incompressible material model; the provisions according to Section 2.5 were 

implemented correctly. 
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Figure 3.8 
The reaction forces of ANSYS versus the corresponding column of the local 

incompressible stiffness matrix from the MATLAB source code. Each row of the 

stiffness “column” is denoted by the corresponding row entry of the displacement and 

force vectors. The displacement equivalencies discussed in Figure (3.5) apply to forces as 

well and aid in the comparison. 
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Chapter 4 

Dynamic Analysis 

 

4.1 Finite Element Equations of Motion 

Recall from Section 1.3 that harmonic motion imaging is a dynamic excitation method. Thus, to 

simulate results obtained with this technique, the excitation or force applied to the current soft 

tissue model had to be dynamic as well. In finite element modeling, for a multiple degree of 

freedom system, this requires a time-varying nodal force vector, F(t).  

 

In structural mechanics, the system of equations  

)()()()( tttt FKDDVDM     (4.1)   

are considered the general finite element equations of motion for a material under dynamic 

excitation.  M, V, and K are the global mass, damping, and stiffness matrices, respectively. F(t) is 

the global vector of time-varying, externally applied nodal forces, and )(tD , )(tD , and )(tD  

represent the time-varying global vectors of nodal displacements, velocities, and accelerations, 

respectively, induced in the medium by F(t). 

 

Even though Fung [17], the “father of modern biomechanics”, noted that biological tissues have 

viscoelastic features, the current soft tissue model was viewed as an elastic material (V = 0).  

Viscosity effects will be addressed in future work, and were not considered in depth in the current 

investigation. Thus, the general finite element equations above reduce to 

)()()( ttt FKDDM  ,   (4.2)   
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which are the finite element equations of motion for an elastic material. In the current 

investigation, K = incK to model nearly incompressible soft tissue. 

 

4.1.1 Mass Matrix 

The mass matrix M originates from the last right-hand side term of totalF  in Eqn (2.29), stated 

again below for convenience. 
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Unlike static analysis, the vector of external nodal forces totalF  is a function of time in the 

dynamic problem, as is the resulting displacement )(tD .  Thus, the second time derivative of 

displacement ( D ) is nonzero, and the last right-hand side term of totalF  enters into the finite 

element equations. If body forces b are neglected, the balance of internal to external nodal forces 

given by  

totalFKD       (4.3)   

(as discussed in Section 2.4) forms the finite element equations of motion (Eqn (4.2)) 

)()()( ttt FKDDM  ,      

where M is defined from totalF  as 

dV
M

m V

T

m

NNM  



1

    (4.4)   

As mentioned in Section 4.1, )(tF  in Eqn (4.2) is the global vector of time-varying, externally 

applied nodal forces; it is the first right-hand side term of )(ttotalF . 
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Rather than using shape functions N to determine the mass matrix, a direct approach can be used 

by concentrating the total mass of the material body at its nodes.  This technique is called 

“lumping”, and is illustrated in Figure (4.1) for a two-dimensional body with rectangular 

elements. 

 

Figure 4.1 
The lumped mass approach used to formulate the mass matrix in the current simulation, 

where the mass of each element is assumed to reside at its nodes. „a‟ and „b‟ denote the 

edge lengths of each element, and ρ is the material density. Depending upon location, the 

mass at each node will vary accordingly, and is some factor of m = ρab. 

 

In Figure (4.1), the total mass of the material surrounding each node (illustrated by dashed lines) 

is treated as a point mass at that node (denoted by a black circle).  The size of each circle 

corresponds to how much mass is concentrated at a given node, which is related to its position in 

the model (internal, edge, or corner).  If the density of the material is ρ and each rectangular 

element has dimensions „a‟ x „b‟, the mass at interior nodes, for example, is m = ρab.  The same 

reasoning can be applied to edge nodes and corner nodes. 

 

The lumped mass approach has been found to work well in practice as long as all mass is 

accounted for.  Reportedly, there is no discernible increase in solution accuracy when the 

generalized mass formulation (Eqn (4.4)) is used.  Thus, for simplicity, the mass matrix M in this 

investigation was formed using the lumped mass approach. 
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4.1.2 Force Vector 

Any force applied to the current soft tissue model should be consistent with what is used and 

observed by other researchers working with acoustic radiation force.  Equation (4.5) below is an 

approximation to the acoustic radiation force; appropriately, it was used to define the forcing 

function applied to the current soft tissue model. 

V
c

tIf
tFo 

)()(2
)(


    (4.5)   

f, I(t) , and V are the operating frequency, time-varying intensity, and focal volume, respectively, 

of the acoustic radiation force-generating FUS transducer(s) [8]. The speed of sound in the tissue 

is c. The frequency-dependent absorption coefficient of the tissue is α(f). In this investigation, the 

attenuation of the material was assumed to be linear with frequency so that absorption α(f)  = α·f . 

This assumption was used by Palmeri et al. [18] in their method to characterize a material‟s 

attenuation using acoustic radiation force. 

 

Figure (4.2) provides a schematic of the HMI experimental setup used by Maleke et al. [12]. The 

variables described in Eqn (4.5), as well as another pertinent variable („freq‟), are illustrated in 

relation to the setup. The variable freq will be explained shortly. 

 

The temporal characteristics of )(tFo  depend directly upon intensity I(t).  Konofagou and 

Hynynen [8], for example, likened I(t) to a nonnegative harmonic wave in their simulation of 

HMI.  This assumption for the form of I(t) was used as the basis from which to define the forcing 

function for the current soft tissue model. 
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Figure 4.2 

A schematic of harmonic motion imaging. A focused ultrasound (FUS) transducer of 

intensity I(t) operating at a frequency f excites a small volume of tissue (V), with an 

acoustic absorption coefficient α dependent upon frequency f. Sound travels in the tissue 

at speed c. An acoustic radiation force Fo(t) is generated in the tissue, which oscillates at 

frequency freq. A diagnostic ultrasound transducer monitors the resulting tissue 
oscillations. 

 

The forcing function )(tFo  used in this investigation is defined below as   


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tfftF ooo    (4.6)   

The angular frequency ω in Eqn (4.6) is given by 

freq  2 ,     (4.7)   

where freq is defined as the oscillating frequency of the acoustic radiation force, shown in Figure 

(4.2).  fo is defined as the temporal average of )(tFo  from Eqn (4.5).  

 

Point-like acoustic radiation force, such as that used during HMI experimentation, can be likened 

to a nodal force in finite element modeling.  In HMI, only one direction at one point can be 

loaded in any one transducer configuration.  Thus, in the current investigation, the nodal force 

vector was defined accordingly and is described next. 

 

The global force vector in the equations of motion (Eqn (4.2)) was defined as 
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This notation is meant to indicate that in any one configuration, )(tFo  was applied to a single 

node in a single direction only; the force vector was zero everywhere else.  In the current 

investigation, the z-direction was chosen as the direction of loading. The forcing function )(tFo  

was always applied towards the fixed surface of the model at z = 0 (hence, the negative sign 

on )(tFo ).   

 

To load different nodes within the model to mimic a computer-controlled positioning system, 

separate force vectors must be defined for each case.  This also implies that each loading point 

requires its own configuration of the equations of motion.  Figure (4.3) illustrates this concept for 

several scanned points. 

 

Figure 4.3 

Multiple equilibrium configurations of HMI. During experimentation, the acoustic 

radiation force (i.e., the forcing function Fo(t) in FEM) can only be applied to one point at 

a time. In the current finite element simulation, this necessitates a unique force vector 

F(t) and a unique set of equilibrium equations for each point scanned. 
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4.1.3 Model Parameters for Dynamic Analysis 

The parameters used to define the material matrices M and incK  and the force vector F(t) in the 

dynamic analysis of the current soft tissue model are listed in Table (4.1).  All geometric 

properties from Table (3.1) still apply except where re-defined in Table (4.1). 

 

 

Table 4.1 
Model parameters used in the current dynamic simulation of soft tissue. The material 

constants used to define the mass and incompressible stiffness matrices are shown, as 

well as the parameters used to define the forcing function Fo(t).  

 

The density (ρ) of the model was picked as the density of the tissue-mimicking gelatin gels used 

by Maleke et al. [12] for their HMI experimentation. The values of Young‟s modulus (E) fall 

within the range observed by Krouskop et al. [5] for normal fat and glandular breast tissue. This 

range of Young‟s modulus has also been used by Konofagou and Hynynen [8] in their finite 

element simulations of HMI, and also by Maleke et al. [12] in their experiments on calibrated 

tissue-mimicking phantoms.  Since soft tissue is considered a nearly incompressible material with 

Poisson‟s ratio (ν) approaching 0.5, a value of 0.495 was chosen in accordance with that used by 

Krouskop et al. [5]. 
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The absorption coefficient (α(f)) used in the current investigation was defined from the 

attenuations of homogeneous, tissue-mimicking phantoms used by Palmeri et al. [18]. It was 

assumed that all attenuation is due to absorption, thus defining the absorption coefficient used 

here.  Transducer frequency (f) was taken between the operating frequencies used by Konofagou 

and Hynynen [8] and Maleke et al. [12] in their experimentation with HMI. For subsequent data 

comparison, the acoustic radiation force frequency (freq) was also chosen in accordance with 

references [8] and [12].  Nightingale et al. [19] used a temporal average intensity (io) of several 

W/cm
2
 for inducing displacement in calibrated tissue phantoms, while Maleke et al. [12] used 

nearly 1000 W/cm
2
 for ablating bovine liver. In the current investigation, io was taken as the 

median of these two extremes to define an acoustic intensity capable of displacing tissue without 

ablating it.  To define the amplitude of the nodal force as it was applied to the current soft tissue 

model (fo in Eqn (4.6)), io was used as opposed to I(t) in Eqn (4.5) to compute the value fo =0.01N. 

 

The speed of sound in tissue (c) was taken as 1540m/s, which was indicated by Palmeri et al. 

[18]. Lastly, the focal volume (V) of the acoustic force-generating FUS transducer was taken 

within 1 – 8 mm
3
, which, according to Nightingale et al. [13], is the typical range for the volume 

of tissue to which point-like radiation force is applied. 

 

4.2  Newmark Method 

The Newmark method was used to solve the dynamic problem for the current soft tissue model. It 

is a popular technique used by engineers to determine the dynamic response of a structure under 

the action of any general time-dependent load. It was chosen in this investigation mainly because 

it is very generalized; no assumptions restrict the form of allowable forcing functions.  This may 

be beneficial in future analyses involving forcing functions more complicated than the simple 

harmonic wave used here. 
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The fundamental approximations of the Newmark method were used to help solve the dynamic 

problem for D(t), and are shown in Eqn (4.9) and Eqn (4.10) below. 

11 )1(   iiii hh DDDD      (4.9)   
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


 iiiii hhh DDDDD     (4.10)   

In Eqn (4.9) and Eqn (4.10), iD , iD , and iD  represent unknown vectors of nodal displacement, 

velocity, and acceleration, respectively, at some finite time t. 1iD , 1iD , and 1iD  represent 

known vectors of nodal displacement, velocity, and acceleration, respectively, determined one 

time step h earlier. α and β are arbitrary constants known as Newmark parameters; these 

parameters will be discussed in more detail in the next section.  

 

The fundamental approximations of Eqn (4.9) and Eqn (4.10) were used to iteratively solve for 

D(t) in Eqn (4.1) in finite time intervals.  (Note:  In dynamic analysis with the Newmark method, 

Eqn (4.1) was used for the current model with V set equal to 0 because damping was not 

considered in the current investigation.)  

 

Using index notation, the general finite element equations in Eqn (4.1) become 

iiincii FDKDVDM   ,   (4.11)   

where K = incK  for material incompressibility. In order to solve for the displacement vector at 

each iteration in time, the fundamental approximations are used to eliminate iD  and iD  from 

Eqn (4.11) such that iD  is the only unknown. 

 

From Eqn (4.10), 
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where aF  is a known vector defined as 
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Plugging Eqn (4.12) into Eqn (4.9) for iD  yields a new value for iD : 

bii
h

FDD 



,    (4.14)   

where bF is a known vector defined as 

  11 1   iiab hh DDFF   .  (4.15)   

Thus, in light of Eqn (4.12) and Eqn (4.14), the equations of motion in Eqn (4.11) reduce to the 

equivalent “static” form 

ii FDK       (4.16)   

where iD  is the solution to the dynamic problem at a finite time t. K and iF  are the modified 

stiffness matrix and effective force vector, respectively, defined as 

inc
hh

KVMK 




 2

1
   (4.17)   

baii VFMFFF      (4.18)   

Recall that in the current investigation, V = 0 (Eqns (4.17) and (4.18) encompass a general 

material). If α and β are nonzero, iD  at each point in time depends upon the vector of applied 

force at that same time ( iF ) and on the immediately previous time solutions of 1iD , 1iD , and 

1iD  (see Eqns (4.18), (4.13), and (4.15) for iF , aF , and bF , respectively). For example, if 
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starting from i =1 (time t =h),  100011 ,,, FDDDDD  . By iteratively repeating an i = i + 1 

process, the whole D(t) can be determined in i time steps h. 

 

4.2.1 Newmark Method Parameters 

The parameters used during the dynamic analysis of the current soft tissue model with the 

Newmark method are shown in Table (4.2). 

 

 

Table 4.2 
Parameters used during the current dynamic finite element analysis of a soft tissue model 

with the Newmark method. Time step h and the time for analysis t cannot be arbitrarily 

assigned; convergence analyses were performed for N and PER to assess the optimal 
values of these parameters, respectively. 

 

, , and h are the Newmark parameters and time step, respectively, from the previous section. In 

this investigation, h was defined as T/N, where T was the period of the forcing function )(tFo  

(with frequency freq as discussed in Section 4.1.2), and N was the number of samples per loading 

period. t was the total time for the analysis in which D(t) was to be determined. t was defined by 

PER*T, where PER was the number of loading periods applied. 
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In the current investigation, the parameters α, β, N, and PER in Table (4.2) determined the 

efficacy of the Newmark method in solving the finite element equations of motion. As stated by 

Dill [20], the fundamental issues considered were those of solution stability, convergence, and 

error. 

 

The general Newmark method is unconditionally stable for the values of α and β below [20]. 

2

1
      (4.19)   

 2

4

21



    (4.20)   

 

When neither  nor  = 0, the Newmark method is said to be implicit, meaning that D(t) at time 

hit   is not explicitly determined by the state at time hit  )1( . This can be seen from 

the fundamental approximations presented in Eqn (4.9) and Eqn (4.10).  

 

In the current investigation, α and β were chosen as ½ and ¼, respectively, in accordance with 

Eqn (4.19) and Eqn (4.20). For these parameter values, the general Newmark method is referred 

to as the constant average acceleration method. The constant average acceleration method is 

stable for all time steps h [20]. The size of the interval h was therefore governed only by the need 

for computational accuracy.  

 

For a given excitation frequency, the parameter N in Table (4.2) determined the size of h. N 

should be large enough for solution accuracy but small enough to avoid wasted computation time. 

To determine the appropriate value of N, a convergence analysis was performed.  
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Figure (4.4) shows the results of the convergence analysis with N. In this analysis, the model‟s 

geometry was defined as in Table (3.1).  The material matrices M and Kinc and the dynamic force 

vector F(t) were defined as in Table (4.1), with E =20kPa and freq =200Hz.  The forcing function 

)(tFo  was applied in the negative z-direction at the geometrically central node with coordinates 

(20,20,20)mm. Figure (4.5) provides an illustration of the loaded model for a 2D “slice” at x 

=20mm. Figure (4.6) provides an illustration of the forcing function )(tFo  as defined by Eqn 

(4.6) and the parameters in Table (4.1). As stated earlier, α and β equaled ½ and ¼, respectively. 

PER in Table (4.2) was set to five as the benchmark. 

 

 

Figure 4.4 
Convergence analysis with N sampling points per loading period. The amplitude of the 

displacement at a particular point in time was plotted as a function of N to help define the 

appropriate time step h for the Newmark method. 

 

In Figure (4.4), the amplitude of the z-displacement at the loading point („UZ‟) after five 

excitation periods (PER =5) is plotted versus N (the number of sampling points per loading 

period). The figure shows that after five excitation periods, the solution UZ converges for N = 25 

– 30. Any larger value of N did not markedly affect the solution. Thus, N was set to 30 for all 

subsequent analyses.  
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Figure 4.5 
A 2D slice of the finite element model with the forcing function Fo(t) applied to the 

geometrically central node with coordinates (20,20,20)mm. Fo(t) acts in the negative z-
direction towards the fixed surface at z = 0. 

 

 

Figure 4.6 
The forcing function Fo(t) applied to the model is a harmonic force that is zero at time t = 

0 oscillating about a mean of 0.01N with an amplitude of 0.01N. The values of the 

nonzero mean and amplitude were determined using parameters appropriately defined in 
Table (4.1) from references [5,8,12,13,18,19].  

 

 

The parameter PER was also investigated; it determined the length of the dynamic analysis (see 

Table (4.2)). PER must have been sufficiently large to obtain a representative sample of the 

dynamic solution, yet small to keep computation time in check. Thus, a convergence analysis was 

performed exactly as described for N, except that N was set equal to 30 and PER was under 

investigation. 
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Figure (4.7) shows the results of the convergence analysis with PER. „UZ‟ once again represents 

the amplitude of the z-displacement at the loading point, now as a function of PER. The value of 

PER where the solution converged was not very clear, so an approximate value of PER =75 was 

chosen. Any larger value of PER did not markedly affect the solution. Thus, PER was set to 75 

for all subsequent analyses. 

 

Figure 4.7 
Convergence analysis with PER loading periods. The amplitude of the displacement with 

N =30 samples per loading period was plotted as a function of PER to help determine a 

sufficient length of time t required for dynamic analysis with the Newmark method. 

 

 

Although a converged solution for UZ at point (20,20,20)mm was obtained with PER =75, it was 

not known if that particular value was accurate. Since the “true” value was unknown, an error 

estimate was a seemingly impossible issue to consider. However, external methods were used to 

affirm the solution computed here; these “external methods” included a transient dynamic 

analysis with ANSYS 10.0 and a “short-cut” method to solve the equations of motion using 

assumptions valid only for harmonic motion imaging. The results from these methods are 

discussed in Section 4.2.3 and Section 5.3, respectively.  
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4.2.2 Starting Conditions 

When i = 0, the vectors iD , iD , and iD  contained the starting conditions of nodal displacement, 

velocity, and acceleration, respectively, in the Newmark method.  To solve for D(t), these vectors 

were specified at the start of the analysis for the first iteration at i = 1 (recall that 

 100011 ,,, FDDDDD  ).  In this investigation, it was assumed that  
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.    (4.21)   

It was deemed reasonable to assume that the body started from rest because the forcing function 

)(tFo  equaled zero at time t = 0 due to a phase shift of 2  (see Eqn (4.6) for )(tFo ). 

 

4.2.3 Programming Assessment 

A transient dynamic analysis was performed in ANSYS 10.0 to assess the validity of the current 

MATLAB simulation. In ANSYS, transient dynamic analyses are used to determine the dynamic 

response of structures under the action of any general time-dependent loads. The ANSYS 

program uses the Newmark method to solve the equations of motion in Eqn (4.1).  

 

The parameters used to set up a transient dynamic analysis in ANSYS on the current soft tissue 

model are listed in Table (4.3).  With the exception of „ELEMENT TYPE‟ and „NU‟, the 

properties of Table (3.2) were used to construct the model‟s geometry and boundary conditions. 

The SOLID185 element with mixed u/p formulation was used to construct Kinc (see Section 

3.2.1). Poisson‟s ratio „NU‟ was set to 0.495 in accordance with Table (4.1). The complete 

instructions for performing this analysis in ANSYS are included in the Appendix.  
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Table 4.3 
Parameters used to set up a transient dynamic analysis in ANSYS, which was used to 

assess the performance of the dynamic analysis performed with the current MATLAB 

simulation using the Newmark method.  

 

As can be seen from Table (4.3), the transient dynamic analysis set up in ANSYS was defined 

from the parameters used in the current MATLAB simulation (see the referenced Tables and 

Sections). The forcing function „FORCE‟ was applied in the z-direction at the geometrically 

central node with coordinates (20,20,20)mm. The magnitude „F‟ was made negative so that 

„FORCE‟ was applied towards the fixed surface at z = 0, just as was done in the convergence 

analyses with N and PER in Section 4.2.1. All initial conditions were equal to zero (by default) in 

accordance with Section 4.2.2. 

 

The z-displacement at the point of loading („UZ‟) determined from both MATLAB and ANSYS 

simulations is depicted in Figure (4.8). UZ from the MATLAB simulation was obtained by 
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solving Eqn (4.16) at each iteration i in time using the inv(.) command in MATLAB to invert 

K . 

 
 

Figure 4.8 
The dynamic z-displacement („UZ‟) recorded at the point of loading from both MATLAB 

( ) and ANSYS ( ) simulations. 

 

From Figure (4.8), it was seen that the ANSYS and MATLAB simulations were in good 

agreement. Any deviations from one simulation to the other were viewed as negligible and were 

not explored further. It was thus concluded that the dynamic MATLAB simulation was 

programmed properly because its results were in accordance with a commercial finite element 

package using the Newmark method, too.  
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Chapter 5 

Dynamic Analysis Results 

 

5.1 Physical Observations 

The results obtained in this investigation needed to agree with what has been observed by others 

to prove that the current analysis was a suitable simulation of soft tissue behavior. This was the 

main goal of all work discussed up to this point. The next two subsections assess whether or not 

this goal was achieved. 

 

5.1.1 Massless System Response 

A massless elastic system, like the simple spring in Figure (5.1), responds instantaneously to 

applied force. This occurrence makes physical sense, and should be true for the current simulation 

if the mass matrix M is neglected. In this case, the equations of motion for the current soft tissue 

model would then become 

)()( ttinc FDK  .   (5.1)   

The displacement at the loading point recorded from the vector D(t) should be exactly in phase 

with the forcing function applied to that point, regardless of spring constant, k (or in the case of 

the current model, Young‟s modulus, E). Figure (5.2) illustrates the results of such a simulation, 

with the forcing function )(tFo  from Eqn (4.6) applied in the negative z-direction at point 

(20,20,20)mm. 

 

The graph in Figure (5.2) shows that the forcing function  ( )(tFo ) and the displacement signal 

(UZ) measured for several Young‟s modulus values were out of phase. However, the 
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displacement signals for each Young‟s modulus were aligned. This apparent time shift was a side 

effect of the Newmark method and the choice of starting conditions. 

 

Figure 5.1 
A one-dimensional massless elastic system, represented by a simple elastic spring with 

spring constant k. This figure helps visualize that if the mass in the current finite element 

simulation was neglected, the model would respond instantaneously to applied force 

regardless of material stiffness. 

 

 

Figure 5.2 
The dynamic z-displacement („UZ‟) recorded at the point of loading in the current 

MATLAB simulation for the (massless) tissue model. Three different cases of material 

stiffness are shown, where Young‟s modulus E equals 20kPa ( ), 50kPa ( ), 

and 80kPa ( ). The forcing function Fo(t) ( ) is also depicted. A time shift 
is also labeled between the displacement responses and the forcing function Fo(t). 

 

 

The Newmark method, recall, is an iterative procedure where each solution in time depends on 

the previous solution in time.  Since all starting conditions were set to zero, the solution took a 

few iterations to initially progress.  This time shift could complicate future analyses for a 

viscoelastic system, where phase shift will be considered. In this investigation, though, this time 
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shift does not affect the amplitude of the displacement, which is the only parameter of the 

response signal that is of interest for the current elastic system. 

 

5.1.2 Effect of Young’s Modulus 

The dynamic response of the current soft tissue model governed by the equations of motion Eqn 

(5.2) is depicted in Figure (5.3). 

)()()( ttt inc FDKDM     (5.2)   

The forcing function )(tFo  in the vector F(t) was applied in the negative z-direction of the 

geometrically central node. The z-displacement at that point (UZ) was recorded for two different 

Young‟s modulus values and is shown in the figure. As discussed in the previous section, an 

inherent time shift will be present in all solutions computed with the Newmark method.    

 

Figure 5.3 
Dynamic response of the current tissue model (with mass). Two different cases of 

material stiffness are shown, where Young‟s modulus E equals 20kPa ( ) and 50kPa 

( ). The initial time shift introduced by the Newmark method/ starting conditions 

is also labeled. 
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From Figure (5.3), it was observed that Young‟s modulus affects the dynamic solution in two 

ways.  First, as Young‟s modulus increased, displacement amplitude decreased.  This result was 

intuitive; stiffer materials deform less than softer materials under the same load. This change in 

displacement amplitude with material stiffness is represented in Figure (5.4) for Young‟s 

modulus values ranging from 20 – 60 kPa. The decrease in displacement amplitude with material 

stiffness/ Young‟s modulus shown in Figure (5.4) was also observed by Konofagou and Hynynen 

[8] in their simulations and phantom experiments with harmonic motion imaging (see Section 

1.4). 

 

Figure 5.4 
A plot of displacement amplitude versus Young‟s modulus, with values ranging between 

20 – 60kPa. Displacement amplitude decreases with material stiffness. 

 

For the current simulation, it was also apparent from Figure (5.3) that the displacement solutions 

for different Young‟s modulus values were out of phase; the 50kPa displacement response was 

shifted ahead of the 20kPa response. Both responses were of approximately the same frequency 

(freq = 200Hz), so this directly contrasted what was observed for the massless system (see Figure 

(5.2)). This phase shift between solutions was caused by the initial response time of the material 

(not to be confused with the initial time shift introduced by the Newmark method/starting 
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conditions). As Young‟s modulus increased, the material “caught on” quicker, i.e., the response 

time decreased. This could be the source of the small apparent upshift in frequency with 

increasing material stiffness observed by Konofagou and Hynynen [8] (see Section 1.4). 

 

This result can be more easily understood with the one-dimensional mass-spring system shown in 

Figure (5.5). From the figure, it can be visualized that the mass attached to a stiffer spring will 

respond more readily to external perturbation than the mass on a softer spring. Likewise, the same 

is true for the current soft tissue model; if the “springs” are stiffened (i.e., Young‟s modulus is 

increased), the lumped mass at the loaded node will respond more quickly to the forcing function, 

)(tFo . This was just what was observed in Figure (5.3). Thus, in addition to agreeing with 

experimental findings, the results from the current simulation make physical sense, too. 

Accordingly, it was concluded that the current finite element analysis was a suitable simulation of 

soft tissue behavior. 

 

Figure 5.5 
A one-dimensional elastic system, shown as a simple elastic spring with a mass on the 
end. This figure helps visualize that if the material of the current soft tissue model was 

made stiffer (i.e., the Young‟s modulus was increased), the material would respond 

quicker to applied load. This decrease in response time would be evident in the 

displacement response.  

 

5.2  Multi-Frequency Forcing Function  

In previous discussion, the forcing function )(tFo  was comprised of a single excitation 

frequency, freq (see Section 4.1.2). Figures (5.6) and (5.7) below illustrate the results of two 

MATLAB simulations obeying this approach. In the two subsequent figures, )(tFo  was applied 
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to the model at the geometrically central node with coordinates (20,20,20)mm in the negative z-

direction. The z-displacement at the point of loading was recorded in time.  

 

freq equaled 100Hz and 200Hz in Figure (5.6) and Figure (5.7), respectively. Young‟s modulus E 

equaled 20kPa in both simulations. The force signal and displacement result („UZ‟) are the top 

and middle graphs, respectively, in Figures (5.6) and (5.7). The bottom graph in each figure 

shows the frequency spectrum of the displacement result. The „fft‟ function in MATLAB was 

used to generate the frequency spectrum. 

 

 

Figure 5.6 
100Hz excitation frequency case. Fo(t), as it was applied in the (negative) z-direction at 

the point of loading is shown in the top graph, and the resulting z-displacement at that 

point is shown in the second graph. The bottom graph displays the frequency spectrum of 

the displacement response. 
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Figure 5.7 
200Hz excitation frequency case. Reference the caption of Figure (5.6) for a more 

thorough description. 

 

As quoted from Section 4.2, the Newmark method “is a popular technique used by engineers to 

determine the dynamic response of a structure under the action of any general time-dependent 

load”. So, to utilize the generality of the Newmark method, a forcing function was created with 

several frequency components, defined as 


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   (5.3)   

where ii freq  2 , with freqi equal 50, 100, 200, and 400Hz, respectively, as per Table 

(4.1). 
i

of  equal 0.01N for each freqi (see Section 4.1.3). Note that )(tFo still equals zero at time t 

=0; the assumption of zero starting conditions still applies. Time step h and analysis time t (see 

Table (4.2)) depend upon freq and were redefined for )(tFo  in Eqn (5.3). T in h was defined for 

the largest frequency component (400Hz), while the T in t was defined for the smallest frequency 
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component (50Hz). This provided the smallest time step and longest simulation time necessary in 

accordance with the convergence analyses discussed in Section 4.2.1.   

 

The results for the forcing function defined by Eqn (5.3) are illustrated in Figure (5.8).  

 

Figure 5.8 
Case where the forcing function Fo(t) was composed of four frequency components; 50, 

100, 200, and 400Hz. Reference the caption of Figure (5.6) for a more thorough 

description. 

 

 

It was surmised that the amplitude of the displacement signal at each excitation frequency in 

Figure (5.8) equaled the amplitude of the displacement for each single-frequency case. Table 

(5.1) shows the results of the analysis investigating this claim. 
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Table 5.1 

Multi-frequency force versus single-frequency force results. Each force case is in a 
separate column, and the displacement amplitudes for each particular frequency of 

interest are compared. This was done to assess the efficacy of the Newmark method in 

handling more than one frequency component in its excitation force. 

 

The displacement amplitudes from single-frequency and multi-frequency forcing functions, with 

each case labeled in a particular column, are tabulated in Table (5.1). The “Frequency of Interest” 

indicates the frequency whose magnitude was sought in the displacement response. Thus, the 

column “50+100+200+400”, indicating the multi-frequency forcing function, contains amplitudes 

at all frequencies of interest. All amplitude values were obtained from the displacement signals at 

each frequency of interest using a discrete Fourier transform algorithm devised by Cai [21]. All 

previous and subsequent displacement amplitudes at a particular excitation frequency were 

obtained using this algorithm. 

 

While the displacement amplitudes for the multi- and single-frequency forcing functions were 

proximate, they were not identical. This was because h (time step) and t (analysis time) for each 

frequency component in the multi-frequency case were not identical to their single-frequency 

counterparts; h and t in the multi-frequency case had a mixed definition, dependent upon 400Hz 

and 50Hz, respectively. This observation implies that the convergence analyses performed for N 

and PER were not an end-all to discussion.  
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In the multi-frequency case, h and t were taken as the smallest and longest necessary based on the 

convergence analyses for N and PER, respectively.  For the 50, 100, and 200Hz components, the 

time step h did not need to be 8.3E-5sec (defined from Table (4.2) with freq = 400Hz), while for 

the 100, 200, and 400Hz components, t did not need to be 1.5sec (defined from Table (4.2) for 

freq = 50Hz). But apparently, these excessive values of h and t still affected the solution, despite 

the purpose of the convergence analyses. 

 

5.3  Short-cut Method 

The amplitude of the displacement at a given loading point can be obtained without using the 

Newmark method. If certain assumptions are made about the form of the forcing function and the 

resulting displacement, the amplitude of the displacement at the point of loading can be 

determined directly from the equations of motion. Time-history simulation data need not be 

generated, so this method is referred to as the “short-cut” method. This method was employed as 

a rough estimate of the accuracy of the Newmark method. The short-cut method described 

hereafter requires several assumptions and is valid only for harmonic motion imaging (described 

in Section 1.3). 

 

Let a forcing function f(t) be applied to a point in the model.  f(t) has an amplitude of the form  

tftf sin)(  .   (5.4)   

It is reasonable to assume that the resulting displacement at the point of loading will be of the 

same general form as the forcing function. Additionally, for an elastic system, it can be further 

assumed that the steady-state displacement response is in phase with the forcing function. Thus, 

the displacement would take the form 

tutu
j

jj

o sin)( .   (5.5)   
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The index j indicates that the resulting displacement can be a composition of multiple frequency 

(ω
j
) components.  If the frequency components other than the loading frequency are ignored (as is 

done through filtering during HMI experimentation), the displacement takes the more simplified 

form given by Eqn (5.6). 

tutu o sin)(     (5.6)   

The ω‟s in Eqns (5.4) and (5.6) refer to the same frequency. 

 

The equations of motion for the whole model can be reduced to a single equation if the 

displacement in the direction/node of loading is viewed as the only nonzero entry in the 

displacement vector D(t). This is a major assumption required for the short-cut method. Thus, the 

system of equations in Eqn (5.2) become 

)()()( ,, tftuKtuM iiii  ,   (5.7)   

where the subscripts i,i refer to the particular row, column entry of the M and K matrices 

corresponding to the row entry of F(t) that equals the forcing function f(t). If Eqns (5.6) and (5.4) 

are substituted into Eqn (5.7) for u(t) and f(t), respectively,  

  fuKM oiiii  ,,

2 .   (5.8)   

Thus, using the assumptions of the short-cut method, the amplitude of displacement uo in the 

direction/node of loading can be determined from the forcing frequency ω, the entries Mi,i and Ki,i 

of the mass and stiffness matrices, respectively, and the forcing amplitude f. 

 

As mentioned earlier, the short-cut method requires several assumptions and is valid for HMI 

only.  However, the results for uo can be compared to the displacement amplitudes obtained in the 

current simulation as long as a harmonic forcing function of the same amplitude is used. Table 

(5.2) shows the results of both the short-cut method and the current simulation using the 

Newmark method. The displacement amplitudes for various frequencies (ω in Eqn (5.8)/freq in 
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Eqn (4.7)) at various nodes within the model were explored and are included in the table. Figure 

(5.9) illustrates the location of these nodes in the model; all of these nodes were taken along the z-

direction line directly in the center of the model. In Table (5.2), all amplitudes were obtained with 

E =20kPa, f (Eqn (5.4)) = fo (Eqn (4.6)) = 0.01N. 

 

 

Table 5.2 
A comparison of the short-cut and Newmark methods, where displacement amplitudes 

are displayed for several nodes and excitation frequencies acquired with both methods. 

The short-cut method was employed as a rough estimate of the accuracy of the Newmark 

method. 
 

 

 

Figure 5.9 
A 2D slice of the model indicating the nodes listed in Table (5.2). All nodes lie along the 

z-direction in the center of the model. 
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The results from the Newmark method in Table (5.2) were obtained with the multi-frequency 

forcing function discussed in Section 5.2. Each node in the table was loaded in the negative z-

direction, and the resulting z-displacement amplitude was obtained at that node only. Since each 

node was loaded one at a time, eight separate multi-frequency Newmark analyses were run on 

eight different points.  Since the short-cut method could only handle one frequency at a time, it 

was run 32 times to address four different frequencies at eight nodes. 

 

From the start of this analysis, it was not expected that the short-cut and Newmark methods 

would yield identical results. Since the short-cut method required so many assumptions, it was 

expected that this loss of information would take its toll on the solution. From the results in Table 

(5.2), one can observe that the short-cut and Newmark methods provided generally agreeable 

results but deviated greatly in some instances. 

 

The information lost in the short-cut method, contributing to the smaller deviations, were the 

entries of the displacement vector other than uo at the node, direction of loading. Before reducing 

the equations of motion of the current model to Eqn (5.8), each row of the stiffness matrix was 

multiplied by the displacement vector to determine each entry in the force vector. This was a 

simple matter of linear algebra. 

 

In the short-cut method, all but one of the multiplications between the stiffness matrix and 

displacement vector were ignored. Compared to the Newmark method, where no assumptions of 

that kind were made, it was likely to see discrepancies between amplitude results. If the rest of 

the displacements in the displacement vector were incorporated into the short-cut method, more 

agreeable results to that of the Newmark method would have been expected.  
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The larger deviations between the short-cut method and the Newmark method, apparent for the 

nodes closest to the free surface, most likely pertain to the frequency response of the model. This 

is an extremely important consideration that must be addressed in future work. It was not 

addressed in this investigation because a thorough frequency analysis detracted from the main 

goal: to develop a dynamic finite element simulation in MATLAB, and to see if its results agreed 

with those from other methods (i.e., ANSYS and the short-cut method).   

 

On the small scale between 0 to 12kHz, Konofagou et al. [14] observed an unpredictable 

relationship between displacement amplitude and excitation frequency in their simulations of 

USAE (see Section 1.4). At node 545, for example, there does not seem to be a trend between 

displacement amplitude and excitation frequency. The same tendency holds for all the other 

nodes in Table (5.2). Although the general trend observed by Konofagou et al. [14] was that 

displacement amplitude decreased with excitation frequency, the range of frequencies tested here 

was not wide enough to draw the same conclusion, hence contributing to the need for a future 

frequency analysis. 

 

The short-cut method was deemed acceptable as a quick procedure to get a general idea of the 

displacements anticipated for the current problem. It helped reinforce the questionable issue of 

solution accuracy for the current simulation with the Newmark method, a point previously 

unaddressed.  
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Chapter 6 

The Inverse Problem – A Current Concern 

 

6.1 Methodology 

The eventual goal of this research team is to develop a routine to determine the Young‟s modulus 

of a given model from its simulation data. In other words, it is hoped that once the displacement 

data is obtained from the simulation, it can be used to “guess back” the value of the Young‟s 

modulus in the stiffness matrix of the model. If the routine can perform this task on the simulation 

data, it can be applied to experimental data acquired for actual soft tissue. 

 

Recall Eqn (5.8) from the short-cut method, which is repeated below for convenience. 

  fuKM oiiii  ,,

2       

  

This equation was obtained from the system of equations for the current model by assuming that 

the applied force and the resulting displacement were both harmonic in form and in phase, with 

magnitudes uo and f, respectively. It was further assumed that aside from the displacement at the 

loading point, no other nodes in the model were affected by the applied force. This reduced the 

equations of motion for the model, a system of equations, to a one degree of freedom system in 

the direction/ node of loading. Only one frequency component (ω) at a time can be considered 

(the multi-frequency forcing function discussed in Section 5.2 is not applicable here). 

 

Recall from Section 5.3 that the subscripts i,i refer to the particular row, column entry of the M 

and K matrices corresponding to the row entry of F(t) that equals the forcing function f(t). Thus, 
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the value Ki,i can be thought of as the stiffness of a small volume of material surrounding the 

point of loading, and can be determined by 

ii

o

ii M
u

f
K ,

2

,   .   (6.1)   

Young‟s modulus can be determined from Ki,i because the incompressible stiffness matrix is 

directly proportional to E. In other words,  

iiii CEK ,,  ,    (6.2)   

where C is the stiffness matrix K generated with E = 1Pa. 

 

Before the equations of motion of the current model were reduced to Eqn (5.8), each row of the 

stiffness matrix was multiplied by the displacement vector to determine each entry in the force 

vector. Figure (6.1) provides an illustration of this procedure, which is just a matter of linear 

algebra. This concept was mentioned earlier for the short-cut method discussed in Section 5.3. 

 

Figure 6.1 
An illustration of the linear algebra employed for the multiplication of the stiffness 

matrix and the displacement vector to determine each value in the force vector. 

 

Just as ignoring the rest of the displacement vector in the short-cut method affected the results 

there, so, too, did it affect the value of Ki,i determined by Eqn (6.1). Table (6.1) lists a series of 

stiffness entries Ki,i determined from both the original stiffness matrix incK and Eqn (6.1). The 

nodes listed in Table (6.1) refer to the same nodes in Table (5.2) and Figure (5.9).  Figure (5.9) is 

included below Table (6.1) for convenience. The row entry of the displacement vector containing 
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the z-displacement of the node in question is denoted by the subscript i when Ki,i is determined 

from incK . In Eqn (6.1), uo for Ki,i was taken from the Newmark method results in Table (5.2) for 

200Hz.   

 

Table 6.1 
A comparison of the stiffness matrix entries collected from the original stiffness matrix 

versus that computed from the short-cut method (Eqn (6.1)). 

 

 

In Table (6.1), Ki,i  from incK for all the nodes are all identical; this is expected because they are 

all interior nodes in a homogeneous medium. The same is generally true with Ki,i computed from 

Eqn (6.1). Note, though, that Ki,i from Eqn (6.1) is much smaller than Ki,i from incK ; this is the 

effect of neglecting virtually the entire displacement vector, as discussed in Section 5.3 and 

earlier in this section. 
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To increase the accuracy of Ki,i from Eqn (6.1), more entries in the displacement vector need to be 

considered. Recall that the displacements listed in Table (5.2) for nodes 303 – 1150 are for eight 

different equilibrium configurations of the equations of motion; they cannot be compiled into a 

single displacement vector. As currently implemented, HMI does not monitor the displacement at 

points other than the one under loading. Thus, if adhering strictly to the protocol of HMI, the 

accuracy of Ki,i from Eqn (6.1) cannot be improved; the analysis is bounded by the obtainable 

data. This suggests that a deviation from the protocol of HMI is necessary for the proposed 

inverse routine.  

 

6.2 Principle of Superposition 

In a single equilibrium configuration, the principle of superposition can be used to determine the 

displacement at nodes adjacent to the node being loaded, which can then be used to fill in missing 

values of the displacement vector. This principle is illustrated for the pair of nodes 424 and 303 in 

Figure (6.2).  Note that the entire displacement vector in a given equilibrium configuration is 

obtainable in the current computer simulation, but to no avail; the experimental protocol of HMI 

is adhered to as much as possible. 

 

Figure 6.2 
An illustration of the principle of superposition, used in the proposed inverse routine. 

This principle helps determine the displacement at nodes adjacent to the one under 

loading in a single equilibrium configuration.  

 

In Figure (6.2), the red arrows indicate the direction of force application in each node 

arrangement, which represent three separate equilibrium configurations with three different force 



73 

 

 

vectors (see Figure (4.3) for HMI). In terms of nodes 424 and 303, the question in Figure (6.2) 

asks, “What is the z-displacement at node 303 if node 424 is loaded in the z-direction?”. The 

answer to this question will be hereby denoted as „uz303(424)‟. This is the question posed by the 

first node arrangement (to the left of the equal sign). 

 

The answer to this question lies in two separate equilibrium configurations (one of which is 

possible with HMI). The first node arrangement to the left of the equal sign denotes uz303(303), 

or in other words, the z-displacement at node 303 as a result of z-direction loading at node 303. 

uz303(303) can be obtained with HMI. The second node arrangement to the left of the equal sign 

denotes uz303(424-303), denoting the z-displacement at node 303 computed from the 

configuration where both node 424 and node 303 are loaded such that the space between them is 

compressed. This configuration is called „dipole compression‟. This scenario of the principle of 

superposition is applicable to the other nodes pictured in the illustration below Table (6.1). 

 

To summarize the discussion, the displacements represented by Figure (6.2) are 

)303424(303)303(303)424(303  zzz uuu .  (6.3)   

  

The displacement value uz303(424), determined through superposition, can be added to the 

displacement vector in the equilibrium configuration for loading at node 424.  

 

In Figure (6.2), the principle of superposition was used to determine the displacement at the 

adjacent node below the node of loading. Figure (6.3) illustrates the principle of superposition, 

but for the case when the adjacent node is above the node of loading. 

 

The discussion for Figure (6.3) is similar to that of Figure (6.2), and is represented by Eqn (6.4). 

)424545(545)545(545)424(545  zzz uuu .  (6.4)   
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Figure 6.3 
An illustration of the principle of superposition, used in the proposed inverse routine. As 

opposed to Figure (6.2), the adjacent node of interest is now above the node being loaded. 

  

 
  

The question in Figure (6.3) asks, “What is the z-displacement at node 545 if node 424 is loaded 

in the z-direction?”. The answer to this question is denoted as „uz545(424)‟ in Eqn (6.4). Similar 

to the previous case in Figure (6.2), the answer to this question lies in two separate equilibrium 

configurations (one of which is possible with HMI). The first node arrangement to the left of the 

equal sign denotes uz545(545), or in other words, the z-displacement at node 545 as a result of z-

direction loading at node 545. uz545(545) can be obtained with HMI. The second node 

arrangement to the left of the equal sign denotes uz545(545-424), denoting the z-displacement at 

node 545 computed from the configuration where both node 545 and node 424 are loaded such 

that the space between them is elongated. This configuration is called „dipole tension‟. This 

scenario of the principle of superposition is applicable to the other nodes pictured in the 

illustration below Table (6.1). 

 

6.3 Proposed Routine 

Previously, when adhering strictly to the protocol of HMI, if only the z-direction of node 424 was 

loaded, as illustrated in Figure (6.4), only one entry in the displacement vector was considered 

(uz424(424) in Figure (6.4)). However, the principle of superposition described in the previous 

section adds two more values to the displacement vector (uz303(424) and uz545(424) in Figure 

(6.4)). Note that these uz values are the amplitude of displacement; there were taken from the 



75 

 

 

dynamic response at the frequency of excitation to effectively create static values of F(t) and D(t) 

for the inverse routine. 
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Figure 6.4 
An illustration of the force and displacement vectors for a given equilibrium 

configuration of HMI with two additional values filled in by using the principle of 

superposition. 

 

After the first approximation of Ki,i was acquired from Eqn (6.1), the original incK could no 

longer be used to generate subsequent simulation data for the displacement at adjacent nodes, 

because technically, in the inverse routine, nothing is known about the stiffness matrix for the 

model. Thus, uz303(424) and uz545(424) must be determined using a “new” stiffness matrix K 

constructed from Ki,i. However, the manner of how Ki,i should affect this “new” K is unknown, 

and is left for future work.  

 

The general procedure of the proposed inverse routine is illustrated in Figure (6.5). First, uo from 

Table (5.2) is used in Eqn (6.1) to determine the first approximation of Ki,i. Next, Ki,i can 

(somehow) be used to define the “new” stiffness matrix K, which is needed in the following 

dipole compression/tension configurations. The displacement at the adjacent nodes is determined 

from the dipole compression/tension configurations using the principle of superposition. These 

adjacent displacements then help determine Ki,i once again (second approximation), which can 

then be used to determine uz424(424) in yet another forward simulation. If uz424(424) is close to 
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uo (this criteria has not yet been defined), the inverse procedure ends and Young‟s modulus E can 

be determined from Eqn (6.2). If not, subsequent iterations must be performed, with Ki,i 

continually being added to the components in the “new” K matrix.  

 

 Figure 6.5 
The general procedure of the proposed inverse routine. 
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Chapter 7 

Conclusions 

 

This investigation assumed that soft tissue behaved as a linear, isotropic, elastic, incompressible 

material experiencing small deformations under isothermal loading conditions. These aspects 

were incorporated into the formulation of the finite element method, which described the current 

soft tissue model. While these behaviors are generally not observed experimentally, these 

assumptions greatly facilitated the development of the current simulation; too many variables too 

soon would have made progress difficult. Many other researchers use these same assumptions 

when describing soft tissue, so they were regarded as an acceptable starting point for this team‟s 

research. 

 

As downloaded from the internet, the original source code was capable of solving the static 

problem for compressible materials only. To assess the accuracy of the source code, its results for 

the local stiffness matrix and the static solution were compared to that obtained with a 

commercial finite element package. Since sufficient agreement was obtained, alterations in the 

formulation of the local stiffness matrix were employed to address the near incompressibility of 

soft tissues. These alterations were successfully implemented in the source code, as confirmed by 

commercial finite element results. 

 

The static analysis with the source code proved the successful creation of an incompressible 

material model. However, since the goal of this investigation was to simulate the elasticity 

imaging technique of harmonic motion imaging (HMI), a dynamic finite element analysis needed 

to be performed. For this, a time-varying forcing function was defined from appropriate 
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parameters found in the literature. This forcing function mimicked the form of the acoustic 

radiation force created during HMI experimentation.  

 

With a mass matrix formulated using the lumped mass approach, the finite element equations of 

motion for the model were constructed. These equations contained the material matrices of mass 

and stiffness, and the global vectors of nodal accelerations, displacements, and applied force; the 

current soft tissue model did not incorporate any viscosity effects, hence the absence of a 

damping matrix. The forcing function was applied to only one node in one direction at any given 

time, in following with the capabilities of HMI.  

 

To solve the newly defined finite element equations of motion for the current soft tissue model, 

the Newmark method was applied. This method is an iterative technique commonly used by 

engineers to determine the dynamic response of a structure under the action of any general time-

dependent loads. Starting conditions for the global vectors of nodal accelerations and 

displacements were necessary to begin the analysis. Convergence analyses were performed to 

assess the appropriate values of two parameters required for the Newmark method routine; the 

size of the time step „h‟ and the total time of analysis „t‟, which were defined by the number of 

samples per loading period („N‟) and the total number of loading periods applied („PER‟), 

respectively. 

 

The purpose of the convergence analyses was to help define the values required for N and PER to 

obtain sufficient solution accuracy. These values defined h and t, respectively, for a scenario 

where the forcing function was composed of one frequency component. For a forcing function 

with multiple frequency components, it was surmised that if h was defined from N for the highest 

frequency component and if t was defined from PER for the smallest frequency component, the 

results from the multi-frequency case would be the same as those obtained from each individual 
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frequency case. It was found, though, that while the results were proximate, they were not 

identical. This suggested that h and t needed to be set values, sufficiently small and large, 

respectively, for any range of excitation frequencies that may be applied. This “for any” 

definition of h and t would, however, result in a phenomenal waste of computation time over the 

life of the simulation. The most practical alternative is to define h and t for each single/multi-

frequency case that is encountered, as was done in the current investigation. 

 

The current soft tissue model could be thought of as a three-dimensional network of elastic 

springs with lumps of mass concentrated at each node. If the mass at each node was removed, it 

was expected that under applied load, the structure‟s displacement response would be 

instantaneous. However, this was not observed; the displacement response for several material 

stiffness values were in phase with each other but lagged the forcing function for the massless 

system. This apparent time shift could only be due to the Newmark method and the choice of 

starting conditions.  

 

The Newmark method is an iterative routine, where each solution in time depends on the previous 

solution in time. Since the starting conditions were set equal to zero in this investigation, the 

displacement solution took several iterations to progress from the zero starting value. This time 

shift was a side effect of the Newmark method, and while it did not affect the current 

investigation (which was interested only in the displacement amplitude for an elastic material), 

this time shift could complicate future analyses for viscoelastic systems, where the phase shift 

between the solution and forcing function must be considered.  

 

When mass was added back to each node in the model, an initial time shift from the Newmark 

method/starting conditions was still observed. However, it was not known whether this time shift 
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was the same as that for the massless system. Any future removal of the initial time shift must be 

carefully considered. 

 

It was also found from the current simulation (with mass) that displacement amplitude decreased 

with increasing Young‟s modulus. Furthermore, it was seen that an increase in Young‟s modulus 

signified a decrease in response time for the material. This observation was easily visualized with 

a simple mass-spring system; the stiffer the spring, the more readily the attached mass would 

respond to applied load. These two observations, which made physical sense and had been 

observed by others, suggested that the current dynamic analysis was a suitable simulation of soft 

tissue behavior.  

 

Solving the finite element equations of motion for the current soft tissue model with the 

Newmark method was the crux of this research. In the end, some final conclusions were drawn 

about this approach, both positive and negative. The most positive aspect of the Newmark 

method, and the reason for its selection, is that it can be used with any general time-dependent 

forcing function. The harmonic forcing function used in the current investigation was a simple 

one, and did not take full advantage of the method‟s capabilities. Although more complex forcing 

functions were not used here, they may be used in the future to learn more about the behavior of 

soft tissues.  

 

The negative aspects of the Newmark method included the previously discussed time shift 

introduced into the system. This time shift was due in part to the method itself and also to the 

choice of starting conditions. The starting conditions could not simply be changed from zero to 

address this issue, because it was unreasonable to expect that the starting acceleration and 

displacement at each node in the model are known. This presents another setback to the Newmark 

method; the fact that starting conditions must be specified in the first place. The last drawback 
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concerning the Newmark method is that it can get time consuming, depending upon the number 

of nodes, the step size, and the length of analysis time. As configured in the current investigation, 

the displacement response for one point using the appropriate values of h and t as defined from 

the convergence analyses was computed in approximately fifteen minutes. While this does not 

sound extreme, it must be remembered that this was for a 10x10x10 element model with 1,331 

nodes and 3,993 degrees of freedom. Larger models would require some scheme to reduce the 

size of the problem to make the computation time more manageable. 
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Chapter 8 

Future Work 

 

Soft tissue has generally been observed as anisotropic, nonlinear, and viscoelastic. With elasticity 

imaging techniques employing focused ultrasound, localized tissue regions can also be ablated as 

a cancer treatment therapy.  The current investigation neglected these observations and proceeded 

to model the soft tissue as a linear, isotropic material under isothermal loading conditions. To 

properly design experiments to learn more about the complexities of soft tissue behavior, 

simulation models play a key role. Thus, a future goal of this team is to incorporate the more 

complex aspects of soft tissue behavior in the model.  

 

Originally, the viscoelastic features of soft tissue were addressed in a damping matrix included in 

the finite element equations of motion for the current soft tissue model. This damping matrix was 

of the appropriate form for a material using the Kelvin-Voigt model of linear viscoelasticity. 

However, the viscoelastic effects on soft tissue behavior were disregarded in the current 

investigation when it became apparent that the Newmark method/starting conditions introduced 

an inherent time shift in the solution response. Analysis of the viscoelastic system required 

consideration of both the amplitude and phase of the displacement response, and the phase 

information was tainted by the presence of the time shift. As discussed previously, this time shift 

may not be the same for all cases (massless, with mass, viscoelastic), so additional research was 

required before it could be removed.  However, the main thrust of the current investigation was to 

develop a forward finite element analysis on a soft tissue model and to begin some preliminary 

consideration of the inverse problem. Due to time constraints, it was left as a future consideration. 
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The frequency response of the model was explored only slightly in the current investigation; only 

four different excitation frequencies were used to probe the response characteristics of the model. 

Other researchers have performed full frequency analyses on their models by investigating the 

amplitude of displacement for a full range of excitation frequencies. The same analysis must be 

done with the current model to better understand the amplitudes of the displacement, and 

especially to identify resonant frequencies. 

 

For forward analysis with the current 10x10x10 element model of soft tissue, the computation 

time was manageable (on the order of fifteen minutes for one loading configuration). However, 

for larger models, to scan multiple points, computation time could become a real problem. 

Therefore, it is foreseen that some scheme will be necessary to reduce the size of the problem for 

practicality‟s sake. This was attempted in the current investigation by assuming that if a force was 

applied in the z-direction, the x- and y- displacements as a result of this force would be negligible 

compared to the z-displacements recorded. Thus, the displacement vector was reduced to every 

third row (z-displacement entries), and the stiffness matrix was reduced to every third row, third 

column.  However, the displacement amplitudes obtained with this scheme were much smaller 

than anticipated, suggesting that a more sophisticated reduction scheme is necessary. 

 

The purpose of this investigation was to provide suitable simulation data on soft tissue behavior, 

so that an inverse routine could eventually be implemented into the current analysis. The inverse 

routine was only briefly addressed in this research, and was mainly left as a future consideration.  
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Appendix 

 
 

ANSYS Directions – Transient Dynamic Analysis 

% Define element type 
PREPROCESSOR>ELEMENT TYPE>ADD 

C ADD 

C SOLID 
C BRICK 8 NODE 185 

C OK  

C OPTIONS 

Pick „Mixed U/P‟ in K6 menu (K2 = full integration) 
C OK 

CLOSE 

 
% Define material properties 

PREPROCESSOR>MATERIAL PROP>MATERIAL MODEL 

CC STRUCTURAL 
CC LINEAR 

CC ELASTIC 

CC ISOTROPIC 

Set E = 20000, NU = 0.495  
CC DENSITY = 1100 

OK 

MATERIAL>EXIT 
 

% Define model geometry 

PREPROCESSOR>MODELING>CREATE>VOLUMES>BLOCK>BY DIMENSIONS 

T 0    0.04      0   0.04     0    0.04 FOR X1, X2, Y1, Y2, Z1, Z2 
 

% Define mesh 

PREPROCESSOR>MESHING>MESH TOOL 
C SIZE CONTROLS: GLOBAL SET 

C box for NDIV 

T 10 FOR NDIV 
C OK 

C SHAPE: HEX 

C MESH 

C PICK ALL 
C CLOSE 

 

LIST >NODES  
 

* find node with coordinate (0.02, 0.02, 0.02) for force application * (node # 967) 

 
% Define boundary conditions 

SOLUTION>DEFINE LOADS>APPLY>STRUCTURAL>DISPLACEMENT>ON AREAS 
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C face z = 0 

C APPLY 
C ALL DOF 

C on box for VALUES 

T 0 for value of displacement 

C APPLY 
C CLOSE 

 

% Define scalar parameters 
UTILITY MENU>PARAMETERS>SCALAR PARAMETERS 

C in selection box 

Enter FREQ = 200 
ACCEPT 

Enter T = 1/FREQ 

ACCEPT 

Enter N = 30 
ACCEPT 

CLOSE 

 
% Set analysis type 

SOLUTION>ANALYSIS TYPE>NEW ANALYSIS 

C „TRANSIENT‟ 
C „FULL‟ FOR SOLUTION METHOD 

C „YES‟ FOR LUMPED MASS 

 

% Set analysis options 
SOLUTION>ANALYSIS TYPE>SOLN CONTROL 

C transient tab 

Transient effects ON, Stepped load, Newmark algorithm 
Set ALPHA = 0.25, DELTA = 0.5 

 

% Define TIME variable (Unabridged menu) 

SOLUTION>LOAD STEP OPTS>OUTPUT CNTRLS>DB/RESULTS FILE  
Item to be controlled: select “nodal DOF solu” 

File write frequency: select “every substep” 

C OK 
 

SOLUTION>LOAD STEP OPTS>TIME/FREQUENC>TIME/TIME STEP 

Time at end of load step: enter 0.375 
Time step size: enter T/N 

Select STEPPED 

Turn AUTOTS, OFF 

C OK 
 

% Define forcing function via Function Editor 

SOLUTION>DEFINE LOADS>APPLY>FUNCTIONS>DEFINE/EDIT 
C radians 

T „F + F*sin(W*{TIME} – {PI}/2)   ({TIME} appears from pull-down menu) 

File>Save 
T „FORCE‟      (.func extension) 
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% Define forcing function as a table parameter via Function Loader 

SOLUTION>DEFINE LOADS>APPLY>FUNCTIONS>READ FILE 
Define „table parameter name‟ & „constant values‟  

(„ FORCE‟ & F = -0.01, W = 2*π*FREQ = 1256.637061) 

C OK 

 
% Apply load function to node with coordinates (20,20,20)mm 

SOLUTION>DEFINE LOADS>APPLY>STRUCTURAL>FORCE>ON NODES 

T 967 in blank line on picking menu 
C OK 

SELECT FZ 

Apply as: „Existing Table‟   (in drop down) 
C APPLY 

C OK („FORCE‟ should be selected) 

 

% Solve 
SOLUTION>SOLV CURRENT LS 

 

% Save results 
TIME HIST POSTPROC 

Close information window 

DEFINE VARIABLES 
ADD 

Select Nodal DOF Result 

C OK 

T 967 for node number 
Enter name: UZ 

Select Translation Component UZ 

C OK 
C CLOSE 

TIME HIST POSTPROC> LIST VARIABLES 

For 1
st
 variable to list: enter 2 

C OK 
File>Save As       (.txt extension) 

CLOSE 
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