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ABSTRACT OF THE THESIS

Heterogeneous Networking Testbeds Integration and

Wireless Network Virtualization

by Rajesh Mahindra

Thesis Director: Professor D. Raychaudhuri

Networking research has grown immensely over the past few years. This has urged

the need for a heterogeneous networking research infrastructure, to experiment with

the interaction and integration of different types of networks. This requirement led to

the Global Environment for Network Innovations (GENI) effort, supported by NSF,

which aims at creating a global infrastructure for conducting networking experiments

across diverse substrates such as wired, wireless, sensor and cellular networks. In this

work, we discuss challenges involved in federating two diverse testbeds - PlanetLab and

ORBIT and present a model for building a united infrastructure for the models. Planet-

Lab is a global research wired network that supports the development of new network

services. ORBIT is a laboratory-based wireless network emulator for 802.11 testing.

An integrated wired-wireless testbed will increase the scalability of experimentation.

Proof-of-concept experiments are also presented reinforcing the usefulness of the model

in terms of facilitating experiments over the integrated infrastructure.

Such an integrated infrastructure poses a requirement of support for wireless net-

work virtualization - supporting multiple concurrent wireless experiments. Unlike wired

networks, wireless networks present unique challenges making the task of wireless vir-

tualization a difficult problem. The critical problem of simultaneous experimentation
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in networks involving the wireless medium are identified and approaches towards it are

discussed. We evaluate and compare two approaches towards wireless virtualization -

SDMA (Space Division Channel Multiplexing) and VAP (Virtual AP Channel Multi-

plexing) suitable for supporting long running experiments. In this study conducted on

ORBIT we quantify the difference in performance and interference when using wireless

virtualization and suggest measures to mitigate the same. The feasibilty study will

serve as the first step towards ORBIT virtualization.
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Chapter 1

Introduction

1.1 Overview of the Problem

To support realistic and large scale experimentation on integrated testbeds, the testbed

framework should have a flexible design that will enable a variety of network architec-

tures, services and applications. In this dimension, we feel that there is lot to learn from

the currently deployed wireless testbeds like ORBIT [1], Emulab [2] and Deter [3]. The

ORBIT wireless testbed at WINLAB, Rutgers University was used as a platform for

evaluating solutions for wireless virtualization and challenges faced in wired-wireless

network integration with integration of ORBIT with PlanetLab [4]. The integration

efforts include extension of the ORBIT control framework to PlanetLab nodes to allow

ORBIT users to include one or more PlanetLab nodes in their experiments. In ad-

dition we have conducted example end-to-end wired + wireless experiments as a part

of the proof-of-concept prototyping. The other part of our work focuses on possible

solutions to virtualizing the ORBIT wireless grid to allow concurrent experiments to

take place without interference. This would facilitate long term experiments running

concurrently on ORBIT. Use of these long running ORBIT slices would resolve the is-

sue of differences in the experiment models of PlanetLab and ORBIT. PlanetLab allows

for experiment duration of the order of months while currently, the ORBIT is a multi-

user wireless experiment testbed that allows sequential short term access to the radio

grid resources. Virtualization schemes will allow for more efficient use of the testbed

resources. A number of different forms of wireless virtualizations have been proposed

like TDMA, FDMA, SDMA and a combination of them. In our study we empirically

evaluate the space division multiplexing (SDMA) and the virtual access point (VAP)

based approaches to wireless virtualization and conclude the suitableness of each of



2

these approaches. We show that though packet capture results in an improved perfor-

mance for the SDMA approach, both approaches need a higher layer policy manager

to ensure isolation between the individual experiments.

Our study does not aim to provide a comprehensive virtualization solution across all

wireless devices and drivers but serves as a reference to show the trends in performance

that may be observed with the use of the two aforementioned approaches. Our study

would lay the foundation for some of the key design issues and deployment strategies

for wireless virtualization on large-scale network testbeds like GENI [5].

1.2 Motivation

Networking research has expanded into new frontiers with the need for heterogeneous

networking research infrastructure. The researchers have felt a need to experiment with

integration of different types of networks and to evaluate the performance of various

networking protocols in realistic networks. The NSF [6] led GENI project [5] aims at

setting up a shared experiment facility for testing network designs and protocols that

may be part of the next-generation internet architecture. The GENI infrastructure will

include a large scale wired network programmable with virtualized network elements

like servers, switches, routers etc. to allow simultaneous experiments. The project also

plans to provide several wireless network deployments to support experiments including

sensor networks, radio networks, 802.11 networks etc. The GENI working group has

identified two short term goals as key technical issue for the design and deployment of

the GENI testbed [7]:

1. The Control framework for the wired and wireless testbeds has to be integrated

providing a single experiment framework and methodology for researchers.

2. Virtualization of Wireless Networks to support multiple experiments to run con-

currently on the same radio devices.

The GENI working committee had realized that parallel work on a proof of concept

prototyping of Wireless Virtualization and Wired-Wireless Testbed Integration is im-

portant. This would provide guidance for the design of GENI by providing key design
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issues and practical challenges faced in the above goals. The design of the PlanetLab

Testbed would be a base for the design and virtualization of the wired part of the

GENI testbed. However several extensions to would required to the present PlanetLab

infrastructure to support full range of experiments. Some of the key extensions would

be :

• Device heterogeneity: To include wireless network components like wireless routers,

ad-hoc radios, sensors to the wired networks. Short Term Experiments: To add

support for running short term experiments as opposed to long term experiments.

End-User

• Requirements: Experienced programmers needing little experiment support vs

protocol analysts needing high level tools to help them evaluate their protocols

and applications. PlanetLab Test-bed’s integration with the large scale wireless

testbed ORBIT would be an ideal project to provide insight into the integration

of heterogeneous networks and necessary challenges in extending the control and

management protocols for an efficient experimental system.

The second part of the Project evaluates several approaches to wireless virtualization

that have been proposed on ORBIT, a large scale 802.11 wireless facility. Hence the

combined goal of this project is to demonstrate working solutions on ORBIT to define

the hardware and software platforms for the GENI network.

1.3 Objectives

This thesis covers the integration framework of PlanetLab and ORBIT that has been

developed and demonstrates integrated experiments that use Frequency Division Mul-

tiplexing (FDMA) and Virtual MAC (VMAC) as forms of wireless virtualization. The

proof-of-concept prototyping presented in this thesis would be extremely valuable in

building a practical understanding of integration issues and providing guidance to the

design of GENI. Results from the prototyping are expected to feed into ongoing system

engineering work aimed at specifying key technology components that will constitute

GENI. Contributions of our work are:
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• Extension of ORBIT framework functionality to the PlanetLab nodes providing

an integrated framework to facilitate joint wired-wireless experiments.

• Address the problem of supporting multiple concurrent experiments over these

substrates and provide proof of concept experiments conducted using the frame-

work.

• Evaluate and compare two approaches towards virtualizing the wireless network

-Space Division Multiplexing (SDMA) and Virtual AP (VAP) schemes suitable

for running long-running concurrent experiments.

• Quantify the deviation in performance and discuss effect of interference between

the experiments when using wireless virtualization.

• Determine the strengths, drawbacks and suitability of each of these approaches.

• Discuss and implement the policy manager for ensuring successful experiment

isolation

1.4 Thesis Organization

Rest of the thesis is organized as follows. Chapter 2 presents a detailed picture on

the efforts for PlanetLab and ORBIT testbed integration. In Chapter 3, we give an

overview of Wireless Virtualization and present different schemes for wireless virtual-

ization. Chapter 4 explains two virtualization schemes in detail namely Virtual AP

and Space Division Multiplexing(SDMA). Chapter 5 contains the results section. In

Chapter 6, we summarize the main contributions and give possible directions for future

work.
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Chapter 2

Integration of PlanetLab and ORBIT Testbeds

The integration of PlanetLab and ORBIT would help in better understanding how

virtualized slices can be extended to accommodate heterogeneous wireless technologies

and serve as a guideline for the GENI design. The design and experiment model of

PlanetLab and Orbit are suited to different experimental and research needs. In this

section, we walk through the fundamental differences in the design of these two testbeds

and later discuss the design of the integration model.

2.1 ORBIT Testbed

ORBIT Testbed is a Laboratory based Wireless network emulator involving 400 802.11

nodes wireless nodes. The nodes are arranged in a 20 by 20 square grid with 1m

separation between each pair of nodes. It is designed to achieve reproducibility of

experimentation and support for evaluation of application and protocols in real world

settings. The nodes in the grid can be dynamically interconnected into the specified

topology with reproducible indoor wireless channel models. The current reservation

schemes allow only one user to carry on controlled experiments on the ORBIT grid.

Hence several virtualization schemes have to be investigated and analyzed to allow

several users to share the wireless resources simultaneously. In addition to this a central

resource manager has to be designed to provide automated resource sharing among the

different users.

Each experimentation node in ORBIT is powered by a 1 GHz VIA C3 processor,

512 MB RAM, a 20 GB local hard disk, two wireless mini PCI 802.11 a/b/g interfaces

and two Ethernet ports. The Ethernet ports facilitate control signaling, remote access

and maintenance without affecting the wireless traffic that is part of the experiment.
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The two wired networks are the Data and Control Networks. The nodes are inter-

connected using 1 Gbps Switched Ethernet networks. The Control Network carries

all the commands to the nodes before and during the experiment. The traffic in the

Control Network also includes the measurements from each experiment node during

the execution of the experiment. This facilitates collection and processing of real time

measurements in an experiment. This framework is called OML (ORBIT Measurement

Library) [8] which is responsible for collection, processing and storage of measurements

in ORBIT. The Data Network on the other end is mostly a part of the experiment that

emulates wired connectivity between the nodes.

Figure 2.1: Current ORBIT testbed architecture



7

The ORBIT architecture is represented by Figure 2.1 depicting the major compo-

nents of the testbed. The ORBIT was designed for conducting sequential short term

experiments on the radio grid. Hence this requires the user to reserve the entire radio

grid for sufficient time. Thus it becomes essential to accommodate as many users as

possible and the design of the software architecture of ORBIT is certainly motivated

by this criterion. A typical experiment compromises of the following steps:

• Selecting the nodes and the role (AP, client, sender, receiver, relay etc) that they

play in the experiment.

• Configuration of the wireless and/or wired interfaces of the nodes (infrastructure/ad-

hoc mode, physical rate, transmission power etc.)

• Deploying standard or custom applications on the nodes.

• Collection of results in a statistical or graphical form.

The user would be given access to all the nodes in the grid, deploy his own custom

built image on the nodes and execute his experiment using the Orbit control framework

namely NodeHandler. The user is responsible for feeding an experiment script to the

NodeHandler. The experiment script is a simple ruby script that defines the nodes,

their topology, the role that they play and applications to be deployed on them. The

NodeHandler parses the experiment script and sends appropriate commands to the

NodeAgents running on the Orbit Nodes. The NodeAgent runs on every Orbit Node

and receives commands from NodeHandler. It then executes the requests on the node. It

may be a command to the Operating System or to a user level application. For example

the wireless interfaces are configured using the NodeHandler-Agent mechanism. The

NodeAgent is capable of generating IOCLT commands to the wireless driver to set the

PHY rate of the card, setup the essid, transmission power etc. The NodeHandler makes

use of the Grid-Services that are independent sub-systems developed for specific tasks.

• The CMC service provides the service for powering the Orbit Nodes and provides

feedback in terms of the status of the nodes.
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• The PXE service loads a initial PXE image on the Orbit Nodes before the actual

image is flashed.

• Frisbee service helps imaging the nodes with the user specified custom image in

a short time prior to the start of the experiment.

• OML(Orbit Measurement Library) to set up the databases for collection of ex-

periment results.

• Noise Generators for controlled interference and noise injection to get the desired

SNR for the experiment.

• Real Time Visualization of the experiment results.

2.2 PlanetLab Testbed

The PlanetLab Testbed consists of globally distributed set of nodes connected to each

other via the internet. PlanetLab users run either short term or long term experiments.

These models are supported by distributed virtualization of the PlanetLab nodes [9]

- the concept of slicing the global resources. A slice is a set of allocated resources

distributed across PlanetLab nodes. Multiple slices run concurrently on the PlanetLab

nodes independent of each other. Each PlanetLab node runs Linux V-servers that

provide namespace and performance isolation among the various slices on a node -

defined as a sliver. A sliver is the set of allocated resources on a single PlanetLab node.

Network virtualization is provided through VNET [10].

The first step for every PlanetLab user is to create a slice and add the desired

nodes to it. Experiments on PlanetLab are best effort and there is no guarantee on the

network resources allocated to the slices. PlanetLab consortium (PLC) manages the

creation, authentication and release of the slices. Upon the creation of the slice, the

PlanetLab nodes are populated with the minimal Fedora Core Linux installation. The

PlanetLab users are given restricted root permissions to the underlying software and

hardware devices.

Despite providing a globally distributed substrate for conducting experiments in
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a realistic network, the PlanetLab does not offer any support for choreographing an

experiment and controlling the nodes using automated scripts. Popular tools like ssh,

pssh, scp and pscp [11] are used to gain access to the nodes, to control them and to

populate the nodes with the required applications and software. In addition, the results

and measurements of the experiment have to be manually collected. Despite all these,

there are third party softwares available for controlling and monitoring experiments in

PlanetLab.

2.3 Integration Model: ORBIT driven Integrated Experimentation

Console
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services

NodeAgent

Using integrated services, access both ORBIT and 
Planetlab nodes in the experiment

NodeAgent

NodeAgent

Planetlab – ORBIT
Gateway

Nodeagent running on radio 
nodes in the ORBIT grid

Internet

1

3

Experiment 
Script

2
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nodeagent
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3

Integrated 
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START

Figure 2.2: Proposed ODIE model to integrate PlanetLab into ORBIT testbed.

This model is intended to serve the ORBIT wireless testbed users who want to

augment their experiment by the addition of wired PlanetLab nodes without drastic

changes in their code or experiment script. In this model, ORBIT users have the provi-

sion of adding a long running “ORBIT Slice” in PlanetLab nodes in their experiment.

Figure 2.2 shows the conceptual diagram for the ODIE model.
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This model has been implemented by extending the ORBIT nodeAgent function-

ality to run on PlanetLab node “ORBIT Slivers”. In addition to this, the ORBIT

nodeHandler was modified to support a unified experiment definition, download and

execution. This nodeHandler running in the ORBIT framework communicates with

the modified nodeAgents running on the PlanetLab slivers. In this section, we describe

the main directions/features that were added to support the unified experiments with

PlanetLab nodes in addition to ORBIT nodes.

2.3.1 Topology Selection

In the PlanetLab testbed, users do not have the privilege of defining custom topologies

for experimentation. Based on this, PlanetLab nodes for an ORBIT experiment are

chosen in one of the following ways:

• Manual Addition: experimenters choose their PlanetLab nodes individually. The

list of PlanetLab nodes in the “ORBIT Slice” is provided to every user. User is

also given the option to add more PlanetLab nodes to the slice. This approach

suits users that don’t have any bandwidth, delay and other network parameter

constraints in their experiments.

• Metric based Addition: experimenters prescribe the link specific characteristics

desired for their experiments. The users can include those PlanetLab nodes that

meet certain criterions, like link bandwidth and delay, using popular third party

tools available for PlanetLab users. HP Labs has deployed S3(Scalable Sensing

Service) [12] on all PlanetLab nodes. S3 currently provides the following network

metrics between all pairs of Planet-Lab nodes:

1. End-to-end latency

2. Bottleneck bandwidth capacity

3. End-to-end available bandwidth

4. Lossrate
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2.3.2 Extended Addressing Scheme

An extended addressing scheme to include PlanetLab nodes allows to address PlanetLab

nodes as part of the ORBIT framework and have the local DNS map requests for

PlanetLab nodes to their respective public domain names. As an example, in our

current implementation, we address the PlanetLab nodes as [21,1..20] while ORBIT

nodes continue to be addressed as [1..20,1..20] based on their row and column numbers.

For e.g., node21-3.orbit-lab.org maps to planetlab01.cs.washington.edu.

2.3.3 Extended Communication Layer

In order to communicate with nodes in the local network (ORBIT nodes) as well as

remote PlanetLab nodes, our model extends the current communication protocol for

the nodeHandler-nodeAgent Framework to allow access to geographically diverse nodes

of PlanetLab.

During an ORBIT experiment set-up and execution, commands from the nodeHan-

dler are sent to the nodeAgents running on the ORBIT nodes using reliable multicast.

For PlanetLab nodes on the Internet, these commands will need to be tunneled using re-

liable unicast since multicast support on the routers in a path cannot be assumed. The

nodeHandler has been modified to communicate with the nodeAgents on the PlanetLab

nodes over unicast-TCP. This modification eliminates the need to provide reliability in

the application layer. The nodeHandler performs this function of communicating with

the PlanetLab nodes in each experiment that requires wired networking resources.

Sequence of nodeHandler-nodeAgent communication during an experiment is as follows:

The major upgrades to the nodeHandler-nodeAgent framework are reflected in the state

diagram of Figure 2.3. When an experiment is started, the NodeHandler starts the

NodeAgents on the specified PlanetLab nodes using the popular tool ’pssh’ and waits

for them to report back. After a timeout it records all the PlanetLab nodes that have

successfully reported back. The nodes that fail to report during the timeout period are

replaced by other PlanetLab nodes in the ORBIT Slice. This procedure is repeated

till the desired number of PlanetLab nodes have reported back. (A failure could result
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from node failure, node maintenance, slice clean-up, link failure etc. ). The next step

for the NodeHandler is to send commands to the NodeAgents to start the necessary

applications on the PlanetLab nodes. The NodeAgents then report success or error

messages back to the NodeHandler indicating the status of the nodes. This feature

removes the need to manually ssh each of the PlanetLab nodes in the experiment to start

the applications. After setting up the PlanetLab nodes, the NodeHandler configures

and sets up the ORBIT nodes. The user simply provides a unified experiment script

including both PlanetLab and ORBIT nodes and the application definition that the

nodeHandler parses to execute the experiment automatically.

Figure 2.3: Modified nodeHandler-nodeAgent Framework for PlanetLab nodes.

2.3.4 Experiment Scripting

This section explains the unified experiment script that a user needs to supply to the

ORBIT nodeHandler to conduct integrated ORBIT-PlanetLab experiments. The ODIE
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based experiment script is parsed and executed by the NodeHandler to choreograph the

experiments. The NodeHandler runs on the console of the ORBIT grid.

A single script for the ODIE models may be described in two sections:

• Node configuration section

• Experiment timing and execution section.

The node configuration section is responsible for setting up all the nodes being used

as a part of the integrated experiment while the timing and execution section of the

ODIE script describes the execution sequence of the experiment. The corresponding

topology created by the experiment script is shown in Figure 2.4.

Figure 2.5 shows the section of the script that configures the nodes for the experi-

ment. The first part of the code configures the wireless interfaces of two ORBIT nodes;

one as an access point and the other as a client. The configuration part also defines the

PlanetLab nodes in Washington and Japan to include in the experiment. The nodes are

manually chosen by the user. However the PlanetLab nodes are addressed as extension

to the ORBITs Node addressing scheme. As mentioned in the previous sub-section,

all ORBIT nodes are addressed as x,y where x is the row number [1..20] and y is the

column number [1..20] and the PlanetLab nodes in the ORBIT Slice are addressed as

[21,1..20].

Figure 2.6 describes the timing and execution section of a typical ODIE script. The

WhenAllInstalled() module is responsible for checking if all the ORBIT nodes have been

configured as per the specification in Figure 2.5. Typically when this is verified, individ-

ual applications like running a traffic analyzer, traffic generator or any custom defined

Figure 2.4: Topology setup by the Experiment Script.



14

#-------------ACCESS POINT-----------#
defNodes(’AccessPoint’,
[11,20]) {|node| node.prototype("test:proto:mvlcrelay",

{’duration’ => prop.duration})
#802.11 Master Mode
node.net.w0.mode = "master"
node.net.w0.type=’a’
node.net.w0.channel="48"
node.net.w0.essid = "link1"
node.net.w0.ip="192.168.7.1"

} #---------------CLIENT--------------#
defNodes(’Client’, [19,2])
{|node| node.prototype("test:proto:mvlcdest",

{’duration’ => prop.duration})
node.net.w0.mode = "managed"
#802.11 Managed Mode
node.net.w0.type=’a’
node.net.w0.channel="48"
node.net.w0.essid = "link1"
node.net.w0.ip="192.168.7.7"

}
#----------- PlanetLAB nodes----------#
defPNodes(’[21,3],[21,5]’)
# MAPS to planetlab01.cs.washington.edu and planet0.jaist.ac.jp #

Figure 2.5: Node configuration section of a sample script (ODIE model).

applications can be executed based on the timing specified in the script. Typically the

application script in Figure 2.6 starts the applications on the access point and waits

for 5 seconds before starting the applications on the client nodes. The remaining part

of the script involves that part of the experiment execution that deals with PlanetLab

nodes. The module WhenPlReady() waits for the nodeAgents on the PlanetLab nodes

to report. There is a time-out for every PlanetLab node after which the NodeHandler

ignores the nodes that fail to report and chooses other available nodes in the “ORBIT

slice” on PlanetLab. Once the desired number of PlanetLab nodes have reported, the

applications on the respective nodes are initiated. The feature defPInstall() is respon-

sible for installing applications, software and libraries, required for the execution of the

experiment on the PlanetLab nodes. This module uses the YUM tool [13] to install

the specified software from the PlanetLab repository. defPApplication() triggers the
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#--Start applications on ORBIT nodes--#
whenAllInstalled() {|node|

nodes(’AccessPoint’).startApplications
wait 5
nodes(’Client’).startApplications
wait 195 # Experiment Duration
allNodes.stopApplications
Experiment.done

}
WhenPLReady(){
#--Install applications on PlanetLab node--#

defPInstall([21,3],[21,5],’APACHE’){}
#--Start applications on PlanetLAB nodes--#

defPApplication([21,3],’VIDEO1’){}
defPApplication([21,5],’VIDEO2’){}
wait 195
defPApplication([21,3],[21,5],’STOP’){}

PLexpdone() }

Figure 2.6: Experiment execution section of a sample script (ODIE model).

execution of applications and scripts on the PlanetLab nodes specified . Both, defPIn-

stall() and defPApplication() report success or failure in executing the application on

the PlanetLab nodes to the ORBIT nodeHandler. The Plexpdone() module ensures the

slice is cleaned up at the end of the experiment.

Since the NodeHandler/NodeAgent framework is Ruby-based (a highly portable,

scripting language) and since both PlanetLab and ORBIT run different flavors of the

same OS (Linux) , the porting of nodeAgent software on PlanetLab was done without

much modification.

As stated in [14], wireless and mobile networks represent an essential part of network

research. In addition, there is a need for identification of the architecture for next gen-

eration networks and protocols. The integration of large scale testbeds like PlanetLab

and ORBIT would certainly be the first step towards these developments. However, a

related aspect of this integration is the ability to carry out multiple concurrent exper-

iments within the integrated platform to support large-scale experimentation. While

PlanetLab serves as a base model for wired virtualization, wireless virtualization solu-

tions need to be investigated for ORBIT. Currently, the entire ORBIT testbed resources
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have to be reserved and allocated to one user. With the use of a virtualized ORBIT

testbed, a PlanetLab slice can be extended to include individual ORBIT nodes. In the

following section, we discuss challenges to wireless virtualization followed by schemes

to overcome this barrier. We also show proof-of-type prototype integrated experiments

to show the usefulness of our integrated infrastructure.
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Chapter 3

Wireless Network Virtualization

3.1 Introduction To Wireless Virtualization

Virtualization is defined as making multiple logical resources out of a physical resource

such that each logical resource appears as a single independent entity. The goal of virtu-

alization is to enable multiple experiments that might run concurrently or sequentially

to share a common network infrastructure with minimal interference. The concept of

Virtualization of networks has been extensively used in wired network testbeds like

PlanetLab to provide support for multiple concurrent and long running experiments on

limited physical resources of the testbed. However, as mentioned in the GENI draft [5],

the virtualization of a wireless network is recognized to be a difficult problem.

On the other hand, Slicing is defined as the process of allocating coherent subset(a

slice) of the physical resources to a given experiment. In contrast to virtualization, slic-

ing does not involve sharing of the same physical resource across multiple experiments.

3.2 Challenges involved in Wireless Virtualization

The nature of the wireless medium imposes some unique and interesting challenges in

the virtualization of wireless networks that are not observed in its wired counterpart.

Two fundamental problems imposed by the wireless environment are listed:

• Isolation The Wireless Channel is a broadcast medium. There is radio interfer-

ence among the various nodes sharing the same wireless spectrum. The virtual-

ization of a wired node relies on sharing CPU, BW etc to time slice the different

experiments. These resources can be upgraded to meet the requirements of the
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users but the wireless testbeds share the wireless spectrum. Hence a strict isola-

tion of wireless resources will need more wide range of solutions to partition the

resources than its wired counter part.

• Experiment Repeatability An important aspect with performing indoor con-

trolled experiments is to ensure the repeatability of results. If resource sharing is

not done properly and their effects are not known before hand, results obtained

may not be consistent.

3.3 Requirements from virtualization schemes

• Efficient: The virtualization scheme assigned for experiments should be efficient

in terms of its implementation and performance. The implementation overhead

should be minimum so that experiments are promised satisfactory performance

in terms of throughput, delay, jitter and other important metrics.

• Minimal Interference: The virtualization schemes should be designed for max-

imum isolation between experiments. In most virtualization approaches, there is

bound to be interference between experiments. Improper resource sharing may

result in unpredictable performance across multiple experiment runs.

Most importantly, adding virtualization capabilities to a wireless network testbed

like ORBIT would require design and development of additional components. Some of

the major components include:

• Slice Manager(SM) Similar to its role in wired testbeds, the slice manager

would track the experiment’s states and provide user authentication.

• Resource Manager(RM) This module is responsible for admission control and

checks for the availability of resources in the grid. It will approve users based

on their request for nodes and channels. A resource manager would need to

map a given experiment scenario to a resource constrained setup. Selection of a

particular mapping scheme depends on the following aspects:
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1. Resource constraints of the testbed: number of nodes, available orthogonal

channels, ability of the experiment control mechanism to handle parallel

experiments.

2. Performance degradation: Virtualization of any resource almost always re-

sults in some form of compromised performance. While mapping virtualiza-

tion to scientific experiments it is necessary to know the performance devi-

ation in experiments if any, that may be seen due to sharing of resources.

• Virtualization Support(VS) This component would run on the testbed nodes

to support multiple experiments on the nodes. It will provide efficient partitioning

of the computer resources on the radio nodes. In addition to these responsibili-

ties, the VS is also responsible for monitoring the experiment to ensure that the

experiment execution confines to the resources assigned to it by the RM. For e.g.,

if an experiment is allotted a frequency, the VS on the transmitting nodes of the

experiment should report and take some action if the nodes transmit at different

frequencies that might effect other exeperiments.

3.4 Outline of Wireless Virtualization Approaches

3.4.1 Frequency Division Multiple Access (FDMA):

In this technique, different experiments are partitioned in the frequency domain. 802.11a

wireless cards provide support for 12 orthogonal frequencies. Similarly 802.11b provides

3 orthogonal channels. This limits the virtualization to a maximum of 15 concurrent

experiments to run on a node assuming three experiments use 802.11b and twelve make

use of 802.11a with no specific channel requirements. Another penalty is the chan-

nel switching time taken by the cards to switch between frequencies. As an example,

Artheros Wireless cards used in ORBIT have a switching time of the order of 5ms.

The use of multiple cards as shown in the figure below can avoid switching time but

this would require virtualization at the user level. Each virtual node would correspond

to a distinct wireless card, each of them configured to a different frequency channel.

This approach would introduce the cost of context switching and requirement for higher
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CPU speed and a larger memory for the testbed nodes.

Figure 3.1: FDMA based wireless virtualization.

3.4.2 Time Division Multiple Access (TDMA):

This approach partitions the experiments along the time dimension. The virtual nodes

are allotted non-overlapping time slots. This is very similar to the processor scheduling

widely used for process virtualization. The more the degree of virtualization the more

will be the delay faced by the individual experiments. Similar to FDMA, this approach

faces the overhead of context switching across the virtual nodes.

Figure 3.2: TDMA based wireless virtualization.
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3.4.3 FDMA-TDMA Combination:

Each experiment is allotted a unique frequency and a unique time slot. 802.11a nodes

can operate on 12 orthogonal frequencies. As an example, 4 logical groups can be

formed each with 3 distinct frequencies partitions. The figure below depicts a scenario

where a node is virtualized into 6 slices using two orthogonal frequency partitions in 3

time slots. Each virtual node is identified by the unique id FPx,TSx.

Figure 3.3: Combined FDMA-TDMA based wireless virtualization.

3.4.4 Frequency Hopping (FH):

The FDMA and TDMA techniques can be combined in another way to design a tech-

nique called frequency hopping. Each experiment uses a unique set of frequencies at

different time slots. This approach also faces scalability issues due to scarcity in the

orthogonal frequencies. The main design challenges are the overheads of context switch-

ing and channel switching time. Use of multiple wireless interfaces can eliminate the

channel switching time completely. All the nodes of an experiment will have to operate

on the same frequency for a given time slot for the synchronization of the experiment

and no two nodes belonging to different experiments shall be on the same frequency in

the same time slot to prevent interference. These points add complexity to the design

of the resource manager for the testbed.
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Figure 3.4: Wireless Virtualization using Frequency Hopping.

3.5 Slicing techniques for wireless networks

3.5.1 Space Division Multiple Access (SDMA):

The SDMA approach slices the testbed resources to provide sufficient spatial separa-

tion between the transmitting nodes to avoid interference across individual experiments.

This means that SDMA provides virtualization across multiple nodes eliminating the

need for experimenters to share experiment nodes. This partitions the experiments

across the testbed grid. Use of different 802.11 protocols namely 802.11a/b/g also par-

tition experiments and facilitate the run of simultaneous experiments in their respective

partitions.

In this technique, scalability is limited by the number of “non-interfering partitions”

and the number of “nodes per partition”. It has a high requirement for space.

3.5.2 Combined SDMA, FDMA and/or TDMA:

The resources of each SDMA slice can be further virtualized by partitioning in frequency

or time domain or a combination of both. This combination would support more

general topologies with orthogonal frequencies or time slots assigned to the different

experiments.
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Figure 3.5: SDMA based wireless network “slicing”.

3.5.3 FDMA based slicing:

In this slicing approach, the different experiments are assigned different slices of the

testbed resources and assigned orthogonal frequencies. This ensures that the nodes of

the experiment do not interfere with each other. Moreover, this approach does not have

the limitation of space constraints. The number of orthogonal frequencies limits the

scalability of this approach.

3.6 Virtual Access Point: VMAC based 802.11 virtualization

A Virtual Access Point [15] is a logical entity that exists within a physical access point.

Multiple VAPs can be created in a physical AP, each providing the functionality of an

AP. This Virtual MAC capability could be exploited to provide slicing based virtual-

ization in the wireless testbeds for fixed AP based-star topology. Each experiment is

mapped to a separate Virtual AP. The use of VAPs in wireless virtualization is moti-

vated from its real world applications where multiple providers share common physical

infrastructure. The VAPs operate on the same channel and save the cost of extra phys-

ical nodes. It also reduces the interference that may have aroused in a similar scenario

when using different physical APs on the same channel. Figure 3.7 depicts the scenario
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Figure 3.6: FDMA based wireless network “slicing”.

where a VAP is used to support four concurrent experiments.

Figure 3.7: Mapping VAP defined ESSIDs to different experiments.

1. A new Virtual AP (VAP) is created for every new slice to partition the different

experiments on ESSIDs. This is equivalent to creating new VLANs for every user

experiment. All the slices share the same radio frequency and the access to the

channel is controlled by the standard CSMA/CD Algorithm.

2. The performance of one slice would be effected by traffic flows in other slices.

Also the control and management traffic of the 802.11 limits the number of slices
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running on the VAP. Currently a maximum of 4 concurrent VLANs can run on

a single physical access point (Artheros, Intel Wireless Cards). An AP with ’N’

VAPs is referred to as N-VAP.

3.7 Most Suited Approaches

Selection of a virtualization scheme primarily depends on the resource being conserved.

Wireless virtualization are targeted at either the conservation of nodes (hardware) or

channels (frequency). Frequency multiplexing of the wireless channel (FDMA), allows

for node conservation where the same node could be shared using a UML [16] like

mechanism on multiple channels to emulate different experiments. Keeping in mind

Moores Law, the present testbeds would not be held back on the number of wireless

interfaces that they deploy. For instance, with access to 800 wireless interfaces on the

ORBIT grid the focus was more on channel conservation rather than node conservation.

In the next chapter, our results show that FDMA may not scale well, with provision

for only three orthogonal channels in 802.11b mode of experimentation. Since we aim

primarily at channel conservation, the list of virtualization schemes boil down to three

choices :

• TDMA based Virtualization

• SDMA based Virtualization

• VAP based Virtualization

TDMA has been implemented and tested on the ORBIT grid in [17]. This approach

runs multiple UML instances on the same node which use the same wireless device.

They ensure through tight synchronization, that at any time all the nodes are running

the same experiment slice across the network of nodes. Efficiency of implementation

and overall performance seen with a TDMA scheme will greatly depend on:

• Experiment Synchronization: In TDMA, there is a stringent need for high de-

gree of time synchronization between all the experiment nodes. Moreover, wire-

less experiments can potentially involve a high number of experimental nodes.
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Though tools like the network timing protocol daemon (NTPD) [18] can provide

distributed time synchronization, accuracies achieved may not be sufficient.

• Design Dilemma: The choice of time slot allotted to the different experiments

is another design issue for the TDMA approach. A small value may not be

possible due to practical limitations of wireless hardware like switching time and

a large value would adversely affect the performance and results in delay sensitive

experiments. Since, in this approach, several concurrent experiments share one

or more physical nodes, there is also a need to provide isolation on every node

between the experiments.

The TDMA approach requires design and deployment of a complicated infrastruc-

ture on current testbeds like ORBIT which does not seem plausible. To offset these

disadvantages we will compare and evaluate the SDMA and VAP-based approaches

towards wireless network virtualization.



27

Chapter 4

Experimental Set-up and Results

4.1 Experiment Configurations

In the initial part of our study, we are aiming to determine the amount of performance

degradation ,if any, that will be seen with the use of VAPs instead of an AP followed

by the performance comparison between SDMA and VAP based virtaulization schemes.

To ensure this all measurements will adhere to the following:

• Relative Measurements: To ensure that the vagaries hardware and the experiment

environment do not have a significant role in the generated results, results for all

the scenarios are based on the experiments performed in succession. While using

this experimentation approach we are making an assumption that though the use

of different hardware may result in different relative results, the trends seen with

the results will hold.

• Traffic Type: We make inferences on the results based on UDP traffic which

represents a best effort service. However, we also use TCP traffic to show its

effect on a virtualized network.

• Uplink Flows Only: Our study is mostly restricted to Uplink flows unless explicitly

specified. Uplink flow implies traffic flowing from clients to the Access Points.

• Protocol: Our study is restricted to 802.11a [19] protocol unless mentioned oth-

erwise. 802.11a supports multiple data rates upto a maximum of 54Mb/sec.

Throughout our experiments, we use a bit-rate of 36Mb/sec.
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4.2 Performance Metrics

Metrics are selected on the basis of their popularity in experiments. In this paper we

will consider three metrics that have the most impact on the performance in wireless

networks. They are as follows:

1. Throughput: It is necessary to see how the throughput difference will vary with

other changing experiment parameters such as packet size and net offered load.

2. Delay: Relative latency between the different scenarios for virtualization is an im-

portant metric. We also compare latency results of virtualized and non-virtualized

cases to see differences that may be seen in the experiments.

3. Jitter: Jitter in a link is defined as the variance of delays between packet inter-

arrival times. Jitter proves to be an important factor for experiments that evaluate

the performance of algorithms dealing with real time audio traffic.

In our experiments, we use UDP, TCP and RTP traffic for measurements and com-

parisons. The popular bandwidth measurement tool IPERF [20] was used to generate

UDP and TCP traffic. Delay experiments with Iperf will not produce the right results

because the traffic generator has a blocking operation i.e., it relies on blocking sockets.

To obtain steady state delay values, ping [21] was used as a simple tool to measure the

latency. Even though the granularity provided by ping is argued to be considerably

coarse, it works fine for our application. For experiments with video applications, we

use VLC media player [22] for streaming and receiving the video. The bit-rate and

jitter measurements are recorded after analyzing the tcpdump [23] using Ethereal [24].

4.3 Proof-of-Concept Integration Experiment

In the first section in the results, we evaluate an experimental scenario with integrated

tests of the PlanetLab and ORBIT testbed. This integrated experiment evaluates

FDMA based slicing of the ORBIT testbed to support concurrent experiments. To-

wards the end, we discuss the scalability issues with FDMA based slicing approach for

virtualization.
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Aim: In this proof-of-concept experiment we show the use of our architecture in

testing the performance of video delivery algorithms. The objective of this experiment

is not to do a comparative study of the video delivery algorithms themselves, but rather

demonstrate a way to evaluate these algorithms with our setup.

Figure 4.1: Integrated Experiment Layout with FDMA slices on ORBIT nodes.

Topology: Figure 4.1 shows the topology for this experiment. The wireless pa-

rameters we use for our experiments is shown in Figure 4.9. We consider a typical

scenario for streaming video delivery across a network path that includes an edge wire-

less link. The experimentation includes two flows from PlanetLab nodes to two Access

Points configured within ORBIT. The Access Points relay traffic to their respective

clients over orthogonal channels. Isolating experiments on different and possibly or-

thogonal frequencies is one of the easiest approaches to wireless virtualization (FDMA

based slicing). The video streamed from PlanetLab goes over the internet giving exper-

imenters the characteristics of a realistic network. Physical and MAC layer parameters

such as channel rate, transmission power, injected noise, packet sizes can be varied to

test the effect of the wireless link on the overall performance of the link. The video

is streamed and played using the Video LAN (vlc) player. The ORBIT Measurement

Parameter V alue

Channel Rate 36Mbps
Offered Load Time Varying

Experiment Duration 2 Minutes
Averaging Duration Per Second

Operation Mode 802.11a

Figure 4.2: Experimental Parameters Used With ORBIT Nodes
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Library (OML) framework of ORBIT provides means for recording the bit rate and

jitter in the video received at the ORBIT clients. We record measurements for different

PlanetLab nodes in terms of their geographical distance from ORBIT.

Experimentsetting MaxJitter (ms) MaxDelta (ms) MeanJitter (ms)
Wireless One hop 1.68 7.66 0.98
Pl − Princeton 1.69 7.69 0.98

Pl −Washington 1.88 8.76 1.05
Pl −Washington (Loaded) 35.76 415.8 3.62

Pl − Japan 52.18 779.02 7.38

Figure 4.3: Jitter results observed with different PlanetLab nodes serving the same
video over the internet to wireless clients in the ORBIT grid.

Jitter measurement: Figure 4.3 shows the results for the jitter values from the

FDMA experiments. A video was delivered from PlanetLab nodes in Princeton (NJ),

Washington and Japan. Results show relatively comparable jitter values for the Prince-

ton and Washington PlanetLab nodes. Japan on the other hand sees a higher jitter for

video delivery possibly due to higher traffic and geographical distance. In another case

we simulated a heavily loaded server by adding traffic to the Washington node. The

results show the increased delay for such a busy node. The jitter obtained for one-hop

wireless link is also shown as a case of an exclusive ORBIT experiment and that might

be the baseline scenario for comparisons. All these readings are easily obtainable either

through the OML framework using the integrated tcpdump tool.

Bit rate measurement: Figure 4.4(a) shows a plot of the observed video bit rate

at the client as a function of time. The observed bit rate for the videos is lower for the

PlanetLab node in Japan as compared to those in Princeton or Washington. Calibration

tests performed over the one hop wired and wireless networks server as a baseline for

comparison. Figure 4.4(a) also shows the performance of the individual flows in terms of

the average bit rate at the wireless client for the same video. Surprisingly the increased

load on the Washington node only shows increased jitter in the video delivered with a

comparable mean bit rate. The PlanetLab node in Japan has a deteriorated bit rate at

the client.
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Figure 4.4: Measurements of bit-rates for different PlanetLab nodes.

These results could help provide a deep understanding and evaluation of proposed

video delivery algorithms. They could also help to better understand the limitation

of media delivery over wired/wireless networks. In addition, research on spectrum

allocation, bandwidth management and inter- Access Point communication protocols

would require the presence of a similar framework.

A disadvantage of using frequency division multiple access (FDMA) based slicing

for virtualization on the ORBIT grid is that it does not scale well with the number of

available orthogonal frequencies. For e.g., 802.11b operates on 11 channels, but only 3

of them are orthogonal, namely 1,6 and 11. We investigate the effect of experiments on

channel 2,3,4,5 and 6 will have on an experiment using channel 1. Since these channels

are non-orthogonal, some interference is expected that will result in drop in throughput.

We make use of two extreme scenarios for comparison. The worst case would be when

the nodes operating on non-orthogonal channels are close in space and the transmission

power is set to maximum possible value (20 dbm). On the other hand, the best possible

case would be to have the node pairs farthest apart on the grid and setting the value of

power to 1 dbm. The throughput values for the pair-wise communication are plotted

against the interfering channel as shown in Figure 4.5.

As expected, the effect reduces as we move from channel 1 to channel 6. The varia-

tions in throughput are a result of the working of the CSMA protocol. Moreover as we

increase spatial separation and decrease transmission power, the aggregate throughput
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Figure 4.5: Investigation of FDMA based slicing with 802.11b. (Left) Experimental
nodes chosen close to each other (Right) Experimental nodes chosen with maximum
space separation and minimum transmission power.

increases. The results for channel 4 and 5 suggest that FDMA based slicing can be

incorporated in indoor wireless testbeds but it needs to be combined with other ap-

proaches like SDMA and using means such as transmission power control to increase

its scalability. In the following sections, we show results of our investigation on more

scalable virtualization schemes.

4.4 Virtual Access Point Based Time Sharing

The VAP technique is based on logical partitioning of the channel with individually

assigned ESSIDs that run on a physical access point while emulating the behavior of

conventional physical APs to stations in the network. Using a VAP allows for two or

more AP mechanisms to share the same channel thereby helping channel and energy

conservation. We plan to exploit this mechanism to provide virtualization of fixed star

topology wireless networks. The individual experiments would be assigned different

ESSIDs on the same physical AP. As described in the previous chapter, the provision of

channel multiplexing by VAPs makes it a suitable candidate for supporting long-term

experiments.

4.4.1 VAP Implementation Overview

The concept of VAPs is incorporated in the 802.11 driver which operates just above the

MAC layer and below the IP layer as shown in the Figure 4.6. The driver provides the
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Figure 4.6: Position of the VAP creation and maintenance architecture as a part of the
network stack.

multiple AP abstraction to the higher layers though it is operating on a single lower

layer. Hence all the protocols operating on the machine are agnostic to the presence of

the abstraction. In order to understand the performance shown in the results section

we provide a brief overview of the new driver along with possible causes for seeing

a degraded performance with multiple VAPs. The details mentioned in this part are

based on the information available in the MADWIFI driver source code [25].

VAP Creation: On a command from the user tool (such as wlanconfig or iwconfig),

IOCTL calls are made to the driver which creates a VAP as mentioned in [26]. The

IOCTL calls are redirected from the kernel to specific API defined in the driver which

results in allocation of required resources (including the assignment of MAC addresses,

setting up queues) and marking entries in the drivers node table.

Receiving Information: A brief overview of how MAC frames are received are shown

in Figure 4.7. Every time a MAC frame is detected, it triggers an interrupt to the

driver. The servicing of this interrupt results in the buffering of the incoming frame

by the driver. Once the entire frame is detected, the driver tries to match the MAC
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Figure 4.7: VAP execution flowchart based on the MADWIFI driver.

address in the frame with the MAC address of the virtual access points running on the

interface. All the virtual interfaces have unique MAC addresses. If the MAC address of

the incoming frame does not match that of any VAP, the frame is simply sent across to

all the VAP interfaces on the assumption that if the frame does not belong on a VAP it

will be dropped anyways. The comparison and the post processing of the MAC frames

accounts for some extra overhead which corresponds to the overheads seen with VAPs.

A virtual access point (VAP) is a relatively new concept and the performance with a

virtualized driver has not been characterized. We start by comparing the performance

of a VAP with a physical access point even before we can compare it with space sharing

of the channel.

4.4.2 Virtual Access Point Overhead

Before we evaluate the benefits of using VAPs, we consider it important to determine

the overheads of maintaining state of multiple networks at a single hardware device.

The experimental setup for comparison is as shown in Figure 4.8(a) and Figure 4.8(b).

Figure 4.8(a) shows a setup with one AP and all four clients within the same network.

Figure 4.8(b) has the same nodes. However, each of the clients now belongs to a

different logical network created by the VAPs. Results are evaluated for both uplink
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(a) A physical access point and four clients (b) Four virtual access points and their in-
dividual clients

Figure 4.8: Experimental setup for performance evaluation with physical and virtual
access points.

Parameter V alue

Channel Rate 36Mb/sec
Aggregate Offered Load 50Mb/sec
Experiment Duration 5 Minutes
Averaging Duration Per Second
Operation Mode 802.11a
Traffic type Uplink
Chipset ATHEROS
Driver Madwifi(0.9.3.1)

Figure 4.9: Experimental Parameters Used With ORBIT Nodes

and downlink performance with a saturated channel and equal offered load per client.

Other experiment parameters were maintained as shown in Figure 4.9.

Figure 4.10 plots the observed per client throughput for uplink and downlink traffic.

Performance of a single client with a single access point is taken as a reference for

comparison. Key observations that can be made from the results are:

• As with any time sharing approach, the entire bandwidth (which is seen in the

scenario with 1 client) is now shared across 4 clients.

• Uplink traffic sees a slight deterioration in performance with both the AP and

the VAP as compared to the reference flow with 1 client.

• There is no added deterioration with uplink traffic using VAPs for having clients
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Figure 4.10: Impact of virtualizing using VAP based time-sharing approach.

on multiple networks, as compared to an AP with all clients in one network.

Hence, we can conclude that the deterioration seen in both cases which leads to

a net channel throughput of 21.76Mbps as compared to 24.11Mbps is due to the

increased channel contention overhead.

• Downlink overheads for both AP and VAP with 4 clients are neglibible as com-

pared to that with a single client.

• Error bars for both cases show little variance in throughput.

Thus empirical evaluations and a study of the source code reveals no significant

overhead for running VAPs on a single node. This suggest that experiments eval-

uating aggregate throughput with test setups running a single AP or multiple VAP

should generate comparable results with the channel utilization being determined by

the number of clients. Based on this conclusion, we can now compare the performance

of virtualization with VAP and that with space separation.

4.5 Space Division Multiple Access(SDMA) on ORBIT

The idea behind SDMA slicing is to allocate a unique set of resources to the users parti-

tioned in space. Individual experiments are mapped to different subsets of the testbed,

termed as slices, to ensure minimum possible interference. The ORBIT wireless testbed
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is located in a 20 meter x 20 meter space and the testbed nodes are in close physical

proximity of one another. Under these conditions, partitioning the resources in space

to avoid interference would not be practically possible. This holds true for most of

the emulator testbeds. “Artificial stretching” of the distance is achieved by controlling

transmission power of the nodes and using noise injection to emulate barriers between

the nodes of different experiments. Our experiments explore the possibility for virtual-

izing the ORBIT grid using SDMA by controlling power in addition to providing spatial

separation. In an artificially stretched SDMA, all the experiments are multiplexed on

the same channel and hence face CSMA-based contentions with the nodes belonging to

other experiments.

4.6 VAP versus SDMA

Strictly, SDMA slicing is different from other virtualization schemes. Unlike in most of

the virtualization approaches, each node of a SDMA slice is entirely assigned to the user

and there is no logical partitioning of the testbed nodes. Many wireless experiments

evaluate modified MAC and PHY layers protocols, and hence sharing nodes with other

experiments is not possible. Such scenarios necessitate the need to allot a slice to each

experiment. In our setup for SDMA, experiments that use a MAC and PHY layer which

is compatible with the IEEE 802.11 standard would operate successfully in a virtualized

environment. The SDMA experiments will not be restricted to fixed star topologies like

in the case for the VAP. More generic topologies like ad-hoc are possible to execute in

a SDMA environment. However, due to spatial constraints in testbeds, incorporating

arbitrary topologies in the slice allocated to the experiment may be challenging or

impossible for some experiments.

Unlike in the SDMA based approach, the VAP performs logical partitioning of a

physical node (Access Point in this case). This partitioning implies a need for isolation

between the different experiment instances on the same physical node. Though there are

several techniques that virtualize the resources of a single node by supporting multiple

concurrent instances of Operating Systems (OS), there is penalty in terms of added

complexity and performance loss. Moreover, sharing a node with other experiments
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limits the capabilities to modify the MAC/PHY layer parameters. The VAP however

conserves network resources and is not limited by the space constraints of the testbed.

With VAP, creating topologies is more efficient and easier than SDMA.

To summarize:

• SDMA and VAP approaches provide channel multiplexing options for virtualiza-

tion of a wireless testbed and hence qualify for supporting long running concurrent

experiments.

• In the SDMA approach, for every new experiment, a “slice” of the testbed re-

sources is assigned to the experiment. The challenge is to assign the topologies

of the different experiments as far apart as possible. In the VAP case, for every

new experiment, a new ESSID is created on the VAP. This is similar to creating

new VLAN for each experiment.

• In both the approaches, the new slice (experiment) will share the same radio

channel and access to it is controlled by CSMA mechanism. Therefore there is

bound to be undesirable effects of traffic of one or more experiments on the other

experiments.

• It should be noted that in the case of VAP, if the experiments use downlink traffic,

the transmission is time scheduled. Hence there are no CSMA based contentions.

This case is different from the scenarios with VAP uplink and SDMA, where

experiments face CSMA based channel contention with other experiments. In a

later section, we discuss the difference in performance of these scenarios. However

to make a fair comparison between VAP and SDMA, we characterize the VAP

with uplink traffic only.

Figure 4.11 depicts the topology for our comparisons. We compare the performance

of both virtualization schemes by mapping four co-existing experiments. Each individ-

ual experiments consist of an APclient single hop wireless. In the case of VAP based

virtualization, we use a VAP with 4 clients with each experiment mapped to a different
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Figure 4.11: Logical VAP and SDMA topologies.

Figure 4.12: (LEFT) Topology for VAP-based virtualization. (RIGHT) Topology for
investigation of SDMA-based virtualization on ORBIT testbed.

ESSID. In the SDMA scenario, we consider pairwise communication between 4 APs

with 1 client each placed on the four corners of the ORBIT grid to ensure maximum

spatial separation. In addition, the transmission power is reduced to the minimum

possible value to ensure minimum interference between the experiments. Figure 4.12

shows the experiment set-up for the comparison between VAP and SDMA slicing on

the ORBIT testbed.

4.6.1 Throughput Comparisons

The throughput performance is the key metric to keep in mind when performing vir-

tualization of a networking system. In this section, we study the performance and

throughput variations for the two virtualizing schemes: SDMA and VAP.



40

10 15 20 25 30 35 40 45 50 55
10

12

14

16

18

20

22

24

26

Aggregate Offered Load (Mb/sec)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

b/
se

c)
VAP throughput variance (DOWNLINK)
VAP throughput mean (DOWNLINK)
SDMA throughput variance 
SDMA throughput mean
VAP throughput variance (UPLINK)
VAP throughput mean (UPLINK)

CHANNEL SATURATION 

BELOW 
SATURATION 

Figure 4.13: A comparison of available bandwidth with offered load for SDMA and
VAP based virtualization schemes supporting four concurrent experiments.

Variation with offered load:

Performance comparison of the VAP versus space separation (SDMA) uses the ex-

periment setup as shown in Figure 4.11. Figure 4.12 depicts the topology for the two

scenarios arranged on the ORBIT testbed. We compare the performance of both virtual-

ization schemes by mapping four co-existing experiments. Each individual experiments

consist of an AP-client single hop wireless.

Figure 4.13 shows the results for the aggregate throughput for virtualized experi-

ments with varying offered load. Initially the offered load is kept low to show results

below saturation. In this case we observe that both SDMA and VAP have a compara-

ble performance. However, as the offered load is pushed into the saturation limits of

the channel, there is a clear difference in the throughput. While collecting results we

have taken care to disable the MAC frame aggregation which is a default feature of the

wireless driver while operating in the saturation region.

The difference in performance observed in Figure 4.13 is due to physical layer cap-

ture [27]. Capture is the phenomenon by which a receiver is able correctly decode one

of the many simultaneously colliding packets due to relatively high signal to noise ratio.

Physical layer capture can be detected either by sniffing packets from the channel with
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Figure 4.14: A comparison of number of MAC frame retries for SDMA and VAP based
virtualization schemes supporting four concurrent experiments.

multiple sniffers (since the sniffers themselves are susceptible to capture) or by com-

paring the number of MAC retries with a case without capture. Figure 4.14 shows the

the aggregate number of MAC retries with the VAP and the SDMA case. It is clearly

seen that the number of MAC retries with SDMA were significantly lesser than with

VAP since the receivers are able to decode colliding packets due to capture.

One more observation made from Figure 4.13 is if the experiments consists of pure

downlink traffic (i.e., traffic from Access Point to client), the bandwidth provided by

the VAP exceeds that of the SDMA scenario. This performance increase is attributed

to the fact that the VAP has a time-scheduled downlink transmission unlike the SDMA

scenario in which the four Access Points have to contend for the channel with CSMA ba-

sic access. Figure 4.14 confirms this behavior showing that there are minimal collisions

with VAP operating in the downlink since there are no MAC collisions. Comparing

VAP downlink and SDMA setting is not fair as the latter faces CSMA contentions on

the downlink. Hence, our comparison study is restricted to VAP uplink and the SDMA

setting.
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Figure 4.15: A comparison of available bandwidth for SDMA and VAP showing the
effect of space and transmission power control.

Variation with packet size:

Packet sizes in a saturated channel determine both the MAC and physical layer overhead

as well as the aggregate channel access time. Smaller the packet sizes lesser the net

throughput and decreased efficiency and vice-versa. The goal of these set of experiments

is to test if varying packet sizes have similar effect on performance with both the VAP

and SDMA approach.

To determine the effect of node positioning on the capture effect with SDMA, we

measure SDMA performance with two setups : (a) The nodes of the experiments are

setup far from each other as with the conventional setting (Figure 4.12). (b) the ex-

periments are setup near to each other (Figure 4.16). For each experiment run packet

sizes were varied and the aggregate throughput was measured. Figure 4.15 shows the

results of the experiments. We plot the difference in throughput of each of the SDMA

setups from the VAP experiment to show the performance gains.

The general trend for both setups follows intuition where performance is poor for

small packet sizes and vice versa. However, SDMA setup with nodes placed far away

had the advantage of decreased interference and improved performance with higher

capture. The positive increase in difference in throughput shows that the benefits

of capture increase with packet sizes. The SDMA setting without spatial separation

shows a degraded performance as compared to the VAP setting. The MAC-ACKS in

the downlink see lesser interference and collisions in the VAP due to time scheduled
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Figure 4.16: Topology for investigating SDMA with nodes placed close to each other
on ORBIT.

downlink transmission and hence the setting has a better performance as compared

to the SDMA without spatial correlation. As the packet size increases this difference

is even more pronounced since the effect of a collision is more pronounced for larger

packet sizes.

TCP Throughput Variations:

Testing the performance over a TCP traffic may not yield the right results for our

comparison since it may involve the effect of the higher layers in the protocol itself

like the rate and error control with TCP. However several wireless experiments involve

evaluation over TCP. Figure 4.17 shows the time variation of TCP performance for

VAP and SDMA scenarios. The variations in throughput are more for TCP flows than

in the case with UDP flows for all the scenarios due to additional TCP-ACK traffic

in the downlink. As expected, the variations in throughput are more for the SDMA

case than the VAP attributed to the additional amount of downlink contention. Again

SDMA scores high due to the capture effect.
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Figure 4.17: A comparison of the available TCP bandwidth for SDMA and VAP based
virtualization schemes supporting four concurrent experiments.

4.6.2 Delay-Jitter Comparisons

Experimenters often use delay as a metric measured for performance of an experimental

setup. Jitter, defined as the variance of delay is also an important metric in the per-

formance of real time traffic such as voice or video. We will compare the effect of VAP

and SDMA-based virtualization on both observed delay and jitter per experiment.
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Figure 4.18: Round trip delay variations with packet size for VAP and SDMA based
virtualization schemes as compared to the non-virtualized scenario.
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The experiment setup for delay and jitter measurements is the same as before, shown

in Figure 4.12. Figure 4.18 shows the round trip delay measurements for the following

cases:

1. No Virtualization

2. SDMA with different offered loads

3. VAP with different offered loads

We use two different offered loads to test the deterioration in delays with varying

offered loads. With no virtualization, experiments get a linear increase in delay with

packet sizes due to increase in transmission times. This deduction is based on the

assumption that the individual experiments have a one hop wireless topology with single

flows. Hence there are no CSMA contentions. However, in the case of virtualization,

experimenters have a V-shaped curve for delay results. The nodes of every experiment

face CSMA contentions with nodes from other experiments. Delay values decrease with

packet size for smaller packets as the CSMA contentions decreases with lesser number

of packets. However for large packet sizes, the transmission and queueing times are

more prominent than CSMA contentions and the delay follows a similar trend. The

per-packet delays for SDMA experiments are lower as a result of capture effect. Capture

ensures that the MAC frames are received despite collision, which lowers the net MAC

retries (Figure 4.14) for getting a packet across and consequently the queueing delays.

Figure 4.19 shows the round trip jitter as a function of different packet sizes and

offered load. The trend for jitter follows the same pattern as that for delay i.e., high for

small packets, decreases for bigger sizes and slightly increases for the biggest packets

sizes. However, unlike delay, the jitter decreases with packet size for no virtualization

scenario. Since we measure RTT jitter, there is contention even with one hop, single

flow topologies. Hence, as the packet size increases, for a constant offered load the

number of contending packets decrease resulting in decreased jitter.
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Figure 4.19: Round trip Jitter measurements for video delivery with different ap-
proaches.

4.7 Inter-Experiment Interference Illustrations

Ensuring isolation between experiments is one of the most important goals of wireless

virtualization. Often it is seen that abuse of resource by one device sharing a resource

leads to a deterioration in performance for other experiments sharing the platform. We

will elaborate the consequences of these inter-experiment effects with time and space

separation for virtualization and suggest approaches (described in the next section) to

mitigate the same.

In this section, we use the same experiment set-up as used in the throughput,

delay and jitter characterization of VAP and SDMA based virtualization schemes. The

experiment setup is shown in Figure 4.12.

4.7.1 Channel Saturation

We define two cases to show the effect of channel saturation in VAP based virtualization

on the experimental results. In the first case, initially all experiments have a uniform

offered load of 5 Mb/sec with the channel operating below saturation. The offered load

of the experiments are increased at distinct time intervals for a duration of about 25

secs. The increase is sufficient to take the channel into saturation. Figure 4.20 shows the
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Figure 4.20: Effect on the performance of experiments when one of the experiment
pumps traffic to push channel into saturation.

effect of channel saturation on the other experiments on the same VAP. The packet sizes

of all experiments were kept the same. In the second case, the packet size of one of the

experiment is relatively smaller compared to other experiments on the same VAP. In this

scenario, it can be observed from Figure 4.21 that the throughput for the experiment

using smaller packet size drops in addition to increase in variance. The CSMA algorithm

works fairly at steady state in terms of number of packet transmissions. Since the

experiment with smaller packet size will have relatively more number of MAC frames

to transmit than the experiments with larger packet sizes, the former suffers from drop

in number of MAC transmissions.

4.7.2 Throughput Coupling

In this section we study the transient behavior of the experiments using VAP and SDMA

based virtualization. It gives a clearer picture on how the different experiments of the

two approaches interact when sharing a common wireless channel. To quantify the

inter-experiment effects, we define a coupling factor between virtualized experiments

as:

σ(nv num, v num) =
(Tnon−virtualized − Tvirtualized)

Tnon−virtualized
(4.1)
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Figure 4.21: Effect on the performance of experiments using smaller packet sizes when
one of the experiments pumps traffic in VAP based virtualization.

σ(nv num,v num) indicates the coupling between non-virtualized experiment nv num

and virtualized experiment v num. Tnon−virtualized and Tvirtualized represent the through-

put of the experiments in the non-virtualized and virtualized. σ takes values between

0 and 1. A σ of 0 indicates an ideal experiment setup where there is no interference

between experiments while a σ of 1 indicates complete interference of one experiment

with the others.
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In the scenario with four concurrent experiments for both VAP and SDMA, we

observe the impact of the fourth experiment on the first three experiments for different

traffic scenarios of the fourth experiment. In the first plot, we show the coupling factor

for the first three experiments with varying offered loads for both VAP and SDMA-

based approaches. The packet size used by all four experiments was set to 1024 bytes.

The plot of the throughput coupling factor is shown in Figure 4.22:

• In the initial runs we keep the offered load of the fourth experiment at 1 Mbps

and find the coupling factors for both virtualization schemes is negligible for

low offered loads and start to become prominent after the offered loads for the

three experiments crosses 6 Mbps. The channel is driven into saturation and

effects the performance of the experiments. The effect is less for SDMA, since the

performance of SDMA is superior to the VAP.

• In the case where the offered load of the fourth experiment is about 8 Mbps the

channel saturates at lower values of offered loads of the first three experiments

and therefore the coupling factor is higher.

• In the case where the fourth experiment uses TCP, the coupling on other experi-

ments observed is relatively higher than that with UDP. TCP flow pumps traffic

at the maximum possible rate and its effect is more significant on the other exper-

iments than that observed with a UDP flow. This increase can also be accounted

by the overhead of the TCP-ACK traffic that increases the amount of contention

among the different experiment flows.

In the second plot, we show the coupling factor for the first three experiments

with varying packet sizes for both VAP and SDMA-based approaches. The plot of the

throughput coupling factor is shown in Figure 4.23:

• The degree of inter-experiment effect on an experiment decreases as the packet

size of the experiment increases

• Experiments with small packets have lesser effects on other experiments than

experiments with higher packet sizes.



50

128 256 512 768 1024
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xp

er
im

en
t T

hr
ou

gh
pu

t C
ou

pl
in

g

Packet Size for Experiments 1,2 and 3 (Bytes)

SDMA based Virtualization (Packet Size of Expt 4 is 1024B)
VAP based Virtualization (Packet Size of Expt 4 is 1024B)
SDMA based Virtualization (Packet Size of Expt 4 is 128B)
VAP based Virtualization (Packet Size of Expt 4 is 128B)

Figure 4.23: Coupling Factor for effect on throughput of experiments due to traffic from
other experiments.

• In this case too, SDMA performs better than VAP due to capture effect. Capture

effect becomes more prominent as the packet sizes of the experiments increase.

4.7.3 Jitter Coupling

Similar to throughput results, the experimental measurements of packet jitter is affected

by traffic from other experiments. We investigate jitter coupling in VAP and SDMA-

based virtualization approaches by streaming a video from a client to an AP as a

part of one experiment and running UDP flows as part of the other three experiment.

Figure 4.24 shows the plot for jitter coupling factor values for videos of different bit-

rates for VAP and SDMA-based virtualization scenarios. The jitter coupling factor

was calculated using Equation 4.1. The jitter values are calculated for a real-time

experiment that streams videos of different bit-rates from a client to an AP. With

no virtualization, it was observed that the jitter of the video does not depend upon

its bit-rate. However, in the virtualized case as the bit-rate increases the jitter value

increases. Moreover, the jitter values of the video increase as the channel approaches

saturation due to increase in the offered load of the other 3 UDP experiments. Similar

to throughput results, the jitter coupling is more for the VAP setting as compared to

that with the SDMA virtualization.



51

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Offered Load of UDP experiments 1,2 and 3 (Mb/sec)

C
ou

pl
in

g 
F

ac
to

r 
fo

r 
jit

te
r 

of
 fo

ur
th

 e
xp

er
im

en
t (

M
b/

se
c) Video (Bit Rate 1Mbps) with SDMA virtualization

Video (Bit Rate 1Mbps) with VAP virtualization
Video (Bit Rate 5Mbps) with SDMA virtualization
Video (Bit Rate 5Mbps) with VAP virtualization
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4.8 Proof-of-Concept Integration Experiment with Policy Manage-

ment for VAP based Virtualizations

This proof-of-concept experiment demonstrates PlanetLab-ORBIT integration with use

of VAP based virtualization.

Aim : The goal of this experiment is to show some preliminary results that can be

obtained with a typical Integrated wired-wireless experiment. We also show that if a

VAP based approach is used for virtualization on the grid, there are concerns with the

performance of one experiment affecting the other. We follow this analysis with our

proposed solution to the interference problem.

Topology and setup: Figure 4.25 shows our experimental setup. It consists of three

UDP-CBR traffic flows belonging to three independent experiments which are being

sent by servers running on PlanetLab nodes to their respective clients running on the

ORBIT grid. The forth flow is a video streaming from one of the Planetlab nodes to the

clients running on the ORBIT grid. To setup this configuration of nodes an experiment

script to similar to the one shown in Figure 2.5 was used.

Figure 4.26 shows a plot of the three UDP traffic flows as seen at the receiver on
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Figure 4.25: Experiment layout where nodes are added from PlanetLab while the VAP
support from the 802.11 linux drivers is exploited for running multiple networks from
a physical AP.

the wireless client node. The offered load for two of these experiments is increased as

a function of time. As long as the aggregate offered load is below saturation, all three

flows have a fair share of the throughput. Figure 4.29(a) shows the video seen at the

client node based on the traffic of the forth experiment in the setup. It can be observed

that since there are very few packet drops and low congestion in both the wired and

wireless network, the video is clear.

As the offered load for each of the experiments is increased with time, the aggregate

traffic on the wireless network reaches saturation. Figure 4.26 shows that in saturation

the net throughput seen for the three flows is highly variant in time. Moreover, the

picture in Figure 4.29(b) shows that the video suffers considerably when the wireless

channel is in saturation. The increased distortion in the video quality may be attributed

to the increased levels of jitter and dropped packets with the video flow. To prevent

such situations where the performance of one experiment affects the other we introduce

a policy manager to incorporate the use of traffic control with the experiments. In

addition to traffic control, the policy manager performs two other functions:

• Admission control: To make a decision on allowing or denying an experiment to

share a VAP with other experiments depending on its bandwidth requirements.

• Assigning Bandwidth: To allot the different experiments a maximum bandwidth

value based on the number of experiments on a single VAP and their bandwidth

requirements.
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Figure 4.26: Throughput (Mbps) seen at the wireless VAP where manual intervention
rate limits flows to stop channel saturation.
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Figure 4.28: Click Modular Router Elements for Bandwidth Shaping.

The Policy managed could be integrated with the experiment scheduling and re-

source tracking mechanisms to ensure that each of the experiments get a fair share of

the resources.

The Policy manager will work in one of the following modes to enforce traffic control

among the different experiments sharing a common VAP:

• Dynamic intervention based control: Figure 4.26 shows a typical scenario with

manual intervention in an experiment. Initially as the aggregate offered load is

increased, the experiments are pushed into saturation. However, with manual

intervention it is possible to rate limit the traffic flows. We make use of Click

Modular Router [28] as a tool to implement bandwidth shaping. The CLICK

elements used in our implementation for bandwidth shaping are shown in Fig-

ure 4.28. The CLICK configuration file with these elements defined was installed

in the Linux kernel.

• Pre-Enforced based control: It is also possible to have a policy manager to limit

the maximum share of throughput of the experiments, even before they are

started. Figure 4.27 shows the results with a policy manager. Both the UDP

experiments with high offered loads are rate limited to their assigned throughput

values even before they reach channel saturation.
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(a) Below saturation video at the start
of the experiment

(b) The data flows saturate the channel,
thereby resulting in deterioration of the
video quality

(c) Video performance after traffic shap-
ing with manual intervention. Availability
of sufficient bandwidth restores the video
quality

Figure 4.29: Video performance of experiment 4 as the other 3 experiments progress
with increasing offered loads. Video is observed by forwarding the traffic from the client
node to an observation node in the grid.
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4.9 Measure to increase performance: MAC layer lumping

In virutalized approaches such as SDMA and VAP, the channel is multiplexed be-

tween the various experiments. There is a need to deploy measures that increase the

bandwidth of the wireless link. One such feasible solution is lumping of MAC frames.

This concept, implemented in the latest MADWIFI driver, follows the steps shown

in Figure 4.30. IP packets received within certain threshold of inter-arrival time are

transmitted as a single combined MAC frame. This phenomenon results in reduction

in the number of MAC frames contending for the channel for the same offered load

and increase in the size of the MAC frames reducing the protocol overhead. As seen

from Figure 4.30, the overhead of lumping is an additional MAC header for the lumped

MAC frame i.e., a MAC header for every two MAC frames.

Figure 4.30: Implementation of MAC layer lumping in the Madwifi Driver.

We show the increase in performance with MAC lumping enabled using the VAP

based virtualized network topology in Figure 4.8(b). Plots for aggregate throughput

and number of packet transmissions with offered load for lumping enabled and disabled

cases are shown in Figure 4.31. Lumping activates when the channel nears saturation

ie. packet queueing at MAC layer triggers lumping. The line graph shows the in-

crease in performance with lumping. With MAC lumping, the number of MAC frames

transmitted decreases by half.

Variation of aggregate throughput with packet sizes for lumping as opposed to the
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Figure 4.31: Performance Improvements with MAC layer Lumping for VAP based
Virtualization.

normal scenario shown in Figure 4.32. It can be seen that the performance improve-

ment by lumping increases with packet size and eventually the increase in performance

becomes constant towards large packet sizes. For small packets, the lumping overhead

occupies a higher percentage of the packet size. Hence, the improvement in performance

with lumping as opposed to without lumping increases with packet size.

Figure 4.33 shows the channel utilization for 802.11a with MAC layer lumping.

We show scenarios with PHY rate of 36Mb/sec and 54Mb/sec. It is clear from the

figure that MAC lumping improves the channel utilization by reducing the percentage

of the various protocol overheads. However, the MAC overhead increases for the case

of lumping. However, the percentage of increase in MAC overhead is less than the

percentage of increase in channel utilization for data transmission. As seen before, the

lumping overhead is more prominent in smaller packet sizes and hence the effective

increase in performance increases with packet sizes for MAC lumping.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The unified designs presented in this thesis should serve as a practical foundation for

wired/wireless integration in future heterogeneous testbeds. A common framework for

control and management of heterogeneous testbed infrastructure will lead to easier and

faster experimentation. Our proof of concept experiments demonstrate the effectiveness

in terms of the ease of experimental deployment and the overall usefulness of this

integrated framework.

In this work we have also discussed the challenges that would be encountered in

designing Virtualization techniques for wireless virtualization for more efficient use of

the testbed resources. We have suggested and evaluated feasibility of techniques that

could facilitate virtualization for supporting concurrent experiments in terms of empir-

ical results. However, the wireless experiments have a wide range of requirements and

may not be supported by all types of virtualization. We have listed some experiments

based on their requirements for certain experimental metrics. Figure 5.1 lists these

requirements along with the methods of virtualization that can support the respective

experiment constraint as a part of our qualitative comparison of SDMA and VAP-based

approaches.

Every experiment would have a stringent requirement on either throughput/packet

loss or delay/jitter bounds. In addition some experiments may have requirements re-

lated to channel assignment and mobility-handoffs. The conclusions are based on the

experimental results shown in the previous sections. We list some of the important

points where SDMA and FDMA slicing scores over VAP based virtualization scheme:
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1. Resource Control (Rate, Power) Power adjustments may be a problem if SDMA

is provided using schemes like artificial stretching as described previously.

2. Admission control and Qos control such as adjusting MAC retransmission etc.

3. Adjusting MAC level parameters like CSMA threshold, disabling ACKs etc.

4. Experiments involving frequency control cannot be carried on FDMA slices.

5. Cross Layer Experimentation involving MAC layers can be performed in SDMA

and FDMA slices. In SDMA and FDMA slices, the experiment nodes are not

shared between experiments. However, in the case of VAP, the MAC layer stack

of the Access Point is shared between experiments.

Interestingly, additional support would be required for the VAP to provide different

wireless statistics for its virtual interfaces to the higher layers to facilitate cross layer

experimentation. This is important if a cross layer experiment is using one of the

Virtual AP interface. Currently, statistics like RSSI, MAC retires etc. are reported for

the underlying physical interface and no distinct information for the virtual interfaces

are reported. Cross Layer protocols relying on MAC and physical layer information

would fail to run on the VAP without this support.

We have discussed various virtualization schemes and their limitations in regard

to experiment requirements. We now present some detail on scalability issues for the

schemes:

FDMA

1. It is limited by the number of orthogonal frequencies ( 3 for 802.11b and 12 for

802.11 a/g).

2. Switching time between frequencies. This can be avoided by use of multiple cards.

However the latter approach is subject to co-channel interference.

SDMA

1. Space Constraints
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2. Number of nodes in each partition/slice.

3. If making use of Artificial stretching: Granularity of control on range of Noise

sources and transmission power of nodes.

VAP

1. Virtualization scheme only applies to Access points hence restricted to fixed star

topology.

2. Limited by number of concurrent experiments. Present facility supports four

experiments per VAP.

5.2 Future Work

We have discussed a few techniques towards wireless virtualization of emulators and

classified them with respect to the experiments needs. As a result, testbeds should

employ scheduling algorithms that operate different spatial slices in different modes,

such that the current experiment mix is efficiently distributed across the testbed. Hence

work is needed in direction of design and implementation of resource manager.
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Experiment FDMA based SDMA based V AP based
requirements Slicing Slicing V irtualization

MAC experiments Yes (no fre-
quency con-
trol)

Yes Yes but
Cross-Layer
experiments
may require
extra support.

V ery small delay/jitter bounds(<10ms) Yes Possible de-
pending on
traffic on other
experiments.

Possible de-
pending on
traffic on other
experiments.

Small to medium delay/jitter bounds(100ms) Yes Yes depending
on traffic on
other experi-
ments.

Yes depending
on traffic on
other experi-
ments.

High Throughput (Loaded) Yes Yes depending
on the desired
through-put
and no. of
experiments
sharing the
resource.

Yes depending
on the desired
through-put
and no. of
experiments
sharing the
resource.
Traffic Shap-
ing scheme
guarantees
bandwidth.

Low Packet Losses Yes Yes Yes
Experiment Topology No restriction No restriction

but requires
a complicated
algorithm
to incorpo-
rate arbitrary
topologies
in the slice
allocated to
the different
experiments
due to spatial
constraints in
the testbed

Fixed Star
Topology.

Channel Switching Restricted
depending on
availability of
channel

Yes No, the chan-
nel is shared
by other ex-
periments on
the same VAP.

Mobility and hand off Yes Yes Yes

Figure 5.1: Mapping Types of experiments to the various Virtualization techniques.
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