
 

 

 

 

 

 

 

 

 

 

© 2008 

GAOZHU PENG 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 



MULTIPHYSICS COMPUTATIONS ON CELLULAR INTERACTION IN 

COMPLEX GEOMETRIES AND  

VORTEX-ACCELERATED VORTICITY DEPOSITION  

IN RICHTMYER-MESHKOV INSTABILITY 

by 

 GAOZHU PENG 

A dissertation submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

In partial fulfillment of the requirements 

For the degree of 

Doctor of Philosophy 

Graduate Program in Mechanical and Aerospace Engineering 

Written under the direction of 

Professor Norman J. Zabusky 

And approved by 

________________________ 

________________________ 

________________________ 

________________________ 

 

New Brunswick, New Jersey 

January, 2008 



ABSTRACT OF THE DISSERTATION 

MULTIPHYSICS COMPUTATIONS ON CELLULAR INTERACTION IN 

COMPLEX GEOMETRIES AND 

 VORTEX ACCELERATED VORTICITY DEPOSITION  

IN RICHTMYER-MESHKOV INSTABILITY 

By GAOZHU PENG 

Dissertation Director:  

Professor Norman J. Zabusky 

 
 

The cellular interactions during leukocyte margination and adhesion cascade in 

cardiovascular microcirculations are multi-scale and multiphysics phenomena, involving fluid flow, 

cell mechanics, chemical reaction kinetics and transport, fluid structure interaction. The vascular 

network in vivo has rather complicated topology unlike straight and flat channels and pipes where 

most biological experiments in vitro and numerical simulations are carried. A computational 

framework is formulated towards a goal of building a virtual blood vessel system to simulate the 

hydrodynamic and kinetic interactions of blood cells in complex vascular geometries, including 

vascular network bifurcations and irregular shapes of the endothelial monolayer lining the blood 

vessel lumen in vivo. Mixed front tracking, immersed boundary and ghost cell methods are 

applied. The codes are benchmarked and validated with five selected problems. We find that the 

erythrocyte-leukocyte interaction, leukocyte-leukocyte interaction, and vascular geometries play 

important roles in leukocyte margination, initial tethering and adhesion to the vascular 

endothelium.  

In part II of the dissertation, we studied the two-dimensional microscale Richtmyer-

Meshkov interfaces and discovered the self-driven vortex-accelerated vorticity deposition (VAVD) 

 ii



process. Opposite-signed secondary vorticity deposited by the VAVD is rolled into vortex double 

layers which are extremely unstable and lead to enhanced fluid mixing. The VAVD process 

examined and the new quantification procedure, the circulation rate of change, comprise a new 

vortex paradigm for examining the effect of specific initial conditions on the evolution of 

Richtmyer-Meshkov and Rayleigh-Taylor interfaces through intermediate times.  
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Chapter 1 

 

Introductions, Overview and Motivations 

 

 

The understanding of interactions and control mechanisms in complex biological systems has 

become an increasingly important area of scientific inquiry as new technologies have been 

developed for measuring, representing and modeling the structure and function of living 

organisms in their dynamic environments. The coupling of fluid dynamics and biology at the level 

of the cell is an intensive area of investigation among them because of its critical role in 

immunology and cardiovascular diseases. Interest in this field has been driven both by the 

richness of the fluid-dynamic phenomena and by their fundamental biologic importance via 

mechanotransduction, a process mechanical effects are transduced to biological signals.  

The original motivation to this part of the dissertation is the cellular interactions in 

cardiovascular system, especially cell adhesion. Cell adhesion is instrumental in diverse 

biological processes, including inflammation and thrombosis.  Atherosclerosis is a progressive 

inflammatory disease where its early lesion begins with the recruitment of the leukocytes and its 

subendothelial accumulations inside blood vessel wall tissue layers, called intima (Figure 1.1). 

One distinctive feature of the atherosclerosis is that there are preferred sites of lesion formation 

within the heterogeneous blood vessel network and the lesion tends to form in regions where the 

blood flow is disturbed, such as bifurcations and large curvature regions.  

In the cardiovascular system, cells are exposed to hemodynamic forces generated by 

dynamic blood flows. Cell adhesion and attachment to the blood vessel wall depend on the 

balances between the dispersive hydrodynamic forces (both pressure and shear force) and the 

adhesive forces governed by the chemical kinetic interactions of membrane-bound receptors and 

their ligands on the vascular wall. Cell adhesion has to be highly specific for proper regulation of 
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events to result in homeostatic inflammation and coagulation processes. Excessive activated 

leukocyte migration to healthy tissues can lead to unwanted disorders and pathologic conditions. 

 

 

 

Figure 1.1 The anatomy of a blood vessel adapted from Fig 1 in Lusis (2001). 
 

 
The cellular interactions involved in cell adhesion are multiphysical and multiscale 

phenomena, physics including blood flows (Newtonian or non-Newtonian fluid dynamics), 

adhesion and bond formations (chemical reaction), cell modeling and deformation (multifluid 

flows), interaction among blood cells and non-circulating endothelial cells lining the blood vessel 

lumen (fluid-structure interactions) in complex geometries mainly due to blood vessel network 

heterogeneity and irregular endothelial layer topology. Other physics can include the 

electrokinetics and gene signaling/transduction. The length scales involved can have several 

orders of magnitude difference, from adhesion molecule (nm), cell membrane (nm), cell itself 

(µ m), and dimension of the blood vessel (µ m to cm). Understanding this coupled multiphysical 

interplay at the multiscale levels is crucial for developing novel tissue-engineering-based 

approaches for therapeutic interventions in inflammatory and thrombotic disorders and for 

improving drug delivery targeting at the diseased areas. We will give a short introduction and 

review selected work on cellular interactions in the following sections.  
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1.1. Blood Circulation   

 

Blood is a suspension of circulating cells in plasma with scattered proteins. Circulation cells are 

essentially the red blood cell (RBC) or erythrocytes, white blood cells (WBC) or leukocytes of 

various categories, and platelets. Red blood cells and leukocytes exert a strong influence on 

rheological properties of the blood as it flows through the circulation system. In large arteries and 

veins where the blood can be treated as a homogeneous fluid, their primary effects are an 

increase in the viscosity and, at low shear rates, non-Newtonian effects (Fung 1993).  

In the microcirculations, however, where vessel dimension becomes comparable to that 

of a single cell, the effects are more complex and the blood cell interaction has to be taken into 

account. At the level of the arterioles and venules (diameters in the range of tens to a few 

hundred microns), the effective viscosity of blood exhibits an unusual pattern, first decreasing to a 

minimum of about 1 cPoise for vessels roughly 8 µ m in diameter (Gaehtgens 1980), then rapidly 

increasing as the diameter is further reduced to a dimension small compared to that of the red 

cell. This has been known as the Fahraeus–Lindqvist effect, which is attributable to the 

appearance of a zone of lower red blood cell concentration near the vascular wall and, in the 

smallest capillaries, the need for red blood cells and leukocytes to deform in order to squeeze 

through the narrow lumens. The circulating blood cell interactions and blood cell interaction with 

the endothelial cell layer lining the blood vessel lumen also lead to a non-linear increase of 

viscosity with increasing hematocrit defined as the volume fraction of the red blood cells (Chien 

1970). For reviews on red blood cells, see Skalak et al. (1981), Secomb (1995), and Pries et al. 

(1996). For reviews on blood flow in large blood vessels, see Ku (1997), Berger and Jou (2000), 

Taylor and Draney (2004).  

Despite the small number of leukocytes relative to erythrocytes, leukocytes also 

contribute significantly to the blood flow rheology and resistance in microcirculations. This is 

mainly due to the fundamental difference between the mechanical properties of the leukocytes 

and the erythrocytes, and their mutual interactions (Helmke et al, 1997). When the leukocytes 
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adhere to the endothelial cells, the effect becomes even more significant (Skalak, 1972; 

Chapman and Cokelet 1998). In Chapman and Cokelet (1998), fixed rigid spheres were used to 

model the adherent leukocytes. In chapter 5, we model the cellular interactions involved and 

include modeling the adhesion kinetics and cell deformations.  

 

1.2. Leukocyte Adhesion Cascade 

 

Leukocyte margination and adhesion in vivo are characteristic features of an inflammatory 

response and have been associated with the pathogenesis of a number of inflammatory disease 

states such as atherosclerosis and myocardial infarction. The selective targeting of leukocytes to 

sites of inflammation is viewed as a multistage process of sequential involvement of distinct 

adhesion molecules on the leukocyte and endothelial cell (EC) surface that is dictated by the local 

fluid dynamic environment and cell interactions (Figure 1.2, Springer 1994): leukocyte first 

migrates close to the endothelial cell layer (margination), forms initial contact on the endothelial 

cells, adheres, rolls and then finally transmigrates to extravascular tissue space through the 

junctions formed between endothelial cells. The initial contact and rolling along the vessel wall 

are mediated primarily by selectins, molecules bound on the cell membranes to selectively form 

receptor-ligand bonds with their counterparts via chemical kinetic reaction and transport. 

Subsequent firm adhesion requires activation of integrins and binding to their ligand ICAM-1 on 

the EC surface. The margination, initial contact, adhesion and rolling are studied in current work, 

and the final stages of the leukocyte adhesion cascade involve chemical process and cell 

activation, which are outside the scope of current work.  

The leukocyte adhesion has been under intensive experimental and computational 

studies during the two decades. The achievements in cell structure and adhesion kinetics 

measurements, together with the ever-growing high-performance computers, have facilitated the 

emergence of advanced computer modeling, which considered the fluid dynamics associated with 

the interaction between an adherent or rolling leukocyte and the adhesion receptors on the 

endothelium. These studies are complicated by the multiphysics nature of the flow, the 
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compliance of the interacting surface structures, fluid structure interaction, and chemical kinetic 

receptor-ligand dynamics. Computer modeling can be used to set up an ideal condition for cell 

adhesion study, which cannot be achieved easily in experiments. Deep physical insight can be 

obtained since the parameter space is reduced. Studies of cellular interactions in this field can 

also benefit the understanding of many other fields, such as multiphase flows, chemical surface 

reactions, and fluid structure interaction.  

 

 

 

Figure 1.2 A cartoon sketch of the neutrophil adhesion cascade, a multi-stage process of cellular 
interaction, adhesion and activation events: margination, tethering, rolling, crawling, and 
transmigration (adapted from O’Day and Springer (1994)). The erythrocytes are not sketched.  
 

 

1.2.1 Cell Deformation 

 

A blood cell deforms under external force and torque. The mechanical properties of the cells at 

the passive state (without chemical activation) are determined by its compositions and structures 

as well as the surroundings with which the cells interact. As we know, the deformability of blood 

cells is critical in microcirculations where blood cells squeeze through them. The cell deformability 

also contributes the cell distribution: more deformable erythrocytes tend to move towards the 
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center of the blood vessel lumen and effectively drives the leukocyte towards the vascular wall 

(Melder et al, 2000).  

Cell deformation in adhesion had been omitted in most of early work. In a series of 

studies, Hammer and co-workers (Hammer and Apte, 1992; Chang et al. 2000) have computed 

the viscous force and torque acting on a rigid sphere, as a model for leukocyte, near a planar wall 

from the mobility matrix based on the analytical solution from a sphere moving close to a wall in 

Stokes flow limit (Goldman et al. 1967) and the Bell model of receptor-ligand binding (Bell 1978). 

The cell deformation was neglected. However, these properties have been shown to have 

substantial effect on the adhesion process (Farrell and Lipowsky 1989; Damiano et al 1996; Dong 

et al. 1999; Dong and Lei 2000). Especially the side-view channel pioneered by Dong’s group 

captures sharp image of the deformed leukocyte in vitro; Damiano et al (1996) and Lipowsky’s 

group at Penn State University captured it in vivo.  And the cell deformation has been proposed to 

one of the contributing mechanisms for cell rolling automatic stabilization (Chen and Springer 

1999; Yago et al. 2002) and the threshold phenomenon in leukocyte-leukocyte interaction and 

leukocyte “string” formation where multiple leukocytes adhere each other to form a string-like 

structure (Alon et al 1996; Kadash et al. 2004). The effects of cell deformation are examined 

critically in current work.  

 

1.2.2 Erythrocyte-Leukocyte Interaction 

 

Leukocyte adhesion and rolling on the vascular endothelium layer require initial contact between 

leukocytes and the vessel wall. As a prerequisite, leukocytes need to migrate close enough to the 

vascular wall in order to form receptor-ligand bonds. The local fluid pattern and rheological 

mechanisms, especially erythrocyte and leukocyte interaction, have been experimentally 

observed to play significant roles (Abbitt and Nash, 2003; Melder et al 2000). But a clear 

understanding of how the red cells drive the leukocytes close to the vascular wall is lacking. A 

computer model of this type is built in current work.  
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After leukocytes adhere to the vascular wall, the red cells will continue to interact with 

these leukocytes. Especially in the context of sickle cell disease, Turhan et al (2001) discovered a 

new paradigm for the pathogenesis of sickle cell vasoocclusion in which the sickle red blood cells 

interact and bind to the adherent leukocytes and caused enhanced vasoocclusion. They 

proposed that vasoocclusion is a complex, sequential, multistep phenomenon involving different 

cellular interactions at different stages (1) endothelial activation by sickle erythrocyte or red cell 

(RBC), (2) leukocyte (WBC) adhesion to the endothelium, and (3) the direct interaction between 

sickle RBCs and adherent WBCs, which leads to reduced blood flow and tissue ischemia.   

 

1.2.3 Leukocyte Interaction and String Formation 

 

Besides the leukocyte adhesion to the endothelial cells, free-stream leukocyte can adhere to 

adherent leukocytes through a similar type of receptor-ligand bond system in the leukocyte-

endothelium adhesion. When a free-stream leukocyte under hemodynamic shear flow gets close 

to an already adherent leukocyte on the endothelial cell, it adheres to the adherent leukocyte, 

slows down, changes its trajectory, and tends to bind on the endothelial cells downstream of the 

originally adherent leukocyte.  This secondary capture of leukocyte and a positive feedback loop 

in the leukocyte adhesion have been shown both in vivo and in vitro experiments (Alon et al 1996; 

Kunkel et al 1998; Eriksson et al 2001; Mitchell et al 2000; Sperandio et al 2003; Hill et al 2003). 

This recruitment process plays a critical role of enhancing the leukocyte accumulation in 

inflammations. For example, this secondary capture occurs on atherosclerotic lesions (Hill et al 

2003).  

One interesting recent study by Kadash et al (2004) provides insight into the dynamics of 

neutrophil-neutrophil interaction and adhesion. They discovered a shear threshold phenomenon 

in neutrophil-neutrophil collision which the authors proposed a theory based on the neutrophil 

deformation.  Cellular hydrodynamic interaction and adhesion with proper account of the cell 

deformations are examined in chapter 5.  
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1.3 Complex Geometries: Artery Bifurcations and Non-uniform Endothelial Cell Layer 

  

In vivo microvascular networks are composed of short blood vessel segments, which exhibit 

irregular shapes and are linked by frequent bifurcations (Figure 1.3). The distinctive 

hemodynamic flow patterns in bifurcation regions impact the cell adhesion cascade.  Within each 

short blood vessel segment, the endothelial cells to which the leukocyte adheres also have an 

irregular topology and extrude towards the blood lumen. This extrusion changes the local fluid 

pattern of the hemodynamic shear flow, redistributes the pressure and shear stresses acting on 

the cells and the molecular bonds.  

Fluid dynamics in these complex geometries without accounting of circulating blood cells 

had been examined by several groups in the context of endothelium biological remodeling and 

mechanotransduction. Satcher et al. (1992) considered the endothelial surface to vary 

sinusoidally in height and examined the pressure and shear stress variations. At the same time, 

the variations in height were measured directly by using interference confocal microscopy 

(Sakurai et al. 1991), by combining confocal microscopy with fluorescence exclusion (Yamaguchi 

et al. 1993), and later by atomic-force microscopy of living endothelial cells, cultured under either 

no-flow or constant-flow conditions (Figure 1.4) (Barbee et al. 1994). These geometries and 

height variations were then used to calculate the changes in shear stresses. All of these studies 

clearly demonstrated that the variations in shear stresses due to surface waviness were 

significant, with the highest values of shear stresses acting on the protruding surfaces at the 

locations of endothelial cell nuclei. However none of these studies considered the possible role of 

the variations of shear stresses and pressure due to complex geometries in cellular interaction 

and adhesion. These are examined in chapters 5 and 6.  

 

1.4. Motivations and Objectives 

 

As reviewed above, several important aspects in cell interaction and adhesion are mostly omitted 

in current literature. Our current work addresses these issues. Multiple-cell interaction and 
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adhesion in planar and complex geometries are examined via high performance computing in 

current work. The blood cells are modeled with deformable liquid capsules enclosed with elastic 

membranes. Multiple-cell interactions are facilitated with the front tracking method. Complex 

geometries, endothelial topology and blood vessel bifurcations, are modeled with the ghost cell 

method without the need for computationally expensive deformed mesh. The effects of these 

factors are examined in chapters 5 and 6. Before we apply the codes developed to cellular 

interaction, we extensively validate and verify them in chapter 4.  

 

 

 
 
Figure 1.3 The complexity of the blood vessel network: Image showing network of blood vessels 
that supply the brain’s gray matter along with images of clots in the penetrating arterioles 
(courtesy of David Kleinfeld, UCSD) 
 
 

 Multiphysics and multiscale  computer modeling of the cellular interactions is important to 

understanding the physiological functions of the circulatory system such as the lymphocyte 

homing, and the pathophysiology of cardiovascular disease processes such as atherosclerosis 
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and sickle cell disease, and as well as to predictive medical treatment. Knowledge of the cell 

interactions is important for establishing guidelines for the design of drug particle size, drug 

particle mechanical/chemical properties, and receptor density for efficient drug delivery to the 

targeted inflammatory areas.  

 

 
 

Figure 1.4 (a) Atomic force microscope images of confluent bovine arotic endothellal cells 
(Images courtesy of Barbee, Drexel University); (b) High endothelial cell venule, found in 
lymphoid tissue. Endothelial cells are tall and lack tight junctions. This facilitates entry of 
lymphocytes into lymphoid tissue from the blood (Image courtesy from Atlas of Histology, 
www.med.uiuc.edu/histo) 
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Chapter 2 

 

Blood Cells:  

Structure, Mechanics and Adhesion Models 

 

 

Blood cells possess integrated structures that enable them to survive and function in dynamic 

physiological environments of hemodynamic shear flows, cellular interaction and adhesion. The 

mechanical properties of the cells are determined by their biological structures, biochemical 

activations and mechanical environments. To conduct a quantitative computational study of the 

cellular interactions in shear flows, it is an essential prerequisite to model the mechanical 

properties of the cells.  

 In cell adhesion, it has long been recognized that the leukocyte tethering and rolling are 

mediated principally by specific interactions between receptors and ligands involving a family of 

cell adhesion molecules called selectins (Springer 1994; Vestweber and Blanks 1999).  We also 

need to understand and model the mechanics and kinetics of molecular receptor-ligand bonds, 

especially the formation and breakage rates and their shear stress dependence.  

 

2.1 Blood Cell Structures 

 

Blood cells have complex internal structures enclosed by the plasma membranes, which define 

the boundaries between the cytoplasm and extracellular environment (Alberts et al 2002).  The 

plasma membrane consists of a continuous double layer of lipid molecules (lipid bilayers) with 

embedded and trans-membrane proteins. A pure lipid bilayer excluding any membrane proteins is 

self-sealing with a uniform thickness about 5nm. The most important feature of the lipid bilayer 
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itself is its incompressibility and fluidity. The fluid nature of a membrane is important in membrane 

protein mobility (e.g. selectin that mediates the cell adhesion) and cell deformation. The 

incompressibility of the lipid bilayer makes a vesicle conserves it membrane surface area besides 

its volume during its mechanical deformation and motion in hemodynamic shear flows (Kraus et 

al 1996; Seifert 1999; Abkarian et al 2002; Kantsler and Steinberg 2005; Kantsler et al 2007; 

Kessler et al 2007). Whereas the lipid bilayer defines the basic structure of blood cell 

membranes, the membrane proteins are principally responsible for the functionalities and 

mechanical properties of blood cell membranes. Membrane proteins and cell cytoskeleton form a 

supporting network on the endoside of the membrane.  

 The blood consists of mainly erythrocytes, leukocytes, platelets and proteins dispersed in 

the ambient fluid called plasma. The erythrocytes (red blood cells) are the most common type of 

blood cells, about 50% of the whole blood in volume. Erythrocytes are of disk shape. The 

diameter of a typical human erythrocyte disk is 6-8 µm (Figure 2.1). The red blood cell membrane 

separates the cytoplasm and the extracellular plasma. The cytoplasm contains the cytosol and 

proteins, including cytoskeleton. The erythrocyte does not have nucleus and functions mainly for 

oxygen delivery. 

 

 

 

Figure 2.1 Juxtaposition of lymphocyte, erythrocyte and platelet. 

 

 

http://en.wikipedia.org/wiki/Blood_cell
http://en.wikipedia.org/wiki/1_E-6_m
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 Blood contains much fewer leukocytes, less than one percent of the blood in volume. 

Leukocytes exist in several types, including lymphocyte, monocyte and neutrophil. The 

lymphocytes are responsible for effective immune responses such as the production of antibodies 

in the process of lymphocyte recirculation and homing to lymphoid organs (Rosen 2004). 

Neutrophils and monocytes tend to move to sites of infection and inflammation for example in 

atherosclerosis (Segal 2005; Osterud and Bjorklid 2003), where they ingest bacteria and debris. 

All leukocytes under suspension have spherical shapes but differ in terms of overall dimension, 

size and internal structure. Their surfaces are covered by microvilli that protrude a short distance 

(0.3 ~ 0.4 µm) from the surface (Bruehl et al. 1996; Shao et al. 1998) and, because adhesion 

molecules are often localized to the tips of the microvilli, these can play a role in allowing the 

leukocyte to attach to a vascular in the early stages of the leukocyte adhesion cascade (von 

Andrian 1995), but do not effect the leukocyte rolling velocity (Stein et al 1999). Leukocyte 

membrane folding caused by the microvilli makes the actual membrane area about twice as its 

nominal or apparent area.  One notable structure difference between the erythrocyte and 

leukocyte is that leukocyte has nucleus with the nucleus membrane separating the nucleus and 

cytoplasm, while the interior of erythrocyte is pretty much homogeneous. Leukocyte nucleus has 

much denser structures than the cytoplasm. Therefore its mechanical role can be important and 

hence need to be modeled.  

 

2.2 Blood Cell Mechanical Models 

 

The structure heterogeneities of a blood cell pose significant challenges for modeling the cell 

mechanical constitution law. In molecular scales, the cell cytoskeleton is considered and modeled 

as the main structure in various types of cells (Satcher and Dewey, 1996; Wang et al 1993; 

Ingber, 2003). This is important when studying how the external mechanical forces are 

transmitted to the cell interior and trigger subsequent biological signaling. We study the cell 

mechanics using the continuum approach instead. We are interested in applying and developing 

continuum mechanical models, which give apparent mechanical properties, to characterize 
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mechanical responses of blood cells subject to hemodynamic shear flows and chemical 

adhesions. Although providing less insight into the detailed molecular mechanical events, the 

continuum approach is more suitable to use in computing the mechanical properties of the cells if 

the biomechanical response at the cell level is the main interest. 

 

2.2.1 Liquid Drop and Capsule Models 

 

Erythrocytes and leukocytes behave like liquid drops in suspension and under hemodynamic 

shear flows. Erythrocytes and leukocytes can deform continuously to squeeze through 

microcirculations. In micropipette experiments, leukocytes can be absorbed into a micropipette 

with a smaller diameter when the pressure difference exceeds a certain threshold and recover its 

initial spherical shape upon release (Evans and Kukan, 1984). This fluid-like behavior motivated 

to develop a liquid drop model by Yeung and Evans (1989). In their model, the cell interior is 

assumed to be a homogeneous Newtonian viscous liquid with constant surface tension 0.02–0.04 

x10–3 N/m (Evans and Yeung, 1989; Needham and Hochmuth, 1992) until the area expansion 

limit (80–120%) is reached (Schmid-Schonbein et al., 1980; Evans and Yeung, 1989).  

 An erythrocyte has no cell nucleus and nearly homogeneous interior with little internal 

structures other than certain concentration of hemoglobin and other proteins, and a supporting 

protein network comprised largely of spectrin, a type of filamentous protein, on the endoface of 

the cell membrane. Hemoglobin makes the cell interior about four times more viscous than the 

blood plasma for a physiologically normal erythrocyte. The Newtonian drop model enclosed by 

nearly incompressible elastic membrane (see below) predicts quite satisfactory results for the 

erythrocyte deformation in shear flows. The bending stiffness can be readily included to smooth 

out nonphysical high curvature cusp formation (Secomb et al. 2001; Pozrikidis 2001)  

 The leukocyte interior consists of single or multiple nucleus compartments immersed in 

cytoplasm (see Figure 2.2). Lymphocyte has one single nucleus while neutrophil and monocyte 

can have multi-lobed nuclei. The cytoplasm includes the cytosol, cytoskeleton and various 

suspended organelles; the nuclei consist of nucleoplasm with genetic materials enclosed with an 
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envelope-like structure, which can be treated as another type of membrane, which is however not 

composed of the lipid bilayers as the plasma membrane. It has been demonstrated that the 

nucleus is stiffer and more viscous than the surrounding cytoplasm (Dong et al., 1991). One 

important phenomenon observed in micropipette experiments is that the apparent overall 

viscosity and stiffness vary continuously with the degree of deformation and the deformation rate 

(Dong et al., 1991; Dong and Skalak, 1992; Hochmuth et al., 1993). Therefore, an improved 

model accounting for the cell interior structural heterogeneity is needed. 

 

 

 
Figure 2.2(a) Scanning electron micrograph of neutrophils showing their spherical shape with 
numerous microvilli distributed over the surface. (b) Transmission electron micrograph showing 
the internal structure of a neutrophil including the multilobed nucleus, cortex, and cytoskeleton. 
Reproduced from Dong and Skalak (1992).  
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 The compound liquid drop model was proposed (Dong et al. 1991; Hochmuth et al. 1993) 

to this end. It is treated as a three-layered structure (Figure 2.3). The plasma membrane and the 

ectoplasm, which make up the outer layer, have a thickness of 0.1 µm (Zhelev et al., 1994) and 

are under persistent tension with elastic properties. The middle layer is the endoplasm, which is 

fluid-like and is the softest region of the cell. The core layer is composed of the condensed region 

of the nucleus and surrounding cytoskeleton. The nuclear membrane is also under persistent 

tension (Tran-Son-Tay et al, 1994). The compound drop model has been applied to explain the 

vast disparity of estimated apparent viscosity of the leukocytes measured with different 

experimental methods or under different conditions. It is based on the fact that the nucleus is 

more viscous and stiffer than the surrounding cytoplasm and aims at explaining some nonlinear 

experimentally observed phenomena, which cannot be accounted for using the homogeneous 

drop model. Since it has been estimated that the nucleus is approximately 10 times more viscous 

than the cytoplasm (Dong et al., 1991), it is possible that the apparent viscosity represents 

nonlinear combination of the nucleus viscosity, cytoplasm viscosity, membrane stiffness and 

incompressibility. For example, at the beginning of the micropipette aspiration, the less viscous 

cytoplasm will be deformed preferentially, leading to a lower apparent viscosity (Kan et al., 1998). 

This may partially explain the rapid initial entry (Dong et al., 1988). As another example, in 

aspiration using larger micropipettes, the nucleus will not be deformed much and thus, the 

apparent viscosity will be lower. Conversely, the reverse is true when smaller micropipettes are 

used (Kan et al., 1998). This can explain why the apparent viscosity appears smaller in small 

deformation analysis (Hochmuth et al., 1993). 

 

2.2.2 Cell Membrane Model 

 

A cell membrane defines a physical boundary between the cell’s internal compartment and its 

outer environment. Lipids and proteins are dominant components of membranes. One of the 

principal types of lipids in membranes is phospholipid. A phospholipid molecule has a polar 
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hydrophilic head group and two hydrophobic hydrocarbon tails. The hydrophilic heads shield the 

hydrophobic tails from the water surroundings due to the hydrophobic forces.  

 

 

Figure 2.3 Homogeneous (lef) and compound (right) capsule models for erythrocyte and 
leukocyte, respectively. In both cases, the cytoplasm membranes separate the cell interior with 
different viscosities from the extracellular plasma space.  For leukocytes, the cell interior is further 
divided into a dense nucleus with another membrane separating from the softer cytoplasm layer. 

Notations: pµ rcµ cµ  and nµ  denotes the viscosities for the exterior plasma, erythrocyte 

cytoplasm, leukocyte cytoplasm, leukocyte nucleus; rcf Ef nEf  stands for the elastic force on 
the membranes.  
 

 
 The widely accepted model for cell membranes is the fluid mosaic model (Singer and 

Nicolson, 1972). In this model, the cell membrane is considered as a lipid bilayer where the lipid 

molecules can move freely in the membrane surface like fluid, while the proteins are embedded in 

the lipid bilayer. Some proteins are called integral membrane proteins because they traverse 

entirely in the lipid bilayer and play the role of information and matter communications between 

the interior of the cell and its outer environment. The others are called peripheral membrane 

proteins because they are partially embedded in the bilayer and accomplish other biological 

functions. Beneath the lipid membrane, the membrane cytoskeleton, a network of proteins, links 

with the proteins in the lipid membrane (Figure 2.4). 

 The first step to study the elasticity of cell membranes is to study the lipid bilayers. A 

good model for this is a vesicle, which consists of a pure lipid bilayer membrane enclosing certain 

protein solution (Kraus et al 1996; Seifert 1999; Abkarian et al 2002; Kantsler and Steinberg 

2005; Kantsler et al 2007). However a true cell membrane is most simplified as lipid bilayers plus 
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membrane skeletons. The skeleton is a cross-linking protein network and joins to the bilayer at 

some points. Assume that each protein in the membrane skeleton has similar length which is 

much smaller than the whole size of the cell membrane, and that the membrane is locally two-

dimensional uniform and homogenous. The thickness of the membrane is much smaller than the 

scale of the whole cell membrane. It is reasonable to describe the cell membrane by a surface. 

 

 

Figure 2.4 Cell membrane and fluid mosaic model (from wikipedia, 2007) 

 

 Salient features of the red and white cell membranes are: 1) capability for large 

deformations; 2) stress and strain history not affecting its equilibrium shape.  These motivated to 

model them with elastic constitutive material. One notable difference between the cell and a 

simple liquid drop with constant surface is that the cell can reach an equilibrium shape unlike a 

liquid drop, which can break up into smaller ones under shear stretching (Scardovelli and Zaleski, 

1999).  

 The red cell membrane can be modeled with nearly incompressible elastic thin structure 

(Evans and Skalak 1980; Fung 1993; Eggleton and Popel, 1998; Pozrikidis 2001). To derive 

constitutive relations for the elastic tensions, we introduce the principal stretches or extension 

ratios 1λ  and 2λ  respectively (Figure 2.5). The equilibrium equations can be derived by 

considering a smaller section of the membrane in the local curvilinear coordinates defined 

according to the principal stretching directions. To this end, we have two main choices reflecting 
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the assumed nature of the membrane. First, we may regard the membrane as a distinct two-

dimensional elastic surface and express the principal stress resultants in terms of the surface 

strain energy function or the two-dimensional generalized stress-strain relationship (Fung and 

Tong, 1968; Evans and Skalak, 1979; Fung, 1993):  
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Figure 2.5 Deformation of a membrane infinitesimal section: (a) unstressed; (b) stressed. 
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where K is the membrane elastic modulus for area dilatation, and E is the membrane shear 

modulus. Alternatively, we may regard the membrane as a thin sheet or shell of a three-

dimensional incompressible elastic material and introduce the volume strain invariants with the 

Mooney-Rivlin strain-energy function. A special case of the later is the neo-Hookean material 

model:  

 
2 2 2 2

1 2 1 2( 3) (2.2)
6
EhW λ λ λ λ− −= + + −

 
 

where E is the Young’s Modulus and h is the membrane thickness.  Besides the shear and 

dilatation deformations, the bending moments can be taken into account by introducing the 

bending energy function based on Love’s first approximation (Helfrich 1973; Pozrikidis 2001). The 

bending modulus is about 1.8e-12 dyne/cm, which is significantly smaller than the shear and area 

dilatation moduli, which are of the order of 1e-3 and 1e3. Since the membrane thickness is much 

smaller than the cell global scale, the bending stiffness can be ignored.  

 The leukocyte membrane is under persistent tension in its unstressed state. Also the 

leukocyte membrane has regular distributions of structural protrusions due to microvilli. The 

microvillus dimensions are much smaller compared with the leukocyte itself. It would be 

exceedingly difficult to model the topology of the microvilli. This requires special care to develop a 

leukocyte membrane model. Dong and Skalak (1988) proposed the following stress and strain 

relationship,  

 

0 1 2 1 2( , ) ( , ) (2.3)Ei E a s if f E A E Bλ λ λ λ= + +  

 
where 0Ef  is a finite persistent tension; 1Ef  and 2Ef  are and two principal membrane tensions; 

 and aE sE  are area dilation and shear extension moduli, respectively. A  and iB  are functions 

of principal stretch ratios, 1λ  and 2λ , in the principal stretching tangent directions, which 

characterize the isotropic and anisotropic elastic deformation, respectively, which are suggested 

as (Dong  and Skalak, 1992; Fung 1993) as,  
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where n  usually to account for the leukocyte membrane folding caused by the microvilli. A 

large value of n (=29) is necessary to take into account the fact that the apparent leukocyte 

membrane surface area is about half of the actual membrane area.  A large exponent n implies 

that the membrane can hardly be stretched when the area stretch ratio is larger than 2, the ratio 

of the actual leukocyte membrane area and the nominal one without accounting for the leukocyte 

microvilli. In another word, the area dilation resistance is nearly zero when the area expansion is 

less than 2 and increases in power when it becomes greater than 2. For two dimensions (2D), we 

set 

1≥

1 2, 1.λ λ λ= =  

 

0

3
0

( ) ( )

( 1) ( ) (2.5
2

E E a s

n s
E a

f f E A E B
Ef E )

λ λ

λ λ λ−

= + +

= + − + −
 

 
In our computations, we use the following parameters unless otherwise specified 

 

,0 0.12 dy n/cm, 0.01 dyn/cm, 0.14 dyn/cm (2.6)E a sf E E= = =
 

 
which gave good agreement with Schmid-Schonbein et al. (1980). We normalize the parameters 

with the cell radius, (wall) shear rate, and blood plasma viscosity:  

 

301 ( 1) ( ) (2.7
Re

nE a s

p p p

f E E
a a a

λ λ λ
µ γ µ γ µ γ

−
 

+ − + − 
  

τ )
 

 
We denote the dimensionless parameters as following:  

 

0
0

, ,p p p
s a

E s a

a a a
Gc Gc Gc

f E E
(2.8)

µ γ µ γ µ γ
= =
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They are important and determine the relative importance of viscous force to the elastic 

membrane forces and bond force. ( ,,0 , ) /E a s pf E E aµ γ . For the leukocyte nucleus membrane, 

quantitative studies are mainly missing to the author’s best knowledge. To reduce the modeling 

parameter space, we take a simplified version of leukocyte membrane model and adopted,  

 

0 1 2( , ) (2.9)nEi nE naf f E A λ λ= +  

 
with  n = 1 in (2.2).  In two dimensions, it reads 

 

0 ( 1) (2.10)nE nE naf f E λ= + −  

 
From Tran-Son-Tay et al. 1994, we take,  

 

0 0.04  / , 2  / (2.11)E af dyne cm E dyne cm= =  

 

and their normalizations are as following:  

 

01 ( 1) (2.12)
Re

E a

p p

f E
a a

λ
µ γ µ γ
 

+ − 
  

τ
 

 
 There are many other types of cell models proposed, including elastic and viscoelastic 

solid models, and biphasic models. However the liquid capsule models are so far the most 

successful models which have given many satisfactory results compared with experiments. In 

most of our computations, this is adopted. For an overview of different cell mechanical models, 

please see the review by Lim et al (2006). 

 Let us comment on the blood vascular wall before we turn to the cell adhesion modeling 

in next section. The endothelial cells lining the endoface of blood vascular wall are important to 

cell adhesion in the leukocyte-endothelial adhesion. Selectins or selectin ligands are located on 

the endothelial surfaces and formed the molecular bonds with the leukocytes. The mechanics of 

the endothelium has been studied by Fung and Liu (1993). The deformability of the endothelial 
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cells is much less than the blood cells including erythrocytes and leukocytes (Sato et al 1986; 

Janmey et al 1991).  We assume the endothelial behaves as a non-deformable solid wall to 

reduce the parameter space in our studies. Similarly, we neglect the effects of the up-to-now 

controversial endothelial surface layer, which covers the surface of endothelium (Vink et al; Pries 

et al. 2000; Squire et al 2003; Weinbaum et al. 2003). 

 

2.3 Microscopic Kinetics and Mechanics of Cell Adhesion 

 

The adhesion of blood cells to the blood vascular wall and their mutual adhesions are of crucial 

importance in governing a range of cell functions in normal physiological lymphocyte recirculation 

(Butcher and Picker, 1996), pathological inflammatory diseases (Ross 1999; Lusis 2000; Libby 

2002) and biotechnological drug delivery (Eniola et al. 2002; Ehrhardt et al 2004). It is a 

multiphysical process involving the dynamic cell motion in hemodynamic shear flow and chemical 

reaction forming the specific receptor-ligand molecular bonds.  

 The adhesion of leukocytes mainly occurs in post-capillary expansion venules where 

hemodynamic shear stresses are minimized and the blood cell interactions are augmented. The 

leukocyte adhesion cascade is a multi-step process (Figure 1.2). The critical first step is the 

transient tethering of a flowing leukocyte to the vessel wall. This tether is not much stable itself 

and the cell either detaches back into the fluid stream or begins to roll along the vessel wall. 

Rolling is a form of reversible adhesion where new adhesive bonds have to be continuously 

formed at the leading edge of the cell-cell contact zone matched by rapid breaking of the at the 

trailing edge as (Lawrence and Springer 1991). If the bond formation and dissociation are well 

balanced, the leukocyte can roll for a period long enough to become activated by inflammatory 

chemokines or lipid mediators in order to arrest, spread and finally transmigrate into the 

underlying blood vascular tissue through the endothelial-endothelial junctions; otherwise, it can 

be detached and return to the blood stream again. This multistep process of tethering, rolling, firm 

adhesion, crawling, and transendothelial migration requires the coordinated expression of 

different adhesion and signaling molecules (Butcher, 1991; Springer 1994). 
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 The tethering and rolling adhesion of leukocytes, which are essential prerequisites on 

arrest and subsequent transmigration into tissues, are mediated specifically by a group of three 

specialized cell-adhesion molecules called selectins: L-selectin, P-selectin and E-selectin 

(Lawrence and Springer 1991; Kansas, 1996; Vestweber and Blanks, 1999). L-selectin, 

expressed on leukocytes, binds to ligands on endothelial cells and on other leukocytes 

(leukocyte-endothelial adhesion; leukocyte-leukocyte adhesion); P-selectin, expressed on 

activated endothelial cells, binds to ligands on leukocytes (leukocyte-endothelial adhesion); E-

selectin, expressed on activated endothelial cells, binds to ligands on leukocytes (leukocyte-

endothelial adhesion). Figure 2.6 sketches the selectins and their ligands involved in leukocyte-

endothelial and leukocyte-leukocyte adhesions (Vestweber and Blanks 1999; McEver 2002). 

These selections can form bonds by themselves or coordinated to strengthen the blonds 

(Springer 1990). Note, the selectin and ligand are modeled as elastic springs without account for 

their molecular structures as indicated in Figure 2.6.  

 Cell adhesion, a multiphysical phenomenon, has attracted much attention and interest 

from multiple disciplines including biochemistry, bioengineering, biophysics and cell biology. 

Several mathematical models have been proposed for describing the interaction of the leukocyte 

with the endothelium cells. They can be classified into three classes based on thermodynamics 

equilibrium (Bell et al 1984), mechanical peeling (Skalak et al 1981; Evans 1985), and reaction 

kinetics (Bell 1978; Hammer and Lauffenburger, 1987; Dembo et al 1988; Evans and Ritchie, 

1997): 

1). Mechanical peeling analysis: It relates adhesion energy density, γ, defined as the mechanical 

work required to separate a unit are of the adherent surface, to the work done by external forces 

and the energy stored in and viscously dissipated by the deformed cell. 

2). Thermodynamic equilibrium: The adhesion between the cell and the substrate is analyzed by 

studying the equilibrium of the free energy or chemical potentials and the strain energy 

accounting for the external forces at a given instant in time. 

3). Specific reaction Kinetics: The kinetic models come from the fundamental biochemical 

reaction kinetics governing the specific receptor-ligand interactions in cell adhesions. It includes 
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describing adhesive interactions using chemical reaction kinetics and defining the kinetic rates as 

functions of the force applied on the bonds (Bell 1978; Dembo et al 1988; Evans and Ritchie 

1997).  

 

 

Figure 2.6 Selectins and their ligands in leukocyte adhesions for: (a) leukocyte-endothelial 
adhesion; (b) leukocyte-leukocyte adhesion (Adapted from Vestweber and Blanks, 1999). 
 

 There has been a paradigm shift in the cell adhesion to the kinetic concept, which has its 

foundations on the specific non-covalent interactions between the receptors and ligands 

mediating the adhesion. And the kinetics models define the coupling of kinetics and mechanics 

via the force-dependent kinetic rates, which need to be modeled. It is well suited to be applied to 

the quantitative computational (and experimental) studies. In the computational fluid dynamic 

studies of leukocyte-endothelial and leukocyte-leukocyte adhesions under shear flow, stress on 

the molecular bonds can be computed from the detailed fluid field and bond distributions and this 

force from bonds balances with the hemodynamic force and torque applied to the cell from fluid 
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flow to determine how likely, how fast, how strongly a cell adheres. Significant progress has been 

made toward understanding the receptor-mediated cell adhesion that is involved in the leukocyte-

the endothelium interactions as reviewed in Evans (1993), Lauffenburger and Linderman (1993), 

Hammer and Tirrell (1996), Bongrand (1999) and Zhu (2000).  

 In the absence of external force, receptors and ligands associate to form bonds with an 

intrinsic association rate of k ; the bonds can dissociate with a dissociation rate of k . The 

equilibrium state of the reaction kinetics is determined by the affinity constant K0 defined as the 

ratio of the association rate and the dissociation rate. However these kinetic properties are not 

adequate to determine the leukocyte adhesion in vivo where the leukocytes are subjected to 

continuous fluid shear stress and pressure load from the hemodynamic blood flow (van der 

Merwe 1999). The mechanical properties of the molecular interactions and cellular interactions 

must be properly taken into account (Alon et al. 1995; Ferger et al 1996; Alon et al. 1997; 

Lawrence et al 1997; Chen and Springer 1999; Yago et al 2002).  

0
f

0
r

 An important property of receptor–ligand bonds that determines adhesion is the bond 

strength. Drawing from the kinetic theory of the strength of solids, it can be assumed that 

although the forward rate should not be affected by an applied force, the reverse rate constant 

(and thus the affinity) will vary exponentially with force (Bell 1978),  

 
0( / )0 (2.13)Br f k T

r rk k e=  

 
where f is the applied force to the bond, k  is the Boltzmann constant, T is the temperature, and 

 is the reactive compliance which can be understood by make an analogy of binding energy to 

an equivalent potential energy well. The reactive compliance defines the nature of the bonds 

(Dembo et al 1988): 1) r , the bond is called “slip” bond implying that the reverse rate 

increases as the applied force on the bond increases; 2) r

B

0r

0 0>

0 0= , the bond is called “ideal” bond 

with force-independent reverse rate; 3) r0 0< , the bond is called “catch” bond implying that the 

bond gets strengthened as the force is applied on the bond (Marshall et al. 2003; Thomas et al 
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2002).  Alternative approaches have been applied to describe the relationship between the 

dissociation rate and the force. Dembo et al (1988) models the receptor-ligand bond as a spring. 

In this case, the affinity will decrease as the bond length moves away from its equilibrium length 

according to the Boltzmann distribution,  

 
2

0 0( )exp (2.14)
2 B

l lK K
k T

σ − −
=  

   

 
and for the association and disassociation rates, they are defined as following,  
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where σ  and tsσ  are the regular and transitional spring constants of the bond, respectively; l  

and  are the stress-free and stretched bond separation distances, respectively.  A third and 

more advanced model developed by Evans and Ritchie (1997) uses the Kramers transition state 

theory and accounts for the loading rate of a mechanical force. This model reduces to the Bell’s 

and spring model of Dembo et al in the limit of fast loading of which the hydrodynamic flow load is 

typical. Chen and Springer (2001) made significant efforts to test different models on how force 

affects the bond dissociation by plotting the histogram of the unbound cells vs the tether duration 

at different shear stresses.  Then they fitted the models mentioned above and variations of the 

Evan-Ritchie model to the experimental data. They are all reported to predict the dissociation 

rates well especially at intermediate to large shear stresses.  

0

l

 We found that the Dembo et al (1988) spring model is more straightforward to include in 

computational studies. The bond association and dissociation rates are derived from the 

Boltzmann distribution and the bond itself can be modeled with an elastic spring which is 

consistent with the assumption. Based on this spring model for the bond, the bond force bf  can 

be computed as,  
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0( ) (2.16)bf l lσ= −  

 
and 

 
(2.17)b b bF n f=  

 
Where  is the total bond force, and n  is the number of bonds. The reaction kinetic system 

governing the association and dissociation of receptor-ligand bonds is given as,  

bF b

 

( )( ) (2.b
f r b l b r b

N k N N N N k N
t

18)∂
= − − −

∂  

 
where  is the receptor-ligand bond density, k  and k  are the association and dissociation 

rates defined in Equation 2.15 respectively,  is the initial ligand density, and N  is the initial 

receptor density. In the present study, a receptor-ligand bond will be considered broken if the 

bond density reduces to a critical bond density, , as defined by Dembo et al (1988),  

bN r

bcN

f

lN r

 
4

010 (2.19)bc bN N−=  

 
where the initial equilibrium bond density is computed from Equation 2.18 as following,  

 

0 0 0 0 0( )( ) 0 (2.20)f r b l b r bk N N N N k N− − − =  

 
 We use the same characteristic scales used in the macroscopic equations above to make 

the microscopic model dimensionless. The dimensionless form of the bond density equation 

remains in the same form. Similarly, the bond force formula keeps with the variables made 

dimensionless correspondingly. 

 
*

* * * * * * *
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f r b l b r b
N k N N N N k N
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* * * *
0( ) (2.22)bf l lσ= −  
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Where 

 
2 2( ) , and   (2.25)

2 2
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r f
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k T k T
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These kinetics equations will be solved simultaneously with the fluid equations and the 

mechanics of cells, which is the focus of the next chapter.  

 



 31

 

 

Chapter 3 

 

Computational Methods 

 

 

In this chapter, we summarize the numerical methods developed carefully for computations of 

cellular interactions in complex geometries. It consists of five sections: 3.1) The velocity-pressure 

projection method is used to solve the Navier-Stokes equations on a fully staggered Cartesian 

grid and the skew-symmetric second order conservative schemes are used; 3.2) The motions and 

interactions of cells with membranes separating different fluids are computed with the front 

tracking method; 3.3) Cell membrane mechanics computations in two and three dimensions; 3.4) 

A ghost cell immersed boundary technique is applied to the computation of flows in complex 

geometry within a fixed Cartesian grid; 3.5) How do we compute the bond distribution governing 

kinetic equation and the bond forces. Such a unifying combination of different types of numerical 

method is needed to compute the long time dynamics of cellular interaction and adhesion in 

complex geometries. The mix of ghost cell and front tracking methods is our main innovation 

here. It has efficiency of computing multiphase flow in complex geometries with a fixed Cartesian 

grid without the computationally expensive curvilinear coordinate transformation involved in a 

body-fitted grid.  

 

3.1 Navier-Stokes Solver  

 

The cellular fluid motions are governed by the transient incompressible Navier-Stokes equations 
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where F is the volumetric force and S is the viscous stress tensor defined as following,  
 

, ,( ) / 2 (ij j i i ju u= +S   

It is convenient to normalize the Navier-Stokes equation in order to study the fundamental scaling 

with critical dimensionless physical parameters. The Navier-Stokes equations can be made 

dimensionless based on fundamental scales in cellular fluid mechanics: cell radius a , (wall) 

shear rate γ� , and plasma viscosity pµ . In other word, we choose the cell radius a  as 

characteristic length scale, inverse (wall) shear rate 1/γ�  as characteristic time scale, and 

/paµ γ� as characteristic mass scale. After some rearrangement, we have the following 

dimensionless Navier-Stokes equation, 
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* * * * * * * *

*

0 (3.4)
1 ( ( ) ) .

Re
Tp

t
µ µ

∇ =

∂
+ ∇ = −∇ + ∇ ∇ + ∇ +

∂

u
u u u u u F

i

i i (3.5)
 

 
We drop the star superscripts from here on to simplify the notations. The volumetric force F 

includes the local source force contributed from the cell membrane in front tracking method 

and/or the virtual force from the ghost cell immersed boundary technique which is applied to 

enforce the boundary conditions on the blood vascular wall embedded in a fixed Cartesian grid. 

We will discuss these methods after giving the detail about the time-marching and spatial 

discretization scheme used for computing the Navier-Stokes equations.    

The method of lines with the four-step velocity-pressure fractional step/projection scheme 

is applied to march the transient Navier-Stokes equations in time (Choi and Moin, 1994; Fergizer 

and Peric, 1999),  
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where superscripts n ,  and 1− n 1n +  denote the variables (velocity and pressure) at time steps  

,  and , respectively; u  and u  are intermediate velocities obtained with and without 

the pressure term, respectively. The explicit second–order Adams-Bashforth scheme is used for 

the nonlinear convective terms, source terms and off-diagonal viscous terms; and the fully implicit 

Crank-Nicholson scheme is used for the diagonal viscous term. These ensure the second order 

accuracy of the whole discretization. Please note, that this is important to treat the diagonal 

viscous term implicit since the viscous diffusion stability limit is much more restrictive than the 

convection CFL condition in micro scale cellular fluid mechanics. The use of explicit pressure 

gradient term at the time step n  in Equation (3.6a) is important and helps to eliminate the need 

for special treatment of the intermediate velocity boundary condition within the framework of a full 

second-order time marching scheme (Kim and Moin, 1985). The pressure equation of Poison 

type (3.6c), which projects the velocity to a solenoidal field, is solved by implicit direct inversion. It 

works efficiently for fluid flows with constant density in the whole computational domain, which is 

true for neutrally buoyant blood cell motions in cardiovascular system (Smith et al 2003). It makes 

use of the fact that we can store and invert the system matrix during the assembly stage, and 

reuse it without any change for every time step of the full computations.  

1nt − nt 1nt +
i�

*
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The Navier-Stokes equations are spatially discretized on a fully staggered or the so-

called Marker and Cell grid (MAC) as shown Figure 3.1 for a 2D sketch to avoid the non-physical 

oscillations of the pressure field from the pressure Poisson Equation 3.6c to enforce the zero-

divergence or incompressibility of the velocity field. This is due to the odd-even decoupling when 

using the central difference on a regular and collocated grid for the Poisson equation (Ferizger 

and Peric 1999).  

 

Figure 3.1 Staggered grid systems: the velocities are defined on the edges of the computational 
cells, and pressure is defined on the center of the cell. 

 

Special care is taken to apply the proper skew-symmetric second order accurate 

conservative scheme to the convection terms in a fully staggered grid system (Figure 3.2). 

Morinishi et al (1998) examined divergence, advective, skew-symmetric, and rotational schemes 

in regular, staggered, and collocated grid systems with regard to their conservation properties. 

The proper conservation properties of the skew-symmetric convective scheme proper were 

discussed and applied in Lai and Peskin (2000) where they developed the formally second order 

immersed boundary method and used it for computing flow around a rigid cylinder. We apply 

these second-order accurate skew-symmetric convective schemes in a fully staggered grid 

system. That is necessary for long time computations where the proper conservations become 

critical.  

We use three kinds of boundary conditions for the velocity field: The periodic boundary 

condition (Couette or linear shear flow), the Dirichlet boundary condition (Couette or Poiseuille 

flow), and Neumann boundary condition (outlet/symmetry). Consistent with these boundary 
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conditions for the velocity, the boundary conditions for the pressure are periodic boundary 

condition, Neumann boundary condition, and the Dirichlet boundary condition, respectively. The 

use of the fully staggered grid makes the treatment of the pressure boundary condition easier 

compared with the regular grid method where the pressure values on the boundaries have to be 

computed explicitly with non-trivial extrapolations. 

 

Figure 3.2  Dashed rectangles represent the computational stencils for: (a) the x-direction 
momentum discretization; (b) the y-direction momentum discretization. 
 
 

The first step of the fraction steps, Equation (3.6a) is solved with an approximate 

factorization method. After multiplying both sides with the time step size ∆ , moving the explicit 

terms to the right hand side of the equation and denoting them as 

t

RHS , we arrive at 
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The coefficient 2 for the diagonal term is due to the fact that the fully implicit scheme is used for it 

while the Crank-Nicholson scheme is used for non-diagonal viscous terms. To invert the matrix 

on the left hand side of Equation 3.7, we employ the approximate factorization scheme,  

 

1 (2 ) 1 ( ) 1 ( ) (3.8)
2Re 2Re 2Re i
t t t u RHS
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It is straightforward to prove that the error of the above factorization is of order of O t , which 

can be safely used with a second order accurate discretization. The inversion of the left-hand side 

of Equation (3.8) requires solving only three tridiagonal matrices in 3D and two tridiagonal 

matrices in 2D. For This special case of a system of linear equations that is tridiagonal, the 

procedures of LU factorization, forward- and back-substitution each take only O (N) operations, 

where N is the number of grid points. This is insignificant compared to the solution of the pressure 

equation. And also naturally, one does not reserve storage for the full N × N matrix, but only for 

the nonzero components, stored as three vectors. For periodic boundary conditions, the matrix is 

cyclically tridiagonal, and we use the Sherman-Morrison formula and treat the system as 

tridiagonal plus a correction (Press et al. 2001). The solution of these systems can still be done in 

O (N) operations.  

3(∆ )

 

3.2 Mixed Front Tracking/IBM Method for Cellular Fluid Mechanics 

 

A blood cell in suspension or hemodynamic shear flows behaves as a complex liquid drop or 

capsule with the cell membrane separating fluids with different properties (cf. chapter 2). The cell 

membrane can be treated as fluid interfaces or elastic structure with complex surface rheology 

and elastic-type surface tension. Computational methods in multiphase flow and fluid-elastic 

structure interaction studies can be therefore adopted.  

Various types of methods have been developed to represent, track or extract the moving 

interfaces, including the particle methods (Koumoutsakos, 2005), phase-field method (Lowengrub 

and Truskinovsky 1998), boundary-integral method (Pozrikidis 2001; Hou et al 2001), level set 
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method (Sethian and Smereka, 2003), volume of fluid method (Scardovelli and Zaleski, 1999), 

immersed interface method (Hou and Lowengrub, 2003), immersed boundary method (Peskin 

2003) and the front tracking method (Tryggvason et al, 2001). These methods are based on 

different views and characterizations of the interface movements. The Lagrangian representation 

leads to the particle methods; the Eulerian formulation leads to the level set and the volume of 

fluid methods, where the signed distance and the volume fractions are used to extract the fluid 

interface, respectively; while the mixed Eulerian-Lagrangian formulation leads to the immersed 

boundary and the front tracking methods. Boundary integral methods are boundary-discretization 

method by solving the integral equation on the boundaries only, and hence are not (immediately) 

applicable to more general interfacial fluid flows, such as those governed by the viscous Navier–

Stokes equations, which are the main interest in current work. The immersed interface method 

(Lee and Leveque, 2003) instead incorporates part of this force into jump conditions for the 

pressure, avoiding discrete dipole terms that adversely affect the accuracy near the immersed 

boundary. 

The mixed Eulerian-Lagrangian formulation used in the immersed boundary and front 

tracking methods, keeps tracking Lagrangian particles initially distributed on the fluid interface 

while solving fluid equations in the fixed Eulerian Cartesian grid. The principal advantage of 

mixed formulation is their inherent accuracy and robustness, partly due to the ability to use a 

large number of Lagrangian particles on the interface. The mathematical formulation of the 

immersed boundary method can be derived from the principle of least work in the mixed Eulerian 

and Lagrangian spaces coupled with the Dirac delta function (Peskin 2002). The two-way 

interaction of the Lagrangian particles and the fluid is via a Dirac delta function in strict 

mathematical sense and its various smoothed version in numerical computations. The smoothed 

delta function is applied to both force spread from Lagrangian interface to the fluid (Lagrangian to 

Eulerian) and the velocity interpolated from the fluid nodes to the Lagrangian particles on the 

interface (Eulerian to Lagrangian):  
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1) Spreading the membrane force to the local surrounding fluid as volumetric 

source terms in the momentum equations to satisfy the dynamic Young-

Laplace condition across the interface;  

2) Advancing the interface with the locally interpolated fluid velocities to satisfy 

the no-slip boundary condition between the fluid and the membrane.  

 

The original immersed boundary method was developed by Peskin (1972) for the 

computation of the fluid structure interaction in the cardiac heart valve motions. The fluid 

properties were assumed as constants around the structure. In these cases where the tracked 

interface carries only forces that vanish everywhere except at the interface, the procedure 

described above is all that needs to be done. However, for blood cell interaction and adhesion, 

the blood cells have different properties than the blood plasma and are modeled with (compound) 

liquid capsules with elastic membranes separating fluids with different viscosities (cf. Chapter 2). 

Therefore it is also necessary to update the fluid properties on the Eulerian grid every time the 

Lagrangian interface moves across them. The front tracking method developed by Undervi and 

Tryggvason (1992) proposed a fast global approach to computing the smoothed Heaviside 

function based the geometric information stored with the Lagrangian-represented interface. Then, 

the smoothed Heaviside function, called an index function, is used to update the fluid properties,   

 

1 2 1( ) ( ) ( ) (3.9)Iµ µ µ µ= + −x x
 

 
where  is the index function ranging from 0 to 1 smoothly across the interface. The 

essential elements of the fast global approach for updating the fluid properties are reiterated 

briefly here (Unverdi and Tryggvasson, 1992): 

( )I x

 

(1) Compute the gradient of the smoothed index function with finite thickness from the 

Lagrangian representation of the interface. Let G x be the gradient of the index function ( )
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evaluated at a stationary grid points x, and D is a smoothed delta function discussed 

above (see 3.9 or 3.10), then 

 
( ) ( ) ( )( ) ( ) (3.10)l l l

l

D s= − ∆∑G x x x n  

 
where n  is the unit normal vector to an interface element ( )l ( )ls∆   with its centroid at 

.  The normal vector is calculated directly from a Legendre polynomial fit through the 

end points of each elements and the end points of the adjacent elements. The initial 

interface element size is a quarter of the Eulerian grid size.  

( )lx

(2) Compute the divergence of the smoothed interface gradient G x  and solve the identity 

condition which the smoothed index function must satisfy: 

( )

 
2 (3.11)I∇ ≡∇ Gi  

 
The Poisson equation is discretized in the staggered grid and solved by direct inversion 

the same way as for the pressure Poisson equation (3.6c).  

 

This approach leads to a smoothed Heaviside function ( )I x  across the interface location with a 

small- but finite-thickness interface transition layer.  

 We use a cosine-shaped ‘filter’ function as an approximation of the delta function for both 

force distribution from interface Lagrangian particles to Eulerian grids and velocity interpolation 

from Eulerian grids to interface Lagrangian particles. In one dimension, it takes the form (Peskin 

1977; Unverdi and Tryggvason 1992), 

 

                          

0,     otherwise

( )( )liD x x− =

( ) ( )1 1 cos ( ) , if   2
4 2

l l
i ix x x x h

h h
π + − − < 

  (3.12) 
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where ( )lx  and ix  donate the coordinate of the center of the smoothed Delta function interval 

and a point where the function will be evaluated; h is the grid size, implying the smoothed Delta 

function has a transition zone with thickness of four grids. For multi-dimensions, the smoothed 

Delta function is the product of the ones in each direction. In the case of two dimensions here, we 

can write it as following, 

 

0,     otherwise

2
2 ( ) ( )

1

(4 ) 1 cos ( ) , if   2
2

l l
i i

i

x x x h
x

π−

=

 ∆ + − − < ∆ 
∏ x x

( )( )liD − =x x
(3.13) 

 

 

 

Then we can apply the smoothed Delta function for interaction of Lagrangian particles and 

Eulerian fluid nodes. For force spreading or distribution, it applies the membrane force to the fluid 

locally surrounding it,  

 
( ) ( )( ) ( ) . (3.14)l l

i i
l
D= −∑F x x x f

 

 
This force acts as a local source of the volumetric forces on the right hand side of the momentum 

equations (3.5). At the same time, the velocity is interpolated from the Eulerian grid where the 

fluid velocities are solved and stored for the Lagrangian particles,  

 
( ) ( )( ) ( ) . (3.15l l

i i
i
D= − )∑u x x x u  

The interface particles are advected with this locally interpolated velocity to satisfy the no-slip 

boundary condition, 

 
( )

( )( ). (3.16)
l

ld
dt

=
x u x

 
 

These ordinary differential equations are solved with the second-order Adams-Bashforth 

integration scheme the same way as the convection terms are handled in the Navier-Stokes 

equations for consistency.  
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For compound liquid models for the leukocytes, care is taken to compute the index 

functions across the nuclear membrane and cytoplasm membrane respectively. Things become 

easy since we know the viscosity of the fluids in the different layers of the cells, and there are no 

triple junctions formed among the three fluids. The index function computed from the nuclear 

membrane is used to update the fluid inside the nucleus only.  

 

1( ) ( ) ( ) (3.17)p c p Iµ µ µ µ= + −x x  

2( ) ( ) ( ) (3.18)n n c Iµ µ µ µ= + −x x
 

 
where  ,  and p c nµ µ µ

p

 stand for the blood plasma viscosity, cytoplasm viscosity and nucleus 

viscosity, respectively, and n cµ µ µ≥ ≥ . The update of (3.18) applies only inside the cell after 

the first round of update (3.17).   
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Figure 3.3  (a) Lagrangian particles contributing force to the grid point X are enclosed in the gray 
circle with the center at the grid point X.; (b) Grid points contribution to the velocity of the 
Lagrangian particle P are enclosed in the gray circle with the center at the Lagrangian Particle, 
where h stands for the grid size. Diamond: Lagrangian particles; Circle: Eulerian grid.  
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3.3 Cell Membrane Discretization 

 

Lagrangian points connected by elements are used to represent the cell membrane. Both the 

points and their connectivity are stored at each time step. In two dimensions, the points are 

connected with linear or higher order elements. For each element, data is stored for its 

connecting points, principal stretch ratios, normal and tangent vectors, surface force and the jump 

of viscosity.  In three dimensions, the membrane is a mathematical surface and represented in 

the same way but with linear triangular elements.   

For elastic membranes, the surface force depends on the local strain unlike a simple fluid 

interface with constant surface tension. To compute the local strain at each time step, our three-

dimensional membrane computation is based on the model developed by Charrier et al. (1989) 

and applied to red cell modeling in Eggleton and Popel (1998). As discussed above, the 

displacements of the connecting nodes for an element can be computed from the interpolated 

fluid velocities to the nodes. The deformed elements do not necessarily remain in the same plane 

as the original elements in its unstressed state. Hence the deformed element is transformed to 

the plane of the undeformed element to determine the relative displacement of the nodes, 

principal stretch ratios ( 1λ , 2λ ), and the corresponding forces. Given these data and material 

properties of the membrane, we can compute the surface force on the membrane based on the 

principal of virtual work. The resultant total force F on a specific node is computed from the sum 

of the forces exerted by all elements connected to the node. The force is spread to the local fluid 

as a volumetric force source term in the fluid flow momentum equation as discussed in Section 

3.2. Quantities on an element are approximated by linear functions in the plane of the element,  

 
( , )x y ax by cφ = + +  

 
where the coefficients can be obtained from the local interpolations from the values of the 

connecting nodes of a triangular element. This can be extended to higher order elements when 

necessary.  
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For periodic boundary conditions, the front can move out of the domain on one side and 

move in through the other side. All that is needed is to correctly identify the grid point that 

corresponds to a given front position. For periodic fronts, the end point in one period is connected 

to the first point in the next period, and when computing the length or area of such elements, or 

when a line or a surface is fitted through the end points, it is necessary to correct for the positions 

of the points. For bond force computations (discussed below), we give a predefined critical length 

beyond which the bond is considered broken.  

 

3.4 Ghost Cell Method for Flow in Complex Geometries 

 

Biological fluid dynamics in vivo often involves complex geometries and disturbed flow patterns 

(cf chapter 1, section 1.3). The conventional approach to handling the complex geometry would 

employ structured or unstructured body-conforming grid. Depending on the computational 

methods (finite difference, finite volume or finite element), either grid transformation or complex 

discretization has to be done (Ferziger and Peric, 1999). Besides the nontrivial task of grid 

generation, these operations can bring significant overheads and deteriorate the performance of 

many efficient solvers such as the approximate factorization solvers discussed in Section 3.1. 

Grid transformations would require a highly accurate way of calculating the transformation 

Jacobian matrices, which can sometimes be quite difficult to achieve. A ghost cell method in a 

fixed Cartesian grid is implemented and combined with the front tracking method discussed 

above to compute cellular interaction and adhesion in complex geometries.  

The immersed boundary technique has recently been generalized to model the complex 

solid boundaries or walls beyond its original role for immersed elastic structure and fluid 

interaction in fixed Cartesian grid. It has been demonstrated to require significantly less 

computation than conventional body-conformal grid methods (Goldstein et al 1993; Saiki and 

Biringen 1996; Mohd-Yusof, 1997; Fadlun et al 2000; Verzicco et al, 2000; Lai and Peskin 2000; 

Iaccarino and Verzicco, 2003; Tseng and Ferziger 2003; Mittal and Iaccarino 2005). The idea is 

to find the right source terms in the Navier-Stoke fluid momentum equations or equivalently 
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develop a local reconstruction of the discretization stencil so that the boundary conditions are 

satisfied on the immersed walls without altering the Cartesian grid. The main advantages of this 

method are memory and CPU savings and ease of grid generation compared to body-conformal 

grid methods.  

The feedback forcing idea leads to the virtual boundary method developed in Goldstein et 

al (1993) and extended in Saiki and Biringen (1996):  

 

0
( , ) ( ( , ) ( , )) ( ( , ) ( , )) (3.19)

t

s s s s st t t dt t tα β= − + −∫f x u x U x u x U x  

 
where sx  is the coordinate of the immersed boundary, U  is the desired velocity of the boundary 

in general (zero for the no-slip boundary condition), α  and β  are the negative tuning constants 

and most often take very large magnitudes to make the virtual boundary close to the real moving 

wall or no slip wall boundary conditions. And the elastic stiff-spring method was developed in Lai 

and Peskin (2000), 

 
*

s( , ) [ ( ) ( )] (3.20)s st k t t= −f x x x  

 
where x  and   are the actual location and location after the elastic deformation of an 

immersed boundary, respectively, and  is the user-defined elastic spring constant large enough 

to make the movement of the immersed boundary smaller than some criterion. In both cases, 

these forces are spread to the local fluid via the smoothed Delta function similarly to the 

discussion in section 3.2. Therefore these methods enforce an approximate no-slip boundary 

condition for an immersed body by adding a nearly singular feedback forcing term to the 

momentum equations. These types for methods have at least two disadvantages:  

( )s t
* ( )s tx

k

 
1) The feedback force terms have flow-dependent parameters;  

2) The large constants and nearly singular feedback forces restrict the computational time 

step significantly.  
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And the stability of the calculation depends on not only the values of constants but also the exact 

geometry and flow field (Goldstein et al 1993; Fadlun et al 2000; Lai and Peskin 2000).   

Instead, Mohd-Yusof (1997) found a natural way to obtain the necessary body-force 

directly from the momentum equation such that the desired velocity field is obtained at the 

location of the boundary. Let us move all the spatial derivative and source terms on the right hand 

side of the momentum equation (3.2) to RHS , and denote the desired and unknown force as f , 

then 

1

(3.21)
n n
i i

i i
u u RHS f

t

+ −
= − +

∆
 

 
In order to satisfy the specified velocity U at the immersed boundary of arbitrary shape, then it 

reads,  

1

(3.22)
n n
i i

i i
U uf RHS

t

+ −
= +

∆
 

 
This overcomes the issues of the feedback forcing method: No flow-dependent parameters are 

involved; no extra work is needed to evaluate (3.22); and most importantly, it will not influence the 

stability of the time stepping scheme. This effectively intrinsic force can be understood from the 

physical meanings of the different terms in the momentum equations, including inertial force, 

pressure load, viscous force, and other volume force contributions such as the surface force and 

receptor-ligand bond force, 

 

( ) (3.23

(3.23 )

(2 ) (3.23 )
(3.23 )

inertial

pressure

shear

other

a
t

)

p b

c
d
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µ

∂
= +∇

∂
= −∇
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=

uf uu
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f S
f F

i

i  

 
where F is the force term shown in Eqn. (3.2). These have been shown in Fadlun et al. (2000). 

Later on, they also showed that, for comparable accuracy, the computational requirements for the 
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IBM approach are much lower than simulations on an unstructured, boundary-fitted mesh as 

given in previous published paper (Verzicco et al 2000). 

Fadlun et al. (2000 applied momentum forcing within the flow field with a linear 

interpolation from the streamwise or the transverse direction depending on the flow patterns. We 

enforce the specified boundary condition on a rigid solid boundary immersed in a fixed Cartesian 

grid by extrapolating the variable to ghost nodes inside the body and outside the fluid domain of 

interest. A high-order extrapolation is used to preserve the overall accuracy. The numerical 

procedure we use is as follows,  

 
1) Define the domain inside and outside of fluid; 

2) Identify the ghost cells for each boundary; 

3) Reconstruct the local solution around the boundaries to impose the boundary 

condition explicitly or implicitly; 

4) Continue to solve the Navier-Stokes equations with these changes 

 
The immersed body boundaries are represented as connected linear segments. We tag grid 

nodes according to whether they are inside and outside the body, or on the boundary of the body. 

The body boundaries are usually not collocated with the grid nodes for the velocities (Figure 3.4). 

For a fully staggered grid, it is always true since different velocity components are defined at 

centers of different boundaries of the computational cells. Once the inside nodes are identified, 

the boundary nodes lying inside the body and connected to at least one computation node in the 

flow domain are marked as the ghost nodes in the flow computation.  

The wall boundary conditions on the immersed body boundaries are enforced with a local 

reconstruction scheme involving the ghost node and neighboring flow nodes. Quadratic 

polynomials are used for the interpolations. Higher-order polynomials are more accurate but 

introduce bounded-ness problems and hence numerical instability. The variable values at the 

ghost nodes can be updated either in an implicit or an explicit manner. Implicit updating is in 

general observed to have enhanced numerical stability and enforce the wall boundary conditions 

more accurately whereas explicit updating of the ghost node values with a direct forcing term 
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does not change the local pattern of the original system matrix and more straightforward to 

implement.  

The quadratic interpolation polynomials are consistent with the second-order-accurate 

finite volume Navier-Stokes flow solver that uses quadratic variation of flow variables in the 

direction normal to the wall. This will retain the formal second order accuracy of the scheme. If 

the flow variables are assumed to vary in a quadratic manner along the wall normal direction and 

linearly along the wall, the interpolating polynomial is 

: 
2

0 1 2 3 4 (3.24)a a n a t a nt a nφ = + + + +  

 
where the wall coordinates n and t as shown in Fig. 3.4b. The normal to the wall intersects the 

adjacent grid lines at two points and the variable values at these two points in turn depend on the 

neighboring flow node values. Hence the five constants of the assumed polynomial are evaluated 

from the four neighboring flow nodes, marked with filled-in circles, and the wall point (Figure 3.4). 

The ghost-node value is either extrapolated or evaluated using the concept of an image point. 

The use of the image point in case of a quadratic interpolation most often produces better 

weighting coefficient (Majumdar et al. 2001).  

The flow solver usually needs the variable values at the ghost node as weighted 

combination of the values at the neighboring nodes, in the following form 

 

1 1 2 2 3 3 4 4 (3.25)G B Bw w w w wφ φ φ φ φ φ= + + + +  

 
It is therefore most convenient to evaluate the relevant weighting coefficients and the neighboring 

node indices in the assembly or preprocessing stage and re-use them later in the flow solver. The 

weighting coefficients can always be expressed in terms of the interpolating polynomial in the 

following form based on Eqn. (3.24) and Eqn. (3.25): 

 
1 2

1 2 3 4[ , , , , ] [ , , , ,1] (3.26)Bw w w w w T n nt n t−=  

 

 



 49

where in the case of a quadratic interpolation T is a 5 × 5 matrix, whose elements can be 

computed from the local normal and tangent vectors of the five boundary points of the 

interpolation space.  

 

Figure 3.4 Schematic representation of the quadratic interpolation procedure in ghost cell 
immersed boundary method, where (G Ghost node, I Image node): (a) case 1; (b) case 2. More 
cases can be included.  
 

 

There are a few other versions of the immersed boundary methods that have been 

applied to the flow in complex geometries. Ye et al. (1999) and Udaykumar et al. (2001) have 

presented a finite-volume Cartesian method by reshaping the immersed boundary cells to fit the 
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local geometry and using quadratic interpolation to calculate the fluxes across the cell faces while 

preserving second-order accuracy. This local reshaping the control volume make the 

implementation difficult and sacrifice the simplicity of the ghost-cell immersed boundary 

technique.  

The codes are implemented for shared-memory parallel computing with the parallel 

derivatives. We have tested its performance at the E10k Sun machines located at Center for 

Advanced Information Processing of Rutgers University. The parallel scaling for a typical run in 

our studies is shown in Figure 3.5, where the CPU times spent on various parts of the code are 

plotted separately. The Navier-Stokes solver, including the approximate factorization and 

pressure projection Poisson equations, are most computationally intensive. For a single node or 

process computation, the Navier-Stokes solver takes about 90% of the total CPU time. For 

multiple processor parallel computations, the power-law decay of the CPU time for the Navier-

Stokes solver as a function of the number of processors is quite satisfactory. The approximate 

factorization and the direction inversion Poisson solvers have been shown to significantly reduce 

the total amount of computing time compared with a bicongugate gradient stabilization method or 

text-book methods, such as successive over-relaxation (SOR) method. The run with SOR would 

have taken 10 times more CPU time than that of the approximate factorization scheme. This is 

very important to three dimensional computations where the SOR can take up tens of thousands 

iterations to converge (Tryggvason et al 2001). And the approximate factorization method is a 

direct solver which inverts well-behaved diagonal-dominated matrices; hen it is more robust and 

efficient.  

 

3.5 Cell Adhesion Kinetics and Mechanics 

 

The kinetic equations governing the receptor-ligand bond formation and breakage, Equation 2.19 

(repeated below but dropping the superscripts), are solved with fluid equations and the 

membrane mechanics 
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( )( )b
f r b l b r

N k N N N N k N
t

∂
= − − −

∂ b
 

 
with the association and dissociation rates defined by Equation 2.21 and 2.22 respectively as 

shown below,  

 

Figure 3.5 Parallel performance scaling as a function of the number processors: “NS” includes 
CPU time spent on the fluid solver itself (approximate factorization, and pressure Poisson 
equation); “visc adv” includes CPU time to obtain index function for updating the viscosities; 
“mem force” includes CPU time on membrane mechanics and receptor-ligand kinetics. (this data 
came from the benchmarking performed at the CAIP center E10 Sun machines, Rutgers 
University). 
 

( )
( )

2
0 0

2
0 0

exp ( )

exp ( )

r r r

f f f

k k C l l

k k C l l

= −

= − −  

The second order accurate Runge-Kutta scheme is used for time marching.  

 After the bond distribution is obtained, we compute the bond force according to the 

equation below,  

0( )b bF n l lσ= −  

 



 52

 
where l  and l  are the stress-free and stretched bond separation distances, respectively; 0 σ  is 

the bond spring constant; n  is the number of bonds per area. This force is included as part of 

the cell membrane force in Equation 3.14 and spread to the local fluid flow as a volumetric force 

term in the fluid flow equation.  At the same time, as the cells are transported with fluid flow, the 

locations of the receptors and ligands are updated and used to compute the association and 

dissociation rates, bond forces in the next time step and so on.  

b

Computational modeling of biological fluid flows is of multiphysical nature. It is important 

to develop a code that can handle the couplings between different physics. The codes developed 

are structured accordingly, including the following modules or subroutines: 1) Navier-Stokes 

solver; 2) front tracking method for multifluid flows; 3) cell membrane mechanics; 4) receptor-

ligand chemical reaction kinetics; 5) immersed complex geometries.  These are summarized in 

Figure 3.6. The number of components can increase when more physics are taken into account. 

The flow chart for the interactions of components is summarized in Figure 3.7.  

 

 

 

Figure 3.6 Multiphysics modeling in cellular fluid mechanics. Physics studied are shown here but 
other physics can be readily added when necessary.  
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Figure 3.7 Flow chart for computing cell adhesion under shear flow in complex geometries. See 
sections 3.1-3.5 for more detail.  
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Chapter 4 

 

Validations and Benchmarks 

 

 

The computational methods introduced in the previous chapter are applied to a few selected 

problems to benchmark their performance and accuracy,  

1) A two-dimensional flow around a rigid cylinder for the purpose to how capable the 

computational method can be used to model flow in complex geometries for both steady and 

unsteady cases (Section 4.1);  

2) A three dimensional flow over a model endothelial monolayer are computed to quantify 

the shear stress and pressure variations along an irregular surface topology which is 

commonplace in vivo (Section 4.2). The results at small Reynolds number are compared with 

analytical solutions based on a linear perturbation analysis to Stokes equations (zero Reynolds 

number); 

3) A two dimensional liquid drop under shear flow is benchmarked for the front tracking 

method developed in Section 4.3;  

4) The mass loss issue is examined in Section 4.4 where a three-dimensional drop 

initially under stretching is computed; 

5) A three-dimensional capsule with surface force modeled with an elastic membrane is 

examined in Section 4.5. And the results are compared with linear analytical solutions.  

 

4.1 Flow Around a Two Dimensional Rigid Cylinder 

 

We validate the performance of the ghost cell immersed boundary method by computing the 

steady and unsteady flows around a two dimensional rigid cylinder immersed in an otherwise 
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uniform and unbounded fluid field.  This is a classic benchmark problem for computational fluid 

dynamics, well documented, and extensively studied by experiments and computations with 

different numerical methods, finite volume and finite element methods with body-conformal 

curvilinear grids.  

 The different regimes of flow signatures are determined by the fluid properties, cylinder 

dimension and free stream velocity, in terms of a single dimensionless Reynolds number 

Re /D U D ν∞=

/

, where U  is the uniform free-stream velocity,  is the cylinder diameter, and ∞ D

ν µ ρ=  is the kinematic viscosity. The flow starts from the creeping (or Stokes) flow for zero or 

close to zero Reynolds number. The Stokes flow is symmetric around the cylinder streamwise 

and span-wise axes.  

 At small but finite Reynolds number, the flow separates on the cylinder boundary, and 

two symmetric standing vortices are formed attaching to the downstream sides of the cylinder; the 

vortices stretches out as the Reynolds number increases. When the Reynolds number is beyond 

certain critical value, the vortices begin to shed from the cylinder periodically with a frequency 

determined by the Reynolds number. The array of alternating-sign vortices formed is called the 

von Karman vortex street.  As the Reynolds number further increases, the flow eventually 

becomes turbulent. These various types of dynamic flow behaviors are challenging to capture 

even for an unstructured grid solver.   

Computations are performed for selected Reynolds numbers ( ReD = 20, 40 and 100), the 

range of which covers the steady and unsteady laminar flow regimes. The results are compared 

with established experimental and existing computational results in the literature. The 

computational domain consists of a large 60D x 30D rectangle with the cylinder located at (15D, 

15D). The large domain size is used to reduce the effect of the boundary conditions on the 

development of the vortex formation and shedding. At the inlet and top and bottom boundaries we 

specify velocity equal to the free stream velocity and a homogeneous Neumann boundary 

condition (zero gradients in the outlet normal direction) is applied at the outlet boundary. A 
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uniform grid, 1800 x 900, is used to discretize the equations. We have performed computations 

with various grid resolutions to verify the results are mesh-independent.  

 Figures 4.1a and 4.1b show the streamline (arrow indicating the velocity vector direction) 

and pressure distribution (background color plots) for Re = 20 and 40, respectively. An inverse 

pressure gradient is developed on the downstream side of the cylinder boundary, and flow 

separates from there and forms recirculation zones symmetric about the streamwise cylinder 

axis. From vortex dynamics point of view, two stretched vortices are formed there as shown in 

Figure 4.2a for ReD  = 40.  

At higher Reynolds number ( ReD  ~ 50), the vortices become unstable to perturbations, 

the symmetry about the cylinder streamwise axis breaks, vortices start to shed from the cylinder 

periodically and form the von Karman vortex street with alternating-signed vortices. Instantaneous 

vorticity snapshot is shown in Figure 4.2b for ReD  = 100. We see the von Karman vortex street, 

indicating the vortex dynamics and symmetry breaking are well captured with our present 

method. The same grid resolution is applied to this computation.  

 

(a) 

(b) 

Figure 4.1 Streamlines and pressure plots of the flow around a cylinder at Reynolds number: (a) 
ReD  = 20; (b) ReD =40. 
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(a) 

 

(b) 
 

Figure 4.2 Vorticity contour and color plots (juxtaposed) for the flow around a cylinder, (a) ReD  = 

40; (b) ReD = 100. 
 

We postprocess and verify the results by computing several key quantities for the steady 

and unsteady flow around a cylinder discussed above and comparing with well established 

computational and experimental results, including the recirculation zone length for lower 

Reynolds number only ( ReD  = 20, 40), drag and lift coefficients for lower and higher Reynolds 

number ( ReD  = 20, 40, 100), and Strouhal number which characterizes the frequency of the 

vortex shedding at higher Reynolds ( ReD  = 100).  The recirculation length is computed by 

measuring the distance between the cylinder and the end of the recirculation zone. The drag and 

lift coefficients are defined as  and C F  respectively, where 2 / 2)D DC F U∞= /(ρ 2/( / 2)L L Uρ ∞=

DF  and DF  involve integrating the shear stress and pressure load along the immersed cylinder 

boundaries. The Strouhal number is defined as /D USt f ∞= , where f is the vortex shedding 

frequency.  

Proper interpolation schemes for calculating the pressure, viscous stress and vorticity on 

the cylinder boundary are critical for their accurate evaluations since the immersed boundaries 
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are often not collocated with the computational grid nodes. And for fully staggered grid, it is 

always needed since pressure and velocity components in coordinate direction are defined at 

computation grid cell centroid and centers of the cell edges respectively. The same quadratic 

interpolation scheme used to enforce the corresponding boundary conditions (cf. chapter 3.4) on 

the immersed boundary is adopted here for consistency. The pressure evaluation assumes the 

pressure Neumann boundary condition (zero gradients in the immersed boundary normal 

direction) is satisfied on the immersed boundary instead of a Dirichlet boundary as it is for velocity 

filed.  The wall vorticity and shear stress are obtained from location interpolation of the velocity 

field based on its local reconstruction. Figure 4.3 shows the pressure coefficient along the 

cylinder surface at Re = 40. Numerical results agree well with body-fitted grid solver (Majumdar et 

al 2001). The results for both ReD  = 40 and 100 are summarized in Table 4.1 and compared with 

established experimental measurements and existing computational results. The present drag 

and lift coefficients agree well with the computational result obtained from a body-fitted mesh, 

where CD is the drag coefficient (time-averaged value in case of Re D 100) and CL is the 

amplitude of lift-coefficient. Interesting discussion on how to evaluate the force on a solid body in 

conjunction with the immersed boundary method with stiff spring to model the nearly solid wall 

can be found in Lai and Peskin (2000); similarly for a method based on direct forcing a variant of 

immersed boundary technique in Silva et al (2003).  

 

Figure 4.3 Pressure coefficient around the top cylinder (symbol) compared with body-fitted grid 
result (solid curve) (Majumdar et al 2001) 
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  0.166   Williamson  

  0.164   Roshko 

0.283 1.395 0.171 1.54 2.69 Dias and 

0.165 

 

0.164 

St = 

 

1.52 

1.52 

CD 

 

2.27 

2.23 

Lw/D 

Re = 40 

0.32001.4473 Lai and Peskin 

  Shyy group 

0.29 1.41 Present 

CL(rms)CD(avg) 

Re = 100  

Table 4.1 Comparison of dimensionless recirculation zone length, Strouhal number, drag and lift 
coefficients with established computational and experimental results. 

 

 

4.2 Flow Over a Model Endothelial Monolayer Surface 

 

The lumen of the blood vessel is covered with a monolayer of cells, called endothelial cell (EC) or 

endothelium. The physiologically normal endothelium, with its intercellular tight junctions, 

functions as a selectively permeable barrier to the passage of macromolecules between blood 

flow and extravascular tissues. The endothelium has both sensory and executive functions: it can 

generate molecules that regulate cell adhesion and transmigration across the endothelial 

junctions which are important in thrombosis and inflammation, also senses and transduces the 

physical forces into biological signals and responses which are important in vascular tone and 

remodeling (Davies 1995). Among the important physical forces acting on endothelial cells (ECs) 

are fluid shear stress and pressure, which have effects on EC morphology. The pressure 

variations have not been carefully examined before; however we show here that the pressure 

variation has the same order of magnitude as the wall shear stresses. Cells in the tubular regions 

of arteries, where blood flows is uniform and laminar, are ellipsoid in shape and aligned in the 

direction of flow. Cells in regions of arterial branching or high curvature regions, where flow is 

disturbed, have polygonal shapes and no particular orientation contrasted with a streamlined 
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endothelial shape in non-disturbed regions. The streamlined endothelial cell morphology 

minimizes the shear stress applied on it and hence possible damage to it; and at the same time, 

the junctions become tighter. The polygonal endothelial regions often show increased 

permeability of the endothelial cell junctions to macromolecules such as low-density lipoprotein 

(LDL) and are preferential sites for lesion formation in atherosclerosis where the initial deposition 

of LDL to the extravascular tissue is a prerequisite step.  
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Figure 4.4 In vitro µPIV measurements of the vascular endothelial monolayer height (Courtesy of 
Voorhees and Wei, Rutgers University, 2004).  
 
 

The endothelial cell monolayer is a rough surface, whose height has the order of microns. 

The variations of the shear stress and pressure load on such a wavy endothelial cell monolayer 

have fundamental impacts on the endothelium mechanics and mechanotransduction. In cell 

adhesion, shear stress and pressure variations can achieve similar or even higher order 

magnitudes than the receptor-ligand bond forces and hence strongly perturb the tethering 

efficiency and rolling stabilization of the blood cell-endothelial adhesion. Hence a detailed flow 

analysis is needed at least for in vivo cell adhesions. In vitro cell adhesion studies usually make 

use of a planar glass plate as the substrate, where the surface roughness can be neglected. The 

detailed shear stress and pressure load distributions are very difficult to obtain in experiments. 

Micro scale particles can be induced to the flow field and tracked with µPIV (Figure 4.4). But 

these manually added micro-scale particles could affect the cellular interaction and perturb the 

receptor-ligand bond formations. Computations can play a significant role here. In this section, we 

will study the Couette shear flow over a model endothelial wavy surface and compare the result 

with analytic linear analysis in the Stokes flow limit as the Reynolds number approaches zero.  
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 We model the endothelial cell rough surface with a single-mode sinusoidal surface to a 

first order approximation as shown in Figure 4.5 (left). Flow field over the surface is governed by 

the Navier-Stokes equations as shown in Chapter 3. When Reynolds is very small which is typical 

in microcirculations, we can omit the nonlinear convective terms and solve only the Stokes 

equations.  

 

 
(a) (b) 

 
Figure 4.5 Endothelial cell model surface, periodic in both x and y directions (a); variations on the 
model endothelial wavy surface (b) 
 

 The computational domain includes one full period of a sinusoidal shape in both x and y 

directions,  

 

1 2cos( )cos( ) (4.1)ecz a x yω ω=  

 
where 1 1 22 / , 2 / 2ω π λ ω π λ= = ; , a 1λ  and 2λ  are the surface amplitude, wavelengths in x 

and y directions, respectively. To reduce the parameter space, we take 1 2/ 1η λ λ= = , and 

10.025a λ=  which gives the relative size of the height with the endothelial length.  

 Periodic boundary conditions are applied on these boundaries accordingly. The upper 

boundary in z-direction is about 10 times of the sinusoidal variation amplitude or the model 

endothelium height. A uniform shear velocity is applied on the top boundary.   The endothelial cell 

is treated as non-deformable with the no-slip zero velocity boundary condition applied on the 

wavy boundary,  

 

 



  62

1 2
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ω ω

=
= =

 

 
A physiologically typical shear rate 1800 sγ −=  was applied. The computational grid resolution 

with 6 grids per amplitude is used. The interpolation scheme used in the previous section applies 

here to evaluate the pressure and shear stress distribution in postprocessing, and the data is 

plotted with the help of various visualization tools such as Tecplot. We plot the interpolated 

surface pressure distribution in Figure 4.5 (right).  

 Perturbation analysis can be used to derive analytical solutions to the flow over a small 

amplitude wavy surface (Satcher et al 1992),  

 
2

1 22
1

1 22
1

1 2
1

21 2 cos( )cos( ) (4.3 )
1

2 sin( ) cos( ) (
1

4 sin( )sin( ) (4.3 )

xz

yz

a

4.3 )

x y a

a x y b

ap x y

ητ π ω ω µγ
λη

ητ π ω ω µγ
λη

π ω ω µγ
λ

 +
 = +
 + 

= −
+

= − c

 

 
where 1 2/η λ λ= , µ  is the fluid dynamic viscosity.  They are proportional to the given linear 

shear stress µγ . The shear stress in x direction on the boundary includes the unperturbed given 

linear shear stress plus an in-phase variation induced by the finite amplitude wavy surface; the 

non-zero lateral (y-direction) stress is proportional to the uniform shear and varies sinusoidally but 

/ 2π  out of phase in direction with the surface variation; perturbed pressure distribution is / 2π  

out of phase with the surface variation in both direction. This can be shown qualitatively in Figure 

4.6 for pressure distribution.  

The analytical and computational results are compared in Figure 4.6. Our computations 

are carried for a finite Reynolds number  ~ 0.01, a typical value for microcirculations in 

cardiovascular system, which explains their difference with the analytical solution for Stokes flow 

besides the interpolation errors for evaluating the quantities on the immersed boundary which 
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does not collocate with the computational grid nodes. The same interpolation procedure is 

applied as that for the flow around a cylinder benchmark. 

 
(a) (b) 

 

analytic 
computation 

Figure 4.6 (a) shear stress in x component, xzτ ; (b) pressure variations. Blue lines are the 
analytic solutions based on linear perturbation analysis for Stokes flow, and the red squares are 
the computational values interpolated on the immersed boundaries.  

 
 

4.3  Droplet Under Shear Flow 

 

Dynamics of deformable objects under hydrodynamic shear flow is critical to rheological behavior 

of complex fluids, such blood, emulsions, bubbly suspensions, vesicles, to just name a few. From 

multiphysics modeling point of view, this problem is rather challenging due to the coupling 

between the structural deformations of the objects and the surrounding hydrodynamic flow 

(Kanster et al 2005; Kanster et al 2006; Kessler et al, 2007).  

The flow of a periodic suspension of two-dimensional viscous drops is a model problem 

for this type of multiphysics phenomena. In this section, we compute the dynamics of single-filed 

periodic viscous droplets, with constant surface tension coefficient, driven by the relative motions 

of two parallel plane walls moving in opposite directions with the same magnitude of velocities 

(the effects of gravity are neglected). This type of configuration allows people to study the long-

time non-equilibrium and equilibrium dynamics of a viscous droplet since the droplet will not move 

out of a computational domain quickly as in the pressure driven channel flow. The configuration is 
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sketched in Figure 4.7. The computational is 2 2π π×  (L=H); the droplet radius a ; the shear 

rate of initial background Couette flow is defined 

1=

2 /U Hγ = . The top and bottom boundaries 

are given a velocity U in positive and negative x direction, respectively.  The left and right 

boundaries are periodic. A grid resolution 128 x 128 is used in our computations unless otherwise 

specified. This model problem is relevant to the study of cell adhesion in vitro since the same 

boundary conditions can be used to model the parallel plate flow chambers (Chen and Springer 

1999).  

The dynamic behavior of the droplet is determined by physical properties and size of the 

droplet, including the surface tension coefficient, viscosity ratio, the droplet size, the wall velocity, 

and the shear rate as if there is no droplet. With dimensional analysis, we can tell that the flow is 

determined by the Capillary numberCa /aµ γ σ= , Reynolds number 2
1Re /a γ µ= , and 

viscosity ratio 2 1/λ µ µ= .  

 

Figure 4.7 Sketch of the computational domain 

 

A droplet with given surface tension subjected to a shear flow can acquire a stationary 

mean inclination angle with the droplet interface undergoing a tank-treading motion (Zhou and 

Pozrikidis, 1993). The stationary shape and inclination angle can result from the balance from the 
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balance of surface tension and shear flow effects: torque associated with the rotational 

component of a shear velocity field, torque due to its elongation part, and torque resulting from 

the tank treading motion of the interface. This has been observed in blood cell dynamics when 

the blood cell is modeled with a droplet with elastic-type membrane (Keller and Skalak 1982).  

The results for a run ( Re 0.025, 1Ca= = ) are shown in Figures 4.8 (a) and (b) for 

viscosity ratios of 1 and 5, respectively. The final equilibrium shape of the droplet is shown as the 

curve in red. The streamline plots in Figures 4.8 captured the patterns of the flow past a 

stationary droplet and rotating flow inside the droplet with the interface which undergoes a tank-

treading motion. The equilibrium shapes of the droplets depend on the viscosity ratios. The 

inclination angle decreases with viscosity ratio and Capillary number.  

 

 

(a) (b) 

Figure 4.8 Streamline and droplet interface plots for a droplet in linear shear flow (a) viscosity 
ratio 1; (b) viscosity ratio 5.  

 

We quantify the transient shape deformation and rotating angle of the droplet as 

sketched in Figure 4.9 as a function of Capillary number. The results are shown in Figure 4.10.  

The droplets asymptotically reach equilibrium states in both cases run for 

(Re 0.025, 1, 1)Ca λ= = =  and (Re 0.025, 2, 1)Ca λ= = = . The time to reach the equilibrium 

state increases with the Capillary number. And the drop takes more tilted elliptical shapes as the 

Capillary number increases. These results are quite consistent with the boundary integral 

 



  66

computations of the same model but in the limit of Stokes flow ( Re 0= ) reported in Zhou and 

Pozrikidis (1993). 

2,λ=

 

Figure 4.9 Definitions of droplet deformation parameter  and orientation angle D θ . 
 
 
 

 
 

(a) (b) 

Figure 4.10 (a) Deformation parameter,  as a function of time; (b) droplet angle D * 4 /θ θ π=  as a 
function of time. Red triangles for the case when Re 0.025, 1Ca= = ; Black rectangles for 
Re 0.025, 1, 1Ca λ= = = . 

 
 

4.4 3D Oscillating Droplets: Mass and Volume Conservations 

 

A non-spherical liquid droplet with surface force in otherwise stationary ambient fluid can oscillate 

before it reaches its equilibrium spherical shape finally. In this section, we study an initially 

ellipsoidal droplet that starts to oscillate because of the large surface force. The droplet’s size 

corresponds to a typical size of the leukocyte roughly 10 µm. From the results you can study the 

frequency and damping of the droplet’s oscillations. Figure 4.11 shows the initial shape of the 
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droplet, the ratio of the longest axis to the shortest axis is 1.4. The volume (and mass) 

conservation inside the droplet for an intermediate time computation will be examined.  

 

Figure 4.11 The initial shape of the droplets the aspect ratio is 1.4, the kinematic viscosity ratio is 
about 500, and the surface tension is about 1.8 N/m.  No slip boundary condition is used all side 
boundaries.  
 

 
(a) (b) (c) 

 

Figure 4.12 Velocity field and the droplet shape: (a) 1e-6 second; (b) 5e-6 second; (c) 1e-5 
second.  

 

Figure 4.13 shows the ratio between the two semi-axes of the ellipse as a function of 

time. You can see that the time scale is very small; the period of the oscillations is about 

2·10−6 second. 

 A critical issue for the interface methods (including front tracking, level set, and volume of 

fluid) is the mass/volume conservation and the parasite flow. The fundamental reason for that is 

the approximate implementation of the true physical boundary conditions across the interface with 

the finite smearing and source terms in the corresponding equations solved in a fixed 

computational grid. The mass loss and/or spurious current can happen. The former can make a 
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long time simulation worthless and the later can lead to numerical instabilities especially when the 

fluid property ratios are high.   

 

Figure 4.13 Ratio of the elliptic axes as a function of time 

 

Figure 4.14 Total mass of the droplet as a function of time 

 

We examine the mass conservation. The total volume of the droplet is defined as,  

 
( ) ( , , , ) (4.4)M t I x y z t dxdydzρ

Ω

= ∫  

 
where I is the index function from the front tracking method (cf. Chapter 3). Because there is no 

flow across the boundary interface, the volume of the droplet should be conserved. To check the 

conservation, Figure 4-14 plots the values of volumes as a function of time. The mass loss is less 

than 1% for this computation to intermediate times. The global computation of the index function 
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in the front tracking method can have overshoot and undershoot outside the range from 0 to 1. 

These oscillations often happen at locations close to the interface. We can manually set up 

cutoffs to cure the overshooting. This aspect is very important in long-time computations where 

the volume (and mass) loss becomes critical to maintain. We have also tried the local 

reconstruction of the discretization stencil as pointed out in Popinet and Zaleski (1999) for 

pressure correction, which conserves mass/volume slightly better. The idea behind this is to take 

advantage of the fact that the pressure satisfies the Young-Laplace relationship and hence has a 

jump across the interface. So the regular central difference of the pressure gradient can be 

corrected accordingly.  

 

4.5 3D Capsule Under Shear Flow 

 

To benchmark the elastic force calculation on the cell membrane, we compute the deformation of 

3D capsule, a droplet enclosed with an elastic structure instead of a fluid interface. We repeat the 

computations in Eggleton and Popel (1998) and compared the results with the boundary integral 

results as they did. The computational domain is quite similar to what has been sketched in 

Figure 4.7, but in three dimensions instead. The neo-Hookean membrane model is used in 

current computations and the grid resolution is 64x64x64. There is no viscosity contrast inside 

and outside the capsule. The deformation parameter is defined the same way as shown in Figure 

4.10.  

 Two cases are selected for G = 0.1 and G =0.2 where G /a Ehµγ= . The time evolution 

of the deformation parameter is shown in Figure 4.15 (time is normalized with the shear rate).  

We compare the evolution of the capsule shape using the immersed boundary method coupled 

with the quadratic form of the strain energy function with that found by Pozrikidis (1995) using the 

boundary element method using the boundary integral method. They agree pretty well.  
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Figure 4.15 Capsule deformation parameter as a function of time (curves: current computational 
results; symbols: boundary integral results).  
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Chapter 5 

 

Leukocyte Interactions in Wavy Channels 

 

 

The endothelial cell layer lining the blood vessel lumens in vivo has irregular topology in contrast 

with planar microchannels in vitro (cf. Figure 1.4, Chapter 1). It is most salient for the bulged 

endothelial cells in high endothelial postcapillary venules (HEVs), where most of lymphocyte 

adhesion and transmigration occur (Girard and Springer, 1995). The viscous shear stress and 

pressure vary along the height of the endothelial cell layer (Satcher et al 1992). The modeling of 

cellular interaction in complex geometries lacks in current literature. In this chapter, we study the 

cell hydrodynamic motion, kinetic adhesion, and cellular interactions in wavy geometries, 

including: leukocyte motions in a model wavy channel (Section 5.1); leukocyte adhesion on a 

wavy model endothelial cell layer (Section 5.2); and leukocyte-Leukocyte interaction and 

adhesion in wavy fluid channel (Section 5.3). The leukocyte is modeled as a compound liquid 

capsule enclosed with elastic membranes. The capsule interior is more viscous than that outside. 

 

5.1 A Single Leukocyte in a Model Wavy 3D Channel 

 

The hydrodynamic motion of a single leukocyte through a flat and wavy blood vessel is studied in 

this section. The flat vessel has a radius of 10 µm while the wavy vessel has an average radius of 

10 µm with the amplitude of the wavy vessel height equal to 3.5 µm (Springer 1995; Davies 1995; 

Barbee 2002). The leukocyte modeled with a compound capsule has radius of the vessel radius 5 

µm. The boundary conditions on immersed boundaries are enforced with the ghost cell method 

(cf. Chapter 3). The grid resolution is 32 grids per the average vessel radius. The inlet boundary 
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condition is a parabolic velocity profile with average velocity of 100 µm/sec. We compare the 

leukocyte trajectory and deformation for a flat vessel and a wavy vessel. The wavy topology was 

considered for a single red blood cells motion in axisymmetric wavy vessel of microcirculations 

(Secomb et al 2003). However, the leukocyte motion in a wavy channel lacks at current stage to 

the author’s knowledge.  

 The results for a flat blood vessel and a wavy blood vessel are shown in Figure 5.1 and 

Figure 5.2, respectively. The initial position of the leukocyte relative to the valley of wavy surface 

is examined by putting the leukocyte with a half wavelength shift. The results for this case are 

summarized in Figure 5.3. In a flat blood vessel, the leukocyte undergoes negligible deformation, 

while the leukocyte undergoes intermediate to large deformation in a wavy vessel. The 

trajectories of the leukocytes are plotted in Figure 5.4. Significant differences in both streamwise 

and spanwise coordinates of the leukocyte mass centers (computed relative to the central axis of 

the vessel) can be observed. The streamwise coordinate indicates the displacement of the 

leukocyte while the spanwise coordinate tells how much the leukocyte deforms.  

 

 
(b) (a)  

Figure 5.1 Leukocyte motion along the axis of a flat blood vessel: (a) t = 0; (b) t = 0.3 (sec).  

 

 
(b) (a)  

Figure 5.2 Leukocyte motion along the axis of a wavy blood vessel: (a) t = 0; (b) t = 0.3 (sec). 
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(b) (a)  

Figure 5.3 Leukocyte motion along the axis of a wavy blood vessel where the leukocyte starts 
from the surface valley. (a) t = 0; (b) t = 0.2 (sec). 
 
 
 
 

 
(b) (a) 

 

Figure 5.4, (a) the x coordinate (streamwise) of the leukocyte mass center; (b) the y coordinate or 
effective radius in spanwise direction (radial direction) of the leukocyte. Red/solid, blue/dash-
dotted, and green/dotted lines corresponds to Figures 5.1, 5.2 and 5.3 respectively.   

 

 The displacement of the leukocyte oscillates with the surface amplitude change of the 

wavy vessel. The leukocyte moves faster in narrower regions and slower in broader regions. With 

a fixed inlet velocity the leukocyte moves faster in the wavy channel Figure 5.4(a). The leukocyte 

is elongated in streamwise direction when leukocyte squeezes through the wave vessel; and 

relaxed back when it enters into the expansion region. This behavior of leukocyte motion in a 

wavy vessel can play a role in rheology and resistance of the microcirculations.  
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5.2 Leukocyte Adhesion on a 2D Wavy Endothelial Cell Layer 

  

The leukocyte collides and adheres with the bulged part of the high endothelial cells in high 

endothelial venules. The leukocyte adhesion on a 2D dimensional wavy endothelial cell layer is 

modeled in this section. The leukocyte is modeled with a compound capsule with more viscous 

cytoplasm and nucleus (see Tables 5.1-3 for lists of parameters). The periodic boundary 

conditions are applied on the left and right boundaries with a given pressure gradient.   

 

 

(a) (b) 

(c) (d) 

 

Figure 5.5 Leukocyte adhesion over a 2D model wavy endothelial cell layer: (a) initial cell shape 
and location with velocity arrow plots; (b) snapshot of the leukocyte, velocity arrow and x-velocity 
plots; (c) snapshot of the leukocyte, y-velocity contour and x-velocity plots;(d) In vivo leukocyte 
imaging from Diamino et al. (1996).  
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Figure 5.6 Leukocyte-endothelial receptor-ligand bond number as a function of normalized time 
 

 

The results are summarized in Figures 5.5 and 5.6. The well-known tear-like shape of the 

leukocyte is observed and juxtaposed with the in vivo image from Damino et al (1996). In Figure 

5.5(b), the existence of the more viscous compound capsule significantly changes the flow field in 

the vessel. The velocity is larger in regions above the leukocyte; and the leukocyte sustains larger 

shear and torque. The receptor-ligand bonds form between the leukocyte and the wavy 

endothelial cell layer and the bond number is plotted as a function of normalized time in Figure 

5.6. The resistance increases as a result of the leukocyte adhesion and this is important to 

understanding the rheology of microcirculations.  

 

5.3 Leukocyte-Leukocyte Interaction on a 2D Wavy Endothelial Cell Layer 

 

Leukocyte-leukocyte interaction and adhesion have been shown to be important in secondary 

leukocyte adhesion (Alon et al 1996; Cocklet and Goldsmith 1997; Eriksson et al 2001; Kadash et 

al 2004; King and Hammer 2005).  These are modeled in this section. Two leukocytes are 

introduced over a 2D wavy endothelial cell layer. The separation distances between the two 

leukocytes are half radius and one leukocyte radius in y and x directions, respectively. The 

configuration is close to that in Kadash et al (2004). Three cases are modeled: no adhesion at all 

(case I); leukocyte-endothelial adhesion activated but no adhesion between leukocytes 

themselves (case II); leukocyte-leukocyte and leukocyte-endothelial adhesions (case III). The 
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case III shows the importance of secondary leukocyte recruitment and leukocyte string formation 

(Alon et al 1996).  

 

 

 

 

 

 

 

 

Figure 5.7 Snapshots of leukocyte-leukocyte interaction over a 2D model wavy endothelial cell 
layer; no kinetic adhesion either between leukocyte and endothelium or between leukocytes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Leukocyte-leukocyte interaction and leukocyte-endothelial adhesion over a 2D model 
wavy endothelial cell layer 
 

 

Snapshots for the runs of cases I and II are shown in Figures 5.7 and 5.8, respectively. 

When there is no adhesion at all, the two leukocytes stay together with the top leukocyte pushes 

the bottom leukocyte towards to the endothelium. This can be shown in Figure 5.9 where the y-
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coordinates of the mass center of the bottom leukocyte are compared when with the top 

leukocyte and without the top leukocyte (a separate run).  The bottom leukocyte is significantly 

pushed towards the endothelial cell layer, or in another word, the existence of the top leukocyte 

enhances the margination of the bottom leukocyte when they enter the expansion due to the 

endothelial cell height decrease.  

 

 

Figure 5.9 The y-coordinates of the bottom leukocyte mass center without and with the top 
leukocyte (case I).  

 

When the leukocyte-endothelial adhesion activates, the bottom leukocyte adheres to the 

endothelial cell and slows down significantly. At the same time, the trajectory of the top leukocyte 

is changed and it also moves much slower. This is shown in Figure 5.10 where the x-coordinates 

of the bottom leukocyte mass center are plotted as a function of time for cases I and II. This 

behavior can be relevant to significant resistance increases when leukocyte adheres to 

endothelium (House and Lipowsky, 1987;Helmke et al.  1997). Please note, the periodic 

boundary condition is applied and therefore the physical context here are periodic adherent 

leukocytes.   
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Figure 5.10 Leukocyte trajectories corresponding to Figures 5.7 and 5.8, respectively. The Red 
line has no leukocyte-endothelial adhesion and the black curve has adhesion between the 
leukocyte and endothelium.  
 

 

Figure 5.11 Leukocyte-leukocyte interaction, leukocyte-leukocyte adhesion, and leukocyte-
endothelial adhesion to a 2D model wavy endothelial cell layer.  
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The results for case III are summarized in Figure 5.11 where both leukocyte-endothelial 

and leukocyte-leukocyte adhesions are included. The same adhesion kinetic models are used for 

both types of adhesions. The bottom leukocyte adheres to the endothelium and the top leukocyte 

adheres to the bottom leukocyte. When the adhesion between the leukocytes is strong enough, a 

leukocyte “string” is formed. Otherwise, the top leukocyte can break and detach from the bottom 

leukocyte. But the adhesion between the leukocytes bring the top leukocyte much closer to the 

endothelium.  
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 Tube width (D) 8π (µm) 

Cell radius (a) 4 (µm) 

Plasma viscosity (µp) 0.01 dyne-s/cm2 (1cP) 

Cytoplasm viscosity (µc) 1 dyne-s/cm2 

Nucleus viscosity (µn) 100 dyne-s/cm2 

Plasma density (ρp) 1.0 g/cm3 

Cytoplasm density (ρc) 1.0 g/cm3 

Nucleus density (ρn) 1.0 g/cm3 

Cytoplasm membrane persistent tension 0.12 dyne/cm 

Cytoplasm membrane shear modulus 0.14 dyne/cm 

Cytoplasm membrane volume modulus 0.01 dyne/cm 

Nucleus membrane persistent tension 0.04 dyne/cm 

Nucleus membrane shear modulus N/A 

Nucleus membrane volume modulus 2 dyne/cm 

WBC surface receptor density 2.0 ×1010 (1/cm 2) 

EC surface ligand density 3.75 ×1010 (1/cm 2) 

Forward reaction rate constant 1.0 × 10-9 (cm 2/s) 

Reverse reaction rate constant 10.0 (1/s) 

Unstressed bond length 50.0 (nm) 

Static bond elastic constant 0.5 (dyne/cm) 

Transient-state bond elastic constant 0.48 (dyne/cm) 

Bk T  144 .5 10  (i.e . ), 37 oerg dyn cm at C−× −  

 

Table 5.1 Dimensional parameters for leukocyte and adhesion kinetics 
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Dimensionless parameter Value Physical meaning 

2Re / paρ γ µ=
i

 
0.0016 Reynolds number 

*
, , /c a c a pE E aµ γ=

i
 

25 Cytoplasmic membrane area dilation modulus 

*
, , /c s c s pE E aµ γ=

i
 

350 Cytoplasmic membrane shear extension 

modulus 

*
, , /n a n a pE E aµ γ= �  5,000 Nucleus membrane area dilation modulus 

*
, , /n s n s pE E aµ γ= �  0 Nucleus membrane shear extension modulus 

*
,0 ,0 /E E pf f aµ γ= �  300 Cytoplasm membrane persistent tension 

*
,0 ,0 /nE nE pf f aµ γ= �  100 Nucleus membrane persistent tension 

/c pα µ µ=  100 Cytoplasm/plasma viscosity ratio 

/n pβ µ µ=  1,000 Nucleus/plasma viscosity ratio 

 

Table 5.2   Macroscopic dimensionless parameters for fluid flow and cell mechanics 

 

 

 

 

 

 

 

 

 

 

 



  82

Dimensionless parameter Value Physical meaning 

2( ) / 2r tsC a k Tσ σ= − B  3.765 × 10 4 Coefficient used in reverse reaction 

rate  

2 / 2f tsC a kσ= BT  9.04 × 10 5 Coefficient used in reverse reaction 

rate 

*
0 0 /r rk k γ= �  0.1 Reverse reaction rate 

* 2
0 0 /f fk k a γ= �  6.25 × 10 − 5 Forward reaction rate 

* / p aσ σ µ γ= �  125 Bond elastic constant 

* /ts ts p aσ σ µ γ= �  120 Transient-state bond elastic constant 

* 2
r rN N a=  3200 Cell surface receptor density 

* 2
l lN N a=  6000 Substrate ligand density 

 

Table 5.3   Microscopic dimensionless parameters for cell adhesion model 
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Chapter 6 

 

Cellular Interaction  

Through a Model Postcapillary Junction 

 

 

In the multistep leukocyte adhesion cascade, the leukocytes, circulating in the blood flow 

abounded with erythrocytes, have to come close enough to the blood vascular wall so that 

receptor-ligand bonds can form before it gets tethered and rolling along the endothelial cell 

monolayer lining the blood vessel lumen. The effective length of the receptor-ligand complex is 

typically less than 1 µm. There are several possible biophysical mechanisms for this leukocyte 

margination process, including the particulate nature or rheology of the blood flow involving 

cellular interactions (including erythrocyte-leukocyte interaction and leukocyte-leukocyte 

interaction), vascular network geometry, irregular topology of the endothelial cell monolayer 

(particularly for the high endothelial cells in postcapillary venules), and local flow patterns. In this 

chapter, we investigate these contributing factors. We, for the first time, examine the cellular 

interactions through a capillary-postcapillary junction bifurcation instead of an ideal planar flow 

channel or a channel with abrupt and nonrealistic expansion. Our results suggest hematocrit, 

cellular interactions, and vascular geometry are critical factors that determine the margination and 

initiation of rolling in postcapillary venules. 

 Various in vitro flow chamber systems have been implemented to simulate in vivo 

leukocyte adhesion and rolling conditions by flowing cell suspensions past surfaces coated with 

endothelial cells or adhesion molecules (Lawrence and Springer, 1991; Usami et al., 1993; von 

Andrian et al., 1996; Alon et al 1997; Chen and Springer 1999; Yago et al 2002). These 

experiments are usually performed with cells suspended in saline or cell culture medium and are 
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designed to study the effects of shear stress on adhesion between the adhering cells and the 

surface. However, in vivo blood rheology may not be accurately reproduced by these Newtonian 

solutions due to the particulate nature of blood. Red blood cells (RBCs) not only alter the viscosity 

of the fluid but also change the spatial distribution and dispersion of leukocytes and other 

particles in the flow stream, displacing them from the bulk flow toward the blood vascular wall. 

The rheology of blood is consequently of central importance in lymphocyte-endothelial cell 

interactions (Goldsmith, 1971; Schmid-Schoenbein et al., 1975; Fung 1993).  

 This apparent difference between in vivo and in vitro experiments underscores the 

importance of hydrodynamic interactions between leukocytes and erythrocytes in postcapillary 

venules, which have been shown to be the principal mechanism of leukocyte margination at high 

shear (Schmid-Schonbein et al 1980; Melder et al 1995; Stein et al 1999; Melder et al 2000; Nash 

et al 2003). As shear stresses increase, the duration of contacts with the endothelium will be 

shortened, leading to a reduced likelihood of tether formation. However, at the same time 

collisions with RBCs are likely to become more frequent and more forceful, thus allowing more 

enhanced exposure of cell body receptors. These two opposing mechanisms may cancel each 

other out, resulting in an overall automatic braking system for leukocyte adhesion and stable 

rolling over a wide range of shear stresses (van der Merwe 1999; Chen and Springer, 1999; Lei 

and Dong 2000; Yago et al 2002).  

 In most of in vitro leukocyte adhesion studies whether experimental and computational 

work, planar microfluidic channels are used; experimental work includes Alon et al (1996), 

Lawrence et al (1997), Chen and Springer (1999), Yago et al (2002), Park et al (2002), Rinker et 

al (2004) to name a few; computational work includes N’Dri et al (2003), Khismatullin and Truskey 

(2005), Jadhav et al (2005), Bagchi (2007), Freund (2007) to name a few again. In vivo, the blood 

vessel has rather complicated topology typically involving bifurcations. In postcapillary venules, in 

addition, the endothelial wall of high endothelial venues bulges out into the luminal space of 

postcapillary venules thus increasing the probability of leukocyte–endothelial hydrodynamic 

interaction or direct collisions (von Andrian 1996).  
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 The capillary-postcapillary junctions are typical examples of bifurcations. The blood flow 

with cells merges at the junctions where the sophisticated cellular interactions in an otherwise 

already quite complicated local flow field are involved. It has been shown that leukocytes 

preferentially roll and adhere in postcapillary venules, and that specific adhesive mechanisms are 

involved (Ley et al., 1993; Springer 1995). Understanding the cellular interactions is critical to 

understanding lymphocyte homing and monocyte adhesion in the initial lesion-form stage of 

atherosclerosis (Ross 1995).  

 Schmid-Schonbein, Fung and co-workers (1980) are among the first studying the 

erythrocyte-leukocyte interaction and their role in leukocyte margination towards the blood 

vascular wall.  They studied the cellular interactions within a large-scale flow channel with gradual 

channel expansion in width using particles to model the erythrocytes and lymphocytes and found 

smaller particles (as for RBCs) pushed the large particles (as for lymphocytes) towards the 

channel wall. Based on this, the proposed the erythrocyte-leukocyte interaction could potentially 

be responsible for the initiation of cell rolling in postcapillary venules and the abundance of 

leukocyte tethering and adhesion in capillary-postcapillary junctions. Munn and his group studied 

the phenomena experimentally (Melder et al 2000) and numerically (Sun et al 2003).  

 However, an abrupt expansion channel model in Sun et al (2003) is used to model the 

rather complicated postcapillary venules where junctions in form of vascular bifurcations are 

commonplace.  In current work, we go a step further and have analyzed the hydrodynamic 

interactions of red and white blood cells as they flow from capillaries into a postcapillary venule 

through the capillary-postcapillary bifurcation. The blood cells are modeled with liquid capsules 

enclosed with elastic membranes instead of solid particles as modeled in Sun et al (2003). Our 

results show that capillary-postcapillary junction configuration, RBC distribution in capillaries, and 

hydrodynamics interactions between cells are critical factors among others determining the 

margination of leukocytes in postcapillary venules.  
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6.1 Computational Domain and Parameters 

 

The bifurcations are commonplace rather than rare in microcirculations as shown in Figure 1.4 

(cf. Chapter 1). Figure 6.1 shows a model capillary-postcapillary junction bifurcation. This model 

capillary-postcapillary junction bifurcation in two dimensions has a typical dimension as shown in 

a sketch shown in Stein et al (1999). The width of the postcapillary venule expansion is 20 µm. 

The two merging capillaries have widths of 8 µm and 12µm for the top and bottom ones, 

respectively. To minimize the effects of inflow boundary conditions, we effectively apply an inflow 

velocity about 100µm per second on both capillary inlets. Pressure boundary condition is used at 

the outlet. The actual computational domain is a rectangle one with this bifurcation is immersed. 

The angles between the capillary and the postcapillary are about 30 degrees for both. The 

computational method is discussed in Chapter 3 and benchmarked in Chapter 4. The resolution is 

64 grids for the postcapillary venule width. Leukocyte and erythrocytes will be introduced in later 

on. To reduce the computational load, we model both leukocytes and erythrocytes as 

homogenous liquid capsules enclosed with membranes separating more viscous cell interior from 

extracellular plasma. The leukocyte/plasma has a viscosity ratio of 1000. The leukocyte has a 

diameter of 8 µm, while the erythrocyte has a diameter of about 5µm instead. 

Even without the blood cells, the fluid field is non-trivial for a Cartesian grid method where 

a structured grid is used. We show the velocity and pressure distribution of the steady state flow 

field in Figures 6.2a and 6.2b, respectively. The boundary conditions are nearly perfectly 

implemented and the fluid flow is quite well resolved. The fluid flow are merging from the two 

capillaries and heading towards the outlet. The Reynolds number is quite small in 

microcirculations and no flow separation is observed. The same inlet velocities are enforced on 

capillary inlets, which cause the pressure higher in the top smaller capillary (Figure 6.2b). Please 

note, the velocity arrows are plotted on slices in x-direction only, not always on cross sections of 

the bifurcated vessels.  
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Figure 6.1 A model capillary-postcapillary junction bifurcation (2D), the width of the postcapillary 
venule expansion is 20 µm, the both merging capillaries have a width of 8 µm and 12µm. The 
inflow velocities about 100µm per second are effectively specified on the capillary inlets; zero 
pressure boundary condition used at the outlet. The actual computational domain is a rectangle 
one with this bifurcation is immersed. The angles between the capillary and the postcapillary are 
about 30 degrees. Leukocyte and erythrocytes are not shown in this sketch.   
 
 

 (b) (a) 
  

Figure 6.2 The steady flow field in the bifurcation without any blood cell included: (a) the velocity 
magnitude; (b) pressure distribution. In both (a) and (b), arrows represent the velocity vectors.  
 
 

6.2 Case I: Single Leukocyte Motion Through the Bifurcation 

 

We start to introduce blood cells in the capillary and study the cellular interactions through the 

model capillary-postcapillary junction as shown in Figure 6.1. To examine the cellular interactions 

in leukocyte margination step by step, we gradually increase the number of cells in both 

capillaries. In Case I discussed in current section, we introduce a single leukocyte, modeled as a 

liquid capsule enclosed with elastic membranes, in the bottom capillary and compute the 

hydrodynamic interaction of leukocyte and the bifurcated blood vessel. The front tracking method 
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is used to track the cell motion together with the ghost cell method handling the complex 

geometry as examined in the previous section.  

 

 

 
Figure 6.3 A model capillary-postcapillary junction bifurcation (2D) with one leukocyte flowing in 
from the bottom capillary.  
 

 Figure 6.3 shows computational domain and the initial leukocyte (circular object) location. 

The same boundary conditions used in previous section are applied here (and in following 

sections) to facilitate comparison later on. 

 Selected snapshots from the computations are shown in Figure 6.4a-d where the velocity 

magnitude (color background and legend), velocity arrows, and cell membrane shape  (black line) 

are juxtaposed to show the dynamics of the leukocyte at various time steps. Figure 6.4a shows 

the cell shape and velocity field shortly after time 0. The velocity field is blunted when the 

leukocyte is introduced in the bottom capillary due to the higher viscosity of the leukocyte 

compared with the ambient plasma. The leukocyte gets slightly deformed, mostly at the trailing or 

upstream portion of it, before it exits the capillary venules and enters the bifurcation (Figure 6.4b). 

After the leukocyte enters the postcapillary expansion, the leukocyte squeezes the flow from the 

top capillary. A higher velocity is observed in that region. The leukocyte undergoes a little more 

deformation but still quite small due to its much higher viscosity. Once the leukocyte leaves the 

bifurcation region (Figure 6.4d), the leukocyte moves close to the central axis of the postcapillary 

venule towards the outlet. Once again, the velocity profile is blunted now in the postcapillary 

venules. And the leukocyte moves slower than plasma without cell presence. We can see this by 
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comparing the velocity magnitudes between Figure 6.4a and Figure 6.4d. Leukocyte is hardly far 

away from the blood vascular wall and initial tether even hardly forms.  

 

 (b) (a) 
 

 

(d) (c) 
 

 

Figure 6.4 Snapshots of a single leukocyte entering the postcapillary venule from the bottom 
capillary: (a) t = 0; (b) t=0.1; (c) t=0.2; (d) t=0.3.  
 
 

 
6.3 Case II: Erythrocyte-Leukocyte Interaction 
 

We assume that the top capillary is cell free or plasma skimmed in case I computed and 

discussed in previous section. However, more typically, there are cells in both capillaries. In this 

section, we assume there are two erythrocytes entering from the top capillary as sketched in 

Figure 6.5. This can have significant impact to the leukocyte trajectory since the cells are 

expected to interact. We model the multi-cell interactions here and analyze the cell dynamics. 

However this phenomenon is quite unique for bifurcation and not observable in a model blood 

vessel expansion simulated by Sun et al (2003). The addition of trailing red blood cells (RBCs) 
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packed behind a slow-moving leukocyte in capillary circulation will be examined in the later 

sections.  

 

 
Figure 6.5 A model capillary-postcapillary junction bifurcation (2D) with one leukocyte flowing in 
from the bottom capillary and two red blood cells entering from the top capillary 
 

 Significant difference in the leukocyte motions is observed due to the hydrodynamic 

interactions between the erythrocyte and leukocytes (Figure 6.9). The snapshots from the 

computation are shown in Figure 6.6a-d. Figure 6.6a shows the cell shape and velocity field 

shortly after time 0. The positions of the leukocyte are important in such a model when there are 

no constant inputs of erythrocytes entering from the capillary as typically happened in vivo. The 

position is optimized so that the erythrocytes and leukocyte interaction is strong. As the 

erythrocytes and the leukocyte enter the postcapillary expansion from the top and bottom 

capillaries respectively, they may collide indirectly or directly and fundamentally change the 

trajectory of the leukocyte (and erythrocytes). The leukocyte can be seen being pushed closer 

towards to the bottom vascular wall compared with that when there was no erythrocyte (previous 

section). As observed in the snapshots in Figure 6.6a-d and more clearly from the corresponding 

animations (available in internet: www.caip.rutgers.edu/~gaozhu/animations), the erythrocyte-

leukocyte interaction effectively applies dynamic forces and torques to each other and leukocyte 

marginates towards to the endothelial cell layer where receptor can readily form initial bonds to 

tether and further slow down the leukocytes. As the cell cluster consisting of erythrocytes and 

leukocyte, enters the postcapillary venule, the more deformable erythrocytes move faster, 

eventually squeeze though the gap between the leukocyte and endothelial cell layer and pass the 

leukocyte. Also the more deformable erythrocytes will tend to migrate towards the central axis of 

 

http://www.caip.rutgers.edu/~gaozhu/animations
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the postcapillary venule, and this can act as another weaker margination mechanism (Freund, 

1997).  

 (b) (a) 

 

 (d) (c) 
 

Figure 6.6 Snapshots of a single leukocyte entering the postcapillary venule from the bottom 
capillary and colliding with two erythrocytes entering the top capillary: (a) t = 0; (b) t=0.1; (c) t=0.2; 
(d) t=0.3.  
 
 

6.4 Case III: Erythrocyte-Leukocyte Interaction 

 

We introduce more erythrocytes in the top capillary and test if the hematocrit in the top capillary 

can affect the leukocyte trajectory and enhance margination further (Figure 6.7).  

 

Figure 6.7 A model capillary-postcapillary junction bifurcation (2D) with one leukocyte flowing in 
from the bottom capillary.  
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The selected snapshots are summarized in Figure 6.8a-d. No significant change of the 

leukocyte trajectory is observed. One explanation for this that the first erythrocyte enters much 

earlier than the leukocyte and most severe hydrodynamics pushing happened before the 

leukocyte enters the postcapillary expansion. This is captured in  Figure 6.8b, where the 

normalized velocity arrow plot shows that the maximum negative velocity is generated on the 

further downstream side of the leukocyte. Therefore there may be possible optimal configuration 

where the leukocyte margination is most salient.  

 

 (b) (a) 
 

 
 (d) (c)  
 
 
Figure 6.8 Snapshots of a single leukocyte entering the postcapillary venule from the bottom 
capillary and colliding with three erythrocytes entering the top capillary: (a) t = 0; (b) t=0.1; (c) 
t=0.2; (d) t=0.3.  
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 (b) (a)  
 

 
Figure 6.9 Trajectories of the leukocyte motion as a function of time from Cases I (without RBCs), 
II (with 2 RBCs) and III (with 3 RBCs). The x and y coordinates of the leukocyte mass/volume 
center are plotted in (a) and (b), respectively.   
 
 
 
 We compute and plot the trajectories of the leukocyte in Case I, II and III in Figures 6.9a 

and 6.9b for the x-coordinates of the leukocyte mass or volume center. From Figure 6.9a, we 

clearly see that the leukocyte has been pushed much closer to the blood vascular wall with 

erythrocytes entering from the other capillary. The margination is about 4 µm closer to the wall. 

The leukocyte y trajectories reach plateaus due to the limited number of erythrocytes considered 

in current work. In vivo, this factor is expected to become more salient with more frequent 

hydrodynamic interaction and collision between the erythrocytes and leukocytes. The negative 

slopes indicate the importance of cell-free layer formation due to migration of less deformable 

erythrocytes towards to the postcapillary venule central axis. The slope for case III is decreasing 

faster than case II since more erythrocytes are involved in case III, 3 vs. 2. The streamwise 

trajectories of the leukocyte are also changed due to the presence of erythrocytes. The slope 

change of the leukocyte without the presence of erythrocytes is due to the local flow pattern close 

to the bifurcation and the leukocyte oscillates in certain sense. Please note, that the fixed and 

same velocities are specified on the inlets of the capillaries. Accepting this assumption, we 

observed that the leukocyte moves faster due to the horizontal pushing of the erythrocytes to it.  
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6.4 Case IV: Erythrocyte-Leukocyte Interaction 

 

The trailing erythrocytes accumulated behind a slow moving leukocyte have been shown to play a 

significant role in leukocyte margination in postcapillary venules (Schmid-Schonbein et al 1980; 

Melder et al 1996; von Andrian 1996). As the leukcotye enters the postcapillary venule with 

expansion and merging bifurcation (Figure 6.10), the erythrocytes tend to push the leukocytes 

vertically and horizontally. Vertical pushing leads to enhanced leukocyte migration towards the 

postcapillary endothelial cells. The mixed vertical and horizontal pushing also can lead larger 

deformation of the leukocytes contact area with the endothelial cells. Also as the erythrocytes are 

forced to pass the leukocyte, the pushing can become quite significant.  

 This has been confirmed in our computations where trailing red blood cells are included 

Cases IV (this section) and V (next section). The computational configuration for Case V is shown 

in Figure 6.10, where a single trailing erythrocyte is included. We will show that even a single 

trailing erythrocyte changes the leukocyte motion significantly. However the observed behavior is 

quite different from Sun et al (2003), where they are missing two very important factors: 1) 

erythrocytes entering from other capillaries; 2) deformability of blood cells.  

 

 

 
Figure 6.10 A model capillary-postcapillary junction bifurcation (2D): one leukocyte entering from 
the bottom capillary with a trailing erythrocyte, three erythrocytes entering from the other capillary. 
This is extension of Case IV.  
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 (b) (a) 
 
 

 

 (d) (c) 
 

 
 

Figure 6.11 Snapshots of one leukocyte entering from the bottom capillary with a trailing 
erythrocyte, three erythrocytes entering from the other capillary: (a) t = 0; (b) t=0.1; (c) t=0.2; (d) 
t=0.3.  
 
 
 The results are summarized in Figure 6.11. Compared with case IV where there is a 

trailing erythrocyte, enhanced leukocyte margination and more salient deformation are observed. 

The droplet-like shape of the leukocytes allows larger contact area with the endothelial cells and 

hence more bonds can be formed there. As the trailing erythrocyte and erythrocytes entered 

originally from the other capillary pass over the deformed leukocyte, the leukocyte is deformed 

even more. These phenomena can be critical in vivo where the automatic braking or stabilization 

of the leukocyte tethering, adhesion and rolling are observed (Firrell and Lipowsky 1989; Lei and 

Dong 2000; Yago et al 2002).. Also with more erythrocytes included, the frequency where the 

erythrocytes interact with the leukocyte is also enhanced.  

 

 



  96

 

 
Figure 6.12 A model capillary-postcapillary junction bifurcation (2D): one leukocyte with multiple 
trailing erythrocytes and ones entering from the other capillary. The capillaries are elongated to 
be able to add more blood cells compared with previous cases.  
 

6.6 Case V: Erythrocyte-Leukocyte Interaction 

 
More erythrocytes can be readily added to the model to make it even closer to in vivo (Figure 

6.12). Similar observations can be made based on the snapshots of the computational results as 

shown in Figure 6.13.  

 
 
 

 
 
Figure 6.13 Snapshots of one leukocyte entering from the bottom capillary with multiple trailing 
erythrocytes and multiple erythrocytes entering from the other capillary: (a) t = 0; (b) t=0.1; (c) 
t=0.2; (d) t=0.3.  
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(a) (b) 

(c) 
 

(d) 

 

(e) 

 

Figure 6.14 Juxtaposition of the cell distribution at the end of the computations (time 0.3 second): 

(a) case I, (b) case II, (c) case III, (d) case IV, and (e) case V. 
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We juxtaposed the final time-step snapshots from Cases I, II, III, IV, and V in Figure 6.14. 

The number of erythrocytes (hematocrit), the initial distribution of the erythrocytes, the vessel 

geometry play critical roles in leukocyte margination and initial tethering. Cellular interactions and 

vessel geometry plays a critical role in initiating contact between circulating leukocytes and 

endothelial ligands under physiologic conditions. 

 In conclusion,  erythrocyte-leukocyte interactions and vascular geometries play critical 

roles in leukocyte margination and initial tethering to the vascular endothelium,  

1). Bifurcation geometry of the capillary-postcapillary venules is first included to compute the 

cellular interaction and the geometric effects. This has been shown to probably be another 

contributing factor in enhancing leukocyte margination, initial tethering, adhesion, rolling and final 

transmigration. 

2). RBC-induced fluid mechanical forces and RBC-mediated dispersion, directed predominantly 

toward the wall, tend to push a leukocyte towards to the blood vascular wall and keep leukocyte 

in close proximity to the vessel wall.  

3). Impact of RBCs on leukocytes may also increase the contact area between the leukocyte and 

the vessel wall and hence increase the number of receptor-ligand bonds formed for a leukocyte. 

And the increasing contact area of the leukocyte-endothelium also can serve an automatic 

braking system for surprisingly stable leukocyte rolling observed in vivo and in vitro with 

increasing shear stress (Chen and Springer 1999).   

4).  More deformable RBCs also tend to move toward to the central axis of the blood vessel 

(Bagchi, 2007 for two dimensional planar channel) and a RBC-free layer forms close to the blood 

vascular wall. This global movement of the RBCs is another contributing factor to the leukocyte 

migration as shown in Freund (2007) where a planar channel is modeled. Evidence: In support of 

this hypothesis is the observation that cell rolling and adhesion occurred in the presence of 

RBCs, but not in the absence of RBCs at high shear rates (in vivo vs. in vitro).  
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Chapter 7 

 

Summary and Conclusions  

For Part I 

 

 

The multiphysics phenomena of cellular interaction and adhesion in complex geometries are 

examined in this work. The code is based on the mixed front tracking and ghost cell methods. 

The former allows us to model the cells as liquid capsules enclosed elastic membranes; and the 

later provides the capability to model flow in complex geometries without using a curvilinear grid. 

The code was benchmarked and validated with carefully selected problems, including flow around 

a rigid cylinder, flow over a model wavy endothelial cell surface, droplet and capsule in linear 

shear flow, and oscillating bubble. Excellent results were obtained.  

We then applied the code to compute cellular interaction in planar and wavy 

microvessels. Leukocyte interaction, deformation and adhesion are observed and consistent with 

experimental results. The possible waviness of a microvessel had mostly been neglected in 

literature.  We observed that significant variation of pressure and shear stress are induced by the 

waviness of the microvessel, which can become of comparable order with molecular bond force 

in adhesion.  

In the multistep leukocyte adhesion cascade, a leukocytes, circulating in the blood flow 

abounded with erythrocytes, has to come close enough to the blood vascular wall so that 

receptor-ligand bonds can form before it gets tethered and rolling along the endothelial cell 

monolayer lining the blood vessel lumen. The effective length of the receptor-ligand complex is 

typically less than 1 µm. There are several possible biophysical mechanisms for this leukocyte 

margination process, including the particulate nature or rheology of the blood flow involving 
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cellular interactions (including erythrocyte-leukocyte interaction and leukocyte-leukocyte 

interaction), vascular network geometry, irregular topology of the endothelial cell monolayer 

(particularly for the high endothelial cells in postcapillary venules), and local flow patterns. In the 

last part of this work, we investigate these contributing factors. We are the number ones to the 

author’s knowledge who examine the cellular interactions through a capillary-postcapillary 

junction bifurcation instead of an ideal planar flow channel or a channel with abrupt and 

nonrealistic expansion. Our results suggest hematocrit, cellular interactions, and vascular 

geometry are critical factors that determine the margination and initiation of rolling in postcapillary 

venules: 

1). RBC-induced fluid mechanical forces and RBC-mediated dispersion, directed predominantly 

toward the wall, tend to push a leukocyte towards the blood vascular wall and keep leukocyte in 

close proximity to the vessel wall.  

2). Impact of RBCs on leukocytes may also increase the contact area between the leukocyte and 

the vessel wall and hence increase the number of receptor-ligand bonds formed for a leukocyte. 

And the increasing contact area of the leukocyte-endothelium also can serve an automatic 

braking system for surprisingly stable leukocyte rolling observed in vivo and in vitro with 

increasing shear stress (Chen and Springer 1999).   

3).  More deformable RBCs also tend to move toward to the central axis of the blood vessel 

(Bagchi, 2007 for two dimensional planar channel) and a RBC-free layer forms close to the blood 

vascular wall. This global movement of the RBCs is another contributing factor to the leukocyte 

migration as shown in Freund (2007) where a planar channel is modeled. Evidence: In support of 

this hypothesis is the observation that cell rolling and adhesion occurred in the presence of 

RBCs, but not in the absence of RBCs at high shear rates (in vivo vs. in vitro).  

4). Geometry feature of the capillary-postcapillary venules are fist included computationally to 

study the geometric effects and the cellular interaction. This has been shown to probably be 

another contributing factor in leukocyte margination, initial tethering, adhesion, rolling and final 

transmigration. Also we show some saliently different effects, which would not be able to be 

observed otherwise.  
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5). Similarly for leukocyte-leukocyte interaction and adhesion.   

 

 In the future, a full 3D dimensional model would need to be built in order to study the 3D 

effects and compare with experimental observations.  
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PART II: 

 

VORTEX-ACCELERATED VORTICITY DEPOSITION IN  

THE RICHTMYER-MESHKOV INSTABILITY 
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Chapter 8 

 

Introductions, Overview and  

Numerical Methods 
 

 

8.1 Introductions and Overview 

 

Fluid mixing motions are fundamental in varieties of stratified interfacial flows. Hydrodynamic 

instabilities can lead to the complication and tangling of an interface and to the mixing of different 

materials. Three of the most classical ones are the Kelvin-Helmholtz (KH), Rayleigh-Taylor (RT) 

and Richtmyer-Meshkov (RM) instabilities. In this work, we focus on the Richtmyer-Meshkov 

instability where a shock wave (e.g. a power laser) accelerates a stratified fluid interface. It is also 

called the impulsive Rayleigh-Taylor instability while the classical Rayleigh-Taylor instability refers 

to the case where the acceleration is a constant such as gravity. However the vortex accelerated 

vorticity deposition mechanism discovered in current work is universal and applies to all stratified 

fluid flows. We will give a short introduction and overview of the recent work on the Richtmyer-

Meshkov instability. For a full introduction and more complete summary of the most recent 

advances in the Richtmyer-Meshkov instability, we refer to two most recent excellent reviews by 

Zabusky (1999) and Brouillette (2002). The former emphasizes the vortex paradigm and 

discusses different RM configurations and introduces the unifying concept of the vortex projectile 

up to early-intermediate times. The latter concentrates particularly on the sinusoidally perturbed 

RM interface, mainly up to early times. 
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As we all know, the KH instability arises due to a jump in the tangential velocity along the 

interface, and hence it is also called shear instability. It can exist in both uniform or stratified 

cases. However, both RT and RM instabilities are due to density stratification subject to 

acceleration. When the acceleration is constant, it is called RT instability. When the acceleration 

is in the nature of impulse, it is instead called RM instability. There are close relations between 

these instabilities. In the latter two cases, vorticity is baroclinically deposited along the interface 

and forms a shear layer and hence the KH instability comes to play an important role as we may 

have expected. However more importantly, the coherent vortices will also induce a centripetal 

acceleration and this acceleration is not necessarily aligned with the density gradient on the fluid 

interfaces, and therefore the vorticity will continue to be generated baroclinically. At the same 

time the interface is kept being stretched and the density gradient across the interface keep 

increasing especially where the mixing is not significant. Naturally this acts as a new baroclinic 

source without external acceleration but the vortex dynamics of the fluid itself, generates new 

secondary vorticity, continues to enhance the mixing, and leads to eventual turbulent flow in the 

mixing region. We will discuss these contributions from current work to the field in detail in Part I 

of this dissertation.  

The heavy investigations of RM instability in the last two decades are closely related to 

the resurrected research in the inertial confinement fusion (ICF), supersonic combustion, 

astrophysics, and nuclear weapons. In astrophysics, RM instability has been proposed as the 

cause of formations of mushroom structures and subsequent mixing in a supernova remnant 

(Arnett, 2000). In inertial confinement fusion (ICF) the RM instability of the impulsively 

accelerated shell containing the deuterium-tritium fuel limits the compression of the fuel that is 

important to achieve the high temperature where the nuclear reaction releases enormous 

amounts of energy. Thus RM instability represents a significant obstacle to achieving a productive 

fusion reaction (Lindl, 1995). The inertial confinement fusion has the promise to become one of 

the next-generation clean and inexhaustible energy resources. The fundamental mechanisms of 

RM instability have also been considered to be of importance to enhancing mixing in supersonic 

combustion (Yang et al, 1993). The RM instability is critical in nuclear weapon simulations under 
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the Advanced Simulation and Computing (ASC) Program, which supports the Department of 

Energy’s National Nuclear Security Administration (NNSA) Defense Programs’ shift in emphasis 

from test-based confidence to simulation-based confidence. Under ASC, computer simulation 

capabilities are developed to analyze and predict the performance, safety, and reliability of 

nuclear weapons and to certify their functionality. ASC integrates the work of three Defense 

programs laboratories (Los Alamos National Laboratory, Lawrence Livermore National 

Laboratory, and Sandia National Laboratories) and university researchers nationally into a 

coordinated program administered by NNSA.  

A sinusoidal single-mode perturbed planar interface between two fluids of different 

densities accelerated by a shock wave is always unstable whether the shock is coming from a 

heavy fluid to a light fluid (slow/fast) or from a light fluid to a heavy fluid (fast/slow). The 

perturbation amplitude growth is initiated by primary vorticity deposited on the interface 

baroclinically due to the misalignment of the density gradient across the interface and the 

pressure gradient across the shock wave. Soon the interface amplitude grows and develops a 

characteristic “spike-bubble” structure, where the vorticity rolls-up in a “Kelvin-Helmholtz” manner 

and is concentrated toward the heavy spike region in a  “mushroom” head. 

The classical single-mode harmonically perturbed interface under impulsive acceleration 

due to a shock wave was first rigorously studied by Richtmyer (1960). Almost a decade later, the 

laser tube experiment by Meshkov (1965) confirmed qualitatively the predictions of Richtmyer. 

This class of instabilities is now named after them. RM instability is closely related to the well-

known Rayleigh-Taylor (RT) instability. Taylor was the first to study the growth of small single-

mode harmonic perturbations to a flat interface between two fluids of different densities under 

constant acceleration (gravity) using linear stability theory. Richtmyer (1960) used Taylor’s results 

as the basis for his similar analysis of RM instability in which he modeled the shock interaction 

with an interface as the impulsive acceleration of two incompressible fluids.  

So far, all experiments and most numerical simulations studied the dynamics and scaling 

up to early times, i.e. for a small time interval after the primary vorticity deposition phase. A recent 

study by Zabusky et al. (2003a) systematically examined properties to early-intermediate times 
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and disagreed with the application of the amplitude growth rate  (the amplitude  is defined as 

the half distance between the spike and bubble ends) estimates of Zhang and Sohn (1997).  The 

late time scaling of  for a two-dimensional (2D) single-mode RM interface is still controversial, 

although reasonable prediction has been provided by the potential theory for Atwood number, 

defined as 

•

a a

•

a

2 1 2 1( ) /(A )ρ ρ ρ ρ+= − = 1 limit and by a single point vortex model for the A = 0 

limit. Note, none of these approximations of late time dynamics includes the new phenomena 

presented in this thesis and the agreement, if any, is fortuitous. This part of the thesis and other 

relevant work in this direction has been published in four papers in series in Journal of Fluid 

Mechanics (2003a), Physics of Fluids (2003b), Physics of Fluids (2004), and Physics of Fluids 

(2006).  

In his pioneering work on the linear analysis of the Richtmyer-Meshkov instability, 

Richtmyer (1960) modeled the impulsive acceleration as a delta function pulse, substituted it for 

the constant gravity acceleration in Taylor’s formulation for Rayleigh-Taylor instability, and 

obtained an approximate formula for the perturbation or amplitude growth rate in the 

incompressible limit as  

 
* *
0 ,impa ka A U

•
= ∆  (8.1)

 
where  is the post-shock interface velocity,  is wavenumber,  is the post-shock 

perturbation amplitude, and  is the post-shock Atwood number (the 

planar shock wave moves from ambient fluid 

U∆ k

*
1ρ

*
0a

)/()( **
2

**
1

*
2

* ρρρ +−=A

1ρ  to transmitted fluid 2ρ , and  is the density in 

the transmitted fluid after the transmitted shock has passed, and  is the density in the 

ambient fluid after the reflected shock wave has moved upstream). This is the well-known 

Richtmyer’s impulsive model for the case of a reflected shock only, which was derived in a small 

part of his seminal paper.  Zhang and Sohn (1997) introduced the first systematic procedure for a 

nonlinear solution of the 2D incompressible Euler equations by calculating four terms in Taylor 

*
2ρ

**
1ρ
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series in times. To improve the temporal range of validity, they introduced a Pade resummation 

technique which presumed a late time behavior for  which vanishes. Zhang and Sohn
•

a  (1997) 

agreed with Sadot et al. that  approaches zero “asymptotically” for a single-mode RM 2D 

configuration for all . Zabusky et al. (2003a) computed 11 terms in the series and showed 

that the Pade approximation was ad-hoc. Their solutions agreed well with numerical simulations 

until the multivalue time, , at which the initially single-valued interface curve first becomes 

multivalued. In all their comparisons, higher-order [n, n] Pade approximant give better agreement 

with simulations than [0, 2] or [0, 1] of Zhang and Sohn

•

a

1A <

tM

 (1997) although there seems to be no 

best n available.  We discuss the subtleties of defining t  for realistic simulations with a small-

but-finite interfacial transition layer later on.  

M

D

However, our simulations to late-intermediate times discussed in chapter 9 show that  

approaches a constant which increases with varying A

•

a
* ≤ 0.9. This arises in part because of the 

new phenomenon of vortex accelerated vorticity deposition (VAVD), as quantified here, where 

vorticity of both signs (depending on the density gradient) appears in close proximity within the 

interfacial domains, namely a vortex bilayer. It rollup into a “complex” vortex dipole or “vortex 

projectile”, which accounts for the constant amplitude growth rate at late-intermediate times.  This 

‘secondary’ vorticity deposition has contributed to the growths of the negative and positive 

circulations, the integrated vorticity, and also the total circulation growth. The total circulation 

growth is distinctive from the simple shear layer, where the circulation is constant all the time. The 

secondary vorticity has become dominant before or around the multivalue time of the interface.  

In this work, we also present a new simple diagnostic formula, involving a pressure difference, for 

determining the rate–of-change of total circulation, Γ , within a bounding domain D. The formula 

is derived analytically and verified computationally. We show that for intermediate times (up to 

t/tM < 8.0), , has several consistent behaviors and scaling laws depending on 

A*. Here  

/( / )D shock MtΓ Γ

shockΓ , is the circulation deposited by the initial shock. 
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 This VAVD is also present in a 2D stratified mixing layer (Reinard et al 2000, Soteriou 

and Ghoneim 1995, Staquet 1995) and also in long-time stratified incompressible vortex sheet 

simulations with surface tension of Hou et al. (1997). This is a universal phenomenon in stratified 

or inhomogeneous flows and will be crucial in geophysics and astrophysics where stratification is 

ubiquitous. 

 

8.2 Computation method and parameters 

 

8.2.1 Interface Transition Layer (ITL) and Extraction/Tracking 

 

A.  Introduction of ITL 

 

In two-dimensional (2D) inviscid Euler simulations for ideal gas dynamics, the RM 

interface has often been modeled as a thin contact discontinuity layer (CDL), two or three 

computational zone wide. The CDL acquires primary vorticity after the passage of the shock 

wave. An analysis of a 2D incompressible inviscid Raleigh-Taylor (RT) configuration (Baker et al, 

1993) shows a vortex sheet becomes singular in a finite time. This ill-posed behavior is further 

numerically examined by Samtaney and Pullin (1996) for a compressible RM configuration and 

they found small-scale secondary rollups appear on the interface at times which decrease as the 

finite-difference resolution increases (CDL thickness decreases as the size of the cell decreases), 

or alternatively, the maximum value of the vorticity increases. Comparisons of simulations of the 

2D RM problem among several codes show poor agreement when concern for the resolution of 

the CDL is not carefully controlled (Holmes et al., 1999). 

In preliminary work with a 2D contour dynamics (Pullin, 1992) simulation of an 

incompressible homogeneous density thin vortex layer (Dritschel, private communication), we 

observed similar rapidly growing small-scale roll-ups of the layer before the large-scale single 

mode first is observed to become multi-valued. Here these rollups are associated with the most 

unstable mode which is most likely excited by small-scale numerical perturbations.  
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Since the simulations in this paper are to model the experiment of Jacobs and Krivets 

(2001), named JK01 from now on, namely no small-scale roll-ups prior to the “multivalue time “, 

, as discussed below, we use a small-but-finite thickness interfacial transition layer (ITL) 

corresponding to a physically diffuse interface.  This procedure initially regularizes the vortex 

sheet. The layer thickness should be sufficiently thin to model the physical diffusion occurring 

during the experimental set-up, e.g. as described by Jones and Jacobs (1997), and sufficiently 

thick so that no secondary structures arise prior to the multivalue time of the interface, e.g Jacobs 

and Krivets (2001).   

Mt

 

B.  Numerical determination of the medial axis of the ITL 

 

We apply two systematic techniques to extract the evolving complex interface and the 

spike and bubble ends. First, the zero crossings of the Laplacian of the density (∇2ρ = 0) are used 

to extract the entire interface (Samtaney and Zabusky 2000).  A linear interpolation procedure is 

used to identify where the zone edges intersect the zero contour of the Laplacian of density. 

Edges in the low density-gradient (|∇ρ|<|∇ρ|threshold) region are excluded. The density gradient 

threshold |∇ρ|threshold is set to 10% of the maximum, i.e. |∇ρ|threshold = 10%|∇ρ|max. A sample of such 

a curve at t = 3.46 is in Figure 8.1, and the simulation will be described fully below. It shows 

important characteristic length scales used for comparison with experiment: neck width W , 

spanwise expansion W  and streamwise elongation W . The algorithm successfully 

captures all large-scale curvatures, e.g the smooth spike and bubble regions, and intermediate 

scale rollups. However, the small-scale rollups lead to discontinuous fragments, a subject under 

investigation. 

Mt/

neck

span stream

A different algorithm using the passively advected Lagrangian particles is applied. The 

Lagrangian particles are distributed along the initial interface curve in 2D where 1 2( ) / 2ρ ρ ρ= + . 

Two well known issues with the Lagrangian particle tracing is the clustering when the particles get 

too close each other and leak where the two particles are getting too far away from each other. 
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As the initial interface keeps being stretched, particles might be clustered in the roll up regions 

while at the same time the particles will be enough to resolve the interface segment where the 

interface stretches most in the bubble regions for example. To overcome these issues, the 

Lagrangian particles are being added or deleted dynamically as following: 

 

 
Figure 8.1 Extracted interfaces ( 2 0ρ∇ =  in high gradient regions) for  at * 0.635A = / Mt t  = 

3.46. s p a nW , s treamW  and W  are spike spanwise width, streamwise width and neck width, 
respectively.   

neck

 
 
 

1. The first step in this algorithm is the advection of the marker particles. A simple bilinear 

interpolation is used to find the marker velocity.  
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2. The marker particles are then advected in a Lagrangian manner using a straightforward 

second order Runge-Kutta scheme 

3. As the interface evolves, the markers drift along the interface following tangential 

velocities, and more markers may be needed if the interface is stretched by the flow. We 

then need to redistribute the markers in order to ensure an homogeneous distribution of 

points along the interface. This is done at each time step using the interpolating curve 

(x(s), y(s)). As s is an approximation of the arc length, if a redistribution length l is 

chosen, the new number of markers is Nnew_sN:l and the points are redistributed as 

(xinew, yinew)_(x(il), y(il)). l is usually chosen as h, which yields an average number of 4 

markers per computational cell.  

 

Figure 8.2 shows the juxtaposition of the extracted and tracked interfaces. The 

Lagrangian tracking can capture the dynamics change of the interface better however the 

extraction can capture more features but is hard to tune the threshold sometimes.  

 

 
 
 
Figure 8.2 Extracted interfaces ( 2 0ρ∇ =  in high gradient regions) for  and the 
tracked interface with the Lagrangian markers.  

* 0.635A =
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C.  The multivalue time  Mt

 

The use for scaling of the multivalue time Mt  when the interface first becomes 

multivalued was heuristically suggested in Zabusky et al. (2003) who used it for careful 

comparisons among different Atwood number evolutions to early-intermediate times with an 

incompressible contour-advective semi-Lagrangian (CASL) code where the interfacial curve is 

tracked (Dritschel and Ambaum, 1997).   

For an initial diffuse ITL, such a curve is the extracted medial axis of the ITL and is 

defined by using the algorithms above. As for spatial convergence, if the initial resolution of the 

ITL is sufficient (larger than 30 grid zones) the extracted medial axis is within one grid zone, as 

the resolution increases from 360 zones to 540 zones per wavelength. For temporal 

convergence, Mt  varies within one percent.  

 

8.2.2 Equations, Numerical Method, and Parameters  

 

A.  Euler Equations 

 

Two-dimensional compressible single-mode Richtmyer-Meshkov interfaces with an 

interfacial transition layer (ITL) at different Atwood numbers are investigated.  The evolution of the 

fluid motions are governed by the 2D Euler equations 

 

2

2

v
v

0,
v v v

( ) v( )t x y

u
uu u p

u p
E u E p E p

ρ ρρ
ρρ ρ

ρ ρ ρ

    
     +     + + =
     +
    

+ +        

 
(8.2)
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where ρ is density, u is the component of velocity in spanwise (x) direction, v is the velocity 

component in streamwise (y) direction,  is total energy per unit volume, 

 is the internal energy per unit mass.  Pressure is derived from equation of state as 

2 2( )E e u vρ ρ= + + / 2

e

p eργ )1( −= . Boundary conditions are reflective in x directions ( 0⋅ =u n ), and zero-gradient 

in- or out-flow in y directions (Figure 8.3). In the codes, the ghost cells are used to enforce the 

reflective and zero-gradient boundary conditions.  

 The Euler equations do not take into the viscosity of the fluids. But in the initial and 

intermediate times, this is a reasonable assumption. During the strong mixing spiral vortex core 

regions, the numerical viscosity plays an equivalent role as the physical viscosity as in the MILES 

approach (Porter et al, 1994) to dissipate the energy.  

 

B. Piece-wise Parabolic Method (PPM) 

 
We solve numerically the Euler equations using piece-wise parabolic method (PPM) of 

Colella and Woodward (1984). The PPM scheme represents a substantial advance in classical 

first-order Godunov schemes. It is second order accurate close to discontinuity and otherwise 

fourth order accurate. It has been widely used in compressible Richtmyer-Meshkov instability and 

subsequent turbulence mixing studies, for example Department of Energy Flash Center and 

Lawrence Livermore National Laboratory. Numerical diffusivity and dispersion are the serious 

issues either in evaluating the numerical mixing and “turbulent” behavior in our current study or 

for tracking the instead sharp interfaces. Therefore, it is worth analyzing the mass and vorticity 

diffusivities in PPM schemes.  

It is hard to analyze the full nonlinear systems. But some lights may be shed on these 

effects by investigating the differential approximation or local error analysis for the linear 

advection equations (following the notation and work of Colella and Woodward),  

 

0a au
t ξ

∂ ∂+ =
∂ ∂  (8.3)
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0( ,0) ( )a aξ ξ=  

  
This equation can be regarded as a model for the contact discontinuity in gas dynamics. 

For simplicity, we assume  and consider the scheme for uniform Eulerian grids. For 

completeness, we present the derivation of the PPM advection schemes in detail and perform the 

numerical diffusivity analysis to the end. 

0u >

 

 
 

Figure 8.3 (a) Sketch of the shock/diffuse interface interaction, (b) (slice) error function profile of 
the initial transition layer with maximum slope thickness 2δ0. 

 

 

Let 1/ 2jξ + be the boundary between the j th and the 1j + st zones on the computational 

grid. Given a  the zone average solution at , we want to calculate  the zone average 

solution at t , 

n
j

1n+

nt 1n
ja +

 
1/ 2

1/ 2

1 ( )j

j

n
ja a d

x
ξ

ξ
ξ ξ+

−

=
∆ ∫  (8.4)

 
where ( )a ξ is the interpolation function in the reconstruction step which was piecewise constant 

equal to  in the first-order original Godunov scheme. PPM advocates the use of piecewise 

parabola 

n
ja

(a )ξ  whose zone-average is still equal to given . For higher-order polynomial 

interpolation function like this, oscillations may appear near the discontinuity. One requirement 

n
ja



 115

people usually placed on a numerical method is that it should be monotonicity preserving (van 

Leer 1979). ( )a ξ  is constrained so that no new extrema appear in the interpolation function 

which do not already appear in the ’s.  n
ja

( ,

t

1

( )ξ =

, ,

j

j

ξ
ξ

−
∆

−

m

A a
ξ

=

We can get the analytical solution to Eq. (1.1) with given data function ( )a ξ , 

 
) ( )na t t a u tξ ξ+ ∆ = − ∆  (8.5)

 
where the time ∆ satisfies the CFL condition c u /t 1ξ= ∆ ∆ ≤ . Then we integrate this solution 

over each zone to obtain , 1n
ja +

 
1/ 2

1/ 2

1 ( )j

j

n
ja a u t

ξ

ξ
ξ ξ

ξ
+

−

+ = − ∆
∆ ∫  d (8.6)

 
The uniqueness of the PPM linear advection scheme is the choice and construction of the 

interpolation piecewise continuous parabola ( )a ξ in each zone,  

 

, 6,( (1 ))L j j ja a x a a x+ ∆ + −  (8.7)

 
where 
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,
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2
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n
j R L j j j L j R j
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ξ
ξ ξ ξ−

− += ≤ ≤

∆ = = − +
 

)) (8.8)

1/ 2 1/ 2, ,li ( ), lim ( )
j jL j R ja a aξ ξ ξ ξ aξ ξ
− +→ →= =  

 
In smooth parts of the solution away from extrema, , , 1 1R j L j ja a a+ + / 2= = . The calculation 

of  is as following. Given zone average data , we calculate the values of the indefinite 

integral 

1/ 2ja +
n
ja

'( ) ( , )nt dξ ξ ξ∫ at zone edges:  '
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1/ 2 1/ 2( ) n
j j k

k j
A A a kξ ξ+ +

≤

= = ∆∑  (8.9)

 
We interpolate the quartic polynomial through the points 1/ 2 1/ 2( , ), 0, 1,j k j kA k 2ξ+ + + + = ± ±  and 

differentiate it to obtain 
1/ 21/ 2 / |

jja dA d ξξ
++ = . For uniform grids here, we have  

1/ 2 1 2 1
7 1 ( ) (

12 12
n n n n

j j j ja a a a )ja+ + += + − + −  (8.10)

 
Substituting these back to the analytical solution, we arrive 
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Where the flux term  
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There is no explicit limiter used in PPM advection scheme. The monotonicity constraint is 

enforced by detecting these regions where the zone average value is a local spatial extrema 

and resetting the value of at either edges of the grid zone. It is hard to give the expression 

including this complex resetting given in Colella and Woodwad’s paper (1984). However, away 

from these regions, we can obtain the local truncation error for the scheme, 
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where /c u t ξ= ∆ ∆  is the courant number. The third-order term causes the numerical 

dispersion, while the numerical diffusion arises from the fourth-order term. Though, monotonicity 

constraint may reduce the order of numerical scheme in the high-gradient region along the 

interface we used. This analysis is consistent with the numerical spreading rate scaling of a 

contact discontinuity layer width in PPM simulations, less than t  as in (Zabusky et al. 2003).  

Although mass diffusivity and viscosity (i.e. vorticity diffusivity) are both time-dependent, they 

should be approximately the same order. That is, the Schmidt number is the order of unity.  

1/ 3

The extension of the algorithm to multi-dimension is applied using second-order Strang’s 

operator splitting method.  

There are very complex dissipation mechanisms in PPM: (1) flatten the interpolation 

profiles in the neighborhood of shocks where low amplitude post-shock oscillations may appear, 

(2) add an explicit diffusive flux to the numerical fluxes when flattering is not effective. Readers 

are referred to the original paper of Colella and Woodward. In short summary, the PPM 

dissipation consists of three parts: (1) complicated high-order truncation error terms; (2) nonlinear 

dissipation provided by the monotonicity constraint of van Leer, and (3) additional dissipation in 

the algorithm carefully added. This dissipation will be shown to play the same role as the subgrid 

model in large-eddy simulations in our mixing study in the following chapters. 

(8.13)

For Godunov method and general hyperbolic conservation laws, we referred to Leveque 

(1992); for PPM algorithm, we turned to Colella and Woodward (1994).  

To make tractable our long-time numerical simulations, we make a Galilean 

transformation of the fluid motion by adding the analytical one-dimensional shock-induced 

interface translation velocity so that the interface will stay in the reasonable-size computation 

domain. We have validated both analytically and numerically that the dynamics of fluid motions 

are Galilean invariant. 

There are many effects that contribute to the dynamics in the time interval under study. 

We have chosen to focus on: the post-shock Atwood number A*, post-shock perturbation 
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amplitude , and ITL thickness δ*
0a 0.  A* is the most important dimensionless scaling parameter 

and we used the values from JK01 experiment. δ0 and  are also obtained from JK01. *
0a

For computational simplicity and accuracy we use γ = 1.4 for both gases. We believe that 

the size of the ITL and the effect of resolution and order of accuracy are more important 

parameters than the small difference in gamma. There are many other important secondary 

parameters and the only way to resolve their impact is to perform a closely coupled experimental 

computational study, something we look forward to in the future. 

 

C.  Interface transition layer (ITL) and parameters 

 

The functional form of the ITL used is motivated by molecular diffusion and we use the 

error function profile, 

 

                                 
1 2

0(1 ( / 2 )),
2

Aerf yρ ρρ +
= + π δ                                        (8  .14)

 
where 2ρ  is density of the bottom fluid, 1ρ  density of the preshock top fluid, 

 is the preshock Atwood number, and 

 the maximum slope interface thickness as shown in Figure 

8.3(b). Note, as 

)/()( 121 ρρρρ +=A

10 )//()(2 y∂∂−= ρρδ

0

2 −

2ρ max

δ  approaches zero, the ITL becomes a contact discontinuity. We don’t think the 

precise shape of these smooth profiles has much effect on the subsequent development of the 

instability because of the ITL compression by the shock.  

As shown in Table 9.1, to facilitate comparison with the JK01 experiment, we use JK01 

parameters to set up run 2, including Mach number M, post-shock Atwood number A*, ITL 

thickness δ0 and post-shock amplitude a .  For scaling, we also do the simulations with other two 

Atwood numbers, A

*
0

* = 0.2 and 0.9, and keep all other pre-shock parameters fixed, e.g. the pre-

shock amplitude . All simulations are run up to  ~ 12 t . We normalize the time by t .  In 0a Endt M M
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Table 9.1, t  is the time when amplitude growth rate  reaches the peak and starts to decay. It 

is used to divide the time interval for  scaling below. 

P

•

a

•

a
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Chapter 9 

 

Vortex-Accelerated Vorticity Deposition:  

Verifications, Vortex Physics, and Amplitude Growth Rate 
 

 

In the chapter, we study the vortex-accelerated secondary baroclinic vorticity deposition (VAVD) 

at late-intermediate times, and dynamics of sinusoidal single-mode Richtmyer–Meshkov 

interfaces in two dimensions. Euler simulations using a piecewise parabolic method are 

conducted for three post-shock Atwood numbers (A*), 0.2, 0.635, and 0.9, with Mach number (M) 

of 1.3. We initialize the sinusoidal interface with a slightly ‘‘diffuse’’ or small-but-finite thickness 

interfacial transition layer to facilitate comparison with experiment and avoid ill-posed phenomena 

associated with evolutions of an inviscid vortex sheet. The thickness of the interface is chosen so 

that there are no secondary structures along the interface prior to the multivalue time tM, which is 

defined as the time when the extracted medial axis of an interfacial layer first becomes 

multivalued. For an interval of 11tM beyond tM, the simulations reveal nearly monotonic strong 

growth of both positive and negative baroclinic circulation in a vortex bilayer pattern inside the 

complex roll-up region. The circulations grow and secondary baroclinic circulation dominates at 

intermediate times, especially for higher A*. This vorticity deposition is due to misalignment of 

density gradient across the interface and vortex-centripetal acceleration ~secondary baroclinic!, 

and enhanced by the intensification of interfacial density gradient arising from the vortex-induced 

strain. Our simulation results for A*50.635 agree with the recent air–sulfur hexafluoride (SF6) 

experiment of Jacobs and Krivets (2001), including several large-scale features of the evolving 

mushroom structure: The usual interface spike-bubble amplitude growth rate a˙ and the 

dimensions of the spike roll-up cavity. VAVD plays an important role in the intermediate time 
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dynamics of the interfaces. Our amplitude growth rate disagrees with the O(t-1) result of Sadot et 

al. Instead, it approaches a constant which increases with A*(<0.9). An adjusting periodic single 

point vortex model which uses the calculated net circulation magnitude and its location, gives 

excellent results for the amplitude growth rates to late-intermediate times at low Atwood numbers 

(A* =0.2,0.635). The evolution of enstrophy, vorticity skewness, and flatness are quantified for the 

entire run duration, and one-dimensional averaged kinetic-energy spectra are presented at 

several times.  

The VAVD, a self-driven process, is the fundamental mechanism how the interface forms 

complex spiral mushroom structures that eventually lead to turbulent mixing. This part of work is 

published in the Physics of Fluids (Peng et al, 2003b). 

 

9.1 Validations and Verifications 

 

In this section, we use an interface transition layer (ITL) as shown in Figure 8.3 in chapter 8 to 

model the Jacobs and Krivets 2001 (JK01) air/SF6 experiment and emphasize juxtaposition of 

numerical simulation and experimental results including large and intermediate scale structures, 

small-scale sensitivity, and amplitude growth . This serves the validation and verification 

purpose. In Sec. 9.2 offers the discussion of the importance and physics of vortex accelerated 

vorticity deposition (VAVD) and density gradient intensification process; in Sec 9.3 the VAVD 

process’ impact on the amplitude growth rate is examined.  

( )a t

We use a post-shock Atwood number A* = 0.635 corresponding to a density ratio of 4.52 

(run #2) as shown in Table 9.1. Note, this density ratio reduction from normal SF6/air results from 

the presence of acetone which is added to the ambient air to enhance the PLIF visualization, as 

discussed in JK01. The ITL thickness to wavelength ratio is less than 10% initially and becomes 

even smaller after the shock hits the interface. The precise density ratio and ITL thickness for the 

experiment depends on the time duration for preparing the initial state and the diffusion 

coefficients of acetone and air in SF6. Furthermore, the PLIF images visualize a nonlinear 

combination of density and temperature. Care must be exercised when comparing juxtaposed 
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images of PLIF and density, and code validation studies must take these phenomena into 

account, especially when complex roll-ups occur.  

 

 *A  sM  0a /λ  *
0a /λ  0δ / a  *

0 /P Mt t  /End Mt t  

1run  0.2  1.3  0.04  0.031  1.152  0.2 12  

2run  0.635  1.3  0.04  0.0368 1.152  0.19  12  

3run  0.9  1.3  0.04  0.038  1.152  0.39  11.8  

01JK  0.635  1.3  / 0.0368 1.152  / 5.12  

Table 9.1 Parameters for the shock diffuse sinusoidal interface. Here A* is the post-shock Atwood 
number, sM  Mach number, λ wavelength,  preshock amplitude, a  postshock amplitude, 0a *

0

0δ half maximum slope interface thickness, Pt  is the time when the amplitude growth rate 

reaches the peak value, Mt  is the time when the interface first becomes multi-valued, and  is 
the end time of numerical simulations. Numerical resolution in all runs is 360 (λ) × 2520. 

Endt

 
 
 

The evolution of the single-mode interface, from both simulation and experiment, is 

juxtaposed in Figure 9.1. In Figures 9.1(a)-(g), the left columns are the simulation density images, 

and the right columns are the PLIF images. Note for the PLIF images, only the right two thirds of 

the shock tube is shown. The heavy SF6 and light air are shown as dark and light, respectively. At 

 = 0.035, just after the shock passage, the ITL thickness has been greatly reduced and 

primary vorticity is baroclinically deposited on it. Vorticity is localized and the interface forms the 

well-known mushroom structure at  = 1.96. As the ITL continues to roll up, the mushroom 

structure expands in spanwise direction and is elongated in streamwise direction. Secondary 

rollups are observed inside the main mushroom spirals and there is qualitative agreement 

between simulation and experiment. This roll-up mechanism causes the transfer of energy from 

large-scale structures to smaller and smaller scale structures and enhances the mixing. This 

secondary instability is caused by VAVD, as discussed below in Sec. 9.2. 

Mtt /

Mtt /
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Extracted amplitude growth  of density is compared with PLIF measurements in 

Figure 9.2. The amplitude is corrected by the post-shock amplitude  and normalized by wave 

number k. Note, each PLIF measurement is obtained from a PLIF image of a different 

experiment. The simulation is of much longer duration than the experiment. The simulation 

amplitudes are smaller than those from PLIF during the last one third of the experimental period 

when the data becomes noisier.  Especially, a rather rapid growth of amplitude is observed for the 

PLIF images from Figure 9.1(f) to 9.1(g): k a  increases by 0.43 from Figure 9.1 (e) to 9.1 

(f) within the interval, ; and by   0.48 from Figure 9.1 (f) to 9.1 (g) within the 

interval, .  That is, the amplitude grows faster in the latter period. This behavior is 

inconsistent with the well-known decaying trend of the amplitude growth rate. It is probably due to 

3D or boundary effects as observed in the experiment.  

( )a t

.87

*
0a

*
0( a− )

/ 0Mt t∆ =

79/ 0.Mt t∆ =

 

9.2 VAVD and Density Gradient Intensification 

 

In this section we observe and quantify the rapid growth of positive and negative circulation on 

the ITL after the first roll-up, t Mt2~ .  We show that this leads to a constant amplitude growth 

rate at late-intermediate times which increases with A*, as discussed in chapter 10. Furthermore, 

these large circulations represent close-lying VBL’s and are believed to be the mechanism 

triggering a secondary instability and enhanced turbulent mixing. 

The evolution of the vorticity in our Euler simulations is governed by, 

 

                           2

1( ) p
t

.ω ω ω ρ
ρ

∂
+ ∇ = ∇ + ∇ ×∇

∂
u ui i                                       (9.1)  

 
We focus on the effect of the baroclinic vorticity term, . In Figure 9.3, we compare 

our density (A

p ρ∇ ×∇
* = 0.635 in Figure 9.2) and vorticity evolutions. In the latter, the dark and bright 

colors are for negative and positive vorticity, respectively. We discuss only the right half of our 



 124

symmetric images, where the primary shock deposited negative vorticity. Here, as in previous 

work (Peng et al 2003a), we use a “diagnostic box” for extracting circulation.  In Figure 9.3 this 

corresponds to a rectangular domain with vertical edges and horizontal edges through the spike 

and bubble tips.  

In Figure 9.4 we present the primary and secondary circulations into intermediate times. 

Figure 9.5 has excellent agreement of circulations with analytical calculations of Samtaney and 

Zabusky (1994). The circulation value for comparison is obtained by integrating the y-integrated 

vorticity just after shock passage. The result in Figure 9.5 implies that circulation model of 

Samtaney and Zabusky (1994) is valid for the shock small-but-finite thickness ITL interactions as 

well. 

 
  

Figure 9.1 Density images (left) from numerical simulations (A*=0.635) juxtaposed with those of 
Jacob & Krivets’ PLIF experimental visualization (right) at normalized times / Mt t : (a) 0.035, (b) 
1.0, (c) 1.96, (d) 3.02, (e) 3.46, (f) 4.33, and (g) 5.12 
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Figure 9.2 Comparison of dimensionless extracted perturbation amplitude growth from current 
simulation  with experimental PLIF amplitude measurements of Jacobs and Krivets  * 0.635A =
(2001). 
 

  
Figure 9.3 Vorticity and density juxtaposition from numerical simulations at normalized times 

/ Mt t : (a) 0.035, (b) 1.0, (c) 1.96, (d) 3.02, (e) 3.46, (f) 4.33, and (g) 5.12. 
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Soon after the shock passage, the fluid motion becomes nearly incompressible as 

demonstrated by Kotelnikov et al (2000), and Meiron and Meloon (1997). The evolution of the 

vorticity in Eq. (9.1) is governed the misalignment of the gradient of pressure or acceleration and 

gradient of density, ∇  ~ p ρ×∇ /d dt ρ− ×∇u . The only acceleration available is centripetal 

and towards the core center and arises from the large-scale rotation of the coherent vortices, 

which are the rollups formed from the advection and compression of the deposited primary 

vorticity. The direction of density gradient depends on the evolution of the rolled-up ITL.  We call 

this mechanism a vortex-accelerated secondary baroclinic vorticity deposition (VAVD) and 

illustrate it qualitatively in Figure 9.6 for our air/SF6 simulations just after the formation of the first 

rollup.  

 

 
(b) (a)  

Figure 9.4 Positive, negative and total circulation inside a diagnostic box enclosing the mixing 
zones: dash-dotted lines for positive circulations, solid lines for negative circulation, and dotted 
line for total circulations. The corresponding post-shock Atwood numbers are labeled on the lines. 
(a, left) primary circulations; (b, right) primary and secondary circulations. 
 
 

The arrangement of the density gradient field shows that opposite-signed vorticity is 

generated to the left and right of the core, at the neck and outermost point, respectively. That is, 

the positive secondary vorticity generated first cancels the primary negative vorticity there and 

forms a vortex bilayer together with the outer-point enhanced negative vortex layer. These 

opposite sign vorticities are advected into the vortex core as the fluid is entrained there, and 
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greatly enhance the mixing. This mechanism reminds us of the mixing enhancement resulting 

from reshock of an interface, where opposite sign vorticity are generated by the oppositely-

directed acceleration (Kotelnikov et al. 2000). A similar sketch arises when considering slow/fast 

Richtmyer-Meshkov environments. 

 

Figure 9.5 Distribution of the y-integrated vorticity ~
( ) ( , )

D

x x y dyωΩ = ∫ for the A* = 0.635 

interface just after the shock passes the ITL. The solid line is the analytical result given by 
Samtaney and Zabusky (1994). The circle symbols are the simulation data corresponding 

to
~

( )xΩ . 
 

 

Figure 9.6 Illustration of the vortex-accelerated baroclinic secondary vorticity deposition for the 
fast/slow RM interface instability. The background curve is the extracted interface (using zero 

crossing of Laplacian density algorithm) at / Mt t  = 1.96 for . 
* 0.635A =
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We have discussed the direction of density gradient and corresponding signs of vorticity 

and now we discuss the important aspect of growth of the density gradient magnitude, |∇ρ|, as 

induced by the strain from the “complex” mushroom vortex dipole or VP. Soteriou and Ghoniem 

(1995), while presenting their incompressible Lagrangian transport-element method, discussed 

the increase of |∇ρ|. For our compressible environment, the evolution equation is   

 

( ) ( ) ( ) (

( ) ( ) ( ) ,s

d
dt

)ρ ρ ρ ρ ρ

ρ ρ ρ

∇
= − ∇ ∇ −∇ ∇ − ∇ ∇ −∇ × ∇×

= − ∇ ∇ −∇ ∇ −∇ ∇

u u u

u u u

i i i

i i i

u
 

(9.2)

 
where ( )s∇u  is the symmetric part of the velocity gradient tensor. However, as we explained 

above, after shock passage the fluid becomes nearly incompressible and Eq. (9.2) reduces to  

                                               ( ) ,s
d
dt
ρ ρ∇
= −∇ ∇ui                                                 (9.3) 

also obtained by Soteriou and Ghoniem.  Another view is to consider the material line dl and the 

evolution of ( / dρ∇ l ), where d 0ρ∇ =li . The evolution of dl is governed by 

 and we obtain  (d ) /d dt =l d ∇l ui

 

                                                   ( )
d

d
dt

ρ∇
0,=

l                                                             (9.4)

 
where we have used for incompressible flows  and  t and n are the tangential 

and normal unit vectors to the material line dl.  Eq. (9.4) indicates that if |dl| is increased so is the 

density gradient magnitude, a phenomenon present in our simulations as shown in Figure 9.7. 

Here histograms of the magnitude of the normalized density gradient, 

∇ = − ∇t u t n u ni i i i

0,max| | / | |ρ ρ∇ ∇ , are 

shown inside the diagnostic box and 0, max| |ρ∇ stands for the preshock initial maximum 

magnitude of the gradient of density. Initially, the highest density gradient magnitude | |maxρ∇  
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of the ITL moves toward that provided by the grid resolution. Then, as the length of the medial 

axis of the ITL grows, so does the corresponding number of points at
 

0,max| | / | | 1.0ρ ρ∇ ∇ = , and the number is proportional to
 0,max(| | / | | ) qρ ρ −∇ ∇ , where 

the exponent q is about 1.0 for the times beyond Mt . We also observe at / Mt t

max|

 = 12.0, the curve 

has a break and we are uncertain if that is real or a numerical artifact. Therefore, density gradient 

intensification enhances the VAVD. However, the saturation of the | ρ∇  will cause the 

slowing of the growth of the total circulation and its eventual saturation. 

Mt t

ρ

 

Figure 9.7 Density gradient magnitude (normalized by the preshock initial maximum density 

gradient magnitude) distribution for  at times * 0.635A = /  = 1.0, 5.12, 7.2 and 12. 
 
 
 

One comment about the smoothness of the neck region as manifest in the density and 

vorticity in Figures. 9.3 (a) –(e).  Although | ∇  is intensified and results in a reduced ITL 

thickness, we believe that the stretching environment stabilizes the interface (Dritschel et al, 

1991) until it is impacted directly by the rolled up small-scale secondary structures seen in 

Figures. 9.3(f) and (g).  

|
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The VAVD process and VBL formation are also observed in other stratified or 

inhomogeneous flows. In 2D stratified mixing layers simulations, Soteriou and Ghoniem (1995), 

Staquet (1995), and Reinaud et al. (2000) separately reported local vorticity deposition and a 

rapid growth of positive and negative circulation. Note, Staquet studied the secondary instability 

from the vortex point view.  Hou et al. reported a rapid secondary vorticity deposition in their 

stratified incompressible vortex sheet interface simulation with surface tension. 

 

9.3 Amplitude Growth Rate  

 

The amplitude growth rate  for a single-mode 2D Richtmyer-Meshkov interface is usually 

scaled to vary as a power law of the time after the shock passage, 

( )a t
•

                                                       ( ) .pa t t
•

−∝                                                             (9.5) 

As briefly reviewed in Sec. I, the scaling exponent p  is still controversial. Two recent 

experiments for a single-mode air/SF6 interface by Prasad et al (2000) and JK01 provide data up 

to intermediate times. Our numerical simulations (Zabusky et al. 2003a) to early-intermediate 

times obtained p  = 0.683 which agreed very well with Prasad et al. experimental data fitting 

range, . These exponents are obviously smaller than the 74.067.0 ≤ ≤p p =1 law of Sadot et 

al (1998).  JK01 juxtaposed their amplitude measurements with two nonlinear theories, Zhang 

and Sohn (1997)and Sadot et al (1998). JK01 found better agreement with the smaller exponent 

p =1 of the latter than p =2 for A* = 0.635 given by Zhang and Sohn (1997). However, our data, 

which are excellent agreement with experimental data, as presented in Figure 9.1, give p <1 in 

this time interval.   

Beyond this time the VAVD phenomena greatly modify the behavior of the mixing zone 

as shown at  and Mtt / 7.2= tt / 12M = (the end of our simulations) in Figure 9.8. In a true 

experiment, viscous, 3D and boundary effects will begin to play roles. Thus, the pre-turbulent and 
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mixing details in Figure 9.8 of vortex interactions, merger, and VP formation are only heuristic. 

This indicates some of the reasons why our single line vortex model, presented below, yields 

poor results beyond the intermediate time. For scaling, we also did Richtmyer-Meshkov interface 

simulations with A* = 0.2 and 0.9. We present the simulation amplitude a t  and its growth rate 

 in Figures. 9.9 (a) and (b), respectively. The amplitude growth rate  in Figure 9.9(b) shows 

the well-known phenomena of rapid growth to a maximum for t t  << 1, followed by a power 

law decay for a time range that depends on Atwood number and finally a saturation at a near-

constant value, a result not previously known, although conjectured by Zabusky (1999)  (see Sec. 

6.2 there). Note that for t t  < 1, the curves are not nested and the A

( )

•

•

( )a t
•

a

/ M

/ M * = 0.9 curve saturates at 

a lower magnitude than the A* =0.635 curve. This results from the behavior of the total circulation 

at early time as shown in Figure 9.4 and discussed above. Similarly, beyond t t  =2, the  

curves are again nested, but the A

/ M

•

a

a

* = 0.9 curve takes longer to reach a near-constant value. 

/

We now digress briefly to explain the confusion in exponents presented in the literature 

and discussed briefly above, viz. they depend on the range of the data that were fitted as well as 

the quality of the experiment at these times. In Figures 9.10 a-c, we present our  for A* = 0.2, 

0.635 and 0.9, respectively. Here three power fittings and the result from an adjusting single point 

vortex model are compared with the simulation. 

 

Figure 9.8 Density (left) and vorticity (right) from A* = 0.635 simulation at Mt t = 7.2(a) and 12(b) 
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(a) 

 

(b) 

Figure 9.9 (a) Juxtaposition of the amplitude evolution for A* = 0.2, 0.635 and 0.9; (b) 
Juxtaposition of the amplitude growth rates for A* = 0.2, 0.635 and 0.9. 

( )a t



 133

 

(a) 

 

(b) 

(c) 

Figure 9.10 Amplitude growth rate  from the (a),  (b) (c) 
simulation, adjusting periodic single point vortex model and three power fittings in three 

ranges:

a
i

* 0.2A = * 0.635A = * 0.9A =

5.12P Mt t t≤ ≤ , P Endtt t≤ ≤ and 5.12 <M Endtt t ≤ . 
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We identify several critical times: t  when the  reaches the initial peak,  the 

multivalue time discussed in chapter 8, 5  around which most simulations and experiments 

end, and t  ~ 12  the end time of our simulations. The corresponding intervals are 

,  and 

P

Mt

t

•

a Mt

12.

Mt

End

Pt

Mt

12.5Ptt ≤≤0 Mtt ≤≤ Endt≤≤12.

Endt

5 , where the first stage is a compressible 

phase and approximately described by linear theory. Consider A* = 0.2 in Figure 9.10a, and the 

ranges t , tMP t12.5 Pt ≤≤ t ≤≤ , EndtMt t ≤≤12.

•

5 . The exponents are  = 0.76,  =0 

.67 and  = 0.077, respectively.  They decrease monotonically because a  is saturating to a 

near-constant value as shown by the fitting a . The very 

small coefficient of the second term indicates that the late-intermediate time a  approaches a 

constant. Similar results are obtained in Figures 9.10 b-c.  

1p

12 Mt

•

2p

3p
•

. 16 )5(101. −− −× t2+0021.0~

A model using a single point dipole-vortex in a periodic domain has been suggested to 

describe aspects of the RM  after shock passage, e.g. Zabusky et al. (1995) and Jacobs and 

Sheeley (1996). The former suggested a partially adjusting circulation model up to intermediate 

times and the latter used a fixed circulation model for a similar time interval. In Figures. 9.10 a-c, 

we include graphs of  from a more complete adjusting periodic point vortex model (as described 

in Appendix B of Peng, Zhang, Zabusky 2003), 

•

a

•

a

 

sin 1 1( )
4 cosh( ) cos cosh( ) cos

c
vortex

s c b

k kxa
kd kx kd kxπ

• Γ
= − +

− +
.

c

     (9.6)

 
where Γ  is the time-varying net circulation,  is the x coordinate of the centroid of vorticity field 

of the right half of the spike-bubble mushroom and illustrated in Figure 9.12 (with an inset sketch 

of the vortex mushroom), 

cx

sd  and  are obtained from the y coordinate of the centroid of 

vorticity field and the location of the evolving spike and bubble tips. 

bd
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Figure 9.11 Scaling of the constant amplitude growth rate  with post-shock Atwood number 
A*. 

.consta
i

 

 
 
Figure 9.12. The evolution of the x-coordinate of the vorticity field centroid for A* = 0.2, 0.635 and 
0.9. Inset: sketch of the spike-bubble mushroom vortex. 
 
 
 

For A* = 0.2, the vortex model gives very good results for 2 ≤ ≤12 because of the 

compact rolled up simulation result. The lower limit of the interval arises because the vorticity 

Mtt /
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must localize before the model becomes adequate. For A* = 0.635, we have the same lower limit 

and an upper limit of t = 8, because of the formation of a complex VP.  Mt/

.t

For A* = 0.9, the model results differ from the simulation because of the spreading of the 

circulation over a large amplitude and the location of the centroid near to the y-axis. Thus we 

conclude that the point vortex model is inadequate for larger Atwood numbers. Actually, for finite 

Reynolds numbers and beyond intermediate times and for large Atwood numbers and Mach 

numbers the modeling of vortex accelerated flows by one or more point vortices is a relatively 

untouched subject! 

The approach to a constant a  is the result of the formation of a complex vortex 

projectile with increasing net circulation due to the vortex accelerated vorticity deposition (VAVD), 

at and beyond late-intermediate times, as shown in Figure 9.4. We also note that final net 

circulations and a  scale monotonically with A

.const
•

cons
•

*. Figure 9.11 shows  scaling with A.consta
•

*.  The 

continued linear growth of circulation for A* = 0.9 (see Figure 9.4) cause a larger increment in 

 than between A.consta
•

* = 0.2 and 0.635. These curious phenomena at large A* require a careful 

study and should be done as A* approaches 1.0 and include higher Mach numbers.  

 

9.4. Numerical Dissipation and Transition to Turbulence 

 

A. Numerical dissipation 

 

    As we can see in Figures. 9.3 and 9.8, both heavy and light gases are entrained into 

the complex roll-up regions and mixed there. Although our Euler solver has no physical viscosity, 

the PPM algorithm does include small-scale numerical dissipation. This dissipation consists of 

three parts: (1) complicated high-order truncation error terms; (2) nonlinear dissipation provided 

by the monotonicity constraint of van Leer (1979), and (3) additional “flattening” dissipation 

included in the original paper by Colella and Woodward (1984). Note that there are very small-

scale “chaotic” effects which cause complex flows within vortex cores at late times for the simple 
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2D roll–up of dipolar sheets (Krasny and Nitsche 2002). Also Youngs (1991) and others have 

shown that this dissipation may play the same role as a subgrid scale model in large-eddy 

simulations.    

    The effective viscosity for the PPM code that we used was found to be very small. 

Their long-time 2D curtain simulations showed enstrophy growth, saturation and finally decay. 

Our results are for a shorter times so that the enstrophy in all cases grows and saturates. 

 

B. Enstrophy, flatness, and skewness factors  

 

In Figures. 9.13 a-b, we show moments of vorticity related to turbulent behavior 

 and , where the first is the enstrophy (without ½) and the others are 

skewness and flatness. The skewness and flatness factors are defined as 

2 ,ω ω< > < 3 > >4ω<

 

                                         
3 4

2 3 / 2 2 2
( ) , ( ) .s t f tω ω

ω ω
< > <= = >
< > < >

                                        (9.7) 

 
Figure 9.13a shows a sharp increase of enstrophy due to primary vorticity deposition for higher 

Atwood numbers. A very long plateau of enstrophy is observed for all Atwood numbers, which 

implies that the baroclinic forcing is strong enough to overcome the enstrophy dissipation even at 

the end of our simulations. However, when the fluid becomes more turbulent, dissipation will 

eventually dominate the secondary baroclinic forcing.    

In Figure 9.13b, we plot the normalized skewness and flatness factors for A* = 0.635 and 

0.9.  Both factors increase rapidly to a maximum in the pre-turbulent epoch and then decrease as 

a near power law to near stationary values. Realistically, all these moments depend critically on 

three dimensional and true viscous effects and we do not trust our solutions at the largest times. 

 

C. Spectral analysis    
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The late-intermediate time stage of the RM instability is characterized by a large range of 

scales spanning from the size of the domain to the mesh size. We present spectra analysis on 

the flow. As we know, the flow is anisotropic and inhomogeneous especially in the direction of the 

incident planar shock. Fourier transformation can’t be applied in this streamwise direction. 

Instead, we consider the one-dimensional averaged transversal kinetic energy spectrum of 

( , , ) vx y t ρΞ =  suggested by Lesieur et al. (1988), 

 

                                      

2^

1
1( , ) | ( , , ) |

2
L

x xL
E k t k y t dy

d −
= Ξ∫ ,                                     (9.8) 

 

where Ξ  is the longitudinal Fourier transform of 
^
( , , )xk y t ( , , ) vx y t ρΞ = at a given ,  y

 

                          

^

0

1( , , ) v( , , )exp(- )x xk y t x y t ik x
λ

ρ dx
λ

Ξ = ∫                              (9.9) 

 
There 2 s bL d d= +  is the width of the diagnostic box surrounding the mixing zone at the end 

time of the simulations. The inertial range spectrum xk α−  of this spectrum will give the same 

exponent as k α− 2 2( )x yk k k= +  of the total kinetic energy spectrum for a two-dimensional 

homogeneous isotropic turbulence. 

 

Figure 9.14 shows the one-dimensional averaged transversal kinetic energy spectrum 

1( )xE k at three times / Mt t  = 1, 9 and 12 with the 3
xk − cascade conjectured by Kraichnan 

(1967) for 2D homogeneous turbulence. The high wave number spectrum tail is governed by 

numerical dissipation. The late-intermediate time stage of the 2D flows is still dominated by the 

large to intermediate scale coherent vortex structures.     
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(a) 

 

(b) 

 
 

Figure 9.13 (a) Enstrophy inside the diagnostic box enclosing the mixing zones : 

solid lines for , dash-2doted lines for , and dotted line for  
(multiplied by 10 as indicated). The corresponding post-shock Atwood numbers are labeled on 
the lines; (b) Evolution of vorticity flatness and skewness factors for 

2

D

dxdyω∫∫
* 0.2A =* 0.9A = * 0.635A =

*A = 0.635 and 0.9.     
 Dotted lines are , and solid lines are 3 2/ω ω− < > < >3/ 2 24 2/ω ω< > < > . 
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(a) 

(b) 

 
 

Figure 9.14 One-dimensional averaged transversal kinetic energy spectrum for A* = 0.635 case 

at /t Mt = 1.27(“∆∆∆∆ ”), 12.1(“+++”) and 16.5 (“ ”) with D D D D 3
xk − spectrum shown as the solid 

line; (b) corresponding compensated spectrum. 
 

 

  

 



 141

 

 

Chapter 10 

 

Circulation Rate of Change 

 

 

In this chapter, we derive and validate a new diagnostic formula for determining the rate-of-

change of total circulation, 
DΓ , within specified accelerated RM interfacial domains. With an 

initially finite-width interfacial transition layer (ITL), M=1.3 and various post-shock Atwood 

numbers, 0.2 ≤ A* ≤ 0.75, we show that for intermediate times (4 < t/tM <8), , has 

several consistent behaviors and scaling laws depending on A*. Here  Γ , is the circulation 

deposited by the initial shock (which agrees with 

/( / )D shock MtΓ Γ

shock

ΓSZ ) and tM is the time at which the single mode 

interface becomes multivalued. 
DΓ , a highly informative macroscopic variable, provides essential 

signatures and quantifiers that may be used  for understanding and modeling accelerated 

inhomogeneous  flows through intermediate times. 

Figure 10.1(b) shows the variation of three normalized circulations (integrated vorticities): 

positive, negative and total (Γ = Γ− +Γ+) within the bounding rectangle of Figure 10.1(a), 

essentially between the spike (crest) and bubble (trough) extremes. The very-early time 

normalized negative circulation, Γ− / |Γshock |   ~ -1 is deposited by the incoming shock and 

corresponds mainly to the dominant vorticity adjacent to the mid-contour (as seen in Figure 

10.1a). This circulation is in close agreement with that, obtained from the Samtaney-Zabusky 

formula (1994),Γ , as discussed above. There are also early-time, (e.g., 0 < t/tSZ M < 1.5) small-

magnitude positive and negative vorticities, (not visible on Figure 10.1a) that are generated by the 

curved transmitted and reflected shocks which propagate downstream and upstream, 

respectively, from the interface and whose curvature arises from the interaction of the incoming 
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planar shock with the sinusoidally perturbed interface. The Mach number and finite local 

curvature of these shocks determines the magnitude and sign of the vorticity deposited in the 

domain behind these shocks, as described recently by Kevlahan (1997) and Wouchuk (2001). 

For t/tM > 2.0, the vortex-accelerated vorticity deposition causes both Γ+ / |Γshock | and 

Γ− / |Γshock |  to vary   nearly linearly in time and the rate of change of the latter is   larger than that 

of the former, so there is small net growth of |Γ /Γshock | , as will be examined critically below.  

Also we see the small but rapid “dip” of Γ− / |Γshock |  at td / tM ≈ 2.5 , an important signature, to 

be discussed below. 

 
 

 
Figure 10.1 (a) Vorticity field with extracted mid-contour interface (solid) at 1.5tM from a 
numerical simulation for M = 1.3, A*= 0.635. A typical bounding box (dashed lines) for the 
analytical CCW integration domain is shown. The solid line is the evolved and multivalued “mid-
contour“ which intersects the upper and lower sides of a bounding rectangle at a and b, 
respectively which is between the ends of the transition layer at a1-a2 and b1-b2, respectively. (b) 
Normalized circulations versus time for M= 1.3 and A*= 0.635. Positive, Γ+/|Γshock |, negative, Γ-

/|Γshock |, and total, Γ/|Γshock |. 
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10.1 Derivation of an Approximate Continuum Representation 
 
 

 
The governing equation for vorticity evolution of an inviscid three dimensional (3D) compressible 

fluid is obtained by taking curl of the Euler’s momentum equations 

                          
 1 (u ) ( )  .                                  (10.1)t p∂ ω ω ρ−=∇× × −∇ ×∇

 
 

For Rayleigh-Taylor, the spatially invariant acceleration term does not appear explicitly, but it is 

present in the pressure gradient which can be obtained from the momentum equation. In a two-

dimensional (2D) Cartesian system, u e  ex yu v= + , e  ( ) ez y xu v zω ω ∂ ∂= = − + , and 

. In the present paper, we suppress the domain indicator D because we will 

integrate the scalar equation for vorticity over a fixed area rectangular domain which bounds the 

spike and bubble, (e.g. as shown in Figure 10.1a) and obtain 

 D
D

dxdyωΓ = ∫∫

 
1

zs (u e )  s ( ( ))            (10.2)
C C

d d pω ρ−Γ = − ⋅ × − × ∇∫ ∫  

 
Here, we have converted the domain integral to counter-clockwise integration along the straight 

sides Ci of the bounding rectangle C.  

We now make assumptions to obtain a simple approximation formula and then validate 

by comparing with integrated vorticities obtained from the simulations. For the present work, we 

omit small vorticity effects, which however become important at Mach numbers > 1.5 as 

discussed by Wouchuk (2001) and Yang et al (1994) for the very-early or linear time regime. We 

know, from previous analytical and numerical work in the low M range, that the dominant shock-

accelerated vorticity is deposited within the interfacial transition layer (ITL), i.e. remote from the 

sides Ci.  Furthermore, the vorticity is zero at the spike and bubble extrema points, at y=0 and y= 

λ/2, respectively, because the angle is zero between the normal of the incoming planar shock and 

the normal to the interface at these points. Hence, if there is no vorticity on the sides of the 

bounding box, we may omit the first term on the right of (10.2) and obtain  
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2 2
2 2

1 1

  ( / )  ( / ) ,               (10.3)
a b

a b

p d p dρ ρ ρ ρΓ ≈ − −∫ ∫

where  indicates that we have neglected the small curvature-induced vorticities as well as 

assumed that the dominant  density change  occurs only over the small intercepts of the ITL, 

and 

≈

a1a2 b1b2 . That is, the contribution from density perturbations associated with small 

acoustic waves may be neglected.  

 

10.2 Approximations to Obtain Discrete Representations  

 

To minimize the effect of physical and numerical fluctuations, we have found it useful to use 

temporally averaged pressures and vorticities (designated with a tilde) and obtained from  

                                  
/ 6~

, ,
/ 6

( )  ( ) ( ; ) (10.4)
m M

m M

t t

n m n mi j i j
t t

f t f t t t
=+

=−

= Φ∑

 
where Φ(tn;tm )= T−1[1+ cos (2π(tn − tm) / T)],  − (T / 2)≤  tm  ≤  (T / 2),     and . 

 

T = tM / 3

Hence, the quantified circulation rates-of-change, *and #Γ Γ  are approximated as  

                                    *

2 1 2 1

( ) ( )                                 (10.5)
(   ) /

n na bp t p t
ρ ρ ρ ρ

−
−

Γ ≡  

and  

2 , ,# 1 1( ( ) ( )]( ) [ ]  .            (10.6)
2

i j i jn n
n

D

t tt h
t

ω ω
δ

+ −−
Γ ≡∑  

 
The former follows from Eq. (10.3) by assuming a density discontinuity at the mid-contour 

intersections with the horizontal sides of the bounding rectangle, between and 

between . The latter approximates the time-derivative of circulation by using: an 

area-weighted sum; over a temporal central-difference operation; that is applied to the temporally 

1 2 ( )aa a for p t

1 2 ( )bb b for p t
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averaged vorticity. The vorticity is computed by applying a spatial central-difference operation to 

the velocities. The discretization intervals are h 1/180=  and 0.6( )ct tδ δ= for ; and * 0.3A <

( )ct tδ δ=  for , where * 0.3A > ( ) /t h 1/180c sCδ = = . Note, these equations should be more 

accurate for an incompressible medium where shocks and acoustic waves and their density 

fluctuations are absent. 

/ sC

t c a (0 ) / MC

( ) /p sC

shock / tM

 

10.3 Validating the Approximations 

 

We now validate the applicability of Eq. 10.5 by comparing with Eq. 10.6. The initial ITL of 26 grid 

zones is compressed by the shock, and after the shock has passed its thickness is somewhat 

reduced to 17, for A* = 0.2, 0.3 and 16 for A* = 0.5, 0.635 and 0.75. Figure 10.2 shows the 

variation with A* of some of the temporal and circulation quantities: (a) tp / tc, time to reach the 

first maximum of the normalized amplitude growth-rate, ( )a t , where Cs is the speed of 

sound in the incoming medium. This time is, approximately, the transition time between very-

early-time and early-time or linear and nonlinear regimes. (The time tc is related to the time of 

passage of the shock over some initial length scale and we take it as = s =  

0.0615 (b) , which increases nearly linearly with A*, except for A*=0.2; (c) ta t M / tC, the 

normalized multivalued time, a monotonically decreasing quantity, except for A*=0.02; (d) |Γshock / 

tM| (used for normalization) is compared with  |ΓSZ/tM|). (Recall, Γshock is the measured circulation 

deposited by the shock in our simulations and ΓSZ is the Samtaney-Zabusky analytically derived 

circulation). The outlier behavior for some of the A*=0.2 results has yet to be investigated. 

The curves in Figure 10.3, the essential contribution of this chapter, show excellent 

agreement through early-intermediate times. They are, Eq. 10.5 (dashed/red) and Eq. .10.6 

(solid/blue), both normalized by Γ .  For A* = 0.2 and 0.3, the curves vary about the same 

negative slopes (dashed lines) in 4.5 < t/tM < 8.0.  For A* = 0.5, 0.635 and 0.75, the curves 

contain a sharp dip at times td that increases with A*. The net normalized circulation rate of 
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change prior to the dip time increases with A* and approaches near constant values of 0.04, 0.05 

and 0.07 (in c, d and e), respectively. 

This dip phenomenon arises from the increase in density gradient from interface 

stretching and thinning, mostly at the outermost edges of the “mushroom”, as discussed in Peng 

et al. (2003b). It is possible that the low A* cases will also exhibit a dip and approach to a near-

constant value at longer times, but this awaits a study with a more realistic model with viscosity 

and interfacial diffusivity, as discussed below. 

 
 

Figure 10.2 Ancillary quantities versus A*:(a) tp / tc, time to reach the first maximum of the 
normalized amplitude growth rate, ( ) / sa t C , where Cs is the speed of sound in the incoming 
medium. This time is the transition between linear and nonlinear regimes and is nearly constant, 
except for A*=0.2. (The normalization tc, is the time for the shock to cross the ITL); (b) 

, which increases nearly linearly with A*, except for A*=0.2; (c) t( ) /pa t C s M / tC , the normalized 
multivalued time,  a monotonically decreasing quantity (decreasing by a factor of 2); (d) Primary 
circulation divided by tM : |Γshock / tM| from numerical simulations, hollow squares and  |ΓSZ/tM|, 
triangles. (Recall, Γshock is the measured circulation deposited by the shock in our simulations and 
ΓSZ is the Samtaney-Zabusky analytically derived circulation.) 
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FIG 10.3 Normalized vorticity rate of change 
*Γ  (dashed and red) and  (solid and blue) as 

given by approximate formulas Eq. 4 and Eq. 5, respectively, for M = 1.3, A* = 0.2, 0.3, 0.5, 
0.635, and 0.75. The normalization is with respect to |Γ

#Γ

shock / tM|. Note the scale differences from 
Figs 10.3a-b with Figs 10.3 c-e. 
 
 
 
10.4 Comparisons, Caveats and Future Directions 

 
 A. Comparison of Vorticity Fields 
 
 
 In Figures 10.4 a-b, we show the vorticity field in half the domain for A* = 0.635 (at  (td / 

tM) = 2.5) and A* = 0.75 (at (td / tM) = 3.0)), respectively. These times, where the circulation growth 

rate has a sharp consistent dip, as shown in Figures 10.3c, d and e are nearly at the beginning of 

the intermediate time phase.  Here, positive and negative are red/yellow and blue, respectively. 

Some significant observations are: 
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1. For A*= 0.635, the interface has increased significantly in length by rolling up into a 

complex core. A line at about 34 deg to the horizontal and through the central rolled-

up domain will cut at six locations the interface and its associated close-lying vorticity 

layers (from left-to-right: yellow (innermost); blue; yellow; center-blue; blue; (isolated), 

red, blue (outermost)). The alternating signs, red/yellow and blue are evidence of the 

VAVD process at high-gradient interfaces where the slope is decreasing and 

increasing, respectively. 

2. For A*= 0.75, the roll-up domain has become more complex and has begun to 

interact with the neck and inner edges _red-yellow_ of the mushroom cap and is well 

advanced toward a 2D baroclinic-turbulent state. Note, that the blue vorticity layer at 

the lower edge has already rolled up clockwise into smaller compact localized 

structures which are continuing the VAVD process and are generating new positive 

domains and forming “vortex projectiles.” 

 

B. Assumptions and their modification 
 
 
The derivation of Eqs. 10.5 and 10.6, involves many physical, procedural, and numerical 

assumptions. They’re remarkable agreement in Figure 10.3 undoubtedly arises from 

cancellations and we consider these equations as leading order terms in an asymptotical 

expansion. In particular, more realistic formulas must include the media viscosities and the 

interfacial surface tension and diffusivity. These augmentations will allow us to understand 

properly how the interfacial transition layer (ITL) becomes thinner and longer as it experiences 

gradient enhancement. At later times, following “baroclinic” roll-up, the regions will become 

turbulent. Also, one must consider the initial fluctuation spectra of the fluid in the ITL. The smaller 

length scales will be greatly modified by diffusive and viscous physical effects in the mass 

conservation and momentum equations, respectively. We must also: consider the use of a 

properly smoothed instantaneous extracted interface rather than the evolving midcontour; 

reconsider the choice of the location of the two points at which the averaged pressures are 
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evaluated in Eq.  10.5; vary appropriately the discrete resolution and numerical order of accuracy 

of the spatial and temporal differencing and temporal filtering operations. 

Following the discussion above, one must understand the significant differences in the 

small versus large A* evolutionary behaviors by scrutinizing these regions with more cases to 

determine the vortex-baroclinic processes involved. Similarly, larger Mach numbers, greater than 

2.0, should be considered to examine the effects of the important bulk vorticity that is remote from 

the interface and is left behind by the receding curved reflected and transmitted shocks. The 

generalization of these formulas to axisymmetry should be straightforward. To appreciate the 

turbulent nature of the evolving complex cores and their interaction, one should seek formulas for 

the evolution of separate positive and negative circulation rates of change and their 

corresponding enstrophies. 

 
Figure 10.4 Vorticity field in half the domain at td, the time where the circulation growth rate has a 
sharp consistent dip for (a) A* = 0.635 and (b) A* = 0.75.  Blue is negative and red is positive. 
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Chapter 11 

 

Summary and Conclusions  

For Part II 
 

 

The main purpose of Part II of this dissertation is the vortex-accelerated vorticity deposition 

(VAVD) and long-time dynamics of two-dimensional single-mode Richtmyer-Meshkov interfaces. 

We include a small-but–finite interfacial transition layer (ITL) to make the problem well posed and 

thus are able to study the late-intermediate time flow behaviors. We develop algorithms to extract 

the medial axis of the ITL. We obtain quantitative agreements and correct trends when compared 

with the Jacobs and Krivets experiment. This includes amplitude growth, large and intermediate 

scaled structures, e.g. complex mushroom rollup scales. The experiment is affected by 3D 

symmetry breaking perturbations, wall and viscous effects. These account for the scatter of the 

data at early-intermediate times and may also cause an amplitude growth rate larger than that 

simulated.  

Opposite-signed secondary vorticity is deposited by the VAVD on the neck of the 

mushroom, close to the spike region and is rolled into a VBL that is very unstable and produces 

small-scale structures within the rollups.  Furthermore, the VAVD process is enhanced by the 

stretching of the interface or density gradient intensification across the interface. The physical 

effects of secondary vorticity on the mixing zone dynamics are further analyzed by calculating the 

amplitude growth rate . The power-law exponent a
i

p  in the pt −  is sensitive to the time interval 

over which the simulation data is fitted.  The exponent p is very small if the data fitted is only for 

late-intermediate times. In fact, our data shows that  approaches a near-constant value at late-a
i
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intermediate times. We also introduce an adjusting periodic single point vortex model which gives 

excellent results for  at low Atwood numbers. We quantify the turbulent aspects from early to 

intermediate times with several measures including: the one-dimensional averaged transversal 

kinetic energy spectrum that gives spectral exponent 

a
i

3− ; and enstrophy and normalized 

skewness and flatness. Note, secondary baroclinic vorticity deposition provides a long-time 

forcing to the turbulent epoch.   

The vortex-accelerated vorticity deposition process examined and the new quantification 

procedures, the circulation rate of change, comprise a vortex paradigm for examining the effect of 

specific initial conditions on the evolution of RM and RT interfaces through intermediate times. 

This approach applies also to axisymmetric evolutions and can be generalized to other 

(accelerated) inhomogeneous flows, for example shock-cylinder (Zhang et al 2004). To 

appreciate the turbulent nature of the evolving complex cores and their interaction, one should 

seek formulas for the evolution of separate positive and negative circulation rates of change and 

their corresponding enstrophies. 

In the future, it is desirable to couple more closely such Richtmyer-Meshkov experiments 

and 3D Navier-Stokes simulations. They should be studied in the high Atwood and Mach number 

domains because we have identified strange effects at high Atwood numbers where density 

fluctuations and vorticity (remote from the interface that is left behind by the propagating curved 

reflected and transmitted shocks) can be important. 
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