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ABSTRACT OF THE DISSERTATION

Bootstrapping Location-aware Personal Computing

by Nishkam Ravi

Dissertation Director: Liviu Iftode

Pervasive computing is centered around the idea of provisioning computing services

to the user anywhere anytime. If realized, pervasive computing can have a significant

impact on our daily lives, ranging from the the way we dress to the way we work

and travel. Two key hurdles prohibit the widescale adoption of pervasive computing.

First, human cognitive bandwidth is a limited resource; the burden of interacting with

pervasive computing applications may outweigh the functionality obtained. Second,

pervasive computing applications often assume a smart environment which does not

exist today; dependency on a ubiquitous computing infrastructure hampers deployment.

In this dissertation, we propose location-aware personal computing as a way of get-

ting close to the pervasive computing vision with minimal overhead. Central to location-

aware personal computing is the use of smart phones and location information. Smart

phones personify a ubiquitous personal device that can execute client frontends, and

connect wirelessly to backend services. Location information serves as a proxy for the

user. Smart phones and location information can minimize both user involvement and

dependency on a ubiquitous computing infrastructure.

We investigate the challenges in bootstrapping location-aware personal computing,

namely ad-hoc service provisioning, infrastructureless location determination, power

management and location privacy. We present solutions for each and comment on how
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they can bootstrap location-aware personal computing.

Provisioning locally embedded services to the user without prior knowledge of the

environment is an important aspect of location-aware personal computing. This disser-

tation proposes the use of dual connectivity (i.e Bluetooth and 3G) on smart phones for

discovering and provisioning local services to the user without any pre-configuration.

A novel service provisioning protocol, called SDIPP (Service Discovery, Interaction and

Payment Protocol), is presented and evaluated. SDIPP is implemented on top of a

middleware called Portable Smart Messages. The design of Portable Smart Messages

is presented. Experimental results show that SDIPP can discover and provision locally

embedded services to the user within acceptable time limits.

In order to enable location-aware personal computing, continuous location updates

are needed both indoors and outdoors. Determining user location without installing

extra infrastructure is a hard problem. This dissertation proposes use of light sensors

and cameras on phones for sensing user location in indoor environments without re-

quiring any infrastructure support. Low-level sensory input is converted into location

information using simple vision and classification algorithms. Experiments show that

location can be determined with fairly high room-level accuracy.

The use of resource-constrained personal devices, such as smart phone, is central to

location-aware personal computing. It is important to manage the limited resources on

these devices. The most crucial resource is battery lifetime. This dissertation shows

how location information can aid in battery management with smart phones as the

case study. By storing past location traces of the user on the smart phone, future

whereabouts of the user can be predicted. This information can be useful in estimating

when the next opportunity for charging the phone will be encountered. The knowledge

of when the user will charge the phone next can be instrumental in managing the limited

battery lifetime on smart phones across multiple applications.

Location-aware personal computing requires user location to be shared with un-

trusted third parties, such as web services. Releasing location information without

breaching user privacy is a hard problem. This dissertation proposes a new information-

flow control model, called Non-inference, for protecting location privacy of the user
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against untrusted services without compromising the quality of service. It is shown

that Non-inference is undecidable in general but decidable for programs that satisfy

uni-directional information flow. Non-inference is decided using static program analy-

sis techniques.

The main conclusion of this research is that the cooperative use of smart phones and

user location can be instrumental in devising low-cost, easy-to-use and non-intrusive

solutions for pervasive computing without requiring significant infrastructure support.
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Chapter 1

Introduction

1.1 Thesis

In order to design low-cost and easy-to-use pervasive computing applications, it is neces-

sary to minimize both human involvement and dependency on a ubiquitous computing

infrastructure. Location-aware personal computing is a way of achieving the perva-

sive computing vision in a cost-effective fashion. Central to location-aware personal

computing is the use of location information as user proxy; and smart phones as in-

telligent personal devices that can execute client frontends and connect wirelessly to

backend services. In this dissertation, we address four key challenges in bootstrapping

location-aware personal computing, namely ad-hoc service provisioning, infrastructure-

less location determination, power management and location privacy.

1.2 Location-aware Personal Computing

Desktop computing has, for decades, been synonymous with personal computing. Over

the last decade laptop computers have played a significant role in redefining personal

computing. By recognizing mobility as an integral part of human behavior and designing

for it, laptops have challenged the notion of desktop computing as personal computing

and inspired mobile computing– the ability to compute on-the-go. However, despite

the seemingly increasing use of laptops as mobile computers, a recent study shows that

they are predominantly used by users at fixed places as lightweight desktops rather

than as mobile computers [84]. This is primarily due to the inability of users to carry

laptops in their pockets. This is fast changing. Miniaturization has permitted the

capabilities of laptop computers to be incorporated in mobile phones. This has led
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Figure 1.1: Pictorial Overview of Location-aware Personal Computing

to the emergence of smart phones, which can run applications and client frontends,

communicate with other devices using WiFi/Bluetooth, connect to the internet over

3G, and sense information using camera and wireless interfaces. The ability of users to

carry such powerful computing devices in their pockets has once again challenged the

notion of personal computing and taken it closer to mobile computing.

The evolution of mobile devices has been paralleled by the advances in ubiquitous

computing whose ultimate goal is to provide everywhere computing, i.e the ability to

compute anywhere, anytime. Everywhere computing is characterized by users interact-

ing with services offered by smart devices embedded everywhere in the environment.

When Mark Weiser sketched out the vision of everywhere computing in 1991, in his

seminal paper called ”Computer for the twenty first century” [83], he overlooked two

major issues: (1) human cognitive bandwidth is limited; the burden of interacting with

a ubiquitous computing infrastructure may outweigh the functionality obtained, and

(2) installing a ubiquitous computing infrastructure is costly and perhaps even unprof-

itable,

Smart phones with ample computing power, multiple wireless interfaces, always-on
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internet connectivity and ability to execute applications and client frontends, have pro-

vided an alternative to everywhere computing [41]. Instead of embedding computing

everywhere the environment, it can be distributed over the internet, exported as web

services and accessed using smart phones. The difference between a locally embedded

service and a web service is that the former is location-dependent and physically avail-

able while the later is not. If web services could be made location-aware they could

customize themselves to serve as locally embedded services. This is not always possible

though. For example, a local printer or display cannot be replaced by a web service.

Therefore, some amount of computing (which is not replaceable by web services) would

have to be embedded in the environment. In order to discover and interact with this

intermittent locally embedded computing without involving the user, the smart phone

carried by the user would have to be location-aware. Thus, we see location and smart

phones as being crucial to this simple and viable form of computing, which we call

location-aware personal computing. In location-aware personal computing, the ubiq-

uitous computing infrastructure is replaced by a combination of location-aware web

services (also known as location-based services), a limited amount of locally embedded

computing, and smart phones. Location information acts as user proxy and helps in

minimizing user involvement. Location-aware personal computing is a way of achieving

the pervasive computing vision in a cost-effective fashion. Figure 1.1 gives a pictorial

overview of location-aware personal computing.

Bootstrapping location-aware personal computing involves the following set of chal-

lenges: (1). discovering and provisioning locally embedded services to the smart phone

of the user without pre-configuration, (2). determining user location without requiring

extra infrastructure, (3). managing the battery lifetime of the smart phone and (4).

protecting location information of the user from illegal access and misuse. In the rest

of this section, we describe each of these challenges in more detail, present prior work

and briefly describe my contributions.
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Figure 1.2: Service Discovery Overview

1.3 Seamless Service Discovery and Provisioning

Pervasive computing is centered around the idea of provisioning services to the user.

These services could be private services, those established by a user or group of users

for their own personal use (e.g smart home); non-profit services, those established by

a public organization (e.g a bus information service at a bus-station); pay-per-use ser-

vices, those established by private vendors (e.g entertainment services); and cooperative

services, those provided by a group of people to each other (e.g vehicular network-

ing). While many of these services can be established as web services (with proper

customization often requiring location information), others have to be embedded in

physical space. Protocols are needed for seamlessly discovering these locally embedded

services and provisioning them to the user. These are called Service Discovery Protocols

(SDP’s).

Service discovery protocols typically consist of three entities: the client, the direc-

tory, and the service itself. Most SDP’s follow one of the two discovery models: client-

service model and client-service-directory model (as shown in Figure 1.2). In client-

service model, services advertise themselves and clients directly query the services. In
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Table 1.1: Comparison of Service Discovery Protocols

Protocols Invocation
Query
vs An-
nounce

Directory
based?

Service
Match-
ing

Context-
aware

Scope

Bluetooth None Query No Match all No Vicinity

INS None Both Yes Match best No Admin domain

Jini Java code Both Yes Match all No Admin domain

Salutation RPC Both Yes Match one/all No Admin domain

SLP URL Both Yes Match all No Admin domain

UPnP None Both Partially Match all No Admin domain

SDIPP Java code Query Yes and No Match best Yes Multi-scoped

client-service-directory model, services cache their information on a centralized direc-

tory and clients query directories in order to discover services. While the client-service

model requires less infrastructure and is more suitable for nomadic environments, it is

not nearly as powerful as the client-service-directory model.

Several service discovery protocols have been proposed in the past. These protocols

can be classified based on their properties (as shown in Table 1.1). In most of the

protocols, services advertise themselves by announcing their presence using broadcast

packets and by responding to query packets, with the exception of Bluetooth services,

which do not announce their presence and respond only when queried. In addition,

some of these protocols use directories for caching service information in order to aid

in service announcement and discovery. Protocols that use service announcements and

directories use more infrastructure and network bandwidth.

With the exception of Jini [81] Salutation [13] and SLP [37], none of the previously

proposed protocols provide a service invocation mechanism. In Jini [81], the direc-

tory not only provides service look-up but also downloadable Java code/objects for

interacting with the service using RMI. Salutation [13] on the other hand uses RPC

(Remote Procedure Call) for service invocation. Service Location Protocol [37] is a

lightweight protocol that targets service discovery within a site. It uses URL-based

service invocation mechanism. Directories are optional.

Most of the protocols list/match all the relevant services after the discovery phase is

over. Service selection, is therefore, limited or missing (with the exception of INS [18]).

In addition, user’s context information (such as location) is not taken into account for

service selection. Finally, every protocol is limited in its scope and most work within a
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pre-specified administration domain. Jini, for example, targets enterprise environments,

while UPnP [15] is designed for home and office environments. UDDI [12] (not listed in

the table) targets profit-based web services, and uses a web-based distributed directory

for advertisement, similar to yellow pages.

There is a need for a hybrid approach that is wide in scope, requires minimal pre-

configuration and is not limited to a pre-specified administrative domain. Also, the

protocols proposed earlier overlook the payment aspect of service provisioning, which

should be addressed.

Bluetooth is a wireless protocol designed for low-power consumption and short-

range communication (1-100 meters). Its primary purpose is to connect devices such

as mobile phones, printers, laptops and digital cameras. Bluetooth also has its own

service discovery protocol. Bluetooth SDP [14] follows the client-service model and

enables nearby devices to discover services on each other. Bluetooth is a low power

protocol making it suitable for energy-constrained devices. Bluetooth SDP is query

based, which means that clients query for available services rather than services pro-

actively announcing their presence. It uses unicast and broadcast as the communication

mechanism and does not provide any service invocation mechanism.

Bluetooth SDP has been incorporated in smart phones and follows the client-service

discovery model, which requires less infrastructure and is more suitable for nomadic

environments, but is not as powerful as the client-service-directory model. Since smart

phones have always-on internet connectivity in the form of 3G/GPRS, directories can be

conveniently maintained on the internet. GPRS (General Purpose Radio Service) also

known as 2.5G is a mobile data service that uses wide area cellular phone networks to

provide low-bandwidth internet connectivity; 3G is an enhanced and improved standard

that provides higher bandwidths.

In this dissertation, we present a Service Discovery, Interaction and Payment Proto-

col (SDIPP) [68], which follows the client-service-discovery model by combining Blue-

tooth SDP with 3G connectivity. It provides a mechanism for service invocation without

any prior knowledge of the service. This is accomplished by downloading the client-side
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code for interacting with the service from a trusted web server on-the-fly. Service dis-

covery protocols proposed earlier, overlook the payment aspect of service provisioning.

SDIPP provides a safe electronic payment mechanism based on Millicent scrips [35]. In

addition, SDIPP is context-aware and multi-scoped. We have implemented and tested

this protocol on Sony Ericsson P900 phones. Table 1.1 compares the properties of

SDIPP with the popular service discovery protocols.

1.4 Determining User Location

In order to enable location-aware personal computing, continuous location updates are

needed both outdoors and indoors. Global Positioning System (GPS) is a globally

accepted solution for determining user location outdoors. It uses the existing satel-

lite infrastructure for determining user location. The user is required to carry a GPS

receiver, which calculates its position by measuring and triangulating the distance be-

tween itself and three or more GPS satellites. No such low-cost and easy-to-use solution

exists for indoor localization. A good indoor localization system should score well on

a number of metrics including, precision, infrastructure cost, privacy and coverage.

Prior work on determining user’s location indoors can be broadly classified into nine

categories, based on the technology used for localization: RF-based, Ultrasound-based,

WiFi-based, Bluetooth-based, GSM-based, audio-based, Powerline-based, smart-floor-

based and vision-based. In RF-based systems (e.g ActiveBadge [82]) an IR badge worn

by the user emits a unique IR signal periodically. Sensors installed at known positions

pick up the signal and update the position of the badge in a centralized database. Such

systems provide room level positioning and incur significant installation and mainte-

nance costs.

Ultrasound-based localization systems can be classified in two categories: ones that

provide centimeter level positioning by requiring ultrasound receivers to be installed

on ceilings and ultrasound transmitters to be carried by users (e.g Active Bat [39]),

and ones that provide meter level accuracy by requiring ultrasound transmitters to be

installed at known coordinates inside buildings and ultrasound receivers to be carried

by users (e.g Cricket [60] and WALRUS [27]). Like RF-based systems, Ultrasound
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Table 1.2: Comparison of Localization Systems

System Precision
Infrastructure
Cost

Privacy

ActiveBadge Room-level RF Sensors and Tags Server tracks users

Active Bat 5-10 cm Ultrasound receivers and transmitters Server tracks users

Cricket 1 m Ultrasound receivers and transmitters User device computes location

Radar 5 m WiFi beacons User device computes location

GSM-based 5-50 m GSM coverage User device computes location

Place Lab 15-30 m WiFi, GSM or Bluetooth beacons User device computes location

Smart Floor Sub-room level Special floor tiles Server tracks user

EasyLiving Sub-room level Cameras in rooms Server tracks user

WALRUS Room-level PC per room and WiFi beacons User device computes location

Audio Location 15-30 cm Microphones Server tracks users

PowerLine Sub-room level Signal generating modules and receivers User device computes location

Camera-phone Sub-room level None User device computes location

Light-intensity Room-level None User device computes location

systems also require specialized infrastructure to be installed and thus incur significant

cost of deployment.

WiFi-based systems (e.g Radar [22]) operate by recording and processing signal

strength information at multiple WiFi base-stations. They use signal propagation mod-

eling to determine user’s location with up to five meters accuracy. Although no ad-

ditional hardware is required, WiFi coverage is assumed. Also, WiFi-based systems

cannot directly determine which room the user is in, which is important for many

location-aware applications. Bluetooth-based systems [28] determine user’s location

upto a few meters, but require Bluetooth radios/base-stations to be installed in the

environment, thus suffering from the same drawback as the other localization systems.

GSM-based localization [56], which uses wide signal-strength fingerprints, is a good

solution for indoor localization because it does not require any extra infrastructure

and is claimed to achieve a median accuracy of five meters. The main limitation of

a GSM-based approach is that it is hard to tell which side of the wall the user is on.

This is crucial for several applications. A location-aware system may connect the user’s

phone to the wall-display in the neighboring room, which is not acceptable. GSM-

based solutions make the assumption that the user has a GSM phone, while in several

countries including the US, CDMA is more popular.

Place Lab [48] is an effort at combining radio-based localization techniques. It
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works by listening for the transmissions of radio sources such as WiFi access points,

fixed Bluetooth devices, and GSM cell towers. A beacon database provides location

information based on the IDs of beacons. PlaceLab can provide user location with up

to 15 meters of accuracy. PlaceLab is a high-coverage location determination system.

However, presence of beacons, corresponding receivers and beacon database is assumed.

Audio Location [75] determines user location by using microphones that listen to

sounds made by the users themselves such as finger clicking. It is a low-cost system

that achieves centimeter level accuracy. However, it assumes the presence of micro-

phones in the environment and may not work properly in a noisy environment. Power-

Line localization [57] achieves sub-room level localization by fingerprinting of multiple

tones transmitted along power lines. Though effective, this approach requires signal-

generating modules to be installed in buildings and corresponding receivers to be carried

by users. Smart Floor system [55] uses special floor tiles to identify users based on their

footsteps. Although the user does not have to carry any special device, the floor needs

to be instrumented with these special tiles.

Microsoft’s EasyLiving [47] project uses cameras installed in rooms to track humans

using vision techniques. The cost of installing cameras in every room makes deployment

difficult. Privacy is is a big issue as users are continuously watched. Work is being done

in using camera phones as interaction devices by tagging physical objects with visual

codes and using vision techniques to extract and interpret the information stored in

these visual codes [70, 24, 69, 74, 78]. Localization could also be possibly achieved with

this method. However, physical objects would have to be tagged.

With the exception of GSM-based, all other approaches require specialized devices

to be installed in buildings, which increases the cost and decreases the chances of

deployment. GSM-based localization has its own limitations as described earlier. Since

the goal of location-aware computing is to obviate the need of a ubiquitous computing

infrastructure and to minimize user involvement, the cost of the localization system and

the inconvenience of using it should be negligible, otherwise the purpose is defeated.

This dissertation presents two infrastructureless solutions [67, 64] for indoor local-

ization: camera-phone-based localization and light-intensity-based localization. These
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two solutions can potentially be combined together for higher accuracies. In the camera-

phone-based localization solution [67], images are periodically captured by the camera

phone worn by the user as a pendant and transmitted to a web server over 3G. The

web server maintains a database of images with their corresponding locations. Upon

receiving an image, the web server compares it with stored images, and based on the

match, estimates user’s location. We accomplish this with off-the-shelf image matching

algorithms, by tailoring them for our purpose. This solution does not require any in-

frastructure to be installed in the environment; neither custom hardware nor wireless

access points are required; physical objects do not have to be ”tagged” and users do not

have to carry any special device. In the light-intensity-based localization solution [64],

the location of the user is determined based on the intensity of light incident on a light

sensor worn by the user. In the dissertation, we show that every room has a unique

light-intensity fingerprint that can be used to identify it. This solution also does not

require any infrastructure to be installed in the environment, and the user is only re-

quired to carry a tiny light sensor. Table 1.2 compares the popular indoor localization

systems on a number of metrics.

1.5 Location-aware Battery Management

Location-aware personal computing is centered around the idea of running client fron-

tends and applications on resource-constrained personal devices (e.g smart phone),

many of which would run as background tasks including daemons for determining user’s

location, daemons for listening to incoming network requests, daemons for warming the

phone cache etc. These processes would compete for the limited resources on these

devices. The most crucial resource, which determines the availability of a personal de-

vice, is battery lifetime. We study the case of smart phone, which in this dissertation,

represents the intelligent personal device.

On smart phones, the interfaces that inform the user of the battery levels (such as

ACPI [1]) have not kept up with the evolution of the capabilities of these devices. A

simple “battery remaining” or even “time remaining” does not enable the user to make

the right decisions as to the spend of the energy budget and the request for recharging.
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Prior research on dealing with the limited battery lifetime problem has focused on

optimizing energy at different levels of the stack, starting with hardware all the way up

to the application layer. The most commonly used energy optimization mechanism is

hibernation, in which the CPU or other hardware units of a system are put in low-power

mode when not being actively used. This is commonly done by the operating system.

Dynamic voltage scheduling is another commonly used optimization technique in which

a compiler-directed algorithm identifies program regions where the CPU can be slowed

down with negligible performance loss [46, 40]. Two effective application-level energy

optimizations have been proposed: cyberforaging [23] and application adaptation [32,

20]. In cyberforaging, computation is off-loaded from the battery powered mobile device

to a wall-powered server whenever profitable. In application adaptation, the fidelity of

an application is lowered whenever low battery levels are detected. While a lot of

work has been done on optimizing energy, there has been limited research on managing

battery lifetime across applications and treating energy as a first-class operating system

resource. To the best of our knowledge, ECOSystem [86] is the only piece of work that

takes this approach. ECOSystem is a framework for sharing battery lifetime as a

resource across competing applications.

Location information has never been exploited in managing battery lifetime. In this

chapter, we describe a location-aware battery management scheme [66, 63] for smart

phones, which is based on two key observations. First, it is necessary to create an

energy budget for different applications in order to prevent low priority applications

(such as background tasks) from affecting the availability of high priority applications

(such as telephony). Second, the knowledge of when the user will recharge the phone

next is crucial to managing battery lifetime on phones. This is because the knowledge

of when the next recharge will happen determines the total battery lifetime available

to applications. User studies show that users typically charge their phones at fixed

locations [25]. Hence, by predicting the whereabouts of the user, it should be possible

to predict charging opportunities. We present a system architecture for logging user

information (such as location, call duration, etc) on the phone and a set of algorithms

for making predictions based on these logs. This allows the system to determine the
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amount of battery lifetime needed for safe execution of crucial applications and to warn

the user if one or more non-crucial applications need to be terminated.

1.6 Location Privacy

Extensive deployment of location-aware computing endangers user’s location privacy

and exhibits significant potential for abuse. The US government realized the seriousness

of the this problem and released the Location Privacy Protection Act [8] in 2001. Unless

the users are secure about their location privacy, they would be reluctant to use location-

aware applications. This hurdle would have to be overcome if location-aware computing

is to be globally accepted.

Releasing location information to untrusted parties in a privacy-friendly manner is

a challenging task. Early work on context privacy (which includes location) focussed

mostly on a policy-based approach [31, 43]. Policies could be of one of the following two

kinds: those specified by the service providers and those specified by the users. The

policies served as a mutual agreement on the manner in which data was to be collected,

shared and used. The main problem with this method was that the enforcement of these

policies was loosely defined. The users essentially had to trust the service providers for

abiding by these policies.

The use of policy-based approach was followed by the application of k-anonymity [77,

36] to location information using data perturbation techniques. Location information

was depersonalized and perturbed before being forwarded to the LBS. This was ac-

complished by reducing the spatiotemporal resolution (using a quadtree-based algo-

rithm) until the data met the k-anonymity [77, 36] constraint. A subject is considered

k-anonymous if it cannot be distinguished from at least k - 1 other subjects. For ex-

ample, if the location information sent by a mobile subject is perturbed to replace the

exact coordinates by a spatial interval, such that the locations of at least k - 1 other

subjects belong to that interval, then the adversary cannot match the location of the

subject to its identity without a certain amount of uncertainty. The uncertainty would

increase with k, providing better privacy. This method is the state of the art in location
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privacy. The main drawback of this method is that it may lead to inferior quality of

service where accurate location information is desired. Also, it uses a global value of

k, which is decided statically, where a smaller value of k could provide desired privacy

levels without affecting quality of service significantly.

This dissertation proposes an information-flow control based approach for location

privacy, which preserves quality of service. Information-flow control policies tend to im-

pose restrictions on the manner in which sensitive data flows through a program/system.

State of the art in information-flow control is Non-interference [26, 59]. Intuitively, non-

interference requires that high-security information does not affect the low-security ob-

servable behavior of the system. In other words, private data does not influence public

data. That is, if the value of a public variable q depends on that of a private vari-

able p then non-interference is violated. In effect, non-interference isolates private data

from public data. In doing so, it guarantees that the publicly observable behavior of

a system/program that does not reveal anything about its private behavior. However,

data isolation is an extreme measure, and in many real applications it is not possible

to isolate private data from public data. As such, non-interference cannot be applied

for location privacy.

This dissertation proposes a weaker model of information-flow control called non-

inference [62]. Non-inference requires that the adversary should not be able to infer

the value of a private variable based on the values of public variable. Non-inference,

therefore, allows information to flow from private variables to public variables, but

prohibits the adversary from learning the value of any private variable from public

variables. In this dissertation, we show how non-inference can be used to preserve

location privacy.
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1.7 Summary of Dissertation Contributions

The main contributions of this dissertation were published in the Proceedings of the

8th International Conference on Pervasive Computing and Communications [63], Pro-

ceedings of the 6th International Conference on Pervasive Computing and Communi-

cations [68], the Proceedings of the 7th International Workshop on Mobile Computing

Systems and Applications [67], the Proceedings of the 3rd International Conference on

Mobile and Ubiquitous Systems [62], the Proceedings of the 1st International Conference

on Mobile and Ubiquitous Systems [61], the Adjunct Proceedings of the 5th International

Conference on Pervasive Computing [64, 66], the Proceedings of the 10th International

Workshop on Future Trends in Distributed Computing Systems [41], and Lecture Notes

in Computer Science [65].

In this dissertation, we investigate the four key issues in location-aware personal

computing: (1) seamless service discovery and provisioning, (2) infrastructureless indoor

localization, (3) battery management for smart phones and (3) location privacy. We

provide two solutions for determining user’s location indoors without requiring any

extra infrastructure. The first solution uses vision algorithms to determine user location

based on the images captured by the camera phone worn by the user as a pendant [67].

The second solution determines user location with room-level accuracy based on the

intensity of light incident on a light sensor worn by the use [64]. These two solutions

can potentially be combined together for higher accuracies.

We present a protocol for ad-hoc service discovery and provisioning [68, 61]. The

services are delivered to the smart phone of the user over Bluetooth. Bluetooth SDP and

3G are used together for service discovery, interaction and payment. The protocol has

been implemented and tested on Sony Ericsson P900 phones. Results show satisfactory

performance in terms of service provisioning latency. We also present an application-

level solution for reducing the Bluetooth discovery time in scenarios where there are

multiple smart phones carrying out service discovery simultaneously.

We show how location information can aid in battery management on smart phones [66,

63]. By storing past location traces of the user, future whereabouts of the user can be
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predicted. This information can be useful in estimating when the next opportunity for

charging the phone will be encountered. The knowledge of when the user will charge

the phone next can be instrumental in managing the limited battery lifetime on smart

phones across multiple applications.

Finally, we present a novel information flow control model, called Non-inference [62],

and show how it can be used to prevent unnecessary disclosure of location information

to untrusted location-based services. Non-inference is enforced using static program

analysis.

1.8 Contributions to the Dissertation

Peter Stern and Niket Desai implemented the applications on top of SDIPP proto-

col [68]. Ahmed Elgammal provided the codebase for the vision algorithms used in

camera-phone-based localization [67]. Pravin Shankar and Andrew Frankel helped with

the implementation and experimentation of the camera-phone-based localization sys-

tem [67].

1.9 Organization of the Dissertation

In chapter 3, we describe SDIPP, a protocol for discovering and provisioning services

to the smart phone. We also summarize the design of Portable Smart Messages, which

are used by SDIPP for multi-hop service discovery.

In chapter 3, we describe two infrastructureless solutions for indoor localization,

which use camera phone and light sensor respectively. The evaluation focuses on mea-

suring the accuracy of the two solutions.

In chapter 4, we describe a location-aware battery management scheme for smart

phones, and present experimental results obtained with real user data.

In chapter 5, we present a novel information flow control model, called Non-inference,

and show how it can be used to prevent unnecessary disclosure of location information

to untrusted location-based services.

We conclude in chapter 6
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Chapter 2

Location-aware Service Discovery and Provisioning

Provisioning locally embedded services to the user without prior knowledge of the envi-

ronment is an important aspect of location-aware personal computing, as it is not always

possible to customize web services to serve as local services. Protocols are needed for

seamlessly discovering these locally embedded services and provisioning them to the

user. These protocols are called Service Discovery Protocols (SDP’s). Several service

discovery protocols (SDP’s) have been proposed in the past (see Table 1.1). SDP’s

can be roughly classified into two categories: client-service model and client-service-

directory model. In client-service model, services advertise themselves and clients di-

rectly query the services. In client-service-directory model, services cache their informa-

tion on a centralized directory and clients query directories in order to discover services.

While the client-service model requires less infrastructure and is more suitable for no-

madic environments, it is not nearly as powerful as the client-service-directory model.

There is a need for a protocol that takes a hybrid approach, such that the power of

client-service-directory model is realized without the need for extra infrastructure.

Bluetooth is a wireless protocol designed for low-power consumption and short-

range communication (1-100 meters). Its primary purpose is to connect devices such

as mobile phones, printers, laptops and digital cameras. Bluetooth also has its own

service discovery protocol. In Bluetooth SDP, the client continuously transmits inquiry

packets and hops frequencies 3200 times per second. A service that allows itself to be

discovered, regularly enters the inquiry scan state to respond to inquiry messages, hop-

ping frequencies once in 1.28 seconds. Bluetooth SDP has been incorporated in smart

phones and follows the client-service discovery model. Since smart phones have always-

on internet connectivity through 3G/GPRS, directories can be conveniently maintained
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Figure 2.1: SDIPP Discovery Model

on the internet.

In this chapter, we present a Service Discovery, Interaction and Payment Protocol

(SDIPP) [68] that follows the client-service-discovery model. SDIPP exploits dual-

connectivity (Bluetooth and GPRS/3G) on smart phones to simultaneously connect

with local services and web services. In the first phase, the services are discovered.

In the second phase, a service is selected (based on the location of the user) and a

mechanism for interacting with the service is decided. In the third and final phase, the

user interacts with the service and pays for its usage (when required). In the following,

we describe the basic architecture of SDIPP and the protocols involved. Portable Smart

Messages [61], which is used by SDIPP for multi-hop service discovery, is also described.

2.1 Protocols

SDIPP consists of three protocols: protocol for discovering services, protocol for invok-

ing services and protocol for paying services. In the following, we describe each of the

three protocols.

2.1.1 Discovery Protocol

The discovery protocol is hierarchical in nature and builds on top of Bluetooth ser-

vice discovery protocol [14] (which is query based), and 3G. The goal is to achieve the

power of the client-service-directory model without the need for extra infrastructure.

Bluetooth SDP provides service browsing without apriori knowledge of service charac-

teristics. It does not include functionality for invoking services. However, it can be used

in conjunction with another protocol for service invocation. The discovery protocol is
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a 3-step process:

One-hop discovery: Services in the proximity (one-hop) are discovered using Blue-

tooth SDP. If the list of services discovered by Bluetooth SDP includes the desired

service, the discovery phase is over. If it does not include the desired service, but in-

stead lists a Service Discovery Service(SDS), the SDS is invoked to locate the desired

service in a multi-hop fashion.

Multi-hop discovery: SDS would implement a mechanism for discovering services

and could exploit the ad-hoc network for doing so. SDS could be implemented using

any of the previously proposed service discovery protocols.

In SDIPP, multi-hop discovery is carried out using smart messages [61]. Smart Mes-

sages are user-defined distributed applications similar to mobile agents, which execute

on nodes of interest defined by properties. Smart Messages migrate between nodes

of interest using content-based routing, where content/property is stored in TagSpace.

TagSpace is name-based memory and is composed of tags. A tag is a (name, data)

pair. A service is identified by a tag, which it creates on the device it runs on, for it

to be discoverable by a Smart Message. The tag stores the service description. An

SDS implemented using Smart Messages eliminates the need of having directories in

the ad-hoc network. If a directory exists, it can be exploited but the discovery does not

depend on the presence of a directory.

Web-based discovery: If no SDS is listed, the GPRS/3G connectivity on the phone

is used to contact a web service that can locate the desired service. The services

would have themselves registered on the web server as a way of advertising themselves

and would periodically update their information on the web server. This web service

would serve as a directory that lists the location of all the registered services around

a particular location. A simple interval tree representation for storing location and

services is used.

Since downloading data from the internet is not free of charge, directory lookup

is the last step in the protocol. The personal information and preferences of the user
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are stored in the Cache on the smart phone. The web service lists the services based

on user’s location, personal information and preferences. Figure 2.1 summarizes the

discovery phase.

2.1.2 SDIPP Interaction Protocol

In a ubiquitous computing environment, the interaction of the client with a service

is assumed to be spontaneous, which implies that the protocol for interacting with

the service would have to be learnt on the fly. The interaction protocol in SDIPP

is inspired by the idea of downloading the client-side code for the service on-the-fly

as used in Jini [81]. Every service registers itself with a web server, which assigns it

a unique id and stores the interface that can be downloaded for interacting with the

service. Figure 2.2 gives a pictorial view of the interaction protocol. The protocol can

be summarized as follows:

• The smart phone lists the services discovered during discovery phase. A request

is sent to the desired service to send back its unique id over the Bluetooth con-

nection.

• The service responds with its id.

• The id along with the personal information of the user stored on the smart phone

is sent over to a trusted web server over the GPRS/3G connection. The personal

information of the user would be used for authenticating her if the service requires

that. A weaker form of authentication would be using the IMEI number of the

phone, which is a 15-digit unique code that is used to identify a GSM phone.

• After an optional authentication, the web server responds with the code and data

that will be used for interacting with the service. The code is a Java program

that contains the protocol and interface for interacting with the service.

• Since the code is obtained from a trusted server, it is assumed to be safe code and

is dispatched for execution on the phone. All further communication between the

phone and the service takes place as a result of executing the downloaded code.
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The web server(s) for storing the downloadable interface for the services may or may

not be different from the web server(s) that act as service directories. Downloading

of code from the internet is implemented using OTA (Over-The-Air) provisioning [9].

OTA is a method of distributing new software updates to mobile phones over the cellular

network.

2.1.3 SDIPP Payment Protocol

The payment protocol is based on the electronic cash representation proposed by the

Millicent protocol [35]. There are a number of existing and proposed protocols for

electronic commerce such as DigiCash [5], CyberCash [4], First Virtual [6], NetBill [21]

and Millicent [35]. None of these protocols has taken off due to lack of supporting

infrastructure to implement them in real life.

Digital cash is normally issued by a central trusted entity (like a bank). The integrity

of digital cash is guaranteed by the digital signature of the issuer, so that counterfeiting

digital cash is extremely hard. However, it is trivial to duplicate the bit pattern of the

digital cash to produce and spend identical (and equally authentic) cash.

Millicent proposes the idea of using accounts based on scrip and brokers to sell scrip.

A piece of scrip represents an account the user has established with a vendor. At any

given time, a vendor has outstanding scrip (open accounts) with the recently active

users. The balance of the account is kept as the value of the scrip. When the customer

makes a purchase with scrip, the cost of the purchase is deducted from the scrip’s value
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Figure 2.3: SDIPP Payment Protocol

and new scrip (with the new value/account balance) is returned as change. When the

user has completed a series of transactions, he can ”cash in” the remaining value of the

scrip (close the account).

Brokers serve as accounting intermediaries between users and vendors. Customers

enter into long-term relationships with brokers, in much the same way as they would

enter into an agreement with a bank, credit card company, or Internet service provider.

Brokers buy and sell vendor scrip as a service to users and vendors. Broker scrip serves

as a common currency for customers to use when buying vendor scrip, and for vendors

to give as a refund for unspent scrip.

In our model, the broker is a web service that the user already has an account with.

The vendor is the service that the user wishes to use and pay for. However, Millicent

model assumes that before the customer initiates transaction with the vendor, she ei-

ther already has the vendor scrip or the broker scrip, which can be used to buy vendor

scrip directly from the vendor. Having service/vendor scrip prior to discovering the

service would imply that the user already had some knowledge about the service. This

is not acceptable in ubiquitous computing scenarios where transactions are primarily

spontaneous. Having broker scrip prior to discovering the service is a reasonable as-

sumption to make, however, in order to be able to use the broker scrip, the service in

question should be able to verify the authenticity of the broker scrip, which requires

additional infrastructure.
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Dual connectivity on phones allows the user to bypass both these assumptions be-

cause the user can be connected to the broker and the service at the same time.

Figure 2.3 illustrates the payment protocol. It can be described as composed of the

following steps:

• The smart phone requests the service for its broker’s URL and the bill over Blue-

tooth connection.

• The service responds with its broker’s URL and the bill.

• The service id, broker’s URL and bill amount is sent over to the user’s broker over

GPRS/3G along with the personal information of the user stored on the phone.

• User’s broker buys service scrip from service’s broker on user’s behalf. The amount

of scrip bought is greater than or equal to the bill amount.

• User’s broker responds to the smart phone with the service scrip .

• User pays the service using the service scrip.

Brokers are assumed to be trusted services that have service providers as their clients

and other brokers as their peers. Even if the broker tries to cheat, the customer and

the service provider can independently check the scrip and detect broker fraud.

Service provider fraud consists of not providing service for valid scrip or deducting

more amount from the scrip than is valid. If the service provider tries to cheat, the

customer can detect the fraud and complain to the broker, who will take care of it.

If the customer is cheating, then the service provider’s only loss is the cost of de-

tecting the bad scrip and denying service. Every transaction requires that the customer

knows the secret associated with the scrip. The protocol never sends the secret in the

clear, so there is no risk due to eavesdropping. No piece of scrip can be reused, so a

replay attack will fail. Each request is signed with the secret, so there is no way to

intercept scrip and use the scrip to make a different request.

This payment protocol provides a security model that is well suited for profit-based

services, where the service and the user need to be authenticated to each other and

anonymity maintained at the same time.
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2.1.4 Bootstrapping

The service registers itself on a web directory (for discovery) and a web broker (for

payment). In addition, the service uploads the interface and data needed to interact

with it on a web service after authentication and certification. For it to be discoverable

by an SDS implemented using Smart Messages, the service creates a tag containing the

service description.

2.1.5 SDIPP Architecture

The SDIPP architecture consists of the three protocols described above, which are im-

plemented on top of three building blocks: Bluetooth engine, GPRS Engine and Cache.

Bluetooth Engine is invoked by the protocols to discover or interact with the services

in the proximity. It is a layer above the Bluetooth stack and provides a convenient

Java API for accessing the Bluetooth stack. GPRS Engine is invoked to carry out the

communication between the phone and the web services over GPRS.

Cache is persistent storage. The personal information of the user along with her

preferences regarding services are stored in the cache. Personal information of the user

may include name, age, address, credit card number etc. Storing personal information

serves two purposes: first, it provides a way of identifying the user and authenticating

her if need be; second, personal information along with preferences and location help

in identifying the best suited service for the user during service discovery phase.

2.2 Portable Smart Messages

Portable Smart Messages are used by SDIPP in multi-hop service discovery. In this

section, we describe the design of Portable Smart Messages which is an extension of the

Smart Message(SM) [44] model.

The design of Smart Messages (SMs) has been inspired by mobile agents. A Smart

Message is a user-defined application whose execution is distributed over a series of

nodes using execution migration. The nodes on which SMs execute, called nodes of in-

terest, are named by properties and discovered dynamically using application controlled
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Figure 2.4: Portable Smart Message Architecture

routing. To move between two nodes of interest, an SM calls explicitly for execution

migration, and routes itself without any underlying routing support. An SM consists

of code bricks(e.g Java class files), data bricks(e.g Java objects which store data) and

execution state. SMs are resilient to network failures, as they carry the code for routing

themselves, and can therefore store-and-forward themselves opportunistically.

Portable SMs is an extension of the Smart Message model and has been tailored

to suit the requirements of resource constrained devices (such as smart phones), which

come with pre-installed Java Virtual Machine (JVM). In the design of Portable SM,

special attention has been paid to portability and lightweightness. In addition to be-

ing lightweight, Portable SMs provide the functionality to support service execution,

discovery, and migration in highly volatile mobile ad hoc networks.

2.2.1 Portable SM Architecture

Every participating node has to be equipped with the Portable SM middleware. The

middleware is written completely in Java (using J2ME CDC and CLDC), and can be

ported to the common JVMs. It consists of the following components (as shown in

Figure 2.4):

Tag Space: Tag space is name-based virtual memory. It is composed of tags, which

are (name, data) pairs. These tags are Java objects that can be created, deleted,

read from, or written into by Portable SMs. Nodes are identified by properties that
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are stored in tags. Also, services running on these nodes create tags for advertising

themselves. Tags are, therefore, integral to content-based routing and service discovery

over Portable SMs.

In addition to providing storage, tags also provide inter-SM communication and

synchronization. Commonly, a blocked SM is woken up by the interpreter when the

tag is written by another SM. Each time an SM blocks on a tag, its corresponding Java

thread is terminated. Each time an SM is unblocked (and consequently dispatched for

execution), a new Java thread is created for it.

Admission Manager: The admission manager is responsible for receiving and ad-

mitting incoming SMs over different network interfaces. Our admission manager listens

on the TCP/IP socket interface (for receiving Portable SMs over 802.11b) as well as

Bluetooth L2CAP interface (for receiving Portable SMs over Bluetooth). While ad-

mitting SMs into the system, the admission manager verifies the data bricks and state

against certain verification policies.

Code Cache: Code cache stores frequently used code bricks. In order to implement

Code cache, Java’s classloader is exploited. The Java dynamic class loading mecha-

nism is used to load a class representing a code brick. In the process, a new Class

instance of the corresponding class is created. The classloader will not unload the

class as long as there is a live reference to the Class instance. References to the cached

classes are stored such that these classes are not unloaded by the classloader. When the

caching policy chooses a class for eviction, the stored reference for that class is removed.

Scheduler: The scheduler is responsible for dispatching Portable SMs (from the ready

queue) for execution on the JVM. The scheduler is implemented as a Java thread that

extracts an SM from the ready queue in FIFO order, dispatches it for execution as a

Java thread, and goes to sleep. When the SM completes its execution, it wakes up the

scheduler using the Java’s thread synchronization mechanism.
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2.2.2 Portability

For implementing migratory applications or services, it is important that they be

portable and transferable with minimal overhead. The original Smart Message architec-

ture [44] was implemented by modifying Sun’s Java Kilobyte virtual machine (KVM).

The whole architecture was implemented inside the VM because of the need for VM

support in capturing the execution state and restoring it at destination to resume the

execution. This implementation, although powerful and efficient, is not portable. Since

devices like Smart Phones and Smart Watches come with a pre-installed Java VM, (and

most of the time users do not want to or cannot modify the system software on their

devices), we designed the Portable SM middleware to execute on top of unmodified

Java virtual machines.

The main issue to be solved in a pure Java implementation of a migration-based

middleware is performing migration without requiring the VM to capture and restore

the execution state. The execution state is located inside the VM and is not directly

accessible to the external world. In order to provide migration without modifying

the VM, we designed a mechanism for capturing and restoring the execution state by

incorporating all the necessary operations in the SM itself. The heart of our approach

lies in instrumenting the SM bytecode in such a way that the SM can save its state

before migration and restore it before resumption with a minimal overhead. Using this

mechanism, the state is encoded in the data bricks, and no explicit state information

is shipped. Being resource and bandwidth constrained, mobile ad hoc networks impose

constraints on the amount of data that can be transferred for reliable communication.

One of the main goals of Portable SM middleware is to make the migration mechanism

extremely lightweight and efficient. Our Java bytecode instrumentation mechanism

increases the Java bytecode size by only 3% as opposed to previously proposed portable

Java migration mechanisms, which increase the bytecode size by as much as 400%. The

mechanism is generally applicable to any system based on execution migration of Java

programs

In the following, we describe the migration mechanism, which is generally applicable
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to any system based on execution migration for Java programs. To migrate a Portable

SM, its code bricks, data bricks, and execution control state have to be migrated.

The code bricks are Java class files, and data bricks are Java objects. Java reflection

mechanism is used for loading the classes dynamically at the destination node. The Java

serialization mechanism is used to marshal/unmarshal the data bricks across migrations.

Since Portable SMs do not use local variables across migrations (i.e., the programmers

have to include any data that they need across migrations in the data bricks), object

deserialization works fine to restore the values of all objects and variables.

The main problem that needs to be solved is how to capture and restore the execu-

tion control state (i.e., located inside the VM), which consists of the instruction pointer

and the method call stack. Our solution is to instrument the Portable SM bytecode in

such a way that SMs can capture and restore their own runtime stack before resuming

their normal execution at destination. The main idea is to label the different code

sections and use a virtual instruction pointer to keep track of which code sections have

already executed. At the remote site, the program is executed from the beginning and

the code sections that have already executed are skipped, thereby reconstructing the

call stack.

There are numerous reasons for choosing bytecode transformation [73, 79] over

source code transformation [33]. First, source code transformation does not provide

fine-grained control as provided by a bytecode transformation (e.g., the lack of goto

statement in Java, the difficulty of instrumenting compound statements). Second, in-

strumenting a loop in source code requires the loop to be unfolded in order to preserve

correct execution semantics. Third, instrumenting the source code causes the corre-

sponding bytecode to blow up, and therefore, incurs heavy overheads.

Definitions

We use the term critical method to refer to any method that can directly or indirectly

invoke sys migrate or blockSM. These are the only two methods that can lead to migra-

tion and hence capturing and restoring of the execution control state. Therefore, only

critical methods need to be instrumented. Since a migration (or block) happens at the
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end of a method call chain, the instrumenter has to detect all the methods from which

sys migrate (or blockSM) is statically reachable in order to recognize critical methods.

To simplify the exposition throughout this section, we will refer only to migration.

The bytecode instrumenter adds an integer array ip[length] to every class, where

length is the number of methods in that class. An element ip[i] is used as a pseudo

instruction pointer for the ith method. The code of a critical method is divided into

code regions separated by critical method invocations. A critical method invocation

marks the end of a code region and the beginning of another new code region.

Approach

The value of ip[i] is incremented only before a critical method invocation, and hence,

serves as a pointer to the boundaries between code regions. At the time of resumption,

the value of ip[i] also serves as a pointer to the last statement executed inside the ith

method of the class.

The last statement executed inside a critical method before a migration is always a

critical method invocation (i.e., either directly a sys migrate call or a chain of method

invocations that ends with a sys migrate). This is the reason why incrementing the

value of ip[i] only before critical method invocations is sufficient. The value of ip[i] can

be used during resumption to locate the last method invocation made from method i

before migration. Since every object has a unique ip associated with it, ip is carried

over as a part of data bricks and restored during deserialization.

During resumption, each SM starts its execution from the beginning of the run()

method of the main class (i.e., Portable SMs execute as Java threads). The instrumenter

introduces a switch statement at the beginning of every critical method to redirect the

instruction pointer, based on the value of ip[i], to the last statement executed before

migration. Hence, the code already executed is skipped. For every method other

than the one that directly invoked sys migrate, this will result in an invocation of the

method that was adjacent to this method in the runtime stack before migration. As

a consequence, the runtime stack is recreated. The ip[i] of the method that directly

invoked sys migrate serves as a pointer to the statement immediately following the
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class A{

void <init>{

...

}

void Method1(){

int j = 0;

int i = 0;

System.out.println("hello");

...

Method2();

...

Method3();

...

Method4();

...

Migration.sys_migrate();

...

TagSpace.blockSM();

...

}

}

Figure 2.5: Portable SM Pseudo-code before Instrumentation

sys migrate call.

An SM is said to be in resumption mode when it is recreating the runtime stack. To

differentiate between resumption mode and normal execution, the instrumenter adds a

global flag: resumption. This flag is important for preserving the correct execution

semantics. Its purpose is to activate or deactivate the switch statement introduced by

the instrumenter at the beginning of each critical method depending on whether the

SM is undergoing normal execution or is in resumption mode. If the SM is resuming,

it is necessary to execute the switch statement in order to skip the already executed

code. If the SM is undergoing normal execution, it is necessary to ignore the value of

ip[i] to ensure that a method invocation is not influenced by this value (i.e., ip[i] might

be non-zero due to an earlier invocation of the same method). The resumption flag

of the SM is set by the system before the SM is migrated and reset by the SM itself

once the SM has reconstructed the method call stack, at which point normal execution

of the SM begins. To achieve this, the resumption flag is reset after every statement

containing a call to sys migrate.
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class A{

public int[] ip;

void <init>{

ip[] = new int[5];

...

}

void Method1(){

int j = 0;

int i = 0;

if(SM.resumption == true){

switch(ip[1]){

case 0: goto label 0;

case 1: goto label 1;

case 2: goto label 2;

case 3: goto label 3;

case 4: goto label 4;

}

}else{

ip[1] = 0;

}

label 0 : System.out.println("Hello");

...

ip[1]++;

label 1 : Method2();

...

Method3();

...

ip[1]++;

label 2: Method4();

...

ip[1]++;

Migration.sys_migrate();

label 3: SM.resumption = false;

...

ip[1]++;

TagSpace.blockSM();

label 4: SM.resumption = false;

...

}

}

Figure 2.6: Portable SM Pseudo-code after Instrumentation
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class X{
   Y y;
   void run(){

....
y = new Y();
y.Method1();
....

}
....

 }

class Y{
   Z z;
   void Method1(){
       ....
       z = new Z();
       z.Method2();
       ....
   }
  ....
}

class Z{
    void Method2(){
        ....
        Migration.sys_migrate();
        ....
    }
    ....
}

ip ip

ip

class X{
....

   void run(){
switch(ip)

 }
}

....
y.Method1();
....

class Y{
....

   void Method1(){
switch(ip)

  ....
       z.Method2();

....
}

 }

class Z{
....

    void Method2(){
switch(ip)

        Migration.sys_migrate();
  ....

 }
}

  ....

Migration Snapshot

Resumption

Figure 2.7: Example of Resuming SM Execution after Migration

Example

Fig. 2.5 and 2.6 illustrate the transformation done by the bytecode instrumenter. Al-

though the transformation is done on the bytecode, for the sake of simplicity, we show

a higher level transformation on the corresponding Java pseudo-code. In the example,

classA has four methods, excluding the constructor. Let us assume that Method1,

Method2, and Method4 are critical methods (i.e., they can directly or indirectly invoke

sys migrate or blockSM), while Method3 is not a critical method. We present the

bytecode instrumentation only for Method1, but similar transformations take place on

the other critical methods (Method2 and Method4 in this case) as well. As Method3

according to our assumption is not a critical method, it is not instrumented.

Since classA has five methods including the constructor, ip is declared as an array

of length five. We initialize this array in the <init> method which is internal to the

bytecode and is invoked every time a new object of the class is created. Given that

Method1 has four invocations to critical methods (two indirect, and two direct), its code

is divided into five code regions labeled from 0 to 4. The value of ip[1] is incremented

before every invocation to a critical method. For instance, ip[1] is incremented before

an invocation to Method2, but not before an invocation to Method3 which is not a

critical method.
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Table 2.1: Performance Evaluation of SDIPP

Operation
Average
Time of
Completion

Bluetooth Service Discovery 22.5 sec

Ad-hoc Service Discovery 2 sec × No. of Hops

Web directory lookup 2.5 sec

Interaction Protocol(Lower Bound) 3 sec

Payment Protocol 6 sec

Suppose Method1 had called sys migrate before migration, the value of ip[1] would

be 3. When the SM resumes execution at the destination node and enters Method1, the

instruction pointer would be redirected to label 3 by virtue of the switch statement; from

this point on, normal execution of the SM begins. If on the other hand Method4 had

called sys migrate, then the value of ip[1] would be 2. When the SM enters Method1

after resuming at the destination node, the instruction pointer would be redirected to

label 2 which contains a call to Method4, thereby skipping the already executed code

in Method1 and recreating the runtime stack.

This example also shows how the resumption flag is used. If the flag is set to false,

the execution of the methods starts from the beginning. Otherwise, it starts with the

code region pointed to by ip[1]. As soon as the SM recreates the stack, the resumption

flag is reset by the SM itself. This ensures that any future invocation to Method1 or any

other critical method will not be affected by the value of ip. Note that the resumption

flag is local to an SM, but global to all the classes that constitute that SM.

Fig. 2.7 briefly demonstrates the working of our instrumentation scheme. The upper

part of the figure gives a pictorial view of ip in three critical methods at the time of

migration. The arrows in the lower part of the figure show the control flow of the SM

from the time of execution resumption at the destination until the method stack is

recreated.
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2.3 Implementation and Evaluation

The SDIPP protocol was implemented and tested on Sony Ericsson P900 smart phones.

MIDP and JSR-82 (Java Bluetooth API) were used to implement the architecture.

Table 2.1 shows the time of completion for the different phases of the SDIPP protocol.

The time of completion of the Interaction Protocol depends on the size of the code

downloaded from the Internet. The lower bound is determined by the size of the jad

file of the corresponding code which is typically 250 Bytes. The time of completion

of the ad-hoc service discovery over Smart Messages depends on the number of nodes

(hops) involved.

Device and service discovery together on an average takes around 22.5 seconds to

complete on P900 phones. We implemented and tested a few applications on top of

SDIPP. For details refer to [68].

Portable SM architecture was ported and tested on HP iPAQs and Sony Ericsson

P800/P900 phones. Personal Java and C++ (connected through JNI) were used to

port SMs on phones. Table 2.2 compares the cost of Portable SM execution (including

migration) on Sony Ericsson phones with that on HP iPAQs. The results indicate

that, for establishing a Bluetooth connection, it takes on an average a constant of 1

second, and the round-trip time varies from 300 ms to 1600 ms (excluding the cost of

establishing a Bluetooth connection) as data brick size is varied from 1KB to 16KB. For

all practical purposes, this is good performance. The performance on iPAQs is much

better compared to that on Sony Ericsson phones, which is expected because iPAQs

have more computation power than smart phones and 802.11b offers a much higher

bandwidth than Bluetooth.

2.3.1 Case Study

In this section, we briefly describe an application that was developed on top of the

SDIPP protocol, for better understanding of how the protocol works. The application

allows a user to open a Bluetooth-enabled door using their smart phone.
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Table 2.2: Effect of Data Brick Size on Single-Hop Portable SM Round-Trip Time

Round-Trip Time(ms)
Size(Bytes)

HP iPAQ Sony Ericsson P800/P900

1044 150 1450

2088 177 1600

4056 196 1790

8010 234 2120

16010 301 2630

The Bluetooth-device attached to the door runs a service that can be used to au-

thenticate the user and receive command for opening the door. The user’s phone is

assumed to be equipped with the SDIPP protocol. In the first phase, the services in

the vicinity are discovered using the discovery protocol. At the end of the discovery

phase, the room numbers are listed on the phone. The user selects the room he wants

to enter. This starts the second phase, in which the interface for interacting with the

service and the relevant data (which in this case is the digital key) are downloaded

from a web server over 3G over an encrypted channel. During this phase, the personal

information of the user is sent to the web server. The web server responds with the

interface and key after authenticating the user based on the personal information. The

downloaded interface is then automatically dispatched for execution, which allows the

phone to interact with the door service. During this phase, the key is communicated

to the door service over Bluetooth. The door service authenticates the key and unlocks

the door, allowing the user to enter.

We demonstrated this application on the doors of the Computer Science Department

at Rutgers University. We emulated the Bluetooth enabled door device using a smart

phone which runs the door service. The user’s phone only interacts with the door

service and the web server. The user has to be registered with the web server which

maintains an access control list and key database for every digital door. The door

service communicates with a backend computer that controls the doors. We built our

own control circuit driven by the backend computer’s serial port that controls the power

supply to the door lock. On receiving a signal from the door device, the computer sets

the Data Terminal Ready Bit to 1 which switches on a 24V power supply to the door
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lock thereby opening it. Excluding discovery, the whole procedure takes around 5.5 sec

to complete.

2.3.2 Bluetooth Inquiry Clash

During the process of implementing SDIPP, we found that Bluetooth discovery can be

quite time consuming when multiple devices are simultaneously in the inquiry mode.

We devised an application level solution to minimize Bluetooth discovery time. In this

section, we describe the solution.

When a Bluetooth device is in the inquiry mode, it continuously transmits inquiry

packets and hops frequencies 3200 times per second. A device that allows itself to be

discovered, regularly enters the inquiry scan state to respond to inquiry messages, hop-

ping frequencies once every 1.28 seconds. In order to discover all devices, the device

must spend at least 10.24 seconds in the inquiry mode [17] [14]. Once discovery has

completed, the device behaves like other devices, entering the inquiry scan state peri-

odically. When device discovery is followed by service discovery the minimum time to

be spent in the inquiry mode is even larger.

On an average a P900 phone takes 22.5 seconds to discover all devices and services.

Inquiry is a process that inside most basebands takes up all the radio bandwidth. This

means that a phone, when in the inquiry mode, cannot use the radio for anything

else except actions like local friendly name retrieval or local parameter retrieval, which

implies that the services on the phone become indiscoverable while it is in the discovery

mode.

We can envision applications being deployed in the future where Bluetooth devices

are continuously trying to discover other Bluetooth devices/services around them. For

example, in the previously described case study, the door devices could poll instead

of the phones. Another example is that of the WAP-push based advertising system

described in [17].

This problem is similar in nature to that of nodes connected on an ethernet, each

trying to send data periodically, but unlike ethernet which is a static system, this is

more dynamic in nature as new devices are encountered and old ones disappear due to
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Figure 2.8: Policy for Timeout For Minimizing Bluetooth Inquiry Clash

Table 2.3: Comparison of Random With Our Policy for Minimizing Bluetooth Inquiry
Clash

Discovery Completion Time
Number of Phones

Random Policy

3 10 min 5 min

4 18 min 12 min

mobility. The solution to this problem (at the application layer) lies in choosing the

optimal timeout value t between two consecutive polls. A very small t would result in

large number of clashes while a very large t would result in inefficiency.

If the timeout t is constant, two phones running the same application and hence

polling after every t seconds will never be able to discover each other. A better choice

would be to choose t randomly between a certain interval [0, r]. We call this strategy

Random. Let c denote the time it takes for discovery to complete, during which time

the services on the device become indiscoverable. Every device is discoverable with

probability 1 − c/r.

Let Xi be a random variable denoting the time instant when device i started dis-

covery, 0 ≤ Xi ≤ r. The probability p of two devices i and j being able to discover
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each other in the time interval [0, r] is given by

P (| Xi − Xj |> c) (2.1)

which comes to (1 − c/r)2. Let Yij(i 6= j, Yij = Yji) denote the number of attempts

needed for i and j to discover each other. Yij follows a geometric probability distri-

bution. Let Y be a random variable denoting the number of attempts after which n

devices would have all discovered each other.

Y =
∑

i, j>i

Yij (2.2)

and therefore follows a negative binomial distribution. Expected value of Y is given by

E(Y ) =

(n
2

)

p
(2.3)

where p is P (| Xi − Xj |> c) = (1 − c/r)2

Let T be the random variable that denotes the time after which n devices would

have all discovered each other.

T = rY (2.4)

E(T ) = rE(Y ) =
r
(n
2

)

p
(2.5)

In our case c is 22.5 seconds. We chose r to be 2c which is 45 seconds, for best results.

Substituting the values, we obtain the expected time for n = 3 devices to be 9 minutes

and for n = 4, it is 18 minutes. This matched very well with the experiments. However,

this is far away from the ideal, which for 3 devices is 3c which is 67.5 seconds (1 minute

7.5 seconds) and for 4 devices, 90 seconds (1 minute 30 seconds). However, the ideal is

achievable only with an oracle aware of all devices, that instructs the devices when to

start discovery.

After careful analysis and experimentation, we came up with a policy for varying

t dynamically that seems to do much better than Random. The policy was motivated

by the backoff algorithms used to minimize clashes in an ethernet. In addition, it also

takes into account the dynamic nature of the problem by keeping track of events that

happened during the last discovery attempt. The user may suddenly enter a region

where there are many new services available in which case he should poll more often,
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however, if there are no new services found or if a clash happens, then the value of t

should be increased. Figure 2.8 shows the policy. For best results, original(initial) value

of timeout t was chosen to be r (45 seconds) and k which is a constant, was chosen to be

15 seconds. Table 4.1 shows how this policy compares with Random. We believe there

is room for improvement. Better results could be obtained by using machine learning

techniques to learn the policy for varying t.

2.4 Discussion

SDIPP assumes that services are SDIPP-aware. This is a limitation of our approach,

which is common with other service discovery protocols. Making services oblivious to

the discovery protocol is a challenging problem. This can be alleviated to some extent

with the use of ontologies, however, the solution is not clear.

Bluetooth has its own limitations, some of which have been pointed out in this chap-

ter, such as long discovery time. SDIPP builds on top of Bluetooth and the limitations

of Bluetooth, therefore, affect SDIPP’s performance.

It is important to build lightweight service discovery protocols that can be widely

used. A widely used service discovery protocol enables easy deployment of services.

Since mobile phones are ubiquitous, it is wise to build service discovery protocols that

are phone-centric.

2.5 Summary

In this section, we described the design and implementation of the Service Discovery,

Interaction and Payment Protocol (SDIPP). We also presented a case study and a

solution for the Bluetooth Inquiry Clash problem. The evaluation results indicate

satisfactory performance. The design of Portable Smart Messages (which aid in service

discovery and execution) was also presented. SDIPP relies on user location for web-

based service discovery. Location can be easily determined outdoors with the help of

GPS, which uses the existing satellite infrastructure. There is no such globally accepted

solution for determining user location indoors. The next chapter describes how user
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location can be determined indoors without extra infrastructure to be installed in the

environment.



40

Chapter 3

Determining User Location Indoors

In order to enable location-aware personal computing, continuous location updates are

needed both outdoors and indoors (as described in , SDIPP also requires user loca-

tion for web-based service discovery). Global Positioning System (GPS) is a globally

accepted solution for determining user’s location outdoors. It uses the existing satel-

lite infrastructure for determining user location. The user is required to carry a GPS

receiver, which calculates its position by measuring and triangulating the distance be-

tween itself and three or more GPS satellites. No such globally accepted solution for

indoor localization exists. This is due to the lack of a uniform infrastructure for in-

door localization, unlike GPS, which utilizes the existing satellite network. Each of the

previously proposed solutions for indoor localization relies on some infrastructure for

sensing location, as shown in Table 1.2. This makes deployment hard and costly.

A practical solution for indoor localization should be infrastructureless, precise and

robust. As has been suggested before [48], one feasible way to accomplish this is to create

a fusion system that combines information from an array of body-worn sensors, each

of which senses location information using existing infrastructure. While individual

sensors may not be precise and may only work under certain conditions, the fusion

system as a whole should be quite robust. In this chapter, we demonstrate the use of

two sensors for indoor localization: phone camera and light sensor. We show that each

of them is capable of sensing location with room-level precision.

3.1 Localization Approach

In this section we describe the main ideas behind the two localization solutions.
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3.1.1 Location Determination with Camera Phone

In camera-phone based localization, the camera-phone is assumed to be worn by the

user as a pendant(Figure 3.1). The camera captures images periodically and sends

them to a web server over 3G/GPRS. The web server has a database of images with

their corresponding location. Upon receiving an image, the web server compares it with

stored images, and based on the match, estimates user’s location. This is accomplished

by using off-the-shelf image matching algorithms and tailoring them for this purpose.

Images correspond to ”corners”. Figure 3.3 shows two low-resolution images with dif-

ferent locations corresponding to the same corner. First image was taken with camera

in the south-east quadrant of the room. Second image was taken with camera in the

north-east quadrant of the room (as shown in Figure 3.2). The localization accuracy is

further improved by taking user trajectory into account.

This solution does not rely on any external infrastructure. Neither custom hardware,

nor wireless access points are required. Physical objects do not have to be ”tagged”

and users do not have to carry any special device. The only cost involved is that of

building an image database, which is common with other localization solutions [82, 39,

22, 60, 48, 75, 27, 56]. User orientation is also determined along with location.

3.1.2 Location Determination with Light Sensor

In light sensor based localization, the light sensor is assumed to be worn by the user

either as a pendant or top of a hat (or shoulder). Light is the term used for electro-

magnetic radiation of frequencies in the band 4 × 1014Hz to 8 × 1014Hz. Luminous

flux (F) is the measure of effectiveness of light in producing visual sensation and is

directly proportional to the brightness of the light source. The luminous intensity (I)

of a point-source is a measure of the luminous flux (F) it produces per unit solid angle

(Ω), and is defined as the ratio dF/dΩ. Finally, illumination (E) is a measure of the

luminous flux (F) falling per unit area (A) of a surface (e.g a light sensor) and is defined

as the ratio dF/dA. Illumination is measured in lux, and is related to intensity I by the

expression: E = Icosϕ/r2, where r is the distance of the surface from the light-source
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Figure 3.1: Left: Phone as Pendant, Right: Snapshot of Client

and ϕ is the angle the normal to the surface makes with the incident radiation. While

intensity is a property of the light source, illumination depends on the distance of the

surface from the light source and its orientation.

The light sensor measures illumination, which is intuitively the amount of light

energy incident per unit area of the light sensor. Illumination is measured in lux and

is directly proportional to the intensity of the light source. The key insight is that the

distribution of light intensity inside a room is unique under static lighting conditions,

which can be used to fingerprint a room. This solution also does not require any extra

infrastructure to be installed in the environment. Existing light sources are used for

localization. In addition, it only takes around a minute to collect training data for a

room, which is very efficient.

3.2 Data Collection

Both camera-phone and light sensor require data to be collected for every room that is

used to train the localization algorithms. In the case of camera-phone, it is necessary

to build a database of images for the different rooms in the building. In order to

minimize the overhead of data collection, we use a Java client that runs on the phone

and sends images to the web server, as the database creator walks around. The web

server extracts features from the received images on the fly and stores the features in

a database. The images/features in the database are manually tagged with location

afterwards. The process of tagging images with location can be partially automated by
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Figure 3.2: Room Layout

Figure 3.3: Two Low-resolution Images of the Same Corner

using a speech recognition interface on the phone, so that the database creator can tag

images by announcing location while pictures are taken.

During image database creation, multiple images of the same corner are taken to

accommodate for different heights and angles. On an average ten images per corner are

stored. The success of the system depends on the amount of effort put into database

creation. More images per corner increases the chance of success. The number of

images in the database is also determined by the desired frequency of location updates.

High update frequency requires high coverage, which implies a dense image database

to accommodate for small changes in the location of the user.
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Figure 3.4: Left: Light Sensor on a Hat. Right: Light Sensor as a Pendant

Figure 3.5: Apparatus Used for Data Collection for Light-based Localization

In the case of light sensor, it is necessary to build a database of light intensity

readings for the different rooms in the building. For that, the database creator walks

around in every room at slow constant speed wearing the light sensor. The light sensor

is connected to a light meter (Figure 3.5), which records the readings of the light sensor

in lux. The light meter is in turn connected to a laptop, which logs the data. Using

the laptop is optional; the light meter itself is capable of logging the data. The probe-

frequency can be varied– we chose 0.5 second for our experiments. The training data

is processed to obtain fingerprints for every room.

3.3 Localization Algorithms

In this section, we describe the algorithms used for determining location using each of

the two sensors.
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3.3.1 Location Determination with Camera-phone

When the web server receives a query image, it compares it with the images stored in

the database. Every image that matches with the query image is assigned a weight that

reflects the degree of similarity between the two images. By image comparison, we im-

ply feature comparison. Three off-the-shelf algorithms are used for image comparison:

Color Histograms [76, 54, 80], Wavelet Decomposition [42] and Shape Matching [45].

Color Histogram: A color histogram of an image is a three dimensional distribution

that reflects the probability of existence of certain color in the image. For example,

if the image is represented in the RGB color space, then each pixel has three values

(r,g,b): red value, green value and blue value. In this case, to build the color histogram

of an image, each of the axes in the RGB color space is divided into certain number

of bins (this operation called quantization). For example if the red values is quantized

into k bins and the green into l bins and the blue into m bins, this gives us a total of

k × l × m bins. Each pixel in the image is mapped into its corresponding bin. The

number of pixels that are mapped into each bin are counted and that give us the color

histogram of the image. The color histogram can be represented as a N-dimension

vector where N=k × l × m.

In our system we implemented two kind of color histograms: RGB color histogram

and HSV color histogram. The RGB color histogram is built directly from the images

while for the HSV color histogram, each pixel has to be transformed from RGB into

HSV color histogram first. The RGB color space is not perceptually uniform. Also RGB

histograms suffer from sensitivity to lighting conditions, i.e., the same image may have

different color histogram under different lighting conditions. The HSV color histogram

has the advantage of separating the color information from the light information that

make it possible to have more bins for the colors and fewer bins for the lightness

and saturation information. That makes HSV histograms more robust under different

lightening conditions. We use HSV histograms in our system. There are numerous

metrics for measuring histogram similarity. We use the L1 metric, also known as the
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city block distance:

D(I, J) =

N
∑

i=1

| Ii − Ji |

where D represents the distance (i.e dissimilarity) between two images I and J.

Shape Matching: The basic idea behind shape matching is to detect the edges in the

images and to build an edge map representing the location of edges in the image. The

similarity is then measured using correlation between windows in both images.

In our implementation, we used Sobel operator to detect the edges in the image.

The image is then divided into M ×M blocks. M ×M edge map (2 dimension array) is

constructed by setting edge map entry to 1 if its corresponding block contains certain

percentage of edges and 0 otherwise. The similarity between two edge maps is performed

by correlating each window from one image with corresponding set of windows in the

other image and calculating edge matching score. That is, for each window centered at

location (i, j) in the query image edge map, a set of windows centered at the neighbors

of (i, j) is considered in the database image edge map and for each window from the

query edge map and each window in the database edge map, a score is calculated by

counting the edge-edge matching. The overall score function between a query edge map

A and an edge map B stored in the database is S(A,B):

S(A,B) =
i=M
∑

i=1

j=M
∑

j=1

F (Aij , B)

where

F (Aij , B) =

u=i+K/2
∑

u=i−K/2

v=j+K/2
∑

v=j−K/2

s(Aij, Buv)

where K is the size of the neighborhood tested around pixel (i, j) of the edge map and

the function s(Aij , Buv) calculate the score of matching a window of size w×w centered

at pixel (i, j) in A with a window in B centered at (u, v).

Wavelet Decomposition: This technique is an implementation of the approach used

for content-based image query based on wavelet decomposition. This technique per-

forms wavelet decomposition of each of the color channels (red, green, blue) of the



47

image based on Harr bases to represent the image with some coefficients. Then the

coefficients with largest magnitude are used and the rest are truncated. The coeffi-

cients are then quantized to +1 or -1 values in order to speed the search and reduce

the storage. The similarity of a query image with an image from the database is based

on the weighted distance between the coefficients representing the query image and the

coefficient representing each image in the database. No dimension reduction is used in

this technique, instead inverted file is used to store for each coefficient which images

have positive or negative values in each color channel.

Each algorithm described above assigns a weight to the image. The total weight

of an image is calculated as a linear combination of the weights assigned by each al-

gorithm. In the current implementation of the system, color histograms is assigned a

weight of 1 and the other two algorithms are assigned a weight of 0. As a result, only

color histograms is used for comparison. Once the weight of the images in the database

with respect to the query image are known, the following methods can be used for

location determination:

Naive Approach: In this approach, the images in the database are organized in a flat

manner. The location of the user is the location of the image that matches the query

image with maximum weight. In other words, the location of the user is the one that

maximizes the probability of seeing the query image.

Hierarchical Approach: In this approach, the images in the database are organized

hierarchically. The images corresponding to a floor are grouped together, the images

corresponding to a room are grouped together and so on. When the system determines

that the user has entered a particular room, subsequent searches are performed only on

the images of that room, until the system discovers that the user has exited the room.

There are two advantages of this approach: (1) the search gets localized and hence

response time decreases, and (2) the probability of error decreases, because the system

has fewer images to confuse the query image with. The disadvantage of this approach

is that if the system incorrectly determines the room the user is in, subsequent searches
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would get affected and produce wrong results.

History-based Approach: In this approach, the web server keeps track of the tra-

jectory of the user. Based on the past locations of the user, a better estimate of the

current location can be derived. In other words, the location of the user is determined

not from a single query image, but multiple query images received over a certain period

of time. When the server receives a query image, it looks at the last n-1 query images.

The current location of the user is the one that maximizes the probability of seeing the

n query images in the shortest period of time.

To implement this, a simple shortest-path/nearest-neighbours approach is used.

Upon receiving the nth query image, the web server carries out a search (image com-

parison) based on the last n query images. Let ki denote the set of top 10 images that

match with the ith query image, and let location(kj
i ) denote the location of the jth

image in that set. The weighted euclidean distance between the jth image of set ki and

the mth image of set ki+1 is given by :

dj,m
i = w ∗ |location(kj

i ) − location(km
i+1)|.

where w is inversely proportional to the weight of image kj
i .

Path is the set of images (one corresponding to each query image) such that the

sum of the weighted euclidean distances between these images is the minimum among

all possible combinations. In other words, these images define the shortest possible

path (scaled by the weight of images) that the user could have traversed, and also the

most likely.

Path = {∀n
i=1k

j
i |D

j,k
i = dj,k

i + D∗
i+1, D

∗
i = minj,kD

j,k
i }

The location of the image in set kn that belongs to the set Path is returned as the

current location of the user:
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current location = location(kn ∩ Path).

We use the sliding-window approach for keeping track of the history. The window

of n images to be considered for calculating the shortest-path slides by 1 with every

new query image. The intuition behind using the shortest-path/nearest-neighbours

approach is the following: assuming that the user does not abruptly increase her walk-

ing/running speed above a certain limit, the current location of the user should not be

too far away from her past locations. We use weighted distance in order to give higher

priority to images with higher weight (i.e images that match better with the query

image). This is the reason for using a multiplicand w, which is inversely proportional

to the weight of the image. In effect, instead of estimating the location of the user

based solely on the similarity with the query image (as in the Naive and Hierarchical

approaches), the location is estimated by first estimating the most likely path that the

user could have traversed. The most likely path is the one that maximizes the proba-

bility of ”seeing” the last n query images. Every time a new query image is received,

the top 10 matches corresponding to each of the last n query images are used, instead

of directly using the last n estimated locations. This is done in order to account for

possible error in the estimation of past locations.

Figure 3.6 shows the various components of the system. Client-side components were

implemented in Java using MMAPI [2] which is supported on some Symbian OS phones.

Nokia 6620 mobile phones were used for experiments. All server side components were

implemented in C++ for performance reasons.

3.3.2 Location Determination with Light Sensor

The amount of light energy incident on a light sensor depends on the intensity of the

light sources in the room as well as reflection from walls and furniture inside the room.

While light illumination at a particular location inside a room may be the same as that

at another location in a different room, the distribution of light illumination values in

rooms are quite distinct. The problem of identifying which room the user is in based on

a set of light illumination values, can be formulated as a classification problem for which
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Figure 3.6: System Architecture for Camera-phone Based Localization

fingerprints of rooms need to be created. In what follows, we describe two algorithms

for fingerprinting and identifying rooms.

Bayesian fingerprinting: In Bayesian fingerprinting, the light illumination values of

a room collected during the training phase are discretised into a number of intervals. A

histogram is then obtained by counting the number of points that lie in each interval.

Each point corresponds to the value of light illumination at a certain location in the

room. Therefore, the height of an interval is directly proportional to the number of

locations in the room with light illumination value in that interval. In order to create

such a histogram, the data collector must spend equal amount of time at every location

in the room during the data collection phase. Figure 3.7 shows the Bayesian fingerprints

(or histograms) for four rooms. It is evident from the figure that the fingerprints are

quite distinct. This algorithm does not take into account the spatial distribution of

light illumination in the room.

Bayesian localization: During the testing phase, when a new set of light illumi-

nation values s is obtained, Bayesian localization finds the room R that maximizes

the probability that the points in set s have been sampled from room R, denoted by

arg maxR P (R|s). Applying Bayes rule, we get:

arg maxR P (R|s) = arg maxR P (s|R), assuming P (R1) = P (R2).. = P (Rn).

We know that arg maxR P (s|R) = arg maxR Πi{P (ai|R)|ai ∈ s}. Probability of

sampling a point from a room is directly proportional to the height of the histogram
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Figure 3.7: Bayesian Fingerprints (Histograms) for Four Rooms

interval in which the point falls: P (ai|R) = hR(ai)/
∑

i hR(ai), where hR denotes the

histogram for room R, and hR(ai) denotes the height of the interval in which ai falls.

From here we obtain,

arg max
R

P (R|s) = arg max
R

∏

i

(hR(ai)/
∑

i

hR(ai)) (3.1)

Intuitively, the probability that a set of points s has been sampled from room R is

directly proportional to the product of the heights of the histogram intervals in which

the points in s fall.

Range-max fingerprinting: In Range-max fingerprinting, only the minimum and

maximum values of light illumination obtained for a room during the training phase

are retained. The fingerprint of a room is given by the tuple {min,max}, which denotes

the range of light illumination values in that room. Figure 3.8 shows the Range-max

fingerprints for six rooms.

Range-max localization: During the testing phase, when a new set of light illumi-

nation values s is obtained, the Range-max localization algorithm finds the room R

that minimizes the quantity abs(max(R)−max(s)) and for which min(R) ≤ min(s) ≤



52

[0,250] [100,400] [350,550] [350,800] [50,150] [100,600]

Figure 3.8: Range-max Fingerprints for Six Rooms

max(s) ≤ max(R). Quantities min(R), max(R) are the minimum and maximum val-

ues of light illumination for room R as obtained from the fingerprint. Quantities min(s),

max(s) are the minimum and maximum values of light illumination in set s. Intuitively,

this algorithm assumes that every room has a unique max value, and that the range

and the max value together can be used to identify a room.

3.4 Evaluation

In this section, we describe the experiments that were carried out to evaluate the two

localization systems and present the results.

3.4.1 Experimental Results for Camera-phone Based Localization

A partial image database was created for the third floor of the Computer Science Depart-

ment building, to include sixteen rooms, staircase, a bridge and the corridors. Creating

the database is a slightly tedious process. It takes around an hour to construct the

database for a room, which includes the time for database construction, pruning as well

as annotation of images. The database was constructed over multiple days. Database

construction as well as experiments were carried out during the day on weekends. In all,

the database contains around 300 locations (i.e corners). The goal of the experiments

was to test the feasibility of the approach. We sought the answers to the following two

questions : (1) How successful is our approach in achieving room-level accuracy?, and

(2) How successful is our approach in estimating the orientation and location of the

user anywhere in the building?

Experimental Methodology.

Three main experiments were conducted. The experiments were carried out on two

users with five trials per user. In the first experiment, the user would wear the phone
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Figure 3.9: Low-Resolution Pictures of a Few Rooms Taken from the Door

Figure 3.10: Low-Resolution Query Image Matches with Image 3

as a pendant and enter the room as the camera took a picture. The image database

would comprise of only pictures corresponding to user standing at the door of a room

and facing inside, with ten images per door. This experiment was conducted to find the

probability of success for room-level accuracy. Hierarchical and History-based approach

does not apply to this scenario. Figure 3.9 shows the pictures of a few rooms that were

experimented with. Figure 3.10 shows an example query image that matches best with

Image 3 in Figure 3.9. In the second experiment, the image database comprised of only

inside-room pictures of all rooms. The experiment was conducted with the user wearing

the phone as a pendant and walking around inside rooms, sending a query image every

four seconds.

Figure 3.11 shows inside-room pictures of a few rooms. Figure 3.12 shows example of

a query image that matches best with Image 4 in Figure 3.11. Most of the rooms in the

Computer Science building are around 4mx7m. The system reports user’s location to

quarter-room level accuracy (North-East, North-West, South-East, South-West), and

one of the four orientations (facing North, facing South, facing East, facing West).

The database consists of ten images per corner to account for varying user heights and

angles, and sixteen corners per room (four corners per quarter corresponding to the four
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Figure 3.11: Low-Resolution Pictures of Different Corners

Figure 3.12: Query Image Matches with Image 4

orientations). The third experiment was conducted with the complete database, as the

user walked around on the 3rd floor. This includes corridors, staircase and the bridge

in addition to rooms. We call this corner-level accuracy. During the experiments, the

users would either stand stationary when the image was being clicked, or walk at very

low speeds, in order to cover all the corners. This was necessary because of GPRS

latency.

Experimental Results.

Table 3.1 shows the results for the three experiments. The results correspond to the

ten trials. From the results, it can be concluded that for applications that require

only room-level accuracy, the Naive approach would suffice. Corner-level accuracy

corresponds to the most general case: the user walking inside rooms, across rooms

and inside corridors. History-based approach clearly shows improved performance for

this case. Hierarchical approach performs well most of the time, but completely fails

sometimes and is, therefore, not reliable.

We found that the Color Histograms algorithm worked very well as compared to the

other two, and was chosen as the primary method of image comparison in our system.

We noticed that while most of the images resulted in accurate location, some of them
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Table 3.1: Success Probability for the Three Localization Experiments (Using Camera-
phone)

Approaches Naive Hierarchical
History-
Based

Room-level accuracy 93% N/A N/A

Quarter-room-level accuracy 83% 96% 94%

Corner-level accuracy 50% Non-deterministic 80%

Table 3.2: Energy Consumption and Response Time for Sending an Image and Receiv-
ing Location Update

Image Size Avg. Response Time Avg. Energy Consumption

5KB Image 720 msec 630mJ

128KB Image 4100 msec 3600mJ

were hard to recognize and were often confused with other similar images, bringing

down the overall success rate. Even when a query image was incorrectly matched, the

correct one was often among the top three matches, suggesting that if the approach

were combined with another low-cost localization mechanism, extremely high accuracies

could be achieved.

We worked with low-resolution JPEG images of size 5 KB. Experiments with high-

resolution images (128 KB in size) resulted in approximately the same success rate as

low-resolution images. By working with low-resolution images, we could save substan-

tially on energy as well as response time. Table 3.2 shows the average response time

(i.e latency) for experiments, as well as the average energy consumption on the phone

for sending a query image and receiving one location update.

An experiment was carried out to study the effect of changes in the environment,

namely: (1) movement of furniture, (2) presence of human beings and (3) varying

lighting conditions. This experiment was conducted for one room. We found that

slight movement of furniture, such as chairs, computers, objects on tables and shelves

did not affect the accuracy of results. The accuracy of results suffered when there was

a significant change, such as removal of a desktop monitor from a desk. The accuracy

fell drastically when lighting conditions were varied. When the lights in the room

were dimmed, the success probability fell to less than 20%. Much to our surprise, the
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Figure 3.13: Left: Image in the Database; Center: Image With a Person; Right: Person
Wearing a Brown Jacket

presence of human beings in the pictures did not affect the accuracy significantly. Out

of the sixteen corners in the room, only six suffered from the presence of a human being.

Three of these were recognized with a success rate of only 10%, two were recognized

with a success rate of 50%, and one was recognized with 90% success rate. For the last

one, the success rate fell to 70% when the person in the picture wore a brown jacket.

(Figure 3.13 shows the three pictures: the original picture, picture with a person in it,

picture with a person wearing a brown jacket.)

It is not completely clear why some images are recognized more accurately than

others in the presence of a human being, but we conjecture that it is because of the

fact that some images have more distinguishing objects in them as compared to others.

When an image is recognized with low accuracy due to presence of a person, it is almost

always confused with an image of the same corner but taken from a distance. Some

of these observations can be attributed to our primary method of image comparison,

which uses Color Histograms. Color histogram of an image is produced by discretising

the colors in the image into a number of bins, and counting the number of image pixels

in each bin. Color histogram of an image varies only slightly with the angle of view

and the movement of objects inside the image.

The computation time on the location server is 100-120 msec which is a fraction of

the total response time. Response time is dominated by the time taken to send the

image to the server and is therefore subject to the bandwidth delivered by the cellular

data service, which in our case is GPRS. GPRS delivers a bandwidth of 20-40Kbps,

depending on user speed. With the advances in the telecommunications technology,
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significantly better bandwidths are expected. For example, 3G delivers a bandwidth of

around 400Kbps at pedestrian user speeds and over 2Mbps in fixed locations, which is

much higher than the bandwidth provided by GPRS.

3.4.2 Experimental Results for Light Sensor Based Localization

Light illumination measurements were collected for two office buildings that belong to

the Department of Computer Science. In all, data was collected for 27 rooms and the

corridor (henceforth 28 rooms). Of these, 8 rooms have windows and 20 rooms have

static lighting conditions (i.e no windows).

Experimental Methodology.

Two separate datasets were collected– one in which the light sensor was worn on top

of a hat (as shown in Figure 3.4(left)) and the other in which the light sensor was

worn as a pendant (as shown in Figure 3.4(right)). When the light sensor is worn as a

pendant, lower accuracy can be expected because the user’s body obstructs and affects

the amount of light energy incident on the light sensor. For either experiment, it only

takes a minute to collect data for a room, and a total of half-an-hour to collect data

for all the rooms. For rooms without windows, multiple such datasets were constructed

over a time-period of one week. These datasets were mixed; some were used for training,

and the others were used for testing. For rooms with windows, data was collected in a

similar fashion but at three different times of the day (for seven days) and over a time

period of three weeks, and mixed the data by hour of the day. The reason for collecting

data at different times of the day and over several days was to observe the effect of

diurnal cycle and weather changes on the accuracy of the approach.

For collecting testing data, the user walks through the rooms and corridors at normal

walking speed, stopping at certain locations periodically to imitate real-life mobility.

The data is then pre-processed using two data filters. The first filter fragments the

dataset into smaller pieces, where each piece contains the data of a room. For this,

the filter looks for jumps in the light intensity readings, which correspond to the user

exiting/entering a room. The second filter discards contiguous repeated readings, which

correspond to the user standing at a location.
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Figure 3.14: Rooms Without Windows. Light Sensor Worn atop a Hat (top) and as
Pendant (bottom)

The goal of the experiments was to validate the following hypothesis: it is possible

to probabilistically determine which room the user is in if they are wearing a light sen-

sor. For validating this hypothesis, two fingerprinting/localization techniques, namely

Bayesian and Range-max, were evaluated on two different datasets: one in which the

light sensor is worn on top of a hat, and the other in which the light sensor is worn

as a pendant. The scalability of these techniques is also tested by varying the number

of rooms from 2 to 20 (for rooms with no windows), and from 2 to 8 (for rooms with

windows). The ability to tell between 20 rooms or less can be sufficient for several

applications if we assume that indoor localization solutions would typically work in a

hierarchical fashion, i.e identify the building, identify the floor, identify the room.
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Training and testing datasets were collected and stored separately. Training data

was processed to obtain fingerprints for rooms using Bayesian and Range-max finger-

printing algorithms. Testing data was pre-processed to separate out light measurements

for different rooms, and eliminate contiguous repeated readings. The testing data cor-

responding to a particular room was then fed into the two localization algorithms. Both

the algorithms pick a contiguous set of points s starting at a random position in the

dataset, which is then matched against the fingerprints as described in Section 3.3. This

is repeated for all the rooms 100 times.

Localization accuracy would depend on |s|, which represents number of light illumi-

nation readings needed to localize the user. If the time interval between two consecutive

light illumination readings is t, then the localization latency is given by t|s|. In our case,

t = 0.5 second. Higher the value of |s|, higher the localization latency.

Results for rooms without windows.

Figure 3.14 shows the localization accuracy of the two algorithms as a function of the

number of rooms. The graph on the top shows the performance of the algorithms when

the light sensor is worn on top of a hat, with |s| = 10 and |s| = 8 for Bayesian and

Range-max respectively. The average accuracy of Bayesian for 20 rooms is 91.2% and

that of Range-max is 71.6%. The bottom graph shows the localization accuracy of the

two algorithms when the light sensor is worn as a pendant, with |s| = 10 and |s| = 6 for

Bayesian and Range-max respectively. The average accuracy of Bayesian for 20 rooms

is 80.3% and that of Range-max is 68.1%. Any sensible localization algorithm should

do better than Random, which determines user’s location by randomly picking a room.

Figure 3.15 shows the localization accuracy of the two algorithms for 20 rooms, as

a function of |s|. The graph on the top corresponds to the case when the light sensor is

worn on top of a hat. Bayesian attains peak accuracy when |s| = 10, while Range-max

attains peak accuracy when |s| = 8. The bottom graph corresponds to the case when

the light sensor is worn as a pendant. Bayesian attains peak accuracy when |s| = 10 in

this case, while Range-max attains peak accuracy when |s| = 6. As mentioned before,

lower value of |s| implies lower localization latency.

The localization accuracy is lower when the light sensor is worn as a pendant because
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Figure 3.15: Rooms Without Windows. Light Sensor Worn atop a Hat (top) and as
Pendant (bottom).

the user’s body affects the amount of light energy incident on the light sensor. Bayesian

consistently outperforms Range-max. However, Range-max requires a lower value of |s|

(hence lower localization latency) to reach its peak localization accuracy. Also, Range-

max is independent of the amount of time the user spends at a particular location. For

Bayesian, filtering needs to be carried out.

Results for rooms with windows.

The experiments were carried out in 8 symmetric rooms with large windows. Data

was collected at three fixed times of a day (morning, noon and afternoon) for seven

days over a time period of three weeks. The datasets were mixed and tested in several

different ways to understand the effect of sunlight, diurnal cycle and weather changes
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Figure 3.16: Rooms With Windows. Light Sensor Worn atop a Hat

on the accuracy of the approach. In this dissertation, we report the results obtained

with Bayesian while wearing the light sensor on a hat. In one experiment, the data

for a particular hour of a day was tested against the data for a different hour of the

day for the same day. The accuracy was found to be between 35-42% for 8 rooms.

In another experiment, the training data of all the days was mixed together and was

tested against a separate dataset corresponding to one particular day. The accuracy for

8 rooms was found to be between 40-45%. In a third experiment, data for a particular

hour for a certain day was tested against the data for the same hour for another day.

The accuracy was found to be between 55-60%. Finally, the data for a particular hour

for different days was mixed together and tested against a separate dataset for the same

hour of a different day. This yielded the best accuracy, ranging between 68-73% for 8
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rooms. Figure 3.16 shows the detailed results corresponding to this case.

From these results, we can conclude that best accuracy is achieved by including time

information in the query and conditioning on the hour of the day. We can also conclude

that the effect of weather can be partially neutralized by mixing the training data of

several days together (conditioned on the hour). However, different sets of fingerprints

would have to be constructed for different seasons. We noticed that even when a room is

misclassified, it is almost always the second or third best candidate suggesting that the

accuracy can be further improved if this approach is combined with another approach.

3.5 Discussion

The two localization solutions described in this chapter have their own limitations. The

camera-phone-based localization scheme is not resilient to changes in the environment

such as movement of furniture, and fails when the line of slight is blocked. Light-sensor

based localization works moderately well in the presence of sunlight. As such, this

approach is applicable at night or to buildings with significant number of window-less

rooms, such as museums or girthy office buildings where only peripheral rooms have

direct exposure to sunlight.

We believe that a practical solution for localization would be a fusion system that

incorporates an array of sensors (such as camera, light sensor, GPS, WiFi interface,

accelerometer etc), derives location information from each of the sensors and fuses

them together to obtain accurate results. Although each of the sensors could fail under

certain conditions (for example the light sensor may not work very well when there is

interference from sunlight), the fusion system as a whole should be quite robust.

3.6 Summary

In this chapter, we presented two solutions for indoor localization: camera-phone based

and light-sensor based. These solutions do not require any extra infrastructure to be

installed in the environment.

The camera-phone based system was able to attain room-level accuracy with more
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than 90% success probability and corner-level accuracy with more than 80% success

probability, using a history-based location determination approach. The latency of

receiving location updates over a GPRS connection is around a second, which would be

even lower for a 3G connection. The image comparison algorithms remain unaffected

if resolution of the images in the database is the same as the resolution of the query

image. By using low resolution images, it was possible to reduce energy consumption

and response time significantly.

Light-sensor based localization achieves up to 90% success probability under static

lighting conditions, but works moderately well in the presence of sunlight. Construction

of Bayesian fingerprints is fast and convenient. It takes around a minute to fingerprint

a room.

Both the localization solutions presented in this chapter are infrastructureless and

can be combined together to attain higher accuracies. For example, the knowledge of

which room the user is in can significantly prune down the search space for camera-

phone-based localization scheme. The light sensor could either be embedded in the

phone or iPod of the user or worn separately as a clip.

Camera-phone based localization is a power hungry system that can drain the phone

battery. With multiple such processes running on the phone, it becomes necessary to

manage the limited battery lifetime. In the next chapter, we describe how the limited

battery lifetime of mobile devices can be managed across different applications.
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Chapter 4

Location-aware Battery Management

Location-aware personal computing is centered around the idea of running client fron-

tends and applications on resource-constrained personal devices (e.g smart phone),

many of which would run as background tasks including daemons for determining user’s

location, daemons for listening to incoming network requests, daemons for warming the

phone cache etc. These processes would compete for the limited resources on these

devices. The most crucial resource, which determines the availability of a personal de-

vice, is battery lifetime. We study the case of smart phone, which in this dissertation,

represents the intelligent personal device. We show that location information can be

used to manage battery lifetime intelligently.

On smart phones, the interfaces that inform the user of the battery levels (such as

ACPI [1]) have not kept up with the evolution of the capabilities of these devices. A

simple “battery remaining” or even “time remaining” does not enable the user to make

the right decisions as to the spend of the energy budget and the request for recharging.

Prior research on dealing with the limited battery lifetime problem has focused on

optimizing energy at different levels of the stack, starting with hardware all the way up

to the application layer. The most commonly used energy optimization mechanism is

hibernation, in which the CPU or other hardware units of a system are put in low-power

mode when not being actively used. This is commonly done by the operating system.

Dynamic voltage scheduling is another commonly used optimization technique in which

a compiler-directed algorithm identifies program regions where the CPU can be slowed

down with negligible performance loss [46, 40]. Two effective application-level energy

optimizations have been proposed: cyberforaging [23] and application adaptation [32,

20]. In cyberforaging, computation is off-loaded from the battery powered mobile device
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to a wall-powered server whenever profitable. In application adaptation, the fidelity of

an application is lowered whenever low battery levels are detected. While a lot of

work has been done on optimizing energy, there has been limited research on managing

battery lifetime across applications and treating energy as a first-class operating system

resource. To the best of our knowledge, ECOSystem [86] is the only piece of work that

takes this approach. ECOSystem is a framework for sharing battery lifetime as a

resource across competing applications.

The primary purpose of the mobile phone is telephony (i.e making and receiving

calls and exchanging text messages). Other applications are secondary. Hence, there

is a notion of priority among applications, which should be imposed on the manner in

which applications consume limited battery power. A low priority application (such

as a background task) should not be allowed to compromise the availability of a high

priority application (such as telephony).

The key observation is that the knowledge of when the user will recharge the phone

next is crucial to managing battery lifetime on phones. This is because the knowledge

of when the next recharge will happen determines the total battery lifetime available

to applications. A user study shows that users typically charge their phones at fixed

locations [25]. Hence, by predicting the whereabouts of the user, it should be possible

to predict charging opportunities. In this chapter, we describe a location-aware battery

management architecture [66, 63] for smart phones (henceforth CABMAN), based on

four principles:

• The availability of crucial applications to users should not be compromised by

non-crucial applications.

• The opportunities for charging should be predicted to allow devices to determine

if they have scarce or plentiful energy, instead of using absolute battery level as

the guide.

• Location information can be used to predict charging opportunities.

• User involvement should be minimal.
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Figure 4.1: Battery Management System Architecture

4.1 Architecture and Algorithms

The key role of the battery manager is to be able to answer the query: Will the phone

battery last until the next charging opportunity is encountered? In order to answer this

query without involving the user, the battery manager should be able to answer the

following three questions (1) when the next opportunity for recharging will be available

and hence, what is the total battery lifetime available to the user? (2) what fraction of

this battery lifetime will be consumed by critical applications such as telephony? and

(3) what fraction of this battery lifetime can be left for use by non-critical applications?

We identify three subproblems: (1) prediction of the next charging-opportunity, (2)

prediction of the call-time that might be required by the user in the interim, and (3)

prediction of how long the battery will last if the current set of applications continue to

execute on the device. With this knowledge, the battery manager will be able determine

if the user will run out of battery sooner than they should, and ask them to terminate

one or more applications or look for a charging opportunity.

In order to solve these three subproblems, we designed a system that can monitor
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user context and sense battery level of the device; a set of algorithms for making predic-

tions and a central component for assimilating the information together and warning the

user appropriately. The system consists of eight components as shown in (Figure 4.1)

divided into three categories: system-specific monitors, predictors, and the viceroy/UI.

System specific components: The Process monitor is responsible for keeping track

of the processes running on the device and informing the viceroy whenever a new pro-

cess is detected. Battery monitor probes the battery periodically and enquires about

remaining charge and voltage level. Context Monitor is responsible for sensing and

storing context information (such as location) on the phone. Call Monitor logs com-

munication (incoming/outgoing calls, incoming/outgoing SMSs).

4.1.1 Charging Opportunity Predictor

The crux of the system is that a phone should determine if a charging opportunity is

near enough for the battery to “last” until then (by which we mean maintaining the

ability to execute the crucial application). If this is true, then the system should not

inconvenience the user with unnecessary warnings or actions such as going into low-

power modes with reduced functionality. If this is false, then even if the phone battery

is relatively full, the system should warn the user that they risk a dead battery.

The charging opportunity predictor predicts the future whereabouts of the user

from the location trace stored on the phone. Certain locations are marked as charging

opportunities (based on the charge trace stored on the phone). The prediction of

when marked locations will be reached is accomplished by pattern-matching the current

pattern of location movements against the set of location traces stored on the phone.

Intuitively, the algorithm proceeds as follows. If the current location samples are,

say, ABC, then a search is made through the history of all traces that contain the

sequence ABC (say DEABCFG), and for each of the resulting traces, the time is

determined between the time of entry of the current location and the time of entry of

the next charging-capable location. These times are then averaged to get an estimate

of time-until-charging-opportunity.

Formally, let a location trace tr be denoted as a sequence of tuples: (l,t,c), where l



68

denotes location, t denotes the time when the user entered that location and c is either

1 or 0 depending on whether or not the user can charge the phone at that location.

Let the jth location trace trj be denoted by (lj , tj , cj), let the ith tuple in this trace be

denoted by (lji , t
j
i , c

j
i ), and let the last tuple in this trace be denoted by (ljlast, t

j
last, c

j
last).

For a given location trace (lj , tj, cj), let tjcharge denote the time when the user enters

the next charging-location. A location trace trj is said to be contained in another

location trace trk if ∃i(lj0 = lki , lj1 = lki+1, .., l
j
last = lki+last). Given a location trace

(ltoday , ttoday , ctoday), the time interval before the next charging opportunity becomes

available is estimated as (
∑

j(t
j
charge − tjk))/N |(contained(today, j), ljk = ltoday

last ), where

contained(today, j) implies that trtoday is contained in trj, and N is the total number

of traces for which contained(today, j) is true.

4.1.2 Call Time Predictor

Telephony is regarded as the “crucial application” for mobile phones in that users always

want to be able to use this application (e.g. for emergency calls or rendezvous with

friends). The “non-crucial applications” should not be allowed to drain the battery to

the stage where the user is deprived of telephony service.

To protect the availability of telephony, we need to predict the call time needs of

the user. There are three options in order to achieve this. A simple method would be

to ask the user could set a minimum call time level which they always like to maintain.

However, this is not dynamic, so a user must continually ensure this setting is up-to-

date. A more complex but dynamic method, which does not require user input, is to

use past calling behaviour to find the average number of minutes of call time that the

user needs during each hour of the day, and to use this to get an upper bound on the

total call time required within a given time interval. This can be enhanced by viewing

weekdays and weekend days separately, since call behaviour is likely to differ in that

time.

Formally, let a call-trace calltr be denoted as a sequence of tuples: (h,t) where h

denotes the hour of the day and t denotes the call-time used in that hour. Let the

jth call-trace calltrj be denoted by (hj , tj), let the ith tuple in this trace be denoted
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by (hj
i , t

j
i ). The call-time to be used in a given hour hk is estimated as (

∑

j tjk)/N ,

where calltrj is a past call-trace, and N is the total number of past call-traces selected

(e.g over the last three months). This algorithm is tested in the evaluation section and

shown to work well.

The third option is to use a hybrid of the two listed above to achieve a conservative

prediction. For instance, we could use the policy “keep twice my average call time

available, and a minimum of 10 minutes for emergencies in addition to the predicted

call time”. The correct choice of policy depends on user preference, such as the user’s

perceived annoyance at being unable to make a call versus their perceived annoyance

at having to charge their phone more often (which is the tradeoff being contemplated).

4.1.3 Battery Lifetime Predictor

Battery management software and hardware have developed recently and may provide

accurate estimates of the charge level left in the battery. However, this by itself is

insufficient to predict lifetime accurately, since applications may vary their battery

demands over time. Also, batteries have different chemistries with different reactions

to types of load (constant, spiky, etc) and they age. In this chapter, we propose a battery

lifetime metric that is independent of battery age and takes into account applications’

battery usage.

One obvious and often used method of predicting battery lifetime is to monitor the

rate of drain of the battery and extrapolate this linearly to exhaustion. However, due

to the factors mentioned above, this is not reliable. To illustrate this, we examine the

battery discharge curves of a number of devices in idle mode (i.e. not running any

applications, but with no power-down power management software active). We call

this diagram the base curve. Figures 4.2 and 4.3 show base curves for a new laptop,

an old laptop and an HP iPAQ. Since people do not replace old batteries, either by

choice or due to affordability, we found it important to include an old battery in the

experimental setup.

As we can see, while the base curve of new laptop looks linear, that of an old

laptop is highly non-linear (consistently so over many iterations). At the same time,
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Figure 4.2: Base Curve for a New HP Laptop (top) and Old Dell Laptop (bottom)

the base-curve of the PDA (which reported just the voltage level) was also non-linear

and spiky.

The approach we took is to compare the actual discharge when applications are

running against the measured base curves in order to predict for battery life. This

requires a one-time offline measurement of the base curve, which a device can do for

itself during a period where the user does not need it (similar to battery reconditioning

that users perform today). This can be repeated periodically (e.g. on the order of

months) to make sure that the changing performance of the battery over its lifetime is

compensated for. The algorithm proceeds as follows: with a given set of applications
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Figure 4.3: Base Curve for an HP iPAQ

running, we measure the discharge speedup factor over a particular drop in battery

energy (or voltage). This is calculated by comparing the time it would take for the

battery to reduce by that amount during idle (from the base curve), divided by the

actual time that it took for the battery to drop by that amount. In other words, with

applications running, we measure the battery capacity c1 and c2 at two time instances

t1 and t2 respectively; we find time instances t3 and t4 that correspond to battery

capacities c1 and c2 on the base curve. The discharge speedup factor is calculated as

(t4 − t3)/(t2 − t1).

We then divide the remaining lifetime of the battery if the device were idle (from

the base curve) by the discharge speedup factor, to obtain the predicted remaining time

for the battery. As we shall see in the evaluation section, this has proven to be a very

accurate measure of battery lifetime remaining.

4.1.4 Viceroy and User Interface

The viceroy is CABMAN’s central component. It uses input from the predictors and

directly from the process monitor, in order to decide when action must be taken using

some form of user interface (UI). The main job of the viceroy is to continually monitor

whether the battery lifetime prediction combined with the battery requirement of the
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estimated call time requirement from the call time predictor, means that the battery

will expire before or after the next charging opportunity. If the energy level is not

sufficient to last until the next charging opportunity, then the viceroy must use the UI

(audible or visual signals) to notify the user. Formally speaking, the user should be

warned if t > r − f(m), where t is an estimate of the time interval before the next

charging opportunity surfaces, r is an estimate of the remaining battery lifetime, m is

an estimate of the required call-time and f(m) is the map from call time to battery

lifetime.

When warned, the user may be able to take care of the situation by (i) killing some

battery-hungry applications (up to and including powering down the device as a whole),

(ii) change their behaviour so as to make less power demands of the device, (iii) plan to

charge the device according to the time-scale that the viceroy predicts the device will

last, or (iv) accept and understand that they may lose the ability to make calls (or, in

general, execute critical applications).

When the user is at a place with a charging opportunity (as may often be the case,

e.g. for users with a home charge and office charger), the viceroy’s job is to decide

whether to use the UI to ask the user to charge the device, or whether the battery level

is sufficient to reach the next charging opportunity.

4.2 Experimental Results for the Battery Management Architecture

We have implemented a battery management prototype for Linux and Symbian OS.

The purpose of this prototype was to carry out a feasibility study. The ability to

make predictions with acceptable errors is a key indicator of the real-life performance

of the battery manager. Therefore, for evaluating the system, we evaluate the three

prediction algorithms used: charging opportunity predictor, call-time predictor and

battery-lifetime predictor.

Charging Opportunity Predictor

Charging opportunity predictor predicts when the next opportunity for charging the

phone will be encountered. To evaluate the performance of the charging opportunity
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Figure 4.4: Charging Opportunity Prediction Error for Various Sample Sizes and His-
tory Sizes

predictor and call time predictor, we used a large trace of measurements of real users

captured in MIT’s Reality Mining project [3], which in turn used context logging func-

tionality from the University of Helsinki. This excellent data set was gathered by

deploying Nokia 6600 phones to more than 80 subjects for around nine months.

We present the percentage prediction error averaged over the traces of all subjects,

varying our algorithm’s parameters of sample size and history size, in Figure 4.4. As

we expect, an increasing sample size generally increases accuracy (the curve is lower)

and reliability (the curve wavers less), as more closely-fitting historical data is used in

prediction, with a sample size of 1 being only the current location used, and a sample

size of 15 being the previous 15 locations. The effect of increasing sample size appears

to bottom out at around 10. From a tested range of 1–60 days, history size appears to

be optimal at 40 days; intuitively more history provides a longer averaging period, but

longer-term changes in user behaviour (e.g. the change of home or workplace) mean

that use of too much history has a negative effect.

Using the parameters of 10 samples and a 40 day history, the average prediction

error across the 80 user, 9 month trace is 16%, which corresponded to an absolute

error of 12 minutes on average. This indicates that the charging opportunity prediction
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Figure 4.5: Absolute Call Time Prediction Error for Weekdays (top) and Weekends
(bottom)

algorithm is highly likely to give useful results in practice.

We also evaluated the algorithm by conditioning it on the day type (weekend or

weekday), that is, if the current location trace is that of a weekday then it is compared

against the past location traces of only weekdays. We did not notice any significant

difference in performance.

Call Time Predictor

Call time predictor predicts how much call-time will be required by the user in a given

window of time. The Reality Mining traces are also used to evaluate the call time
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Figure 4.6: Cumulative distribution function of the Length of Phone Calls (top) and
the Number of Calls Made During Each Hour (bottom)

predictor. Using the call logs of these traces, we can execute the prediction algorithm

described previously, where the number of minutes of call time used in a given hour

of the day is predicted by the average number of minutes used in previous days. The

average prediction error of this algorithm is shown in Figure 4.5. We can see that, as

one might expect, it is easier to predict call time requirements for the middle of the day

than it is for evenings (where users typically make many calls), and easier for weekdays

than weekends. However, even in the worst case the average prediction error is under

a minute out of the hour.
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The low prediction errors seem suspiciously good, until one examines the actual

calling pattern of users, as shown in Figure 4.6. These cumulative distribution functions

(CDFs) show that the typical call is short (71% calls are less than a minute, 90% calls

are less than 5 minutes), and in a typical hour very few calls are made (75% with 2

calls or fewer), although both of these curves have a “long tail”, which account for

the occasional long call. While we obviously cannot account for the latter case (how

can we predict an incoming call from an occasionally-in-contact friend when humans

cannot?), the type of functionality we are looking to preserve in CABMAN is the crucial

application of telephony for rendezvous or emergencies. The user does have a choice

to specify the additional amount of call time they would like to reserve over and above

the predicted call time.

Therefore, the short calls forming the majority of usage are those that interest

us, and the algorithm presented is shown to provide a feasible way of dynamically

estimating the call requirements of the users in this large trace. Particularly when

combined with user-specified minimum thresholds for call-time-remaining (as discussed

previously), we believe that the system can make useful estimates for user needs for the

crucial application of telephony.

Battery-lifetime Predictor

In order to evaluate the performance of the battery-lifetime predictor, we experimented

with three different machines: an HP laptop with a new battery, a Dell laptop with

a very old battery and a regular HP iPAQ PDA. First, the base curves for all the

three machines were obtained, as shown in Figures 4.2 and 4.3. Next, we obtained the

actual discharge curves for a set of applications (web, music and video) and all combi-

nations of these applications running together (7 combinations) on all three machines.

We simultaneously ran the prediction algorithm for battery lifetime (using a 2 minute

observation window to obtain a prediction), and monitored the device’s own battery

lifetime prediction via the ACPI interface. Advanced Configuration and Power Inter-

face (ACPI) defines common interfaces for device configuration and power management

on Linux-based systems.

As previously described, the prediction algorithm essentially calculates the discharge
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Figure 4.7: Base Curve Together With Discharge Curves (actual and derived) for the
New HP laptop (top) and Old Dell laptop (bottom)

speedup factor based on observation of the running set of applications, and uses it to

predict the remaining battery lifetime. In the process, the algorithm implicitly derives

a predicted discharge curve for the given set of applications, which is useful in order to

illustrate the performance of the algorithm.

Figures 4.7 and 4.8 show the base curve for the three devices together with the

actual and derived discharge curves for a web application and movie player executing

together. In all cases, the actual discharge curve and the derived discharge curve track

each other closely, showing that the algorithm performs well. In the case of iPAQ,
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Table 4.1: Comparing Accuracy of Our Battery Lifetime Prediction Algorithm with
ACPI’s

Average Prediction Error
Machine

Our algorithm ACPI

New HP laptop 1.2% 23.5%

Old Dell laptop 6.1% 120.2%

HP iPAQ 3% 52.2%

the discharge curve is a measure of the instantaneous voltage level as opposed to the

battery charge level as in the case of laptops. The iPAQ fails when the voltage level

falls below a certain threshold.

Table 4.1 summarizes the performance of the battery prediction algorithm against

the devices’ own battery lifetime predictors (obtained via ACPI), across experiments

using all 7 combinations of applications. Our algorithm clearly wins, with average

errors of 1%, 3% and 6%, while ACPI’s estimates are (on average) over 100% off (i.e.

predicting more than double the actual lifetime) in the case of an older battery with a

non-linear discharge curve. In absolute terms, we are able to predict battery lifetime

with an average accuracy between 4 minutes for the new laptop and 12 minutes for

the iPAQ. This experiment shows that our battery prediction algorithm is capable of
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providing accurate enough information to support the feasibility of CABMAN.

4.3 Discussion

Charging-opportunity predictor and call-time predictor perform reasonably well for an

average user whose life entropy is not very high. For users with a very high entropy

lifestyle, the prediction algorithms described in this chapter may not work very well.

Additional context information will be needed to improve the accuracy of these pre-

diction algorithms for such users. This may include calendar information, information

about the travel plans of the user, context information of the contacts of the user, etc.

Obtaining and using this additional context information can be challenging in itself.

Many users charge their phones in their cars while driving. For such users, it is not

always possible to associate charging with location. The charging-opportunity predictor

should then associate charging with the user’s presence in the car, and should predict

when the user will be in the car next. This would also require additional context

information to be logged.

4.4 Summary

In this chapter, we described a system and a set of algorithms for managing limited

battery lifetime on smart phones. The main idea is to log user’s information on the

phone (such as location, call-time usage, etc) and use it to predict future whereabouts

of the user and in turn use this information to decide what fraction of the battery

should be reserved for crucial applications. Experimental results demonstrate feasibil-

ity of this approach. The knowledge of user’s future whereabouts can enable several

non-conventional applications including mobile data pre-fetching and route planning in

addition to battery management.

In the next chapter, I present a solution for preserving the location-privacy of the

user against untrusted services.
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Chapter 5

Information Flow Control for Location Privacy

Location-aware personal computing requires user location to be shared with untrusted

third parties, such as web services. Releasing location information without breaching

user privacy is a hard problem. Unless the users are secure about their location privacy,

they would be reluctant to use location-aware applications. This hurdle would have to

be overcome if location-aware computing is to be globally accepted. This problem

has been studied in the past and solutions proposed [31, 43, 36]. The state-of-the-

art solution applies the idea of k-anonymity [77, 36] to location information using data

perturbation techniques. In this solution, location information is perturbed by reducing

the spatiotemporal resolution until the data met the k-anonymity [77, 36] constraint.

This is a very generally applicable technique. However, it may lead to inferior quality

of service if the accuracy of location information does not match the requirements of

the service.

In this chapter, we describe a service-specific location privacy approach, centered

on an information flow control analysis. Consider a scenario where a trusted location

server maintains mobile subjects’ position information. Location information consists

of identity of the subject, its location, and the timestamp when the subject was present

at that location. When an LBS provider needs location information, it can request to

install an aggregation module on the trusted server. The module can access location

records on the server and communicate aggregate results (e.g., distance between two

cars, density of vehicles in region, or mean velocity of vehicles on road segment) to

the LBS provider. This eliminates the need to reveal raw location information to the

LBS as the desired result is computed on the trusted server itself using exact location

information.
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In order to preserve privacy, the trusted server needs to ensure that the data sent

to the LBS is indeed aggregated and location-safe. That is, the LBS provider must

be unable to deduce the location of any mobile subject from the received information.

Since an aggregation module, due to malice or incompetence, may covertly leak infor-

mation, this requires a detailed analysis of the aggregation module. This analysis can

be performed either by the operator of the trusted location server or another trusted

third party (like VeriSign) that guarantees correct behavior of the module. To enable

the analysis and certification of a large number of different aggregation functions, there

is a need for tools to assist in verifying code for location-safety. In this context, we de-

scribe a system based on an information flow analysis tailored to aggregation modules

for time-series information such as location traces.

5.1 Information Flow Control

Information-flow policies are end-to-end security policies that provide more precise con-

trol of information propagation than access control models. A large body of work exists

in this field, most of which is purely theoretical in nature. Here, we summarize the most

noteworthy pieces of work in this area that have led to the evolution of this field. The

lattice model for multilevel security systems was first proposed by Denning et al [29].

In this model, objects are assigned different security levels, where objects can be files,

segments or program variables depending on the level of the detail. The security levels

are organized as a lattice. Information is allowed to flow only from low security levels

to high security levels. This has been the universally accepted model for representing

multilevel security systems ever since. A special case is when there are only two security

levels: public and private.

State of the art in information-flow control is Non-interference [26, 59], which was

introduced by Goguen and Meseguer in their seminal paper [59]. Intuitively, non-

interference requires that high-security information does not affect the low-security

observable behavior of the system. In other words, private data does not influence
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public data. Non-interference is fairly easy to enforce using language-based tech-

niques [30, 51, 85, 52]. In particular, static program analysis has demonstrated ad-

vantages of little run-time overhead, the capabilities of managing implicit information

flows, and provable guarantees. Jif [85, 52] is a popular static analyzer that enforces

non-interference on annotated Java programs for multilevel security systems. Central

to this implementation is the notion of a principal, which is an entity (e.g user, process,

party) that can have confidentiality concern with respect to data. Principals can ex-

press ownership on data (i.e program variables) via security labels, which are analogous

to security levels in multilevel security systems. These security labels are used to track

flow of information between program variables. Illegal information flows are prohibited

using type analysis.

Non-interference, however, is a very strict requirement for most systems where pri-

vate data often interferes with public data. Its applicability is, therefore, extremely

limited. This was explicitly stated in [71]. Since then, there has been research on re-

laxing non-interference. Giacobazzi et al proposed Abstract Noninterference [34], where

they used abstract interpretations to generalize the notion of non-interference by mak-

ing it parametric to what the attacker can analyze about the information flow. Many

downgrading scenarios can be formally characterized in this framework. Downgrad-

ing/declassification is a term used for lowering the security class of an object, e.g from

private to public. This allows sensitive information to be leaked when necessary. How-

ever, this framework is mainly theoretical. To practically apply this theory in building

program analysis tools, we need to design ways to express security policies and mech-

anisms to enforce them. Approximate Non-interference [58] is a model in which the

notion of non-interference is approximated in the sense that it allows for some exactly

quantified leakage of information. This is characterized via a notion of process sim-

ilarity. In this model, programs leaking more information are considered less secure.

However, comparing the quantity of information leakage does not have direct sensible

meanings in most situations.

In a recent work [49] Li and Zdancewic proposed a generalized framework of down-

grading policies. A downgrading policy defines how and when the security level of a
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particular sensitive data entity can be downgraded to allow leakage when necessary. Us-

ing this framework, the user can specify downgrading policies which are enforced using

a type system. The main contribution of this work is the formalization of a framework

that enables downgrading. The real challenge is to define downgrading policies that are

applicable to real systems.

5.2 Non-Inference

The problem of verifying location-safety of an aggregation module can be regarded

as an information-flow control problem. The standard information-flow control model

called Non-interference [59, 26] requires that any possible variation in private data

must not cause a variation in public data. That is, if the value of a public variable q

depends on that of a private variable p then non-interference is violated. In effect, non-

interference isolates private data from public data. In doing so, it guarantees that the

publicly observable behavior of a system/program that does not reveal anything about

its private behavior. However, data isolation is an extreme measure, and in many real

applications it is not possible to isolate private data from public data. For example,

in our case the migratory code computes results based on private location information.

These results are transmitted back to the LBS and are public. Since private variables

affect the value of public variables, it is not possible to enforce non-interference in this

case. The question then is: Is it possible to envisage an information-flow control model

that does not require data isolation and yet preserves privacy? Under what assumptions

can such a model be realized?

In this chapter, we propose a weaker model of information-flow control called non-

inference. Non-inference requires that the adversary should not be able to infer the

value of a private variable based on the values of public variable.

Let us denote a program as a function f which takes inputs i1, i2, ..in and produces

outputs o1, o2....ok. Let P denote the set of private input variables and Q the set

of public input variables. All output variables are assumed to be public. Function

f satisfies non-inference if and only if ¬(∃ik ∈ P |{f, o1, o2....ok} → ik). Inference is



84

denoted by the symbol →. Informally speaking, a program satisfies non-inference if

an adversary cannot infer the exact value of a private input variable from the output

variables and the program code.

The question is: Is it possible to decide if a program satisfies non-inference? It

can be shown that in the most general case (when no assumptions are made about the

program or the capabilities of the adversary), non-inference is undecidable. (We provide

a proof in the next section). However, non-inference is decidable if we can assume that

multiple executions of untrusted code are independent of each other. (We prove this in

the next section.) To understand this better, consider the following code snippet:

int h(int x1, int x2, int i){

int out=0;

if(i == 1){

out = (x1+x2)/2;

output(out);

}else{

out = x1*x2;

output(out);

}

Here x1 and x2 are private variables and i is a public variable. Function h returns

the average of x1 and x2 if i = 1, otherwise it returns the product of the two variables.

Body of function h and the value of the input variable i are sent by the untrusted

service. From one execution of h, the untrusted service learns either the product or the

average. It cannot infer the value of x1 or it x2 from out. Now, consider two different

executions of h with i=1 and i=2, respectively. The first execution returns average of

x1 and x2, while the second execution returns product of x1 and x2. By knowing both

average and product, the adversary can infer the values of both x1 and x2.

Non-inference, therefore, allows information to flow from private variables to public

variables, but in order to prohibit the adversary from learning the value of any pri-

vate variable from public variables, it is necessary to assume that multiple executions
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are independent. Execution independence requires that the results obtained from one

execution should not aid the results obtained from another execution of the same or

different application. This is usually the case for location-based applications. In this

example, if x1 and x2 are x-coordinates of two moving vehicles, and there is a time gap

between the two executions of h, then the values taken by x1 and x2 would be different

for the two executions. This makes the two executions of h independent of each other.

Non-inference is therefore applicable to location-based mobile applications.

5.3 Proofs for the Theoretical Properties of Non-Inference

Model of Protection Systems: For sake of completeness, we first introduce the

protection system as described in [38], which consists of the following parts:

• a finite set of generic rights R

• a finite set C of commands of the form:

command c(X1, X2, X3,...Xk){

if r1 in (Xs1, Xo1) and

r2 in (Xs2, Xo2) and

...

rm in (Xsm, Xom)

then

op1

op2

..

opn

end

where opi is one of the primitive operations

enter r into (Xs, Xo)

delete r from (Xs, Xo)

create subject Xs
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create object Xo

destroy subject Xs

destroy object Xo

Also, r1, r2, ...rm are generic rights s1, s2, ...sm and o1, o2, ...om are integers.

A configuration of a protection system is a triple (S,O, P ), where S is the set of

subjects, O is the set of objects, S ∈ O, and P is an access matrix, with a row for every

subject in S and a column for every object in O. P [s, o] is the set of rights that subject

s has over object o. An operation such as enter r into Xs, Xo) will enter right r in the

access matrix at position (xs, xo), where xs and xo are actual parameters corresponding

to formals Xs and Xo. An example of subjects and objects would be processes and files

respectively.

Transition from a configuration Q = (S,O, P ) to another configuration Q′ = (S′, O′, P ′)

under the execution of an operation op, is represented as Q `op Q′. Reachability of Q′

from Q is represented as Q `∗ Q′.

Safety: Given a protection system, a command c(X1, X2, ...Xk) is said to leak a generic

right r from configuration Q = (S,O, P ) if c, when run on Q can enter right r into a

cell of the access matrix which previously did not contain r.

An initial configuration Q0 is said to be unsafe for r (or leaks r) if there is a config-

uration Q and a command c such that

(1) Q0 `∗ Q and

(2) c leaks r from Q

Q0 is safe for r if Q0 is not unsafe for r.

In [38], Harrison et al prove that it is undecidable whether a given configuration of

a given protection system is safe for a generic right r. In other words, safety problem is

undecidable. In addition, they prove that the safety problem without the create primitive

is decidable and complete in polynomial space. It is, however, not clear if a polynomial

time solution is possible.
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Complexity of Non-inference: We will show that the safety problem(as described in

the previous section) can be reduced to the problem of deciding non-inference. Through

this, we prove that non-inference is undecidable. In addition, we reduce the problem of

deciding non-inference for single execution of a program to the safety problem without

create primitive. Through this, we prove that non-inference for uni-directional infor-

mation flow is decidable.

Theorem: Non-inference for an arbitrary program is undecidable.

Proof: We reduce the safety problem to the problem of deciding non-inference. Given

an initial configuration Q = (S,O, P ), we create a program M with a set of variables V

such that V = S ∪ O − {S1, S2}. Input variables Vinput = {v|(S1, v) = r}, where (x, y)

represents the cell in matrix P corresponding to row of x and the column of y. Output

variables Voutput = {v|(S2, v) = r}. Intuitively, S1 can be looked upon as a subject that

has rights over all input variables and S2 as a subject that has rights over all output

variables. All input variables in set S are labeled private, while those in O are labeled

public. The statements of M are created by converting each row of the access matrix

into an assignment statement. The assignment statement corresponding to the row for

subject Si is Si = {⊕{Sj |Pij = r}} ⊕ {⊕{Ok|Pik = r}}, where ⊕ corresponds to the

concatenation operator.

Program M when executed, will create a dependency matrix for its variables which

will correspond to the access matrix P . To understand this, note that an assignment

statement in M of the form v1 = v2 essentially corresponds to a right r in the cell

(v1, v2) of the matrix P . Thus, rights in P represent data dependencies in M . If M

violates non-inference, its execution will lead to a configuration such that by executing

some command c, the adversary can enter a right r into a cell (S2, x), where x is a

private input variable of M . If M satisfies non-inference, then no such command can

be executed. The problem of deciding safety for right r in configuration Q can be thus

solved by creating a program M from Q and deciding non-inference for M .
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Theorem: Non-interference for uni-directional information flow is decidable.

Proof: We reduce the problem of deciding non-inference for single execution of a

program to the safety problem without the create primitive. Safety problem without

the create primitive has been shown to be decidable [38].

Given a program M , let V be the set of variables of M and E the set of expressions

in M . We create a configuration Q = (S,O, P ), such that S = O = V ∪ E ∪ In ∪ Out

where In is the placeholder for a subject that has rights over all input variables of M

and Out is the placeholder for a subject that has rights over all output variables of M .

Program M (in the intermediate representation) can have two types of statements:

assignment statements or if-then-else statements. Matrix P is created from the state-

ments of M . Assignment statements in M can be of three types: (1) v1 = v2 (2) v = e

(3) e = f(v1, v2, ..vn), where vi represents a variable, e represents an expression and

f represents a function that computes the value of an expression e from the variables

occurring in it. P is created from the assignment statements in the following way: for

every statement of the form v1 = v2, right r is entered in the cell corresponding to

the row of v1 and the column of v2. Similarly, for every statement of the form v = e,

right r is entered in the cell corresponding to the row of v and the column of e. For

statement of the form e = f(v1, v2, ..vn) (e.g e = x + y), right r is entered in the cells

corresponding to the row of e and the columns of v1, v2, ..vn. All diagonal cells of the

matrix have the right r in them. The row corresponding to In has right r in all the

columns corresponding to the input variables of M . Similarly, the row corresponding

to Out has right r in all the columns corresponding to the output variables of M .

Assignment statements are responsible for explicit information-flow in a program.

Conditionals lead to implicit information-flow. For example: if(x = 0) then y = 1 else

y = 2, creates an information-flow from x to y, since the value of y depends on the

value of x. To accommodate for implicit information-flow due to conditionals in M ,

P is extended in the following manner: for every control variable (e.g x in the above

example), right r is entered in the cells corresponding to the column of the control
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variable and the rows of all variables/expressions occurring on the left-hand-side of the

assignment statements that are enclosed within the conditional corresponding to the

control-variable. To understand this better, consider the following code snippet:

if(x = 0) then

v1 = v2

else

v3 = v4

end

Here, x is the control variable. v1 and v3 occur on the left-hand-side of the state-

ments enclosed inside the conditional, and hence their value is affected by the value of

x. For this example, right r would be entered in the cells (v1, x) and (v3, x) of P .

Configuration Q = (S,O, P ) thus created, captures the possible information-flow

dependencies in program M . If some command c can be executed on the configuration

Q such that right r gets entered in a cell (Out, v), where v is a private input variable,

then this translates to an adversary learning the value of v. In that case, M would

violate non-inference. If no such command can be executed, then M would satisfy

non-inference. Non-inference for M can therefore be decided by deciding safety for the

configuration Q.

The create primitive is used for creating new subjects or objects. What does the

absence of create primitive correspond to in the non-inference domain? We informally

argue that it corresponds to single execution of a program. For understanding this, it

is necessary to understand what primitive operations and commands in the protection

system domain correspond to in the non-inference domain. The command enter r into

(x, y) in the protection system domain essentially corresponds to x = f(y) in the non-

inference domain, and represents information flow (or data dependency) from y to x.

Similarly, delete r from (x, y) corresponds to x = v, where v is not a function of y. This

results in destroying the data dependency between x and y.

The primitive create subject s or create object o essentially corresponds to creating

temporary buffer variables in the non-inference domain, which an adversary can use to
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Figure 5.1: Framework for Applying Non-Inference

store values of output variables corresponding to an execution of a program. When the

create primitive is taken out of the system, it implies that the adversary cannot create

any temporary variables to hold values of variables resulting from one execution. This

ensures that information that flows out of a program cannot be fed back into it. In other

words, the program cannot be executed again with modified inputs that depend on the

outputs of the previous execution. Multiple executions are possible, but they would be

independent. This is what is implied by single execution or uni-directional information

flow. Note that corresponding to commands that execute on configurations and result

in violation of safety, are programs that an adversary would run on the output variables

to deduce the value of a private input variable.

Thus, we can reduce the problem of deciding non-inference for single execution of a

program to the safety problem without the create primitive, which is decidable.

5.4 Model

Figure 5.1 shows the bird-eye view of our model. In our model, the location information

of mobile nodes is maintained on a trusted server. An LBS that needs to compute a

result based on location information sends a piece of code to the trusted server along

with some data, which is optional. The code executes on the trusted server, reads

location information resident on the server, and the data sent by the LBS. It then

computes some results and sends them back to the LBS. Without loss of generality, we
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assume that the mobile code is a single function encapsulated in a Java class. A program

with multiple functions can be reduced to a single function by inlining function bodies.

We assume that all input and output variables are of type byte (8-bit integers) in order

to make sure that exact values of two variables cannot be stored in one variable, which

is important for the solution. The function is invoked from the Dispatcher class, which

feeds the data sent by the LBS and the location information to the function. Before

invoking the function, the Dispatcher class invokes the StaticAnalyzer that first checks

to see if the function is pre-certified, if not it analyzes the function and determines if

it satisfies non-inference. If the function satisfies non-inference, it is allowed to execute

and read exact location information from the location database. If it fails to satisfy non-

inference, low-resolution location information is fed into it, as suggested in [36]. The

Dispatcher also ensures that there is a minimal time gap between two code executions

in order to guarantee execution independence as described in the next subsection.

5.5 Deciding Non-Inference for Location Based Applications Using

Static Analysis

The analyzer uses static program analysis to decide non-inference. The analysis con-

sists of two phases. In the first phase, global data-flow analysis is used to construct

information-flow relations between the variables(V) and expressions(E) of the code T

under examination. From these information-flow relations, dependency information be-

tween private input variables (P ∈ V ) and output variables (O ∈ V ) is derived and

stored in a matrix M.

In the second phase, the analyzer decides if the information-flow relations stored in

the matrix satisfy non-inference. For this, the information-flow relations are treated as

linear equations and the theory of solvability of linear equations is applied. This is the

main idea used in deciding non-inference. We provide the details in what follows.
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5.5.1 Information-Flow Relations

We define three information-flow relations for capturing data dependency in a program:

R1 from V to E

R2 from E to V

R3 from, V to V.

R1(v, e) can be interpreted as ”the value of variable v on entry to T may be used in

the evaluation of expression e in T”. For example, the code S:

if (a > 10) then (m = a + b; n = m ∗ a) else k = b

contains three expressions: {a > 10, a + b,m ∗ a}. The value of variable a on entry

to this code may be used in evaluating all the three expressions, while the entry value

of b may be used in evaluating only (a + b). The entry value of m will not be used

for evaluating any of the three expressions. For this code, we have: R1(a, a > 10),

R1(a, a + b), R1(a,m ∗ a) and R1(b, a + b).

R2(e, v) can be interpreted as ”the value of expression e in T may be used in obtaining

the exit value of variable v”. In the previous example, both expressions (a > 10) and

(a+b) may be used in obtaining the exit value of m. Similarly, all the three expressions

{a > 10, a + b,m ∗ a} may be used in obtaining the exit value of n. For S, we have

R2(a > 10,m), R2(a + b,m), R2(a > 10, n), R2(a + b, n), R2(m ∗ a, n).

R3(v1, v1) can be in interpreted as ”the entry value of variable v1 may be used in

obtaining the exit value of variable v2 in T”. R3(v1, v2) implies that either: (i) the entry

value of v1 may be used in obtaining value of some expression e, which in turn may

be used in obtaining the exit value of v2 in T, or (ii) there is an assignment statement

v2 = v1 that is preserved in T. An assignment statement x = y is said to be preserved

in T, if there exists a path in T that does not reassign x. R3 can be expressed in terms

of R1 and R2 as follows:

R3 = R1R2 ∪A, where A = {(v1, v2), s.t there is an assignment statement v2 = v1 that

is preserved in T}.

In example S, R1R2 = {(a,m), (a, n), (b,m), (b, n)}, A = {(b, k)}, and
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R3 = R1R2 ∪ A = {(a,m), (a, n), (b,m), (b, n), (b, k)}.

5.5.2 Construction of Information-Flow Relations

The information-flow relations R1 and R2 are constructed using use-def [19] and def-

use [19] analyses. Use-def analysis is used to create ”use-definition chains” or ”ud-

chains”. ”Use-definition chains” are lists, for each use of a variable, of all the definitions

that reach that use. We say a variable is used at statement s if its r-value may be

required. For example, the statement: (m = a + b), contains a use of a, a use of b and

a definition of m. The sequence of statements:

a = 5;m = c + d;m = a + b; p = m + n; q = a + t;

contains one use and two definitions of m. Definition d1: (m = c + d) is overwritten by

definition d2:(m = a + b). We say that definition d2 reaches the use of m in statement

(p = m + n). Similarly, definition d3:(a = 5) reaches the use of a in statement (m =

a + b). We have ud(m, p = m + n) = {d2}, and ud(a,m = a + b) = {d3}.

Def-use analysis is used to create ”definition-use chains” or ”du-chains”. The du-

chaining problem is to compute for a definition d of variable x, the set of uses s of x such

that there is a path from d to s that does not redefine x. In the sequence of statements:

a = 5;m = c + d;m = a + b; p = m + n

definition d2:(m = a + b) reaches the use of m in (p = m + n). Similarly, definition

d3:(a = 5) reaches the use of a in statement (m = a + b), and the use of a in statement

(q = a + t). We have du(d2) = {(m, p = m + n)}, and du(d3) = {(a,m = a + b), (a, q =

a + t)}.

By taking transitive closures of du-chains and ud-chains, relations R1 and R2 are

constructed. From R1, R2, and A relation R3 is constructed. Matrix M is constructed

from R3 for input and output variables. While constructing M, the path information is

also taken into account (i.e. which expression or assignment statement was responsible

in establishing the dependency between a particular output and input variable) as

provided by relations R1 and R2. For simplicity sake, readers can assume that M stores

R3 for input and output variables (i.e M = R3(P,O)). In Section 5.6, we explain how

M can slightly differ from R3 for certain programs.
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int f(byte x1, byte y1, byte x2, byte y2, int k){

byte x, y, dist, avg_x, avg_y;

x = (x2 - x1)^2;

y = (y2 - y1)^2;

dist = sqrt(x + y);

output(dist);

if(k > 100){

avg_x = (x1 + x2)/2;

avg_y = (y1 + y2)/2;

output(avg_x);

output(avg_y);

}

}

Figure 5.2: Function that Calculates Distance Between Two Cars and Average Values
of Coordinates

The data-flow analysis is conservative, as may relations are used instead of must

relations. Figure 5.2 is the example of a function that calculates the exact distance

between two cars. Variables x1, y1, x2, y2 are private input variables, k is a public

input variable, dist, avg x, avg y are output variables. (x1, y1) is the location of the

first car and (x2, y2) is the location of the second car. The function also computes the

average value of coordinates if the value of k is greater than 100. The information-

flow relations for this function and the matrix M are given in Figure 5.3. Note that

R3 = R1R2 ∪ A and M = R3(P,O).

5.5.3 Solving Information-Flow Relations

Given information-flow relations, how do we decide if the program satisfies non-inference?

The proof in Section 5.3 shows that although non-inference is decidable in the case of

independent program executions, it is not clear if a generic polynomial-time solution

is possible. We solve this problem in context of location privacy, where it is reason-

able to assume that all input and output variables are 8-bit integers. In our solution,

information-flow relations as treated as linear equations. It can be shown that a pro-

gram satisfies non-inference, if the system of linear equations given by: M T P = O is

unsolvable. P is the set of private input variables, O is the set of output variables and

MT is the transpose of matrix M which stores R3(P,O).
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P = {x1, y1, x2, y2}, O = {dist, avg x, avg y}
V = {x1, y1, x2, y2, k, x, y, dist, avg x, avg y}
E = {(x2−x1)2 , (y2−y1)2 , sqrt(x+y), (dist > k), (x1+x2)/2, (y1+
y2)/2}
A = {I}, I represents Identity: (v = v)
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Figure 5.3: Information-flow Relations for the Distance Example

A system of linear equations given by AX = B, has a solution only if : rank(A)

= rank([AB]) = N, where A is M-by-N, X is N-by-1 and B is M-by-1. The notation

[AB] means that B is appended to A as an additional column. X is the matrix of

unknowns, A is the coefficient matrix, and B is the right-hand-side matrix. The rank of

a matrix denotes the number of independent rows in the matrix and hence, the number

of independent equations in the set. To get a solution, the rank of the coefficient

matrix (A should be equal to the number of unknowns. If all the equations in the set

are assumed to be independent, it suffices to check if N = M.

We represent dependency between private input variables P and output variables

O as a set of linear equations: M T P = O (as shown in Figure 5.4). The intuition

behind this representation is as following: let p1, p2, .., pk ∈ P be the set of private
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Figure 5.4: Linear Equations for the Distance Example

input variables for which, M(pi, o) = 1, then it can be said that o = f(p1, p2, ..pk). In

other words, an output variable can be represented as a function of all the private input

variables that may affect its value. Public input variables are treated as constants, as

they are known to the adversary. The simplest representation of a function is a linear

equation. In reality, the function may be a higher-order equation involving complex

operations. By adopting linear equation as the representation of all the functions, we

guarantee a conservative analysis. If the system of linear equations cannot be solved,

then values of private input variables (which are the unknowns in these equations)

cannot be inferred from the values of output variables. However, since our analysis is

conservative, we may have false negatives. That is, if a system of equations can be

solved then it does not necessarily mean that the program violates non-inference. But

the analysis will reject such a program.



97

We assume that all the equations are independent. Let R be the number of rows of

MT and C be the number of columns. We check if R < C. We carry out this check

for all the matrices that can be derived from M T by deleting one or more rows of M T .

This is because we want to know if the value of any input variable can be inferred from

output variables. In other words, we want to know if any subset of the linear equations

can be solved. If the check is satisfied for M T and all its sub-matrices, the program

satisfies non-inference.

Figure 5.4 shows the system of equations M T P = O for the example program of

Figure 5.2, and all the subsystems that can be derived from M T . The check R < C

is satisfied by all the subsystems. This implies that the set of linear equations is

unsolvable. The example program therefore satisfies non-inference.

5.6 Implementation and Evaluation

We have implemented a system that decides non-inference for Java programs. This

system has two main components. The first component carries out a static analysis

of a given program and derives information-flow relations. The second component

translates the information-flow relations into a set of a linear equations and inspects

solvability. The implementation was done using Soot 2.2.1 [10] and Indus 0.7 [7]. Soot

provides an API for analyzing and instrumenting Java bytecode. Indus provides an API

for data-flow analysis. The current implementation does not support inter-procedural

analysis, and assumes that input and output variables are 8-bit integers.

In absence of real applications that make use of location, the analyzer was evaluated

on a self-written benchmark of Java programs. The benchmark consists of simple lo-

cation based applications such as Distance (which returns distance between two cars),

Density (which returns number of vehicles in a given region), Speed (which returns

average speed of cars in a given region), Average (which returns average value x and

y coordinates of the vehicles in the database). The benchmark also includes some

standard applications and attacks, such as PasswordChecker [72, 53], Wallet [72], Wal-

letAttack [72], AverageAttack [72]. These are in addition to the several microscopic Java
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programs that were used in the testing of the implementation.

The evaluation tries to answer the following questions:

• How bad are false-negatives?

• Can there be false-positives?

• What is the average running time of the analysis?

Case Study 1: AverageAttack [72]

Suppose x1,..xn stores the x-coordinates of n vehicles (which is private). The average

x-coordinate computation is intended to release the average but no other information

about x1,..xn:

Average = (x1 + .. + xn)/n; output(Average)

It is possible to formulate a laundering attack on the average program that leaks the

x-coordinate of vehicle i:

x1 = xi;..xn = xi;

Average = (x1 + .. + xn)/n; output(Average)

The system of linear equations for AverageAttack given by M T P = O is:

[

0 .. 0 1 0 .. 0

]

























x1

..

xi

..

xn

























=
[

Average

]

which is reduced to:
[

1

] [

xi

]

=
[

Average

]

P1 = {xi}, Rank(MT ) = 1 = (|P1| = 1)

This system of equations is solvable. Therefore, AverageAttack does not satisfy non-

inference and is rejected by our analyzer.
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Case Study 2: Wallet and WalletAttack [72]

Consider an electronic shopping scenario. Suppose p stores the amount of money in a

customer’s electronic wallet (which is private), q stores the amount of money already

spent (which is public), and c stores the cost of item to be purchased (which is public).

The following code snippet(Wallet) checks if the amount of money in the wallet is suf-

ficient and, if so, transfers the amount c from the wallet to the spent-so-far variable q,

and outputs q:

if (p > c) then (p = p − c; q = q + c); output(q)

The system of linear equations for Wallet given by M T P = O is:

[

1

] [

p

]

=
[

q

]

Rank(MT ) = 1 = (|P | = 1)

This system of linear equations is solvable. Therefore, Wallet is rejected by our

analyzer. However, it is easy to see that Wallet satisfies non-inference as the adversary

cannot learn the value of p from q. This is an example of an application where our

analyzer reports a false-negative. The reason for this is that the expression (p > c)

may affect the value of q in statement q = q + c. Therefore, R2(p > c, q) = 1. We have

R1(p, p ≥ c) = 1. From here, R3(p, q) = 1. Therefore our analysis assumes dependency

between variables q and p. There is indeed an implicit flow of information from p to

q. It is safer to assume that the adversary may be able to infer the value of q from p,

although in this particular example it cannot. In general: implicit information-flows

may result in false-negatives.

Now, we give an example to show the importance to having an analysis that is

conservative and may occasionally report false-negatives. Consider the following code

snippet (WalletAttack):

n = length(p)

while(n >= 0){
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c = 2^{n - 1}

if(p > c){

p = p - c;

q = q + c;

n = n - 1;

}

}

output(q)

This code snippet leaks the value of p bit-by-bit to q. Our analyzer is able to detect

it. The system of linear equations for WalletAttack given by M T P = O is:

[

1

] [

p

]

=
[

q

]

Rank(MT ) = 1 = (|P | = 1)

This system of linear equations is solvable. WalletAttack is, therefore, rejected by

our analyzer.

Case Study 3: PasswordChecker [53, 72]

Consider UNIX-style password checking where the system database stores hashes of

password-salt pairs. Salt is a publicly readable string stored in the database for each

user id, as a protection against dictionary attacks. For a successful login, a user is

required to provide a password such that the hash of the password and salt matches

the hash from the database. The following code snippet captures this functionality:

byte check(byte username, byte password){

byte match =0;

for(i = 0; i < database.length; i++){

if(hash(username, password)

== hash(salts[i], passwords[i])){

match = 1;

break;
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}

}

output(match);

}

This commonly used program is rejected by non-interference, as the value of pub-

lic boolean variable match depends on private variables. It is easy to see that this

program satisfies non-inference(as the username/password cannot be inferred from the

binary output). Our analyzer accepts this program.

Case Study 4: IfAttack

Consider the following code snippet:

void fun(byte a, byte b, int i){

byte out = 0;

if(i >= 1){

out = a;

}else{

out = a + b;

}

output(out)

}

Variables a and b are private input variables, variable i is a public input variable.

If i < 1 then the output variable out leaks the value of input variable a, otherwise not.

This program does not satisfy non-inference. Our analyzer is able to detect this. This

is because, while constructing matrix M from R3, we use path information. For this

code snippet,

R3 = P × O =





1

1



 ,M =





1 1

1 0
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The system of linear equations M T P = O, is:





1 1

1 0









a

b



 =





out

out





Note that we have two equations corresponding to the two paths. Path information

is available from relations R1 and R2. A subsystem of this system is given by:

[

1

] [

a

]

=
[

out

]

which is solvable, thereby violating non-inference.

5.6.1 Discussion

PasswordChecker is a simple example of a commonly-used application that does not

satisfy non-interference but satisfies non-inference. Distance(which calculates distances

between two cars) is a function that satisfies non-inference, and whose quality would

suffer if spatial/temporal cloaking is used. As described before, Geographical Routing

Service can make use of Distance. Similarly, functions such as Density(which calculates

density of vehicles in a region) or Speed(which calculates average speed of vehicles in

a region) satisfy non-inference and can benefit from our framework. Traffic survey

applications can make use of these functions. All these functions have been tested with

our analyzer. These are all examples of code-snippets that compute a result based on

location information, and will be part of bigger applications that would run on the LBS

side (such as Geographical Routing Service, or Traffic Information Service). Many of

these applications can work with temporal/spatial cloaking as well, with compromised

quality of service. While Spatial/temporal cloaking is more generally applicable, our

framework is more suitable for applications that need fine grained location information.

Through this framework, we provide a choice. We do not believe that the solution

in this paper can be a replacement for spatial/temporal cloaking. Non-inference is

applicable to sensor data privacy in general. Location is just an example of time-series

information coming from location sensors.
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How bad are false-negatives? Through the Wallet example, we showed that false-

negatives are possible, as our analysis is conservative. In general, implicit information-

flows can lead to false-negatives being reported. At the same time, through the Wal-

letAttack example, we showed why it is better to have a conservative analysis that

occasionally reports false-negatives, as opposed to one that does not and can be at-

tacked. Most of the applications that satisfy non-inference but are rejected by our

analyzer, can be rewritten with minor syntactic modification to satisfy our analyzer.

Can there be false positives? We gave examples of a few well-known attacks

(e.g AverageAttack, WalletAttack) that can break non-interference with declassification.

These attacks are detected by our analyzer and rejected. Theoretically, we can show

that it is not possible to launch attacks against our analyzer. Here, we sketch the proof

idea: let p1, p2, .., pk ∈ P be the set of private input variables for which, M(pi, o) = 1,

then it can be said that o = f(p1, p2, ..pk). In other words, an output variable can be

represented as a function of all the private input variables that may affect its value.

Public input variables are treated as constants, as they are known to the adversary. The

simplest representation of a function is a linear equation. In reality, the function may

be a higher-order equation involving complex operations. By adopting linear equation

as the representation of all the functions, we guarantee a conservative analysis. It can

therefore be said that if a system of linear equations cannot be solved, then values of

private input variables (which are the unknowns in these equations) cannot be inferred

from the values of output variables. However, the converse does not hold.

What is the average running time of our analysis? The experiments were

carried out on an IBM ThinkPad R51 with 1.5GHz Intel processor and 256MB RAM,

running the Linux operating system. For the benchmark consisting of 11 Java pro-

grams, the running time of our analyzer ranges between 3.6 and 4.2 seconds (as shown

in Figure 5.5). Typically, the untrusted code would be some kind of an aggregation

function that would be at most a few hundred lines of code. Our method of constructing

information-flow relations has a worst case time complexity of O(|E|2 × |V |3) (where E

is the set of expressions and V is the set of variables). The worst case time complexity

of deciding solvability of information-flow relations is O(|O| × |P |3) (where O ∈ V is
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Figure 5.5: Running Time of the Static Analyzer

the set of output variables and P ∈ V is the set of private input variables). The total

worst case time complexity of our analysis is O((|E|2 + |O|)× |V |3). |V | and |E| would

be directly proportional to the code size. Figure 5.5 shows that the time of analysis

increases with the size of code. There is a constant load time for the analyzer which is

around 3500msec.

5.6.2 Limitations

Through this information flow analysis, we are able to successfully defend against the

common class of attacks, thereby raising the bar for the adversary. Currently, no

guarantees are provided on how many bits of a private input variable can be inferred

from output variables. The adversary can get some partial information about the

location by crafting sophisticated attacks. Partial information leakage, however, is a

less serious concern for location privacy. It can be argued that hiding even one bit of

location information can guarantee a high degree of uncertainty, as the adversary would

not be able to distinguish a vehicle from other vehicles around it (similar to spatial

cloaking in k-anonymity). The verification tool can be combined with manual analysis

to prevent even partial information leakage. The tool would then assist the manual
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analyzer in identifying information leakage attacks, in the same way as a debugger

assists the application developer in writing robust code.

In order to make the analysis more robust, it should be combined with abstract

execution. Abstract execution can determine the dependency between two variables

more accurately than static data flow anlysis. It can establish whether or not a variable

will certainly affect the value of another variable at runtime, and if so, to what extent.

The main idea is to execute the program in a sandbox and perturb the value of private

input variables, one at a time, to see how public output variables are affected.

5.7 Summary

Location-aware personal computing requires location information of the user to be

shared with untrusted services which can cause potential privacy breach. In this chap-

ter, we presented a new information-flow control model called non-inference for guarding

location-privacy against untrusted services. Non-inference allows public data to be de-

rived from private data but not vice versa. We discussed the theoretical implications of

non-inference. We showed that non-inference is undecidable in general, but decidable

for applications where multiple executions are independent such as location-based ser-

vices. We showed that it can be enforced conservatively using static program analysis.

The main idea is to apply the theory of solvability of linear equations to information-

flow relations derived by data-flow analysis. We implemented a system that decides

non-inference for Java programs using static analysis, and tested it on a benchmark

and case studies known in the literature.
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Chapter 6

Summary and Conclusions

In this dissertation, we pointed out the two key hurdles that prohibit the widescale

adoption of pervasive computing: (1) limited cognitive bandwidth, and (2) dependency

on a ubiquitous computing infrastructure. We proposed location-aware personal com-

puting as an way of getting close to the pervasive computing vision. At the heart of

location-aware personal computing is the use of smart phones as computing devices,

and user location as a means of discovering and personalizing services. This disserta-

tion investigates the various issues in location-aware personal computing, namely: (1).

discovering and provisioning locally embedded services to the smart phone of the user

without pre-configuration, (2). determining user location without requiring extra in-

frastructure, (3). managing the battery lifetime of the smart phone and (4). protecting

location information of the user from illegal access and misuse. The conclusions of this

research are spread over all the four research directions, which we summarize in what

follows. At a higher level, the main conclusion of this research is that the cooperative

use of smart phones and user location can be instrumental in devising low-cost, easy-

to-use and non-intrusive solutions for pervasive computing without requiring significant

infrastructure support.

It is not always possible to customize web services to serve as local services, therefore,

some amount of computing would have to be embedded in physical space in order

to realize the vision of ubiquitous computing. Protocols are needed for seamlessly

discovering these locally embedded services and provisioning them to the user. Several

service discovery protocols have been proposed in the past (see Table 1.1). These

protocols can be roughly classified into two categories: client-service model and client-

service-directory model. In client-service model, clients directly query the services. In
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client-service-directory model, clients query directories that cache service information.

While the client-service model requires less infrastructure and is more suitable for

nomadic environments, it is not nearly as powerful as the client-service-directory model.

In location-aware mobile computing, smart phones serve as clients. Bluetooth SDP has

been incorporated in smart phones and follows the client-service discovery model. Since

smart phones have always-on internet connectivity in the form of 3G/GPRS, directories

can be conveniently maintained on the internet.

This dissertation presents a service discovery, interaction and payment protocol

(SDIPP) [68] that follows the client-service-discovery model. SDIPP is smart phone

centric; it exploits dual-connectivity (Bluetooth and GPRS) on smart phones to simul-

taneously connect with local services and web services. SDIPP takes a hybrid approach

to discovery in order to make the discovery process as generic as possible. In the first

phase, the services are discovered. In the second phase, a service is selected (based on

the location of the user) and a mechanism for interacting with the service is decided.

In the third and final phase, the user interacts with the service and pays for its usage

(when required). The discovery component is hierarchical and opportunistic– the net-

work interfaces of the phone as well as those of the neighbouring devices are utilized

to discover services. Multi-hop discovery is carried out using Portable Smart Mes-

sages(SM) [61]. The code for interacting with services is discovered and downloaded on

the fly, eliminating the need to have any prior knowledge of the services. The payment

protocol is based on the idea of Millicent scrips [35] and is provably secure. Evaluation

of SDIPP on Sony Ericsson P900 phones indicate satisfactory performance. Applica-

tions developed on top of this protocol and tested on Sony Ericsson P900 phones show

the applicability of SDIPP.

In order to enable location-aware personal computing, continuous location updates

are needed both outdoors and indoors. Although several solutions have been proposed

for determining user location indoors, each of them relies on some infrastructure support

in the environment, which increases the overhead of determining location and decreases

the chances of deployment.
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This dissertation presents two infrastructureless solutions [67, 64] for indoor lo-

calization, which can potentially be combined together for higher accuracies. In the

camera-phone-based localization solution [67], images are periodically captured by the

camera phone worn by the user as a pendant and transmitted to a web server over

3G. The web server maintains a database of images with their corresponding locations.

Upon receiving an image, the web server compares it with stored images, and based

on the match, estimates user’s location. This is accomplished with off-the-shelf image

matching algorithms, by tailoring them for our purpose. This solution does not require

any infrastructure to be installed in the environment; neither custom hardware nor

wireless access points are required; physical objects do not have to be ”tagged” and

users do not have to carry any special device. User location can be determined with

room-level precision with more than 90% success probability, and corner-level precision

with more than 80% success probability. User orientation is determined along with

location. The main limitation of this approach is that it is not resilient to varying

lighting conditions.

In the light-intensity-based localization solution [64], the location of the user is

determined based on the intensity of light incident on a light sensor worn by the user.

We show that every room has a unique light-intensity fingerprint, which can be used to

identify it. This solution also does not require any infrastructure to be installed in the

environment, and the user is only required to carry a tiny light sensor. Furthermore, it

only takes around a minute to collect training data for a room. Experimental results

show that this approach works very well under static lighting conditions (with upto

90% success probability), but moderately well in the presence of sunlight (with upto

68-73% success probability).

Both the localization solutions are infrastructureless and can be combined together

to attain higher accuracies. The light sensor could either be embedded in the phone

or iPod of the user or worn separately as a clip. We believe that a practical solution

for localization would be a fusion system that incorporates an array of sensors (such as

camera, light sensor, GPS, WiFi interface, accelerometer etc), derives location informa-

tion from each of the sensors and fuses them together to obtain accurate results. Also,
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each of the sensors could fail under certain conditions (for example the light sensor may

not work very well when there is interference from sunlight) but the fusion system as a

whole should be quite robust.

Location-aware personal computing is centered around the idea of running applica-

tions on resource constrained personal devices (e.g smart phone), many of which would

run as background tasks including daemons for determining user’s location, daemons

for listening to incoming network requests, daemons for warming the phone cache etc.

These applications would compete for the limited resources on the device. Battery life-

time is by far the most crucial resource. On smart phones, the interfaces that inform

the user of the battery levels have not kept up with the evolution of the capabilities

of these devices. A simple “battery remaining” or even “time remaining” does not

enable the user to make the right decisions as to the spend of the energy budget and

the request for recharging.

Location information has never been exploited in managing battery lifetime. This

dissertation describes a location-aware battery management scheme [66, 63] for smart

phones, which is based on two key observations. First, it is necessary to create an

energy budget for different applications in order to prevent low priority applications

(such as background tasks) from affecting the availability of high priority applications

(such as telephony). Second, the knowledge of when the user will recharge the phone

next is crucial to managing battery lifetime on phones. This is because the knowledge

of when the next recharge will happen determines the total battery lifetime available

to applications. User studies show that users typically charge their phones at fixed

locations [25]. Hence, by predicting the whereabouts of the user, it is possible to

predict charging opportunities. In this dissertation, we present a system architecture

for logging user information (such as location, call duration, etc) on the phone and

a set of algorithms for making predictions based on these logs. Experimental results

show that these predictions can be made with fairly high accuracy. This allows the

system to determine the amount of battery lifetime needed for safe execution of crucial

applications and to warn the user if one or more non-crucial applications need to be

terminated.
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Finally, this dissertation investigates the problem of location privacy. Extensive

deployment of location-aware computing endangers user’s location privacy and exhibits

significant potential for abuse. The US government realized the seriousness of the this

problem and released the Location Privacy Protection Act [8] in 2001. Unless the users

are secure about their location privacy, they would be reluctant to use location-aware

applications. This hurdle would have to be overcome if location-aware computing is to

be globally accepted.

This dissertation proposes a service-specific location privacy approach, centered on

an information flow control analysis. Information-flow control policies tend to impose

restrictions on the manner in which sensitive data flows through a program/system.

The standard information-flow control model called Non-interference [59, 26] requires

that any possible variation in private data must not cause a variation in public data.

That is, if the value of a public variable q depends on that of a private variable p

then non-interference is violated. In effect, non-interference isolates private data from

public data. In doing so, it guarantees that the publicly observable behavior of a

system/program that does not reveal anything about its private behavior. However,

data isolation is an extreme measure, and in many real applications it is not possible

to isolate private data from public data. This dissertation proposes a weaker model

of information-flow control called non-inference [62]. Non-inference requires that the

adversary should not be able to infer the value of a private variable based on the values

of public variable. Non-inference, therefore, allows information to flow from private

variables to public variables, but prohibits the adversary from learning the value of any

private variable from public variables. In this dissertation, we show how non-inference

can be used to preserve location privacy.

We discuss the theoretical implications of non-inference. We show that non-inference

is undecidable in general, but decidable for applications where multiple executions are

independent such as location-based services. We show that it can be enforced conserva-

tively using static program analysis. The main idea is to apply the theory of solvability

of linear equations to information-flow relations derived by data-flow analysis. We im-

plemented a system that decides non-inference for location-based services using static
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program analysis. Experimental results obtained on a benchmark indicate success.

6.1 Directions for Research

We are still far from the goal of ”location for free”. The localization mechanisms

described in this dissertation, though infrastructureless, are not free from configuration

effort, which can make deployment hard. We see two directions for research. One is

to minimize the configuration effort required for localization. There has already been

some research in this direction for WiFi-based localization systems [50]. The other is to

create various combinations of the already proposed localization systems, in an effort

to create a fusion system, and carry out comparative studies.

Simultaneously, we need to find ways of disclosing location information to the com-

puting infrastructure ”for free”. This implies solving the complex problem of constrain-

ing flow of location information, such that user privacy is not breached. The solution

described in this dissertation only applies to a certain class of applications. Different

classes of applications will demand different solutions.

We need to start deploying applications that can benefit from location information.

This is hard to accomplish at a global scale because we do not yet have ”location for

free”. However, efforts can be launched at campus and university level.

Location is considered the most important context information. User activity is

another example of useful context information. In general, use of personal informa-

tion can enable new applications. There is value in coming up with ways of sensing,

storing and analyzing personal information. Furthermore, combining dynamic personal

information (e.g location, activity, mobile media) that can be sensed with body-worn

sensors, with personal information stored on the web (such as on community websites)

can enable novel and secure usage models.

6.2 The Symbian and iPhone Era

The personal computer is climbing off its desktop perch and hopping into the pockets of

millions of people [16]. The adoption of Symbian OS [11] by mobile phone makers, such
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as Sony Ericsson and Nokia, brought about the smart phone revolution in 2003-2004.

In 2007, Apple Inc introduced the iPhone, which energized the industry and took the

smart phone revolution to the next level. In the second-half of 2008, Google is expected

to release Google Phone [16], which unlike its predecessors will be open source. This is

just beginning of the making of the computer for the twenty first century.

6.3 In Retrospect

Pervasive computing is an application-driven field and as such is ill-defined and unstruc-

tured for the lack of definitions, algorithms and architectures. Research is primarily

guided by visions and beliefs because it is hard to tell, in a scientific way, which sys-

tems/applications will penetrate the market. To realize the diverse set of applications,

research has to be multi-disciplinary, which adds to the complexity. The exploratory and

unstructured nature of pervasive computing research is, therefore, justified to some ex-

tent. Besides, this field is still in a nascent stage. Unlike networks/compilers/operating

systems, which exist and are widely used and deployed, pervasive computing exists

mostly in labs or in specialized environments or in the form of single isolated applica-

tions. As a result, progress is hard to measure and prove.

Success of pervasive computing would depend on the advances in evolving areas

in computer science, namely vision, artificial intelligence, wireless communication and

human-computer interaction. Simultaneously, we need to be on a quest for mobile

applications that users would be willing to pay for. I believe that in the near future,

these applications would either be smart phone centric or vehicle centric. Vehicular

computing is a sister-field of pervasive computing that has found enormous support

both from academia and industry in the recent past (applications include congestion

control, safety messaging and highway-infotainment).

Users first, computers second. This mantra should never be forgotten. Pervasive

computing is not so much an area of research as a goal. And this goal cannot be

accomplished by solving the technical challenges alone. It requires a deep understanding

of what users really want. This goes beyond the scope of computer science. And is
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perhaps the biggest challenge.

Despite the many challenges that stand in the way of pervasive computing becoming

a reality, I believe that it is just a matter of time before we see it happen.
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