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ABSTRACT OF THE DISSERTATION

Orbital selective Mott transition in 3d and 5f

materials

by Antonina Toropova

Dissertation Director: Professor Gabriel Kotliar

We study two types of strongly correlated electron systems in the example of the

transition oxide CrO2 and actinide series. We found that the physics of both types

of materials can be interpreted and discussed using concept of orbital selective

Mott transition (OSMT). The theory of OSMT is discussed in framework of the

multiorbital Hubbard model applied to the description of t2g orbitals of Cr atoms

in chromium dioxide as well as in the framework of a more generalized model for

5f materials containing both Hubbard-like and Anderson-like contributions.

The electronic structure, transport, and magnetic properties of selected com-

pounds are investigated by means of Ab Initio calculations. The many body

techniques such as LDA+U and dynamical mean field theory (DMFT) have been

used in addition to density functional based local density approximation (LDA)

method.

The half-metallic ferromagnet CrO2 has been shown to demonstrate effectively

weakly correlated behavior in ordered state due to big exchange splitting within

t2g orbitals. The detailed DMFT study with Quantum Monte Carlo (QMC)



impurity solver revealed that in the paramagnetic state this compound was on

the edge of a quantum transition.

In the case of the actinide series we first demonstrated the choice of basis which

optimum for DMFT based calculations. By means of detailed one-electron band

structure analysis we showed that hybridization term of 5f -orbitals with conduc-

tion electrons must be included in the actinide Hamiltonian due to permanent

presence of uncorrelated states at Fermi level. We conclude study of 5f -materials

presenting tight-binding parametrization and exploring magnetic characteristics.
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4.2.3. Löwdin orthogonalization . . . . . . . . . . . . . . . . . . 79

4.2.4. Projective orthogonalization . . . . . . . . . . . . . . . . . 80

4.2.5. Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.6. Technical note . . . . . . . . . . . . . . . . . . . . . . . . . 82



4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1. Starting point: self-consistent LDA calculations. . . . . . . 83

4.3.2. Determining a robust basis for the actinides . . . . . . . . 85

4.3.3. Decomposition of the actinide band structures . . . . . . . 87

4.3.4. Quantitative analysis of V and tf . . . . . . . . . . . . . . . 89

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5. Real space analysis for actinides . . . . . . . . . . . . . . . . . . . 94

5.1. Introduction and motivations . . . . . . . . . . . . . . . . . . . . 94

5.2. The tools of analysis . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1. Table for t̄f and V̄ . . . . . . . . . . . . . . . . . . . . . . 110

5.4. Comparison with earlier parametrization of W. A. Harrison . . . . 111

5.4.1. Hybridization parameters . . . . . . . . . . . . . . . . . . 112

5.4.2. f − f hoppings . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.3. Matrix elements of spin-orbit coupling . . . . . . . . . . . 119

5.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6. Calculation of magnetic exchange constants and Néel Temperature for Curium metal
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Introduction

The main goal of condensed matter physics is to understand and accurately de-

scribe various states of matter and possible transitions between them. The last

one and a half centuries of discovery shows that generally, with rare exceptions,

new ideas in the solid state physics come from experimental observations. In keep-

ing with this trend, in the last two decades the discovery of heavy fermion com-

pounds and high- temperature superconductivity has revolutionized condensed

matter physics and well-established views on the role of correlations between

electrons. Ever-growing classes of materials that lie outside of the conventional

weakly-interacting solid-state paradigm stimulated the explosion in theoretical

proposals for novel quantum states involving spin, orbital, charge, and ionic de-

grees of freedom.

The fundamental basis for understanding materials ultimately rests upon un-

derstanding their electronic structure [16]. The challenge for the electronic struc-

ture theory is that on one hand it requires detailed modelling of real materials

involving such specifics as atomic charge and lattice structure, but on the other

hand must provide universal quantitative methods which are not limited to any

particular type of bonding. With rapid advances in basic theory, new algorithms,

and computational physics the field of electronic structure is at a momentous

stage. Increasingly, electronic structure calculations are becoming tools used by

both experimentalists and theorists to understand the characteristic properties of

matter and to make the specific predictions for real materials and experimentally

observable phenomena.
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Now condensed matter physicists have a firm understanding of weakly corre-

lated materials such as conventional metals and semiconductors. The quantitative

techniques applicable to electronic structure calculations for these materials are

developed and well tested. These techniques naturally fall into two categories

designed, respectively, to describe electronic ground state and electronic excita-

tion spectra. The the most popular “first principle” method used by electronic

structure community to calculate ground state properties is density functional

theory [17, 18], especially in the local density and generalized gradient approx-

imations (LDA and GGA) [19]. These methods can also be effectively used as

starting points for perturbative computation of one-electron spectra [20]. Even

though density functional methods have been proved to be very successful in treat-

ing weakly correlated compounds they often fail to capture the correct physics in

strongly correlated materials [21].

By strongly correlated electron systems one refers to complex materials, with

electrons occupying active 3d (transition metals), 4f (lanthanides), or 5f (ac-

tinides) orbitals. The excitation spectra in these materials can not be described

in terms of well-defined quasiparticles, making conventional band theory insuf-

ficient. The exploration of electronic structure of strongly correlated materials

became possible with introduction of new concepts such as Hubbard bands and

narrow coherent quasiparticle bands [21].

The exotic properties and complex phase diagram of strongly correlated ma-

terials result from competing interaction terms in their Hamiltonians. Thus,

Mott-Hubbard metal-insulator transition [22, 23] one of the central topics of the

strongly correlated field, originates from the competition between tendencies of

the correlated electrons to delocalize due to their kinetic energy and localize due

to the Coulomb interaction between them. The tendency to delocalize leads to

the band formation and in the limiting case has a simple description in momen-

tum space. On the other hand, tendency to localize leads to atomic-like behavior
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which is well described in real space. The crossover is difficult to treat theoreti-

cally even on the level of models since the electron kinetic energy and interaction

energy are of the same order of magnitude and there is no natural small parameter

to develop perturbation theory around either metallic or atomic limits.

The dynamical mean field theory (DMFT) [21] is the framework which offers

a minimal description of the electronic structure of correlated materials, treat-

ing both the atomic Hubbard bands and metallic quasiparticle bands on the same

footing. This method is based on the mapping of the full many-body problem onto

a quantum impurity model, which is essentially a small number of quantum de-

grees of freedom embedded in a bath that obeys a self-consistency condition [20].

DMFT studies of one-band Hubbard model dramatically improved understanding

of bandwidth-controlled Mott-Hubbard transition [24, 25]. This success stimu-

lated further application of the DMFT to investigate properties and phase dia-

grams of many other models, among them multiorbital Hubbard model [26, 27],

periodic Anderson model [28, 29], and the Kondo lattice [29].

The necessity to understand and describe electronic structure of real strongly

correlated compounds resulted in combinational method of LDA and DMFT

(LDA+DMFT). This technique treats the light s, p (sometimes d) orbitals, which

have extended wave functions, in the LDA and the localized d or f orbitals in the

DMFT framework.

Further, the rich physics of real materials stimulated the investigations of

Mott transition in more general models than one-band Hubbard model. Many

strongly correlated materials, including the ones considered in this thesis, CrO2

[30] and the actinide series materials [31], have partially filled bands of very dif-

ferent width near the Fermi level. In these circumstances, the nature and the

scenario of transition from a weakly correlated metal to an insulating state with

increasing interaction U is ambiguous and still not well understood. In partic-

ular, the question was raised whether all bands undergo a common transition
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at the same critical Coulomb energy, or whether a separate, orbital-dependent,

delocalization-localization transitions can take place in a subset of bands. The

qualitative idea in the later scenario is that when two bands differ substantially

in bandwidth, there should be a sequence of Mott transitions as the interaction

strength is increased. First, the most narrow band undergoes a localization transi-

tion with a broader band remaining itinerant, while at large U both bands become

localized. This phenomenon is known by the name orbital selective Mott transi-

tion (OSMT) and currently is a subject of numerous investigations in condensed

matter community.

Most of the work so far has focused on the case of half-filled symmetric bands.

The results are inconclusive yet. Even in the framework of DMFT, on the level of

two-band Hubbard model there are studies reporting single Mott transition [27],

and studies which have shown that OSMT is possible when ratio of the band-

widths of narrow and broad bands is small enough [32, 26, 33]. The source of this

controversy might be hidden in the fact that in the vicinity of Mott transition

different techniques, applied to solve the impurity problem, give slightly different

values of critical U , and hence very different spectra for a given value of U [20].

In real materials the bands are not necessarily symmetric and their center

of gravity may be shifted relative to each other. Crystal-field effects and the

Coulomb exchange energy (J) affect the energy of on-site atomic states, which no

longer depend only on the total local charge as in the orbitally degenerate case. A

fundamental issue is how crystal-field splittings and spin-orbit splitting are renor-

malized by many-body interactions, since they both are relevant perturbations

and can modify dramatically the nature of the OSMT.

This thesis deals with two selected classes of strongly correlated electron sys-

tems: chromium dioxide and the actinide series materials. We carry out realistic

modelling of chosen materials adopting conventional electronic structure tools

such as LDA, LDA+U, and DMFT, and developing new ones for the electronic
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structure analysis. The considered compounds have in common the presence of

unfilled bands with substantially different bandwidth at the Fermi level. Also,

both systems are on the edge of localization-delocalization transition. Thus, we

presumed that the interpretation of the physics of both types of materials within

the concept of OSMT would provide original and fruitful discussion. In the case of

CrO2 we discuss possible scenarios of OSMT in the framework of the multiorbital

Hubbard model applied to the description of t2g orbitals of Cr atoms. In chapters

devoted to actinides, we consider a Hamiltonian which includes terms of both

multiorbital Hubbard model and the periodic Anderson model. Here the OSMT

point of view is justified by the coexistence of broad 7s, 6p, 6d, and narrow 5f

bands near the Fermi level.

This thesis is organized as follows. In Chapter 1 we introduce Ab Initio meth-

ods used throughout the later chapters: LDA, GGA, LDA+U and DMFT. Chap-

ter 2 is devoted to the ground state and transport properties of chromium dioxide.

Despite its great technological importance [34] the electronic structure of this rare-

earth oxide has not been previously understood. Here we address the problem of

the importance of strong correlations for the electronic structure, transport and

magnetic properties of half–metallic ferromagnetic CrO2 by performing density

functional electronic structure calculations in LDA scheme as well as using the

LDA+U method. We show that the corresponding low–temperature experimen-

tal data are best fitted without accounting for the Hubbard U corrections. We

conclude that the ordered phase of CrO2 can be treated as weakly correlated.

In chapter 3 we proceed with a DMFT treatment of CrO2 at finite tempera-

tures. The Quantum Monte-Carlo technique has been applied to observed OSMT

in this compound. Moreover, CrO2 has been shown to be on the edge of a quan-

tum transition.

Chapter 4 deals with the actinide series and presents detailed analysis of

the one-electron band structure in the specific examples of curium, plutonium
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and uranium. In Chapter 5 we perform a tight-binding (TB) parametrization

of selected actinides. Here we show that the physics of actinides is governed by

nearest-neighbor hoppings. The detailed comparison of our TB parametrization

to the earlier reports in literature concludes chapter 5.

Curium is the first element from the actinide series experimentally known to

develop a macroscopic magnetic moment. In chapter 6 we calculate the exchange

constants and Néel temperature for this material and compare them to exper-

imental values. We conclude in chapter 7 with a summary of the thesis, and

directions for the future work.
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Chapter 1

LDA, LDA+U and LDA+DMFT from the

perspective of effective action formalism

Here, we use unified functional approach to introduce electronic structure meth-

ods, used in the later chapters of the thesis. First, we review the abstract concept

of the effective action formalism. Then, we apply this concept to derive equations

of the density-functional theory (DFT) in its local density approximation (LDA).

Then we discuss methods that go beyond the LDA and designed to be applied to

strongly correlated systems: LDA+U and LDA+DMFT.

1.1 Effective action formalism

Effective action as a term refers to a generalized action functional, constructed

within concept of Legendre transformation. As a formalism, Legendre transfor-

mation is proven to be one of the most convenient and systematic techniques in

discussing field theoretical many particle systems. It allows to rewrite theory by

small number of selected variables [35].

The effective action approach for the density-functional theory was introduced

by R. Fukuda et al. [35]. Then G. Kotliar et al. [20] demonstrated that the ef-

fective action formalism provides simple and intuitive construction of many other

electronic structure methods, differing by the choice of observables or variables of

interest. Thus, as we show below, density-functional theory is constructed with

electron density being the observable. LDA+U introduces additional variables

which are occupancy numbers for the correlated orbitals. In DMFT local Green’s
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function serves as a variable of interest.

Here we briefly sketch the idea of the effective action formalism. One begins

with the partition function of the system,

Z = exp(−F ) =

∫

D[ψ†ψ]e−S, (1.1.1)

where F is free energy, S is the action for a given Hamiltonian, and ψ is a

Grassman variable. Then one selects the observable A, and couples source J to

this observable. The source J allows to probe the variable A and at the end of

calculations will be set to zero. The modified action is S ′ = S +AJ , and the free

energy F [J ] is now a functional of source J . A Legendre transformation is then

used to eliminate the source in favor of the observable yielding a new functional,

Γ[A] = F [J [A]] − AJ [A]. (1.1.2)

The variational derivative of Γ[A] with respect to A yields J . Since we are

free to set the source to zero, the extremum of Γ[A] gives the free energy of the

system.

The effective action approach is advantageous since useful approximations to

the functional Γ[A] can be constructed in practice using the inversion method [20].

The approach consists of carrying out systematic expansion of the functional Γ[A]

to some order in a parameter or coupling constant λ. The action is written as

S = S0 + λS1 and then a systematic expansion is carried out,

Γ[A] = Γ0[A] + λΓ1[A] + . . . , (1.1.3)

J [A] = J0[A] + λJ1[A] + . . . . (1.1.4)

The system described by S0 + λJ0 reproduces the correct value of Â by con-

struction and can be considered as a reference system for the fully interacting

problem. Moreover, when observable A is properly chosen other observables of
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the system can be obtained perturbatively from their values in the reference sys-

tem. J0[A] is a central quantity in this formalism and is referred as ”constrained

field”.

Further, the functional Γ[A] can be rewritten as,

Γ[A] = Γ0[A] + ∆Γ[A], (1.1.5)

and since Γ0[A] = F0[J0] − AJ0, we can consider

Γ[A, J0] = F0[J0] − AJ0 + ∆Γ[A] (1.1.6)

as a functional which is stationary in two variables, the constraining field J0 and

A. The equation δ∆Γ/δA = J0[A] together with the definition of J0[A] determines

the exact constraining field for the problem.

In practice we decompose ∆Γ = EH + Exc, where Hartree contribution EH

can usually be evaluated explicitly. The success of electronic structure method

depends strongly on obtaining good approximations to the “generalized exchange

correlation” Exc.

In the subsequent sections we apply the abstract procedure described above

to the derivation of the equations of density-functional based methods.

1.2 Density-functional theory

Density functional theory [17, 18] is very popular and basic tool to study weakly

interacting electronic systems. Here, for the sake of transparency of the deriva-

tion, we construct non spin–polarized version of DFT first, generalizing to the

relativistic case in the next section. The central quantity of DFT is the density of

electrons ρ(r). It is used as a physical variable in derivation of DFT functional.

Let’s consider a fermion system that is coupled to an external time-dependent
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source field J(x). Here x = (r, τ, σ) denotes the space–imaginary time coordi-

nates and spin. The action of the system is

S ′[J ] = S +

∫

dxJ(x)ψ†(x)ψ(x), (1.2.7)

where S is action without source

S =

∫

dxψ†(x)∂τψ(x) +

∫

dτH(τ). (1.2.8)

For the system consisting of electrons moving in a external potential Vext(x) and

interacting via Coulomb interactions V the Hamiltonian H is

H =
∑

σ

∫

drψ†
σ(r)[−∇2 + Vext(r) − µ]ψσ(r) (1.2.9)

+
1

2

∑

σσ′

∫

drdr′ψ†(r)ψ†(r′)V (r − r′)ψ(r′)ψ(r).

µ stands for chemical potential, for the sake of conciseness we put it to zero

through the entire chapter.

The partition function Z becomes a functional of the auxiliary source field J ,

Z = exp(−F [J ]) =

∫

D[ψ†ψ]e−S′[J ]. (1.2.10)

The effective action for the density, i.e. density functional is obtained as the

Legendre transform of F with respect to ρ(x):

ΓDFT[ρ] = F [J ] −
∫

dxJ(x)ρ(x). (1.2.11)

The construction of standard DFT restricts source J to be time independent.

The minimum of functional 1.2.11 gives the true density and the total energy.

The density appears as the variational derivative of the free energy with respect

to the source

ρ(r) =
δF

δJ(r)
. (1.2.12)

To construct approximations to the functional ΓDFT it is very useful to intro-

duce the Kohn-Sham potential, VKS, which is defined as the potential such that
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when added to the non-interacting kinetic energy, it produces the given density

in a reference system of non-interacting particles, i.e.

ρ(r) = T
∑

σ

∑

iωn

〈σr|(iωn + ∇2/2 − VKS)−1|σr〉eiω0+

. (1.2.13)

The exact functional can now be viewed as a functional of two variables

ΓDFT(ρ, VKS) = −T
∑

iωn

Tr log(iωn + ∇2/2 − VKS) −
∫

VKS(r)ρ(r)dr (1.2.14)

+
1

2

∫

ρ(r)ρ(r′)

|r − r′| drdr
′ +

∫

Vextρ(r)dr + Exc[ρ].

Further, ΓDFT(ρ) is obtained by substituting VKS(ρ) as a solution of equation 1.2.13

(which makes 1.2.14 stationary) into ΓDFT(ρ, VKS). Exc(ρ) is the exchange-

correlation energy which is a functional of the density and not of the external

potential.

Extremizing 1.2.14 with respect to ρ gives

VKS(r)[ρ] =

∫

ρ(r)ρ(r′)

|r− r′| drdr
′ + Vxc(r)[ρ] + Vext(r)[ρ], (1.2.15)

where Vxc(r) is the exchange-correlation potential obtained as

δExc

δρ(r)
≡ Vxc. (1.2.16)

Since Exc(ρ) is not known explicitly some approximations are needed. The LDA

assumes

Exc =

∫

ρ(r)ǫxc[ρ(r)]dr, (1.2.17)

where ǫxc[ρ(r)] is the exchange-correlation energy of the uniform electron gas,

and is easily parameterized. In practice one frequently uses analytical formulas,

which are empirically designed to fit a functional form to Quantum Monte Carlo

(QMC) calculations. Particularly, in this thesis we used analytical approximation

to ǫxc[ρ(r)] suggested by S. Vosko et al [36].

In the Chapter 6 of this thesis we also use Generalized Gradient approach

(GGA). This approximation of DFT differs from LDA by the fact that Exc is
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considered as functional of two variables: ρ(r) and ∇ρ(r). Since δ∇ρ(r) = ∇δρ(r)

the resulting expression for exchange potential is

Vxc(r) =

[

ǫxc + ρ
∂ǫxc

∂ρ
−∇

(

ρ
∂ǫxc

∂∇ρ

)]

. (1.2.18)

At zero-temperature the Fermi function is interpreted as step function, then

equation 1.2.13 can be rewritten as

[−∇2/2 + VKS(r)]ψkj = ǫkjψkj (1.2.19)

ρ(r) =
∑

kj

f(ǫkj)ψ
†
kj(r)ψkj(r), (1.2.20)

and VKS is given as an explicit function of the density.

The total energy of the crystal is given as

ELDA
tot =

∑

kj

f(ǫkj)ǫkj +
1

2

∫

ρ(r)ρ(r′)

|r − r′| drdr
′ (1.2.21)

+

∫

Vextρ(r)dr +

∫

drǫxc[ρ(r)]ρ(r) + Edc,

where

Edc = −
∫

VKS(r)ρ(r)dr (1.2.22)

simply subtracts the interaction energy from the Kohn-Sham eigenvalues which

are explicitly included in the Hartree and exchange-correlation term to avoid

double counting.

The density ρ(r) is uniquely expressed in terms of the orbitals ψkj(r). In order

to truncate the DFT, we introduce a finite basis set χk
a(r) and expand

ψkj(r) =
∑

a

χk
aA

kj
a (1.2.23)

keeping a finite set of a [37]. This truncation restricts the active part of the

multiplicative operator associated with the potential VKS to have a form

V̂ =
∑

k

|χk
a〉Vaβ〈χk

β|. (1.2.24)

For a known potential VKS this construction can be done once and for all.

However, since VKS depends on the density, the basis χk
a is adapted iteratively to

the self-consistent solution.
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1.3 LDA+U and LDA+DMFT

The LDA method is very successful in many materials for which the one–electron

model of solids works. However, in correlated electron system this is not always

the case. In strongly correlated situations, the total energy is not very sensitive

to the potential since the electrons are localized due to the interactions between

themselves, and the lack of sensitivity of the functional to the density, does not

permit to devise good approximations to the exact functional in this regime.

DMFT is a method successfully describing strongly correlated systems [21] and

has been extended to electronic structure problems [20].

Here we extend functional formulation of the local density approximation to

the relativistic case, sometimes called local spin density approximation (LSDA) [38].

In this thesis we will refer by LDA to both non and spin–polarized versions of

LDA method, except cases when it is separately emphasized. We first construct

the most generalized functional representation of LDA+DMFT method and then

introduce LDA+U as Hartree-Fock approximation of DMFT.

First of all, the relativistic extension of the density-functional approach re-

quires introduction of the additional variable, namely the magnetic moment den-

sity m. Further, to account for the strong electron correlation we introduce one

more relevant variable, which is the local Green’s function. The latter is de-

fined by projecting the full Green’s function onto a separate subset of correlated

“heavy” orbitals distinguished by the orbital index a and the spin index σ from a

complete set of orbitals χσ
a(r−R) ≡ χσ

aR of a tight-binding representation which

we assume for simplicity to be orthogonal. The local Green function is therefore

given by a matrix Ĝ with elements [39]

Gσσ′

ab (iω,R) = −
〈

cσaR(iω)cσ
′+

bR (iω)
〉

= (1.3.25)

−
∫

χσ∗
a (r − R)

〈

ψ(r, iω)ψ+(r′, iω)
〉

χσ′

b (r′ − R)drdr′.

We then construct a functional Γ[ ρ,m, Ĝ ] which gives the exact free energy at a
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stationary point.

We consider a fermion system under an external potential Vext and an exter-

nal magnetic field h. The spin-orbit coupling, whose effects are important for

magnetic anisotropy calculations, is also considered. Spin-orbit coupling is in-

cluded according to the suggestion by Andersen [40]. It is useful to introduce the

notion of the Kohn-Sham potential VKS, the Kohn-Sham magnetic field hKS and

its dynamical analog Σσσ′

ab (iωn). They are defined as the functions that one needs

to add to the kinetic energy matrix so as to obtain a given density and spectral

function of the heavy orbitals namely:

ρ(r) = T
∑

iωn

Trs

〈

rs
∣

∣[(iωn + ∇2/2 − VKS)I

− 2µBs · hKS − ξ(r)l · s− Σ]−1
∣

∣ rs
〉

eiωn0+

, (1.3.26)

m(r) = −2µBT
∑

iωn

Trs

〈

rs
∣

∣s[(iωn + ∇2/2 − VKS)I

−2µBs · hKS − ξ(r)l · s − Σ]−1
∣

∣ rs
〉

eiωn0+

, (1.3.27)

where Trs is the trace over spin space, l and s are one-electron orbital and spin

angular momentum operator, respectively. The spin angular momentum operator

is expressed in terms of Pauli matrices s = ~σ/2 and I is 2 × 2 unit matrix. VKS

and hKS are functions of r. The chemical potential µ is set to zero throughout

the current chapter, and Σ is given by

Σ ≡ Σ(r, r′, iω) =
∑

abσσ′R

χσ∗
a (r −R)Σσσ′

ab (iω)χσ′

b (r′ − R).

ξ(r) determines the strength of spin–orbit coupling and in practice is deter-

mined [41] by radial derivative of the l = 0 component of the Kohn–Sham poten-

tial inside an atomic sphere:

ξ(r) =
2

c2
dVKS(r)

dr
. (1.3.28)

When spin–orbit coupling is present, the intra–atomic magnetization m(r)

is not collinear, i.e., the direction of magnetization depends on the position r.
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Therefore, the magnetization must be treated as a general vector field, due to the

non-collinear intra-atomic nature of this quantity. Such a general magnetization

scheme has been recently discussed [42].

In terms of these quantities and the matrix of local interactions Û , we write

down the DMFT+LSDA functional:

ΓLSDA+DMFT(ρ, VKS,m,hKS, Ĝ, Σ̂) =

−T
∑

ω

eiω0+

Tr log[(iω + ∇2 − VKS)I − 2µBs · hKS

−ξ(r)l · s− Σ] −
∫

drVKS(r)ρ(r) +

∫

drm(r) · hKS(r)

−
∑

ω

eiω0+

Tr[Σ̂(iω)Ĝ(iω)] +

∫

drVext(r)ρ(r)

−
∫

drh(r) · m(r) +
1

2

∫

drdr′
ρ(r)ρ(r′)

|r − r′|
+ELSDA

xc [ρ,m] +
∑

R

[Φ[Ĝ] − ΦDC ]. (1.3.29)

Φ[Ĝ] is the sum of the two–particle irreducible local diagrams constructed with the

local interaction matrix Û , and the local heavy propagator Ĝ. ΦDC is the double

counting term which subtracts the average energy of the heavy level already

described by LDA. Expression (1.3.29) ensures that the Green’s function obtained

from its extremization will satisfy the Luttinger theorem.

ELDA
xc [ρ,m] is the LDA exchange correlation energy. When a nontrivial mag-

netic moment is present, the exchange correlation energy functional is assumed

to be dependent on density and magnetization:

E LSDA
xc [ρ,m] =

∫

drǫxc[ρ(r), m(r)]ρ(r) +

∫

drfxc[ρ(r), m(r)] m(r), (1.3.30)

where m = |m|.

The functional (1.3.29) can be viewed as a functional of six independent vari-

ables, since the stationary condition in the conjugate fields reproduces the defini-

tion of the dynamical potential and the Weiss field. Extremizing it with respect
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VKS, hKS, and Σ lead us to compute the density 1.3.26, the magnetic moment den-

sity 1.3.27, and the Green’s function Gσσ′

ab (iω) 1.3.34, respectively. The Kohn–

Sham potential VKS(r) and Kohn–Sham magnetic field hKS(r) are obtained by

extremizing the functional with respect to ρ(r) and m(r):

VKS(r) = Vext(r) +

∫

dr′
ρ(r′)

|r − r′| +
δELDA

xc [ρ,m]

δρ(r)
, (1.3.31)

hKS(r) = h(r) +
δELDA

xc [ρ,m]

δm(r)
. (1.3.32)

Extremizing with respect to Gσσ′

ab yields the equation for self energy

Σσσ′

ab (iω) =
δΦ

δGσσ′

ab (iω)
− δΦDC

δGσσ′

ab (iω)
. (1.3.33)

The physical meaning of the dynamical potential Σ is parallel to the meaning

of the original Kohn-Sham potential VKS: it is the function that one needs to add

to the correlated block of the one-electron Hamiltonian in order to obtain the

desired local Green function:

Gσσ′

ab (iω) =
∑

k

[iω − Ĥk − Σ̂(iω)]σσ′−1
ab , (1.3.34)

where Hσσ′k
ab = 〈χσ

ak|(−∇2 +VKS)Î+2µBs ·hKS + ξ(r)l · s|χσ′

bk〉 is the one-electron

Hamiltonian in k-space. It is the frequency dependence of the dynamical potential

which allows us to treat Hubbard bands and quasiparticle bands on the same

footing.

In general, an explicit form of Φ[G] is not available. DMFT maps the

DMFT+LDA function to an Anderson impurity model. Self–consistency equa-

tions obtained in this way are used to find the self energy (1.3.33). To introduce

LDA+U method we confine ourselves to zero temperature and make an additional

assumption on solving the impurity model using the Hartree–Fock approximation.

In this limit an explicit form of Φ[G] is available and DMFT self–consistency loop

is unnecessary. We first determine the Coulomb interaction by considering a

Hartree–Fock averaging of the original expression for the Coulomb interaction
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given by

1

2

∑

σσ′

∑

abcd

〈aσbσ′|e
2

r
|cσdσ′〉cσ+

a cσ
′+

b cσ
′

d c
σ
c . (1.3.35)

In this limit, the sum of local graphs reduce to

Φ[Ĝ] =
1

2

∑

abcdσ

Uabcdn
σσ
ab n

−σ−σ
cd

+
1

2

∑

abcdσ

(Uabcd − Jabcd)n
σσ
ab n

σσ
cd

− 1

2

∑

abcdσ

Jabcdn
σ−σ
ab n−σσ

cd . (1.3.36)

Here, the matrices Uabcd = 〈ac|vC |bd〉 and Jabcd = 〈ac|vC |db〉 have the following

definitions:

Uabcd =

∫

χσ∗
a (r)χσ∗

c (r′)vC(r − r′)χσ
b (r)χσ

d(r′)drdr′,

Jabcd =

∫

χa(r)
σ∗χσ∗

c (r′)vC(r− r′)χσ
d(r)χσ

b (r′)drdr′,

where the Coulomb interaction vC(r − r′) has to take into account the effects of

screening by conduction electrons. Note that the matrices Uabcd and Jabcd are spin

independent since the Coulomb interaction is independent of spin. The occupancy

matrix nσσ′

ab is a derived quantity of the Green function:

nσσ′

ab = T
∑

ω

Gσσ′

ab (iω)eiω0+

. (1.3.37)

Notice that when spin–orbit coupling is taken into account, the occupancy matrix

becomes non–diagonal with respect to spin index even though the interaction

matrices Uabcd and Jabcd are spin independent.

The self-energy Σσσ′

ab now takes the from for spin diagonal elements

Σσσ
ab =

∑

cd

Uabcdn
−σ−σ
cd +

∑

cd

(Uabcd − Jabcd)n
σσ
cd

− δΦDC

δGσσ
ab (iω)

, (1.3.38)

and for spin off–diagonal elements it is given by

Σσ−σ
ab = −

∑

cd

Jabcdn
−σσ
cd − δΦDC

δGσ−σ
ab (iω)

. (1.3.39)
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The off–diagonal elements of the self energy are only present when spin–orbit

coupling is included, hence it is a relativistic effect. To make it more physically

transparent we can introduce magnetic moments at the given shell by

mµ
ab =

∑

σσ′

sµ
σσ′n

σσ′

ab (1.3.40)

where µ runs over x, y, z for Cartesian coordinates, or over,−1, 0,+1 (z,±) for

spherical coordinates. Relativistic correction from strong correlations can be writ-

ten in physically transparent form

1

2

∑

abcdσ

Jabcdn
σ−σ
ab n−σσ

cd ≡ 1

2

∑

abcd

m
(+)
ab Jabcdm

(−)
cd

+
1

2

∑

abcd

m
(−)
ab Jabcdm

(+)
cd (1.3.41)

and in principle has room for further generalization of exchange matrix Jabcd to

be anisotropic, i.e depend on µµ′: Jµµ′

abcd.

Part of the energy added by Φ[Ĝ] is already included in LDA functional. The

double counting term Φdc is added to subtract this already included part of Φ[Ĝ].

It was proposed [43] that the form for Φ[Ĝ] is

ΦModel
dc =

1

2
Ū n̄(n̄− 1) − 1

2
J̄ [n̄↑(n̄↑ − 1) + n̄↓(n̄↓ − 1)], (1.3.42)

where

Ū =
1

(2l + 1)2

∑

ab

〈ab|1
r
|ab〉, (1.3.43)

J̄ = Ū − 1

2l(2l + 1)

∑

ab

(〈ab|1
r
|ab〉 − 〈ab|1

r
|ba〉), (1.3.44)

and n̄σ =
∑

a n
σ
aa, and n̄ = n̄↑ + n̄↓. The subtraction by 1 is made to take the

self-interaction into account. This generates the self energy in the form:

Σσσ
ab =

∑

cd

Uabcdn
−σ−σ
cd +

∑

cd

(Uabcd − Jabcd)n
σσ
cd

− δabŪ(n̄− 1

2
) + δabJ̄(n̄σ − 1

2
) (1.3.45)

Σσ−σ
ab = −

∑

cd

Jabcdn
−σσ
cd . (1.3.46)
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As an example, when only the effect of U is under investigation, the U and

J matrices are Uabcd = δabδcdU , Jabcd = δadδcbU , Ū = U , and J̄ = 0. This simple

U and J matrices make it possible to write down corrections to LDA functional

and LDA Kohn-Sham potential:

Φ[Ĝ] − ΦModel
dc = −1

2

∑

σ

∑

ab

U(nσσ
ab n

σσ
ba + nσ−σ

ab n−σσ
ba ) − 1

2
Un̄ (1.3.47)

Σσσ
ab = U(

1

2
δab − nσσ

ba ) (1.3.48)

Σσ−σ
ab = Un−σσ

ba (1.3.49)

The DMFT self consistency equation identifies the Green function of the orig-

inal model and the Green function of the mapped impurity model to find the self

energy. Now that we can express the sum of local graphs Φ[Ĝ] in terms of the

original Green function, the DMFT loop need not to be performed. The problem

is now reduced to extremizing the functional [Eq. (1.3.29)] with the expression for

the sum of local graphs [Eq. (1.3.36)], which is exactly the LDA+U method [44].

The DMFT functional and its static correspondent LDA+U functional are

defined once a set of projectors {χσ
a(r)} and a matrix of interactions Uabcd and Jabcd

are prescribed. When l orbitals are used as the projection operators, the matrix is

expressed in terms of Slater parameters F k. For a ≡ lm, b ≡ lk, c ≡ l′m′, d ≡ l′k′

and representing χ↑
a(r) = φlm(r)(1, 0)T, where φlm(r) = φl(r)i

lYlm(r̂), we can

express the matrices Uabcd and Jabcd in the following manner:

〈lml′m′|1
r
|lkl′k′〉 =

min(2l,2l′)
∑

l′′=0,2,...

4π

2l′′ + 1
F

(u)l′′

ll′ (1.3.50)

× (−1)m′′

C l′′m′′=m−k
lklm C l′′m′′=k′−m′

l′m′l′k′

〈lml′m′|1
r
|l′k′lk〉 =

min(2l,2l′)
∑

l′′=0,2,...

4π

2l′′ + 1
F

(j)l′′

ll′ (1.3.51)

× (−1)m′′

C l′′m′′=m−k′

l′k′lm C l′′m′′=k−m′

l′m′lk

where the quantities CL′′

LL′ are the Gaunt coefficients which are the integrals of the
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products of three spherical harmonics

CL′′

LL′ =

∫

YL(r̂)Y ∗
L′(r̂)YL′′(r̂)dr̂. (1.3.52)

The quantities F (u) and F (j) are given by the following radial integrals

F
(u)l′′

ll′ =

∫

rl′′

r′l′′+1
φ2

l (r)φ
2
l′(r

′)drdr′ (1.3.53)

F
(j)l′′

ll′ =

∫

rl′′

r′l′′+1
φl(r)φl′(r)φl(r

′)φl′(r
′)drdr′. (1.3.54)

When l ≡ l′, the quantities F (u) and F (j) are equal and have a name of Slater

integrals which for s–electrons are reduced to one constant F (0), for p–electrons

there are two constants: F (0), F (2), for d’s: F (0), F (2), F (4), etc. In this case, the

expressions for U and J are reduced to

〈m,m′′|vC |m′, m′′′〉 =
∑

k

ak(m,m
′, m′′, m′′′)F k, (1.3.55)

where 0 ≤ k ≤ 2l, and

ak(m,m
′, m′′, m′′′) =

4π

2k + 1
(−1)qCkq=m−m′

lmlm′ Ckq=m′′′−m′′

lm′′lm′′′ . (1.3.56)

Slater integrals can be linked to Coulomb and Stoner parameters U and J obtained

from LSDA supercell procedures via U = F 0 and J = (F 2 + F 4)/14. The ratio

F 2/F 4 is to good accuracy a constant ∼ 0.625 for d electrons. For f electrons,

the corresponding expression is U = F 0 and J = (286F 2 +195F 4 +250F 6)/6435.

To summarize, we have shown the equivalence of Hartree–Fock approximation

of DMFT and LDA+U method. LDA+U is the method proposed to overcome

the difficulties of LDA when strong correlations are present [45]. Since the den-

sity uniquely defines the Kohn–Sham orbitals, and they in turn, determine the

occupancy matrix of the correlated orbitals, once a choice of correlated orbitals is

made, we still have a functional of the density alone. However it is useful to pro-

ceed with Eq. (1.3.29), and think of the LDA+U functional as a functional of ρ,
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VKS, m, hKS, G
σσ′

ab , and Σσσ′

ab , whose minimum gives better approximations to the

ground–state energy in strongly correlated situations. Allowing the functional to

depend on the projection of the Kohn–Sham energies onto a given orbital, allows

the possibility of orbitally ordered states. This is a major advance over LDA in

situations where this orbital order is present. As recognized many years ago, this

is a very efficient way of gaining energy in correlated situations, and is realized

in a wide variety of systems.

1.4 Conclusion

We used effective action formalism to describe density-functional based methods,

used in the later chapters. In particular, we presented LDA and LDA+DMFT

methods, and introduce LDA+U as Hartree–Fock approximation of LDA+DMFT.
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Chapter 2

Half-metallic Ferromagnet CrO2

In this chapter, the problem of the importance of strong correlations for the

electronic structure, transport and magnetic properties of half–metallic ferro-

magnetic CrO2 is addressed by performing density functional electronic structure

calculations in the local spin density approximation (LSDA) as well as using the

LSDA+U method. It is shown that the corresponding low–temperature experi-

mental data are best fitted without accounting for the Hubbard U corrections.

We conclude that the ordered phase of CrO2 is weakly correlated.

2.1 Introduction and motivation

Chromium dioxide is an unusual member of wide class of 3d metal oxides. CrO2 is

a half metallic ferromagnet, which means that it is a conductor in one spin chan-

nel and a semiconductor in the other. The highest measured spin-polarization

of all materials [46], [47] together with a Curie temperature 393◦K allows one

to consider CrO2 as a good candidate for spinotronic and magnetoelectronic de-

vices [34]. These and other multiple industrial applications as well as funda-

mental interest in its half-metallic electronic structure led to intensive theoret-

ical [2, 48, 3, 4, 49, 50, 30] and experimental [6, 51, 52, 5, 53, 54] studies of

chromium dioxide in recent years.

The main discussion was centered around the role of strong correlations for

the description of CrO2 ferromagnetic phase. Since Cr in its formal 4+ valence

state has two 3d electrons of t2g symmetry, one would expect manifestation of



23

correlation effects of the Mott–Hubbard nature. On the other hand, the metal-

lic behavior of the spin majority band suggests that Coulomb interactions of the

Hubbard type can be screened out [3]. The comparison with the available photoe-

mission and optical conductivity data did not clarify the situation. One–electron

spectra calculated using the LSDA+U method [55, 44] fit the photoemission and

inverse photoemission experiments well with the choice of intra–atomic Coulomb

and exchange parameters U = 3 eV and J = 0.87 eV [3, 6]. This indicates

the importance of strong correlations. Contrary to this result, the LSDA optical

conductivity calculations explain experimental data [4], suggesting the regime of

weak coupling.

In this chapter we address the controversial role of strong correlations in ferro-

magnetic CrO2 by presenting combined studies of its electronic structure, optical

conductivity, and magnetic anisotropy using the LSDA and LSDA+U schemes.

We employ a linear–muffin–tin–orbital (LMTO) method in its atomic sphere ap-

proximation (ASA) [40, 56] (also will be discussed in Section 4.2.2) for our elec-

tronic structure calculations. The chapter is organized as follows. In Section 2.2

the crystalline structure of CrO2 is described. The rutile structure of this ma-

terial causes additional technical difficulties in computations. Two subsections

are devoted to their solutions. In Section 2.3 the calculated densities of states

(DOSes) and band structure are presented and compared with the photoemis-

sion spectroscopy (PES) data. Sections 2.4 and 2.5 are devoted to calculations

and to comparison with experimental data of optical conductivity and magnetic

anisotropy energy respectively. Finally, we conclude in Section 2.6.
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2.2 Rutile Structure

2.2.1 Description of unit cell of CrO2

CrO2 is a challenging material for ab Initio calculations due to its open rutile

structure with space group D14
4h(P42/mnm). The unit cell contains two CrO2 for-

mula units. The Bravais lattice is tetragonal with c/a = 0.65958 and a constant

lattice a =0.4421 nm [57]. The Cr atoms, surrounded by a slightly distorted octa-

hedras of oxygen atoms, form a body-centered tetragonal lattice. The octahedra

surrounding Cr at the center and corner positions differ by a 90◦ rotation about

z-axis (see Figure 2.1).

Y[010]

Z[001]

X[100]

(A)

[110]

(B)

1

2

Figure 2.1: Primitive unit cell for CrO2 in the rutile structure. (A) larger spheres
represent the O atoms and smaller Cr. Two Cr atoms with non-equivalent
positions are indicated by numbers 1 (at position (0,0,0)) and 2 (at position
(1/2,1/2,1/2)). In (B) the connectivity of the oxygen octahedra projected on the
[110] plane is demonstrated.
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Table 2.1: High-symmetry sites of the rutile structure [1] (x̄ ≡ 1 − x).

Atom Wyckoff notation coordinates

Cr 2 a m.mm 0, 0, 0 1
2
, 1

2
, 1

2

O 4 f m.2m x, x, 0 x̄, x̄, 0 x̄+ 1
2
, x+ 1

2
, 1

2
x+ 1

2
, x̄+ 1

2
, 1

2

E1 4 c 2/m 0, 1
2
, 0 0, 1

2
, 1

2
1
2
, 0, 1

2
1
2
, 0, 0

E2 4 g m.2m x, x̄, 0 x̄, x, 0 x+ 1
2
, x+ 1

2
, 1

2
x̄+ 1

2
, x̄+ 1

2
, 1

2

The rutile structure can also be described by considering an array of anions

of approximately hexagonal close packed form in which only half of the octahe-

dral holes are occupied by metal atoms. The half occupation of the octahedral,

however, leads to a low packing fraction, so that no more than 36% of the unit

cell volume can be filled with touching hard spheres. This is caused by the short

anion-anion distance between the positions (x, x, 0) and (1−x, 1−x, 0). In order

to increase the filling factor of unit cell in ASA calculations we introduce two

types of “empty spheres” E1 and E2 (for details see Section 2.3.1). All atoms and

empty spheres positions are listed in Table 2.1. In the case of CrO2 the parameter

x = 0.3053 a.u.

2.2.2 Local basis of Cr atoms

The natural classification of crystalline field for Cr atoms could be performed only

in the local basis by taking into account the symmetry of surrounding oxygen oc-

tahedra. Thus, the electronic structure of chromium dioxide could be understood

and analyzed only in terms of this local coordinates. The surrounding oxygen

octahedra leads to new natural local coordinate system for spheres of chromium

(see Figure 2.2). Strictly speaking, due to distortion each octahedra has a rect-

angular rather than a square in the base. Thus, in the Figure 2.2 local axes X

and Y point not to the exact locations of O atoms, but slightly off to the outer

directions.
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Y
X

Z

1

2

Figure 2.2: Local coordinate system for chromium atom Cr at the position
(1/2, 1/2, 1/2), indicated by number 2. Z axis points exactly to the location
of O atom, while axes X and Y point to the outer directions slightly off the
locations of O atoms.

Each of two Cr atoms in the unit cell has its one local basis. Even though

orientation of two neighbor oxygen octahedras differs by 90◦ in the ab-plane the

transformation to the local basis cannot be done for both Cr atoms simultaneously

because of noncommutativity of space rotations. Thus, each Cr atom requires its

own matrix of rotation to the local basis. For Cr atom at (0, 0, 0) (here and later

we refer to this atom as Cr@1) the new local coordinates (primed) are related to

Cartesian coordinates of the unit cell as:
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√
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(2.2.1)

This matrix has eigenvector (1, 1,
√

2) with corresponding eigenvalue 1. So

transformation 2.2.1 is equivalent to the rotation about (1, 1,
√

2) axis for π.

For Cr at (1/2, 1/2, 1/2) (here and later we refer to this atom as Cr@2) the

new coordinates are related to the old ones as:
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(2.2.2)
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This matrix has eigenvector (
√

2, 0, 1) with corresponding eigenvalue 1. So

transformation (2.2.2) is equivalent to the rotation about (
√

2, 0, 1) axis for 2π/3.

Before the discussion of the structure of Cr 3d orbitals in the local basis, we

note that cubic harmonics in Cartesian coordinates are defined according to the

following formulas[58]:

Y21(~r) =
2yz

r2
a, Y22(~r) =

2zx

r2
a, Y23(~r) =

2xy

r2
a, (2.2.3)

Y24(~r) =
x2 − y2

r2
a, Y25(~r) = (

3z2

r2
− 1)

a√
3

where a =
√

15/π/4 is a normalization constant and r2 = x2 + y2 + z2. Here and

below we will refer to these orbitals as (yz), (zx), (xy), (x2 − y2), and (3z2 − 1)

correspondingly due to their symmetry properties.

In the local basis the cubic component of the octahedral crystal field splits the

fivefold degenerate 3d orbital into higher energy doubly degenerate eg level and

lower energy triple degenerate t2g level. Distortions of oxygen octahedra further

split the t2g states into lower energy t
‖
2g orbital (xy character) and higher energy

twofold degenerate t⊥2g orbitals (yz and zx characters) [3]. The t2g and eg orbitals

of the rutile structure in the local basis in terms of cubic harmonics of the unit

cell are given in Table 2.2.

Table 2.2: Expressions for 3d eg and t2g orbitals in rutile structure through cubic
harmonics.

Type of atom Cr@1 Cr@2

(eg)1 : (3z′2 − 1) 3(xy)1 − 1
2
(3z2 − 1)1 3(xy)2 − 1

2
(3z2 − 1)2

(eg)2 : (x′2 − y′2) 1√
2
((yz)1 − (zx)1)

√
2((zx)2 − (yz)2)

(t2g)1 : (x′y′) 1
2
(xy)1 − 1

4
(3z2 − 1)1

1
2
(xy)2 + 1

4
(3z2 − 1)2

(t2g)2 : (y′z′) 1
2
(yz)1 + 1

2
(zx)1 + 1

2
√

2
(x2 − y2)1 −1

2
(yz)1 − 1

2
(zx)1 + 1

2
√

2
(x2 − y2)1

(t2g)3 : (z′x′) 1
2
(yz)1 + 1

2
(zx)1 − 1

2
√

2
(x2 − y2)1

1
2
(yz)1 + 1

2
(zx)1 + 1

2
√

2
(x2 − y2)1

Since the physical interpretation of calculated quantities can be done only in

the local basis it is useful to write down corresponding transformations for the



28

Hamiltonian and overlap matrix. The Hamiltonian H ′ and overlap matrix O′ in

the local basis are related to the Hamiltonian H and overlap matrix O in the

cartesian basis as:

H ′ = U †HU, (2.2.4)

O′ = U †OU, (2.2.5)

where matrix U has block diagonal structure with identity matrices for s and p

orbitals and 5 × 5 matrices J1 and J2 for 3d orbitals of atoms Cr@1 and Cr@2

correspondingly:

U =



















I 0 0 0

0 J1 0 0

0 0 I 0

0 0 0 J2



















.

With the following order of orbitals:

























yz
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the J1 and J2 matrices are:

J1 =

























1/2 1/2 0
√

2 0

1/2 1/2 0 −
√

2 0

0 0 1/2 0 3

1/2
√

2 −1/2
√

2 0 0 0

0 0 1/4 0 −1/2
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and

J2 =

























−1/2 1/2 0 −
√

2 0

−1/2 1/2 0
√

2 0

0 0 −1/2 0 3

1/2
√

2 1/2
√

2 0 0 0

0 0 −1/4 0 −1/2

























.

2.3 Electronic structure of CrO2

2.3.1 Details of calculations

We performed LSDA and LSDA+U calculations within the atomic sphere approx-

imation (ASA) [16]. As was mentioned before in order to increase the filling factor

of CrO2 unit cell we introduce two types of “empty spheres” E1 and E2. The ne-

cessity of empty spheres was proven by the fact that without them within LSDA

calculations ASA predicted CrO2 to be a metal in both channels in contradiction

with the experiment. The strong sensitivity of the calculated total energy on the

filling factor of the unit cell forced us to use three different sets of MT-spheres.

Set I was generated by LMTART program, set II and III were used in [3] and [2]

respectively. The radii of all MT-spheres as well as corresponding filling factor

of the unit cell are listed in Table 2.3. For the electronic structure and transport

calculations set I of MT-spheres has been used. However, taking into account

small values of magnetic anisotropy energy and strong sensitivity of LDA+U ap-

proximation to the filling factor of unit cell we used all three MT-spheres sets for

MAE calculations.

The basis set adopted in the calculations is consist of 4s, 4p, and 3d orbitals

for Cr atoms, and 2s, 2p orbitals for O atoms.
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Table 2.3: Coordinates and Muffin-Tin Radii RMT of the Atomic Spheres for
three different sets (x=0.3053 a.u.).

Atom Cr O E1 E2 filling

Wyckoff notation 2a 4f 4c 4g

Coordinates 0 0 0 x x 0 0 1/2 0 x -x 0

Radii of MT-sp.(au), set I 1.974707 1.615 1.378 1.434 0.59

Radius of MT-sp.(au), set II 2.06 2.06 1.78 1.62 0.88

Radius of MT-sp.(au), set III 2.12381 2.12381 1.9 1.2 0.86

2.3.2 Fat Bands and Density of States

The results of the LSDA band structure calculation for the spin majority and spin

minority carries in the vicinity of the Fermi energy are shown in Figures 2.3 and

2.4 correspondingly. The Fermi level crosses the spin majority t2g manifold. The

rest of the Cr 3d states is formed from four eg bands and three t2g spin minority

bands which are located above the Fermi level. In both spin channels eg and t2g

bands are well separated for all momenta except for the Γ-point. The whole 3d

complex is strongly hybridized with oxygen 2p bands.

In Figure 2.4 one can see that there is a gap of approximately 1.3 eV between

the oxygen 2p band and the chromium d band in the spin minority channel. This

gap leads to 100% spin polarization at EF and assures the magnetic moment to

be precisely equal to 4 µB per unit cell. The t2g bands that cross the Fermi level

in the spin majority channel mainly consist of the t⊥2g orbitals (see Figure 2.3).

Almost non–dispersive narrow band below EF (shown as lightly shaded, green

in color version) is formed by the t
‖
2g orbital. This localized state undergoes

large exchange splitting ∆ex making spin minority t
‖
2g orbitals unoccupied (see

Figure 2.4).

The main changes which occur in the band structure for non–zero values of
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Figure 2.3: LSDA band structure of CrO2 for spin majority carriers. Dark and
light shaded areas (red and green in color version) show the specific weight of t⊥2g

and t
‖
2g orbitals respectively in the particular band.

U and J within the LSDA+U method are schematically shown in Figure 2.5.

These calculations were performed with U = 3 eV and J = 0.87 eV. The center

of gravity of occupied t
‖
2g band is pushed down by 0.6 eV. The spin minority

unoccupied eg bands are pushed up by 0.6 eV, which opens 0.4 eV gap between

t⊥2g and eg bands above the Fermi level. In the spin minority channel the occupied

oxygen bands are shifted up by 0.3 eV. The upper unoccupied t2g and eg bands

are shifted up by 1.1 eV. As a result, the insulating gap is increased and reaches

the value of 2.1 eV.

Before we proceed we would like to compare our results with earlier reported
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Figure 2.4: LSDA band structure of CrO2 for spin minority carriers. Dark and
light shaded areas (red and green in color version) show the specific weight of t⊥2g

and t
‖
2g orbitals respectively in the particular band.

calculations. Table I summarizes values of spin minority energy gap ∆ and ex-

change splitting ∆ex, reported in literature as well as the ones obtained by us.

We would like to emphasize that our results obtained using ASA are in the ex-

cellent agreement with full potential calculations performed by I. I. Mazin and

coworkers [4].

Now we compare calculated electronic structure using the LSDA and the

LSDA+U methods with the available experimental data. Figure 2.6 shows com-

parison of ultraviolet photoemission spectroscopy (UPS) experiments [6] (photon

energy hν = 40.8 eV) with the theoretical spectra which are calculated densities
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Figure 2.5: Schematic density of states (DOS) of CrO2 deduced from the LSDA
and LSDA+U calculations. Shaded semicircles from right and left represent the
bands for spin majority and spin minority carriers.

Energy gap and exchange splitting (in eV).

LSDAa LSDA+Ua LSDAb LSDA+Uc GGAd GGAg

∆ 1.3 2.1 1.5 2.0 1.3 1.8

∆ex 2.3 4.6 1.8 4.5 2.5 2.9

Table 2.4: Here a our calculations, b as reported by Schwartz [2], c as reported by
Korotin et al. [3] , d as reported by I.I. Mazin et al. [4], g as reported by Kunes et
al. [5]. Values of ∆ and ∆ex in b-g are approximate and extracted from the DOS
reported in these papers.

of states smeared by both Gaussian and Lorentzian broadening functions. The

Gaussian broadening takes into account experimental resolution while Lorentzian

takes into account finite lifetime effects. The Gaussian broadening parameter is

taken to be 0.4 eV. The full width at half maximum (FWHM) of the Lorentzian

was taken to be energy dependent and equal to 0.2|E − EF | eV. We can distin-

guish two main features in the UPS spectra: (i) a small hump in around −1.5 eV

which arises from the t2g band of Cr, and (ii) a big hump around −6.0 eV which

comes from the broad 2p oxygen band. Both features are fairly well described by
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both the LSDA and the LSDA+U calculation. The small discrepancy between

the LSDA calculation and experiment could be referred to the fact that at small

photon energies photoemission is a more surface sensitive technique. Indeed, re-

cent PES studies of Vanadium oxides [59] have been found to yield spectra not

characteristic of the bulk, but rather of surface atoms whose lower coordination

number can render more strongly correlated surface layer.
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Figure 2.6: Comparison between theoretical densities of states and experimental
[6] UPS spectra for CrO2. The theoretical DOS were smeared out by Gaussian
and Lorentzian broadening functions to account for experimental resolution and
lifetime effects. The secondary electron background has been taken into account.

For the unoccupied states we have chosen to compare our results with the

available x–ray absorption spectra (XAS) [7] rather than with the inverse photoe-

mission as it had been done before [6]. The main reason for this is that XAS is

a bulk (not surface) sensitive method. The 2p Cr XAS spectrum [7] is compared

to our theoretical calculations in Figure 2.7. To deduce theoretical spectra we
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performed both Gaussian and Lorentzian broadening of 3d and 4s partial DOSes.

Two first peaks around 0.5 eV and around 1.5 eV come from the unoccupied 3d

orbitals of chromium. The main contribution to the second peak comes from the

t2g orbitals in the spin minority channel. Thus, the LSDA+U overestimates the

spin minority gap by a factor of two.
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Figure 2.7: Comparison between theory and experiment[7] for Cr 2p x-ray ab-
sorption (XAS) spectrum. To deduce theoretical curve from the partial Cr 3d
DOS we used 0.1 eV for Gaussian FWHM. The Lorentzian FWHM was taken to
be energy dependent and equal to 0.2|E −EF |. The binding energy of core 2p3/2

Cr state 577 eV has been subtracted from the experimental spectrum.

2.4 Optical conductivity

Below we discuss the optical conductivity of CrO2. In Figure 2.8 diagonal x-

components of the optical conductivity calculated using the LSDA and LSDA+U
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methods are compared with the experimental results reported by Basov and

coworkers [8] (x coordinate refers to the basis of unit cell).
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Figure 2.8: Comparison of the optical conductivity of CrO2 obtained using the
LSDA and LSDA+U methods against the experimental data [8].

The main two features of the calculated optical conductivity are a shoulder

around 2 − 3 eV and a broad hump located at energies 0.2 − 1.5 eV. In both

LSDA and LSDA+U schemes the shoulder can be identified with two types of

transitions. First contribution arises from the minority spin gap transitions and

the second one comes from transitions between the occupied t
‖
2g and unoccupied

eg bands. The hump is formed by interband transitions within the t2g-manifold

and the oxygen 2p bands near the Fermi level in the spin majority channel. The

LSDA prediction is much closer to the experimental curve than the LSDA+U one.

The LSDA+U calculations overestimate the minority gap, and hence, the spin
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minority transitions occur at higher energies. Our conclusion completely agrees

with conclusions of earlier published studies by I. I. Mazin and coworkers [4], as

well as by J. Kuneš and coworkers [60].

2.5 Magnetic Anisotropy Energy

Results of calculated magnetic anisotropy energy (MAE) for CrO2 are presented

below. We remind that magnetic anisotropy is the dependence of the internal

energy on the direction of spontaneous magnetization. The magnetic anisotropy

is a relativistic phenomenon arising due to spin–orbit coupling, where the spin

degrees of freedom interact with the spatial anisotropy through the coupling to

the orbital degrees of freedom. The experimental measurement of MAE for CrO2

were hindered by the fact that chromium dioxide is a metastable compound,

which irreversibly decomposes at about 200◦C [61]. The most recent reliable

measurements were performed on epitaxial CrO2 layers [62, 63, 64]. For thicker

films (0.7 - 1.2µm) the in–plane magnetic anisotropy was observed with [001] and

[010] easy and hard axis directions respectively. The value of magnetocrystalline

anisotropy constant K1 reported by different groups are 6.7µeV [62], 9.6µeV [63]

and 15.6µeV per cell [64]. These values are bigger than typical values of MAE for

metals (e.g. for Ni and Fe they are 2.8 and 1.4 µeV per atom correspondingly [65]).

This may be due to the fact that such metals as Fe and Ni have cubic crystal

structure where MAE identically vanishes in the second order and arises as fourth

order effect in the spin-orbit coupling [65]. The low crystal symmetry of CrO2

provides MAE to appear already in the second order of the perturbation theory,

leading to the bigger value of MAE than typical metal values.

Within our LSDA calculation the direction [001] was found to be the easy

magnetization axis, which is consistent with latest thin film experiments [62, 63,

64]. To calculate the magnetic anisotropy energies (MAEs) we subtract the total
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energy for easy magnetization axis from the total energies with different directions

of magnetization ([010], [111] and [102]). For the momentum space integration

in the total energy calculations, we follow the analysis given by Trygg and co–

workers [66] and use the special point method [67] with a Gaussian broadening [68]

of 15 mRy. The validity and convergence of this procedure has been tested in

their work [66]. We used about 1000 k–points in the irreducible Brillouin zone,

while the convergence of MAE is tested up to 8000 k–points for all three sets of

MT-spheres listed in Table 2.3. Numerical values of MAE in LSDA calculation

exceed the maximum experimental value by approximately four times [64].

To determine the influence of intra–atomic repulsion U on the magnetic anisotropy,

we have performed LSDA+U calculations for different values of U increasing it

from 0 to 6 eV (J = 0.87 eV was kept constant except for the LSDA U = 0

case). The results of these calculations are presented in Figure 2.9. MAE de-

creases rapidly starting from the LSDA value (which is approximately equal to

68 µeV per cell) and changes its sign around U ≈ 0.9eV. This leads to switching

correct easy magnetization axis [001] to the wrong one, namely [102]. The biggest

experimental value of the MAE reported in the literature is 15.6 µeV per cell [64].

The calculated MAE approaches this value around U = 0.6 eV. This signals that

correlation effects in the d–shell may be important for this compound although

they are strongly screened out.

Another question can arise whether DMFT treatment would change the values

of MAE or not. From our experience we expect the total energy to be sufficiently

robust quantity, almost insensitive to whether we include dynamical correlations

or not. Within the DMFT framework the redistribution of the spectral weight

near the Fermi level usually occurs, but the total energy seems to remain almost

the same.
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Figure 2.9: The magneto–crystalline anisotropy energies for CrO2 as functions of
U . The experimental value of MAE E[010]−E[001] = 15.6µeV per cell is shown
by arrow.

2.6 Conclusion

To conclude, we have reported the LSDA and LSDA+U calculations of electronic

structure, optical conductivity and magnetic anisotropy of CrO2. Our compar-

isons with the experimental data point out the local spin density approximation

as the proper method to describe this material. We explained the discrepancy

between the LSDA and photoemission studies, discussed earlier by other au-

thors [3, 6], by the fact that due to small photon energies used in PES, it is

more surface rather than bulk sensitive technique. We resolved this problem by

showing that XAS spectrum is unambiguously described by the LSDA calculation.

Is has been also shown that even intermediate values of U(of the order of 1-2 eV)

lead to the failure of the LSDA+U method to describe the magnetic anisotropy
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and the optical conductivity of CrO2. Since the LSDA+U is not adequate for the

description of electronic structure of CrO2 as well as of its optical and magnetic

properties, we conclude that the ordered phase of CrO2 could be described as

weakly correlated material with small values of on-site Coulomb repulsion. It is

important to notice that while we have found that the simple one-electron picture

describes the ferromagnetic phase of this material well, there is a narrow band

formed by the non-dispersive t
||
2g orbitals (xy character) which in the paramag-

netic phase will be single occupied, due to the on-site Coulomb interactions, an

effect which cannot be described in LDA and will require a dynamical mean-field

treatment for this materials as done in Ref. [49]. The physical basis for the appli-

cability of static mean–field picture in the ferromagnetic phase of this material is

due to the large exchange splitting which is able to effectively enforce the single

occupancy of the t
||
2g orbitals.
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Chapter 3

DMFT study: CrO2 on the edge of orbital

selective Mott transition

In this chapter we discuss the possible scenarios of orbital selective Mott transition

(OSMT) in the case of two-bands Hubbard model on the example of paramagnetic

CrO2. DMFT calculations are performed for the block of t2g orbitals. CrO2 is

shown to be on the edge of a quantum transition, where small energy scales (of

the order . 0.5eV) separate phases with completely different physics.

3.1 Introduction and Motivation

We discuss the scenario for metal insulator transition for the case of two bands,

considering particular case of chromium dioxide. The electronic structure for

ordered phase of this material has been discussed in details in the previous chapter

with conclusion that low-energy physics of this compound is ruled by three bands

(two of them are degenerate) around Fermi level, formed by t2g-orbitals of Cr

atoms. The discussion will be restricted to paramagnetic case only to clarify the

nature of Mott transition and all calculations will be performed for temperature

≈ 390K (β = 1/16).

As was discussed earlier, the position of a narrow t
||
2g band was the source of nu-

merous debates in the literature, particularly for recent DMFT and LDA+DMFT

studies [50, 69]. In order to investigate all possible scenarios for the Mott tran-

sition we carried out DMFT calculations for several shifted positions of narrow

t
||
2g band. The starting point was LDA paramagnetic partial DOSes shown in
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Figure 3.1 with occupancies and bands positions listed in Table 3.1 (the positions

are given in half band width of the broad band (h.b.w.),(h.b.w ≈ 1.1632eV )).

Table 3.1: Partial LDA occupancies and band positions in paramagnetic case.

t⊥2g t⊥2g

〈nσ〉 0.267 0.489

ǫ (h.b.w.) -0.038 -0.341

Thus, there is in total approximately one electron per spin per three bands.

The narrow t
||
2g band is almost completely occupied, containing one-half of an

electron per each spin. The other one-half of an electron is accommodated by

two degenerate half-filled broad t⊥2g bands centered around the Fermi level. The

discussion here and below will refer to occupancies of t2g bands per spin.
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Figure 3.1: The renormalized to unity partial LDA DOSes for t2g bands of Cr were
used as input for DMFT calculations. Energy scale h.b.w ≈ 1.1632eV . Inset: to
investigate all possible scenarios of OSMT in CrO2 the position of narrow band
was shifted down in energies by value of parameter s.

Starting with different relative positions of t2g bands: ǫ|| = ǫ
||
LDA − s and
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ǫ⊥ = ǫ⊥LDA, controlled by parameter s, we investigate evolution of the system

under applied Coulomb interaction U and seek for the metal and insulating states

for each orbital in (s, U)-parameter space.

3.2 Model Hamiltonian and self-consistent DMFT loop

We consider the symmetric case of multiorbital Hubbard model:

H =
∑

iασ

(ǫα − µ)d†iασdiασ −
∑

〈ij〉,αβσ

tαβd†iασdjβσ (3.2.1)

+
1

2

∑

iασ

Uniασniα−σ +
1

2

∑

iαα′σ

(U ′ − J)niασniα′σ,

with Coulomb interaction parameters U ′ = U and J = 0. Here d†iασ (diασ) creates

(annihilates) an electron on the site i, in the orbital α, with spin σ. The ǫα’s are

crystal-field levels, and µ is chemical potential. The index α refers to three t2g

orbitals: xy (also referred as t
||
2g) and two degenerate yz and zx (also referred as

t⊥2g).

The self-consistent DMFT loop starts with the solution of the impurity prob-

lem stated by Hamiltonian 3.2.1 carried out by quantum Monte Carlo (QMC)

method. A seed Weiss function was chosen to be Gα(τ) = τ − 1 + i(τ − 1) at the

first step. The Green’s function Gα(τ) obtained in the QMC routine for orbital α

was Fourier transformed to the imaginary frequencies axis and used to calculate

self-energies:

Σα(iωn) = G−1
α (iωn) −Gα(iωn)−1. (3.2.2)

We used the following DMFT self-consistency condition:

Gnew
α (iωn) =

∫ ∞

−∞
dǫ

Dα(ǫ)

iωn + µ− Σα(iωn) − ǫ
, (3.2.3)

where Dα(ǫ) are partial DOS for orbital α obtained from LDA calculations (see

below for detailed description of Input parameters). The new Weiss function is
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calculated as

[Gnew
α (iωn)]−1 = [Gnew

α (iωn)]
−1 + Σα(iωn), (3.2.4)

Fourier transformed back to the time axis and feed to the QMC solver. This

concludes the DMFT loop.

Once consistency is reached the analytical continuation of a new Green’s func-

tions Gnew
α (iωn) to real frequencies was performed using the maximum entropy

method.

3.3 Impurity solver: Quantum Monte Carlo

In these calculations we used the QMC solver (version 9.0) implemented by

V. S. Oudovenko (for the description of code see online material of [20]). Be-

low we sketch the main ideas behind Hirsch-Fye QMC method for generalized

case of n bands (in the present study n = 3). The purpose of the QMC impurity

solver is to compute the Green’s function

Gm(τ) = 〈Tdm(τ)d†m′(0)〉S. (3.3.5)

Here τ is imaginary time and index m represents pair (α, σ). For our case of three

bands:

m = 1 ⇒ α = yz(t⊥2g), σ =↑; m = 2 ⇒ α = yz(t⊥2g), σ =↓; (3.3.6)

m = 3 ⇒ α = yz(t⊥2g), σ =↑; m = 4 ⇒ α = yz(t⊥2g), σ =↓;

m = 5 ⇒ α = xy(t
||
2g), σ =↑; m = 6 ⇒ α = xy(t

||
2g), σ =↓ .

The average in 3.3.5 is taken with effective action

S = −
∫ ∫ β

0

dτdτ ′
∑

m

d†m(τ)G−1
m (τ − τ ′)dm(τ ′) +

∫ β

0

dτHint(τ). (3.3.7)

The bath Green’s function Gm(τ, τ ′) is guessed to be Gm(τ) = τ − 1 + i(τ − 1)

at first step and derived from self-consistency condition 3.2.3 at all subsequent
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steps. For the purpose of equation derivation we denote Hamiltonian generating

Gm(τ) by H0. The interaction term reads

Hint =
∑

m

∑

m′>m

U(nmnm′ − 1

2
(nm + nm′)). (3.3.8)

To start the calculation of partition function Z = Tr e−β(H0+Hint) we discretize

imaginary time interval [0, β] into L slices of length ∆τ so that τl = l∆τ , l =

1, 2, . . . , L. Then expression for partition function:

Z = Tr
L
∏

l=1

e−∆τ(H0+Hint) (3.3.9)

can be simplified further using the Trotter formula

Z ≈ Z∆τ = Tr
L
∏

l=1

e−∆τH0

L
∏

l=1

e−∆τHint . (3.3.10)

Hirsch-Fye QMC requires Gaussian type of integral for partition function. The

Hubbard – Stratonovich transformation is usually used to decouple the interaction

term Hint:

e−i∆τHint =
1

2

∑

Smm′=±1

exp

[

∑

m<m′

λSmm′(nm − nm′)

]

, (3.3.11)

with

λ ≡ arccosh

[

exp

(

∆τ

2
U

)]

. (3.3.12)

The introduced discrete variables Smm′ are auxiliary Ising fields at each time slice

taking values Smm′ = ±1. The number of auxiliary fields is equal to the number

of (m,m′)-pairs, i.e. 6C2 = 15 in our case. Thus,

e−∆τl−1Hint =
1

2

∑

Smm′=±1

exp

(

∑

m

d†mV
l
m({S})dm

)

(3.3.13)

with diagonal matrix

V l
m({S}) = λ

∑

m′(6=m)

Smm′(τl)(θ(m−m′) − θ(m′ −m)), (3.3.14)



46

where θ(x) is step-function.

The final expression for the partition function:

Z = TrSmm′ (τl)

∏

m

detOm[{Smm′(τl)}], (3.3.15)

where (2nL) × (2nL) matrix Om consist of zero elements except:

(Om)l,l = I (3.3.16)

(Om)l,l−1 = − exp(−∆τH0) exp(V l−1
m )(1 − 2δl,1).

It can be shown [20] that Green’s function Gm can be expressed trough Om

matrix:

Gm = O−1
m . (3.3.17)

Further, for two different configurations of Ising fields {Smm′} and {S ′
mm′} there

exist two different matrices Vm and V ′
m. The corresponding Green’s functions Gm

and G′
m are related by (we omit index m for the sake of clarity):

G′ = G+ (G− I)[eV ′−V − I]G′. (3.3.18)

The last relation can be rewritten as:

G′ = A−1G, (3.3.19)

where

A = I + (I −G)[eV ′−V − I]. (3.3.20)

We note that Dyson equation 3.3.18 also holds for a special case Vm = 0 and

Gm = Gm.

The Boltzmann factor for different configurations is given by:

R =
∏

m

Rm, (3.3.21)

where

Rm =
det(O′

m)

det(Om)
= det[I − (Gm − I)[eV ′

m−Vm − I]]. (3.3.22)
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If we make a local change in the field Smm′ → S ′
mm′ = Smm′ for m < m′ at

time slice l, then the matrix [exp(V ′
m − Vm) − I] has only one non-zero diagonal

element at the f -location in the l-th submatrix. Then determinants 3.3.22 are

just those non-zero elements and:

R = RmRm′ , (3.3.23)

Rm = 1 − (gm(l, l) − 1)[e−2λSmm′ − 1], (3.3.24)

Rm′ = 1 − (gm′(l, l) − 1)[e+2λSmm′ − 1], (3.3.25)

where gm is L × L matrix of f -Greens function. Further we use the heat bath

condition to accept or reject flip:

R/(1 +R) > rand() ⇒ flip accepted,

R/(1 +R) ≤ rand() ⇒ flip rejected.

If the flip is accepted then all time components of the f -Green’s function for

the new configuration are obtained from the old one through the relation:

g′m(l1, l2) = gm(l1, l2) +
∑

l

(gm(l1, l) − δl1,l)
e−2λSmm′

Rm
gm(l, l2), (3.3.26)

g′m′(l1, l2) = gm′(l1, l2) +
∑

l

(gm′(l1, l) − δl1,l)
e+2λSmm′

Rm′

gm′(l, l2), (3.3.27)

which follows from Dyson equation 3.3.18.

Finally, the physical Green’s function is calculated as:

Gphysical
m (τl, τl′) =

1

Z
TrSmm′

gm(l, l′)detOm[{Smm′}]. (3.3.28)

Now we can describe implementation of Hirsch-Fye algorithm in QMC code:

(1) The calculation starts from discretized version of Weiss function G(τ),

which must be provided as input file (see for details section 3.5). Weiss function

is used from the previous iteration of DMFT loop or guessed on the first step.

(2) The Green’s function Gm(τl, τl′) for an arbitrary initial configurations of

Smm′(τl) = ±1 is calculated by explicit inversion of matrix A 3.3.19-3.3.20.
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(3) From then on, configurations are visited using single spin flip at time τl.

The determinants 3.3.22 and their product 3.3.22 are calculated. If the heat bath

condition allows acceptance of the spin flip, Green’s functions are updated with

3.3.26-3.3.26. After specified number of so called dirty updates the clean update

of Green’s function is done using formulas 3.3.19 and 3.3.19.

(4) The physical Green’s function is determined as averages of configuration-

dependent functions gm(τl, τl′) 3.3.28.

3.4 Analytical Continuation

The output of DMFT loop is Green’s function at imaginary time. To analytically

continue to the real axis we used standard technique called Maximum Entropy

method (MEM) [70], which was developed to circumvent the solution of the fol-

lowing integral equation:

G(τ) =

∫

dωf(−ω)e−τωA(ω). (3.4.29)

Here A(ω) is the unknown spectral function and f(ω) is the Fermi function. The

solution of Eq. 3.4.29 is known to be numerically ill-posed problem since at large

positive and negative frequencies the kernel of 3.4.29

K(τ, ω) = f(−ω)e−ωτ =
e−ωτ

1 ± e−ωτ
(3.4.30)

is exponentially small, so the high frequency features of A(ω) depend upon sub-

tle features in G(τ). Furthermore, obtaining G(τ) from QMC complicates the

problem as the data are incomplete and noisy.

The MEM combines the use of Bayesian inference and the principle of maxi-

mum entropy. The ill-posed inverse problem 3.4.29 strictly speaking has an infi-

nite number of solutions because of insensitivity to high-frequency details of A(ω)

and noisy QMC information about G(τ). The idea of MEM is to choose among

those solutions spectral density which is the most probable. The non-negativity
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(A(ω) > 0 for fermions ) and normalizibility (
∫∞
−∞A(ω)dω < ∞) allows one to

interpret spectral density as a probability function. If we choose as events func-

tions Ḡ(τ) and A(ω), where Ḡ(τ) is measured value of G(τ), then the criterion

for a best solution will be a function that maximizes the conditional probability

Pr[A|Ḡ] over all possible A. The Bayes’s theorem gives the following equality:

Pr[A|Ḡ] = Pr[Ḡ|A]Pr[A]/Pr[Ḡ]. (3.4.31)

Thus, the problem of maximization with respect to A breaks down into two parts:

(1) maximize Pr[Ḡ|A], and (2) maximize Pr[A].

The maximization of Pr[Ḡ|A] can be done with a maximum likelihood method.

Using the data to findA(ω) is type of parameter fitting problem as much as we

determine a set A = (A1, A2, . . . , AN) of values A at a number of discrete values

ωi of ω. The discrete version of Eq. 3.4.29:

Gi = ΣjKijAj∆ωj , (3.4.32)

where Kij = K(τi, ωj), suggests that a given A makes a specific prediction for a

set of G(τ) values G = (G1, G2, . . . , GL) at various discrete values τi of τ . In the

maximum likelihood method, the Ḡ(τ) are regarded as random variables drawn

from a likelihood function f(G; Ḡ) specified by G. For a single Ḡ(j) the number

dP (j) = f(Ḡ(j);G)dG represents probability for given measurement to occur.

For M independent measurements, dP =
∏M

j=1 f(Ḡ(j);G)dG. The logarithm of

the likelihood function is L =
∑M

j=1 f(Ḡ(j);G) and thus Pr[A|Ḡ] ∝ e−L. The

method of maximum likelihood is based on the assumption that a single peak

in the space of the parameters G dominates likelihood function and when the

number of measurements become large, by Central Limit Theorem:

Pr[A|Ḡ] ∝ e−L = e−χ2/2 (3.4.33)

where

χ2 =

L
∑

ij

(Ḡi −Gi)[c
−1]ij(Ḡj −Gj) (3.4.34)
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and

Ḡi =
1

M

M
∑

j=1

Ḡ
(j)
i . (3.4.35)

C is the covariance matrix

Cik =
1

M(M − 1)

M
∑

j=1

(Ḡi − Ḡ
(j)
i )(Ḡk − Ḡ

(j)
k ). (3.4.36)

The principle of maximum entropy says that the values of a probability func-

tion A(ω) are to be assigned by maximizing the entropy, and thus

Pr[A] ∝ eαS, (3.4.37)

where entropy term S takes form

S[A] = −
∫

dω{A(ω)−m(ω) −A(ω)ln[A(ω)/m(ω)]}. (3.4.38)

Here m(ω) is so called default model, usually constant, or, alternatively, taken to

be the solution of the same model but calculated by an approximation.

Substitution of results 3.4.33 and 3.4.37 into Bayes’s formula 3.4.31 gives:

Pr[A|Ḡ] ∝ eQ (3.4.39)

with a new functional to be maximized:

Q[A] = αS[A] − 1

2
χ2[A]. (3.4.40)

For each value of parameter α, numeric maximization ofQ gives the corresponding

spectral function A(ω). The classical MEM[71] incorporates empirical Bayesian

methods to fix the parameter α. Making explicit the dependence in 3.4.31 on α:

Pr[A, α|Ḡ] = Pr[Ḡ|A]Pr[A|α]Pr[α]/Pr[Ḡ], (3.4.41)

one can obtain the following algebraic equation for α:

− 2αS(α) = Tr{Λ(α)[αI + Λ(α)]−1}. (3.4.42)
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Here S(α) in the solution Aα which maximizes Q, and Λ(α) is:

Λ(α)ij =
√

Aα
i [KTC−1K]ij

√

Aα
j . (3.4.43)

Kij ≡ K(τi, ωj) i discretized kernel and Ai = A(ωi)dωi and Cij is defined above

covariant matrix.

3.5 Technical note on the DMFT run

Here we describe technical details on the conduction of DMFT run.

Code compilation.

To compile QMC code the file param.dat, containing information about imagi-

nary time step and number of bands must be provided. The example of the file

param.dat is shown below in Table 3.5. We used mesh of imaginary time axis

∆τ = β/L with L = 128. Also, we considered case of three bands. The corre-

sponding parameter is Nlm, the total number of bands is controlled by parameter

Nd = 2Nlm.

Table 3.2: Example of param.dat

IMPLICIT REAL∗8 (A-H,O-Z)

parameter(L= 128, Iwmax= 2 ∗ ∗13, Nom=Iwmax+1)

parameter(Nlm= 3,Nd= 2∗Nlm,Nf=Nlm∗(Nd−1),Ns= 1)

complex*16 ci

parameter (ci=(0.d0,1.d0))

parameter (pi=3.1415926535898d0)

common/global/Beta,Zero,One,Two

By default the degeneracy among bands trough computations is forced by

parameter SUN. Since in our calculations the degeneracy among t2g bands is

broken we put in main.f flag SUN=.FALSE.

Input files.

Once the code is compiled to make QMC run one has to provide three files: inp,
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Table 3.3: Explanation of input parameters in param.dat

L – Number of time slices

Iwmax – Number of points on imaginary frequencies axis

Nlm – Number of orbitals

Nd – Number of orbitals with accounted spin degeneracy

Nf – Number of Ising spins

pdos.in, and g0init. Below we explain the contents of each file. The template

used for file inp is demonstrated in Table 3.5. The meaning of input parameters

is explained in Table 3.5.

Table 3.4: Example of inp file.

3.0 0.0 U, J

16 280000 Beta, Nsweep

0.0 0.0 1.0 Ef, dEf, Znm (Not used if def=null )

0 20 1 istart, nscf, iout

0.5 0.0005 alpha, small

1 T NewFourier FS (T or F)

T F TBDOS (T or F)

Once parameter TB in file inp set to be TRUE, the file pdos.in must be pro-

vided. The file contains Nlm+1 columns. The first column must list energies with

prescribed by param.dat mesh, and the other Nlm columns – partial renormalized

DOSes. The file can be prepared in the following 3 steps:

1. LDA DOS around Fermi level is selected with identifiable bandwidth D.

2. LDA DOS are renormalized to range: D → [−1 : 0; 1 : 0]

3. The derived DOS is extended by zeros to be defined on range [−10, 10].

4. The energy mesh is redefined to contain Iwmax number of points

5. the integrated intensity of all bands in renormalized to be 1.0 per spin.
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Table 3.5: Explanation of input parameters in inp
U , J – Hubbard parameters

beta – inverse temperature

Nsweep – number of Mote-Carlo sweeps

Ef – the chemical potential

dEf – energy step to search Fermi level

= 0 the chemical potential is fixed and program finds doping

else the doping is fixed (znum) and program searches for Ef

znum – Guess for doping

istart – controls status of file Sig containing self-energy

= 0 program does not read Sig

= 1 program reads in self-energy from Sig, but does not rewrites it

= 2 program reads and rewrite self-energy stored in file Sig

nscf – maximal number of iterations

iout – controls output files

= 0 keeps only one last iteration in output files

alpha – small mixing coefficient (of the order of 0.05-0.5)

small – Self-consistency threshold for self-energy

NewFourier – identify different Fourier Transformation (FT) routines to be used

= 1 most precise scheme (first derivatives of function to be provided)

= 2 less precise scheme (the moments of the function to be provided)

= 3 least precise scheme (does not requires any information)

FS provides extrapolated first derivatives in FT1 (LOGICAL)

TB – chooses between semicircular and arbitrary DOS (LOGICAL)

=F, then semicircular DOS is used

=T, DOS in file pdos.in (must be provided) is used

LSC – reserved for external k-summations (LOGICAL)

The result of this procedure for the case of paramagnetic CrO2 is shown in Fig-

ure 3.1.

The third input file g0init must contain 2∗Nlm+1 columns corresponding to

τ , ReGi(τ), ImGi(τ) for i = 1, 2, . . . ,Nlm. The functions must be given for the

negative L/2 time slices. We chose the initial Weiss function to be ReGi(τ) =

ImGi(τ) = τ for τ < 0 and i = 1, 2, 3.

Analytical continuation.

The output of QMC code is Green’s function on the imaginary time axis. To
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find the spectral density we use the maximum entropy code for the analytical

continuation to the real axis. The MaxEnt code takes two input files and pro-

duces output file with partial DOSes. The first input file called inpmax contains

information about input parameters of MEM and its example shown in Table 3.5.

We run MaxEnt code separately for each band, thus number of degenerate bands

(first line in inpmax) equals 1. The explanation of the other parameters is given

in Table 3.5.

Table 3.6: Example of inpmax file.

1 ! Ns

65 ! L

1 0.004 ! idg, delta-G

16.0 ! Beta

600 ! Ne

0.02 ! De

3000 ! Nmc

1200 ! alpha

1 ! Nrun

1234 ! rand

0 0.040 ! iflat, eim

-1.5 1.0 !mu U

The other input file called Gtau1.dat must contain imaginary time mesh, real

and imaginary parts of Green’s function for the given band. The output of MaxEnt

is written to the files with name dos.

3.6 Calculated DOSes and observation of OSMT

The DOS for different pairs of (s, U) parameters are shown in Figures 3.2-3.6.
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Table 3.7: Explanation of input parameters in inpmax

Ns – number of time slices

L – number of time slices, defined in QMC code

idg – identifies way the model function for MEM is built

delta-G – deviation from GF (recommended 0.001-0.005 range)

Beta – inverse temperature

Ne – number of points on real axis (maximum 600)

de – frequency step on real axis

Nmc – number of annealing steps

alpha – α parameter in functional 3.4.42

Nrun – number of smoothing runs

rand – random seed number

Iflat =0 selects default model in 3.4.38 to be a constant

Eim – irrelavant for the choice of iflat = 0

mu – chemical potential

U – Coulomb repulsion

We start discussion with case of s = 0.0, i.e. when paramagnetic LDA partial

DOSes were used in self-consistency condition 3.2.3. In Figure 3.2 the DOSes

for narrow t
||
2g and broad t⊥2g bands are shown as function of Coulomb repulsion

U measured in half bandwidth of broad LDA band. For U = 1.0 the narrow

band becomes almost unoccupied shifting its spectral weight higher the Fermi

level. The broad band stays half-filled and increases in bandwidth. Both bands

formed sharp quasiparticle peaks and noticeable upper and lower Hubbard bands.

As U increases to value of 2.0 the Hubbard bands become bigger accumulating

spectral weight from quasiparticle peak. The narrow band is already approaching

insulating stage as Coulomb parameter is usually quite small for transition oxides.

Finally, at U = 3.0 the narrow band underwent localization transition, and broad

band approaching it while still being conducting. The last plot of Figure 3.2

suggests that localization transition occurs at different values of U for narrow

and broad t2g bands.
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Figure 3.2: DOS for s = 0.0 and U = 0.0, 1.0, 2.0 and 3.0.

Since DOSes are derived through analytical continuation of Green’s function

from imaginary times to the real axis employing MEM which by construction

may produce small noises. To assure the insulating behavior of narrow band at

U = 3.0 we show in Figure 3.3 the imaginary part of Green’s function on the

axis of imaginary frequencies which is output of QMC routine. The shape of

ImGt⊥
2g

(iωn) suggests that broad band remains conducting up to U = 3.0, while

ImGtII
2g

(iωn) curves up for U = 2.0
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Figure 3.3: The imaginary part of Green’s function on imaginary frequencies axis
for broad (top) and narrow (bottom) bands for different values of U .

In Figure 3.4 the DOS are shown for the case s = 0.1 h.b.w. The third panel of

Figure 3.4 demonstrate that already for U = 2.0 the narrow band becomes insu-

lating while the broad band still metallic with almost smoothed out quisiparticle

peak. The fourth panel of Figure 3.4 shows that for U = 3.0 both bands devel-

oped upper and lower Hubbard bands which are separated by ≈ 1.2eV energy

gap.

The comparison of Figures 3.2 where s = 0.0 and 3.4 where s = 0.1 leads to

the conclusion that localization transition occurs for smaller values of U in the

case of s = 0.1. Also, while in the case of s = 0.0 narrow band becomes almost
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Figure 3.4: DOS for s = 0.1 and U = 0.0, 1.0, 2.0, and 3.0.

fully unoccupied, in the case of s = 0.1 the spectral weight of broad and narrow

bands become comparable below the Fermi energy.

This tendency of the narrow band to become more occupied and leave more

spectral weight below the Fermi level persists with further increase of parameter

s. As a result more and more spectral weight of the broad band is pushed above

the Fermi level. The dynamics of spectral weight redistribution can be traced in

Figures 3.5 and 3.6. All three panes of the Figure 3.6 where s = 0.4 indicate the

situation opposite to one when s = 0.0 (see Figure 3.6). Now the narrow band
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Figure 3.5: DOS for s = 0.2 and U = 0.0, 1.0, 2.0, and 3.0.

is almost completely occupied, but the broad band shifted all its spectral weight

above the Fermi level. It should be noticed that increase of s did not accelerate

further the localization transition with increase of U .

We studied the redistribution of electron density between the narrow and

broad bands in the space of parameters (U, s). The three lower panels of Fig-

ure 3.7 present partial occupancies of narrow and broad bands per spin as func-

tion of parameter s for U =1.0, 2.0 and 3.0. First, we discuss case U = 1.0 (see
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Figure 3.6: DOS for s = 0.4 and U = 0.0, 1.0, 2.0, and 3.0.

to panel of Figure 3.7). Here and later, the occupancies of broad bands repre-

sent the summary electron occupancy of two degenerate broad bands per spin.

The total occupancy of all three bands is also demonstrated to be 1 per spin as

expected. For small values of parameter s, i.e. if one starts with LDA DOSes,

the narrow band becomes almost completely unoccupied left with only ∼ 15% of

total electron density. The situation is changing rapidly with increase between

initial relative positions of narrow and broad bands. As s becomes bigger by

magnitude the narrow band is accumulating electron density leaving broad bands
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less occupied. At s ≈ −0.28 h.b.w. the narrow and broad bands have equal occu-

pancies of 0.5 each. This cross-section is followed by the narrow band being more

and more occupied and the broad bands correspondingly unoccupied. Finally at

s ≈ −0.6 h.b.w. the narrow band gains almost 100% of electron density pushing

the broad bands above Fermi energy.
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Figure 3.7: The partial occupancies of broad and narrow bands as a function
of parameter s for different values of U . The dashed vertical line in each panel
indicates that the transition occurs for s with smaller magnitudes as U increases.
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In the cases of U = 2.0 and U = 3.0 the similar dynamics of electron density

can be observed with correction that the cross-section occurs for smaller values

of parameters s. For U = 2.0 the transition takes place at s ≈ −0.24 h.b.w. and

for U = 3.0 at s ≈ −0.28 h.b.w.

Thus, a very small difference (of ≈ 0.5 eV) in the parameter s leads to com-

pletely different physics. As s varies from 0 to ≈ −0.5 eV the three possible

scenarios of orbital selective Mott transition take over each other:

Scenario 1 (s . 0.1) – the broad band undergoes a localization transition while

the narrow band shifts above the Fermi level (see Figure 3.8).

Scenario 2 (0.1 . s . 0.4) – both broad and narrow bands undergo a localization

transition (see Figure 3.9).

Scenario 3 (0.4 . s) – the broad band shifts its spectral weight while the narrow

band stays completely occupied (see Figure 3.10).

The extreme sensitivity to the small changes of parameter s suggests that

CrO2 is on the edge of a quantum transition. The discussion in the previous

chapter implies that parameter s ≈ 0 in CrO2, indicating the scenario 1 of Mott

transition (Figure 3.8).

U>U >UC1 C2

E EF F

Figure 3.8: Schematic representation of Scenario 1 of OSMT. Under application
of Coulomb repulsion U broad band undergoes localization transition, forming
upper and lower Hubbard bands while narrow band from completely occupied
becomes almost completely unoccupied. The scheme is shown for big values of
U (U > Uc1 > Uc2), where Uc1 and Uc2 – critical U for broad and narrow band
correspondingly.
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U>U >UC1 C2

E EF F

Figure 3.9: Schematic representation of Scenario 2 of OSMT. Under application
of Coulomb repulsion U both broad and narrow bands undergo localization tran-
sition. The scheme is shown for big values of U (U > Uc1 > Uc2), where Uc1 and
Uc2 – critical U for broad and narrow band correspondingly.

U>U >UC1 C2

E EF F

Figure 3.10: Schematic representation of Scenario 3 of OSMT. Under applica-
tion of Coulomb repulsion U broad band becomes completely unoccupied and
narrow band stays completely occupied. The scheme is shown for big values of
U (U > Uc1 > Uc2), where Uc1 and Uc2 – critical U for broad and narrow band
correspondingly.

3.7 Model Hartree calculations

To investigate the role of many-body effects in considered quantum transition

we perform model Hartree calculations for three bands with semicircle DOSes.

Namely, we have three bands, each of them is normalized to have on electron.

Two bands are degenerate, broad and half filled. The third narrow band is fully

occupied, has width twice as less and shifted down to have its upper edge exactly

at the Fermi level. The initial density of states is shown in Figure 3.7.
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Figure 3.11: Input DOS for model Hartree calculations.

Let’s recall that the self-consistency condition in DMFT for one-band case is:

∑

k

1

ω + µ− ǫk − Σimp(ω)
=

1

ω + µ− Σlat(ω) − ∆(ω)
, (3.7.44)

Σimp(ω) = Σlat(ω).

Here Σimp(ω) is self-energy of the impurity, Σimp(ω) is self-energy of the particle

in the lattice, ∆(ω) is the bath spectral density, and µ is chemical potential. For

Bethe lattice ∆(ω) and Weiss function are related through

∆(ω) = t2Gω, (3.7.45)

where t is hopping parameter.

Let’s denote by indexes 1 and 2 two degenerate broad bands and by index 3

narrow band. Then t1 = t2 = 2t3 = t and by ni we will refer to the occupancy of

i-th band. Then for three bath Green’s functions, using condition 3.7.45 we have

self-consistent quadratic equations:

Gi =
1

ω + µ− Σi − t2iGi
(3.7.46)

⇒ −t2iG2
i + (ω + µ− Σi)Gi − 1 = 0, i = 1, 2, 3,

which have the following solutions:

Gi =
1

2t2i
[ω + µ− Σi ±

√

(ω + µ− Σi)2 − 4t2i ]. (3.7.47)
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In the Hartree approximation:

Σi = U(N − ni), (3.7.48)

where N = n1 + n2 + n3. Since occupancies can be found out as:

ni = −1

π

∫ µ

−∞
Im Gi(ω)dω, (3.7.49)

one finally can obtain the following system of equations:

n1 = n2 (3.7.50)

n1 + n2 + n3 = N

n1 =
2

π

∫ (µ−U(N−n2−n3))/2t

−∞

√
1 − z2dz

n3 =
8

π

∫ (µ+s+t/2−U(N−n1−n2))/t

−∞

√
1 − z2dz

With N = 2, n1 = n2 = n and therefore n3 = 2−2n, this system can be rewritten

as system of two equations for µ and n. Parameters t, s and U we assume to be

given:

n =
2

π

∫ (µ̃−Ũn)/2

−∞

√
1 − z2dz, (3.7.51)

1 − n =
4

π

∫ µ̃+0.5+s̃−2Ũ(1−n)

−∞

√
1 − z2dz.

Here µ̃, s̃ and Ũ are measured in terms of half band width of broad band t.

Using the fact that

∫ √
1 − z2dz = −1

2
arcsin z +

1

2
z
√

1 − z2 (3.7.52)

one finds:

n =
1

2
+

1

π
arcsin

[

µ̃− Ũn

2

]

− 1

π

µ̃− Ũn

2

√

√

√

√1 −
[

µ̃− Ũn

2

]2

(3.7.53)

−n =
2

π
arcsin[µ̃+ s̃− 2Ũ(1 − n)]

−2

π
[µ̃+ s̃− 2Ũ(1 − n)]

√

1 − [µ̃+ s̃− 2Ũ(1 − n)]2
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The numerical solution of the system 3.7.53 gave the curves for occupancies of

broad and narrow bands compared to the ones provided by QMC in Figure 3.7.

The same slope but still quite different shape suggests that Hartee approximation

can be used as tool to see general tendency of electron density redistribution but

consideration of many-body effects is crucial in CrO2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.8 -0.6 -0.4 -0.2  0

pa
rt

ia
l o

cc
up

an
ci

es
 (

pe
r 

sp
in

)

parameter s, h.b.w.

broad bands

-0.6 -0.4 -0.2  0

parameter s, h.b.w.

narrow band

DMFT, U=1.0

DMFT, U=2.0

DMFT, U=3.0

Hartree, U=1.0

Hartree, U=2.0

Hartree, U=3.0

Figure 3.12: The occupancies calculated in Hartree approximation are compared
to occupancies calculated within DMFT with QMC impurity solver for broad
bands (left panel) and narrow band (right panel).

3.8 Conclusion

In this chapter we used the DMFT technique with QMC impurity solver to show

that normal state of CrO2 is on the edge of a quantum transition when small en-

ergy scales (≈ 0.5 eV) lead to the phases with completely different physics. Also,

we observed OSMT taking place in t2g manifold of Cr atoms. The application of
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considerably small Coulomb repulsion U to the t2g orbitals lead to the opposite

of intuitively expected result when the broad initially half-filled band undergoes

localization transition while the narrow band where applied U must be effectively

stronger becomes completely unoccupied.
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Chapter 4

Electronic structure of actinides under ambient

pressure

In this chapter we discuss in details the localization-delocalization transition in

actinides, accompanying low-energy physics, and appropriate model for its de-

scription within one-electron picture. The first section is devoted to the review

of basic facts of actinide physics and theoretical studies reported earlier in the

literature. In section 4.2 various LMTO basis sets are analyzed in order to deter-

mine a robust bare Hamiltonian for the actinides. Finally, having chosen a basis

we report a detailed analysis of the one-electron band-structure of actinides in

Section 4.3. The hybridization between f - an spd- states is compared with the

f − f hopping in order to understand the Anderson-like and Hubbard-like contri-

butions to itineracy in the actinides. We show that both contributions decrease

strongly as one move from the light actinides to the heavy actinides.

4.1 Introduction

4.1.1 Background of the actinides

The actinide series encompasses the 15 chemical elements that lie between ac-

tinium and lawrencium on the periodic table, with atomic numbers 89 - 103 and

generally characterized by filling 5f sub-shell. Here we will concentrate on the

part of series from Thorium till Einsteinium. The corresponding valent states of

those elements are provided in Tables 4.1 and 4.2.
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Table 4.1: Valent states of Actinides I.

Th90
232 Pa91

231 U92
238 Np93

237 Pu94
244

6d27s2 5f26d17s2 5f36d17s2 5f46d17s2 5f66d07s2

Table 4.2: Valent states of Actinides II.

Am95
243 Cm96

247 Bk97
247 Cf98

251 Es99
252

5f76d07s2 5f76d17s2 5f96d07s2 5f106d07s2 5f116d07s2

It is well accepted [72] that the actinides are divided into two groups based on

the behavior of the 5f -electrons. The lighter actinides (Th to Pu) have smaller

atomic volumes, low-symmetry crystal structures and itinerant 5f states that

participate in metallic bonding [73]. Alternatively, the heavy actinides (Am to

Es) have larger atomic volumes, high-symmetry crystal structures, and relatively

localized 5f -electrons. The disparity in behavior is associated with delocalization-

localization transition of 5f -electrons happening in the vicinity of Pu. In light

actinides 5f -orbitals are not localized due to particular screening of nuclei charge

by 4f -electrons and extend enough to participate in metallic bonding. Narrow

5f -bands with high density of states at Fermi level result in low symmetry crystal

structure and small atomic volumes. As nuclei charge increases with increase of

atomic number 5f -electrons are pulled stronger into the core and at Am become

completely localized. As a result unit cell volume increase dramatically (see inset

of Figure 4.1) and spd-orbitals become solely responsible for bonding favoring

high symmetry crystal structures observed in conventional metals.

The big atomic volumes and small bulk modulus make heavy actinides to be

“soft” materials. Applying pressure to the heavy actinides results in a series of

crystallographic phase transitions, and the respective phases often have signifi-

cantly smaller volumes [12, 11] (see Figure 4.1). Transitions of this sort are often

referred to as “volume collapse” transitions. Given that the application of ample

pressure to any system of localized electrons will eventually cause a delocalization
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Figure 4.1: Relative volume V/V0 as a function of pressure for α-uranium [9], Am

[10, 11] and Cm [12]. Vertical lines separate the pressure ranges for each Am and Cm

(crystallographic) phase. Percentage values indicate the collapses in atomic volume.

Unfortunately, I was not able to find the same phase diagram for Pu. The pink strips

indicates volumes observed for different crystallographic modifications of Pu (from bot-

tom to top): α-phase, β-phase, γ-phase, ǫ-phase, δ′-phase and, finally, δ-phase. (Inset)

Ambient pressure atomic volumes and (solid circles, left-hand side) and bulk moduli

(open squares, right-hand side) across the actinide series. The plot is copied from [12].

transition, understanding what role the electronic delocalization transition may

play in the volume collapse transition has been and continues to be an active area

of study [74, 75].

Plutonium is considered to be dividing line of actinide series, with the α- and

δ- phases associated with light and heavy behavior, respectively. This dual nature

of Pu, along with an enormous 25% volume collapse for the δ → α transition,

made Pu the most interesting element among 5f compounds for basic theoretical

research over the past 50 years [76, 77].

The actinides are among the most complicated classes of materials in terms of

understanding electronic correlations given the presence of s, p, d, and f electrons

near the Fermi surface and the unusual behavior observed in experiment. Broad
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discussion in the literature was devoted to the following questions: abrupt change

in volume and bulk modulus [78]; unique crystal structures[73]; partial localization

of f -electrons [79], Mott transition [80, 81]; paramagnetism in light actinides and

formation of magnetic moments in heavier actinides (starting from Cm) [77].

4.1.2 Earlier reported in literature calculations

Numerous Ab Initio electronic structure calculations have been performed for the

actinides. Standard DFT based LDA [82, 83] and GGA [84, 85] calculations for

experimentally observed paramagnetic ground state gave good results for equilib-

rium volumes of earlier actinides from Th till Np. However, already for α-phase

of Pu there is an underestimation of the theoretical volume comparing with the

experimental one [86, 87] and for the δ-phase the disagreement is rather large

(more than 20%). Recently it was found that combination of GGA and spin-

polarization taken into account results in drastic improvement of the DFT results

on equilibrium volume values of Pu phases [75]. However, any improvement in

the DFT description inevitably lead to a magnetic ground state of Pu, contrary

to experiment [77].

The problem of “first principles” calculations of electronic structure and ground

state properties of plutonium is associated with the question how to describe 5f -

electrons localization [88]. A. Svane et al. in [89] accounted for partial localization

of 5f -orbitals using SIC-LSD approximation (SIC for self-interaction correction)

which postulates a manifold of coexisting localized and delocalized f -electrons.

Authors were able to predict non-magnetic/magnetic ground states for U, Np,

Cm and Bk in agreement with experiment. Still, the ground state for Am and

Pu were predicted to be magnetic.

The physical origin of localization are correlation effects due to Coulomb inter-

action between 5f -electrons. Therefore, such methods as LDA+U and LDA+DMFT
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should provide better results in the description of actinides. Indeed, LDA+U cal-

culations for δ-Pu [90, 91] gave a significant increase in the equilibrium volume

in good agreement with experiment, but preserved the strong spin-orbit polariza-

tion with large values of magnetic moments. Recently, it was found that LDA+U

equations can give a non-magnetic solutions [92, 93] for Pu with 5f -shell in ground

state with S = L = J = 0 and calculated equilibrium volume is in good agreement

with the experimental value. Analogical calculations for Am were carried out in

[94]. While LDA+U method was able to solve the problem of 5f -localization

without developing magnetism it fails to predict experimentally observed photoe-

mission spectra missing the quasi–particle peak near the Fermi energy.

Most earlier implementations of the LDA+DMFT approach for plutonium

were done by S. Savrasov et. al. in [74]. To solve the impurity problem

authors used an interpolative approach with a simple analytical form for self-

energy. Another attempt was done in [95, 96] where the authors had started from

non-magnetic LDA+U solution and included fluctuation via “spin-orbit T-matrix

FLEX approach” based on the perturbation theory in Coulomb interaction pa-

rameter U . Recently, both QMC and Hubbard I approaches were used in [97]

to solve the impurity problem. All listed calculations provide qualitatively closer

description of experimental photoemission spectrum than LDA+U. The recent

LDA+DMFT study of Curium has been done in Ref. [98].

4.1.3 Actinide Hamiltonian

We consider the following model Hamiltonian for the actinides:

H =
∑

ijaβ

Vijaβ(c†aifβj + c.c.) +
∑

ijαβ

tfijαβf
†
αifβj (4.1.1)

+
∑

kab

tspd
ab (k)c†kackb +

∑

iαβγδ

Uαβγδf
†
αif

†
βifγifδi

where fαi is the annihilation operator for 5f -electron in state α = |j, jz〉 at site i,

and cai is annihilation operator for conduction electrons in the state a = |n, j′, j′s〉.
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This model can be understood as a periodic Anderson model in which additional

direct hopping is allowed between the correlated states. Equivalently, this model

can be thought of as a Hubbard model with additional uncorrelated states that

hybridize with the correlated states. Therefore, the model for the actinides con-

tains the physics of both the periodic Anderson model and the Hubbard model (if

the hybridization is set to zero). In the Hubbard model tf competes with U to de-

termine the degree of localization of the electrons, while in the periodic Anderson

model V competes with U . In the model of the actinides tf and V cooperatively

compete with U , and the relative magnitudes of tf and V will determine the

degree of Hubbard-like and Anderson-like contributions to the itineracy of the

f -electrons. The main focus of this study is to determine the relative importance

of tf and V across the actinide series. This is the first step towards understanding

wether the localization of the f electrons which occurs as one traverses the ac-

tinides is an Anderson transition, a Mott transition, or some combination thereof.

The spd hopping term tspd may be pertinent to the low energy physics of the ac-

tinides given that the spd electrons may be present at the Fermi energy even if

the f electrons are completely localized.

In general, the parameters V and tf depend on the choice of basis set and

therefore are not unique. The secondary objective of this study is to determine

the best basis for parameterizing the actinide model. The earlier attempts to

construct tight-binding parametrization for actinides resulted in two limited mod-

els. The first provided parametrization of f -bands only with spin-orbit coupling

incorporated trough intra-atomic matrix elements [99]. The other considered hy-

bridization of f -orbitals with spd-orbitals but ignored spin-orbit coupling [100].

We provide details on tight-binding parametrization and comparison to earlier

work reported in literature in the next chapter.
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4.1.4 Further Motivation

The idea of a Mott transition in the actinides was brought forward by Johans-

son [101] based on empirical comparison of canonical 5f -bandwidth with the esti-

mates of the Coulomb interaction in the form of a Hubbard U . Later elaboration

of these ideas in the context of the α-δ transition in Pu took place in [102, 103].

The important role of d − f hybridization in actinide metals and alloys was

stressed in the early work of R. Jullien et al. [104, 105] who considered a model

similar to 4.1.1, including f−f hopping and Coulomb repulsion U . The magnetic

solutions of the model were investigated as function of the position of 5f -band

and using reasonable estimates for the rest of the parameters.

In this study, we reconsider the issue of the description of the Mott transition

in the actinide series, from a perspective which is motivated by recent DMFT and

LDA+DMFT works [98, 96]. These works, have provided further demonstration

of the hypothesis that a localization-delocalization transition takes place across

the actinide series. However, within the DMFT framework, there are two different

roads to localization in a multiorbital model. One possibility is to argue that the

bands near the Fermi level have large f character, and form a Hubbard model

out of them. This leads to a multiorbital Hubbard model where the Hubbard U

is applied to the f bands near the Fermi level. This approach is very successful

in the description of transition metals, for which the multiorbital Hubbard model

successfully describes the photoemission and the magnetic properties, and the

Friedel model describes the bonding properties.

An alternative approach is to retain both f and spd bands, and their hy-

bridization term. While the U is still applied to the f states, the localization-

delocalization transition which takes place in the f states are driven by the

changes in the hybridization. Since the spd bands are very broad and always

remain metallic, the Mott transition takes place in the f band only, namely this

is a realization of the orbitally selective Mott transition, where only a subset of
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orbitals go from itinerant to localized. The “metallic” side of the transition is

characterized by a Fermi surface containing both f and spd electrons, while in

the “insulating” or localized side of the transition, the Fermi surface contains only

spd electrons. In this picture the transition can be driven by either changes in

the hybridization or the direct f − f hopping.

While some aspects of localization-delocalization in the Anderson model and

the Hubbard model treated by DMFT are very similar at intermediate tempera-

tures [106] (for example they both exhibit a line of first order phase transitions

ending at a second order point), there are significant differences at very low tem-

peratures when hybridization becomes a relevant perturbation suppressing Mott

transition [28]. Furthermore, the behavior at large U and high temperatures

should be quite different in the two models, due to the presence of the broad

metallic band in the Anderson model.

To address these issues we study whether the delocalization is driven mainly

by changes in the hybridization term, or by changes in the hopping among the f

orbitals. This question of course, depends on the definition of what one means

by “f electron orbital”. In the context of the Hamiltonian (4.1.1) viewed as a

truncation of the full many body problem, the f electron orbital is defined by the

fact that only the Coulomb interaction on that orbital is retain. More generally,

the LDA+U method, and the LDA+DMFT method, require the definition of a

set of correlated orbitals.

4.2 Orbitals and basis

4.2.1 Basis set dependence issue

While the issue of representing the Kohn-Sham Hamiltonian in different basis

sets has been a subject of numerous studies, the dependence of the results of

correlated electronic structure methods such as LDA+DMFT on the choice of
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Table 4.3: Choice of basis.

Bare LMTO Screened LMTO

Löwdin transform Löwdin transform
Bare LMTO Screened LMTO

projective basis projective basis

correlated orbitals is only beginning to be explored [107].

In this study, we investigate the role of the choice of the correlated f or-

bital. We first take the f electron orbital as the f element of the LMTO basis,

both in the bare and screened representations [108, 109]. The LMTO basis is

non-orthogonal and therefore must be orthogonalized in order to avoid the com-

plications of solving the many-body problem in a non-orthogonal basis. As we

will show in this study, the method of orthogonalization has a large influence

on the results. We utilize both the Löwdin orthogonalization [110] and the pro-

jective orthogonalization [111, 98] that was used in earlier implementations of

LDA+DMFT. This effectively results in four different constructions of f orbitals,

listed in Table 4.3.

4.2.2 Bare and Screened LMTO within ASA scheme

The basis set of linear muffin-tin orbitals (LMTOs) has been extensively used in

electronic structure calculations [108, 112]. Within the atomic sphere approxima-

tion (ASA), LMTO is a minimal and efficient basis set with one basis function per

site I and quantum pair L = (l,m). Although, the LMTO method is physically

transparent the constructed basis is non-orthogonal.

Below we sketch the derivation of the bare and screened LMTO basis set

within the ASA. The construction of the bare LMTOs χIL(r) starts with so called

envelope function [112], which is a decaying solution of the Laplace equation

centered at the site I:

KL(rI) = Kl(rI)YL(r̂I) =

(

w

rI

)l+1

YL(r̂I), (4.2.2)
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here rI = r−RI , unit vector r̂I indicates the direction of rI , YL(r̂I) is a spherical

function, and w is scaling parameter associated with the linear size of unit cell.

In any atomic sphere other than I, KL(rI) can be represented as:

KL(rI) = −
∑

L′

SIL,I′L′JL′(rI′). (4.2.3)

The function JL(rI) = (rI/w)lYL(r̂I) stands for the regular solutions of Laplace

equation, and SIL,I′L′ are structure constants.

Inside each atomic sphere we construct a linear combination of the solution

φIL(rI) of Schrödinger equation and its first derivative with respect to energy

φ̇IL(rI) at some fixed energy Eν .

The final step is to smoothly match the boundary conditions at the surface of

sphere I:

ΦH
L (rI) ≡ AK

ILφIL(rI) +BK
ILφ̇IL(rI) → KL(rI) (4.2.4)

and at the surface of sphere I ′ for all I ′ 6= I:

ΦJ
L′(rI′) ≡ AJ

I′L′φI′L′(rI′) +BJ
I′L′ φ̇I′L′(rI′) → JL′(rI′). (4.2.5)

With the array of constants A and B determined from 4.2.4 - 4.2.5 we conclude

the construction of bare LMTO basis function:

χIL(rI) =



















ΦH
L (rI), rI ∈ SI ,

−
∑

L′ SIL,I′L′ΦJ
L′(rI′), rI′ ∈ SI′(I 6= I ′),

KL(rI), r ∈ Interstitial.

(4.2.6)

The Fourier transform of the LMTOs with respect to RI − RI′ gives:

χkL(r) =







ΦH
L (r) −

∑

L′ ΦJ
L′(r)SkLL′, |r| < RMT ,

∑

k e
ikRKL(r −R), |r| > RMT .

(4.2.7)

The standard LMTO method outlined above yields long-range orbitals. The

concept of a screened LMTO was created to overcome the non-locality of the
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bare LMTO basis set [109]. The method is based upon the idea of localizing the

LMTOs by screening with multipoles added on the neighboring spheres. Namely,

to each regular solution of Laplace equation we add −αIL of the irregular solution:

Jα
L(rI) = JL(rI) − αILKL(rI). (4.2.8)

The condition that the on-site Laplace solution should not change leads to

the Dyson-like equation for the screened structure constants:

Sα
a,a′ = Sa,a′′ [δa′′a′ + αa′′Sα

a′′,a′] = Sa,a′′Ua′′,a′ , (4.2.9)

where matrix index a refers to the pair (I, L) and implies summation over repeated

indices. The matrices αa ≡ αl are diagonal for each l. In our calculations the

choice of α’s was as follows: αs = 5.5166, αp = 0.5242, αd = 0.1382 and αf =

0.0355.

The screened and bare envelope functions are related by the transformation

Ua′,a introduced in 4.2.9:

Kα
L(rI) =

∑

I′L′

KL′(rI′)[δI′L′,IL + αI′L′Sα
I′L′IL], (4.2.10)

Or in matrix notations:

Kα
a = Ka′Ua′,a,

where Ka ≡ KL(rI) and Kα
a ≡ Kα

L(rI).

With the definitions 4.2.8, 4.2.9 and 4.2.10 the construction of screened LM-

TOs proceeds exactly in the same way as in the case of the bare LMTOs. Namely,

we construct new linear combinations

ΦHα
L (rI) ≡ AKα

IL φIL(rI) +BKα
IL φ̇IL(rI)

inside the sphere I by matching smoothly Kα
L(rI) on its surface. Also, we con-

struct new linear combination

ΦJα
L′ (rI′) ≡ AJα

I′L′φI′L′(rI′) +BJα
I′L′ φ̇I′L′(rI′)



79

inside sphere I ′ by matching smoothly Jα
L′(rI′) on its surface for each I ′ 6= I.

Thus, we arrive to the definition of screened LMTO:

χα
IL(rI) =



















ΦHα
L (rI), rI ∈ SI ,

−
∑

L′ Sα
IL,I′L′ΦJα

L′ (rI′), rI′ ∈ SI′(I 6= I ′),

Kα
L(rI), r ∈ Interstitial.

(4.2.11)

The Fourier transform of screened LMTOs with respect to RI − RI′ gives:

χα
kL(r) =







ΦHα
L (r) −

∑

L′ ΦJα
L′ (r)Sα

kLL′ , |r| < RMT ,
∑

k e
ikRKα

L(r −R), |r| > RMT .
(4.2.12)

The Hamiltonian and overlap matrices in screened and bare LMTO represen-

tations (O , H , and Oα, Hα respectively) are related through the transformation

U introduced in 4.2.9:

Hα = U †HU (4.2.13)

Oα = U †OU. (4.2.14)

Have constructed the basis, one has to solve the generalized eigenvalue prob-

lem:

(H(k) − ǫi(k)O(k))ψi(k) = 0. (4.2.15)

As described above, it is necessary to transform to an orthogonal basis when per-

forming many-body calculations, such as DMFT, in order to avoid the difficulties

associated with a non-orthogonal basis.

4.2.3 Löwdin orthogonalization

Löwdin orthogonalization [110] is a straightforward orthogonalization of the Hamil-

tonian which uses no information from the basis set:

H̃(k) =
1

√

O†(k)
H(k)

1
√

O(k)
. (4.2.16)
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As will be shown below, this orthogonalization procedure may lead to a further

mixing of L characters among the LMTOs and hence unphysical results.

4.2.4 Projective orthogonalization

A physically guided, orthogonalization procedure is to find a basis where each

function contains the maximum amount of a particular L character. This ap-

proach proposed by K. Haule was used in earlier LDA+DMFT studies of cerium

and plutonium [111]. This basis has an important advantage. The “f electron”

in this basis has mostly f character. Mathematically, the non-interacting spec-

tral function of f electron Green’s function in this basis agrees with the LDA f

density of states. This allowed us to identify the f occupation in this basis set

with the occupation numbers inferred from EELS and X-Ray absorption which

are sensitive to angular momentum selection rules [113, 114, 115].

Here we follow [111]. It is straightforward using 4.2.7 and 4.2.14 to show that

overlapping matrix within MT-sphere can be represented as [116]:

OkL1L2
= δL1L2

o
(HH)
l1

− S†
kL1L2

o
(JH)
l2

− o
(HJ)
l1

SkL1L2
(4.2.17)

+S†
kL1L′o

(JJ)
l′ SkL′L2

.

The quantities oHH
l , oJH

l , oHJ
l and oJJ

l are numbers in each l-subspace. For A

and B representing H or J :

oAB
l1 = 〈ΦA

L1
|ΦB

L2
〉δL1L2

, (4.2.18)

In each L-subspace the overlapping matrix is:

Ok = o(HH) − S†
ko

(JH) − o(HJ)Sk + S†
ko

(JJ)Sk. (4.2.19)

In order to find the transform to the orthonormal base we must represent O(k)

as the square of a matrix. As we show below, the most intelligent choice would

be:

O(k) ≈ (H− JSk)†(H− J Sk) (4.2.20)
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for each L-subspace. Here H and J are diagonal matrixes proportional to unity

in each subspace of definite L just like the overlaps o(HH) defined above.

The above equation cannot be made exact, because overlap numbers are ob-

tained by integration over the radial part of wave functions. However, in most

cases the overlap numbers can become very close to their approximations:

o
(HH)
l ≈ H∗

l Hl,

o
(JH)
l ≈ J ∗

l Hl,

o
(HJ)
l ≈ H∗

l Jl,

o
(JJ)
l ≈ J ∗

l Jl.

(4.2.21)

For each L we have three independent equations for two unknowns. An ap-

proximate solution can be found by minimizing the following function:

|o(HH)
l −H∗

l Hl|2 + |o(JH)
l −J ∗

l Hl|2 (4.2.22)

+|o(HJ)
l −H∗

l Jl|2 + |o(JJ)
l − J ∗

l Jl|2 = min.

The desired transformation to the new base is:

Tk = (H− J Sk)
−1. (4.2.23)

Finally:

Onew
k = T †

kOkTk ≈ 1,

Hnew
k = T †

kHkTk.
(4.2.24)

4.2.5 Slicing

In order to determine the optimum basis, we need to define a criteria to judge

the different bases. When performing DMFT calculations, one accounts only for

a subset of local electronic correlations (those on the f orbital). Therefore, from

the perspective of DMFT it is best to have f orbitals with the largest on-site

Coulomb repulsion U [117, 118]. A simpler criteria, in the same spirit, is to
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search for the smallest value of tf . The different terms in Hamiltonian 4.1.1 can

be easily identified at each k-point of the Brillouin zone:

H(k) =





Hspd(k) Vk

V †
k Hf(k)



 (4.2.25)

The hybridization V in the Hamiltonian (4.1.1) may be set to zero. What

remains are the two blocks Hf and Hspd of (4.2.25) which are now completely

decoupled. The Hamiltonian may now be diagonalized resulting in distinct spd

and f bands, and any dispersion of the f bands is due to tf .

4.2.6 Technical note

The procedure of extraction of Hamiltonian in the representation of four basis

sets listed in Table 4.3 is schematically shown in Figure 4.2. The starting point of

the analysis, namely Hamiltonian and overlap matrix in either bare or screened

LMTO basis are printed to files ham.dat and olp.dat by the exporting version of

LMTART code. The detailed description of LMTART code’s input, output files

and run modes can be found in [37] and as online material of review [20]. The

switch “Bare/Screened” LMTO is set in <CNTRLS> section of INI-file.

The Löwdin orthogonalization was implemented through python script which

takes as input files with Hamiltonian, overlap matrix and list of k-points of Bril-

louin zone.

The projective orthogonalization is implemented by K. Haule in KSUM code.

The detailed description of input files and run modes can be found in online

material for [20]. To perform only projective transformation zero self-energy

stored in file sig.inp has been used. Also all orbitals in cix.dat file must be

identified as correlated in order to have transformation to be applied to all orbitals.

After orthogonalization of the Hamiltonian we proceed with slicing procedure

described in previous subsection and comparison of band structure of Hf and
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Figure 4.2: Procedure.

Hspd with original spd bands.

4.3 Results

4.3.1 Starting point: self-consistent LDA calculations.

We performed relativistic, spin-restricted LDA calculations within the ASA scheme.

7s, 6p, 6d and 5f -orbitals were chosen to represent valent states, and 103 k-points

were used for the integration over first Brillouin zone. The same type of cal-

culations were carried out for 4 different materials, picked to evenly represent

actinide series: U, α-Pu, δ-Pu and Cm II (fcc phase of curium). For simplic-

ity, we used the fcc crystal structure for each element. The lattice parameters

listed in Table 4.4 were chosen to match the experimentally measured volumes
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for corresponding phases in case of Pu and Cm II. For U we use the equilibrium

volume predicted within GGA calculations. The Brillouin zone of fcc structure

with major high symmetry directions is shown in Figure 4.3.

Table 4.4: Lattice parameters (in angstroms).

α-U 4.3378
α-Pu 4.3074
δ-Pu 4.6400
Cm II 4.9726

.x

.z
.y

G X

L

K W

Figure 4.3: Brillouin zone of fcc structure with indicated high symmetry direc-
tions.

In Figure 4.4 we present LDA band structure of Cm II with indicated contri-

butions of 5f - and 6d- characters. The overwhelming domination of f characters

within 1eV window around Fermi level forces the conclusion that the low-energy

physics of actinides is completely controlled by f −f bonding. As we show below

this intuitive interpretation turns out to be mistaken and Hubbard model alone

can not be considered as ground state Hamiltonian for actinides. One has to ac-

count for presence of spd-characters at the Fermi level trough the hybridization.

Moreover, the hybridization energy scale in actinides turns out to be larger than

the average f − f hopping.
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Figure 4.4: Band structure of Cm with indicated contribution of 5f (red) and
6d (green) characters. The layout is chosen to show d-contributions over f -
contribution.

4.3.2 Determining a robust basis for the actinides

We begin by analyzing the bare LMTOs orthogonalized with the Löwdin proce-

dure (see top left panel Figure 4.5 ). Some f bands have a dispersion greater

than 1.5 eV which is unfavorable. Using the bare LMTOs orthogonalized with

the projective procedure, the f bands are far more narrow with a width of less

than 0.4 eV (see left bottom panel of Figure 4.5). In this case the two sets of

bands can be identified as S = 7
2

and S = 5
2
. The Löwdin orthogonalization mixes

the spd states into the f states which causes a larger dispersion and a mixing of f

bands between the S = 7
2

and S = 5
2

states. Alternatively, the projective orthog-

onalization minimizes the amount of spd character in the f states which results

in weakly dispersing f states.

The same exercise can be performed using the screened LMTOs (see right

top and bottom panels of Figure 4.5). In this case, both the Löwdin and the

projective orthogonalization produce nearly identical results to the projective

orthogonalization of the bare LMTOs. The screened LMTOs are insensitive to

the method of orthogonalization due to the fact that orbitals are already well

localized with a well-defined character. In conclusion, one may use bare LMTOs
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Figure 4.5: Basis difference for fcc Curium. In all panels dashed grey line rep-
resent band structure produced by whole hamiltonian, solid green line - by spd
block, and solid red line - by f block. Both Löwdin and projective orthogonaliza-
tion result in the same band structure while applied to Hamiltonian in screened
LMTO representation. In the case of bare LMTOs the major difference between
Löwdin and projective orthogonalization occurs within f bands (solid red lines).
Finally, it should be noticed that projective orthogonalization is basis indepen-
dent and provides the same band structure for Hamiltonian in both bare and
screened LMTO representations.

orthogonalized with the projective procedure or screened LMTOs orthogonalized

in an arbitrary manner as a robust basis for the actinides.

The major contribution among spd-orbital to mixing with and expanding f

bands comes from s-characters. Indeed, Löwdin and projective orthogonalization

differ by terms containing containing structure constants, which are in turn pro-

portional to oJJ , oJH and oHJ . In case of Cm the overlap numbers are shown in

Table 4.5.

In case of bare LMTO, s-orbitals are very long-range and have oJJ ≈ 115.
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Table 4.5: Overlap numbers for Cm II.

s p d f

Bare LMTO

oHH (2.27124,0.000) (9.16427,0.000) (35.40434,0.000) (907.78568,0.000)

oHJ (15.85822,0.000) (7.91339,0.000) (6.97400,0.000) (-41.06287,0.000)

oJH (15.85822,0.000) (7.91339,0.000) (6.97400,0.000) (-41.06287,0.000)

oJJ (115.09151,0.000) (7.64477,0.000) (2.18279,0.000) (3.04675,0.000)

Screened LMTO

oHH (2.26435,0.000) (171.31688,0.000) (34.70583,0.000) (836.94498,0.000)

oHJ (3.31761,0.000) (-4.83644,0.000) (2.15627,0.000) (-70.61786,0.000)

oJH (3.31761,0.000) (-4.83644,0.000) (2.15627,0.000) (-70.61786,0.000)

oJJ (9.23412,0.000) (2.36841,0.000) (0.92777,0.000) (7.17800,0.000)

While in the projective orthogonalization these fat tails of s-orbitals are accu-

rately subtracted in Löwdin transformation they are mix in f -characters. To

justify this point we performed projective orthogonalization with oJJ , oJH and

oHJ forced to be zeros. This condition makes transformation 4.2.23 to be T = H

and formally concise with Löwdin transformation. The band structure resulted

from this calculation is compared to band structure resulted from Löwdin trans-

formation in Figure 4.6. The shape of 5f -bands are almost identical confirming

that without subtraction of tails of s-orbital wave function these characters mix

into 5f orbitals resulting in artificial broadening of later.

4.3.3 Decomposition of the actinide band structures

Having established a sensible basis for the actinides we choose to proceed with

projective orthogonalization of bare LMTOs. It is instructive to zero the hy-

bridization V of the Hamiltonian for U, α-Pu, δ-Pu, and Cm, and to compare the

full band structure with the spd and f bands (see Figures 4.7 and 4.8). The same

generic behavior can be seen in all four systems. The spd bands have a strong

dispersion and cross the Fermi energy in all cases, and the f bands are relatively
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Figure 4.6: Sliced band structures obtained trough Löwdin transformation is
compared to band structures obtained through projective orthogonalization when
in later all terms proportional to structure constants are forced to be zeros.

narrow. The fact that the spd bands cross the Fermi energy in all cases is a criti-

cal point which indicates that there will be spd states at the Fermi energy even if

the f states become completely localized. When the hybridization V is switched

on, the f and spd bands interact via V and mix. Therefore the strength of V can

qualitatively be seen as the difference between the full DFT bands and the f+spd

bands. The spd bands change relatively little across the actinides, with the values

at the Γ point being nearly independent of atomic number. Alternatively, the f

bands are relatively wide for uranium and become increasingly narrow as curium

is approached. The relative values of V and tf will be quantified below.
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Figure 4.7: Band structure of α-U (top) and Cm II (bottom). Grey dashed lines
represent LDA bands, green lines represent bands of Hspd, and red lines represent
bands of Hf

4.3.4 Quantitative analysis of V and tf .

In order to quantify V and tf for the different actinides, we introduce an average

V and tf so each actinide may be characterized by two numbers.

First, we remind that the Hamiltonian 4.1.1 is consist of four blocks:

H(k) =





Hspd(k) Vk

V †
k Hf(k)



 (4.3.26)

Then the average strength of hybridization per band is defined as follows:

V =
1

Nf
[
1

2
Tr〈H̃(k)H̃(k)〉]1/2, (4.3.27)
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Figure 4.8: Band structure of α-Pu (top) and δ-Pu(bottom). Grey dashed lines
represent LDA bands, green lines represent bands of Hspd, and red lines represent
bands of Hf

where H̃(k) stands for hamiltonian 4.3.26 with Hspd(k) = Hf(k) = 0 and Nf =

14 stands for number of f -bands. The definition 4.3.27 was chosen to match

hybridization V of standard Anderson model in two-band limit.

The average value of tf is defined as follows:

tf =
1

Nf
[Tr(〈Hf(k)2〉 − 〈Hf(k)〉2)]1/2, (4.3.28)

and matches tf of canonical Hubbard model in the limit of one-band model. In

the above expressions 4.3.27 and 4.3.28 the brackets mean the following: 〈. . .〉 =

1
Nk

∑

k . . ..
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Table 4.6: Quantitative characteristics for actinide series (in eV).

V tf V /tf ǫ5/2 − µ ǫ7/2 − µ

Bare LMTO

α-U 0.483 0.188 2.569 0.442 1.353

α-Pu 0.423 0.146 2.897 -0.180 0.971

δ-Pu 0.305 0.099 3.081 -0.129 1.008

Cm II 0.189 0.050 3.780 -1.152 0.238

Screened LMTO

α-U 0.490 0.188 2.606 0.444 1.355

α-Pu 0.429 0.146 2.938 -0.178 0.973

δ-Pu 0.309 0.098 3.153 -0.128 1.009

Cm II 0.192 0.050 3.840 -1.151 0.238

Table 4.6 lists calculated values of the average hybridization V and tf and the

average energy level for j = 5/2 and j = 7/2 of f manifold relative to the Fermi

energy. The tf are generally the same for bare and screened LMTOs, with the

exception of the average hybridization being slightly larger in the case of screened

LMTOs.

These results are displayed graphically in Figure 5.7. The blue bars represent

average hybridization, while red bars represent average strength of f−f hoppings.

In all cases, V is significantly greater than tf . As one moves along actinides

series from U to Cm tf decreases as much as four times. The average value of

hybridization V also decreases but at a slower rate, as indicated by the inset plot

of the ratio of V and tf . The strong decrease in V and tf will both contribute to

the localization of the f states. In order to determine if the localization could be

predominantly assigned to either Mott or Anderson character, explicit many-body

calculations such as DMFT would need to be performed.
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Figure 4.9: Histogram represents average hybridization (blue bars) and average
f − f hopping (red bars) as functions of atomic number along actinide series. In
inset: the ratio V /tf (squares) as function of atomic number.

4.4 Conclusion

In summary, a one-electron analysis of band structure of the actinides was pre-

sented. We demonstrated that bare LMTOs orthogonalized with the projective

method and screened LMTOs are robust bases, in the sense that they give rise

to f orbitals with minimal hopping. Analysis of the Hamiltonian in these bases

yielded a number of interesting results. When switching off the hybridization V ,

it was shown that the spd states cross the Fermi energy and hence will be present

at the Fermi energy even if the f electrons become localized.

Evaluation of the average hybridization V and average f − f hopping tf as

a function of the actinides showed that both quantities decrease strongly. The

quantity tf decreased faster than V and V was larger in all actinides. Hence,

the Anderson model of the localization-delocalization transition, rather than a
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multiorbital Hubbard model is needed to describe the physics of the actinides

once explicit many-body calculations are added. This is the point of view taken

in recent DMFT work [98], and no further reduction to a model containing only

f bands seems possible.
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Chapter 5

Real space analysis for actinides

In this chapter we report a detailed real space analysis for actinides. After an

introduction and motivation in Section 5.1, we develop and describe tools to probe

the locality of 5f -orbitals in these materials in Section 5.2. Then in Section 5.3

the results of real space analysis are reported. We demonstrate that 5f orbitals

are very local and only first nearest neighbors are required to reproduce band

structure within f -block. Also, we provide a tight-binding (TB) parametrization

of the low-energy Hamiltonian, and finally compare parametrization to the earlier

reported in literature in Section 5.4.

5.1 Introduction and motivations

The tight-binding (TB) formulation plays an important role in electronic struc-

ture. Of all methods, perhaps tight-binding provides the simplest understanding

of the fundamental features of electronic bands. Particularly, an empirical tight-

binding parametrization can provide accurate, useful descriptions of electronic

bands and total energies. In this approach, given few tight-binding parameters

one assumes a form for the Hamiltonian and overlap matrix elements without

actually specifying anything about the orbitals except their symmetry [16]. The

values of the matrix elements may be derived approximately or maybe fitted

to the experiment or other theory. Here we derive tight-binding parameters for

actinides from LSDA-calculations given in the previous chapter.

The earlier attempts to construct tight-binding parametrization for actinides
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Figure 5.1: Diagram shows the sequence of steps completed in tight-binding anal-
ysis.

resulted in two limited models. The first provided parametrization of f -bands only

with spin-orbit coupling incorporated trough intra-atomic matrix elements [99].

The other considered hybridization of f -orbitals with spd-orbitals but ignored

spin-orbit coupling [100].

5.2 The tools of analysis

The idea of reported analysis is to probe the locality of 5f orbitals observing how

well bands constructed with specified number of nearest neighbors fit the original

LSDA bands.

In the Figure 5.1 we show sequence of steps that were performed. The main
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two steps are:

HLSDA(k) −→ H(〈Ri〉) −→ H̃(k). (5.2.1)

Here 〈Ri〉 indicate nearest neighbors. First, we Fourier transform HLSDA(k) to

real space using a given number of nearest neighbors, and then transform back

to k-space and observe changes in the band structure. If one would use all atoms

of the sample for the discrete Fourier transform then LSDA band structure must

be reproduced perfectly. On the other side if we include a list of first nearest

neighbors the obtained band structure might differ significantly from the original

LSDA bands if 5f -orbitals are not localized enough.

The starting point of the performed tight-binding analysis as shown in Fig-

ure 5.2 is the output of LMTART code in the basis of screened LMTO. Namely,

files with the Hamiltonian, overlapping matrix and information about Brillouin

zone are required (the details were given in the previous chapter). Files ham.dat

and olp.dat contain the Hamiltonian and overlapping matrix only at irreducible

points of Brillouin zone.

In order to print out orthogonalized Hamiltonian at all k-points in jj-representation

we run KSUM code in the mode:

./ksum -mod wan+j -sig sig.inp -pn Cm -mu 6.9

where one has to use correct value for chemical potential. In the input file cix.dat

all orbitals must be indicated as correlated, then all of them will be transformed

into the jj-base. The sig.inp file contains zero self-energy.

Once the orthogonalized Hamiltonian is available we proceed by forming a list

of given order N of nearest neighbors and their coordinates. Thus list of order

N = 0 will consist of site itself only. The list of order N = 1 will consist of site

itself and 12 first nearest neighbors in fcc structure. In Figure 5.2 up to fourth

nearest neighbors are indicated in different colors.

To construct a tight-binding Hamiltonian we perform a Fourier transform to

the real space and back. Since we know that spd-orbitals are itinerant we use
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Figure 5.2: The nearest neighbors in fcc structure. The center atom (grey) is
located in the origin. First nearest neighbors are filled with red, second – with
green, third – with yellow, and fourth – with blue.

spd-block of HLSDA instead of spd-block of H(k). The final step is to compare

the band structure of new constructed Hamiltonian to the original LDA bands.

5.3 Results

The result of real space analysis procedure described in Section 5.2 for Cm is

shown in Figure 5.3. Here we compare three cases: on-site for 5f -electrons band

structure (N = 0), when only nearest neighbors are included (N = 1), and

four nearest neighbors are included(N = 4). The red solid lines represent bands

of Fourier transformed Hamiltonian, while dashed grey lines are original LSDA

bands. When one accounts only for on-site 5f -orbitals, the band structure consist

of flat lines representing on-site energies of 5f -electrons and bands of spd-block.

Strictly speaking, since the projective orthogonalization is only approximate there

are non-zero off-diagonal elements in the Hamiltonian’s hybridization block, but

we checked that they are irrelevant and do not change band structure in any

noticeable way. The LDA band structure is already reproduced almost perfectly
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Figure 5.3: Band structure of Curium when N nearest neighbors are taken into
account for f -orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for Γ-X direction.

when one takes into consideration the nearest neighbors. This confirms that 5f -

orbitals are very local and extended barely enough to form the bands. Bands of

transformed Hamiltonian match LDA band structure exactly when four nearest

neighbors are included. The only noticeable discrepancy is located approximately

1.0 eV below the Fermi energy. This long-range feature exists due to the long

broad tails of the s-orbitals.

The corresponding tight-binding parametrization including only first nearest

neighbors for Cm in jj-representation is given in Tables 5.1 and 5.2 in meV.

This parametrization is obtained for the central atom to be at the origin and

the nearest neighbor to be at position (1/2,0,1/2) in Cartesian coordinates. The
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Figure 5.4: Band structure of δ-Pu when N nearest neighbors are taken into
account for f -orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for Γ-X direction.

parametrization for the other nearest neighbors can be obtained by transformation

OTHO, where H is given in Tables 5.1 and 5.2 matrix, and O is matrix describing

transformation of 5f orbitals under given spatial rotation. The energy scale of ∼1

eV of spin-orbit coupling in actinides means the jj-base is the only one acceptable

for work. Unfortunately, in this representation there are no obvious way to reduce

the number of matrix elements to few significant ones. One can see that all

hoppings, i.e. f − f , f − s, f − p, and f − d, have the same order of magnitude

and none of them can be ignored.
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Table 5.1: Tight-binding Parametrization for Cm II(in meV). 5f shell with j =
5/2

5f :: |5
2
,−5

2
〉 |5

2
,−3

2
〉 |5

2
,−1

2
〉 |5

2
, 1

2
〉 |5

2
, 3

2
〉 |5

2
, 5

2
〉

7s :: |1
2
,−1

2
〉 -0.000 39.518 0.000 56.250 -0.000 -44.203

7s :: |1
2
, 1

2
〉 44.203 0.000 -56.250 -0.000 -39.518 0.000

6p :: |1
2
,−1

2
〉 -3.191 -0.035 -2.018 -0.045 -1.427 -0.086

6p :: |1
2
, 1

2
〉 0.086 -1.427 0.045 -2.018 0.035 -3.191

6p :: |3
2
,−3

2
〉 0.047 -17.637 -0.068 34.668 0.150 16.319

6p :: |3
2
,−1

2
〉 -15.552 0.082 32.334 -0.162 -50.143 -0.301

6p :: |3
2
, 1

2
〉 -0.301 50.143 -0.162 -32.334 0.082 15.552

6p :: |3
2
, 3

2
〉 -16.319 0.150 -34.668 -0.068 17.637 0.047

6d :: |3
2
,−3

2
〉 10.666 0.000 12.990 -0.000 -8.107 0.000

6d :: |3
2
,−1

2
〉 -0.000 -3.092 0.000 3.915 0.000 3.197

6d :: |3
2
, 1

2
〉 3.197 0.000 3.915 0.000 -3.092 -0.000

6d :: |3
2
, 3

2
〉 0.000 -8.107 -0.000 12.990 0.000 10.666

6d :: |5
2
,−5

2
〉 0.000 18.338 -0.000 56.954 0.000 -29.337

6d :: |5
2
,−3

2
〉 -17.279 0.000 -30.519 0.000 -107.268 0.000

6d :: |5
2
,−1

2
〉 0.000 32.228 -0.000 38.520 0.000 74.782

6d :: |5
2
, 1

2
〉 -74.782 -0.000 -38.520 0.000 -32.228 -0.000

6d :: |5
2
, 3

2
〉 -0.000 107.268 -0.000 30.519 -0.000 17.279

6d :: |5
2
, 5

2
〉 29.337 -0.000 -56.954 0.000 -18.338 -0.000

5f :: |5
2
,−5

2
〉 -4.491 -0.061 3.559 0.040 1.522 0.000

5f :: |5
2
,−3

2
〉 -0.061 -2.711 -0.015 -1.592 0.000 1.522

5f :: |5
2
,−1

2
〉 3.559 -0.015 -6.060 0.000 -1.592 -0.040

5f :: |5
2
, 1

2
〉 0.040 -1.592 0.000 -6.060 0.015 3.559

5f :: |5
2
, 3

2
〉 1.522 0.000 -1.592 0.015 -2.711 0.061

5f :: |5
2
, 5

2
〉 0.000 1.522 -0.040 3.559 0.061 -4.491

5f :: |7
2
,−7

2
〉 -0.021 2.815 -0.020 -17.130 -0.086 -7.192

5f :: |7
2
,−5

2
〉 -0.332 -0.031 -0.332 0.163 36.628 0.098

5f :: |7
2
,−3

2
〉 -0.002 4.375 0.113 -5.483 -0.218 -25.923

5f :: |7
2
,−1

2
〉 -2.531 0.109 -12.234 -0.133 3.966 0.075

5f :: |7
2
, 1

2
〉 0.075 -3.966 -0.133 12.234 0.109 2.531

5f :: |7
2
, 3

2
〉 25.923 -0.218 5.483 0.113 -4.375 -0.002

5f :: |7
2
, 5

2
〉 0.098 -36.628 0.163 0.332 -0.031 0.332

5f :: |7
2
, 7

2
〉 7.192 -0.086 17.130 -0.020 -2.815 -0.021
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Table 5.2: Tight-binding Parametrization for Cm II(in meV). 5f shell with j =
7/2

5f :: |7
2
,−7

2
〉 |7

2
,−5

2
〉 |7

2
,−3

2
〉 |7

2
,−1

2
〉 5|7

2
, 1

2
〉 |7

2
, 3

2
〉 |7

2
, 5

2
〉 |7

2
, 7

2
〉

7s :: |1
2
,−1

2
〉 -53.977 0.000 70.717 -0.000 54.438 -0.000 -19.822 -0.000

7s :: |1
2
, 1

2
〉 -0.000 -19.822 -0.000 54.438 -0.000 70.717 0.000 -53.977

6p :: |1
2
,−1

2
〉 0.087 -8.278 0.085 7.728 -0.030 -14.338 -0.014 -5.984

6p :: |1
2
, 1

2
〉 5.984 -0.014 14.338 -0.030 -7.728 0.085 8.278 0.087

6p :: |3
2
,−3

2
〉 -0.674 0.135 -30.176 -0.091 32.368 0.108 7.124 0.006

6p :: |3
2
,−1

2
〉 0.313 -42.590 0.288 9.322 -0.246 -0.131 -0.010 10.693

6p :: |3
2
, 1

2
〉 10.693 0.010 -0.131 0.246 9.322 -0.288 -42.590 -0.313

6p :: |3
2
, 3

2
〉 -0.006 7.124 -0.108 32.368 0.091 -30.176 -0.135 -0.674

6d :: |3
2
,−3

2
〉 -0.000 -19.453 -0.000 -33.390 -0.000 -92.480 -0.000 30.603

6d :: |3
2
,−1

2
〉 44.632 -0.000 36.527 0.000 39.317 0.000 109.004 0.000

6d :: |3
2
, 1

2
〉 -0.000 -109.004 -0.000 -39.317 -0.000 -36.527 0.000 -44.632

6d :: |3
2
, 3

2
〉 -30.603 0.000 92.480 0.000 33.390 0.000 19.453 0.000

6d :: |5
2
,−5

2
〉 22.425 -0.000 32.428 0.000 54.791 -0.000 -13.797 0.000

6d :: |5
2
,−3

2
〉 -0.000 -20.729 0.000 -13.821 0.000 -32.339 -0.000 -15.796

6d :: |5
2
,−1

2
〉 57.247 0.000 21.865 -0.000 6.218 0.000 -56.385 0.000

6d :: |5
2
, 1

2
〉 0.000 -56.385 0.000 6.218 -0.000 21.865 0.000 57.247

6d :: |5
2
, 3

2
〉 -15.796 -0.000 -32.339 0.000 -13.821 0.000 -20.729 -0.000

6d :: |5
2
, 5

2
〉 0.000 -13.797 -0.000 54.791 0.000 32.428 -0.000 22.425

5f :: |5
2
,−5

2
〉 -0.021 -0.332 -0.002 -2.531 0.075 25.923 0.098 7.192

5f :: |5
2
,−3

2
〉 2.815 -0.031 4.375 0.109 -3.966 -0.218 -36.628 -0.086

5f :: |5
2
,−1

2
〉 -0.020 -0.332 0.113 -12.234 -0.133 5.483 0.163 17.130

5f :: |5
2
, 1

2
〉 -17.130 0.163 -5.483 -0.133 12.234 0.113 0.332 -0.020

5f :: |5
2
, 3

2
〉 -0.086 36.628 -0.218 3.966 0.109 -4.375 -0.031 -2.815

5f :: |5
2
, 5

2
〉 -7.192 0.098 -25.923 0.075 2.531 -0.002 0.332 -0.021

5f :: |7
2
,−7

2
〉 -5.887 -0.063 4.795 -0.028 -16.488 -0.057 -3.447 0.000

5f :: |7
2
,−5

2
〉 -0.063 -7.110 -0.098 3.071 0.139 14.737 0.000 -3.447

5f :: |7
2
,−3

2
〉 4.795 -0.098 0.510 0.054 -3.779 0.000 14.737 0.057

5f :: |7
2
,−1

2
〉 -0.028 3.071 0.054 -11.743 0.000 -3.779 -0.139 -16.488

5f :: |7
2
, 1

2
〉 -16.488 0.139 -3.779 0.000 -11.743 -0.054 3.071 0.028

5f :: |7
2
, 3

2
〉 -0.057 14.737 0.000 -3.779 -0.054 0.510 0.098 4.795

5f :: |7
2
, 5

2
〉 -3.447 0.000 14.737 -0.139 3.071 0.098 -7.110 0.063

5f :: |7
2
, 7

2
〉 0.000 -3.447 0.057 -16.488 0.028 4.795 0.063 -5.887
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Table 5.3: Tight-binding Parametrization for δ-Pu(in meV). 5f shell with j = 5/2

5f :: |5
2
,−5

2
〉 |5

2
,−3

2
〉 |5

2
,−1

2
〉 |5

2
, 1

2
〉 |5

2
, 3

2
〉 |5

2
, 5

2
〉

7s :: |1
2
,−1

2
〉 -0.000 65.442 -0.000 93.187 0.000 -75.761

7s :: |1
2
, 1

2
〉 75.761 -0.000 -93.187 0.000 -65.442 0.000

6p :: |1
2
,−1

2
〉 -11.462 0.031 -7.249 -0.185 -5.126 -0.245

6p :: |1
2
, 1

2
〉 0.245 -5.126 0.185 -7.249 -0.031 -11.462

6p :: |3
2
,−3

2
〉 0.085 -34.700 -0.128 67.359 0.278 31.121

6p :: |3
2
,−1

2
〉 -30.108 0.225 63.537 -0.401 -97.673 -0.691

6p :: |3
2
, 1

2
〉 -0.691 97.673 -0.401 -63.537 0.225 30.108

6p :: |3
2
, 3

2
〉 -31.121 0.278 -67.359 -0.128 34.700 0.085

6d :: |3
2
,−3

2
〉 20.495 -0.000 23.139 -0.000 -15.188 -0.000

6d :: |3
2
,−1

2
〉 -0.000 -4.984 0.000 6.167 0.000 6.429

6d :: |3
2
, 1

2
〉 6.429 0.000 6.167 0.000 -4.984 -0.000

6d :: |3
2
, 3

2
〉 -0.000 -15.188 -0.000 23.139 -0.000 20.495

6d :: |5
2
,−5

2
〉 0.000 31.255 -0.000 88.606 0.000 -48.892

6d :: |5
2
,−3

2
〉 -29.423 -0.000 -50.447 0.000 -172.109 -0.000

6d :: |5
2
,−1

2
〉 -0.000 51.845 0.000 62.223 -0.000 122.310

6d :: |5
2
, 1

2
〉 -122.310 0.000 -62.223 -0.000 -51.845 0.000

6d :: |5
2
, 3

2
〉 0.000 172.109 -0.000 50.447 0.000 29.423

6d :: |5
2
, 5

2
〉 48.892 -0.000 -88.606 0.000 -31.255 -0.000

5f :: |5
2
,−5

2
〉 -11.028 -0.121 7.980 0.095 3.633 0.000

5f :: |5
2
,−3

2
〉 -0.121 -7.136 -0.037 -3.779 -0.000 3.633

5f :: |5
2
,−1

2
〉 7.980 -0.037 -14.302 -0.000 -3.779 -0.095

5f :: |5
2
, 1

2
〉 0.095 -3.779 -0.000 -14.302 0.037 7.980

5f :: |5
2
, 3

2
〉 3.633 -0.000 -3.779 0.037 -7.136 0.121

5f :: |5
2
, 5

2
〉 0.000 3.633 -0.095 7.980 0.121 -11.028

5f :: |7
2
,−7

2
〉 -0.039 6.137 -0.028 -32.926 -0.172 -14.453

5f :: |7
2
,−5

2
〉 -0.435 -0.074 -1.048 0.337 71.869 0.195

5f :: |7
2
,−3

2
〉 -0.014 8.162 0.246 -11.428 -0.457 -50.190

5f :: |7
2
,−1

2
〉 -5.679 0.240 -23.693 -0.287 8.109 0.142

5f :: |7
2
, 1

2
〉 0.142 -8.109 -0.287 23.693 0.240 5.679

5f :: |7
2
, 3

2
〉 50.190 -0.457 11.428 0.246 -8.162 -0.014

5f :: |7
2
, 5

2
〉 0.195 -71.869 0.337 1.048 -0.074 0.435

5f :: |7
2
, 7

2
〉 14.453 -0.172 32.926 -0.028 -6.137 -0.039
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Figure 5.5: Band structure of α-Pu when N nearest neighbors are taken into
account for f -orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for Γ-X direction.

The result of the same real space analysis for δ-Pu is shown in Figure 5.4. At most

left panel one can see the on-site energy levels of 5f electrons in δ-Pu. As discussed

earlier the 5f -orbitals of δ-Pu are slightly more itinerant than ones of Cm. At the

second panel of Figure 5.4 one can see when nearest neighbors are included there

small discrepancies among bands of real space Hamiltonian and original LSDA bands

even within 5f block. Around Γ-point the coincidence of two is amazing, but in the

vicinity of X-point inconsistency is more noticeable than in the case of Cm. However,

the range of extension 5f orbitals is the same: hoppings to the nearest neighbors very
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Table 5.4: Tight-binding Parametrization for δ-Pu(in meV). 5f shell with j = 7/2

5f :: |7
2
,−7

2
〉 |7

2
,−5

2
〉 |7

2
,−3

2
〉 |7

2
,−1

2
〉 |7

2
, 1

2
〉 |7

2
, 3

2
〉 |7

2
, 5

2
〉 |7

2
, 7

2
〉

7s :: |1
2
,−1

2
〉 -89.263 0.000 113.127 0.000 87.147 -0.000 -32.822 -0.000

7s :: |1
2
, 1

2
〉 -0.000 -32.822 -0.000 87.147 0.000 113.127 0.000 -89.263

6p :: |1
2
,−1

2
〉 0.283 -27.776 0.241 29.408 -0.121 -48.109 -0.128 -17.139

6p :: |1
2
, 1

2
〉 17.139 -0.128 48.109 -0.121 -29.408 0.241 27.776 0.283

6p :: |3
2
,−3

2
〉 -1.793 0.247 -58.670 -0.179 62.045 0.200 13.409 0.016

6p :: |3
2
,−1

2
〉 0.736 -82.131 0.647 17.984 -0.554 -0.408 -0.077 20.071

6p :: |3
2
, 1

2
〉 20.071 0.077 -0.408 0.554 17.984 -0.647 -82.131 -0.736

6p :: |3
2
, 3

2
〉 -0.016 13.409 -0.200 62.045 0.179 -58.670 -0.247 -1.793

6d :: |3
2
,−3

2
〉 -0.000 -31.813 -0.000 -54.565 -0.000 -142.988 0.000 49.849

6d :: |3
2
,−1

2
〉 71.902 -0.000 57.510 -0.000 62.129 0.000 172.802 0.000

6d :: |3
2
, 1

2
〉 -0.000 -172.802 -0.000 -62.129 0.000 -57.510 0.000 -71.902

6d :: |3
2
, 3

2
〉 -49.849 -0.000 142.988 0.000 54.565 0.000 31.813 0.000

6d :: |5
2
,−5

2
〉 39.319 -0.000 53.729 0.000 83.179 -0.000 -22.347 -0.000

6d :: |5
2
,−3

2
〉 0.000 -31.147 0.000 -20.918 0.000 -52.706 0.000 -25.616

6d :: |5
2
,−1

2
〉 91.791 0.000 34.975 -0.000 9.811 -0.000 -88.055 0.000

6d :: |5
2
, 1

2
〉 0.000 -88.055 -0.000 9.811 -0.000 34.975 0.000 91.791

6d :: |5
2
, 3

2
〉 -25.616 0.000 -52.706 0.000 -20.918 0.000 -31.147 0.000

6d :: |5
2
, 5

2
〉 -0.000 -22.347 -0.000 83.179 0.000 53.729 -0.000 39.319

5f :: |5
2
,−5

2
〉 -0.039 -0.435 -0.014 -5.679 0.142 50.190 0.195 14.453

5f :: |5
2
,−3

2
〉 6.137 -0.074 8.162 0.240 -8.109 -0.457 -71.869 -0.172

5f :: |5
2
,−1

2
〉 -0.028 -1.048 0.246 -23.693 -0.287 11.428 0.337 32.926

5f :: |5
2
, 1

2
〉 -32.926 0.337 -11.428 -0.287 23.693 0.246 1.048 -0.028

5f :: |5
2
, 3

2
〉 -0.172 71.869 -0.457 8.109 0.240 -8.162 -0.074 -6.137

5f :: |5
2
, 5

2
〉 -14.453 0.195 -50.190 0.142 5.679 -0.014 0.435 -0.039

5f :: |7
2
,−7

2
〉 -13.323 -0.124 10.089 -0.038 -30.984 -0.110 -6.749 -0.000

5f :: |7
2
,−5

2
〉 -0.124 -15.187 -0.210 6.104 0.295 28.591 0.000 -6.749

5f :: |7
2
,−3

2
〉 10.089 -0.210 -1.182 0.109 -7.834 -0.000 28.591 0.110

5f :: |7
2
,−1

2
〉 -0.038 6.104 0.109 -24.513 -0.000 -7.834 -0.295 -30.984

5f :: |7
2
, 1

2
〉 -30.984 0.295 -7.834 -0.000 -24.513 -0.109 6.104 0.038

5f :: |7
2
, 3

2
〉 -0.110 28.591 -0.000 -7.834 -0.109 -1.182 0.210 10.089

5f :: |7
2
, 5

2
〉 -6.749 0.000 28.591 -0.295 6.104 0.210 -15.187 0.124

5f :: |7
2
, 7

2
〉 -0.000 -6.749 0.110 -30.984 0.038 10.089 0.124 -13.323
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Figure 5.6: Band structure of α-U when N nearest neighbors are taken into ac-
count for f -orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for Γ-X direction.

well reproduce LSDA bands. Again, inclusion of four nearest neighbors make two band

structures look even closer (see right panel of Figure 5.4). The corresponding tight-

binding parametrization is provided in Tables 5.3 and 5.2. The parametrization is

given for (1/2,0,1/2) spatial direction.

Finally, the analogous plot for α-Pu and α-U are presented in Figures 5.5 and 5.6

correspondingly. The first nearest neighbors still reproduce qualitatively the LSDA

band structure. One can see that some discrepancies between bands of real space

Hamiltonian and LSDA bands remain even when four nearest neighbors are taken into

account. This suggests that 5f -orbitals in light actinides tend to long-range behavior.

Tables 5.5, 5.6, 5.7 and 5.8 list corresponding tight-binding parametrizations in jj base

for (1/2, 0, 1/2) spatial direction.
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Table 5.5: Tight-binding Parametrization for α-Pu(in meV). 5f shell with j = 5/2

5f :: |5
2
,−5

2
〉 |5

2
,−3

2
〉 |5

2
,−1

2
〉 |5

2
, 1

2
〉 |5

2
, 3

2
〉 |5

2
, 5

2
〉

7s :: |1
2
,−1

2
〉 -0.000 87.896 -0.000 125.415 0.000 -105.125

7s :: |1
2
, 1

2
〉 105.125 -0.000 -125.415 0.000 -87.896 0.000

6p :: |1
2
,−1

2
〉 -19.838 0.108 -12.546 -0.295 -8.872 -0.365

6p :: |1
2
, 1

2
〉 0.365 -8.872 0.295 -12.546 -0.108 -19.838

6p :: |3
2
,−3

2
〉 0.142 -53.691 -0.190 103.499 0.447 47.263

6p :: |3
2
,−1

2
〉 -46.180 0.317 98.284 -0.598 -150.257 -1.066

6p :: |3
2
, 1

2
〉 -1.066 150.257 -0.598 -98.284 0.317 46.180

6p :: |3
2
, 3

2
〉 -47.263 0.447 -103.499 -0.190 53.691 0.142

6d :: |3
2
,−3

2
〉 28.073 0.000 32.132 0.000 -21.135 0.000

6d :: |3
2
,−1

2
〉 0.000 -8.044 0.000 8.447 -0.000 9.456

6d :: |3
2
, 1

2
〉 9.456 -0.000 8.447 0.000 -8.044 0.000

6d :: |3
2
, 3

2
〉 0.000 -21.135 0.000 32.132 0.000 28.073

6d :: |5
2
,−5

2
〉 -0.000 43.250 0.000 122.549 -0.000 -66.892

6d :: |5
2
,−3

2
〉 -41.255 0.000 -69.648 -0.000 -238.129 -0.000

6d :: |5
2
,−1

2
〉 0.000 72.515 -0.000 85.797 0.000 169.800

6d :: |5
2
, 1

2
〉 -169.800 -0.000 -85.797 0.000 -72.515 -0.000

6d :: |5
2
, 3

2
〉 0.000 238.129 0.000 69.648 -0.000 41.255

6d :: |5
2
, 5

2
〉 66.892 0.000 -122.549 -0.000 -43.250 0.000

5f :: |5
2
,−5

2
〉 -17.520 -0.160 12.278 0.133 5.594 0.000

5f :: |5
2
,−3

2
〉 -0.160 -11.288 -0.046 -5.992 0.000 5.594

5f :: |5
2
,−1

2
〉 12.278 -0.046 -22.429 0.000 -5.992 -0.133

5f :: |5
2
, 1

2
〉 0.133 -5.992 0.000 -22.429 0.046 12.278

5f :: |5
2
, 3

2
〉 5.594 0.000 -5.992 0.046 -11.288 0.160

5f :: |5
2
, 5

2
〉 0.000 5.594 -0.133 12.278 0.160 -17.520

5f :: |7
2
,−7

2
〉 -0.048 9.420 -0.046 -48.720 -0.248 -20.785

5f :: |7
2
,−5

2
〉 -0.447 -0.110 -1.969 0.498 106.485 0.276

5f :: |7
2
,−3

2
〉 -0.026 12.049 0.359 -16.888 -0.672 -74.259

5f :: |7
2
,−1

2
〉 -8.845 0.350 -35.659 -0.427 11.862 0.214

5f :: |7
2
, 1

2
〉 0.214 -11.862 -0.427 35.659 0.350 8.845

5f :: |7
2
, 3

2
〉 74.259 -0.672 16.888 0.359 -12.049 -0.026

5f :: |7
2
, 5

2
〉 0.276 -106.485 0.498 1.969 -0.110 0.447

5f :: |7
2
, 7

2
〉 20.785 -0.248 48.720 -0.046 -9.420 -0.048
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Table 5.6: Tight-binding Parametrization for α-Pu(in meV). 5f shell with j = 7/2

5f :: |7
2
,−7

2
〉 |7

2
,−5

2
〉 |7

2
,−3

2
〉 |7

2
,−1

2
〉 |7

2
, 1

2
〉 |7

2
, 3

2
〉 |7

2
, 5

2
〉 |7

2
, 7

2
〉

7s :: |1
2
,−1

2
〉 -122.919 0.000 151.060 0.000 116.231 -0.000 -44.967 0.000

7s :: |1
2
, 1

2
〉 0.000 -44.967 -0.000 116.231 0.000 151.060 0.000 -122.919

6p :: |1
2
,−1

2
〉 0.449 -48.186 0.348 52.432 -0.191 -83.461 -0.258 -28.537

6p :: |1
2
, 1

2
〉 28.537 -0.258 83.461 -0.191 -52.432 0.348 48.186 0.449

6p :: |3
2
,−3

2
〉 -2.935 0.403 -90.168 -0.274 94.637 0.318 20.245 0.031

6p :: |3
2
,−1

2
〉 1.142 -125.590 0.971 27.706 -0.832 -0.617 -0.110 30.174

6p :: |3
2
, 1

2
〉 30.174 0.110 -0.617 0.832 27.706 -0.971 -125.590 -1.142

6p :: |3
2
, 3

2
〉 -0.031 20.245 -0.318 94.637 0.274 -90.168 -0.403 -2.935

6d :: |3
2
,−3

2
〉 -0.000 -44.187 -0.000 -74.619 0.000 -196.634 -0.000 67.630

6d :: |3
2
,−1

2
〉 99.207 -0.000 79.410 0.000 84.880 -0.000 237.550 0.000

6d :: |3
2
, 1

2
〉 -0.000 -237.550 0.000 -84.880 -0.000 -79.410 0.000 -99.207

6d :: |3
2
, 3

2
〉 -67.630 0.000 196.634 -0.000 74.619 0.000 44.187 0.000

6d :: |5
2
,−5

2
〉 53.526 0.000 73.530 -0.000 113.928 0.000 -30.343 0.000

6d :: |5
2
,−3

2
〉 0.000 -43.648 -0.000 -28.405 -0.000 -72.400 -0.000 -34.609

6d :: |5
2
,−1

2
〉 126.327 0.000 47.734 -0.000 13.558 0.000 -120.456 0.000

6d :: |5
2
, 1

2
〉 0.000 -120.456 0.000 13.558 -0.000 47.734 0.000 126.327

6d :: |5
2
, 3

2
〉 -34.609 -0.000 -72.400 -0.000 -28.405 -0.000 -43.648 0.000

6d :: |5
2
, 5

2
〉 0.000 -30.343 0.000 113.928 -0.000 73.530 0.000 53.526

5f :: |5
2
,−5

2
〉 -0.048 -0.447 -0.026 -8.845 0.214 74.259 0.276 20.785

5f :: |5
2
,−3

2
〉 9.420 -0.110 12.049 0.350 -11.862 -0.672 -106.485 -0.248

5f :: |5
2
,−1

2
〉 -0.046 -1.969 0.359 -35.659 -0.427 16.888 0.498 48.720

5f :: |5
2
, 1

2
〉 -48.720 0.498 -16.888 -0.427 35.659 0.359 1.969 -0.046

5f :: |5
2
, 3

2
〉 -0.248 106.485 -0.672 11.862 0.350 -12.049 -0.110 -9.420

5f :: |5
2
, 5

2
〉 -20.785 0.276 -74.259 0.214 8.845 -0.026 0.447 -0.048

5f :: |7
2
,−7

2
〉 -20.464 -0.168 15.154 -0.059 -45.538 -0.155 -9.709 0.000

5f :: |7
2
,−5

2
〉 -0.168 -22.743 -0.293 8.901 0.432 41.939 0.000 -9.709

5f :: |7
2
,−3

2
〉 15.154 -0.293 -2.221 0.167 -11.603 0.000 41.939 0.155

5f :: |7
2
,−1

2
〉 -0.059 8.901 0.167 -37.103 0.000 -11.603 -0.432 -45.538

5f :: |7
2
, 1

2
〉 -45.538 0.432 -11.603 0.000 -37.103 -0.167 8.901 0.059

5f :: |7
2
, 3

2
〉 -0.155 41.939 0.000 -11.603 -0.167 -2.221 0.293 15.154

5f :: |7
2
, 5

2
〉 -9.709 0.000 41.939 -0.432 8.901 0.293 -22.743 0.168

5f :: |7
2
, 7

2
〉 0.000 -9.709 0.155 -45.538 0.059 15.154 0.168 -20.464
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Table 5.7: Tight-binding Parametrization for α-U(in meV). 5f shell with j = 5/2

5f :: |5
2
,−5

2
〉 |5

2
,−3

2
〉 |5

2
,−1

2
〉 |5

2
, 1

2
〉 5f :: |5

2
, 3

2
〉 5f :: |5

2
, 5

2
〉

7s :: |1
2
,−1

2
〉 -0.000 99.202 -0.000 141.540 0.000 -120.642

7s :: |1
2
, 1

2
〉 120.642 -0.000 -141.540 0.000 -99.202 0.000

6p :: |1
2
,−1

2
〉 -25.446 0.164 -16.093 -0.388 -11.380 -0.469

6p :: |1
2
, 1

2
〉 0.469 -11.380 0.388 -16.093 -0.164 -25.446

6p :: |3
2
,−3

2
〉 0.157 -63.190 -0.218 121.859 0.510 55.603

6p :: |3
2
,−1

2
〉 -54.401 0.383 115.750 -0.703 -176.848 -1.270

6p :: |3
2
, 1

2
〉 -1.270 176.848 -0.703 -115.750 0.383 54.401

6p :: |3
2
, 3

2
〉 -55.603 0.510 -121.859 -0.218 63.190 0.157

6d :: |3
2
,−3

2
〉 32.681 0.000 37.292 0.000 -24.242 0.000

6d :: |3
2
,−1

2
〉 0.000 -9.142 0.000 10.328 -0.000 11.334

6d :: |3
2
, 1

2
〉 11.334 -0.000 10.328 0.000 -9.142 0.000

6d :: |3
2
, 3

2
〉 0.000 -24.242 0.000 37.292 0.000 32.681

6d :: |5
2
,−5

2
〉 -0.000 49.843 0.000 141.073 -0.000 -76.691

6d :: |5
2
,−3

2
〉 -47.682 0.000 -79.937 -0.000 -273.878 -0.000

6d :: |5
2
,−1

2
〉 0.000 83.817 -0.000 98.978 0.000 195.822

6d :: |5
2
, 1

2
〉 -195.822 -0.000 -98.978 0.000 -83.817 -0.000

6d :: |5
2
, 3

2
〉 0.000 273.878 0.000 79.937 -0.000 47.682

6d :: |5
2
, 5

2
〉 76.691 0.000 -141.073 -0.000 -49.843 0.000

5f :: |5
2
,−5

2
〉 -23.985 -0.201 16.003 0.167 7.211 0.000

5f :: |5
2
,−3

2
〉 -0.201 -16.301 -0.052 -7.398 0.000 7.211

5f :: |5
2
,−1

2
〉 16.003 -0.052 -30.711 0.000 -7.398 -0.167

5f :: |5
2
, 1

2
〉 0.167 -7.398 0.000 -30.711 0.052 16.003

5f :: |5
2
, 3

2
〉 7.211 0.000 -7.398 0.052 -16.301 0.201

5f :: |5
2
, 5

2
〉 0.000 7.211 -0.167 16.003 0.201 -23.985

5f :: |7
2
,−7

2
〉 -0.059 12.016 -0.066 -62.628 -0.318 -26.474

5f :: |7
2
,−5

2
〉 -0.747 -0.139 -2.294 0.643 136.499 0.353

5f :: |7
2
,−3

2
〉 -0.035 15.523 0.462 -21.324 -0.864 -95.380

5f :: |7
2
,−1

2
〉 -11.203 0.448 -45.864 -0.558 15.152 0.283

5f :: |7
2
, 1

2
〉 0.283 -15.152 -0.558 45.864 0.448 11.203

5f :: |7
2
, 3

2
〉 95.380 -0.864 21.324 0.462 -15.523 -0.035

5f :: |7
2
, 5

2
〉 0.353 -136.499 0.643 2.294 -0.139 0.747

5f :: |7
2
, 7

2
〉 26.474 -0.318 62.628 -0.066 -12.016 -0.059
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Table 5.8: Tight-binding Parametrization for α-U(in meV). 5f shell with j = 7/2

5f :: |7
2
,−7

2
〉 |7

2
,−5

2
〉 |7

2
,−3

2
〉 |7

2
,−1

2
〉 |7

2
, 1

2
〉 |7

2
, 3

2
〉 |7

2
, 5

2
〉 |7

2
, 7

2
〉

7s :: |1
2
,−1

2
〉 -139.181 0.000 168.320 0.000 129.529 -0.000 -50.964 0.000

7s :: |1
2
, 1

2
〉 0.000 -50.964 -0.000 129.529 0.000 168.320 0.000 -139.181

6p :: |1
2
,−1

2
〉 0.575 -61.031 0.427 67.026 -0.232 -105.709 -0.338 -35.623

6p :: |1
2
, 1

2
〉 35.623 -0.338 105.709 -0.232 -67.026 0.427 61.031 0.575

6p :: |3
2
,−3

2
〉 -3.391 0.439 -105.074 -0.313 110.331 0.358 23.602 0.037

6p :: |3
2
,−1

2
〉 1.354 -146.370 1.115 32.300 -0.961 -0.720 -0.150 35.194

6p :: |3
2
, 1

2
〉 35.194 0.150 -0.720 0.961 32.300 -1.115 -146.370 -1.354

6p :: |3
2
, 3

2
〉 -0.037 23.602 -0.358 110.331 0.313 -105.074 -0.439 -3.391

6d :: |3
2
,−3

2
〉 0.000 -50.320 -0.000 -84.623 0.000 -223.397 0.000 76.527

6d :: |3
2
,−1

2
〉 113.004 -0.000 90.736 0.000 96.447 -0.000 269.637 -0.000

6d :: |3
2
, 1

2
〉 0.000 -269.637 0.000 -96.447 -0.000 -90.736 0.000 -113.004

6d :: |3
2
, 3

2
〉 -76.527 -0.000 223.397 -0.000 84.623 0.000 50.320 -0.000

6d :: |5
2
,−5

2
〉 61.062 0.000 83.531 -0.000 129.378 0.000 -34.255 0.000

6d :: |5
2
,−3

2
〉 -0.000 -49.527 -0.000 -31.773 -0.000 -81.835 -0.000 -39.136

6d :: |5
2
,−1

2
〉 143.693 0.000 54.677 -0.000 16.180 0.000 -136.254 -0.000

6d :: |5
2
, 1

2
〉 -0.000 -136.254 0.000 16.180 -0.000 54.677 0.000 143.693

6d :: |5
2
, 3

2
〉 -39.136 -0.000 -81.835 -0.000 -31.773 -0.000 -49.527 -0.000

6d :: |5
2
, 5

2
〉 0.000 -34.255 0.000 129.378 -0.000 83.531 0.000 61.062

5f :: |5
2
,−5

2
〉 -0.059 -0.747 -0.035 -11.203 0.283 95.380 0.353 26.474

5f :: |5
2
,−3

2
〉 12.016 -0.139 15.523 0.448 -15.152 -0.864 -136.499 -0.318

5f :: |5
2
,−1

2
〉 -0.066 -2.294 0.462 -45.864 -0.558 21.324 0.643 62.628

5f :: |5
2
, 1

2
〉 -62.628 0.643 -21.324 -0.558 45.864 0.462 2.294 -0.066

5f :: |5
2
, 3

2
〉 -0.318 136.499 -0.864 15.152 0.448 -15.523 -0.139 -12.016

5f :: |5
2
, 5

2
〉 -26.474 0.353 -95.380 0.283 11.203 -0.035 0.747 -0.059

5f :: |7
2
,−7

2
〉 -26.921 -0.206 19.090 -0.083 -57.824 -0.196 -12.201 0.000

5f :: |7
2
,−5

2
〉 -0.206 -30.153 -0.364 11.465 0.546 52.900 0.000 -12.201

5f :: |7
2
,−3

2
〉 19.090 -0.364 -4.178 0.222 -14.136 0.000 52.900 0.196

5f :: |7
2
,−1

2
〉 -0.083 11.465 0.222 -48.533 0.000 -14.136 -0.546 -57.824

5f :: |7
2
, 1

2
〉 -57.824 0.546 -14.136 0.000 -48.533 -0.222 11.465 0.083

5f :: |7
2
, 3

2
〉 -0.196 52.900 0.000 -14.136 -0.222 -4.178 0.364 19.090

5f :: |7
2
, 5

2
〉 -12.201 0.000 52.900 -0.546 11.465 0.364 -30.153 0.206

5f :: |7
2
, 7

2
〉 0.000 -12.201 0.196 -57.824 0.083 19.090 0.206 -26.921
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Table 5.9: Nearest Neighbors contributions to V and tff .

V tff V/tff

α-U 0.371 0.172 2.157

α-Pu 0.324 0.134 2.418

δ-Pu 0.232 0.090 2.578

Cm II 0.143 0.045 3.178

5.3.1 Table for t̄f and V̄

In the previous chapter we calculated static quantitative characteristics of the

Hamiltonian average f − f hooping t̄f and average hybridization V̄ . Since, as

was shown in previous section, f -orbitals are extremely local in actinide and

the low energy physics is ruled by nearest neighbor hoppings, it is of particular

interest to calculate the contribution of first nearest neighbors to t̄f and V̄ . These

contributions are listed in Table 5.9 and compared to the integral values in the

diagram 5.7.

In the histogram the shadowed bars represent V̄ (red) and t̄f (green) for the

original Hamiltonian while the bright bars represent contributions from nearest

neighbors. First nearest neighbors contribute ≈ 75% to the hybridization and

≈ 90% to the f − f hoppings. In the inset of Figure 5.7 we plot ratio of V̄ /t̄f for

the integral values (blue squares) and partial first nearest neighbors contributions

(green circles). The similarity of shapes and slopes of those two curves implies

that first nearest neighbors contribution governs the dynamic of V and tff .
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Figure 5.7: Histogram represents average hybridization among f - and spd-
blocks(red bars) and f − f hoppings (green bars) as functions of atomic num-
ber. The shadow bars show V and tff for the original Hamiltonian and bright
bars represent values of V and tff calculated with inclusion of nearest neighbors
for 5f shell only. In inset: the ratio V/tff as function of atomic number.

5.4 Comparison with earlier parametrization of W. A.

Harrison

In this section we compare our tight-binding parametrization for actinides with

earlier reported in literature by W. A. Harrison [99]. The evaluation will be

carried out on the example of Cm. The discussion will consist of three parts

focusing on hybridization parameters V , f − f hoppings tf and matrix elements

of spin-orbit coupling.

The ultimate idea which W. Harrison has been trying to develop for many d-

and f -shell compounds and alloys is a formulation of tight-binding theory with
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universal parameters [119]. Indeed, within this theory one could make direct ele-

mentary estimates of all the bonding properties without the addition of empirical

parameters.

Eventually, the Hamiltonian to be considered:

HHarrison =
∑

k

ǫkc
†
kck +

∑

im

ǫfmf
†
imfim +HSO (5.4.2)

+
∑

k,im

(Vkimc
†
kfim + c.c.) +

∑

〈ij〉mm′

tfmm′f
†
imfjm′

where ck and fim are annihilation operators for the conduction electron in state

|k〉 and 5f -electron with magnetic number m at site i correspondingly. ǫfm are

on-site energies for 5f -electrons and ǫk is spectrum of conduction electrons. Vk, im

stands for the hybridization matrix elements of local 5f - and conduction electrons.

We will compare parameters Vk,im, tfmm′ and matrix elements of HSO reported

by W. Harrison with values calculated in this study in subsequent Sections 5.4.1,

5.4.2 and 5.4.3 correspondingly.

W. Harrison assumes f − f hoppings by magnitude to be much smaller than

hybridization parameters and starts with model 5.4.2 where tfmm′ = 0. Then he

calculates tfmm′ using second order perturbation theory with respect to hybridiza-

tion.

5.4.1 Hybridization parameters

The calculation of tfmm′ is carried out within second-order perturbation theory:

tfmm′ = 〈f ′
0m|H|fim′〉 =

∑

k

V ∗
k,0mVk,jm′

ǫf − Ek

, (5.4.3)

where site j is first nearest neighbor of central site. The hybridization parameters:

Vk,im = 〈k|∆|fim〉, (5.4.4)

where state |k〉 is written as orthogonalized plane wave (OPW) (for details of

construction see Ref. [119]) and expanded in spherical harmonics and spherical
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Bessel functions around the atomic nuclei. The perturbation ∆ which couples

this OPW to the atomic f state arises from the difference in the potential δV

between the metal and what it would be in the free atom. Further, W. Harrison

proceeds with atomic sphere approximation taking the potential to be atomic

within muffin-tin sphere and ǫf outside. Then the difference δV = 0 inside the

muffin-tin sphere and ǫf − Vatomic(r) outside.

With the given assumptions, the angular integration in 5.4.4 gives:

〈k|∆|f,m〉 =
4π√
Ω
Y m

3 (θk, ϕk)

∫

j3(kr)∆Rn3r
2dr, (5.4.5)

where Rn3 is the radial f -state wave function. The angles (θk, ϕk) parameterize

the direction of the k-vector in Brillouin zone. The last simplification considers

the fact that f -state is strongly localized and then j3(kr) ≈ (kr)3.

The final form of the hybridization:

〈k|∆|f,m〉 =

(

4πr3
f√

3Ω

)1/2
~

2k2

m
krfY

m
3 (θk, ϕk)

∫

j3(kr)∆Rn3r
2dr, (5.4.6)

where rf depends only upon the atomic f state.

We argue that formula 5.4.6 does not reflect the actual symmetry of hybridiza-

tion in actinides. We consider the following expansion:

V L
k,0m =

∑

l′m′

aL
ml′m′Y m′

l′ (θk, ϕk), (5.4.7)

where V acquired additional index L to distinguish s, p and d characters of

conduction electrons. If Equation 5.4.6 holds then coefficients a with l′ = 3 will

be much bigger than those with l′ ≤ 2.

To extract coefficients aL
ml′m′ we multiply 5.4.7 by [Y m′′

l′′ (θk, ϕk)]
∗ and sum over

Brillouin zone. This gives the following expression for coefficients:

aL
ml′′m′′ =

∑

k V
L
k,0m[Y m′′

l′′ (θk, ϕk)]
∗

∑

k[Y m′′

l′′ (θk, ϕk)]∗Y
m′′

l′′ (θk, ϕk)
(5.4.8)

In expansion 5.4.7 we included spherical harmonics with l ≤ 3. The partial

contribution of different harmonics to hybridization of 7s- and 5f -orbitals are
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presented in Figure 5.8. Figure 5.9 represents the partial contribution of different

spherical harmonics to the hybridization of 6d with l = −1 and 5f orbitals.
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Figure 5.8: Partial contributions of spherical harmonics into s-f hybridization
matrix element.

As can be observed independently of the character of 5f -orbital one of the

biggest contributions into s-f hybridization comes from Y 2
3 (k̂) and Y −2

3 (k̂). We

will provide additional qualitative reasons for such behavior in next section.

We conclude that the symmetry of hybridization in our parametrization differs

from the one assumed by W. Harrison.
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Figure 5.9: Partial contributions of spherical harmonics into d{l=−1}-f hybridiza-
tion matrix element.

5.4.2 f − f hoppings

Finally, in the perturbation-theoretical expansion 5.4.3 one assumes the denom-

inator to be equal to ~
2k2/(2m). After integration, 5.4.3 becomes (for details of

integration see [120]):

tfm = ηffm~
2r5

f/md
7, (5.4.9)



116

with

ηffσ = 20(525/2π), ηffδ = 6(525/2π), (5.4.10)

ηffπ = −15(525/2π), ηffϕ = −(525/2π).

Here d is scaling parameter.

W. Harrison provides generic forms for Vlfm:

Vdfm = ηdfm~
2(r3

dr
5
f)

1/2/md6, (5.4.11)

Vs,pfm = ηs,pfm~
2r

5/2
f /md9/2,

but does not give the values for coefficients ηlfm.

In order to compare given tfm parameters to ours, we rewrote Tables 5.1 and

5.2 in LS-representation in Table 5.10.

We calculate tfm for each type of bond as:

t̃fm =
1

2

√

Tr [V T
mVm], (5.4.12)

where Vm is matrix 2× 2 consisting of tfm parameters with m and −m indexes of

Table 5.10 within the block with spin up.

We will comment on the relative importance of σ-, π-, δ- and ϕ-bonding rather

than on absolute value of parameters because of the presence of scaling parameters

rf and d. Calculations of W. Harrison suggest that σ-bonding dominates all other

types of bonding, π- is stronger than δ-bond which in turn stronger than ϕ-bond.

The values at Table 5.11 suggest that the symmetry of f−f hopping reported by

W. Harrison is not consistent with one reported in this study. Our calculations

show δ-bonding is a dominant type of bonding among 5f -orbitals. σ-bonds are

also favored while π- and ϕ-bonds give a much smaller contribution.

Also, our calculation show that matrix elements among spherical harmonics

with different m are of the same order of magnitude as those with the same m, and
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Table 5.10: Nearest neighbors parametrization for Cm II in spherical harmonics
in LS-base.

5f↑{-3} 5f↑{-2} 5f↑{-1} 5f↑{0} 5f↑{1} 5f↑{2} 5f↑{3}
7s↑{0} -51.242 -0.000 82.640 -0.000 84.944 0.000 -55.956

6p↑{-1} -1.498 -0.006 -18.657 -0.059 27.507 0.049 11.895

6p↑{0} 0.367 -42.625 0.364 27.314 -0.368 -45.087 -0.397

6p↑{1} 18.035 -0.174 48.742 0.115 -36.610 -0.136 -1.346

6d↑{-2} 21.843 0.000 37.367 -0.000 75.381 0.000 -35.913

6d↑{-1} 0.000 -26.436 -0.000 -33.916 -0.000 -127.919 0.000

6d↑{0} 65.768 0.000 43.346 0.000 45.536 -0.000 73.308

6d↑{1} -0.000 -121.468 0.000 -34.599 0.000 -28.698 -0.000

6d↑{2} -33.769 -0.000 74.849 0.000 40.027 -0.000 25.396

5f↑{-3} -5.161 -0.066 5.513 -0.018 -21.509 -0.108 -8.459

5f↑{-2} -0.066 -5.841 -0.116 2.053 0.237 41.604 0.112

5f↑{-1} 5.513 -0.116 2.666 0.147 -8.453 -0.247 -22.987

5f↑{0} -0.018 2.053 0.147 -21.432 -0.150 2.114 0.024

5f↑{1} -21.509 0.237 -8.453 -0.150 2.584 0.124 6.248

5f↑{2} -0.108 41.604 -0.247 2.114 0.124 -7.071 0.076

5f↑{3} -8.459 0.112 -22.987 0.024 6.248 0.076 -6.480

Table 5.11: Comparison of tfm/t
f
ϕ.

|tfσ/tfϕ| |tfπ/tfϕ| |tfδ/tfϕ|
W. Harrison[99] 20.0 15.0 6.0

present study 3.001 3.280 4.092
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Table 5.12: Nearest neighbors parametrization for Cm II in cubic harmonics in
LS-base.

x(5x2-3)↑ y(5y2-3)↑ z(5z2-3)↑ y(x2-z2)↑ z(x2-2)↑ x(y2-z2)↑ xyz↑

7s{s}↑ 3.633 0.351 -0.000 0.026 0.000 -0.754 4.589

6p{x}↑ 27.314 -0.000 -0.124 0.000 0.177 62.021 19.727

6p{y}↑ -0.000 -17.131 -3.502 0.000 39.642 -0.000 -0.047

6p{z}↑ 0.110 -3.460 27.314 39.772 -62.021 -0.740 0.000

6d{yz}↑ -2.396 0.000 0.044 0.000 0.149 1.970 4.356

6d{zx}↑ 0.000 4.098 0.483 0.412 -2.094 0.000 0.416

6d{xy}↑ 0.233 2.903 1.674 -0.903 -3.521 -0.062 0.000

6d{x2-y2}↑ 0.421 -0.034 -0.000 -0.093 -0.000 1.693 -0.554

6d{3z2-1}↑ -3.267 -0.313 -0.000 0.453 0.000 4.489 -2.883

5f{x(5x2-3)}↑ -21.432 -0.000 -0.152 0.000 0.079 -2.947 29.600

5f{y(5y2-3)}↑ -0.000 -26.958 41.868 0.000 16.260 -0.000 -0.106

5f{z(5z2-3)}↑ -0.152 41.868 -21.432 16.270 2.947 -0.147 -0.000

5f{y(x2-z2)}↑ 0.000 0.000 16.270 6.851 35.540 0.000 -0.073

5f{z(x2-2)}↑ 0.079 16.260 2.947 35.540 35.148 0.397 0.000

5f{x(y2-z2)}↑ -2.947 -0.000 -0.147 0.000 0.397 35.148 0.082

5f{xyz}↑ 29.600 -0.106 -0.000 -0.073 0.000 0.082 -48.060

so cannot be omitted. These type of matrix elements have not been considered

in [99] that also reflects the wrong symmetry of hybridization.

To visualize the domination of δ-bonds we will transform TB-parametrization

into cubic harmonics. Let us remind that cubic harmonics which reflect symmetry

of the crystal are connected to spherical in the following way [58]:

Y3,0(θ, ϕ) → z(5z2 − 3)

Y3,1(θ, ϕ) ± Y3,−1(θ, ϕ) → x(5x2 − 3), y(5y2 − 3)

Y3,2(θ, ϕ) ± Y3,−2(θ, ϕ) → z(x2 − y2), xyz

Y3,3(θ, ϕ) ± Y3,−3(θ, ϕ) → y(x2 − z2), x(y2 − z2).

Now we can recalculate nearest neighbors parametrization in LS-base presented

in Table 5.10 in the representation of cubic harmonics(see Table 5.12).

In Table 5.12 the biggest matrix element among 5f -block is one between xyz
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Figure 5.10: The xyz(left) and z(5z2 − 3)(right) cubic f orbitals in fcc unit
cell. The geometry of the unit cell suggests that δ-bonds formed by xyz orbitals
dominate over σ-bonds formed by z(5z2 − 3) orbitals

orbitals of different sites and correspond to δ-type of bonding. The matrix element

corresponding to σ is twice as small. The visual and intuitive demonstration for

this observation is shown in Figure 5.10. Indeed, the geometry of unit cell suggests

that δ-bonding must be stronger than σ-bonding.

5.4.3 Matrix elements of spin-orbit coupling

The other point considered in [99] was the incorporation of spin-orbit coupling

into intra-atomic matrix elements. W. Harrison treats spin-orbit coupling as a

one-electron effect:

HSO =
1

2m2c2
1

r

∂V

∂r
~l · ~σ, (5.4.13)

where V (r) is the spherically symmetric potential seen by the electron, and ~l

and ~σ are the orbital and spin angular momentum operators. The corresponding

matric elements for ~l · ~σ can be rewritten in terms of total angular momentum

operator ~j = ~l + ~σ as:

~l · ~σ = (~j2 −~l2 − ~σ2)/2. (5.4.14)

The corresponding one-electron eigenstates for free-atom have eigenvalues:

~l · ~σ = ~
2[j(j + 1) − 3(3 + 1) − 1

2
(
1

2
+ 1)], (5.4.15)
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Table 5.13: On-site parametrization for Cm II in jj-base for j = 5/2 (in meV).

5f:: |5
2
,−5

2
〉 |5

2
,−3

2
〉 |5

2
,−1

2
〉 |5

2
, 1

2
〉 |5

2
, 3

2
〉 |5

2
, 5

2
〉

5f :: |5
2
,−5

2
〉 -1148.744 0.000 -0.000 0.000 -3.759 0.000

5f :: |5
2
,−3

2
〉 0.000 -1142.020 0.000 0.000 0.000 -3.759

5f :: |5
2
,−1

2
〉 -0.000 0.000 -1150.425 0.000 -0.000 -0.000

5f :: |5
2
, 1

2
〉 0.000 0.000 0.000 -1150.425 0.000 -0.000

5f :: |5
2
, 3

2
〉 -3.759 0.000 -0.000 0.000 -1142.020 0.000

5f :: |5
2
, 5

2
〉 0.000 -3.759 -0.000 -0.000 0.000 -1148.744

Table 5.14: On-site parametrization for Cm II in jj-base for j = 7/2(in meV).

5f:: |7
2
,−7

2
〉 |7

2
,−5

2
〉 |7

2
,−3

2
〉 |7

2
,−1

2
〉 |7

2
, 1

2
〉 |7

2
, 3

2
〉 |7

2
, 5

2
〉 |7

2
, 7

2
〉

5f :: |7
2
,−7

2
〉 239.472 -0.000 -0.000 0.000 -19.444 0.000 -0.000 0.000

5f :: |7
2
,−5

2
〉 -0.000 246.196 0.000 -0.000 0.000 5.606 0.000 -0.000

5f :: |7
2
,−3

2
〉 -0.000 0.000 252.669 -0.000 0.000 0.000 5.606 -0.000

5f :: |7
2
,−1

2
〉 0.000 -0.000 -0.000 232.899 0.000 -0.000 0.000 -19.444

5f :: |7
2
, 1

2
〉 -19.444 0.000 0.000 0.000 232.899 0.000 -0.000 -0.000

5f :: |7
2
, 3

2
〉 0.000 5.606 0.000 -0.000 0.000 252.669 -0.000 0.000

5f :: |7
2
, 5

2
〉 -0.000 0.000 5.606 0.000 -0.000 -0.000 246.196 0.000

5f :: |7
2
, 7

2
〉 0.000 -0.000 -0.000 -19.444 -0.000 0.000 0.000 239.472

with j = 5/2 and j = 7/2, leading to diagonal in jj-representation matrix ele-

ments ofHSO, −2VSO, and 3VSO/2, respectively. Particularly, for Cm W. Harrison

provides VSO = 0.39 eV. This fixes matrix elements of HSO to be -780 meV and

585 meV.

The on-site parametrization derived here for the spin-orbit matrix elements is

consistent with that suggested by W. Harrison atomic-like picture. Tables 5.13

and 5.14 list the on-site matrix elements for 5f -block within the jj-representation

for j = 5/2 and j = 7/2 correspondingly. Both tables have a diagonal shape with

average diagonal values to be ≈ -1150 meV and 250 meV for j = 5/2 and j = 7/2

correspondingly, giving raise for spin-orbit splitting of 1.4 eV. This number is in

good agreement with value of 1.19 eV predicted by W. Harrison.
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5.5 Conclusion

In this chapter we performed real space analysis of electronic structure of ac-

tinides. We showed that 5f -orbitals in this class of materials extend just enough

to overlap. Hence, the low energy physics of actinides is ruled by nearest neighbor

hoppings. We also provide tight-binding parametrization for chosen actinides and

compare it to the one reported earlier in literature by W. Harrison. The tight-

binding parametrization obtained here agrees with reported by W. Harrison on

spin-orbit coupling matrix elements. However, we have shown that the symmetry

of both f − f hoppings and hybridization is completely different than assumed

by W. Harrison.
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Chapter 6

Calculation of magnetic exchange constants and

Néel Temperature for Curium metal

Available up-to-date experimental data suggest curium to be the element with

the smallest atomic number among actinides to develop a macroscopic magnetic

moment. In this chapter we calculate the magnetic coupling parameters for fcc

curium by mapping LSDA total energies of different magnetic arrangements onto

a Heisenberg model. Within the framework of semiclassical molecular field theory

we calculate the Néel temperature for fcc Cm and compare it to the experimental

value.

6.1 Review of experimental data on magnetic properties

of Curium

The very early magnetic studies of curium are summarized and reported in the

review by M. B. Brodsky [13] devoted to magnetic properties of metallic actinides.

At that time only two first high-pressure modifications of curium were known,

namely dhcp and fcc phases. M. Brodsky presents susceptibility curves reported

by different groups at the same year (1976). These curves are shown in Figure 6.1.

The data were collected for stable phases between ∼ 2 and 300 K. In both cases

Curie-Weiss temperature dependence were found. The first group of Kanellakop-

ulos et al. observed antiferromagnetic behavior with Neel temperature around

50 K [121]. The other group of Fujita et al. was able measure susceptibility
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Figure 6.1: Inverse Magnetic susceptibility, the plot is taken from review by
M. B. Brodsky [13].

only in paramagnetic region [122]. Also Fujita et al. reported the effective mo-

ment to be 7.8 ÷ 8.1 µB [122], which is in fair agreement with Russel-Saunders

values of 7.7 µB (5f 7). Russel-Saunders numbers are free-ion effective magnetic

moment values predicted by L-S coupling and Hunds rule. Thus, it points to the

conclusion that J must be a good quantum number for heavy actinides. Fujita

concludes that for Cm and Bk (next after Cm in periodic table) the 5f electron

do not form bands and the magnetic effects will be the same as the heavy rare

earths and not the 3d transition metals or light actinides.

The deepest investigation of the magnetic properties of curium metal is re-

ported by P. G. Huray et al. in [15]. Huray used a SQUID-based micromagnetic

susceptometer to determine the magnetic susceptibility of 248Cm metal in the

temperature range 4.2 − 340K and in the applied magnetic field range of 0.45-

1400 G. In the investigation they used samples of two types: with dhcp and fcc

structures.

Huray et al. report that dhcp samples exhibit an antiferromagnetic transition

at ≈ 65K. A small second transition in the neighborhood of 200 K is observed

and influences the high-temperature Curie-Weiss fit to the data.
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Figure 6.2: Electrical resistivity of pure actinides. Cm data of Schenkel [14].

They showed that the fcc phase exhibits a ferrimagnetic transition in the

neighborhood of 200 K and at low temperature has a saturated magnetic moment

per atom of 0.4 Bohr magnetons in applied fields above 1200 G. In Figure 6.3 the

effective magnetic moment per atom is plotted. Huray et al. emphasize that the

saturation moment is seen to be field dependent in this region but the changes

are becoming smaller at high fields.

In the high temperature regime the susceptibility showed little field depen-

dence, as is seen in Figure 6.4. Here 1/χ is plotted vs. T for several applied fields.
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Figure 6.3: Effective magnetic moment per atom vs. temperature for an fcc
sample.

Huray et al. notice that the curvature of shown data prevents a Curie-Weiss in-

terpretation for all temperatures, so they examined two regions differently:

µ = 6.2µB, θ = −202K for 200K < T < 300K, (6.1.1)

µ = 7.7µB, θ = −138K for 300K < T < 340K.

π

Since the low-temperature data suggest ferrimagnetism, authors also fit the

high-temperature variation of 1/χ vs. T with the function of the form:

χ =
(C1 + C2)T − 2λC1C2

T 2 − T 2
N

, (6.1.2)

with Ci = Nµ2
i /6k and µi constrained = µ± 0.4µB (for fitting they used results

of molecular field model, see Appendix A for details). Here Ci are separate Curie
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Figure 6.4: The inverse magnetic susceptibility vs. temperature for several ap-
plied fields (plot is taken from [15]).

constants for two spin lattices. λ is defined through H1 = H − λM2, where H

is the applied field and M2 is the magnetization of the second sublattice. TN is

the ferrimagnetic Néel temperature. It should be mentioned that two sites are

assumed to have moments different by 0.8µB in order that the average moment

per atom is 0.4µB at 4.2K. The fit to the data here has the smallest sum of

squares and yields:

λ = 231 ± 49, µ = 6.13 ± 0.2µB, TN = 205 ± 0.6K. (6.1.3)

6.2 Exchange constants for fcc Curium.

The method we will use for calculation of exchange parameters was reported

by J. Kuneš et al. [123]. Our objective is to determine the nearest neighbors

coupling parameter J1 and next nearest neighbors coupling parameter J2 (see

Figure 6.5 for the schematic presentation). The idea is to calculate total energies

for different magnetic arrangements and map them to the energies corresponding
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to the Heisenberg model:

H = −
∑

i,j

JijSiSj , (6.2.4)

with nearest-neighbor J1 and next-nearest-neighbor J2 interactions.

J1

J2

J2

Y[010]

Z[001]

Figure 6.5: The sheme shows that we denoted by J1 exchange constant between
nearest neighbors and by J2 the exchange constant between next nearest neigh-
bors.

To obtain a system of two equations for unknowns J1 and J2 one needs to

use at least three different magnetic arrangements, since these are only total

energy differences which can enter, not total energies by themselves. We consider

following magnetic arrangements:

1. antiferromagnetic with propagation vector (0,0,2π
a

),

2. type II antiferromagnetic.
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(A) (B)

(C)

Figure 6.6: Different magnetic arrangements for fcc crystal structure used in
calculations: (A) ferromagnetic; (B) antiferromagnetic; (C) type II antiferromag-
netic.

3. ferromagnetic corresponding to antiferromagnetic with propagation vector

(0,0,2π
a

),

4. ferromagnetic corresponding to type II antiferromagnetic

Here a is lattice parameter. The corresponding magnetic arrangements for fcc

crystal structure are shown in Figure 6.6. The classical ground state energies of

these magnetic configurations mapped on Heisenberg Hamiltonian corresponding

to spin configurations (1)-(4) are:

1. EAF = (4J1 − 6J2)S
2,

2. EII
AF = 6J2S

2,

3. EFERR = −(12J1 + 6J2)S
2,
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4. EII
FERR = −(12J1 + 6J2)S

2,

where classical spin S = 5/2~.

Let us introduce

∆ = EAF − EFERR,

∆II = EII
AF −EII

FERR.

Linear system of equations for unknowns J1, J2 are:

∆ = 16J1S
2,

∆II = 12(J1 + J2)S
2. (6.2.5)

The solution of this system is:

J1 =
1

(2S)2

∆

4
, J2 =

1

(2S)2

(

−∆

4
+

∆II

3

)

. (6.2.6)

For S we use classical vale of spin S = 5/2~.

6.3 Total Energy GGA calculations for fcc Curium

The results of total energy calculations within generalized-gradient approximation

(GGA) employing ASA scheme are shown in Figure 6.7. We used 6×6×6- mesh in

the first Brillouin zone. There are in total 12 curves in this figure. We consider 4

different magnetic arrangements, enumerated above, and we perform calculations

using 3 different LMTO basis: with 6p electrons treated as valent, 7p electrons

treated as valent, and both 6p and 7p included in the basis. The other orbitals

in LMTO basis are 7s, 6d and 5f .

In Figure 6.7 we see that with each LMTO basis the first type antiferromag-

netic solution has the lowest total energy. The x-axis corresponds to the ratio of

unit cell volume used in calculations to the experimentally measured one. The

best predictions for equilibrium volume are done when one treats 7p electrons as
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Figure 6.7: Total energy vs ratio of unit cell volume to experimentally measured
one for fcc structure of curium. The calculations are performed within GGA
scheme using ASA approximation.

valent. However, as will be discussed below, one will fail to predict the experi-

mentally measured value of the Néel temperature. The basis with both 6p and

7p electrons surprisingly give s a worse predictions (≈ 25% off). The basis with

6p only gives slightly better predictions (≈ 20% off).

In Figure 6.8 the dependence of J1 and J2 parameters on the relative volume

is shown obtained from calculated total energy vs relative volume curves and

formulas 6.2.6. There are in total 6 curves in this plot again because we used

three different LMTO base. In each base J1 was determined to be negative and
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Figure 6.8: Dependence of coupling parameters J1 and J2 on relative volume.
The same type of calculations performed with 3 different LMTO base: with 6p
treated as valent, 7p treated as valent, and both 6p and 7p are included.

J2 to be positive that reinforce the antiferromagnetism. Also J1 and J2 have

tendency to increase in magnitude as lattice parameter becomes smaller, what

also makes perfect sense. The exception is the J1 parameter calculated within

the 7p basis.

It is instructive to compare the calculated values of J1 and J2 by the order of

magnitude to RKKY constants. Indeed, in RKKY model

JRKKY ≈ V 2/ǫF . (6.3.7)

The value of hybridization for fcc Cm can be taken from Table 4.6 and V ≈
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0.192eV. Fermi energy within LDA calculations ǫF ≈ 7.045 eV. Thus, JRKKY ≈

0.0052eV which is of the same order of magnitude as our result for J1 and J2 for

equilibrium volume.

6.4 Molecular Field Theory

6.4.1 Antiferromagnetism

The strong interaction which tends to align the atomic dipoles parallel or anti-

parallel in magnetic materials may be considerate as equivalent to some internal

magnetic field Hm [124]. Weiss in his phenomenological theory of ferromagnetism

assumed that:

Hm = NWM, (6.4.8)

here NW is a constant called the molecular field constant. Now, we consider an

antiferromagnet with two sublattices A and B and assume that an atom at an A

site has nearest neighbors that all lie on B sites and next nearest neighbors that

all lie on A sites. Then, analogically, the molecular field HmA acting on an atom

at an A site:

HmA = −NAAMA −NABMB, (6.4.9)

where MA and MB are the magnetizations of the A and B sublattices, respec-

tively, NAB is a molecular field constant for the nearest neighbor interaction,

and NAA is a molecular field constant for the next nearest neighbor interaction.

Similarly, the molecular field HmB acting on an atom at a B site:

HmB = −NBAMA −NBBMB. (6.4.10)

Since the same type of atoms occupy the A and B lattice sites, NAA = NBB =
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Nii and NAB = NBA. Then, if a field H is also applied, the fields:

HA = H −NiiMA −NABMB, (6.4.11)

HB = H−NABMA −NiiMB.

At thermal equilibrium the magnetizations of the sublattices are given by:

MA,B =
1

2
NgµBSBS(xA,B), (6.4.12)

where

xA,B =
SgµB

kT
HA,B (6.4.13)

and

BS(xA,B) =
2S + 1

2S
coth

2S + 1

2S
xA,B − 1

2S
coth

xA,B

2S
. (6.4.14)

Here N is a total number of atoms with a permanent dipole moment per unit

volume.

6.4.2 Behavior above the Néel temperature

Although there is no antiferromagnetic ordering above the Néel temperature, a

small magnetization is induced by the applied field. For the usual values of applied

field, saturation effects are negligible and Brillouin function BS(x) can be replaced

by the first term of the series expansion in x in (6.4.14):

BS(x) = [(S + 1)/3S]x. (6.4.15)

Then equation (6.4.12) becomes:

MA,B =
Ng2µ2

BS(S + 1)

6kT
HA,B. (6.4.16)

Now

HA = |H −NiiMA −NABMB| = H −NiiMA −NABMB,
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since H , MA, and MB are parallel in the paramagnetic region. Similarly

HA = H −NABMA −NiiMB.

Then

M = MA +MB =
Ng2µ2

BS(S + 1)

6kT
[2H − (Nii +NAB)M ].

Hence, the susceptibility

χ = M/H =
C

T + θ
, (6.4.17)

where

C =
Ng2µ2

BS(S + 1)

3k

and

θ =
1

2
C(Nii +NAB).

Since, generally, NAB > Nii, θ is positive.

Neel temperature will be given by:

TN =
1

2
C(NAB −Nii), (6.4.18)

where

C =
Ng2µ2

BS(S + 1)

3k
. (6.4.19)

6.5 Results: Calculation of Néel temperature

Figure 6.9 shows Neel temperatures calculated from J1 and J2 parameters in

frameworks of molecular field theory, using rewritten in different notations for-

mula 6.4.18:

TN =
1

2

g2S(S + 1)

3kB
(J2 − J1). (6.5.20)

The experimental value equals TN = 205 ± 0.6K. In Figure 6.9 again three

curves correspond to three different LMTO base. Neel temperature calculated

with 7p basis never reach experimental value, however two other curves reach the

experimental values approximately around experimental volume.
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Figure 6.9: Néel temperature vs relative volume, calculated from coupling pa-
rameters J1 and J2 within frameworks of Molecular Field Theory.

The conclusion can be made that even if the 7p basis provides the best es-

timate for the equilibrium volume, it cannot be used to describe the magnetic

properties of Cm. The other two bases (6p and where both 6p and 7p are in-

cluded) predict an equilibrium volume approximately 20-25 % off, but provide an

excellent description of the magnetic characteristics.
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6.6 Outlook: dhcp structure

The attempt has been done to perform analogical calculations of exchange con-

stants and Néel temperature for dhcp structure. Taking into account that most

of described in Section 6.1 experimental data were reported for dhcp structure.

The dhcp crystal structure is close-packed, with stacking A-B-A-C-A-B-A-C...

[125], as opposed to A-B-A-B... [126] for the hcp (A3) lattice and A-B-C-A-B-C...

for the fcc (A1) lattice. The (2a) crystallographic sites (the A’s) form a simple

hexagonal lattice. The (2c) sites (the B’s and C’s) form an hcp structure. The

corresponding space group number is 194(P63/mmc).

Reported lattice parameters at atmospheric pressure are a =0.3502(2) nm

(6.61887 a.u.) and c =1.132(2) nm (21.395899 a.u.) from [127], and a =0.3500(3)

nm ( 6.61467a.u.) and c =1.134(1) nm ( 21.43159 a.u.) from [128].

Primitive Vectors:

A1 = 1
2aX − 1

2

√
3aY

A2 = 1
2aX + 1

2

√
3aY

A3 = cZ

Basis Vectors:

B1 = 0 (2a)

B2 = 1
2A3 = 1

4cZ (2a)

B3 = 1
3A1 + 2

3A2 + 1
4A3 = 1

2aX + 1
2

1√
3
aY + 1

4cZ (2c)

B4 = 1
3A1 + 2

3A2 + 3
4A3 = 1

2aX− 1
2

1√
3
aY + 3

4cZ (2c)

The dhcp crystal structure has a feature that nearest neighbors and next near-

est neighbors located almost at the same distances. Thus, the nearest neighbors

for atom located at the origin would be sited on next z-plane at distance ≈ 0.95a,

where a is a lattice parameter. The next nearest neighbors would be located in

the same xy-plane as original atom at distance a.

The different magnetic orderings could be figured out through tracking the

transition of magnetic planes from fcc to dhcp structure.
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The fact that distances to nearest and next nearest neighbors differs by ap-

proximately 5% leads to conclusion that J1 and J2 should have the same order of

magnitude. Moreover, the mapping to the Heisenberg model will look like:

1. EAF = (6J2 − 6J1)S
2,

2. EII
AF = 6J2S

2,

3. EFERR = −(6J1 + 6J2)S
2,

4. EII
FERR = −(6J1 + 6J2)S

2,

Then we can form system of two decoupled equations for J1 and J2 :

EAF −EFERR = 12J2S
2,

EAF − EII
AF = −6J1S

2. (6.6.21)

The total energy curves for different magnetic orderings are shown in Fig-

ure 6.10. The results are too noisy to perform calculations for coupling param-

eters, especially taking into account the fact that J1 and J2 in dhcp structure

should have close values.

The alternative way to determine the exchange constants which may be adopted

for dhcp curium is reported by X. Wan et al. in Ref. [129]. We leave the imple-

mentation of this approach for curium for the future work. The method is based

on a magnetic force theorem that evaluates linear response due to rotations of

magnetic moments. This technique uses a generalized spectral density functional

framework allowing one to explore several approximations ranging from local den-

sity functional to exact diagonalization based dynamical mean field theory.
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Figure 6.10: Total Energies vs lattice parameter for dhcp structure of Cm. The
calculations performed within GGA, using ASA approximation. The LMTO basis
with 7p electrons treated as valent has been used.

6.7 Conclusion

In this chapter we calculated exchange interactions for fcc curium by mapping

total energies of different magnetic arrangements onto the Heisenberg model. Fur-

ther, within framework of semiclassical molecular field theory we calculated Néel

temperature of fcc curium. Our result is in excellent agreement with experiment.

We showed that application of the same method to dhcp curium faces difficulties

due to noisy total energy curves. The fact that nearest and next nearest neighbors
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in dhcp structure located at very similar distances makes the described method

unprecise.
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Chapter 7

Summary and Conclusions

In this thesis by means of Ab Initio methods we studied electronic structure,

magnetic and transport properties of two strongly correlated electron systems,

chromium dioxide and actinide series. The fact that both systems are on the

edge of localization-delocalization transition brought us to the observation that

both might be discussed in the aspect of orbital selective Mott transition.

We shown that low-energy physics of CrO2 is governed by t2g orbitals of Cr

atoms. We carried out detailed DMFT study with QMC as an impurity solver

of the electronic structure of CrO2 in paramagnetic case and trace its evolution

in the space of two parameters: Coulomb interaction U applied to t2g orbitals

and relative position of narrow and broad t2g bands. Keeping the later parameter

fixed and increasing U we observed two subsequent localization transitions taking

place first for the narrow band and then for the broad band. On the other hand

the variation of relative position of narrow and broad bands at fixed value of U

indicated that CrO2 was on the edge of some type of quantum transition, since

change of the relative position by as small as 0.5 eV result in completely different

electronic structure and though physics.

We also performed detailed analysis of the electronic structure, optical con-

ductivity, and magnetic anisotropy energy for the ordered phase of CrO2 . Our

study revealed that in ordered phase this compound effectively can be described

as weakly correlated system due to big exchange splitting in t2g block.
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The second considered type of strongly correlated systems are actinide mate-

rials. First we discussed the importance of the basis for the DMFT calculations

for actinides. We showed that one has to choose either well localized basis or

otherwise subtract long-ranged tails of basis functions using projective orthogo-

nalization [31].

With established robust basis set we carried out detailed one-electron band

structure analysis of actinides in the example of uranium, plutonium and curium.

By turning on and off hybridization between 5f and conducting s, p, d electrons we

have shown that there is a d band crossing the Fermi level in the band structure

of actinides. Hence, uncorrelated states are permanently present at the Fermi

energy and both Anderson- and Hubbard-like contributions must be considered

in delocalization-localization transition along 5f series. The outlook for future

work is to provide quantitative estimate for each type of contributions.

By means of real space analysis we demonstrated that the physics of actinides

is extremely local and governed by 5f nearest neighbor hoppings. Finally, we

calculated exchange magnetic interactions and Néel temperature for fcc phase of

curium metal.
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