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ABSTRACT OF THE DISSERTATION

Data Analysis for Microarray experiment and DNA

Barcode of Life

by Ching-Ray Yu

Dissertation Director: Professor Javier Cabrera

DNA microarray experiment, a well-established experimental technique, aims under-

standing the function of genes in some biological functions and cellular processes. One

of the most common experiments in functional genomic research is to compare two

groups of microarray data to determine which genes are differentially expressed. In

this dissertation, we propose (1) a methodology to estimate the proportion of differen-

tially expressed genes in microarray experiments, (2) parametric and non-parametric

methods to estimate error distribution of microarray data, and (3) an optimal scoring

method and LDA on HLdata on the DNA barcoding data to cluster the species using

COI sequence. We study the performance of our methods using simulation studies

where we compare it to other standard methods and apply it on real data sets to show

the advantage of our method.
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Chapter 1

Introduction to Genomic Data

In 1953, Dr. James Watson and Dr. Francis Crick proposed the double helical structure

of Deoxyribose Nucleic Acid(DNA) in Nature [100] indicating that the chemical struc-

ture of two parallel strands is made of 4 types of nucleotides, which are adenine(A),

thymine(T), guanine(G), and cytosine(C). The bases on one strand are paired with the

bases on the other strand according to the complementary base pairing rules: adenine

only pairs with thymine, guanine only pairs with cytosine. The pairs formed are called

base pairs. Genes are pieces of DNA sequence and each piece is about 2000 base pairs

on average. Genes consist of DNA, which is the hereditary material that passes from

one generation to the next, indicates the inherent properties of a species. There are

two types of regions in DNA sequences. One is protein-coding region, exon, which is a

segment of DNA sequence that can produce proteins and contain hereditary messages.

The other one is protein-noncoding region, intron, which can not produce proteins.

Only about 5% of DNA sequence in chromosomes are exons. Dr. Francis Crick also

proposed the Central Dogma of Molecular Biology (Figure 1.1) in Nature [25] showing

that the production of proteins is controlled by genes, which are coded in DNA. Protein

production from genes involves two principal stages, known as transcription and trans-

lation. During transcription, the double strands DNA sequence that corresponds to the

gene is separated and one of two strands is copied into a single strand sequence which

we called mRNA, messenger ribonucleic acid. After transcription, mRNA is used as a

template to assemble a chain of amino acids to form a protein. The process is activated

by the protein called the transcription factor. There are transcription fatcor protiens

that activate the transcription factor binding site to start the process of transcriptions.

Some transcription factor proteins trigger transcription process of one gene, but some
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can trigger the process of several genes at the same time.

After the great discovery, many researchers started to focus on the DNA sequence

in order to realize how DNA affects our life. Gene expression studies investigate the

amount of transcribed message RNA (mRNA) for a specific biological system. Sev-

eral techniques are available for measuring gene expression, including serial analysis of

gene expression(SAGE), complementary DNA (cDNA) library sequencing, differential

display, multiplex quantitative Reverse Transcription Polymerase Chain Reaction (RT-

PCR), which is a process of rapid generating multiple copies of any fragments of DNA,

and gene expression microarrays.

Genomics is the branch of biology that studies the structure and function of genes.

Structure genomics is the application of sequencing technologies to establish repre-

sentative genome sequences for different organisms, particular in humans. Functional

genomics is the study of the function of genes. It is important to realize how genes op-

erate in pathways that are as part of biological processes also called biological pathways

that are involved in the biological function. It can be said to have appeared in the 1980s,

and took off in the 1990s with the initiation of genome projects for several biological

species. A major branch of genomics is still concerned with sequencing the genomes of

various organisms, but the knowledge of full genomes has created the possibility for the

field of functional genomics, mainly concerned with patterns of gene expression during

various conditions. DNA is found in the nucleo of cells, but also found in the mito-

chondrion called mitochondrial DNA. Microchondrial DNA is very useful not only for

the discovery of gene mutations but also classification of the world’s species. Scientific

researchers ask questions about genome of interest and try to solve them by developing

new experiments and new methods of data analysis. The most important question from

the scientists point of view is to identify genes and cellular pathways that are difficult to

study directly, studying protein coding and gene expression, providing large databases

that are amenable to statistical methods, identifying variant sequences that may have

subtle phenotypes or new species, and studying evolution of the organism and genome.

It generates the set of techniques, analytical methodologies, and scientific questions to

the study of complete genomes.



3

Many scientists from statistics, bioinformatics, computer science · · · focus on the

data analysis of genomics data sets. Huge and variant data sets were collected from

many different aspect of experiments, such as 1. Spotted cDNA microarrays, 2. Oligonu-

cleotide(Affymetrix) arrays, 3. Single nucleotide polymorphisms(SNPs) , 4. Protein

arrays, 5. Chromatin immunoprecipitation chip(ChIP-chip), 6. DNA barcoding of life,

and 7. The Y chromosome. The components of our approach are the data analysis for

the gene expression microarray experiments and the DNA sequence or SNPs arrays.

1.1 Spotted cDNA microarray

A microarray is a glass slide whose surface has been divided into series of imaginary

square cells to form a rectangular grid. A probe is the single-stranded DNA molecules,

whose sequence is known, is prepared and labeled with a reporter chemical, usually a

radioactive or fluorescent substance. Onto each square cell, stick a tiny amount of liquid

that contains DNA corresponding to a gene of known sequence(probe). Separately

prepare a solution that contains a mixture of mRNA whose sequences are unknown

which is called targets; add to this solution a substance that fluoresces when excited by

light; pour the solution onto the slide. The mRNA molecules will diffuse over the slide

and find a matching (complementary) DNA sequence, such as hybridization to each

other and the solution will stick to the slide. Without a match, the solution will not

stick to the slide and can be washed away. Use a laser scanner to detect and measure

the fluorescent signal being emitted at each cell of the slide.

The spotted cDNA microarrays (one or several channel microarrays) are cDNA,

pieces of genes that we like to identify, or small fragments of PCR products that are

reverse transcribed using RT-PCR from mRNAs and are printed onto the microarray

chip surface. This type of array is typically hybridized with cDNA (Figure 1.2), which

are reverse transcribed from mRNA of two samples to be compared (e.g. diseased tis-

sue versus healthy tissue). For the typical two channel experiments, cDNA are labeled

with two different fluorophores (e.g. Cy 5 (red) and Cy 3 (green)), and two sam-

ples are mixed and hybridized to a single microarray. During hybridization, samples

from different tissues compete to hybridize with the particular cDNA that they are
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complementary matched on the array. After hybridization, cDNA microarray is then

scanned in a microarray scanner to visualize fluorescence of the two fluorophores. The

relative intensities of each fluorophore are then used to identify up-regulated and down-

regulated genes in analysis. The advantage of microarrays is that it can monitor the

expression levels of tens of thousands of genes simultaneously. Microarray techniques

have therefore dramatically accelerated many types of investigations. Microarray data

was obtained through several processes ( Figure 1.3 ), we will discuss them more detail

in the section 1.1.1 - 1.1.3, and chapter 2.

1.1.1 Experimental design

Before the experiment, the researchers have to decide which genes are to be printed on

the arrays, which sources of RNA are to be hybridized to the arrays and on how many

arrays the hybridizations will be replicated to obtain reliable data. Unlike classical

statistical problems, microarray data structure has about ten thousand genes i.e. ten

thousand dimensions but replication is very small. Researches have to decide how many

replicates we need in an experiment. In Ting et al.[94], they pointed out that 3 replicates

will be the minimal requirement on detecting differentially expressed gene with false

positive rate less than 0.7% under the assumption of the normality of microarray data.

Kerr and Churchill [55] and Glonek and Solomon [43] suggested an optimal design for

replicated microarray experiment. Pan, Lin and Le [74] considered the sample size

of replicates that can detect the differentially expressed genes. Speed and Yang [91]

provided the efficiency of using a reference sample as against direct comparison. After

experiment, we suggested that the quality control (QC) was essential for microarray

experiment. Low quality will affect the results of statistical analysis [99].

The choice of experiment design depends not only on the number of different samples

to be compared but on the aim of the experiment and on the comparisons which are

primary interest. For example, suppose the primary focus of an experiment involving a

large series of tumor and normal tissues is on finding genes that are differently expressed

between the tumor and normal samples. Then direct tumor-normal comparisons on

the same slide may be the best approach. By contrast, if the focus of the analysis
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is to determine tumor subtypes as in Alizadeh et. al.[2], then the use of a common

reference RNA on each array may be better. Here the choice follows from the aim of

the study, although statistical efficiency considerations also play a role. In the first case,

tumor-normal comparisons could be made indirectly, via a common reference RNA, but

precision would be lost in so doing.

1.1.2 Image analysis

The primary purpose of the image analysis step is to extract numerical foreground and

background intensities for the red and green channels for each spot on the microarray.

The background intensities are used to correct the foreground intensities for local vari-

ation on the array surface, resulting in corrected red and green intensities for each spot

which become the primary data for analysis. A secondary purpose of the image step is

to collect quality measures for each spot that might be used to detect unreliable spots

or arrays or to assess the reproducibility of each spot value.

The first step is to image the array using an optical scanner. The array is physically

scanned to produce a digital record of the red and green fluorescence emissions at each

point on the array. This digital record typically takes the form of a pair of 16-bit tiff

images, one for each channel, which records the intensities at each of a large number

of pixels covering the array. Depending on the scanner, a number of settings can be

varied to improve the sensitivity of the resulting image, one of the most common being

the photomultiplier tube (PMT) voltage. The PMT voltage is usually adjusted so that

the brightest pixels are just below the level of saturation (216), thus increasing the

sensitivity of the image analysis for the less bright pixels.

The next step after scanning is to locate each spot on the slide. This is done mostly

automatically by the image analysis software, using the known number and basic layout

of spots on the slide, with some user interventions to increase reliability. Once a region

containing a spot itself ( the foreground) and those in the background. There are a

number of methods for doing this. The oldest method is the histogram method. A

mask is chosen surrounding each spot and a histogram is formed from the intensities

of the pixels within the mask. Pixels are classified as foreground ground if their value
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is greater than a threshold and as background otherwise. Variations on this method

are implemented in QuantArray software [111] for the GSI Lumonics scanner and in

DeArray [113] by Scanalytics. The main advantage of this method is simplicity. The

resulting foreground pixels are not necessary connected though and the foreground and

background intensities may be over and under-estimated respectively.

Chen. et. al.[22] proposed a nonparametric method to detect the spot microarray

intensities. The intensity of each spot would be measured by Mann-Whitney rank-sum

test. The Mann-Whitney rank-sum test as employed here. Assume that X1, · · · , Xn

and Y1, · · · , Ym are independent samples coming from two distributions F and G with

median MX and MY , respectively. The rank-sum test statistic W , which is the sum of

the ranks of all X samples in the combined ordered sequence of the X and Y samples,

is to test the null hypothesis,

H0 : MX = MY vs. H1 : MX > MY .

Rejection of H0 occurs, when W ≥ wα,n,m, the critical value at level α. For each spot,

they define a target mask which is a region containing all of the signal pixels. 8 i.i.d.

sample pixels outside the target mask as Y1, · · · , Y8 and pick lowest 8 i.i.d. sample

pixels within the target mask as X1, · · · , X8. The rank-sum statistics W is calculated

and compares with wα,8,8, which has been tabulated (e.g., see Hollander and Wolfe

[48]). If the null hypothesis is not rejected, then some predetermined number (perhaps

1) of the 8 samples is discarded from inside of the target mask and selected the lowest

8 remaining samples from region. This procedure is repeated until the null hypothesis

is rejected. It says that the distribution of the pixels inside the target mask is different

from that outside the target mask. After determining the pixels of this spot, it is usually

estimated the average of the pixels within the mask as the foreground intensity of this

spot and the median of the pixels without the mask as the background intensity of this

spot, but there is a first decision should be made regarding which pixels to include in

the local background.

Other methods are designed to find spots as connected groups of foreground pixels.

The simplest method is to fit a circle of constant diameter to all spots in the image.
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This is easy to implement and works nicely when all spots are circular and of the same

size. In practice, this is not always the case. A generalization is to allow the circle’s

diameter to be estimated separately for each spot. GenePix [110] for the Axon scanner

and Dapple [18] are two software programs which implement such algorithms. Dapple

calculates the second differences (Laplacian) between the pixels in each small square and

finds the brightest ring (circle) in the Laplacian images. Adaptive circle segmentation

often works well, but spots are rarely perfectly circular, especially from non-commercial

arrayers.

Two methods for segmentation which do not assume circularity of the spot are

the watershed method [9] and seeded region growing [1]. Both methods require the

specification of starting pixels or seeds. Pixels adjoining is progressively added to the

spot until adjacent spots appear to be distinctly less intense. Seeded region growing

is implemented in the software Spot [17] and AlphaArray [99]. Both the watershed

method and seeded region growing allow for spots of general shapes.

One choice for the local background is to consider all pixels that are outside the spot

mask but within the bounding box. Such a method is implemented by ScanAlyze [36].

An alternative method used by QuantArray [111] and ArrayVision [109] is to consider a

disk between two concentric circles outside the spot mask. This methods is in principle

less sensitive to the the performance of the segmentation procedure because the pixels

immediately surrounding the spot are not used.

Another method is to consider the valleys of the array which are the background

regions farthest from the nearest spot. The method is used by GenePix [110]. It is

also used by Spot as a quality control measure, although no for background correction.

Since the valleys are further from any previous definitions to corruption by bright

pixels affected by printed cDNA. Any of the local background methods can result

in background estimates which are higher than the foreground values either because

of corruption by mis-segregated pixels or local artifacts or simply because of local

variation.

The Spot software estimates the background using a non-linear filter called morpho-

logical opening [90]. The filter has the effect of smoothing the entire slide image so that
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all local peaks, including artifacts such as dust particles as well as the spots themselves,

are removed leaving only the background intensities. Technically, the filter consists of

a local minimum filter followed by a local maximum filter. This method of background

estimation has several advantages over the use of local background regions. Firstly,

it is less variable because the background estimates are based on a large window of

pixels values and are yet not corrupted by bright pixels belonging to the actual spots.

Secondly, it yields background intensity estimates at the actual spot location rather

than merely nearby. Another characteristic is that the morphological background es-

timates are usually lower than the local background estimates and very rarely yield

background estimates which are greater than the foreground values. Yang et al. [104]

compared various segmentation and background estimation methods. They found that

the choice of background method has a larger impact on the log-ratios of intensities

than the choice of segmentation method and that morphological opening provides a

more reliable estimate of background than other methods.

Having estimated the background intensities, it is almost universal practice to cor-

rect the foreground intensities by subtracting the background, and the adjusted in-

tensities then form the primary data for all subsequent analysis. The motivation for

background adjustment is the belief that a spot’s measured intensity includes a contri-

bution not specifically due to the hybridization of the target to the probe, for example

non-specific hybridization and fluorescence emitted from other chemicals on the glass.

If such a contribution is present, we would like to measure and remove it to obtain a

more accurate quantification of hybridization. An undesirable side-effect of background

correction is that negative intensities may be produced for some spots and hence miss-

ing values if log-intensities are computed, resulting in loss of information associated

with low channel intensities. Researcher has begun on more sophisticated methods

of background adjustment which will produce positive adjusted intensities even when

the background estimate happens to be larger than the foreground [57]. Empirical

experience suggests that local background estimates often over-estimate the true back-

ground while the morphological method may under-estimate and these differences have

a marked impact on the mean of red and green channels for less intense spots. There is
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a need for further research on adaptive background correction methodologies which can

produce intensities with consistent behavior regardless of background estimator used.

1.1.3 Normalization

The purpose of normalization is to adjust for any bias which arises from variation in the

microarray technology rather than from biological differences between the RNA samples

or the printed probes. Most common is red-green bias due to differences between

labeling efficiencies and scanning properties of the two fluorophores complicated perhaps

by the use of different scanner settings. Other biases may arises from variation between

spatial position on a slide or between slides. Positions on a slide may vary because

of differences between the print-tips on the array printer, variation over the course of

the print-run or non-uniformity in the hybridization. Differences between arrays may

arise from differences in print quality or from differences in ambient conditions when the

plates were processed. It is necessary to normalize the intensities before any subsequent

analysis is carried out.

The general method for normalization of red-green bias is the following:

1. Global normalization: In order to correct the bias, we let R = k×G, where R and

G are the intensity of the red and green channel, respectively, and k is a constant.

Then

log2
R

G
−→ log2

R

G
− c = log2

R

k ×G
,

where the location parameter c = log2k.

2. Intensity dependent normalization:

log2
R

G
−→ log2

R

G
− c(A) = log2

R

k(A)×G
,

where the location parameter c(A) = log2k(A), A = 1
2(log2G + log2R).

3. Tip normalization:

log2
R

G
−→ log2

R

G
− ci(A) = log2

R

ki(A)×G
,
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where i = 1, · · · , I and I presents of the number of print-tips and the location

parameter c(Ai) = log2ki(A). On the same spot, the intensity of the red and

green channels are different (Figure 1.4). This is chemical mechanical bias. So we

must remove this bias (c, c(A), ci(A)) using dye-swap.

4. Paired-slides normalization (dye-swap):

Paired-slides normalization applies to dye-swap experiment: two hybridizations

for two mRNA samples, with dye assignment reversed in the second hybridization.

Denote the normalized log-ratio for the first slide by log2
R
G − c and those for the

second slide by log2
R′

G′ −c′. Here R′ and G′ are the red and green intensities of the

second slide and c and c′ indicate the normalization functions for the two slides;

these could be obtained by any of the within-slide normalization methods 1 - 3.

If c ≈ c′, then

1
2
[log2

R

G
− c− (log2

R′

G′ − c′)] ≈ 1
2
(
R

G
+ log2

G′

R′ ) =
1
2
log2

RG′

R′G
=

1
2
(M −M ′).

where M and M ′ are log2
R
G and log2

R′

G′ respectively. The main assumption here

is that c ≈ c′ and this method can be applied to a set of genes expected to

have constant expression levels (such as housekeeping genes), if such genes are

available. In dye-swap experiment, we expect that

log2
R

G
− c ≈ −(log2

R′

G′ − c′).

We can estimate the normalization function c(red-green bias) by

c ≈ c′ =
1
2
(log2

R

G
+ log2

R′

G′ ) =
1
2
(M + M ′).

Similarly, we can estimate c(A), ci(A) using loess or lowess normalization method

with polynomials fitted locally using iterated weighted least squares [24].

5. Quantile normalization

The quantile normalization method for microarray data is proposed by Ama-

ratunga and Cabrera in 2001[4]. The idea is that if Xgi denotes the transformed

spot intensity for the gth gene (g = 1, · · · , G) in the ith microarray (i = 1, · · · , I),
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the median mock array for ith gene will define as:

Mg = median{Xg1, · · · , XgI}.

Then both percentiles (Qi0, · · · , Qi100) of the ith array and (QM0, · · · , QM100)

of the median mock array are calculated. For any value Xgi, find a interval,

[Qih, Qi(h+1)], such that Xgi ∈ [Qih, Qi(h+1)] and obtain its normalized value, X ′
gi,

by linearly interpolating between the pair of points (QMh, Qih) and (QM(h+1), Qi(h+1)).

Quantile normalization is useful for normalizing across a series of conditions where

it is believed that a small but indeterminate number of genes may be differentially

expressed, and it can be assumed that the distribution of spot intensities does not

vary too much.

In all of the above normalization methods, it is usual to use all or most of the genes

on the array. It can be useful to modify the normalization methods if a suitable set

of control spots is available. A traditional method is to use housekeeping genes for

normalization. However housekeeping genes often do show sample specific bias. House-

keeping genes are also typically highly expressed so they will not allow the estimation

of dye-biases for less expressed genes when the dye-bias is intensity dependent. House-

keeping genes may also not be well represented on all parts of the plate so that spatial

effects may not be well estimated. The most satisfactory set of controls is a specially

designed microarray sample pool (MSP) titration series. MSP is analogous to genomic

DNA as control with the exception that non-coding regions are removed. Typically a

concentration titration is done to span as wide an intensity range as possible. Theo-

retically all labeled cDNA sequences could hybridize to this mixed probe sample, so it

could be minimally subject to any sample specific biases. On the other hand, the use

of all genes for normalization offers the most stability in terms of estimating spatial

and intensity dependent trends in the data. In some cases it may be beneficial to use a

compromise between the sub-array loess curves and the global titration series curve[97].

An alternative method is to select an invariant set of genes as described for oligonu-

cleotide arrays by Schadt et. al.[83] and Tseng et al. [95]. A set of genes is said to



12

be invariant it their ranks are the same for both red and green intensities. In practice,

the set of invariant or approximately invariant genes is too small for comprehensive

normalization. When there are sufficient invariant genes, the use of invariant genes is

similar to global intensity-dependent normalization as describe above.

1.1.4 Data analysis

Statistical Analysis of Microarray [96], SAM, is a penalized t-statistic to detect differ-

ently expressed genes. We will discuss more in section 2.2. The other useful software,

LIMMA, LInear Model for MicroArray data by [88], is a package for the analysis of gene

expression microarray data, especially the use of linear models for analyzing designed

experiments and the assessment of differential expression. The package includes pre-

processing capabilities for two-color spotted arrays. The differential expression methods

apply to all array platforms and two channel experiments in a unified way. LIMMA is

available from the R Project CRAN site [112] or as part of Bioconductor project. Both

parametric and nonparametric methods are applied to microarray data analysis. More

statistical methods will be discussed in chapter 2.

1.2 Affymetrix Oligonucleotide array

In oligonucleotide microarrays (or single-channel microarrays), the probes are designed

to match parts of the sequence of known or predicted mRNAs. Oligonucleotide array

technology [64] has recently been adopted in many areas of biochemical research. In

[63], 16-20 probe pairs are used to interrogate each gene; each probe pair has Perfect

match(PM) and Mismatch(MM) signal, and the average of the PM-MM differences for

all probe set (called ”average difference”) is used as an expression index for the target

gene (Figure 1.5). Researchers rely on the average differences as the starting point for

”high-level analysis” such as SOM analysis [93] or two way clustering [3]. Besides the

original publication by Affymetrix scientists [102], there have been studies on important

”low-level” analysis issues such as feature extraction, normalization, and computation

of expression indexes [82].
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Suppose that a number (I > 1) of samples have been profiled in an experiment. The

expression-level estimates are constructed from the 2 × I × 20 (assuming a probe set

has 20 probe pairs) intensity values for the PM and MM probes corresponding to this

gene. The estimation procedure is based on a model of how the probe intensity values

response to changes of the expression levels of the gene. Let θi denote an expression

level for the gene in the ith sample. The intensity value of a probe will increasing

linearly as θi increases, but the rate of increase will be different for different probes.

It is also assume that within the same probe pair, the PM intensity will increase at a

higher rate than the MM intensity. Then the statistical model for oligonuceotide array

can be:

MMij = νj + θiαj + ε (1.1)

PMij = νj + θiαj + θiφj + ε, (1.2)

here PMij and MMij denote the PM and MM intensity values for the ith, i = 1, · · · , I

array and the jth, j = 1, · · · , 20 probe pair for this gene, νj is the baseline response of

the jth probe pair due to non-specific hybridization, αj is the rate of increase of the MM

response of the jth probe pair, φj is the additional rate of increase in the corresponding

PM response, and ε is a generic symbol for a random error( usually assumed normally

distributed). The rate of increase are assumed to be non-negative. A simple model for

the PM-MM differences is :

yij = PMij −MMij = θiφj + εij .

Recently, many researchers focused on the PM-MM difference model to select differen-

tially expressed gene from oligo array experiments.

1.3 Protein microarrays

A protein microarray is a highly ordered pattern of proteins immobilized on a pre-

treated surface of a small and planar metal, plastic, or glass support. Protein array
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experiments display similarities to their DNA microarray counterparts. Protein mi-

croarray technology enables high throughput analysis of protein function, such as in-

teractions between protein, catalysis, binding to drugs and other biochemical reactions.

This can be inferred from more than 100 protein array-oriented scientific publications

in the past two year. Ultimately, a single microarray containing the complete set of

20,000 - 40,000 proteins expressed in the cells would allow comprehensive assessment of

a given protein function. Putting diverse protein repertoires on a microarray requires

the simultaneous and quality-assured production of many recombinant proteins of high

purity. Protein can be extracted from flood, fluid, cell lines, or fresh tissue by the use

of various cell analysis buffers. Sample preparation is critically important because it

may affect the reproducibility and thus comparability of a given set of proteins. Vari-

ability in protein expression between samples may result from the heterogeneity of cell

populations in a sample. The data of protein microarray is the intensity of the protein

spot scanned from image machine(e.g. Kodak CCD camera), which is very similar to

cDNA microarray data. The statistical methods in protein array is similar to methods

in cDNA microarray, but statistical models are more complicated than that of cDNA

microarray because of heterogeneity.

Proteins carry out all kinds of housekeeping activities, they are catalysts of chemical

reactions, they act as channels and pumps, and they perform motor functions. Some

of the proteins involved in protein array experiments are as follows:

• Antibodies

Antibodies are proteins produced by B-lymphocyte cells, which are a certain type

of white blood cell. As part of the immune system, the function of an antibody is

to bind with a specific protein lying on the surface of a foreign call. This protein-

binding property plays an important role in the technology for the realization of

protein array experiments. There are five classes of antibodies that are also called

immunoglobulins.

• Antigens

Antigens are proteins that lie on the surface of foreign cells and are detected by
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specific antibodies. Antigens will bind with antigens in order to neutralize them

and to help other parts of an organism’s immune system recognize foreign cell

such as bacteria or viruses.

• Enzymes

These are proteins that perform catalytic functions; that is, they accelerate a

chemical reaction without been consumed by it. In particular, enzymes are in-

volved in the synthesis of DNA and proteins. Enzymes are involved in the syn-

thesis of proteins from RNA code by translation. The RNA code is subdivided

into triplets of ordered nucleotides that are called codons. Proteins are formed

of chains of amino acid molecules. There are 20 possible amino acids, and each

codon codes for one specific amino acid, but more than one codon may code for

the same amino acid. The process of protein formation consists of translating

the RNA code into a chain of amino acids bonded together to form the protein

molecule. The enzyme’s role in the protein formation is similar to the role of an

assembly line in the making of a product.

Although there are many similarities between the images scanned from protein ar-

rays and the images scanned from DNA microarrays, the processes that generated them

are quite different. Some of the issues that differentiate protein arrays from their DNA

sibling that affect the data analysis [5]. The data analysis part is essentially similar to

data from cDNA microarray experiments.

1.4 ChIP-chip array

ChIP-chip( or ChIP-on-chip), known as genome-wide location analysis, is a technology

for isolating genomic sites occupied by specific DNA binding proteins in living cells.

This strategy may be used to annotate functional elements, such as promoters, mo-

tif region, enhancers, represser elements, and insulators, in genomes by mapping the

locations of protein markers associated with these sites. ”ChIP” refers to ”chromatin

immunoprecipitation”, which is a method for isolating DNA fragments that are bound

by specific DNA binding proteins. ”Chip” indicates the DNA microarray technology
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for measuring the concentrations of these DNA fragments. The models for ChIP-chip

data are the probabilities calculated for one random genome sequence manifest them-

selves as frequencies among the large number of genome sequences in an experiment.

Some researchers [82][83] used protein arrays to analyze the active promoter in human

genome. They used antibodies specially recognizing components of the transcription

pre-initiation complex to obtain a high-resolution map of active promoters in human

genome. Using this approach, they were able to annotate transcriptional start sites

and discover novel genes. Recent ChIP-chip studies have begun to address the question

of how the cell is able to use single transcription factor to elicit multiple downstream

transcriptional responses.

1.5 Single Nucleotide Polymorphisms(SNPs)

A SNP is a specific location in our DNA where different people have different DNA

bases. 99.9% of one individuals DNA sequences are identical to that of another person.

Over 80% of this 0.1% difference will be SNPs. A SNP is a single base substitution

of one nucleotide with another. Both substitutions have to be observed in the general

population at a frequency greater than 1%. An example of a SNP is individual ”A” has

a sequence GAACCT, while individual ”B” has sequence GAGCCT, the polymorphism

is a A/G. Current estimates are that SNPs occur as frequently as every 100-300 bases.

This implies that in an entire human genome there are approximately 10 to 30 million

potential SNPs. More than 4 million SNPs have been identified and the information

has been made publicly available. Unfortunately, many of these SNPs have unknown

associations.

Recent work has suggested that SNPs in human population are not inherited in-

dependently; rather, sets of adjacent SNPs are present on alleles in a block pattern,

so called haplotype. Many haplotype blocks in human have been transmitted through

many generations without recombination. This means although a block may contain

many SNPs, it takes only a few SNPs to identify or tag each haplotype in the block

Many common diseases in humans are not caused by one genetic variation within a
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single gene, but are determined by complex interactions among multiple genes, envi-

ronmental and lifestyle factors. Genetic factors confer susceptibility or resistance to a

disease and influence the severity or progression of disease. Researchers may begin to

reveal relevant genes associated with a disease, by studying SNP profiles or haplotypes

associated with a disease trait. Association study can detect and indicate which pattern

is most likely associated with the disease-causing genes. Eventually, SNP profiles that

are characteristic of a variety of diseases, will be established. Then, it will only be a

matter of time before physicians can screen individuals for susceptibility to a disease

just by analyzing their DNA samples for specific SNP patterns.

The race among pharmaceutical companies today, is to apply new system genomics

approach to identify novel targets and validate these targets in the most efficient fash-

ion. SNP research will provide fundamental understanding of many polygenic diseases,

thus providing new therapeutic targets. Another significant goal is to identify those

SNPs which are associated with significant biological effects in response to chemical

drugs. A large percentage of people given a drug respond in the intended medically

beneficial way, however some smaller percentage might either have no response or have

a life threatening response and death. This adverse drug response (ADR) is believed

to cause thousands of deaths annually. The SNP effort will serve as the bedrock of

pharmacogenomics, the emerging field of personalized medicine: the right drug, in the

right dose, to the right person, at the right time.

SNP study is also extremely important in organisms other than humans. Within

agriculture, genetic modification of the agriculturally important crops (corn, wheat,

rice, soybeans, etc.) could lead to improve crop yields at lower cost by reducing the

amounts of fertilizer, insecticides, herbicides required. Within microorganisms and

viruses, SNPs are known to cause increased drug resistance. Some of the recent E. Coli

outbreaks are due to new evolving strains of the bacterium. HIV, the causative agent

of AIDS, has historically been so difficult to treat with drugs due to very high mutation

frequency primarily in the form of SNPs.

Recently, SNPs are found to be very useful for a complete different purpose. SNPs
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turned out to be valuable genetic markers for revealing the evolutionary history of pop-

ulations. Their occurrence throughout the genome also makes them ideal for analysis of

specification and historical demography, especially in light of recent theory suggesting

that many unlinked nuclear loci are needed to estimate population genetic parameters

with statistical confidence. In spite of having lower variation compared with microsatel-

lites, SNPs should make the comparison of genomic diversities and histories of different

species (the core goal of comparative biogeography) more straightforward than has

been possible with microsatellites. The most pervasive, but correctable, complication

to SNP analysis is a bias toward analyzing only the most variable loci, an artifact that

is usually introduced by the limited number of individuals used to screen initially for

polymorphisms.

1.6 DNA Barcoding of Life(BoL)

In the past two years, a series of studies [46][47] have been published in which ”DNA

barcoding” was proposed as a tool for differentiating biological species. Barcoding is

based on the assumption that short gene regions evolve at a rate that produces clear

interspecific sequence divergence while retaining low intraspecific sequence variability.

With million of species and their life-stage transformations, the animal kingdom pro-

vides a challenging target for taxonomy. Recent work has suggested that a DNA-based

identification system, founded on the mitochondrial gene, cytochrome c oxidase sub-

unit 1 (COI ) with 648 base pairs long, can aid the resolution of this diversity. COI

has emerged as a suitable barcode region for most taxonomic groups of animals. Some

articles [46] [47] showed that the sequence divergences at COI sequence regularly enable

the discrimination of closely allied species in most animal phyla. This success in species

diagnosis reflects both the high rates of sequence change at COI in most animal groups

and constrains on intraspecific mitochondrial DNA divergence arising, at least in part,

through selective sweeps mediated via interactions with the nuclear genome. There is

no compelling a priori reason to focus analysis on a specific gene, but COI sequence

does have two important advantages. First, this gene is very robust . Second, COI

appears to possess a greater range of phylogenetic signal than any other mitochondrial
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gene. So the species-level diagnoses can routinely be obtained through COI analysis.

1.7 The Y Chromosome

The Y chromosome, with the genes to make a man, has been sequenced. It is of-

ten regarded as a genetic wasteland, but the sequence of the Y chromosome reveals

that we may have underestimated its powers. Because of its distinctive role in sex

determination, the Y chromosome has long attracted special attention from geneticists,

evolutionary biologists and even the lay public. It is known to consist of regions of

DNA that show quite distinctive genetic behavior and genomic characteristics. The

two human sex chromosomes, X and Y (Figure 1.6), originated a few hundred million

years ago from the same ancestral autosome, a non-sex chromosome, during the evo-

lution of sex determination [72]. They then diverged in sequence over the succeeding

aeons. Nowadays, there are relatively short regions at either end of the Y chromosome

that are still identical to the corresponding regions of the X chromosome, reflecting the

frequent exchange of DNA between these regions (’recombination’) that occurs dur-

ing sperm production [19]. But more than 95% of the modern-day Y chromosome is

male-specific, consisting of some 23 million base pairs (Mb) of euchromatin, the part of

our genome containing most of the genes, and a variable amount of heterochromatin,

consisting of highly repetitive DNA and often dismissed as non-functional. Skaletsky

et al. [87] reported the complete sequence of the 23-Mb euchromatic segment, which

they designated the male-specific region of the Y (MSY). As Skaletsky et al. reported,

the MSY is a mosaic of complex and interrelated sequences that made this one of the

most problematic regions of the human genome thus far to be successfully sequenced

and assembled. How much we can learn from Y-chromosome analysis depends on:

1. Choosing the right loci to look for mutations on the Y-chromosome. Loci mutate

at different rates, so choosing the right loci is important. Kayser et. al. [51] estab-

lished direct experimental evidence to support mutation rates at Y-chromosome

loci in father-son pairs. They used the binomial probability model to estimate

the mutation rate at microsatellite loci in human Y-chromosome.
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2. Choosing how many loci to compare between Y-chromosomes Bruce Walsh [97] at

the University of Arizona used the binomial probability model to determine how

many markers are needed to group Y-chromosomes into biological family groups.

The minimum number of markers appears to be 10 by Maximum Likelihood Es-

timation from Y-chromosome microsatellite markers.

3. The number of researchers participating in a Y-chromosome analysis is important

to establish the halpotype of a family group. The more scientists that participate,

the more confident we can be of grouping individuals together as family groups.

1.8 Discussion

Completed in 2003, the Human Genome Project (HGP) was a 13-year project coordi-

nated by the U.S. Department of Energy and the National Institutes of Health. The

goals of Human Genome Project are (1) identify all the approximately 20,000-25,000

genes in human DNA, (2) determine the sequences of the 3 billion chemical base pairs

that make up human DNA, (3) store this information in databases, (4) improve tools

for data analysis, (5) transfer related technologies to the private sector, and (6) address

the ethical, legal, and social issues (ELSI) that may arise from the project. These goals

are all very important to us. In addition, after HGP, many types of genomic data other

than human’s are generated from researchers based on different research purposes. I

only list some of them that are more interested by researchers. In this thesis, I only

focus on the analysis of cDNA microarray and barcode of life.

In this thesis, I propose a group of methodologies that try to answer some of the

biological questions that are pored from the problems and data. First, in chapter 2,

we develop an algorithm to estimate the proportion of differentially expressed genes

in the microarray experiments. Second, in chapter 3, we develop non-parametric and

parametric methods to estimate error distributions. Third, in chapter 4, we use Linear

Discriminants Analysis (LDA) to classify the species in the NDA barcode data which

is a data with high dimension (many variables) and low samples (few observations).
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Figure 1.1: The Central Dogma of Molecular Biology(Source: Access Excellence)
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Figure 1.2: Flow chart of microarray experiments
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Biological question 

Perform microarray experiment 

Scan image 

Convert scanned image to spotted image 

Check quality of spotted image 

Adjust for background 

Transform and normalize data 

Check quality of normalized data 

Analyze data 

Reverse transcribe to 
cDNA 
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Microarray 

• Summarization 
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differentially 
expressed genes 

• Pattern discovery 
• Class prediction 

Collect mRNA 

Interpret and report finding 

Figure 1.3: A flow chart of a typical microarray data analysis (Source: D. Amaratunga
and J. Cabrera(2004). Exploration and Analysis of DNA Microarray and Protein Array
data)
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   (a)      (b) 

 
 
Two MA plots of the same microarray. (a) with morphological background, (b) with local 
median background. Data from the Nutt Lab, WEHI. (From Symth 2003) 
 
 

 
The same two MA-plot after tip-normalization. 

Figure 1.4: Tip normalization
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Figure 1.5: Affymetix oligonuceotide microarray(From Affymetrix website)
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Figure 1.6: X-chromosome(left) versus Y-chromosome(right) Source: Willard,
H.(2003), Nature
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Chapter 2

cDNA microarray experiments and Data analysis

2.1 Introduction to the cDNA microarray experiments

The human genome and a number of other genomes have been almost fully sequenced,

but the functions of most genes are still unknown. One of the difficulties is to un-

derstand gene functionality since gene expression is only one of the pieces of cellular

processes sometimes called biological pathways or networks, and it is not yet possible to

observe these pathways directly. The technology of cDNA microarray is now becoming

widespread for measuring the simultaneous expression levels of thousands to tens of

thousands of genes in a given cell type. It provides a powerful tool for genetic research

and has been used to monitor changes in gene expression during important biological

processes ( e.g., cellular replication and the response to changes in the environment),

and to study variation in gene expression across collections of related samples(e.g., tu-

mor samples from patients with cancer). Statistical considerations are frequently to

address the analysis of microarray data, as researchers sift through massive amounts

of data and adjust for various sources of variability in order to identify the important

genes among the many which are measured.

Any microarray experiment involves a number of distinct stages. First there is the

design of the experiment(section 1.1.1). The researchers must decide which genes are to

be printed on the array, which sources of RNA are to be hybridized to the arrays and on

how many arrays the hybridizations will be replicated. Secondly (section 1.1.2), after

hybridization, there follows a number of data-cleaning process of the microarray data.

The microarray images must be processed to acquire red and green foreground and

background intensities for each spot. The intensities have to be normalized to adjust

for dye-bias and for any systematic variation other than due to the difference between
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the RNA samples being studies. Thirdly (section 1.1.3), researchers tried to select the

genes that are differentially expressed or group of genes whose expression profiles can

reliably classify the different RNA sources into meaningful groups. Then in the next

section, we will focus on standard statistical methods and models to select differentially

expressed genes.

2.2 A review of standard statistical techniques for selecting differen-

tially expressed genes

2.2.1 t-statistic method

One of the core goals of microarray data analysis is to identify which of the genes

show good evidence of being differentially expressed. This goal has two part. The

first is select a statistic which will rank the genes in order of evidence for differential

expression, from strongest to weakest evidence. The second is to choose a critical-value

for the ranking statistic above which any value is considered to be significant. The first

goal is more important than the second and, as it turns out, also easier. The primary

importance of ranking arises from the fact that only a limited number of genes can

be followed up in a typical biological study. In many microarray studies the aim is to

identify a number of candidate genes for confirmation and further study. It will usually

be practical to follow-up only a limited number of genes, 100 say, so it is most important

to identify the 100 most likely candidates. The complete list of all genes which can be

considered statistically significant may be of less interest if this list is too large to be

followed up.

For simplicity, we will assume in this section that we have data from the simplest

possible experiment. We will assume that we have a series of n replicate arrays on

which samples A and B have been hybridized and we wish to identify which genes are

differentially expressed. Many data analysis programs sort the genes according to the

absolute level of M̄ , where M̄ is the mean of the M -values for any particular gene across

the replicate arrays. This is known to be a poor choice as it does not take account of

the variability of the M -values over replicated is not constant across genes and genes
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with larger variances have a good chance of giving a large M̄ statistic even if they are

not differentially expressed. A better choice is to rank genes according to the absolute

value of the t-statistic

t =
M̄

s/
√

n
,

where s is standard deviation of the M -values across the replicates for the gene in

question, as this incorporates a different variability estimate for each gene. An added

advantage of the t-statistic is that it introduces some conservative projection against

outliers M -values and poor quality spots. Any M -value which is an outliers will give

rise to a large standard deviation s which will usually prevent the gene in question from

being spuriously identified as differentially expressed.

The ordinary t-statistic is still not ideal because a large t-statistic can be driven by

an unrealistically small value for s. The shortcoming of the t-statistic is the opposite

of that of M̄. Genes with small sample variances have a good chance of giving a large

t-statistic even if they are not differentially expressed. A suitable compromise between

the M̄ and t-statistics is therefore desirable. Efron et al. [34] have used penalized

t-statistics of the form

t =
M̄

(a + s)/
√

n
,

when assessing differentially expressed for oligonucleotide microarrays. Lönnstedt and

Speed [64] adopt a parametric empirical Bayes approach to the problem of identify-

ing differentially expressed genes. The proposed a B-statistic which is an estimate of

the posterior log-odds that each gene is differentially expressed. Subject to the para-

metric assumptions being valid for the data, values for the B-statistics greater than 0

correspond to a greater than 50-50 chance that the gene in question in differentially ex-

pressed. The B-statistic is equivalent for the purpose of ranking genes to the penalized

t-statistic

t =
M̄√

(a + s2)/n
,

where the penalty a is estimated from the mean and standard deviation of the sample

variances s2. Tusher [96] choose a to minimize the coefficient of variation of the absolute

t-values while Efron [35] choose a to be the 90th percentile of the s values. These choices
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are driven by empirical rather than theoretical considerations. Efron et al. uses the

above t-value as the basis for a non-parametric empirical Bayes method leading to an

estimated log-odds that each gene is differentially expressed. Lönnstedt and Speed [64]

show in a simulation that both forms of penalized t-statistic are far superior to the

mean M̄ or to ordinary t-statistic for ranking differentially expressed genes.

The penalized t-statistics can be extended in several natural ways to apply to more

general experimental situations. If there are missing values for some arrays, perhaps

because low quality spots have been flagged for removal, then the value n in the de-

nominator will reflect the actual number of observations for each gene rather than the

total number of arrays.

The t-statistic also extends to more complicated experiment designs. For example

we might use a penalized two-sample t-statistic if we are comparing samples A and B

through a reference rather than directly on the same arrays. In that case there will be

nA replicate arrays comparing sample A with reference RNA and nB replicate arrays

comparing B with the same reference and a two-sample t-statistic,

t =
M̄A − M̄B

sp

√
1

nA
+ 1

nB

,

where sp =
√

a + s2 is the penalized pooled sample standard deviation, and s is the

pooled sample standard deviation from sample A and B, might be used. Here M̄A and

M̄B are the average of the M-values for the two groups of arrays. Tusher et al. [96]

suggested another panelized test statistics called SAM t statistics,

Tg(c) =
M̄A − M̄B

sp

√
1

nA
+ 1

nB
+ c

,

where SAM is for ’ significant analysis of microarray’. An implement of this SAM by

Tusher et al.[96] is as follows:

Let sα be the αth percentile of the {sg} values, and

Tg(sα) =
M̄A − M̄B

sp

√
1

nA
+ 1

nB
+ sα

.

Compute the percentiles, q1 < q2 < · · · < q100, of the sg values. For α ∈ {0, 5, 10, · · · , 100},

compute the MAD( median absolute deviation from median), vj(α) of the Tg(sα) values
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within the interval [qj , qj+1] for j = 1, · · · , 100. They then compute cv(α), the coeffi-

cient of variation of the vj(α) values and then choose as α̂ the value of α that minimizes

cv(α) and fixed as α̂ the value sα̂.

In the general case, differential expression can be judged using a penalized t-statistic

of the form

t =
b

sr × se
,

where b is a regression coefficient estimated by the multiple regression which discrim-

inates between the RNA samples of interest, se is the unscaled standard error for b

returned by the multiple regression and sr =
√

a + s2 where s is the residual standard

deviation returned by the multiple regression, and a is the penalized term. Lönnstedt

and Speed indicated the extension of the empirical Bayes B-statistic to general experi-

mental designs.

Another direction in which the t-statistic can be generalized is to replace the sample

mean M̄ and sample standard deviation s with location and scale estimators which are

robust against outliers. This extension is very useful for microarray data because it is

impossible to guarantee or adjust for the data quality of every individual spot. The

general idea of robust estimation is to replace M̄ and s with values which behave

very much like M̄ and s when the data actually are normally distributed but which

are insensitive to a small proportion of aberrant observations [49] [66]. For general

microarray experiments, a robust multiple regression can be computed for each gene

and a penalized t-statistic formed from the robust versions of b, s and se.

2.2.2 Statistical models for microarray experiments

The statistical model for t-statistics assumes that the preprocessed intensities are ap-

proximately normally distributed with variances homogeneous across the groups, i.e.

Xgij ∼ N(µgj , σ
2),

where g(g = 1, · · · , G) indexes the genes on the array, j, (j = 1, 2) indicates the groups,

and i(i = 1, · · · , nj) is the samples. For each gene g, performed a t statistic to test

H0 : µg1 = µg2. Then Γ∗ is a set of genes that are statistically significant at some
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pre-set α level for the test, or is a set of h genes with the smallest p-values for some

pre-set number h. Multiple comparison problem is a very important when determining

Γ∗. In 1995, Benjamini and Hochberg [8] proposed controlling the false discovery rate

(FDR) :

FDR = E[
V

R
|R > 0]P (R > 0),

where V is the number of hypotheses rejected while null is true, and R is the total

number of hypotheses rejected. Storey and Tibshirani [92] proposed a modified version

of the FDR, called the positive false discovery rate (pFDR):

pFDR = E[
V

R
|R > 0].

pFDR is especially appropriate for exploratory analysis in which one is interested in

finding several significant results among many tests and at least one test is rejected. So

in microarray data analysis, we use pFDR to ensure that false positive rate is not too

high.

The variation of microarray data is so significant that we should not ignore when

replications are small, but the manufacturers of microarray equipment do not stress

the need for replication of studies. As a result, most current molecular genetic studies

that use microarray technology are sometimes done without replication or with little

replications (3, 4, · · · ). The difficulty is that if replications are small the distribution

of residuals of the intensities is often not normally distributed. That leads to many

statistical models losing power. (e.g., Two-sample t test or ANOVA model) However,

a great improvement of t statistics is a conditional t (Ct) suite of tests proposed by

D. Amaratunga and J. Cabrera [5][6] to identify differentially expressed genes while

the microarray experiment is with little replication. The statistical model of Ct is not

assumed to be a normal distribution for normalized data Xgij . They found that when

comparing two groups of microarray data to determine which genes are differentially

expressed, t-statistics are usually used, but it has been observed that if the sample size

per group is small (as it often is), the dependence between the t test statistic and the

pooled standard error estimate leads to an excessively high false positive rate for low

variance genes and an excessively high false negative rate for high variance genes. The
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problem is that the data are longer tailed than a normal distribution, the variability of

a gene depends on its expression level, and the genes are co-dependent in clumps. The

statistical model for Ct is followed:

Suppose Xgij are the log transformed and suitably normalized intensities . The

intensities can be modeled as :

Xgij = µgj + σgεgij , (2.1)

where µgj is the mean of the gth gene in the jth group, and σ2
g is the variance of the

gth gene. The treatment effect for the gth gene is

τg = µg2 − µg1.

The random errors, εgij ∼ Fg, unspecified distribution with 0 mean and unit variance,

with some correlation across genes. The t test statistic for testing H0 : τg = 0 for gene

g is :

Tg =
X̄g2 − X̄g1

sg(1/n1 + 1/n2)1/2

where sg, the pooled standard error, is :

sg =

√
(n1 − 1)s2

1g + (n2 − 1)s2
2g

n1 + n2 − 2
.

The conventional approach would designate any gene whose |Tg| > tα, for some pre-set

value of α(0 < α < 0.5), as statistically significant at level α, with the critical value tα,

defined by

P (|T | > tα;H0) = α. (2.2)

This would select a set of genes. For example, mice and mice 2: Two mouse data sets

from toxicology experiments (Amaratunga and Cabrera (2004) [5]). These datasets

correspond to typical toxicology experiments where a group of mice is treated with

a toxic compound and the objective is to find genes that are differentially expressed

against samples from untreated mice. The mice and mice2 are two of the data sets

that consist n1 = n2 = 4 mice in the control and treatment groups and total number of

genes are G = 4077 from mice and G = 3434 for mice2, respectively. They represent
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two examples of cDNA chips, the first one mice has a high proportion π of differentially

expressed genes whereas mice2 has a much smaller π.

In both data sets, it is observed (Figure 2.1) that there is a dependence between

|Tg| and sg substantial enough to seriously disrupt the performance of the t test, where

s1g, s2g are the standard error group 1 and group 2, respectively. This happens even in

the simple null case where Fg is a standard normal distribution, µg1 = µg2 and σg = σ

for all genes g; then

Tg|sg ∼ N(0,
σ2

s2
g

)

indicating that the variance of Tg|sg is inversely proportional to s2
g. This explains the

wedge effect which is the fact that the variance of Tg|sg is a strictly decreasing function

of sg. From the real data, the wedge effect exists even when σ2
g is not constant across

genes and is in fact greater than when it is constant. The wedge effect is more significant

when n1 and n2 are small. It seems that when replicates are small, the wedge effect is

especially a cause for concern. Not only is the wedge effect very significant, but also

the sg estimates are quite unreliable. This leads to a high false positive rate for genes

with low variability and a high false negative rate for genes with high variability. For

number of replications is small, it would be preferable to examine the distribution of |T |

conditional on s. D. Amaratunga and J. Cabrera proposed a critical envelope, tα(sg),

rather than a constant critical value, as

P (|T | > tα(sg)|sg;H0) = α

to assess significance. This is the idea of Ct approach. They developed an R-package

DNAMR to detect the differentially expressed genes.

2.3 The Shrinkage Algorithm on Microarray data

2.3.1 Introduction to a statistical model for cDNA microarray

In this section, we generalized the statistical model in (2.1) by adding gene effects.

Then the normalized intensities {Xgij} of microarray data can be modeled as follows:

Xgij = µg + τgi + σgεgij , (2.3)
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where µg and σ2
g , g = 1, · · · , G, are the effect and variance of the g-th gene respectively,

τgi is the effect of the g-th gene in the i-th group (i = 1, 2), and j = 1, · · · , ni indexes

the samples. This is the same model in Amaratunga and Cabrera (2004)[5](2006)[6].

The treatment effect of the g-th gene is :

τg = |τg2 − τg1|.

We assume that {εgij} are iid observations from an unknown distribution F and we

assume that σg and τg are iid observations from unknown distributions Fσ and Fτ ,

respectively. Fσ is the distribution of the gene variances and Fτ is like to have mass

zero with probability π representing the proportion of the genes that are not differen-

tially expressed. In microarray data analysis, when the number of samples per group

is very small (3, 4, 5, · · · ) and residuals are subject to two constraints (sample mean

X̄ = 0, sample standard deviation s = 1), then if we pool the residuals together, the

estimated distribution F̂ε in (2.4) that is obtained gives a very poor estimate of the

error distribution in the sense of Q-Q normal plot, even though the errors come from

normal distribution Figure 2.2 (a).

F̂ε = Empirical CDF{ε̂gij =
Xgij − X̄g

sg
, g ∈ SG, i = 1, 2, j = 1, · · · , ni}, (2.4)

where X̄ is the sample mean and sg is the sample variance for gene g. We proposed a

method to address this problem in section 2.3.2.

To illustrate the estimation of π, we apply our procedure for the mouse data sets

mice and mice2. They represent two examples of cDNA chips, the first one mice has a

high proportion π of differentially expressed genes whereas mice2 has a much smaller

π.

2.3.2 Procedures to estimate Fε, Fσ, and Fτ

The data from cDNA microarray experiments consists of suitably normalized intensities:

Xgij , where g(g = 1, · · · , G) indicates the genes on the microarray, i(i = 1, 2) indexes

the groups, and j(j = 1, · · · , ni) is the i-th mouse in the j-th group. The model we

used in this section is (2.3), which are

Xgij = µg + τgi + σgεgij .
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If the sample sizes were bigger the unknown distributions could be readily estimated

by their respective cdf’s but for small sample sizes the cdf’s would produce very biased

estimators. In the remainder of this section we will provide three procedures to estimate

the three distributions Fε , Fτ , and Fσ , which try to overcome the biases induced by

small sample size.

In the model step:

1. Estimating Fε :

In (2.3) when the number of samples per group is very small (3, 4, 5) and after

residuals are subject to two constraints (sample mean X̄ = 0, sample standard

deviation s = 1) then if we pool the residuals together, the empirical distribution

that is obtained gives a very poor estimator of the error distribution Fε.

For example: Suppose we sample 1000 genes from N(0,1) with two groups of

subjects of sizes 4 and 4. The empirical distribution of the residuals is not so

close to the true error distribution (which is standard normal) which is shown in

the Figure 2.2 (a). We also simulated the t-distribution with degrees of freedom

4 and the QQ-plot of the residual distribution is not so good which is shown in

the Figure 2.2(c).

One simple way to avoid this problem is to select a subset of genes SG that have

small absolute t-values (say below 1 or some threshold that gives a large set of

numbers). For each gene in SG, both samples are pooled together and normalized

by subtracting the mean of genes and dividing by the standard deviation of genes.

If the sample size per group is very small (3, 4, 5) instead of the sample mean

and standard deviation it is much better to use bi-square for location and Huber

proposal 2 for scale [49]. This will result in a table of residuals ε̂gij , g ∈ SG .

The error distribution Fε is estimated by

F̂ε = Empirical CDF{ε̂gij =
Xgij −Bg

Hg
: g ∈ SG, i = 1, 2, j = 1, · · · , ni}, (2.5)

where Bg and Hg are the bi-square location estimator for gene g and scale estima-

tor of Huber robust M-estimator (proposal 2) for gene g, respectively. The Figure
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2.2 (b,d) shows the QQ-plot for the estimated error distribution on t-distribution.

The improvement is very clear.

2. Estimating Fσ:

We follow the method described in Amaratunga and Cabrera [5] [6]. They pointed

out that the empirical distribution, F̂σ, of sg is a very poor estimator of the

distribution Fσ, because on average F̂σ is much more scattered than Fσ. They

proposed an estimate F̃σ of Fσ that shrinks F̂σ toward its center and the bias can

be corrected using a method initially proposed in Amaratunga and Cabrera [4].

It is also a version of the target estimation procedure of Cabrera and Fernhols

[20]. The key concept is to estimate the function h : [0, 1] −→ [0, 1] defined by

h(Fσ(x)) = F̂σ(x). Since h is strictly monotonic, it can be inverted in order to

obtain an estimate Fσ(x) are follows:

(a) Assume that F̂σ(x) is the true distribution of σ and draw a random sample,

s∗2, from F̂σ.

(b) Take a random sample (with replacement) of size N from F̂ε : r∗ij ∼ F̂ε for

i = 1, · · · , nj , j = 1, 2.

(c) Combine these to form pseudo-data: X∗
ij = s∗r∗ij .

(d) Calculate the pooled standard error s∗∗ for the pseudo-data {X∗
ij}.

(e) Repeat steps (a)-(d) a large number (say 100,000) of times and record, for

each iteration, the pair of values {s∗2, s∗∗2}.

(f) Let F̂σ∗(x) be the empirical distribution F̂σ onto F̂σ∗ . i.e.

ĥ(y = F̂σ(x)) = F̂σ∗(F̂−1
σ (y))

and then

ĥ−1(y) = F̂σ(F̂−1
σ∗ (y)),

where F̂ ∗
σ is the empirical cdf of s∗∗2. Hence based on this procedure, the

bias-corrected estimator of Fσ can be obtained as:

F̃σ(x) = F̂σ(F̂−1
σ∗ (F̂σ(x))). (2.6)
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Once bias-corrected edf, F̃ (x) is estimated, it can be used to generate the

pooled standard errors in 1.1) of the algorithm below.

3. Estimating Fτ :(determine the proportion of differential expressed genes)

We said earlier that τg is drawn from some distribution Fτ . We expect that Fτ

has a mass at zero of probability Fτ (0) ≥ 0 , which represents the genes that are

not differentially expressed. In order to estimate the probability P (τg = 0) we

apply an algorithm that will produce an estimator F̃τ such that the

EF̃τ
(F̂ ∗

τ (t)) = F̂τ (t),

where F̂ ∗
τ (t) is the random variable representing the empirical cdf of τ∗∗ at value

t, which is constructed in following algorithm and F̂τ (t) represents the empirical

cdf of actual observed value.

The algorithm is as follows:

Algorithm:

Step 1:

1.1) Draw a random sample, s∗ , from F̃σ , which is the bias-corrected edf esti-

mate of F̂σ in (2.6).

1.2) Estimate the error distribution Fε with the empirical distribution F̂ε defined

in (2.5).

1.3) Take a random sample (with replacement): rgij ∼ F̂ε for i = 1, 2, j =

1, · · · , ni, g = 1, · · · , N.

1.4) Draw a sample τ∗g from F̂τ (t) = I{t≥0}, where I{t≥0} = 1 if t ≥ 0 and

I{t≥0} = 0 if t < 0.

1.5) Construct the pseudo-data:X∗
g1j = sg ∗ rg1j , X

∗
g2j = τ∗g + sg ∗ rg2j .

1.6) Reconstruct the distribution F ∗
F̂τ

= E(F̂ ∗
τ |F̂τ ) , where F̂ ∗

τ is the distribution

of τ∗∗ by pseudo-data: τ∗∗g = |X̄∗
g2 − X̄∗

g1|.

1.7) Start by setting F̂
(old)
τ = F̂τ .
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1.8) Let F̂
(new)
τ = F̂τ (F ∗−1

F̂
(old)
τ

(F̂τ )).

1.9) Set F̂
(old)
τ = F̂

(new)
τ and go to 1.3).

1.10) Iterate this procedure until convergence (approximately 100 iterations). At

convergence we get our final estimate F̃τ = F̂
(new)
τ .

1.11) Give a cutoff point, say η, which is a 95% quantile of the final F̃τ (t).

Step 2:

2.1) Repeat 1.4)-1.8) using all original data Xgij and the estimated F̂τ .

2.2) Get the estimated percentage of τ∗∗g which is greater than η× 95% quantile

of standard normal.

Theorem 2.3.1. At convergence the estimator F̃τ is a fix point of the step in 1.8) of

the algorithm. That is F̃τ = F̂τ (F ∗−1
F̃τ

(F̂τ )) , then we have

EF̃τ
(F̂ ∗

τ ) = F̂τ . (2.7)

Proof. If the algorithm converges, then F̃τ = F̂τ (F ∗−1
F̃τ

(F̂τ )). Thus

F̂τ ◦ F̃−1
τ ◦ F̂τ = F ∗

F̃τ
= E(F̃τ |F̃τ ) = F̃τ

⇒ F̂τ ◦ F̃−1
τ = F̃τ ◦ F̂−1

τ

⇒ (F̂τ ◦ F̃−1
τ )2 = I

⇒ F̂τ ◦ F̃−1
τ = I

or F̂τ ◦ F̃−1
τ = −I( impossible, since F̂τ , F̃τ ≥ 0)

Hence, EF̃τ
(F̂ ∗

τ ) = EF̃τ
(F̃τ ) = F̃τ = F̂τ .

Remark 2.3.2. Base on our simulations, the algorithm converges to a fix point distri-

bution F̃τ in at most 100 iterations and very fast.

Remark 2.3.3. At convergence, F̃τ is approximately the same as F̂τ and F̂ ∗
τ is also

approximately the same as F̃τ , such that we have a fix point result EF̃τ
(F̂ ∗

τ ) = F̂τ .
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Remark 2.3.4. This is a two-stage estimation method. We split data into two pieces.

One is non-informative data whose t statistics are less than some threshold and it pro-

duces a good estimation of the error distribution. The other is the informative data, we

use our algorithm to estimate the distribution of τg to get a limit convergent distribution,

which is our target distribution F̃τ .

Remark 2.3.5. Amaratunga and Cabrera(2004) [5] used ”target estimation” techniques

to obtain a bias-corrected estimate F̃σ of F̂σ and we then generate this concept to obtain

a limit distribution F̃τ and show this limit distribution is the distribution we try to

estimate. This is a very useful extension.

2.3.3 Performance assessment

To assess the performance of this method, we simulate data points, which are identically

and independently distributed.

1. Xgij ∼ F (τg, σ
2), where G = 10000, n1 = n2 = 4 and we assume that Gsig =

1000, · · · , 9000 of G genes were differentially expressed between two groups and

their difference was δ, i.e. τg = δ(δ = 1, 2) for all g = 1, · · · , Gsig, and τg = 0

otherwise.

2. Xgij ∼ F (τg, σ
2
g), where G = 10000, n1 = n2 = 4 and we assume that Gsig =

1000, · · · , 9000 of G genes were differentially expressed between two groups and

their difference was δ = 1, 2, for all g = 1, · · · , Gsig, and τg = 0 otherwise and σ2
g

are chi-square distributed with degrees of freedom 3. We calibrate the mean of

σ2
g to 1. i.e. σ2

g/3.

We simulated many distributions F , which could be normal, t, gamma, or lognormal

with mean µg and variance σ or σg.

Base on simulation studies, we compare our method to permutation tests and t-tests

using a threshold of 0.05 to determine significance. These two methods are standard

in biological applications. Our method is much more accurate than other two methods

(Table 2.1-2.4, Fig 2.3-2.11). Each cell in the table is the mean (standard deviation)
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based on 10 times simulations on each condition. In Figure 2, the straight line represents

the true values and the red line is obtained by the smooth spline function. Because, the

pFDR emphasizes the fact that an adjustment is only necessary when there are positive

finding, we calculate the pFDR to our method in different values of λ ∈ {0.1, · · · , 0.9}

(Table 2.5-2.6). We find that the pFDR decreases when the true λ increases and it

belows 40% when difference δ = 2 and 60% when difference δ = 1. But when λ > 0.5,

the pFDR is less than 10% when difference δ = 2, the pFDR is less than 20% when

difference δ = 1. That is an acceptalbe result, becasue we get a very accurate estimates

and the pFDR is not too high.
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2.4 Discussion and extensions

In this section, the standard analysis of microarray data are introduced and we pro-

posed a statistical model for two-channel cDNA microarray data with little replicates

and an algorithm for estimating the proportion of differentially expressed genes in mi-

croarray experiments. We also show that the estimator of the distribution converges to

a fix point which is a limit distribution. We perform a simulation study to check the

performance of our estimate and it is shown to be ”satisfactory” and we show that our

method has better performance than other alternatives such as permutation tests and

standard two-sample t-test. The simulations are performed under normal and gamma

error distribution and with constant variances and chi-square variances. In addition

we illustrate the method with real data examples on mice and mice2 (Table 2.7). In

the real data examples we obtain estimates of the proportion of significant genes that

are more realistic than those produced by the other methods. Hence, this algorithm

gives us more accurate prediction to detect differential genes. This same method is

generally expendable to other more complicated modeling procedures such as the one-

way ANOVA F-test and other linear models. The same model is used and the same

ideas are easily expendable into the GO issues by modeling the p-values and getting a

null distribution that will be used to detect differentially expressed gene network and

subsets.
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δ true λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 t-test 0.066

(0.002)

0.085

(0.003)

0.103

(0.002)

0.119

(0.003)

0.136

(0.003)

0.154

(0.005)

0.171

(0.004)

0.186

(0.004)

0.207

(0.004)

1 Permutation
test

0.039

(0.002)

0.051

(0.002)

0.063

(0.002)

0.073

(0.003)

0.085

(0.003)

0.096

(0.003)

0.107

(0.003)

0.116

(0.003)

0.130

(0.003)

1 New
method

0.071

(0.058)

0.163

(0.091)

0.226

(0.084)

0.282

(0.072)

0.304

(0.049)

0.422

(0.081)

0.473

(0.105)

0.479

(0.145)

0.518

(0.120)

2 t-test 0.109

(0.002)

0.171

(0.002)

0.234

(0.003)

0.294

(0.003)

0.354

(0.003)

0.415

(0.004)

0.474

(0.005)

0.534

(0.004)

0.595

(0.004)

2 Permutation
test

0.074

(0.003)

0.120

(0.002)

0.168

(0.002)

0.214

(0.003)

0.259

(0.004)

0.305

(0.003)

0.350

(0.005)

0.397

(0.005)

0.442

(0.004)

2 New
method

0.087

(0.020)

0.196

(0.022)

0.321

(0.034)

0.431

(0.033)

0.522

(0.030)

0.635

(0.045)

0.720

(0.034)

0.823

(0.022)

0.923

(0.021)

Table 2.1: Normal(0,1)

δ true λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 t-test 0.066

(0.001)

0.087

(0.004)

0.110

(0.002)

0.134

(0.004)

0.157

(0.003)

0.180

(0.004)

0.204

(0.003)

0.227

(0.004)

0.252

(0.003)

1 Permutation
test

0.045

(0.002)

0.060

(0.002)

0.077

(0.002)

0.095

(0.003)

0.112

(0.002)

0.129

(0.003)

0.148

(0.004)

0.163

(0.003)

0.182

(0.002)

1 New
method

0.079

(0.072)

0.145

(0.096)

0.153

(0.040)

0.301

(0.069)

0.327

(0.062)

0.436

(0.119)

0.513

(0.138)

0.576

(0.138)

0.577

(0.116)

2 t-test 0.105

(0.002)

0.172

(0.002)

0.237

(0.003)

0.303

(0.003)

0.370

(0.004)

0.435

(0.003)

0.498

(0.003)

0.565

(0.006)

0.630

(0.003)

2 Permutation
test

0.080

(0.003)

0.134

(0.002)

0.186

(0.003)

0.241

(0.004)

0.295

(0.003)

0.347

(0.004)

0.400

(0.004)

0.451

(0.005)

0.508

(0.005)

2 New
method

0.111

(0.027)

0.207

(0.034)

0.311

(0.032)

0.413

(0.030)

0.514

(0.025)

0.609

(0.022)

0.712

(0.017)

0.811

(0.018)

0.914

(0.015)

Table 2.2: N(0,a),a ∼ χ2
(3)/3
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δ true λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 t-test 0.067

(0.002)

0.094

(0.004)

0.123

(0.003)

0.150

(0.004)

0.178

(0.004)

0.207

(0.004)

0.233

(0.004)

0.264

(0.004)

0.292

(0.003)

1 Permutation
test

0.053

(0.001)

0.075

(0.002)

0.099

(0.003)

0.120

(0.003)

0.143

(0.004)

0.168

(0.003)

0.190

(0.003)

0.213

(0.006)

0.237

(0.003)

1 New
method

0.059

(0.043)

0.151

(0.035)

0.225

(0.075)

0.310

(0.062)

0.321

(0.099)

0.377

(0.110)

0.482

(0.094)

0.504

(0.119)

0.626

(0.107)

2 t-test 0.108

(0.002)

0.177

(0.002)

0.246

(0.003)

0.313

(0.003)

0.381

(0.005)

0.450

(0.003)

0.521

(0.004)

0.588

(0.005)

0.657

(0.005)

2 Permutation
test

0.090

(0.003)

0.151

(0.002)

0.212

(0.002)

0.272

(0.003)

0.330

(0.004)

0.391

(0.004)

0.454

(0.003)

0.514

(0.005)

0.576

(0.004)

2 New
method

0.126

(0.048)

0.232

(0.045)

0.310

(0.024)

0.417

(0.020)

0.515

(0.023)

0.613

(0.010)

0.712

(0.015)

0.802

(0.014)

0.912

(0.013)

Table 2.3: Gamma(1, 1)

δ true λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 t-test 0.065

(0.003)

0.086

(0.003)

0.109

(0.005)

0.130

(0.004)

0.153

(0.003)

0.174

(0.004)

0.197

(0.003)

0.218

(0.004)

0.243

(0.002)

1 Permutation
test

0.043

(0.002)

0.058

(0.002)

0.075

(0.004)

0.090

(0.003)

0.106

(0.003)

0.122

(0.003)

0.138

(0.004)

0.153

(0.003)

0.170

(0.003)

1 New
method

0.074

(0.060)

0.141

(0.100)

0.208

(0.065)

0.212

(0.074)

0.319

(0.080)

0.368

(0.091)

0.490

(0.133)

0.530

(0.128)

0.641

(0.084)

2 t-test 0.112

(0.002)

0.177

(0.002)

0.241

(0.002)

0.309

(0.005)

0.373

(0.003)

0.440

(0.003)

0.507

(0.004)

0.575

(0.005)

0.639

(0.005)

2 Permutation
test

0.083

(0.002)

0.136

(0.003)

0.190

(0.002)

0.246

(0.004)

0.298

(0.003)

0.352

(0.004)

0.408

(0.004)

0.461

(0.006)

0.517

(0.006)

2 New
method

0.113

(0.030)

0.205

(0.013)

0.309

(0.028)

0.411

(0.027)

0.516

(0.022)

0.610

(0.016)

0.718

(0.027)

0.811

(0.017)

0.918

(0.013)

Table 2.4: t5

true λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ = 1 0.5471

(0.1679)

0.3768

(0.1371)

0.3823

(0.0537)

0.2372

(0.0535)

0.2372

(0.0535)

0.1924

(0.0354)

0.1486

(0.0363)

0.0860

(0.0209)

0.0482

(0.0131)

δ = 2 0.1963

(0.0753)

0.1924

(0.0741)

0.2416

(0.0876)

0.1533

(0.0393)

0.1215

(0.0406)

0.0965

(0.0242)

0.0841

(0.0255)

0.0601

(0.0093)

0.0465

(0.0112)

Table 2.5: pFDR for our method with Normal(0,1) error distribution
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true λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ = 1 0.634

(0.069)

0.480

(0.060)

0.375

(0.060)

0.323

(0.040)

0.233

(0.053)

0.185

(0.048)

0.102

(0.018)

0.094

(0.017)

0.047

(0.0135)

δ = 2 0.325

(0.099)

0.226

(0.054)

0.167

(0.042)

0.139

(0.022)

0.119

(0.020)

0.107

(0.016)

0.074

(0.017)

0.063

(0.014)

0.037

(0.0047)

Table 2.6: pFDR for our method with Normal(0, σ2), σ2 ∼ χ2
(3)/3 error distribution

Estimated π Mice Mice2
t− test 0.245 0.499
Permutation test 0.220 0.443
New method 0.107 0.363

Table 2.7: Results for the three methods applied to two real examples from toxicology
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Figure 2.1: Pooled standard error depends on t statistic
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Figure 2.2: Figure a: the QQ-plot of residuals from N(0,1) before truncated; figure b:
the QQ-plot of residuals from N(0,1) after truncated; figure c: the QQ-plot of residuals
from t 4 before truncated; figure d: the QQ-plot of residuals from t 4 after truncated.
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Figure 2.3: Standard normal distribution
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Figure 2.5: Gamma(1,4)
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(3)/3
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Figure 2.7: t3
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Figure 2.8: Lognormal(0,1)
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(3)/3
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Chapter 3

The estimations on error distributions

3.1 Introduction to estimation on error distributions and problems

It is well known among researchers that the data generated by microarray experiments

is not normally distributed. The raw data is very skewed and for that reason that data

is usually log-transformed, but in most cases, it is unlikely that either the log or any

other transformation will produce normal data.

The second issue is that the number of samples is often very small such as n = 3, 4, 5, · · · .

The small sample sizes make some of the resampling statistical techniques like permu-

tation tests or bootstrap limited. For example, if you generate two groups of 3 samples

in each group, then for each gene there are only at most 10 absolute t-statistics (|t|)

and hence the sampling distribution of |t| does not have enough values to perform any

credible inference.

The objective of this section is to propose methods for estimating the error distribu-

tion with enough accuracy that we are able to perform credible simulations and obtain

the approximation of the sampling distribution that enables the performance of reli-

able inference procedures. We introduce two different methodologies. The first one

is a non-parametric method to estimate the error distribution. The second one is an

approximation of the tails of the error distribution using the t-family for symmetric

error distribution and the stable-family for asymmetric error distribution. The second

method is a simpler method and in practice may have similar performance with the

first one.

The normalized intensities {Xgij} of microarray data can be modeled as follows:

Xgij = µg + τgi + σgεgij . (3.1)
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where µg and σ2
g , g = 1, · · · , G, are the effect and variance of the gth gene respectively,

τgi is the effect of the gth gene in the ith group (i = 1, 2), and j = 1, · · · , ni indexes the

samples. This is the same model in Amaratunga and Cabrera (2006) [6]. The treatment

effect of the gth gene is :

τg = |τg2 − τg1|

We assume that {εgij} are iid observations from an unknown distribution F and we

assume that σg and τg are iid observations from unknown distributions Fσ and Fτ ,

respectively. Fσ is the distribution of the gene variances and Fτ is like to have mass zero

with probability π representing the proportion of the genes that are not differentially

expressed. In microarray data analysis, when the number of samples per group is very

small (3, 4, 5, · · · ) and residuals are subject to two constraints (sample mean X̄ = 0,

sample standard deviation s = 1), then if we pool the residuals together, the estimated

distribution that is obtained gives a very poor estimate of the error distribution which

is a normal distribution. The idea to solve this problem have been discussed in chapter

2. The key part of the idea to solve this problem is selecting a subset of genes SG

that have small absolute t-values (say below 1 or some threshold that gives a large set

of numbers), for each gene in SG, both samples are pooled together and normalized

by subtracting the sample mean(location parameter) and dividing by sample standard

deviation(scale parameter). This gives a table of residuals {ε̂gij = Xgij−X̄g

sg
, g ∈ SG}.

The error distribution Fε is estimated by

F̂ε = Empirical CDF{ε̂gij , g ∈ SG, i = 1, 2, j = 1, · · · , ni}. (3.2)

The main reason to combine the residuals is to double the sample size so that we

can estimate the error distribution more accurate. In this chapter, we compare the

performance of F̂ε among location and scale estimates as stated in section 3.2. By

the definition of Q-Q normal plot, if the residual distribution is perfectly normally

distributed, all points of Q-Q normal plot will be on the line y = x. In order to

evaluate the performance of Q-Q plot among each residual distribution, we calculate

the sum of squared projection distance(SSPD) from each point to y = x. The projection

distance is the minimum of distance between points and y = x. The performance of
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two estimates then are compared base on SSPD.

3.2 Nonparametric methods

One of the popular methods to estimate the distribution is estimating location and scale

parameters. In this section, we focus on this method to estimate the error distribution

Fε of DNA gene expression data. We consider 5 common used estimators for both

location and scale. Location estimators are (1) mean, (2) median, (3) bisquare (Tukey’s

biweight robust estimator), (4) Huber, and (5)Hubers (Huber proposal 2 M-estimator)

[97]. Scale estimators are (1) standard deviation, (2) MAD, (3) scale.tau (Huber tau

estimate of scale), (4) scale.a (bisquare A-estimate of scale), and (5) Hubers(Huber

M-estimator with proposal 2) [97]. Among 5 both scale and location estimators, we

compare them on simulation studies. We found that when the location estimator is Bi-

square and the scale is the Huber proposal 2 gives better estimates than other estimates;

that is, it has smaller SSPD.

3.3 Parametric methods

3.3.1 t-distribution family to estimate symmetric error distribution

Lets first consider the case when Fε is approximately symmetric. One idea that we

considered is to approximate Fε by a t-distribution family with unknown degrees of

freedom that are to be estimated from the data. For the purpose of simulation, we do

not concern with the shape of the center of the distribution, but only with the tails.

Therefore, the t-family is a reasonable set of distributions to approximate Fε.

3.3.2 Letter values

Letter values display is one of methods of exploratory data analysis. It starts a

batch of data X1, X2, · · · , Xn and sorts it as order statistic X(1), X(2), · · · , X(n), where

X(1) ≤ X(2) ≤ · · · ≤ X(n). The depth of each data value is defined as the value’s

position in an enumeration of values that starts at the nearer end of the data. The

median(M) of the data = X(k)+X(k+1)

2 if n = 2k or X(k+1) if n = 2k+1. So the depth of
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median depth(M) = (n+1)/2 if n = 2k +1, or n/2 if n = 2k. Then the depth of fourth

depth(F ) = (depth(M)+1)/2. The lower or upper letter value of depth(F ) is the smaller

or bigger value which has depth depth(F ), denote ad LLV(F) or ULV(F), respectively.

The 5-number summaries(letter values) are Minimum, LLV(F) , Median, ULV(F), and

Maximum. The depth of eighth depth(E) = (depth(F ) + 1)/2 and so on. We tag

the letters M,F,E, D, C, B,A, Z, Y,X as median, fourth, eighth, so on. For example,

the upper letter values of standard normal distribution are ULV (M) = 0, ULV (F ) =

0.67, ULV (E) = 1.15, ULV (D) = 1.53, ULV (C) = 1.86, ULV (B) = 2.15, ULV (A) =

2.42, ULV (Z) = 2.66, ULV (Y ) = 2.89, and ULV (X) = 3.10 that correspond to the 1−

2−kth quantile of standard normal distribution, where k = 1, 2, 3, · · · , 10 and the upper

letter values of t distribution with 2 degrees of freedom are ULV (M) = 0, ULV (F ) =

0.82, ULV (E) = 1.60, ULV (D) = 2.55, ULV (C) = 3.81, ULV (B) = 5.51, ULV (A) =

7.89, ULV (Z) = 11.20, ULV (Y ) = 15.87, ULV (X) = 22.38. For example, the lower

fourth letter value for standard normal is LLV(F)= −0.67 and upper fourth letter value

is ULV(F)= 0.67. The spread of depths is defined as sp = ULV − LLV. So the fourth

spread of normal is Fsp = ULV (F )− LLV (F ) = 0.67− (−0.67) = 1.34.

In order to estimate the distribution of equivalent t-distribution, we use a method

comparing the letter values of the data to a t-family. We calculate the spread of

depths from standard normal distribution (Figure 3.1) and t-distribution with degrees

of freedom 10, 5, 2, and 1, (t10, t5, t2, t1). Comparing spread ratio of t10, t5, t2, t1 by

normal(Table 3.1), we plot the log of spread ratio by the order F,E, D, C, B,A,Z, Y, X.

The slopes of log spread ratio of t10, t5, t2, t1 are estimated by least square estimators.

The estimated slopes are 0.047, 0.1046, 0.328, 0.782, respectively ( Figure 3.2). We get

a very perfect linear relationship between degrees of freedom and inverse of slope (

Figure 3.3). So, when error distribution is symmetric, we can calculate the log spread

ratio of error distribution by normal and then get the slope from the least squared

fits. Finally, the error distribution can be estimated by t-distribution with degrees of
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freedom 0.5 + 1/(2.25 ∗ slope); that is,

D̂F =
1
2

+
1

2.25 ∗ slope
.

3.3.3 Stable distribution family to estimate asymmetric error distri-

bution

NDA microarray data usually consists of log transformed and suitably normalized in-

tensities. So, the distribution of microarray data is often asymmetric and longer tailed

and heavily skewed than a normal and outliers are common across genes. The stable

distribution [22] is the limit distribution of a suitably scaled sum of independent and

identically distributed random variables. Statistically, they are used mostly when an

example of a very long-tailed distribution is required. For small values of index, the

distribution degenerates to point mass at 0. In this section, we use stable distribution

to estimate the asymmetric error distribution which is very skewed. The density of

stable function

f(t;α, β) = exp[−|t|αexp(−1
2
πiβk(α)sign(t))], when 0 < α ≤ 2, α 6= 1.

= exp[−|t|(1 +
1
2π

iβln(|t|)sign(t))], when α = 1.

where k(α) = 1 − |1 − α|, and β ∈ [−1, 1]. The parameters in stable distribution are

index (α) and skewness (β). α = 2 corresponds to the normal, α = 1 to the Cauchy, and

α = 1/2 to Pearson distribution. Smaller values mean longer tails. β is the modified

skewness [21]. This is not the ordinary skewness of a distribution. Positive values

correspond to a long right tail, where the mean is greater than the median. Negative

values correspond to a long left tail.

We figure out the relationship between degrees of freedom of t and stable distribution

(Table 3.2). When estimate the asymmetric error distribution, we first estimate the tail

distribution with t-family and use the relationship between t and stable distribution.

We can estimate error distribution using stable distribution.
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3.4 Simulation studies

3.4.1 Performance assessment on nonparametric methods

To assess the performance of location and scale estimators, we generate data matrices

with 1000 rows and 8 columns from N(0, 1), t4, and t2 that are the error distributions.

Rows represent genes and 1, 2, 3, 4 and 5, 6, 7, 8 columns represent replicates of each gene

in different samples. For each matrix, we standardize the data set using two schemes.

One is subtracting the grand mean and dividing the over all standard deviation. The

other is subtracting the median and dividing the MAD. After standardization, for each

row we estimate the error by subtracting location estimator and dividing scale estimator

and then we get the estimated error distribution. The location estimators are mean,

median, bisquare, Huber, and Hubers and the scale estimators are standard deviation,

MAD, scale.tau, scale.a, and Hubers. In each pair of location and scale estimator, we

repeat 10 simulations and calculate 10 SSPDs and then calculate mean and standard

deviation of SSPDs. (Table 3.3-3.8) show the results of the simulations. In the normal

case, Hubers and SD have smaller SSPD than scale estimators, and in t4, Hubers

scale usually dominates other scale estimators, but in t2, the performance of MAD is

better than others. In this simulation studies, we found that scale estimators is more

sensitive than location estimators that means the values of SSPD are similar within

scale estimators, but different between scale estimators. So, the scale estimators are

much important than location estimators in this simulation study. We found that when

the pair is Bisquare and Huber proposal 2, SSPD obtains the minimum in most cases.

We can conclude that among these location and scale estimators, Bisquare and Huber

proposal 2 are the best estimators for error estimation.

3.4.2 Performance assessment on parametric methods for symmetric

error distribution

According to section 3.4.1, we know that Bisquare(location) and Huber proposal 2(scale)

are the best nonparametric estimator by simulation studies. In this section, we com-

pare nonparametric method mean and standard deviation, Bisquare and Huber proposal
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2 with t-approach. All simulation settings are the same section 3.4.1. In each pair of

location and scale estimator and t-approach estimate, we repeat 10 simulations and cal-

culate 10 SSPDs and then calculate mean and standard deviation of SSPDs. (Table 3.9

- 3.11) show the results of the simulations. For symmetric error distributions Normal

or t family, t-approach is a better estimator than nonparametric method (Bisquare-

Hubers). When analyzing microarray data, if the error distribution is symmetric, we

suggest using t-approach method to get a better result.

3.4.3 Performance assessment on parametric methods for asymmetric

error distribution

According to section 3.4.1 and 3.4.2, we know that Bisquare(location) and Huber pro-

posal 2(scale) are the best nonparametric estimators and the t-approach is better than

nonparametric methods when the error distribution is symmetric. In this section, we

compare nonparametric methods for the mean and standard deviation, Bisquare and

Huber proposal 2 with parametric methods the t-approach and the Stable-approach.

All simulation settings are the same section 3.4.1 and 3.4.2. In each pair of location

and scale estimator and the t-approach and the stable-approach estimates, we repeat

10 simulations and calculate 10 SSPDs and then calculate mean and standard deviation

of SSPDs. (Table 3.12 - 3.15) show the results of the simulations. For asymmetric error

distributions (Gamma, Chi square, F or Stable), stable-approach and nonparametric

are better than t-approach. So if the error distribution of microarray data is asymmet-

ric, we suggest using stable-approach or nonparametric method to estimate the error

distribution.

3.5 Discussion

In table 3.2 - 3.7, we find that scale estimators are more sensitive than location estima-

tors that means the values of SSPD are similar within scale estimators, but different

between them. So, the scale estimators are much important than location estimators.

Hubers scale estimator is recommended in most cases, but when the error distribution
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is very skewed and heavy tailed(very few cases), then MAD is recommended. In this

paper, we find a nice relationship of tails between normal and t family (Figure 1-3).

When the empirical error distribution is symmetric, t-approach is a good technique, but

when it is not symmetric, Bisqure - Hubers or stable distribution approach is better

based on our simulation studies.
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Table 3.1: Letter spreads for the t10, t5, t2, and t1 and ratios by standard normal spreads
Normal t10 ratio t5 ratio t2 ratio t1 ratio

Fsp 1.35 1.40 1.04 1.45 1.08 1.63 1.21 2.00 1.48
Esp 2.30 2.44 1.06 2.60 1.13 3.21 1.39 4.83 2.10
Dsp 3.07 3.35 1.09 3.68 1.20 5.11 1.67 10.05 3.28
Csp 3.73 4.19 1.13 4.78 1.28 7.62 2.05 20.31 5.45
Bsp 4.31 5.01 1.16 5.93 1.38 11.05 2.56 40.71 9.45
Asp 4.84 5.82 1.20 7.19 1.49 15.81 3.27 81.47 16.85
Zsp 5.32 6.63 1.25 8.57 1.61 22.49 4.23 162.97 30.63
Ysp 5.77 7.46 1.29 10.12 1.75 31.91 5.53 325.95 56.48
Xsp 6.19 8.32 1.34 11.85 1.91 45.19 7.29 651.90 105.24

Table 3.2: Relation between t and stable distributions.
DF of t 1 2 3 4 5 6 7 8

α 1.0 1.5 1.8 1.83 1.86 1.90 1.92 1.93
DF of t 9 10 11 12 13 14 >15

α 1.94 1.95 1.96 1.97 1.98 1.99 2.0
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Table 3.3: N(0,1) standardized by mean and standard deviation
Scale

Location SD MAD scale.tau scale.a Hubers
mean 0.34 0.96 1.16 6.6 0.21
(sd) (0.05) (0.14) (0.30 ) (1.68) (0.03)

median 0.16 2.0 2.2 8.7 0.2
(sd) (0.04) (0.16) (0.42 ) (1.68) (0.05)

bisquare 0.16 2.26 2.49 9.31 0.2
(sd) (0.03) (0.22) (0.49) (1.46) (0.07)

Huber 0.13 1.70 1.78 7.79 0.20
(sd) (0.04) (0.15) (0.39 ) (1.83) (0.06)

Hubers 0.21 1.21 1.42 6.81 0.26
(sd) (0.04) (0.15) (0.34 ) (1.56) (0.06)

Table 3.4: t4 standardized by mean and standard deviation
Scale

Location SD MAD scale.tau scale.a Hubers
mean 2.10 0.30 0.50 3.79 0.53
(sd) (0.15) (0.16) (0.39 ) (1.58) (0.05)

median 1.30 0.85 1.04 5.32 0.16
(sd) (0.13) (0.25) (0.44 ) (1.38) (0.06)

bisquare 1.07 1.00 1.25 5.81 0.17
(sd) (0.11) (0.28) (0.46) (1.42) (0.09)

Huber 1.36 0.75 0.91 4.74 0.26
(sd) (0.12) (0.26) (0.36 ) (1.41) (0.07)

Hubers 1.51 0.57 0.78 4.30 0.37
(sd) (0.13) (0.24) (0.42 ) (1.37) (0.08)
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Table 3.5: t2 standardized by mean and standard deviation
Scale

Location SD MAD scale.tau scale.a Hubers
mean 8.05 0.33 0.46 1.45 1.12
(sd) (1.22) (0.18) (0.30) (0.80) (0.41)

median 6.17 0.36 0.57 2.61 0.45
(sd) (1.10) (0.33) (0.36) (0.76) (0.17)

bisquare 5.80 0.45 0.66 2.84 0.39
(sd) (1.10) (0.35) (0.40) (0.83) (0.17)

Huber 6.22 0.38 0.57 2.44 0.54
(sd) (1.11) (0.35) (0.39) (0.76) (0.17)

Hubers 6.39 0.31 0.46 1.87 0.68
(sd) (1.12) (0.38) (0.32) (0.73) (0.17)

Table 3.6: N(0,1) standardized by median and MAD
Scale

Location SD MAD scale.tau scale.a Hubers
mean 0.72 1.59 1.57 13.4 0.53
(sd) (0.14) (0.48) (0.28) (3.67) (0.11)

median 0.27 5.78 7.17 25.8 0.36
(sd) (0.08) (1.08) (0.69) (5.42) (0.13)

bisquare 0.18 4.80 5.0 23.7 0.23
(sd) (0.02) (0.92) (0.55) (5.17) (0.07)

Huber 0.26 3.11 2.83 16.60 0.30
(sd) (0.09) (0.82) (0.40) (2.90) (0.07)

Hubers 0.48 2.03 1.85 13.6 0.48
(sd) (0.12) (0.54) (0.26) (2.52) (0.11)
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Table 3.7: t4 standardized by median and MAD
Scale

Location SD MAD scale.tau scale.a Hubers
mean 5.08 0.53 0.89 12.0 2.60
(sd) (0.66) (0.25) (0.58) (6.25) (0.46)

median 1.86 4.29 7.43 32.3 0.29
(sd) (0.34) (1.14) (2.61) (12.8) (0.04)

bisquare 2.00 3.72 4.53 28.6 0.60
(sd) (0.39) (1.07) (2.22) (12.1) (0.13)

Huber 2.91 2.06 2.36 19.9 1.15
(sd) (0.49) (0.80) (1.45) (8.78) (0.27)

Hubers 3.71 1.13 1.30 14.9 1.85
(sd) (0.59) (0.52) (0.80) (6.98) (0.44)

Table 3.8: t2 standardized by median and MAD
Scale

Location SD MAD scale.tau scale.a Hubers
mean 36.3 3.03 3.35 11.5 15.4
(sd) (4.07) (1.81) (1.90) (11.0) (3.25)

median 20.9 3.03 7.73 38.4 4.00
(sd) (2.85) (2.23) (4.46) (13.5) (1.65)

bisquare 22.0 2.70 4.00 34.7 5.21
(sd) (2.88) (2.02) (2.56) (13.7) (1.68)

Huber 25.7 1.68 2.05 23.6 7.88
(sd) (3.20) (1.19) (1.31) (14.2) (2.22)

Hubers 28.9 1.71 1.84 13.6 10.9
(sd) (3.48) (0.81) (0.68) (9.30) (2.74)

Table 3.9: N(0,1)
Method Sd Bisq-Hubers t-approach
SSPD 0.336 0.21 0.235

Table 3.10: t2
Method Sd Bisq-Hubers t-approach
SSPD 7.8 0.3 0.057

Table 3.11: t4
Method Sd Bisq-Hubers t-approach
SSPD 2.05 0.16 0.07
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Table 3.12: Gamma(5,1)
Method Sd Bisq-Hubers t-approach Stable-approach
SSPD 247 220 249 220

Table 3.13: F(3,1)

Method Sd Bisq-Hubers t-approach Stable-approach
SSPD 69 0.02 36 7

Table 3.14: χ2
(3)

Method Sd Bisq-Hubers t-approach Stable-approach
SSPD 80 54 84 59

Table 3.15: stable(1.5,1)
Method Sd Bisq-Hubers t-approach Stable-approach
SSPD 19.2 1.38 16.1 0.031
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Chapter 4

DNA barcode of Life and Data analysis

4.1 Introduction to DNA barcode

In the past two years, a series of studies [46][47] have been published in which ”DNA

barcoding” was proposed as a tool for differentiating biological species. Barcoding is

based on two assumptions that (1) mitochondrial DNA, double stranded DNA, does

not recombine and it is past without any variation from mother to children, (2) the rate

of mutation is slow enough to preserve short sequences among spcies with very small

divergences. With million of species and their life-stage transformations, the animal

kingdom provides a challenging target for taxonomy. Recent work has suggested that

a DNA-based identification system, found that the mitochondrial gene, cytochrome c

oxidase subunit 1 (COI ) with 648 base pairs long, can aid the resolution of this diversity.

COI has emerged as a suitable barcode region for most taxonomic groups of animals.

Some articles [46] [47] showed that the sequence divergences at COI sequence regularly

enable the discrimination of closely allied species in most animal phyla. This success in

species diagnosis reflects both the high rates of sequence change at COI in most animal

groups and constrains on intraspecific mitochondrial DNA divergence arising, at least

in part, through selective sweeps mediated via interactions with the nuclear genome.

There is no compelling a priori reason to focus analysis on a specific gene, but COI

sequence does have two important advantages. First, it is robust in the sense that it

has low variation within species. Second, COI appears to possess a greater range of

phylogenetic signal than any other mitochondrial gene. So the species-level diagnoses

can routinely be obtained through COI analysis.
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4.2 Challenges of DNA Barcode data

What are some of the scientific and technical challenges associated with barcode data?

1. Specimen identification versus ”species discovery”.

Barcode data are being used in two ways: to assign unidentified specimens to

known species, and to improve our knowledge of species differences (including

the occasional discovery of potential new species.) What analytical methods are

appropriate for these different tasks, and what new approaches to ”novelty detec-

tion” could be applied to barcode data?

2. Using character-based barcodes.

The nucleotide found at each site (A, G, C or T) can be used as a data point,

which opens an alternative approach to comparing specimens in terms of overall

percent sequence similarity (or difference). How can we analyze barcode data that

are treated as discrete characters?

3. Measuring confidence.

How should our confidence in decisions based on barcode data be calculated when

we assign a specimen to a known species, or when we say that two clusters of

specimens are distinct and may be separate species? How should the quality of

the sequence data, sample size, and our knowledge of the biology of populations

and species be incorporated into confidence measures?

4. Optimizing sample size.

How many specimens per species are needed to create a reliable ”reference bar-

code” for a species? These reference barcodes must have sufficient information

about intraspecific variability to enable accurate assignment of unidentified spec-

imens to their correct species. How should these minimum sample sizes reflect

the biology and evolutionary history of each species?

5. Shrinking the barcode.

How long a gene sequence is needed to assign specimens to known species, and to
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uncover potentially new species? Do we need multiple gene regions, or a single

region, or just certain nucleotide sites within one region?

It has been converted to more concrete scientific problems as following.

1. Assignment to known species.

Construct a classification rule using the training set that assigns specimens in the

testing set to the species contained in the training set. Your classification rule

should both maximize correct assignments and minimize incorrect assignments.

2. Data visualization.

Most barcode studies display results as phonetic cluster diagrams, which can eas-

ily be confused with phylogenetic trees. An important challenge is to develop new

visualization methods to display and analyze barcode data. These new methods

should improve our ability to see and explore the degree and structure of vari-

ability within species and divergence among species. (Illustrate the new methods

on the datasets provided.)

3. Character-based approaches to barcode data.

All barcoding studies to date have measured variation within species and diver-

gence among species with phonetic measures - measures of distance based on

overall similarly (or dissimilarity) among barcode sequences. Barcode sequences

can also be compared using the nucleotides at equivalent sites in the sequence.

This approach parallels the use of homologous characters in phylogenetic analysis,

and there may be significant synergies with those analytical methods. Character-

based approaches may also reduce drastically the barcode sequence lengths needed

as diagnostics. The challenge is to develop protocols and software that analyze

character-based barcode data to assign specimens to known species and to identify

barcode clusters that might be new species.

4. Detection of possible new species.

A good portion of the specimens in the testing set do not belong to the species

included in the training set. Your classification rule should also be able to do two
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things in addition to assigning specimens to their correct species: (1) determine

which specimens should not be assigned to known species, and (2) how these

unclassified specimens in the testing set should be partitioned among potentially

new species. Your classification rule should therefore identify clusters among

unclassified specimens in the testing set that might be new species.

5. Confidence measures.

For some specimens the classification into known species might be unclear or

borderline. One way to think more formally about these situations is to assign

a measure of confidence to the assignments of specimens to species. Another is

assigning measures of confidence to new clusters representing new species. The

challenge is to propose ways to measure confidence of assignments to species and

separation among clusters.

6. Clusters within species.

All species include some level of variation among individuals and in some cases this

variation takes the form of splits among local populations and even subspecies.

The challenge is to develop a classification rule that will identify clusters within

individual species that rise above background variation and therefore might rep-

resent subspecies or other significant biological units. This is similar to Challenge

2 but instead of clustering a big dataset you will cluster many smaller datasets

since you need to find clusters separately within each individual species.

7. Sample size.

The first four challenges are doable as long as there is a sufficient number of

specimens per species. ”Sufficient” will be a relative term, varying with a number

of biological variables (population size, intraspecific variability, and gene flow are

three important ones). The challenge is to provide guidelines for sample size

- guidelines that will allow your clustering method and/or classification rule to

produce decisions with a determined level of confidence. You should also explore

how your method is robust relative to small absolute and relative sample sizes.

8. Metric for barcode data.
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One important question is related to the clustering and classification methods

needed for the first five challenges: What kind of distance metrics should be used

to measure the difference (similarity) between barcodes? Barcode data is high-

dimensional and categorical, and very little is known about how to analyze this

kind of data. Many ”off-the-shelf” methods can be applied to this data. One

approach to improving the results obtained with ”off-the-shelf” methods is by

tapping into the specific structure of the data. One might start by analyzing the

variability structure within species and between species and understanding the

”correlation structure” of the data in high dimensions. How can one exploit the

complexity of this correlation structure to obtain better results than the standard

methods? How can one model this structure? Finally, you should address how

new methods you propose compare in performance to ”off-the-shelf” methods.

9. New clustering methods.

Clustering methods are challenged by small datasets and are often not robust

under dynamically changing datasets. Will your approaches lead to some new

clustering methods? More generally, will barcoding lead to some new clustering

methods? How about new Bayesian clustering methods? The challenge is to

describe such new methods and illustrate them on the datasets given.

4.3 Genetic distance

Genetic distance is one of the most popular methods in bioinformatics to construct

the evolutionary tree that represents the historical relationships between the species

being analyzed. The measure of genetic distance between the sequences being classified

requires a multiple sequence alignment(MSA) as an input. Distance is often defined as

the fraction of mismatches at aligned positions, with gaps either ignored or counted as

mismatches. There are many types of genetic distance as follows:

Let Xi, Yi be the frequencies of the ith nucleotide or amino acid from the population A

and B, respectively. Then

1. Euclidean distance DEU
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DEU =
√∑

i

(Xi − Yi)2.

2. Sanghvi distance (1953) X2

X2 = 2
∑

i

(Xi − Yi)2

Xi + Yi
.

3. Cavalli-Sforze and Edwards chord distance (1967) DCH

DCH =
2
π

√
2(1−

∑
i

√
XiYi).

4. Rogers distance (1972) DR

DR =

√∑
i(Xi − Yi)2

2
.

5. Prevosti distance (1975) Op

Op =
∑

i

|Xi − Yi|
2

.

6. Nei distance (1983) DA

DA = 1−
∑ √

XiYi.

7. Bhattacharyya and Nei distance (1987) θ2

θ2 = (arccos
∑

i

√
XiYi)2.

Some distance measures performed well in some circumstances, but worse in others.

No one can dominate others. So it is very important to construct a robust distance

measure or it is always best if we compare several distance measures under conditions

in which we know what the answer should be. But it is very hard to find a best and

robust distance measure and it is very tedious to compare several distance measures

under some circumstances. In stead of using distance measure, we can use clustering

tools in statistics that are very powerful and very simple.
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4.4 Optimal Scoring Rule

In statistics, clustering techniques have been applied to a wide variety of research prob-

lems and provide an excellent summary of the many published studies reporting the

results of cluster analysis. For example, in the field of medicine, clustering diseases,

cures for diseases, or symptoms of diseases can lead to very useful taxonomies. In

the field of psychiatry, the correct diagnosis of clusters of symptoms such as paranoia,

schizophrenia, etc. is essential for successful therapy. In archeology, researchers have

attempted to establish taxonomies of stone tools, funeral objects, etc. by applying clus-

ter analytic techniques. In the new field DNA barcoding, it can cluster the species from

COI sequences. In general, whenever one needs to classify a ’mountain’ of information

into manageable meaningful piles, cluster analysis is of great utility.

In order to use the clustering method, the COI sequences should convert to real

numbers for all specimens. One possibility is transferring Xi ∈ {A, C, T, G} to

{1, 2, 3, 4} for the ith loci in COI sequence, but this method did not take any statis-

tical sense into account. We put a constrain on Xis that we standardized the variance

for each position of the sequence and then estimate Xis by optimizing the F statistics

across the species for i = 1, · · · , 648, where

F = (Mean Square error Between Species )/(Mean Square error Within Species).

For convenient, we always code the smallest number as 1. This procedure is called

’Optimal Scoring Rule’(OSR). After procedure OSR, the variance of the numbers that

A, C, T, G transform to is the same as 5/3, Var{1,2,3,4}, for all positions. In order to

display the scheme of OSR, a simple example is illustrated as following. We use small

part of the dataset which consists of COI sequences of birds of North America [114]. In

that dataset, there are 180 species among 2369 different birds. We take 3 species which

have 10 sequences with length 5 (Table 4.1). First, we code the characters A, C, T, G to

1, 2, 3, and 4, respectively (Table 4.2). OSR procedure is applied on a column at each

time when optimizing the F statistics. We get the relationship between original codes

and new codes (Table 4.3). Then we can transform the original codes in Table 4.2 to

new codes (Table 4.4). Then we use the clustering method on new coding of the data set.
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Table 4.1: COI sequence
Species COI sequences

Accipiter G T C C G
Accipiter G T G C G
Accipiter G T C C G
Accipiter G T C C G
Accipiter C T C C G
Actitis C T G C C
Actitis C T G C C

Aegolius A T C C C
Aegolius A T C C C
Aegolius A T C C G

Table 4.2: COI sequences transform to numbers
Species COI sequences

Accipiter 4 3 2 2 4
Accipiter 4 3 4 2 4
Accipiter 4 3 2 2 4
Accipiter 4 3 2 2 4
Accipiter 2 3 2 2 4
Actitis 2 3 4 2 2
Actitis 2 3 4 2 2

Aegolius 1 3 2 2 2
Aegolius 1 3 2 2 2
Aegolius 1 3 2 2 4

Table 4.3: Relationship between original and new coding
Column original coding new coding

1 (1, 2, 3, 4) (1, 2.750, 3.509, 3.920)
2 (1, 2, 3, 4) (1, 2, 3, 4)
3 (1, 2, 3, 4) (1, 2.861, 3.471, 3.943)
4 (1, 2, 3, 4) (1, 2, 3, 4)
5 (1, 2, 3, 4) (1, 2.643, 3.190, 4.067)
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Table 4.4: Sequence after OSR
Species COI sequences

Accipiter 3.920 3.000 2.861 2.000 4.067
Accipiter 3.920 3.000 3.943 2.000 4.067
Accipiter 3.920 3.000 2.861 2.000 4.067
Accipiter 3.920 3.000 2.861 2.000 4.067
Accipiter 2.750 3.000 2.861 2.000 4.067
Actitis 2.750 3.000 3.943 2.000 2.643
Actitis 2.750 3.000 3.943 2.000 2.643

Aegolius 1.000 3.000 2.861 2.000 2.643
Aegolius 1.000 3.000 2.861 2.000 2.643
Aegolius 1.000 3.000 2.861 2.000 4.067

4.5 Principal Components Analysis (PCA)

Principal components analysis (PCA) is a method of classical multivariate analysis that

is the most commonly used technique for dimension reduction. PCA usually useful in

situation where we are dealing with many variables and we want to reduce them to a

few new uncorrelated variables, linear combinations of the original variables without

losing much information. None of the variables is designated as dependent. In seeking

a linear combination with maximal variance, we are essentially searching for a dimen-

sion along which the observations are maximally separated or spread out. In general,

the principal components define different dimensions from discriminant functions. In

some applications, principal components are often obtained for use as input to another

analysis.

Principal components analysis deals with a single sample of observations with no

structure in the observations. We have a sample of n observations Y1, Y2, · · · , Yn, where

(Yi)p×1 = (y1, y2, · · · , yp)′, i = 1, 2, · · · , n, is a p-dimensional vector. Principal compo-

nents can be applied to any distribution FY . If the variables y1, y2, · · · , yp in each Yi

are correlated, the ellipsoidal swarm of points is not orientated parallel to any of the

axes represented by y1, y2, · · · , yp. We wish to find the natural axes of the swarm of

points with origin to sample mean Ȳ . This can be done by translating the origin to

Ȳ and rotating the axes. After rotation so that axes become the natural axes of the
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ellipsoid, the new variables (principal components) will be uncorrelated.

Without loss of generality, we can assume that Yi, i = 1, 2, · · · , n has been centered;

that is, the average of Yi is zero for all i. The singular value decomposition (SVD) of

(Y )p×n = [Y1 Y2 · · · Yn] is defined as

Y = UDV ′,

where U is a p× p matrix which projects the p-dimensional samples into p-dimensional

samples, V is a n× p matrix with V V ′ = In , and D is a p× p diagonal matrix, whose

diagonal elements, si, are called singular values. We assume that s1 ≤ s2 ≤ · · · ≤ sp.

From the SVD, the sample variance-covariance matrix of Y is as

S = Y Y ′ = UD2U ′.

Hence the column vectors of U are the principal components of S and the square of the

diagonal elements of D are their respective variances:

D2 =



s2
1 0 · · · 0

0 s2
2 · · · 0

...
...

. . .
...

0 · · · · · · s2
p


, (4.1)

and U = (u1, · · · , up).

We denote the eigenvalue of S: λ1 = s2
1, λ2 = s2

2, · · · , λp = s2
p. The objective is to select

a subset of k principal components containing most of the information in the original

data. Because the eigenvalues are variances of the principal components, it means that

the proportion of variance are explained by the first k components.

Proportion of variance =
λ1 + λ2 + · · ·+ λk

λ1 + λ2 + · · ·+ λp
=

λ1 + λ2 + · · ·+ λk∑p
i=1 s2

zi

, (4.2)

since
∑p

i=1 λi = tr(ASY A′) = tr(SY A′A) = tr(SY ). However we should decide how

many components should be retained. Usually, we should retain sufficient components

to account for a high percentage of total variance.
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4.6 Linear Discriminant Analysis(LDA)

4.6.1 Introduction

A simplest method of supervised classification, Linear Discriminant Analysis (LDA)

(Fisher, 1936 [40]), endures to this day as one of most popular classification techniques.

The term ’group’ presents either a population or a sample from the population. There

are two objectives in separation of groups.

1. Description of group separation, in which linear functions (discriminant function)

of the variables are used to describe or elucidate the differences between two or

more groups. The goals of discriminant analysis include identifying the relative

contribution of the p variables to separation of the groups and finding the optimal

plane on which the points can be projected to best illustrate the configuration of

the groups.

2. Prediction or allocation, in which linear or quadratic function (classification func-

tions) of the variables are employed to assign an individual sampling unit to one

of the groups. The measured values ( in the observation vector) for an individual

or object are evaluated by the classification functions to see to which group the

individual most likely belongs.

In this section, we focus on linear discriminant function analysis.

4.6.2 LDA on two groups

In the case of two groups, we have a sampling unit to be classified, but we do not

know to which of the two groups the subject or object belongs. We assume that

the two populations to be compared have the same covariance matrix Σ but distinct

mean vectors µ1 and µ2, where Σ is the p by p covariance matrix and µ1, µ2 are the

p by 1 vectors. And samples Y11, · · · , Y1n1 and Y21, · · · , Y2n2 are from two groups 1

and 2, respectively, where Y ′
ij = (Yij1, Yij2, · · · , Yijp), i = 1, 2, j = 1, · · · , p consists of

measurements on p variables. The discriminant function is the linear combination of

these p variables that maximizes the distance between the two group mean vectors.
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Our goal is to find a p by 1 vector a, where a′ = (a1, a2, · · · , ap), such that a linear

combination zij = a′Yij , i = 1, 2, j = 1, · · · , p transforms each observation vector to a

scalar:

z1j = a′Y1j = a1Y1j1 + a2Y1j2 + · · ·+ apY1jp, j = 1, 2, · · · , n1,

z2j = a′Y2j = a1Y2j1 + a2Y2j2 + · · ·+ apY2jp, j = 1, 2, · · · , n2.

Hence the n1 + n2 observation vectors

Y11, Y12, · · · , Y1n1

Y21, Y22, · · · , Y2n2

are transferred to scalars

z11, z12, · · · , z1n1

z21, z22, · · · , z2n2 .

We find the means

z̄1 =
n1∑

j=1

a′Y1j/n1 = a′Ȳ1 (4.3)

and

z̄2 = a′Ȳ2, (4.4)

and wish to find the vector a that maximized the standardized difference (z̄1−z̄2)/sz.

s2
z is the pooled covariance of z1i, i = 1, · · · , n1 and z2i, i = 1, · · · , n2. s2

z also can be
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expressed as

s2
z =

1
n1 + n2 − 2

((n1 − 1)
n1∑
i=1

(z1i − z̄1)2 + (n2 − 1)
n2∑
i=1

(z2i − z̄2)2) (4.5)

=
1

n1 + n2 − 2
((n1 − 1)

n1∑
i=1

(a′Y1i − a′Ȳ1)(a′Y1i − a′Ȳ1)′

+ (n2 − 1)
n2∑
i=1

(a′Y2i − a′Ȳ2)(a′Y2i − a′Ȳ2)′)

= a′{ 1
n1 + n2 − 2

((n1 − 1)
n1∑
i=1

(Y1i − Ȳ1)(Y1i − Ȳ1)′

+ (n2 − 1)
n1∑
i=1

(Y1i − Ȳ1)(Y1i − Ȳ1)′)}a

= a′{ 1
n1 + n2 − 2

((n1 − 1)S1 + (n2 − 1)S2)}a

= a′Spla,

(4.6)

where S1 is the p by p covariance matrix of group 1, S2 is the p by p covariance matrix

of group 2, and Spl is the p by p pooled covariance matrix of group 1 and 2. Since

(z̄1− z̄2)/sz can be negative, we use the squared distance (z̄1− z̄2)2/s2
z, by (4.5), (4.6),

and (4.9), that can be written as

(z̄1 − z̄2)2

s2
z

=
[a′(Ȳ1 − Ȳ2)]2

a′Spla
. (4.7)

The maximum of (4.10) occurs when

a = S−1
pl (Ȳ1 − Ȳ2)( if S−1

pl exists), (4.8)

or when a is any multiple of S−1
pl (Ȳ1 − Ȳ2).

The maximizing vector a is not unique, but its direction is unique; that is, the

relative values or ratios of a1, · · · , ap are unique. Note that in order for S−1
pl to exist,

we must have n1 + n2 − 2 > p.

Suppose Y is the vector of measurements on a new sampling unit that we wish

to classify into one of the two groups and n1 + n2 − 2 > p. For each observation

Y1i, i = 1, · · · , n1 from group 1, we calculate z1i = a′Y1i, · · · , z1n1 = a′Y1n1 . From (4.6)

we have z̄1 = a′Ȳ1 = (Ȳ1 − Ȳ2)′S−1
pl Ȳ1 (Since (S−1

pl )′ = S−1
pl ). Similarly, from (4.7) we
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have z̄2 = (Ȳ1 − Ȳ2)′S−1
pl Ȳ2. Fisher’s (1936) linear classification procedure assigns a p

by 1 vector Y to group 1 if z = a′Y is closer to z̄1 than to z̄2 and assigns Y to group 2

if z = a′Y is closer to z̄2 than to z̄1. Then

z̄1 − z̄2 = a′(Ȳ1 − Ȳ2) = (Ȳ1 − Ȳ2)′S−1
pl (Ȳ1 − Ȳ2) > 0, (4.9)

where S−1
pl is positive definite. So, if a′ = (Ȳ1 − Ȳ2)′S−1

pl then it is always true that z̄1

is always greater than z̄2. That is z̄1 > z̄2. If a′ = (Ȳ2 − Ȳ1)′S−1
pl , then z̄2 > z̄1. Since

1
2(z̄1 + z̄2) is the midpoint of z̄1 and z̄2, z > 1

2(z̄1 + z̄2) implies z is closer to z̄1.

To express the classification rule in terms of Y , we write 1
2(z̄1 + z̄2) as

1
2
(z̄1 + z̄2) =

1
2
(Ȳ1 − Ȳ2)′S−1

pl (Ȳ1 + Ȳ2). (4.10)

Then the classification rule becomes : Assign Y to group 1 if

a′Y = (Ȳ1 − Ȳ2)′S−1
pl Y >

1
2
(Ȳ1 − Ȳ2)′S−1

pl (Ȳ1 + Ȳ2), (4.11)

and assign Y to group 2 if

a′Y = (Ȳ1 − Ȳ2)′S−1
pl Y <

1
2
(Ȳ1 − Ȳ2)′S−1

pl (Ȳ1 + Ȳ2). (4.12)

Or equivalently, we write the linear discriminant function L(Y ) as

L(Y ) = a′Y − 1
2
(Ȳ1 − Ȳ2)′S−1

pl (Ȳ1 + Ȳ2) (4.13)

= (Ȳ1 − Ȳ2)′S−1
pl Y − 1

2
(Ȳ1 − Ȳ2)′S−1

pl (Ȳ1 + Ȳ2)

= a′Y + a0,

where a′ = (Ȳ1 − Ȳ2)′S−1
pl is a 1 by p vector and a0 = −1

2(Ȳ1 − Ȳ2)′S−1
pl (Ȳ1 + Ȳ2) is

a real number. The linear discriminant function L(Y ) is linear in Y, that is, L(Y ) =

a11y1 + a12y2 + · · ·+ a1pyp + a0 is a linear combination of components of the vector Y.

Then we can classify the new measurement Y as

Y ∈

 group 1 if L(Y ) > 0

group 2 if L(Y ) < 0
(4.14)
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Fisher’s [40] approach using (4.14) and (4.15) is essentially nonparametric because

no distributional assumptions were made. However, if the two groups are normal with

equal covariance matrices, then this method is optimal.

It is very interesting that the mutual connection between multiple regression and

two-group discriminant analysis (Fisher[40] and Flury and Riedwyl [41]) is that the roles

of independent and dependent variables are reversed in the two models. The dependent

variables of discriminant analysis become the independent variable in regression.

Let w ∈ {0, 1} be the group variable(identifying groups(populations) 1 and 2) such

that w̄ = 0, and define b = (b1, b2, · · · , bp)′ as the vector of regression coefficients.

Then we know that b is proportional to the discriminant function coefficient vector

a = S−1
pl (Ȳ1 − Ȳ2) :

b =
n1n2

(n1 + n2)(n1 + n2 − 2) + n1n2D2
a,

where D2 = (Ȳ1 − Ȳ2)′S−1
pl (Ȳ1 − Ȳ2). The F test statistics for the hypothesis that q of

the p(> q) variables are redundant for separating the groups can be obtained as

F =
n1 + n2 − p− 1

q

R2
p −R2

p−q

1−R2
p

,

where R2
p and R2

p−q are the R2 from regressions with p and p− q variables, respectively.

More detail about the link between two-group discriminant analysis and multiple re-

gression is in Fisher [40] and Flury and Riedwyl [41].

Example 4.6.1. Two species ’Accipiter’ and ’Aegolius’ consist of 9 birds that are from

North America [114]. In each sample (bird), there are total 155 base pairs(variables).

We use Optimal Scoring Rule to preprocess this data set(Table 4.5). We denote the

species ’Accipiter’ is the group 1 and the species ’Aegolius’ is the group 2. In this

example S−1
pl does not exist since n1 + n2 − 2 = 7 < 155 = p. So we can not use linear

discriminant function to classify the new observation of the measurement unit.
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Species a1 · · · a155

Accipiter 3.566633 2.960976 1 · · · 1 3.0369078 2.857944
Accipiter 3.566633 2.960976 1 · · · 1 3.0369078 2.857944
Accipiter 3.566633 2.960976 1 · · · 1 3.0369078 2.857944
Accipiter 3.566633 2.960976 1 · · · 1 3.0369078 2.857944
Accipiter 3.425382 2.960976 1 · · · 1 1.0000000 2.857944
Aegolius 1.000000 0.944621 1 · · · 1 3.0369078 1.000000
Aegolius 1.000000 0.944621 1 · · · 1 3.0369078 1.000000
Aegolius 1.000000 1.000000 1 · · · 1 0.6391904 1.000000
Aegolius 1.000000 1.000000 1 · · · 1 0.6391904 1.000000

Table 4.5: Birds of North America

The data for the group 1

(X1)155×5 =



3.566633 3.566633 3.566633 3.566633 3.425382

2.960976 2.960976 2.960976 2.960976 2.960976

1 1 1 1 1
...

...
...

...
...

1 1 1 1 1

3.0369078 3.0369078 3.0369078 3.0369078 1

2.857944 2.857944 2.857944 2.857944 2.857944



(4.15)

=
[

X11 X12 X13 X14 X15

]
.

The data for the group 2

(X2)155×4 =



1 1 1 1

0.944621 0.944621 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3.0369078 3.0369078 0.6391904 0.6391904

1 1 1 1



(4.16)

=
[

X21 X22 X23 X24

]
.
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From table (4.6), we can calculate the sample mean of group 1

(X̄1)155×1 =
1
5

5∑
i=1

X1i = (3.5383830, · · · , 2.8579431)′,

and the sample mean of group 2

(X̄2)155×1 =
1
4

4∑
i=1

X2i = (1.0000000, 0.9723103, · · · , 1.0000000)′.

Then we can calculate sample covariance matrix from group 1

S1 = 1
5−1

∑5
i=1(X1i − X̄1)(X1i − X̄1)′ =



3.990402 ∗ 10−03 · · · −9.405345 ∗ 10−09

−2.399915 ∗ 10−08 · · · −5.432866 ∗ 10−13

...
. . .

...

−9.405345 ∗ 10−09 · · · 8.721949 ∗ 10−13


155×155

, (4.17)

and sample covariance matrix from group 2

S2 = 1
4−1

∑4
i=1(X2i − X̄2)(X2i − X̄2)′ =



8.529508 ∗ 10−13 · · · 4.219947 ∗ 10−13

7.376264 ∗ 10−09 · · · 1.643308 ∗ 10−08

...
. . .

...

4.219947 ∗ 10−13 · · · 1.627237 ∗ 10−12


155×155

. (4.18)

Then from S1, S2, the pooled covariance matrix is

Spl = 1
(5+4−2) [(5− 1)S1 + (4− 1)S2] =



2.280230 ∗ 10−03 · · · −5.374302 ∗ 10−09

−1.055254 ∗ 10−08 · · · 7.042439 ∗ 10−09

...
. . .

...

−5.374302 ∗ 10−09 · · · 1.195784 ∗ 10−12


155×155

. (4.19)

Since p > n1 + n2 − 2, Spl is singular, and so S−1
pl does not exist.
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4.6.3 LDA on several groups

In discriminant analysis for several groups, we are concerned with finding linear combi-

nations of variables that best separate groups of multivariate observations. Discriminant

analysis for several groups may have many purposes:

• Examine group separation in a two-dimensional plot. When there are more than

two groups, it requires more than one discriminant function to describe group

separation. If the points in the p-dimensional space are projected onto a 2-

dimensional space represented by the first two discriminant functions, we can

obtain the best view of how the groups are separated.

• Find a subset of the original variables that separates the groups almost as well as

the original set.

• Rank the variables in terms of their relative contribution to group separation.

• Interpret the new dimensions represented by the discriminant functions.

• Follow up to fixed-effects MANOVA.

Suppose we have a data set, which has N observations with K groups. There are

p variables in each observation. The ith group has distribution Fi ∼ F (µi,Σ), where

µi, i = 1, 2, · · · ,K is the p by 1 true mean vector and Σ is the p by p covariance matrix,

and Si is the p by p sample covariance matrix for ith group for i = 1, · · · ,K. Then the

p by p pooled standard covariance matrix can be estimated as following:

Spl =
1

N −K

K∑
i=1

(ni − 1)Si,

where ni is the number of observations in the ith group,
∑K

i=1 ni = N, and (Si)p×p is

the sample covariance matrix of the ith group. We assign a new observation (Y )p×1 =

(y1, y2, · · · , yp)′ to one of groups by minimizing the distance from Y to the center of

each group. i.e.

Y ∈ group j ⇔ j = Arg minK
i=1D

2
i (Y ) (4.20)

= Arg minK
i=1(Y − Ȳi)′S−1

pl (Y − Ȳi),
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where Ȳi is the sample mean of ith groups. From (4.23), we can obtain a linear

classification rule:

D2
i (Y ) = Y ′S−1

pl Y − Y ′S−1
pl Ȳi − Ȳ ′

i S−1
pl Y + Ȳ ′

i S−1
pl Ȳi

= Y ′S−1
pl Y − 2Ȳ ′

i S−1
pl Y + Ȳ ′

i S−1
pl Ȳi( Since (Y ′S−1

pl Ȳi)′ = Ȳ ′
i S−1

pl Y )

The first term on the right can be neglected since it is not a function of i and does not

change from group to group. The second term is a linear function of Y , and the third

term does not involve Y . We thus delete Y ′S−1
pl Y and obtain a linear classification

function and denote it as Li(Y ). If we multiply by −1/2, the classification rule becomes

:

Li(Y ) = Ȳ ′
i S−1

pl Y − 1
2
Ȳ ′

i S−1
pl Ȳi (4.21)

and assigning Y to the groups i, i = 1, 2, · · · ,K with the largest Li(Y ). This will be

the same group for which D2
i (Y ) in (4.23) is smallest, that is, the group whose mean

vector Ȳi is closest to Y . To highlight the linearity of (4.24) as a function of Y , we can

express it as

Li(Y ) = a′iY + ai0 = ai1y1 + ai2y2 + · · ·+ aipyp + ai0,

where a′i = Ȳ ′
i S−1

pl and ai0 = −1
2 Ȳ ′

i S−1
pl Ȳi.

4.7 LDA on HLdata

However, when the number of variables is too big( p is large), but only have few

observations(ni is small), the inverse of the pooled p by p covariance matrix S−1
pl does

not exist. We called this kind of data set as ’HLdata’, which means high dimensions

and low sample size. For example, when K = 2, S−1
pl exists only when p < n1 + n2 − 2.

But how about p ≥ n1+n2−2? (Example 4.5.1) To avoid this problem, we use principal

component analysis (section 4.5) to reduce the number of variables. We can choose the

the first k principal components, such that k < n1 + n2 − 2. Then the pooled covari-

ance matrix (S−1
pl )k×k exists. How large k should be? We can consider the guidelines



92

discussed in section 4.5. We apply PCA before using LDA, say LDA on HLdata, on

the two groups and several groups cases:

4.7.1 LDA on HLdata : two groups

We have data with high dimensions but low sample size X1 and X2. Both of them have p

variables and X1 has n1 observations and X2 has n2 observations, where p > n1, p > n2

and p > n1 + n2 − 2. So X1 is a matrix with p rows and n1 columns denoted as

(X1)p×n1 = [X11 X12 · · · X1n1 ] and X2 is a matrix with p rows and n2 columns

denoted as (X2)p×n2 = [X21 X22 · · · X2n2 ]. When applying PCA, the first k compo-

nents are chosen such that k < n1 + n2 − 2. That is, only k eigenvectors with the

first k largest eigenvalues are picked and formed a matrix (P )p×k( section 4.5), where

P ′P = (I)k×k. The transformed data (Y1)k×n1 = [Y11 Y12 · · · Y1n1 ] = P ′X1, (Y2)k×n2 =

[Y21 X22 · · · Y2n2 ] = P ′X2 that are with lower dimensions k. The covariance matrix

for Y1 is

(SY
1 )k×k =

1
n1 − 1

n1∑
j=1

(Y1j − Ȳ1)(Y1j − Ȳ1)′

=
1

n1 − 1

n1∑
j=1

(P ′X1j − ¯P ′X1)(P ′X1j − ¯P ′X1)′

=
1

n1 − 1

n1∑
j=1

P ′(X1j − X̄1)(X1j − X̄1)′P

= P ′(
1

n1 − 1

n1∑
j=1

(X1j − X̄1)(X1j − X̄1)′)P

= P ′SX
1 P,

and similarly,

(SY
2 )k×k = P ′SX

2 P,

where SX
1 , SX

2 are the covariance matrix of X1, X2, respectively, and X̄1 = 1
n1

∑n1
j=1 X1j =

(x̄11, · · · , x̄1p), Ȳ1 = 1
n1

∑n1
j=1 Y1j = (ȳ11, · · · , ȳ1k). Then the pooled covariance matrix
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for Y1 and Y2 is

(SY
pl)k×k =

1
n1 + n2 − 2

((n1 − 1)SY1
1 + (n2 − 1)SY2

2 )

=
1

n1 + n2 − 2
((n1 − 1)P ′SX1

1 P + (n2 − 1)P ′SX2
1 P )

= P ′SX
pl P,

where (SX
pl )p×p is the pooled covariance matrix of X1 and X2.

So, we have relations between sample covariance matrices

(SY
1 )k×k = P ′SX

1 P (4.22)

(SY
2 )k×k = P ′SX

2 P (4.23)

(SY
pl)k×k = P ′SX

pl P (4.24)

Then from (4.16), the linear discriminant function for a vector (Y )k×1 is

L(Y ) = (Ȳ1 − Ȳ2)′(SY
pl)

−1Y − 1
2
(Ȳ1 − Ȳ2)′(SY

pl)
−1(Ȳ1 + Ȳ2). (4.25)

Since Y = P ′X, then the linear discriminant function L(X) for a vector (X)p×1 is:

L(X) = ( ¯P ′X1 − ¯P ′X2)′(SP ′X
pl )−1P ′X (4.26)

− 1
2
( ¯P ′X1 − ¯P ′X2)′(SP ′X

pl )−1( ¯P ′X1 + ¯P ′X2)

= (X̄1 − X̄2)′P (P ′SX
pl P )−1P ′X

− 1
2
(X̄1 − X̄2)′P (P ′SX

pl P )−1P ′(X̄1 + X̄2)

= a′X + a0,

where

a′ = (X̄1 − X̄2)′P (P ′SX
pl P )−1P ′ (4.27)

is a 1 by p vector and

a0 = −1
2
(X̄1 − X̄2)′P (P ′SX

pl P )−1P ′(X̄1 + X̄2) (4.28)
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is a real number. The thus scalar function L(X) is linear in X.

After transformation Y = P ′X, ((SY
pl)

−1)k×k = ((PSX
pl P

′)−1)k×k exists since k <

n1 + n2 − 2. From (4.17), we can use LDA on HLdata to classify a new p by 1 vector

of measurements X as:

X ∈

 group 1 if L(X) > 0

group 2 if L(X) < 0
(4.29)

Example 4.7.1. In Example 4.6.1, the Birds data of Table 4.5 showed that S−1
pl does

not exist, since p = 155 > 7 = n1 + n2 − 2. In this example, we use PCA on the data

and obtain the first nine eigenvalues ( others are too small that we do not list)

λ1 = 50, λ2 = 14, λ3 = 11, λ4 = 9,

λ5 = 2.1 ∗ 10−9, λ6 = 2 ∗ 10−9, λ7 = 1.9 ∗ 10−9, λ8 = 1.5 ∗ 10−9, λ9 = 1.3 ∗ 10−30,

and associate eigenvectors form a 155 by 9 matrix:



−1.87 ∗ 10−1 1.28 ∗ 10−2 · · · −2.3 ∗ 10−1

−1.46 ∗ 10−1 1.62 ∗ 10−2 · · · 3.1 ∗ 10−2

...
...

. . .
...

−1.37 ∗ 10−1 1.04 ∗ 10−2 · · · −3.3 ∗ 10−2


(155×9)

. (4.30)

The first 4 eigenvalues (50, 14, 11, 9) are significant larger than others. We choose k = 4

and 4 < 7 = n1 + n2 − 2. So we have a 155 by 4 orthogonal matrix

P =



−1.87 ∗ 10−1 1.28 ∗ 10−2 −3.1 ∗ 10−2 −1.28 ∗ 10−2

−1.46 ∗ 10−1 1.62 ∗ 10−2 −2.54 ∗ 10−2 9.3 ∗ 10−4

...
...

...
...

−1.37 ∗ 10−1 1.04 ∗ 10−2 −2.25 ∗ 10−2 1.52 ∗ 10−3


(155×4)

. (4.31)



95

The next step is that we transform original data set X1, X2 which is a 155 by 5

matrix and 155 by 4 matrix, respectively, to new data

(Y1)4×5 = P ′X1 =



−7.555960 −7.555976 · · · −8.0559306

−4.378160 −4.378172 · · · −1.9267418

−4.755289 −4.755263 · · · 0.0395366

−3.172523 −3.172525 · · · 6.0114615


, (4.32)

(Y2)4×4 = P ′X2 =



4.710504 4.710492 5.8084313 5.8084256

−8.373081 −8.373071 1.8426948 1.8427011

1.395684 1.395671 −0.6301066 −0.6300934

−1.050878 −1.050867 −1.9466131 −1.9466052


. (4.33)

From (4.20)-(4.22) and (4.25)-(4.27), we can calculate the pooled covariance matrix

SY
pl for transformed data Y as

SY
pl = P ′SX

pl P =

0.4355421 1.194099276 −2.091258515 0.111862258

1.1940993 15.835917941 0.043450754 −0.002324198

−2.0912585 0.043450754 12.744057403 0.004070432

0.1118623 −0.002324198 0.004070432 10.133204176


. (4.34)

(SY
pl)

−1 =

102690913 −690503641 1496108680 −101245590

−690503641 52379597 −113490450 7680196

1496108680 −113490450 245898845 −16640618

−101245590 7680196 −16640618 1126114


, (4.35)

which exists.

From (4.30) and (4.31), we can calculate the coefficients a, a0 as:

a1 = (23843684851, 18751164819, · · · , 17468593002)′ (4.36)

a0 = −147060767959 (4.37)
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In order to show that LDA on HLdata works, we randomly pick a measurement

X1 = (3.57, 2.96, · · · , 2.8579437)′

in group 1.

The linear discriminant function for X1 is

L(X1) = a′X1 + a0 = 836486707001 > 0 (4.38)

By (4.32), we can classify X1 as in group 1.

In the same way, we randomly choose a measurement

X2 = (1, 0.94, · · · , 1)′

in group 2.

The linear discriminant function for X2 is

L(X2) = a′X2 + a0 = −836486875169 < 0 (4.39)

By (4.32), we can classify X2 as in group 2.

In Example 4.7.1, original LDA can not apply since p = 155 >= 7n1 + n2 − 2, but

LDA on HLdata works and can classify the new measurement correctly.

4.7.2 LDA on HLdata : several groups

Suppose we have a data set, which has N observations X1, X2, · · · , XN with K groups.

There are p variables in each observation, that is each Xi, i = 1, 2, · · · , N is a p by 1

vector. The ith group has distribution Fi ∼ F (µi,Σ), where µi, i = 1, 2, · · · ,K is the

p by 1 true mean vector and Σ is the p by p covariance matrix, and SX
i is the p by

p sample covariance matrix for ith group for i = 1, · · · ,K. Then the pooled standard

covariance p by p matrix can be estimated as following:

SX
pl =

1
N −K

K∑
i=1

(ni − 1)SX
i ,
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where ni is the number of observations in the ith group,
∑K

i=1 ni = N, and (SX
i )p×p is the

sample covariance matrix of the ith group, but if p > N−K then (SX
pl )

−1 does not exist.

So we should use PCA on the variables to find the largest k principal components, that

is, the k eigenvectors forms a p by k orthogonal matrix P projecting X from dimension

p to Y = P ′X with dimension k (section 4.5). We can choose k such that k < N −K.

Then (SY
pl)

−1 exists. We assign a new observation (Y )p×1 = (y1, y2, · · · , yp)′ to one of

groups by minimizing the distance from Y to the center of each group.

From (4.18) or (4.19) we have

X ∈ group j ⇔ j = Arg minK
i=1D

2
i (P

′X) (4.40)

= Arg minK
i=1(P

′X − ¯P ′Xi)′(P ′SX
pl P )−1(P ′X − ¯P ′Xi)

= Arg minK
i=1(X − X̄i)′P (P ′SX

pl P )−1P ′(X − X̄i),

where SX
pl is the pooled covariance matrix for all groups. This is equivalent to using

the linear discriminant function

Li(X) = ( ¯P ′Xi)′(P ′SX
pl P )−1P ′X − 1

2
( ¯P ′Xi)′(P ′SX

pl P )−1 ¯P ′Xi (4.41)

= X̄ ′
iP (P ′SX

pl P )−1P ′X − 1
2
X̄ ′

iP (P ′SX
pl P )−1P ′X̄i

= a′iX + ai0,

where a′i = X̄ ′
iP (P ′SX

pl P )−1P ′ is a 1 by p matrix and ai0 = −1
2X̄ ′

iP (P ′SX
pl P )−1P ′X̄i is

a real number. Li(X) is a linear function of a new p by 1 vector measurement X. We

assign X to the groups i with the largest Li(X). From LDA on HLdata, we can classify

the data with many variables but few observations, but we should address here is that

choosing the number of components k is very important. It should satisfy the guidelines

in section 4.5 and be less than N−K, where N is the total number of samples analyzed

and K is the number of groups.

4.8 Application of the LDA on HLdata

In the DNA barcode data, it is usually large number of samples ( specimens ), but the

COI sequences are very similar between species and noisy. It causes large misclassifica-

tion rate. For example, we use training-test data technique to evaluate the performance
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of LDA in (4.1) on data set, Birds of North America. We randomly select testing sets

from whole data with size from 25 to 150. Training sets are used to estimate the pa-

rameters in LDA and then we calculate the misclassification rate from test sets. We

repeat this procedure for 100 times and calculate the mean of the misclassification in

each test set(Figure 4.1). The mean misclassification rate increases when the size of

test set increases. The result is not good because the mean misclassification rate is

greater 10% for size of test set > 70.

To improve this situation, we introduce a method called pairwise comparison. The

procedure of pairwise comparison is that if we classify a new sample X to one of K

species, we use LDA on HLdata to classify X to one of two species, say species i ver-

sus species j(6= i), for
(
K
2

)
times. We calculate the times that X classified to species

i, i = 1, 2, · · · ,K, and assign X to a species j if species got a largest number of times.

That is, at each comparison (species i versus species j(6= i)), if the specimen belongs

to species i using LDA on HLdata, then we add 1 to the ith position of an array

A = (a1, · · · , aK). There are total
(
K
2

)
comparisons. After all pairwise comparisons,

we assign the new specimen X to the species i if ai = maxK
j=1aj . However when N is

large, NK(K − 1)/2 pairwise comparisons are not an easy task. In order to avoid this

problem, the two-step procedure will reduce the workload.

Example 4.8.1. To show the performance of the pairwise comparison, we choose a

subset ( 468 samples N = 468) of Birds of North America with 6(K = 6) species, whose

name(sample size) are Branta (156), Dendroica(75), Larus(65), Anas(64), Vireo(62),

and Aythya(46). We randomly pick the n samples as the testing set from 468 samples,

where n = 5, 10, 15, · · · , 150, and calculate the misclassification rate. So for each sample

in testing set, there are
(
6
2

)
= 15 comparisons. We repeat this procedure 100 times and

report the mean of the misclassification rate(Fig. 4.2). We get a very good result that

the misclassification rate is under 10 percent. The improve is significant from global

LDA (Fig 4.2).
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4.9 Discussion

Robin Lloyd, who is a LiveScience senior editor, said on Nov. 13, 2007 that ”a stun-

ningly egotistical Swedish naturalist, Carl Linnaeus, wrote a book called ”Systema

Naturae,” first published in 1735 at 13 pages long, and proposed a hierarchical sys-

tem for classifying plants, animals and minerals and launched an effort to identify and

inventory all the world’s living things. Now 250 years after publication of the book’s

latter editions, scientists still have discovered as few as 10 percent of the species now

living on Earth, said Harvard biologist Edward O. Wilson, who spoke last week at an

event at the New York Botanical Garden to celebrate a visit of Linnaeus’ personal copy

of the book’s first edition. After 250 Years of Classifying Life, 90 Percent of species

remain unknown. · · · . For instance, the number of species of nematodes or round-

worms, the most abundant animals on Earth, stands at about 16,000 species known,

but the numbers of actual species could run into the millions, experts estimate”.

Now, the Barcode of Life Initiative (BOLI) began in 2003 with a proposal that

scientists could tell species apart by using a very short gene sequence from a standard-

ized position in the genome. Since that time, DNA barcoding has begun to emerge as

a global standard for assigning biological specimens to the correct species. Research

projects on insects, birds, fish, algae, and many other taxonomic groups are under-

way, and many more are being planned. Some are global research campaigns involving

dozens to hundreds of contributors, and others are the work of a small team focusing

on a small taxonomic group. All these barcoding projects share the goal of building

an open-access database of reference barcodes that will improve our understanding of

biodiversity and will allow non-taxonomists to identify species. We also joint projects

and attended the international DNA barcode conferences. We hope we can contribute

our statistical techniques on BOLI. However, the technique of DNA barcode analysis is

a new area in statistics and very few statisticians involved this projects. Our mission

is that we give some new statistical methods to analyze this high dimension and low

sample size data. Since DNA barcode is a categorical data set, we use OSR proce-

dure, which optimizes the F statistic when converting the characters A, T, C, G to
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numerical numbers. We also introduced a method LDA on HLdata and two compar-

ison procedure to classify the species and get a comparable results. Other mission is

that we can hopefully involved more and more statisticians to joint this project. At

Rutgers University, Center for Discrete Mathematics and Theoretical Computer Sci-

ence Founded as a National Foundation Science and Technology Center, DIMCAS, also

organized this project called ”The DNA Barcode Data Analysis Initiative (DBDAI)”

http://dimacs.rutgers.edu/Workshops/DNABarcode/.
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Figure 4.1: Birds of North America
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