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ABSTRACT OF THE DISSERTATION

Improving Software Reliability Using Exception Analysis

of Object Oriented Programs

by Chen Fu

Dissertation Director: Barbara Gershon Ryder

More applications are designed as server programs, many of which are expected to

run 24x7. Ensuring the quality of error handling code is vital to the high availability

that are expected from them. However, error handling code is hard to explore, review

and test, for the reason that 1) it is scattered all over the system, often not at all

organized; 2) it is impossible to trigger during runtime by simply manipulating the

program inputs or configurations.

The goal of our research is to provide tools that helps programmers explore, review

and test error handling code in a structured way to boost the system availability and

maintainability.

The contributions of this thesis are the following:

• Definition of the problem of white box robustness testing for Java-based server

applications, including an exception def-catch coverage metric and testing frame-

work.

• A new program analysis that enables the above mentioned testing methodology,

which allows compiler-generated instrumentation to guide the fault injection and

to record the recovery code exercised. (An injected fault is experienced as a Java

ii



exception.) The analysis (i) identifies the exception-flow ‘def-uses’ to be tested in

this manner, (ii) determines the kind of fault to be requested at a program point,

and (iii) finds appropriate locations for code instrumentation.

• Empirical studies of several variants of the analysis algorithms, which demonstrate

increased precision in obtaining good test coverage on a set of server benchmarks.

These studies include aggregate accuracy and timing information, with discussions

of cases in which static analysis is difficult.

• A program understanding tool that visualizes discovered exception-flow ‘def-use’

links.

• A novel program analysis that discovers semantic relations between the exception-

flow ‘def-uses’ links and combines them into chains, in order to reveal the propa-

gation path of an exception from its original to its final handler.

• An initial case study of testing exception propagation chains.
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Chapter 1

Introduction

The emergence of the Internet as a ubiquitous computing infrastructure means that a

wide range of applications – such as on-line auctions, instant messaging, grid weather

prediction programs – are being designed as server applications (typically accessible over

the web). These applications must meet the challenges of maintaining performance and

availability, while supporting large numbers of users, who demand reliability from these

programs that are becoming more and more commonplace.

However these servers often fail to meet such high availability expectations due to

the following reasons: 1) Hardware platforms on which these services often run are

heterogeneous hardware clusters, which themselves are complex. 2) Software used in

these services suffers from short life cycle caused by market pressure, which emphasizes

increasing the number of features instead of building more robust systems.

Adding redundancy works great in improving system availability when there are

only non-deterministic and low probability problems present. For deterministic or high

probability software bugs, it does not necessarily solve the problem. On June 4th 1996,

the Ariane 5 launcher veered off its flight path, broke up and exploded less than a minute

into its first flight. Later investigation revealed that a software bug caused the guidance

computers to shut down despite the fact that there were two independent replicas. This

bug finally resulted in the starting of the launcher’s self-destruction system, causing the

loss of more than US$370 million [4].

The quality of exception handling code in these complex systems is vital to their

overall availability because that the exception handling code actually defines the sys-

tem’s behavior under sub-system or infrastructure errors. It should be responsible

for recovering from transient problems, automatically selecting alternative resources if
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available, and logging enough error information for future investigation. The first two

tasks prolong system up time and the third one reduces system down time. More impor-

tantly, exception handling code should be correctly placed to prevent small problems

or sub-system errors from catastrophically bringing down the whole system, resulting

rather in performance degradation or partially losing of functionality instead of system

crash. In the Ariane 5 failure, an integer overflow in the guidance computers caused an

exception to be thrown because the speed of Ariane 5 launcher was faster than that of

the Ariane 4, for which the software was originally developed. This exception was not

specifically handled and the default exception-handling mechanism was so defined just

to shut-down the guidance computer[4]. Either a correctly placed exception handler for

this operation, or a more sophisticated default exception-handling function could have

helped in avoiding the failure.

This thesis discuss a series of analysis algorithms and tools to facilitate testing as well

as understanding, inspection of the exception handling code, so as to increase system

availability. Program analyses are designed to locate exception propagation paths in a

given Java program. Our testing framework and tools can use this information to direct

fault injection testing and help in exception handling code navigation. We devoted much

effort in improving the precision of the analysis to reduce the time spent on inspecting

and testing false paths1 in both testing and code inspection.

1.1 Testing of Exception Handling Code

The robustness testing research in this thesis addresses the problem of how to test the

reliability of server applications written in Java, in the face of infrequent but antic-

ipatable system problems that the program usually responds to via Java’s exception

handling mechanism.

Traditional reliability testing of software in the dependability community is con-

ducted in a black-box manner, using a probabilistic analysis to determine whether or

not a software component will work properly when subjected to specific fault loads and

1Infeasible paths reported by the analysis as feasible because of analysis imprecision.
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workloads [5]. Testing is accomplished by simulating faults caused by environmental

errors during test through fault-injection [18, 19, 30, 34, 61]. Testers assume that appli-

cations run under specific workloads, and then inject faults randomly into the running

code, selecting faults according to distribution functions derived from observation of

real systems. After observing application reaction to the fault load, the testers derive

data describing the likelihood that the application will deliver reliable service (i.e., not

crash) under the given fault loads and workloads [5].

Unfortunately, this approach does not ensure that the exception handling code in

an application is ever exercised nor that the program takes an appropriate action in

the presence of faults. In addition, given the probabilistic nature of the approach, it is

hard to force application execution into the untested parts of exception handling code

during further testing.

There is also a large body of existing work on white-box testing methodolo-

gies [10, 45, 29], aimed at exercising as much application code as possible during test-

ing, and measuring code coverage using various program constructs such as control-flow

edges, branches and basic blocks. However, exception handling code – code which han-

dles errors that occur with small probability, especially due to interactions with the

computing environment (e.g., disk crashes, network congestion, operating system bugs)

– is almost always left unexecuted in traditional white-box testing, because it may not

be executed by merely manipulating program inputs or even configurations.

We developed exception-catch link analysis that can identify exception propagation

paths: from where an exception may be thrown (i.e. a def) to where it may be handled

(i.e. a use) in a given Java program. This allows compiler-inserted instrumentation

1) to inject appropriate faults to trigger the exception, and 2) to gather recovery code

coverage information. Now a tester can systematically exercise the error recovery code,

by causing normal program execution into these paths (normal execution is in the

reverse direction of the exception propagation paths[39]). Thus the methodology pro-

vides a means to obtain validation of application robustness in the presence of system

faults. Although our experiments are based on server applications, the technique can

be applied to general Java applications.
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1.2 Exception Handling Code Understanding

An exception handling mechanism helps separate exception handling code from code

that implements functionalities during normal execution. However, exception handling

code that deals with certain kinds of faults is still widely scattered over the whole

program and mixed with other exception handling code, or even irrelevant code, making

it hard to understand the behavior of the program under certain system fault conditions.

With the exception propagation paths of a given program provided by exception-

catch link analysis, the following questions can be answered: What are the kinds of

exceptions and/or the set of throw statements that can reach a given program point?

Where are all the handlers for this particular (kind of) exception(s)? We developed a

program visualization tool that carefully presents exception-catch link analysis results

to facilitate answering of these two questions, which can help a programmer navigate

exception handling code that related to certain kind of problems.

Furthermore, in component-based systems, exception flow spanning different com-

ponents often manifests as chains of exception throws and catchs, instead of a single

exception-flow link. Although individual exception-flow links can be obtained with rel-

atively high precision using exception-catch link analysis, each link is only a discrete

segment of the entire exception propagation path. Therefore, its utility in the discovery

of the exception handling structure of the whole system, or in tracing back to the root

cause of a logged problem of interest, is limited.

Our Exception-chain analysis captures this behavior and provides complete excep-

tion flow information for interesting exceptions. The result greatly facilitates under-

standing exception handling architecture of a given program.

1.3 Contributions

We present our advances over the current state-of-the-art below; some previous disclo-

sure of these contributions have appeared in our publications [23, 24, 25, 26].

• Definition of a white box coverage metric for testing exception handling code in

Java applications. Design of a testing framework for automatic measurement
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of the coverage metric. Demonstration of automatic program instrumentation

directed by compile-time analysis, that effectively constructs a compiler-directed

fault injection engine from Mendosus [38], an existing fault injection framework.

• Design of a set of new compile-time analyses to identify exception propagation

paths in a given program with high precision, including:

1. The exception-flow analysis that identifies exception handling code in relation

to certain resource usage program points (i.e., a def-use analysis for potential

exceptions involving resource usage).

2. The DataReach analysis which uses the absence of data reachability through

object references to confirm the infeasibility of some interprocedural program

paths.

3. We also reformulate the DataReach analysis as a general schema that can be

instantiated to yield different algorithms by varying the number of distinct

sets of visible objects (as in the work of Tip and Palsberg [75]). Several

new variants of the DataReach analysis schema (which we call C-DataReach,

M-DataReach, and V-DataReach) have been defined and explored. This

exploration compares the relative accuracies and computational complexities

of these four variants of our analysis. Experiments show that DataReach

analyses can effectively reduce the number of false positives produces by the

above mentioned exception-catch link analysis.

• Experimentation with coverage testing of exception handling code on a set of Java

server applications, using several variants of our DataReach algorithm, and several

variants of the earlier stages of our analysis. These studies include aggregate

accuracy and timing information, as well as specific discussions of the cases in

which static analysis is difficult.

• Design and development of a program visualization tool. It groups together han-

dlers that handle exceptions triggered by a set of fault-sensitive operations2; and

2A fault-sensitive operation is a throw statement, or a native method that may be affected by some
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thus facilitates navigation of the program code that relates to exceptions triggered

by certain operations of interest. It also shows all program paths via which these

operations can be reached from some call site in the try block, helping a user to

understand the exception handling structure, and to identify spurious exception

def-uses.

• A new catch clause inspection algorithm that traces the usage of the caught

exception so as to categorize catch clauses to help programmers concentrate on

potentially problematic ones. It is extended to form a new exception chaining

analysis that can identify semantic relations between exception-catch links and

combine them into chains to reveal entire propagation paths of exceptions.

• Empirical studies of the use of exception chaining analysis in exception handling

code inspection and testing. An initial case study shows that the compiler di-

rected fault-injection testing framework can be effectively extended to test entire

exception propagation paths. Also a graphical representation of these chains at

different zooming levels helps a programmer gain knowledge of the exception han-

dling structure of the program without diving into the source code.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2 we introduce our compiler

directed fault-injection testing framework, including background knowledge and defini-

tion of terms that will be used later. Then Exception-flow and DataReach analyses will

be discussed in Chapter 3, followed by the empirical results of the testing framework

on a set of benchmarks in Chapter 4. Chapter 5 presents the program visualization

tool that helps navigating exception handling code. Chapter 6 reveals how semantically

related exception-catch links are connected into chains. Chapter 7 shows experimental

results for exception chain analyses. Chapter 8 and Chapter 9 talk about related work

and conclusion, respectively.

fault – a hardware or OS failure – and produce an exception.
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Chapter 2

Compiler Directed Fault Injection Testing

In this chapter we first introduce the problem of testing for robustness. Then we present

our compiler directed fault-injection testing framework for white box def-use testing of

exception handling code in Java programs. Some of these discussions appeared earlier

in publications [23, 24].

2.1 Background

Before giving our methodology for coverage testing exception handling code in Java

programs, we first review prior uses of the term coverage and discuss the relation

between operating system/hardware faults, Java exceptions, and exception handlers in

the application.

2.1.1 Why Java

Our system is implemented to work for Java-based server systems. We choose Java-

based systems for the following reasons: First, unlike C or C++ where the programming

convention often overloads the return mechanism to describe errors, Java contains well-

defined program-level constructs, exceptions, that respond to error conditions [6]. This

facilitates both the construction and analysis of error recovery. Second, Java is used in-

creasingly in building large-scale server applications. Third, the platform independence

of Java, its portable program representation (i.e., bytecode), and its standardized JDK

libraries all facilitate software reuse via COTS components.

The exception handling mechanisms provided by Java and C# are similar. The

differences include different syntax rules and also the fact that C# does not support

checked exceptions while Java does [41]. We believe that the techniques discussed in
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this thesis are also applicable in C# with minor modifications in implementation detail,

because our analysis algorithms will not be affected by these differences.

The difference concerning checked exception essentially means the following: A Java

program which may experience fault-induced1 errors cannot be written without inclu-

sion of some exception handling code that will be triggered upon these errors, but it is

possible to do so in C#. Thus it is more likely in C# than in Java that some potentially

exceptional operation was left unprotected which may result in system failure. For this

reason we believe that our techniques would be at least equally, if not more valuable

for C# programs.

2.1.2 Exception Handling in Java

The Java programming language provides a program-level exception handling mecha-

nism in response to error conditions that happen during program execution.

void first(){
… try{

second();
}catch (SomeException se){

retry operation or
log se

}
}
void second() throws SomeException{

… tricky();…
}

void tricky() throws SomeException{
… throw new SomeException(message);…

}

main

first

…

second

tricky

Calling St

Figure 2.1: Exception Handling In Java

The programmer can signal the transition from normal state to exceptional state by

throwing an exception, as the example code shown in Figure 2.1, in method tricky. The

method can choose to handle the exception locally, or rely on its caller to handle it. To

handle an exception, as shown in method first, the potentially exception-throwing call

1In this thesis “fault” means environmental errors including infrastructure or sub-system problems,
e.g. disk crash, network partition, OS bug, instead of a software bug in the program under investigation.
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site needs to be enclosed in a try block followed by some catch clauses, each specifying

the type of the exception that it is intended to handle together with code that actually

handles the exception.

At runtime, as shown in the right half of Figure 2.1, when an exception is thrown,

the Java VM will inspect the call stack from top to bottom looking for an exception

handler with the right exception type. Once an exception handler is located, a transfer

of control happens in the direction of the arrow in the figure, and top portion of the

run-time stack (those method invocation above method first) is discarded.

There are two kinds of exceptions in Java, checked and unchecked exceptions. If

a method itself or its callee can potentially throw an checked exception but does not

handle the exception, it must explicitly specify this fact by a throws clause in the method

signature with the types of exceptions that could be thrown by calling this method (see

methods second and tricky in Figure 2.1). Most user-defined exceptions as well as

exceptions caused by the Java runtime system are checked exceptions. If a method

can potentially throw an unchecked exception, it does not need to specify this fact in

its method signature. Examples of unchecked exceptions include NullPointerException,

RuntimeException, etc.. Note that although exception handling mechanisms in Java and

C# are similar, one major difference is that all the exceptions in C# are unchecked.

There is another way to categorize exceptions in Java. They can be divided into

synchronized exceptions and unsynchronized ones. Synchronized exceptions have ex-

plicit throwing points, either a explicit throw statement, or potential exceptional op-

erations that upon execution, may throw certain types of exceptions (e.g., a call to

a native method that could throw an exception, or dereference of a null reference, as

in NullPointerException). Thus a call stack can be saved for later inspection when

the exception is created, usually at the place where it is thrown. But unsynchronized

exceptions may not have an explicit throwing point at runtime. One example of an

unsynchronized exception is OutOfMemoryException.

The techniques discussed in this thesis try to locate an exception propagation path

from its origin (i.e., where it is thrown) to its destination (i.e., where it is handled).

Thus we can not deal with unsynchronized exceptions for which the origins are not
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clearly defined. So in later part of this thesis, we use the term exception to refer only to

synchronized exception. However, since our techniques do not rely on the throws clause

in method signatures, we can trace both checked and unchecked exceptions.

2.1.3 Definitions of Coverage

Both the dependability and software engineering communities have precise definitions

for the term coverage; however, they use this term in very different ways. In the de-

pendability context, coverage is defined as the conditional probability that the system

properly processes a fault, given that the specific fault occurs [12]. Later work included

the assumption that the fault was activated in the probabilistic definition [5]. A number

of modeling and analysis strategies naturally arise from this definition. First, coverage

can be mathematically represented as probability density and cumulative density func-

tions (PDF and CDFs). Second, these functions can be transformed into probability

density over time and cumulative density over time, leading to a range of analyses us-

ing stochastic process models (e.g., [21]). These models can describe the impact that

coverage has on the expected time to enter a failure state under a given fault load,

and the amount of redundancy necessary to achieve targeted levels of availability and

performance.

By contrast, the software engineering community uses a fundamentally different def-

inition of coverage. In this context, coverage is defined as the fraction of the application

that has been exercised by a given test in terms of specific programming constructs in-

cluding statements and branches. For example, all-branch coverage ensures that every

branch in a program (e.g., exits from an if statement) is traversed at least once dur-

ing testing. Similarly, all-statement coverage guarantees that every statement in the

program has been executed at least once during testing. Another set of constructs,

based on dataflow, traces values from their definition point to their subsequent usage,

that is, def-use coverage [52]. A hierarchy of def-use coverage metrics has been defined,

among which, the all-defs coverage metric requires that tests cover one path between

each value-setting operation and a use of that value [52]; this is to ensure that errors

due to incorrect flow of data values are handled properly.



11

For the remainder of this thesis, we call the definition based on conditional proba-

bility fault coverage and the software engineering definition, program coverage. One of

our primary goals in this work is to define a metric for program coverage as it relates to

exception handling code that describes the coverage of combinations of recovery-code

blocks and fault types, not the fraction of actual faults that were handled.

2.1.4 Fault Injection

Also note that just as the term coverage, fault and fault injection are also used by

both the dependability and software engineering communities, with different definitions.

In the software engineering community, fault is usually used to refer to a software

bug. Fault Injection means “planting” bugs into the existing correct programs by code

mutation, with the hope that these code errors are very similar to those unintentionally

added by programmers, in order to demonstrate the effectiveness of fault localization

and/or testing techniques.

In the dependability community, however, a fault indicates an environmental prob-

lem or a sub-system error that manifests itself. Fault Injection is the effort to introduce

or simulate faults into an otherwise healthy system. This latter definition of fault

injection is used in the remainder of this thesis.

Experimental evaluation by fault injection has long been used for estimation of

fault tolerant system measures such as fault coverage [18, 19, 30, 34, 61]. There are both

hardware and software implementations of fault injection. Hardware implemented fault

injection can vary from hardware being exposed to heavy-ion radiation, to pulling the

power plug manually; thus these approaches either depend on complex and expensive

special hardware, or are performed in an ad hoc manner.

Software implemented fault injection, sometime referred to as fault emulation, is

preferable to other fault injection alternatives because it is easy to implement and

modify when requirements change, and it is easy to control and observe the faults

injected. Software implemented fault injection can take many forms. In the testing of

operating systems, for example, fault injection is often performed by a driver (kernel-

mode software) that intercepts system calls (i.e., calls into the kernel) and randomly
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returning a failure for some of the calls. This type of fault injection is also useful for

testing low level user mode software (e.g., an X server). In managed code, on the other

hand, it is common to use instrumentation.

2.2 Exception Def-Use Coverage Testing

Here we present the definition of coverage for exception handling code of Java programs,

and introduction of our testing framework. We also provide an in depth discussion about

the program analysis algorithm needed in this framework in measuring and even help

improving the coverage.

2.2.1 Faults, Exceptions, Coverage Metric

A fault is some environmental error that manifests itself. We begin with a set of faults

that are of interest to the tester — for example, some testing may focus on disk and

network errors. A fault-sensitive operation, either an explicit throw statement or a call

to unknown method, is affected by a fault if when the operation occurs, it experiences

a fault as a run-time error and an exception is produced. Often these operations are

calls to C library functions within the Java JDK libraries. We denote P to be the set

of all fault-sensitive operations that may be affected by any of the specific set of faults

of interest. We assume P is known because it can be precalculated once from the Java

libraries and reused for all the programs subject to fault-injection testing with this same

set of faults. In this thesis we focus on faults related to Java IOExceptions.

In any given program execution, each element of P could possibly produce an excep-

tion that reaches some subset of the program’s catch blocks. 2 By viewing fault-sensitive

operations as the definition points of exceptions, and catch blocks as uses of exceptions,

we can define a coverage metric in terms of exception-catch (e-c) links. This definition

is analogous to the all-uses metric [52] of traditional def-use analysis:

Definition (e-c link): Given a set P of fault-sensitive operations that may produce

2 There is a many-to-many relationship between system faults and Java exceptions. For this paper
we assume that the tester merely has to choose one or more exceptions of interest. For more details,
see [23].
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exceptions in response to the faults of interest, and a set C of catch blocks in a program

to be tested, we say there is a possible e-c link (p, c) between p ∈ P and c ∈ C if p could

possibly trigger c; we say that a given e-c link is experienced in a set of test runs T , if

p actually transfers control to c by throwing an exception during a test in T .

Definition (Overall Exception Def-catch Coverage): Given a set F of the possible e-c

links of a program, and a set E of the e-c links experienced in a set of test runs T , we

say the overall exception def-catch coverage of the program by T is |E|
|F | .

It is not hard to locate E in the above definition starting from a program execution

trace (we only need to record the execution of operations in P and C). The set F for

a given program does not vary from test to test, and can thus be computed statically.

Calculating the elements in F precisely using static analysis, however, is challenging,

as will be discussed in the following chapters.

A high overall exception def-catch coverage indicates a thorough test, but a low

coverage may result from either insufficient testing (i.e., a small E) or an overly conser-

vative estimate of F , the set of possible e-c links. As in other forms of coverage testing,

it is unacceptable for F to omit any e-c links possible at runtime, so our analysis must

be conservative, producing a superset of F in the presence of imprecision. This is a

common problem in software testing; it is addressed by using an analysis that is as pre-

cise as possible to eliminate many infeasible paths and by human tester examination.

As we will see in Chapter 4, the precision of our analysis has a significant impact on

the coverage results for the benchmarks.

2.2.2 Testing Framework

As defined previously, to measure Exception Def-catch Coverage we need to locate

elements in both F (the possible e-c links of a program) and E (the e-c links experienced

in a set of test runs).

The set F for a given program can be computed statically. Locating the elements in

F precisely using static analysis, however, is challenging. An indepth discussion about

this can be found in Chapter 3. In this section, we focus on measuring E after each test,
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assuming we already have the information about F before any test. In later sections

we will discuss techniques needed to meet this assumption.

Measuring Exception Def-catch Coverage

Since F contains all possible e-c links (p, c), it is not hard to instrument each catch

clause c for which there exists an e-c link (p′, c′) ∈ F and c = c′, in order to record them

in the program trace if triggered. But as mentioned previously, these catch clauses can

not be triggered by just manipulating input data or configurations of the program if

they are dealing with environmental problems. A fault-injection engine must be used

at runtime to help directing control into these catch clauses.

The first approach that came to our mind was just to use the traditional fault-

injection method. That is, after instrumentation, we would run the program under test

with the fault-injection engine enabled, and a fault will be injected into the system

randomly. If the fault was injected while some fault sensitive operation occurs, an

exception will be thrown and one of the catch clauses will be triggered, which will be

logged in the trace.

Our intention is to log each executed e-c link (p, c) during the test instead of just

the c end of the e-c link. However, at runtime, when some catch clause is triggered, we

can inspect the call stack information stored in the caught exception using the method

printStackTrace, to figure out the origin of the caught exception p.

It is not easy to achieve high coverage using this approach, because covering not

so frequently executed e-c links is very challenging. For instance, a program can use

a memory cache to reduce disk reads, and disk operations will become less frequent.

Then it becomes less likely that a disk fault will be injected while a disk operation is

underway, which is necessary to trigger the corresponding exception. Thus it will be

hard to cover e-c links related to disk operations.

Improving Coverage

We now consider how the compiler can instrument application code to communicate

with a fault-injection engine at runtime, in order to direct the fault-injection process
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to obtain high program-fault coverage as measured by our metric. The intuition is

that when the program runs, if we can foresee that a particular kind of fault-sensitive

operation may happen in a way that has not been tested, we want to inform the fault

injection engine to inject the fault at this time, hopefully to cause an exception to be

thrown and to trigger the corresponding catch clause.

Specifically, we use Mendosus [38] as our fault-injection infrastructure, but our ap-

proach could, in principle, be applied using any fault-injection system that can inject the

faults we study. For this work, we have extended Mendosus with an API for dynamic

external direction as to when specific faults should be injected. Previously, Mendosus

injected faults according to a pre-determined script comprised of traces and/or random

distributions.

We currently inject only one fault per run of the program, using multiple single-fault

runs to obtain high coverage. Our techniques could be used to inject multiple faults per

run, but we have no way of measuring the interactions between faults, and thus have

not explored this approach. Our choice of the “single-fault-per-run” approach could

potentially prevent us from covering a catch clause in code that can only be reached

after the recovery from a prior fault, but we do not expect this to be a problem in

practice.

Once we have calculated the possible e-c links for a program, then for a specific

fault-sensitive operation, we have identified the catch blocks that may handle the re-

sulting exception, if it occurs. Given the semantics of Java, there must be a vulnerable

statement executed in the corresponding try block, that resulted in the execution of

the fault-sensitive operation. The tester must try to have the execution exercise both

this vulnerable statement, often a call, and the fault-sensitive operation, so that the

recovery code is reached. Obtaining test data to accomplish this task is the same test

case generation problem presented by any def-use coverage metric.

The compiler uses the set of e-c links found to identify where to place the instru-

mentation that will communicate with Mendosus, the fault-injection engine, during

execution. This communication will request the injection of a particular fault when

execution reaches the try block containing the vulnerable operation and will result in
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the recording of the execution of the corresponding catch block.

The instrumentation is accomplished through method calls. For each e-c link (p, c),

we first locate the catch block c, and the corresponding try block. At the entry of

the try block, a special method call is inserted to direct Mendosus to inject the fault

selected at static instrumentation time. At the entry of the catch block another method

call is inserted to query and record the call stack encapsulated in the caught exception.

The instrumentation methods called are designed so that each instrumentation point

can be turned on and off by command line option or environment variables. Note that

the fault must be selected so that one and only one fault-sensitive operation3 will fail

and throw an exception.

In addition, we need to control the scope of the fault. For instance, if we want

to inject a disk fault, we want it only to affect disk read or write operations applied

on the file related to the e-c link (p, c) we are targeting. If the file object is created

previously or in the try block that corresponds to c, we can probably find it using

static analysis. But that is not always the case. Also, we cannot let the fault affect

all the disk read operations in the system because that will block some disk operations

conducted by VM (e.g. class loading) which will fail the entire test. So we instrument

the application to keep track of the set of network and file objects created by the

application; this dynamically maintained set is stored in Mendosus, which can watch

for file or socket close through the operating system, and remove that object from the

set. Then, whenever a fault injected, Mendosus can always restrict its scope to the files

and sockets in this set.

Figure 2.2 shows the organization of our fault-injection system. The box labeled

compile time shows that for a chosen set of faults, corresponding to some set of excep-

tions and their fault-sensitive operations, the analysis presented in the following section

calculates the possible e-c links and the vulnerable statements that are susceptible to

them. The compiler inserts the instrumentation calling on Mendosus to insert a fault

during execution of the corresponding try block and the recording instrumentation for

3e.g., network read/write, disk read/write, network accept, network connection, etc..
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Figure 2.2: Compiler-directed fault injection framework

recovery code in the catch block. Then, the tester runs the program and gathers the

observed e-c links from that run. The tester then may have to try to make the pro-

gram execute other vulnerable statements (i.e., by varying the inputs) in order to cover

more of the possible e-c links. Finally, the test harness calculates the overall exception

def-catch coverage for this test suite.
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Chapter 3

Program Analysis to Locate e-c links

To measure formerly defined coverage metrics, we need to know the total number of

e-c links in the program and the number of e-c links that are exercised during testing.

The former relies on compile-time analysis while the latter is recorded at runtime. This

chapter presents in depth discussion about the compile-time analyses needed in the

compiler directed fault-injection testing framework. Some of these discussions appeared

earlier in publications [23, 24].

Figure 3.1 illustrates the high level structure of the two-phased compile-time

exception-catch link analysis which we designed to calculate e-c links in Java programs.

Exception-flow analysis takes a static representation (i.e., AST) of a Java program as

well as its call graph, and produces the e-c link set of the given program. Unlike previ-

ous exception-flow analyses [55, 33, 66] which relied on interprocedural propagation of

exception types, our analysis is object-based, distinguishing between exception objects

created by different new() statements. The DataReach analysis serves as a postpass

filter which uses the reference points-to graph [57, 59] of the program to discard as

many infeasible e-c links in the set produced by exception-flow analysis as possible, so

as to increase the precision of the entire analysis. Intuitively, both of these analysis

phases can vary in their precision, because they effectively are parameterized by the

points-to and call graph construction analysis used as their inputs. Various analysis

choices are available for call graph construction [20, 7, 27] which differ in their cost and

the precision of the resulting graph. The empirical results discussed in Chapter 4 show

that the precision of the call graph and points-to graph has significant impact on the

precision of the final e-c link set obtained.
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Figure 3.1: Two phases of exception-catch link analysis

3.1 Exception-flow analysis

In Java, if code in some method throws a checked exception1, either the exception is

handled within the method by defining a catch block for it, or the method declares in

its signature that it might throw this kind of exception when called. In the latter case,

its callers must either handle the exception or declare that they throw it as well [6].

We want to find the relationship between catch blocks and fault-sensitive operations.

We use the term “throw statement” to represent all fault-sensitive operations in our

discussions for simplicity; we actually mean all instructions or calls that may throw

some exception, if a fault occurs.

A naive analysis that relies only on examination of user-declared exception types in

catch blocks and method signatures is too inaccurate to yield information of practical

use. In part this is because the declared exception can be a supertype, subsuming many

exception types that actually cannot be thrown in this context. Moreover, a method

may declare that some exception may be thrown, when actually no exceptions can ever

be raised; this can occur when the implementation of some method has changed, but

the method declaration is not updated. Dynamic dispatch can add to the imprecision of

1Note that as discussed in 2.1.2, we are only considering synchronized exceptions in this thesis, which
have definite origins.



20

the declared exception information. Suppose class A is the superclass of B and method

bar() is declared in both of them, but only A.bar() may throw an exception of class

E when called. If some other method foo() contains a call a.bar() for a of static

type A, then foo() must define a handler for exception E or declare that it throws this

exception. However if at runtime reference a always points to a B object, no exception

can ever be thrown at the call site. What’s more, declarations can not be used to gain

any information about unchecked exceptions for which a declaration on the method

signature is not required.

Our exception-flow analysis is an interprocedural dataflow analysis that calculates

for each catch block, all the throw statements whose exceptions could potentially be

handled by that catch. This is a form of def-use analysis. We define exception-flow

as the flow of each exception thrown per throw statement along the exception handing

path [50] — from the throw statement to the catch block where it is handled.

According to the semantics of exception handling in Java [6], we can assume there

exists a variable for each executing Java thread that refers to the currently active

exception object. During execution, any throw and catch operations are definitions

and uses of that variable, respectively. Thus, we can apply a variant of the traditional

Reaching-Definition [1] dataflow analysis to this problem, but there are some unique

aspects of exception-flow that require special handling:

1. Types are associated with each use and definition. A use (i.e., a catch) kills all

the reaching definitions whose type is the same as or a subtype of the type of the

use. Interfaces, when used as the parameter of catch clauses, have the same effect

as abstract classes with their implementors as subclasses.

2. The key control-flow statements in a method are try and catch blocks, throw

statements and method calls. All other statements do not affect the exception-

flow solution (given that the call graph is an input to this problem). The order

of these statements within a method is of no consequence. What is important is

whether or not a throw or method call is contained in a try block nest2. Therefore,

2 In Java, try blocks can be nested within each other. Handlers are associated with exceptions in
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within a method, we are only interested in paths from the method entry to each

try-catch block or to a throw or a method call not contained in any try-catch

block.

The analysis is interprocedural because of the nature of exception handling: an

exception propagates along the dynamic call stack until a proper handler is reached.

The dataflow is in the reverse direction with respect to execution flow on the call graph;

thus exception-flow is a backward dataflow problem. Our analysis is performed on a call

graph whose edge annotations record the corresponding call sites, since call sites may

occur within different try-catch blocks, which clearly affects the solution3. Within

each method, the analysis calculates those exceptions which reach the entry to that

method, by considering throws and method calls not contained within any try-catch

block and those try-catch blocks within the method. The former statements yield some

of the exceptions possibly raised and not handled in the method. Statements within

the try-catch blocks may also yield unhandled exceptions, depending on the types of

the respective catch blocks. Thus, the program representation used is a variant of a

call graph, where each method node has an inner structure consisting of an edge from

the entry node to each uncovered throw, method call or outermost try-catch block.

We define for each method the set of throw statements that can reach its entry to

be the set of exceptions that can either be generated within the method or propagated

to the method (at a call) and then preserved through the method to method entry, as

follows:

Definition (ReachingThrows(method M)): The set of all throw statements for which

there exists an exception handling path [50] from the throw statement to method M ,

and the exceptions are not handled in method M .

Figure 3.2 gives an example illustrating the definition of ReachingThrows. We

can see that the call site bar() inside method foo() is inside the try block, so that

SocketException thrown in bar() will be handled (i.e., killed) in foo(), because it is

inner to outer order [6].

3 Adding these annotations is not difficult for any call graph construction algorithm.
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a subclass of IOException. However, exception OtherException, also thrown by bar()

while not a subclass of IOException, will not be handled and thus appears in Reach-

ingThrows(foo). If the call to bar() had not been placed within a try-catch block in

foo(), both exceptions (i.e., SocketException, OtherException) would appear in Reach-

ingThrows(foo). Therefore, our analysis can be considered to have some flow-sensitive

aspects, in that it captures the relation of try-catch blocks to the call sites and throw

statements within them.

}

thrown inOtherException         bar

barReachingThrows(        )

SocketException         bar

OtherException         barthrown in

fooReachingThrows(        )

void foo() throws Exception{

  try{

    bar();

  }catch (IOException ioe){..}

}

void bar() throws Exception{

...

  throw new SocketException();

...

  throw new OtherException();

thrown in

Figure 3.2: Example of ReachingThrows

The dataflow equations for the ReachingThrows problem are defined on the anno-

tated call graph of the program. We define RT(m), the ReachingThrows at the entry

to method m, as

RT (m) =

{t ∈ T |type(gen(t))− kill(trynest(t)) 6= ∅}

∪
⋃

cs∈CS

⋃
m′∈targets(cs)

{t ∈ RT (m′)|type(gen(t))− kill(trynest(cs)) 6= ∅}

where T is the set of throw statements in m; gen(t) is set of the exception objects
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thrown by t; type(gen(t)) is the set of types of the objects in gen(t); trynest(k) is the

(possibly empty) nest of trycatch blocks containing statement k; kill(trynest(k)) is the

set of exception types handled by the catch blocks that correspond to trynest(k), or

∅ if trynest(k) is empty; CS is the set of call sites in m; and targets(cs) is the set of

all run-time target methods that can be reached by call site cs (there can be more

than one target of a polymorphic call). Note also that the set difference operation

must respect the exception inheritance hierarchy; subtraction of a kill set including

exception type et must remove any exceptions of subtypes of et as well as et itself.

These dataflow equations are consistent with the definition of a monotone dataflow

analysis framework [40] and therefore, amenable to fixed-point iteration.4

In Java, finally blocks are used to ensure code is executed in both exceptional and

normal circumstances. What’s more, implicit finally blocks are also added whenever

there are synchronization blocks to ensure monitor resources are properly released upon

exceptional exit of these blocks. Explicit and implicit finally blocks are translated into

special catch and rethrow in bytecode by javac. These special catch clauses are very

easy to identify due to their special structure. We believe that code in finally blocks is

not dedicated exception-handling code because it can be reached by normal execution

and may be covered using traditional functionality testing techniques. Thus we choose

to ignore finally blocks in our analysis. However, after minor modification, finally

blocks can be treated as ordinary catch blocks in our analysis.

By performing exception-flow analysis, we can find all the e-c links (ti, hj) where

a throw ti can potentially trigger a catch block hj . Furthermore, the interprocedu-

ral propagation path of ti can be recorded by adding annotations onto elements of

ReachingThrow. Thus call chains from hj to ti can be calculated on demand after the

exception-flow analysis to help the human tester understand why a specific e-c link is

not covered in some test.

Worst case complexity. The dataflow problem so defined is distributive and 2-

bounded [40]; therefore, the complexity of the analysis is O(n2) where n is the number of

4The iteration is only necessary here to handle interprocedural loops. Our implementation uses a
prioritized (postorder) worklist.
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methods. Given our program representation, the time cost of processing each method

to find the constant terms in these equations is linear in the number of try-catch

blocks, call sites and throw statements in the method, which is bounded above by k,

the maximum number of statements in a method; this adds a kn term to the above

complexity. Therefore, the overall worst case complexity is O(n2 + kn).

The exception-flow analysis described above relies on having an annotated call graph

for the program. The accuracy of the analysis is affected by the accuracy of the call

graph. We will show the impact of using different call graph building algorithms on

the number of e-c links reported by exception-flow analysis in Chapter 4. In order to

increase precision, we added selective context sensitivity to the points-to analysis that

we use to build the call graph. Rather than building a full and costly context-sensitive

points-to analysis, we performed selective constructor inlining; that is, we inlined each

constructor at its call sites, when that constructor contained a this reference field initial-

ization using one of its parameters. Without this transformation, a context-insensitive

analysis would make it seem that the same-named fields of all objects initialized in

this constructor could point to all the parameters so used [43, 42]. We run a context-

insensitive points-to analysis on the program after this transformation, and thus obtain

some degree of context sensitivity for constructors. This eliminates some imprecision

and obtains a more precise call graph and points-to graph for both our Exception-flow

and DataReach analysis phases.

3.2 Data reachability analysis

We want to use a fairly precise program analysis to eliminate as many infeasible in-

terprocedural paths as possible, to reduce the work that otherwise must be done by

human testers when e-c links based on these paths cannot be covered. Using a more

precise analysis for call graph construction such as points-to analysis [57, 59] helps to

reduce the number of infeasible e-c links found; however, in practice even a very precise

call graph building algorithm introduces many infeasible e-c links.

Figure 3.3 is an example of typical use of the Java network-disk I/O packages.
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Figure 3.4 illustrates how infeasible e-c links are introduced even given a fairly precise

call graph for the code. As we can see, the try block in readFile is only vulnerable

to disk faults and the try block in readNet is only vulnerable to network faults. But

exception-flow information is merged in BufferedInputStream.fill()5 and propagated

to both readFile and readNet; thus, two infeasible e-c links are introduced reducing

the achievable run-time coverage to 50% or less.

void readFile(String s){
byte[] buffer = new byte[256];
try{

InputStream f = new FileInputStream(s);
InputStream fsrc = new BufferedInputStream(f);
for (...)

c = fsrc.read(buffer);
} catch (IOException e){

...
}

}
void readNet(Socket s){

byte[] buffer = new byte[256];
try{

InputStream n = s.getInputStream();
InputStream nsrc = new BufferedInputStream(n);
for (...)

c = nsrc.read(buffer);
} catch (IOException e){

...
}

}

Figure 3.3: Code Example for Java I/O Usage

This inaccuracy can be resolved by using a different program representation such

as a call tree [60] instead of a call graph. However, constructing a call tree by compile-

time analysis is too expensive and once constructed, this representation is too large to

scale appropriately. For example, to remove the infeasible e-c links in Figure 3.4, the

call tree algorithm must be able to find that there are only 2 feasible call chains which

5 We use a fully qualified naming convention in our examples; that is, we express all method names
in a ClassName.MethodName format, even for instance methods.
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readFile

FilterInputStream.read(byte[])

BufferedInputStream.fill()

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

FileInputStream.read(...)

Disk Access

Call Graph Edges

SocketInputStream.read(...)

readNet

Network Access

e−c linkInfeasiblee−c linkFeasible

Figure 3.4: Call Graph for Java I/O Usage

share a middle segment of length 3. Separating these 2 chains would require a context-

sensitive points-to analysis analogous to 4-CFA [62, 64], an expensive analysis. In many

cases the length of the shared segment is even longer (e.g., when you need to wrap the

basic InputStream with more than one filter class, such as BufferedInputStream and

DataInputStream).

3.2.1 Overview of our Approach

The intuitive idea of our approach is to use data reachability to confirm control-flow

reachability, in that interprocedural paths requiring receiver objects of a specific type

can be shown to be infeasible if those type of objects are not reachable through deref-

erences at the relevant call site. Continuing with Figure 3.3, consider the call site

fsrc.read() in method readFile. We want to know whether SocketInputStream.read()

can be called during the lifetime of fsrc.read(). In the explanation below, we re-

fer to fsrc.read() as the original call and to the polymorphic call site in Buffered-

InputStream.fill() as the target call site, which may reach SocketInputStream.read()
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according to the call graph. The receiver variable of the target call site is denoted

as rt. The argument about data reachability relies on the following intuition: if

SocketInputStream.read() is called, some object of type SocketInputStream must have

been created previously to serve as the receiver. There are only three ways this can

occur:

1. The object is created during the lifetime of the original call and passed to the

target call site by assignments between method return values and local variables.

2. The object is associated with rt by field dereferences of (i) one of the global

variables (i.e., Java static fields) or (ii) one of the objects created during the

lifetime of the original call, that occur during the lifetime of the original call.

3. The object is associated with rt by field dereferences of one of the arguments of

the original call (including the receiver), that occur during the lifetime of the

original call.

At the call site in method readFile, fsrc points to a BufferedInputStream object

whose in field points to a FileInputStream. In BufferedInputStream.fill(), this.in is

assigned to rt and a call to rt.read(...) is issued. According to the rules above, File-

InputStream.read(...) is reachable because a FileInputStream object is reachable from

rt by field dereference. However no SocketInputStream is reachable through transitive

field dereferences via the fields accessed from either the arguments, the receiver of the

original call, or any static field loaded, and no such object is created. Thus it is clear

that during the lifetime of the original call site, rt cannot point to an object with type

SocketInputStream. Therefore the polymorphic call cannot be dispatched to Socket-

InputStream, and the corresponding e-c link is infeasible.

Therefore, given an original call site, we can express the feasibility of a particular call

path in terms of whether some data reachability is possible according to the conditions

above. Note, we only consider object fields and static fields loaded in methods reachable

from the original call. Clearly, we need reasonably precise points-to information [36, 57]

to obtain the high-quality data reachability information.
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The rest of this section describes DataReach, the original data reachability algorithm

and discusses sources of its imprecision. Section 3.3 presents a schema of successively

more precise data reachability algorithms, inspired by the call graph construction al-

gorithms in reference [75], in which types are propagated between different program

elements (e.g., methods, classes and fields). Our algorithms propagate reachable ob-

jects instead of types. Nevertheless, our algorithms rely on the key intuitions of the

algorithms in [75]: keeping separate sets associated with program constructs achieves

better accuracy than keeping one set for the entire program, albeit for the collection of

different data in a different problem.

3.2.2 Original DataReach Algorithm

Now we present the details of the original DataReach algorithm that requires a points-

to graph as input. The nodes of the points-to graph are the reference variables in the

program and the object names that represent the set of heap objects created during

program execution. Our analysis assumes a common object naming scheme which

assigns one object name per allocation site; other more precise object naming schemes

are possible as well but they tend to be more expensive [43]. Let O denote the set of

object names. Function Pt : Ref → P(O) takes as an argument a reference variable or

a reference object field and returns a subset of P(O), the powerset of O. DataReach

is defined in terms of three sets: U,F and R. Set U is initialized to the set of objects

passed as actual arguments at the original call; intuitively, it contains the universe of

objects that may flow to the target call from the original call. Set F is the set of all

instance fields that are read during the lifetime of the call. As the algorithm examines

static and instance field accesses in the methods reachable during the lifetime of the

original call, it adds to U those objects that thereby become reachable. In other words,

the algorithm adds object oj to U if and only if there is a path oi
f0→ o1 . . .

fk→ oj in the

points-to graph, where field identifiers f0, . . . fk ∈ F and oi ∈ U before this addition.

Set R denotes the set of methods reachable during the lifetime of the original call.

The DataReach algorithm can be specified by the following constraints (using the

constraint-based formalism from [75]). The statement of these constraints is followed
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by a discussion of their meaning.

• input: Pt: Ref → P(O)

• initialize: M ∈ R for each target M at original call

Pt(v) ⊆ U for each actual argument v at original call

F = ∅

1. For each method M , each virtual call site e.m(. . .) in M , each object o ∈ Pt(e) where

StaticLookup(o,m) = M ′:

(M ∈ R) ∧ (o ∈ U) ⇒ M ′ ∈ R

2. For each method M and for each object creation statement si: . . . = new oi in M :

(M ∈ R) ⇒ oi ∈ U

3. For each method M and for each static field read statement si: . . . = C.f in M :

(M ∈ R) ⇒ Pt(C.f) ⊆ U

4. For each method M and for each instance field read statement si: . . . = r.f in M :

(M ∈ R) ⇒ f ∈ F

5. (o ∈ U) ∧ (f ∈ F ) ⇒ Pt(o.f) ⊆ U

The algorithm initializes the set of reachable methods R to the set of targets at the

original call, U to the set of objects pointed to by the actual arguments at the original

call (including all possible receivers), and the set of accessed fields F to the empty

set. Auxiliary function StaticLookup returns the dynamic target of the call, based on

the static type of the receiver object o and the compile-time target m. Constraint 1

specifies the addition of new methods to the set of reachable methods at virtual calls;

a new method M ′ is added to R only if the receiver object that triggers the invocation

of M ′ is in the set U . Static calls are trivially handled as their target method is known

exactly. Constraint 2 specifies that an object is added to set U whenever there is an

object creation statement in a reachable method. Similarly constraint 3 specifies that

objects are added to U whenever a static field is accessed. Finally, constraint 4 collects

the set of field identifiers accessed in reachable methods, and constraint 5 accounts for

the computation of the transitive closure of U with respect to the set of accessed fields

F .
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The solution of these constraints can be used to judge whether or not an edge in the

call graph downstream from the original call site, can be reached on a statically feasible

path from that call site. The algorithm starts from the given call site and judges the

feasibility of each encountered call edge using set U , before actually following the edge.

The algorithm outputs R, the set of all methods reachable through data reachability

from the given original call site. Recall the intended use of our DataReach algorithm. If

there is no feasible path of calls to the target method during the lifetime of the original

call, then the corresponding e-c link is proved spurious.

If a fault occurs during the lifetime of the original call, then an exception may be

handled by a catch block associated with the try in which the original call site is nested.

In this case, there is a corresponding e-c link resulting from an excepting call to some

method m or throw in method m during the lifetime of the original call. If at the target

call to m, the set of possible target methods does not contain m, then the e-c link is

spurious (i.e., it corresponds to an infeasible control-flow path); thus, there is no need

for this link to be exercised.

For example, if the original call is in.read() in method readFile and

reachable methods calculated by the above algorithm does not include method

SocketInputStream.read(), then we know that the catch block in readFile will not

be triggered by exceptions thrown in SocketInputStream.read() so the corresponding

e-c link is infeasible.

3.2.3 Imprecision of DataReach

The original data reachability algorithm produced relatively precise results. However,

examples from several new benchmark programs reveal that in many cases its conser-

vative estimate is not sufficient. Therefore, there is a need to investigate more precise

analysis.

Example. Consider the example in Figure 3.5. Assume we start DataReach anal-

ysis at original call c1 in method Read1. Set U will contain objects o1, o2 and o5 and

every object reachable from them along fields accessed in the reachable methods A.m,

A.n and Hashtable.put. Since context-insensitive points-to analysis and even some of
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the practical context-sensitive ones (e.g., 1-CFA) do not distinguish between objects

stored in different containers or maps, any object that is stored in a Hashtable object

will be reachable from o5 along a path of field accesses in F . Thus, the set of objects

reachable from o5 includes o4 and we have {o1, o2, o4, o5} ⊆ U . As a result, both Y.read

and Z.read are determined to be feasible targets at call x.read() and the analysis er-

roneously concludes that both the throw in Y.read and the throw in Z.read will be

handled by the catch block in method Read1. Similarly, starting DataReach from orig-

inal call c2 in method Read2, the analysis determines that both the throw in Y.read

and the throw in Z.read will be handled by the catch block in method Read2. It is easy

to see that the only two feasible e-c links are (i) between throw new SomeIOException

and the catch in Read1, and (ii) between throw new OtherIOException and the catch in

Read2. Similar patterns in actual benchmark code led us to investigate a more precise

analysis.

3.3 A Schema for Data Reachability Analysis

We propose a new general schema for data reachability analysis, that includes our orig-

inal DataReach algorithm as an instantiation. Similarly to the call graph construction

algorithms by Tip and Palsberg [75], our schema can be instantiated to yield different

algorithms by varying the number of sets used to calculate the objects which are vis-

ible in methods reachable from the original call, (i.e., the set from which the possible

receivers at the target call are drawn). DataReach keeps a single set U . The new data

reachability algorithms in our schema keep separate sets for program entities such as

classes, methods and reference variables. The major differences with Tip and Palsberg’s

algorithms are that (i) our algorithm propagates objects rather than class types, and (ii)

our algorithm is formulated on a partial program rather than on a complete program.

The algorithms in our schema keep specialized local information for program entities

such as methods and reference variables, which results in increased precision for data

reachability calculations. For example, consider the set of statements in Figure 3.5.

Clearly, the Hashtable object o5 created in method A.n does not flow to A.m; thus, the

precision of the data reachability analysis will benefit if instead of keeping a single set
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class X {
void read() throws IOException {...}

}
class Y extends X {

void read() throws IOException {
... if (...) throw new SomeIOException();

}
}
class Z extends X {

void read() throws IOException {
... if (...) throw new OtherIOException();

}
}

class A {
void m(X x) throws IOException {

n(x);
x.read();

}
void n(X x) {

s5: Hashtable ht = new Hashtable(); //o5
... if (...) ht.put(...,x);

}
}

void Read1() {
try {

s1: A a = new A(); //o1
s2: Y y = new Y(); //o2
c1: a.m(y);

}catch(IOException e) { ... }
}

void Read2() {
try {

s3: A a = new A(); //o3
s4: Z z = new Z(); //o4
c2: a.m(z);

}catch (IOException e) { ... }
}

Figure 3.5: Imprecision of DataReach algorithm
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U throughout the analysis, a set UM is kept for each method M .

The original DataReach algorithm is an instance of the schema. In this section

we discuss two additional instances: one that uses separate sets UM for each method

M (this instantiation is referred to as M-DataReach), and one that uses separate sets

UV for each reference variable V (referred to as V-DataReach). Analogously to the

algorithms in [75], M-DataReach is potentially more precise than DataReach, and V-

DataReach is potentially more precise than M-DataReach. It is possible to define an

algorithm, where there is a set per class by aggregating the method sets for all methods

in that class into a single set UC (referred to as C-DataReach); for brevity we omit a

detailed discussion of this instantiation.

3.3.1 Separate sets for methods (M-DataReach)

The M-DataReach algorithm keeps distinct sets UM and FM for each method M ; UM is

computed with respect to FM from the points-to graph given as input to the algorithm.

Analogously to [75], ParamTypes(M) is used for the set of static types of the arguments

of method M (excluding the implicit parameter this), and the notation ReturnType(M)

is used for the static return type of M . MatchingObjects(t, U) denotes the set of objects

in U of type t (or of a subtype of t). We extend the notation MatchingObjects(.) to

apply to a set of types as follows: MatchingObjects(T,U) =
⋃
t∈T

MatchingObjects(t, U).

The following constraints define M-DataReach:

• input: Pt: Ref → P(O)

• initialize: M ∈ R for each target M at original call

Pt(v) ⊆ UM for each actual argument v at original call and for each target M

UN = ∅ for each non-target method N

FM = ∅ for each method M

1. For each method M , each virtual call site e.m(. . .) occurring in M , each object o ∈ Pt(e)

where StaticLookup(o,m) = M ′:

(M ∈ R) ∧ (o ∈ UM ) ⇒
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M ′ ∈ R ∧

MatchingObjects(ParamTypes(M ′), UM ) ⊆ UM ′ ∧

MatchingObjects(ReturnType(M ′), UM ′) ⊆ UM ∧

o ∈ UM ′

2. For each method M and for each object creation statement si: . . . = new oi in M :

(M ∈ R) ⇒ oi ∈ UM

3. For each method M and for each static field read statement si: . . . = C.f in M :

(M ∈ R) ⇒ Pt(C.f) ⊆ UM

4. For each method M and for each instance field read statement si: . . . = r.f in M :

(M ∈ R) ⇒ f ∈ FM

5. (o ∈ UM ) ∧ (f ∈ FM ) ⇒ Pt(o.f) ⊆ UM

Intuitively, constraint 1 refines the analogous constraint from DataReach. First, the

receiver object o at a virtual call in method M should be available in UM . Second, set

U ′
M of the callee is updated with the objects from set UM of M that match the parameter

types of the callee. Third, set UM of the caller M is updated with the objects from

set UM ′ of the callee M ′ matching the return types of the callee. Constraints 2 and 3

respectively gather objects created in M , and objects that flow to M due to static field

reads. Finally, constraint 4 gathers the set of instance fields that may be accessed in

M and constraint 5 computes the transitive closure of UM by only traversing points-to

graph edges corresponding to fields in FM .

Example. Consider the code in Figure 3.5. After initialization at original call c1

we have UA.m = {o1, o2}. Applying constraint 1 at call n(x) results in objects o1 and o2

being added to UA.n; no objects flow back to UA.m. Since no fields are accessed in A.m,

the closure is UA.m = {o1, o2}. Therefore, the only possible receiver at call x.read()

is o2 and the only possible exception that may be thrown back to the original call is

SomeIOException.
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3.3.2 Separate sets for variables (V-DataReach)

Additional precision over M-DataReach can be achieved by distinguishing the ob-

ject sets for each reference variable. For this instantiation of the schema, called V-

DataReach, the algorithm keeps distinct sets UV for each reference variable V . This

analysis takes advantage of a predicate MethodLocal(o) which returns true if object

o does not escape its creating method, and false otherwise. This information can be

trivially computed from a points-to graph as shown in [57].

The following constraints define V-DataReach, in an analogous way to the two

previous instantiations of the schema:

• input: Pt: Ref → P(O)

• initialize: M ∈ R for each target M at original call

Uai ⊆ UM.fi
for actuals ai and formals M.fi

Initialize UM.this of targets M accordingly

Initialize all other Uv, Uo.f and Local to ∅

1. For each method M ,

each virtual call site l = e.m(e1, . . . , en) occurring in M ,

each o ∈ Pt(e) where StaticLookup(o,m) = M ′:

(M ∈ R) ∧ (o ∈ Ue) ⇒

M ′ ∈ R ∧

Uei ⊆ UM ′.fi
where fi are the formal parameters of M ′ ∧

UM ′.ret var ⊆ Ul ∧

o ∈ UM ′.this

2. For each method M and for each reference assignment statement si: l = r in M :

(M ∈ R) ⇒ Ur ⊆ Ul

3. For each method M and for each object creation statement si: l = new oi in M : (M ∈ R) ⇒ oi ∈ Ul

(M ∈ R) ∧MethodLocal(oi) ⇒ oi ∈ Local
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4. For each method M and for each static field read statement l = C.f in M :

(M ∈ R) ⇒ Pt(C.f) ⊆ Ul

5. For each method M , for each instance field write statement l.f = r in M and

each oi ∈ Pt(l) where oi ∈ Local :

(M ∈ R) ∧ (oi ∈ Ul) ⇒ Ur ⊆ Uoi.f

6. For each method M , for each instance field read statement l = r.f in M and each

oi ∈ Pt(r):

(M ∈ R) ∧ (oi ∈ Ur) ⇒ oi ∈ Local ⇒ Uoi.f ⊆ Ul ∧

oi /∈ Local ⇒ Pt(oi.f) ⊆ Ul

Intuitively, constraints 1-4 refine the corresponding constraints from M-DataReach.

V-DataReach keeps flow information per reference variable instead of per method; there-

fore it produces more precise results. The following example illustrates the benefits of

these constraints.

Example. Consider the set of statements in Figure 3.6. Starting from original

call c1 in Read1, M-DataReach will compute UA.m = {o1, o2, o3}. At target call site

x1.read() in A.m the two possible receivers according to the input points-to graph are

o1 and o2. Since both o1 and o2 are in UA.m, they are determined to be valid receivers;

therefore, the throw SomeIOException and the throw OtherIOException statements flow

to the catch in Read1. In contrast, V-DataReach is able to avoid this imprecision

because it keeps separate sets Ux1 and Ux2 for x1 and x2 respectively.

Constraints 5 and 6 refine constraint 5 from M-DataReach. Note that constraint

3 collects set Local ; this set contains objects o instantiated during the traversal of

reachable methods that do not escape their creating method. Clearly, since the objects

in Local do not escape their creating method, they do not escape the lifetime of the

original call. The role of constraint 5 is to separate instance field writes to objects in

Local . For those objects, all field writes occur during the lifetime of the original call

and the values assigned to their fields can be collected from the right-hand-side of the

field write statement in set Uo.f . Constraint 6 accounts for propagating field values.
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abstract class X {
void abstract read() throws IOException;

}
class Y extends X{

void read() throws IOException {
... if (...) throw new SomeIOException();

}
}
class Z extends X{

void read() throws IOException {
... if (...) throw new OtherIOException();

}
}

class A {
void m(X x1,X x2) throws IOException {

... x1.read();
}

}

class B{
s1: static X xy = new Y();//o1
s2: static X xz = new Z();//o2
}

void Read1(){
try {

s3: A a = new A();//o3
c1: a.m(B.xy,B.xz);

} catch (IOException e) {...}
}

void Read2(){
try{

s4: A a = new A();//o4
c2: a.m(B.xz,B.xy);

} catch (IOException e) {...}
}

Figure 3.6: Imprecision of M-DataReach algorithm on different references
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For objects o ∈ Local (i.e., objects whose lifetime does not exceed the lifetime of the

original call), the values of an accessed field f are collected from sets Uo.f . For objects

o /∈ Local (i.e., objects whose lifetime may exceed the lifetime of the original call) the

possible field values are approximated from the global points-to solution since those

fields may be set outside of the original call. The following example taken from the

HttpClient benchmark illustrates the additional precision gained from separating writes

to fields of local objects.

class W{

  A f;

  void W(A a) { f = a; }

  void read() throws IOException{

    A a = this.f
    a.read();
  }
}

class M{
  void getData(A a) throws IOException{

s1: W w = new W(a);      //o1

    w.read();

  }

  void getDmy() {

    try{

s2:   A dmy = new Dmy(); //o2

c1:   getData(dmy);

    } catch (IOException e) {...}

  }

  void getRes() {

    try {

s3:   A res = new Res(); //o3

c2:   getData(res));

    } catch (IOException e) {...}

  }

}

W.read

M.getData

?

Dmy.read Res.read

M.getDmy

o1 created

M.getRes

o1.f dereference

class A{

  void read() throws IOException;

}

class Dmy extends A{

  void read() {...}

}

class Res extends A{

  void read() throws IOException{

    .. throw new IOException; ..

  }

}

Call Graph

Figure 3.7: Imprecision of M-DataReach algorithm on local objects

Example. Consider the example in Figure 3.7. Starting V-DataReach from original

call c1 in getDmy we have UgetData.w = {o1} and UgetData.a = {o2}. Clearly, object o1

does not escape its creating method (i.e., its lifetime does not exceed the lifetime of the



39

original call); therefore the instance fields of o1 are assigned during the lifetime of the

original call. Therefore, as a result of constraint 5 for instance field write this.f = a

in the constructor of class W, we have Uo1.f = {o2}. Similarly, as a result of constraint

6 for instance field read a = this.f in W.read, the set Ua will be read from the set

Uo1.f . Therefore, Uread.a = {o2} and as a result the only possible target at the call

a.read() is Dmy.read. Consequently, V-DataReach concludes that no exception will be

thrown and caught in getDmy. In contrast if Ua was read from Pt(o1.f), Uread.a would

be {o2, o3}, so we have to consider this e-c link feasible while it is actually not. With

M-DataReach, UW.read = {o1, o2, o3}, so the same imprecision occurs. Analogously, V-

DataReach concludes that starting from original call c2 the exception in Res.read may

be thrown and caught in getRes which leads to the only e-c link.

3.3.3 Complexity of algorithms in schema

For a given program let C be the number of classes, M be the number of methods, V

be the number of reference variables, including static fields, O be the number of object

allocation sites, and F be the number of instance field identifiers.

The complexity of a data reachability analysis that fits our schema depends on

the number k of U sets kept during propagation. The overall complexity can be bro-

ken into three components: (i) the complexity of generating inclusion constraints for

program statements (constraints 1-3 for DataReach and M-DataReach, and 1-4 for

V-DataReach), (ii) the complexity of solving the system of inclusion constraints, and

(iii) the complexity of computing the field closure for sets U (constraints 4 and 5 for

DataReach and M-DataReach and 5 and 6 for V-DataReach). The complexity of con-

straint generation is dominated by the time to process virtual calls. Let E be the

number of call graph edges and let there be an array ao for each object o indexed by

the unique identifiers i of sets Ui. Field ao[i].value equals 1 if o ∈ Ui and 0 if o /∈ U ;

field ao[i].edges contains the set of call graph edges triggered whenever ao[i].value be-

comes 1 (i.e., whenever o is added to Ui). Constraints for virtual calls are generated

whenever o is added to Ui. Since each edge can belong to at most O ao[i].edges sets,

the complexity of (i) is O(O ∗ E). The complexity of (ii) is O(O ∗ k2) since for every
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Ui there are at most O objects that can be propagated through Ui to at most k sets

Uj . Finally, the complexity of (iii) is O(O2 ∗ F ∗ k). Therefore the complexity of our

algorithms parameterized by k, the number of U sets, is: O(O∗E +O∗k2 +O2 ∗F ∗k).

The following table summarizes our analysis in order of growing precision and com-

plexity, because E is dominated by M2 and V 2:

Table 3.1: Data Reachability Algorithms

Algorithm U sets Complexity
DataReach 1 O(E ∗ O +O2 ∗ F)
C-DataReach C O(O ∗ E +O ∗ C2 +O2 ∗ F ∗ C)
M-DataReach M O(O ∗M2 +O2 ∗ F ∗M)
V-DataReach V O(O ∗ V2 +O2 ∗ F ∗ V)
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Chapter 4

Experiment Results on Compiler-Directed Fault Injection

Testing

To demonstrate the effectiveness of our methodology, we collected a set of Java server

programs and conducted compiler-directed fault injection testing experiments. In this

chapter we report our empirical findings and discuss some case histories from our ex-

periments. Some of these discussions appeared earlier in publications [23, 24].

4.1 Experimental setup & benchmarks

We implemented Exception-flow analysis and DataReach/M-DataReach analysis as two

separate modules in the Java analysis and transformation framework Soot[59] version

2.0.1, using a 2.8GHz P-IV PC with Linux 2.4.20-13.9 and the SUN JVM 1.3.1 08 for

Linux. By separating the two phases of our analysis, we were able to show the gains

from adding the DataReach/M-DataReach postpass. Soot provides a call graph builder

using Class Hierarchy Analysis (CHA)[20], and Spark, a field-sensitive, flow-insensitive

and context-insensitive points-to analysis (a form of 0-CFA)[64, 58, 57, 36]. We im-

plemented another call graph builder using Rapid Type Analysis (RTA)[7]. We also

implemented the instrumentation phase as a separate module in Soot, which automat-

ically instruments the program according to the set of possible e-c links, as described

in the end of Section 2.2.1.

We experimented with the following seven different analysis configurations:1

1. CHA — Build call graph with Class Hierarchy Analysis.

2. RTA — Build call graph with Rapid Type Analysis.

1 Selective constructor inlining, DataReach and M-DataReach were only used where stated explicitly.
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3. PTA — Build call graph using Spark.

4. InPTA — Build call graph with Spark plus selective constructor inlining.

5. PTA-DR — Use Spark to provide the points-to graph and call graph and use

DataReach as a postpass filter.

6. InPTA-DR — Use Spark plus selective constructor inlining to provide the points-

to graph and the call graph, and use DataReach as a postpass filter.

7. InPTA-MDR — Use Spark plus selective constructor inlining to provide the

points-to graph and the call graph, and use M-DataReach as a postpass filter.

We used seven Java applications as our benchmarks:

• FTPD, a Ftp Server in Java [68]

• JNFS, The Java Network File System, a server application that runs on top of

a native file system and listens to and handles requests for both read and write

accesses to files. The server communicates with various clients via RMI [51]

• Muffin, a web filtering proxy server [44]

• Haboob, a simple web server based on SEDA, a staged event-driven architec-

ture [78]

• HttpClient, an HTTP utility package from the Apache Jakarta Project [2]. We

collected its unit tests to form a whole program to serve as a benchmark.

• SpecJVM, a standard benchmark suite[71] that measures performance of Java

virtual machines, especially for running client side Java programs

• VMark, a Java server side performance benchmark. It is based on VolanoChat [77]

— a web-based chat server. The benchmark includes the chat server and a simu-

lated client

Column 2 of Table 4.1 shows the number of user classes, with those in parentheses

comprising the JDK library classes reachable from each application. The data in column
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3 shows the number of user methods and those in parenthesis are the JDK library

methods reachable from each application. Column 4 gives the number of try blocks

in user code. The last column shows the size of the .class files (in bytes) of each

benchmark, excluding the Java JDK library code. The reachable method counts are

calculated by Spark. JNFS is the only multi-node application.2

We have Java source code for all the benchmarks except SpecJVM and VMark. Only

part of the source code for SpecJVM is provided and there is no source code for VMark.

Although we can conduct our experiments using only bytecode, the unavailability of

source code hinders the process of interpreting our experimental results.

Table 4.1: Benchmarks

Name Classes Methods Try Blocks .class Size
FTPD 11(1407) 128(7479) 17 39,218
JNFS 56(1664) 447(9603) 36 175,297
Muffin 278(1365) 2080(7677) 270 727,118
Haboob 338(1403) 1323(7432) 134 731,413
HttpClient 252(2210) 1334(4741) 536 1,049,784
SpecJVM 484(2161) 2489(4592) 219 2,817,687
VMark 307(2266) 1565(5029) 502 2,902,947

As shown by the the workflow in Figure 2.2, we ran the instrumented code with

various workloads to exercise different vulnerable operations in the applications. Expe-

rienced e-c links were recorded in a log file during the testing. By processing the e-c link

information file and the log file after the testing we obtained the coverage data. The

dynamic tests were performed on a cluster of 800MHz PIII PCs using Linux 2.2.14-5.0;

we used IBM Java 2.13 Virtual Machine for Linux for all of our benchmarks. Mendosus

was running as a daemon process on each of these machines.

In this testing we made the usual assumptions that (i) faults are independent of

each other and (ii) faults occur rarely[74, 47]. We only injected one fault per run,

resulting in at most one e-c link covered per test; therefore, we needed to run each

benchmark multiple times, each time targeting one e-c link. Because we lack a model

2 Currently, we assume the network supporting RMI is reliable; that is, we ignore faults that affect
RMI transportation.
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for faults that tend to happen together, systematically testing more than one fault at

a time is difficult. A testing harness was constructed, which iterated over the e-c links

information file, repeatedly running one benchmark program as necessary. Note that

we ran all the benchmarks in SpecJVM together as one Java program, because the I/O

module in SpecJVM is shared across all the benchmarks. As usual it was the tester’s

responsibility to find proper inputs and program configurations, so that designated

vulnerable statements (and fault-sensitive operations) were executed.

4.2 Empirical data

Table 4.2 lists the number of e-c links reported for each benchmark in each analysis

configuration. Column 9 (Reached) lists the number of links, among those discovered in

InPTA-MDR, whose corresponding try block (but not necessarily the catch block) was

executed by a test. The last column (Covered) shows the number of e-c links actually

covered for each benchmark by the testing. Table 4.3 shows the overall exception

def-catch coverage for all the benchmarks derived from the data in Table 4.2. We

can see from the tables that the use of points-to analysis for call graph construction,

dramatically reduced the number of e-c links reported in all of the benchmarks. With

RTA or CHA, the number of false positive e-c links reported in most benchmarks are

7 to 150 times more than the actual e-c links that we can cover in the testing. Recall

that all of these analyses are safe, meaning that if one analysis fails to report a given

e-c link that another analysis reports, then this e-c link is spurious.

We offer 2 different calculations for the percentage e-c links covered. In columns

2-8 of Table 4.3, we use the metric described in Section 2.2.1 (i.e., the ratio of e-c

links covered to possible e-c links found by our analysis). In the last column (9) of

Table 4.3, we calculate the ratio of the number of e-c links exercised to the number

of links whose corresponding try block was executed by a test execution. Effectively,

this second measure factors in how well the tests we are using to execute the program

actually cover the set of try blocks in the code. If we cannot cause execution to reach

the try block containing a vulnerable operation, then we cannot expect to inject a fault

to test the recovery code corresponding to that operation. The difference between the
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values of these two metrics indicates the need for additional tests for our benchmarks

and also distinguishes between possible spurious e-c links which have not been covered

from e-c links (spurious or not spurious) which had no chance of being covered in these

executions.

Table 4.2: Number of e-c links Reported

Program CHA RTA PTA InPTA PTA InPTA InPTA Reached Covered
DR DR MDR

FTPD 34 34 16 16 16 13 13 13 11
JNFS 104 104 39 39 22 19 19 19 16
Muffin 480 258 112 112 87 42 42 42 35
Haboob 96 73 12 12 12 12 12 12 10
HttpClient 1946 1946 255 251 238 118 107 105 65
SpecJVM 511 511 90 82 72 54 47 37 7
VMark 2039 2039 130 100 109 57 47 18 13

Table 4.3: Overall Exception Def-catch Coverage

Program CHA RTA PTA InPTA PTA InPTA InPTA Effective
DR DR MDR

FTPD 32% 32% 69% 69% 69% 85% 85% 85%
JNFS 15% 15% 41% 41% 72% 84% 84% 84%
Muffin 7% 14% 31% 31% 40% 83% 83% 83%
Haboob 10% 14% 83% 83% 83% 83% 83% 83%
HttpClient 3% 3% 25% 26% 27% 55% 61% 62%
SpecJVM 1% 1% 8% 9% 10% 13% 15% 19%
VMark 1% 1% 10% 13% 12% 23% 28% 72%

The context sensitivity obtained by adding selective constructor inlining before per-

forming points-to analysis had effect only on the larger three benchmarks (i.e., compare

columns PTA and InPTA in Table 4.2). However, when combined with the DataReach

postpass, the additional precision provided reduced the number of reported e-c links in

six of the seven benchmarks (i.e., compare columns PTA and InPTA-DR in Table 4.2).

For the e-c links reported by InPTA-DR, the coverage percentage of the four smaller

benchmarks was stable at approximately 84% with small variance. In Muffin and Http-

Client, the additional precision helped cut the number of reported e-c links by more than
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half. Haboob is special because it is the only benchmark that uses a self-constructed

non-blocking network library, which does not have as much polymorphism as the stan-

dard JDK library. Thus the simple PTA analysis is sufficient to analyze Haboob, as

shown in Table 4.2. From this data we see that DataReach is a client of precise points-

to analysis for which the added precision can make a difference. In all three larger

benchmarks, M-DataReach provides more precision over original DataReach algorithm

(i.e., compare columns InPTA-DR and InPTA-MDR in Table 4.2).

On the three larger benchmarks the coverage varied across the programs from 15%

to 72%. Sections 4.3.2, 4.3.3 and 4.3.4 discuss these benchmarks and describe the causes

for the lack of coverage gleaned from code inspection, where possible.

Figures 4.1 and 4.2 shows the running times of each part of the static analysis on

all benchmarks using configurations PTA-DR, InPTA-DR and InPTA-MDR. Running

times of the instrumentation phase are too small to be shown, under 5 seconds for

all the benchmarks. Our analysis always finished in less than 2 hours. In the worst

case for the InPTA-MDR configuration, the time our analysis took to find one e-c

link in a program on average was less than 3 minutes. DataReach is time consuming

compared to Exception-flow analysis and points-to analysis in Spark, but it is effective in

reducing spurious e-c links (i.e., comparing the columns for PTA and PTA-DR, InPTA

and InPTA-DR in Table 4.2). For FTPD and Haboob, DataReach used about 50%

of the total running time; for other benchmarks, it used more than 90% of the total

running time. M-DataReach is slower than Data-Reach in most of the benchmarks,

except SpecJVM. It takes 72% more time to finish in FTPD, 43% in Haboob, 40% in

Muffin and 15% in HttpClient. It takes 14% less time to finish in SpecJVM. We believe

that optimized implementations of DataReach and M-DataReach will improve overall

analysis performance significantly.

Note also that for JNFS, Muffin and VMark, the more precise analysis, InPTA-DR,

ran more quickly than the related less precise analysis, PTA-DR. This is a phenomenon

often seen in practice in static analysis, when a more precise analysis eliminates so

much spurious information from a solution, that it actually finishes more quickly than

a worst-case more efficient, less precise analysis.
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In the remainder of this section we will discuss the performance of our methodology

in detail on Muffin, HttpClient, SpecJVM and VMark.

4.3 Code Inspection and Insights

Finding benchmarks for the experimental validation of our approach has been hard. We

need benchmarks which include input data that exercises different parts of the program

code. There is no standard benchmark suite designed for this purpose. Of all the

programs that are used as benchmarks in this paper, VMark, HttpClient and SpecJVM

came with input data or tests; for the others, we had to compose tests. By comparing

columns 8 and 9 of Table 4.3, we can see that the input data or tests included in

these benchmarks are not sufficient to drive the programs to all try blocks that contain

vulnerable operations.

For the three larger benchmarks, we were not able to manipulate input data fully

or to compose enough new tests to the extent that can fully exercise different paths in

the program so as to ensure that each e-c link ’s vulnerable operation was reached, or

to maximize the coverage as we did for the smaller benchmarks.

For Muffin, SpecJVM and HttpClient, we manually inspected all the e-c links re-

ported by the most precise analysis configuration whose try blocks were reached during

the testing although these e-c links were not experienced3. We categorize these e-c links

as follows:

1. Feasible e-c links not covered because of insufficient tests or input data.

2. Infeasible e-c links that will be difficult for any static analysis to prune.

3. Infeasible e-c links that may be eliminated using more precise static analysis.

Table 4.4 shows the number of inspected e-c links in each of the categories for each

benchmark studied, and as a percentage of the total number of inspected e-c links in

that benchmark. The last column lists the total number of inspected e-c links. Next

3We cold not perform this detailed study for VMark because we don’t have its source.
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Table 4.4: Number of uncovered e-c links in category 1, 2 and 3

Program 1 2 3 Total
Muffin 1(14%) 3(43%) 3(43%) 7
SpecJVM 4(13%) 26(87%) 30
HttpClient 10(25%) 24(60%) 6(15%) 40

we will show examples extracted from each benchmark to illustrate each category in

detail.

4.3.1 Muffin

The one e-c link in the first category involves a try-catch block which handles exceptions

thrown because of faults in a TCP connection. By examining the code we found that

it is part of a resolver which translates machine names (i.e., ASCII strings) to IP

addresses by communication (coded in another method with separate try-catch block)

with a given DNS server. However, TCP is only used when a message is large enough,

which does not occur in our tests since the messages are just domain names and IP

addresses. Therefore, to cover this e-c link a test needs to include extremely long URL

names to force use of TCP.

As for the three e-c links in the second category, in Muffin, the user can specify

configuration files using URLs, which may be either remote (network access) or local

(disk access). These 3 e-c links involve handling of network exceptions thrown when

trying to modify some configuration file. But the program code was so written that no

remote file would ever be written, so that these three e-c links can never be covered.

There are 3 e-c links discovered in Muffin in category 3, which may be eliminated

using points-to analysis with higher level of context-sensitivity. As mentioned in Sec-

tion 3.1, our analysis provides the call chains that start from cj and end with pi for

any e-c link (pi, cj). But even given these call chains, the job of deciding whether an

uncovered e-c link in this category is actually feasible is hard, since these call paths are

prohibitively long and confusing to trace.

Below is one of the possible call chains found by our analysis for one of these e-c
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links.4 There are several hundred call chains for this single e-c link.

org.doit.muffin.Handler.processRequest()

org.doit.muffin.Https.recvReply()

org.doit.muffin.Reply.read()

org.doit.muffin.Reply.read()

java.io.SequenceInputStream.read()

java.util.zip.GZIPInputStream.read()

java.util.zip.InflaterInputStream.read()

java.util.zip.InflaterInputStream.fill()

java.io.BufferedInputStream.read()

java.io.BufferedInputStream.read1()

java.io.BufferedInputStream.fill()

java.util.jar.JarInputStream.read()

java.util.zip.ZipInputStream.read()

java.util.zip.ZipInputStream.readEnd()

java.util.zip.ZipInputStream.readFully()

java.io.PushbackInputStream.read()

java.io.FilterInputStream.read()

java.io.FileInputStream.read()

All of the call chains for this particular e-c link share the same prefix, but af-

ter SequenceInputStream.read() they begin to vary by selecting read() methods from

different subclasses of InputStream and following different permutations of calls. Af-

ter reading the source code of SequenceInputStream we found that this class uses an

Enumeration class to keep track of subsequent InputStreams. Although no object of

GZIPInputStream has ever been assigned to the subsequent input stream of Sequence-

InputStream, the usage of the container confuses the points-to analysis into producing

the current result: read() in SequenceInputStream may call read() in GZIPInputStream

and also almost every subclass of InputStream.

4Parameters are omitted for readability.
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Call chains for all 3 e-c links share the same characteristics described here: they

all involve the use of containers. This phenomenon is caused by the imprecision of the

underlying context-insensitive points-to analysis in a manner similar to the analysis

imprecision for constructors discussed previously.

Recall that we use inlining of constructors that set object fields through this, to

gain partial context sensitivity in our points-to analysis. Although this introduces some

additional precision into our analysis, it remains a context-insensitive points-to analysis.

By using M-DataReach, rather than DataReach, we may be able to increase further the

precision of our analysis. This result has been confirmed in our experiments. However,

even M-DataReach can have some imprecision. For example, when the receiver of a

virtual method invocation is an element extracted from a container, as in the call chains

corresponding to these three e-c links, many spurious method calls may be introduced

and they can not be eliminated by M-DataReach.

More precise points-to analysis [43] addresses this problem by distinguishing calls

by their receiver object when analyzing methods, thus producing a more sparse (and

precise) points-to graph; this should reduce the call chains for a e-c link, or maybe even

make it possible for DataReach to judge that the e-c link is actually infeasible. Further

experimentation is needed to confirm this hypothesis.

4.3.2 SpecJVM

There is no network related program in SpecJVM; therefore, we were surprised to see

both disk and network I/O related e-c links found by our analysis.

After code inspection we discovered that SpecJVM has a dedicated I/O package that

is shared among all the benchmark programs. All the I/O requests are handled in this

package; requests can be fulfilled by reading files either on a local disk or on a remote

HTTP server. Input data is read from HTTP server when the benchmark is running as

a Java applet; otherwise data is read from local disks. When the program is running as

a Java applet, it is either enclosed in some web browser or in a Java Applet Viewer that

is provided with the Java JDK. In either case, unfortunately, we failed to set up the

current implementation of the fault injection system to perform fault injection targeted
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solely on the applet, without affecting the enclosing program: either the Web browser

or the Java Applet Viewer. Thus, we could not cover the network-related e-c links

without changing the code in the SpecJVM slightly. We discovered that spec.harness

package maintains an SpecBasePath variable which is the base location of SpecJVM

itself. The value of SpecBasePath is set to a remote URL when SpecJVM is running as

a Java applet. We modified 7 lines of source code in the benchmark to keep the value

of SpecBasePath as a URL pointing to a remote file so that I/O requests are fulfilled

through network access, even when SpecJVM is running as a stand-alone Java program.

This enabled the network-related e-c links to be covered.

Even after this process, as can be seen from Table 4.3, we still cannot cover a large

portion of the e-c links whose try blocks have been reached; 87% of these e-c links

belong to category 3, specifically: infeasible e-c links that may be eliminated using

context-sensitive object renaming.

(a) (b)

C.read()

D.read()

E.read()

B.read()

E.read()

D.read()

e−c link

Method Call

A.read() A.read()

B.read() B.read()

C.read()

Figure 4.3: Recursive Call Graph

The call chains corresponding to these 26 e-c links share a pattern. We use a simpli-

fied example to illustrate this for better readability. Consider call chain: A.read() →

B.read() → C.read() → D.read() → B.read() → E.read(). The fault-sensitive op-

eration is E.read() and when executed, it will throw an IOException if an appropriate

fault is injected. There are try-catch clauses in both A.read() and C.read() that catch

IOException. The two outgoing edges from B.read() come from a single polymorphic

call site. The call graph and the generated e-c links are shown in Figure 4.3 (a). The
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e-c link from E.read() to A.read() is infeasible, because the actual points-to relation-

ship between objects in the program causes the call chain A.read() → B.read() →

E.read() to be infeasible. If method B.read() is analyzed context-sensitively for each

of its callers, as shown in Figure 4.3 (b), it may become possible to compute more

precise e-c link information.

Four of the e-c links are in category 2 (i.e., hard to prune by any static analysis). As

mentioned above, SpecJVM specifies its input files using URLs, which are string values,

containing information about where and how to open and read the files. Loading a file

specified by URL introduces huge number of possible ways to load data, depending on

the protocol contained in the URL. However, it’s hard coded in SpecJVM that only

two kind of protocols are permitted: “file” and “http” (i.e., URLs start with “file://”

or “http://”), which makes the e-c links introduced by other protocols infeasible.

4.3.3 HttpClient

Control flow in HttpClient is complicated. Many control-flow decisions depend on

values of string variables (e.g., protocol names, HTTP response code and data encoding

method names). In this benchmark, 10 e-c links fall into category 1: feasible but we do

not have sufficient tests to drive the program into the specific control paths for these

e-c links. For example, when some connection object is to be recycled (i.e., closed

and reused for another host), HttpClient will try to read over the network only if the

previous HTTP response on this connection is encoded as chunked, and the previous

response content is not fully consumed. So the e-c link from a network read to the catch

block in the network connection recycling method is feasible. Unfortunately none of our

tests fits this scenario. More carefully designed tests and specialized HTTP responses

are needed to drive the program into different control-flow paths in order to cover these

10 links.

There are 24 e-c links in category 2 which account for 60% of all inspected e-c

links in HttpClient. Recall that this category includes infeasible e-c links that are hard

for any static analysis to prune. In many tests of the HttpClient package, the HTTP

requests and responses are faked in the local memory instead of being sent and received



55

through network. This is done so that some functionality of HttpClient which does not

necessarily involve I/O operations can be tested quickly. A special HTTP connection

class is defined for this purpose. In general, yet another network connection will be

established if the connection uses a secured protocol (i.e. https) and a proxy server is

specified in the connection properties, even if the current connection is already opened.

It is hard coded in these tests that the special HTTP connection class never uses secure

protocol or any proxy server in order to avoid real I/O operations. However, even the

most precise flow- and context-sensitive static analyses assume that all paths in the

control flow graph are executable; thus, in general static analysis cannot recognize the

infeasibility of such paths (i.e., paths due to complex control-flow) and consequently it

cannot eliminate the resulting e-c links.

Significant portions of the inspected e-c links fall in category 2 in Muffin(43%) and

SpecJVM(13%) too. All of these e-c links correspond to infeasible control-flow paths,

when the infeasibility of these paths cannot be recognized by static analysis.

There are 6 e-c links of HttpClient in category 3: they may be eliminated using V-

DataReach, or a context-sensitive object naming scheme. An example extracted from

code related to these e-c links is previously showed in Figure 3.7 and discussed in detail

in Section 3.3.2.

4.3.4 Vmark

By testing these benchmarks, we found that the tests and/or input data that came

with HttpClient, SpecJVM and VMark are insufficient to drive execution into most

try blocks of these programs. We believe this is the reason why there are so many e-c

links whose try blocks are not reached during our experiments, especially in Vmark.

VMark is a web chat server built on top of Tomcat[3], which is a Java servlet container.

When used as a Java server-side performance benchmark in VMark, many parts of

Tomcat are not exercised, which results in many of the e-c links found by the analysis

being unreached by the tests. For instance, in Tomcat an operator can change the

configuration and force reloading of the affected servlets. Also when Tomcat receives a

shutdown request, the changed configuration must be flushed to the disk. Because this
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part of Tomcat is not exercised in VMark, e-c links corresponding to the I/O operations

necessary to perform these functionalities are left unreached and therefore, uncovered.

By examining the call chains of the e-c links in VMark, we found that in the e-c links

whose try blocks are not reached, only 3 are related to the chat server code; the call

chains of all the other e-c links are completely within the Tomcat code. In the 18

reached e-c links, 13 e-c links are related to the chat server. Thus, a significant portion

of Tomcat is left unexercised in VMark.

Overall from the results of these experiments we can see that we have defined a fairly

precise exception-catch link analysis which has been shown useful on our benchmarks

for testing error recovery code of Java programs. Our testing methodology allows

developers of fault-tolerant server applications to quantify (and improve) the coverage

of fault-recovery code, as is done with any other code subjected to white-box testing.
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Chapter 5

Visualization of e-c links

As already discussed previously, the Java programming language provides a program-

level exception handling mechanism in response to error conditions that happen during

program execution. This exception handling mechanism helps separate exception han-

dling code from code that implements functionalities during normal execution, which,

to some extend, helps program understanding.

However, exception handling code that deals with certain kinds of faults is still

widely scattered over the whole program and mixed with other exception handling code,

or even irrelevant code, making it hard to understand the behavior of the program under

certain system fault conditions.

We have shown that the static program analyses described in Chapter 3 can be

used to report e-c links in a given Java program with very good precision, which can be

used by the exception def-use testing system. In addition to that, the information pro-

duced by these analysis, if carefully organized and visually displayed in an integrated

development environment (IDE), can greatly facilitate both testing and program un-

derstanding of the exception handling code. We developed an Eclipse plug-in – ExTest,

which invokes these analysis and organizes the output data into tree views for this

purpose.

5.1 Problem of Manual Inspection of Exception Handling Code

During the study, we found that exception handlers that deal with certain kinds of faults

are often scattered in the program and mixed with handlers that handle other kinds

of error conditions. For instance, a catch clause that handles an I/O exception may

appear at each program point where some I/O channel is active. Each of these catch
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clauses may handle I/O exceptions triggered by different fault-sensitive operations (e.g.

DSK READ or NET READ). Worse, some of these catch clauses never handle any I/O

exception.

In Figure 5.1 we show a small Java program – a single class containing the main

method calling all of these three methods (also defined in this class). Note that although

these 3 methods looks similar, the catch clause in the method readString will never

be triggered. The reason is the code in the corresponding try block only reads from a

string buffer in the memory. Although it takes the form of an input stream, no actual

I/O operation is involved. Yet the try-catch structure is necessary for the program to

compile.

void readFile(FileInputStream f){
byte[] buffer = new byte[256];
try{
InputStream fsrc=new BufferedInputStream(f);
for (...)
c = fsrc.read(buffer);

}catch (IOException e){ ...}
}
void readNet(Socket s){
byte[] buffer = new byte[256];
try{
InputStream n =s.getInputStream();
InputStream ssrc=new BufferedInputStream(n);
for (...)
c = ssrc.read(buffer);

}catch (IOException e){ ...}
}

void readString(String s){
String buffer = s;
try{
InputStream n =new StringBufferInputStream(s);
InputStream in=new BufferedInputStream(n);
for (...)
c = in.read(buffer);

}catch (IOException e){ ...}
}

Figure 5.1: Code Example for Java I/O Usage
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If a programmer wants to learn this program’s behavior under disk failure, she has

to find all the catch clauses that may handle exceptions that result from disk faults.

Suppose a powerful lexical search tool with Java language knowledge as well as program

specific information (e.g. types) is available. Then she can easily locate all the catch

clauses that handle IOException or more general types of exceptions, but she still has

to manually inspect at least all three try-catch blocks in all of the methods shown in

Fig. 5.1, instead of just the one in method readFile that actually handles the exception

result from disk failure. The problem becomes much more severe in real Java server

applications.

5.2 ExTest Tool

Using the analysis mentioned in Chapter 3, we can compute all the potential e-c links

of the program. Each e-c link (p, c) tells us the fault-sensitive operation that triggers

the exception and where it is handled. Thus, we can help solve the above problem by

grouping e-c links according to their p value. For instance, one can just browse e-c links

starting with fault-sensitive operations that relate to disk I/O to get a good estimate

of all the try-catch blocks that are related to disk I/O.

Our approach is a static program analysis which computes a safe approximation of

program behavior. False positives are unavoidable, which means for some of the e-c links

(p, c), the exception thrown at p never reaches c. It is up to the human programmer

to decide whether an e-c link is actually spurious. This is especially important for

exception def-use testing, because spurious e-c links can never be exercised during any

test. Our program analysis provides the exception propagation call path data for all

e-c links. Displaying these paths visually in Eclipse IDE should help to identify the

spurious ones.

5.2.1 Tool Structure

Figure 5.2 illustrates the structure of the ExTest tool. Our program analysis is im-

plemented as modules in the Soot Java Analysis and Transformation Framework [59]
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version 2.0.1. Upon user request, ExTest starts another process running Soot with our

modules enabled, and reads the output data of the Soot modules after the process

finishes.

Soot

Post process
data display

Eclipse

ExTest

e−c links, paths

Application/Library

classes

Analyses

Exception

Process
starter

Figure 5.2: Tool Structure

In the Eclipse IDE, we want the users to be able to explore the e-c links (e.g. browse

all the catch clauses and their relationships with the fault-sensitive operations) as well

as the witness paths that demonstrate the feasibility of an e-c link. The data generated

by the Soot modules are organized in an XML file, which contains all the e-c links found

in the given program and information about the paths – needed by ExTest to perform

the intended functionality.

5.2.2 Browsing e-c links

Each record of an e-c link (p, c) in the output data of our Soot modules contains the

following information: the ID of p, the position of c in source code and the call site(s)

in the corresponding try block which may lead to the execution of p. These e-c links

can be grouped in two ways: by p or by c. We implemented both of them by means of

two tree views in Eclipse: the Handlers view and the Triggers view.

Figure 5.3(a) shows the Handlers view, where e-c links are grouped by the try-catch

blocks. These try-catch blocks are further grouped by their definition positions: the
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(a) Handlers View

(b) Triggers View

Figure 5.3: Tree Views of e-c links

methods, classes, packages in which they are defined. Each try-catch block can be

expanded to show all the fault-sensitive operations that may trigger exceptions reaching

the catch. The last try-catch block in the figure is highlighted and expanded. It

is defined in package iotest.mixed, class Mixed and method readFile. We can see

that one method call in the try block reaches a fault-sensitive operation in the JDK:

“DSK READ”.

Figure 5.3(b) shows the Triggers view, where the e-c links are grouped by the fault-

sensitive operations. By expanding the “DSK READ” operation we can see that only

one try-catch block in the program handles an exception thrown by read of a file. So

if a user is interested in program behavior under a disk fault, she can just concentrate

on this one catch block.

Thanks to the environment provided by Eclipse IDE, these two tree views can be

interactively explored. The try-catch block, the statements in the try block that may
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lead to the fault-sensitive operation, etc., can be opened and highlighted in the Java

source file editors, upon double click on the corresponding items in the view. For

example, in both views, we can see the actual code for the try-catch block #0 by

double clicking on the line.

5.2.3 Displaying All Paths for an e-c link

We also want to display the paths that show how p in an e-c link (p, c) can be reached

from the try block that corresponds to c. Selecting and displaying only one (the short-

est) path for each e-c link is not enough, especially with the presence of the false

positives. In order for a programmer to decide that an e-c link is spurious, she has to

make sure that all the control-flow paths from the corresponding try to p are actually

infeasible. So it is necessary for ExTest to display all these paths to be practically use-

ful. But the total number of paths may be exponential to the size of the program [8]!

Clearly, the approach of gathering and dumping all these paths into an output file after

the analysis finishes will not scale.

readFile readNetreadString

StringBufferInputStream.read(...)

FileInputStream.read(...)

SocketInputStream.read(...)

NET_READ

FilterInputStream.read(byte[])

NET_READDSK_READ

NET_READDSK_READ

DSK_READ

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

DSK_READ NET_READ

DSK_READNET_READ

NET_READ

DSK_READ

Figure 5.4: Annotated Call Graph

Note that the Exception-flow analysis described in Chapter 3 identifies e-c links
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by essentially propagating fault-sensitive operations along the call edges in a reverse

direction to execution. It is not hard to modify Exception-flow analysis to record the

propagation paths of each p ∈ P by annotating call edges in the call graph. Figure 5.4

shows the annotated call graph for the code in Figure 5.1. Edges of the call graph are

annotated with IDs of the fault-sensitive operations according to the result of Exception-

flow analysis. Since the set of fault-sensitive operations P is pre-selected according to

the fault set provided by the user (not depending on the program being analyzed), the

size of the annotated call graph is at most linear in the size of the original call graph.

The problem with this approach is that the results of DataReach are ignored. As

stated before, Exception-flow analysis alone would leave too many false positives in the

graph; with this data, the user must manually explore many unnecessary call edges

to decide that a certain e-c link is infeasible. So we need to take the advantage of

DataReach to reduce this workload.

Recall that DataReach proves that some of the e-c links are infeasible by showing

the infeasibility of the all the control-flow paths supporting these e-c links. To be able

to incorporate its results into the annotated call graph, we modified DataReach so that

for each e-c link (p, c), the annotations of p on all the call edges associated with (p, c)

are confirmed only if we cannot prove the infeasibility of (p, c). During the output of

the call graph, only the confirmed annotations are written with the graph. In Fig. 5.4

confirmed annotations are shown in bold face.

With the annotated call graph, the paths can be generated on demand in ExTest.

Suppose one user chooses to trace the paths of some e-c link (p, c). ExTest can retrieve

from the graph all the outgoing edges departing from the try block that are annotated

with p, and the target methods can be displayed to the user. Then the user can choose

to trace one of these methods, ExTest can retrieve all the outgoing edges from that

method that are annotated with p and display the target methods of these edges. This

process can be repeated until the fault-sensitive operation p itself is reached.

Figure 5.5 is the expanded view of the last e-c link shown in Fig. 5.3(b). Only one

witness path was discovered by the analysis, which precisely reflects the analysis result

shown in Fig. 5.4.
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Figure 5.5: Exception Propagation Path

However, we are not always so lucky in bigger programs; paths in these programs

can get very complicated, especially inside the JDK library classes that make heavy use

of polymorphism. Figure 5.61 shows part of the Triggers view displayed when browsing

e-c links in one of the testing benchmarks used in Chapter 4 – a FTP server written

in Java [68]. Witness paths of one e-c link are partly expanded in the figure, with the

fault-sensitive operation SocketInputStream.read() highlighted.

As can be seen from the figure, the “fan out” of some of the nodes along the paths

is large (e.g., InputStreamReader.close()). Furthermore, many of the methods appear

more than once, which indicates the possibility of recursion introducing a path with

unbounded length. Since these paths are extracted out of a call graph, expanding the

second appearance of a method on a path brings exactly the same set of children in

the tree view. This is wasteful and introduces unnecessary complexity into the view.

Manually identifying the recursion in a complex view like this is not trivial. Therefore

we have automated recursion detection in ExTest. As shown in Fig. 5.6, many methods

are annotated with “...” and they are not expandable, which shows that the method

has been called recursively and further expansion is not necessary.

If we only show only one witness path of the e-c link– the natural selection would

be the shortest one – the view can be greatly simplified, but the real complexity of the

1JDK 1.3.1 08 is used in the figure.
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Figure 5.6: Exception Propagation Path
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problem would be hidden from the user: the user would not be helped in identifying

infeasible paths; however, expanding and highlighting the shortest path automatically

among all paths may help in understanding the overall program structure.

5.3 Summary

ExTest is a tool that facilitates navigating code related to the exception handling feature

of Java programs, based on exception def-use analysis discussed in Chapter 3. We want

to reveal all information needed to the user, while carefully organizing the data to help

browsing and reasoning.

Despite of our current efforts, exploring program code based on conservative static

program analysis results can be difficult (see Figure 5.6). One way to alleviate the

situation is to use more precise (but possibly more expensive) analyses to eliminate

more spurious results.
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Chapter 6

Exception-chain Analysis

Current developments in languages and software engineering make it easier to reuse

existing pieces of software to build large systems or to add functionality. However, the

pervasive usage of COTS components complicates the task of achieving high availability

for the entire system for the following reasons: First, since COTS components are

separately developed and often poorly documented, if at all, understanding the behavior

of the final integrated system under error conditions is hard; mastering the system’s

error recovery architecture is even harder. Second, an error may travel through several

components before (if at all) being logged for future investigation. This makes it very

difficult for a programmer to locate the root cause of an observed problem, if the

knowledge of the error recovery behavior of the components and their interactions in

the system is not available. Last but not least, error recovery codes are often least

tested. Bugs in the error recovery code may exaggerate a small local fault, allowing it

to stall the whole system, or silently let a critical problem goes by without logging.

The analysis in Chapter 3 can be used to reveal the e-c links in a Java program (i.e.,

throw, catch pairs with chains of calls between them) with relatively high precision.

With the results of these analyses, a programmer can ask: What are the kinds of

exceptions and/or the set of throw statements that can reach a given program point?

It would be nice if this information can be used to help understand exception handling

behavior of a module-based system.

Our first attempt was to build a graph out of these e-c links to review the overall

exception handling structure of the whole system, thinking that the e-c links reported

by the program analysis represent the propagation paths of exceptions in the program.

But we found that the analysis that discovers the e-c links cannot capture the behavior
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of one of the common practices in exception handling – rethrow of caught exceptions.

This chapter discuss an analysis which identifies these exception rethrows and thus finds

chains of semantically related exception-catch links.

6.1 Exception Catch and Re-throw

Shenoy mentions the following as “some of the generally accepted principles of exception

handling” in [63]:

1. If you can’t handle an exception, don’t catch it.

2. If you catch an exception, don’t swallow1 it.

3. Catch an exception as close as possible to its source.

4. Log an exception where you catch it, unless you plan to rethrow it.

5. Structure your methods according to how fine-grained your exception handling

must be.

6. Use as many typed exceptions as you need, particularly for application exceptions.

Reimer and Srinivasan [53] also point out that a “large distance between throw and

catch” may make debugging more difficult. However point 1 is obviously in conflict with

point 3; therefore sometimes it is better to catch an exception, add more contextual

information (e.g., maybe by encapsulating the existing exception object within a new

exception object) and rethrow. Additionally, as stated in the Java JDK Library API

Specification [72], in multi-layered systems if an operation on the upper layer fails due to

a failure in the lower layer, letting the exception from the lower layer propagate outward

could expose the implementation detail between layers. Doing so breaks encapsulation

as well as ties the API of the upper layer to this implementation. So it is necessary

to wrap the exception with a new one (i.e., in an instance of a new exception type

providing a higher level of abstraction) and rethrow.

Figure 6.1 shows a catch clause that is slightly simplified from a real one found in

MySQL Connector/J 2.0.14[46] – a native Java driver that converts JDBC (i.e., Java

1An exception is swallowed if no use is made of the exception object in the catch clause.
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try{
. . .

} catch (Exception ex)
{

throw new java.sql.SQLException(
"Cannot connect to MySQL server: " +
ex.getClass().getName(), "08S01");

}

Figure 6.1: Caught Exception Rethrow Example

Database Connectivity) calls into the network protocol used by the MySQL database.

This catch clause extracts some information from the caught exception (i.e., the excep-

tion class name), constructs a new exception based on that information and rethrows

it.2

In Java, an exception object contains a snapshot of the execution stack of its thread

at the time it was created. In the handler in Figure 6.1, the new exception object only

contains the class name of the old one. Thus part of the execution stack – from the

method where the old exception was created to the one before the enclosing method of

this handler – is lost. As an alternative, enclosing the old exception object into a new

object can preserve the opportunity to reconstruct the whole stack if some problem

occurs at runtime. But as mentioned in [53], it is not always a good idea to keep all

the stack information. During a load surge, if we try to log the entire stack in the final

handler, it may do as much harm as good, because with system resources already very

low, they may not be sufficient to allow the task to complete.

An exception rethrow, although desirable for various reasons, divides the exception

flow from the original throw to the final handler into multiple segments. Existing

exception-flow analyses, including the algorithms in Chapter 3, cannot connect these

closely related e-c links into a chain, which makes it difficult to trace back to the root

cause of the exception given its final handler. Because reconstructing the whole stack in

the final handler is not always possible (or desirable), an programmer trying to diagnose

2In the remaining discussions, the term rethrow refers to a throw within the catch clause (i) of the
incoming exception object or (ii) of a new exception object containing semantic information from the
incoming exception object.
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and repair a system degradation (or crash) may have very limited information to aid in

determining the source of the problem. What’s more, if the actual exception flow is a

chain spanning many software layers in the system, the testing framework in Section 2.2

is limited to exploring only individual segments of this chain.

6.2 E-c Chain Analysis

In this section we present an analysis that automatically identifies cases of exception

rethrow. With this analysis, we can reconstruct the exception-flow segments into e-c

chains, chains starting from the original throw and ending in the final catch. This infor-

mation can be used to illustrate all exception flows in the entire system, especially those

flows across different components, thus revealing the exception handling architecture of

the system.

6.2.1 Handler-inspection analysis.

We have argued that exception rethrow is a desirable design for recovery code in modular

systems. Nevertheless it adds difficulty to problem diagnosis and to the automatic

inference of the exception handling structure. Because most rethrows happen inside

a catch clause, we can design a local (i.e., intraprocedural) program analysis that

examines the code inside the catch clause automatically, to determine whether or not

the caught exception is rethrown, or a new related exception is rethrown within the

catch clause. The basic idea is to determine how the caught exception object is used

within the catch clause.

When the Java code shown in Figure 6.1 is translated to bytecode, each state-

ment in the source code will be broken down into multiple simple bytecodes. A Java

bytecode analysis tool can translated these bytecodes into the sequence of expression

statements shown in Figure 6.2 to facilitate further analysis and optimization. We are

using Soot [59] for this translation. In the translation, @caughtexception represents the

reference to the caught exception in the catch clause and <init> signals a call to a

constructor.
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1  r1 := @caughtexception;

2   r2 = new java.sql.SQLException;

3   r3 = new java.lang.StringBuffer;

4   r3.<init>();

5   r4 = r3.append("Cannot connect...");

6  r5 = r1.getClass();

7  r6 = r5.getName();

8  r7 = r3.append(r6);

9  r8 = r7.toString();

10 r2.<init>(r8, "08S01");

11 throw r2;

Figure 6.2: Exception Rethrow Bytecode Representation

Each arrow shown in Figure 6.2 goes from a statement that defines a variable to a

statement where that variable is used, that is a def-use link. Intraprocedural reaching-

definitions [1] is a classic dataflow analysis that can produce def-use links for all the

variables in a given method. By following these def-use links we can see that the

statements 6 and 7 extract a string (r6) from the caught exception (r1). Then another

string (r8) is constructed from r6 and some other text. Finally in statement 10, r8 is

used as an argument of the constructor of another exception object (r2) that is rethrown

in statement 11.

This process of variable usage tracing can be automated. Figure 6.3 shows the

algorithm that traces the usage of caught exceptions intraprocedurally. The algorithm

takes a catch block, and attaches labels to some of the statements. If some statement

in a catch block is labeled “Rethrow”, this block is considered a interconnecting point

where two e-c links can be connected. The algorithm makes the following assumptions:

First, the first statement of a catch clause is considered to be a pseudo-definition

statement that initializes the reference variable pointing to the caught exception object.

Second, a function find all uses is implemented that takes two parameters: a variable

and a statement that defines the variable, and returns a set of statements that use that
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1 Initialize worklist to be empty;
2 add (ref to caught, pseudo def statement) to worklist;
3 mark(ref to caught, pseudo def statement) processed;
4 while worklist not empty
5 (ref, stmt) = worklist.remove first();
6 use statements = find all uses(ref, stmt);

7 for each statement in use statements

8 for each def ref in statement
9 if (def ref is local variable)
10 if ( (def ref, statement) is not processed)
11 add statement into worklist;
12 mark (def ref, statement) processed;
13 end for
14 if statement includes call to other method
15 and ref is used as parameter or receiver
16 label statement “Call Other Method”;
17 switch kind of statement:
18 case assign statement:
19 if (assign destination is field or array reference)
20 label statement “Store into Field/Array”
21 case return statement:
22 label statement “Exception Object Returned”
23 case throw statement:
24 label statement “Rethrow”
25 end switch

26 end for
27 end while

Figure 6.3: Handler-inspection Analysis Algorithm

variable.3 A variable is considered to be defined only when it appears on the left-hand-

side of an assignment operator. As a consequence of choosing to do a local analysis, we

make conservative assumptions at method calls; that is, at a method invocation, the

receiver and all the actual parameters are considered to be defined by the call statement.

However, we give special treatment to string and exception manipulation methods. For

example, receiver and actual parameters of method StringBuffer.append() are not

3The first assumption is satisfied by the way Java bytecodes are defined [39] and the way they are
translated into Soot internal representation. The second function relies on the def-use analysis provided
by Soot [59].
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considered to be defined, but only used.

In Figure 6.3, the loop from line 4 to 27 tries to find statements where the reference

to the caught exception is used. Lines 8 to 13 say if the reference variable is used in a

statement that defines another variable, keep tracing usage of the latter variable. This

makes sure that we keep tracing the usage of information extracted or constructed from

the caught exception, such as r5, r6, r7 and r8 in Figure 6.2. Lines 10 to 12 ensure that

a statement only will be processed once, so that the main loop terminates. Lines 14

to 25 contain labeling for different kinds of statement types referring to the reference

variable. For example, the algorithm reports that this handler rethrows the exception,

if any of the processed statements is a throw statement (Line 23). Note that to keep

our analysis local, the algorithm does not trace exception chains involving the reference

variable being passed into another method (Line 14), or being stored into some field or

array (Line 19), or being returned to the caller (Line 21). This algorithm design choice

means that the analysis may miss some actual rethrows (i.e., it allows false negatives).

6.2.2 E-c chain construction

Both Handler-inspection analysis and the Exception-flow analysis in [24] are imple-

mented in Soot, but they are not dependent on each other. Exception-flow analysis

produces a set of e-c links (p, c). At the same time the Handler-inspection analysis can

parse all the catch clauses to find all the interconnecting points (c, p) where p is a throw

statement in catch clause c that rethrows an exception. Recall that Soot includes an

intraprocedural reaching definition analysis that provides local def-use links. We mod-

ified it to fit our needs by assuming each reference parameter may be modified in a

method invocation.

After obtaining both e-c links and interconnecting points, it is easy to construct e-c

chains (p, c, p, c, p, c...) representing the propagation path of a set of exceptions resulting

from single error condition. An e-c chains constructor is implemented that builds e-c

chains automatically by matching catch clauses and throw statements from e-c links

and interconnecting points.
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In our experiments we found that many of these e-c chains span multiple compo-

nents. Thus, this analysis information can be used to illustrate exception flow between

components, giving an estimate of the vulnerability of certain components and showing

the service dependence relations between components (see Chapter 7). These can be

helpful for programmers who need to understand the overall fault-handling behavior

of component-based programs. During system diagnosis, more detailed information,

(e.g., e-c links, their interconnections, the corresponding call chains) can be provided

to the programmer to aid in problem localization. Since all this information is obtained

using static analysis, no run-time overhead is imposed on the system. In addition, by

extending the fault-injection testing approach in Chapter 2, the quality of the recovery

code can be tested in advance of installing the web service application.

6.2.3 Testing of E-c chains

In Chapter 2 a testing framework is introduced, in which e-c links can be tested one

by one: for a given e-c link (p, c), the corresponding try block is instrumented so

that during runtime, the fault injection engine is informed to trigger an exception if

p, which is usually an operation that may trigger some environmental exception, is

executed. This is to make sure that the exception thrown from p is actually handled in

c (i.e., the given link is exercised by the test). Entry point of c is also instrumented to

record which e-c link (p, c) is actually exercised during runtime.

This testing framework is extended to help cover e-c chains reported by the e-c

chain analysis. As we know an e-c chain (p, c, p, c...p, c) is composed of a sequence of

e-c links. When tested, we want to make sure that at runtime, the given e-c chain is

the propagation path of the exception thrown from the original fault-sensitive operation

(i.e., the first p). To do that, each try block corresponding to some c in any e-c chain

is given an ID and instrumented at the entry and exit points. Thus a thread local stack

can be used the keep track of try blocks that are currently in range. If the original

fault-sensitive operation is executed, the fault injection engine can examine the stack

and trigger the exception if and only if the sequence of try blocks in the stack matches

the sequence of catch clauses in the given e-c chain. At the same time, each entry point
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of c is also instrumented to record the execution of the catch clause and also the calling

stack embedded in the caught exception object. These data can be easily processed

offline to reconstruct the e-c chain exercised during test run.

Note that our original e-c link testing framework relies on an extended version of an

existing fault-injection engine Mendosus [38], which can only inject I/O related faults

into the system. So currently our testing system can only test e-c chains originated

from an I/O operation that may trigger some I/O operation.

The extended testing framework can collect the following information during the

testing process: all the possible e-c chains in the program and those that are exercised

during the test. Based on these, we define two different testing coverage metrics, Chain

Coverage and Link Coverage.

• Chain Coverage: Given a set FC of the possible e-c chains of a program, and a

set EC of the e-c chains that are experienced during a set of test runs, Chain

Coverage is defined as |EC|
|FC| .

• Link Coverage: Given a set FL of all the e-c links decomposed from e-c chains

from FC, and a set EL of the e-c links ∈ FL that are experienced during a set

of test runs, Link Coverage is defined as |EL|
|FL| .
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Chapter 7

Experimentation on Exception-chain Analysis

In this section we report our empirical findings and discuss a case history from our

experiments, whose goal was to demonstrate the effectiveness of our methodology. The

case history about Tomcat demonstrates the complexity and the inter-component na-

ture of the e-c chains determined by our analysis. Some of these discussions appeared

earlier in publications [26].

7.1 Experimental setup & benchmarks

We implemented the analysis in the Java analysis and transformation framework

Soot [59] version 2.0.1, using a 2.8 GHz P-IV PC with Linux 2.6.12 and the SUN

JVM 1.3.1 08. We used five Java applications as our benchmarks:

• Muffin, a web filtering proxy server (http://muffin.doit.org/).

• SpecJVM, a standard benchmark suite that measures performance of Java virtual

machine (http://www.spec.org/jvm98).

• VMark, a Java server side performance benchmark. It is based on VolanoChat –

a web based chat server (http://www.volano.com/benchmarks.html).

• Tomcat, a Java servlet server from the Apache Software Foundation, version 3.3.1

(http://tomcat.apache.org/). The servlets application running on top of Tom-

cat is an online auction service modeled after EBay – part of the DynaServer

project [54] at Rice University. This application communicates with MySQL

database using MySQL Connector/J [46].
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• HttpClient, an HTTP utility package from the Apache Jakarta Project

(http://jakarta.apache.org/commons/). We collected its unit tests to form a

whole program to serve as a benchmark.

Table 7.1 shows the sizes of the benchmarks. Spark, a points-to analysis based call

graph constructor provided with Soot[59], was used to compute the call graph of each

benchmark so as to estimate the code that is reachable from the main function. Column

2 shows the number of user (i.e., non-JDK library) classes, with those in parentheses

comprising the JDK library classes reachable from each application. The data in column

3 shows the number of reachable user methods and those in parenthesis are the JDK

library methods reachable from each application. Column 4 gives the number of catch

clauses in reachable user methods. The last column shows the size of the .class files (in

bytes) of each benchmark, excluding the Java JDK library code.

Table 7.1: Benchmarks

Name Classes Methods Handlers .class Size
Muffin 278(1365) 2080(7677) 270 727,118
SpecJVM 484(2161) 2489(4592) 289 2,817,687
VMark 307(2266) 1565(5029) 502 2,902,947
Tomcat 470(1869) 2964(8197) 502 4,362,246
HttpClient 252(2210) 1334(4741) 536 1,049,784

According to the size of the .class files, Muffin is significantly smaller than the

other four benchmarks. It contains a smaller number of handlers than the other bench-

marks. VMark, Tomcat and HttpClient are composed of many components, identified

by multiple jar files in the distribution.1

The reason we are including the relatively small and simple Muffin as one of the

benchmarks is that despite of its size, according to data presented in [24], the number

of e-c links involving I/O found in Muffin is comparable to the other larger benchmarks.

Moreover, it takes a rather expensive analysis to remove a significant portion of false

1We recognize components by assuming one component per jar file provided by each benchmark.
Users of our analysis can override this by providing the component membership of classes according to
a provided XML schema. There is no jar file defined in Muffin or SpecJVM.
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positive e-c links in Muffin produced by the cheaper analysis, which we believe shows

that its recovery code structure is relatively complex.

We have Java source code for all the benchmarks except SpecJVM and VMark. Only

part of the source code for SpecJVM is provided and there is no source code for VMark.

Although we can conduct our experiments using only bytecode, the unavailability of

source code hindered the process of interpreting our experimental results.

On each benchmark, the Handler-inspection analysis finished in under 2 minutes

and e-c chain construction took even less time. This total analysis cost is negligible

comparing to the running time of the Exception-flow analysis we are using – about

1 hour for most benchmarks used in [24]. (Recall this analysis does not execute at

runtime.)

7.2 Catch Clause Categorization and E-C Chains

As mentioned before, the Handler-inspection analysis automatically examines all the

catch clauses to find out how the caught exceptions and information derived from them

are used. We can categorize each exception handler based on the information obtained,

partitioning them into the following categories: the caught exception (or information

derived from it) is (i) rethrown, (ii) stored into a field/array, (iii) returned to caller,

(iv) ignored, or (v) the catch clause is completely empty, or (vi) other cases.

Figure 7.1 shows the percentage breakdown of the reachable handlers in each of the

benchmarks according to the above categorization. As we can see from the chart, in 4

out of 5 benchmarks, the percentage of handlers that rethrow exceptions ranges from

15% to 35%, something that we can not ignore. But such activity is not very visible

in Muffin: only about 2%. Empty catch clauses occur significantly often in all of the

benchmarks. There is also a significant percentage of non-empty catch clauses in which

caught exception objects are ignored. It is very rare that exception objects are stored

into some field/array or returned to the caller.
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Figure 7.1: Usage of Caught Exceptions in catch Clauses

Not surprisingly, all of the handlers in category (vi) contain invocations to other

methods with information from the original exception used as either the receiver or a

parameter. The reason we did not name the category method calls is that handlers in

category (i), (ii) and (iii) also may make such method calls. Figure 7.2 shows the kinds of

method calls that appear in all of these handlers. The height of each bar represents the

number of catch clauses in each category, normalized by the total number of reachable

handlers in the benchmark. We can see that most of the time the Handler-inspection

analysis can automatically identify the call targets as either a constructor of another

exception, a printing function in the Java library, or an application-specific logging

function, (i.e., in order to discover the last case, information for each benchmark must

be manually specified before the analysis). Only a relatively small number of them

are some other exception handling method in the application. Handlers that directly

call printing or logging functions dominate in 4 out of 5 benchmarks (i.e., except for

SpecJVM).

From the data presented above we can see that Handler-inspection analysis can

summarize the behavior of the catch clauses. This information, when combined with

the e-c chains discovered in the system, can help a programmer pay more attention to

the important catch clauses with undesirable behaviors (e.g., swallowing exceptions).
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We believe that catch clauses that can be reached by many different exception sources

are more important, because defects in them may be more harmful than those in a

catch clause that can not be reached by any checked exception.

After Handler-inspection analysis, interconnecting points can be identified among

the catch clauses (i.e. a catch clause c containing one statement labeled “rethrow” p).

We would like to know the possible destinations of the rethrown exceptions in these

handlers. So we examine all the e-c links (p, c) that start from one of the interconnecting

points (c, p). Figure 7.3 shows numbers of these e-c links in which the source and target

of the e-c link belong to different classes, packages or components. In all the bench-

marks (except Muffin), as expected the majority of these e-c links propagate across

components or package boundaries. This information is of great value in discovering

and understanding the interaction between components, and revealing the high-level

recovery structure of the system. In systems of this complexity, it is hard to determine

this merely by manual inspection.
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One interesting fact about HttpClient is that there are many more e-c links across

components than across packages. The reason is that we are using its unit tests to

form a whole program (necessary for our analysis). Unit tests are packed in a different

component (i.e. jar file) from the main implementation, but both are included in the

same package; in all the other benchmarks, each component consists of one or more

packages not vice-versa. The large number of e-c links between the implementation and

the test components shows that the methods under test often pass along exceptions back

and rely on their caller to handle them.

Table 7.2: Number of Chains of Difference Length

Length 1 2 3 4 5 6 Total
Muffin 6 6
SpecJVM 69 46 115
VMark 300 81 12 393
Tomcat 312 365 31 3 2 10 723
HttpClient 583 547 275 1405
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Finally, the e-c chain constructor can connect the e-c links gathered with their

identified interconnecting points to form e-c chains. Table 7.2 lists the distribution of

e-c chains of different lengths in each of the benchmarks. Note that since these e-c

chains are constructed from e-c links that start from some interconnecting point, each

one shows an exception propagation path with the first segment missing. The reason

we are showing the data this way – instead of starting from the original throw – is

that some of the interconnecting catch clauses are protective handlers that usually can

only be reached by unchecked exceptions (e.g., NullPointerException or ThreadDeath).

These handlers are used to prevent the malfunctioning of some component that may

bring down the system, but the e-c links reaching them are either very hard to find or

do not exist explicitly in the code. So we ignore the first segment of each e-c chain in

order to gather and report uniform data. Of course, the e-c chain constructor provides

the whole path for examination, when the first segment involves a checked exception.

As can be seen from Table 7.2, 4 out of 5 benchmarks show a significant portion

of the e-c chains have length greater than 1. Since these are e-c chains with the first

segment missing, we can see that in many cases, one exception can go as far as 2

“hops” before reaching its final handler. There are surprisingly long e-c chains found

in Tomcat, which shows the complex exception handling of the system. Clearly, this

data is sensitive to the way in which we count e-c chains that share intersecting points.

Here, we count all possible combinations of incoming e-c links with outgoing e-c links.

For example, suppose a single interconnecting point has two incoming e-c links and two

outgoing ones, forming an X shape; then the number of e-c chains will be 4.

From the data presented above we can see that in Muffin, although the number of

I/O related e-c links is not very small as shown in Chapter 4, the e-c links are fairly

independent from each other. At the same time, in all the other benchmarks, exception

rethrow is common and with the Handler-inspection analysis, we can automatically

identify semantic relations between individual e-c links caused by this phenomenon.

Thus, we can reveal the whole exception propagation path, instead of just discrete

segments of it. As often these paths go across different components, a programmer

diagnosing the root cause of a problem can better understand the interactions between
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components caused by the application recovery code, with the help of this information.

Next, we will show how to use this information to create a higher level view of exception-

handling architecture in the e-c chain graph.

7.3 E-C Chains in Tomcat

The data presented above, especially the long e-c chains found in Table 7.2, drew our

attention to Tomcat. So we manually inspected its e-c chains and source code, hoping

to find answers to the following questions: How precisely does the analysis identify

interconnection points? Are the e-c chains mostly independent or tangled together?

What can these e-c chains tell us about the overall exception-handling behavior of the

system?

7.3.1 Precision

We are primarily interested the precision of recognizing interconnection points in all

the catch clauses. As mentioned previously, the Handler-inspection analysis can report

false positives because it is approximate. Also, the analysis does not examine called

methods in a catch clause, even if the exception is passed into them. There may be

cases where the callee takes some exception and throws it or constructs a new exception

from it and throws that exception. In such cases, the exception thrown in the callee is

directly or indirectly related to the caught exception in the caller. The corresponding

catch clause should be recognized as an interconnecting point, but the analysis does not

do so; this case is a false negative.

To check the number of false positive and false negative cases, we manually inspected

all the catch clauses in Tomcat to verify the result of the automatic Handler-inspection

analysis. Surprisingly, we did not find any false positives; that is, all the interconnect-

ing points found, actually throw some exception that is either directly or indirectly

related to the original caught exception! Unfortunately, we did identify 3 cases of false

negatives. There are 2 catch clauses in the Apache Crimson package, which call the

same method that constructs a new exception out of the caught one and then throws it.
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There is another catch clause in the Tomcat Facade package that calls a method which

throws its parameter directly. All of these rethrows happen in the method directly

called from the handler, not in other methods that are reachable from the callee.

According to Java library API specification [72], “A throwable contains a snapshot

of the execution stack of its thread at the time it was created.” In one of the above

methods, a new exception was created that wraps the original exception and then is

thrown. Since it is not created “on the spot” (i.e., within the catch clause, as most

exceptions are), this exception object contains a stack snapshot that takes a little

“detour” from the original exception propagation path. If this snapshot is logged by

the final handler and subsequently used for problem localization, the “detour” may

become a source of confusion. In the other method mentioned above, since the original

exception was rethrown, the original stack snapshot was preserved. But in both cases,

the handling complicates the program understanding task by keeping the throw site

further away from the problem path, which may present difficulties to system diagnosis,

especially when the call stack is not completely logged in the final handler due to error-

handling-time system resources concerns.

We may also introduce false positives as we form e-c chains from the results of the

Handler-inspection analysis. When we connect multiple e-c links into a e-c chain, the

call path associated with the chain maybe infeasible, although some call path associated

with each e-c link is feasible. This may occur, for example, if two exception objects

are handled in one interconnecting point and the rethrow target is determined by the

object thrown. Thus, there may appear to be two possible handler targets, but only

one corresponds to each incoming exception object. We were unable to verify that this

problem did not occur in Tomcat, since to manually figure out call chain feasibility in a

large object-oriented system is not straight-forward. However, the situation, should it

occur, can be partially alleviated by applying the DataReach analysis from Section 3.2

to remove e-c chains only associated with infeasible call paths.

The existence of some false negatives in our analysis is not unexpected. To avoid

false negatives would require a much more precise interprocedural analysis that would
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be very costly, and itself might introduce additional false positives due to the interpro-

cedural part of the analysis. Thus, we chose to implement an analysis of practical cost,

which identifies, we believe, the bulk of the e-c chains of interest. Given the complexity

of exception handling in Tomcat and the results of our manual inspection, we feel this

decision is justified.

7.3.2 E-c chain Graph.

The e-c chains can be depicted in a graph and shown in differing granularity to help

in different tasks. e-c chains represent exception travel paths in the system, and as

observed in our experiment, often span several components. When shown at the com-

ponent level, e-c chains illustrate the interactions between components of the system,

which helps a user understand the high-level error recovery architecture of the system.

Critical components (i.e., those either handle or issue many exceptions with different

source/sink) can be located for testing or inspection. This can increase confidence in

the expected robustness of the application when problems occur.

In system diagnosis tasks, first the programmer can obtain the immediate cause of

the symptom from the system log. Displaying e-c chains may help the programmer

decide which of the components are involved and what are the possible root causes.

Then, detailed information such as the position of throws and catchs in the code and

call paths between them, can be shown to help with detailed reasoning. In program

understanding tasks, the component-level exception-flow structure can help a system

integrator better understand the interaction between components of an application.

This structure also can increase confidence in the expected robustness of the application

when problems occur.

We manually collected all the e-c chains with length greater than 2 and displayed

them in Figure 7.4, which shows the exception-flow architecture of the Tomcat sys-

tem. This process can be automated using graph drawing packages such as Graphviz

(http://www.graphviz.com).

By looking at the e-c chain graph in Figure 7.4, we can easily make two observations.

First, on the left-hand-side of the graph, MySQL Connector/J relies on Java network
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library to communicate with the MySQL database, and propagates exceptions first

to DynaServer, then to the Tomcat Facade component. So if the network connection

to the database goes down when the system is running, it may cause problems in

the servlet application, but other non-Facade parts of Tomcat are very likely not to

be affected. In this sense, the Facade component serves as a good firewall between

the servlet application and other parts of Tomcat, and thus is identified as a critical

component in error recovery. If this component is well tested to handle/log exceptions

properly, the whole system will likely to handle/log errors properly. Second, according

to the structure on the right-hand-side of the graph, the system is a lot more vulnerable

to I/O problems during start up, because operations such as starting a server socket or

reading some configuration file fail, and thus may cause trouble in many major parts

of the system, including the core component.

MySQL Connector/J Crimson

Tomcat Facade E−Tomcat Tomcat Core

Tomcat Util

Java JDK Library

Tomcat Modules

DynaServer

B is dependent on A:    AB

Figure 7.5: Service Dependence Graph of Tomcat

The e-c chain graph can also be presented in a coarser granularity to reveal de-

pendences between components, and thus form a service dependence graph: When an

exception flows from component A to component B, we can see that an operation failure

in A may cause an operation failure in B. In another words, some operation in B is

dependent on the service in A to complete its functionality. Figure 7.5 is the service

dependence graph of Tomcat. For example, the graph tells us that all core Tomcat
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components, excluding servlets components running on top of Tomcat, use services

provided by component named Tomcat Util instead of accessing I/O library directly.

This is the component that delegates I/O and provides a higher level of abstraction in

both functionality and exception.

The e-c chains, when depicted in the graphs in Figure 7.4 and 7.5, can show the

exception-handling architecture of Tomcat in a compact form. By inspecting the graphs,

a programmer can understand the exception-handling interaction between major com-

ponents, and at the same time, estimate the vulnerability of certain components as well

as that of the whole system. A person trying to gain knowledge about possible root

causes of a particular problem can browse the exception propagation path and partici-

pating components on these graphs. All this knowledge can be obtained by examining

the graphs shown above without consulting the source code of the system.

7.4 Testing of E-C Chains in Tomcat

We implemented the e-c chain testing framework as described in 6.2.3 and used Tomcat

as our benchmark because of the complex e-c chain structure discovered in it. Note

that our testing framework can only inject I/O faults into the system. So we could only

test e-c chains originated from I/O operations that may trigger an exception.

In Tomcat, our e-c chains analyses found 308 e-c chains2 originated from I/O op-

erations. 16 (about 5%) of these e-c chains span 2 different components and the rest

of them span 3 or more different components. We believe this is more evidence that

exception catch and rethrow is used mainly as means of inter-component exception

propagation in Tomcat.

These 308 e-c chains can be decomposed to 184 edges, each taking from of an e-c

link. As you can imagine from the number, some of the e-c links are shared among

many different e-c chains. In the following discussion, the term sharing degree denotes

for a given e-c link, the number of different e-c chains that share it. Figure 7.6 shows

how e-c links are shared among e-c chains. On X axis, each vertical bar is labeled

2We only consider chains with length greater or equal to 2, because shorter chains are essentially
e-c links whose testing has already been discussed.
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Figure 7.6: Links Shared by e-c chains

with the sharing degree of the e-c links in this group and the height of the bar (also

specified by the number on top of each bar) represents the number of e-c links in this

group. For example, the rightmost bar tells us there are 2 e-c links each of which is

shared among 68 different e-c chains. Moreover, each bar is divided into two parts to

show the number of e-c links that are inter-component or intra-component, respectively.

We can see from the chart that i) in total, a significant number of e-c links have high

(equal or greater than 3) sharing degree, ii) a majority of the shared e-c links are

inter-component. This information should draw testers’ attention to the catch clauses

associated with those highly shared e-c links, because they may handle exceptions from

many different program points, and often from different modules.

After locating the e-c chains in Tomcat, our goal was to use our extended testing

framework to exercise the program as much as possible, to cover reported e-c chains.

Tomcat, with the DynaServer Ebay emulator as servlet application running on top of

it, functions as a dynamic content web server. Initially we used the client emulator [54]
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that came with DynaServer to generate client requests (as input data to the server)

trying to exercise different parts of the server. We only covered 105 e-c chains this

way. When we tried to inspect the uncovered e-c chains, we found feasible program

paths that could enable execution of many of these e-c chains. So additional client

requests were manually crafted to cover more e-c chains. Finally, out of 308 e-c chains

reported, we managed to cover 234 e-c chains in total – 76% coverage. Although this

client emulator is very successful in testing the server’s performance, it does not try to

fully explore the server as an test input generator.
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Figure 7.7: Link Coverage

As mentioned above, the 308 e-c chains can be decomposed to 184 e-c links . Among

these, 126 e-c links were experienced during the test, 68% coverage. Figure 7.7 is a

refinement of Figure 7.6 where Link Coverage is shown. The bar chart in Figure 7.7

shows that most of the uncovered e-c links have low “sharing degrees”. In fact for all e-c

links shared by 3 or more e-c chains, there is only one not covered during the test. This
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explains why the Chain Coverage is higher than the Link Coverage in our experiment.

In this case we are lucky in our experimentation because we covered almost all the more

important (with higher sharing degree) e-c links.

During the test, there were 28 covered e-c chains for which after the final exception

handlers were reached, either array out of bound exceptions or null pointer exceptions

were raised. All of these 28 e-c chains’ final exception handlers are in the DynaServer

servlet application. We believe that these exceptions being raised is an apparent indica-

tor of bugs in the exception-handling code. All of them caused a stack dump to appear

on the affected clients’ browsers, but none of these exceptions caused Tomcat to crash,

nor did any of them stop the servlet application being used by other concurrent clients.

This is partly because of the stateless nature of servlet applications, and partly because

of the carefully placed protective try-catch blocks that catch unexpected exceptions.

These try-catch blocks provide good protection between different parts of the program.

JDK Library

MySQL Connector J Crimson

DynaServer

Tomcat Util

Tomcat Modules

Tomcat Core
E-Tomcat

Tomcat Facade

7,7 1,1

1,1

4,3

128,97

3,3

1,02,1
3,1

8,0

Figure 7.8: Inter-component Link Coverage

Figure 7.8 depicts the Link Coverage of inter-component e-c links in a graphical

manner. It has same layout with that of Figure 7.5. Ovals represent program modules

and arrows represent inter-component e-c links as segments of I/O related e-c chains.

One arrow may represent several e-c links with the same direction. Some arrows in

Figure 7.5 are missing here, because only I/O related e-c chains are shown in this figure,

whereas all possible exception propagation paths are shown in Figure 7.5. Each arrow
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is labeled with a pair of integers x, y where x is the number of e-c links represented by

the arrow and y is the number of these e-c links that were covered during the test. This

figure allows easy identification of poorly tested e-c links between program modules. We

can see from the picture that many e-c links from MySQL Connector J to DynaServer

servlet application were not covered. Also many e-c links starting from Tomcat modules

were not covered. Next we will present the investigation results of these e-c links.

try {. . .}
catch {. . throw ec; . .}

throw e1 throw e2

try { }
catch {. . .}

try { }
catch {. . .}

e-c links
Covered e-c chain

Figure 7.9: X Shape e-c chains

We had expected to see a combinational coverage problem near catch clauses that

appear in many different e-c chains. For example, as shown in Figure 7.9, four e-c

links form a big X shape which contains 4 e-c chains. If only 2 of them were covered

as shown in the figure, we would cover all the e-c links but only half of the chains in

this part of the system. But to our surprise, we found no such case in the experiment

results. In another words, for each e-c chain not covered, there was at least one e-c

link as an edge of the e-c chain that was not covered during the entire testing process.

For this reason, we investigated in detail the reason why some e-c links as segments of

e-c chains were not covered during the test, but did not try to inspect entire uncovered

e-c chains. There are total of 58 such e-c links not covered in our test, which, after our

inspection, can be divided into the following categories (detailed explaination of each

category will follow shortly):

1. e-c links whose try blocks are not reached by normal execution.
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2. e-c links corresponding to infeasible call chains.

3. e-c links whose feasibility depended on call chains beyond the span of the e-c links

themselves.

4. e-c links whose feasibility can not be decided by manual inspection.

Table 7.3: Categories of Uncovered edges in e-c chains

Category #Edges Start Module End Module
1 8 MySQL Connector/J MySQL Connector/J

1 Tomcat Util E-Tomcat
1 Tomcat Util Tomcat Facade

2 1 JDK Lib Tomcat Util
3 31 MySQL Connector/J DynaServer
4 6 Tomcat Modules Tomcat Modules

8 Tomcat Modules Tomcat Core
2 Tomcat Modules E-Tomcat

Table 7.3 lists the number of uncovered e-c links in each category. The third and

fourth columns give these e-c links’ direction at the level of program modules, and the

second column lists number of e-c links in each direction.

There are totally 10 e-c links in the first category whose corresponding try block

can not be reached by normal execution. These e-c links end in 5 different try-catch

clauses, where we can not find ways to push the program to even execute the try block.

Two of these try blocks execute “safety check” code (e.g., try to ensure some resource is

initialized before actually using it). Because this backup initialization code is guarded

by some flag, it is very hard to actually execute the try blocks in it. The other 3 try

blocks are guarded by complex control flow that we can not fully understand.

In the second category, one e-c link corresponds to infeasible call chains, and thus

can never be covered. We believe it is very hard for any static program analysis to prune

this infeasible e-c link, because its infeasibility is decided by the value of some string

object. The e-c link starts from a network operation and ends in a try-catch block that

reads a configuration file whose position is specified by an URL. Since the first part of

the URL is hard coded as file://, it can never be accessed over the network. So the
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corresponding operation will never be affected by network faults. This e-c links starts

from JDK library and ends in Tomcat Util module. This is also the only uncovered e-c

link with high “sharing degree” (14).

In total there are 31 e-c links in the third category that correspond to feasible

call chains, but these e-c links are infeasible themselves. This is a very interesting

new finding, because it never happened in the coverage testing of individual e-c links

described in Chapter 4. When we say that one e-c link (p, c) corresponds to feasible

call chains, we mean there exists at least one feasible call chain starting from the try

block corresponding to the c and ending at the method containing the throw statement

p. Usually in test of e-c links in Chapter 4, locating this feasible call chain and driving

the program through it would lead to the e-c link being covered. But in this case, p

is located inside another catch clause, as a rethrow, so things get more complex than

what we experienced before.

try {. . .} catch {. . .}

try {. . .} catch {. . throw e2; . .}

throw e1

A

B

C

e-c link 1

e-c link 2

Figure 7.10: To Cover a e-c chain

Figure 7.10 shows a simplified example illustrating this case. Arrows in the picture

representing e-c links . Our goal is to cover e-c link 2 (shown as a dashed arrow in the

picture) in our test. We have already confirmed by using profiling that there are feasible

call chains from method A to method B, and we successfully covered e-c link 1 (shown

as a solid arrow in the picture) during our test. This tells us that there is feasible call

chain from method B to method C, but we were not able to cover e-c link 2. After a

detailed inspection we found that in this case, driving the normal execution to reach
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method B via method A is not enough to cover e-c link 2, when the throw statement in

B is hard to reach.

We found that to cover e-c link 2, we have to first drive the program to reach method

B via method A, and at the same time trigger the catch clause in B. To do that, we have

to cover e-c link 1 (i.e., continue driving the program to reach method C). Now the task

becomes driving the execution from method A, via method B and reaching method C.

Then an exception will be raised in C, which will trigger catch clauses in both method

B and A, covering both e-c link 1 and 2 in the picture. Bottom line: we need a feasible

call chain starting from method A, that goes through method B and reaches method C.

Unfortunately, we found, by manual inspection, there is no such feasible call chain

to support the corresponding 2-link chain. That is, although A to B is feasible and

B to C is also feasible, A via B to C is not. Method B in the example represents

MysqlIO.sqlQueryDirect() in MySQL JDBC connector. It would call different methods

depending on the kind of request received. Only a call to one of these methods may

lead to e-c link 1 in the picture. Requests from method A will not trigger the call nec-

essary for covering e-c link 1. This is controlled by a sequence of if statement in the

method (i.e., complicated control flow), so our flow insensitive analysis will not be able

to identify the infeasibility of this path.

All of these 31 e-c links go from MySQL Connector/J to the DynaServer servlet

application. By looking at Figure 7.8, we can see that we have covered all feasible I/O

related exception propagation paths between these two modules.

In the fourth category, there are 16 uncovered e-c links with undeterminable fea-

sibility by our manual inspection of the source code and analysis results. These e-c

links start from rethrow operations in 3 different catch clauses, and end in 10 different

catch clauses. We were able to drive the program into these try blocks but still could

not cover them in the test. These 10 catch clauses are in methods that are very close

to the root of the program call graph, one of them being in main method itself. Call

chains corresponding to these e-c links are complicated and hard to explore; thus we

are not sure whether these e-c links are actually feasible or not. One observation we

can make is that in these e-c links, the shortest call chain from any p to c is 6. We
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feel this distance between where the exception is thrown and where it is handled is too

large to allow effective inspection.

From the result of these experiments, we believe that with e-c chain analyses and

the extended testing framework, we can help programmers categorize catch clauses ac-

cording to their behavior, understand exception-handling structure of a given system,

and systematically test that structure to find problems in the exception handling code.

The case study in e-c chain testing shows that our testing framework has been success-

fully extended to test exception handling structure of Java systems. With our extended

testing framework, we converted the task of testing exception handling structure of a

given program into driving the execution into different program paths, a traditional

testing problem. Carefully crafted functional test cases can be reused in exception

handling code testing to improve reliability of the system under test.
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Chapter 8

Related Work

There is much previous research related to the systems discussed in this thesis. Those

most related to our work can be divided into several categories: fault-injection testing,

dataflow testing coverage metrics, exception-handler analysis and compilation, points-

to analysis (for reference variables) and infeasible path analysis, which will be discussed

in the following sections.

8.1 Fault Injection

There has been considerable previous work in the operating systems community on using

run-time fault injection for testing the robustness of programs. In the dependability

community, (program) coverage is defined as the conditional probability that the system

properly processes a fault, given that a fault occurs [12, 21]. A stochastic model of

expected fault occurrence is used to guide the selection of faults that are then injected

into a running program and the resulting execution is observed [5]. This approach yields

a stochastic-based fault coverage that treats the running program as a black box [45];

the behavior of the program after the fault is injected is the criteria by which coverage

is achieved or not. In contrast, the fault-injection testing experiments described in

this thesis measure coverage in a manner similar to the software engineering testing

community, which uses the percentage of program entities (e.g., branches, methods,

def-use relations) exercised as a quantitative measure of coverage [52, 45].

There has been some research in the dependability community that uses similar

program-based coverage measures to those in this thesis. Tsai et. al [76] placed break-

points at key program points along known execution paths and injected faults at each

point, (e.g., by corrupting a value in a register). Their work differs from ours in its goal,
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the kinds of faults injected, and their definition of coverage. The primary goal of their

approach was to increase fault activations and fault coverage, not to increase program

coverage. They injected a set of hardware-centric faults such as corrupting registers

and memory; these faults primarily affected program state, not communication with

the operating system or I/O hardware. They used a basic-block definition of program

coverage, rather than measuring coverage of a program-level construct such as a catch

block. Bieman et. al [9] explored an alternative approach where a fault is injected by

violating a set of pre- or post-conditions in the code, which are required to be expressed

explicitly in the program by the programmer. This approach used branch coverage, a

program-coverage metric.

In the terminology of Hamlet’s summary paper reconciling traditional program-

coverage metrics and probabilistic fault analysis [28], our work can be classified as a

probabilistic input sequence generator, exploring the low-frequency inputs to a program.

Using the terminology presented by Tang and Hecht [73], which surveyed the entire

software dependability process, our method can be classified as a stress-test, because it

generates unlikely inputs to the program.

8.2 Dataflow Testing and Coverage Metrics

There is a large body of work that explores def-use or dataflow testing in different pro-

gramming language paradigms. The seminal papers established a set of related dataflow

test coverage metrics and explained their interrelations [52, 22]. The contribution of

our work is to define and implement a def-use analysis of appropriate precision that

fairly accurately matches exceptions (i.e., representative exception objects created at

specific creation sites) to their handlers. This is especially important to ensure the

dependability of the web applications that are our focus (see Chapter 4).

The overall exception def-catch coverage metric for e-c links, that relates resource-

usage faults to specific exception objects, is analogous to the all-uses metric in tradi-

tional def-use testing [52], with fault-sensitive operations corresponding to definitions

of exceptions and catch blocks corresponding to uses.
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8.3 Points-to analysis and Infeasible Path Pruning

There is a wide variety of reference and points-to analyses for Java which differ in terms

of cost and precision. The information computed by these analyses can be used as input

to our exception-flow and data reachability analyses; clearly, the precision of the un-

derlying analysis affects the quality of the computed coverage requirements. A detailed

discussion of points-to and reference analyses and the dimensions of precision in their

design spectrum appears in [32, 58]. Our partially context-sensitive points-to analysis

is most closely related to the context-sensitive analyses in [43, 42]. These approaches

avoid the cost of non-selective context sensitivity, which seems to be impractical; they

rely on techniques which preserve the practicality of the underlying context-insensitive

analysis while improving precision substantially. This is achieved by effectively selecting

parts of the program for which the analysis computes more precise information, either

by using parameterization mechanisms as in [43, 42], or partial constructor inlining as

in our current algorithm. Other context-sensitive points-to analyses that seem to be

substantially more costly than ours, are presented in [15, 27, 49, 37, 79]; these analysis

algorithms implement non-selective context sensitivity.

Bodik et al. present an algorithm for static detection of infeasible paths using branch

correlation analysis, for the purposes of refining the computation of def-use coverage

requirements in C programs [11]. Ngo et al. proposed a novel approach to identify

intraprocedural infeasible paths by recognizing preselected code patterns using static

program analysis [48]. Our data reachability analysis focuses on the detection of in-

feasible paths in Java which arise due to object-oriented features and idioms such as

polymorphism, which is not addressed in thesis works.

Souter and Pollock present a methodology (without empirical investigation) for

demand-driven analysis for the detection of type infeasible call chains [69, 70]. Their

work is related to our data reachability analysis for the computation of infeasible e-c

links. Similarly to their work, our analysis is demand-driven as we analyze the program

starting from the original call. However, our data reachability analysis propagates

information in terms of objects instead of classes which can result in more precise
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analysis results. In addition, our work proposes a technique for summarizing the effects

of callees; this problem is not addressed in [69] and [70]. Our simple RTA-like technique

for collecting potential receiver objects proves suitable for the problem of eliminating

infeasible e-c links; the empirical results demonstrate that it can eliminate substantial

number of infeasible links.

Rountev et. al [56] investigates the potential of various call graph construction algo-

rithms to weed out infeasible call chains. They find that Andersen’s points-to analysis

(the same points-to analysis that we are using) achieves close to the ‘best solution’ pos-

sible for any analysis which considers all control branches to be feasible. This finding

re-enforces our observation of uncovered infeasible e-c links in our experiments, that

involved complex control conditions which ‘fooled’ the analysis.

8.4 Exception Handling Analyses and Tools

There has been much previous research in static and dynamic analyses to discover

exception-flows in programs and to categorize and evaluate exception handlers. In this

section, we will discuss only the most relevant research results in each of these areas.

8.4.1 Static Exception-Flow Analysis

Jo et. al [33] present an interprocedural set-based [31] exception-flow analysis; only

checked exceptions are analyzed. Experiments show that this is more accurate than an

intraprocedural JDK-style analysis on a set of benchmarks five of which contain more

than 1000 methods. A tool [14] was built based on this analysis which shows, for a

selected method, uncaught exceptions and their propagation paths. It is unclear from

the paper whether a certain path for each exception is selected and displayed, or if all

of the paths are displayed.

Robillard et. al [55] describe a dataflow analysis that propagates both checked and

unchecked exception types interprocedurally. Their tool Jex presents a user with a

graphical interface displaying the exception type structure of her program, for better
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understanding; specific emphasis is on the correcting of exception handling by sub-

sumption.

Sinha et. al defined a set of coverage metrics for testing exception constructs and

gave their subsumption relations [65]. The metrics were defined for checked exceptions

explicitly thrown in user code. Our overall exception def-catch coverage metric seems

equivalent to an extended version of their all-e-deacts criteria defined for both implicit

and explicit exceptions. We focus on implicit checked exceptions that are thrown in

JDK libraries, whereas they deal with user-thrown exceptions. Analysis presented

in [66] calculates control dependences in the presence of implicit checked exceptions in

Java. This analysis focuses on defining a new interprocedural program representation

that exposes exceptional control-flow in user code. Class hierarchy analysis is used to

construct the call edges in this representation. An exception-flow analysis is defined

by propagation of exception types on this representation to calculate links between

explicitly thrown checked exceptions in user code and their possible handlers. It seems

clear that this analysis could be extended to include implicit checked exceptions as well,

assuming that the program representation could be constructed from the bytecodes of

the JDK library methods, and that the fault-sensitive operations could be identified.

The CHA version of our analysis seems the most similar to their analysis; this version

is shown on our benchmarks to be too imprecise for obtaining coverage of e-c links

corresponding to implicit checked exceptions, the focus of our work.

These algorithms differ from our exception-catch link analysis in significant ways.

First, their call graph is constructed using class hierarchy analysis, which yields a very

imprecise call graph [20, 7]. Second, these analyses trace exception types through

the call graph of the program to the relevant catch clauses that might handle them.

Conceptually, these analyses use one abstract object per class. An operation that can

throw a particular exception is treated as a source of an abstract object that is then

propagated along reverse control-flow paths to possible handlers (i.e., catch blocks).

Third, they each handle a large subset of the Java language, but make the choice

to omit or approximate some constructs (e.g., static initializers, finallys). Moreover

although all of these static analyses identify individual exception-flow links, none of
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them discover the possible semantic relations between these links, induced by shared

exception objects or exception data. This prevents the tools built upon them from

discovering overall exception flow and handling architecture in module-based systems.

8.4.2 Dynamic Exception-Flow Analysis

A dynamic analysis of exception-flow is presented by Candea et. al [13]. This ap-

proach discovers exceptions propagated across the boundaries of components (i.e.,

bean/servlet/JSP). For each method of a newly loaded component, the analysis parses

the throws clause in the method declaration to obtain the set of all the exception types

that may be thrown by that method, plus possible unchecked exception types. Each

time the method is invoked, a new exception type from the set is picked and thrown.

If that exception causes failure of some other component, an edge from the exception

throwing component to the failed component is added to a graph known as a failure

map that tracks inter-component exception-flow.

Often the exception types listed in the throws clause of a Java method are actually

supertypes (or supersets) of what can be thrown (e.g., due to subsumption). Moreover,

a method declaring that it throws some type of exception is very likely to be just

a propagator of the exception, rather than the origin of the throw. Exception-flow

links derived using this technique may be imprecise (despite of the analysis’ dynamic

nature), and also incomplete (e.g., missing the chain origin). Thus, a programmer

trying to locate an exception cause may have insufficient information to succeed.

8.4.3 Tools

Reimer and Srinivasan [53] introduced SABER, part of which targets at a wide range of

exception usage issues in order to improve exception handling code in large J2EE appli-

cations. These issues include swallowed exceptions, single catch for multiple exceptions,

a handler too far away from the source of the exception and costly handlers. Warnings

are given to the programmer upon recognizing one of these problems. Unfortunately,

the underlying analysis is not discussed.
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Sinha and colleagues [67] showed schematic views of a visualization tool (i) to vi-

sualize exception anomalies similar to those defined in [53] by using the static analysis

of [66], and (ii) to display exception-based test coverage requirements, i.e. list of code

entities need to be exercised to achieve the designated coverage. The static analysis

used for call graph building for both of these tasks is based on CHA. Our experiments

on testing interprocedural exception handling in moderately large benchmarks (e.g.,

2080 methods, 278 classes) showed that more than 97% of the e-c links found using

CHA were false positives. Thus, the analysis in [67] has been shown to be too imprecise

for practical use on real programs. In addition, it is not clear how exceptions thrown

within the Java JDK libraries are accounted for in [67]; the case example illustrated by

schematic views shows the usage of exceptions in the code is sparse and does not seem

to include exceptions thrown by the Java libraries and caught by the application. These

factors raise serious questions about the practicality and scalability of the analysis in

[67] and thus, the utility of the proposed tool.

8.5 Exceptions and compilation

Dynamic analyses have been developed to enable optimization of exception handling

in programs that use exceptions to direct control-flow between methods, such as some

of the Java Spec compiler benchmarks [71]). The IBM Tokyo JIT compiler [50], suc-

cessfully uses a feedback-directed optimization to inline exception handling paths and

eliminate throws in order to optimize exception-intensive programs whose performance

can be improved up to 18% without affecting performance of non-intensive codes. In

LaTTe [35], exception handlers are predicted from profiles of previous executions and

exception handling code is only translated in the JIT on demand, so as to avoid the

cost when it is not necessary. The MRL VM [17] performs lazy exception throwing, in

that it avoids creating exception objects, where possible, unless they are live on entry

to their handler.

Choi et. al [16] designed a new intraprocedural control-flow representation, that

efficiently accounted implicit control flow caused by operations that might generate

exceptions called PEIs, potentially excepting instructions; they used this representation
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as a basis for safe dataflow analyses for an optimizing compiler.
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Chapter 9

Summary

Exception handling code plays a very important role when a subsystem error occurs.

The quality of the exception handling code directly affects system wide availability. We

developed a series of analysis algorithms and tools to help both understanding, inspec-

tion of the exception handling code, as well as testing, for the purpose of improving the

quality of the exception handling code so as to increase the system availability. Special

effort has been put on improving the precision of the analysis to help programmers re-

duce the amount of time and effort spent in the spurious cases reported by the analyses.

Carefully crafted static analyses are used to locate exception propagation paths in a

given Java program. These paths, when provided in some structural way, can help a

programmer navigate exception handling code that relates to certain kind of problem,

or to locate all the problems that should be handled in a given handler. These paths can

also help in testing exception handling code, when paired with our compiler-directed

fault injection testing engine.

9.1 Exception Analysis

We presented our Exception Flow analysis and formalized it as an interprocedural

dataflow analysis. The design of the analysis allows us to experiment with different

supporting technology. As the result of the experimentation, we feel that exception-flow

information derived solely from type-base analysis techniques such as Class Hierarchy

Analysis, contains too many infeasible links from exception throws to catch clauses;

however, using points-to analysis as a base significantly improved the precision of the

Exception Flow analysis.

To further improve the precision of the Exception Flow analysis, we developed a
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post-pass feasibility pruning technique: DataReach, which can be instantiated into a

schema of successively more precise data reachability algorithms. Moreover, the usage

of DataReach algorithms is not limited to exception analyses. They actually function as

general call chain feasibility analysis algorithms. Experiments showed that DataReach

algorithms are effective in reducing the number of false positives produced by Exception

Flow analysis. We also found that DataReach algorithms are more effective when paired

with a context-sensitive points-to analysis.

9.2 Fault Injection Testing

We proposed what we believe to be a new challenge in the field of highly available

systems: to determine whether all of the fault-recovery code in a server application has

been exercised. We have presented our Exception Def-catch Coverage metric, which

formalizes what it means to meet this challenge successfully.

A compiler-directed fault-injection testing framework was designed and implemented.

Paired with exception analysis summarized previously, we conducted experimentation

on a set of reasonable sized Java Web server programs. We have shown algorithms

and experiments results on automatically instrumenting programs to inject faults on

vulnerable program points and collect coverage information at runtime. Our coverage

metric and testing frame work combines ideas of testing software in response to injected

faults, developed by the dependability community, with ideas of testing for coverage of

specific program constructs, developed by the software engineering community.

9.3 Exception Flow Visualization

We presented a tool that facilitates navigating code related to the exception handling

feature of Java programs, again, based on the exception def-use analysis summarized

above. We want to reveal all information needed to the user, while carefully organizing

the data to help browsing and reasoning. With this tool, a programmer can quickly

and precisely locate all the exception handling code that may deal with a certain kind

of problem. It can also locate all the problems that can reach a given catch clause.
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This feature facilitate structural navigation of exception handling code which helps in

exception handling code understanding and inspection.

Despite of our current efforts, exploring program code based on conservative static

program analysis results can be difficult. One way to alleviate the situation is to use

a more precise (but possibly more expensive) analysis to reduce member of spurious

results.

9.4 Exception Chain Analysis

We have defined a static Handler-inspection analysis that examines reachable catch

clauses to identify catch clauses that rethrow exceptions and to categorize caught ex-

ception usage. This categorization, when paired with e-c links information provided by

the exception def-use analysis summarized above, can help a programmer decide the

importance of a given catch clause and whether its behavior is appropriate.

Also, our Exception-chain analysis combines this information with e-c links found

by an existing static analysis, forming e-c chains at compile time without any runtime

overhead. A graph of these e-c chains depicts the architecture of system recovery

code at several levels of granularity: component, package, class. We believe that this

graph and its related service dependence graph that highlights exception flow between

components, are valuable for system problem diagnosis and program understanding

tasks. Our exception-handling testing framework was extended to handle e-c chains,

which can help a programmer ensure the quality of the exception handling structure of

the whole system under test. One case study on Tomcat was conducted to demonstrate

the effectiveness of the extension.

9.5 Limitation and Future Work

One focus of our work was to find e-c links in a given program with high precision.

We put a lot of effort on finding the right technique to improve the precision of the

analysis. As already mentioned above, experiments showed that points-to analysis is

required for reasonable precision.
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Although points-to analysis provides a very good base for this kind of analysis, it

does have some limitations; one of them is not handling reflection well and another one is

the closed world assumption, which means that static analysis must have access to all the

program code at compile time. In big object-oriented systems in either Java or C#, we

have yet to find a program that does not use reflection. It is true that at these dynamic

class loading or reflection sites, some conservative assumptions can be used to continue

the analysis. But the imprecision introduced by these conservative assumptions can be

propagated and in many cases exaggerated, causing global performance degradation.

In today’s software development, as programs become more and more dynamic, it

becomes harder and harder for static program analysis to provide precise information.

We feel that in the places where static program analysis falls short, we need to rely

on dynamic analysis to provide precise information, which is very valuable for program

understanding as well as for problem diagnostics.

But dynamic program analysis does not provide the safety guarantee that comes

with static program analysis, which is often necessary in program white-box testing,

where all possible cases are required to be the denominator in the coverage metrics.

Facing this dilemma, we feel that much research work is needed to design new testing

frameworks and coverage metrics to accommodate more and more dynamic behavior in

today’s programs, and also to make these coverage metrics more practical.
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