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Abstract of the Thesis 

Evaluating the Performance Characteristics of a Virtual Machine Used on Simultaneous 

Multi-Threaded (SMT) Processors  

by HiuShan Yim 
  

Dissertation Director: Prof Dario Pompili 
  

Virtualization of computing hardware is one technique which can make possible the use 

of fewer physical computers, thus lowering resource consumption.  Today, as in the past, 

hardware performance remains a major bottleneck to virtual machine performance.  

Simultaneous multithreaded, or SMT, processors provide thread-level parallelism and are 

being used to overcome the performance limitations of virtual machines.  These same 

processors are also being used to decrease the cost of computing systems since less 

hardware and power is required when compared with multiple CPU systems.  Virtual 

machines should benefit from the properties of SMT processors since they have a 

common cache and parallel execution threads.  As a result, using virtual machines in 

combination with SMT processors should be an efficient way to maintain or increase 

performance, save money and reduce physical hardware requirements.  This study 

attempts to determine if an improvement on virtual machine performance exists through 

the use of an SMT processor.  If the performance of an SMT processor-based system is 

on-par with several independent computers or multiple CPU systems, then the use SMT 

would be an efficient way for organizations to achieve their performance requirements at 

a reduced cost.  This thesis evaluates the performance of a virtual machine used with and 
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without SMT.  This study shows that a definite, measurable performance improvement 

exists when a virtual machine is run with an SMT processor and that better virtual 

machine performance is achieved as load increases.  Then a performance modeling 

method is suggested for various combinations of SMT and virtual machines in order to 

predict and maximize system performance and achieve proper load balancing. 
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1 Introduction 

1.1 Problems with available computational resources and possible 
performance improvement  

This thesis studies the possible performance improvement of combining the use of 

simultaneous multithread processors with the virtualization of operating systems.  The 

cost of computation in large organizations and corporations is enormous.  For instance, 

there are many costs are associated with maintaining a laboratory of hundreds of 

computers. In addition to machine costs, there are operational costs such as energy costs, 

cooling costs and space costs, plus administrative costs which also rise as the quantity 

and variety of systems increase.  Therefore, if it is possible to reduce the number physical 

computers and still meet well-defined performance requirements, environmentally 

friendly cost savings can be realized. 

Virtualization is a technique that abstracts away the hardware from the operating 

system so that multiple operating systems can share a single physical system at the same 

time.  This is a way to save resources.  For instance, an organization can install multiple 

servers in a single physical host.  When each of these virtual machines has different peak 

usage times, they can share the available resources without interfering each other. 

[12.][13.]  However, this approach has not been considered a viable option due to virtual 

machine overhead and degradation of application speed within the virtual machine.  

Thus, system designers have been ignoring the advantages of virtual machines simply 

because early virtual machine implementations were often the source of performance 

bottlenecks. 
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Processors with high computation power, such as multi-core processors and 

simultaneous multithreaded processors are becoming more desirable due to the fact that 

they have properties similar to symmetric multiprocessors.  The main advantage of 

symmetric multiprocessors is that they can achieve parallel processing more efficiently 

than regular high frequency processors where thread switching is avoided. Through the 

use of simultaneous multithreading and multi-core processors, the improvements in 

performance of virtualization have been shown to be statistically significant.  

1.2  Simultaneous multithreading (SMT) 
Simultaneous multithreading is the ability of the microprocessor to fetch instructions 

from multiple threads per cycle.  Simultaneous multithreading combines hardware 

features seen in two other types of processors: wide-issue superscalars and multithreaded 

processors.  From superscalars it inherits the ability to issue multiple instructions each 

cycle; and similar to multithreaded processors it can execute several programs or threads 

at once.  The result is a processor that can issue multiple instructions from multiple 

threads each cycle.  [1.][2.][3.][4.]   The SMT approach attacks the two major 

impediments to processor utilization – long latencies and limited per-thread parallelism.    

SMT processors have a larger register file, and thus it has the capacity to hold data for 

multiple threads.  There can be 4, or even 8, concurrent threads.  These multiple threads 

can execute different instructions in the same clock cycle.  Out-of-order executions are 

supported in SMT processors which allows for additional performance improvement. 

 There are several architectural requirements to achieve SMT.  First, multiple 

program counters are needed and a mechanism by which the fetch unit selects one 

counter each cycle; second, a separate return stack for each thread for predicting 
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subroutine return destinations; third, per thread instruction retirement, instruction queue 

flush, and trap mechanisms; forth; a thread id, each with branch target buffer entry to 

avoid predicting phantom branches; and fifth, a large register file, to support logical 

registers for all the threads in addition to register renaming. 

The extra threads supported by SMT processors can be used to proactively seed a 

shared resource like cache, to improve the performance of another single thread.  One of 

the other uses of SMT is to provide redundant computation, for error detection and 

recovery. 

Companies give different names to SMT processors.   Intel calls the SMT feature 

Hyper-Threading and is included in the Pentium 4 processor family.  IBM uses the term 

Simultaneous Multithreading, which is essentially the same as Intel’s “Hyper-

Threading”.  Further details of the processors will be discussed in section 1.3. 

Figures 1 and 2 are illustrations of the corresponding issue slots for different 

processor types.  Each color (red, yellow, blue and green) represents a different thread.  

The follow sections 1.2.1-1.2.3 compare the issue slots in various processors.  [3.] 

1.2.1 Comparison of SMT and fine-grained multi-threading (MT) 
Fine-grained multithreading occurs by time slicing, wherein a single processor 

switches between different threads, in which case the processing is not literally 

simultaneous.  It is actually a single processor executing instruction serially.  However, 

simultaneous multithreading is literally a processor executing all the threads at the same 

time.  
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Figure 1. Comparison of multi-threading and SMT 

In the Figure 1, each color represents a thread.  The illustration on the left shows 

fine-grained multi-threading (MT), and on the illustration on the right depicts SMT.  In 

MT, each issue slot is occupied by one thread and there are redundant resources since the 

pipeline is not full.  In SMT, each issue slot can have multiple threads. 

1.2.2 Comparison of SMT and Chip Multiprocessing (CMP) 
Chip multiprocessing occurs on a multi-core processor.  Much of the instruction 

execution logic is shared between the two cores, but each core has its own register set, 

including any related addressing.  This helps keep the processing pipelines full. 

 

Figure 2. Comparison of chip multiprocessing and SMT 

Figure 2 illustrates the comparison between chip multiprocessing and SMT.  Even 

though chip level multi-processors have a similar property of running multiple threads 
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simultaneously, the diagram on left shows that the issue slots are sliced in two and each 

sub-pipeline is not fully utilized.  The diagram on the right shows that SMT is fully 

utilizing the pipeline resources.  

1.2.3 Comparison of SMT and Symmetric Multiprocessing (SMP) 
Symmetric multiprocessing is independent physical processors connected via the 

processor design interface for inter-processor communication.  Thus, the operating 

system will schedule the processes to run on multiple physical processors. Since most 

programs are designed for single processors, symmetric multiprocessors do not provide 

performance gains to such programs.  However, SMP is good for programs designed with 

parallel execution in mind, especially embarrassingly parallel programs.   

 

Figure 3. SMT architecture 

Figure 3 shows the flow of threads in SMT architecture, where a thread is received 

from an individual process counter and is mixed into the rest of the stages, which include 

register read, execute, store buffer, register write and retire stage.  [4.] shows an 8-wide 

superscalar RISC microprocessor with simultaneous multi-threading. 
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1.3 CPU examples 

1.3.1 Intel Hyper-Threading 
Intel's Hyper-Threading Technology enables two logical processors on a single 

physical processor by replicating, partitioning, and sharing the resources within the Intel 

NetBurst micro architecture pipeline.   

Internally, the processor replicates the resources to create copies of each resource for 

the two threads.  These resources include, all per-CPU architectural states, instruction 

pointers, renaming logic and also smaller resources, such as return stack predictor, ITLB, 

etc.  Partitions divide the resources between the executing threads, such as the Re-Order 

Buffer, Load/Store Buffers and queues, etc.  However, execution threads continue to 

share some CPU resources within the CPU such as the Out-of-Order execution engine 

and Caches. 

Typically, each physical processor has a single architectural state on a single 

processor core to service threads. With Hyper-Threading/SMT, each physical processor 

has two architectural states on a single core, making the physical processor appear as two 

logical processors to service threads. The system BIOS enumerates each architectural 

state on the physical processor. Since Hyper-Threading-aware operating systems take 

advantage of logical processors, those operating systems have twice as many resources to 

service threads.  

1.3.2 IBM Power 5 SMT 
IBM’s latest Power 5 ensures smooth operation of SMT.  The register-renaming 

resources and associativities of instruction cache and data cache are increased.  The 

branch information queue is split.  The load recorder queue is split and store recorder 
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queue is split.  There is out-of-order execution; however, it is more difficult to switch 

threads on a cache miss because at the time of the miss some earlier instructions may not 

have been performed while some later instructions may already have been completed.  

The problem becomes where and how to stop one thread, leaving the thread and its 

resources in a state that will allow it to be restarted after the switch is made to the other 

thread.  Because there is no thread-switch overhead, SMT can hide even short-duration 

stalls in the execution pipeline.  If, due to pipeline latency, an instruction from one thread 

is delayed waiting for a result, or if, because of the misprediction of a branch, a portion of 

a thread’s instructions have been flushed from the execution pipeline, instruction from 

the other thread can continue to be executed.  [5.][7.][10.] 

1.4 Virtualization 
Virtualization is the process of presenting a logical grouping or subset of computing 

resources so that they can be accessed in ways that give benefits over the original 

configuration.  For example, the abstracting of computing hardware resources to provide 

enhanced utility of the physical system is a goal of virtualization. 

There are several advantages to using virtualization.  First, lower hardware and 

management costs can be recognized, since the physical quantity of hardware required is 

reduced, the costs associated with maintaining the hardware diminished.  Second, 

virtualization is a good way to sandbox an application’s use of physical resources.  Third, 

legacy systems can be preserved on virtual machine operating systems and in a fully 

operational state.  Forth, the virtualization engine is capable of presenting new hardware 

to the virtual operating system even when the hardware is not physically present.  Fifth, 

there can be known-good, hot-standby virtual machines of different operating systems.  
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Sixth, virtualization can provide a powerful platform for debugging, monitoring and 

testing due to the ease with which one can switch operating systems to meet their needs.  

Seventh, virtualization enables easier system migration, backup and recovery.  Eighth, 

there can be co-located hosting on the same physical hardware. 

The virtualization tools introduced in this study are VMware and Hypervisior.   

VMware is a product of EMC Corporation and Hypervisior is a product of IBM 

Corporation. 

1.4.1 Introduction to VMware 
VMware software runs on Windows and on Linux, and will soon debut on Mac 

OSX.  VMware offers several virtualization products.  VMware workstation consists of a 

virtual machine suite for the Intel x86 architecture, and can be used for setting up 

multiple x86 computers on top of a single host operating system. VMware server can 

create, edit, and run virtual machines.  It uses a client-server model, allowing remote 

access to virtual machines.  ESX Server 3.x (RHEL3) has a service console and acts as a 

boot-loader for the vmkernel and provides its own management interfaces, such as a 

command line interface, webpage multi-user interface and a remote console.  It has low 

overhead and better control and granularity for allocating resources, such as CPU time, 

disk bandwidth, network bandwidth, and memory utilization to the virtual machines. 

[26.] 



 

 
 

9 

 
Figure 4. ESX server structure diagram 

VMware uses the CPU to run code directly whenever possible.  For example running 

user mode and virtual 8086 mode code on an x86 processor will be executed directly on 

the physical hardware.  When direct execution cannot operate, VMware software re-

writes code dynamically.  This occurs at the VMware kernel level and with real mode 

code.  VMware puts the translated code into a spare area of memory, typically at the end 

of the address space, which it can then protect and make invisible using segmentation 

mechanisms. 

1.4.2 VMware with Simultaneous Multi-processors 
Over committing physical CPUs is a common and accepted practice when running 

multiple virtual servers.  The advantage of over-committing is to slice the application’s 

performance into smaller pieces, therefore providing good performance-on-demand.  This 

is also a common practice for application service providers and other hosted 

environments. 
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1.4.3 Introduction to Hypervisor 
Para-virtualization is a virtualization technique that presents a software interface to 

virtual machines that is similar but not identical to that of the underlying hardware. This 

requires operating systems to be explicitly ported to run on top of the virtual machine 

monitor (VMM). [8.][9.]  

There are several benefits to para-virtualization.  First, start time is reduced.  The 

“virtual reboot” avoids the latencies of hardware re-initialization by the BIOS. Also, a 

pre-booted and frozen virtual machine image can be shipped to all nodes in a cluster. In 

other words, changing virtual machines is fast. 

1.4.4 Cost of Virtualization versus Performance Benefits 
New processors are providing features to improve performance of virtualization.  

Each operating system in each virtual machine can be tuned solely for the hosted 

application. [30.]  

1.5 Main Contribution of this Thesis 
The research conducted leads to the following contributions:  

First, to understand virtualization and simultaneous multithreading, I have 

generalized and introduced both technologies and investigated several existing products 

and solutions, such as VMware, IBM’s Hypervisor,  Intel’s Hyper-threading and the 

technology that makes SMT different from SMP and multi-core processors. 

Second, this research demonstrates a viable method to design, setup and benchmark 

virtualization and SMT, in spite of the increased the complexity and difficulty in 

formulating a proper comparison.  In addition, this study demonstrates how different 
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levels of load interact with system settings and how important such settings are to achieve 

maximum efficiency.  

Third, this paper examined several different methods of modeling virtualization and 

modeling SMT.  Further, the models this study established and verified can be used for 

comparing various configurations and also for load balancing between the virtual 

machines. 
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2 Experimental Setup  

2.1 Introduction 
This section describes the current experiment details and methodology.  In order to 

test the SMT processor with a virtualization layer, there are several experiments needed.  

For instance, we need to compare and define the number of threads used in the 

benchmarking applications, the maximum performance of an application’s throughput 

and establish a baseline case of system settings.  The reasoning behind the selection of 

these methods is also discussed. 

2.2 Problem Formulation and system description  
There are several cases we needed to consider. The first case is the basic fast-

switching multiple-thread single CPU core with the application whose performance is 

being analyzed running.  The second case is layered on top of the first case, where one 

virtual machine is running on top of one CPU with the same application running.   In 

contrast to the single CPU cases are the SMT CPU cases where same application is 

running with and without the virtual machine. 

2.2.1 Introduction to the Processor being used 
The processor used in the experiment is the Intel LV (low voltage) Xeon processor 

from the Intel Gallatin processor family.  It is based on the Intel® NetBurst™ micro-

architecture. [24.][25.] 

The Intel Xeon processor includes 512KB (L2) cache and includes the following 

advanced micro-architecture features: Hyper Threading, Hyper Pipelined Technology 

(Jackson Technology) Rapid Execution Engine, Advanced Dynamic Execution, Trace 

Cache, Streaming SIMD (Single Instruction, Multiple Data ) Extensions 2, Advanced 
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Transfer Cache, Enhanced Floating Point and Multimedia Engine.  The Xeon processor 

uses a source-synchronous transfer of address and data to improve performance and 

enables addressing at 2x the system bus frequency and data transfer at 4x the system bus 

frequency. The 400 or 533 MHz system bus is a quad-pumped bus running off a 100 or 

133 MHz bus clock, making 3.2 GB/sec or 4.3GB/sec data transfer rates possible. The 

LV Xeon processor is based on 0.13-micron process technology. The processor contains 

12 kmOps instruction cache, 8 kbyte data cache as L1 cache (Harvard architecture) and a 

512KB L2 cache. 4 Mbyte L3 cache is provided. The LV Xeon processor is similar to the 

full power Xeon processor but runs at a reduced voltage and power level.  The clock 

speed of the processor is 3.4 GHz. 

When a thread is scheduled and dispatched to a logical processor, LP0, the Hyper-

Threading technology utilizes the necessary processor resources to execute the thread.  

When a second thread is scheduled and dispatched on the second logical processor, LP1, 

resources are replicated, divided, or shared as necessary in order to execute the second 

thread. Each processor makes selections at points in the pipeline to control and process 

the threads. As each thread finishes, the operating system idles the unused processor, 

freeing resources for the running logical processor.  

2.2.2 Introduction to the Operation System being used 
Not all operating systems support hyper-threading.  Older, previous-generation 

operating systems, such as SCO UnixWare SVR5 do not recognize processors as hyper-

threaded and will only utilize the processor as one single unit.  For the 2.4 Linux kernel, 

the operating system schedules and dispatches threads to each logical processor, just as it 

would in a dual-processor or multi-processor system. As the system schedules and 
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introduces threads into the pipeline, resources are utilized as necessary to process two 

threads. 

To test the problem statement, I used the Red Hat Enterprise Linux 4, kernel 2.6.9-

42.ELsmp.  This operating system has the following advantages [18.][17.][33.]: 

• Native Posix Threading Library (NPTL): This Linux 2.6 kernel feature, 

originally designed and implemented by Red Hat, provides excellent 

performance for multi-threaded applications (for example, Java applications). 

It enables multi-threaded applications that previously required the 

performance offered by proprietary Unix systems to be successfully deployed 

on Red Hat Enterprise Linux. The implementation provides full POSIX 

compliance, support for Thread Local Storage and Futex-based 

synchronization. 

• Asynchronous I/O support allows processes to continue running after issuing 

a disk read/write I/O.  Previously, processes were required to wait for their 

disk I/O requests to complete before they could continue processing. The 

feature is particularly useful for processes that issue multiple writes in rapid 

succession, such as database processes.  However, asynchronous I/O can be 

very useful for any multi-user application. 

• The O(1) scheduler in the 2.6 Linux kernel provides greatly increased 

scheduling scalability. This increase has been achieved by a full redesign of 

the scheduler algorithm in the 2.4 kernel so that the time taken to choose a 

process for placing into execution is constant, regardless of the number of 

processes. The new scheduler scales very well, regardless of process count or 
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processor count, and imposes a low overhead on the system. The algorithm 

uses two process priority arrays; active and expired.  Processes are being 

scheduled based on their priority and prior blocking rate.  When a processes’ 

time-slice expires, the time-slice is placed on the expired array. When all 

processes in the active array have expired their time-slice, the two arrays are 

switched, restarting the algorithm. For general interactive processes (as 

opposed to real-time processes) this results in high-priority processes, which 

typically have long time-slices, getting more compute time than low-priority 

processes.  However, it does not get to the point where high-priority 

processes can starve the low-priority processes. 

 

Figure 5. The O(1) scheduler 

• This scheduler support for hyper-threaded CPUs was developed by Red Hat. 

Hyper-threading support ensures that the scheduler can distinguish between 

physical CPUs and logical (hyper-threaded) CPUs. As shown in Figure.7, the 
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scheduler compute queues are implemented for each physical CPU, rather 

than each logical CPU, as was the case previously.  This results in processes 

being evenly spread across physical CPUs, thereby maximizing utilization of 

resources, such as CPU caches and instruction buffers. 

 

Figure 6. Scheduler also supports hyper-threading 

2.2.3 Introduction to the virtual machine being used 
The virtual machine used in the experiment is VMware workstation 5.5.  

[21.][22.][23.] VMware workstation works by creating fully isolated, secure virtual 

machines that encapsulate an operating system and its applications.  The VMware 

virtualization layer maps the physical hardware resources to the virtual machine’s 

resources, so each virtual machine has its own CPU, memory, disks, and I/O devices, and 

is the full equivalent of a standard x86 computer.   

VMware 5.5 also supports 32-bit and 64-bit host and guest operating systems 

running on multiprocessor host machines.  Further, it provides experimental support for 

two-way Virtual SMP. This includes any SMP hardware, including dual-core systems 
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and hyper-threaded uniprocessor systems.  The number of processors can be configured 

in the VMware application settings.  Two virtual processors can be assigned in both 32-

bit and 64-bit guests.  

2.2.4 Introduction to the Load and Benchmark 
 

Load 1: 

Oracle database server is installed on the host computer and used for benchmarking.  

The Oracle application also runs on the host computer and calls the server with multiple 

queries. 

The application being used is Swingbench.  The software enables a load to be 

generated and the transactions, or response times to be recorded and charted.  While it is 

primarily used to demonstrate Real Application Clusters it can also be used to 

demonstrate functionality such as online table rebuilds, standby databases, online backup 

and recovery etc. 

The benchmark run on Swingbench is OrderEntry.  OrderEntry is based on the "oe" 

schema that ships with Oracle9i/Oracle10g and can be run continuously.  It introduces 

heavy contention on a small number of tables and is designed to stress interconnects and 

memory. 

2.2.5 Rationality behind the choice of benchmark and load 
Why use ‘New customer registration’? 

 Swingbench, the load generator, is used to stress the database.  The application has a 

java-based GUI.  While running, this application will spawn threads as individual clients.  

There are five benchmarks to be chosen, new customer registration, browse products, 
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order products, process products and browse orders.  New customer registration will be 

used as the standard of the benchmark.  This process will include running of the java 

application with multiple threads and multiple Oracle connections, and each of them will 

connect to each client and data will be inserted into the database with commits. As the 

Oracle instance writes to the database, we can monitor the disk I/O and the impact with 

hyper-threading (HT) and virtualization.  Figure 7. displays the Swingbench GUI used to 

generate load. 

 

Figure 7. Swing Bench  

 

Why use Oracle?  
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Oracle database architecture is well established and performance orientated.  The 

Oracle instance can be considered as two major parts, first, the physical processes 

(threads), second, the memory structure.  [36.][11.] 

 

Figure 8. Oracle Architecture Overview 

Figure 8, the Oracle memory architecture is briefly illustrated as the following, 

• System global area (SGA). This is a large chunk of memory that maintains 

many internal data structures that all processes need to access.  It caches data 

from the hard disk; buffer data before writing it to the hard disk and holding 

parsed SQL, etc. 

• Process global area (PGA).  This is process-specific memory, allocated via C 

runtime, eg, malloc or memmap.  It grows or shrinks at runtime. 
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• User global area (UGA), the memory that each session can access.  If 

dedicated server, UGA is synonymous with PGA.  Otherwise, if share server 

process, UGA must be started in a memory structure that every shared 

process has access to (synonymous with SGA). 

The Oracle physical process operation is illustrated as follows: 

The Oracle server processes perform work on behalf of a client session.  We use a 

dedicated server for these tests so that there is one-on-one mapping between client 

connection and server process (thread).  

Background processes perform mundane maintenance tasks needed to keep the 

database running, such as maintaining block buffer cache, writing blocks out to data files 

as needed, or monitoring archive log files.  Another advantage of using Oracle is the ease 

of use of Oracle web console, which gives a convenient interface for performance 

monitoring. This topic will be discussed in the Chapter 3. 
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Figure 9. Illustration of test system setting 

2.2.6 Baseline: base operating system without virtual machine without SMT 
The baseline test is used as the metric for comparison.  Figure 9 (circle in Red) 

demonstrates the setting which consists of the base operating system and the physical 

layer.  The system setting for the baseline test is a Linux machine running on  

• 1 physical CPU 

• 1 hyper thread (HT) of the 2 HT of 1 physical CPU  
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• SMT mode of the base operating system is disabled 

• 1 GB of RAM 

• OS version: RHEL4 

• Oracle server and Swingbench test tool 

The GRUB configuration is as the following: 

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet mem=1G maxcpus=1 noht 
        initrd /initrd-2.6.9-42.ELsmp.img  

2.2.7 Base operating system without virtual machine with SMT 
Figure 9 (circle in Orange) demonstrates the setting which consists of the base 

operating system and the physical layer.  The system setting is the following 

• 1 physical CPU 

• 2 HT of 1 physical CPU  

• SMT mode of the base operating system is enabled 

• 1 GB of RAM 

• OS version: RHEL4 

• Oracle server and Swingbench test tool 

The following GRUB configuration is used, 

title RHEL AS4 1GB HT (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet mem=1G maxcpus=2 
        initrd /initrd-2.6.9-42.ELsmp.img 
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2.2.8 One virtual machine on base operating system without SMT 
All physical CPUs are used on the base operating system, each physical CPU has 

SMT mode enabled.  One virtual machine installed.  Even though the base operating 

system is operating at full capacity, the virtual server is set to run with 1 logical thread.  

To do this, VMware will see 2 virtual CPUs (2 hyper thread = 1 physical CPU), but only 

one will be selected for use in the virtual operating system via GRUB.   

• 2 physical CPUs 

• SMT on Base OS is enabled and running on all 4 HTs (2 physical CPUs) 

• 2 GB RAM is used on the base OS 

• VMware ports 1 physical CPU to the client OS 

• Client OS sees 2 HT of 1 physical CPU and uses 1 HT  

• 1 G of RAM is allocated to the client OS 

• OS version: RHEL4 on both host and client OSs 

• Oracle server and Swingbench test tool is running on client OS 

• Oracle server and Swingbench test tool is not running on base OS 

The following GRUB setting is for the base OS,  

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet 
        initrd /initrd-2.6.9-42.ELsmp.img 

The following GRUB setting is for the client OS, 

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet mem=1G maxcpus=1  
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        initrd /initrd-2.6.9-42.ELsmp.img 

2.2.9 One virtual machine on base operating system with SMT 
One virtual machine is running with 2 virtual CPUs.  In this virtual machine 

operating system, the same Oracle server is installed and runs with the same benchmarks.  

In this test, the virtual machine will be able to run on all the CPUs it sees.   

• 2 physical CPUs 

• SMT on Base OS is on and running on all 4 HTs (2 physical CPUs) 

• 2 GB RAM is used on the base OS 

• VMware ports 1 physical CPU to the client OS 

• Client OS sees 2 HT of 1 physical CPU and uses 2 HT  

• 1 GB of RAM is allocated to the client OS 

• OS version: RHEL4 on both host and client OSs 

• Oracle server and Swingbench test tool is running on client OS 

• Oracle server and Swingbench test tool is not running on base OS 

The following GRUB setting is for the base OS,  

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet 
        initrd /initrd-2.6.9-42.ELsmp.img 

The following GRUB setting is for the client OS, 

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet mem=1G maxcpus=2  
initrd /initrd-2.6.9-42.ELsmp.img 
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2.3 System Setup Procedure 
The chapter describes the setup procedure for all the tests. 

2.3.1 Setup Oracle and Swingbench 
First, given the test machine, see 2.1 for CPU/system information.  On the base 

machine, install the operating system, install Oracle 10g, and database administration  

group accounts, install j2sdk, install VMware-workstation RPM and set the 

recommended Oracle 10G kernel parameters.  The Oracle and Swingbench parameter 

will be the same for all the test cases: 

 fs.file-max = 65536 
 kernel.shmmax = 2147483648 
 kernel.sem = 250     32000   100     128  
 net.ipv4.ip_local_port_range = 1024 65000 
 net.core.rmem_default = 262144 
 net.core.rmem_max = 262144 
 net.core.wmem_default = 262144 
 net.core.wmem_max = 262144 

For instance, adding RPMs for Oracle DB (gcc-3.4.6-3.i386, glibc-devel-2.3.4-

2.25.i386.rpm,glibc-headers-2.3.4-2.25.i386.rpm,glibc-kernheaders-

2.4.9.1.98.EL.i386.rpm) 

Add more swap space per minimum Oracle recommendation: 

 dd if=/dev/zero of=/swapfile bs=1024 count=1572864 
 ls -al /swapfile 
 mkswap /swapfile 
 swapon /swapfile 
 free 

Extract OracleDB-10G release 2, put Oracle environment variable in place, start 

listener and then start Oracle. Setup Swingbench environment variable to install 

Swingbench Order Entry by using oewizard.  Java virtual machine will be allocated with 

250MB of memory.  
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2.3.2 Tuning SMT 
First, with the current chipset, SMT can be turned off or on without the presence of  

the operating system, by setting the Advance BIOS setting: Hyper-thread enabled.  

Depending on the version of kernel, there maybe other parameters needed to be set in the 

BIOS.  For example, kernel 2.4 requires ACPI to be enabled in the BIOS in order to use 

the logical CPUs.  After hyper-threading is turned on, the base OS will be able to see 4 

logical CPUs. 

Each physical CPU has 2 hyper-threads.  If the base OS has all 4 logical CPUs 

running, VMware will be able to use 1 physical CPU, or 2 hyper-threads.  This is due to 

the fact that VMware workstation can use only 1 physical CPU.  This is a limitation of 

the version of VMware selected.  However, all test case configurations fit within these 

limitations of VMware workstation. 

The base OS has 3 settings according to test cases in section 2.2.  Setting 0 is used 

for test cases 3 and 4 where the client OS is running and there is no limitation on number 

of CPUs and memory allocated.  Setting 2 is used for base case, where kernel parameter 

“noht” is used to ensure hyper-threading is disabled.  Setting 1 is used for case 2, 

“maxcpu=2” means 2 logical CPUs are used.  The following is the GRUB file:  

### 0 ### Original SMP 
title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet 
        initrd /initrd-2.6.9-42.ELsmp.img 
 
### 1 ### 1GB RAM w/ 1 cpu w/ HT 
title RHEL AS4 1GB HT (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet mem=1G maxcpus=2 
        initrd /initrd-2.6.9-42.ELsmp.img 
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### 2 ### 1GB RAM w/ 1 cpu w/o HT 
title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp) 
        root (hd0,0) 
        kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00 
rhgb quiet mem=1G maxcpus=1 noht 
        initrd /initrd-2.6.9-42.ELsmp.img  

To ensure the correct setting, the number of CPUs in use can be seen in 

/proc/cpuinfo.  There should be 4 identical CPUs (processor 0 to 3) shown as the 

following: 

processor       : 0 
vendor_id       : GenuineIntel 
cpu family      : 15 
model           : 2 
model name      : Intel(R) Xeon(TM) CPU 2.00GHz 
stepping        : 9 
cpu MHz         : 1996.852 
cache size      : 512 KB 
physical id     : 0 
siblings        : 2 
core id         : 0 
cpu cores       : 1 
fdiv_bug        : no 
hlt_bug         : no 
f00f_bug        : no 
coma_bug        : no 
fpu             : yes 
fpu_exception   : yes 
cpuid level     : 2 
wp              : yes 
flags           : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca 
cmov pat                                                                               
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe cid xtpr 
bogomips        : 3996.67 
 
 

2.4 Conclusions 
In this chapter, I have discussed the system setup and the experimental design to 

provide a clear picture of the operating system configuration with and without VMware 

and with and without SMT.  The setup provides a clear apples-to-apples comparison [34.].  

When doing performance comparisons it is important to make sure that the configuration 

of the systems being compared are as similar as possible.  While comparing the 

performance of client versus host machine, each test case should use the same setup and 
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the impact of host operating system should be kept to a minimum.  For instance, when the 

virtual machine is configured to use of 1GB of memory and 1 HT, these limits should be 

only seen on the virtual machine.  On the host machine, the base operating system must 

contain more than 1GB of memory and 1 HT.  In this way, we ensure that the base OS 

has its own resources to run the virtual machine with enough spare capacity to cover the 

overhead of running the virtual machine without influencing the virtual machine’s 

performance. 
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3 Performance Metric and Selection 

This chapter analyzes the results collected and developed from the system 

performance model for virtualization with simultaneous multithreading.  

3.1 Results collected 
This section illustrates which data is used and the data’s corresponding weight, or 

importance.  

 
Figure 10.  Oracle System Monitor-top 
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Figure 11.  Oracle Monitoring—top modules 

 
 

Figure 12. Oracle Console Data Collection 

Figures 10 through 12 show that the Oracle console collects data for Oracle 

performance and the SQL query information.  The SQL trace file contains the number of 

SQL statements executed and the corresponding statistics.  It is a good Oracle tracing tool 
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to discover abnormal SQL statements which take up large amount system resources and 

result in an abnormal statistical distribution.   

From the data collected, including those from vmstat, top and the Oracle console, 

several obvious patterns emerge as parameter changes are tested.  The parameters that 

were changed include enabling and disabling SMT mode and using or not using VMware.  

Results for the wait time, as expected, changed when SMT was turned off. Wait time 

includes in memory undo latch, cache buffer chains and library cache pin.  

          The tools used and metrics collected included the following:  

• vmstat, for cpu usage as seen in the current operating system. 

• topstat, to see the top cpu consuming processes 

• awr report (auto workload repository), from Oracle, to see the Oracle 

performance, and throughput (Oracle transactions per second) 

• Transactions per minute, same as seen in the Swingbench GUI. (This 

transaction is different from an Oracle transaction in which each transaction 

is a complete process consisting of multiple Oracle transactions) 

• Swingbench log file (result.xml), mainly for response time distribution. 
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Table I. Top monitoring sessions and host machine monitoring session 
Example results as mean of samples data points:  

 Insert new customer 

 

VMware 
percentage(  
Show in 
Top of 
Base 
operating 
system) 

VMware 
memory 

VMware 
cpu 
used(%) 

Base 
operating 
system  
cpu used 
(%)  

Oracle 
transaction 
per second 

Swingbench 
transaction 
per minute 

No SMT 
no VM 
(baseline) None None None 85 241 7340 
w SMT no 
VM None None None 64 334 10120 
VM  
no SMT 89 35 76 22 190 5895 
VM SMT 162 54 76 32 254 7620 

 
Number of 
clients 

response 
time(ms) 

Min 
response 
time(ms) 

max 
response 
time(ms)   
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No SMT 
no VM 60 199 5 9745   
w SMT 
no VM 60 55 4 3077   
VM  
NO SMT 60 303 6 6361   
VM SMT 60 156 4 5583   

Table II.  Sample result for database “insert” benchmark 
 

Test Case 1 1 1 2 2 2 
Threads 20 40 60 20 40 60 
       
Ave 
Response 9 91 199 6 59 55 
Min 
Response 4 4 5 4 4 4 
Max 
Response 2461 1534 9745 860 450 3077 
awrr 
Transactions 139.63 208.54 241 156 278 334 
FreeMemAvg 279267 15987.1 19138 21940.3 65611.1 17626.3 

% Free Mem 0.000279 1.6E-05 1.91E-05 2.19E-05 
6.56E-

05 1.76E-05 
CacheAvg 591555 756614 505325 807908 728615 649602 
       
IObi 74.3267 1.20667 207.917 1.51333 27.88 151.412 
IObo 480.153 429.553 674.167 627.513 993.313 897.766 
CPUIdleAvg 63.52 45.08 15.5667 80.7333 58.92 42.2092 
CPUUsedAvg 36.48 54.92 84.4333 19.2667 41.08 57.7908 
CPU 
Used/Trans 0.261262 0.263355 0.350346 0.123504 0.14777 0.173026 

 

Test Case 3 3 3 4 4 4 
Threads 20 40 60 20 40 60 
       
Ave 
Response 34 187 303 29 82 156 
Min 
Response 6 6 6 1 5 4 
Max 
Response 2729 3077 6361 1663 4801 5583 
awrr 
Transactions 117.84 158 190 120.16 202.82 254 
FreeMemAvg 308967 50804.1 17170.3 105088 129204 15901.5 
% Free Mem 0.00030897 5.08E-05 1.72E-05 0.000105 0.000129 1.59E-05 
CacheAvg 552590 758786 493096 758350 657485 6.71E+05 
       
IObi 63.0067 1.94 32.125 1.18 42.6611 9.29 
IObo 337.74 309.84 337.489 433.12 511.317 572.543 
CPUIdleAvg 47.54 35.4533 24.8306 57.3267 37.1056 22.6533 
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CPUUsedAvg 52.46 64.5467 75.1694 42.6733 62.8944 77.3467 
CPU 
Used/Trans 0.4451799 0.408523 0.395628 0.355137 0.3101 0.304515 
Host View:       
FreeMemAvg 1.69E+05 317490 324913 53203.4 16353.4 16925.6 
CacheAvg 1.76E+06 1.54E+06 1.57E+06 1.78E+06 1.86E+06 1.81E+06 
IObi 57.74 77.5389 59.6322 0.78 1.65333 3.32993 
IObo 533.567 759.933 425.753 721.653 393.587 777.17 
CPUIdleAvg 85.2467 65.6889 79.4368 75.2933 82.2133 59.7619 

 
Table III.  Details of all results collected 

                                      Test Case Representation and Line Color 
 Without SMT With SMT  

     Without VM 
1 2 

 With VM 

 
3 

 
4 

 
Data Collected 
Data Collected and used for calculation in 3.2 
Data Collected in the host OS and is not supposed to be used for comparison 
 
Table IV. Legend for Table II,III and Color Scheme Used in the Graphs 

The data points collected are parsed result from each test.  The duration of each test 

is between one half to one hour.  Result collection started after the load was stabilized, 

approximately fifteen minutes after the test was started.  Sampling time interval is 10 

seconds and for 1 hour in duration.  Thus, there was 360 data points, or samples.  The 

mean of the samples was used.  Thus, all data in Table 2 is the mean of the all the data 

points collected. 

3.2 Problem Formulation 

3.2.1 Introduction to problem formulation 
From Table 1 sample results collected, we can simply derive the following, 

Impact on throughput for the disk I/O benchmark, insert new customer to the 

database:  

The SMT factor is about 1.35, which is 35% increase of throughput 
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The above data show consistency.  For instance, with SMT there is a general 

increase of performance of 30% in database process, even with the virtual machine 

abstraction.  It is consistent with our expectation and with result from other 

benchmarking done with SMT [6.][35.].  

The virtualization factor is about 0.75, which is 25% degradation of throughput 
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The performance degradation of VMware (- 25%) shows consistency.  Virtualization 

with SMT shows a decrease in performance when compared with the base operating 

system with SMT enabled.  The same is true for virtualization without SMT; it is not only 

less but the percentage decreases is identical to the previous case, when comparing the 

results with the base operating system without SMT. 

Thus, we can generally agree they are independent factors, such that SMT did not 

change the behavior of Virtual machine degradation and vice versa. 

3.2.2 Simple Result Analysis 
This section, we focus on the comparison of different values using graphic 

representation.  
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3.2.2.1 CPU time used per transaction 
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Figure 13. CPU time per each Transaction 

The CPU time per each transaction is compared between the four cases, we can 

interpret the relationship between them as the following: cases without VM, the more the 

number of threads and the more expensive the average CPU time spent on each 

transactions.  This is seen as line 1 and 2 are going upwards, and line 3 and 4 are 

decreasing with response to number of threads.  The effect of SMT is obvious as line 2 

and line 4 are always lower than line 3 and line 1.   Notice the interception of line 4 and 

line 1 indicates that more the number the threads, the more efficient with VM with SMT 

such that VM with SMT out perform the original case.  This also implies more utilized 

the system, the more efficient it is. 
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3.2.2.2 Response Time 
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Figure 14. Average Response Time 

The response time distribution shows no abnormally.  In the graph trend lines are 

also applied to see the function trend of each case.  Case 1,2 and 3 are all close to linear 

except case2 (SMT on original machine).  The reason might due to the response time is 

close to minimal all the time.   As expected cases with SMT (2,4) always have lower 

response time than their counterparts.  Interesting, similar to CPU time used per 

transaction response time is better with when high number of threads are used.  Case 4 

(SMT with VM), the VM impact (longer response time) was bigger with smaller number 

of threads, however, with larger number of threads the advantage of SMT is shown as 

response of case 4 is lower than case 1.   
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3.2.2.3 Throughput 
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Figure 15. Throughput (Oracle Transactions Per Second) 

 Graph of transactions per second shows the actual work the process has done.  

The number of transactions increases with the number of threads.  From 20 to 40 thread, 

all cases have steeper slope than from 40 to 60 which shows, the increase in throughput is 

faster at lower number of threads and higher number of threads tend to saturated the 

throughput increase rates.  From 40 to 60 threads, case 2 and 4 (with SMT) have same 

slope and case 1 and 3 (with out SMT) have the same slope.  Cases with SMT show a 

better increase in throughput with large number of threads.  Also, this shows the 

difference between VM stay constant (the height difference between the lines).  With the 

impact of VM, case 3 and 4 has lesser throughput than case 1 and 2.  Start with low 

number of threads, the transactions are close with all cases. However, at 60 threads, we 

see that even VM decrease the throughput, positive impact of SMT let throughput per 

threads increase and over throughput of Case4 (with SMT with VM) outperform Case1 

(original case with out SMT without VM.  More important, due to the steeper slope of 
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SMT case, the more the number thread tend large the difference of throughput with their 

counterparts.   Notice, we see the pattern of case2, 4, 1, 3 (ordering from best to worse) at 

high number of threads as we seen in the previous two graphs.    

3.2.2.4 Memory 
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Figure 16. Memory Free in % 

 The memory usage of the machine shows a better statistic with less number of 

threads.  With 20 threads, there are more obvious difference between the cases, with 60 

threads, there are more memory consumed that all cases merge to high memory usage 

that we cannot get much out from that situation.  From observation of 20 thread cases, we 

see the order 3,1,4,2 (best to worst), interesting, this is exactly the reverse as previous 

cases as we saw case 2,4,1,3 (best to worst).  This might implies that the more the system 

is utilized, the better the efficiency we can get out from it.  Let us look further at 40 and 

60 threads cases.  There are drastic changes in the memory used.  Cases with VM (case 

4,2) shows low memory usage increase (even decrease at 40 threads); while, cases 

without VM has severe increase in memory used and more than their no VM 

counterparts.  At higher number of threads, we see the order as 4,2,3,1( best to worst) 
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Therefore, we again see the high the usage the better result we can get from virtualization 

with SMT.   

3.2.2.5 Input and output 
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Figure 17. IO Statistics 

 IO statistics is the bottleneck of VM, we can see from the first IO statistic graph 

that cases without VM are better performed than cases with VM.  The advantage of HT is 

limited that case 4 with VM with HT is worse than original case.  When comparing IO 

per second, 40 threads cases do not perform as good as 20 and 60 thread cases which they 

are close in performance.  

3.3 Modeling methods used 
This section, we want to generalize the results into some models for prediction and 

further analysis.  We first start with looking at available SMT models and VM models 

separately.  [15.][31.][29.][32.] 

3.3.1 Previously suggestion methods 
There are several models suggested for SMT or VM.  The following are two of them. 

In micro spectrum, there is a model suggested about SMT in [6.].  The model 

estimates the overall performance give a description of the processor and the 

characteristics of the workload.  Performance is given by the overall number of 

instructions executed per cycle (IPC).   

  w

G

w
wIPCPIPC ∑

=

=
1

    (eqt. 1.) 

Where wP is the probability of w  ready-to-issue instructions in the global window, 

wIPC is the expected IPC for these w  instructions, and G  is the size of the global 

window.  wIPC  models the effect of structural hazards.  The rationale behind this 

division is that structural hazards are primarily dependent on the hardware architectural 
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configuration while control and data hazards are primarily dependent on the workload.  

This model is further derived into model of structural hazards using Markov Chain.   

For performance of virtualization, we can use the model suggested in [32.], 

vconsolidation, a Intel virtualization multiplication value, to calculate the performance of 

virtualized environment. Weights are the importance distribution of each guest operating 

system and are defined with fixed number.  For instance, more memory and physical 

CPUs are assigned to guest operating system one than guest operating system two.  The 

workload performance is the performance actually behaved in the guest operating system 

with the standard workload.  The weight is the pre-defined work load of each virtual 

machine and the workloadPerf is the independent performance of each of them.  The 

result is useful for comparing different configuration. 

  ∑
=

N

i

irfWorkloadPeiWeight
1

][*][                                    (eqt. 2.)  

 Thus, this model can predict the how much usage totally used for comparing 

different guest operating system configuration and the various utilizations.  For instance, 

the first guest operating system can be the web server and the second guest operating 

system can be a development box.  

3.3.2 Modeling for SMT and VM Combined                    
To show the effect of SMT and VM, we can simply use multivariate linear 

regression to generate the models.  Regression is used in generating functions out from 

variables.  For instance, XbY = , where Y is the result matrix,X are variables the and b is 

the coefficients vector. By using the given values of Y andX , we want to find the 

coefficient vector b , such that XbY =~
and ε=− YY

~
,where ε  is minimized. 
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3.3.2.1 Simple Introduction to Regression Analysis 

The general form of a simple linear regression is  where α is 

the intercept, β is the slope and is the error term, which picks up the unpredictable part 

of the response variable yi. The error term is usually taken to be normally distributed 

(Gaussian distribution). The x's and y's are the data quantities from the sample or 

population in question, and α and β are the unknown parameters to be estimated from the 

data. Estimates for the values of α and β can be derived by the method of ordinary least 

squares. The method is called "least squares," because estimates of α and β minimize the 

sum of squared error estimates for the given data set,   and 

 where is the mean of the x values and is the mean of the y values.  

[16.][19.][20.][14.][27.]  

3.3.2.2 Using the Multivariate Regression in the Data Collected 
Average response time (Y1), throughput per minute (Y2), memory (Y3) and CPU time 

used per transaction (Y4) can be represented as functions of number of threads, presents 

of virtual machine and presents of SMT.  Each Y can be represented via multivariate 

regression. 

bXY = ,     

3263152143322110 xxbxxbxxbxbxbxbbY ++++++=  

1x = number of threads, 2x = 0 for no SMT, 1 for SMT, 3x = 0 for no VM, 1 for VM 

[ ]323121321 xxxxxxxxxxonesX =  

  =  1    20     0     1     0    20     0 
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     1    40     0     1     0    40     0 
     1    60     0     1     0    60     0 
     1    20     0     0     0     0     0 
     1    40     0     0     0     0     0 
     1    60     0     0     0     0     0 
     1    20     1     0    20     0     0 
     1    40     1     0    40     0     0 
     1    60     1     0    60     0     0 
     1    20     1     1    20    20     1 
     1    40     1     1    40    40     1 
     1    60     1     1    60    60     1 
 

323121321 269625..15.35.3833.817563.4583.90 xxxxxxxxxYresponseT −+−−++−=  

R2=0.9896 
 

323121321 5633.229171.07289.1425.4545.96277.22825.91 xxxxxxxxxtYthroughpu −−+−−+=
 R2=0.9842 
 

( ) 8
323121321 1*256.2092.0173.0442.0955.0263.0128.9 −−−+−−+= ExxxxxxxxxYmemory  

 R2=0.9766 
Error! Objects cannot be created from editing field codes. 
R2=0.9856 
 

The square term 2nx  were not used, as the coefficient of these terms tends to close to 

zero. Also for 2x and 3x , the power will have no effect at all (since their values are 0 or 

1).  Thus, the close equations with small residual we can get are the above.   All of them 

have 95% confidence interval.   

Therefore, we can predict Y
~

by substituting number of threads, presences SMT and 

VM to found out the best choice.  Further, instead of using the above statistics 

individually, we can balance the response time, throughput, memory and CPU usage as a 

united performance entity,1
~
P , use all case 1 as the base value, for instance,  
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k is the each component factor ( CPU, throughput, memory, response time), n =4 for 

there is 4 component factors. Ck is the coefficient of each component, such that it is 

weighted with wk. For example, there are 4 component factors, n =4, weight of each 

factor is wk =1 and Y
~

=23,   23Ck=25%, thus, the coefficient Ck =0.011.  To calculate the 

improvement and deficiency, we can simply use a new iP
~

 value, and compare it with the 

base case1

~
P  to adjust for the best value.   New newkY _

~
 will be used and using the Ck we 

just computed, we can get the newiP
~

. For example, 2

~
P  is 1.05 and 1

~
P  was 1, there is 5 % 

performance gain; if 3
~
P is 0.97, then, 3

~
P has 5% performance decreases. 

Notice: for memory used and response time, Ck should be negative, e.g., -( Ck) to 

indicate the better the less response time and the better the less memory used.   

3.3.3 Load Balancing and Load Distribution 
Deriving the above, we can further determine the load distribution of machine with 

SMT and virtualization.  First, we want know about how traffic of load is distributed, for 

instance, does virtual machines communicate with themselves internally?  If so, how 

resources are distributed among them?   

Eqt.2 in section 3.3.1 for virtualization together with the model using 3.3.2, we can 

use ][ irfWorkloadPe = iP
~

 for each guest virtual machine.  Weight[i] as the resources being 

divided up to each machine.  For the availability and stability  of base operating system, 

∑
=

N

i

iWeight
1

][ <0.9, so that the base operating system has 10% resource available for 

running the VM manager and such; for a less powerful machine, the base operating 

system would need more resource relatively.  The internal communication between 
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virtual machine can be managed by virtual network interface vnet1 and vnet8 resides in 

the host operating system, its operation relies on how many resources are left after 

assigning them to the virtual machine.  Thus we want to take base operating system and 

the I/O statistics of the virtual machine into account: 

W= ∑
=

+
N

i
iPiWeightPerfBaseOS

1

*][ , where  Pi is performance of each guest operating 

system,   

( )∑
=

=
n

k
kki YcP

1

~~
,where 1

~
Y = OutputInputY /

~
 

PerfBaseOS  =ava (1-∑
=

N

i

iWeight
1

][  ),and  

To determine PerfBaseOS, we can simply used the machine’s performance without 

load as the base, e.g. ava=1, then, there are more inter virtual machine traffic, availability, 

ava ,  will be smaller, say 0.9.   Therefore, by comparing values of different W (whole 

system) settings, we can choose the best performance effective model with load 

balancing among the virtual machines.  

Secondly, how threads of SMT can be distributed among different virtual machines? 

Obviously, if the base operating system is Linux kernel 2.6, we want to distribute one 

physical CPU to one virtual machine, as described in Section 2.2.2 scheduler would 

assign threads of the same program to the same CPU, maximizing utilization of resources 

such as CPU caches and instruction buffers.  Thus, putting the resource available as the 

same physical CPU for each virtual machine avoids possible performance degradation 

due to resource being pulled from other physical CPUs.  
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4 Thesis Conclusion  

4.1 Virtualization Challenges and SMT Advantages 
Virtualization introduces additional levels of abstraction and additional overhead, 

thus, it is important to optimize the overhead via appropriate configuration.  Unlike a 

non-virtualized system which has abundant resources, the resource limitations in 

virtualization usually drive up context switching rates occasionally at multiple levels of 

abstraction.  Therefore, it is important to know and test beforehand the system’s physical 

resources available.   

Second, scheduling across virtual machines is using assumed to be equitable and 

consistent; it actually depends on the operating system that is running and schedulers’ 

design.  For instance, Linux 2.6 kernel has a better scheduler than 2.4 which 

accommodates SMT better. In this case, VM can make more use of the benefits of SMT.   

Third, how will the resources be partitioned for the VMs are important, see load 

balancing and distribution (3.5). Some virtualization monitors will provides various 

options to map physical CPUs to virtual CPUs and to create affinity between certain sets 

or allow a more general pool of recourse to be shared amongst all VMs.  However, in the 

case of SMT, it is not advice to separate a single CPU’s two hyper-threads among two 

different virtual machines since it might not increase performance.  The branch prediction 

unit becomes less effective when shared, because it has to keep track of more threads, 

with more instructions, and will therefore be less efficient at giving an accurate 

prediction. This means that the pipeline will need to be flushed more often due to 

mispredicts, but the ability to run multiple threads more than makes up for this deficit.  

The penalty for a mispredict is greater due to the longer pipeline used by an SMT 
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architecture (by 2 stages), which is in turn due to the rather large register file required. 

However, there has been research into minimizing the number of registers needed per 

thread in SMT architecture. This is done by more efficient operating system and 

hardware support for better deallocation of registers, and the ability to share registers 

from another thread context if another thread is not using all of them. 

4.2 Performance Determination and Analysis 
As stated in Chapter 3, we have generalized a model for performance analysis of 

SMT and suggested methods for comparison, such that, we have in comparing the impact 

of different parameters, we have the “apple to apple” comparison, see [34].      

4.3 Suggestions 
There are several suggestions to improve accuracy in the performance comparison:   

Load distribution of the machine is different at different period of time, e.g. usage 

can vary from day to night.  This need to taken into calculation for different models.  

The number of data collected.  During all 12 official tests, the durations were about 1 

hour.  Each test has around 360 data points.  The number of data can increase to ensure 

the statistic accuracy. 

The distribution of the data points, in the tests, normal distribution was used. 

However, in some rare case, the data might no necessary has statistic meaning which 

need to be aware of.   

Number of components taken to the consideration.  There are several major factors 

to be used, such as CPU, memory and I/O.  However, for different test case we might 

want to test other components, for example, the X gui factor or graphic response speeds 

for games, UI interactive rate.    
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5 Future Work 

This chapter suggests future work can be done and the technology under 

development.   

5.1 Multiple virtual machines with SMT mode 
This is the case of multiple virtual machines on the base operating system, so that 

virtual machines share the resources.  However in this setting, there can be several 

combination of performance analysis.   

Case 1 

All the virtual machines are running but no application on top are running.  This is to 

see the performance overhead of multiple virtual machines. 

Case 2 

This is the case of one virtual machine is running application and the rest of the 

virtual machines do not run applications.  This case shows how idealvirtual machines 

affect the virtual machine that is running application. 

Case 3 

In this case, multiple virtual machines are running applications.  Performance 

degradation is expected.  We want to see how much decrease is here with respect to the 

case with one virtual machine running application and others idle.  [30.] 
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5.2 VMware with Oracle 
VMware with Oracle in process see [37.][38.].  Since virtualization causes 

degradation, the integration of technology between VMware and Oracle would have a 

beneficial impact on the perspective of virtualization.  

5.3 Discussion on IBM P595 Micro partitioning  
Starting with the IBM P595 server, [28.]the advance properties of SMT provide an 

enhanced micro-partition technology for virtualization, called Advanced Power 

Virtualization (APV).  For IBM machines, p5 Hypervisor is the virtualization engine 

behind the APV technology.  This technology divides a physical processor’s computing 

power into fractions of processing units and shares them among multiple LPARs(Logical 

Partitions).  For example, we could allocate as little as 0.10 processing units as opposed 

to dedicating an entire CPU.  There are two main advantages, better utilization of 

physical CPU resources and more partitions (not limited by number of physical CPUs).  

Unlike the current model we have, which is to bind the guest operating system to each 

physical CPU, micro-partitioning further utilize the available resources.  Thus, the future 

work for virtualization and SMT, can be investigation on this APV technology, which is 

expecting to have a better performance model. 
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Appendix 

A. Terminology 
Abbreviation Explaination 
MT Fine-grained multi-threading 
SMT Simultaneous multi-threading 

HT 
Hyper thread / Hyper threading,  which is essentially SMT and can be used 
interchangeably 

CMP Chip multiprocessing 
SMP Symmetric multiprocessing / Symmetric multiprocessors 
client OS Client operating system located on the virtual machine 
host OS Host operation system at which the virtual machine is located  
VMware Virtualization technology developed by VMware company 
Hypervisor  Virtualization technology developed by IBM 
RHEL RedHead Enterprise Linux 

ESX server  
Virtualization technoloy developed by VMware company which essentially is 
the host OS 

VMM Virtual machine monitor 
LV Low voltage 
SVR5 Unixware System V Release 5 
NPTL Linux's Native Posix Threading Library 
SGA Oracle: System global area 
PGA Oracle: Process global area 
UGA Oracle: User global area 
Awr Oracle: Auto work repository (used to get the Oracle transactions per second 
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