

Evaluating the Performance Characteristics of a Virtual Machine Used on Simultaneous

Multi-Threaded (SMT) Processors

by

HiuShanYim

A Thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Prof. Pompili

and approved by

New Brunswick, New Jersey

January 2000

 ii

Abstract of the Thesis

Evaluating the Performance Characteristics of a Virtual Machine Used on Simultaneous

Multi-Threaded (SMT) Processors

by HiuShan Yim

Dissertation Director: Prof Dario Pompili

Virtualization of computing hardware is one technique which can make possible the use

of fewer physical computers, thus lowering resource consumption. Today, as in the past,

hardware performance remains a major bottleneck to virtual machine performance.

Simultaneous multithreaded, or SMT, processors provide thread-level parallelism and are

being used to overcome the performance limitations of virtual machines. These same

processors are also being used to decrease the cost of computing systems since less

hardware and power is required when compared with multiple CPU systems. Virtual

machines should benefit from the properties of SMT processors since they have a

common cache and parallel execution threads. As a result, using virtual machines in

combination with SMT processors should be an efficient way to maintain or increase

performance, save money and reduce physical hardware requirements. This study

attempts to determine if an improvement on virtual machine performance exists through

the use of an SMT processor. If the performance of an SMT processor-based system is

on-par with several independent computers or multiple CPU systems, then the use SMT

would be an efficient way for organizations to achieve their performance requirements at

a reduced cost. This thesis evaluates the performance of a virtual machine used with and

 iii

without SMT. This study shows that a definite, measurable performance improvement

exists when a virtual machine is run with an SMT processor and that better virtual

machine performance is achieved as load increases. Then a performance modeling

method is suggested for various combinations of SMT and virtual machines in order to

predict and maximize system performance and achieve proper load balancing.

 iv

Acknowledgement

I would like to express my thanks to Professor Manish Parashar and Professor

Pompili for their guidance and advice.

 v

Table of Content

Acknowledgement... iv
Table of Content..v
List of Figures .. vii
List of Tables... viii
1 Introduction .. 1

1.1 Problems with available computational resources and possible performance improvement 1
1.2 Simultaneous multithreading (SMT) .. 2

1.2.1 Comparison of SMT and fine-grained multi-threading (MT)... 3
1.2.2 Comparison of SMT and Chip Multiprocessing (CMP)... 4
1.2.3 Comparison of SMT and Symmetric Multiprocessing (SMP).. 5

1.3 CPU examples .. 6
1.3.1 Intel Hyper-Threading .. 6
1.3.2 IBM Power 5 SMT ... 6

1.4 Virtualization.. 7
1.4.1 Introduction to VMware ... 8
1.4.2 VMware with Simultaneous Multi-processors ... 9
1.4.3 Introduction to Hypervisor ... 10
1.4.4 Cost of Virtualization versus Performance Benefits... 10

1.5 Main Contribution of this Thesis.. 10
2 Experimental Setup .. 12

2.1 Introduction .. 12
2.2 Problem Formulation and system description... 12

2.2.1 Introduction to the Processor being used.. 12
2.2.2 Introduction to the Operation System being used... 13
2.2.3 Introduction to the virtual machine being used... 16
2.2.4 Introduction to the Load and Benchmark ... 17
2.2.5 Rationality behind the choice of benchmark and load.. 17
2.2.6 Baseline: base operating system without virtual machine without SMT.............................. 21
2.2.7 Base operating system without virtual machine with SMT .. 22
2.2.8 One virtual machine on base operating system without SMT ..23
2.2.9 One virtual machine on base operating system with SMT ... 24

2.3 System Setup Procedure ... 25
2.3.1 Setup Oracle and Swingbench .. 25
2.3.2 Tuning SMT ... 26

2.4 Conclusions .. 27
3 Performance Metric and Selection.. 29

3.1 Results collected... 29
3.2 Problem Formulation.. 34

3.2.1 Introduction to problem formulation .. 34
3.2.2 Simple Result Analysis... 35

3.3 Modeling methods used.. 41
3.3.1 Previously suggestion methods... 41
3.3.2 Modeling for SMT and VM Combined .. 42
3.3.3 Load Balancing and Load Distribution... 45

4 Thesis Conclusion .. 47
4.1 Virtualization Challenges and SMT Advantages.. 47
4.2 Performance Determination and Analysis .. 48
4.3 Suggestions... 48

5 Future Work ... 49
5.1 Multiple virtual machines with SMT mode.. 49
5.2 VMware with Oracle .. 50

 vi

5.3 Discussion on IBM P595 Micro partitioning.. 50
Reference.. 51
Appendix .. 54
A. Terminology ... 54

 vii

List of Figures

Figure 1. Comparison of multi-threading and SMT... 4
Figure 2. Comparison of chip multiprocessing and SMT .. 4
Figure 3. SMT architecture .. 5
Figure 4. ESX server structure diagram... 9
Figure 5. The O(1) scheduler ... 15
Figure 6. Scheduler also supports hyper-threading.. 16
Figure 7. Swing Bench... 18
Figure 8. Oracle Architecture Overview.. 19
Figure 9. Illustration of test system setting .. 21
Figure 10. Oracle System Monitor-top .. 29
Figure 11. Oracle Monitoring—top modules... 30
Figure 12. Oracle Console Data Collection ... 30
Figure 13. CPU time per each Transaction .. 36
Figure 14. Average Response Time... 37
Figure 15. Throughput (Oracle Transactions Per Second)... 38
Figure 16. Memory Free in %.. 39
Figure 17. IO Statistics .. 41

 viii

List of Tables

Table I. Top monitoring sessions and host machine monitoring session ...32
Table II. Sample result for database “insert” benchmark .. 33
Table III. Details of all results collected... 34
Table IV. Legend for Table II,III and Color Scheme Used in the Graphs .. 34

1

1 Introduction

1.1 Problems with available computational resources and possible
performance improvement

This thesis studies the possible performance improvement of combining the use of

simultaneous multithread processors with the virtualization of operating systems. The

cost of computation in large organizations and corporations is enormous. For instance,

there are many costs are associated with maintaining a laboratory of hundreds of

computers. In addition to machine costs, there are operational costs such as energy costs,

cooling costs and space costs, plus administrative costs which also rise as the quantity

and variety of systems increase. Therefore, if it is possible to reduce the number physical

computers and still meet well-defined performance requirements, environmentally

friendly cost savings can be realized.

Virtualization is a technique that abstracts away the hardware from the operating

system so that multiple operating systems can share a single physical system at the same

time. This is a way to save resources. For instance, an organization can install multiple

servers in a single physical host. When each of these virtual machines has different peak

usage times, they can share the available resources without interfering each other.

[12.][13.] However, this approach has not been considered a viable option due to virtual

machine overhead and degradation of application speed within the virtual machine.

Thus, system designers have been ignoring the advantages of virtual machines simply

because early virtual machine implementations were often the source of performance

bottlenecks.

2

Processors with high computation power, such as multi-core processors and

simultaneous multithreaded processors are becoming more desirable due to the fact that

they have properties similar to symmetric multiprocessors. The main advantage of

symmetric multiprocessors is that they can achieve parallel processing more efficiently

than regular high frequency processors where thread switching is avoided. Through the

use of simultaneous multithreading and multi-core processors, the improvements in

performance of virtualization have been shown to be statistically significant.

1.2 Simultaneous multithreading (SMT)
Simultaneous multithreading is the ability of the microprocessor to fetch instructions

from multiple threads per cycle. Simultaneous multithreading combines hardware

features seen in two other types of processors: wide-issue superscalars and multithreaded

processors. From superscalars it inherits the ability to issue multiple instructions each

cycle; and similar to multithreaded processors it can execute several programs or threads

at once. The result is a processor that can issue multiple instructions from multiple

threads each cycle. [1.][2.][3.][4.] The SMT approach attacks the two major

impediments to processor utilization – long latencies and limited per-thread parallelism.

SMT processors have a larger register file, and thus it has the capacity to hold data for

multiple threads. There can be 4, or even 8, concurrent threads. These multiple threads

can execute different instructions in the same clock cycle. Out-of-order executions are

supported in SMT processors which allows for additional performance improvement.

 There are several architectural requirements to achieve SMT. First, multiple

program counters are needed and a mechanism by which the fetch unit selects one

counter each cycle; second, a separate return stack for each thread for predicting

3

subroutine return destinations; third, per thread instruction retirement, instruction queue

flush, and trap mechanisms; forth; a thread id, each with branch target buffer entry to

avoid predicting phantom branches; and fifth, a large register file, to support logical

registers for all the threads in addition to register renaming.

The extra threads supported by SMT processors can be used to proactively seed a

shared resource like cache, to improve the performance of another single thread. One of

the other uses of SMT is to provide redundant computation, for error detection and

recovery.

Companies give different names to SMT processors. Intel calls the SMT feature

Hyper-Threading and is included in the Pentium 4 processor family. IBM uses the term

Simultaneous Multithreading, which is essentially the same as Intel’s “Hyper-

Threading”. Further details of the processors will be discussed in section 1.3.

Figures 1 and 2 are illustrations of the corresponding issue slots for different

processor types. Each color (red, yellow, blue and green) represents a different thread.

The follow sections 1.2.1-1.2.3 compare the issue slots in various processors. [3.]

1.2.1 Comparison of SMT and fine-grained multi-threading (MT)
Fine-grained multithreading occurs by time slicing, wherein a single processor

switches between different threads, in which case the processing is not literally

simultaneous. It is actually a single processor executing instruction serially. However,

simultaneous multithreading is literally a processor executing all the threads at the same

time.

4

Figure 1. Comparison of multi-threading and SMT

In the Figure 1, each color represents a thread. The illustration on the left shows

fine-grained multi-threading (MT), and on the illustration on the right depicts SMT. In

MT, each issue slot is occupied by one thread and there are redundant resources since the

pipeline is not full. In SMT, each issue slot can have multiple threads.

1.2.2 Comparison of SMT and Chip Multiprocessing (CMP)
Chip multiprocessing occurs on a multi-core processor. Much of the instruction

execution logic is shared between the two cores, but each core has its own register set,

including any related addressing. This helps keep the processing pipelines full.

Figure 2. Comparison of chip multiprocessing and SMT

Figure 2 illustrates the comparison between chip multiprocessing and SMT. Even

though chip level multi-processors have a similar property of running multiple threads

5

simultaneously, the diagram on left shows that the issue slots are sliced in two and each

sub-pipeline is not fully utilized. The diagram on the right shows that SMT is fully

utilizing the pipeline resources.

1.2.3 Comparison of SMT and Symmetric Multiprocessing (SMP)
Symmetric multiprocessing is independent physical processors connected via the

processor design interface for inter-processor communication. Thus, the operating

system will schedule the processes to run on multiple physical processors. Since most

programs are designed for single processors, symmetric multiprocessors do not provide

performance gains to such programs. However, SMP is good for programs designed with

parallel execution in mind, especially embarrassingly parallel programs.

Figure 3. SMT architecture

Figure 3 shows the flow of threads in SMT architecture, where a thread is received

from an individual process counter and is mixed into the rest of the stages, which include

register read, execute, store buffer, register write and retire stage. [4.] shows an 8-wide

superscalar RISC microprocessor with simultaneous multi-threading.

6

1.3 CPU examples

1.3.1 Intel Hyper-Threading
Intel's Hyper-Threading Technology enables two logical processors on a single

physical processor by replicating, partitioning, and sharing the resources within the Intel

NetBurst micro architecture pipeline.

Internally, the processor replicates the resources to create copies of each resource for

the two threads. These resources include, all per-CPU architectural states, instruction

pointers, renaming logic and also smaller resources, such as return stack predictor, ITLB,

etc. Partitions divide the resources between the executing threads, such as the Re-Order

Buffer, Load/Store Buffers and queues, etc. However, execution threads continue to

share some CPU resources within the CPU such as the Out-of-Order execution engine

and Caches.

Typically, each physical processor has a single architectural state on a single

processor core to service threads. With Hyper-Threading/SMT, each physical processor

has two architectural states on a single core, making the physical processor appear as two

logical processors to service threads. The system BIOS enumerates each architectural

state on the physical processor. Since Hyper-Threading-aware operating systems take

advantage of logical processors, those operating systems have twice as many resources to

service threads.

1.3.2 IBM Power 5 SMT
IBM’s latest Power 5 ensures smooth operation of SMT. The register-renaming

resources and associativities of instruction cache and data cache are increased. The

branch information queue is split. The load recorder queue is split and store recorder

7

queue is split. There is out-of-order execution; however, it is more difficult to switch

threads on a cache miss because at the time of the miss some earlier instructions may not

have been performed while some later instructions may already have been completed.

The problem becomes where and how to stop one thread, leaving the thread and its

resources in a state that will allow it to be restarted after the switch is made to the other

thread. Because there is no thread-switch overhead, SMT can hide even short-duration

stalls in the execution pipeline. If, due to pipeline latency, an instruction from one thread

is delayed waiting for a result, or if, because of the misprediction of a branch, a portion of

a thread’s instructions have been flushed from the execution pipeline, instruction from

the other thread can continue to be executed. [5.][7.][10.]

1.4 Virtualization
Virtualization is the process of presenting a logical grouping or subset of computing

resources so that they can be accessed in ways that give benefits over the original

configuration. For example, the abstracting of computing hardware resources to provide

enhanced utility of the physical system is a goal of virtualization.

There are several advantages to using virtualization. First, lower hardware and

management costs can be recognized, since the physical quantity of hardware required is

reduced, the costs associated with maintaining the hardware diminished. Second,

virtualization is a good way to sandbox an application’s use of physical resources. Third,

legacy systems can be preserved on virtual machine operating systems and in a fully

operational state. Forth, the virtualization engine is capable of presenting new hardware

to the virtual operating system even when the hardware is not physically present. Fifth,

there can be known-good, hot-standby virtual machines of different operating systems.

8

Sixth, virtualization can provide a powerful platform for debugging, monitoring and

testing due to the ease with which one can switch operating systems to meet their needs.

Seventh, virtualization enables easier system migration, backup and recovery. Eighth,

there can be co-located hosting on the same physical hardware.

The virtualization tools introduced in this study are VMware and Hypervisior.

VMware is a product of EMC Corporation and Hypervisior is a product of IBM

Corporation.

1.4.1 Introduction to VMware
VMware software runs on Windows and on Linux, and will soon debut on Mac

OSX. VMware offers several virtualization products. VMware workstation consists of a

virtual machine suite for the Intel x86 architecture, and can be used for setting up

multiple x86 computers on top of a single host operating system. VMware server can

create, edit, and run virtual machines. It uses a client-server model, allowing remote

access to virtual machines. ESX Server 3.x (RHEL3) has a service console and acts as a

boot-loader for the vmkernel and provides its own management interfaces, such as a

command line interface, webpage multi-user interface and a remote console. It has low

overhead and better control and granularity for allocating resources, such as CPU time,

disk bandwidth, network bandwidth, and memory utilization to the virtual machines.

[26.]

9

Figure 4. ESX server structure diagram

VMware uses the CPU to run code directly whenever possible. For example running

user mode and virtual 8086 mode code on an x86 processor will be executed directly on

the physical hardware. When direct execution cannot operate, VMware software re-

writes code dynamically. This occurs at the VMware kernel level and with real mode

code. VMware puts the translated code into a spare area of memory, typically at the end

of the address space, which it can then protect and make invisible using segmentation

mechanisms.

1.4.2 VMware with Simultaneous Multi-processors
Over committing physical CPUs is a common and accepted practice when running

multiple virtual servers. The advantage of over-committing is to slice the application’s

performance into smaller pieces, therefore providing good performance-on-demand. This

is also a common practice for application service providers and other hosted

environments.

10

1.4.3 Introduction to Hypervisor
Para-virtualization is a virtualization technique that presents a software interface to

virtual machines that is similar but not identical to that of the underlying hardware. This

requires operating systems to be explicitly ported to run on top of the virtual machine

monitor (VMM). [8.][9.]

There are several benefits to para-virtualization. First, start time is reduced. The

“virtual reboot” avoids the latencies of hardware re-initialization by the BIOS. Also, a

pre-booted and frozen virtual machine image can be shipped to all nodes in a cluster. In

other words, changing virtual machines is fast.

1.4.4 Cost of Virtualization versus Performance Benefits
New processors are providing features to improve performance of virtualization.

Each operating system in each virtual machine can be tuned solely for the hosted

application. [30.]

1.5 Main Contribution of this Thesis
The research conducted leads to the following contributions:

First, to understand virtualization and simultaneous multithreading, I have

generalized and introduced both technologies and investigated several existing products

and solutions, such as VMware, IBM’s Hypervisor, Intel’s Hyper-threading and the

technology that makes SMT different from SMP and multi-core processors.

Second, this research demonstrates a viable method to design, setup and benchmark

virtualization and SMT, in spite of the increased the complexity and difficulty in

formulating a proper comparison. In addition, this study demonstrates how different

11

levels of load interact with system settings and how important such settings are to achieve

maximum efficiency.

Third, this paper examined several different methods of modeling virtualization and

modeling SMT. Further, the models this study established and verified can be used for

comparing various configurations and also for load balancing between the virtual

machines.

12

2 Experimental Setup

2.1 Introduction
This section describes the current experiment details and methodology. In order to

test the SMT processor with a virtualization layer, there are several experiments needed.

For instance, we need to compare and define the number of threads used in the

benchmarking applications, the maximum performance of an application’s throughput

and establish a baseline case of system settings. The reasoning behind the selection of

these methods is also discussed.

2.2 Problem Formulation and system description
There are several cases we needed to consider. The first case is the basic fast-

switching multiple-thread single CPU core with the application whose performance is

being analyzed running. The second case is layered on top of the first case, where one

virtual machine is running on top of one CPU with the same application running. In

contrast to the single CPU cases are the SMT CPU cases where same application is

running with and without the virtual machine.

2.2.1 Introduction to the Processor being used
The processor used in the experiment is the Intel LV (low voltage) Xeon processor

from the Intel Gallatin processor family. It is based on the Intel® NetBurst™ micro-

architecture. [24.][25.]

The Intel Xeon processor includes 512KB (L2) cache and includes the following

advanced micro-architecture features: Hyper Threading, Hyper Pipelined Technology

(Jackson Technology) Rapid Execution Engine, Advanced Dynamic Execution, Trace

Cache, Streaming SIMD (Single Instruction, Multiple Data) Extensions 2, Advanced

13

Transfer Cache, Enhanced Floating Point and Multimedia Engine. The Xeon processor

uses a source-synchronous transfer of address and data to improve performance and

enables addressing at 2x the system bus frequency and data transfer at 4x the system bus

frequency. The 400 or 533 MHz system bus is a quad-pumped bus running off a 100 or

133 MHz bus clock, making 3.2 GB/sec or 4.3GB/sec data transfer rates possible. The

LV Xeon processor is based on 0.13-micron process technology. The processor contains

12 kmOps instruction cache, 8 kbyte data cache as L1 cache (Harvard architecture) and a

512KB L2 cache. 4 Mbyte L3 cache is provided. The LV Xeon processor is similar to the

full power Xeon processor but runs at a reduced voltage and power level. The clock

speed of the processor is 3.4 GHz.

When a thread is scheduled and dispatched to a logical processor, LP0, the Hyper-

Threading technology utilizes the necessary processor resources to execute the thread.

When a second thread is scheduled and dispatched on the second logical processor, LP1,

resources are replicated, divided, or shared as necessary in order to execute the second

thread. Each processor makes selections at points in the pipeline to control and process

the threads. As each thread finishes, the operating system idles the unused processor,

freeing resources for the running logical processor.

2.2.2 Introduction to the Operation System being used
Not all operating systems support hyper-threading. Older, previous-generation

operating systems, such as SCO UnixWare SVR5 do not recognize processors as hyper-

threaded and will only utilize the processor as one single unit. For the 2.4 Linux kernel,

the operating system schedules and dispatches threads to each logical processor, just as it

would in a dual-processor or multi-processor system. As the system schedules and

14

introduces threads into the pipeline, resources are utilized as necessary to process two

threads.

To test the problem statement, I used the Red Hat Enterprise Linux 4, kernel 2.6.9-

42.ELsmp. This operating system has the following advantages [18.][17.][33.]:

• Native Posix Threading Library (NPTL): This Linux 2.6 kernel feature,

originally designed and implemented by Red Hat, provides excellent

performance for multi-threaded applications (for example, Java applications).

It enables multi-threaded applications that previously required the

performance offered by proprietary Unix systems to be successfully deployed

on Red Hat Enterprise Linux. The implementation provides full POSIX

compliance, support for Thread Local Storage and Futex-based

synchronization.

• Asynchronous I/O support allows processes to continue running after issuing

a disk read/write I/O. Previously, processes were required to wait for their

disk I/O requests to complete before they could continue processing. The

feature is particularly useful for processes that issue multiple writes in rapid

succession, such as database processes. However, asynchronous I/O can be

very useful for any multi-user application.

• The O(1) scheduler in the 2.6 Linux kernel provides greatly increased

scheduling scalability. This increase has been achieved by a full redesign of

the scheduler algorithm in the 2.4 kernel so that the time taken to choose a

process for placing into execution is constant, regardless of the number of

processes. The new scheduler scales very well, regardless of process count or

15

processor count, and imposes a low overhead on the system. The algorithm

uses two process priority arrays; active and expired. Processes are being

scheduled based on their priority and prior blocking rate. When a processes’

time-slice expires, the time-slice is placed on the expired array. When all

processes in the active array have expired their time-slice, the two arrays are

switched, restarting the algorithm. For general interactive processes (as

opposed to real-time processes) this results in high-priority processes, which

typically have long time-slices, getting more compute time than low-priority

processes. However, it does not get to the point where high-priority

processes can starve the low-priority processes.

Figure 5. The O(1) scheduler

• This scheduler support for hyper-threaded CPUs was developed by Red Hat.

Hyper-threading support ensures that the scheduler can distinguish between

physical CPUs and logical (hyper-threaded) CPUs. As shown in Figure.7, the

16

scheduler compute queues are implemented for each physical CPU, rather

than each logical CPU, as was the case previously. This results in processes

being evenly spread across physical CPUs, thereby maximizing utilization of

resources, such as CPU caches and instruction buffers.

Figure 6. Scheduler also supports hyper-threading

2.2.3 Introduction to the virtual machine being used
The virtual machine used in the experiment is VMware workstation 5.5.

[21.][22.][23.] VMware workstation works by creating fully isolated, secure virtual

machines that encapsulate an operating system and its applications. The VMware

virtualization layer maps the physical hardware resources to the virtual machine’s

resources, so each virtual machine has its own CPU, memory, disks, and I/O devices, and

is the full equivalent of a standard x86 computer.

VMware 5.5 also supports 32-bit and 64-bit host and guest operating systems

running on multiprocessor host machines. Further, it provides experimental support for

two-way Virtual SMP. This includes any SMP hardware, including dual-core systems

17

and hyper-threaded uniprocessor systems. The number of processors can be configured

in the VMware application settings. Two virtual processors can be assigned in both 32-

bit and 64-bit guests.

2.2.4 Introduction to the Load and Benchmark

Load 1:

Oracle database server is installed on the host computer and used for benchmarking.

The Oracle application also runs on the host computer and calls the server with multiple

queries.

The application being used is Swingbench. The software enables a load to be

generated and the transactions, or response times to be recorded and charted. While it is

primarily used to demonstrate Real Application Clusters it can also be used to

demonstrate functionality such as online table rebuilds, standby databases, online backup

and recovery etc.

The benchmark run on Swingbench is OrderEntry. OrderEntry is based on the "oe"

schema that ships with Oracle9i/Oracle10g and can be run continuously. It introduces

heavy contention on a small number of tables and is designed to stress interconnects and

memory.

2.2.5 Rationality behind the choice of benchmark and load
Why use ‘New customer registration’?

 Swingbench, the load generator, is used to stress the database. The application has a

java-based GUI. While running, this application will spawn threads as individual clients.

There are five benchmarks to be chosen, new customer registration, browse products,

18

order products, process products and browse orders. New customer registration will be

used as the standard of the benchmark. This process will include running of the java

application with multiple threads and multiple Oracle connections, and each of them will

connect to each client and data will be inserted into the database with commits. As the

Oracle instance writes to the database, we can monitor the disk I/O and the impact with

hyper-threading (HT) and virtualization. Figure 7. displays the Swingbench GUI used to

generate load.

Figure 7. Swing Bench

Why use Oracle?

19

Oracle database architecture is well established and performance orientated. The

Oracle instance can be considered as two major parts, first, the physical processes

(threads), second, the memory structure. [36.][11.]

Figure 8. Oracle Architecture Overview

Figure 8, the Oracle memory architecture is briefly illustrated as the following,

• System global area (SGA). This is a large chunk of memory that maintains

many internal data structures that all processes need to access. It caches data

from the hard disk; buffer data before writing it to the hard disk and holding

parsed SQL, etc.

• Process global area (PGA). This is process-specific memory, allocated via C

runtime, eg, malloc or memmap. It grows or shrinks at runtime.

20

• User global area (UGA), the memory that each session can access. If

dedicated server, UGA is synonymous with PGA. Otherwise, if share server

process, UGA must be started in a memory structure that every shared

process has access to (synonymous with SGA).

The Oracle physical process operation is illustrated as follows:

The Oracle server processes perform work on behalf of a client session. We use a

dedicated server for these tests so that there is one-on-one mapping between client

connection and server process (thread).

Background processes perform mundane maintenance tasks needed to keep the

database running, such as maintaining block buffer cache, writing blocks out to data files

as needed, or monitoring archive log files. Another advantage of using Oracle is the ease

of use of Oracle web console, which gives a convenient interface for performance

monitoring. This topic will be discussed in the Chapter 3.

21

Figure 9. Illustration of test system setting

2.2.6 Baseline: base operating system without virtual machine without SMT
The baseline test is used as the metric for comparison. Figure 9 (circle in Red)

demonstrates the setting which consists of the base operating system and the physical

layer. The system setting for the baseline test is a Linux machine running on

• 1 physical CPU

• 1 hyper thread (HT) of the 2 HT of 1 physical CPU

Physical Layer, base machine:

CPU1

Virtual Machine
Installed on base OS

CPU2

1 G RAM

H
T
0

H
T
1

H
T
0

H
T
1

1 G RAM

CPU number seen on the base OS:
 0 1 2 3

Base OS, LINUX AS4, Kernel 2.6

Oracle
instant

Java
Client

Oracl
e

Java
VM

Baseline

Base OS
with SMT

VM without
SMT

VM with
SMT

22

• SMT mode of the base operating system is disabled

• 1 GB of RAM

• OS version: RHEL4

• Oracle server and Swingbench test tool

The GRUB configuration is as the following:

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet mem=1G maxcpus=1 noht
 initrd /initrd-2.6.9-42.ELsmp.img

2.2.7 Base operating system without virtual machine with SMT
Figure 9 (circle in Orange) demonstrates the setting which consists of the base

operating system and the physical layer. The system setting is the following

• 1 physical CPU

• 2 HT of 1 physical CPU

• SMT mode of the base operating system is enabled

• 1 GB of RAM

• OS version: RHEL4

• Oracle server and Swingbench test tool

The following GRUB configuration is used,

title RHEL AS4 1GB HT (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet mem=1G maxcpus=2
 initrd /initrd-2.6.9-42.ELsmp.img

23

2.2.8 One virtual machine on base operating system without SMT
All physical CPUs are used on the base operating system, each physical CPU has

SMT mode enabled. One virtual machine installed. Even though the base operating

system is operating at full capacity, the virtual server is set to run with 1 logical thread.

To do this, VMware will see 2 virtual CPUs (2 hyper thread = 1 physical CPU), but only

one will be selected for use in the virtual operating system via GRUB.

• 2 physical CPUs

• SMT on Base OS is enabled and running on all 4 HTs (2 physical CPUs)

• 2 GB RAM is used on the base OS

• VMware ports 1 physical CPU to the client OS

• Client OS sees 2 HT of 1 physical CPU and uses 1 HT

• 1 G of RAM is allocated to the client OS

• OS version: RHEL4 on both host and client OSs

• Oracle server and Swingbench test tool is running on client OS

• Oracle server and Swingbench test tool is not running on base OS

The following GRUB setting is for the base OS,

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet
 initrd /initrd-2.6.9-42.ELsmp.img

The following GRUB setting is for the client OS,

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet mem=1G maxcpus=1

24

 initrd /initrd-2.6.9-42.ELsmp.img

2.2.9 One virtual machine on base operating system with SMT
One virtual machine is running with 2 virtual CPUs. In this virtual machine

operating system, the same Oracle server is installed and runs with the same benchmarks.

In this test, the virtual machine will be able to run on all the CPUs it sees.

• 2 physical CPUs

• SMT on Base OS is on and running on all 4 HTs (2 physical CPUs)

• 2 GB RAM is used on the base OS

• VMware ports 1 physical CPU to the client OS

• Client OS sees 2 HT of 1 physical CPU and uses 2 HT

• 1 GB of RAM is allocated to the client OS

• OS version: RHEL4 on both host and client OSs

• Oracle server and Swingbench test tool is running on client OS

• Oracle server and Swingbench test tool is not running on base OS

The following GRUB setting is for the base OS,

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet
 initrd /initrd-2.6.9-42.ELsmp.img

The following GRUB setting is for the client OS,

title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet mem=1G maxcpus=2
initrd /initrd-2.6.9-42.ELsmp.img

25

2.3 System Setup Procedure
The chapter describes the setup procedure for all the tests.

2.3.1 Setup Oracle and Swingbench
First, given the test machine, see 2.1 for CPU/system information. On the base

machine, install the operating system, install Oracle 10g, and database administration

group accounts, install j2sdk, install VMware-workstation RPM and set the

recommended Oracle 10G kernel parameters. The Oracle and Swingbench parameter

will be the same for all the test cases:

 fs.file-max = 65536
 kernel.shmmax = 2147483648
 kernel.sem = 250 32000 100 128
 net.ipv4.ip_local_port_range = 1024 65000
 net.core.rmem_default = 262144
 net.core.rmem_max = 262144
 net.core.wmem_default = 262144
 net.core.wmem_max = 262144

For instance, adding RPMs for Oracle DB (gcc-3.4.6-3.i386, glibc-devel-2.3.4-

2.25.i386.rpm,glibc-headers-2.3.4-2.25.i386.rpm,glibc-kernheaders-

2.4.9.1.98.EL.i386.rpm)

Add more swap space per minimum Oracle recommendation:

 dd if=/dev/zero of=/swapfile bs=1024 count=1572864
 ls -al /swapfile
 mkswap /swapfile
 swapon /swapfile
 free

Extract OracleDB-10G release 2, put Oracle environment variable in place, start

listener and then start Oracle. Setup Swingbench environment variable to install

Swingbench Order Entry by using oewizard. Java virtual machine will be allocated with

250MB of memory.

26

2.3.2 Tuning SMT
First, with the current chipset, SMT can be turned off or on without the presence of

the operating system, by setting the Advance BIOS setting: Hyper-thread enabled.

Depending on the version of kernel, there maybe other parameters needed to be set in the

BIOS. For example, kernel 2.4 requires ACPI to be enabled in the BIOS in order to use

the logical CPUs. After hyper-threading is turned on, the base OS will be able to see 4

logical CPUs.

Each physical CPU has 2 hyper-threads. If the base OS has all 4 logical CPUs

running, VMware will be able to use 1 physical CPU, or 2 hyper-threads. This is due to

the fact that VMware workstation can use only 1 physical CPU. This is a limitation of

the version of VMware selected. However, all test case configurations fit within these

limitations of VMware workstation.

The base OS has 3 settings according to test cases in section 2.2. Setting 0 is used

for test cases 3 and 4 where the client OS is running and there is no limitation on number

of CPUs and memory allocated. Setting 2 is used for base case, where kernel parameter

“noht” is used to ensure hyper-threading is disabled. Setting 1 is used for case 2,

“maxcpu=2” means 2 logical CPUs are used. The following is the GRUB file:

0 ### Original SMP
title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet
 initrd /initrd-2.6.9-42.ELsmp.img

1 ### 1GB RAM w/ 1 cpu w/ HT
title RHEL AS4 1GB HT (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet mem=1G maxcpus=2
 initrd /initrd-2.6.9-42.ELsmp.img

27

2 ### 1GB RAM w/ 1 cpu w/o HT
title Red Hat Enterprise Linux AS (2.6.9-42.ELsmp)
 root (hd0,0)
 kernel /vmlinuz-2.6.9-42.ELsmp ro root=/dev/VolGroup00/LogVol00
rhgb quiet mem=1G maxcpus=1 noht
 initrd /initrd-2.6.9-42.ELsmp.img

To ensure the correct setting, the number of CPUs in use can be seen in

/proc/cpuinfo. There should be 4 identical CPUs (processor 0 to 3) shown as the

following:

processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) CPU 2.00GHz
stepping : 9
cpu MHz : 1996.852
cache size : 512 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca
cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe cid xtpr
bogomips : 3996.67

2.4 Conclusions
In this chapter, I have discussed the system setup and the experimental design to

provide a clear picture of the operating system configuration with and without VMware

and with and without SMT. The setup provides a clear apples-to-apples comparison [34.].

When doing performance comparisons it is important to make sure that the configuration

of the systems being compared are as similar as possible. While comparing the

performance of client versus host machine, each test case should use the same setup and

28

the impact of host operating system should be kept to a minimum. For instance, when the

virtual machine is configured to use of 1GB of memory and 1 HT, these limits should be

only seen on the virtual machine. On the host machine, the base operating system must

contain more than 1GB of memory and 1 HT. In this way, we ensure that the base OS

has its own resources to run the virtual machine with enough spare capacity to cover the

overhead of running the virtual machine without influencing the virtual machine’s

performance.

29

3 Performance Metric and Selection

This chapter analyzes the results collected and developed from the system

performance model for virtualization with simultaneous multithreading.

3.1 Results collected
This section illustrates which data is used and the data’s corresponding weight, or

importance.

Figure 10. Oracle System Monitor-top

30

Figure 11. Oracle Monitoring—top modules

Figure 12. Oracle Console Data Collection

Figures 10 through 12 show that the Oracle console collects data for Oracle

performance and the SQL query information. The SQL trace file contains the number of

SQL statements executed and the corresponding statistics. It is a good Oracle tracing tool

31

to discover abnormal SQL statements which take up large amount system resources and

result in an abnormal statistical distribution.

From the data collected, including those from vmstat, top and the Oracle console,

several obvious patterns emerge as parameter changes are tested. The parameters that

were changed include enabling and disabling SMT mode and using or not using VMware.

Results for the wait time, as expected, changed when SMT was turned off. Wait time

includes in memory undo latch, cache buffer chains and library cache pin.

 The tools used and metrics collected included the following:

• vmstat, for cpu usage as seen in the current operating system.

• topstat, to see the top cpu consuming processes

• awr report (auto workload repository), from Oracle, to see the Oracle

performance, and throughput (Oracle transactions per second)

• Transactions per minute, same as seen in the Swingbench GUI. (This

transaction is different from an Oracle transaction in which each transaction

is a complete process consisting of multiple Oracle transactions)

• Swingbench log file (result.xml), mainly for response time distribution.

32

Table I. Top monitoring sessions and host machine monitoring session
Example results as mean of samples data points:

 Insert new customer

VMware
percentage(
Show in
Top of
Base
operating
system)

VMware
memory

VMware
cpu
used(%)

Base
operating
system
cpu used
(%)

Oracle
transaction
per second

Swingbench
transaction
per minute

No SMT
no VM
(baseline) None None None 85 241 7340
w SMT no
VM None None None 64 334 10120
VM
no SMT 89 35 76 22 190 5895
VM SMT 162 54 76 32 254 7620

Number of
clients

response
time(ms)

Min
response
time(ms)

max
response
time(ms)

33

No SMT
no VM 60 199 5 9745
w SMT
no VM 60 55 4 3077
VM
NO SMT 60 303 6 6361
VM SMT 60 156 4 5583

Table II. Sample result for database “insert” benchmark

Test Case 1 1 1 2 2 2
Threads 20 40 60 20 40 60

Ave
Response 9 91 199 6 59 55
Min
Response 4 4 5 4 4 4
Max
Response 2461 1534 9745 860 450 3077
awrr
Transactions 139.63 208.54 241 156 278 334
FreeMemAvg 279267 15987.1 19138 21940.3 65611.1 17626.3

% Free Mem 0.000279 1.6E-05 1.91E-05 2.19E-05
6.56E-

05 1.76E-05
CacheAvg 591555 756614 505325 807908 728615 649602

IObi 74.3267 1.20667 207.917 1.51333 27.88 151.412
IObo 480.153 429.553 674.167 627.513 993.313 897.766
CPUIdleAvg 63.52 45.08 15.5667 80.7333 58.92 42.2092
CPUUsedAvg 36.48 54.92 84.4333 19.2667 41.08 57.7908
CPU
Used/Trans 0.261262 0.263355 0.350346 0.123504 0.14777 0.173026

Test Case 3 3 3 4 4 4
Threads 20 40 60 20 40 60

Ave
Response 34 187 303 29 82 156
Min
Response 6 6 6 1 5 4
Max
Response 2729 3077 6361 1663 4801 5583
awrr
Transactions 117.84 158 190 120.16 202.82 254
FreeMemAvg 308967 50804.1 17170.3 105088 129204 15901.5
% Free Mem 0.00030897 5.08E-05 1.72E-05 0.000105 0.000129 1.59E-05
CacheAvg 552590 758786 493096 758350 657485 6.71E+05

IObi 63.0067 1.94 32.125 1.18 42.6611 9.29
IObo 337.74 309.84 337.489 433.12 511.317 572.543
CPUIdleAvg 47.54 35.4533 24.8306 57.3267 37.1056 22.6533

34

CPUUsedAvg 52.46 64.5467 75.1694 42.6733 62.8944 77.3467
CPU
Used/Trans 0.4451799 0.408523 0.395628 0.355137 0.3101 0.304515
Host View:
FreeMemAvg 1.69E+05 317490 324913 53203.4 16353.4 16925.6
CacheAvg 1.76E+06 1.54E+06 1.57E+06 1.78E+06 1.86E+06 1.81E+06
IObi 57.74 77.5389 59.6322 0.78 1.65333 3.32993
IObo 533.567 759.933 425.753 721.653 393.587 777.17
CPUIdleAvg 85.2467 65.6889 79.4368 75.2933 82.2133 59.7619

Table III. Details of all results collected

 Test Case Representation and Line Color
 Without SMT With SMT

 Without VM
1 2

 With VM

3

4

Data Collected
Data Collected and used for calculation in 3.2
Data Collected in the host OS and is not supposed to be used for comparison

Table IV. Legend for Table II,III and Color Scheme Used in the Graphs

The data points collected are parsed result from each test. The duration of each test

is between one half to one hour. Result collection started after the load was stabilized,

approximately fifteen minutes after the test was started. Sampling time interval is 10

seconds and for 1 hour in duration. Thus, there was 360 data points, or samples. The

mean of the samples was used. Thus, all data in Table 2 is the mean of the all the data

points collected.

3.2 Problem Formulation

3.2.1 Introduction to problem formulation
From Table 1 sample results collected, we can simply derive the following,

Impact on throughput for the disk I/O benchmark, insert new customer to the

database:

The SMT factor is about 1.35, which is 35% increase of throughput

35

34.1
190

254

31.1
254

334

==

==

SMTwithouttionVirtualiza

SMTwithtionVirtualiza

SMTwithoutOSBase

SMTwithBaseOS

The above data show consistency. For instance, with SMT there is a general

increase of performance of 30% in database process, even with the virtual machine

abstraction. It is consistent with our expectation and with result from other

benchmarking done with SMT [6.][35.].

The virtualization factor is about 0.75, which is 25% degradation of throughput

74.0
254

190

76.0
334

254

==

==

SMTwithoutOSBase

SMTwithouttionVirtualiza

SMTwithOSBase

SMTwithtionVirtualiza

The performance degradation of VMware (- 25%) shows consistency. Virtualization

with SMT shows a decrease in performance when compared with the base operating

system with SMT enabled. The same is true for virtualization without SMT; it is not only

less but the percentage decreases is identical to the previous case, when comparing the

results with the base operating system without SMT.

Thus, we can generally agree they are independent factors, such that SMT did not

change the behavior of Virtual machine degradation and vice versa.

3.2.2 Simple Result Analysis
This section, we focus on the comparison of different values using graphic

representation.

36

3.2.2.1 CPU time used per transaction

CPU time used per Transaction

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.4
0.45
0.5

0 10 20 30 40 50 60 70

Number of Threads

C
P

U
%

ti
m

e 3

4

1

2

Figure 13. CPU time per each Transaction

The CPU time per each transaction is compared between the four cases, we can

interpret the relationship between them as the following: cases without VM, the more the

number of threads and the more expensive the average CPU time spent on each

transactions. This is seen as line 1 and 2 are going upwards, and line 3 and 4 are

decreasing with response to number of threads. The effect of SMT is obvious as line 2

and line 4 are always lower than line 3 and line 1. Notice the interception of line 4 and

line 1 indicates that more the number the threads, the more efficient with VM with SMT

such that VM with SMT out perform the original case. This also implies more utilized

the system, the more efficient it is.

37

3.2.2.2 Response Time

Ave Response Time Distribution

y = 95x - 90.333

y = -28.5x2 + 138.5x - 104

y = 134.5x - 94.333

0

50

100

150

200

250

300

350

20 40 60

Number of Threads

R
es

p
o

n
se

 T

im
e

1

2

3

4

Linear (1)

Poly. (2)

Linear (3)

Figure 14. Average Response Time

The response time distribution shows no abnormally. In the graph trend lines are

also applied to see the function trend of each case. Case 1,2 and 3 are all close to linear

except case2 (SMT on original machine). The reason might due to the response time is

close to minimal all the time. As expected cases with SMT (2,4) always have lower

response time than their counterparts. Interesting, similar to CPU time used per

transaction response time is better with when high number of threads are used. Case 4

(SMT with VM), the VM impact (longer response time) was bigger with smaller number

of threads, however, with larger number of threads the advantage of SMT is shown as

response of case 4 is lower than case 1.

38

3.2.2.3 Throughput

Transactions per Second

0

50

100

150

200

250

300

350

400

20 40 60

Number of Threads

N
u

m
b

er
 o

f
T

ra
n

sa
ct

io
n

s

1

2

3

4

Figure 15. Throughput (Oracle Transactions Per Second)

 Graph of transactions per second shows the actual work the process has done.

The number of transactions increases with the number of threads. From 20 to 40 thread,

all cases have steeper slope than from 40 to 60 which shows, the increase in throughput is

faster at lower number of threads and higher number of threads tend to saturated the

throughput increase rates. From 40 to 60 threads, case 2 and 4 (with SMT) have same

slope and case 1 and 3 (with out SMT) have the same slope. Cases with SMT show a

better increase in throughput with large number of threads. Also, this shows the

difference between VM stay constant (the height difference between the lines). With the

impact of VM, case 3 and 4 has lesser throughput than case 1 and 2. Start with low

number of threads, the transactions are close with all cases. However, at 60 threads, we

see that even VM decrease the throughput, positive impact of SMT let throughput per

threads increase and over throughput of Case4 (with SMT with VM) outperform Case1

(original case with out SMT without VM. More important, due to the steeper slope of

39

SMT case, the more the number thread tend large the difference of throughput with their

counterparts. Notice, we see the pattern of case2, 4, 1, 3 (ordering from best to worse) at

high number of threads as we seen in the previous two graphs.

3.2.2.4 Memory

Free Memory

0.00%

0.01%

0.01%

0.02%

0.02%

0.03%

0.03%

0.04%

20 40 60

Number of threads

P
er

ce
n

ta
g

e 3

4

1

2

Figure 16. Memory Free in %

 The memory usage of the machine shows a better statistic with less number of

threads. With 20 threads, there are more obvious difference between the cases, with 60

threads, there are more memory consumed that all cases merge to high memory usage

that we cannot get much out from that situation. From observation of 20 thread cases, we

see the order 3,1,4,2 (best to worst), interesting, this is exactly the reverse as previous

cases as we saw case 2,4,1,3 (best to worst). This might implies that the more the system

is utilized, the better the efficiency we can get out from it. Let us look further at 40 and

60 threads cases. There are drastic changes in the memory used. Cases with VM (case

4,2) shows low memory usage increase (even decrease at 40 threads); while, cases

without VM has severe increase in memory used and more than their no VM

counterparts. At higher number of threads, we see the order as 4,2,3,1(best to worst)

40

Therefore, we again see the high the usage the better result we can get from virtualization

with SMT.

3.2.2.5 Input and output

 I/O

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

20 40 60

Number of threads

B
yt

es

2_o

1_o

4_o

3_o

2_i

1_i

4_i

3_i

I/O per second

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60

Number of threads

B
yt

es
 p

er
 S

ec
o
n
d

3_i

4_i

1_i

2_i

3_o

4_o

1_o

2_o

3_all

4_all

1_all

2_all

41

Figure 17. IO Statistics

 IO statistics is the bottleneck of VM, we can see from the first IO statistic graph

that cases without VM are better performed than cases with VM. The advantage of HT is

limited that case 4 with VM with HT is worse than original case. When comparing IO

per second, 40 threads cases do not perform as good as 20 and 60 thread cases which they

are close in performance.

3.3 Modeling methods used
This section, we want to generalize the results into some models for prediction and

further analysis. We first start with looking at available SMT models and VM models

separately. [15.][31.][29.][32.]

3.3.1 Previously suggestion methods
There are several models suggested for SMT or VM. The following are two of them.

In micro spectrum, there is a model suggested about SMT in [6.]. The model

estimates the overall performance give a description of the processor and the

characteristics of the workload. Performance is given by the overall number of

instructions executed per cycle (IPC).

 w

G

w
wIPCPIPC ∑

=

=
1

 (eqt. 1.)

Where wP is the probability of w ready-to-issue instructions in the global window,

wIPC is the expected IPC for these w instructions, and G is the size of the global

window. wIPC models the effect of structural hazards. The rationale behind this

division is that structural hazards are primarily dependent on the hardware architectural

42

configuration while control and data hazards are primarily dependent on the workload.

This model is further derived into model of structural hazards using Markov Chain.

For performance of virtualization, we can use the model suggested in [32.],

vconsolidation, a Intel virtualization multiplication value, to calculate the performance of

virtualized environment. Weights are the importance distribution of each guest operating

system and are defined with fixed number. For instance, more memory and physical

CPUs are assigned to guest operating system one than guest operating system two. The

workload performance is the performance actually behaved in the guest operating system

with the standard workload. The weight is the pre-defined work load of each virtual

machine and the workloadPerf is the independent performance of each of them. The

result is useful for comparing different configuration.

 ∑
=

N

i

irfWorkloadPeiWeight
1

][*][(eqt. 2.)

 Thus, this model can predict the how much usage totally used for comparing

different guest operating system configuration and the various utilizations. For instance,

the first guest operating system can be the web server and the second guest operating

system can be a development box.

3.3.2 Modeling for SMT and VM Combined
To show the effect of SMT and VM, we can simply use multivariate linear

regression to generate the models. Regression is used in generating functions out from

variables. For instance, XbY = , where Y is the result matrix,X are variables the and b is

the coefficients vector. By using the given values of Y andX , we want to find the

coefficient vector b , such that XbY =~
and ε=− YY

~
,where ε is minimized.

43

3.3.2.1 Simple Introduction to Regression Analysis

The general form of a simple linear regression is where α is

the intercept, β is the slope and is the error term, which picks up the unpredictable part

of the response variable yi. The error term is usually taken to be normally distributed

(Gaussian distribution). The x's and y's are the data quantities from the sample or

population in question, and α and β are the unknown parameters to be estimated from the

data. Estimates for the values of α and β can be derived by the method of ordinary least

squares. The method is called "least squares," because estimates of α and β minimize the

sum of squared error estimates for the given data set, and

 where is the mean of the x values and is the mean of the y values.

[16.][19.][20.][14.][27.]

3.3.2.2 Using the Multivariate Regression in the Data Collected
Average response time (Y1), throughput per minute (Y2), memory (Y3) and CPU time

used per transaction (Y4) can be represented as functions of number of threads, presents

of virtual machine and presents of SMT. Each Y can be represented via multivariate

regression.

bXY = ,

3263152143322110 xxbxxbxxbxbxbxbbY ++++++=

1x = number of threads, 2x = 0 for no SMT, 1 for SMT, 3x = 0 for no VM, 1 for VM

[]323121321 xxxxxxxxxxonesX =

 = 1 20 0 1 0 20 0

44

 1 40 0 1 0 40 0
 1 60 0 1 0 60 0
 1 20 0 0 0 0 0
 1 40 0 0 0 0 0
 1 60 0 0 0 0 0
 1 20 1 0 20 0 0
 1 40 1 0 40 0 0
 1 60 1 0 60 0 0
 1 20 1 1 20 20 1
 1 40 1 1 40 40 1
 1 60 1 1 60 60 1

323121321 269625..15.35.3833.817563.4583.90 xxxxxxxxxYresponseT −+−−++−=

R2=0.9896

323121321 5633.229171.07289.1425.4545.96277.22825.91 xxxxxxxxxtYthroughpu −−+−−+=
 R2=0.9842

() 8
323121321 1*256.2092.0173.0442.0955.0263.0128.9 −−−+−−+= ExxxxxxxxxYmemory

 R2=0.9766
Error! Objects cannot be created from editing field codes.
R2=0.9856

The square term 2nx were not used, as the coefficient of these terms tends to close to

zero. Also for 2x and 3x , the power will have no effect at all (since their values are 0 or

1). Thus, the close equations with small residual we can get are the above. All of them

have 95% confidence interval.

Therefore, we can predict Y
~

by substituting number of threads, presences SMT and

VM to found out the best choice. Further, instead of using the above statistics

individually, we can balance the response time, throughput, memory and CPU usage as a

united performance entity,1
~
P , use all case 1 as the base value, for instance,

()

k

k

k

n

k
kk

n

k

k

Y
n

w

c

Yc
n

w
P

~

%)(

,1
~

%
~

11
1

=

==

= ∑∑
==

45

k is the each component factor (CPU, throughput, memory, response time), n =4 for

there is 4 component factors. Ck is the coefficient of each component, such that it is

weighted with wk. For example, there are 4 component factors, n =4, weight of each

factor is wk =1 and Y
~

=23, 23Ck=25%, thus, the coefficient Ck =0.011. To calculate the

improvement and deficiency, we can simply use a new iP
~

 value, and compare it with the

base case1

~
P to adjust for the best value. New newkY _

~
 will be used and using the Ck we

just computed, we can get the newiP
~

. For example, 2

~
P is 1.05 and 1

~
P was 1, there is 5 %

performance gain; if 3
~
P is 0.97, then, 3

~
P has 5% performance decreases.

Notice: for memory used and response time, Ck should be negative, e.g., -(Ck) to

indicate the better the less response time and the better the less memory used.

3.3.3 Load Balancing and Load Distribution
Deriving the above, we can further determine the load distribution of machine with

SMT and virtualization. First, we want know about how traffic of load is distributed, for

instance, does virtual machines communicate with themselves internally? If so, how

resources are distributed among them?

Eqt.2 in section 3.3.1 for virtualization together with the model using 3.3.2, we can

use][irfWorkloadPe = iP
~

 for each guest virtual machine. Weight[i] as the resources being

divided up to each machine. For the availability and stability of base operating system,

∑
=

N

i

iWeight
1

][<0.9, so that the base operating system has 10% resource available for

running the VM manager and such; for a less powerful machine, the base operating

system would need more resource relatively. The internal communication between

46

virtual machine can be managed by virtual network interface vnet1 and vnet8 resides in

the host operating system, its operation relies on how many resources are left after

assigning them to the virtual machine. Thus we want to take base operating system and

the I/O statistics of the virtual machine into account:

W= ∑
=

+
N

i
iPiWeightPerfBaseOS

1

*][, where Pi is performance of each guest operating

system,

()∑
=

=
n

k
kki YcP

1

~~
,where 1

~
Y = OutputInputY /

~

PerfBaseOS =ava (1-∑
=

N

i

iWeight
1

][),and

To determine PerfBaseOS, we can simply used the machine’s performance without

load as the base, e.g. ava=1, then, there are more inter virtual machine traffic, availability,

ava , will be smaller, say 0.9. Therefore, by comparing values of different W (whole

system) settings, we can choose the best performance effective model with load

balancing among the virtual machines.

Secondly, how threads of SMT can be distributed among different virtual machines?

Obviously, if the base operating system is Linux kernel 2.6, we want to distribute one

physical CPU to one virtual machine, as described in Section 2.2.2 scheduler would

assign threads of the same program to the same CPU, maximizing utilization of resources

such as CPU caches and instruction buffers. Thus, putting the resource available as the

same physical CPU for each virtual machine avoids possible performance degradation

due to resource being pulled from other physical CPUs.

47

4 Thesis Conclusion

4.1 Virtualization Challenges and SMT Advantages
Virtualization introduces additional levels of abstraction and additional overhead,

thus, it is important to optimize the overhead via appropriate configuration. Unlike a

non-virtualized system which has abundant resources, the resource limitations in

virtualization usually drive up context switching rates occasionally at multiple levels of

abstraction. Therefore, it is important to know and test beforehand the system’s physical

resources available.

Second, scheduling across virtual machines is using assumed to be equitable and

consistent; it actually depends on the operating system that is running and schedulers’

design. For instance, Linux 2.6 kernel has a better scheduler than 2.4 which

accommodates SMT better. In this case, VM can make more use of the benefits of SMT.

Third, how will the resources be partitioned for the VMs are important, see load

balancing and distribution (3.5). Some virtualization monitors will provides various

options to map physical CPUs to virtual CPUs and to create affinity between certain sets

or allow a more general pool of recourse to be shared amongst all VMs. However, in the

case of SMT, it is not advice to separate a single CPU’s two hyper-threads among two

different virtual machines since it might not increase performance. The branch prediction

unit becomes less effective when shared, because it has to keep track of more threads,

with more instructions, and will therefore be less efficient at giving an accurate

prediction. This means that the pipeline will need to be flushed more often due to

mispredicts, but the ability to run multiple threads more than makes up for this deficit.

The penalty for a mispredict is greater due to the longer pipeline used by an SMT

48

architecture (by 2 stages), which is in turn due to the rather large register file required.

However, there has been research into minimizing the number of registers needed per

thread in SMT architecture. This is done by more efficient operating system and

hardware support for better deallocation of registers, and the ability to share registers

from another thread context if another thread is not using all of them.

4.2 Performance Determination and Analysis
As stated in Chapter 3, we have generalized a model for performance analysis of

SMT and suggested methods for comparison, such that, we have in comparing the impact

of different parameters, we have the “apple to apple” comparison, see [34].

4.3 Suggestions
There are several suggestions to improve accuracy in the performance comparison:

Load distribution of the machine is different at different period of time, e.g. usage

can vary from day to night. This need to taken into calculation for different models.

The number of data collected. During all 12 official tests, the durations were about 1

hour. Each test has around 360 data points. The number of data can increase to ensure

the statistic accuracy.

The distribution of the data points, in the tests, normal distribution was used.

However, in some rare case, the data might no necessary has statistic meaning which

need to be aware of.

Number of components taken to the consideration. There are several major factors

to be used, such as CPU, memory and I/O. However, for different test case we might

want to test other components, for example, the X gui factor or graphic response speeds

for games, UI interactive rate.

49

5 Future Work

This chapter suggests future work can be done and the technology under

development.

5.1 Multiple virtual machines with SMT mode
This is the case of multiple virtual machines on the base operating system, so that

virtual machines share the resources. However in this setting, there can be several

combination of performance analysis.

Case 1

All the virtual machines are running but no application on top are running. This is to

see the performance overhead of multiple virtual machines.

Case 2

This is the case of one virtual machine is running application and the rest of the

virtual machines do not run applications. This case shows how idealvirtual machines

affect the virtual machine that is running application.

Case 3

In this case, multiple virtual machines are running applications. Performance

degradation is expected. We want to see how much decrease is here with respect to the

case with one virtual machine running application and others idle. [30.]

50

5.2 VMware with Oracle
VMware with Oracle in process see [37.][38.]. Since virtualization causes

degradation, the integration of technology between VMware and Oracle would have a

beneficial impact on the perspective of virtualization.

5.3 Discussion on IBM P595 Micro partitioning
Starting with the IBM P595 server, [28.]the advance properties of SMT provide an

enhanced micro-partition technology for virtualization, called Advanced Power

Virtualization (APV). For IBM machines, p5 Hypervisor is the virtualization engine

behind the APV technology. This technology divides a physical processor’s computing

power into fractions of processing units and shares them among multiple LPARs(Logical

Partitions). For example, we could allocate as little as 0.10 processing units as opposed

to dedicating an entire CPU. There are two main advantages, better utilization of

physical CPU resources and more partitions (not limited by number of physical CPUs).

Unlike the current model we have, which is to bind the guest operating system to each

physical CPU, micro-partitioning further utilize the available resources. Thus, the future

work for virtualization and SMT, can be investigation on this APV technology, which is

expecting to have a better performance model.

51

Reference

[1.] D. E. Tullsen, S. J. Eggers, H. M. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. The 22nd Annual International Symposium on
Computer Architecture, Santa Margherita Ligure, June, 22-24, 1995, 392 - 403.

[2.] D. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm.
Exploiting choice: Instruction fetch and issue on an implementable simultaneous
multithreading processor. In Proceedings of the 23rd Annual Intl. Symposium on
Computer Architecture, pages 191--202, May 1996.

[3.] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen,
Simultaneous Multithreading: A Platform for Next-Generation Processors, IEEE
Micro, vol. 17, no. 5, pp. 12--19, Sept./Oct. 1997.

[4.] R. P. Preston et al.. Design of an 8-wide superscalar RISC microprocessor with
simultaneous multithreading. ISSCC Digest and Visuals Supplement, February 2002.

[5.] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, S. R. Kunkel,
Characterization of simultaneous multithreading (SMT) efficiency in POWER5

[6.] M. J. Serrano, Performance Estimation in a Simultaneous Multithreading
Processor, Fourth IEEE International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems (MASCOTS'96)

[7.] Hensbergen, P.R.O.S.E.: partitioned reliable operating system environment,
ACM SIGOPS Operating Systems Review, April 2006

[8.] R. Sailer, et al, Secure Hypervisor approach to trusted virtualized systems, IBM
Research Report RC23511 in 2005

[9.] M. Mergen et al, Virtualization for high performance computing, IBM Research
Report 2006

[10.] IBM Journal of Research and Development issue 49-4/5 : PR5 and
Packaging Volume 49, Number 4/5, 2005

[11.] Y. Wei, S. Son et.al, QoS Management in Replicated Real-Time Database, 24th
IEEE International Real-Time Systems Symposium (RTSS'03) p. 86

[12.] S. Hwang, N Jung et. al, Dynamice Scheduling of Web Server Cluster,
Proceedings of the 9th International Conference on Parallel and Distributed Systems,
2002

[13.] V. Cardellini et. al., Dynamic Load Balancing on Web Server Systems, IEEE
Internet Computing, May 1999

[14.] D. Xu, Multivariate Statistical Modeling and Robust Optimization in Quality
Engineering, Ph.D Dissertation, October 2001

[15.] G. Marin, J. Mellor-Crummey, Cross-Architecture Performance Predictions for
Scientific Application Using Parameterized Models, ACM SIGMETRICS
Performance Evaluation Review, June 2004

52

[16.] J. Kleijnen, Validation of Models: Statistical Techniques and Data Availability,
1999

[17.] P. Dibble, Migrating to Linux kernel 2.6, Linux Devices.com

[18.] R. Love, Linux Kernel Development, Novell Press, 2nd Edition

[19.] J. Werfel, MATLAN, Statistics, and Linear Regression,
http://hebb.mit.edu/courses/9.29/2004/lectures/optional01.pdf

[20.] A. Gullickson, Introduction to Multivariate Regression, Introduction to Social
Data Analysis, http://www.columbia.edu/~ag2319/teaching/G4074_Outline/

[21.] VMware Workstation .5.5, release note,
http://www.VMware.com/support/ws55/doc/releasenotes_ws55.html

[22.] VMware Workstation 5.5, requirements,
http://www.VMware.com/support/ws55/doc/intro_hostreq_ws.html#wp1000805

[23.] VMware Workstation 5.5 Support Document,
http://www.VMware.com/support/ws55/doc/ws_devices_2way_vsmp.html

[24.] Intel Processor Identification,
http://support.intel.com/support/processors/tools/piu/sb/CS-015823.htm,

[25.] Intel Processor Code Name,
http://en.wikipedia.org/wiki/List_of_Intel_codenames, by Wikipedia

[26.] J.Sugerman, G. Venkitachalam and B. Lim, Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor, Proceedings of the 2001 USENIX
Annual Technical Conference

[27.] M. Heath, Scientific Computing, An Introductory Survey, 2nd Edition, Mc Graw
Hill

[28.] M. Bush, Configuring a Virtual I/O Server, Sys Admin: The Journal for Unix and
Linux Systems Administrators, July 2007

[29.] Booting Server Virtualization Performance, IT @ Intel Brief, Feb 2007

[30.] E. Bolker, Y. Ding, Virtual Performance won’t do: Capacity planning for Virtual
Systems, BMC Software

[31.] E. Bolker, Measuring and Modeling Hyper-threaded Processor Performance,
U.Mass Boston Presentation, Sep 2003

[32.] J.P. Casazza et. al, Redefining Server Performance Characterization for
Virtualization Benchmarking, Intel Technology Journal, August 2006.

[33.] N. Carr, Linux Kernel 2.6 Features in Red Hat Enterprise Linux, Technical Brief
Red Hat Inc, 2002.

[34.] Performance Tuning and Benchmarking Guidelines for VMware Workstation,
VMware Technical Resources 2007

[35.] TPC BenchmarkTMC Full Disclosure Report for IBM eServer p5 595

53

[36.] Thomas Kyte, Expert Oracle Architecture—9i and 10g Programming Techniques
and Solutions, APress

[37.] Installation Guide for Oracle with VMware,
http://www.Oracle.com/technology/products/oem/extensions/plugin-
vmware_esx.html

[38.] Guideline for VMware user using Oracle, http://www.vmware.com/Oracle

54

Appendix

A. Terminology
Abbreviation Explaination
MT Fine-grained multi-threading
SMT Simultaneous multi-threading

HT
Hyper thread / Hyper threading, which is essentially SMT and can be used
interchangeably

CMP Chip multiprocessing
SMP Symmetric multiprocessing / Symmetric multiprocessors
client OS Client operating system located on the virtual machine
host OS Host operation system at which the virtual machine is located
VMware Virtualization technology developed by VMware company
Hypervisor Virtualization technology developed by IBM
RHEL RedHead Enterprise Linux

ESX server
Virtualization technoloy developed by VMware company which essentially is
the host OS

VMM Virtual machine monitor
LV Low voltage
SVR5 Unixware System V Release 5
NPTL Linux's Native Posix Threading Library
SGA Oracle: System global area
PGA Oracle: Process global area
UGA Oracle: User global area
Awr Oracle: Auto work repository (used to get the Oracle transactions per second

Filename: noel_thesis_5.doc
Directory: C:\Documents and Settings\Noel\My Documents\Research
Template: C:\Documents and Settings\Noel\Application

Data\Microsoft\Templates\Normal.dot
Title: Abstract
Subject:
Author: n
Keywords:
Comments:
Creation Date: 1/4/2008 1:15:00 PM
Change Number: 8
Last Saved On: 1/4/2008 1:41:00 PM
Last Saved By: n
Total Editing Time: 29 Minutes
Last Printed On: 1/4/2008 1:41:00 PM
As of Last Complete Printing
 Number of Pages: 62
 Number of Words: 11,530 (approx.)
 Number of Characters: 65,721 (approx.)

