Evaluating the Performance Characteristics of &udirMachine Used on Simultaneous
Multi-Threaded (SMT) Processors
by
HiuShanYim
A Thesis submitted to the
Graduate School-New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science
Graduate Program in Electrical and Computer Enginge
written under the direction of
Prof. Pompili

and approved by

New Brunswick, New Jersey

January 2000

Abstract of the Thesis
Evaluating the Performance Characteristics of &udirMachine Used on Simultaneous
Multi-Threaded (SMT) Processors
by HiuShan Yim
Dissertation Director: Prof Dario Pompili

Virtualization of computing hardware is one techuggvhich can make possible the use
of fewer physical computers, thus lowering resowmesumption. Today, as in the past,
hardware performance remains a major bottleneckitimal machine performance.
Simultaneous multithreaded, or SMT, processorsigeothread-level parallelism and are
being used to overcome the performance limitatiohsirtual machines. These same
processors are also being used to decrease theoftastmputing systems since less
hardware and power is required when compared withiple CPU systems. Virtual
machines should benefit from the properties of Spfocessors since they have a
common cache and parallel execution threads. Aesalt, using virtual machines in
combination with SMT processors should be an effitiway to maintain or increase
performance, save money and reduce physical haedweguirements. This study
attempts to determine if an improvement on virtmalchine performance exists through
the use of an SMT processor. If the performancanoEMT processor-based system is
on-par with several independent computers or malPU systems, then the use SMT
would be an efficient way for organizations to &sa their performance requirements at

a reduced cost. This thesis evaluates the perfarenaf a virtual machine used with and

without SMT. This study shows that a definite, swable performance improvement
exists when a virtual machine is run with an SMDagassor and that better virtual
machine performance is achieved as load increaddsen a performance modeling
method is suggested for various combinations of SMd virtual machines in order to

predict and maximize system performance and achgeyger load balancing.

Acknowledgement

| would like to express my thanks to Professor ManParashar and Professor

Pompili for their guidance and advice.

Table of Content

ACKNOWIEAGEIMENTottt eeeree e e e s e e e e e aetee et eeeaeeete e aesstasteasssa i saeasesaaaeaaeeeeeeessesenes AV
TADIE OFf CONLENT......eiiiiiiiiiiei e ettt e e e e et e b e e ee e e e e e e s e e e sbababbbbeeeeaeaaaeeasaaaannnnnes v
IS o) T [=S PPUEERRR Vi
[o) I 1o [PP P PP P PPPPPPPPPPPPPRP Y, | |
A (o o [U T i o] o N T OO TSP P P PPPRPPPP 1
1.1 Problems with available computational resourcespussible performance improvement..........
1.2 Simultaneous MUltithreading (SMT)uuuuuuiceeeeeieeriiiirer s e e e e e e e e e e rrerrerre e 2
1.2.1 Comparison of SMT and fine-grained multi-threadfNalN) ... 3
1.2.2 Comparison of SMT and Chip Multiprocessing (CMP)..........cccvevieeeeeeiieiiiiiiieeee e 4
1.2.3 Comparison of SMT and Symmetric Multiprocessing BM.............vviiiiiiiiiiniieeeeeeeeeeeee, 5
G T O = U I - T 4] =PSRRI 6
1.3.1 INtel HYPer-Threadingcovuuiiiiiiiiiiiimmmme et e e e e e e e e e e e e e aaeeeeeeeaeesessennes 6
1.3.2 IBM POWEE 5 SIMT ..ttt ettt ettt ettt e e e e skttt e e e sttt e e s ennbeeaeeanseeaeeanntaeeeaanns 6
R Y T (= 1[4 140 o O PP P PP PUPPPPRPPPPPPN 7
14.1 INtrOAUCEION T0 VIMWAIE ...ttt ettt e e e e e as 8
1.4.2 VMware with Simultaneous MuUlti-proCESSOISccueeuuriiuiiiiiiiiieieeeeeeeree e eeeeeeeeveaaanenne 9
1.4.3 (TaTrgeTo 8o iloT o i (o TN o 1Y/ 0 1= 0V, 1= S 10
144 Cost of Virtualization versus Performance BenefitS.........c.ccccooiiiiiiiiiiiiiiiiieies 10
1.5 Main Contribution Of thiS ThESIS......cciiiiiiieiii e
P (o 1= T 1= T =T IR = (U o SRR
% R [o1 oo (U Tt 1 o] o TP T T PP PPPPPPPPPTPT
2.2 Problem Formulation and system description......
221 Introduction to the Processor being used
2.2.2 Introduction to the Operation System being USeu....c.coovveiiiiiiiiiiiiiiin 13
2.2.3 Introduction to the virtual maching beiNg USEQ . .uuvvereeeeeiiieiiiiiieee e 16
2.2.4 Introduction to the Load and BENChMAIK ... eeeeeiiiiiieiiiiiiiie e 17
2.25 Rationality behind the choice of benchmark and load...............ccovvviiiiiiineen, 17
2.2.6 Baseline: base operating system without virtualhlimeEcwithout SMTcccoveeieiiiiennnnnn. 21
2.2.7 Base operating system without virtual machine V8MTccocceiiiiiiiiiees 22
2.2.8 One virtual machine on base operating system WAtBOMITcooeeecivvviiennneeennn. 23
2.2.9 One virtual machine on base operating system WA S...........ccccceeviviiiiiiiiieiieenee oo 24
2.3 SYStEM SetUP PrOCEUUIEuuiiiii i e e e e e e e e e e e e et e e e e e e aaeeeaebese b e as
231 Setup Oracle and Swingbench
2.3.2 Tuning SMT ..o
YA ©7o] o (o1 [V L] (o] L PP PP UPT PR
3 Performance Metric and SEIECHON. eeoceriiiie e
3.1 RESUILS COIBCIEMttt ettt et e e e e e e et bbbt e e e e e e e e e e e e s sanbeneees
3.2 Problem FOIMUIBLIONt ettt e e e e e e e bbb e e e e e aeaaaeeeaas
3.2.1 Introduction to problem formulationccceeeie i 34
3.2.2 SIMPIE RESUIL ANAIYSIS...uuiiiiiiiiie s i ettt r e e e e e e et e e et eeeeaeeeeeeaessreerennnnans 35
ICTRC I /T o 1= 11 o N g a 1= 1 g To o ES TN == o S 41
3.3.1 Previously suggestion Methods..............uueeeveriiiciiiir e e 41
3.3.2 Modeling for SMT and VIM COmDBINEduuvvueiiiiiiiiiii e 42
3.3.3 Load Balancing and Load Distribution.........cccceciiiiriiiiiiiiiiicscisen e 45
A TRESIS CONCIUSION ittt e ettt et e e e e e e e e bb e bttt e e e e e e s aababbbe e e eeeaaaee e e e s nnnbbnreaeeas 47
4.1 Virtualization Challenges and SMT AGVANTAQJES ceeeeeerrrrieieeeiiiiiiiiiiiiee e e eeee e e s e senreeeeeeeeees a7
4.2 Performance Determination and ANalYSISccccceiiiiiiiiriiriee e e e 48
T e o =] 1o 48
B FULUIE WOTK ..ttt ettt e e oot oottt ettt e e e a2 e s s b bbb be e e e e e e e e e e eesa s nnbbnbebeeeeaaaaans 49
5.1 Multiple virtual machines with SMT MOUE.......ccceviieiiiiicce e e 49
5.2 VMWAre WIth OFACIEccooiiiiii ettt ettt e e e e e e e e ab e e 50

5.3 Discussion on IBM P595 Micro partitioning......ccececeeeeeeeiiiiiiieieiiiiiiiiiiiies s ssssee e eseaeeaaeas 50

RETEIENCE ...ttt e e bttt e e n e e e e e b e et e e e n et e e e s b e e e e s e b e e anne 51
Y o 0 1= o PSSR 54
A. L= 000117] T S EERERRR 54

Vi

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Comparison of multi-threading and SMT ... 4
Comparison of chip multiprocessing and SMT ..o eeeeeieieciiiiir e rereee e 4
SMT AICRILECTUIE ...ttt i ettt e e e e e ettt e e e e e e e e s nbnbe e e e e aaaeaeaeeas 5
ESX server StruCture diagramc.oo oo i ceeceee e e ee e s ee st tr et e e e e e e e s s rener e e aeee e e s e nnees 9
The O(1) SCHEAUIETevvviiiiiiie e e e e e e e e e e e et e e et e e e e aeeeaeeaesrannennaan 15
Scheduler also supports hyper-threadingc.cueeeeeeveeree e 16
ST T T 2T o o PSRRI
Oracle ArcChiteCtUre OVEIVIEWeueeiioeeeeeeeeaeaseaaaaaiibebsseeeeeeaeasessasnsbeseeaeaeaaans
lllustration of test system setting

(O] - Tol SIS VIS3 (= o 1Y To] 71 1o] g o o 1SS
Oracle Monitoring—top modules

Oracle Console Data Collection

CPU time per €acCh TranSACHONuuii it ie e e e e e e e e e e e e et e e e e rerannr e
Average RESPONSE TIME ...uiiii i eee ettt e e e e e e e e e e e aaaa e
Throughput (Oracle Transactions Per S€CON)....cccvveeeeeiiiiiiiiiiiiiiiiceeee e, 38
Y 1= o g Lo TV (TN o T PP 39
[O SEALISHICS .eiuetieiee ettt emmeet ettt e e st e e s e e e e e e an e e e s ee s 41

vii

List of Tables

Table I.

Table Il.
Table Ill.
Table IV.

Top monitoring sessions and host machine monit@EEFIoNcccccvvvveieieeeeeeeeennns 32.
Sample result for database “insert” benchmark, 33
Details of all reSUItS COIECIEM eee et 34
Legend for Table II,IIl and Color Scheme Used ia @raphs.............cccevvvvvviviiiviinnnnnes 34

viii

1 Introduction

1.1 Problems with available computational resources and possible
performance improvement

This thesis studies the possible performance imgm@ant of combining the use of
simultaneous multithread processors with the viization of operating systems. The
cost of computation in large organizations and e@afions is enormous. For instance,
there are many costs are associated with maintaininaboratory of hundreds of
computers. In addition to machine costs, thereopezational costs such as energy costs,
cooling costs and space costs, plus administratpges which also rise as the quantity
and variety of systems increase. Therefore,isf [gossible to reduce the number physical
computers and still meet well-defined performaneguirements, environmentally

friendly cost savings can be realized.

Virtualization is a technique that abstracts awag hardware from the operating
system so that multiple operating systems can sharegle physical system at the same
time. This is a way to save resources. For im&aan organization can install multiple
servers in a single physical host. When eacheddlvirtual machines has different peak
usage times, they can share the available resowvgbsut interfering each other.
[12.][13.] However, this approach has not beernsm®ered a viable option due to virtual
machine overhead and degradation of applicatiorecspeithin the virtual machine.
Thus, system designers have been ignoring the tatyes of virtual machines simply
because early virtual machine implementations vedten the source of performance

bottlenecks.

Processors with high computation power, such astiHomie processors and
simultaneous multithreaded processors are becomorg desirable due to the fact that
they have properties similar to symmetric multigssors. The main advantage of
symmetric multiprocessors is that they can achigamllel processing more efficiently
than regular high frequency processors where thseatthing is avoided. Through the
use of simultaneous multithreading and multi-corecpssors, the improvements in
performance of virtualization have been shown tataéstically significant.

1.2 Simultaneous multithreading (SMT)

Simultaneous multithreading is the ability of theeraprocessor to fetch instructions
from multiple threads per cycle. Simultaneous itluktading combines hardware
features seen in two other types of processorsgislie superscalars and multithreaded
processors. From superscalars it inherits thetald issue multiple instructions each
cycle; and similar to multithreaded processorsit execute several programs or threads
at once. The result is a processor that can issuéiple instructions from multiple
threads each cycle. [1.][2.][3.][4.] The SMT apach attacks the two major
impediments to processor utilization — long latescand limited per-thread parallelism.
SMT processors have a larger register file, ang thihas the capacity to hold data for
multiple threads. There can be 4, or even 8, avantithreads. These multiple threads
can execute different instructions in the samelclogale. Out-of-order executions are

supported in SMT processors which allows for addai performance improvement.

There are several architectural requirements toeae SMT. First, multiple
program counters are needed and a mechanism byh wihé fetch unit selects one

counter each cycle; second, a separate return dtacleach thread for predicting

subroutine return destinations; third, per thraatruction retirement, instruction queue
flush, and trap mechanisms; forth; a thread idheaith branch target buffer entry to
avoid predicting phantom branches; and fifth, aydaregister file, to support logical

registers for all the threads in addition to regisenaming.

The extra threads supported by SMT processors eamsed to proactively seed a
shared resource like cache, to improve the perfocemaf another single thread. One of
the other uses of SMT is to provide redundant cdatfmn, for error detection and

recovery.

Companies give different names to SMT processotstel calls the SMT feature
Hyper-Threading and is included in the Pentium dcpssor family. IBM uses the term
Simultaneous Multithreading, which is essentiallye t same as Intel's “Hyper-

Threading”. Further details of the processors baélldiscussed in section 1.3.

Figures 1 and 2 are illustrations of the correspampdssue slots for different
processor types. Each color (red, yellow, blue gran) represents a different thread.
The follow sections 1.2.1-1.2.3 compare the is$ois &1 various processors. [3.]

1.2.1 Comparison of SMT and fine-grained multi-threading (MT)

Fine-grained multithreading occurs by time slicingherein a single processor
switches between different threads, in which cdse processing is not literally
simultaneous. It is actually a single processacakng instruction serially. However,
simultaneous multithreading is literally a processrxecuting all the threads at the same

time.

Time— Time———

H NN Denpel YEE NEe
H EEE DhEpeE N NN | =

HEERE "HEpmuEEE T ae.
OOEOOOO0 =

Intra-thread dependencies still limit performance Maximum utilization of function units by independent operations

Figure 1. Comparison of multi-threading and SMT

In the Figure 1, each color represents a threale ilfustration on the left shows
fine-grained multi-threading (MT), and on the iliation on the right depicts SMT. In
MT, each issue slot is occupied by one thread hecdktare redundant resources since the
pipeline is not full. In SMT, each issue slot ¢eve multiple threads.

1.2.2 Comparison of SMT and Chip Multiprocessing (CMP)

Chip multiprocessing occurs on a multi-core prooessMuch of the instruction

execution logic is shared between the two coresebah core has its own register set,

including any related addressing. This helps kbepprocessing pipelines full.

Time— Time———»

OOEOOOOEE Cmesc e ey
ElEEEENE NS N NN | &

| [[N W [peeENNY e
AN ENN e SN | SN

Limited utilization when only running one thread Maximum utilization of function units by independent operations

Figure 2. Comparison of chip multiprocessing and SMT

Figure 2 illustrates the comparison between chiftipracessing and SMT. Even

though chip level multi-processors have a similarpprty of running multiple threads

simultaneously, the diagram on left shows thati$sae slots are sliced in two and each
sub-pipeline is not fully utilized. The diagram t¢ime right shows that SMT is fully
utilizing the pipeline resources.

1.2.3 Comparison of SMT and Symmetric Multiprocessing (SMP)

Symmetric multiprocessing is independent physigalc@ssors connected via the
processor design interface for inter-processor comcation. Thus, the operating
system will schedule the processes to run on nelfpysical processors. Since most
programs are designed for single processors, synemmtiltiprocessors do not provide
performance gains to such programs. However, SMjdod for programs designed with

parallel execution in mind, especially embarradgipgrallel programs.

Dcach
e/Stor

Figure 3. SMT architecture

Figure 3 shows the flow of threads in SMT architeet where a thread is received
from an individual process counter and is mixed i rest of the stages, which include
register read, execute, store buffer, registerenaitd retire stage. [4.] shows an 8-wide

superscalar RISC microprocessor with simultaneouisi-threading.

1.3 CPU examples

1.3.1 Intel Hyper-Threading
Intel's Hyper-Threading Technology enables two dabiprocessors on a single

physical processor by replicating, partitioningd ataring the resources within the Intel

NetBurst micro architecture pipeline.

Internally, the processor replicates the resout@eseate copies of each resource for
the two threads. These resources include, allOpdy- architectural states, instruction
pointers, renaming logic and also smaller resougsh as return stack predictor, ITLB,
etc. Partitions divide the resources between xeewding threads, such as the Re-Order
Buffer, Load/Store Buffers and queues, etc. Howeeg&ecution threads continue to
share some CPU resources within the CPU such a®uhef-Order execution engine

and Caches.

Typically, each physical processor has a singléhitactural state on a single
processor core to service threads. With Hyper-TdinrgdSMT, each physical processor
has two architectural states on a single core, mggtkie physical processor appear as two
logical processors to service threads. The systé@SBenumerates each architectural
state on the physical processor. Since Hyper-Timgaalvare operating systems take
advantage of logical processors, those operatisigB)ys have twice as many resources to
service threads.

1.3.2 IBM Power 5 SMT

IBM’s latest Power 5 ensures smooth operation ofTSMIhe register-renaming

resources and associativities of instruction cagheé data cache are increased. The

branch information queue is split. The load reeorgueue is split and store recorder

gueue is split. There is out-of-order executioowaver, it is more difficult to switch
threads on a cache miss because at the time ofifsesome earlier instructions may not
have been performed while some later instructiomy miready have been completed.
The problem becomes where and how to stop onedhteaving the thread and its
resources in a state that will allow it to be rdsth after the switch is made to the other
thread. Because there is no thread-switch overl®8ld can hide even short-duration
stalls in the execution pipeline. If, due to pipellatency, an instruction from one thread
is delayed waiting for a result, or if, becaus¢haf misprediction of a branch, a portion of
a thread’s instructions have been flushed frometkecution pipeline, instruction from
the other thread can continue to be executed[7[§10.]
1.4 Virtualization

Virtualization is the process of presenting a lagigrouping or subset of computing
resources so that they can be accessed in waysgitt&tbenefits over the original
configuration. For example, the abstracting of pating hardware resources to provide

enhanced utility of the physical system is a gdalimualization.

There are several advantages to using virtualizatid-irst, lower hardware and
management costs can be recognized, since thecphgsiantity of hardware required is
reduced, the costs associated with maintaining taelware diminished. Second,
virtualization is a good way to sandbox an appiwés use of physical resources. Third,
legacy systems can be preserved on virtual maabpeeating systems and in a fully
operational state. Forth, the virtualization eegis capable of presenting new hardware
to the virtual operating system even when the hardvis not physically present. Fifth,

there can be known-good, hot-standby virtual mahiof different operating systems.

Sixth, virtualization can provide a powerful platio for debugging, monitoring and
testing due to the ease with which one can swipdrating systems to meet their needs.
Seventh, virtualization enables easier system iidgrabackup and recovery. Eighth,

there can be co-located hosting on the same physicdware.

The virtualization tools introduced in this studye aVMware and Hypervisior.
VMware is a product of EMC Corporation and Hypeiuisis a product of IBM
Corporation.

1.4.1 Introduction to VMware

VMware software runs on Windows and on Linux, aniél soon debut on Mac
OSX. VMware offers several virtualization producdMware workstation consists of a
virtual machine suite for the Intel x86 architeetuand can be used for setting up
multiple x86 computers on top of a single host apeg system. VMware server can
create, edit, and run virtual machines. It usedient-server model, allowing remote
access to virtual machines. ESX Server 3.x (RHHEZ3) a service console and acts as a
boot-loader for the vmkernel and provides its owanagement interfaces, such as a
command line interface, webpage multi-user interfand a remote console. It has low
overhead and better control and granularity foocating resources, such as CPU time,
disk bandwidth, network bandwidth, and memory zdilion to the virtual machines.

[26.]

Figure 4. ESX server structure diagram

VMware uses the CPU to run code directly whenewssible. For example running
user mode and virtual 8086 mode code on an x86epsnt will be executed directly on
the physical hardware. When direct execution cahmperate, VMware software re-
writes code dynamically. This occurs at the VMwhesgnel level and with real mode
code. VMware puts the translated code into a spaga of memory, typically at the end
of the address space, which it can then protectnaakle invisible using segmentation
mechanisms.

1.4.2 VMware with Simultaneous Multi-processors

Over committing physical CPUs is a common and aecepractice when running
multiple virtual servers. The advantage of ovamnutting is to slice the application’s
performance into smaller pieces, therefore progdjood performance-on-demand. This
is also a common practice for application servic®vigers and other hosted

environments.

10

1.4.3 Introduction to Hypervisor
Para-virtualization is a virtualization techniqueat presents a software interface to

virtual machines that is similar but not identitalthat of the underlying hardware. This
requires operating systems to be explicitly potiedun on top of the virtual machine

monitor (VMM). [8.][9.]

There are several benefits to para-virtualizatidarst, start time is reduced. The
“virtual reboot” avoids the latencies of hardwaeeimitialization by the BIOS. Also, a
pre-booted and frozen virtual machine image cashieped to all nodes in a cluster. In
other words, changing virtual machines is fast.

1.4.4 Cost of Virtualization versus Performance Benefits

New processors are providing features to improvdopmance of virtualization.
Each operating system in each virtual machine cantumed solely for the hosted
application. [30.]

1.5 Main Contribution of this Thesis
The research conducted leads to the following dautions:

First, to understand virtualization and simultareeomultithreading, 1 have
generalized and introduced both technologies amesiigated several existing products
and solutions, such as VMware, IBM’s Hypervisomtel's Hyper-threading and the

technology that makes SMT different from SMP andtiuore processors.

Second, this research demonstrates a viable méthdelsign, setup and benchmark
virtualization and SMT, in spite of the increasdt tcomplexity and difficulty in

formulating a proper comparison. In addition, tetsdy demonstrates how different

11

levels of load interact with system settings ana lmportant such settings are to achieve

maximum efficiency.

Third, this paper examined several different meshofdmodeling virtualization and
modeling SMT. Further, the models this study disthed and verified can be used for
comparing various configurations and also for |damlancing between the virtual

machines.

12

2 Experimental Setup

2.1 Introduction
This section describes the current experiment Idessid methodology. In order to

test the SMT processor with a virtualization layteere are several experiments needed.
For instance, we need to compare and define thebeurof threads used in the
benchmarking applications, the maximum performaoic@n application’s throughput
and establish a baseline case of system settifigs. reasoning behind the selection of
these methods is also discussed.
2.2 Problem Formulation and system description

There are several cases we needed to considerfiffhecase is the basic fast-
switching multiple-thread single CPU core with tagplication whose performance is
being analyzed running. The second case is layametp of the first case, where one
virtual machine is running on top of one CPU witte tsame application running. In
contrast to the single CPU cases are the SMT CHRdscavhere same application is
running with and without the virtual machine.
2.2.1 Introduction to the Processor being used

The processor used in the experiment is the In#e(law voltage) Xeon processor
from the Intel Gallatin processor family. It isdea on the IntelNetBurst™ micro-

architecture. [24.][25.]

The Intel Xeon processor includes 512KB (L2) caelnd includes the following
advanced micro-architecture features: Hyper ThregdHyper Pipelined Technology
(Jackson Technology) Rapid Execution Engine, AdednDynamic Execution, Trace

Cache, Streaming SIMD (Single Instruction, Multifdata) Extensions 2, Advanced

13

Transfer Cachelznhanced Floating Point and Multimedia Engine. Ke®n processor
uses a source-synchronous transfer of address atladta improve performance and
enables addressing at 2x the system bus frequentyata transfer at 4x the system bus
frequency. The 400 or 533 MHz system bus is a quadped bus running off a 100 or
133 MHz bus clock, making 3.2 GB/sec or 4.3GB/sata dransfer rates possible. The
LV Xeon processor is based on 0.13-micron procedsniology. The processor contains
12 kmOps instruction cache, 8 kbyte data cachelasache (Harvard architecture) and a
512KB L2 cache. 4 Mbyte L3 cache is provided. TMeXeon processor is similar to the
full power Xeon processor but runs at a reducedagel and power level. The clock

speed of the processor is 3.4 GHz.

When a thread is scheduled and dispatched to ealogrocessor, LPO, the Hyper-
Threading technology utilizes the necessary pracesssources to execute the thread.
When a second thread is scheduled and dispatch#w@econd logical processor, LP1,
resources are replicated, divided, or shared asssacy in order to execute the second
thread. Each processor makes selections at pairiteeipipeline to control and process
the threads. As each thread finishes, the operaystem idles the unused processor,
freeing resources for the running logical processor
2.2.2 Introduction to the Operation System being used

Not all operating systems support hyper-threadin@lder, previous-generation
operating systems, such as SCO UnixWare SVR5 doecognize processors as hyper-
threaded and will only utilize the processor as single unit. For the 2.4 Linux kernel,
the operating system schedules and dispatchegithteaach logical processor, just as it

would in a dual-processor or multi-processor systé&® the system schedules and

14

introduces threads into the pipeline, resourcesusiieed as necessary to process two

threads.

To test the problem statement, | used the Red Htgrfrise Linux 4, kernel 2.6.9-

42 .ELsmp. This operating system has the follovadgantages [18.][17.][33.]:

* Native Posix Threading Library (NPTL): This Linux62kernel feature,
originally designed and implemented by Red Hat,vigles excellent
performance for multi-threaded applications (foample, Java applications).
It enables multi-threaded applications that presipu required the
performance offered by proprietary Unix systembegsuccessfully deployed
on Red Hat Enterprise Linux. The implementationvmtes full POSIX
compliance, support for Thread Local Storage andtexhased

synchronization.

» Asynchronous I/O support allows processes to caatminning after issuing
a disk read/write 1/0. Previously, processes werpiired to wait for their
disk /O requests to complete before they couldtinge processing. The
feature is particularly useful for processes tkatie multiple writes in rapid
succession, such as database processes. Howsyechenous I/O can be

very useful for any multi-user application.

e The O(1) scheduler in the 2.6 Linux kernel providgreatly increased
scheduling scalability. This increase has beeneaell by a full redesign of
the scheduler algorithm in the 2.4 kernel so thatttime taken to choose a
process for placing into execution is constantaréigss of the number of

processes. The new scheduler scales very wellkdiega of process count or

15

processor count, and imposes a low overhead osysdtem. The algorithm
uses two process priority arrays; active and egpiré’rocesses are being
scheduled based on their priority and prior blogkiate. When a processes’
time-slice expires, the time-slice is placed on #xpired array. When all
processes in the active array have expired thee-8lice, the two arrays are
switched, restarting the algorithm. For generakrnattive processes (as
opposed to real-time processes) this results ih-prgority processes, which
typically have long time-slices, getting more corgptime than low-priority
processes. However, it does not get to the poihergv high-priority

processes can starve the low-priority processes.

Active timeslice array

DT T ot 11111111

Unexpired Expired
timeslice timeslice
process process

Expired timeslice array

Aot4 [Tt Fepebth 11 (1t LLTTT T
(LT oty [et

Figure 5. The O(1) scheduler
This scheduler support for hyper-threaded CPUsdeaeloped by Red Hat.
Hyper-threading support ensures that the schedalerdistinguish between

physical CPUs and logical (hyper-threaded) CPUssh®vn in Figure.7, the

16

scheduler compute queues are implemented for elagsigal CPU, rather
than each logical CPU, as was the case previouBtys results in processes
being evenly spread across physical CPUs, therebymizing utilization of

resources, such as CPU caches and instructionrbuffe

[A .". }\ 5
Pnuu?!s . Proce :
Process 3 Process ;:
Process : Process :
Process ¢
Process .,'
g
\ Scheduler Compute Queues o

Figure 6. Scheduler also supports hyper-threading

2.2.3 Introduction to the virtual machine being used
The virtual machine used in the experiment is VMaaworkstation 5.5.

[21.][22.][23.] VMware workstation works by creagjnfully isolated, secure virtual
machines that encapsulate an operating system tandpplications. The VMware
virtualization layer maps the physical hardwareoveses to the virtual machine’s
resources, so each virtual machine has its own @ithory, disks, and 1/0O devices, and

is the full equivalent of a standard x86 computer.

VMware 5.5 also supports 32-bit and 64-bit host ajuebst operating systems
running on multiprocessor host machines. Furtitgmovides experimental support for

two-way Virtual SMP. This includes any SMP hardwareluding dual-core systems

17

and hyper-threaded uniprocessor systems. The nuohlpocessors can be configured
in the VMware application settings. Two virtuabpessors can be assigned in both 32-

bit and 64-bit guests.

2.2.4 Introduction to the Load and Benchmark

Load 1:

Oracle database server is installed on the hospotenand used for benchmarking.
The Oracle application also runs on the host coerpartd calls the server with multiple

queries.

The application being used is Swingbench. Thewso# enables a load to be
generated and the transactions, or response tortas tecorded and charted. While it is
primarily used to demonstrate Real Application @us it can also be used to
demonstrate functionality such as online table itdbustandby databases, online backup
and recovery etc.
The benchmark run on Swingbench is OrderEntry. e€dtry is based on the "oe"
schema that ships with Oracle9i/Oracle10g and @nuh continuously. It introduces
heavy contention on a small number of tables armtbssgned to stress interconnects and
memory.

2.2.5 Rationality behind the choice of benchmark and load
Why use ‘New customer registration’?

Swingbench, the load generator, is used to sthesdatabase. The application has a
java-based GUI. While running, this applicatiorl\wpawn threads as individual clients.

There are five benchmarks to be chosen, new custoaggstration, browse products,

18

order products, process products and browse ordéesv customer registration will be
used as the standard of the benchmark. This masgsinclude running of the java
application with multiple threads and multiple Qeaconnections, and each of them will
connect to each client and data will be inserted the database with commits. As the
Oracle instance writes to the database, we cantardhie disk 1/0 and the impact with
hyper-threading (HT) and virtualization. Figuredisplays the Swingbench GUI used to

generate load.

File Help ‘
0 & K

cHe de n

configuration | Qutput | Events | Id Class Name Type] Load | Activate?

~Connecti ~
Mew Customer Registration com.dom benchmarking.swingben... Transaction

o] i —
i
Fassword I:l Browse Products com dom benchm arking swingben . Transaction H

User Name | soe

T 21
Connec 1| fsthesisjorc e |
| Type Il jdbe driver (oc) ~! Order Products comm.dom.benchmarking.swingben... Transaction O

e ————

Load {010 100) 501 |
-Load - = T [
Chart Type | Transactions per Minute ~ Users] 1|
u |

Min |10 | Curren 1 Max Transaction Throughput

Transactions Per Minute

‘Standa_rd Connections v‘

| swingbench Qutput Sereen

File Mame | ftmp/resultsom

Statistics () Minimal (=) Full

Transactions Per Minute : 7246

Order Entry PLSQL) Users Logged On : 60 Nested Transactions per min: 0

Figure 7. Swing Bench

Why use Oracle?

19

Oracle database architecture is well establishet pemformance orientated. The
Oracle instance can be considered as two majos,pfrst, the physical processes

(threads), second, the memory structure. [36][11.

Linu/Unixindows Machine

Database Buffer Cache

{Data and Index blocks

DB_CACHE_SIZE

DBE_BLOCK_SIZE
[DB_2K_CACHE SIZE

Data Dictionary DB_BK_CACHE_SIZE

Cache

(Dictionary data) DB_16K_CACHE_SIZE

| Large Pool

Database MYDE

- ~—-
Files Files Dictionary
— | Y e | Gzt
Password File Control | |Fedo log| | TADIE
Files Files | \5pace)

Figure 8. Oracle Architecture Overview

Figure 8, the Oracle memory architecture is bridfhstrated as the following,

System global area (SGA). This is a large chunknefnory that maintains
many internal data structures that all processed meaccess. It caches data

from the hard disk; buffer data before writingatthe hard disk and holding

parsed SQL, etc.

Process global area (PGA). This is process-speati@mory, allocated via C

runtime, eg, malloc or memmap. It grows or shriaksuntime.

20

» User global area (UGA), the memory that each sessin access. If
dedicated server, UGA is synonymous with PGA. @tie, if share server
process, UGA must be started in a memory structbna¢ every shared

process has access to (synonymous with SGA).
The Oracle physical process operation is illustta® follows:

The Oracle server processes perform work on belfiaf client session. We use a
dedicated server for these tests so that therenéson-one mapping between client

connection and server process (thread).

Background processes perform mundane maintenasés taeeded to keep the
database running, such as maintaining block befiehe, writing blocks out to data files
as needed, or monitoring archive log files. Anot@vantage of using Oracle is the ease
of use of Oracle web console, which gives a corer@ninterface for performance

monitoring. This topic will be discussed in the @te 3.

21

Virtual Machine

InstMe oS
Oracl Java
e V

/ \
ﬁasse OS, LINUX A§‘4, Kernel 2.6

/)

’ Oracl Java
instan Client
[

CRU number seenlon the base OS:
0 1 2 3
Physical Layer, base/machine:
CPU1
CPU2 O VM with
H H H H SMT
'(I)' 1— -(I)— I VM without
SMT
Base OS
1 6 Rav// 1G RAM with SMT

W O Baseline

Figure 9. lllustration of test system setting

2.2.6 Baseline: base operating system without virtual machine without SMT
The baseline test is used as the metric for comgari Figure 9 (circle in Red)

demonstrates the setting which consists of the baseating system and the physical

layer. The system setting for the baseline testli;Biux machine running on
e 1 physical CPU

e 1 hyper thread (HT) of the 2 HT of 1 physical CPU

22

* SMT mode of the base operating system is disabled

* 1GB of RAM

¢ OS version: RHEL4

» Oracle server and Swingbench test tool

The GRUB configuration is as the following:

title Red Hat Enterprise Linux AS (2.6.9-42. ELsnp)

root (hdo, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb qui et mems1G naxcpus=1 noht

initrd /initrd-2.6.9-42. ELsnp. i ny

2.2.7 Base operating system without virtual machine with SMT
Figure 9 (circle in Orange) demonstrates the ggttmich consists of the base

operating system and the physical layer. The systgting is the following

e 1 physical CPU

e 2 HT of 1 physical CPU

* SMT mode of the base operating system is enabled

* 1GB of RAM

« OS version: RHEL4

» Oracle server and Swingbench test tool

The following GRUB configuration is used,

title RHEL AS4 1GB HT (2.6.9-42. ELsnp)

root (hdo, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb quiet neme1lG nmaxcpus=2

initrd /initrd-2.6.9-42. ELsnp.ing

23

2.2.8 One virtual machine on base operating system without SMT
All physical CPUs are used on the base operatistesy, each physical CPU has

SMT mode enabled. One virtual machine installéeven though the base operating
system is operating at full capacity, the virtuaiver is set to run with 1 logical thread.
To do this, VMware will see 2 virtual CPUs (2 hyglread = 1 physical CPU), but only

one will be selected for use in the virtual opemgisystem via GRUB.

e 2 physical CPUs

e SMT on Base OS is enabled and running on all 4 (@Tghysical CPUS)

* 2 GB RAM is used on the base OS

* VMware ports 1 physical CPU to the client OS

e Client OS sees 2 HT of 1 physical CPU and uses 1 HT

* 1 G of RAM is allocated to the client OS

*« OS version: RHEL4 on both host and client OSs

* Oracle server and Swingbench test tool is runnimglient OS

» Oracle server and Swingbench test togldsrunning on base OS

The following GRUB setting is for the base OS,

title Red Hat Enterprise Linux AS (2.6.9-42. ELsnp)

root (hdo, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb qui et

initrd /initrd-2.6.9-42. ELsnp.ing

The following GRUB setting is for the client OS,

title Red Hat Enterprise Linux AS (2.6.9-42. ELsnp)

root (hdo, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb qui et mem=1G nmaxcpus=1

24

initrd /initrd-2.6.9-42. ELsnp. i ny |

2.2.9 One virtual machine on base operating system with SMT
One virtual machine is running with 2 virtual CPUdn this virtual machine

operating system, the same Oracle server is iadtalhd runs with the same benchmarks.

In this test, the virtual machine will be able tmron all the CPUs it sees.
* 2 physical CPUs
« SMT on Base OS is on and running on all 4 HTs (Z&mal CPUS)
* 2 GB RAM s used on the base OS
* VMware ports 1 physical CPU to the client OS
* Client OS sees 2 HT of 1 physical CPU and uses 2 HT
* 1 GB of RAM is allocated to the client OS
e OS version: RHEL4 on both host and client OSs
* Oracle server and Swingbench test tool is runnimglient OS
* Oracle server and Swingbench test toolasrunning on base OS

The following GRUB setting is for the base OS,

title Red Hat Enterprise Linux AS (2.6.9-42. ELsnp)

root (hdo, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb qui et

initrd /initrd-2.6.9-42. ELsnp.ing

The following GRUB setting is for the client OS,

title Red Hat Enterprise Linux AS (2.6.9-42. ELsnp)

root (hdoO, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb qui et mem=1G maxcpus=2

initrd /initrd-2.6.9-42.ELsmp.img

25

2.3 System Setup Procedure
The chapter describes the setup procedure fanealiests.

2.3.1 Setup Oracle and Swingbench

First, given the test machine, see 2.1 for CPUésysinformation. On the base
machine, install the operating system, install @rak0g, and database administration
group accounts, install j2sdk, install VMware-wddioon RPM and set the
recommended Oracle 10G kernel parameters. Theleamd Swingbench parameter

will be the same for all the test cases:

fs.file-max = 65536

kernel . shmmax = 2147483648

kernel . sem = 250 32000 100 128
net.ipv4.ip_local _port_range = 1024 65000
net.core.rnmemdefault = 262144
net.core.rmemmax = 262144

net.core. wemdefault = 262144
net.core. wrem max = 262144

For instance, adding RPMs for Oracle DB (gcc-33li886, glibc-devel-2.3.4-

2.25.i386.rpm,glibc-headers-2.3.4-2.25.i386.rprbakernheaders-

2.4.9.1.98.EL.i386.rpm)

Add more swap space per minimum Oracle recommesdati

dd if=/dev/zero of =/ swapfile bs=1024 count=1572864
Is -al /swapfile

nkswap /swapfile

swapon /swapfile

free

Extract OracleDB-10G release 2, put Oracle enviremnvariable in place, start

listener and then start Oracle. Setup Swingbenchireamment variable to install
Swingbench Order Entry by using oewizard. Javau&irmachine will be allocated with

250MB of memory.

26

2.3.2 Tuning SMT
First, with the current chipset, SMT can be turo&dor on without the presence of

the operating system, by setting the Advance BI@8&ing: Hyper-thread enabled.
Depending on the version of kernel, there maybergtarameters needed to be set in the
BIOS. For example, kernel 2.4 requires ACPI teebabled in the BIOS in order to use
the logical CPUs. After hyper-threading is turreed the base OS will be able to see 4

logical CPUs.

Each physical CPU has 2 hyper-threads. If the IdSehas all 4 logical CPUs
running, VMware will be able to use 1 physical CRWW2 hyper-threads. This is due to
the fact that VMware workstation can use only 19tg! CPU. This is a limitation of
the version of VMware selected. However, all teste configurations fit within these

limitations of VMware workstation.

The base OS has 3 settings according to test aasestion 2.2. Setting O is used
for test cases 3 and 4 where the client OS is ngnand there is no limitation on number
of CPUs and memory allocated. Setting 2 is usedbdse case, where kernel parameter
“noht” is used to ensure hyper-threading is disébleSetting 1 is used for case 2,

“maxcpu=2" means 2 logical CPUs are used. Thevahg is the GRUB file:

0 ### Oiginal SWP
title Red Hat Enterprise Linux AS (2.6.9-42. ELsnp)

root (hdo, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb qui et

initrd /initrd-2.6.9-42. ELsnp. i ny

#a# 1 ### 1GB RAMW 1 cpu w HT
title RHEL AS4 1GB HT (2.6.9-42. ELsnp)

root (hdoO, 0)

kernel /vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00
rhgb quiet neme1lG nmaxcpus=2

initrd /initrd-2.6.9-42. ELsnp. i ny

2.4

27

2 ### 1B RAMW 1 cpu w o HT
title Red Hat Enterprise Linux AS (2.6.9-
root (hdo, 0)
kernel
rhgb qui et mems1G naxcpus=1 noht
initrd /initrd-2.6.9-42. ELsnp.ing

42. ELsnmp)

/vminuz-2.6.9-42. ELsnp ro root=/dev/ Vol G oup00/ LogVol 00

To ensure the correct setting, the number of CPtJsuse can be seen in

/proc/cpuinfo.

There should be 4 identical CPUso¢pssor 0 to 3) shown as the

following:

processor 0

vendor _id . Genuinelnte

cpu famly . 15

nodel 2

nodel nane : Intel (R Xeon(TM CPU 2. 00CGHz
st eppi ng 9

cpu MHz : 1996. 852

cache size : 512 KB

physical id 0

si blings D2

core id 0

cCpu cores 1

fdi v_bug : no

hlt _bug no

f 00f _bug no

coma_bug no

f pu yes

f pu_exception . yes

cpui d | evel D2

Wp - yes

flags fpu vhe de pse tsc nsr pae nte cx8 apic ntrr pge nta
cnov pat

pse36 clflush dts acpi mMx fxsr sse sse2 ss ht tm pbe cid xtpr
bogoni ps . 3996. 67

Conclusions

In this chapter, | have discussed the system samgpthe experimental design to

provide a clear picture of the operating systenfigaration with and without VMware

and with and without SMT. The setup provides archpples-to-apples comparison [34.].

When doing performance comparisons it is importanhake sure that the configuration

of the systems being compared are as similar asilpes While comparing the

performance of client versus host machine, eadhctese should use the same setup and

28

the impact of host operating system should be teeptminimum. For instance, when the
virtual machine is configured to use of 1GB of meynand 1 HT, these limits should be
only seen on the virtual machine. On the host mactihe base operating system must
contain more than 1GB of memory and 1 HT. In th&y, we ensure that the base OS
has its own resources to run the virtual machirté enough spare capacity to cover the
overhead of running the virtual machine withoutluehcing the virtual machine’s

performance.

29

3 Performance Metric and Selection

This chapter analyzes the results collected andeldped from the system

performance model for virtualization with simultas multithreading.

3.1 Results collected
This section illustrates which data is used anddh&’s corresponding weight, or

importance.

Top Services

2505

M orcli95.58%)
Sy SIBACKGROUNDIIE

WSV SEUSERSD.1%)
Figure 10. Oracle System Monitor-top

Top Modules {by Service)

M Unnamed {orcli(79.3%)
Mew Customer (orcl)i17.3%)
B Unnamed (SYS$BACKGROUNDIEY%)
M OEM. SysternPool {orclif0. 1%
I OEM. DefaultP ool forciid. 1%
B Admin Connection (SYSEUSERSI01%)
W MO SLAVE (SY SEBACKGR UMD, 1%
BMEM PING (S SFUSERSIN%)
Realtitne Connection (SYSEUSERSI0%)
M s glplus@thesis (THS W1-V31 (SYSFUSERSID%)
Other(0%)

Figure 11. Oracle Monitoring—top modules

Database Instance: orcl

30

Horme PerformancelAdministration Maintenance

Best viewed using latest SVG plugin

20

15
. W\/W/_/—’V
5

o]
74a 7EE 200 205 210 215 820 825 2:20 835 &40 845
Jul 1, 2007

Runnable Processes oI
o

Average Active Sessions

w 231
18.5 |40
12.9
4.2
4.6

Active Session

0.0 - =
7149 755 200 805 %10 &15 ®20 ®25 @30 @35 540 845
Jul 1, 2007

Figure 12.0Oracle Console Data Collection

M Load Average

[Other

W Ietwork

M Administrative

M Configuration

M Cormit

M Application

M Concurrency

M Systern /O

W User KO
Scheduler

W CPU Used

Figures 10 through 12 show that the Oracle consolects data for Oracle

performance and the SQL query information. The $@te file contains the number of

SQL statements executed and the correspondingtsatsti It is a good Oracle tracing tool

31

to discover abnormal SQL statements which takeaogel amount system resources and

result in an abnormal statistical distribution.

From the data collected, including those from vidiap and the Oracle console,
several obvious patterns emerge as parameter chamgetested. The parameters that
were changed include enabling and disabling SMTeradl using or not using VMware.
Results for the wait time, as expected, changechv8MdT was turned off. Wait time

includes in memory undo latch, cache buffer chamg library cache pin.
The tools used and metrics collecteduidet! the following:
e vmstat, for cpu usage as seen in the current apgraystem.
» topstat, to see the top cpu consuming processes

e awr report (auto workload repository), from Oracte, see the Oracle

performance, and throughput (Oracle transactions¢eond)

* Transactions per minute, same as seen in the Semehb GUI. (This
transaction is different from an Oracle transacfionvhich each transaction

is a complete process consisting of multiple Oréelesactions)

* Swingbench log file (result.xml), mainly for resgentime distribution.

Tasks:
Cpul
Cpul
Mer:
Swap:

FID

3855
ITeZ
3927
3971
3957
3931

& rootimthesis:~

Tasks:
Cpul
Cpul
Cpuz
Cpus
Hem:
Swap:

5990
6006
5857

oL b

root@thesis¥M:~ ;lg|5|
top - 20:35:29 up 56 min, 2 users, load average: 9.45, 11.10, 6.71 ‘:J
126 total, 4 running, 122 =sleeping, 0 stopped, 0 zombie
34.9% us, 31.8% =sv, 0.0% ni, 32.7Y% id, 0.6% wa, 0.0% hi, 0.0% =i
34.4% us, 32.2% sy, 0.0% ni, 31.9% id, 0.59% wa, 0.6% hi, 0.0% =i
1034604k total, 914508k used, 118796k free, 17220k buffers
Je044e4d4k total, Ok used, 3604464k free, 652020k cached
U3ER ﬂ WIRT REZ 3SHR 3 $CPU $MEHM TIME+ COMMAND
root 17 0 643w 3Zm 5464 3 13 3.2 1:35.37 java
oracle 16 0 380m 18m 17m R 4 1.9 0:35.80 cracle
oracle 15 0 365m 65m 63m 3 3 6.5 0:14.55 cracle
oracle 15 0 365m 61lm 59m 3 3 6.0 0:14.582 cracle
oracle 15 0 365m 62m 60m 3 3 6.2 0:14.921 cracle
oracle 15 0O 365m 68m 66m 3 Z B.7 0:14.921 cracle
=101 %
top — 21:05:07 up 2 days, 6123, S users, load average: 1.62, 1.52, 1.082 ;J
74 total, Z running, 72 =sleeping, 0 stopped, 0 zombie
Z2.0% us, 72.4% sy, 0.0% ni, 25.6% id, 0.0% wa, 0.0% hi, 0.0% =i
0.7 u=s, 4.0% sy, 0.0% ni, 95.3% id, 0.0% wa, 0.0% hi, 0.0% =i
2.3% u=s, 71.2% sy, 0.0% ni, 26.4% id, 0.0% wa, 0.0% hi, 0.0% =i
0.3% us, 0.3% sy, 0.0% ni, 99.3% id, 0.0% wa, 0.0% hi, 0.0% =i
2074420k total, 2053036k used, 16354k free, lgg20k buffer
je04464k total, 144k wused, 3604320k free, 1521580k cached
T3ER PR NI <WIRT REZ SHE ; CPU $MEHM TIME+ COMMAND
root 5 -10 1105w SZ0mw S04m 3 147 45.4 37:47.93 vinware-wvinx
root o -z0o u] a a3 5 0.0 Z2:11.67 vmware-rtc
root 15 0 42532 28w 15m 3 1 1.4 0:45.29 vmware
root 1a 0 2064 545 472 3 o 0.0 0:01.10 init
root BT u] u] u] o3 o 0.0 0:00.01 migrationso
root 34 19 u] u] o3 o 0.0 0:00.00 ksoftirgd/0
root RT u] u] u] o3 o 0.0 0:00.01 migrations1l

Table I. Top monitoring sessions and host machine monitoringession
Example results as mean of samples data points:

No SMT
no VM
(baseline)

w SMT no

VM
VM

no SMT
VM SMT

Insert new customer

VMware
percentage(
Show in
Top of
Base VMware
operating VMware cpu
system) memory used(%)
None None None
None None None
89 35 76
162 54 76
Min
Number of response response
clients time(ms) time(ms)

Base
operating
system
cpu used
(%)

85
64

22
32
max

response
time(ms)

Oracle Swingbench

transaction transaction

per second per minute
241 7340
334 10120
190 5895
254 7620

32

No SMT

no VM 60

w SMT

no VM 60

VM

NO SMT 60

VM SMT 60
Table II.

Test Case 1

Threads 20

Ave

Response 9

Min

Response 4

Max

Response 2461

awrr

Transactions 139.63

FreeMemAvg 279267

% Free Mem 0.000279

CacheAvg 591555

[@]o] 74.3267

IObo 480.153

CPUIdleAvg 63.52

CPUUsedAvg 36.48

CPU

Used/Trans 0.261262

Test Case 3

Threads 20

Ave

Response 34

Min

Response 6

Max

Response 2729

awrr

Transactions 117.84

FreeMemAvg 308967

% Free Mem 0.00030897

CacheAvg 552590

[@]o] 63.0067

IObo 337.74

CPUIdIeAvg 47.54

199

55

303
156

4

6
4

9745

3077

6361
5583

Sample result for database “insert” benchmark

1 1 2 2 2
40 60 20 40 60
91 199 6 59 55
4 5 4 4 4
1534 9745 860 450 3077
208.54 241 156 278 334
15987.1 19138 21940.3 65611.1 17626.3
6.56E-
1.6E-05 1.91E-05 2.19E-05 05 1.76E-05
756614 505325 807908 728615 649602
1.20667 207.917 1.51333 27.88 151.412
429.553 674.167 627.513 993.313 897.766
45.08 15.5667 80.7333 58.92 42.2092
54,92 84.4333 19.2667 41.08 57.7908
0.263355 0.350346 0.123504 0.14777 0.173026
3 3 4 4 4
40 60 20 40 60
187 303 29 82 156
6 6 1 5 4
3077 6361 1663 4801 5583
158 190 120.16 202.82 254
50804.1 17170.3 105088 129204 15901.5
5.08E-05 1.72E-05 0.000105 0.000129 1.59E-05
758786 493096 758350 657485 6.71E+05
1.94 32.125 1.18 42.6611 9.29
309.84 337.489 433.12 511.317 572.543
35.4533 24.8306 57.3267 37.1056 22.6533

33

34

CPUUsedAvg 52.46 64.5467 75.1694 42.6733 62.8944 77.3467
CPU
Used/Trans 0.4451799 0.408523 0.395628 0.355137 0.3101 0.304515
Host View:
FreeMemAvg 1.69E+05 317490 324913 53203.4 16353.4 16925.6
CacheAvg 1.76E+06 1.54E+06 1.57E+06 1.78E+06 1.86E+06 1.81E+06
IObi 57.74 77.5389 59.6322 0.78 1.65333 3.32993
IObo 533.567 759.933 425.753 721.653 393.587 777.17
CPUIdleAvg 85.2467 65.6889 79.4368 75.2933 82.2133 59.7619
Table Ill. Details of all results collected
Test Case Representation and Line Color
Without SMT With SMT
] 1 2
Without VM
With VM 3 — 4 —

Data Collected
Data Collected and used for calculation in 3.2
Data Collected in the host OS and is not supposed to be used for comparison

Table IV. Legend for Table 11,11l and Color Scheme Used in tle Graphs
The data points collected are parsed result froch ézst. The duration of each test

is between one half to one hour. Result collectitanted after the load was stabilized,
approximately fifteen minutes after the test wamtstl. Sampling time interval is 10

seconds and for 1 hour in duration. Thus, therse 880 data points, or samples. The
mean of the samples was used. Thus, all databieTais the mean of the all the data

points collected.

3.2 Problem Formulation

3.2.1 Introduction to problem formulation
From Table 1 sample results collected, we can simetive the following,

Impact on throughput for the disk 1/0 benchmarksemt new customer to the

database:

The SMT factor is about 1.35, which is 35% increafstaroughput

35

BaseOSwith SMT _ 334= 131
BaseOSwithoutSMT 254

Virtualization with SMT _ 254: 134
Virtualization without SMT 190

The above data show consistency. For instancd) ®MT there is a general
increase of performance of 30% in database pro@s=s with the virtual machine
abstraction. It is consistent with our expectatiand with result from other

benchmarking done with SMT [6.][35.].
The virtualization factor is about 0.75, which B2 degradation of throughput

Virtualization with SMT _ 254
BaseOSwith SMT 334

Virtualization without SMT _ 190 074
BaseOS without SMT 254

=076

The performance degradation of VMware (- 25%) shoarssistency. Virtualization
with SMT shows a decrease in performance when coedpwaith the base operating
system with SMT enabled. The same is true fouglization without SMT; it is not only
less but the percentage decreases is identicaletprevious case, when comparing the

results with the base operating system without SMT.

Thus, we can generally agree they are indepenaetrg, such that SMT did not

change the behavior of Virtual machine degradadiach vice versa.

3.2.2 Simple Result Analysis
This section, we focus on the comparison of difier@alues using graphic

representation.

36

3.2.2.1 CPU time used per transaction

CPUtime used per Transaction
0.5
0.45 A \
0.4 ——e
o 035 k\._ ——3
E 034 - " =4
X 025
2 02 1
© 0151 2
0.1
0.05 -
0 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70
Number of Threads

Figure 13.CPU time per each Transaction

The CPU time per each transaction is compared leetvwlee four cases, we can
interpret the relationship between them as theolg: cases without VM, the more the
number of threads and the more expensive the awe€fU time spent on each
transactions. This is seen as line 1 and 2 areggopwards, and line 3 and 4 are
decreasing with response to number of threads. effieet of SMT is obvious as line 2
and line 4 are always lower than line 3 and line Notice the interception of line 4 and
line 1 indicates that more the number the threti@smore efficient with VM with SMT
such that VM with SMT out perform the original cas€his also implies more utilized

the system, the more efficient it is.

3.2.2.2 Response Time

Ave Response Time Distribution

350
300 y = 134.5x - 94.33 1
o 250 5
m = -
< 2200 = 95x - 90.333_ | 3
Q_ . —
o ~ 150 g | 4
* 1004 ——Linear (1)
50 - —
y = -28.5x% + 138.5x - 104 | —Poly.(2)
0 T .
——Linear (3)
20 40 6G

Number of Threads

Figure 14.Average Response Time

37

The response time distribution shows no abnormally.the graph trend lines are

also applied to see the function trend of each.c&se 1,2 and 3 are all close to linear

except case2 (SMT on original machine). The reasmit due to the response time is

close to minimal all the time.
response time than their counterparts.

transaction response time is better with when mgimber of threads are used. Case 4

As expected caséh SMT (2,4) always have lower

Interestsignilar to CPU time used per

(SMT with VM), the VM impact (longer response timeas bigger with smaller number

of threads, however, with larger number of thretidsadvantage of SMT is shown as

response of case 4 is lower than case 1.

38

3.2.2.3 Throughput

Transactions per Second

400

350
300

250 =

200

——3

Number of
Transactions

50

—.—4

100

50

20 40 60

Number of Threads

Figure 15.Throughput (Oracle Transactions Per Second)

Graph of transactions per second shows the awtoed the process has done.
The number of transactions increases with the numibthreads. From 20 to 40 thread,
all cases have steeper slope than from 40 to 66hvwdhiows, the increase in throughput is
faster at lower number of threads and higher nundbehreads tend to saturated the
throughput increase rates. From 40 to 60 threzatse 2 and 4 (with SMT) have same
slope and case 1 and 3 (with out SMT) have the sape. Cases with SMT show a
better increase in throughput with large numberttokads. Also, this shows the
difference between VM stay constant (the heighedihce between the lines). With the
impact of VM, case 3 and 4 has lesser throughpan ttase 1 and 2. Start with low
number of threads, the transactions are close alitbases. However, at 60 threads, we
see that even VM decrease the throughput, positiyect of SMT let throughput per
threads increase and over throughput of Case4 @Mi with VM) outperform Casel

(original case with out SMT without VM. More imgant, due to the steeper slope of

39

SMT case, the more the number thread tend largditfezence of throughput with their
counterparts. Notice, we see the pattern of ¢agel, 3 (ordering from best to worse) at

high number of threads as we seen in the previsagtaphs.

3.2.2.4 Memory

Free Memory

0.04%

0.03% L
0.03%
® —o—3
& 0.02% —=—4
o
3 0.02% !
& lvd.\ 2
0.01% | ——

0.01% ——

0.00%

~5a

20 40 60

Number of threads

Figure 16.Memory Free in %

The memory usage of the machine shows a bettestgtavith less number of
threads. With 20 threads, there are more obvidfterehce between the cases, with 60
threads, there are more memory consumed that sdiscanerge to high memory usage
that we cannot get much out from that situatioronfrobservation of 20 thread cases, we
see the order 3,1,4,2 (best to worst), interestinig, is exactly the reverse as previous
cases as we saw case 2,4,1,3 (best to worst). Mg implies that the more the system
is utilized, the better the efficiency we can get fsom it. Let us look further at 40 and
60 threads cases. There are drastic changes mdah®ry used. Cases with VM (case
4,2) shows low memory usage increase (even decraiagd® threads); while, cases
without VM has severe increase in memory used aratenthan their no VM

counterparts. At higher number of threads, wetbeeorder as 4,2,3,1(best to worst)

40

Therefore, we again see the high the usage therlvetult we can get from virtualization

with SMT.

3.2.2.5 Input and output

110
3200
3000
2800
2600
2400 —— = 2.0
2200 1o
2000 —e— 40
1800 —X= 30
g 1600 I i—:
1400 -
1200 — 4‘?
1000 =
800
600
400
200
(]
Number of threads
I/O per second
—e—3i
—- 4
1
e 20
g —=%-30
‘% ——e-—4o0
2 B
ﬁ ——13_all
@ ——24 all
1_all
e 2_all
Number of threads

41

Figure 17.10 Statistics

IO statistics is the bottleneck of VM, we can &een the first 10 statistic graph
that cases without VM are better performed thaesasth VM. The advantage of HT is
limited that case 4 with VM with HT is worse thariginal case. When comparing 10
per second, 40 threads cases do not perform asago?@d and 60 thread cases which they
are close in performance.

3.3 Modeling methods used

This section, we want to generalize the results stme models for prediction and
further analysis. We first start with looking atadable SMT models and VM models
separately. [15.][31.][29.][32.]

3.3.1 Previously suggestion methods
There are several models suggested for SMT or Yk following are two of them.

In micro spectrum, there is a model suggested aBdit in [6.]. The model
estimates the overall performance give a descriptad the processor and the
characteristics of the workload. Performance igewyi by the overall number of

instructions executed per cycle (IPC).

G
IPC=>P,IPC, (eqt. 1.)

w=1
Where P, is the probability ofw ready-to-issue instructions in the global window,
IPC,is the expected IPC for these instructions, ands is the size of the global

window. IPC, models the effect of structural hazards. Theonaie behind this

division is that structural hazards are primarigpdndent on the hardware architectural

42

configuration while control and data hazards atenarily dependent on the workload.

This model is further derived into model of struelthazards using Markov Chain.

For performance of virtualization, we can use thedeh suggested in [32.],
vconsolidation, a Intel virtualization multiplican value, to calculate the performance of
virtualized environment. Weights are the importad=tribution of each guest operating
system and are defined with fixed number. Forains¢, more memory and physical
CPUs are assigned to guest operating system onegthest operating system two. The
workload performance is the performance actuallyaved in the guest operating system
with the standard workload. The weight is the geéined work load of each virtual
machine and thevorkloadPerfis the independent performance of each of therhe T

result is useful for comparing different configuoat
N
ZWeigk[ti] *WorkloadPéf [i] (eqt. 2.)
i=1

Thus, this model can predict the how much usagmlyoused for comparing
different guest operating system configuration #relvarious utilizations. For instance,
the first guest operating system can be the welbesemnd the second guest operating
system can be a development box.

3.3.2 Modeling for SMT and VM Combined
To show the effect of SMT and VM, we can simply useiltivariate linear
regression to generate the models. Regressioserd i generating functions out from

variables. For instancé,= Xb , whereY is the result matrixXX are variables the anllis
the coefficients vector. By using the given valudsY andX , we want to find the

coefficient vectorb, such thaty = XbandY -Y =& ,whereé& is minimized.

43

3.3.2.1 Simple Introduction to Regression Analysis
The general form of a simple linear regressio¥i = & Bz + i whereo is

the interceptp is the slope an£is the error term, which picks up the unpredictgidet
of the response variablg. The error term is usually taken to be normallgtribbuted
(Gaussian distribution). Th&'s andy's are the data quantities from the sample or
population in question, andandp are the unknown parameters to be estimated frem th
data. Estimates for the valuescofindf3 can be derived by the method of ordinary least
squares. The method is called "least squares,'usecastimates of and3 minimize the

. . ! C— 7)2
sum of squared error estimates for the given datta _ 2(33-: - T) and

& =1y —[pr whereTis the mean of the values and@is the mean of the values.

[16.][19.][20.][14.]127]

3.3.2.2 Using the Multivariate Regression in the Data Collected
Average response tim#f), throughput per minutey§), memory ¥s) and CPU time

used per transactiory{) can be represented as functions of number oadsiepresents
of virtual machine and presents of SMT. Each Y banrepresented via multivariate

regression.
Y=Xb.
Y =b, +bx; +b,X, +byX; + b, X X, + b X X; + X, X,
x,= number of threadss, = 0 for no SMT, 1 for SMT x,= 0 for no VM, 1 for VM

X :[Xones X X X3 XX X Xg X2X3]

=1 20 0 1 0 20 O

44

1 40 0 1 0 40 O
1 60 0 1 0 60 O
1 20 0 0 0 0 O
1 40 0 0 O O O
1 60 0 0 0 0 O
1 20 1 0 20 0 O
1 40 1 0 40 O O
1 60 1 0 60 0 O
1 20 1 1 20 20 1
1 40 1 1 40 40 1
1 60 1 1 60 60 1

YresponseE —90.583+ 4.7563, +81.833x, — 35x, — 35x,X, +1..9625 X, — 26X, X,
R?=0.9896

Ythroughpti= 91.2825+ 2.6277x, — 9.545x, — 4.425x, +1.728%,X, — 0.917 1 X, — 225633, X,
R?=0.9842

Ymemory: (9.128+ 0.263x, — 0.955x, — 0.442x, + 0.173%,X, — 0.092x,x, — 2.256X,X,)* 1E®

R’=0.9766
Error! Objects cannot be created from editing fieldcodes.
R?=0.9856

The square ternx? were not used, as the coefficient of these teemdg to close to
zero. Also forx,and x,, the power will have no effect at all (since theafues are O or

1). Thus, the close equations with small residumlcan get are the above. All of them

have 95% confidence interval.

Therefore, we can predit?t by substituting number of threads, presences SMII an
VM to found out the best choice. Further, instez#dusing the above statistics

individually, we can balance the response timeughput, memory and CPU usage as a

united performance entitf,, use all case 1 as the base value, for instance,

=5 h)- LR
C_(“ %)

Yk

45

k is the each component factor (CPU, throughputmarg, response timeiy, =4 for
there is 4 component factor€§y is the coefficient of each component, such thas it

weighted withwy. For example, there are 4 component factors, nwedght of each
factor isw, =1 andY =23, 2&,=25%, thus, the coefficier@ =0.011. To calculate the

improvement and deficiency, we can simply use a ﬁ{ewalue, and compare it with the
base casél to adjust for the best value. Neﬁy_new will be used and using the, we
just computed, we can get the néwFor example,|52 is 1.05 and|5l was 1, there is 5 %

performance gain; ii%is 0.97, then,l53 has 5% performance decreases.

Notice: for memory used and response tilGeshould be negative, e.g., &) to
indicate the better the less response time anddtier the less memory used.
3.3.3 Load Balancing and Load Distribution

Deriving the above, we can further determine thaaIdistribution of machine with
SMT and virtualization. First, we want know abbatv traffic of load is distributed, for
instance, does virtual machines communicate widmgelves internally? If so, how

resources are distributed among them?
Eqt.2 in section 3.3.1 for virtualization togetiveith the model using 3.3.2, we can

useNorkloadPef[i] :I5; for each guest virtual machin&eight[i] as the resources being

divided up to each machine. For the availabilitg stability of base operating system,

N
ZWeigh[i]<0.9, so that the base operating system has 108urces available for

i=1
running the VM manager and such; for a less powerfachine, the base operating

system would need more resource relatively. Thermal communication between

46

virtual machine can be managed by virtual netwatkrface vnetl and vnet8 resides in
the host operating system, its operation relieshow many resources are left after
assigning them to the virtual machine. Thus wetwartake base operating system and
the 1/0 statistics of the virtual machine into aceb
N
W= PerfBaseOS ZWeigh[ti] * P, where P;is performance of each guest operating
i=1

system,

P= n (ckﬂ),where\?fY

i Input/ Output
k=1

N
PerfBaseOS=ava (1-» Weighti]),and

i=1

To determinePerfBaseOSwe can simply used the machine’s performanceowith
load as the base, eaya=1, then, there are more inter virtual machinditaévailability,
ava, will be smaller, say 0.9. Therefore, by commpg values of differentV (whole
system) settings, we can choose the best perfoenafiective model with load

balancing among the virtual machines.

Secondly, how threads of SMT can be distributedragrtifferent virtual machines?
Obviously, if the base operating system is Linuxnké 2.6, we want to distribute one
physical CPU to one virtual machine, as describedbection 2.2.2 scheduler would
assign threads of the same program to the same @&kimizing utilization of resources
such as CPU caches and instruction buffers. Tputsing the resource available as the
same physical CPU for each virtual machine avoissiple performance degradation

due to resource being pulled from other physicdl&P

47

4 Thesis Conclusion

4.1 Virtualization Challenges and SMT Advantages
Virtualization introduces additional levels of abstion and additional overhead,

thus, it is important to optimize the overhead &m@propriate configuration. Unlike a
non-virtualized system which has abundant resourties resource limitations in
virtualization usually drive up context switchingtes occasionally at multiple levels of
abstraction. Therefore, it is important to knovd @aest beforehand the system'’s physical

resources available.

Second, scheduling across virtual machines is uassymed to be equitable and
consistent; it actually depends on the operatirggesy that is running and schedulers’
design. For instance, Linux 2.6 kernel has a besteheduler than 2.4 which

accommodates SMT better. In this case, VM can make use of the benefits of SMT.

Third, how will the resources be partitioned foe tiMs are important, see load
balancing and distribution (3.5). Some virtualiaatimonitors will provides various
options to map physical CPUs to virtual CPUs andré&ate affinity between certain sets
or allow a more general pool of recourse to beeshamongst all VMs. However, in the
case of SMT, it is not advice to separate a si@J)'s two hyper-threads among two
different virtual machines since it might not ingse performance. The branch prediction
unit becomes less effective when shared, becausasito keep track of more threads,
with more instructions, and will therefore be lesHiicient at giving an accurate
prediction. This means that the pipeline will needbe flushed more often due to
mispredicts, but the ability to run multiple threashore than makes up for this deficit.

The penalty for a mispredict is greater due to ltheger pipeline used by an SMT

48

architecture (by 2 stages), which is in turn due¢ht rather large register file required.
However, there has been research into minimizimgrthmber of registers needed per
thread in SMT architecture. This is done by morécieht operating system and
hardware support for better deallocation of regsstand the ability to share registers
from another thread context if another thread tsusing all of them.
4.2 Performance Determination and Analysis

As stated in Chapter 3, we have generalized a mimdgberformance analysis of
SMT and suggested methods for comparison, suchvieahave in comparing the impact
of different parameters, we have the “apple to @ppbmparison, see [34].

4.3 Suggestions
There are several suggestions to improve accurettyeiperformance comparison:

Load distribution of the machine is different atfelient period of time, e.g. usage

can vary from day to night. This need to takep alculation for different models.

The number of data collected. During all 12 offidiests, the durations were about 1
hour. Each test has around 360 data points. Th#aer of data can increase to ensure

the statistic accuracy.

The distribution of the data points, in the testsymal distribution was used.
However, in some rare case, the data might no sapedias statistic meaning which

need to be aware of.

Number of components taken to the considerationerd are several major factors
to be used, such as CPU, memory and I/0. Howdeewdifferent test case we might
want to test other components, for example, theauXfartor or graphic response speeds

for games, Ul interactive rate.

49

5 Future Work

This chapter suggests future work can be done dm technology under
development.
5.1 Multiple virtual machines with SMT mode

This is the case of multiple virtual machines oa bHase operating system, so that
virtual machines share the resources. Howevenhim getting, there can be several

combination of performance analysis.
Case 1

All the virtual machines are running but no apgdima on top are running. This is to

see the performance overhead of multiple virtuatimzes.
Case 2

This is the case of one virtual machine is runrapglication and the rest of the
virtual machines do not run applications. Thisecahows how idealvirtual machines

affect the virtual machine that is running applicat
Case 3

In this case, multiple virtual machines are runnimgplications. Performance
degradation is expected. We want to see how machedse is here with respect to the

case with one virtual machine running applicatiod athers idle. [30.]

50

5.2 VMware with Oracle
VMware with Oracle in process see [37.][38.]. ®neirtualization causes

degradation, the integration of technology betw¥&fware and Oracle would have a
beneficial impact on the perspective of virtualiaat
5.3 Discussion on IBM P595 Micro partitioning

Starting with the IBM P595 server, [28.]the advapceperties of SMT provide an
enhanced micro-partition technology for virtualieat called Advanced Power
Virtualization (APV). For IBM machines, p5 Hypesar is the virtualization engine
behind the APV technology. This technology dividephysical processor's computing
power into fractions of processing units and sh#resn among multiple LPARs(Logical
Partitions). For example, we could allocate dkelhs 0.10 processing units as opposed
to dedicating an entire CPU. There are two maivaathges, better utilization of
physical CPU resources and more partitions (noitditnby number of physical CPUSs).
Unlike the current model we have, which is to bthd guest operating system to each
physical CPU, micro-partitioning further utilizegtavailable resources. Thus, the future
work for virtualization and SMT, can be investigation this APV technology, which is

expecting to have a better performance model.

51

Reference

[1] D. E. Tullsen, S. J. Eggers, H. M. Levyimultaneous Multithreading:
Maximizing On-Chip ParallelismThe 22nd Annual International Symposium on
Computer Architecture, Santa Margherita Ligure,e]J@®2-24, 1995, 392 - 403.

[2] D. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levyl.JLo, and R. L. Stamm.
Exploiting choice: Instruction fetch and issue on inplementable simultaneous
multithreading processorin Proceedings of the 23rd Annual Intl. Symposiam
Computer Architecture, pages 191--202, May 1996.

[3.] S.J. Eggers, J. S. Emer, H. M. Levy, J. L. LoLRStamm, and D. M. Tullsen,
Simultaneous Multithreading: A Platform for Nextr@eation ProcessorsIEEE
Micro, vol. 17, no. 5, pp. 12--19, Sept./Oct. 1997.

[4.] R. P. Preston et alDesign of an 8-wide superscalar RISC microprocessith
simultaneous multithreadingSSCC Digest and Visuals Supplement, Februar 200

[5.] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R.Bickemeyer, S. R. Kunkel,
Characterization of simultaneous multithreading (§Mfficiency in POWERS5

[6.] M. J. Serrano,Performance Estimation in a Simultaneous Multitldieg
Processor Fourth IEEE International Workshop on Modelinghatysis, and
Simulation of Computer and Telecommunications SysttMASCOTS'96)

[7.] Hensbergen,P.R.O.S.E.: partitioned reliable operating systemvienment
ACM SIGOPS Operating Systems Review, April 2006

[8.] R. Sailer, et alSecure Hypervisor approach to trusted virtualizgdtems IBM
Research Report RC23511 in 2005

[9.] M. Mergen et alVirtualization for high performance computindBM Research
Report 2006

[10.] IBM Journal of Research and Development issue 89-4/ PR5 and
Packaging Volume 49, Number 4/5, 2005

[11.] Y. Wei, S. Son et.alQoS Management in Replicated Real-Time Datgh24th
IEEE International Real-Time Systems Symposium (B0S) p. 86

[12.] S. Hwang, N Jung et. alDynamice Scheduling of Web Server Cluster
Proceedings of the 9th International Conferenc®arallel and Distributed Systems,
2002

[13.] V. Cardellini et. al.,.Dynamic Load Balancing on Web Server SystentsEE
Internet Computing, May 1999

[14.] D. Xu, Multivariate Statistical Modeling and Robust Optmaiion in Quality
Engineering Ph.D Dissertation, October 2001

[15.] G. Marin, J. Mellor-CrummeyCross-Architecture Performance Predictions for
Scientific Application Using Parameterized ModelACM SIGMETRICS
Performance Evaluation Review, June 2004

52

[16.] J. Kleijnen,Validation of Models: Statistical Techniques andtd®&vailability,
1999

[17.] P. Dibble,Migrating to Linux kernel 2.6Linux Devices.com
[18.] R. Love,Linux Kernel Developmeniovell Press,® Edition

[19.] J. Werfel, MATLAN, Statistics, and Linear Regressio
http://hebb.mit.edu/courses/9.29/2004/lecturesbogatio 1. pdf

[20.] A. Gullickson,Introduction to Multivariate Regressipmtroduction to Social
Data Analysis, http://www.columbia.edu/~ag2319/teag/G4074_Outline/

[21.] VMware Workstation .5.5, release note,
http://www.VMware.com/support/ws55/doc/releasenoiesb5.html

[22.] VMware Workstation 5.5, requirements,
http://www.VMware.com/support/ws55/doc/intro_hostrevs.html#wp1000805

[23.] VMware Workstation 5.5 Support Document,
http://www.VMware.com/support/ws55/doc/ws_devicesag vsmp.html

[24.] Intel Processor Identification,
http://support.intel.com/support/processors/toalgdn/CS-015823.htm,

[25.] Intel Processor Code Name,
http://en.wikipedia.org/wiki/List_of Intel_codenaméy Wikipedia

[26.] J.Sugerman, G. Venkitachalam and B. Lifirfualizing 1/0 Devices on VMware
Workstation’s Hosted Virtual Machine MonitdProceedings of the 2001 USENIX
Annual Technical Conference

[27.] M. Heath, Scientific Computing, An Introductory Sey, 2 Edition, Mc Graw
Hill

[28.] M. Bush, Configuring a Virtual /0O Server, Sys Admirhe Journal for Unix and
Linux Systems Administrators, July 2007

[29.] Booting Server Virtualization Performance, IT @elrBrief, Feb 2007

[30.] E. Bolker, Y. Ding, Virtual Performance won't d&€apacity planning for Virtual
Systems, BMC Software

[31.] E. Bolker, Measuring and Modeling Hyper-threadedlcessor Performance,
U.Mass Boston Presentation, Sep 2003

[32.] J.P. Casazza et. al, Redefining Server Perform@heeacterization for
Virtualization Benchmarking, Intel Technology JoalknPAugust 2006.

[33.] N. Carr, Linux Kernel 2.6 Features in Red Hat Eprise Linux, Technical Brief
Red Hat Inc, 2002.

[34.] Performance Tuning and Benchmarking Guidelined/fdware Workstation,
VMware Technical Resources 2007

[35.] TPC BenchmarR'C Full Disclosure Report for IBM eServer p5 595

53

[36.] Thomas Kyte, Expert Oracle Architecture—9i and Pdggramming Techniques
and Solutions, APress

[37.] Installation Guide for Oracle with VMware,
http://www.Oracle.com/technology/products/oem/egiens/plugin-
vmware_esx.html

[38.] Guideline for VMware user using Oracle, http://wwmware.com/Oracle

Appendix

A. Terminology

Abbreviation

MT
SMT

HT

CMP

SMP

client OS
host OS
VMware
Hypervisor
RHEL

ESX server
VMM

LV

SVR5
NPTL

SGA

PGA

UGA

Awr

Explaination

Fine-grained multi-threading

Simultaneous multi-threading

Hyper thread / Hyper threading, which is essentially SMT and can be used
interchangeably

Chip multiprocessing

Symmetric multiprocessing / Symmetric multiprocessors
Client operating system located on the virtual machine

Host operation system at which the virtual machine is located
Virtualization technology developed by VMware company
Virtualization technology developed by IBM

RedHead Enterprise Linux
Virtualization technoloy developed by VMware company which essentially is
the host OS

Virtual machine monitor

Low voltage

Unixware System V Release 5

Linux's Native Posix Threading Library

Oracle: System global area

Oracle: Process global area

Oracle: User global area

Oracle: Auto work repository (used to get the Oracle transactions per second

54

Filename: noel_thesis_5.doc

Directory: C:\Documents and Settings\Noel\My DocuitsEResearch

Template: C:\Documents and Settings\Noel\Appligatio
Data\Microsoft\Templates\Normal.dot

Title: Abstract

Subject:

Author: n

Keywords:

Comments:

Creation Date: 1/4/2008 1:15:00 PM

Change Number: 8

Last Saved On: 1/4/2008 1:41:00 PM

Last Saved By: n

Total Editing Time: 29 Minutes

Last Printed On: 1/4/2008 1:41:00 PM

As of Last Complete Printing
Number of Pages: 62
Number of Words: 11,530 (approx.)
Number of Characters: 65,721 (approx.)

