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ABSTRACT OF THE DISSERTATION

Gradient Estimates for the Conductivity Problems

by SHITING BAO

Dissertation Director: YanYan Li

We establish both upper and lower bounds of the gradient estimates for solutions to the
perfect conductivity problem in the case where perfect (stiff) conductors are closely spaced
inside an open bounded domain. These results give the optimal blow-up rates of the stress
for conductors with arbitrary shape and in all dimensions. While for solutions to the

insulated conductivity problem we also obtain an upper bound of the gradient estimates.
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Chapter 1

Introduction

The thesis consists of two parts. The first part concerns the gradient estimates for solu-
tions to the perfect conductivity problem in the case where two perfect (stiff) conductors
are closely spaced inside an open bounded domain. The second part studies the gradient
estimates for solutions to both the perfect and insulated conductivity problems where there
are multiple inclusions. The results in the first part, Chapter 2, have appeared as a preprint

in [11]; and the results in the second part, Chapter 3, have appeared as a preprint in [12].

Let € be a bounded open set in R?* with C%® boundary, n > 2, 0 < a < 1, D1 and Dy
be two bounded strictly convex open subsets in  with C?® boundaries which are e apart

and far away from 02, i.e.

Di,Dy C 9, the principal curvature of D1, 0Dy > ko,

. (1.1)

e := dist(D1,Dy) > 0, dist(D; U Dy, 09Q) > 1y, diam(Q) < —,
7o

where kg,79 > 0 are universal constants independent of . We will assume that the C%
norms of 0D; are bounded by some constant independent of €. This implies diam(D;) > r§

for some universal constant rj > 0 independent of . We denote
ﬁ = Q\Dl U DQ.

Given ¢ € C2%(052), consider the following scalar equation with Dirichlet boundary condi-
tion:

div(ag(x)Vug) =0 in Q,

Up = @ on 052,

where
ke (0, OO) in D U Ds,

1 on Q\D; U Ds.



It is well known that there exists a unique solution ur € H'(Q) of the above equation,

which is also the minimizer of I} on H, i,(Q), where

1
H;(Q) = {u € H'(Q) | u = ¢ on 6Q}, I [v] == 3 / ar| V|2
Q

As explained in the introduction of [26], the above equation in dimension n = 2 can
be used as a simple model in the study of composite media with closely spaced interfacial
boundaries. For this purpose, the domain 2 would model the cross-section of a fiber-
reinforced composite, D and Dy would represent the cross-sections of the fibers, Q would
represent the matrix surrounding the fibers, and the shear modulus of the fibers would
be k and that of the matrix would be 1. Equation (1.2) is then obtained by using a
standard model of anti-plane shear, and the solution u; represents the out of plane elastic
displacement. The most important quantities from an engineering point of view are the
stresses, in this case represented by Vuy.

It is well known that the solution uy satisfies |lug|c2.a(p;) < oo. In fact, if 9D; and
0D; are C™%, we have ||ug||cm.e(p,) < co. Such results do not require D; to be convex and
hold for general elliptic systems with piecewise smooth coefficients; see e.g. theorem 9.1 in
[26] and proposition 1.6 in [25]. For a fixed 0 < k < oo, the C"™*(D;)-norm of the solution
might tend to infinity as ¢ — 0. Babuska, Anderson, Smith and Levin [9] were interested
in linear elliptic systems of elasticity arising from the study of composite material. They
observed numerically that, for solution u to certain homogeneous isotropic linear systems
of elasticity, || Vu|| e is bounded independently of the distance ¢ between D; and D;. Bon-
netier and Vogelius [14] proved this in dimension n = 2 for the solution uy of (1.2) when D,
and Dy are two unit balls touching at a point. This result was extended by Li and Vogelius
in [26] to general second order elliptic equations with piecewise smooth coefficients, where
stronger C1# estimates were established. The C1? estimates were further extended by Li
and Nirenberg in [25] to general second order elliptic systems including systems of elasticity.
For higher derivative estimates, e.g. an e-independent L*°-estimate of second derivatives of
ug in D1, we draw attention of readers to the open problem on page 894 of [25]. In [26] and
[25], the ellipticity constants are assumed to be away from 0 and co. If we allow ellipticity

constants to deteriorate, the situation is different. It has been shown in various papers, see



e.g. [15] and [27], that when k = oo the L*®-norm of Vuy for the solution uy of equation
(1.2) generally becomes unbounded as ¢ tends to zero. The rate at which the L> norm of
the gradient of a special solution has been shown in [15] to be e~*/2. There have been many
papers, preprints, expository articles, and works in preparation, on the subject and related
ones, see, e.g., [1], [2], [5], [8], [10], [16], [19], [21], [22], [23], [24], [29], [30], [31], 3], [4], [17],
[18], [20], [28], [13] and [32].

Part I. In this part, we consider the perfect conductivity problem, where k = 400.

The perfect conductivity problem is described as follows:

Au=0 in €,
u|l4 = ul|- on D1 U 0D,
< Vu=0 in DU DQ, (14)
ou
—| =0 i =1,2),
/8Di 31/‘4— (@ )
(u=¢ on 0.
where
@‘ = lim ule +tv) - u(:I:)
ovl+  i=o0t t

Here and throughout this thesis v is the outward unit normal to the domain and the
subscript + indicates the limit from outside and inside the domain, respectively.

The existence and uniqueness of solutions to equation (1.4) are well known, see the
Appendix. Moreover, the solution u € H'(f) is the weak limit of the solutions uj to
equations (1.2) as k — 4o0. It can be also described as the unique function which has the

“ least energy” in appropriate functional space, defined as I[u] = minye 4 Io[v], where
1 2
Iov] =< [ |Vv]7, v EA,
2 Ja

A= {v € H}(Q)|Vv=0in D; UD,}.

The readers can refer to the Appendix for the proofs of the above statements.
It was proved by Ammari, Kang and Lim in [7] and Ammari, Kang, H. Lee, J. Lee and

Lim in [6] that, when D; and D, are balls of comparable radii embedded in Q = R?, the



blow-up rate of the gradient of the solution to the perfect conductivity problem is e=1/2

as
¢ goes to zero; with the lower bound given in [7] and the upper bound given in [6]. Yun
in [31] generalized the above mentioned result in [7] by establishing the same lower bound,
e~1/2_ for two strictly convex subdomains in R?. In this part, we give both lower and upper
bounds to blow-up rates of the gradient for the solution to the perfect conductivity problem
in a bounded matrix, where two strictly convex subdomains are embedded. Our methods
apply to dimension n > 3 as well. One might reasonably suspect that the blow-up rate in
dimension n > 3 should be smaller than that in dimension n = 2. However we prove the
opposite: As ¢ goes to zero, the blow-up rate is e~ %/2, (¢|Ing|)~" and e~! for n = 2, 3 and
n > 4, respectively. We also give a criteria, in terms of a linear functional of the boundary
data ¢, for the situation where the rate of blow-up is realized. Note that [6] and [7] contain
also results for k£ < co.

We now state more precisely what it means by saying that the boundary of a domain,
say Q, is C%® for 0 < a < 1: In a neighborhood of every point of 9Q, 09 is the graph
of some C%? functions of n — 1 variables. We define the C*“ norm of 052, denoted as
09|20, as the smallest positive number I such that in the 2a—neighborhood of every
point of 01, identified as 0 after a possible translation and rotation of the coordinates so
that z, = 0 is the tangent to 9 at 0, 9 is given by the graph of a C%® function, denoted

as f, which is defined as |z| < a, the a—neighborhood of 0 in the tangent plane. Moreover,

1 fllc2e(or)<a) < 3

Theorem 1.1 Let Q, D1, Dy C R, ¢ be defined as in (1.1), ¢ € C?(0). Let u € H(Q)N
ok (6) be the solution to equation (1.4). For e sufficiently small, there is a positive constant
C which depends only on n, ko, 7o, ||0Q||c2a, ||0D1||c2.e and ||0D2||c2.a, but independent

of € such that

C
IVl oo @) < %H@H(ﬂ(an) for n=2,
C
IVull oo @y < m”@“(ﬂ(am for n=3, (1.5)
c
IVl poo @) < Zlllezo0) for n>4.

Remark 1.1 We draw attention of readers to the independent work of Yun [32] where he

has also established the upper bound, e=1/2, in R2. The methods are very different. Results



in this thesis and those in [31] and [32] do not really need Dy and Dy to be strictly convez,
the strict convezity is only needed for the portions in a fized neighborhood (the size of the
neighborhood is independent of €) of a pair of points on D1 and 0Dy which realize minimal
distance €. In fact, our proofs of Theorem 1.1—1.2 also apply, with minor modification, to
more general situations where two inclusions, D1 and D2, are not necessarily convex near
points on the boundaries where minimal distance € s realized; see discussions after the

proofs of Theorem 1.1-1.2 in Section 2.1.3.

To prove Theorem 1.1, we first decompose the solution u of equation (1.4) as follows:
u = Cyvy + Cavg + v3 (16)

where C; := Cj(¢) (i = 1,2) be the boundary value of u on 9D; (i = 1,2) respectively, and

v; € C%(Q) (i = 1,2,3) satisfies

A'Ul =0 in ﬁ,
(1.7)
v1=1 on D¢, w1 =0 on dDsyU 99,
Avy =0 in Q,
(1.8)
v9 =1 on 8Dy, w9 =0 on dD; U091,
Avg =10 in §~2,
(1.9)
vg =0 on D1 U0Dy, w3 = on .
Define
8’03 8’02 3’03 3'01
Qaw:/ - ——/ — | =, 1.10
[ ] 8D, 81/ a0 81/ 8D- 61/ a0 61/ ( )

then Q. : C%(092) — R is a linear functional.

Theorem 1.2 With the same conditions in Theorem 1.1, let w € H(Q) N Cl(ﬁ) be the
solution to equation (1.4). For € sufficiently small, there ezists a positive constant C which
depends on n, Ko, To, [|0Q| c2.a, [[0D1]|cza, |0D2]|c2.e and (¢l c2a0), but is independent

of € such that

Q] 1 B
||vu||Loo(Q) > C : /e for n=2,
|Qcle]l 1
o) = e = 1.11
||Vu||Loo(Q) - C €| 1n6| fO’I" n 37 ( )
Q] 1
||Vu||Loo(Q) > c = for n>4.



Remark 1.2 If ¢ = 0, then the solution to equation (1.4) is uw = 0. Theorem 1.1 and
Theorem 1.2 are obvious in this case. So we only need to prove them for ||pllc2(a0) =1, by

considering u/||¢|lc2a0)-

Remark 1.3 It is interesting to know when |Qc[¢]| > % for some positive constant C
independent of . Roughly speaking Q:[p] — Q*[¢] as e — 0, and this amounts to Q*[¢] # 0.

For details, see Section 2.2.

Theorem 1.1—1.2 can be extended to equations with more general coefficients as follows:

Let n, Q, D1, D3, € and ¢ be same as in Theorem 1.1, and let

As(z) := (aéj(w)) € C*(Q)
be n X n symmetric matrix functions in Q satisfying for some constants 0 < A < A < oo,
MEP < a¥(x)&6; < AJEP?,  VzeQ, VEe R, (1.12)

and a¥ (z) € C2(Q\D; U Dy).

We consider
.

Oz, (aéj(m) 3@-“) =0 in €,
uly = ul_ on 0D, U 0Dy,
{Vu=0 in Dy U D, (1.13)

/ aéj(:c)amiuuj‘+ =0 (i=1,2),
0D;

U= on 0f).

where repeated indices denote as usual summations.

Here is an extension of Theorem 1.1:

Theorem 1.3 With the above assumptions, let w € H'(Q) N C1(Q) be the solution to

equation (1.13). For ¢ sufficient small, there is a positive constant C which depends only

on m, Ko, To, ||0Q||c2.e, |0D1||c2e, [|0D2||c2a, A, A and || As| but independent of €

2@y
such that estimate (1.5) holds.



Similar to the decomposition formula (1.6), we decompose the solution u of equation
(1.13) as follows:
u=C1Vi+CoVo+ V3 (1.14)

where C; := C;(¢) (i = 1,2) be the boundary value of u on D; (i = 1,2) respectively, and

V; € C%(Q) (i = 1,2, 3) satisfies

Oz, (agj(x) BxiVl> =0 in Q,

(1.15)
Vi=1 ondDy, Vi =0 ondDsy U0,
Oz, (aéj(x) Bwl.VQ) =0 in Q,
(1.16)
Vo=1 on 9Dy, Vo =0 on dD1 U0,
Or, (a (@) 0nV3) =0 in 8,
(1.17)
‘/3:0 onBDluaDg, ‘/3:@ on 0.
Define
Qo= [ @) 0ts v [ aB@) onVav,
o o0 (1.18)

_/ aéj(fc) 0z; V3 Vj/ aéj(x) O, V1 v},
OD; a0

then Q. : C%(092) — R is a linear functional.

Theorem 1.4 With the same conditions in Theorem 1.8, let w € H'(Q) N CY(Q) be the
solution to equation (1.13). For € sufficiently small and Q.|| defined by (1.18), there is
a positive constant C which depends only on n, kg, 1o, ||0D1||c2a, |[0D2|c2e, A, A and

Ay =, but independent of ¢ such that estimate (1.11) holds.
c2(Q)

Part II. Along the approach in the first part, we have extended Theorem 1.1 and 1.3
from two inclusions to multiple inclusions, see Theorem 1.5 below.

The complementary problem to the perfect case is the insulated case when k& = 0 in
(1.2). For n = 2, Ammari, Kang, H. Lee, J. Lee and Lim have given in [7] and [6] the
optimal bound when D; and D, are balls of comparable radii embedded in Q = R?. The

—1/2

blow-up rate of the gradient of solutions is ¢ as the distance between D; and Do, ¢,



goes to zero. They obtained this by converting the insulated case to the perfect case using
harmonic conjugators. The situation for n > 3 is different since the k£ = 0 case can not be
converted to the £ = oo case. In this part, we proved that the above mentioned optimal

2 is also an upper bound of ||Vu|~ for n > 3. In fact, what we have

upper bound e/
obtained is a local version of the estimates, see Theorem 1.6 below. On the other hand, we
do not know yet whether the estimates are sharp for n > 3.

Now let, as before, Q be a bounded open set in R* with C? boundary, n > 2,0 < a < 1.

Instead of two inclusions, let {D;},i = 1,2,...,m, be m strictly convex open subsets in 2

with C>“ boundaries, m > 2, satisfying

D; C Q, the principal curvature of 8D; > ko,
ei; = dist(D;, D;) > 0, (i # 5) (1.19)

1
dist(D;, 09Q) > ry, diam(Q) < —
0

where kg,79 > 0 are universal constants independent of €;;. As before we will assume that

the C*“ norms of D; are under control, while €ij can become very small.

For i # j, let
dist(zl;,21,) = dist(D;, D;) = €55 > 0, x; € 0Dy, xl; € OD;,
and
o ._ Lo i

It is easy to see that there exists some positive constant § which depends only on kg, ¢
and {||0D;l|c2. }, but is independent of {e;;} such that any ball of radius 26 can intersect

at most two elements in {D;}. We will only be interested in those pair 4, j satisfying

B;j = B(x?j, ) intersects both D; and Dj. (1.20)



Given ¢ € C?(09), consider, for m > 2,

( Oz, (aéj(w) Bxiu) =0 in Q:= Q\Ug’;lDi,
uly = ul- on dD; (i=1,2,...,m),
¢ Vu=0 on D; (1=1,2,...,m), (1.21)

/ a,gj(ar)az,;iul/j|+ =0 (t=1,2,...,m),
oD;

% on 012,

where ag () satisfies condition (1.12). Then we have

Theorem 1.5 Let Q,{D;} C R*, {ey} be defined as in (1.19), n > 2, ¢ € C?(00), and

let u € HY(Q)NCL(Q) be the solution to equation (1.21), with u = Cy on D;. Then for any

pair i,j satisfying (1.20),

C;—C;
HquLw(ﬁnBﬁ) S Cil - - ]| +C||90||C2(6Q)
ij
( C
— ||‘10||C2(6Q) for n=2,
, (1.22)
<q —— : or n=23,
ey ney| lellczon)  f
C
—llellezaa) for n >4,
\ €ij

where C depends only on n, m, Ko, 79, ||09Q||c2a, {||0Di||lc2a}, A, A and {||a’2“l||c2(6)}.

All our previous theorems concern perfect inclusions (¢ = oo). Now we consider the
complementary problem when k£ = 0 (insulated inclusions) in (1.2).

Let Q,D; C R", ¢;; be defined as in (1.19), ¢ € C%(09Q). The insulated conductivity

problem can be described as follows, for i =1,2,...,m,
Oz, (agj(x) 8xiu) =0 in Q,
agj(x)awiuuj‘+ =0 on 0D;, (1.23)
U= on 0.

The existence and uniqueness of solutions to equation (1.23) are elementary. By the maxi-

mum principle, [[ul] ) < llellz=(o0)
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To obtain an upper bound of |Vul|, . @) for solutions, we only need to consider the

following local situation: For any pair 4, j satisfying (1.20), consider

Or, (o (#) Bpu) =0 in 60 B(al, 26),
a¥ (36)(9351.1“/]1+ =0 on (0D; U0dD;) N B(:L‘?j, 24), (1.24)
lu| <1 in O N B(zY;,20).

Then we have

Theorem 1.6 Let Q,{D;} C R", {ex;} be defined as in (1.19), n > 2. For any pair i,j

satisfying (1.20), let u € C1(Q N B(z%,26)) be a solution to equation (1.24). Then

i)

c
5 <
||vlu’||Loo(QnBij) — \/E_j’

g

(1.25)

where the constant C depends only on n, m, ko, 70, ||0D;||c2a, ||0Dj]c2e, A, A and

kl _
{HG’Q ||Cz(ﬁ) -
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Chapter 2

The perfect conductivity problem with two inclusions

This chapter concerns the gradient estimates of the perfect conductivity problem with two
inclusions. We will prove Theorem 1.1—1.4. In Section 2.1 we first prove Theorem 1.1—1.2.
In Section 2.2 we give a criteria for |Q:[¢]| to be bounded below by a positive constant
independent of . Theorem 1.3—1.4 are proved in Section 2.3. In the Appendix A we

present some elementary results for the perfect conductivity problem.

2.1 Proof of Theorem 1.1 and 1.2

In the introduction, we write u = C1v1 + Cova +v3 as in (1.6). To prove our main theorems,
we first estimate ||VU||L00(5) in terms of |C1 — Cs|, and then estimate |C; — Ca|.

In this section we use, unless otherwise stated, C' to denote various positive constants
whose values may change from line to line and which depend only on n, kg, 79, ||0Q| o2,

18D1 || 2.0 and [|0Ds | g2e

Proposition 2.1 Under the hypotheses of Theorem 1.1, let u be the solution of equation

(1.4). There exists a positive constants C, such that, for sufficiently small € > 0,
1 C
G =G < [Vl ey € 1 G~ G | + Cliplicogony. (2.1

To prove this proposition, we first estimate the gradients of v1, v9 and v3. Without loss of
generality, we may assume throughout the proof of the proposition that |¢||c2(90) = 1; see

Remark 1.2.

Lemma 2.1 Let vy, vy be defined by equations (1.7) and (1.8), then for n > 2, we have

C (91)1
1901 e 3y + 102l oy < 2

81)2
||E||L°°(an) + HEHL‘X’(@Q) <C.
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Proof: By the maximum principle, ||v1|; @ < 1, and since v1 achieves constants on each
connected component of Bﬁ, and each connected component of o€} is C2° then the gradient

estimates for harmonic functions implies that

Clv1||pe- ¢
U G |t 1|
||V'U1||L<>°(Q) ~ dist(0D1,0D») ¢

Similarly, we can prove ||Vuvs|| Loo@) < C/e. The second inequality follows from the bound-

ary estimates for harmonic functions. O

Before estimating |Vus|, we first prove:

Lemma 2.2 Let p € C%(Q) be the solution to:

Ap=20 in €,
(2.2)
p=0 ondD1UODy, p=1 on 0.

Then ||VP||L00(§) < C.
Proof: Let p;(i = 1,2) € C*(Q\D;) N C*(Q\D;) be the solution to:
Ap; =0 in Q\Ei,
pi=0 ondD;, p;i=1 on 9.
Again by the maximum principle and the strong maximum principle, we obtain 0 < p; < 1
in Q\D;. Since Dy C Q\D1, we have p; > 0 = p on dDs. And since p; = p on &D; and
0, therefore p; > p on Q. Now because pr=p=0o0ndD; and p; > p >0 on ﬁ, S0
IVpllLe(ap,) < [IVpille@ap,) < C-
Similarly,
IVollLeap,) < IVp2lle(ap,) < C.
By the boundary estimate of harmonic functions, we know that ||Vp||ze(a0) < C.

Since Ap =0 in ﬁ, Or; p is also harmonic, by the maximum principle,

VDl oo (i) < max (||Vp||L°°(6D1)7 Vol (aD,)s ||VP||L°°(aQ)) <C.

Now, we estimate |Vuvs|:
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Lemma 2.3 Let vs be defined by equation (1.9), for n > 2, we have
||V’U3||Loo(§) < C.

Proof: Since v3 =—p=p=0o0n dD;(i =1,2), and —p < v3 = ¢ < p on 9N, we have, by

the maximum principle,

—p<v3<p in
It follows, for ¢+ = 1,2, that
Vsl zeeap;) < [IVPllLe(an;) < C.

By the boundary estimate,

Vsl Lo an) < C.

By the harmonicity of 0;,v3 and the maximum principle,

||V'U3||Loo(§) <C.

Remark 2.1 Without assuming ||¢[|c2(aq) = 1, we have

IVs|| e (ap10aDs) < Cllellneo (a02)5

where C' has the dependence specified at the beginning of this section, except that it does not

depend on ||0Q|c2.a. This is easy to see from the proof of Lemma 2.3.

The above lemma yields the main result of [2].

Corollary 2.1 ([2]) Let By and By be two spheres with radius R and centered at (£R +

£,0,---,0), respectively. Let H be a harmonic function in R3. Define u to be the solution
to

Ay =0 in R*\B; U By,

u=20 on 0B1 U 0By,

u(z) — H(z) = O(|z|™")  as |z| = +oo.

Then there is a constant C independent of € such that

IV(u = H)| oo g\ B10B7) < C-
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Proof: By the maximum principle and interior estimates of harmonic functions, the C?
norm of u| B,r(0) 18 bounded by a constant independent of e. Apply Lemma 2.3 with

Q = Bagr(0) and ¢ = u|p,,(0), we immediately obtain the above corollary. O
With the above lemmas, we give the

Proof of Proposition 2.1: Since u = Cy on 8Dy, u = Cy on 0Dy, and dist(0D1,0D3) = ¢,

by the mean value theorem, 3 £ € Q such that
IVl oo gy > [Vu(O)] > @
By the decomposition formula (1.6),
Vu = C1Vvy + CoVug + Vug = (C1 — Co) Vv + CoV(v1 + v2) + Vus.
Hence,
19l e @y < 1C1 — ol 0 ey + Gl (01 + 02)l| oty + V03l e -
By Lemma 2.2, since v1 +v2 =1 — p in SNZ, we have
IV @1+ 12)l oy = IV = )@y = [Vlee @) < C-

Using the fact we showed in the Appendix, ||ul|z1(q) < C, so |C1| + [C2| < C.

Therefore using also Lemma 2.1 we obtain,

o Q

||Vu||Loo(§) <=|Ci-Cy |+ C.

This proof is now completed. O

Later we will give an estimate of |C; — Cs|, which, together with Proposition 2.1, yields the

lower and upper bounds of ||Vul| oo (§) for strictly convex subdomains D; and Ds.
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2.1.1 Estimate of |C; — Cy|

Back to the decomposition formula (1.6), denote

0v;

aij = (i,j =1,2), b= (i=1,2). (2.3)

ap; OV

We first give some basic lemmas:

Lemma 2.4 Let a;; and b; be defined as in (2.3), then they satisfy the following:
1. a12 =a21 >0, a11 <0, ag <0,
2. -C<ai+an<-%, -C<ap+a<-—%,
3. b1 <C, |bo] <C.

By the fourth line of equation (1.4), C; and Cs satisfy

a11C1 + a12Cs + by = 0,
(2.4)

a21C1 + a99Cy + by = 0.
By solving the above linear system, using a12 = as1 and a11a92 — a12a91 > 0 which follows

from Lemma 2.4, we obtain

_ —biags + boaio _ —beai1 + brara

Cr= oo — a2 Cy = — 35 (2.5)
11422 — @79 a11a22 — G719
and therefore,
b1 — ab
|C1 — Co| = &, where o = o+ a1z > 0. (2.6)
la11 — aaiol a2 + a12

Based on this formula, we will give the estimates for |a;; — @ai2| and |b; — abe|, then the

estimate for |C; — Cy| follows immediately.

Proof of Lemma 2.4: (1) By the maximum principle and the strong maximum principle,
0<wv <1 inQ.

By the Hopf Lemma, we know that

8’01 8’01

Ov
E|3D1 < ’ E‘{)DQ > -

0, EL?Q

< 0.
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Similarly,

Oy O0va O0vy

5|0D1> ’ E‘aD2< ’ E|an<0'

Thus a11 < 0, a12 > 0, as; > 0 and ags < 0.

Also, since v; and v9 are the solutions of equations (1.7) and equations (1.8), respectively,

OZ/Avl-qu—/AUQ-rUl:_/ %.14_/ %.1
ﬁ ﬁ 6D2 61/ 8D1 BV (27)

= —ao1 + a12,

we have

i.e. as1 = a12.

(2) We will prove the first inequality, the second one stands with the same reason. By

the harmonicity of v in ﬁ,

ov ov
a11+a21:—/~Av1+ “ 1= —1<O.
a a0 Ov a0 Ov
By Lemma 2.1,
ov
a1 +ag = s _c
N 81/

On the other hand, since 0 < v1 < 1 in Qand v; =1 on 0D1, by the boundary gradient
estimates of a harmonic function, 3 B(Z, 27) C €, such that v; > 1/2 in B(Z, 7), where 7 is
independent of €. Let p € C%(Q\D, U B(z,7)) UCY(0Q U 8Dy U B(z,7)) be the solution

of the following equation:

Ap=0 in O\D, U B(&, ),

p=1/2 on 0B(Z,7) p=0 on dDy U 0.
By the maximum principle and the strong maximum principle, 0 < p < 1/2in Q\DQT%F)
A contradiction argument based on the Hopf Lemma yields,

op _ 1
s 2 .
%> C on 0f2

On the other hand, since p < v1 on the boundary of Q\Dy U Dy U B(Z,7), we obtain, via

the maximum principle, 0 < p < vy in Q\D; U Dy U B(z, 7). It follows, using p = v; = 0 on
09, that
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Thus,

8v1< @<_1

ail +ag1 = < S =
a0 ov a0 ov C

(3) Clearly,

0:/\,AU1'U3_/\’A’U3"U1: %(p_F/ 8U3 1= 6’1}1 (,O—erl
) a aq Ov oD, OV 50 OV

ov ov
|b1|—‘/ 1.¢ / ‘ Y el
onN

Therefore, we finished the proof. O

Thus,

2.1.2 Estimate of |a;; — aays

By a translation and rotation of the axis, we may assume without loss of generality that

Dy, Dy are two strictly convex subdomains in {2 C R" which satisfy the following:
(—€/2,0") € 8D, (¢/2,0') € ODy, e = dist(D1, D3). (2.8)

Near the origin, we can find a ball B(0,7) such that the portion of dD; (i = 1,2) in
B(0,r) is strictly convex, where r > 0 is independent of e. Then 0D; N B(0,7) and
0D2 N B(0,7) can be represented by the graph of 1 = f(z') — /2 and z; = g(2') + ¢/2
respectively, where 2/ = (z9,--+ ,z,). Thus f(0') = ¢(0') =0, Vf(0') = Vg(0') = 0, and
—CI < (D?f(0")) < —&1, $1 < (D%(0)) < CI.

With these notations, we first estimate a; for ¢+ = 1, 2.
Lemma 2.5 Let a;; be defined by (2.3), then

< —ay < form=2,1=1,2.

L <
Cve Ve

Proof: It suffices to prove it for a1;. By the harmonicity of v, we have

0
O=/~AU1-01=—/~|V’01|2—/ ﬂ:—ﬁ|VU1|2—a11,
Q Q 4D, ov Q
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i.e.

all = —/~ |V’Ul|2.
Q

Now we construct a function (here in R?, we let z = x1, y = z2)

£

.’L‘—g(y)—§

w(z,y) = — 2.9
)= = f) +2 (2
on O, :=QnN {(z,y)| lyl <r}. It is clear that W(z,y) is linear in x for fixed y and
W |oynep, =15 W |Bo,r)nan,= 0;
so we have
9(v)+3 9(y)+5
[ ealas < [T 10 @ ),
fw)-5 fy)-3
ie.
1 /g(y)+§ G (.g)
< vz, y)["
g) = T +e =~ Jrgmg
Integrating on y we get
/‘7‘/2/ y)—‘,-f r/2 1
|0pv1 (z, y) |Pdzdy >/ dy
_e - +
e o 9(y)—fly)+e (2.10)

> T/Q 1 d 1
= 5/0 2re T O
Thus

r/2 re(y)+5 10,01 (2, ) 2dad 1
—0112/ / vi(z,y)|"dzdy > F—F.
o Jrw-s CVe
On the other hand, we can find ¢ € C?(Q2) such that

¢ =0on 67‘/8’ % =1on a1)1\(07"/4)5 ¥ =0on aD?\(Or/ZL),

’l,b =0on 39, and ||V¢||L°°(Q) < C.
We can also find p € C?(Q) such that
0<p<1, p=1on0,, p=0onQ\O, and |Vp| < C.

Let w = pw+ (1 — p)t, then w = 1 = v1 on D1;w = 0 = v1 on 9D2; w =0 = v on IN

and w = W on O, /2- Then by the properties of 1, p and the harmonicity of v1, we have

/~|wl|25/~|w|2 g/N Vo + C. (2.11)
Q 0 0N, 2
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A calculation gives

We will show [, /s |6,w|* < C.

Indeed,
/2 rg(y)+5 0
/ |0y (x, y)|“dzdy
0 fy)—3%

/2 raW+; q9'(y)? (9(y) —z + 5)%(d' () — f'( ))2)
<zf /f(y)—% (<g<y) = LA o gy T oy RS ey
N g (y)? "2 (g (y) = f'(y))? (2.12)
_2/0 9(:t/)—f(y)+€dy+2 0 g(y)—f(y)+6dy

r/2 y2 r/2 y2
= C/O 24+ sdy /0 2 sdy
<C.

Then by (2.11) and (2.12)

lawa| = / Vu? < / Vol + o

7'/2

r/2 y)+5
<c| / \Dyw(z, y)Pdedy + C
0 f)—-35

(2.13)
C/T/2 ! dy+C<C . dy+C
= y+0< / y+
o 9y)—fly) +e 0o Yte
< E
€
The proof is completed. O
Similarly, we have
Lemma 2.6 Let a;; be defined by (2.3),
1 .
5|ln6| < —a;; < Cllne|l, forn=3, i=1,2.
Proof: We consider
_alz) — &
Bz, 2y = -2 —9@) 5 (2.14)

gla') = f(a) +e

on O, /g 1= Qn{(z1,2")| |2'| < £}. Use the same proof in Lemma 2.5, we have

/2 ro(a')+5
/ / |0y (1, 2")|2dzdz’ < C.
0 Jfa)-3
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Therefore, it suffices to verify that

[ lonmlons)P ~ el
Qﬁo,,./z

Indeed,
/ 10y, (w1, 7' = / ! da’
X ’ -
ano, ;s |<r/2 9(2') — f(2') + ¢
1"/2 t
————dt ~ |Ing|.
0 Ct2 + € | n€|
This completes the proof. O

Lemma 2.7 Let a;; be defined by (2.3),

1
ag—aiigc form>4, i=1,2.
Proof: We only need

N2 1 , r/2 tn—2
Op, W(x1, T :/ dz’ ~ —dt ~ C.
/om 92,1, )] a<rj2 9(2') — f(2') + ¢ o Ct2+¢

The proof is completed. O

Lemma 2.8 Let o be defined by (2.6), we have

égagC.

Proof: By the definition of a and using the second statement in Lemma 2.4, we are done.[]

To summarize, we have

Proposition 2.2 Let a;j and o be defined by (2.3) and (2.6), we have
1-%\/5S|a11—05a12|§% forn =2,
2. &llne| < a1 — @arz| < C|lne|  for n =3,

3. %§|a11—aa12| <C form>4.
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Proof: Since a11 <0, a12 > 0, a11 + a12 < 0 and a > 0, we have
la1| < la1n — aar] < (1+ a)|ay].

Combining the results of Lemma 2.5, Lemma, 2.6, Lemma 2.7 and Lemma 2.8, the proof is

completed. O

2.1.3 Estimate of |b; — abs|

Proposition 2.3 Let by, ba, @ and Q:[p] be defined by (2.8), (2.6) and (1.10), we have

|Qc[e]l
C

< b1 — aba| < Cll¢llc2(a0)-
Proof: Combining the third result in Lemma 2.4 and Lemma 2.8, we have
b1 — abo| < |b1] + [af|be| < Cllpllezan)-

On the other hand, by the definition and the harmonicity of v; and v and using Lemma
2.4, we obtain

|b1 (a2 + a12) — ba(a11 + a12)|
|age + a12]

>i‘/ 6v3/ 3’1)2_/ 8’03/ ovy |Qg[(p]|
—C |Jap, o0 OV Jap, o0 OV

This completes the proof. O

|b1 — abg‘ =

Now we are ready to prove our two main theorems:

Proof of Theorem 1.1-1.2: By Proposition 2.1 and (2.6), then using Proposition 2.2, 2.3,

we are done. 0

As we mentioned in Remark 1.1, the strict convexity assumption of the two inclusions
can be weakened. In fact, our proofs of Theorem 1.1—1.2 apply, with minor modification,
to more general situations:

In R™", n > 2, under the same assumptions in the beginning of Section 1.2 except for the

strict convexity condition, Dy N B(0,r) and D, N B(0,r) can be represented by the graph
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of z1 = f(2') — § and z; = g(z') + 5, then f(0') = g(0') =0, V(g — f)(0') = 0. Assume
further that

Aol < g(a') — f(a') < Ml2'P™, V]a'| < r/2, (2.15)
for some e-independent Ag, A1 > 0,m > 1 € Z.

Under the above assumption, let u € H'(Q) N Cl(ﬁ) be the solution to equation (1.4).

For ¢ sufficiently small, there exist positive constants C and C’, such that

|Qg[jP]| e <||VU||Loo < Cllollc2an) - € 73;1, itn—1<2m,
|Qelell 1 1,
o ome] HVuHDx lelle2an) - c[ine]’ nn m, (2.16)
Q-l¢]| 1 1 .
QL <Vl < Cllellrony -+ ifm—1>2m,

where Q;[¢] is defined by (1.10), and C depends on n, m, g, A1, 7o, ||09Q||c2e, ||0D1] g2
and ||0Dz||¢2.«, C" depends on the same as C and also ||¢||¢2(aq), but both are independent
of e.

The proof is essentially the same except for the computation of [5 [Vui]?.

/2 rg(z’)+5
/ / |0y (1, 2")|2dzdz’ < C,
0 CORS

still holds. Then by (2.10) and (2.13) we only need to calculate

1 , r/2 pn—2
dz’ ~ / dp.
/|:c’|<7"/2 g(@') — f(z') +e 0o pM+te P

Indeed, if n —1 < 2m,

r/2 pn—2 no1_g r/25T gn—2 B
5 dp =e2m 5 dSNngm
0 m+e 0 sem 41

/2 pn72
/ > dp ~ C.
o pMte

Therefore, we obtain (2.16) by using the same arguments in the proofs of Theorem 1.1 and

In fact,

0™ ~ C|Ing|,

if n—1>2m,

Theorem 1.2.

Actually, we can replace 2m by any real number 8 > 0, the results still hold.
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2.2 Estimate of |Q.[¢]|

In order to identify situations when ||Vul|| L~ behaves exactly as the upper bound established
in Theorem 1.1, we estimate in this section |Q:[¢]|. To emphasize the dependence on ¢,
we denote D1, Dy by Di., Do, denote ¢ by ¢., and denote v1, v2, v defined by equation
(1.7), (1.8), (1.9) as v1e, v2e, V3. In this section we assume, in addition to the hypotheses in
Theorem 1.1, that along a sequence ¢ — 0 (we still denote it as €), D1 — DY, Dye — D3 in
C?® norm, ¢, — ¢* in CH*(09Q). We use notation O = Q\D;i U D3, and assume, without
loss of generality, that D N D = {0}. We will show that as ¢ — 0, v;. converges, in

appropriate sense, to v; which satisfies

Av] =0 in Q*,

(2.17)
v] =1 on ODT\{0}, o] =0 on QU ID;5\{0},
Avy =0 in O,

(2.18)
vy =1 on dD3\{0}, wv5; =0 on 0QUAODT\{0},
Av =0 in QF,

(2.19)

v; =0 on DT UOD;,  vi =" on 0N.

First we prove

Lemma 2.9 There ezist unique v} € L®(Q*) N C'O(@\ {o}) N C2(Q*), i =1,2,3, which

solve equations (2.17), (2.18) and (2.19) respectively. Moreover, v} € Cl(§\ {0}).

Proof: The existence of solutions to the above equations can easily be obtained by Perron’s
method, see theorem 2.12 and lemma 2.13 in [18]. For reader’s convenience, we give below

a simple proof of the uniqueness. We only need to prove that 0 is the only solution in

L=(Q*) N C’O(ﬁ\ {0}) N C?%(Q*) to the following equation:
Aw=0 inQF,
| (2.20)
w=0 on dN*\{0}.

Indeed, V € > 0, we have



24

By the maximum principle,

Thus w = 0 in Q. The additional regularity v € Cl(ﬁ\ {0}) follows from standard

elliptic estimates and the regularity of the 8D; and 9f). O

Lemma 2.10 Fori=1,2,3,

vie — v} in C2(QY), as e—0, (2.21)
Wie [ L e 0 i=12 (2.22)
a0 81/ a0 61/
0 ov;
/ LN U3, as e — 0. (2.23)
dD;. 61/ 6DZ 81/

Proof: By the maximum principle, {||vi||z~} is bounded by a constant independent of ¢.
By the uniqueness part of Lemma 2.9, we obtain (2.21) using standard elliptic estimates. By
Lemma 2.3, {||Vvs||1~ } is bounded by some constant independent of ¢, so ||Vv}||pe < oo.

Estimate (2.22) and (2.23) follow from standard elliptic estimates. The proof is completed.[]

Similar to Qc[pe], we define

ovd ovd ov ov¥
Q" “z/ =3 2—/ -3 L 2.24
[(P ] an 811 a0 81/ 6D; 61/ o0 81/ ( )

then Q* : C%(052) ~ R is a linear functional. Let Q.[¢.] and Q*[¢*] be defined by equation

(1.10), (2.24), then, by the above lemmas,
Qclps] — Q*[¢*], as e—0.

Corollary 2.2 If p* € C?(09Q) satisfies Q*[¢*] # 0, then |Qc:[¢:]| > %, for some positive

constant C which is independent of €.

In the following we give some examples to show that, in general, the rates of the lower

bounds established in Theorem 1.2 are optimal.
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Let Q C R?, n > 2, be a bounded open set with C%® boundary, 0 < a < 1, which is
symmetric with respect to zi-variable, i.e., (z1,z') € Q if and only if (—z1,2') € Q, where
' = (z9, ++ ,Tp)-

Let D} be a strictly convex bounded open set in {(z1,z') € R*|z; < 0} with C?
boundary, 0 < a < 1, satisfying 0 € 8D} and D} C Q. Set D} = {(z1,2') € R*|(—z1,2') €

3
Let ¢ € C%(89)\{0} satisfy

poa(1,7) = 3 [ple1,2) — ol~1,2)] <0 (or > 0), (225)

on (ON)" := {(z1,2") € 0Q|z; > 0}.

For £ > 0 sufficiently small, let

Dy, = {(z1,7) € Q|(z1 + =,2') € D}},

2
€
Dy, := {(z1,7') € Q‘(wl — 5,:1:') € D3},
Pe = P-

Proposition 2.4 Under the above assumptions, we have |Q:[p]| > %, for some positive

constant C independent of €. Consequently,

1
HVUEHLoo(ﬁ) > —C\/E for mn=2,
1
- — 2.2
||VU5||L<X>(Q) > Ce|lng| for n 3, ( 6)
1
||Vu€||Loo(ﬁ) > Ce for n >4,

where u, is the solution to equation (1.4).

The above proposition can be easily obtained by the following lemma which gives a
necessary and sufficient condition instead of condition (2.25) on ¢ for the lower bounds
(2.26) to hold.

Let

[y

(v3)odd(21,2") == = [v3 (21, 2") — v3(—=z1,2")], (2.27)

N

we have
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Lemma 2.11 Under the same hypotheses in Proposition 2.4 except for the condition (2.25),
let Qclp] and (v3)odd(z) be defined by equation (1.10) and (2.27), then the following state-

ments are equivalent:

1. For some positive constant C independent of e, we have |Q:[¢]| > &

A(v3)o
2. faD* (3 dd#o

Proof: By symmetry, the strong maximum principle and the Hopf Lemma, we can easily

obtain
ovy ovs

a0 ov a0 ov
v [ Ou ov / Bv
Q [80] N /69 81/ ( aDi‘ 81/ aD* 81/ )
:/ (%T(/ 0(v3)odd / 3(U§)odd)
aa Ov \Jop; OV op; OV

_ _2/ 3”1/ U3 odd
80 op; OV

Hence, Q*[¢] # 0 if and only if [} D Ugu"dd # 0. Then by Corollary 2.2, we complete the

Then

proof. O

Proof of Proposition 2.4: Note that (v§),44(0,2") = 0 by symmetry, and (v3),qq is har-
monic with (v})odd = Yodd < 0 (or > 0) but not identically 0 on (992)*. Now by using the
strong maximum principle and the Hopf Lemma, it is clear that [ D3 v3)°dd # 0, Hence,

by Lemma 2.11 and Theorem 1.2, we are done. O

Remark 2.2 If ¢ = Y7 | bz; with b; € R and by # 0, then by Proposition 2.4 we have
|Q:[¢]| > &. Therefore, by Theorem 1.1 and 1.2, the blow-up rates of ||VU||L00(§) are e~ 1/?

in in dimension n = 2, (¢|Ilne|)~! in dimension n =3 and €' in dimension n > 4.
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Now instead of in a bounded set €2, we consider in R":

{ -
Au, =0 in R"\D1, U Da,
u€|+ :u5|7 on 0D, U JD,y,,

¢ V’U/E =0 in Dls U D287 (228)

0
[ ZEl =0 =1,
dD;, 81/ —+
limsup |z|" ! |u (z) — H(z)| < oo,
\ |z|—=o0

where H(x) is a given entire harmonic function in R™.

we have the following result regarding the lower bound for |Vu,|:

Proposition 2.5 With the same assumptions on D1, and Ds. as in Proposition 2.4, and
let H(xz) be an entire harmonic function in R™ satisfying Hyqq(z1,2") = %[H(zl,x’) -
H(—z1,2')] <0 (or>0) on R? :={(z1,2") € R*|z1 > 0}, then for some positive constant

C independent of €, we have

1
||Vu€||Loo(Rn\D15UD25) > NG for n=2,
1
Vel | oo oo\ Brzops) 2 el for n=3, (2.29)
1
||VU6||Loo(Rn\m) > Ce for n >4,

where u. is the solution to equation (2.28).

Proof: Step 1. First, we show that there exists a positive constant C' independent of ¢,

such that for any small € > 0,
|| ue (z) — H(z)| < C, Vz € R"\Di. U Do.. (2.30)

(i) For any bounded open set U C R" with C! boundary OU satisfying U N'Dy, U Dy, = 0,

we have, in view of the first and the fourth lines in (2.28),

Oue _ / Au, = 0. (2.31)
ou OV Ju\D1.UDs.

(ii) We show that there exists a positive constant M independent of €, such that

||u5 - HHLO"(R"\m) S M, V small e>0.
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We only need to prove

2
lue = Hl| joo (e Drz0mns) < ZmaxH IBmH) (2.32)

Since Vu, = 0 in Dy, U Dy, u, is constant on each D;., denoted as C;(e). We know that

lim (u.(z) — H(z)) =0, (2.33)
|z|—o00
and
Ci(e) —max H <u, — H < Cij(e) —minH, onD;, i=1,2. (2.34)
Die Die

If (2.32) did not hold, say,
2
sup(ue — H) > Z(IgaxH — min H),
R™ i=1 Dis Dis
then, because of (2.33) and (2.34), there would exist 0 < a < sup(u; — H) such that U :=
]Rn
{z € R" | (ue — H)(z) > a} # () satisfies 0U N D1, U Dy, = . We may assume, by the Sard

theorem, that a is a regular value of u, — H, and therefore OU is C'. By the Hopf lemma,
O(ue — H)

< 0 on OU, and therefore
ov

/ Otu: —H) _,
U 61/

On the other hand, using (2.31) and the harmonicity of H in U, we have

B(u. — H) /
— 7 = AH = 0.
/au ov U 31/

A contradiction.

(iii) Consider we(z) = us(z) — H(z). Fix a constant Ry > 0, independent of €, such

that D} U D3 C Bg,/2(0), and let

— 1 Y 1
w = ——w (—), 0< < —.
0= e yp) <M<
Then w; is harmonic in By /g, \{0}. By the last line of (2.28), there exists a positive constant

C(e) such that

_ 1
lwe(y)| < Cle)lyl, 0< |yl < R
0
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Therefore, Aw; = 0 in By/p, and w;(0) = 0. By (ii), we have |w;| < C, on 0B p,, for

some positive constant C' independent of e. Hence, |we| < C, |Vw,| < C in Byj(3p,), then

_ 1
< e
lwe(y)| < Clyl, |y| < SRy

Therefore, also using (ii), (2.30) holds.

Step 2. For R > Ry, let Q = Br(0). Let @, := u|sn, then by Corollary 2.2 and The-
orem 1.2 it is enough to show, for some R, that Q*[¢*] # 0, where ¢* is defined at the

beginning of this section. By symmetry, we have

B ov} ovs _/ ovs
Q[QO]—/aQ 31/( ap: Ov oD; 31/>'

Without loss of generality, we may assume Hy44(2z) > 0 on R} . Recall that v} is the

solution of (2.19) with boundary data ¢*. In the following we use notation (v3)s, to denote
the the solution of (2.19) with boundary data h. Since Q*[¢*] is linear on ¢* and by
symmetry Q*[Heyen] = H[@kyen] = 0, Wwhere Heyen (z) 1= H(z) — Hpga(z) = %[H(xl,x’) +
H(—z1,2")] and similar for ¢},,, we may assume H(z) = H,qq4(z).

Now consider w(z) = H(z) — (v3)m(z). Then w(z) is harmonic in Q* which is defined
at the beginning of this section. By symmetry, w(—z1,2z') = —w(z1,2'), w(z) = H(z) on

0D} U 0D; and w(z) = 0 on 9. Therefore,

-2 Ha—wzf~ w(a:)Aw(x)—I—/~ |Vw|2:/~ |Vaw|? > 0.
aD; ov Q Q* Q

On the other hand, (v§)g =0 on 8D}, (vi)g > 0 on (02)" and, by the oddness of (v})n,

(v3)m = 0 on {(z1,2') | z; = 0}. Thus, by the maximum principle and the strong maximum
O(v3)m

principle, (v3)g > 0 in Q* and in turn, using the Hopf lemma, > 0 on 0Dj. Hence,

using the harmonicity of H,

* *

max H o(v3)m > Ha(%)H > HG_H _ H@_w
oD; oDy ov aD3 ov aD3 ov aD3 ov

1

> / |VH|2 Z T~

s C

Therefore,
a(’UE)H Z 1
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for positive constant C' independent of R.
For s, := . — H on 09, by step 1, there exists a constant C' > 0 which is independent of

e and R, suth that ||s¢||feo(a0) < CR!'~™. By Remark 2.1, we have ||V (v})s- | (apuaD;) <

55
oD}

for some positive constant C' independent of ¢ and R.

CHS*HL‘X’(aQ)a thus,

<c / 15l =oay < CRY ™,
aD;

Therefore, for large enough R,

/ 9(v3) :/ 8(U:?f)HJr/ 0(v3)s* Lo
D3 ov aD; ov oD} ov - C

It is also clear that |, 50 8 L < 0, Thus,

Q*[¢"] /693’01 /BD* aycp £0.

This proof is completed. O

Remark 2.3 In R?, when Dy, and Do, are identical balls of radius 1, the estimate (2.29)

was established in [6] under a weaker assumption 0y, H(0) # 0.

2.3 Proof of Theorem 1.3 and 1.4

In the introduction, similar to the harmonic case, we still decompose u = C1V; + CoVo + V3

as in (1.14).

Proposition 2.1 holds since Lemma 2.1—2.3 hold for Vi, Vs, V3 defined by (1.15)—(1.17)

and p € C2(Q) which is the solution to:

Oz, (aéj(a:) azip) =0 in Q,
p=0 ondD,UOD,y, p=1 on 9ON.

The proofs are essentially the same.
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Now we start to estimate |C; — C2|. By the decomposition formula (1.14), instead of
(2.3), we denote
A, = / aéj(a:) O,V vj (I,m=1,2),
oD,

) (2.35)
b = / ag (z) Oy, Va vy (1=1,2).
oD,

Then Lemma 2.4 and (2.4)—(2.6) still hold for a;,,, and b; defined above.
In fact, to prove Lemma 2.4 with general coefficients, we only need to change % to
aéj(w) O, * vj, change Ax in Oy, (aéj(:z;) 8“*) and change vy, vy, vz in Vi, V4, V3, re-

spectively, in the original proof of Lemma 2.4. For instance, (2.7) is changed to
0= /~ Or, (a8 (@) 0 VA1) Vs /~ 0r, (a (2) 02,V5) - Vi
Q Q

= — / a (z) 8, Vi vj -1+ / a (z) 8y, Vo vj -1 (2.36)
0D> 0D,

= —ag1 + aio.

Therefore, to estimate |C; — Cs|, it is equivalent to estimating |a;; — aai2| and |b; — abs|.

For |a11 — aa12|, Lemma 2.5—2.7 still hold for ay(l = 1,2) defined by (2.35). The proof

is quite similar and the only thing which needs to be shown is the following:
0= [ o (@ 011) v
Q

= —/ﬁagj(x) 02, V105, V1 —/ aéj(:v) OpVivj-1

oD

= _éagj(x) 8J:¢V183:jV1 — a11,

l.e.

ap = _/~agj(m) O, V10, V1.
Q

Then by the uniform ellipticity of aéj (z) and the harmonicity of vy,

] > /\/~ A A/~ VoL 2,
Q Q

and

_|VEl+C,

laq1] < /~agj(x) O; w0z, w < A/~ |Vw|? < A
Q Q N0,/
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where w is defined in the proof of Lemma 2.5 with the same boundary data of V; and w is

defined by (2.9) and (2.14).

Thus, Lemma 2.5—2.7 follow by the same computations. Then Lemma 2.8 and Propo-

sition 2.2 hold with the same proofs.

For |b; — abs|, Proposition 2.3 also holds for /(I = 1,2) defined by (2.35) and Q:[¢]

*

defined by (1.18). The proof is the same after changing % to agj (x) Og;* vj.

Combining the above propositions, we obtain our theorems.

2.4 Appendix A: Some elementary results for the perfect conductivity

problem

Assume that in R, Q and w are bounded open sets with C*® boundaries, 0 < o < 1,
satisfying

m
w:Uwch,
s=1

where {w;} are connected components of w. Clearly, m < oo and ws isopen foralll < s < w.
Given ¢ € C?(09), the conductivity problem we consider is the following transmission

problem with Dirichlet boundary condition:

Bw].{ [(ka?(w) - aéj(:v))xw + aéj(x)] Bxiuk} =0 inQ,

(2.37)
U = @ on 01,
where £k =1,2,3,---, and ¥, is the characteristic function of w.
The n X n matrixes A (z) := (aij(x)) in w, As(z) := (a;j(x)) in Q\w are symmetric

and 3 a constant A > X\ > 0 such that
NEP® < o (@)6i&; < AEP (Vo € w), NEP < af (2)&¢; < Al¢]® (V€ Q\w)

for all ¢ € R* and o (z) € C*(@), a¥ (z) € C2(Q\w).
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Equation (2.37) can be rewritten in the following form to emphasize the transmission

condition on Ow:

f Oz, (aij(w) Bwiuk> =0 in w,
Oz, (agj (z) 8wiuk) =0 in Q\w,
g ukls = ugl-, on Ow, (2.38)
aéj(:1:)(9302.11161/]-|Jr = kaij(x)aziukuj‘_ on Ow,
| uk =9 on 09.

We list the following results which are well known and omit the proofs.

Theorem 2.1 If u, € H'(Q) is a solution of equation (2.37), then u, € C*(Q\w) N C* (@)
and satisfies equation (2.38).

If up, € CHQ\w) NCH@) is a solution of equation (2.38), then u, € H(Q) and satisfies
equation (2.37).

Theorem 2.2 There exists at most one solution ux € H'(Q) to equation (2.37).

The existence of the solution can be obtained by using the variational method. For

every k, we define the energy functional
k[ i 1 ij
Ii[v] : = 5 [ a7 (2)0p;v0z,;v + 5 a5 (z)Op;v05, v, (2.39)
2/, 2 Q\w !
where v belongs to the set
H&,(Q) ={ve H} Q)| v=y on dN}.
Theorem 2.3 For every k, there exists a minimizer u, € H*(Q) satisfying
I = in I[v].
ko luk] Wi k[v]

Moreover, uy, € H'(Q) is a solution of equation (2.37).

Comparing equation (2.38), when k = 400, the perfectly conducting problem turns out
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to be:

¢ Vu=0 in w, (2.40)

U= on 0.

We also have similar results:

Theorem 2.4 If u € H'(Q) satisfies equation (2.40) except for the fourth line, then u €
CHQ\w) N C'(w).

Proof: By the third line of equation (2.40), we have u = const on each component of w,

so u = const on each component of Jw. Thus u = const on each component of I(Q\w).
Since u € H(R) satisfies 9y, (a;j(:v) Bwiuk> = 0 in Q\w, ulsgn = ¢ € C?(6Q) and

u = const on each component of (Q2\w), by the elliptic regularity theory, we have u €

C'(Q\w) N C' (). O

Theorem 2.5 There exists at most one solution u € H'(Q)NCY(Q\w)NCH@) of equation

(2.40).

Proof: Tt is equivalent to showing that if ¢ = 0, equation (2.40) only has the solution u = 0.

Integrating by parts in the first line of equation (2.40), we have

0= —/Q\w Oz, (a;j(x) 3@’%) 7

:/ _aéj(:v)&ciuaxju—/ u-agj(:z)awiuuﬂ_—k/ u-aéj(z)awiuuj‘+
0O\@ a0 a

W

2o [ vl = [ @]+ 0 [ @,

:,\/ |Vul?.
Nw

Thus Vu = 0 in Q\w. And since u = ¢ = 0 on 99, we have u = 0 in Q\w. Since u|y = u|_
on Jw and u = C on w, we get u = 0 on @w. Hence u = 0 in 2, i.e. u = 0 is the only solution

of (2.40) when ¢ = 0. O
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Define the energy functional

Ig[v] := %/Q\ aéj(x)awivamjv, (2.41)

where v belongs to the set
A:={ve H;(Q)‘V’U =0 inw}.
Theorem 2.6 There exists a minimizer u € A satisfying
Io[u] = géiﬂ[oo[v].
Moreover, u € H () N CHQ\w) N CH(@) is a solution of equation (2.40).

Proof: By the lower-semi continuity of I, and the weakly closed property of A, it is easy
to see that the minimizer u € A exists and satisfies 0, (aéj (a:)awlu) =0 in Q\w. The only

thing which needs to be shown is the fourth line in equation (2.40), i.e.

/ aéj(a:)awiuyj‘+ =0, s=1,2,---,m.
Ows

In fact, since u is a minimizer, for any ¢ € C°(Q) satisfying ¢ = 1 on ws and ¢ = 0 on
wt(t #+ S), let
i(t) = Io[u+1td] (t€eR),

we have
di s
;! = = = 3 ) .= 0.
10 =2 /Q A @, =0
Therefore
_ 7]
0= /Q\U 8£Cj (0'2 (3:) 3zlulc)¢
~ [ @tuts, + [ b @onum),
Q\U Ows
:/ agj(x)awluu]h,
Ows
foralls =1,2,--- ,m. O

Finally, we give the relationship between u; and u.
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Theorem 2.7 Let uyp and u in H'(Q) be the solutions of equations (2.38) and (2.40),
respectively. Then

up —u in HY(Q), ask — 400,

and

lim 1, =
Jim_Tel] = Tl

where Iy, and I, are defined as (2.39) and (2.41).

Proof: Step 1. By the uniqueness of the solution to equation (2.40), we only need to show
that there exists a weak limit u of a subsequence of {u;} in H'(2) and u is the solution of

equation (2.40).
(1) To show that after passing to a subsequence, u;, weakly converges in H'(f2) to some u.

Let n € H(},(Q) be fixed and satisfy n = 0 on @, then since wuy, is the minimizer of I in

1
H,,(£2), we have

A 1 g A
§||Vuk||%2(n) < Ti[uk] < Ii[n] = 5/ a3 (B)Ne;Na; < EHUH%{I(Q)a

m
ie.

IVugllz2 ) < Inllaie) = M,
where M is independent of k.
Since uy, = ¢ on 9§ and supy, ||ukl| g1 (a) < oo, we have up — u in H(}J(Q)
(2) To show that u is a solution of equation (2.40).

In fact, we only need to prove the following three conditions:

0, (agj(m) Bmiu) —0  inO\g, (2.42)
Vu=0 in w, (2.43)
/a aéj(x)aziukyj‘+ =0, s=1,2,--+,m. (2.44)

(i) For every k, since uj, € H'(Q) is the solution of equation (2.37), then
V¢ € C(Q), we have

k/ aij(x)amiukgbxj + /Q\_ aéj(x)aziukqsl‘j =0.
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Thus, V ¢ € C(Q\w) C CX(Q),

0=/ @ nge, — / ()b
since up — u in H,(Q) C H'(Q).
Therefore,
/Q . 0 (2)Dguds, =0, ¥ ¢ € CX(N\@),
e, (2.42).

(ii) Let n € H,(€2) be fixed and satisfy 7 = 0 on @, then since uy is the minimizer of Ij, in

1
H,,(£2), we have

EA 1 ’ A
. 2 < < = — Y ) n < — 2 1
5 I Vurlzaq) < Inluk] < Ieln] = 5 /Q\w% (@) 00,102, < |1l (0

which implies
||Vuk||%2(w) — 0, as k — oo.

By (1), since uxy — wu in H*(Q), then u; — u in H'(w). Therefore, by the lower-semi

continuity, we get
0< )\/ |Vul? < / aij(m)axiuamju < / aij(x)axiukaxjuk
w w w
< A||Vuk||%2(w) — 0, as k — oo.
Hence, [ |Vu|*=0 = Vu =0 in w, which is just (2.43).

(iii) By (i) and (ii), u satisfies (2.42) and is either constant or ¢ on each component of
O(Q\w). Thus, u € C*(Q\w). For each s = 1,2,--- ,m, we construct a function o €
C?(Q\w), such that o =1 on dws, o = 0 on dw;(t # s), and o = 0 on Of).

By Green’s Identity, we have the following:
O:—/ O, (aQ( ) Bmluk)g
Q\w
/ 7) 0, ugOy; 0 / ga;j(m)aziukz/j‘i +/ gagj(a:)agciukz/j|+
Q\w o0 dw

/ o @) ndnot k 0 (2) Oy urv; |
Q\w

Ows
/ 8% Uk az
Q\w
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Similarly,

dws

0= —/ Oz, (aéj(m)amiu)g = / aéj(;c)aziuaxjg +/ aéj(:c)amiuuj‘+.
Q\w Q\w
Since ur — u in H(f), it follows

0= / agj(m)aziukazjg — aéj(a:)aa;iuawj 0.
Q\w Q\w

Thus,
[ st o
Ows

for any s = 1,2,--- ,m. Therefore, we finish the proof of the first part.

Step 2. Since uy, is a minimizer of I, and Vu = 0 in w, for any k € N,
I[ug] < Ix[u] = Iolul.

Then limsupy,_, ;o Lx[ur] < Ioolul.

On the other hand, by Theorem 2.7, since u is the weak limit of {uy} in H'(Q), we

obtain
Iolu] = / aéj(:v)axiuaxju < liminf/ agj(a:)awiukaxjuk < liminf Iy [ug).
0 k—+o00 o) k——+o0
Therefore,
lim I = .
G Tifug] = Too[u]

The proof is completed. O
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Chapter 3

The perfect and insulated conductivity problems with

multiple inclusions

This chapter studies the gradient estimates for the perfect and insulated conductivity prob-
lems with multiple inclusions as stated in the introduction. We will first prove Theorem
1.5—1.6 in the case, in equation (1.21) and (1.24), aéj(a:) = 0;; where §;; = 0 if 7 # j and

§ij = 1if i = j.

3.1 The perfect conductivity problem with multiple inclusions

Instead of considering the equation with general coefficients as stated in the introduction,

we first prove Theorem 1.5 for the following perfect conductivity problem:

.

Au=0 in Q:=Q\U", D,

uly = ul- on 0D;, (1=1,2,...,m),

{ Vu=0 in D; (i=1,2,...,m), (3.1)
/m%h:o (G=1,2...,m),

(U= on ON.

The existence and uniqueness of solutions to equation (3.1) are well known, for reference,
see Appendix A in chapter 2. In this part we establish the gradient estimates for solutions to
equation (3.1). Comparing with the results in chapter 2, where we gave gradient estimates
of u in the case of two inclusions, here we manage to establish more accurate local gradient
estimates of u in the case of multiple inclusions, as stated in Theorem 1.5.

Note that the gradient of u only blows up in the small area between D; and D; when
the distance €;; between D; and D; approaches to 0. As a consequence of of Theorem 1.5,

we have the global estimates of u in Q.
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Corollary 3.1 Let Q,{D;} C R"”, {g;;} be defined as in (1.19), ¢ := I.I;éingij >0, and ¢ €
i#]

C2(89). Let u € HY(Q) N CL(Q) be the solution to equation (3.1). For e sufficiently small,

there is a positive constant C which depends only on n, kg, ro, ||0Q||c2.e, {||0D;||c2. }, but

independent of € such that

C

IVull oo ) < %H‘PHCQ(BQ) for n=2,

\% & < ¢ =3

| u”LOO(Q) = m”@“cﬂ(am for n=3, (3.2)
C

||VU||Loo(§) < ;||<P||c2(aﬂ) for n>4.

Note that from equation (3.1), we know that u = C; on 0D;, 1 < i < m, where {C;} are
some unknown constants. In order to prove Theorem 1.5, first we establish the estimates
of |C; — Cj| for any 1 < i # j < m, which later will allow us to control the gradient of v in

the small area between D; and D).

3.1.1 A Matrix Theorem

In the process of estimating |C; — C}|, the following theorem plays a crucial role.

Let s > 1 be an integer, and let P € R¥*%, o, 8 € RS,

P11 P12 - DPis a1 B
P21 P22 - P2s (&%) B2

P = . ] ' ' , Q= _ , B= > (3.3)
Ds1 DPs2 - DPss Qg ,Bs

and satisfy, for 7,7 =1,2,...,s

1

S
(1) pii >0, pij =pji <0 (i #j), Co <pii= Y pij < Co,
j=1

where Cj is a universal positive constant.

Then we have
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Theorem 3.1 For an integer s > 1, let P € R** o, € R® be defined as in (3.3) and

satisfy (3.4). Let a be the solution of the following system of linear equations
Pa = p. (3.5)

Then there ezists a constant C := C(Cyp) > 0 such that

C
@i — o] < (3.6)
A
Before proving the above theorem we first give the following lemmas.
Lemma 3.1 For an integer t > 2, let Qyx—1) € RX(E=1) e g matriz as follows
qi2 q13 - qut
22 Q23 - Qg
932 433 - g3t (3.7)
Q2 Q@3 - G
and it satisfies fori=1,2,...,t and 7 = 2,3,...,1
¢
4; >0, ;=i <0 (i#j) andg:=) g;>0. (3.8)

=1
Let Q; € RE-DX(=1) (; = 1,2,...,t) denote the matriz obtained from eliminating the i*"

row of the above matriz Qs (11 Then the sign of det Q; is (—1)*"! and
(t-1)

det @1 =  max t|det Qil-

Proof: Step 1. We first show that the sign of det @Q; is (—1)*~! for 1 <4 < t.
Fori=1,Q;isa (t—1)x(t—1) diagonal dominant matrix. Since each diagonal element
is positive we know that the sign of det ()1 is positive.
Next, we use induction by ¢ to show that for any ¢ > 2, det Q; is (—1)*"! for 2 < i < ¢.
1) For t =2, det Q2 = q12 < 0.
2) Assume that for ¢ = [ — 1, the sign of det Q; is (—=1)*"! for any 2 <4 <1 — 1.

For t =1,
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q12 913 "' qit
g32 433 - g3
det Q2 = '
g2 Q3 "t Qi
= qr2det Q12 + (—1)gsa det Qoo + -+ + (—1)"2gia det Q(_1yo, (3.9)

where Qi € RE2*(U-2) (; =1,2,... 1 —1) is obtained from eliminating the i** row of the

following (I — 1) x (I — 2) matrix

q13 qu4 " qu
q33 434 -+ 431
q43 q44 - Q4
Q3 q4 - qu

By induction the sign of det Qo is (—1)"!. Thus the i’* term of (3.9) has the sign
(—1)1(=1)(-1)*"! = —1. Therefore det Qy < 0.

For i = 3, by switching the 15 and 2"¢ columns, we have

q12 413 qi4 - 41t q13 q12 qi14 - 41t
q22 4923 Q24 -+ 42 423 Q22 Q24 -+ Q2
det Q3 = q42 Q43 Qa4 -+ Qar | — (—1) 443 Q42 Q44 - Q4
Q2 qit3 qta - Qi qt3 qr2 qta - qit

By the case i = 2, we have det Q3 > 0.

For : =1,

q12 T q1(1-1) qu q1 q12 Tt q1(1-1)

q22 T q2(1-1) q21

det Q) = . . . _ (_1)172 q.2l q22 QQ(l.—l)

qi-12 - 4qu-1a-1) 90-1) qa-1r 49¢-12 " du-1)@-1)
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By the case i = 2, the sign of det @ is (—1)72(—1) = (-1)"%.

Thus for any ¢ > 2, the sign of det Q; is (=1)""! for 1 < i < ¢.

Step 2. To show det Q1 = max t|det Qil, i.e.
i

=1,2y...4

det Q1 > ‘detQ”, 1=2,3,...,t

Here we only proof det Q1 > | det Q2| and the rest can be obtained by switching columns.

By Step 1, we know that det @1 > 0 and det Q2 < 0. Thus

det Q1—| det Q2| = det Q1 + det Q2

Q12+ 922 q13+q23 -+ qut g2
B q32 q33 g3t
qt2 qt3 qtt
92 q3 - Q2 Q23 - Qo
| 932 933 ccr g3t | | G3 g3z o g3t
g2 Q3 - qu qt qt3 - Qi
= @pdet Q) + (—1)gs det Q5 + - - - + (—1)" G det Q, (3.10)

where Q) € RE-2x(=2) (j = 2,3,...,¢) is obtained from eliminating the (i — 1)** row of

the following (¢ — 1) x (¢ — 2) matrix

g23 g24 --- Qo
933 4934 - g3t

, [p—
Q= 943 q44 - Q4
\%3 qia - G

By Step 1, the sign of det Q% is (—1)*~2.
Thus the i** term of (3.10) has the sign (—1)*1(-1)""! = 1.

Therefore det Q@ — | det Q2] > 0. O
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Lemma 3.2 For an integer t > 3, let @tx(t,g) € R*(=2) be g matriz as follows

q13 qi14 - 41t
g23 g24 -+ Qg2
g33 434 -+ g3t
(3.11)
43 q44 - Q4
qt3 qra Qi
and it satisfies for i =1,2,...,t and j = 3,4,...,1
t
g7 >0, ¢qij =45 <0 (1#7) and gj == Zq,’j > 0. (3.12)

=1
Let @ij € RE=2x(=2) (1 <4 < j < t) denote the matriz obtained from eliminating the ith

and 7™ row of the above matriz Qvtx(t,g). Then
det Q1o = det Q;-
et Q12 151?3;(57:‘ € Qz]'

Proof: Consider Q1 to be obtained from eliminating the (j — 1) row of the following

(t —1) x (t — 2) matrix

q23 Q24 - QQt\
933 Q34 "+ Q3
943 Q44 - Q4
qt3 qra  cct qit

By Lemma 3.1, we have det @12 > 0 and
det 612 Z ‘ det @1]"- (313)

Similarly, det élg Z | det Qvgj|.
In the following we only prove det 612 > | det é34| and the rest can be obtained by

switching columns.



To estimate |det @34| we first compare det @34 with det @14 and det @13.

det Q34 — det Qs =

q31 + qs33
qa1 + Q43

=1 g51 +gs53

qun + qi3

= (g31 +gss + Y Ajas;) det Qh + (=1)(qar + qas + Y _ Ajquy) det Q)
i=5

+(=1)%(gs1 + gs3 + Z Ajgs;) det Qs+ + (1)
j=5

where @;(z = 3,

following matrix

and for j =5,6,...,1,

q32

q42

g52

qt2
t

4,..

q35

q45

g55

qt5

t

Q13+ 933 qua+q3¢ Q15 +q35

g3t

qat

g5t

qit

q23

g53

qt3

g32
q42

g52

q2

0

1

q24 q25
q54 g55
qt4 qts5

g31 + q33 + 23:5 Aj43;
Qa1+ Qi3 + Y5 Njdsj

g51 t gs3 + 22:5 Ajds;

gu + g3 + 23:5 Aj4tj
t

Jj=5

g3s + Q3t
45 G4t
g55 -+ g5t |
Qs 0 qu

if (—1)7 2 det @ > 0,

if (~1) 73 det Q@ < 0.

By Lemma 3.1 det Q4 < 0, det @, < 0 and
3 4

gs1+qs3+ Y Ajgs; > Gz > 0,

t

Thus, the first two terms of (3.14) are both negative.

q32

q42

g52

q2

q1t + q3¢
g2t

g5t

qtt

q35

445

qs55

qt5

qa1 + qu3 + Z Ajqaj < 0.
Jj=5

qs3t

qat

qst

qtt

45

¢
qi1 + g3 + Z Ajgrj) det @y, (3.14)
=5

.,1) is the matrix obtained from eliminating the (i — 2)*" row of the

(3.15)

(3.16)
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By the definition of ); in (3.16),

i) if (=1)"3det Q} > 0, A; = 0, then
t t
gt aist Y Ngij=an+as+ Y, Naij <0

=5 i#i, j=5

ii) if (=1)"3 det @} < 0, \; = 1, then
t
gi1 + ¢is + Z Aigij > @i > 0.
j=5

Thus, the (i — 2)™(i = 5,6,...,t) term of (3.14)
t
(_1)Z_3(Qi1 + @iz + Z Ajgij) det Q; <0.
Jj=5

Therefore, det @34 — det @14 <0, i.e. det @34 < det @14.

Similarly,
Q13+ q43 qua+tqu qi5+qss5 - Qi+ qa
q23 q24 q25 T g2t
det Q34 — det Q13 = 53 54 55 ... gt
qt3 gt qt5 Tt qtt
g31+934 Q32 Q35 - - (3t gs1 + g34 + Z] —5 Jqu Q32 q35 - g3t
qu1 +qua Qa2 Qa5 ccc qat qu1 + qua + ZJ s Niquj Qa2 s o qu
= | %1t g54 952 G55 Gst | T | 951t Gsat EJ _sNigsj G52 G55 ot st
g1+ qu g2 g5t Qi g1+ qua + Z] s Nty g qis g
t t
= (g31 + @34 + Z )\;-qgj) det Q5 + (—1)(qa1 + qaa + Z )\;’CMJ') det Q)
Jj=5 =5

t t
+(—1)(gs1 + g5 + > Niasg) det Q5 + -+ (=) (g0 + qu + Y Njgr;) det Qf, (3.17)

where @; (i = 3,4,...,t) is the same matrix obtained from eliminating the (i — 2)** row of

the matrix (3.15) and for j = 5,6,...,1,

1 if (1) det @} >0,
Ay = ' B (3.18)
0 if (-1)’det Q) < 0.
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By Lemma 3.1 det @} < 0, det Q', < 0 and

t t

g1+ gsat+ Y Nigsi <0, qu+quu+ Y Ngs > @ >0
J=5 Jj=5

Thus, the first two terms of (3.17) are both positive.
By the definition of X, in (3.18),
i) if (~1)"3 det @, > 0, X; = 1, then
t
gi1 + gia + Z Nigij > G > 0;
j=5
ii) if (—1)""3 det Q} < 0, X, = 0, then
t t
qi1 + i3 + Z Aigij = gi1 + Qia + Z Njgi; < 0.
j=5 J#t, j=5
Thus, the (i — 2)(i = 5,6,...,t) term of (3.17)
. t ~
(—1)" (g1 + qia + Z N;qij) det Q; > 0.
=5
Therefore, det @34 — det @13 > 0, i.e. det @34 > det @13.

Hence, by (3.13),

| det Q4] < max(| det Qu4], | det Qu3]) < det Q2.
We complete the proof. O

Lemma 3.3 For an integer t > 1, let Quxy € RP¥! be a matriz as follows

qgi1 q12 -+ qit
g21 Q922 - - Q9
(3.19)
qt1 g2t qQu
and it satisfies for 1,5 =1,2,...,t
t
qi; > 0, Gij = qji < 0 (Z #* ]) and @; := Zqij > 0. (3.20)

7j=1
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Then we have

q22 - g2t ' g2 - g2t
Q| o . [ <det@Q < Z(h'j
1,j=1
qt2 - it g2 - Qi
Proof : We have
Q. Q12 qut
g g2 Qo
detQ =
G Q2 qQu

=@ det Q1 + (-1)F@det Qo + -+ + (—1)"' G det Q,

where Q;(i = 1,2,...,t) is the matrix obtained from eliminating the i*» row of the following
matrix

qi2 q13 - QIt\

Q22 Q23 - Q2

32 ¢33 - g3t

Q2 g3 " Qi

By Lemma 3.1, the i** term has the sign (—=1)*~!(=1)*"! = 1. Thus each term are positive.

Therefore
q22 - Q2
det Q > 1 term = ¢
qi2 " qit
and
¢ q22 - Q2 ¢ q22 - Q2
detQ <> a| ¢ . P =D gy
i=1 iyj=1
q2 Gt q2 Qi

Proof of Theorem 3.1: We only estimate |a; — az| and the rest can be obtained by switching

columns.



By the system (3.5), we can get the formula for the difference of oy and as:

B1 pi1t+pi2 pi3 Dis Bi D1 P13 Dis
B2 pa1 +paa pa3 D2s B2 D2 P23 D2s
B3 p31+p32 P33 D3s B3 D3 D33 D3s
Bs Dst+Ds2 Ps3 Dss Bs Ds Ps3 Dss det ﬁ
mTe= N " det P’
b11 P12 Pis b1 Dis
b21 P22 D2s Db21 D2s
Ds1 Ds2 Dss Ds1 Dss
We estimate the determinants of the above two matrices separately.
By Lemma 3.2 and condition (3.4), we have
b33 P3s
‘ det ﬁ‘ <cC
Ds3 Dss
where C := C(C)) is a positive constant.
By Lemma 3.3 and condition (3.4), we have
D22 D2s s b33 D3s
det P > py >p1 ) Py
i=2
Ps2 Dss Ds3 Dss
b33 P3s P33 P3s
= p1(P2 — p12) > E|p12|
0
Ds3 Dss Ds3 Dss
Therefore,
| det P| C
ap —ag| = <—
o1 = 02l = el < pual

where C := C(C)) is a positive constant.
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3.1.2 Proof of Theorem 1.5

Similar to the two inclusions case in chapter 2, we decompose u into m + 1 parts:

m
U ="vg + Z C; - v, (3.21)

i=1

where v; € Hl(ﬁ) (1=0,1,2,...,m), are determined by the following equations:

for i =0,
Avyg =0 mn ﬁ,
vy = 0 on 8D1, 6D2, . aDm, (322)
Vg = ¢ on OfL.
fore=1,2,...,m,
( ~
Av; =0 in QQ,
v; =1 on 0D;,
4 (3.23)
v; =0 on 0Dj, forj #1,
| vi= 0 on 08

Since u satisfies the integral conditions in equation (3.1), using the decomposition formula
(3.21), we see that the vector (Ci,Cs,...,Cy,) is uniquely determined by the system of

linear equations

a1 a2 -t Gim Ch b1
az1 a2 v Gam | Co _ b'z (3.24)
Aml Am2 ' Qmm Cm b,
where
ov; L
Qi 1= —, (5,5 =1,2,...,m), 3.25
o=, ) (325
e [ 20 212 m) (3.26)
) ,2,...,m). }

Similar to the two inclusions case in chapter 2, we investigate some properties of v; (i =
0,1,--- ,m), the matrix A and the vector b in equation (3.24). Here we state several lemmas

without proofs since the proofs are same as those of Lemma 2.1, 2.3 and 2.4 in chapter 2.
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Lemma 3.4 Let vg,v1, -+ ,vm be defined by equations (3.22) and (3.23), then for n > 2

and fori=1,2,--- ,m we have

C (91)
||VU0||LOC(5) <C, “VU'L”Loo < = -

||L°° an) < C.

Lemma 3.5 For 1 <14, j <m, let a;; and b; be defined as in (3.25) and (3.26), then they

satisfy the following:
1) a;; <0, Qij = G >0 (Z;éj),
2) —-C< > G < -+
> - i > C’
1<j<m

where C > 0 is a universal constant.

Remark 3.1 From property (1) and (2) in Lemma 3.5, we can prove that the matriz A is

nonsingular, it serves a good exercise in linear algebra.
Next, we derive estimates of the order of a;; with respect to ¢;;.

Lemma 3.6 Let a;; be defined as in (3.25), there exists a universal constant C > 0, such

that for any 1 <1 #j <m,

C
e

C
<ap < — <o < —F—, forn =2,
\/Eij

1
C fmine;; /mln e,] \/‘Ez‘j

—C|In(mine;;)| < ai < — ‘11’1(11’11116”” —Ing;j < ajj < Clnggj,  forn =3,
J#i J#i C
1 1
—C<aii<—6, 5<‘”"<C’ forn > 4.

Proof: Without loss of generality, we assume 1 = 1,7 = 2. The proof of the estimate about
a11 is the same as that in Lemma 2.5, 2.6, and 2.7. Here we prove the estimate about ais.
Let T be a C*® closed simple curve such that D, is inside the area bounded by the curve.

Denote:

I'h:=I'nDy I's:=I'n (UQSiSmaDZ‘) I's:= P\(Pl U Fg)
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It’s easy to draw I such that I'; contains the closest point of Dy to Do, and ||Vv1[peo(r,) < C
for some universal positive constant C. We can also show that ||Vv1|[ee(r,) < C by com-

parison principle. Look at the following figure for example.

By the harmonicity of v, we have

a _/ on _ [0
12 3D28u Fall

_ o, [, [ O (3.27)
I ov Ts ov T's ov )
6’01
= — + O(1).
[ o
The last equality of (3.27) is from the fact thatfr2 % < C and [|[Vv1| peo(ry) < C.
Using the above facts again, it follows that
— = [ 11—+ 0(1) = Vui|* + 0(1), 3.28
[ G = [ rom= [ vni+on (3.28)

where DNQ is denoted as the region bounded by I" and 0Ds.

Therefore, by combining (3.27) and (3.28), we have

al1p = /~ |V’U1‘2 + 0(1)
D>



Using the same method as that in the proofs of Lemma 2.5, 2.6, and 2.7, we have

1 / , C
< |[Vu]” < , forn =2
C/ey Dy NGP:

1
5\1n612| < /~ |Voi|?> < C|lneyy|, forn=3

Do

1
— < /~ Vo |? < C, for n > 4.
C Dy

Therefore,

— < a12 < —/—, for n = 2,
Ve Ve
1
5111512 < ayg < Clnegyg, forn =3,
1
6<a12<0, for n > 4.

Now Applying Theorem 3.1 and Lemma 3.5, 3.6, we have
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Proposition 3.1 Let u € H}(Q) N Cl(ﬁ) be the solution to equation (3.1) and let C; be

the value of uw on D;, there exists a universal constant C > 0 which depends only on n, kg,

70, |09 c2.a, {||0D;||c2a}, but independent of {e;;} such that

|CZ'—Cj| SC«/SU fO'r' n=2,
1
|C; — Cj| £ C—— for n=3,
\lneij\
|ICi —C;| < C for m > 4.

Now we are ready to complete the proof of Theorem 1.5.

(3.29)

Proof of Theorem 1.5 We prove the estimates in dimension 2, the higher dimension cases

follow from the same idea. Without loss of generality, we assume :v% = 0 and C; < Cj. Since

2, Dy, Dy,--- , Dy, satisfy the properties listed in (1.19), we can choose ¢ small enough such

that if the distance g;; of D; and D, satisfies €;; < §, then the ball B(0,46) only intersects

with D; and D;.
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By the maximum principle,
Jull e g < Nl 200 o0

Using gradient estimates and boundary estimates of harmonic function, we immediately

see that, for some universal constant C' > 0,
IVull oo @np(0,360\ ) < Cllulle@ < ClleliLeea0)- (3.30)
Since €;; < §, we have
B(0,6) c B(z*,26) C B(0,39). (3.31)

Therefore we can find a harmonic function w € C?(B(z?,26) \ D;) N C°(B(xt,26) \ D;)

satisfying the following boundary conditions
e w=0on B(z*,§) NOD;,
e w> |u—C;| on dB(2%,25) \ (D; UD;), (Thisis from (3.30) and (3.31))
e w >0 on B(z*,26) \ D;.

By the Hopf Lemma, we know

9 .
8—1: >0 on B(z,6) NAD;.

Then we can choose ap small enough such that if €;; < ag, then

w > Ce;; on B(a?,a9) N OD;, (3.32)

for some universal constant C > 0.

Now we Claim: there exists a universal constant C > 0 such that

Cw >u—C; > — Cw on B(z',26)\ D;UD;. (3.33)
€ij 1/51‘]'

Proof of the Claim: By the maximum principle, we only need to show that there exists

some universal constant C' > 0 such that

on 9(B(z',26) \ D; UDj).




55

According to our construction of w, we know that w = 0 on B(z?,8) N dD;, and w >
lu — Cj| on 8B(z*,26) \ (D; U D), therefore, we only need to show that we can find some
universal constant C' > 0 such that

Cw

Eij

> |u—Cj| on 8D;N B(z',26).

According to (3.32) and Proposition 3.1, we have
Cw

> C\/feij > |C; — Ci| =|u—C;| on B(xj,ao) NoD;.

Since w > C for some universal constant C > 0 on 8(D; N B(z,26)) \ B(z?, ), by
choosing C' large enough, we can make

Cw

6,']'

> |u—C;i| on 8D;N B(z',26).

Therefore our claim is proved.

By the comparison principle, according to (3.33), we see that

c > 2 Cuw > %‘ = |Vu| on B(xi,d)ﬂaDi.
\/ﬁj aV,/&Tij ov

Applying the same method, we can get for some universal constant § > 0,

C; 2‘%‘=|VU| on B(z!,8) NoD;.
Veij

Therefore by the maximum principle, we have

C
IVl o < ——llellc2(an)-
L (QNB(0, 6)) Nz (09)

O

For the equations with more general coefficients, with the same proofs in section 2.3 we

can also derive Theorem 1.5.

3.2 The insulated conductivity problem

As stated in the introduction, for the insulated conductivity problem, we only need to

consider the local situation (1.24). Since the proof for the case with multiple inclusions is



56

same as the one with two inclusions, here we assume that there are only two conductors D
and Dy. We consider harmonic equation first and the equation with general coefficients can
be obtained similarly. In this section we use, unless otherwise stated, C to denote various
positive constants whose values may change from line to line and which depend only on n,
K0, 70, [|0Q|c2.e, |0D1]|c20 and [|0Dz]| 2.

The insulated conductivity problem can be described as the following local version

Au=0 in QN B(x)y,26),
%\ L =0 on (0D, U &Dy) N B(xzY,,26), (3.34)
lul <1 in QN B(xYy,26),

where B(z9,,26) is defined in (1.20).
Without loss of generality, by a translation and rotation of the axis, we may also assume

that Dy, Dy are two strictly convex subdomains in 2 C R™ which satisfy the following:
(—8/2,0’) € 0Dy, (8/2,0’) € 0Dy, € = diSt(aDl, BDQ) = diSt(Dl,Dg). (335)

Near the origin, we can find a ball B(0,7) such that the portion of dD; (i = 1,2) in
B(0,r) is strictly convex, where r > 0 is independent of e. Then 0D; N B(0,7) and
0D, N B(0,7) can be represented by the graph of z; = —5 — f(2') and z; = § + g(2)
respectively, where z/ = (z9,--+ ,z,). Thus f(0') = g(0') =0, Vf(0') = Vg(0') = 0, and
ol < (D*f(0)), (D?(0)) < CI.

Proposition 3.2 Under the hypotheses of Theorem 1.6, let u be the solution of equation

(8.34). There exists a positive constants C, such that, for sufficiently small € > 0,

(3.36)

Before proving the above proposition, we first show the following lemmas.
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Lemma 3.7 For any small 6 > 0, let O, = {z € R*||z1| < § and |2/| < 1}, and let

w € HY(O,) satisfied the following conditions

o, (aij (2) Bziw) ~0 in O, (3.37)
a'*(z) = a®'(2) =0 on |z =46, a=2,3,...,n, (3.38)
9 _y on |z| =6, (3.39)
0z1
lw| <1 in O, (3.40)
where the n x n matriz A(z) = (a"(2)) in O, is symmetric, a¥(z) € C'(O,) and 3

constants A > X\ > 0 such that, for all £ € R",
MéP < a”(2)6i€; < AEP (V2 € O2).

Then there exists a constant C > 0 which depends on n, X, A, ||aij(z)||cl(5z), and 1is
independent of 6, such that

||Vw||L°°(%(92) <C,

where £0, = {z € R*||z1| < § and |2'| < i}.

Proof: We construct a new function w by “flipping” w about the hyperplane z; = § as

follows
w(z) if z € O,,
w(z) = (3.41)
w(28 — 21, 2") if§ <z <30and || <1.
Thus w extends w to {z € R"| —§ < z; < 3¢ and |2'| < 1}. Keep flipping w about z; = —4,
z1 = 36, z1 = =54, ..., we get a new function, still denoted as w, which is defined in

{z € R"||z1] <1 and |2'| <1}

Since w satisfies the condition (3.39) and (3.40), w satisfies

9, (a7 (z) 0,w) =0 in {z € R"[|21| < 1 and |7'| < 1},
(3.42)

|lw| <1 in {z € R"||z1] < 1 and |7/| < 1},
where for o = 2,3,...,n,

a'®(2) if z € O,,
a(z) =a'*(2) = (3.43)
—a'®(26 — z,7") if § <21 <36 and || < 1.
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for other indices

» a' (2) if z € O,,
a(z) =4 (3.44)
a(20 — z1,7") if § <2z <36 and [2'| < 1.
Since a(z) € CY(0,) satisfy (3.38), @ (z) is Lipschitz continuous in {z € R"||z| <
1 and |2/| < 1}. Thus, by (3.42) there exits a constant C > 0 which depends on n, A, A,

||a¥ (2)llc1(,)» and is independent of §, such that

1
|[Vw(z)| < C if|z] < and |2'| <

l\DIb—t

Since @(z) = w(2) in O, therefore |[Vw| < C in $0,. O

Lemma 3.8 For any 8, r > 0, let Oy(6, r) = {y € R*||jy1] < 6(1 + |¢/'|*) and |y'| < r},
0,(8, r) ={z € R"||21| < 6 and |2'| < r}. There exist a constant ¥ > 0 which is independent
of § and a transformation y = ®(z) : O,(0, r) — Oy(6, r), such thatV 0 <r <7 and V
0 > 0 sufficient small,

B(+6,2') = (£6(1 + |2%),7), (3.45)

i.e. it maps the boundary T, := {z € R"|z; = £§ and |2/| <} to the boundary Ty := {y €

R*|y1 = £0(1 +|y'|*) and |y'| < r}, and

oo (5) = (@) onT., (3.46)
|af‘”| <o), |azz|<c<) (3.47)

where v is the outward unit normal of I'y and C is a positive constant independent of d.

Proof: Without loss of generality it is enough to show that there exists a transformation
y = ®(z) which maps OF (6, r) = {z € R"|[0 < zy < d and || <1} to OF (6, r) = {y €

R™|0 < y1 < 8(1 +|2'[?) and |y'| < r}. Denote

F) =61+ 1y,

then
(CLYSW) oo
1+ |V !
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Define
F:(2,2") — (f(2)),2") = (z1 — 0)v (7)), (3.48)

thus F satisfies the conditions (3.45) and (3.46). Plug in f and v, we have

no_ NI _ (—1,Vf(zl))
F(zl,z) —(f(Z),Z) (zl 5) 1-|—|Vf(2’)|2
. . (—1,262")
= 00+ F).2) = (- 0) s
_ ('271 zl)_i_(s(l_;_l_‘zq? le)
NiEwrerzl ViR R sy i

Construct a fixed cut-off function 0 < p < 1 € C*°(R) such that p(t) = 1ift > 3/4, p(t) =0
ift<1/4 and |p/(t)] < C for all t € R.

Define

D(z1,7') = (271 z')
b V1 + 482272

z1 1 12 2(21 — (5) '
+0p(5) (1 - e + |, (3.49)
o) Vit a4 )
= ®y(2,7) + (5p(%1)<1>2(21,z').

Thus y = ®(z) maps OF (4, r) to O/ (4, r) and satisfies conditions (3.45) and (3.46). The

only thing need to show is (3.47). By simple calculation we have

[”)@ 8@1 1, %1 Z1 6@2 6@1 '
g7 Y71 LAY IhyZE2 7
5o = om rs) 2+5p(5)8z1 5o + O(|']) + 0(9),
8<I> _8@1 Z1 8@2 i 8_@
87~ 07 + p(g) 0z 07 +009),
Therefore,
0 _6@1 ,
=Inxn + 0(8%) + O(|2']) + O(9) (3.50)

=Inxn + O(|2']) + O(9),
where |O(|Z'])] < C|Z’| and |O(8)| < C4, for some positive constant C' independent of |2'|
and 4.
Choose 7 > 0 small such that I,x, + O(F) and its inverse matrix are bounded. Then
VO<r <7andV § > 0 sufficient small, §,® and its inverse matrix are bounded, i.e.

condition (3.47) is proved. O
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Proof of Proposition 3.2: Let z = /ey, and denote

v(y) = u(r) = u(Vey). (3.51)

Then Vu(y) = 1/eVu(z), it is equivalent to show that

Vo(y)l < C,
if
yGOyi{yER"\—§—f(£y) <y < %-%g(éy) and || < %}-

Since f and g are strictly convex, by the assumptions at the beginning of this section and
Lemma 3.8, there exists a transformation y = ®(z) : O,(Ve, ) — Oy(v/€, 7). Choose
7 > 0 fixed such that V0 < r <7 and V ¢ > 0 sufficient small, we have (3.45), (3.46) and
(3.47).
Define
w(z) = v(y) = v(P(2)), 2z € O0,(\e, 1) (3.52)

we claim:

(i) lw| <1, if z € O,(\¢, 7).

In fact, by definition (3.51), (3.52) of v and w, it follows directly.

(ii) 37“) =0on T, ={z € R"||z]| =+, || <r}.
1

By definition and (3.46), (1.4)

ow o0d ou
a—z1 —vy’l)a—’Zl —\/Evmu(—z/) ——\/55 =0.
(iii) w € HY(O,) satisfied some equation
0z (aij(z) Bziw) =0 in O,,
al®(z) = a*(2) =0 on |z1|=6, a=2,3,...,n,

where the n xn matrix A(z) := (a(z)) in O, is symmetric, a”(z) € C*(0,) and 3 constants

A > X\ > 0 such that, for all £ € R?,

MNEP < a(2)6¢; < AP (V2 € O,).



In fact, since u is harmonic, so is v, i.e. v is the minimizer of the energy functional

11 = [ 1V,

By definition,
0z
Vy'U = VZ’LU . a—y,

then w is the minimizer of the new energy functional

1) = [ (v 50) (V- 55)' 1762 s
/Vz'w ayf]) y| 2 ](Vzﬁj)t dz.

Let
_ ai' 2)) = (azy)_l[(azy)_l]t o [(azy)t(azy)]_l
AR = @) =T har T el

By (3.46) we have for « = 2,3,...,n,

0,y 0,y =0, on |z1| = 4.
Therefore, for « = 2,3,...,n
a'®(z) =a*(2) =0 on |z|=04.

Hence, by (3.47), we derive claim (iii).

Thus, w satisfies all conditions in Lemma 3.7. Therefore we have

T

Vaw| SC in 0.V, ).

Hence, by (3.47), in Oy(v/€, r/2)
[Vyo| = [V.w(dyz)| < C.

The proof is complete.

Proof of Theorem 1.6: We divided  into two pieces B(0, 4) N Q and Q/B(O, %) and

estimate |Vu| separately.

In B(0, ‘[) N Q, by Proposition 3.2, we have |Vu| < %

61
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[

In Q/B(0, o), for any point = (x1,2') in it, instead of rescaling x = /ey in the first

[

step in the proof of Proposition 3.2, let
T = |$,|2 +e-y,

and follow the same proof the Proposition 3.2, we have

|Vu| < _c < °
V]E'Z+e = Ve
We complete the proof of Theorem 1.6. O

Remark 3.2 By the proof of Theorem 1.6, indeed, we have derived a more precise point

wise gradient estimate

Vu(ar, o) < ——2

= VP Te

3.3 Appendix B: Some elementary results for the insulated conductivity

problem

Assume that in R?, Q and w are bounded open sets with C*% boundaries, 0 < a < 1,
satisfying

m
w= U w, C Q,
s=1
where {w;} are connected components of w. Clearly, m < 0o and w; is open for all 1 < s <
m. Given ¢ € C?(0Q), the conductivity problem we consider is the following transmission
problem with Dirichlet boundary condition:

00, { [ (k0 (2) = a5 @)+ 0§ @)} 0 im0 (359

U = @ on 09,

where k =1, %, %, .-+, and ¥, is the characteristic function of w.
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The n X n matrixes A;(z) := (aij(a:)) in w, As(z) := (a;j(m)) in Q\w are symmetric

and 3 a constant A > X\ > 0 such that
M) < af (@)6i; < AIEP (Vo € w), NP < af (0)&&; < AP (Vo € Q\w)
for all ¢ € R* and o (z) € C2(@), o (z) € C2(Q\w).

Equation (3.53) can be rewritten in the following form to emphasize the transmission

condition on dw:

( Oz, (aij(sc) Bxiuk) =0 in w,
Oz, (agj (z) Bwiuk> =0 in Q\w,
y ukls = uil—, on Ow, (3.54)
a;j(zz:)awiukl/j|jL = ka?(w)@xiukl/j‘f on Ow,
| uk = on 0f).

We list the following results which are well known and omit the proofs.

Theorem 3.2 If u;, € H'(Q) is a solution of equation (8.58), then uy, € C*(Q\w) N CH(@)
and satisfies equation (3.54).

If u, € CY(Q\w) N CL (@) is a solution of equation (8.54), then uy, € H'(Q) and satisfies
equation (3.53).

Theorem 3.3 There exists at most one solution ux € H'() to equation (3.53).

The existence of the solution can be obtained by using the variational method. For

every k, we define the energy functional

k[ 1 ij
Iiv] - = 5 /wa1 ()0, 00, v + 5 /Q\w as ()0, v0x;v, (3.55)

where v belongs to the set
H;(Q) ={ve H (Q)| v=¢ on 09}.
Theorem 3.4 For every k, there exists a minimizer u, € H'(Q) satisfying

I[ug] = min  Iifv].

€HL(Q)

Moreover, uy, € HY(Q) is a solution of equation (3.53).
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Comparing equation (3.54), when k = 0, the insulated conducting problem turns out to

be: )
Oz, (agj(:v) 8$iu0) =0 in Q\w,
af ()0, uovs| , = 0 on, duw,
{ %0 =¢ on 09, (3.56)
Ox; (aij(:v) 3;u,-uo) =0 n w,
\u0|+:u0|_, on Ow.

We also have similar results:
Theorem 3.5 If ug € H(Q) satisfies equation (3.56), then uy € C1(Q\w) N CH(@).

Theorem 3.6 There exists at most one solution ug € H(Q)NCH(Q\w)NC* (W) of equation
(3.56).

Proof: It is equivalent to showing that if ¢ = 0, equation (3.56) only has the solution

up = 0. Integrating by parts in the first line of equation (3.56), we have
0= —/ Oz, (aéj(x) 8ziu0) - U
0\@
= / a;j(x)axiuoawjuo - / Uug - agj(w)ainOVjL +/ Uo - aéj($)3wiuﬂyj‘+
O\ 80 8

()
> A / Vo2 — / o ¥ (2)Ogsuoms |
Q\w a0

= )\/ |Vuo|2.
o\w

Thus Vuy = 0 in Q\w. And since ug = ¢ = 0 on 99, we have ug = 0 in Q\w. Since
up|+ = ug|- on Ow and O, (aij(ac) awiuo) =0 on w, we get ug = 0 on w. Hence ug = 0 in

Q, i.e. ugp =0 is the only solution of (3.56) when ¢ = 0. O

Define the energy functional

1 .
Tofo] = / 01 (2) D, 00,0, (3.57)
2 Jow
where v belongs to the set

Ag={v e H;(Q)‘ij (aij(x) 8miv) =0in w}.
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Theorem 3.7 There exists a minimizer uy € Ag satisfying
1 = min Iy[v].
oluo] = min Jo[v]
Moreover, uy € H () N CH(Q\w) N C (@) is a solution of equation (3.56).

Proof: By the lower-semi continuity of I; and the weakly closed property of Ay, it is easy
to see that the minimizer ug € Ag exists and satisfies 9, (aéj (w)@xiuo) =0 in Q\w. The

only thing which needs to be shown is the second line in equation (3.56), i.e.
(Igj(x)awiumlﬂ_'_ =0 on Jw.

In fact, since ug is a minimizer, for any ¢ € C2°(Q) satisfying 0y, (a? (a:)é)xiuo) =0 on w;

and ¢ =0 on wy(t # s), let
i(t) := Io[ug + tp] (t € R),

we have

i'(0) == di

T dt =0 /(;\wa'z ("Ll)aﬁﬂv,uo(ﬁ.’ﬂ] 0

Therefore
0= _/ awj (a?(x) awq;u0>¢ = / aéj(x)azwuoﬁbwj + / ¢ - Géj(x)awiuo’/jh
N\w Nw Ow

= ¢a22‘7($)8$1,u0y]|+7
Owsg

for any ¢ € C°(Q2). Hence, aéj(ac)aziuouﬂ+ = 0 on Ow, for any s. O

Finally, we give the relationship between u; and ug.

Theorem 3.8 Let up and ug in H'(Q) be the solutions of equations (3.54) and (3.56),
respectively. Then

up —uo in HY(Q), ask —0,

and

lim 1, = I
lim kluk] = Toluo),

where Iy, and Iy are defined as (3.55) and (3.57).
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Proof: Step 1. By the uniqueness of the solution to equation (3.56), we only need to show
that there exists a weak limit ug of a subsequence of {uy} in H'(£2) and wuy is the solution

of equation (3.56).

(1) To show that after passing to a subsequence, uy weakly converges in H'(Q) to some ug.

Since uy, is the minimizer of I, in H, (},(Q) and ug is the minimizer of Iy in Ag, we have

M k[
7||Vuk||L2(w) + Iplug] < 3 / allj (m)axiukawjuk + Ip[ug]
k y
<7 / a1 () gy D + Tolug) = T
w
k y
< Lfug) = © / a7 ()3, 09, 0 + To[o],
w

2

Ak
< 5 [IVuoll 2wy + To[uo],
1.e.

A A
IVukllzz < Va0l < $1Vu0l )

On the other hand,

A A
S IVurlizzg) < Tkfue] < Ix[u] < S[[Vuollr2(a),

l.e.
A
IVurll 2@ < T I1Vuollr2o)-
Therefore,
2A R
IVukll2 @) = IVurll2w) + IVerllz @) < 5 IIVaollzag) = M,

where M is independent of .

Since ug = ¢ on 9 and supy, ||lug || g1 (q) < 00, we have ugp — u§ in HL(Q) as k — 0.
(2) To show that u§ is also a solution of equation (3.56). Therefore, u§ = uo.

In fact, we only need to prove the following three conditions:
o, (agj (z) awiu;;) —0  inO\w, (3.58)
Oz, (aij(w) 8wiu3) =0 in w, (3.59)

aéj(x)ﬁziusz/jh =0 on Ow. (3.60)
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(i) For every k, since uj, € H'(Q) is the solution of equation (3.53), then
V¢ € C(Q), we have

[ b @onte, + [ o @onut, =0

Q\w

Thus, V ¢ € CX(Q\@) C C2(Q),

0 :/ a’éj(l')aziukﬁsz —)/ ng(w)axiugqswja
o\w oO\w

since up — uj in H&,(Q) C HY(9).
Therefore,
[ @ouipe; =0, Vg€,
oO\w
Le. (3.58).
(ii) Similar to (i), V ¢ € C°(w) C C°(2), we obtain (3.59).
(iii) By (i) and (i), u§ € C?(Q\w). For any o € C%(Q2), by Green’s Identity, we have the

following;:

0= [0 (0 0.m)e

= / aéj(x)aziukamjg — / o- agj (x)amiukljj‘_ + / o- a,;j (-T)amiukl/j ‘_'_
0\w a0

dw

:/ aéj(w)awiukawjg—l— k/ g-aij(x)awiukuﬂ_
Q\w Ow

— a;] (m)amlugamj o,
0\@

Since up — uf in H(Q).
Similarly,

0= [ 0, (¥@ duii)e= [ a¥@ouuitnet [ o @nuin .
Q\w Q\w 7]

w
Thus,
| era @onuin], =0
ow

for any o € C%(Q). Therefore, we obtain (3.60) and finish the proof of the first part.
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Step 2. Since uy, is the minimizer of I in Hé(Q) and wug is the minimizer of I in Ay,

we have .
I()[U,O] < I()[’u,k] < E / a?(z)@ziukazjuk + Io[’u,k] = Ik[uk]
k g
< Iifug) = 3 / ay () B, u00z; uo + To[ug] — Io[uq],
w
Therefore,

lim [, = I .
lim kluk] = Toluwo]
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