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A micromechanics-based continuum model is developed to determine the creep resistance 

and strain-rate sensitivity of the nanocrystalline materials. The solid is idealized as a two (or 

three) phase composite, where the grains were treated as spherical inclusions, the grain boundary 

as the matrix and the pores/voids as the third phase (if present in the solid) of the composite. The 

strain of an individual phase is taken to be the sum of elastic and creep/viscoplastic components. 

Within the elastic context the homogenization scheme is developed based on the Eshelby-Mori-

Tanaka approach. The Laplace transform was used to convert the linear elastic homogenization 

method to a linear viscoelastic one, and then to convert the viscoelastic response to viscoplastic 

one, during which the Maxwell viscosity of the viscoelastic phases is replaced by the secant 

viscosity of the viscoplastic phases. A nonlinear-rate dependent constitutive equation is assumed 

for both the grain interior and grain boundary to calculate the secant viscosity of the individual 

phase at a given stage of deformation. The drag stress of the grain interior is assumed to follow 

the Hall-Petch effect, but that of the grain boundary phase is taken to be size-independent. By 

using the field-fluctuation method, the effective stress (or effective strain rate) of the constitutive 
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phase is derived in terms of the applied stress (or applied strain rate). The change in porosity 

under different loading conditions is also incorporated within the model. 

The validity of the model was verified by comparing the predicted stress-strain results with 

the experimental data of Sanders et al. [42], Wang et al. [43] and Wang et al. [44] for the creep 

response, and Khan et al. [48] and Khan and Zhang [49] for the constant strain-rate loading. The 

model is capable of capturing both hardening and softening of material as grain size decreases 

from coarse grain to the nanometer range. The latter characteristic is also known as the inverse 

Hall-Petch effect and this occurs in both creep and constant strain-rate response. As a result, the 

critical grain size at which the solid has maximum strength can be estimated using this method. 

With the presence of porosity, the developed model is also able to capture the nonlinearity in the 

stress-strain plot under hydrostatic loading.  
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Chapter 1 

Introduction 

1.1  What is meant by “nanocrystalline materials”? 

One of the most important and worldwide appreciated insight of the physics and chemistry of 

solids is that most properties of the solid materials depend on the microstructure (chemical 

composition and atomic structure) and the size of the solid in any of the three dimensions. A very 

common example is the difference in hardness of diamond and graphite due to change in the 

atomic structure of carbon. Comparable changes in the properties of the solids occur when the 

atomic structure of the solid deviates far from equilibrium or if the size of the solid reduces to a 

few inter-atomic spacing in one, two or three dimensions. These kind of materials for which the 

characteristic length of the microstructure is on the order of a few nanometers are characterized as 

Nanostructured Materials. Based on the microstructural dimensions and properties of 

nanostructured materials, they can be classified into three categories.  

Materials which have particles, fibers or wires, with size in the nanometer range, which are 

suspended or embedded in a substrate, comprise the first category. The methods used to fabricate 

these kinds of materials are inert gas condensation, various aerosol techniques, precipitation from 

vapor and supersaturated liquids or solids. Catalysts, semiconductor devices utilizing single or 

multi-layer quantum well structures are some examples of nanostructured materials of the first 

kind. 

The second category is comprised of materials and/or devices where the nanometer sized 

microstructure is embedded on a thin (thickness in nanometer range) surface region of the bulk 

material. Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD), ion 

implantation and laser beam treatments are some of the common manufacturing techniques for 
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the modification of the surface of this kind of materials. Examples are surfaces with enhanced 

corrosion resistance, hardness, wear resistance or protective coatings (such as diamond). 

The third category includes bulk solids that have microstructure (atomic arrangement, 

crystallites or atomic/molecular groups) varying in a length scale of a few nanometers throughout 

the bulk. This type of material can be divided into two subcategories. The first part consists of 

materials for which the atomic structure or the chemical composition varies continuously 

throughout the solid on an atomic scale. Glasses, gels, supersaturated solid solutions fall under 

this subcategory.  

Research about the materials associated with second subcategory of the third category has 

started in the last two decades only. These materials are assembled of nanometer sized building 

blocks, mostly crystallites. The atomic structure, crystallography and chemical composition can 

vary for these building blocks. For crystallite type of building blocks the interfaces can be 

coherent or incoherent. This means that these kinds of materials are microstructurally 

heterogeneous, consisting of the building blocks (crystallites or grains) and the inter block region 

(grain boundaries). It is this inherently heterogeneous structure on a nanometer scale that 

distinguishes them from glasses and gels and also causes significant deviation in mechanical and 

thermal properties from the conventional solids. Ball milling and hot processing, powder 

compaction and electro-deposition are several techniques to fabricate these kinds of 

nanostructured materials. As these materials have crystallites or grains with size in the nanometer 

range, they are also known as Nanocrystalline Materials. Now nanocrystalline materials generally 

refer to the class of materials whose grain sizes are less than 100 nm. 

There are several characteristics that can affect the properties of the nanocrystalline materials. 

If the size of the building blocks (crystallites or grains) is reduced by such an amount so that it is 

comparable with the critical length scale of physical phenomena (such as the mean free paths of 
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the electrons or the photons), then the material could show significantly improved mechanical and 

optical properties. Changes in the atomic structure or other lattice defects (such as dislocations, 

vacancies) cause a high density of constrained interface, which results in modification of some 

mechanical properties, even with the same chemical composition. This happens when the 

diameter of the crystallites or grains become comparable with the thickness of the interface. 

During the alloying process, sometime the solute atoms segregate in the grain boundary 

(interface) region to achieve a lower energy level. This can again cause constrained grain 

boundary regions to modify some of the physical properties. 

1.2 Motivation 

Several experiments with nanocrystalline materials in the last two decades show that they have 

some superior mechanical properties as compared to conventional materials (grain size in the 

micrometer range or coarse grained materials). The yield strength of nanocrystalline materials has 

been observed to be 4-5 times greater than their coarse grained counterpart. As the grain size 

decreases from coarse grain (diameter in micrometer range) to ultrafine grain (diameter 

nm100> ) and then to fine-grained nanocrystalline materials (diameter nm100< ), the yield 

strength initially increases in proportion to the inverse of the square root of the diameter d  of the 

grain. This phenomenon is known as the Hall-Petch effect which first appeared in the papers by 

Hall [18] and Petch [19] in the form as given below, 

    2
1

0

−
+= kdy σσ             (1.1) 

where, 0σ  and k  are the Hall-Petch constants. Experimental observations as well as Molecular 

Dynamic Simulations, however, have revealed that as the grain size reduces to very small values 

(diameter nm20< ), the Hall-Petch relation does not hold any more. There exists a critical grain 
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size ( critd ) beyond which (diameter critd< ), a drop in the yield strength is observed with 

decreasing grain size and it is known as Inverse Hall Petch effect.  

Similarly, nanocrystalline materials can provide better creep resistance than coarse grained 

ones. Considering the inverse of creep strain to be the creep resistance, a plot similar to Hall-

Petch relation can be constructed. In the course of this study it was found that for creep there also 

exists a critical grain size ( creep
critd ) at which the nanocrystalline material provides maximum creep 

resistance. It has also been observed that creep can cause more damage to the material at 

temperatures higher than room temperature. The effect of temperature on the critical grain size 

( creep
critd ) at which the maximum creep resistance occurs, has not been investigated yet.  

Recently it has been revealed that several processing techniques for nanocrystalline materials 

like ball milling and hot processing or powder compaction often result in the presence of voids in 

the final product. Porosity always reduces the elastic stiffness and plastic strength of the 

nanocrystalline solid. As a result it becomes very important to realize the effect of grain size and 

porosity on the yield strength of the nanocrystalline material and how they compete with each 

other. A micromechanics-based continuum model is necessary to clearly understand the effect of 

both of these parameters (temperature and porosity) on the creep resistance and yield strength of 

nanocrystalline materials. 

1.3 Thesis outline 

The first chapter of this thesis is dedicated to the definition of nanocrystalline materials and 

the motivation behind choosing this topic for research. In Chapter 2 we describe the base of 

micromechanics and how it eventually evolved to the position where it is today, and some of the 

works done with nanocrystalline materials previously. Chapter 3 deals with the morphology of 

the nanocrystalline material. In chapter 4 we study the creep response of the material at different 
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grain sizes and temperature. The strain-rate response of the nanocrystalline material at different 

grain sizes and porosity will be discussed in Chapter 5. The last chapter summarizes the work 

described in this thesis and gives a brief overview of the future research possibilities in this field 

of nanocrystalline materials.  
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Chapter 2 

Literature Review 

Being a very new topic of research (approximately two decades old), not many books are 

available on the mechanics of nanocrystalline materials. Most of the available literature is in the 

form of journal articles. One of the best review articles dealing with the basic definition and 

classification of nanostructured and nanocrystalline materials is “Nanostructured Materials: Basic 

Concepts and Microstructure” by Gleiter [1].  

 

2.1 Literature on micromechanics of solids 

To solve the problems at hand the microstructure of the nanocrystalline material has been 

investigated and a continuum theory has been developed based on the micromechanics of 

materials. To get acquainted with the micromechanics of solids the book “Micromechanics of 

Defects in Solids” by Mura [2] is considered to be a very good reference. Complete development 

of the theory of micromechanics has been discussed there from the very basic definitions to the 

analysis of crack and dislocations. “Micromechanics: Overall Properties of Heterogeneous 

Materials”, by Nemat-Nasser and Hori [3], and “Fundamentals of Micromechanics of Solids” by 

Qu and Cherkaoui [4] are two other additions that deal with the basic aspects of micromechanics 

of solids.  

The review of the literature devoted to micromechanics of solids would always remain 

incomplete without the mention of Eshelby [5, 6]. His paper “The determination of the elastic 

field of an ellipsoidal inclusion, and related problems” is considered to be the basis of 

micromechanics. It is also the most cited paper of the last century in the field of solid mechanics 

(over 4000 citations). It talks about the elastic field inside an inclusion embedded in an infinite 

matrix under the condition that, if the surrounding material were absent, the inclusion would have 

some prescribed homogeneous deformation. The resulting elastic field is obtained by a varied 
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sequence of imaginary cutting, straining and welding operations. If the inclusion is ellipsoidal in 

shape the strain inside it is found to be uniform. The second part of the same paper deals with an 

ellipsoidal region in an infinite medium which has elastic constants different from those of the 

rest of the material and its effect on the stress field inside the ellipsoidal region under an applied 

stress at a large distance. The latter one extends the solution obtained in the first one. 

Determination of the elastic field outside the ellipsoidal inclusion was the main concern in 

another of his papers [6]. A general method of calculating the biharmonic potential was also 

described in this article. Eshelby’s work was later extended by Hill [7] to nonlinear behavior, by 

an incremental process, where the internal inhomogeneities of stress and strain in an arbitrarily 

deformed aggregate of elasto-plastic crystals were evaluated theoretically. The mechanical 

properties of the aggregate as a whole were estimated using a self-consistent model. This work 

was continued by Hill [8] where he conducted a rigorous general study of the essential features of 

heterogeneous elasto-plastic systems. Hashin [9] made a significant amount of contributions in 

the study of macroscopic mechanical behavior of heterogeneous viscoelastic media. These 

heterogeneous materials were considered to be mechanical mixtures of several discrete linear 

viscoelastic phases whose stress-strain relations are assumed to be known. In that article it was 

also assumed that the specimens of such heterogeneous materials which are significantly larger 

than the phase regions are statistically homogeneous and isotropic. In 1984 Weng [10], based on 

Mori Tanaka’s concept of average stress in the matrix and Eshelby’s solutions of an ellipsoidal 

inclusion, developed an approximate theory to determine the stress and strain state of constituent 

phases, stress concentration at the interface, and an elastic energy and overall moduli of the 

composite. Initially the theory was developed for a general multiphase, anisotropic solid with 

arbitrarily oriented anisotropic inclusions. Then the explicit solutions were provided for a 

suspension of uniformly distributed multiphase isotropic spheres in an isotropic matrix.   

The main aim of this thesis is to model the nonlinear creep and strain-rate sensitivity of 

nanocrystalline solids. Here, a review of the work done in these fields, but for coarse grained 
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materials, is very much appropriate at this position. Talbot and Willis [11] came up with the idea 

of variational principles of inhomogeneous nonlinear media. They generalized the linear approach 

developed by Hashin and Shtrikman [12] to a nonlinear one. From a primal problem 

(corresponding to the minimum energy principle), a dual problem (corresponding to the 

complementary energy) was derived. The bounds on the elastic moduli that the various problems 

generated were also discussed. This theory of variational principles was then developed into 

various versions to study the rate independent composite plasticity by Tandon and Weng [13] and 

Qiu and Weng [14]. The first one describes an approximate theory to determine the elasto-plastic 

behavior of particle-reinforced materials where the elastic spherical particles were considered to 

be uniformly dispersed in the ductile, work-hardening matrix. The concept of secant moduli of 

the matrix was introduced to characterize Hill’s discovery of a decreasing constraint power of the 

matrix in polycrystal plasticity. The theory was established for both traction and displacement-

prescribed boundary conditions, under which, the average stress and strain of the constituents and 

the effective secant moduli of the composite were explicitly given in terms of the secant moduli 

of the matrix and the volume fraction of particles. Qiu and Weng [14] introduced an energy 

criterion to define the effective stress of the ductile matrix. They modified the theory developed 

by Tandon and Weng [13] to apply it to porous materials which can account for the influence of 

pore shape as well. This theory possesses the feature of plastic volume expansion under a pure 

hydrostatic tension. The rate-dependent viscoplastic response was first developed by Li and 

Weng [15 – 17]. In [15] an approach introducing a linear viscoelastic comparison composite in 

conjunction with the secant viscosity is proposed for the estimation of the time dependent creep 

behavior of a two phase viscoplastic composite. The method makes use of a Maxwell matrix in 

the viscoelastic composite, and sets its shear viscosity equal to the secant viscosity of the 

viscoplastic matrix at every stage of deformation. The property of the viscoelastic composite is in 

turn determined from its elastic comparison composite. According to this theory the particles in 

the composite were taken to be elastic throughout the course of deformation and the effective 
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stress of the matrix was calculated by the energy approach developed in Qiu and Weng [14]. In 

[16] a field-fluctuation method was introduced into the secant-viscosity framework to evaluate 

the homogenized effective stress of the heterogeneously deformed elastic-viscoplastic matrix in 

an isotropic composite. A theory to incorporate the elastic-viscoplastic behavior of the particles 

into the overall creep response of the composite material was described in [17]. The theory was 

based upon the linkage from elasticity to viscoelasticity through the correspondence principle, 

and then from viscoelasticity to viscoplasticity by means of the concept of secant viscosity and an 

energy approach. The influence of particle concentration, elastic stiffness, and applied strain-rate 

on the overall dilatational and deviatoric stress-strain behaviors were examined in detail.  

 

Fig 2.1: (a) Grain size hardening in the coarse grain and (b) softening in the nano-grain range. Note the 
fourfold increase from the coarse to nano grain size. 
 

2.2 Literature dedicated to nanocrystalline materials 

The increase in the yield strength (or hardness) of material with decreasing grain size was first 

discussed by Hall [18] and Petch [19]. An explanation for the variation in the lower yield point of 

mild steel, with grain size is proposed by Hall [18] in terms of a grain boundary theory. It was 

also shown that strain-ageing involves two processes: a healing of the grain boundary films, 

coupled with a hardening in the grains themselves. In continuation to the work of Hall [18], a 

relationship between cleavage strength and the grain size of the material is developed by Petch 

[19]. The theory characterizes the dependence of yielding and cleavage on the stress 
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concentration generated by a slip band across a grain blocked by the grain boundary. In the Hall-

Petch plot, that is, the strength versus 2/1−d , the inverse of the square root of grain size, the yield 

strength tends to scale up linearly in the coarse and ultrafine grain range. But according to 

Chokshi et al. [20], as the grain size of the solid goes to the lower values in the nanometer scale 

( nmd 25< ), the yield strength starts to decrease at the ambient temperature. Figures 2.1(a) and 

2.1(b) show such an increase and decrease of the hardness for Cu and Pd in the coarse and nano-

grain range, respectively. Nanocrystalline specimen of Cu and Pd were generated by the inert gas 

condensation method. The average grain size and their distribution were obtained by transmission 

electron microscopy, and small angle neutron and X-ray scattering for the nanocrystalline 

materials. Their hardness was measured by using a Leitz microhardness tester. As the processing 

technique for the nanocrystalline material was not flawless, the decrease in the hardness at very 

low grain size was partially attributed to the presence of pores within the material. Later on in the 

late nineties Sanders et al. [21] developed some sophisticated manufacturing technique to produce 

flawless nanocrystalline material. Tests in compression of these high density nanocrystalline 

metals showed high hardness and yield strength values compatible with extrapolation of coarse 

grained Hall-Petch data to the nanocrystalline regime. Nanocrystalline samples with grain size of 

10-110nm and densities of greater than 98% of theoretical value were produced by inert gas 

condensation and warm compaction by Sanders et al. [22]. They found that the yield strength of 

the nanocrystalline Cu and Pd was 10-15 times that of annealed, coarse grained metal. Hardness 

measurements followed the predictions of the Hall-Petch relationship for the coarse grained 

copper down to 15nm and then plateaued. The tensile strength was also observed to increase with 

decreasing porosity.  

Molecular dynamic simulation of nanocrystalline copper by Schiotz et al. [23] shows a 

softening with grain size (a reverse Hall-Petch effect) for the smallest grain sizes (3-7nm). Most 

of the plastic deformation is attributed to a large number of small “sliding” events of atomic 
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planes at the grain boundaries, with only a minor part being caused by dislocation activity in the 

grains. The softening at small grain sizes was due to the larger fraction of atoms at the grain 

boundaries. This softening ultimately imposes a limit on the maximum strength of the 

nanocrystalline metal. Using their molecular simulation on nanocrystalline nickel, Lund et al. 

[24] investigated the effect of loading state on mechanical response. At very small grain sizes 

close to the amorphous limit (2-4nm) a clear strength asymmetry was observed. Specimens turned 

out to be stronger under uniaxial compression than under uniaxial tension. The simulations also 

revealed a monotonic trend towards larger strength asymmetry at larger grain sizes, suggesting 

the existence of a maximum asymmetry in strength at some finite grain sizes.  

Idealization of a nanocrystalline material as a composite was first used by Carsley et al. [25]. 

They presented a model for the strength of nanophase metals which assumes that polycrystalline 

metals consist of the “bulk” intragranular regions and the grain boundaries. The strength of the 

boundary phase was taken to be equal to that of the amorphous metal. The crystalline phase was 

assumed to follow the Hall-Petch relation for the grain size dependence of the strength. The 

material was treated as a composite with the rule of mixture approach. The theory was able to 

capture the Hall-Petch hardening for larger grain sizes as well as the grain size softening at very 

small grain diameter )5( nmd < . Wang et al. [26] reviewed the possibility of dislocation 

mechanism in the deformation process of nanocrystalline materials. They took into account the 

anisotropic characteristic of crystallographic symmetry and different choices of critical shear 

strength to obtain a reasonable limit in grain size for applying dislocation pile-up theory to 

nanocrystalline materials. The deviation from the Hall-Petch relationship was attributed to the 

small number of dislocation pile-up mechanism. A composite model was used to characterize the 

strength of the nanocrystalline material. In Carsley et al. [25] and Wang et al. [26] the treatment 

of two phase composite was based on the mixture rule, that is, they all assumed a uniform stress 

distribution over the entire continuum. This is clearly not desirable as the grain interior and the 
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grain boundary zone have different structures and properties, and thus their stress state can not be 

identical.  

In 2003 Jiang and Weng [27 – 29], for the first time, considered the stress strain heterogeneity 

among the two distinct phases of the composite. In the first one of the three ([27]), a 

micromechanics-based composite model is developed to calculate the transition of yield stress as 

the grain size decreases from the coarse grain to the nano grain regime. A generalized self-

consistent scheme in conjunction with the secant moduli of the constituent phases and a field-

fluctuation approach was used in the development of the theory. The Hall-Petch and the inverse 

Hall-Petch effect with decreasing grain size were well captured using this theory for high density 

nanocrystalline copper. To predict the compressive yield strength of nano-grained ceramics, as 

the grain size decreases from the coarse grained to the nanometer scale, a theory is developed in 

[28] by using the micromechanics based composite model. The effect of porosity was also 

considered in this derivation. A direct self-consistent approach was used to determine the strain of 

the pores. The effect of porosity in the determination of the compressive yield stress was also 

investigated. In [29] a linear comparison composite is used to determine the nonlinear behavior of 

a nanocrystalline polycrystal through the concept of secant moduli. The plastic flow of each grain 

is calculated from its crystallographic slips, but the plastic behavior of the grain-boundary phase 

is modeled as that of an amorphous material. The presence of a critical grain size at which the 

material attains maximum yield strength was again verified by the application of this theory.  

The work of Jiang and Weng was continued by Capolungo et al. [30] where they developed a 

self consistent scheme to describe the behavior of nanocrystalline F.C.C materials. The material 

was approximated as a two phase composite with the inclusion phase representing the grain cores 

and the matrix representing both grain boundaries and triple junctions. The dislocation glide 

mechanism was incorporated in the constitutive law of the inclusion phase while a thermally 

activated mechanism accounting for the penetration of dislocations in the grain boundaries were 

incorporated in the constitutive law of the matrix phase. The stress strain relation predicted by 
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this theory was compared with various experimental data. A homogenization scheme was 

developed by Capolungo et al. [31] for modeling the breakdown of the Hall-Petch plot for 

nanocrystalline materials. The solid was modeled as a composite as done by Jiang and Weng. The 

deformation of the inclusion phase was assumed to have a viscoplastic component to take into 

account the effect of dislocation glide mechanism and Coble creep. The boundary phase was 

modeled as an amorphous material with perfect elastic-plastic behavior. Results predicted by this 

theory were compared with some experimental data as well.  

Most of the work discussed till now used a rate-independent constitutive relation for the 

analysis of the plastic behavior of the composite. Later on Li and Weng [32] came up with a 

secant viscosity composite model to address the strain rate sensitivity of the nanocrystalline 

solids. A rate dependent constitutive relation was developed to obtain the secant viscosity of the 

constituent phases along with a field-fluctuation approach. The drag stress of the grain interior 

(inclusion) was assumed to follow the Hall-Petch relation, but that of the grain boundary affected 

zone (GBAZ) was taken to be independent of the grain size. The stress-strain results under 

different strain-rate conditions predicted by this theory were compared with the experimental data 

of nanocrystalline nickel.  
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Chapter 3 

Morphology 

3.1 Morphology without porosity 

While the molecular dynamic simulation has given the morphology of Fig 3.1(a) [23], the 

image of scanning transmission electron microscopy has led to a model depicted in Fig 3.1(b) 

[33]. This model has a grain boundary affected zone (GBAZ) that penetrates into the crystalline 

grain interior for about 7-10 atomic spacing, and thus is wider than the grain boundary thickness 

alone. The characteristic of the GBAZ is that, as compared to the grain interior, it is plastically 

softer. This region can now be interpreted as a combination of the more disordered grain 

boundary and the penetrated portion of the grain and thus itself is a composite. We shall adopt 

this broader view and treat GBAZ simply as one phase (with a smeared property of the two), and 

the grain interior as another. To develop an analytical model for the nanocrystalline solid this 

composite is conceptually represented in Fig 3.1(c), where the plastically softer GBAZ is taken to 

be the matrix and the plastically harder grain interior as inclusions. These two phases will be 

denoted as phase 0 and phase 1, respectively with the volume concentrations 0c  and 1c . The 

isotropic phase 1 now stands for the averaged behavior of the anisotropic grains depicted in Fig 

3.1(a). At a given grain size d  and GBAZ thickness t , the volume concentration of the grain 

interior and the GBAZ can be approximated by, 

3

1 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
d

tdc ,   and 10 1 cc −= .                                                         (3.1) 

This formula has been derived by analyzing the geometry and taking the ratio of the volume of 

the spherical grain and the grain with GBAZ region.  
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Fig 3.1: (a) Morphology of a nanocrystalline metal by molecular dynamic simulation [21]. (b) The 
plastically harder grain interior and the plastically softer GBAZ [31]. (c) The two phase composite model 
with the grain interior and the GBAZ. 

 

3.2 Morphology including porosity 

When porosity is included within the composite, the conceptual three phase composite model 

as depicted in Fig 3.2 is considered. The matrix phase, to be denoted as phase 0, represents the 

plastically softer GBAZ, the dark inclusions, to be denoted as phase 1, represents the plastically 

harder grain interior, and the small white open regions, to be denoted as phase 2 represent voids. 

Similar to the case without porosity the isotropic phase 1 stands for the collected or averaged 

behavior of the anisotropic grains. Since most voids tend to exist at the triple junction points, it is 

appropriate to consider them to be embedded in the GBAZ as well. This arrangement allows us to 

invoke some well established homogenization theory to treat this heterogeneous problem. At a 

given grain size d , GBAZ thickness t , and porosity 2c , the volume concentration of the grain 

interior and the GBAZ will be calculated respectively from, 
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Fig 3.2: The three phase composite model with the grain interior, GBAZ and pores. 

 

 

Fig 3.3: Volume fraction of the grain interior and the GBAZ (a) without porosity, (b) with different values 
of the porosity. 

 

)1( 2

3

1 c
d

tdc −⎟
⎠
⎞

⎜
⎝
⎛ −

= ,   and 210 1 ccc −−= .                    (3.2) 

The derivation of this equation is almost similar to that of equation (3.1), but the effect of 

porosity is incorporated within this one. 

For nickel, the grain-boundary affected zone was observed to span over 7-10 lattice 

parameters from the atomically sharp grain boundary [33]. With a lattice constant of 0.352 nm, 

the thickness t is about 2.5 to 3.5 nm. For the case without porosity, taking t = 3 nm and grain size 
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of d = 30 nm, the volume concentration of GBAZ is about 27%. Including the porosity, 

considering t = 3 nm, grain size of d = 30 nm, and porosity of 5% into calculation, the volume 

concentration of GBAZ is about 25%. Fig 3.3(a) and 3.3(b) describes how the volume fraction 

varies with changing grain diameter without and with the presence of porosity, respectively.  

In the nanocrystalline regime, all three phases have non-negligible volume concentration, and 

since both pores and GBAZ are softer than the grain interior, their presence is expected to have a 

significant impact on the overall response of the porous, nanocrystalline material. It is also 

evident that, without as well as with porosity, in a microcrystalline material, say md µ10= , the 

GBAZ is negligible. But in an ultrafine crystalline material, say nmd 300= , it still occupies 3% 

of the total concentration (without porosity). Since GBAZ is a plastically softer phase and it 

serves as the matrix, such a low concentration can still have a non-negligible effect on the overall 

response. 
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Chapter 4 

Creep Response 

Creep is described as the tendency of solid materials to deform slowly but permanently to 

relieve stresses. It occurs when a solid material is exposed to some stress for a long time even 

though the stress is below the yield strength of that material. Creep deformation can cause 

material failure at high temperature (close to the melting point of the material). This kind of creep 

deformation has been observed in metals, ceramics, glasses and polymers. Mathematically creep 

occurs when the boundary condition is specified by constant stress, .const=σ  Fig 4.1 shows a 

typical case where creep can occur, even though Yieldσσ < . A typical stress vs. strain ( εσ − ) 

and strain vs. time ( t−ε ) plot is given in Fig 4.2(a) and 4.2(b). 

 

Fig 4.1: Schematic diagram of a case when creep can occur. 

 

           

Fig 4.2 (a) Stress-strain plot in a creep problem, (b) Strain-time plot in a creep problem. 
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4.1 Mechanisms of creep 

There are several mechanisms that govern the creep of metals. At high stress level the 

movements of dislocations play a major roll in the creep deformation of the solid. The defects and 

disorders that are usually present in the crystals act as an obstacle to the movement of 

dislocations. But at high temperature (close to the melting point of the material) or high stress 

level (above some threshold value) the vacancies in the crystal can diffuse to the position of 

dislocations and cause the dislocation to move to the adjacent slip plane. By climbing to adjacent 

slip planes the dislocations can overcome the obstacles to their motion which results in further 

creep deformation of the material. This is known as dislocation creep and it has a very high 

dependence on the applied stress and temperature. In this study we are concerned with creep 

deformation of metals under high stress for structural applications, and the major creep 

mechanism is this one. 

There are two other mechanisms of creep which are controlled by diffusion of atoms at low 

stress level. One of them is the diffusion of atoms within the crystal (or grain). This Nabrro-

Herring creep has weak stress dependence and a moderate dependence on the grain size. But this 

creep mechanism becomes extremely dominant at very high temperature (close to the melting 

point of the material). Because, at higher temperature, the atoms gain more energy to move from 

one lattice to the available vacancy at the neighboring lattice. Also the possibility of having a 

vacancy at the neighboring lattice increases with increasing temperature.  

The other diffusion controlled creep mechanism is known as Coble creep. It occurs due to the 

diffusion of atoms in the grain boundary region. It has low dependence on the applied stress and 

very high dependence on the grain size. So for nanocrystalline material Coble creep is expected to 

dominate the creep mechanism at low stress and low temperature. With increasing temperature 

the grain boundary diffusion increases, but the vacancies at the GB remain almost constant. So 
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this creep mechanics has less dependence on increasing temperature as compared to the Nabrro-

Herring creep mechanism.  

4.2 Constitutive equations of high-temperature creep for the grain interior and GBAZ  

The creep property of a solid is measured by the amount of creep strain that it generates under 

a given stress and temperature. This is a time-dependent process and, for a nanocrystalline 

material, the overall strain is contributed by both the grain interior and GBAZ. Due to the 

plastically softer response of the GBAZ and the harder one of grain interior, there is a continuous 

exchange of stress distribution, but their weighted mean must give rise to the externally applied 

one. Since the elastic moduli of both phases are not necessarily equal, the overall inelastic strain 

cannot be calculated by the simple weighted mean of those of the constituent phases. This is part 

of the essential structures that was disclosed by Hill [8]. Instead, it is the total strain, which 

contains both the elastic and creep components, that is given by the weighted mean. But before 

we proceed to evaluate the development of the overall strain, it is necessary to specify the 

constitutive equations for both phases so that their creep rate at a given level of stress and 

temperature, and creep strain (due to strain hardening) can be evaluated. Then, if under a given 

external stress, ijσ  (an overbar signifies that it is a volume averaged quantity), the internal 

stresses, )1(
ijσ  and )0(

ijσ , of the grain interior and GBAZ can be determined, the creep rates of 

both phases will follow.  

Within the small strain range we assume the total strain rate to be the sum of the elastic and 

creep rates for each phase, as well as for the overall composite. It follows that, for the GBAZ and 

grain interior 

)()()( rc
ij

re
ij

r
ij εεε &&& += ,   1,0=r ,        (4.1) 

and for the overall nanocrystalline solid 
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holds only when both constituent phases have identical elastic moduli. The overall time-

dependent strain therefore must be calculated from the weighted mean of the total constituent 

strains. 

For each constituent phase the elastic part depends on its stress through the usual isotropic 

relations, whereas the creep rate is taken to follow the power law and Arrhenius function.  The 

effective creep rate c
eε&  then can be written in terms of the effective stress eσ  and temperature T, 

as 
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Here c
0ε&  is a reference creep rate that can be set arbitrarily (it will be set as s/105 4−⋅  in later 

calculations), s  is the drag stress that represents the current state of hardening, and n  the stress 

exponent which generally lies between 3 to 5 for the dislocation climb-plus-glide mechanism 

[34]. In addition, Q is the activation energy and R the universal gas constant. The effective stress 

and creep strain rate are defined as usual by 
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in terms of the deviatoric stress '
ijσ , and their components are governed by the Prandtl-Reuss 

relation 
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Due to strain hardening the drag stress will increase in the course of deformation. Its rate is 

controlled by both strain hardening and dynamic recovery and can be set in the form 

c
es

shs ε&& ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

*
1 ,            (4.6) 

so that, upon integration, it yields 

( ) hs

c
e

essss /
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*

ε
−

−−= .          (4.7) 

Here parameter s0 represents the initial hardening state and *s  the final saturation state. So there 

are five key material constants for each phase: the stress exponent n, the hardening coefficient h, 

the initial strength 0s , the saturation strength *s , and the activation energy Q. 

The strength of grain interior is grain-size dependent. When dislocation mechanisms operate 

inside the grains, such dependence can be described by the Hall-Petch relation [18, 19]. This 

relation is often attributed to the existence of both statistically stored dislocations and 

geometrically necessarily ones [35], as well as to dislocation pile-ups [36]. Thus for phase 1, the 

grain interior, we may write  

)1(
0

)1(
*

2/1
0

)1(
0 , saskdss =+= −∞ .      (4.8) 

So it’s two constants )1(
0s   and )1(

*s  are now replaced by the three, ∞
0s , k and a, to reflect its grain-

size dependence. But if the grain size decreases to some critical value, dislocation mechanisms 

will cease to operate and there would be no more strain-hardening. Such critical grain sizes were 

found to be about 8.2 nm for copper and 11.6 nm for palladium [26]. In our calculations we will 

take )1(
0s   and )1(

*s  to continue to increase with decreasing d before such a critical grain size is 

reached (which will be taken to be 10 nm), and then set them to remain constant with further 
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decrease of d. For GBAZ, its initial and saturation strength are grain-size independent and can be 

simply denoted as )0(
0s  and )0(

*s . 

 To make connection with the concept of secant viscosity that we will later use, it is useful to 

write eq. (4.3) in terms of the secant viscosity s
rη  for the r-th phase, as 
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It follows that, for the grain interior and GBAZ, we have 
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respectively. Since the drag stress s increases with creep strain, the secant viscosity will continue 

to increase during the creep process. Moreover, as s scales with 2/1−d  for the grain interior a 

smaller grain size will also result in a higher viscosity. A higher temperature on the other hand 

will lower the viscosity. Most of the constitutive relations shown in this section are previously 

derived which are available in any text book related to plasticity. Equations (4.10a and b) were 

derived using eqs. (4.3), (4.5) and (4.9). 

The above constitutive equations govern the deviatoric response of the constituent phases. 

Their dilatational response is taken to be incompressible and thus solely governed by the elastic 

bulk modulus. It must be kept in mind that, even though both phases are incompressible, the 

nanocrystalline solid as a whole can still be compressible, that is, it can still undergo a time-

dependent creep under a pure hydrostatic stress. 
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4.3 A homogenization scheme for the time-dependent creep of nanocrystalline solids 

Creep behavior of grain and GBAZ are time-dependent and nonlinear. A homogenization 

procedure is described to calculate the development of creep strain of the nanocrystalline solid. 

The objective is to develop an explicit, analytical model that can account for the contributions 

from both phases, and their interactions. To keep the model explicit and analytical, the analysis of 

this time-dependent, nonlinear viscosity problem is performed first and with the aid of a time-

dependent, linear viscosity problem with a Maxwell-type phase, and then with the Maxwell 

viscosity replaced by the secant viscosity of the grain interior and GBAZ. The linear viscosity 

problem, in retrospect, follows from the elastic one through the correspondence principle [9].  

This is an approach based on the concept of a linear comparison composite for the study of a 

nonlinear one. Since its inception by Talbot and Willis [11], this approach has been developed 

into various versions to study the rate-independent composite plasticity [13, 14]. For the rate-

dependent viscoplastic response it was first developed by Li and Weng [15 – 17] through the 

concept of secant viscosity. This procedure starts with the selection of an elastic model which has 

an identical microgeometry to the problem at hand. As the evaluation of the four partial 

derivatives in the field-fluctuation method is rather involved (see eq. (4.27), on page 29), it is 

imperative that the elastic model be simple and explicit. For the inclusion/matrix microgeometry 

as sketched in Fig.3.1(c), both the Mori-Tanaka (M-T) method and the generalized self-consistent 

scheme [37] can be called upon, but the latter would lead to a substantially more complicated 

state for the four partial derivatives. For this reason the M-T model is selected here. 

4.3.1 The initial elastic state 

In the 2-phase composite the elastic bulk and shear moduli of the r-th phase will be denoted by 

rκ  and rµ , respectively, and its volume concentration by rc . The effective bulk and shear 

moduli of the composite are given by [10]. 



 25

  ⎥
⎦

⎤
⎢
⎣

⎡
+−

−
+=

00100

011
0 )(

)(
1

κκκα
κκ

κκ
c

c
,   ⎥

⎦

⎤
⎢
⎣

⎡
+−

−
+=

00100

011
0 )(

)(
1

µµµβ
µµ

µµ
c

c
,   (4.11) 
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and 0ν  is the Poisson’s ratio of the matrix (GBAZ). For later calculation of the initial elastic 

response and evaluation of the constituent strains it is useful to record the average hydrostatic and 

deviatoric stresses of the constituent phases in terms of the applied stress ijσ , as 
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The corresponding elastic strains follow directly from these stresses through their respective 

elastic moduli.   

4.3.2 Transition to the viscoelastic state in the Laplace transformed domain 

  The linear viscoelastic behavior of a constituent phase can be written in terms of its stress and 

strain relation in the Laplace, transformed domain. Denoting such fields by a hat (^), and the 

corresponding moduli with the superscripts “TD”, we have  
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Likewise for the composite, we write  

   kk
TD

kk εκσ ˆ3ˆ = ,      '' ˆ2ˆ
ij

TD
ij εµσ = .         (4.15) 



 26

Then by analogy to eq. (4.11), and taking r
TD
r κκ =  due to plastic incompressibility, we have  
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where TD
0α  and TD

0β  follow from eq. (4.12) 
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In view of the decomposition of strain rate in eq. (4.1), the simplest linear model is the Maxwell 

element, with a shear viscosity rη  for the r-th phase. It follows that   
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For creep under a constant stress, sijij /ˆ σσ = , where s is the Laplace parameter (this s  is used as 

the Laplace parameter in this section only and it should not be confused with the drag stress 

which is also denoted by s  in other sections). The creep strain )(tijε then can be derived from the 

Laplace inverse of ijε̂ , which follows from eqs. (4.15) and (4.16). After some lengthy algebra, we 

arrive at the overall dilatational and deviatoric strains 
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Here, 1/ 3241 −= yyyyA , AyB 1= , 2
76473 /)( dddddC −= , and 74 / ddD = , and constants 

,321 ,, yyy … are listed in Appendix A1. They all depend on the viscosities 1η  and 0η . 
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4.3.3. From the linear viscoelastic to the nonlinear state 

 Due to the continuous change of secant viscosity, an incremental scheme needs to be adopted. 

The extension from the creep of a linear viscoelastic composite to the nonlinear, time-dependent, 

one can then be carried out with the constant replacement of Maxwell viscosities, 1η  and 0η , by 

the corresponding secant viscosities  s
1η  and s

0η  in eq. (4.10). To this end eqs. (4.19a) and 

(4.19b) are recast in the rate form, as  
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This rate equation in turn introduces the effective secant bulk and shear viscosities of the 

composite s
κη  and s

µη , through 
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Once these effective secant viscosities are known, the overall creep rate would follow, and 

evolution of the creep strain of the nanocrystalline solid can be determined incrementally.  
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The secant viscosities s
rη  that enter into the constants in eqs. (4.22a) and (4.22b), however, 

are yet unknown. The issue now is the determination of these viscosities. To this end we turn to a 

field-fluctuation approach.  

4.4 A field-fluctuation method to find the secant viscosity of the constituent phases 

 In view of eqs. (4.10a) and (4.10b), the secant viscosities s
1η  and s

0η  are seen to depend on the 

effective stress eσ  and the drag stress s, which further depend on the effective creep strain c
eε  

that comes from the integration of creep rate c
eε&  which, in retrospect, is a function of eσ . The 

task boils down to the determination of eσ  for both the grain interior and GBAZ. This can be 

best achieved by the application of the field-fluctuation method. 

 This method has a wide range of applicability in the study of heterogeneous materials. Its 

novelty lies in the fact that, under the same boundary condition, a change in a material constant of 

a particular phase will result in a change of the overall energy that is solely dependent on this 

particular change. This approach was first proposed by Bobeth and Diener [38] and Kreher and 

Pompe [39] for an elastic composite, and later it has been extended to a rate-independent 

elastoplastic problem by Suquet [40] and Hu [41]. For a rate-dependent problem it was first 

outlined by Li and Weng [16].  

For the present problem the relevant energy term is the overall work rate, which can be 

expressed as 
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On the other it can also be considered as the sum of the work rates of the grain interior and 

GBAZ, as  
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where the superscripts “e” and “c” stand for the elastic and creep components, respectively. The 

elastic component for each phase can be written readily through its elastic moduli, whereas the 

creep term is defined through its secant viscosity, as  
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Now setting eq. (4.23) equal to eq. (4.24), we have the identity 
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This setting has the desired feature that the sought-after )1(
eσ  and )0(

eσ  appear side-by-side with 

the corresponding viscosities s
1η  and s

0η . A partial derivative with respect to s
1η  and s

0η  (better 

yet, with respect to s
1/1 η  and s

0/1 η ) will then result in the expression of )1(
eσ  and )0(

eσ . After 

carrying out such a derivative, and noting that rr
s
r T µη //1 = , we arrive at 
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There are four partial derivatives here. Their explicit evaluations are given in Appendix A2. 

These effective stresses serve to determine the secant viscosities s
1η  and s

0η  by eq. (4.10a) and 

(4.10b) and other related constitutive equations. This completes the development of the theory. 

4.5 Computational procedure to solve the creep problem 

 Description of the incremental computational procedure is provided here. At time t = 0, the 

elastic response gives a step jump in the value of total strain. The creep strain is considered to be 
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zero at that moment. For the first step the effective creep strain rate is calculated from eq. (4.3). 

Here the effective stress is taken from eq. (4.4) and the drag stress is taken to be the initial value, 

)(
0

rs . The secant viscosities of the individual phases are also computed from eqs. (4.10a) and 

(4.10b) using the same value of drag stress. Then the increment in strain follows from eqs. (4.20a) 

and (4.20b), and the evolution of overall strain after the time increment t∆  is computed as 

        ttttt ijijij ∆⋅+=∆+ )()()( εεε & .       (4.28) 

For the subsequent steps, the effective stresses of individual phases are obtained from eq. (4.27). 

Here the required secant viscosities of the individual phases are taken from the previous step. The 

drag stress for the current time step is obtained from eq. (4.7) which uses the value of creep strain 

obtained until the previous step. Then the creep strain rate is again calculated from eq. (4.3) to 

give the creep strain at the current time step which can be used in the subsequent steps. The 

secant viscosities for individual phases are computed from eqs. (4.10a) and (4.10b). Then these 

values are again used in eqs. (4.20a) and (4.20b) to find the strain rate for the current time step. 

Equation (4.28) provides the true strain at the present time step. This procedure is continued until 

the entire creep curve is obtained.  

4.6 Application to nanocrystalline copper, NiP alloy and nickel 

 In order to place the developed theory in proper perspective, it is applied to study the creep 

resistance of nanocrystalline Cu, NiP alloy, and Ni. These three materials have been tested by 

Sanders et al. [42], Wang et al. [43], and Wang et al. [44], respectively. The material constants 

used in the computation are listed in Tables 4.1, 4.2 and 4.3 (given at the end of the chapter). 

Based on the observation that GBAZ spans over about 7-10 atomic spacing, we take the thickness 

of GBAZ to be t = 3 nm (the lattice constant of Ni is 0.352 nm and that of Cu is 0.361 nm). The 

reduction of Young’s modulus with increasing temperature is taken to follow, 
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)](1[)( RTTRT TTETE −−= α ,      (4.29) 

for each phase, where the subscripts “RT” stand for room temperature, and Tα  is the reduction 

coefficient which is also listed in the tables 4.1, 4.2 and 4.3 given at the end of this chapter.   

 

Fig 4.3: Comparison between the developed theory and the test data of Sanders et. al. [42]. 

    

The calculated creep curves along with the test data of Cu are shown in Fig. 4.3 at the grain 

size of d = 25 nm. It is apparent that its creep deformation is greatly enhanced by temperature. 

For the NiP alloy, the creep curves at T = 573 K are given in Fig. 4.4, for the grain sizes of d = 

257 nm and 28 nm. It suggests that there is a grain-size softening when d reduces from 257 nm to 

28 nm. Fig. 4.5 shows the comparison between the theory and experiment of Ni at three stress 

levels for d = 20 nm. The overall close agreement displayed in these three figures suggests that 

the developed micro continuum model could capture the essential features of the temperature, 
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Fig. 4.4: Comparison between the developed theory and the test data of Wang et al. [43]. 

 

Fig. 4.5: Comparison between the developed theory and the test data of Wang et al. [44]. 
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grain size, and stress dependence in the time-dependent creep of nanocrystalline solids. 

 Now in order to provide deeper insights into the grain-size dependence of the overall creep, 

we applied the developed model to examine the potential grain size hardening and softening of 

nanocrystalline Cu. The results are displayed in Fig. 4.6. As the grain size decreases from 50 nm 

to 35 nm, and further down to 25 nm, the generated creep strain is seen to continue to decrease. 

This is a phenomenon of grain size hardening in creep. But as it further decreases to 10 nm, the 

generated creep strain conspicuously increases, and this gives rise to the grain size softening. 

 

Fig 4.6: Grain size hardening and softening of a nanocrystalline copper. 

 

 To pave way for the study of creep resistance, we have made several more calculations so that 

continuous variations of creep strain versus the inverse of grain size, 2/1−d , can be visualized. 

Fig. 4.7(a) shows such a variation at four selected temperature. The existence of a minimum at a  
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Fig 4.7 (a) Creep strain and (b) creep resistance of Cu versus the square root of the reciprocal of the grain 
size at various temperature.  
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given temperature indicates that there exists a grain size that marks the minimum creep strain. To 

put creep resistance of a material in a setting that resembles that of hardness or yield strength, we 

take it to be represented by the inverse of creep strain generated at a given time. Based on such a 

representation, the variation of creep resistance versus 2/1−d  is plotted in Fig. 4.7(b), at the same 

four different levels of temperature. This plot is similar to the Hall-Petch plot shown in Fig. 2.1(a) 

and 2.1(b); initially it shows a positive slope, then reaching a maximum at a critical grain size, 

critd , and finally a negative slope. 

 

Fig 4.8: Creep resistance of NiP alloy versus the square root of the reciprocal of the grain size at various 
temperature. Note that the grain size softening starts at around 35nm for 373K and at around 60 nm for 
573K. 

 

Creep resistance curves for NiP alloy are plotted in Fig 4.8. These results show a similar trend. 

Both figures indicate that there exists a critical grain size, critd , at which maximum creep 

resistance occurs. This critical grain size tends to shift to the left as temperature increases. The 
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major reason for such a left shift is that, at a higher temperature, the increased contribution from 

the softer GBAZ would compensate for a lower volume concentration of its own as compared to 

the condition at a lower temperature, and a lower volume concentration of GBAZ means a larger 

grain size. Most important of all, this critical grain size occurs at the nanometer scale. So to 

maximize the creep resistance of a material it is critical to produce it with a grain size that is in 

the nanometer range. The precise value of this size, however, needs to be calculated. 

 

Fig 4.9: Contributions of the grain interior and GBAZ toward the total strain of the nanocrystalline solid at 
four grain sizes: (a) larger than cd , (b) smaller than cd , (c) one with about equal contributions, and (d) at 

cd . 

 

The marked points A, B, C, and D on the 180oC curve in Fig. 4.7 (b), carry some important 

meaning. Point A represents a generic state on the left branch of the curve where the creep 
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resistance versus 2/1−d  plot has a positive slope, whereas point B on the right branch is a similar 

one where the plot has a negative slope. These two points can be considered to be representative 

of the two states lying in Fig. 2.1(a) and 2.1(b), respectively, of the indentation test. Since we 

have conjectured that the left branch is controlled by the grain interior and the right one by the 

GBAZ, it is necessary to show their relative contributions at these two states. The results are 

plotted in Figs. 4.9(a) and 4.9(b), respectively. These two curves, which have been multiplied by 

their respective volume concentrations 1c  and 0c , give their contributions to the overall creep. It 

is apparent that, at state A, the grain interior dominates the deformation whereas at state B, the 

GBAZ makes the major contribution. It is then interesting to locate the state of grain size at which 

the grain interior and GBAZ make about equal contributions to the overall creep. This point is 

located at point C, and the corresponding contributions are shown in Fig. 4.9(c). This point is 

seen to lie on the early descending part of the right branch. At point D, the maximum, the 

material has the highest creep resistance. At this critical grain size, as shown in Fig. 4.9(d), the 

grain interior is seen to still make more contribution to the overall creep of the nanocrystalline 

solid. The formula used to calculate the evolution of the strain, )()1( tijε , in these plots is derived in 

Appendix A3. 

Before closing the chapter a brief remark on the issue of creep compressibility of 

nanocrystalline solids should be given. Even though both the grain interior and GBAZ are 

plastically incompressible, the nanocrystalline material is in general compressible. This is due to 

the fact that the creep strain of a dual-phase material is not a direct, weighted mean of its 

constituent creep strains unless both phases have identical elastic moduli. To see such an effect, 

the dilatational creep strain of the dual-phase material under a dilatational loading by varying the 

Young’s modulus of the grain interior (keeping other constants unchanged) is plotted in Fig. 

4.10(a). It is evident that creep compressibility is quite pronounced if the grain interior is softer 

than the GBAZ, and it still remains significant even if the interior is harder. Only when both  
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Fig. 4.10 Dilatational creep of a nanocrystalline solid as a function of (a) elastic property ratio, and (b) 
grain size strength ratio between the grain interior and GBAZ. 
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phases have identical elastic moduli that the material is incompressible, and this, of course, is 

expected. On the other hand with the change of the saturation strength of the grain interior )(
*

gs  

alone, it was found that, as shown in Fig. 4.10(b), it does not alter the amount of compressibility 

in any significant way. It can be concluded that the elastic bulk modulus of the inclusion phase 

plays the dominant role in deciding the extent of overall compressibility. 

 The values of some of the parameters given in tables 4.1, 4.2 and 4.3 are extracted from the 

journal articles where these experimental results were published. Such as the values of the 

Young’s modulus ( RTE ) and the activation energy (Q ) were assumed to be the one given in 

Sanders et al. [42], Wang et al. [43] and Wang et al. [44]. The values of the other parameters have 

been obtained by inverse simulation of the test data.  
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Table 4.1 Material parameters used in calculation for Cu 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material Property Grain Interior GBAZ 

   

ERT )(GPa  120 120 

Tα  0.0009 0.0007 

ν  0.31 0.3 

)(0 MPas  -- 130 

)(* MPas  -- 400 

n  3.8 3.5 

)()(
0 MPas ∞  5.5 -- 

)( nmMPak  1500 -- 

a  1.3 -- 

)(MPah  20000 10000 

)/( MJQ  17000 7000 
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          Table 4.2 Material parameters used in calculation for NiP alloy 

 

Material Property Grain Interior GBAZ 

   

ERT )(GPa  50 50 

Tα  0.0005 0.0015 

ν  0.26 0.28 

)(0 MPas  -- 120 

)(* MPas  -- 350 

n  4 3.5 

)()(
0 MPas ∞  5.5 -- 

)( nmMPak  2200 -- 

a  8.2 -- 

)(MPah  60000 1000 

)/( MJQ  39000 2000 
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Table 4.3 Material Properties for nanocrystalline Ni 

 

 

 

 

 

 

 

 

Material Property Grain Interior GBAZ 

   

ERT )(GPa   210 200 

Tα  0.0002 0.0002 

ν  0.312 0.3 

)(0 MPas  -- 220 

)(* MPas  -- 600 

n  4.7 3.5 

)()(
0 MPas ∞  5.5 -- 

)( nmMPak  1200 -- 

a  2.4 -- 

)(MPah  5000 200 

)/( MJQ  24000 22000 
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Chapter 5 

Strain-Rate Sensitivity 

It was discussed earlier that with decreasing grain size the yield stress of a material increases 

and for nanocrystalline materials it is observed to be 4-5 times higher than their coarse grained 

counterpart. The relation between linear increments of the yield stress with the reciprocal of the 

square root of the grain diameter is known as the Hall-Petch effect. Change in yield strength with 

decreasing grain size is best observed in constant strain rate tests. The stress-strain relation of a 

typical constant strain rate test at different grain size and varying strain rate with constant grain 

size is given as follows, 

 

Fig 5.1: Schematic stress-strain plot at (a) constant grain size but different strain rate (b) constant strain rate 
but different grain size. 

 

5.1 Mechanism for Hall-Petch effect, inverse Hall-Petch effect and strain-rate hardening 

The reason behind the increase in yield strength with decreasing grain size has been the 

literature of discussion in several works. The most accepted idea that there is dislocation pile up 

at the grain boundaries. Since the lattice structures of adjacent grains differ in orientation, it 
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requires more energy for a dislocation to change direction and move into the adjacent grain. The 

grain boundary region itself is more disordered than the grain interior and so it is difficult for the 

dislocations to move through this region. Thus the grain boundary exerts a hindrance to the 

movement of the dislocation which delays the onset of plastic deformation and the yield strength 

of the material increase.  

Under some particular applied stress, all the dislocations come and accumulate around the 

grain boundary region. This accumulation of a cluster of dislocations at the grain boundary region 

is known as dislocation ‘pile up’. As dislocations generate repulsive stress fields, each successive 

dislocation in the ‘pile up’ will apply a repulsive force incident with the grain boundary. These 

repulsive forces act as a driving force to reduce the energy barrier for diffusion across the grain 

boundary. Thus additional pile up causes dislocation diffusion across the grain boundary, 

allowing further deformation in the material. For this reason, materials with very high grain size 

(in the mµ  range) have large possibility of dislocation pile up to occur which would eventually 

help in the plastic deformation of solid.  

With the decrease in grain size, the grain boundary region increases which results in the 

decrease of the possibility of dislocation pile up at the grain boundary region. So, a greater 

amount of stress has to be applied to the material to make the dislocation move across the grain 

boundary. This in turn would increase the yield strength of the material. Thus we have an 

increment in yield strength with decreasing grain size. The Hall-Petch relation was derived by 

Hall [18] and Petch [19] which is given as, 

2/1
0

−+= kdy σσ            (5.1) 

where, yσ  is the yield stress of the material, 0σ  is the resistance of the lattice to the dislocation 

motion, d  is the grain diameter and k  is the strengthening coefficient. 
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But the yield strength of the material cannot increase infinitely as the grain size goes to zero. 

This is because with zero grain size, the solid is left with only the grain boundary region which is 

more disordered and amorphous than the grain. As amorphous material has lower yield strength 

than crystalline materials, the solid with zero grain size will be softer than the crystalline one. The 

Hall-Petch mechanism ceases to work below the grain size of nmd 25= . For such small grains 

only one or two dislocations can fit inside them. This scheme prohibits dislocation pile up and 

never results in grain boundary diffusion. In reality the stress required for the grain boundary 

diffusion to occur is so high that, before it is reached, other deformation mechanisms based on 

dislocation, diffusion of atoms or grain boundary sliding causes the material to flow and gives 

rise to the Inverse Hall-Petch Effect by reducing the yield strength of the material. 

The inverse Hall-Petch effect has been observed in several experiments as well as molecular 

dynamic simulations. But discussion on the mechanism of this grain size softening is still going 

on. Four different kinds of mechanism could be found in Carlton and Ferreira [45]. One of them 

suggests that the dislocation mechanism inside the grain becomes different when the grain size 

goes below some threshold value. The energy required for movement of dislocations in 

nanocrystalline solids is lower than that in coarse grained materials. These dislocations at the 

lower energy lead to grain size softening. Another dislocation based mechanism is deformation 

twinning in the grains that might cause the inverse Hall-Petch effect.  

Some studies suggest that the diffusion of atoms in the grain boundary at low temperatures is 

the cause for grain size softening. This is something similar to the Coble creep mechanism. Grain 

boundary sliding has also been mentioned as the reason for inverse Hall-Petch effect. Some 

molecular dynamic simulations and analytical models support this idea. According to this theory, 

grain boundary shearing/sliding begins to dominate the dislocation motion as the primary means 

of deformation at very low grain sizes.  
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The last mechanism considers the nanocrystalline material as a composite where the 

plastically strong grains are embedded within the continuous as well as softer grain boundary 

region. This is similar to the idea that conventional materials can be strengthened by precipitates. 

As the grain size becomes smaller, the volume fraction of the grains decreases and the grain 

boundary region increases. In the nanocrystalline range, beyond a critical grain size, the volume 

fraction of the grains becomes so small that the maximum stress is carried by the plastically softer 

grain boundary region. As a result, the yield stress of the entire material decreases. As the grain 

size is reduced, more stress is carried by the grain boundary region which results in even more 

decrease in yield strength and this gives rise to the inverse Hall-Petch effect. A similar model has 

been considered here.  

 It has been observed in several experiments, as well as in analytical and molecular dynamic 

simulations, that as the strain rate is increased the yield strength of the material also increases, but 

the ductility decreases. The plastic deformation of materials is governed by the movement of the 

dislocations inside the grain as well as in the grain boundary regions. There are lots of obstacles 

to the motion of the dislocation. So it takes some time to overcome the hindrance and establish a 

path to move. As a result, under some applied stress, the dislocations start to move at different 

instants and it is not an instantaneous process. When the strain rate is increased, the dislocations 

try to move in less amount of time which needs more external stress. So, to obtain a particular 

displacement, the applied stress is higher at higher strain rates. This explains the reason for 

increased yield strength at high strain rate loadings. For a given material, the total energy it can 

sustain before failure is constant. Energy is given by the area under the stress-strain curve. At 

lower strain rates the yield is reached at a low level of stress. So it is possible for the solid to have 

more plastic deformation. On the other hand, for the high strain rate case, where the yield stress is 

higher, a large amount of plastic deformation is not supported due to the limitation in the total 

energy before failure. For this reason solids under high strain rates behave as brittle materials. 
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5.2 Rate-dependent constitutive relations of the grain interior and the GBAZ  

 The stress strain behavior of a nanocrystalline material, under constant strain rate loading, will 

be captured by a rate dependent viscoplastic model. The rate-dependent viscoplastic behavior of 

the grain interior and GBAZ will be modeled by a set of unified constitutive equations. The total 

strain-rate in each phase is taken to be the sum of the elastic and viscoplastic counterparts, as 

vp
ij

e
ijij εεε &&& += .             (5.2) 

The elastic part depends on stress through the usual isotropic connection, whereas the viscoplastic 

one follows from the Prandtl-Reuss relation 
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where σe is the effective stress and vp
eε&  the effective viscoplastic strain rate defined as 
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in terms of the deviatoric stress '
ijσ  and viscoplastic strain rate vp

ijε& . 

The unified constitutive relation is cast in the usual power-law form, as 
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where n is the stress exponent, and s is the drag stress. The reference strain rate vp
0ε&  is a scaling 

factor and can be set arbitrarily. The drag stress increases with deformation, and can be taken to 

be controlled by the competition between strain hardening and recovery in the form 
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so that, upon integration, it depends on the current strain as 
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where s0 represents the initial hardening state and *s  the final saturation state. So there are three 

key material constants for each phase: the power n, the initial strength 0s , and the saturation 

strength *s . 

This set of constitutive relations applies to both the grain and GBAZ, but each has its own 

constants. To make the symbols more indicative, we shall use the subscript (g) to stand for the 

grain interior and (gb) for the GBAZ. Since the drag stress represents the hardening state of the 

phase, it is taken to follow the Hall-Petch equation for the grain interior, as given by Weng [46], 
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But those of the GBAZ are grain-size independent and can be written simply as )(
0

gbs  and )(
*

gbs . 

Constants ∞
0s  and k in eq. (5.8) are the Hall-Petch constants, and a relates the saturation strength 

to the initial strength of the grain interior. This set of constitutive equations was also adopted by 

Li and Weng [32]. 

 For such an elastic-viscoplastic phase, say phase r, its secant viscosity s
rη  is defined through 
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In view of eq. (5.5), it can be written specifically for the grain interior (phase 1) and GBAZ 

(phase 0), as 
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These secant viscosities thus continue to change during plastic deformation. The dilatational 

behavior of each phase is taken to be plastically incompressible and is characterized solely by its 

elastic bulk modulus. As mentioned before in the previous chapter, most of the constitutive 

relations shown in this section are available in any text book related to plasticity. Equation (5.10) 

was derived using eq. (5.3), (5.5) and (5.9). 

5.3 A homogenization scheme for the viscoplastic response of the 3-phase model 

  In order to develop a nonlinear, rate-dependent, multi-phase homogenization model that 

remains explicit and is also capable of capturing plastic compressibility under a pure hydrostatic 

loading, Laplace transform is used at first to convert a linear elastic homogenization method to a 

linear viscoelastic one. The Maxwell viscosity of the viscoelastic phases is then replaced by the 

secant viscosity of the viscoplastic phases. A field-fluctuation method is also introduced to find 

the connections between the micro strain rates and the applied, macro strain rate. To a great 

extent this homogenization method is an extension of the concept of a linear comparison 

composite. The history in the development of the nonlinear homogenization method by use of the 

linear one with an identical microgeometry was discussed in the previous chapter of “Creep 

Response”. For the method to remain explicit, and to make the partial derivatives involved in the 

field fluctuation method manageable [see Eq. (5.27)], the starting point has been taken to be the 

Mori-Tanaka (M-T) approach for the linear elastic composite, and then, through the Laplace 

transform, the results are extended to a linear viscoelastic composite comprised of two Maxwell 

phases to mimic the grain interior and GBAZ, in addition to the pores. The Maxwell viscosity 

will then be replaced by the secant viscosity to study the rate-dependent, nonlinear problem. 

Christensen and Lo’s [37] generalized self-consistent approach can also be extended to a three-

phase composite as the starting point, but it would greatly add complexities in the expression of 
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the effective properties and the evaluation of the partial derivatives. The advantage of using the 

M-T approach was also recognized by Tan et al. [47] in their study on the effect of nonlinear 

interface debonding. 

5.3.1 The initial elastic state 

For a general 3-phase composite containing two types of spherical inclusions, the effective 

bulk and shear moduli of the composite are given by (Weng [10]) 
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and 022 == µκ  for voids. 

Since the initial response of the composite under a constant strain-rate loading is elastic, it is 

helpful to write the hydrostatic and deviatoric stresses of the constituent phases (say, the r-th 

phase) in terms of that of the composite ijσ  
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where,  
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5.3.2 Transition to the viscoelastic state in the Laplace transformed domain 

  To pave the way for the study of the viscoplastic response, the basic relations for a linear 

viscoelastic comparison composite whose microgeometry is identical to Fig. 3.2, is established. 

Since the problem involves two viscoplastic phases, the most suitable viscoelastic comparison 

composite is one involving two Maxwell solids. In this way the Maxwell viscosity can be later 

converted into the secant viscosity for each constituent phase. 

 The shear behavior of the r-th viscoelastic phase is marked by its shear modulus rµ  and shear 

viscosity rη . In the Laplace, transformed domain (TD), its shear modulus can be written as 

     
r
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where s is the usual Laplace parameter (similar to section 4.3.2, s  is used as the Laplace 

parameter in this section only and it should not be confused with the drag stress which is also 

denoted by s  and it appears in other sections). The dilatational behavior is simply marked by its 

bulk modulus rκ  (i.e. r
TD
r κκ = ) due to plastic incompressibility. Then by means of the 

correspondence principle (Hashin [9]), the viscoelastic behavior of the composite can be 

determined from the elastic one with the same microgeometry. The stress and strain in the 

transformed domain is denoted by a hat ^, so that, for the r-th phase, 
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and for the composite, 
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Then the effective TDκ  and TDµ  of the 3-phase composite in the transformed domain follow 

from eq. (5.11), with rµ  now replaced by TD
rµ . Using such a relation for the 3-phase porous 

medium, the effective moduli in the transformed domain can be cast into 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−+−−

+−−+
+=

])1()()[(]1)1[(
)]()[(

1
01

2
0001002

02011021
0 TDTDTD

TD
TD

ccc
cccc

αακκκα
κκκα

κκ , 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−+−−
+−−+

+=
])1()()[(]1)1[(

)]()[(
1

01
2

0001002

02011021
0 TDTDTDTDTDTD

TDTDTDTD
TDTD

ccc
cccc

ββµµµβ
µµµβ

µµ , 

                    (5.18a and b) 

where, 

     TD
TD

00

0
0 43

3
µκ

κ
α

+
= , TD

TD
TD

00

00
0 43

2
5
6

µκ
µκ

β
+
+

= .    (5.19a and b) 

Making use of eq. (5.17), and noting that, under a constant strain-rate loading ijij s εε &⋅= )/1(ˆ 2 , it 

can be written that, 
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where )/( 21 sTDκηκ
−= L , )/( 21 sTDµηµ

−= L , with the symbol 1−L  standing for the inverse 

Laplace operator. After some lengthy algebra, it was found that, 
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in terms of time t. The entire procedure and the constants involved here can be found in Appendix 

A4. It is evident from the expression of κη  that this approach will deliver a nonlinear response 

under a pure dilatational loading. 

5.3.3 Replacement of the Maxwell viscosity by the secant viscosity for the viscoplastic response 

In the extension from linear elasticity to nonlinear, rate-independent plasticity, the elastic 

moduli of the constituent phases are replaced by their corresponding secant moduli. Likewise, the 

extension from linear viscoelasticity to the nonlinear, rate-dependent viscoplasticity can be 

carried out with the replacement of Maxwell viscosities, 1η  and 0η , by the secant viscosities  s
1η  

and s
0η  calculated from eq. (5.10). These secant viscosities then enter into the parameters 

involved. Equation (5.20) is then replaced by 

     kk
s

kk tt εησ κ
&)(3)( = ,  '' )(2)( ij

s
ij tt εησ µ

&= .     (5.22) 

The two functions ),( ss
µκ ηη  now carry the notions of overall secant viscosities of the composite. 

The uniaxial counterpart of eq. (5.22) can be written as 1111 )()( εησ &tt s
E= . Under a constant 

strain-rate loading the nanocrystalline solid behaves essentially like a non-Newtonian fluid. 

5.4 A field-fluctuation method to find the secant viscosity of the constituent phases 

 A critical step in this process is to find s
1η  and s

0η  that enter into the parameters involved in 

eq. (5.21) for the application of eq. (5.22). Since the secant viscosity depends on the drag stress s 

and the effective strain rate vp
eε&  through eq. (5.10), and s further depends on vp

eε  through eq. (5.6) 

and eq. (5.7), the task boils down to the determination of the effective rate vp
eε&  for both the grain 

interior and GBAZ. It was found that this could be most conveniently achieved through the 

application of field fluctuation method. It is similar to the field fluctuation method applied in the 
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previous chapter to obtain the effective stress in the individual phases in terms of the external 

applied stress.  

It has the same advantage that, under the same boundary condition, a change in the material 

parameter of a constituent phase will result in a field fluctuation that gives rise to a new overall 

energy. Thus by taking a partial derivative of this energy with respect to such a material 

parameter, a universal relation will follow. For the present rate-dependent viscoplastic problem 

with a linear viscoelastic comparison composite, the pertinent energy term is the overall work 

rate, and the material parameters at issue are the secant viscosities s
1η  and s

0η . This approach is 

now used to establish the connection between the effective strain rates, )1(vp
eε&  and )0(vp

eε& , 

respectively of the grain interior and GBAZ, and the overall applied strain rate, ijε& . 

 With the above s
κη  and s

µη , the overall work rate of the composite under a constant strain-rate 

loading, .constij =ε& , can be written as 
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On the other hand, it can be considered as the sum of the elastic and viscoplastic components of 

the constituent phases, as 

                )()( 000111
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noting that pores make no contribution to it. The elastic term for each phase can be written readily 

through its elastic moduli, whereas the viscoplastic terms are defined through its secant viscosity, 

as  
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Now setting eq. (5.23) equal to eq. (5.24), we have the work-rate equality 
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Since this equality holds for any ijε& , rκ , rµ , s
1η  and s

0η , the boundary condition and the elastic 

constants can be kept fixed and only one of the secant viscosities can be varied. Taking derivative 

with respect to s
1η  and s

0η  separately, the effective viscoplastic strain rate of the constituent 

phases in terms of the applied strain rate can be obtained as 
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where, ''2 )3/2( ijije εεε &&& = . These effective rates serve to determine the secant viscosities s
1η  and 

s
0η  by eq. (5.10). A detailed derivation for the four partial derivatives in eqs. (5.27a) and (5.27b) 

is given in Appendix A5. 

5.5 Porosity change and the incremental scheme 

The porosity will continue to evolve during plastic flow. The change of porosity, or 2c& , is 

related to the difference between its dilatational strain-rate and the overall applied dilatational 

rate. Denoting the volume of voids by 2V  and that of the overall composite by V , it is given by 

V
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where the dilatational rate of the voids, )2(
kkε& , is found to be,  
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The derivation and constants B, p, r, q and w are given in Appendix A6. 

Due to the continuous change of porosity and secant viscosity of the constituent phases, an 

incremental scheme should be used for computation. That is, in general, 
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The stress rates can be calculated from eq. (5.22), as 
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with the effective secant-viscosity rates   
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The values of 111321 ,,,,,, bandaFFFE λδ  are also listed in Appendix A6.  

At 0=t , the response is elastic, and the initial rates ( s
κη&3 , s

µη&2 ) are exactly equal to the 

effective bulk and shear moduli ( µκ 2,3 ) of the composite given by eq. (5.11). Using this, the   

incremental stress ijσ∆  is calculated from the incremental strain ( tijij ∆=∆ εε & ) for the first time 

increment, and then eq. (5.13) is used to obtain the initial stress redistribution among the 

constituent phases. The unified constitutive equations then provide the effective viscoplastic 

strain rates )(rvp
eε&  from eq. (5.5), and the secant viscosities from eq. (5.10). For the subsequent 

steps, the main aim is to calculate the stress rates from eq. (5.31), in conjunction with eq. (5.32). 
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The parameters ,,, rqp … etc., involve the term rT  ( s
rrrT ηµ /= ) which requires the value of 

s
rη  at the current time level. Equation (5.10) is used to find s

rη  at the present time step. The 

values of )(rvp
eε&  needed in eq. (5.10) are calculated from the field fluctuation theory [eq. (5.27)]. 

In the calculation of the four partial derivatives, the value of s
rη  is taken from the previous time 

step. Once the stress at the next time level and the values of s
rη  for the current time step are 

obtained, the calculation for the next time level, with the porosity also updated, can proceed in the 

same way. This procedure is repeated until the entire stress-strain curve is determined.  

5.6 Application to the rate-dependent behavior of porous nanocrystalline iron, and iron-

copper mixture 

 The developed incremental model is applied to investigate the competition of grain size and 

porosity in the viscoplastic behavior of nanocrystalline iron, and iron-copper mixture. Khan et al. 

[48], Khan and Zhang [49], and Khan et al. [50] have conducted a series of experiments to 

uncover the strain-rate sensitivity of these materials. Their processing technique involves the high 

energy ball milling and high temperature sintering. Certain amounts of porosity are found in Fe 

and Fe80Cu20 (wt %). The lattice constant of iron is 0.287 nm, and assuming that the GBAZ 

spans over about 10 atomic spacing, we take t = 3 nm, as was done for nickel by Li and Weng 

[32]. The viscoplastic material constants of iron, and iron-copper mixture used in the calculations 

for the grain interior and the GBAZ of iron and iron-copper mixture have been obtained by 

inverse simulation of the test data and are listed in Tables 5.1 and 5.2 (provided at the end of the 

chapter), respectively. Following Schwaiger et. al. [33], the elastic properties of GBAZ and grain 

interior were taken to be identical. This choice was, in part, prompted from observation of a high 

resolution image by scanning transmission electron microscopy (STEM), which disclosed that 

crystallinity of the grain in Ni was maintained right up to the grain boundary (Kumar et al. [51]). 

The thickness of GBAZ spans over the outer region of the grain and includes only a very thin 
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portion – perhaps about 2-3 atomic spacing – of the grain boundary. But since the elastic property 

of the grain boundary may be harder or softer than the grain, the moduli of GBAZ and grain 

interior are not strictly equal. Such elastic heterogeneity can be accommodated in eq. (5.11). 

  

Fig 5.2: Comparison between the experimental and theoretically obtained true stress strain relations under 
uniaxial compressive loading for nanocrystalline iron with a grain size of 71nm, porosity (f) 3.3% and three 
different strain rates of 0.0001/s, 0.01/s and 1/s. 

 

 At first the strain-rate sensitivity of a nanocrystalline, porous iron is calculated. The initial 

porosity of iron tested was found to span over about 3-7%. Their experimental data at the grain 

size of d = 71 nm under the constant strain rates of =11ε& 0.0001/s, 0.01/s, and 1/s, are reproduced 

in Fig. 5.2 (from Fig. 6 of Khan et al. [48]). Within the allowable porosity range, we chose c2 = 

0.033 in the calculation. The calculated curves based on the 3-phase composite model are 

depicted as sold lines here. Both experiments and theoretical results indicate a clear strain-rate 

sensitivity of the nanocrystalline iron. A direct comparison between the two sets of curves 
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indicates a noticeable discrepancy in the early stage of plastic deformation, but the final 

saturation state is in good overall agreement. This initial discrepancy was caused by the power-

law form of the unified constitutive equations, which is not as stiff as Khan’s experimental data. 

Better agreement is possible if a stiffer form of constitutive equation, such as an exponential one, 

is adopted.  

 

Fig. 5.3 Change of the effective secant viscosity and its rate in the course of deformation. The right scale 
for the viscosity rate is numerically identical to the left one. 

 

The non-Newtonian nature of viscoplastic flow under a constant strain-rate loading is reflected 

through the change of effective secant viscosities ( ss
µκ ηη , ) in eq. (5.22), or their rates ( ss

µκ ηη && , ) in 

eqs. (5.32a and b). To illustrate such changes, the functions s
Eη  and s

Eη&  for the uniaxial loading 

are shown in Fig. 5.3, for the strain rate of 0.01/s, in the above case. The effective secant viscosity 

s
Eη  essentially is the true stress scaled by the applied strain rate and, just like the stress itself, it 
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starts from zero, then increases rapidly, and eventually reaches a saturation value. The effective 

viscosity rate s
Eη&  on the other hand represents the tangent modulus of the stress-strain curve; it 

starts from the effective Young’s modulus E of the 3-phase composite, then decreases rapidly, 

and eventually approaches zero at saturation.   

 

Fig 5.4: Comparison between the experimental and theoretically obtained true stress strain relations under 
uniaxial compressive loading for nanocrystalline iron at a particular strain rate of 0.001/s with a grain size 
of 71nm and 96nm along with porosity (f) of 7% and 3.5% respectively. 

 

Khan et al. [48] have also conducted a dynamic test at the high rate of 3,500/s. The adiabatic 

condition involved would lead to a significant temperature increase and thermal softening. As 

incorporation of such thermal effects was not the main concern in this development it was not 

attempted to make a comparison there.   

 We then examined the effect of grain size as it decreases from 96 nm to 71 nm in Fig. 5.4, 

which corresponds to a strain-rate test of 0.001/s. The experimental data is reproduced from Fig. 
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8 of Khan et al. [48], whereas the calculated curves are shown in solid lines, using the initial 

porosity of 7% and 3.5%, respectively. There is a clear strengthening effect as the grain size 

decreases in this nano-meter range. 

 

Fig. 5.5 Comparison between the experimental and theoretically obtained true stress strain relations under 
uniaxial compressive loading for nanocrystalline Fe80Cu20 with a grain size of 35nm and three different 
strain rate of 0.0001/s, 0.01/s and 1/s along with different porosity (f) of 11%, 9.6% and 10% respectively. 

 

 The condition of simultaneous change of porosity and strain-rate was tested by Khan and 

Zhang [49] for a nanocrystalline Fe80Cu20 mixture, with the average grain size of 35 nm. The 

test data, reproduced from Fig. 3 (of ref. [49]), is shown in Fig. 5.5 as dashed lines. This data 

covers the strain rates of 0.0001/s, 0.01/s, and 1/s, with the initial porosities of 11%, 9.6%, and 

10%, respectively. The calculated results are shown as solid lines. Overall agreement seems to be 

reasonable. But agreement at large strain, say beyond 10%, must be read with caution as our 

theory is based on infinitesimal strain. 
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Fig 5.6: Change of porosity with strain for the Fe80Cu20 alloy at different strain rates and different initial 
porosities but a constant grain size. 

 

Fig 5.7: Comparison between the stress-strain plot of Fe80Cu20 alloy with constant porosity and variable 
porosity. The plot with variable porosity shows a little bit of strain hardening even after reaching the 
saturation strength. But the constant porosity curve does not show any strain hardening after reaching the 
saturation level. 
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 The preceding results have all been calculated with an evolving porosity. Since the initial 

porosities in Fig. 5.5 are much higher than those in Figs. 5.2 and 5.4, it is instructive to show how 

the porosity changes in this case. Fig. 5.6 illustrates the decrease of porosity under compression. 

At the end of 10% strain, the normalized porosities have decreased to about 0.92 in all three 

cases. This compares well with the value of 0.91 in the compression test of Spitzig et al. [52] on 

iron compacts. It is also interesting to see the difference of predictions if the porosity change is 

ignored altogether; this is illustrated in Fig. 5.7. Clearly the decrease of porosity under 

compression has led to a harder response. 

 In order to demonstrate that the model can deliver the nonlinear dilatational response of the 

porous nanocrystalline solid even if 01 EE = , calculations have been done using the properties of 

Fe80Cu20 with the grain size of 35 nm as porosity increases from 0% to 10%. The results are 

shown in Fig. 5.8(a), under the constant dilatational rate of kkε& = 0.01/s. The kkσ  versus kkε  

curve is seen to be linear in the absence of porosity, but becomes increasingly nonlinear as 

porosity increases. Even without porosity, this model can also deliver the nonlinear dilatational 

behavior under a constant dilatational rate. This is demonstrated in Fig. 5.8(b), based on the 

properties of Fe80Cu20 but varying its 1E . The nonlinearity is seen to increase progressively as 

the elastic stiffness of inclusions decreases. This trend is consistent with the exact analysis of Qiu 

and Weng [14] for the rate-independent plasticity. 

Many molecular dynamic simulations, such as Schiotz et al. [23], Lund and Schuh [24], have 

revealed that, as the grain size decreases to a very small nano-meter range, nanocrystalline metals 

could become softer. While the experiments of Khan et al. [48], Khan and Zhang [49], and Khan 

et al. [50] did not go down to such a small grain size, the developed model was used to make a 

speculative calculation, to see how the properties of the porous, nanocrystalline solids would 

change within such a range of grain size. Fig. 5.9 displays the calculated stress-strain curves of  
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Fig 5.8: (a) Plot of true dilatational stress vs. strain under dilatational constant strain rate (0.01/s) loading 
for nanocrystalline Fe80Cu20 with a constant grain size of 35nm and different porosities. (b) Plot of true 
dilatational stress vs. true dilatational strain for Fe80Cu20 alloy with different elastic modulus for grain 
interior and GBAZ for a 35nm grain size and 0.01/s strain rate but no porosity. 
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Fig. 5.9 True stress-strain plot of nanocrystalline Fe80Cu20 under compressive constant strain rate loading 
of 0.0001/s with a porosity of 5% at different grain size (diameter, d) to demonstrate its potential softening 
at very small grain size due to increased contribution from the GBAZ. 

 

Fe80Cu20 at the porosity of 5% under the strain rate of 0.0001/s as the grain size decreases from 

50 nm to 8 nm. For the four selected grain sizes, the nanocrystalline metal is seen to continue to 

strength as the grain size decreases from 50 nm to 10 nm, but from 10 nm to 8 nm, there is an 

apparent dip in the overall response. These calculations were made assuming that the grain 

interior continues to obey the Hall-Petch equation, but it is possible that dislocations have ceased 

to operate before the grain size decreases to 8 nm, and, in that case, the softening behavior would 

have appeared even earlier. For copper, such a critical grain size was estimated to be about 8.2 

nm and for palladium, it was about 11.6 nm according to Wang et al. [26]. The 2% yield stresses 

are shown in the Hall-Petch plot in Fig. 5.10, this time with several levels of porosity. While 

porosity does cause the yield strength to decrease, it does not alter the fundamental nature of 
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transition for the yield stress. These plots all point to the continuous increase, level off, and 

eventual decline of the yield strength, with the maximum occurring at about 16 nm.  

 

Fig. 5.10 Hall-Petch plot of nanocrystalline Fe80Cu20 at a constant strain rate loading of 0.0001/s with 
different porosities of 4%, 5%, 7% and 9%. 

 

The sensitivity of the GBAZ parameters on the nature of Hall-Petch transition is an important 

issue, and this is investigated in two ways here. We first changed its Young’s modulus while 

maintaining its viscoplastic constants, and then changed its saturation stress while keeping its 

Young’s modulus unaltered. The corresponding results are shown in Fig. 5.11(a) and 5.11(b), 

respectively, with the middle curve representing the original state. Both figures suggest that, as 

the GBAZ becomes softer, the critical grain size at which the material attains its highest yield 

strength moves to the left; conversely when it becomes harder, it moves to the right. The 

underlying reason for such kind of shift is due to the competition between the deformation of 

grain interior and GBAZ. When the slope of the Hall-Petch plot is positive, the overall 
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deformation is mainly contributed by the grain interior and when it is negative, the GBAZ 

dominates the overall deformation (Jiang and Weng [27]). Capolungo et al. [30, 31] have argued 

a transition from dislocation glide to grain boundary mediated mechanisms (e.g. dislocation 

nucleation and absorption from grain boundary surface and ledges) during this change. Their 

arguments are consistent with this observation, both indicating a more dominant role played by 

the latter as grain size decreases to the nano-meter scale. So if the properties of GBAZ becomes 

softer, such a critical state can be reached without having to reduce the grain size to the same 

small value, leading to a shift to the left in the Hall-Petch plot. The precise amount of shift, 

however, has to be calculated. 

 

Fig 5.11: Hall-Petch plot for Fe80Cu20 alloy with different elastic modulus for grain interior and GBAZ. 
Here E0 signifies the Young’s modulus of the GBAZ and E1 signifies the Young’s modulus of the grain 
interior region. From the plot it is very clear that the grain size at which the reverse Hall-Petch effect start 
depends on the difference in the elastic modulus of grain interior and the GBAZ. 
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 In order to show the influence of porosity on the behavior of Fe and Fe80Cu20 more fully, in 

Fig. 5.12 the corresponding curves to Figs. 5.2, 5.4 and 5.5, assuming no porosity has been 

plotted. Both Figs. 5.12(a) and (b) show a clear increase of flow stress, and the increase in Fig. 

5.12(c) is more pronounced for the initial porosities in Fig. 5.5 are substantially higher. 

 

Fig. 5.12 Three corresponding plots to Fig. 5.2, 5.4, and 5.5 with zero porosity. 

 

 While the above results have shown the effects of grain size and porosity, their competition 

perhaps can be best illustrated in Figs. 5.13 and 5.14, calculated for Fe80Cu20 and iron, 

respectively. In the case of Fe80Cu20, increasing the initial porosity from 2% to 10% would give 

an almost opposite trend to decreasing the grain size from 70 nm to 30 nm. Similar trend is 

observed for Fe from the initial porosity of 4% to 8%, as opposed to the grain size of 110 nm to 

55 nm. 
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Fig 5.13: Competition between the grain size and porosity for a Fe80Cu20 alloy at a strain rate of 0.01/s. 

 

Fig 5.14: Competition between the grain size and porosity for iron at a strain rate of 0.01/s. 
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This completes our examination on the issues of grain size versus porosity in the viscoplastic 

response of porous, nanocrystalline solids. However, the noticeable discrepancy between the 

theory and experiment in the initial elastic response of Fig. 5.4 for the porosity of 7% remains a 

concern. While the effect of porosity on the reduction of elastic moduli has been examined in 

Weng [10] (Fig. 6) for a void/epoxy and a 3-phase quartz sand/void/epoxy with reasonable 

agreement with experiments, we decided to test it again for the metallic systems. Fig. 5.15 (a) and 

5.15(b) are comparisons with the test data of Spitzig et al. [52] for iron compacts, and Khan and 

Zhang’s [49] data for Fe80Cu20, respectively. The agreement in the former case is about the 

same as in the epoxy systems, but the large difference in the latter case apparently requires further 

study. 

 

Fig. 5.15 Reduction in elastic moduli with increasing porosity. A comparison with the experimental data of 
Fe compacts (Spitzig et. al. [52]) and Fe80Cu20 (Khan and Zhang, [49]). 
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 Finally to place the present approach in perspective in relation to the recent one of Li and 

Weng [32], we made a last comparison between the two for a two-phase composite. In the 

previous model developed by Li and Weng [32], to determine the viscoplastic response, the 

elastic moduli of the individual phases were replaced by the secant viscosity of each phase in the 

expression of the overall elastic moduli of the composite. No Laplace transform was used to 

derive the viscoelastic response. Keeping in mind that this earlier model was intended only for the 

case of 01 EE ≥  (or slightly less than 0E , but certainly not for voids), the comparison was done 

here for a fully compact nanocrystalline iron using the properties listed in Table 5.1. The results, 

shown in Fig. 5.16, have been calculated to a fairly large strain in order to reveal a full range of 

deformation. It is seen that the initial transition from elastic to viscoplastic response takes place 

earlier in the previous model, but the subsequent flow follows an essentially identical path. 

 

Fig. 5.16 Comparison of the two theories for a grain size of 71nm without porosity under different strain 
rates. 
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Table 5.1: Material parameters used in calculations for iron 
 

 Grain Interior Grain Boundary Affected 
Zone (GBAZ) 

)(GPaE  210.0 210.0 

ν  0.3 0.3 

)(0 MPas∞  5.03 ----- 

)( nmGPak  4.25 ----- 

a  1.1 ----- 

)(0 MPas  ----- 320 

)(* MPas  ----- 600 

)(MPah  1 1.5 

n  220 120 

)/10( 4
0 hr−ε&  1.0 1.0 
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Table 5.2: Material parameters used in calculations for Fe80Cu20 material 
 

 Grain Interior Grain Boundary Affected 
Zone (GBAZ) 

)(GPaE  70.0 70.0 

ν  0.3 0.3 

)(0 MPas∞  5.1 ----- 

)( nmGPak  1.8 ----- 

a  1.5 ----- 

)(0 MPas  ----- 255 

)(* MPas  ----- 600 

)(MPah  10 9 

n  120 60 

)/10( 4
0 hr−ε&  1.0 1.0 
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Chapter 6 

Conclusions and future work 

6.1 Conclusion 

Investigation of the creep response and strain-rate sensitivity of nanocrystalline materials has 

been conducted. A two phase composite model has been developed to analyze the creep 

resistance and a three phase (the third phase acts as voids/pores within the solid) composite for 

the strain-rate sensitivity of the porous nanocrystalline material. In both models the inclusions 

represent the plastically harder grain interior and the matrix represents the plastically softer grain 

boundary affected zone (GBAZ). For the three phase model the third phase represents the voids. 

The drag stress of the grain interior is considered to be grain-size dependent whereas the 

properties of the grain boundary affected zone is completely independent of the grain size. The 

pores/voids (in the three phase composite) do not have any elastic or secant modulus. 

For the two phase model developed to characterize the creep resistance, the creep rate of each 

phase is described by a unified constitutive equation that can account for the effect of stress, 

strain-hardening and temperature.  A homogenization method based on the concept of secant 

viscosity and field fluctuation is finally developed to evaluate the evolution of overall creep 

strain. In this work, the focus has been to study the transition of creep resistance of 

nanocrystalline materials as the grain size decreases to the nanometer range. The critical grain 

size, critd , at which the material has maximum creep resistance has also been determined in this 

study. The increase of creep resistance is attributed to the decrease of grain size through the Hall-

Petch effect, but continuous decrease of grain size would increase the presence of the softer grain 

boundary affected zone and this in turn could result in the softening effect of the nanocrystalline 

solid. There is a subtle balance between the grain size and GBAZ that must be dealt with 
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carefully. When creep resistance is plotted against the inverse of the square root of grain size, 

2/1−d , the transition starts with a positive slope, then zero, and finally to a negative slope. The 

variation reflects the intricate competition of the grain interior and GBAZ toward the overall 

creep strength of the material. It turns out that the optimal grain size of the high-temperature 

creep resistance always occurs at the nanometer range, but the precise size for a given material 

needs to be calculated.  

In case of the three phase model developed to investigate the strain-rate sensitivity of the 

porous nanocrystalline material, both the grain interior and the GBAZ are described by a unified 

constitutive law which takes into account the effect of stress and strain hardening. The 

viscoplastic state of both constituent phases is characterized by its secant-viscosity, which 

continues to evolve in the course of plastic deformation. To develop the homogenization scheme 

for the nonlinear viscoplastic response, the secant-viscosities are implemented into a linear 

viscoelastic one to replace the corresponding linear viscosities of the constituent phases. The 

required secant-viscosities of the constituent phases are in turn evaluated from their viscoplastic 

strain rates derived from a field-fluctuation approach. The developed theory has been applied to 

obtain the viscoplastic response of nanocrystalline materials under various concentrations of 

porosities at different grain sizes under different strain rates. The predicted results were compared 

with the experimental data developed by Khan et al. [48 – 50]. These calculations display the 

intricate nature of competition among the grain size, porosity and loading rate. The evolution of 

porosity during the plastic flow has been revealed, and the plastic compressibility of the 

nanocrystalline solid, with as well as without porosity has been examined. The calculation has 

also been pushed to smaller grain sizes that were not studied by Khan et al. [48 – 50]. The results 

over a wide range of grain size suggest an initial strengthening by the reduction of grain size, 

which levels off and, eventually shows, a softening response. This in turn brings about an 

important result that, for each metal, there exists a maximum yield strength that occurs at a grain 
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size that is in the nanometer range. Moreover, this critical grain size moves to the left in the Hall-

Petch plot as the GBAZ becomes softer.  

The novelty of the two described models is the fact that they are analytical in nature. For a 

nonlinear time dependent heterogeneous problem, such an analytical expression is not always 

attainable. But with the idealization of spherical inclusions and a transition scheme from linear 

viscoelastic to nonlinear creep/viscoplastic, the theory has been developed in an explicit way. The 

outcome is a simple model which can be easily implemented.  

6.2 Future work 

Research on the field of nanocrystalline material is in its infancy. Large amount of 

opportunities are open for researchers working with this kind of nanocrystalline solids. To 

investigate into several properties of materials with very small grain size, a sufficiently good 

theoretical model has to be developed that can capture most of the features of this class of 

materials. Understanding the response of nanocrystalline materials under different boundary (or 

loading) conditions is also a challenging job. To accomplish such goals modifications can be 

made in the theory to simulate the exact behavior of the nanocrystalline materials. A good 

example is the incorporation of the grain boundary sliding within modeling procedure which is 

considered to have the largest amount of contribution in the grain softening (reverse Hall-Petch 

effect) at very small grain sizes, typically less than 10 nm.  

If the grain interior of some nanocrystalline material shows different properties for different 

grains, the two phase composite model can be modified to three or more phases of material to 

account for the different properties of the grain interior. In this work the shape of the grain is 

considered to be equi-axial and idealized as spherical. This assumption can be relaxed and 

composite models for ellipsoidal shaped grains can be developed. Even the grain size in 

nanocrystalline material is not constant. Modification in the theory can be made to incorporate the 
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grain size distribution. Much work has not been done with the failure of nanocrystalline materials. 

Modeling the crack propagation and fracture for this type of material can always be an important 

challenge. Phase transformation related problems (e.g. nanocrystalline shape memory alloy) can 

also be solved in the future as a continuation to this line of study.  
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Appendix 

In this appendix, we give the constants that appear in eqs. (4.22a and 4.22b) in A1, the explicit 

form of the four partial derivatives in the field fluctuation approach in A2, and the procedure to 

calculate the evolution of creep strain of the grain interior in A3. 

A1. Constants in Eq. (4.22) 

For the hydrostatic viscosity, we have 
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A2. Evaluation of the four partial derivatives in the field fluctuation approach 

From the field fluctuation theory the effective stress of an individual phase is given by 
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For the hydrostatic derivatives, we have 
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A3. Creep strain evolution for the grain interior )()1( tijε  

We compute the total strain of the grain interior through its deviatoric and dilatational 

components as 
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In the elastic context, these components under an external stress ijσ  follow from Eq. (4.13). 

Through the Laplace transform and inversion, it can be shown that  
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where ))(43()(3 00110001001 κκµκκκκ cccx +++−= . At t = 0, it represents the initial elastic 

strain of the inclusions. To cast this in the incremental form for the continuous change of secant 

viscosity (i.e. 0T  to be replaced by sT0 ), we have 
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This rate is positive if 01 κκ <  (for voids it leads to creep cavitation), but is negative if 01 κκ >  

due to the matrix constraint. For the deviatoric part, we have 
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this is always positive, where  
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In the second part of the appendix, the detailed derivation of the Eq. (5.21) is outlined in A4. 

The explicit derivation of the partial derivatives involved in Eq. (5.27) is described in A5. The 

detailed derivation and the constants involved in Eq. (5.32) are given in A6. 

A4. Derivation of the effective secant viscosities κη  and µη  

 The hydrostatic and deviatoric viscosities of the 3-phase porous medium in the transformed 

domain (Laplace domain) are given as,  
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To express TDκ  and TDµ  in terms of the Laplace parameter s, we note that TD
0α , TD
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The effective hydrostatic and deviatoric stress-strain rate relations in the transformed domain 

under a constant strain-rate loading are derived from  
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It follows from (A.9) that  
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After carrying out the Laplace inverse, we have 
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The final expression for the effective deviatoric viscosity in the time domain is 
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This completes the expressions of κη  and µη  in Eq. (5.21). 

A5. Evaluation of the four partial derivatives in the field fluctuation approach 

To use these viscosities in the field fluctuation theory, their derivatives with respect to the 

constituent shear viscosity have to be obtained. We shall first consider the hydrostatic derivatives 

and then the deviatoric ones. 

i) The 0/ ηηκ ∂∂  term: 
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ii) The 1/ ηηκ ∂∂  term: 
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iii) The 0/ ηηµ ∂∂  term: 

For this derivative, we write 

   

)]},cos()(

)sin()()sin()()cos()

[()]sin()()cos()[(

{)]}sin()()cos()[({

)(
)(1

)(
1..1

1
0

1
32

1
0

3

0

2
1

0

1
321

0

3

0

2
132132

0

1

0

1
1

0

1
1321321

0

2
0

0
0

0
2

80

8
4

0

4
80

8

4

0

111

111

00

tb
b

tFF

tb
FF

tb
b

tFFtb
F

F
etbFFtbFF

a
teteF

e
F

EtbFFtbFFeeFE

tee
x

x
x

x
x

x
x

tatat

ttat

tTtT

η

ηηηη

ηηη
λ

ηη

η
µ

δη
η
δ

ηη
η

η

η

λ

λλ

µ

∂

∂
−+

+
∂

∂
−

∂

∂
+

∂

∂
+−

∂

∂
+

+
∂

∂
+−++

∂

∂
+

∂

∂
+

+
∂
∂

+−+++
∂
∂

+

+−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−

∂

∂
⋅++=

∂

∂ −−

(A.16) 

where 

)]}.1(18072[)(

)]1(9036[]30)1(12[15{
)(

]},30)(12[)(15

]15)(6[15450{
)(

100
2

01001

10
2

0
2

01201
2

02
0

0

0

8

12101001
2

0

1
2

021
2

01
2

0
2

010022
0

0

0

4

ccTTT

ccTcTT
x

cccTTT

cTccTTTc
x

−−−+

+−−+−−−=
∂

∂
−+−+

+−++−=
∂

∂

κµµ

κµκ
η
µ

η

µµκ

µκκµ
η
µ

η

 

 The remaining terms are evaluated numerically as 

)2()1(
)2(*)()1(*)((*)

000 −−−
−−−

=
∂
∂

tt
tt

ηηη
. 

iv) The 1/ ηηµ ∂∂  term: 

For this term we write 

+++
∂
∂

+
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
=

∂

∂ − )cos()[({
)(

1... 1321
11

2
81

8
4

1

4
80

1

110 tbFFeeFEe
x

x
x

x
x tattT λµ

ηη
δ

ηη
η

η

η
 



 92

        +
∂

∂
+

∂

∂
+

∂

∂
+−+ 2

1

1

1

1
1

1

1
132 [({)]}sin()( 111 F

a
teteFe

F
EtbFF tatt

ηη
λ

η
λλ  

   −
∂

∂
+

∂

∂
+−++ )cos()[()]sin()()cos() 1

1

3

1

2
13213

1 tb
FF

etbFFtbF ta

ηη
 

      )]}cos()()sin()()sin()( 1
1

1
321

1

3

1

2
1

1

1
32 tb

b
tFFtb

FF
tb

b
tFF

ηηηη ∂

∂
−+

∂

∂
−

∂

∂
+

∂

∂
+− , (A.17) 

where 

),(
)(

),)(7(
)(

70402
1

1

1

8

210002
1

1

1

4

yhy
x

ccTh
x

s µµ
η
µ

η

κµ
η
µ

η

−−=
∂

∂

+−=
∂

∂

 

and the remaining terms are evaluated numerically also. 

A6. Evaluation of the porosity evolution 

From Eq. (5.28), )( )2(
22 kkkkcc εε &&& −= , it is evident that the key is to evaluate )2(

kkε&  of phase 2, 

the voids. In the elastic context, the dilatational strain can be written as (Weng [9]) 
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