
DATA COMPRESSION IN DYNAMIC SYSTEMS

by

SU CHEN

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

S. Muthukrishnan

And approved by

New Brunswick, New Jersey

May, 2008

ABSTRACT OF THE DISSERTATION

Data Compression in Dynamic Systems

by Su Chen

Dissertation Director: S. Muthukrishnan

Data compression in dynamic systems has several applications in the real world. Un-

like the compression of static data, both data and intrinsic data patterns may change

over time. A good compression in dynamic systems should either keep compression ac-

curate for dynamic data or change its compression strategies for dynamic data patterns.

In this thesis, we study both scenarios with applications from the real world. First, as

an example of compression in dynamic systems with changing data, we discuss a lossy

compression in databases, called synopsis, which helps the query optimizer speed up the

query process. We introduce new Haar wavelet synopsis for nonuniform accuracy and

time-varying data that can be generated in near linear time and space, and updated in

sublinear time. The effectiveness of our data synopsis is validated against other linear

time methods by using both synthetic and real data sets. Second, as an example of

compression in dynamic systems with changing data patterns, we propose a novel com-

pression algorithm, called IPzip, which compresses IP network traffic both online and

offline for efficient data transfer and storage. IPzip achieves better compression ratios

by learning patterns residing in both data structures and content. We also propose

a methodology to monitor over time the effectiveness of the current compression and

start new pattern learning when intrinsic traffic structure changes. Finally, via trace-

driven experiments on network traffic obtained from Tier-1 ISPs, we validate that IPzip

ii

achieves better performance compared to previous approaches.

iii

Acknowledgements

These years of PhD study has been a long journey to me: I came across the ocean to a

new country; I started a new graduate program and learned new cultures; I lived as a

student, an intern and an employee; I met new friends and my best friend became my

husband; I missed my parents so much and now I become a parent myself. There are

so many things that I will treasure for my whole life. I am very glad that I reach this

stage to write down my thanks to those who helped me out in this long journey.

First, I want to thank my advisor, Dr. S. Muthukrishnan, for his warm heart and

continuous support. From him, I learned how to solve problems and being creative. He

is the person who led me through this very special experience of PhD study. I wish I

had more time with him to learn more about both research and life.

Dr. Antonio Nucci was my mentor when I did my intern at Narus. He is such a smart

and energetic researcher, and you will never feel tired when working with him. I really

appreciate his help on editing and proof reading of my papers. He gives me so many

insightful thoughts about how to present and evaluate research works. I would also

like to thank Dr. Supranamaya Ranjan and Dr. Ram Keralapura for their thoughtful

discussion and support for different projects at Narus, as well as their friendship.

During the intern at Narus, I met Dr. Lixin Gao, who is also one of my committee

members. I would like to thank her for many interesting lunch discusses about ideas,

projects, and future technologies. And it is interesting to find out that she graduated

from the most famous school in my home town.

Dr. Richard Martin is the professor who helped me when I start my study at

Rutgers. As an academic advisor, he guided me through my first project. Both Dr.

Richard Martin and Dr. Ahmed Elgammal are in my committee. I would like to thank

them for their time to review my thesis.

iv

I worked with Dr. Tomasz Imielinski and Dr. Don Smith at the early stage of

my PhD study. I would like to thank them for those afternoon meetings and their

encouragements for me to continue my study.

Most importantly, I would like to thank my parents Yilin and Caidi. They are the

people who first motivated me to pursue my PhD. And they would be the happiest

people to know that I reach this point in life. I am so grateful that I was born in this

family with endless love from them. I know wherever I go, their love will follow. I also

want to thank my husband Guilin for his spiritual support during all the hard times in

these years. I could not have done it without him.

I would like to thank all my friends, readers and reviewers for their helps too. I

wish you will find valuable information to your research from this thesis.

Best regards,

Su Chen

v

Dedication

To my loving parents,

Yilin and Caidi,

for all the wonderful things you give me.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

1. Introduction . 1

1.1. Adaptive Coding . 3

1.2. Lossy and Lossless Compressions . 4

2. Usage-Oriented Lossy Compression in Databases 6

2.1. Background . 6

2.2. Problem Statement and Previous Work 9

2.2.1. Haar Wavelet Transform . 10

2.2.2. Problem Definition . 11

2.2.3. Related Works . 12

2.3. Nonuniform Point-Wise Approximation Problem 15

2.3.1. 2-Step Algorithm . 16

2.3.2. M-Step Algorithm . 20

2.4. Nonuniform Range-Sum Approximation Problem 21

2.4.1. Data-Mapping Algorithm . 22

2.4.2. Weight-Mapping Algorithm . 25

2.5. Tracking Dynamic Changes of Weights and Data 27

2.5.1. Data Change in Data-Mapping Algorithm 27

2.5.2. Data Change in Weight-Mapping Algorithm 29

2.5.3. Weight Change in Data-Mapping Algorithm 29

2.5.4. Weight Change in Weight-Mapping Algorithm 30

vii

2.6. Special Cases for Range-Sum Weights 30

2.7. Experiments . 33

2.7.1. Point-Wise Queries . 33

2.7.2. Range-Sum Approximation . 39

2.8. Summary . 40

3. Stream-Aware Lossless Compression in IP Networks 43

3.1. Background . 43

3.2. Related Work . 47

3.3. Intuitions behind IPzip . 48

3.3.1. Gzip Background . 49

3.3.2. Network Traffic Correlations . 50

3.4. Algorithm . 51

3.4.1. Compression Plan Generation . 52

3.4.2. Optimal Algorithm . 54

3.4.3. IPzip Compression Plan Generation Algorithms 55

3.5. System Architecture . 61

3.5.1. Online Compression . 63

3.5.2. Offline Compression . 65

3.5.3. Traffic Pattern Change Detection 66

3.6. Experiments . 68

3.6.1. IPzip vs Other Compressors: average performance 69

3.6.2. IPzip Training Phase: time required to generate a near-optimal

compression plan . 70

3.6.3. IPzip Compression Phase: compression ratio and speed 72

3.6.4. IPzip in a Dynamic Pattern Changing Environment 74

3.7. Summary . 76

4. Conclusion . 78

References . 80

viii

Vita . 85

ix

List of Tables

2.1. Prefix Sum Tables . 33

2.2. Weight Reduction Table . 34

x

List of Figures

2.1. Wavelet transform of signal A . 10

2.2. W-wav algorithm is not optimal . 14

2.3. Methods . 15

2.4. Algorithms . 17

2.5. Five intervals in which Ψk[j] − Ψk[i − 1] 6= 0 (ck is the normalization

factor for Ψk) . 24

2.6. Example of generation of a prefix sum table for P [k, l] 25

2.7. Data-mapping and weight-mapping algorithms 26

2.8. Accuracy and efficiency . 35

2.9. Time . 36

2.10. Skewness . 37

2.11. Relative error compare for world cup data 38

2.12. Relative error for normal(10, 100) data 40

2.13. Comparison between data-mapping and weight-mapping algorithms(α =

0.5) . 41

2.14. Query skewness . 42

3.1. Gzip compression example . 49

3.2. Header compression example . 50

3.3. Optimal algorithm . 54

3.4. Compression plan generation for intra-packet correlation 56

3.5. Payload compression algorithm . 58

3.6. Compression plan generation for inter-packet correlation 60

3.7. Classification tree . 61

3.8. Goal of our work . 62

xi

3.9. System architecture . 62

3.10. Online compression of the headers . 63

3.11. Online compression of payloads . 64

3.12. Offline compression example . 66

3.13. Traffic pattern change detection. 67

3.14. IPzip vs Others: Compression rations for flow headers, flow payloads and

IPVolume records. 69

3.15. Training data size vs Compression ratio 71

3.16. Training Phase: Time spent on training 72

3.17. Compression ratio over time for Headers (a) and Payloads (b) 73

3.18. Time to compress and decompress Headers (a) and Payloads (b) 73

3.19. Online payload compression: A look at the memory usage 74

3.20. IPzip tracking and reacting to traffic pattern changes 75

3.21. Traffic pattern change . 75

xii

1

Chapter 1

Introduction

Data compression has been an active area of research in the last 60 years. With the rapid

progress of new technologies, an enormous amount of data is generated in the process

of human-human, human-machine, and machine-machine interactions. According to a

study [59] done by Berkeley researchers, the volume of information was doubled during

the period of 2000-2003. About 5 exabytes (one exabyte = 1018 bytes) of new data was

produced in 2002, among which 92% is stored on magnetic media, mostly in hard disks.

The tremendous growth in the amount of digital data brings new opportunities

and challenges in data compression. First, in many applications, data are generated

according to predefined standards, for example, XML syntax. A substantial gain in

compression ratio can be realized, if the structure and content patterns of these data are

fully exploited. Therefore, domain knowledge should be included when new compressors

are designed for specific data types. Second, many data, such as network traffic data, are

generated with extremely high speed and large volume. As a result, high compression

speeds are also crucial in these applications in addition to super compression ratios.

Third, besides storage space saving, data compression is applied in many scenarios for

various purposes, such as reducing the bandwidth in data transfer and speeding up

the data processing time. As a consequence, data compression is not always a static

operation on static data. In these scenarios, both data and intrinsic data patterns may

change over time. Such a system with dynamic data or data patterns is defined as the

Dynamic System.

Data compression in dynamic systems can be very challenging, since compression

algorithms are required to be adaptive to the dynamic environment. First, in a dynamic

system with changing data, the algorithm has to keep the compression accurate over

2

time. Second, in a dynamic system with changing data patterns, the algorithm has

to modify its compression strategies for new data patterns. We address both these

scenarios in this thesis, with examples from databases and IP networks respectively.

In databases, in order to improve query efficiency, the query engine requires knowl-

edge of the data distribution in the database tables to generate good query plans, which

is called query optimization. Query optimization is a critical step for complex queries

over large tables to reduce the CPU computation cost and I/O cost. However, data

distributions can be very large and can consume excessive memory space. Therefore

in practice, a DBMS (Database Management System) keeps a lossy compression of the

data distribution, named data synopsis (see Section 2.1), to approximate the real dis-

tribution, and performs query optimization based on the synopsis. For overall better

accuracy of the synopsis, frequently-queried data should be approximated more accu-

rately than others. To address such non-uniformed queries over data, we introduce

weight (see Section 2.1), which is the normalized query frequency for a data point or

data interval. In databases, data can be inserted, deleted and updated, and the weight

can change when user query changes. Therefore, the data synopsis has to be updated

to maintain the approximation accuracy over time. In Chapter 2, we introduce our new

dynamic data compression techniques in databases, which can generate and update

synopses efficiently for dynamic data and weights.

In IP networks, in order to provide better services to customers, ISPs (Internet

Service Providers) need to know the “health condition” of their networks by collecting

traffic data or traffic data statistics. These feedback data compete with customers for

bandwidth, since they are transferred to data centers for further analysis via commer-

cial links. Such data are compressed before delivery to maximize the gain of informa-

tion collection without affecting user satisfaction, However, the existing compression

techniques are either inefficient in terms of compression ratio or too slow to work at

streaming speed. Thus we design a new learning algorithm to discover the correlations

inside the traffic data to improve the compression ratio without sacrificing the compres-

sion speed. Traffic data are dynamic, and their correlations may have different patterns

at different times, and thus compression strategies used in the past may not be valid

3

for the current data. Therefore, when data pattern changes, the compression strategies

must be updated accordingly. In Chapter 3, we introduce our dynamic traffic pattern

learning method and how to exploit them to achieve better compression ratios.

1.1 Adaptive Coding

A task closely related to dynamic compression is adaptive coding. Adaptive coding

methods were developed to solve the problem that statistical coding methods, such

as Shannon-Fano coding and Huffman coding, require to know data distributions and

build statistical models before compression. Adaptive coding is defined by Williams

as “one-pass algorithms that change the way that they compress in response to the

history” [48]. Unlike previous statistical coding techniques, adaptive coding methods

determine the code based on the running estimation of probabilities of the data source.

The decoder runs the same algorithm to synchronize with the encoder to ensure the

same mapping between symbols and codes. For example, in Adaptive Huffman Coding,

both the encoder and decoder build a Huffman tree, which represents the frequencies

of symbols that have been observed so far. When the next symbol is read, the tree

is updated by either adding a new node or changing the frequencies of the existing

nodes. Then the newly updated frequency is compared with other frequencies to decide

the correct position of the current node in the tree. A new symbol is sent by itself

with an escape letter; others are encoded by their current position in Huffman tree.

The decoder maintains the same tree as the encoder so that the received codes can be

correctly translated back to their symbols. Adaptive coding can achieve compression

ratios almost as good as those of their corresponding static methods. If the data source

is not time-invariant, this method can outperform the statistic method because of its

adaptability to changing data.

In terms of the ability to capture dynamic data patterns, adaptive coding can be

classified as an instance of the second scenario, where changing data characteristics

can be learned. However, the adaptive methods restrict their learning ability to data

statistics only, with an assumption that the data source can be characterized as Markov

models. Indeed, lots of data in real world applications have their own domain specific

4

structures, which cannot be easily described by traditional statistical models. These

statistical coding approaches mostly ignore the high level structures of the data sets,

such as the tree structures in XML data and table structures in IP traffic headers.

Therefore they cannot benefit from domain knowledge to improve the compression

ratios.

In this thesis, both data structure and content related patterns are exploited for

better compression rates, and the focus is on exploring the dynamics of data patterns

where statistical models are not satisfactory.

1.2 Lossy and Lossless Compressions

Both lossy and lossless compressions are addressed in this thesis. A brief introduction to

both of them is provided here. The following is the definition of lossy data compression

from Wikipedia: “A lossy compression method is one where compressing data and

then decompressing it retrieves data that may well be different from the original, but

is close enough to be useful in some way” [51]. Lossy compression is very popular

in multi-media data compression, such as sound compression, image compression and

video compression. In these areas, lossy compression can achieve a huge reduction in

compressed size with only a small degradation in the quality in decompressed data.

Wavelet compression has been a very popular lossy compression method for about

20 years. In addition to its good compression ratio, wavelet compression has many other

remarkable advantages, such as that data can be recovered at different resolutions or

within certain ranges. For example, wavelet compressed maps can easily support “zoom

in” and “zoom out” by adding or removing coefficients of the current level. If a small

region of the map is displayed, only data in this block needs to be decompressed. In

Chapter 2, we show how users can benefit from the wavelet property that data are only

associated with their local coefficients to reduce compression costs.

Different from lossy compression, lossless data compression is defined by Wikipedia

as “a class of data compression algorithms that allow the exact original data to be

5

reconstructed from the compressed data” [52]. Lossless compression is the major com-

pression method for text data, where a small piece of missing information can cause

major misinterpretation in the recovered data.

Algorithms in the LZ (Lempel-Ziv) family are the most widely used techniques

in lossless compression. LZ compression algorithms dominate text compression due to

their superior ability in rapidly identifying repeated patterns in a data stream. Another

advantage of the LZ algorithms is that they are able to capture local context, thus they

are more “dynamic” than traditional statistical coding methods.

In this thesis, wavelet compression is used as the lossy compressor in databases; and

gzip1 is used as the lossless compressor in IP traffic compression. Examples on how

they compress data are given in Section 2.2.1 and Section 3.3.1.

Different methods are used to measure the qualities of lossy and lossless compres-

sions. For lossy compression, an error, i.e., the distance between the original data and

the approximated data is calculated for a given approximation space. The smaller the

error, the better the compression result. For lossless compression, the compression qual-

ity is evaluated by the size of the compressed data. The compression ratio is defined

here as the compressed data size divided by the original size, that is, a lower value of

compression ratio represents a better compression quality.

1The implementation in this thesis is based on the zlib library [58], which is a variation of LZ77
algorithm.

6

Chapter 2

Usage-Oriented Lossy Compression in Databases

In this chapter, the method of lossy compression of time-varying data in databases is

discussed. This is an interesting problem even if only the compression of static data

is considered, because distinct from other lossy compression applications, in databases,

data to be compressed are not equally important, i.e., frequently visited data should be

approximated with better accuracy than others. Hence, a second variable “weight” is

introduced, which is calculated from the query frequency, to address the issue of which

data is more important than others. More interestingly, it is found that the “optimal”

solution [39] used to generate data approximations based on weighted wavelet basis are

actually only “optimal” on those weighted basis, i.e., for a given approximation space,

it cannot produce the approximation with the smallest error. Therefore, we introduce

new algorithms to further reduce approximation errors. In addition, when data and

weights are dynamic, the cost of our algorithms is very low in keeping approximation

accuracy, while most of the previous works overlooked this “accuracy-keeping-cost” in

dynamic environments like databases. In the sections to follow, the difficulty of this

problem and how it is solved are discussed in detail. We start with an introduction to

the background of lossy data approximation in databases.

2.1 Background

How to query data efficiently is a fundamental issue in databases. Estimating the cost

of complex queries, including CPU time, memory usage and I/O operations, requires a

detailed knowledge of how the data are distributed and stored in database tables. In

practice, database system maintains a concise lossy compressed data structure, called

data synopsis, that approximates the data distribution at any point in time. The query

7

optimizer uses this data summary to decide how a query is to be executed in order

to retrieve the requested data at minimal cost in terms of overall processing overhead.

In addition to accuracy, the cost of generating and updating the synopses is a major

concern, since the cost of optimization may overwhelm its benefits if the cost of synopsis

is too high.

According to the characteristics of the environment at which data synopses are

applied, data synopses might be classified as (i) uniform vs. nonuniform and (ii) static

vs. dynamic.

Data synopses applied to data that require the same quality of approximation are

known as “uniform”. All data subset will be represented by the same weight, that

reflects the fact that any data subset must be treated in exact the same way as the

others. Scenarios in which at least one data subset is required to have a better quality

of approximation than others, for example a data invoked in the query process more

often than the others, are known as “nonuniform”. In this case, the weight associated

to each data subset is different; the larger the weight value, the higher the quality of

its approximation to the data subset.

At the same time, data synopses can be defined for “static” or “dynamic” data

structures. When data and weights do not change over time, the scenario is said to

be “static”. In this context, it is important to generate a good data synopsis for the

data on hand. When data or weights change over time, the scenario is said to be

“dynamic”. Dynamic scenarios are challenging in its management. In this case, data

synopses should be generated and updated over time in order to provide approximations

with high accuracy, and provide meaningful information to the query optimizer at any

point in time.

There are two types of data synopses that can be used to answer database queries:

point-wise approximation and range-sum approximation. The former is defined for single

data point query while the latter is designed for data intervals query, e.g., a set of data

points. As a consequence, the point-wise approximation can be regarded as a special

case of range-sum approximation when the data interval collapses into one single data

point.

8

In this chapter, new wavelet data synopses are introduced, which can be generated

in linear time and updated in sub-linear time for dynamic-data and nonuniform weights.

The major contributions in this thesis are summarized as follows.

. Two linear algorithms are proposed here for the point-wise approximation prob-

lem, which are called 2-step and M-step. Results show clearly how the proposed

algorithms outperform the weighted wavelet algorithm [39] on approximation er-

ror on both synthetic and real data sets, with only O(B3) extra running time.

. Two linear algorithms are proposed for the range-sum approximation problem,

called the data-mapping and the weight-mapping. To the best of our knowledge,

these new algorithms represent the first linear algorithms invented for arbitrary

weights. For n weights and B compression space, it is shown that both the time

and space complexities are O(n2 + B3), and they are linear in the weight size

O(n2).

. All the algorithms proposed in this chapter are the first ones that focus not only on

the generation of the data synopsis but also on its update over time. For dynamic

data and weights, the time complexity of synopsis updates is O(log(n) + B 3) for

point-wise approximation, and O(n + B3) for range-sum approximation.

. If the structure of given weights can be simplified, the proposed algorithm can

be tuned accordingly, and the complexity can be reduced from O(n2 + B3) to

O(n + B3).

The rest of this chapter is organized as follows. Section 2.2 provides the mathe-

matical definition of point-wise and range-sum approximations, and introduces related

works. In Sections 2.3 and 2.4 two new algorithms for generating point-wise approx-

imation, e.g. 2-step and M-step, and two new algorithms for generating range-sum

approximation, e.g. data-mapping and weight-mapping, are presented. In section 2.5,

the novel incremental method that can minimize the cost when experiencing dynamic

data and weights is introduced. Section 2.6 shows 3 examples where the proposed algo-

rithm can simplify the inner states, to accelerate the synopses generation, if the weights

9

has patterns inside. As a result, the overall cost can be reduced to sublinear in term

of the input weight size. In Section 2.7 the performance achieved by these algorithms

are validated by using both synthetic and real-data, while Section 2.8 concludes this

chapter.

2.2 Problem Statement and Previous Work

Small space synopses in database systems have been studied for decades to improve

accuracy and efficiency for both query approximation and query optimization. Tradi-

tional data synopses only represent the data residing in the database, while another

critical component, i.e., the characteristics of how data are queried, is missing. The

accuracy of these synopses cannot truly reflect the quality of approximation when data

points are not equally important.

Query Feedback systems [1, 3, 11, 14, 31, 36] have been proposed to address this

issue. In these systems, data approximations are corrected by their real values returned

from queries, so that the frequently visited data can be more accurate than others.

Real system LEO is built to help collecting feedback information [36]. However query

workload information is not fully explored in these systems, since the date accuracy

only reflect how recently they are queried, but not how often they are queried.

Recently, real weights that indicate how many queries cover the data, are extracted

from workloads and used to generate “usage-oriented” synopses [38, 38, 40]. In this

chapter, the weights from workloads instead of query feedback are used to quantify the

accuracy of our synopses.

Considerable work is available in literature for the point-wise data synopses gener-

ation by using histogram data synopses [1, 3, 29, 37, 38, 49]. However, most recently,

several papers [6, 19, 39, 40, 41, 42] show the effectiveness of using wavelet decompo-

sition in reducing large amount of data to compact sets of wavelet coefficients, termed

wavelet synopses. Wavelet synopses have been proved to provide fast and reasonably

accurate approximate answers to queries. Among wavelet synopses, the Haar wavelet

synopsis has been found to be the most interesting one for database applications due

10

D[2]

D[1]

D[0]

D[4] D[5]

D[3]

D[6] D[7]

�
0=(1, 1, 1, 1, 1, 1, 1, 1)/(2 � 2)�
1=(1, 1, 1, 1,-1,-1,-1,-1)/(2 � 2)�
2=(1, 1,-1,-1, 0, 0, 0, 0)/2�
3=(0, 0, 0, 0, 1, 1,-1,-1)/2�
4=(1,-1, 0, 0, 0, 0, 0, 0)/ � 2�
5=(0, 0, 1,-1, 0, 0, 0, 0)/ � 2�
6=(0, 0, 0, 0, 1,-1, 0, 0)/ � 2�
7=(0, 0, 0, 0, 0, 0, 1,-1)/ � 2

Figure 2.1: Wavelet transform of signal A

to its simple structure.

In this thesis, the focus is on the application of Haar wavelet synopsis to dynamic

data and nonuniform weights for both point-wise and range-sum approximations. In

next section, a brief introduction to Haar wavelet transform is given.

2.2.1 Haar Wavelet Transform

Wavelet transform is a very efficient tool in digital signal processing. It breaks data

into components at different resolutions, so that both low-frequency components at

long ranges and high-frequency components at short intervals can be well captured.

Therefore, it outperforms the Fourier transform on non-stationary data since Fourier

transform does not have the ability to associate the frequency components with their

locations. The property of “component-location-association” makes wavelet transform

very desirable for dynamic data, since when a data value changes, only those compo-

nents associated with this changing data point need to be updated. How this property

can be used to dramatically reduce the cost of updates is shown in Section 2.5.

Wavelet transform can be looked at as representing data using a wavelet basis dictio-

nary, in which each wavelet basis is a scaled vector of a “mother wavelet”. As a special

case of Daubechies wavelet, Haar wavelet has a simple “mother wavelet” [−1, 1]. Fig-

ure 2.1 shows an example of Haar wavelet bases for a signal A with length 8, in which,

wavelet bases Ψ1,Ψ2, ...,Ψ7 are the scaled vector of [−1, 1] at different regions. The

wavelet base Ψ0 comes from the “father wavelet” [1, 1], which is the wavelet base for

11

the capture of low frequency components.

The wavelet transform computes the coefficient vector D of signal A for each wavelet

basis. The coefficient vector D is the inner product (represented as ⊗) of the signal A

and the wavelet vectors Ψ = {Ψ0, ...,Ψn} at different levels, e.g., D[i] = A⊗Ψi.

Suppose A contains the following data.

A = (1, 9, 10, 3, 3, 5, 4, 7)

Then its coefficients D[i] = A ⊗ Ψi =
∑8

j=1 A[j]Ψi[j]. The numerical values of D are

summarized as follows.

D = [14.849, 1.414,−1.5,−1.5,−5.657, 4.950,−1.414,−2.121]

Signal A can be reconstructed from the products of wavelet bases and their coef-

ficients, i.e., A =
∑8

i=1 D[i]Ψi. When fewer spaces are given in approximation, coeffi-

cients with large absolute values are chosen. For example, if there are only spaces for 6

coefficients, D[1] and D[6] are dropped. In this lossy approximation case, A cannot be

recovered exactly. An approximation error is defined to quantify the distance between

A and its approximation Â, i.e., the error equals to
∑8

i=1(A[i]− Â[i])2.

2.2.2 Problem Definition

Different from traditional Haar wavelet transform, where all data points are equally

important, in the approximation discussed here, the weighted approximation errors

have to be minimized, with weights representing the query frequency of the data. The

mathematical definitions of the two nonuniform approximation problems are as follows.

Problem 1 (Point-Wise Approximation) Let A1×n be a generic data vector of di-

mension n and Π1×n be the weight vector of dimension n that reflects the approximation

quality of each data point of A, e.g. to each A[i] is associated a weight Π[i]. The weight

vector is normalized between [0, 1], e.g.
∑n

i=1 Π[i] = 1. Let Ψ be the set of n candidate

wavelets and B be the allowed number of wavelets to be used for the data synopsis. Let

12

D be the set of coefficient associated to the B chosen wavelets, e.g. D[i] is associated

to Ψi.

The point-wise approximation problem can be stated as to identify the optimal subset

of B wavelets from Ψ and their associated coefficients D, in order to minimize the

weighted point-wise approximation error defined as:

ε(P)(A) =

n∑

i=1

Π[i](A[i] − Â[i])2 (2.1)

where Â represents the wavelet approximation of data set A, e.g. Â =
∑B

i=1 D[i]Ψi

Problem 2 (Range-Sum Approximation) Let A1×n be a generic data vector of di-

mension n, and let A(i, j) =
∑j

k=i A[k], with i ≤ j, represent an additive function that

operates on all elements of data vector A from A[i] to A[j]. Let Πn×n be the weight

matrix of dimension n×n such that Π[i, j] = 0, ∀i ≥ j. Each element Π[i, j] represents

the weight associated to A(i,j). The weight matrix Π is normalized between [0, 1], e.g.
∑n

i=1

∑n
j=1 Π[i, j] = 1.

The range-sum approximation problem can be stated as to identify the optimal subset

of B wavelets from Ψ and their associated coefficients D, in order to minimize the

weighted range-sum approximation error defined as:

ε(R)(A) =

n∑

i=1

n∑

j=1

Π[i, j](A(i, j) − Â(i, j))2 (2.2)

where Â(i, j) represents a generic linear function of the wavelet approximation of A(i, j),

e.g. Â(i, j) = f(
∑B

i=1 D[i]Ψi).

2.2.3 Related Works

The scenario of equally important data is well studied. In previous works, most of

the wavelet synopses are generated under the assumption of uniform weights for both

13

point-wise and range-sum approximations [6][19][40]. For point-wise approximation, the

Parseval’s theorem provides a solution that applies to all orthonormal data transforms,

i.e., the best approximation is achieved by the largest coefficients. For range-sum

approximation, [40] presents an optimal solution on Haar wavelet synopsis.

However, the methods used to study the more general case of nonuniform weights

prove to be either suboptimal in terms of approximation errors [39] or too expensive in

terms of running time [17]. Matias and Urieli [39] provided the first linear algorithm,

called Weighted-wavelet (W-wav), which is able to preserve Parseval’s orthonormal

condition by using a smart combination of wavelets and weights. As a result, their

method provides the best synopses on weighted Haar bases, when the largest coeffi-

cients are used as synopses. Unfortunately, this approach has approximation errors

that do not decrease monotonically with respect to the compression space B and the

outcome approximation error may not be bounded. Figure 2.2 shows such an example.

Data A is extracted from an exponential distribution. The approximation error with

B = 0 is defined as ε0 =
∑

i Π[i]A[i]2, i.e. all data values are assumed to be 0. The

approximation error of W-wav with B = 0 is ε0 = 623.49. With more compression

space B = 2, the error increases to 686.55. Their approximation is far from the ideal

approximation (see Section 2.3), and worse than the 2-step method proposed in this

thesis (see Section 2.3) that reduces the error to 306.95 with B = 2. This problem

exists not only for exponential data sets, but for all data sets that are characterized by

only a few very large values.

Guha and Harb [17] studied this problem for different Lp norm errors. They proved

that the best coefficients can be found by searching a bounded region specified by the

optimal error of L∞. Because the real value of this optimal error is unknown, the

algorithm needs to guess out a value. The accuracy of the solution is strictly related to

the cardinality of the search space. The larger the search space, the more accurate the

result at the cost of a longer running time. The time complexity reaches O(n3) for L2

error, and the space complexity is super linear in n. As a consequence, the complexity

of their approach is too high for synopses used for databases.

Muthukrishnan [35] studied a special case of this problem where the weights are

14

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

weight W

0 2 4 6 8
0

20

40

60

80

100

120

data A
0 2 4 6 8

−40

−20

0

20

40

60

80

100

120

approximated data A

A
W−wav
2−step
ideal

Figure 2.2: W-wav algorithm is not optimal

assumed to be organized into k intervals, and a unique weight value is associated to

each interval. The running time is O(nkB2 log(n)). When k = n, this case collapses

to the point-wise approximation problem, with a quadratic running time O(n2B2) in

terms of n.

For range-sum queries, data synopses have been studied only on uniform weights

or hierarchical weights [20, 21, 29, 37]. There are very few publications on range-sum

queries with nonuniform workload. Two linear algorithms are proposed in this thesis

to generate range-sum synopses with arbitrary weights, and synopses updates requires

only sublinear time.

All previous work has been focused only on the generation of data synopses, but

ignoring the importance of a more realistic scenario in which both data and weights

can change over time.

15

� �� ��

����������	�
�

��������	
���

���

	
���

��	��
�

����������

���

���

���

���

Figure 2.3: Methods

2.3 Nonuniform Point-Wise Approximation Problem

In order to approach this problem, let us define three variables that come to play into

the problem (see Figure 2.3): (i) the data vector A, (ii) the wavelet vectors Ψ and (iii)

the weight vector Π. For uniform weights, the data vector A is mapped to the wavelet

vector Ψ in order to generate data synopses. For nonuniform weights, the mapping is

arbitrary. The W-wav algorithm combines the weight vector with the wavelet vector

by stretching wavelets vertically. The new wavelet basis is thus weight-specific. Data

synopsis obtained when considering a specific weight vector might be sub-optimal for

a different weight vector. As a result, the wavelet basis has to be recomputed every

time a weight change is experienced, leading to large cost in database management. A

different approach to solve this problem is to combine the weight vector with the data

vector. The intuition behind this approach comes from a good understanding of the

error function.

Given the data vector A and the weight vector Π, the error function, Equation (2.1),

becomes Equation (2.3).

ε(P)(A) =

n∑

i=1

(
√

Π[i]A[i]−
√

Π[i]Â[i])2 =

n∑

i=1

(AW [i]− ÂW [i])2 (2.3)

16

where Â represents the approximation of A, while AW [i] =
√

Π[i]A[i].

With this simple manipulation, the error function is reduced to a uniform-weight

case. As a result, the best approximation Â∗ of A can be solved from Â∗[i] = Â∗
W [i]/

√
Π[i],

where the optimal approximation Â∗
W of AW exists according to Parseval’s theorem.

This method is referred to as the ideal approximation in this thesis. Unfortunately, this

method is impractical because it requires the knowledge of the weight value Π[i] for

each point, and thus inadmissible because the compression space B is not large enough

to store Π. One might consider to introduce an approximation of Π, but this will lead

to a strong sub-optimality.

In this thesis, two algorithms called 2-step and M-step are proposed based on the

intuition to first select wavelets according to the optimal error ε∗, and then optimize

their coefficients on Â.

2.3.1 2-Step Algorithm

The name of this algorithm comes from its 2-step mechanism adopted to derive the

data synopsis, as shown in Figure 2.4.

In Step A, the weighted data AW is defined to be a point-wise product of A and
√

Π,

e.g., AW [i] = A[i]
√

Π[i]. The algorithm selects a set of wavelets with the largest B

coefficients from the wavelet transform of AW .

Step B computes the best coefficients D[i] for the chosen wavelets by solving the partial

differential equation of the function described in Equation (2.1), e.g. ∂ε(P)

∂D[k] = 0, ∀k ∈

[1, B].

The nice characteristics of the proposed algorithm is related to the fact that its

approximation error is bounded by |Â[i] − Â∗[i]| = |ÂW [i](1 − 1√
Π[i]

)| after the first

iteration, and it will be reduced significantly at the second iteration.

The complexity of this method is linear in the input size when B is small [35]. The

time and space complexity in Step A is O(n) for generating AW from A and W , and

computing its wavelet transform, which is linear in the data size. Thus whether Step

B can be computed in linear time is critical to keep the overall cost low. The following

lemma describes why Step B requires only linear time.

17

Choose whole wavelet

set
�

, |� |=B

Find all wavelet

coefficients together

Output wavelets

and coefficients

as data synopses

Choose largest

wavelet for Ri

Compute coefficients
for �

Output wavelets

and coefficients

as data synopses

add Ri to
�

Calculate new

residue Ri+1

|
�

| = B ?

Yes
No

2-step Algorithm M-step Algorithm

Figure 2.4: Algorithms

18

Lemma 3 For any given wavelet set with size B, the best coefficient set D can be found

in O(n + B3) time [35].

Proof Let the chosen wavelet set be Λ = {Ψ1, ...,ΨB}, the approximated data R is

the product of the chosen wavelets and their coefficients, R =
∑

i∈Λ D[i]Ψi.

The approximation error ε is the L2 distance between original data and approxi-

mated data:

ε =
∑

i

Π[i](A[i] −R[i])2

= Π⊗ ((D[1]Ψ1 + ... + D[B]ΨB −A)� (D[1]Ψ1 + ... + D[B]ΨB −A))

while ⊗ is the inner product1 and � is the point-wise product of two vectors2.

To find the best D[i] that minimizes the error, the following equations need to be

solved.





∂ε
∂D[1] = 0

......

∂ε
∂D[B] = 0

⇔ PD = Q

In which, ∂ε
∂D[i] = 2Π⊗ (Ψi� (D[1]Ψ1 + ... + D[B]ΨB −A)) = 0. A matrix equation

PD = Q can be used to represent the equation above, where P [i, j] = Π ⊗ (Ψi � Ψj)

and Q[i] = Π⊗ (Ψi �A).

Since the time for solving PD = Q is at most O(B3), the dominate part of the

complexity is the time for generating matrix P and Q. An efficient way to generate P

and Q is proposed here, which reduces the cost from O(Bn) to O(n).

This method is based on an important observation that Ψi �Ψj can be computed

in constant time for any i, j, instead of O(n) time, due to the fact that Ψi and Ψj can

only be in one of following 3 cases.

case 1: Ψi and Ψj are not overlapping,

1
z = X1×n ⊗ Y1×n ⇔ z =

Pn

i=1 X[i]Y [i]

2
Z1×n = X1×n � Y1×n ⇔ Z[i] = X[i]Y [i]

19

Ψi �Ψj = 0

case 2: Ψi and Ψj are the same, i.e., i = j,

Ψi �Ψi = {1
l
, ..., 1

l
}, where l is the length of Ψi’s support interval, which is

the non-zero parts of Ψi.

case 3: Ψi covers Ψj ,

Ψi�Ψj = ±ciΨj, where ci is a constant that normalizes Ψi, named normal-

ization factor. In Figure 2.1, for example, c7 =
√

2.

As a consequence, P [i, j] is either 0 (case 1), or the average value of Π in Ψi’s non-

zero interval (case 2), or the wavelet transform coefficient of Π scaled by +ci or −ci,

depending on if Ψj is on the left or right side of Ψi (case 3). For both case 2 and case

3, P [i, j] can be computed from the wavelet transform of Π. It should be pointed out

that, in one wavelet transform of Π, values for all P [i, j] can be computed, therefore,

only O(n) time is used to generate matrix P .

All Q[i] can be generated in O(n) too, since Q[i] = Π ⊗ (Ψi � A) = (Π � A) ⊗Ψi,

which are the wavelet transform coefficients of Π�A.

It can be proved that a solution exists for this equation. First consider the special

case that Π is not all 0 in any of the chosen wavelet Ψi’s support interval, i = 1 · · ·B.

Then matrix P can be decomposed to be the product of matrix T and its transpose.

P = TT ′ =




√
Π�Ψ1

...
√

Π�ΨB




(√
Π′ �Ψ′

1, ...,
√

Π′ �Ψ′
B

)

Because Ψ1, ...,ΨB are linear independent, and
√

Π�Ψi 6= ~0 (based on the assump-

tion that ∃j, j ∈ Ψi’s support interval, Π[j] 6= 0, so the rank(T) = rank(T ′) = B. This

means rank(P) = B and P is non-singular, therefore PD = Q is solvable.

In general, for some Ψi’s support interval, Π are all 0. Then it is possible to set

D[i] = 0, and reduce P to a (B − k) × (B − k) matrix, where k is the number of such

20

Ψis. Thus, this equation can always be solved.

In the worst case, we have B equations with B variables, and all D[i] can be solved

in O(B3) time.

Adding up the time for P ,and Q generation and the PD = Q solving time, the total

time complexity to compute the coefficients for given wavelets is O(n + B3). �

In theory, the complexity for solving linear equation is less than O(B3). However,

since n dominates the running time, the implementation here uses O(B3) to solve the

equation.

In summary, the time complexity of the 2-step algorithm is O(n) for the computa-

tion of the wavelet transform and O(n + B3) for the computation of best coefficients.

The space complexity is O(n) for wavelet transform, and O(B2) for the selection of

coefficients. It should be pointed out that the O(n) space can be reused in the second

step since the algorithm requires to keep only the indices of the B chosen wavelets.

As a consequence, the total execution time is O(n + B3) while the space required is

O(max{n,B2}). Furthermore, its complexity becomes linear in the data size n when

B � n, which is typical in database applications.

2.3.2 M-Step Algorithm

The M-step algorithm represents an improvement over the 2-step algorithm based on

the observation that the error obtained by the 2-step algorithm can be further reduced

by selecting new wavelets at each iterations (see Figure 2.4). The selection of the new

wavelets is carried out in order to minimize the difference between the approximated

data and the original data, termed residue and denoted as Ri where i represents the

ith-iteration. The algorithm starts by setting the initial residue R0 = AW , and the

chosen wavelet set to be the empty set. At each iteration i, the algorithm computes the

wavelet transform for the current residue Ri, chooses the wavelet Ψk with the largest

coefficient that does not belong to the chosen set. The new wavelet Ψk is added to

the chosen set. The algorithm computes the new coefficient vector D for all chosen

wavelets by solving ∂ε(P)

∂D[k] = 0. At this point, the new residue Ri+1 can be computed as

Ri+1 = AW −
∑i

k=1 D[k]Ψk, and the algorithm is ready to enter the next iteration i+1.

21

The M-step algorithm continues until the cardinality of chosen wavelet set is equal to

B.

At each step of this algorithm, every data point of the residue can change due to

the newly added wavelet. As a result, the algorithm needs to recompute the wavelet

transform for every Ri. After B steps, the running time adds up to O(nB + B4). The

storage space is O(max{n + B,B2}), because the algorithm needs to memorize up to

B chosen coefficients.

A variation of the M-step algorithm is to choose all I wavelets together at each step.

This reduces the running time to O(nB/I + B4/I) at the cost of a reduced accuracy.

When I = B, this algorithm collapses to the 2-step algorithm.

A common property of the two algorithms proposed in this section is their approx-

imation errors decreasing monotonously. If a “bad” wavelet is chosen at any iteration,

the negative effects can always be eliminated in the next step by setting its coefficient

to 0. How the two algorithms are able to efficiently reduce their estimation errors

compared with W-wav algorithm is shown in Section 2.7.

2.4 Nonuniform Range-Sum Approximation Problem

The same idea as presented in Section 2.3 for the point-wise approximation, can be easily

generalized to the case of the range-sum queries, where each weight is associated with

a data interval. For a data set A with length n, there are n(n+1)
2 intervals and weights.

A Naive method to solve the range-sum approximation problem is to generate a new

data set A(new), in which every data point A(i, j) represents an interval extracted from

the original data A and computed as A(new)(i, j) =
∑j

k=i A[k]. As a consequence, it is

straightforward to write the error function of the new data A(New) as ε(P)(A(New)) =
∑

i,j Π[i, j](A(New) − Â(New))2, and thus the wavelet synopsis can be found by using

methods for the point-wise approximation case.

Although the idea is simple, the complexity of this approach is high because the

length of A(New) is O(n2) and thus largely exceeds the synopses space B. Because

the complexity is determined by the number of intervals constituting the original data

22

A and the weights associated to each interval, in this section two new algorithms are

proposed, named data-mapping and weight-mapping, which generate new data vectors

of size n. To the best of our knowledge, these algorithms are linear algorithms used for

arbitrary weights for the first time.

2.4.1 Data-Mapping Algorithm

The data-mapping algorithm transforms the original range-sum approximation problem

into a simpler point-wise approximation problem by introducing a simple data and

weight transformation. Given the original data A, a new data A(DM) is obtained as the

partial sum of A, e.g., A(DM)[i] =
∑i

k=1 A[k] with A(DM)[0] = 0.

By using A(DM), A(i, j) can be rewritten as the difference between A(DM)[j] and

A(DM)[i− 1], i.e., A(i, j) = A(DM)[j]−A(DM)[i− 1]. As a consequence, Equation (2.2)

can be looked upon as a function of the new data A(DM).

εR =
∑

i,j

Πi,j[(A
(DM)[j]−A(DM)[i− 1]) − (̂A(DM)[j]− ̂A(DM)[i− 1])]2

Thus the new weights associated to the new data vector A(DM) can be expressed as

Equation (2.4).

Π(DM)[i] =

i∑

k=1

√
Π[k, i] +

n∑

k=i+1

√
Π[i + 1, k] (2.4)

In order to minimize the error function and thus obtain the best wavelet coefficients

D, the differential equation obtained by setting the derivative of the error function with

respect to D to 0, i.e., ∂ε(R)(A(DM))
∂D

= 0, is solved. As a result, the problem ends up

with a set of B linear equations of the form for the general wavelet coefficient vector

D[k], Equation (2.5).

23

D[1]
∑

i,j

Π[i, j](Ψ1[j]−Ψ1[i− 1])(Ψk[j]−Ψk[i− 1]) + ... +

D[B]
∑

i,j

Π[i, j](ΨB [j] −ΨB [i− 1])(Ψk[j] −Ψk[i− 1])

=
∑

i,j

Π[i, j](A(DM) [j]−A(DM)[i− 1])(Ψk[j] −Ψk[i− 1]) (2.5)

If the B linear equations are solved one by one, the complexity of the proce-

dure is O(n2B2 + B3). In order to reduce the time complexity of this step, Equa-

tion (2.5) is organized a in a matrix notation of the form PD = Q, where P [k, l] =
∑

i,j Π[i, j](Ψk [j] − Ψk[i − 1])(Ψl[j] − Ψl[i − 1]) and Q[k] =
∑

i,j Π[i, j](A(DM)[j] −

A(DM)[i− 1])(Ψk[j] −Ψk[i− 1]).

Then a prefix sum table for Π[i, j] is constructed to help the computation of the

weights for any interval (i, j) in constant time, so that the overall complexity can be

reduced to O(n2 + B3). In the following paragraphs, the method used to reduce the

polynomial cost to linear is introduced.

Cost for generation of matrix P,Q

First, matrix P can be computed in O(B2) due to two major observations:

(i) There is only a constant number of intervals, i.e., less than 25 intervals, in which

P [k, l] 6= 0, since there are only 5 non-zero intervals for Ψk[j] − Ψk[i − 1] and Ψl[j] −

Ψl[i− 1] (Figure 2.5).

(ii) In these intervals, P [k, l] can be computed in constant time from
∑

i∈I,j∈J Πi,j,

since the normalization factors ck and cl are constants specified by only Ψk and Ψl.

(iii) The computation of
∑

i∈I,j∈J Πi,j can be carried out in constant time with the help

of a prefix sum table. The prefix sum table for Πi,j can be easily generated by adding

every row of the table Πi,j to its next to generate
∑

i∈[1,k] Πi,j for each j, then adding

every column to its next right column to generate
∑

i∈[1,k],j∈[1,l] Πi,j (Figure 2.6). At

the end of this process, the data is very well organized so that the computation of

the
∑

i∈I,j∈J Πi,j for any interval I = [i1, i2] and J = [j1, j2] needs only 3 operations:

Π
[i1,i2]
[j1,j2] = (Π

[1,i2]
[1,j2]−Π

[1,i2]
[1,j1−1])− (Π

[1,i1−1]
[1,j2] −Π

[1,i1−1]
[1,j1−1]), where ΠI

J represent
∑

i∈I,j∈J Πi,j.

24

ak1 ak2
bk1 bk2

ak1 ak2 bk1 bk2

al1 al2 bl1 bl2

al1 al2

bl1 bl2

�

k

�

k

�

l

�

l

If i− 1 < ak1,
1:if i ≤ j ≤ ak2, Ψk[j]−Ψk[i− 1] = 1

ck

2:if bk1 ≤ j ≤ bk2, Ψk[j] −Ψk[i− 1] = − 1
ck

else Ψk[j]−Ψk[i− 1] = 0,
since Ψk[j] = Ψk[i− 1] = 0.

If ak1 ≤ i− 1 ≤ ak2,
3:if bk1 ≤ j ≤ bk2, Ψk[j] −Ψk[i− 1] = − 2

ck

4:if bk2 < j, Ψk[j] −Ψk[i− 1] = − 1
ck

else Ψk[j]−Ψk[i− 1] = 0,
since Ψk[j] = Ψk[i− 1] = 1

ck
.

If bk1 ≤ i− 1 ≤ bk2,
5:if bk2 < j, Ψk[j] −Ψk[i− 1] = 1

ck

else Ψk[j]−Ψk[i− 1] = 0,
since Ψk[j] = Ψk[i] = − 1

ck
.

Figure 2.5: Five intervals in which Ψk[j]−Ψk[i−1] 6= 0 (ck is the normalization
factor for Ψk)

25

�

1,1
�

1,2

�

2,2

�

1,n

�

2,n

�

n,n

…

…
…
…

[1]
[1]

[1,2]
[1,2]

[1]
[1,2]

[1,2]
[1,n]

[1]
[1,n]

[1,n]
[1,n]

…
…

…
…

[1]
[1]

[1,2]
[2]

[1]
[2]

[1,2]
[n]

[1]
[n]

[1,n]
[n]

…

(1) (2) (3)

Figure 2.6: Example of generation of a prefix sum table for P [k, l]

Similarly, matrix Q can be computed in O(B) time after constructing a prefix sum

table of similar form for Π[i, j]A(i, j).

As a result, the time required to generate matrices P and Q is only O(B2) with the

help of their prefix sum tables, which need O(n(n+1)
2) to construct. Therefore, the total

cost is successfully reduced from O(n2B2 + B3) to O(n2 + B3), including the O(B3)

time for solving the equation PD = Q.

2.4.2 Weight-Mapping Algorithm

In some scenarios, for example, monitoring the trends of data change through its ap-

proximation, one may prefer to approximating the original data A, instead of its prefix

sum data Â(DM). In this case, the new weights that are associated with A need to be

identified, since the original weights Π[i, j] are given for interval [i, j].

Similar to those for the data-mapping scenario, new weights are derived from error

function, Equation (2.2) by substituting A(i, j) with
∑

i≤k≤j A[k], i.e., Π(WM)[k] =
∑

i∈[1,k],j∈[k,n]

√
Π[i, j] Now the new error function PD = Q (∂ε(R)

∂D[k] = 0) is specified as

Equation (2.6).

D[1]
∑

i,j

Π[i, j]Ψk(i, j)Ψ1(i, j) + D[2]
∑

i,j

Π[i, j]Ψk(i, j)Ψ2(i, j) + ... +

D[B]
∑

i,j

Π[i, j]Ψk(i, j)ΨB(i, j) =
∑

i,j

Π[i, j]Ψk(i, j)A(i, j) (2.6)

26

Data-Mapping Algorithm

Compute prefix sum
data A(DM) from A

Compute new weight
�

(DM) for A(DM) from
�

Choose wavelets from
wavelet transform of
new weighted data

�
(DM) A(DM)

Optimize the coefficients
for chosen wavelets on
original error function,

and return them as
data synopses

Compute new weight
�

(WM) for A from
�

Choose wavelets from
wavelet transform of
new weighted data

�
(WM) A

Optimize the coefficients
for chosen wavelets on
original error function,

and return them as
data synopses

Weight-Mapping Algorithm

Figure 2.7: Data-mapping and weight-mapping algorithms

Similar to the scenario in the data-mapping algorithm, there are constant number of

intervals, In these intervals, if the prefix table for each of iΠ[i, j], jΠ[i, j], i2Π[i, j], j2Π[i, j],

ijΠ[i, j], and Π[i, j]A(i, j) is computed, matrix P,Q can be generated in O(B 3) time.

As a result, the total cost for weight-mapping algorithm is still O(n2 + B3), due to the

prefix table construction time O(n2) and equation solving time O(B3).

The data-mapping and weight-mapping algorithms are summarized in Figure 2.7.

The major strength of these two algorithms is their capability to drastically reduce

the complexity of the original problem. Indeed, they require O(n2) time and space to

compute the new data set and O(n2 + B3) time and O(n2 + B2) space to compute

wavelets and the coefficients. As a consequence, the total running time is bounded by

O(n2 + B3), while its total space is bounded by O(n2 + B2).

27

2.5 Tracking Dynamic Changes of Weights and Data

The synopses generating algorithms have been introduced in Sections 2.3 and 2.4. As

discussed in the introduction, in databases, data and weights change over time, espe-

cially for weights, user queries may be very different from time to time, for example,

between day and night, week days and weekends. In this section, another important

issue is discussed, i.e., how to keep the data synopses accurate over time when dealing

with dynamic data and weights.

For point-wise approximation, when a data point or a weight value changes, only

up to log(n) wavelets changes. By comparing them with the chosen B wavelets, we can

find the new wavelets in max(log(n), B) time. So the time cost is O(log(n) + B 3) for

update, and O(B3) for finding new coefficients.

For range-sum queries, the dominant part of the cost is associated to the prefix sum

table construction time O(n2). An incremental method is proposed here to keep the

overall cost below O(n+B3) while requiring an extra O(n) space to store updates. The

case that a data point A[t] is changed to A′[t] is taken as the starting point.

2.5.1 Data Change in Data-Mapping Algorithm

In the data-mapping algorithm, a change in a single data point may cause changes in

up to n values in the prefix sum data A(DM), depending on where this data point is.

So the wavelet transform of A(DM) needs to be recomputed, which requires O(n) time.

At the second step, matrix P does not change since A(DM) is not involved in the

calculation of P (see Equation (2.5)). However, vector Q needs to be recomputed. If

the prefix sum table for Q is updated, i.e., prefix sum table of Π[i, j]A(i, j), and Q is

computed from the new table, the cost is O(n2). This is because the update affects all

entries
[1,j]
[1,i] with i ≥ t or j ≥ t, which is up to O(n2) entries.

Recall that there are only constant number of intervals, in which Q[k] 6= 0. Let

{I, J} be these non-zero intervals, and vI,J be Q[k]’s value in one of the interval, so

that Q[k] is the sum of vI,Js over all intervals {I, J}, i.e., Q[k] =
∑

I,J vI,J .

Suppose the difference between the new and the old values is δA
t = A′[t] − A[t], it

28

can be proven that the new Q′[k] can be computed from the old Q[k] in constant time.

Let’s start from the update in one of its non-zero intervals, I = [i1, i2], J = [j1, j2].

Because only when t ∈ I, J , the new update is reflected in the partial sum data, i.e.,

when i ≤ j < t or t < i ≤ j, A′(i, j) = A(i, j), and when i ≤ t ≤ j, A′(i, j) = A(i, j)+δA
t .

Therefore, the new value v′I,J can be separated into two parts: one includes A′[t],

i.e., i ∈ I ∩ [1, t], j ∈ J ∩ [t, n], and the other does not, i.e., i ∈ I ∩ [1, t), j ∈ J ∩ [1, t)

and i ∈ I ∩ (t, n], j ∈ J ∩ (t, n].

v′I,J =
∑

i∈I∩[1,t),j∈J∩[1,t)

Π[i, j]A(i, j) +
∑

i∈I∩(t,n],j∈J∩(t,n]

Π[i, j]A(i, j)

+
∑

i∈I∩[1,t],j∈J∩[t,n]

Π[i, j]A′(i, j)

=
∑

i∈I∩[1,t),j∈J∩[1,t)

Π[i, j]A(i, j) +
∑

i∈I∩(t,n],j∈J∩(t,n]

Π[i, j]A(i, j)

+
∑

i∈I∩[1,t],j∈J∩[t,n]

Π[i, j]A(i, j) +
∑

i∈I∩[1,t],j∈J∩[t,n]

Π[i, j]δA
t

=
∑

i∈I,j∈J

Π[i, j]A(i, j) + (min(i2, t) − i1) ∗ (j2−max(j1, t))δA
t

∑

i,j

Π[i, j]

= vI,J + (min(i2, t) − i1) ∗ (j2 −max(j1, t))δA
t

∑

i,j

Π[i, j] (2.7)

As a result, v′I,J can be computed from vI,J in O(1) time (Equation (2.7)) with

the help of the prefix sum table of Π[i, j], so that Q′[k] can be computed from Q[k]

in constant time. Since I, J are only a small constant, the total update time for Q is

O(B).

In general, when there are x number of changes in the data, the updating time of

Q is O(B + x) if adding changes to Q one by one.

When x < n, the Q[k] is computed by using the original table, then updates to

Q′[k]: The update time contains the following components.

(1) Recomputing the wavelet coefficients: O(n).

(2) Choosing B wavelets and computing P and Q: O(B2).

(3) Updating Q to Q′ for all δA
t : O(B + x).

29

(4) Solving the new equation PD = Q′: O(B3).

When the number of changes reaches n, the prefix sum tables is computed, and the

algorithm is run on the new tables, which takes O(n2 + B3).

So the amortized cost is O(n+B3), because O(1
n
[
∑n−1

x=1(n+B3 +x)+(n2 +B3)]) =

O(n + B3)

2.5.2 Data Change in Weight-Mapping Algorithm

The only difference between weight-mapping and data-mapping algorithms exists in the

first step. When A[t] changes, the time involved in finding the new wavelets is O(log(n))

instead of O(n). At the second step, only vector Q’s prefix table changes with A[t], since

P [k, l] =
∑

i,j Π[i, j]Ψk(i, j)Ψl(i, j), and Q[k] =
∑

i,j Π[i, j]Ψk(i, j)A(i, j). The amor-

tized cost is still O(n+B3), due to O(1
n
[
∑n−1

x=1(log(n)+B3+x)+(n2+B3)]) = O(n+B3).

If a weight value Π[i, j] changes to Π′[i, j], where
∑

i,j Π′[i, j] =
∑

i,j Π[i, j] + δΠ
i,j,

both P [k, l] and Q[k] need to be updated.

By applying the same method in data updates, P [k, l] and Q[k] can be computed

from the original prefix sum tables. Then δΠ
i,j or δΠ

i,jA(i, j) is added to get P ′[k, l] and

Q′[k].

2.5.3 Weight Change in Data-Mapping Algorithm

In data-mapping algorithm, a single update in the original weights Π leads to at most

two changes in Π(DM) (Equation (2.4)). Thus only O(log(n)) wavelet coefficients need

to be re-calculated. Because of these new coefficients, the equation PD = Q has to

be re-generated, which requires O(B2) time. Similar to the case in data changes, for x

number of changes in weights, the update time from PD = Q to P ′D = Q′ is O(B2 +x)

for P [k, l] and O(B+x) for Q[k]. The equation solving time is O(B3). So the amortized

time for x updates is O(1
n
[
∑n−1

x=1(log(n) + B3 + x) + (n2 + B3)]) = O(n + B3).

30

2.5.4 Weight Change in Weight-Mapping Algorithm

For weight changes, the only difference between data-mapping and weight-mapping is

that a single update in weights may cause up to n changes in weighted data Π(WM)�A.

So O(n) wavelet transform time is required, and amortized cost is still O(n + B 3),

because O(1
n
[
∑n−1

x=1(n + B3 + x) + (n2 + B3)]) = O(n + B3).

In summary, the incremental method proposed in this thesis computes new values

by exploiting the computed values in the history, thus they do not need be calculated

from scratch. Therefore, the update costs for both data-mapping and weight-mapping

are successfully reduced from linear to sub-linear in time.

2.6 Special Cases for Range-Sum Weights

In the previous sections, the most general cases for the weights have been discussed, i.e.,

each point of the weight may differ from another. However, in some special scenario,

weights may have some nice structure, For example, in online query approximation,

user may specify their own approximation quality of a data interval in terms of the

size or the values contained in the data interval. Then it is possible to capture these

structures in weights to reduce the running time. In this section, three of such cases

are discussed.

Uniform weights There is only one unique weight for all intervals. ∀i, j, k, l, Π[i, j] =

Π[k, l]. This is the unweighted range-sum problem.

Uniform length weights The weights are the same if their interval lengths are the

same. Π[i, j] = Π[k, l], if j − i = l − k, and Π[i, j] = Π[k, l] + h, if j − i = l − k + 1,

where h is the unit weight difference. We use Π|l| to represent the weight for an interval

with length l, so Πl = Π1 + (l− 1) ∗ h. In this scenario, the importance of the region is

decided by how many data it covers.

Hierarchical sum weights There are a unique weight Πi,i for each i. All other weights

can be derived from them, Πi,j =
∑j

k=i Πk,k. This is the case that range weights are

sum of single data point weight in it.

Recall that in Section 2.4, after we construct the prefix tables, the computational

31

costs for generating P,Q and solving PD = Q are independent of n. The dominant

part of the overall cost O(n2 + B3) turns out to be table construction time O(n2).

In these special cases, weights for different points and intervals are not totally inde-

pendent. This offers us an opportunity to reduce the table size from O(n2) to O(n).

To begin with, a simple but important lemma in cost reduction is introduced here.

Lemma 4 For vector V = {V [1], V [2], ..., V [n]}, the sum of any arithmetic series

f(k, d, i, j) = kV [i] + (k + d)V [i + 1] + ... + (k + (j − i)d)V [j] can be computed in

O(1) time after O(n) preprocessing.

Proof The following two prefix sum table from vector V can be generated in O(n)

time.

SV
1 = {V [1], V [1] + V [2], ..., V [1] + ... + V [n]}

SV
2 = {V [1], V [1] + 2V [2], ..., V [1] + ... + nV [n]}

Then any f(k, d, i, j) can be computed in 9 operations as in Equation (2.8).

f(k, d, i, j) = kV [i] + (k + d)V [i + 1] + ... + (k + (j − i)d)V [j]

= kV (i, j) + d(V [i + 1] + 2V [i + 2] + ... + (j − i)V [j])

= k(SV
1 [j]− SV

1 [i− 1]) + d(SV
2 [j]− SV

2 [i])− id(SV
1 [j]− SV

1 [i])

(2.8)

�

At high level, for all these special cases, because the weights for different intervals

are not independent of each other, the prefix sum tables of size O(n2) can be reduced

to a vector of size O(n), which is similar to SV
1 , SV

2 .

It can be proved that with the help of these new prefix vectors, entries in matrix P

and vector Q can still be computed in O(1) time. The running time for all other parts

of the algorithm remains same, except that the table construction time is reduced from

32

O(n2) to O(n). So the total running time is reduced to O(n + B3).

In this section, only the prefix vector for Q, i.e., the prefix vector of
∑

i∈I,j∈J Πi,jA(i, j)

is discussed. The prefix vector for P (prefix vector of
∑

i∈I,j∈J Πi,j) can be looked upon

as a special case when A(i, j) = 1. The uniform weight case is used as an example to

show how to reduce the prefix table size, and the results for the other cases is summa-

rized in Table 2.2.

It should be pointed out that only two cases of the overlapping of intervals, e.g.,

I ∩ J = φ and I = J , are needed to consider to further simplify the computation,

because if I ∩ J 6= φ, and I 6= J , then j1 ≤ i2. This interval can be divided into 3

parts: I1 = [i1, j1 − 1], J1 = [j1, j2], I2 = [j1, i2], J2 = [j1, i2] and I3 = [j1, i2], J3 =

[i2 + 1, j2]. In these new intervals I1 ∩ J1 = φ, I2 = J2 and I3 ∩ J3 = φ. This

division creates 3 sub-intervals, each of them can be solved by prefix vectors defined in

Table 2.1.

Example: prefix table reduction for uniform weights

In the uniform weight case, Πi,j is a constant for all intervals. Here S[i] is defined

as S[i] =
∑i

k=1 A[k].

∑

i∈I,j∈J

A(i, j)

=
∑

i∈I,j∈J

(S[j]− S[i− 1])

=
∑

i∈[i1,i2]

(
∑

j∈[j1,j2]

S[j]−
∑

j∈[j1,j2]

S[i− 1])

=
∑

i∈[i1,i2]

((S[j1] + ... + S[j2]) − (j2 − j1 + 1)S[i− 1]))

= (i2− i1 + 1)(S[j1] + ... + S[j2]) − (j2 − j1 + 1)(S[i1 − 1] + ... + S[i2− 1])

= (i2− i1 + 1)(S3[j2] − S3[j1 − 1]) − (j2− j1 + 1)(S3[i2 − 1]− S3[i1 − 2])

(2.9)

where interval I = [i1, i2], J = [j1, j2], and S3 is defined in Table 2.1.

As a result, if a prefix sum vector S3 is pre-computed, the prefix sum
∑

i∈I,j∈J A(i, j)

33

Table 2.1: Prefix Sum Tables

S1 = {Π[1, 1],Π[1, 1] + Π[2, 2], ...,Π[1, 1] + ... + Π[n, n]}
S2 = {Π[1, 1],Π[1, 1] + 2Π[2, 2], ...,Π[1, 1] + ... + nΠ[n, n]}
S3 = {S[1], S[1] + S[2], ..., S[1] + ... + S[n]}
S4 = {S1[1]S[1], S1[2]S[2], ..., S1 [n]S[n]}
S5 = {S1[0]S[1], S1[1]S[2], ..., S1 [n− 1]S[n]}
S6 = {S2[1]S[1], S2[2]S[2], ..., S2 [n]S[n]}
S7 = {Π1,1S3[1], 2Π2,2S3[2],, nΠn,nS3[n]}
S8 = {Π1,1S3[1],Π2,2S3[2],,Πn,nS3[n]}
S9 = {S3[1], S3[1] + S3[2], ..., S3[1] + ... + S3[n]}
S10 = {S3[1], S3[1] + 2S3[2], ..., S3[1] + ... + nS3[n]}

for any interval I, J can be computed in constant time as in Equation (2.9). Therefore
∑

i∈I,j∈J Π[i, j]A(i, j) = Π[i, j]
∑

i∈I,j∈J A(i, j) can be computed in O(1) time from
∑

i∈I,j∈J A(i, j) since Π[i, j] is a constant.

In this section, the algorithms proposed are shown to be able to be applied to

different special weights, with a dramatic complexity reduction. This is because the

algorithms capture the real complex component, i.e., the O(n2) weights, in this problem

through its prefix sum table. When the weights is simplified, the cost of our algorithm

can be simplified accordingly.

2.7 Experiments

In this section, the accuracy and efficiency of the proposed lossy compression in databases

on different data sets are demonstrated. Here the relative error is defined as RE = εB

ε0
=

P
i Π[i](A[i]− bA[i])2P

i Π[i](A[i])2 for point-wise approximation, and RE = εB

ε0
=

P
i,j Πi,j(A[i,j]− bA[i,j])2P

i,j Πi,j (A[i,j])2
for

range-sum approximation, where εB is the absolute approximation error with B buck-

ets. The experiments are done by using a Linux machine with 2.80GHz processor and

2047 MB memory.

2.7.1 Point-Wise Queries

In this section, the 2-step (see Section 2.3), M-step (see Section 2.3) and W-wav al-

gorithms (see Section 2.2.3) are compared by using both synthetic and real data sets.

34

Table 2.2: Weight Reduction Table

I ∩ J LSj = ((L2 +1)Π|L1| +
L2(L2+1)h

2 S3[j1+L2]− [(Π|1| +h(L1− 1))(S9[j1+L2]

= φ −S9[j1−2])+h[(1−j1)(S9 [j1+L2]−S9[j1−1])+(S10 [j1+L2]−S10[j1−1])

I ∩ J LSi = Π|L1|(S9[i1 + L2]−S9[i1− 1]) +h(1− i1)(S9[i1 +L2− 1]−S9[i1− 1])

= φ +(S10[i1 + L2 − 1]− S10[i1− 1]) + Π|L1|
L2(L2+1)h

2 S3[i1− 1]

I = J LSj = ((L2 + 1)Π|1| +
L2(L2+1)h

2 S3[i2]− [Π|1|(S9[i2]− S9[i1− 2])

+h[(1 − i1)(S9[i2] − S9[i1− 1]) + (S10[i2] − S10[i1− 1])

I = J LSi = Π|1|(S9[i2]− S9[i1 − 1]) + h(1− i1)(S9[i2− 1]− S9[i1− 1])

+(S10[i2− 1]− S10[i1 − 1]) + Π|L1|
L2(T2+1)h

2 S3[i1− 1]

I ∩ J HSj = [(1− i1)(S1[i2]−S1[i1−1])+(S2[i2]−S2[i1−1])](S3[j2]−S3[j1−1])
= φ +(i2− i1+1)[S4 [j2]−S4[j1− 1]+ (2S1 [j1− 1]−S1[i2])(S3[j2]−S3[j1− 1])]

I ∩ J HSi = (j2− j1 + 1)[S1[j1− 1](S3[i2] − S3[i1− 1])− (S5[i2]− S5[i1− 1])]

= φ +[(j2 + 1)(S1[j2] − S1[j1 − 1])− (S2[j2] − S2[j1 − 1])]S[i1,i2]

I = J HSj = (S6[i2] − S6[i1− 1])− S2[i1 − 1](S3[i2]− S3[i1 − 1])

I = J HSi = (i2 + 1)(S8[i2] − S8[i1− 1])− (S7[i2]− S7[i1− 1]) + (i2 − i1 + 1)
∗(S1[i2] − S1[i1− 1]) + i1(S1[i2]− S1[i1− 1]) − (S2[i2] − S2[i1− 1])

LSj and HSj stands for
∑

i∈I,j∈J Πi,jS[j], in uniform length weights case and hi-
erarchical sum weights case; LSi and HSi stands for

∑
i∈I,j∈J Πi,jS[i] in those

cases. L1 is start interval length, L1 = j1 − i1 + 1. L2 is max shift length,
L2 = min{i2− i1, j2 − j1}.

35

0 50 100 150 200
0

0.5

1

1.5

2

2.5

R
el

at
iv

e
E

rr
or

(a) exponential[0.01]

W−wav
2−step
M−step

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

(b) normal[10,100]

W−wav
2−step
M−step

Figure 2.8: Accuracy and efficiency

In these experiments, I = 1 is used for the M-step method. For other I values, the

approximation error is between the error of 2-step algorithm, and the error of M-step

algorithm with I = 1.

Synthetic Data

The synthetic data set contains 4,096 data points, and they are extracted from

a normal, an exponential and a uniform distribution, respectively. The weights are

extracted from a zipf distribution with α = 0.2, 0.5 and 0.8. Next the 2-step and M-step

algorithms for point-wise approximation are compared against the W-wav algorithm in

terms of accuracy, efficiency, time and skewness.

Accuracy The results for the accuracy are shown in Figure 2.8(a) for the data

set extracted from an exponential distribution with parameter λ = 0.01. A major

consideration to make is related to the shape of these curves: the error for the W-

wav algorithm jumps to 2.5ε0 and remains there even after B = 200, while both the

2-step and M-step algorithms always keep the error under 0.5ε0. The reason for such

behavior is related to the fact that when a data set contains very large values, the

W-wav algorithm takes more wavelets from this region than necessary, while the 2-step

and M-step algorithms can use 0 as coefficients for the “unwanted” wavelets.

Efficiency The efficiency results are shown in Figure 2.8(b) for the data set ex-

tracted from a normal distribution with mean = 10 and variance = 100. Notice here

that the 2-step and M-step algorithms are capable of reducing the error to 0.5ε0 around

B = 200, while the error of W-wav algorithm is still as high as 0.85ε0. This is caused

36

0 50 100 150 200
0

0.5

1

1.5

2

2.5

(a)

T
im

e(
se

co
nd

)

0 50 100
0

0.01

0.02

0.03

0.04

0.05

0.06

(b)

T
im

e(
se

co
nd

)

W−wav
2−step
M−step

W−wav
2−step
M−step

Figure 2.9: Time

by cancelation among overlapped wavelets using the original coefficients. The 2-step

and M-step algorithms can lower this side-effect by finding the best coefficient for each

wavelet.

Time The running times of the three algorithms are shown in Figure 2.9(a) and

Figure 2.9(b). The M-step method requires a very long running time, which reaches 2

second when B = 200 (Figure 2.9(a)). With a plot at a smaller scale (Figure 2.9(b)),

it can be observed that the running time for the W-wav algorithm is O(n), and it is

constant for all B. The running time of the 2-step algorithm is bounded by O(n+B 3).

For B3 < n, i.e., B < 16, there is no difference in running time between the 2-step and

the W-wav algorithms. Even when B reaches 200, 2003 � 4, 096, the extra time for

the 2-step algorithm is only 0.05 second.

Skewness Last but never the least, in Figure 2.10(a) and Figure 2.10(b), the three

algorithms are compared while the weight distributions are changed (zipf 0.2, 0.5 and

0.8). The data sets are extracted from normal and uniform distributions, respectively.

It is important to notice here how the performance of the W-wav method decreases

as weights become more skewed, e.g., from zipf 0.2 to zipf 0.8. This happens because

the W-wav method combines weights with wavelets. The more skewed the weights, the

higher the probability for wavelets with heavy weights to be used. On the other hands,

both the 2-step and M-step algorithms can ignore those exaggerated wavelets by setting

their coefficients to 0.

Real Data

37

0 100 200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
zipf 0.2

B

R
el

at
iv

e
E

rr
or

0 100 200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
zipf 0.5

B

R
el

at
iv

e
E

rr
or

0 100 200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
zipf 0.8

B
R

el
at

iv
e

E
rr

or

W−wav
2−step
M−step

W−wav
2−step
M−step

W−wav
2−step
M−step

(a)Normal[10, 100] data

0 100 200
0

0.05

0.1

0.15

0.2
zipf 0.8

B

R
el

at
iv

e
E

rr
or

0 100 200
0

0.05

0.1

0.15

0.2
zipf 0.2

B

R
el

at
iv

e
E

rr
or

0 100 200
0

0.05

0.1

0.15

0.2
zipf 0.5

B

R
el

at
iv

e
E

rr
or

W−wav
2−step
M−step

W−wav
2−step
M−step

W−wav
2−step
M−step

(b)Uniform[1, 10] data

Figure 2.10: Skewness

38

0 2 4 6 8

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

6 Data Value

object ID

0 2 4 6 8

x 10
4

0

0.01

0.02

0.03

0.04

0.05
Query Weights

object ID

0 500 1000
0

0.5

1

1.5

2

2.5

B

Relative Error

W−wav
2−step
M−step

0 50 100
0

2

4

6

8

10

B

Time(second)

W−wav
2−step
M−step

Figure 2.11: Relative error compare for world cup data

In order to validate the above performance metrics on more realistic data, a data set

collected from the 66th day of the World Cup 1998 [53] is used, because it has a large

number of queries. In this experiment, the data represents the query subject, which

may be a webpage or a picture, while the data value represents the max response size of

the subject. The weights correspond to the number of queries for each data point after

normalization. In this case as well, the same dynamics as before have been observed

for the relative error: the W-wav method provides a relative error above 2ε0 at first,

then it is slowly reduced to 0.35ε0 at B = 600 and remains there through B = 1000

(Figure 2.11). The 2-step algorithm reduces its error to 0.35ε0 with B = 13 while the

M-step algorithm reduces its error to 0.35ε0 with only B = 9. The difference in running

time between the 2-step and the W-wav methods is very small when B < 100.

39

2.7.2 Range-Sum Approximation

In this section, the proposed algorithms, i.e., the data-mapping method and the weight-

mapping method are compared with other methods, including the Naive method de-

scribed in Section 2.4.

. Data Our data-mapping method,

Π(DM)[i] =
∑i

k=1

√
Π[k, i]+

∑n
k=i+1

√
Π[i + 1, k]

. Data2 A simple straight forward data-mapping method,

Π(DM)[k] =
∑

1≤i≤j≤k

√
Π[i, j]

. Weight Our weight-mapping method, Π(WM)[k] =
∑

i∈[1,k],j∈[k,n]

. Weight2 A simple subtractive weight-mapping method, Π(WM) = Π(DM)[i] −

Π(DM)[i− 1], we use Π(DM) in Data

. Naive Naive method with new signal X = {A(0, 0), A(0, 1), ..., A(n − 1, n− 1)}.

The Naive method produces relative errors in the range 40-90 while Data pushes it

down below 1 (Figure 2.12). This is due to the fact that B is too small for a data set

with O(n2) length. Figure 2.13 shows the comparison of the Data and Data2 methods

in terms of their accuracy. It should be noticed how Data performs better than Data2

over different data sets, because the weights computed by Data2 are not as accurate as

the weights computed by Data that are derived directly from the error functions.

For exponential and uniform data, Weight is much better than Weight2, with an

error of almost 0. In normal data, however, it is worse (Figure 2.13). The reason is

that Weight2 focuses only on intervals start with i, i + 1, i − 1 or ends with i, i − 1,

i + 1, and ignores all other intervals [i, j] covering it. For the exponential and uniform

data sets, some intervals may contain very different values from others, and ignoring

these intervals incurs large errors. Weight considers all intervals that cover the data

point, but it exaggerates the middle part of the signal. For normal data, all intervals

are similar, exaggerating certain intervals makes them unfairly important than others,

which causes error.

40

0 20 40
0

0.2

0.4

0.6

0.8

1
weight mapping

B

R
el

at
iv

e
E

rr
or

0 20 40
0

0.2

0.4

0.6

0.8

1
data mapping

B

R
el

at
iv

e
E

rr
or

0 20 40
40

50

60

70

80

90
naive method

B

R
el

at
iv

e
E

rr
or

zipf 0.2
zipf 0.5
zipf 0.8

zipf 0.2
zipf 0.5
zipf 0.8

zipf 0.2
zipf 0.5
zipf 0.8

Figure 2.12: Relative error for normal(10, 100) data

Figure 2.14 shows the relative error of Data and Weight methods as a function of

skewness of weights (zipf 0.2, 0.5 and 0.8). It can be observed that the skewness of the

queries does not affect the algorithm accuracy because both Data and Weight methods

sum up certain Π[i, j]s to compute a new weight, and the summation cancels out the

skewness effect.

2.8 Summary

The nonuniform approximations for both point-wise and range-sum queries have been

studied here. Although the approximation is in one dimension, it can be easily general-

ized to multi-dimensions, because the methods used to choose wavelets and coefficients

are not restricted by dimensionality. The wavelets are selected from the optimal solu-

tion for weighted data. However they are not optimal with respect to the original data.

To overcome this problem, a second step is performed to optimize their coefficients for

the original data, which takes extra O(B3) time, but improves accuracy significantly.

How to find the optimal wavelets for original data is still an open problem. Incremen-

tal algorithms have been designed here to reduce synopses-accuracy-keeping cost for

dynamic data and weights. The algorithms exploit the values computed in history to

lower the cost of computing new values when data and weights change, thus successfully

reduce the complexity from linear to sublinear.

41

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
Normal data

R
el

at
iv

e
E

rr
or

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
Exponential data

R
el

at
iv

e
E

rr
or

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
Uniform data

R
el

at
iv

e
E

rr
or

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

B

Normal data

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

B

R
el

at
iv

e
E

rr
or

Exponential data

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

B

R
el

at
iv

e
E

rr
or

Uniform data

Weight
Weight2

Weight
Weights

Data
Data2

Data
Data2

Data
Data2

Weight
Weight2

Figure 2.13: Comparison between data-mapping and weight-mapping algorithms(α =
0.5)

42

0 20 40
0

0.2

0.4

0.6

0.8

1
weight mapping

R
el

at
iv

e
E

rr
or

normal data
0 20 40

0

0.2

0.4

0.6

0.8

1
weight mapping

exponential data

R
el

at
iv

e
E

rr
or

0 20 40
0

0.2

0.4

0.6

0.8

1
weight mapping

uniform data
R

el
at

iv
e

E
rr

or

0 20 40
0

0.2

0.4

0.6

0.8

1

normal data

R
el

at
iv

e
E

rr
or

data mapping

0 20 40
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

data mapping

exponential data
0 20 40

0

0.2

0.4

0.6

0.8

1

uniform data

R
el

at
iv

e
E

rr
or

data mapping

zipf 0.2
zipf 0.5
zipf 0.8

zipf 0.2
zipf 0.5
zipf 0.8

zipf 0.2
zipf 0.5
zipf 0.8

zipf 0.2
zipf 0.5
zipf 0.8

zipf 0.2
zipf 0.5
zipf 0.8

zipf 0.2
zipf 0.5
zipf 0.8

Figure 2.14: Query skewness

43

Chapter 3

Stream-Aware Lossless Compression in IP Networks

In Chapter 2, we have discussed the algorithms that can keep the accuracy of com-

pressed data with low costs in the first scenario in dynamic systems where data are

varying over time. In this chapter, we study how to compress data in the second

scenario where the data patterns are changing over time. The traffic compression in

IP networks is used to illustrate this problem. Besides dynamic data patterns, traffic

compression in IP networks itself is an interesting problem due to the following three

reasons. First, unlike other compressions, online traffic compressors have to work at

very high speed to accommodate the data-arriving rate in core networks. Second, on-

line and offline traffic compressions have very different resource constrains that require

different compression strategies to maximize their performance. Third, for different

applications, the value of information contained in different parts of the data may not

be equal. For example, in traffic classification, the most valuable part of the data is the

one that contains Application Signature, which is a sequence of strings that indicates

which layer-7 application this packet belongs to. In this chapter, we discuss all these

challenges in IP network compression and how to design both online and offline com-

pression algorithms that can work under these constrains. This chapter starts with an

introduction of IP network and the motivation of traffic compression.

3.1 Background

The Internet Protocol (IP) is the choice of transport protocol both on wired and wireless

networks, and this choice is leading to the convergence of telecommunication and data

networks. These converged networks will be the building blocks for the All-IP vision.

As the networks evolve to provide more bandwidth and applications, network operators

44

must be equipped themselves with new tools in order to better understand the behavior

of the network and its users, and thus attract more customers. In order to be ready and

competitive in the market place, large ISPs have been deploying distributed monitoring

(or sensing) infrastructures that collect IP data-streams from a variety of geographi-

cal monitoring stations, e.g., either using passive probes or exported from routers via

Netflow, and deliver such information to a centralized processing station for further

analysis. In spite of its importance, network operators struggle with the challenging

problem of defining the right trade-off between the granularity of data required to be

collected and the volume of data that can be really exported to the processing station,

since it competes with user traffic and thus potentially degrades its performance. This

problem becomes even more critical for wireless operators for which bandwidth is the

most precious resource.

Unfortunately, different operational practice requires different traffic granularity.

For example, flow-level information results to be very useful for network management,

traffic engineering and for some degrees, traffic visibility and security1. Despite the

increased resolution into the source and destination of traffic demands, and their na-

ture (as exposed by the port numbers), no information is preserved on the timing of

individual packets in a flow or their individual content, which is key for applications

like content-billing, layer-7 security or lawful intercept (mandatory in North America

since May 15th, 2007). The only way one can gain visibility into the explicit timing

of each packet and its content is through the collection of information on a per packet

basis2.

Sampling has been widely accepted as a de-facto solution to solve this problem when

part of full packet content information is not required. Unfortunately, for highly content

demanding applications, sampling is not a viable solution and thus the problem still

remains open.

1Flow-level information can be collected either using passive probes tapping specific links or mirror-
ing router ports, or directly exported from router interfaces supporting Netflow V5 to V8

2Packet-level information might be collected either via passive tapping specific links or mirroring
router ports, or directly exported from router interfaces supporting the latest version of Netflow (Netflow
V9).

45

At the same time, carriers have manifested clearly a strong desire not just to collect

and analyze traffic, but also to store the exported information for analyzing trends of

application usage and user behavior over time. This information comes handy for the

purpose of understanding the popularity of a specific IP application or service over time,

or trends of security vulnerabilities being exploited, etc. More recently, what has been

just a nice-to-have functionality has become a strict requirement as carriers have been

asked by government agencies to store specific data for years in their facilities before

discarding them. An example of such requirement is data retention, which requires to

store layer-4 information and key packet payload information for all carrier’s customers.

Notice that all the above translate into huge storage requirements for carriers, just

think that a one hour collection of TCP/IP header on a 10Gb/s link can easily reach 3

Terabytes of storage.

Several compression algorithms have been published in the literature to handle

this problem. However, as shown in the remainder of this section, none of them are

specialized to carry out an efficient compression when dealing with pure IP traffic.

In this chapter both problems are tackled by proposing a novel lossless compression

algorithm, called IPzip that is applicable for both issues: (i) online case, whose goal

is to reduce the network bandwidth required to export the IP data from monitoring

stations to the centralized processing station or storage facility; (ii) offline case, whose

goal is to reduce the overall storage space. Although both the cases require dealing

with how to compress the data-streams, each of them has to be handled with slightly

different design criteria. For example, in the online case, the compressor must guar-

antee short compression time and small memory usage due to the limited buffer sizes

and the high data rate of packet arrivals. On the other hands, in the offline case, the

importance of how fast the compressor can compress diminishes in respect of the im-

portance of achieving a good compression ratio. The new contributions of this thesis

are summarized as follows.

. The first lossless data compression algorithm, called IPzip is proposed here for

IP backbone network traffic. The main contribution of IPzip is its deep analysis

46

and discovery of inner properties of IP data-streams that, if fully exploited, can

be used by existing Lempel-Ziv based compressors, like Gzip, to severely reduce

the size of the original data sets. For example, for some Netflow style data, the

compressed size can be as small as 1% of original data size (see Section 3.6).

. IPzip exploits the hidden intra-packet correlation and inter-packet correlation

properties of the data-streams, and produces an efficient compression plan that

reorganizes the data-streams both within and across packets to improve compres-

sion ratio. Since the generation of the optimal compression plan is NP-Complete,

we propose novel heuristics that produce near-optimal plans.

. Since IPzip produces a near-optimal compression plan by exploiting the structure

of the network data-streams, it is key to monitor the effectiveness of the compres-

sion plan over time as Internet traffic is highly dynamic. We propose a mechanism

that monitors the performance of the compression plan being currently used, and

efficiently switches to a new compression plan when required.

. Two versions of IPzip are proposed here to be used for online and offline data-

streams compression. By using packet traces collected from several Tier-1 carriers

world-wide, we demonstrate how IPzip can achieve a superior compression ratio

of up to 20% in the offline case and up to 15% in the online case when compared

to Gzip.

This chapter is organized as follows: Section 3.2 discusses related works in the

literature, and Section 3.3 gives the intuitions behind the IPzip compression. The new

IPzip algorithm is introduced in Section 3.4, and a simple algorithm is proposed in

Section 3.5.3 to solve the problems when traffic pattern changes. The effectiveness of

IPzip is demonstrated through experiments on real backbone traces in Section 3.6, and

Section 3.7 concludes this chapter.

47

3.2 Related Work

A lot of work has been done in compression by researchers for a variety of different data

structures and contexts. While the networking community has approached the problem

of compressing IP datastreams more as packets come-by, i.e., the online scenario, the

database community, has focused more on applying such techniques to save storage

space, i.e., the offline scenario. Common to both approaches is that previous researches

focus only on packet/flow headers and only minimal attention has been paid to the

compression of less regular data-streams as payloads.

Network researchers have proposed simple entropy-based compression algorithms

that achieve high compression speed at the cost of inferior compression ratio. Most

of these methods, like TCP/IP header compression [44, 45], are based on the idea of

reducing the transmission bandwidth or latency for low-speed serial links by replacing

the packet headers with the connection index to which the packets belong to. On a

similar path, some researchers [24, 26, 32, 43] proposed to replace the 5-tuple flow id

with a shorter code to compress TCP/IP headers. Authors [33] derived a theoretical

bound for all these entropy-based coding, assuming that some fields, such as flow ids

and their inter-arrival time, are completely independent of each other. However, all

the above coding methods fail to explore the correlations within the packet headers,

and thus the information bound proposed ended up not as tight as expected, i.e., the

compression ratio can be further improved. Robust Header Compression (ROHC) [46]

discovers dependencies in packet headers within one flow. However, the correlations

between flows are ignored.

Database researchers approached the problem of compressing large tables using a

more theoretical method by investigating the structure of tables with the major goal

of reducing storage space. Although these algorithms are able to achieve tremendous

data reduction, they consume too much system resources, thus are unable to perform

“on-the-fly’ compression’. Among those, Pzip [12, 13] tries to find the best partition of

the columns on either original column sequence or reordered columns, then compresses

each partition separately. However, such a solution considers only the pairwise relation

48

between the columns, which may not be accurate for the total ordering of columns in the

partition, and fails to explore the relationship between rows. In their implementation,

they compress one column after another, leading to the need of large buffers to collect

enough data to achieve a good compression ratio. Spartan divides the table into predic-

tive and predicted columns [2, 22], and compresses the predictive columns only. This

method is only suitable for lossy compression or tables with strong columns correlations,

because the columns that can be predicted in traffic headers are very limited in a lossless

scenario. Similar to Spartan, authors in [50] try to classify the correlated columns into

predictive and partially predicted columns, then sort the partially predicted columns

by the predictive columns in a similar way to Burrows-Wheeler transform [4]. After

sorting, similar data are gathered together in the predicted columns, so that the com-

pression ratio can be improved. Fascicles and ItCompress [27, 28] scan all rows to learn

the correlations inside the table. However, both sorting and row-scanning require to

buffer large volume of data to achieve good compression ratio, which is unaffordable in

real online compression applications.

Regarding the compression of packet payload, not much work has been published in

the literature. When adapting general compressors to such a problem, the performances

achieved end up to be either poor from a compression ratio’s perspective, like Gzip,

or impractical due to the long compression time required, like Bzip3. Only recently

new algorithms to compress packet payloads have been invented by the networking

community. For example, IPComp [47], Stacker, Predictor [54] and TCP Compression

Filter [55]. Their common characteristic is their lack of learning the intrinsic structure

of packet payloads that, if fully exploited as shown in this chapter, can lead to better

results.

3.3 Intuitions behind IPzip

In this section, we first provide a brief overview of one of the most known data com-

pression algorithm, e.g. Gzip (Section 3.3.1). By explaining how it works with a simple

3http://en.wikipedia.org/wiki/Bzip2

49

Input data : a x a x a x a x b y b y b y b y c z c z c z c z
Compressed data: a x (2,6) b y (2,6) c z (2,6)

8 7 6 5 4 3 2 1

c z c z c z _ _

z c z c z c z_

c z c z c z c z

b y by b y c z

y b y b y b y c

b y b y b y b y

a x a x a x b y

x a x a x a x b

a x a x a x a x

Look ahead

(2,6)

z

c

(2,6)

y

b

(2,6)

x

a

Output Remaining dataHistory

b y b y b y b y

b y b y b y c z

y b y b y b y c

c z c z c z c z

c z c z c z a x a x a x b y

z c z c z c z x a x a x a x b

c z c z c z c z a x a x a x a x

b y b y b y c z c z c z c z a x

y b y b y b y c z c z c z c za

b y b y b y b y c z c z c z c z

Figure 3.1: Gzip compression example

example, we highlight its major limitations and thus identify the key aspects on how it

can be improved. These constitute the intuitions behind IPzip (Section 3.3.2).

3.3.1 Gzip Background

Figure 3.1 shows an example of how Gzip compresses strings. Suppose, we set the Gzip

parameters of history window size and look-ahead window size to be 8. Gzip starts

by reading 8 characters, then checks whether the string starting with current pointer

appears in the history window. For example, at step 1, axaxaxax is read and the

current pointer points to a. Since the history window is empty, the output is a. At

step 2, a is moved to the history window, after that x is read and output, since it

does not exist in the history window. Then at the next step, a appears again, which

can be found in the history window. Further, on checking the string following it, Gzip

discovers that the new string axaxax repeats the history string starting at position 2.

Since the length of the string is 6, the output is (2, 6). The above process is repeated

to get the compressed string ax(2, 6)by(2, 6)cz(2, 6).

50

11yb11yb7zcz7c

10

7

6

3

12

4

2

9

8

5

1

ts

Group 2

z

z

z

z

y

y

y

x

x

x

x

dp

c

c

c

c

b

b

b

a

a

a

a

sp

Group 1

10zc12yby12b

7zc11yby11b

6zc10zcz10c

3zc9xax9a

12yb8xax8a

4yb6zcz6c

2yb5xax5a

9xa4yby4b

8xa3zcz3c

5xa2yby2b

1xa1xax1a

tsdpsptsdpspdptssp

Reorder rowsReorder columnsOriginal data

sp - source port, dp – destination port, ts - timestamp

Figure 3.2: Header compression example

3.3.2 Network Traffic Correlations

Next, the intuition behind IPzip is described via an example. Suppose, there is a data

set consisting of the following 3 fields extracted from packet headers in the order of

source port, timestamp and destination port (see Figure 3.2). Suppose that source and

destination ports are correlated with each other, e.g., source ports a, b and c are always

associated with destination ports x, y and z, respectively.

Gzip with No Reordering

First, notice that due to the order of arrival of packets in Figure 3.2, this data set

is hard to compress. If it is compressed row-wise using Gzip with a window sizes of 8,

the compressed string is exactly the same as the original one. Even if it is compressed

column-wise, it is only possible to obtain a compressed string as “a b c b a c c a(4,2)b b

1 2 3 4 5 6 7 8 9 10 11 12 x y z y x z z x(4,2)y y”. Assuming that our alphabet has only

these 18 characters, “a-c,x-z,1-12”, 5 bits are necessary to code each character. Given

that the window size is 8, 3 bits are needed to represent the position and length of the

string. Hence, the total length of two characters, e.g., “ac” is reduced from 10 to 6 by

represented as (position, length), which results in a total saving of 8 bits.

Intra-Packet Correlation

However, given the strong correlation within the packet such as that exhibited by

51

the source and destination ports, it makes sense to group them together to achieve a

much better compression ratio. Thus, if the columns are reordered as “source port,

destination port and timestamp”, it can be compressed into “a x 1 b y 2 c z 3(6,2)4 a x

5 c z 6(3,2)7 a x 8(3,2)9 c z 10 b y 11(3,2)12” in row-major, and “a b c b a c c a(4,2)b

b x y z y x z z x(4,2)y y 1 2 3 4 5 6 7 8 9 10 11 12” in column-major.

Inter-Packet Correlation

Further, given the correlations exhibited across packets such as those having the

same values for the “source port, destination port” pair, an even better compression

ratio can be achieved. For instance, if the columns are partitioned in to two groups:

“source port, destination port” and “timestamp” and then reordered the rows with the

“source port, destination port” as the sort key, then a highly compressible string for

the source and destination ports is obtained. If it is compressed row-wise, “a x (2,6) b

y (2,6) c z (2,6)” (see Figure 3.1) is obtained; and if column-wise, “a(1,3) b(1,3) c(1,3)

x(1,3) y(1,3) z(1,3)” is obtained. The compressed timestamp string is the same as itself.

As a result, we save 36 bits in row-major, and 24 bits in column-major, which means

an overall gain of 3 to 4 times compared to Gzip. To recover the original data, it is

necessary to perform decompression first, then sort them by the timestamp.

Similar correlations exist within and across packets in network traffic data, which,

if adequately exploited, can yield much better compression ratios. Thus, the problem

has been reduced to first finding these correlations, and then rearranging the data

accordingly to achieve high compression ratios, e.g., compression plan. Section 3.4

provides the details of how IPzip generates such a plan.

3.4 Algorithm

The hypothesis for IPzip is that network traffic exhibits correlations within packets as

well as across packets, which can be exploited to achieve a better compression ratio.

IPzip develops a compression plan that exploits these correlations, and this plan is then

given to Gzip compressors to finally compress the traffic stream. In this section, optimal

algorithms for reordering bytes within a packet and packets themselves are presented

52

first. Since, solutions to these optimal algorithms are super-exponential, approximate

solutions used by IPzip are introduced to find a good trade-off between the complexity

and the associated performance.

3.4.1 Compression Plan Generation

Network data can be viewed as a tuple with both structured data and unstructured

data. For example, network packet data is a tuple <header, payload>, with header

as the structured part, and payload as the unstructured part. The structured data

denoted by T can be viewed as a table with header fields defining the columns and

packets defining the rows. The unstructured data denoted by S can be viewed as a

list of strings with each string record representing a variable-sized payload. In some

applications, when only structured part is collected, it can be viewed as a special case

with length of its unstructured part equal to 0. For a network data set that can be

represented as tuple < T, S >, the notation < T [i], S[i] > is used to represent the ith

packet in the data set. The compressions of the structured part T is separated from

that of the unstructured part S, because of the structure and content dissimilarities

between them. The compression problems can be defined as follows.

Problem 5 (Compression Based on Intra-Packet Correlation) Let T be the struc-

tured data need to be compressed. T has n columns. For a given compressor C, let C(T)

be the compressed bytes of T . The goal is to divide the columns into G1, ..., GK̂
groups.

Each group Gi contains ki columns, T = ∪K̂
i=1Gi, and

∑K̂
i=1 ki = n, so that the com-

pressed size C(T) =
∑K̂

i=1 C(Gi) is minimized.

Thus, Problem 5 is reduced to finding the best column-wise partition of the data.

At this time, it is imperative to point out that each byte is defined as a column, e.g., a

4-byte IP-address consists of 4 columns. The reason a column is used to represent a byte

is that (i) it is a good tradeoff between fine correlation granularity and complexity, i.e.,

if each column is a packet header field, the ability to discover the correlations between

bytes inside a field is lost; on the other hand, if each column is a bit, there are too many

columns to explore. (ii) when IPzip is used as general table compressors, it does not

53

require to know the table semantics (if each column is a field, for each table it compress,

IPzip has to know every field in the table).

Because there is more similarity inside one group than between groups, the com-

pressor processes each group independently to improve the compression ratio. Thus,

there are multiple best answers such that if {G1, ..., GK} is the best grouping, then any

permutation of {G1, ..., GK} is a best grouping, too. For the purposes of compression

only, it is not necessary to find all of them. The algorithm in Section 3.4.2 returns one

of the optimal solutions. It is not difficult to perform a minor modification to it so that

it returns all solutions.

Problem 6 (Compression Based on Inter-Packet Correlation) Let S = {S[1],

S[2], ..., S[m]} be the unstructured data where m is the number of records or packet

payloads. For a given compressor C, let C(S) be the compressed bytes of S. The goal is

to divide S into G1, ..., GK̄ groups. Each group Gi contains ki of records, S = ∪K̄
i=1Gi,

and
∑K̄

i=1 ki = m, so that the compressed size C(S) =
∑K̄

i=1 C(Gi) is minimized.

Thus, Problem 6 is reduced to finding the best reordering of all rows, i.e., payloads

such that when similar rows are compressed together, a better compression is achieved.

It is not difficult to see that an algorithm that solves Problem 6 can also find the best

reordering of rows that minimizes the compression ratio. The following lemma describes

the complexity of finding the optimal answers.

Lemma 7 The best grouping can be found in O(n2n!) for Problem 5, and O(m2m!) for

Problem 6.

Proof For Problem 5, the permutations of all columns is computed with complexity

O(n!), and then dynamic programming is used to find the optimal partition of the

columns for each permutation with complexity O(n2). So, the total cost is O(n2n!).

Similarly, Problem 6 can be solved by permutating all rows and applying dynamic

programming to find best grouping of all rows. So the total cost is O(m2m!). The

details are presented in the optimal algorithm in Section 3.4.2. �

54

1: T ← {}
2: Generate all possible ordering of columns for

table T , add them to T

3: Best[T, n] ← +∞
4: for every Ti ∈ T

5: for (j = 1..n)
6: Best[T, n] ← min(Best[T, n],

Best[T l
i , j] + Best[T r

i , n− j])
7: return Best[T, n]

Figure 3.3: Optimal algorithm

3.4.2 Optimal Algorithm

The method for finding the optimal solution for Problem 5 and 6 are very similar.

Here Problem 5 is used as an example. The exhaustive search for the optimal answer

contains finding both the best ordering of the columns and the best partition. Let

T = {Ti} be a set of all possible ordering of columns in table T , i.e., columns in Ti is

a permutation of columns in T . Let Best[T, n] be the smallest compressed size of table

T with n columns, and let T l
i be the subset of the left j columns in table Ti, and T r

i

be the subset of the right n− j columns. The algorithm in Figure 3.3 describes how to

find the optimal solution.

In this algorithm, there are n! possible permutations of all columns in table T , so

the loop in line 4 will be executed n! times. With dynamic programming, the smallest

compressed size for every interval will be computed only once, and there are only O(n2)

intervals for each Ti, so the complexity of finding its best grouping for Ti is O(n2). As

a result, the complexity of this algorithm is O(n2n!).

However, the cost for the optimal algorithm is too high for practical use and hence

IPzip’s near-optimal algorithm is introduced here, which learns the correlation pattern

through a small training set, generates a compression plan, and then compresses the

original data set according to this plan. This separation moves all the complexity to the

training step, which can be taken offline, so that the real online compression can still be

done very fast. This holds true under the assumption that the training set represents

the original data set, so that the near-optimal plan generated from training set will

still be a good plan for the original data set. Section 3.5.3 discusses the algorithm that

55

tracks the performance of IPzip over time and switch to a more efficient compression

plan when required.

3.4.3 IPzip Compression Plan Generation Algorithms

In this section, we present the IPzip compression plan generation algorithms, which

exploit the intra- and inter-packet correlations inherent in network traffic.

IPzip Compression Plan Generation for Intra-packet Correlation

IPzip’s plan generation algorithm for structured data exploits the fact that packet

headers contain certain highly compressible columns. For instance, the IP Version

field in the IP header is always 4 in real traffic, and hence highly compressible. For

such columns, differential encoding is applied, which computes the difference of current

data from previous data, to transfer them into a 0-dominated sequence and finally

compress them separately. After these high-compressible columns are removed, the

computation cost of finding a good compression plan for the remaining columns is

reduced significantly. In the following an algorithm to handle the low-compressible

columns is presented.

The algorithm works as follows. Let U represent the set of low-compressible columns,

whose cardinality is denoted by l. Let k denote the maximum group size, i.e., maximum

number of columns allowed in a group. The algorithm generates all possible candidate

groups, denoted as G = {G1, ..., GN̂
}, where the number of columns in each Gi ∈ G

denoted as |Gi| is between 1 and k. The algorithm then computes the compressed

size for each of them. Let |Gi| represent the size of the generic group Gi ∈ G , i.e., the

number of columns in Gi. Let the cost for each group Gi be its compressed size, denoted

as cost(Gi). So, the problem is reduced to finding the best set of groups that covers

all l columns with minimum cost, denoted as C . This is a well known NP-complete

problem, called minimum set cover. Chvatal’s greedy algorithm [10] is used in this

thesis to get an approximate answer. If OPT is the cost of the optimal coverage and

Hl is the l-th harmonic number, Hl = 1+ 1
2 + 1

3 + ...+ 1
l

≈ ln l, then the cost of coverage

found by the greedy algorithm is no worse than H(l)OPT .

56

Generate Grouping of Columns
1: Initialize candidate group set G ← {}
2: For (i=1..k) {
3: Generate all combination of size i for l low compressible

columns in U
4: For each combination {
5: Generate all i! permutations of columns inside this combination
6: Add every generated permutation to G } }

7: Initialize chosen group set C ← {}
8: While C does not cover all columns {
9: Find G ∈ G with minimum cost per column,

cost(G)/|G| = min(cost(Gi)/|Gi|), ∀Gi ∈ G

10: Add G to C , C ← C ∪ {G}
11: Update candidate group set,

∀Gi ∈ G , if Gi ∩G 6= {}, G ← G − {Gi} }
13: return C

COMPRESSION
1: Reorganize columns as groups
2: Compress each group independently

Figure 3.4: Compression plan generation for intra-packet correlation

Having identified the near-optimal group of columns, the algorithm enters the com-

pression step. In this step, the low-compressible columns in the original data are re-

arranged into groups found by the plan generation step, i.e., C , and then the given

compressor is applied to compress each group independently. The details of the algo-

rithm are shown in Figure 3.4.

Note that to avoid compressing the same column several times in different groups,

we remove all groups from the candidate set that overlap with the chosen group, i.e.,

the groups that contain some columns covered by the chosen group (see line 11). This

does not change the algorithm, since all groups from size 1 to k are generated.

This algorithm is not optimal, even if k = n, since (i) the greedy algorithm only finds

an approximation of optimal solution and (ii) the best grouping for the training set may

not be the best one for original set. But in practice, this sub-optimal grouping with

k < n, can be very efficient, because even in data sets with large number of columns,

the number of correlated columns is limited. For example, the port number may be

57

correlated with layer 7 application, but not layer 2 protocol. Only in rare cases, we

have to explore all n columns to find the correlated ones.

The complexity of this algorithm is bounded by
∑k

i=1 i!Ci
l =

∑
i P

i
l = O(lk), because

there are in total
∑k

i=1 i!Ci
l number of candidate groups generated. The complexity of

finding the minimum set coverage is O(lk), too, because at each step, there must be

at least one column added to C, so the loop at line 8 runs at most l times. With

one column covered, the number of candidate groups will be reduced from O(lk) to

O((l − 1)k), and with j columns covered, the candidate group size is only O((l − j)k).

So, the total number of times the candidate groups are visited in order to find the

minimum cost coverage is O(lk) + O((l − 1)k) + ... + O(1k) = O(lk).

As can be seen from above, if l is large, the plan generation complexity is large.

Hence, in IPzip, this step is done offline and the learnt plan can then be applied against

the actual traffic data in real time.

Compression Plan Generation for Inter-Packet Correlation

Recall that the optimal solution would require reordering all the packets and has a

super-exponential complexity in terms of the number of payloads (O(m2m!)). Further-

more, it only returns an optimal ordering of rows, thus an optimal solution from the

training data cannot be used on the whole data set.

To address this issue, we introduce a near-optimal algorithm that returns a set of

rules that describe how to reorder payloads instead of actual ordering. This algorithm is

based on the observation that a packet’s payload is typically correlated with its header.

For instance, the port number in the packet header indicates the application this packet

payload belongs to, e.g., port 80 in the header can be expected to be correlated with the

appearance of the string “http” in the payload. Moreover, IPzip exploits the behavior

of compressors such as Gzip that are based on the lempel-ziv algorithm, which achieves

a good compression ratio when the neighboring bits in the input data stream are highly

correlated. Thus, the packet payloads that are correlated to each other such as those

that correspond to the same destination port, should all be sent to the same compressor.

The compression plan generation algorithm classifies all the payloads in the training

data set into multiple groups, where each group is then compressed via a separate Gzip

58

f
1

root

f

2

V
11

V
12

f
3

V
21
 V
22

f
3

V
31
V
32

G
4
G
3
G
2
G
1

V
31
V
32

f
2

f

3

V
21
 V
22

f

3

V
31
V
32

G

8

G

7

G

6

G

5

V
31
V
32

f

3

f
2
f
2

G
4
G
2
G
3
G
1

f

3

f

2

f

2

G

8

G

6

G

7

G

5

V
11
 V
12

V
31
 V
32
 V
32
V
31

V
21
V
22
 V
21
V
22
 V
22
 V
22
V
21
 V
21

f

2
 f
3

G

f

1

root

f

3

f

2

G
G

V
11
 V
12

V
31

V
22
V
21

G

G

V
32

(b) classification tree
(a) entire search space

Figure 3.5: Payload compression algorithm

compressor. Information in headers (T) is used in this thesis to generate the best

compression plan for the payloads (S). In practice, some fields in T contain little or

no information for classification, e.g., the timestamp field in network flow data. Thus,

excluding these fields from training can reduce the training time and the classification

tree size. F is defined here as the fields in T that are related to S, F = f1, f2, ..., fn.

A simple solution to classify the payloads would be to construct a full classification

tree, where the values of every field are enumerated. Figure 3.5 (a) shows an example of

full classification tree with each node representing a group of payloads. In this example,

F comprises of 3 fields (f1, f2, f3), and each field fi has 2 values vi1, vi2. A record S[i]

will be assigned to a group, i.e., the leaf node in the tree, based on the field values in its

associated F [i]. It is not difficult to find out that several paths lead to the same group

(Figure 3.5 (a)). For example, G2 can be reached from the path f1
v11→ f2

v21→ f3
v32→ G2

or f1
v11→ f3

v32→ f2
v21→ G2. A brute force classification can take all fields one by one,

and enumerate all values for each field. The subtree under root→ f1 in Figure 3.5 (a)

is such an example, i.e., the subtree with leaves {G1, G2, G3, G4, G5, G6, G7, G8} (the

left subtree under f1) and the subtree with leaves {G1, G3, G2, G4, G5, G7, G6, G8} (the

right subtree under f1) produce the same classification, since their leaves are the same,

just in different order. However, compression based on this full classification tree may

not be the best solution. First, enumeration of all values for all fields is too expensive.

For example, there are 232 possible IP addresses. Second, classifying via all the fields

59

may not achieve the best compression. To the contrary, for some groups that have very

few records, it may be better to combine them with their sibling or parent groups to

achieve a better compression ratio. This is because Lempel-Ziv based compressors need

a large amount of data to achieve a good compression ratio. If a group does not contain

enough data, the algorithm either waits for more data, or compromises the compression

ratio.

IPzip proposes a greedy solution to build a classification tree, which may not nec-

essarily be a complete tree. Let the tree node represent the group of payloads that

have been classified to it by the fields and their values from root to itself, where root

represent the entire data set. The function cost(node) is used to represent the com-

pressed size of the node, and Path(node) is used to represent the set of fields along the

path from root to the node, then F − Path(node) is the set of fields not yet used in

the classification of the node. This algorithm starts to find the best classification field

that minimizes the cost of root by trying all used fields, then classifying the root into

subgroups/subnodes according to this best field. Then the above procedure is repeated

for each subnode until the cost cannot be minimized anymore. The algorithm for con-

structing the classification tree is shown in Figure 3.6, in which, Q is the queue of tree

nodes need to explore. An example of such a tree is shown in Figure 3.5 (b). In the

next step, the incoming data are compressed according the classification tree

As discussed above, if a full classification is used, the order of fields along the path is

not important, since they generate the same leaf nodes, just in different order. However,

in IPzip’s classification tree generation, the tree is trimmed and hence the order of fields

makes a difference. Still, IPzip ensures that we create the best path to reach a leaf node,

as described in the following lemma.

Lemma 8 IPzip’s classification tree generation algorithm achieves the best order of

fields used in classification.

Proof At step 1, the only leaf node is the root. The algorithm chooses the field fi1 that

leads to the smallest compression size to classify the whole data set as described in the

algorithm.

60

Build the Classification Tree
1: Q← root
2: while Q is not empty {
3: node ← first node in Q; minlen← cost(node)
5: fchosen← NULL
6: for every f ∈ F − Path(node) {
7: further classify node to node1, node2, ... according to f ’s value
8: newlen←

∑
i cost(nodei)

9: if minlen > newlen
10: fchosen ← f ; minlen← newlen }
11: if fchosen = NULL
12: mark node as leaf
13: else
14: add node1, node2, ... to Q}

COMPRESSION
1: for each S[i] {
2: find its group, i.e., the leaf node can be reached
3: from the fields in its T [i] }
4: compress each group individually

Figure 3.6: Compression plan generation for inter-packet correlation

Assume that at step k, we had the best order of fields of fi1 , fi2 , ..., fik to reach the

leaf nodes at level k.

At step k+1, the algorithm expands one of the leaf nodes at level k as a root of a

subtree and finds the best field fik+1
for this subtree. Suppose that fi1 , fi2 , ..., fik , fik+1

is not the best path for a node at level k+1. There must be at least an fj ∈ fi1 , fi2 , ..., fik

that does not belong to the best path, since fik+1
is the best path for the subtree at

level k. However, this violates the assumption that fi1 , fi2 , ..., fik is the best path to

reach the node at level k. �

For offline compression of packet payloads, the algorithm can train on the entire

data set and build the classification tree that will achieve the best compression for the

data set. However, for online compression, the classification tree is learnt on a sample

training set which may not contain all possible values for some fields. Hence, we also

add a value “other” to represent the values not covered for those field in the training

set. In the experiments, the top B values in each field are picked up to classify, named

Branch Factor and all other uncovered values are classified as “other”. For instance, if

61

Training data set

Destination IP = x.x.x.x

Destination port = 80

Destination IP = x.x.x.x

Destination port = 25

Source IP = x.x.x.x

Source IP = x.x.x.x

Figure 3.7: Classification tree

there are only the following kinds of layer-4 protocols seen in the training set: TCP,

UDP, ICMP, then a value Other is introduced to indicate all other layer-4 protocols

possible.

IPzip is generic in its definition of compression for unstructured data. Using all the

fields in a packet header to build the classification tree gives us a per-packet compression.

On the other hand, using only the fields that define a layer-4 flow, i.e, source IP address,

destination IP address, source port, destination port and layer-4 protocol, would achieve

a per-flow compression. An example of classification tree is shown in Figure 3.7 with

its first layer as destination port, and second layer as source/destination IP addresses.

In this thesis, implementation and experiments are done on per-flow compression.

3.5 System Architecture

In the previous section, how to learn the intra-packet and inter-packet compression plan,

i.e., the order and grouping of the columns for traffic headers, and the classification tree

for traffic payloads has been discussed. This section discusses how to apply them to

achieve better compression ratios for both online and offline compression. As shown in

Figure 3.8, online compression must be high-speed and resource efficient with a goal

to be implemented in devices like routers, and offline compression must achieve good

compression ratio, since long history of data may require to be stored.

62

Data Center

Backbone Network

Storage

Data

Online version of
our algorithm

Offline version of
our algorithm

Figure 3.8: Goal of our work

Central Processing Center

Storage

P1 H1Pn Hn

Intra-Packet Clustering

Inter-Packet Clustering

P1 H1Pn Hn

Con(H1-n)

Con(P1-n)

C(P1-n)C(H1-n)

Online Compression

Con(P1-n)Con(H1-n)

Hn H1

Pn P1

D
ec

om
pr

es
si

on

Inter-Packet
Clustering

Intra-Packet
Clustering

Offline Compression

Network

Hn H1

Pn P1

Coff(H1-n)

Coff(P1-n)

C
om

pr
es

si
on

C
om

pr
es

si
on

Figure 3.9: System architecture

63

Incoming headers

classifier

Compression plan

Compressor

Compressor

Compressor

Compressor

colum
ns

Figure 3.10: Online compression of the headers

Figure 3.9 shows how traffic data are compressed in both online and offline scenarios.

In the online case, traffic data are separated to headers (H) and payloads (P). The

headers are clustered by the intra-packet compression plan (column rearrangement), and

the payloads are clustered by the inter-packet compression plan (row rearrangement),

then they are compressed separately and sent to the central processing center. When

compressed data arrive at the center, they are decompressed for various analyses. If

necessary, they are compressed again by an offline compression algorithm for efficient

storage. In offline compression, both the headers and payloads are clustered by inter-

packet compression plan (row rearrangement), and headers will be also clustered by

intra-packet compression plan (column rearrangement). The details are discussed in

section 3.5.1 and section 3.5.2.

3.5.1 Online Compression

Figure 3.10 shows how the headers are compressed in online scenario. The classifier

rearranges the order of the columns according to the intra-packet compression plan,

which describes which are the high/low compressible columns and which low compress-

ible columns should be grouped together. Then the classifier sends each group to its

own compressor. The compressors apply differential encoding to high compressible

columns to change them to 0 dominated columns, then compress them by gzip. The

low compressible columns are compressed by gzip directly.

64

x.x.x.x

x.x.x.x

Destination port = 80

Source port = 25

Destination port = 53

…..

Hash Table for Port Number

…

Hash Table for Source IP

x.x.x.x

x.x.x.x
…

Hash Table for Destination IP

x.x.x.x

x.x.x.x
…

Hash Table for Source IP

Incoming data Classified data

Compressor

Compressor

Compressor

Compressor

Compressor

Compressor

Compressed data

Figure 3.11: Online compression of payloads

Figure 3.11 shows how the payloads are compressed in an online scenario. A two-

layer hash table is constructed by keeping the top 2 layers of the classification tree.

Figure 3.11 is an example of the hash table. As expected, almost all the top layer clas-

sifications are based on either destination port or source port, since lots of applications

use fixed port numbers. The second layer may be any other remaining fields, depending

on the port number used in the first layer. To make the hash table dynamic, the exact

value in the first layer is matched exactly. In the second layer, however, only hashed

values are compared. For instance, if the destination IP address is the second layer for

destination port 80, then two payloads that have port 80 and the same hashed value of

IP addresses are compressed by the same compressor. This fuzzy match dramatically

reduces the number of compressors required in online compression with only a little or

no decrease in compression ratio. This is because most network traffic has duration,

although traffic with different IP address shares the same compressor, most likely they

are compressed at different time intervals.

Now it is clear that our online compression consumes very few CPU computations

and memory resources. Besides compression, the only computational overhead is the

header column grouping and the payload classification. The cost of header column

65

grouping is only a few operations to rearrange the bytes, and the cost of payload

classification is the calculation of two hash values. As a result, our compressor can

work at very high speed.

The extra memory required by header grouping is only a few bytes since typical

TCP/IP header has only 40 bytes. Since our second layer hash table is dynamic, i.e.,

no real IP addresses stored, the extra memory required by payload classification is the

frequently used port numbers in the first layer, which is only a few hundreds. For those

infrequent ones, some default compressors are reserved if their entries cannot be found

in the hash table. The dominating cost is the compressors. We choose gzip as our

compressor, which needs about 256K memory each. Section 3.6 shows their memory

usages.

3.5.2 Offline Compression

The compression ratio of online compression can be further improved. In the online case,

only the column correlations inside headers are explored. In the offline case, correlations

between headers are also exploited. The same classification is applied to both payloads

and headers. An example of offline compression is shown in Figure 3.12. Due to

their arriving order, the data look much more random than they should be. Suppose

that the correlations inside the data have been identified by the algorithms described

in Section 3.4.3, the data are reorganized as follows. First, the correlated columns

in headers are rearranged together (in our implementation, columns are bytes. Here

header fields are used to demonstrate). Then the headers and payloads are classified

by their values in header fields. After that, data are separated in different groups, for

example, {timestamp}, {destination ip, destination port} and {payloads}, so that each

group are well organized with similar data together. Therefore, better compression

ratios can be achieved by compressing each group separately.

In the classification step, instead of the simplified two layer hash table, the classi-

fication used in the offline case is the classification tree itself. This finer classification

can increase the similarity between neighboring packets to improve the compression

ratio at a cost of longer classification time, because the number of comparisons in the

66

dip-destination IP address, dp-destination port, ts-timestamp, pld-payload
Original Data Reorder Columns Reorder Rows

dip ts dp pld ts dip dp ts dip dp pld
1.1.1.1 1 80 HTTP/1.1 200 OK.. 1 1.1.1.1 80 1 1.1.1.1 80 HTTP/1.1 200 OK..
2.2.2.2 2 25 MAIL FROM:.. 2 2.2.2.2 25 5 1.1.1.1 80 HTTP/1.1 200 OK..
3.3.3.3 3 1863 MSG 9294..MIME.. 3 3.3.3.3 1863 2 2.2.2.2 25 MAIL FROM: ..
2.2.2.2 4 25 MAIL FROM:.. 4 2.2.2.2 25 4 2.2.2.2 25 MAIL FROM:..
1.1.1.1 5 80 HTTP/1.1 200 OK.. 5 1.1.1.1 80 3 3.3.3.3 1863 MSG 9294..MIME..
3.3.3.3 6 1863 MSG 9294..MIME.. 6 3.3.3.3 1863 6 3.3.3.3 1863 MSG 9294..MIME..

Figure 3.12: Offline compression example

classification may be up to the depth of the tree.

More time and memory are available here because there are less resource constrains

in offline compression. In theory, packet classification (intra-packet compression plan)

can also be applied before column grouping for online header compression. However,

in the online case, we require either a large buffer to rearrange the data or lots of

compressors to separate the compression between groups (the number of compressors

equals the product of the number of header groups and the number of payload classes),

thus the memory usage will be too high to be practical for online devices like routers.

Both online and offline compressed data can be easily recovered. For online case,

the headers, which arrive in their original order, are decompressed first. Then from the

values in header fields, we can find by which compressor its payload was compressed.

Next the data sent from that compressor is decompressed. Data from the decompressed

stream are picked up with length specified by the header, and appended to the header.

In the offline compression, both header and payload are reordered by the same classifi-

cation in a similar way as shown by the example in Figure 3.12. In order to recover the

data, decompression is done first, then the headers and payloads are sorted together

by the timestamp in the headers. If two packets have the same timestamp, their order

may not be recovered, which is not important for many applications.

3.5.3 Traffic Pattern Change Detection

Our compression algorithm is able to outperform previous compression algorithms be-

cause it exploits in details the inner structure of the data stream under processing. If

67

t1 t2 t3 T

f fn g(T,�)

Compression Ratio

Time

g(T,t3)

Figure 3.13: Traffic pattern change detection.

the data stream were going to exhibit the same properties over time, then IPzip would

never be required to modify its compression plan. Unfortunately, Internet traffic is

dynamic and thus IPzip are required to track its performance over time such that it

can switch to a more efficient plan as time requires. The following example shows how

the simple usage of known predictors, coupled with basic intuitions can effectively solve

the above problem. Out approach is validated by using real packet traces in Section

3.6.

Figure 3.13 presents an example that shows the evolution of the observed compres-

sion ratio over time. Let’s assume that the amount of the original traffic at time t

on a generic link is Ct, where C is a constant decided by the rate of the link under

consideration. Let’s assume that f(t) is a generic function that captures the properties

of the Gzip compression algorithm. Hence, the data compressed at any point in time is

f(t)Ct. If the traffic pattern is stable, then f(t) is a monotonously decreasing function,

because the underlying compressor Gzip is asymptotically optimal when the data size

is infinitively large (an example is given in Section 3.6).

Let’s assume that at time t1 IPzip observes the compression ratio, denoted as f

(solid line) diverging from its expected value (dashed line), as shown in Figure 3.13.

The traffic pattern change can be easily detected by using simple predictors such as

the ARMA model [5]. At this time, IPzip starts learning a new plan denoted as fn.

68

Assume that learning of the new plan is finished at time t2, and hence the new plan is

ready to be applied. The problem now is reduced to determining the time t3 at which

IPzip needs to switch to the new plan. Assume that the interest is in minimizing the

overall compression ratio for data within the time range [0 − T], where T represents

the time the next traffic pattern change is expected. Note that the parameter T can be

computed via time series models [5] that can capture the diurnal and seasonal trends.

The overall compression ratio is defined here as g(T, t3), which has two parameters:

the time range parameter T and the time to switch parameter t3. Thus, g(T,∞)

represents the decision of not switching to the new plan. Then the compressed size of

total data is S(T, t3) = Ct3f(t3) + C(T − t3)fn(T − t3). The problem now is reduced

to finding the optimal value of t3 that minimizes the overall compressed size S(T, t3)

obtained by solving the differential equation ∂S(T,t3)
∂t3

= 0. This is equivalent to solving

equation ∂g(T,t3)
∂t3

= 0, where g(T, t3) = S(T,t3)
CT

= f(t3)
t3
T

+ fn(T − t3)
(T−t3)

T
, in which

the first and second addition terms represent the compression ratio achieved via the old

(f) and new (fn) plans respectively.

3.6 Experiments

In this section, results of an extensive set of experiments performed on both IP network

traffic data and IP network traffic statistics are presented. The results are obtained

when using IPzip on real IP datastreams collected from two major ISPs carriers in

South America and Asia. The traffic data sets are truncated packet traces, comprising

of all packet headers and only the first 100 bytes of payload from both ISPs. They are

later referred as Header and Payload. The traffic statistics data set is called IPVolume

that comprises of the following data records: <StartTime, Duration, TargetIP, BytesIn,

BytesOut, PktsIn, PktsOut, FlowsIn, FlowsOut> . IPVolume has a similar structure to

the traditional Cisco Netflow. The truncated packet traces are passively collected from

OC-48 links (2.5 Gbps) and with 14% and 15% link utilization, respectively. Traffic

trace from ISP1 contains 10 minutes of data and traffic trace from ISP2 contains 15

minutes of data. The IPVolume data represents a full month of data collected from

ISP1.

69

Header Payload IPVolume
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
om

pr
es

se
d

S
iz

e/
O

rig
in

al
 S

iz
e

Comparison with Other Compressors

Gzip
Pzip
Bzip
IPzip

Figure 3.14: IPzip vs Others: Compression rations for flow headers, flow payloads and
IPVolume records.

The results are organized into four major sets. First, the overall compression ratios

achieved by IPzip is demonstrated when compared to other compressors like Pzip, Bzip

and Gzip. Second, we present the results related to the overall performance of IPzip

during the training phase in terms of the time required to generate the near-optimal

compression plan. Third, we present the results related to the performance of IPzip

during the compression phase for both headers and payload data. Fourth, we show how

our pattern change detection algorithm works when concatenating together the packet

traces collected from the two ISPs; due to the fact that the packet traces exhibit different

traffic compositions, at the time of the change, we show how IPzip promptly reacts by

generating the new plan and thus is able to keep the performance of compression for

dynamic data patterns.

All the results were obtained running tcpdumps on a dual-core 32-bit Linux machine

with 2.66GHz CPU and 16GB memory.

3.6.1 IPzip vs Other Compressors: average performance

In Figure 3.14, the performance achieved by IPzip compared with other known compres-

sors like Pzip, Bzip and Gzip, is shown. The compression ratio is defined as (compressed

data size)/(original data size) with smaller values being better. The flow headers, flow

payload and IPVolume records collected from ISP1 are used. The truncated flow trace

70

contains 113 MBytes of header and 290 MBytes of truncated payload, i.e., the first 100

Bytes. The IPVolume records count up to 22 MBytes of data.

As shown in Figure 3.14, for the packet header, IPzip is able to achieve a 40.6%

compression ratio, while on the other extreme, Gzip and Bzip can achieve a compression

ratio of 54%. Pzip falls in the middle with a compression ratio of 43.2%. For packet

payload and IPVolume records, the gain obtained when running IPzip is remarkable.

Indeed, for payload data, Gzip cannot do better than 52%, Bzip achieves a 44.1% while

IPzip outperforms the previous ones with a 31.7%. Notice that Pzip cannot compress

payload data, and thus no results are shown related to this case. Similar results hold

true for IPVolume records. The compression ratios achieved by different compressors

are 32% for Gzip, 6.6% for Bzip, and 1.4% for Pzip, respectively. IPzip achieves the

lowest compression ratio that equals to 0.6%, i.e., over 99% savings of original space.

Moreover, due to the fact that the first few bytes of payloads of multiple packets are

more likely to be similar than the latter ones, when more bytes in each payload need

to be compressed, the performance of IPzip over Gzip decreases. However, even in the

limit, the compressed size of IPzip is still 93% of Gzip’s size when the entire payload

is used (compare that with 74% of Gzip’s size when the first 100 bytes of payload are

used).

3.6.2 IPzip Training Phase: time required to generate a near-optimal

compression plan

In this section, our attention is focused on the performance of IPzip during the gener-

ation of compression plans.

As the reader can imagine, the longer the training data set, the better the compres-

sion ratio that can be achieved, since more about the structure of the data is learnt.

Figure 3.15 shows the compression ratio as a function of the training data size for

packet headers and packet payloads. The performance of IPzip when using different

group size are shown by the curves. For example, a GX in Figure 3.15(a) refers to

the case where no more than X columns are allowed per each column group (see Sec-

tion 3.4.3). Similarly, a BY in Figure 3.15(b) refers to the case where no more than

71

0 1 2 3

0.52

0.53

0.54

Data used for training (second)
(a)

C
om

pr
es

se
d

si
ze

/O
rig

in
al

 s
iz

e

Header

0 10 20 30

0.37

0.375

0.38

0.385

0.39

0.395

0.4

Data used for training (second)
(b)

C
om

pr
es

se
d

si
ze

/O
rig

in
al

 s
iz

e

Payload

G2
G3
G4

B20
B56
B128

Figure 3.15: Training data size vs Compression ratio

Y number of branches per node are allowed (see Section 3.4.3). First, notice that the

compression ratio does not decrease indefinitely, but it reaches a plateau when the

training set contains enough data. Indeed, the biggest drop happens at 0.5 seconds for

the header and at 7.5 seconds for the payload. The reason for such big difference resides

in the fact that IPzip learns intra-packet correlation for headers (correlations between

columns inside a packet header) and inter-packet correlation for payloads (correlations

between packets) as described in Sections 3.4.3. As a consequence, IPzip has to wait

longer in payload training as it needs to receive enough flows to investigate their cor-

relation. Second, notice that the size of compressed data decreases with larger group

size for headers and greater number of branches for payloads. However, when the size

of groups and number of branches are large enough to capture the hidden correlations,

the compressed size does not decrease anymore. For example, for packet headers the

compression ratio decreases severely when considering G3 instead of G2 but does not

show any gain when considering G4. Similarly for packet payload, the compression

ratio improves when using B56 compared to B20, but no extra saving is achieved when

using B128.

Next, some results are presented to quantify the cost associated to the generation

of the compression plan (Figure 3.16). It can be noticed that the time required to train

IPzip for packet headers is super-exponential in terms of group size (as discussed in

Section 3.4.3), while the training time for packet payloads increases linearly with the

72

0 0.5 1 1.5 2 2.5
0

500

1000

1500

Data used for training (second)
(a)

T
im

e
us

ed
 fo

r
tr

ai
ni

ng
 (

se
co

nd
) Header

0 5 10 15 20 25
0

5

10

15

20

Data used for training (second)
(b)

T
im

e
us

ed
 fo

r
tr

ai
ni

ng
 (

se
co

nd
) Payload

G2
G3
G4

B20
B56
B128

Figure 3.16: Training Phase: Time spent on training

number of branches per node (as discussed in Section 3.4.3). Further, from the previous

observation shown in Figure 3.15, the compression ratio does not decrease when the

number of groups increases from 3 to 4 or the number of branches increases from 56

to 128, which means that a small group size/branch number has already captured the

hidden correlation. Since the training process would be done in central processing

station, e.g., in data center, it is possible to buffer several seconds of data for training,

and the training costs, i.e., 40 seconds for the header (groups=3) and 16 seconds for

the payload (branches=56), would be acceptable in practice.

3.6.3 IPzip Compression Phase: compression ratio and speed

In this section, two important questions are answered. First, how much more IPzip

can compress compared with Gzip when used for packet headers and payloads. Second,

can IPzip be implemented to compress/decompress data on-the-fly for very high-speed

links.

Figure 3.17 shows the compression ratio achieved by IPzip for headers (Figure 3.17(a))

and payloads (Figure 3.17(b)) when applied to a 10 minute trace from ISP1. The over-

all compression ratio smoothly decreases over time as more and more about the data

under processing is learnt. Compared with Gzip, IPzip can save 4% more for headers

and 15% more for payloads when used for online compression. For offline compression,

the savings increases even further to 15% and 20% respectively, due to the fact that the

73

0 200 400 600
0.4

0.45

0.5

0.55

Data (second)
(a)

C
om

pr
es

se
d

si
ze

/o
rig

in
al

 s
iz

e

Header compression ratio

0 200 400 600
0.3

0.35

0.4

0.45

0.5

0.55

Data (second)
(b)

C
om

pr
es

se
d

si
ze

/o
rig

in
al

 s
iz

e

Payload compression ratio

Gzip
IPzip online
IPzip offline

Gzip
IPzip online
IPzip offline

Figure 3.17: Compression ratio over time for Headers (a) and Payloads (b)

0 200 400 600
0

5

10

15

Data (second)
(a)

se
co

nd

Header compression time

0 200 400 600
0

200

400

600

800

Data (second)
(b)

se
co

nd

Payload compression time

Online Compression
Offline Compression
Online Decompression
Offline Decompression

Online Compression
Offline Compression
Online Decompression
Offline Decmp

Figure 3.18: Time to compress and decompress Headers (a) and Payloads (b)

offline compression takes into consideration both intra- and inter-packet correlations.

Next, the fact that IPzip is a good candidate algorithm that can run at very

high-speed links is shown. Figure 3.18 shows the time required for IPzip to com-

press/decompress headers and payloads (y-axis of Figure 3.18(a) and Figure 3.18(b),

respectively) as a function of the packet arrival rate (x-axis). Notice that to compress

the entire 10-minute trace, the online compression time is 12 seconds for headers and

32 seconds for payloads, while the decompression time is 2.5 seconds for headers and

17 seconds for payloads. The offline compression time and decompression time for the

payload are longer than the ones observed for the online case. Especially the offline

payload decompression, because after decompressing the data, it is still necessary to

sort the data according to their timestamp to recover the original order.

74

IPzip50 IPzip2000 IPzip6500
0

500

1000

1500

2000

M
B

Memory Usage

(a)

0 200 400 600
0.36

0.38

0.4

0.42

0.44

0.46

0.48

C
om

pr
es

se
d

S
iz

e/
O

rig
in

al
 S

iz
e Compression Ratio

Data (second)
(b)

IPzip50
IPzip2000
IPzip6500

Figure 3.19: Online payload compression: A look at the memory usage

Last in this section, the memory requirement for running IPzip for the online com-

pression of packet payloads is analyzed. In Figure 3.19, we show the memory usage of

IPzip as a function of the number of compressors used (see Figure 3.19(a)) and report

their associated compression ratio (see Figure 3.19(b)). It can be noticed that the more

compressors are used, the more IPzip is capable to compress at the cost of a larger

pool of memory. For example, when 2000 compressors are used, IPzip requires 500 MB

of memory for the online computation to achieve a compression ratio of 40%. Notice

that real systems can be equipped easily today with up to 2 GB of memory, which

means that IPzip could be easily implemented using up to 6500 compressors (1.8GB

of memory), leading to an overall compression ratio of 37%.

3.6.4 IPzip in a Dynamic Pattern Changing Environment

Until now, the traffic has been assumed to be stationary. In this section, IPzip in a

dynamic environment is considered, and our pattern detection algorithm is applied to

identify the time at which a degradation of the compression ratio associated to the

current plan is observed, and when to switch to the new plan. In order to emulate

such scenario, the two packet traces collected from the two ISPs that show strong

dissimilarities in their traffic composition (see Figure 3.21) are concatenated. First, the

10 minutes trace collected from ISP1, and then the 15 minutes trace collected from

ISP2 are used, which means that the traffic pattern change is experienced at a time

300 seconds from the beginning of the entire trace.

75

0 300 600 900 1200 1500

0.4

0.5

0.6

0.7

0.8
Old Plan vs. New Plan

Data (second)
(a)

co
m

pr
es

si
on

 r
at

io

f
o
(t)

f
n
(t)

g(t,∞)
g(t, 300)

0 25 50 75 100
0.685

0.69

0.695

0.7

0.705

0.71

0.715

Compression Ratio for New Plan f
n
(t)

Data (second)
(b)

C
om

pr
es

si
on

 R
at

io

real
fitted

Figure 3.20: IPzip tracking and reacting to traffic pattern changes

APPHTTP 14.8%

IMMSN 5.9%

BITTORRENT 2%

EDONKEY 13.7% UNKNOWN 61.6%

APPHTTP 9.8%

IMQQ 0.8%

BITTORRENT 10.7%

UNKNOWN 78.2%

ISP2 ISP1

Figure 3.21: Traffic pattern change

76

Figure 3.20(a) presents some results indicating the efficiency of IPzip in adapting

to changes in traffic patterns.

Let us define fn(t) as the function of compression ratio over time t if the newly

learned plan is applied to the second packet trace, and fo(t) as the ratio function if the

old plan learned from the first packet trace is applied to the second trace. As discussed

in Section 3.5.3, the overall compression ratio g(t, t3) at time t can be computed as

g(t, t3) = S(t,t3)
Ct

, where t > t3 and t3 is the plan switching time. Thus, the overall com-

pression ratio g(t, 300) and g(t,∞) represents the two cases that IPzip either switches

to the new plan immediately or never.

At the first couple of seconds, although the real compression ratio of old plan g(t,∞)

is still better than the new plan fn, the trend of the old plan is increasing in ratio values

while the new one is decreasing (Figure 3.20 (b)). The fitted function of the new plan

obtained with simple curve fitting can be represented as fn = −0.0057ln(x) + 0.7175.

Using the methods described in Section 3.5.3, the final compression ratio g(1500, t3)

for every possible switching time t3 can be predicated. And the best switching time is

the time when traffic pattern changes, i.e., t3 = 300. However, it should be pointed out

that this is not achievable because IPzip needs to collect new data points to generate

the new compression plan. As a consequence, the actual switching time is represented

by the sum of time required to collect the new data samples and the associated training

time, which is about 40 seconds in total. Thus the best compression ratio to achieve is

62.4% instead of the optimal g(1500, 300) = 61.7%, as shown in Figure 3.20.

3.7 Summary

Information redundancy dictates the performance of compressors. Our compression al-

gorithm investigates the inner properties residing in IP datagrams, discovers similarities

and clusters them in an efficient compression plan that can be easily processed by stan-

dard compression algorithms. The effectiveness of our intuitions and data preparation

provided by IPzip are deeply analyzed with the usage of real packet traces collected

from two large ISPs. IPzip is not dependant to any specific compressor used to process

77

its output. In this thesis, we use Gzip as our compressor mainly because of the prop-

erties of the data analyzed here is characterized by many repeated patterns and thus

fits well with the characteristics of Gzip. The future work includes prototyping IPzip

in silicon by working with router vendors, since we envision that its better usage will

be on compressing IP packets on-the-fly.

78

Chapter 4

Conclusion

In this thesis, we present the techniques that can be used to perform efficient compres-

sion in dynamic systems. Algorithms are proposed to deal with two types of scenarios:

the dynamic data and dynamic data patterns. First, the technique of lossy compres-

sion of dynamic data is discussed. Investigation is carried out concerning how to build

data synopses in databases and how to maintain its approximation accuracy over time-

varying data. Algorithms that are capable of keeping the maintenance cost low for

both dynamic data and weights are proposed. Second, we study the technique of loss-

less compression of data with dynamic pattern. New algorithms are invented to solve

the problem of traffic compression in IP networks. Our algorithms discover correlation

patterns inside traffic packets as well as correlation patterns between packets so that

they can be exploited to improve compression ratios. A traffic pattern change detec-

tion algorithm is presented to track time-varying patterns and to modify compression

strategies accordingly.

In our study, the emphasis is on not only compression ratios, but also their con-

strains in real world. In the lossy compression in database, we consider non-uniform

weights which characterize the real user queries over data. Our algorithms are designed

for not only dynamic data, but also dynamic weights. In lossless compression in IP

networks, the focus is on both memory usage and compression speed. In online traffic

compression, in order to reduce memory cost, the data are classified and they are as-

signed to different compressors, instead of buffering and reordering the data; in order

to improve compression speed, the traffic pattern learning step is carried out offline.

There are other compression scenarios in dynamic systems, such as: (i) lossy com-

pression of data with dynamic patterns, and (ii) lossless compression of changing data.

79

A typical example of case (i) is the video steam compression, and that of case (ii) is the

compression in file system backup, which is called the “deduplication” techniques. The

most popular strategies used in these two compression cases are “differential coding”,

i.e., the current data are compared with the previous data to find their differences, and

only the differences are stored.

Although data compression in dynamic environments is a very challenging problem

and it has many important applications in the real world, it itself is understudied.

Some interesting questions in this area are answered in this thesis through examples

from databases and IP networks. There are still more problems to explore. It is

expected that the work done in this thesis will inspire more researchers and attract

more attentions to discover and solve interesting problems in this field.

80

References

[1] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histograms: Building Histograms
Without Looking at Data,” SIGMOD, 1999.

[2] S. Babu, M. N. Garofalakis, and R. Rastogi, “Spartan: A model based semantic
compression system for massive data tables,” In Proc. of ACM SIGMOD Int’l
Conference on Management of Data, 2001.

[3] N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: A Multidimensional
Workload-Aware Histogram,” SIGMOD, 2001.

[4] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algo-
rithm”, citeseer.ist.psu.edu/76182.html, 1994.

[5] C. Chatfield, “The Analysis of Time Series: An Introduction,” Chap-
man&Hall/CRC 2004.

[6] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, “Approximate query
processing using wavelets,” VLDB Journal, Vol. 10, No. 2-3, pp. 199–223, 2001.

[7] S. Chen and A. Nucci, “Dynamic Nonuniform Data Approximation in Databases
with Haar Wavelet”, Journal of Computers, issue 8, 2007.

[8] S. Chen and A. Nucci, “Nonuniform Compression in Databases with Haar
Wavelet”, DCC, 2007.

[9] S Chen, S. Ranjan and A. Nucci, “IPzip: A Stream-aware IP Compression Algo-
rithm”, DCC, 2008.

[10] V. Chvatal, “A greedy heuristic for the set covering problem,” Mathematics of
Operations Research, vol. 4, no. 3, pp. 233–235, 1979.

[11] C. M. Chen and N. Roussopoulos, “Adaptive Selectivity Estimation Using Query
Feedback”, SIGMOD, pp. 161–172, 1994.

[12] G. Fowler, A. Buchsbaum and D. Caldwell and K. Church and S. Muthukrishnan,
“Engineering the Compression of Massive Tables: An Experimental Approach,” In
Proc. 11th ACM-SIAM Symp. on Discrete Algorithms pp. 175-184, 2000.

[13] G. Fowler, A. Buchsbaum and R. Giancarlo, “Improving Table Compression with
Combinatorial Optimization,” In Proc. 13th ACM-SIAM Symp. on Discrete Algo-
rithms, pp. 213-22, 2002.

[14] V. Ganti and M. Lee and R. Ramakrishnan, “ICICLES: Self-Tuning Samples for
Approximate Query Answering”, VLDB, pp. 176-187, 2000.

81

[15] M. Garofalakis and P. B. Gibbons, “Wavelet Synopses with Error Guarantees”,
SIGMOD, pp. 476-487, 2002.

[16] M. Garofalakis and P. B. Gibbons, “Probabilistic Wavelet Synopses”, ACM Trans-
actions on Database Systems (SIGMOD/PODS’2002 Special Issue), pp. 43-90,
2004.

[17] S. Guha and B. Harb, “Wavelet Synopsis for Data Streams: Minimizing Non-
Euclidean Error,” KDD, 2005.

[18] S. Guha and B. Harb, “Approximation Algorithm for Wavelet Transform Coding
of Data Stream”, SODA, 2006.

[19] M. Garofalakis and A. Kumar, “Deterministic Wavelet Thresholding for Maximum-
Error Metrics,” PODS, 166-176, 2004.

[20] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. J. Strauss, “Surfing Wavelets
on Streams: One-Pass Summaries for Approximate Aggregate Queries”, VLDB,
2001.

[21] S. Guha, N. Koudas and D. Srivastava, “Fast Algorithms for Hierarchical Range
Histogram Construction”, PODS, 2002.

[22] M. Garofalakis and R. Rastogi, “Data Mining Meets Network Management: The
Nemesis Project,” ACM SIGMOD Int’l Workshop on Research Issues in Data
Mining and Knowledge Discovery, May 2001.

[23] R. Holanda and J. Garcia, “A New Methodology for Packet Trace Classification
and Compression Based on Semantic Traffic Characterization,” ITC19, 2005.

[24] R. Holanda, J. Verdu, J. Garcia and M. Valero, “Performance Analysis of a New
Packet Trace Compressor based on TCP Flow Clustering,” ISPASS 05 2005.

[25] W. H. Hsu and A. E. Zwarico. “Automatic Synthesis of Compression Techniques
for Heterogeneous Files,” Software - Practice and Experience, 1995.

[26] G. Iannaccone, C. Diot, I. Graham and N. McKeown, “Monitoring very high speed
links,” In Proc. of the 1st ACM SIGCOMM Workshop on Internet Measurement,
2001.

[27] H. V. Jagadish, J. Madar and R. T. Ng, “Semantic Compression and Pattern
Extraction with Fascicles,” Proc. of VLDB, pp.: 186 - 198, 1999.

[28] H. V. Jagadish, R. T. Ng, B. C. Ooi, and A. K. H. Tung, “ItCompress: An Iterative
Semantic Compression Algorithm,” ICDE 2004.

[29] N. Koudas, S. Muthukrishnan, D. Srivastava, “Optimal histograms for hierarchical
range queries,” PODS, 2000.

[30] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann and R. Sommer, “Building a time
machine for efficient recording and retrieval of high-volume network traffic,” IMC
2005.

82

[31] A. C. Konig and G. Weikum, “Combining Histograms and Parametric Curve Fit-
ting for Feedback-Driven Query Result-size Estimation,” VLDB, 1999.

[32] Y. Liu, D. Towsley, J. Weng and D. Goeckel, “An Information Theoretic Approach
to Network Trace Compression,” UMass CMPSCI Technical Report 05-03

[33] Y. Liu, D. Towsley, T. Ye and J. Bolot, “An Information-theoretic Approach to
Network Monitoring and Measurement,” IMC 2005.

[34] L. Lim and M. Wang, and J. S. Vitter, “SASH: A Self-Adaptive Histogram Set for
Dynamically Changing Workloads”, VLDB, 2003.

[35] S. Muthukrishnan, “Subquadratic Algorithms for Workload-Aware Haar Wavelet
Synopses,” FSTTCS, 2005.

[36] V. Markl, G. M. Lohman and V. Raman, “LEO: An autonomic query optimizer
for DB2”, IBM Systems Journal, Vol. 42, 2003.

[37] S. Muthukrishnan and M. Strauss, “Rangesum histograms,” SODA, 2003.

[38] S. Muthukrishnan, M. Strauss and X. Zheng, “Workload-Optimal Histograms on
Streams,” ESA, 2005.

[39] Y. Matias and D. Urieli, “Optimal workload-based weighted wavelet synopses,”
ICDT, 2005.

[40] Y. Matias and D. Urieli, “Optimal wavelet synopses for Range-Sum Queries,”
http://theory.stanford.edu/ matias/papers.html, 2004.

[41] Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-Based Histograms for Selectivity
Estimation,” SIGMOD, 1998.

[42] Y. Matias, J. S. Vitter, and M. Wang, “Dynamic Maintenance of Wavelet-Based
Histograms,” VLDB, 2000.

[43] M. Peuhkuri, “A method to compress and anonymize packet traces,” In Proc. of
the 1st ACM SIGCOMM Workshop on Internet Measurement, 2001.

[44] V. Jacobson, “Compressing TCP/IP headers for low-speed serial links, RFC
1144,” Network Information Center, SRI International, Menlo Park, CA, February,
http://rfc.dotsrc.org/rfc/rfc1144.html, 1990.

[45] M. Degermark, B. Nordgren and S. Pink, “IP Header Compression, RFC 2507,”
http://rfc.dotsrc.org/rfc/rfc2507.html, 1999.

[46] RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed, http://rfc.dotsrc.org/rfc/rfc3095.html, 2001

[47] A. Shacham, B. Monsour, R. Pereira, M. Thomas, “IP Payload Compression Pro-
tocol (IPComp), RFC 3173,” http://rfc.dotsrc.org/rfc/rfc3173.html, 2001.

[48] R. Williams, Adaptive Data Compression, Kluwer Books, Norwell, United States
of America, 1991

83

[49] N. Thaper, S. Guha, P. Indyk and N. Koudas, “Dynamic multidimensional his-
tograms,” SIGMOD 2002.

[50] B. D. Vo and K. P. Vo, “Using Column Dependency to Compress Tables,” DCC,
2004

[51] http://en.wikipedia.org/wiki/Lossy data compression

[52] http://en.wikipedia.org/wiki/Lossless data compression

[53] http://ita.ee.lbl.gov/html/contrib/WorldCup.html

[54] http://www.cisco.com/warp/public/116/compress overview.html

[55] http://www.cs.columbia.edu/s̃mb/papers/draft-bellovin-tcpcomp-00.txt

[56] http://www.ll.mit.edu/IST/ideval/data/data index.html

[57] http://www.protocols.com/pbook/lan.htm

[58] http://www.zlib.net/

[59] http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/index.htm

84

85

Vita

Su Chen

Education

May 2008 Ph.D. in Computer Science, Rutgers University
July 2001 M.S. in Computer Science, Fudan University, China
July 1998 B.S. in Computer Science and Engineering, Anhui University, China

Experience

Sep. 2006 - Dec. 2007
Intern, Research Team, Narus Inc., Mountain View, CA

Sep. 2003 - Aug. 2006
Research assistant, Department of Computer Science, Rutgers University, NJ

Jun. 2004 - Sep. 2004
Summer Intern, Telcordia Technologies, Piscataway, NJ

Sep. 2001 - Aug. 2003
Teaching assistant, Department of Computer Science, Rutgers University, NJ

Publications

S. Chen, S. Ranjan, A. Nucci, “IPzip: A Stream-Aware IP Compression Algo-
rithm”, Data Compression Conference, 2008.

S. Chen, A. Nucci, “Dynamic Nonuniform Data Approximation in Databases with
Haar Wavelet”, Journal of Computers, issue 8, 2007.

S. Chen, A. Nucci, “Nonuniform Compression in Databases with Haar Wavelet”,
Data Compression Conference, 2007.

S. Chen, T. Imielinski, K. Johnsgard, D. Smith and M. Szegedy, “A Dichotomy
Theorem for Constraint Satisfaction Problems with Disjoint Domains”, Federated
Logic Conference, 2006.

S. Chen, S. Diggavi, S. Dusad and S. Muthukrishnan, “Efficient string matching
algorithms for combinatorial universal denoising”, Data Compression Conference,
2005.

S. Chen, A. Gaur, S. Muthukrishnan and D. Rosenbluth, “Wireless in loco sensor
data collection and applications”, MOBEA II, International World Wide Web
Conference, 2004.

