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ABSTRACT OF THE DISSERTATION

Spectrum Sensing for Wireless Broadcast Communication

Systems

by Hou-Shin Chen

Dissertation Director: Professor David G. Daut

Spectrum sensing is the methodology used to determine the existence of a specific
signal type in very low signal to noise power ratio (SNR) environments. Spectrum
sensing is one of the core technologies for the application of Cognitive Radio (CR).
An TEEE 802.22 Working Group has developed a Standard to implement CR in the
wireless services spectrum. The spectrum, however, has already been allocated to
the TV Broadcast Service which delivers ATSC Digital TV (DTV) signals. Cognitive
Radio systems are intended to co-exist within the spectrum licensed to TV channels and
operate on a non-interfering basis. At present, there are three TV broadcast Standards
worldwide, namely the ATSC DTV Standard [1], ETSI DVB-T Standard [2], and the
NSPRC DMB-T Standard [3]. The transmitted signals defined by these three Standards
possess different characteristics. Thus, in order to apply CR in the DTV bands, different
spectrum sensing techniques are needed for these three broadcast Standards. In this
thesis, the focus is on the development of suitable spectrum sensing algorithms for
the DTV signals defined by these three Standards. In addition, wireless microphone
devices use frequency bands that are located within the allocated DTV bands. Cognitive
Radio systems should transmit and receive using spectrum that is idle. Hence, in this

thesis, spectrum sensing algorithms are also designed to detect the presence of wireless

ii



microphone signals. When developing an algorithm to perform spectrum sensing for a
specific signal, we make use of particular characteristics embedded in the transmitted
signals to design effective detector structures that can discriminate between the presence
or absence of licensed information bearing signals. One useful method employed in this
thesis is to utilize the cyclostationary property that is present in most of the transmitted
data signals to perform spectrum sensing. Additionally, the probability of false alarm
and probability of misdetection performance metrics for signal detectors employing
different spectrum sensing algorithms are analyzed. The spectrum sensor operating
characteristic curves for the different detectors are demonstrated by the use of computer
simulations. Simulation results indicate that the spectrum sensing algorithms developed
in this thesis can efficiently detect the presence of primary licensed signals when the SNR,
is as low as -20 dB. Finally, selected spectrum sensing algorithms are implemented using
an FPGA-based hardware platform. The hardware implementation of the spectrum
sensors verified their performance, as well as demonstrated their practicality due to the

low complexity of the algorithms.
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Chapter 1

Introduction

1.1 Background Review

Today, more and more electronic devices are becoming wireless, while the Federal Com-
munications Commission’s (FCC) frequency allocation chart is already crowded. How-
ever, recent studies show that most of the assigned spectrum is under-utilized. In fact,
a fairly recent FCC research report [4] reveals that, in some locations or at some times
of day, 70 percent of the allocated spectrum may be sitting idle, even though it is offi-
cially spoken for. Therefore, it is possible to utilize the idle spectrum and not affect the
primary licensed communication systems. As a consequence, Cognitive Radio [5] was
proposed to implement negotiated, or opportunistic, spectrum sharing. Under the char-
ter of an IEEE 802 Standards Committee, a Working Group named IEEE 802.22 was
established to develop a standard for a Cognitive Radio-based PHY /MAC/air_interface
for use by license-exempt devices on a non-interfering basis in spectrum that has already
been allocated to the DTV Broadcast Service. The IEEE 802.22 Working Group is also
called the WRAN group since it is essentially developing an air interface for a Wireless
Regional Area Network (WRAN) with a range as large as 30 miles. To implement Cog-
nitive Radio without interference within the licensed signal, it is important to be able
to detect the existence of licensed signals in very low SNR environments. To this end,
the IEEE 802.22 WRAN group established a sensing tiger team to take responsibility
for investigating spectrum sensing methodologies. The requirements of the spectrum
sensing ability specified by the sensing tiger team is that the misdetection probability
(P p) should not exceed 0.1 subject to a 0.1 probability of false alarm (Pp4) when the
SNR is -20.8 dB. For spectrum sensing, a power detector, or energy detector, is often

used to determine the presence of signals without the use of any prior knowledge of



signals. However, for power detectors to work well, the SNR should not be very low [6].
When the SNR is very low, accurate noise power levels and large data sample sizes
are needed. But, as is well known, the noise power can be affected by several factors,
for example, by temperature and system calibration. Therefore, we are often not able
to know the exact noise power level. The lack of knowledge about the noise power is
called the noise uncertainty [7]. As shown in [7], noise uncertainty can be as large as +1
dB. When the noise uncertainty equals 1 dB, a power detector fails if the SNR is less
than -3.3 dB even when a very long sensing time is used. Matched filtering is optimal
in a Neyman-Pearson (NP) sense for signal detection in communication systems [8].
However, due to the lack of channel knowledge, its performance is reduced, and its
detection performance highly depends on the channel condition. We will discuss the
matched filter based detector in Chapter 2. Recently, an eigenvalue based spectrum
sensing algorithm was proposed to the tiger team [9]. It makes use of the property that
the eigenvalues of the AWGN noise sample covariance matrix are approximately the
same when the collected samples are large enough. However, the main disadvantage
of the eigenvalue based method is that it cannot distinguish between interference sig-
nals and the licensed signals. Therefore, compared to those detectors that determine
whether the received signal is purely AWGN noise or not, signature-based spectrum
sensing algorithms have an advantage in that, when the signals other than noise are
detected, it is almost certain that they are licensed signals. Another possible way to
perform spectrum sensing is to utilize a signal’s cyclostationary property because of its
noise rejection ability. It is known that ideally, the stationary Gaussian process has a
zero-valued cyclic spectrum, or spectrum correlation density function (SCD) [17], at a
non-zero cyclic frequency. Therefore, we can detect the desired signal by computing its
cyclic spectrum provided that the signal is cyclostationary and that its cyclic spectrum

is not identically zero at some non-zero cyclic frequency.

1.2 Contributions of this Dissertation

DTV signals use a wide range of wireless spectrum. The spectrum is divided into

many non-overlapping bands and each band corresponds to one TV channel. There



are hundreds of TV channels and not all of them are used. Hence, it is very likely
to find some idle channels within the various DTV bands. Consequently, the DTV
spectrum is an appropriate candidate for sharing with CR systems. There are three
DTV broadcast standards worldwide. They are ATSC DTV Standard [1], ETSI DVB-T
Standard [2], and NSPRC DMB-T Standard [3]. The IEEE 802.22 WRAN Standard is
applicable to CR that will be used in North American area wherein ATSC DTV signals
are broadcast. It can be expected that standards which are defined to apply CR in
those areas which adopt DVB-T and DMB-T standards will be developed soon. Thus,
in this study, spectrum sensing algorithms are developed for the DTV signals defined
by these three Standards. The major contributions of this dissertation span several
major areas. First, the development of spectrum sensing algorithms for the three DTV
broadcast Standards will enable CR to operate in the licensed DTV bands. In addition
to spectrum sensing algorithms for DTV signals, the development of spectrum sensing
algorithms for wireless microphone signals is undertaken so as to prevent interference
to the wireless microphone devices when CR systems are operating nearby. Second,
analytical aspects of this study include the development and evaluation of performance
metrics, to the extent possible, for various spectrum sensing algorithms. In particu-
lar, the false alarm probability and misdetection probability are evaluated for selected
algorithms. The third major area of contribution is the development, and execution,
of computer simulations to obtain overall performance evaluation of various spectrum
sensing algorithms. The simulation results provide a useful means of comparison be-
tween the various algorithms. The fourth major area of contribution is the hardware
verification of selected algorithms that have significant practical value. Through FPGA
implementation of selected spectrum sensing algorithms, and the use of real-world test
data, evaluation of the performances of the developed algorithms are obtained. Fur-

thermore, the practical utility of the spectral sensing algorithms is demonstrated.



Chapter 2

Spectrum Sensing for ATSC DTV Systems

Spectrum sensing for the presence of ATSC DTV signals in VHF /UHF TV bands under
very low SNR environments is one of the core technologies in IEEE 802.22 WRAN. In
order to implement CR without interference to the licensed signal, the sensing tiger
team of the IEEE 802.22 Working Group specified the requirements of the spectrum
sensing of ATSC DTV signals. In particular, the probability of misdetection should not
exceed 0.1 subject to a 0.1 of probability of false alarm when the SNR is -20.8 dB. There
are multiple signatures embedded in the ATSC DTV signals and these signatures can
be utilized to perform spectrum sensing. Compared with the power detector [6] [7] and
eigenvalue-based sensing algorithms [9]. Signature-based spectrum sensing algorithms
have an advantage in that when the signals other than noise are detected, we are almost
sure that they are signals we want to detect. Thus, in this chapter, several signature
based spectrum sensing algorithms are presented. Furthermore, we make use of the
noise rejection property of the cyclostationarity which exists in most transmitted data
signals to perform spectrum sensing. The sensing algorithms are based on measurement
of the cyclic spectrum of the received signals. The statistics of the cyclic spectrum of the
stationary white Gaussian process are fully analyzed for three measurement methods of
the cyclic spectrum mentioned in this chapter. The false alarm probability for detectors
employing different algorithms is also analytically derived. The operating characteristic
curves for different spectrum sensors are determined from computer simulations using
an ATSC A/74 DTV signal captures database as a testbed. The spectrum sensing
algorithms described in this chapter have also been made available in the literature [10]

[11].
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Figure 2.1: ATSC DTV data signal segment.
2.1 Signature Based Spectrum Sensing Algorithms

First, we shall briefly describe the structure of ATSC DTV signals [1]. DTV data are
modulated using 8-Vestigial Sideband (8-VSB). In addition to the eight-level digital
data stream, a two-level (binary) four-symbol data segment sync (Segment Sync) is
inserted at the beginning of each data segment. A complete segment consists of 832
symbols: four symbols for the data segment sync and 828 data symbols. The data
segment sync pattern is a 1001 pattern, as described in Fig. 2.1. Multiple data segments
(313 segments) comprise a data field. The first data segment in a data field is called
the data field sync segment (Field Sync). The structure of the data field sync segment

is shown in Fig. 2.2.

2.1.1 Signature Based Spectrum Sensing Simulation Model

Since we desire to utilize signatures embedded in the data transmission to perform spec-
trum sensing, we have to compute the baseband complex envelope of the received signal

7[n]. Figure 2.3 illustrates the spectrum sensing simulation model of the signature-based

+5
3 VSB mode+
1 PN511 PN63 | PN63 | PN63 | Reserved +
-3 Precode
-5
-7
Data 63 63 63 128 Data
Segment 511 symbols symbols| symbols[symbols| symbols Segment
Sync Sync
€ »l
| 832 symbols |

Figure 2.2: ATSC DTV signal field sync segment.



sensing algorithms. This model describes a procedure which computes the baseband
signal (complex envelope). The real-valued DTV signal capture data r[n] are obtained
by sampling DTV channels at a rate of f; = 21.524476 MHz and then down converted
to a low central frequency frp = 5.38 MHz [13] [14]. The carrier frequency parameter
fein Fig. 2.3 is 2.69 MHz. Then, #[n] is scaled in amplitude to produce z[n] which has
the desired signal power
n
x[n] = % (2.1)
where « is the power scaling factor, and

o= 10(PDesired_PS)/20' (22)

The parameters Ppegireq and Pg are the desired signal power and the signal power of
7[n] in units of dBm, respectively. Finally, we add a filtered complex additive white

Gaussian noise (AWGN) w[n] to z[n| to form the needed experimental data y[n], hence
y[n] = z[n] + win]. (2.3)

We will further assume that w(n| is zero-mean and the noise power spectral density
(PSD) is Ng = —174+ 11 = —163 dBm/Hz where —174 is thermal noise power spectral
density under normal temperature conditions and 11 is noise figure of the receiver [15].
Therefore, the noise power is NoB = -163dBm/Hz-6MHz = -95.2185 dBm. Filtering of

the noise is accomplished by the lowpass filter employed in Fig. 2.3.

2e0s27Ad rin]=r,[n] + jroln]
é - rin]
Lowpass Filter
[n] i = r Xl yn]
r[n i
Capture h4 r[n] N de:a;(ljng toal /TN, | Signature Based
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A power T
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roln] Filtered AWGN
_2sin2zf j wnl

Figure 2.3: Spectrum sensing simulation model of the Signature Based Detector.



2.1.2 Field Sync Based Algorithms
Field Sync Correlation Detector (FSCD)

As mentioned before, a Field Sync occurs regularly every 24.2 ms. Hence, it is intuitive
to implement a correlation detector (matched filter) to perform spectrum sensing using
the Field Sync. Let g[n] denote the 832 symbols in Fig. 2.2. Because the second PN63
sequence is inverted every other field and the last 128 symbols are unknown, we will
simply zero-out these two parts of g[n]. Furthermore, the capture data r[n] has a double
symbol rate as does y[n]. Thus, ¢[n] is 2X upsampled to form the sequence p[n] which
has a double symbol rate. Define the test statistic Trsq as

L-1

> plnly*li +n] (2.4)
n=0

Trecd = max
Joed i Wy a1

where L = 1664 is the length of p[n| and Wy,.q = 520892 is the number of samples of

y[n] that appear in 24.2 ms.

VSB Modulated Pilot Sequence

In the previous section, we use a binary pilot sequence p[n| and correlate it with the
received signal. However, the received pilot sequence is, of course, not binary. Thus,
we should use a sequence that, to the best of our knowledge, matches the received
pilot sequence. According to [1], the transmitted signal is a Vestigial Sideband (VSB)
modulated signal. Therefore, instead of simply 2X upsampling ¢[n]| to form the pilot
sequence p[n|, we shall add a lowpass interpolation filter and a VSB modulator so
that the sequence s[n] shown in Fig. 2.4 best matches the transmitted Field Sync
sequence. It has been shown through simulations, that with this modification, the
detection performance can be improved by 2 to 3 dB in terms of SNR for most of the

DTV capture data cases considered.



Probability of False Alarm for FSCD

We now provide an explicit calculation of the false alarm rate. For hypothesis Hy,

which corresponds to the presence of noise only, i.e., y[n] = w[n], denote

L—-1
= plnjurfi+n) (2.5)
n=0

which is the result of the complex correlations before taking the absolute value in (2.4).

For convenience, we normalize p[n| such that

Sl = 1. (2.6)
n=0

Because the linear combination of joint Gaussian random variables is still Gaussian
distributed, 7T; is a complex Gaussian random variable. Therefore, the quantity |T;| is

Rayleigh distributed according to

t2
3—te_ 2, 120
Jiry(t = Ho) = (2.7)
0, t<0
where o2 is noise variance and o2 = NyBf,. According to (2.4), the test statistic

Tfseq is the maximum of |T;| over a sample-size window of Wy,.4. Because the random
variables {E}Zﬁsc‘rl are identical but not necessarily independently distributed, it is
difficult to find the exact probability distribution of T',.q. However, assuming that
the random variables {Z/’i}ivi’(c)“d_l are independent gives a good approximation of the
probability distribution of Tfs.4. By making the assumption that the {Ti}fgfcrl are

independent, from [16], we find that the cumulative probability distribution of T is

t 2 7ﬁ Wfscd
Y ) . (2.8)

Fr, .,(t: Ho) = < —e o2du

o O

qln pn] s[n]

— 2X Upsampling > Intelr:;i)l(zlear\tlon »| VSB Modulator f—

Figure 2.4: Procedure for generating a VSB modulated sequence in the context of a 2X
symbol rate.



Then, for a particular value for the probability of false alarm (Pp4), the corresponding

threshold 7¢,cq can be found by

PFA =1- FTfscd(’nyCd : HO) (29)

Finally, after some straightforward calculation, we have

1 1/2
— 2
Vfsed = Hfscd <O' In 1_ (1 _ PFA)l/Wfscd> (210)

where pir5q is an heuristic adjusting factor added artificially to account for the ap-
proximation mentioned above. Note that when a VSB modulated sequence (s[n]) is
used, the calculation of the probability of false alarm is the same as that when a binary
sequence (p[n]) is used. Thus, we still use (2.10) to compute the threshold when a
VSB modulated sequence is used. However, the value of p .. needs to be re-adjusted.
According to simulation results, when the binary sequence p[n] is used, fifscq = 1 gives
a very accurate value for the desired probability of false alarm which means that the

T; are very close to being independent in this situation.

2.1.3 Segment Sync Based Algorithms
Segment Sync Autocorrelation Detector (SSAD)

In Section 2.1.2, we made use of the Field Sync to perform spectrum sensing. There
are two disadvantages to using the Field Sync. One is that the results of the correlation
between received signals and the pilot sequence are severely affected by frequency offset
and multipath fading channel impairments. The other is that the pilot sequence is very
sparse in the transmission of the ATSC DTV signal. There is only one Field Sync every
24.2 ms, so that we have to observe a received signal up to Wys.q = 520892 samples
and perform a correlation 520892 times. Thus, the complexity is high for the Field
Sync correlation detector. As a result, instead of using the Field Sync, we can utilize
the data segment sync as shown in Fig. 2.1 to perform spectrum sensing. There is
a data segment sync consisting of 4 symbols at the beginning of every ATSC DTV
signal data segment. Because the time difference between two consecutive Segment

Sync components is only 0.077 ms (832 symbols) which is very short, it is reasonable to
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assume that they encounter the same channel effects including timing offset, frequency
offset, and multipath fading. Consequently, we use the autocorrelation of the two
consecutive Segment Sync elements as our basic approach to perform spectrum sensing.
Furthermore, using data segment sync to perform spectrum sensing has the advantage
that we only need to observe a window of Wy,,q = 1664 samples which is much smaller
the correlation times when compared to that used by the Field Sync method. Figure
2.5 shows the block diagram of the Segment Sync Autocorrelation Detector. Define the

test statistic Tggqq as

Tssad = o BT |70 ] (2.11)
where
Np-1 4
Z Zym+k+nL] “Im+k+ (n+ 1)L). (2.12)
n=0 k=0

The parameter Np is the number of collected Segment Sync elements used to perform
autocorrelation. The Segment Sync has 4 symbols but an 8 sample autocorrelation is

performed because the sequence y[n| is at double the symbol rate.

Probability of False Alarm of SSAD

For hypothesis Hy, the decision statistic of the SSAD method is given by

Np—1 4

Z Zwm+k+nL] *Im+k+ (n+ 1)L). (2.13)
n=0 k=0

According to the Central Limit Theorem, when Np is large, T}, will approach a circu-

larly symmetric complex Gaussian distribution, that is

4
. g
lim T, - CN(0,—). (2.14)
Np—oo 8N D

—————— |
I Accumulator |

| | Select Maxi Compare with

yin] R 8-Sample Sliding | | /TN ;| Compute b Cowrsme gy
—> X . > [ i ”
Window Addition | : Magnitude Sampling Instances
I 832x2 I
v I Sample Delay
I
832x2 ‘ - J
Sample Delay | Conugate

Figure 2.5: Segment-Sync Autocorrelation Detector.



11

Because {Tm}nvgjgd_l are identical but not independently distributed, it is difficult to
determine the probability distribution of Tis,q. We will follow the same philosophy
that was used in calculating the probability of false alarm for the FSCD. We suppose
that {Tm}nvgjgd_l are independent in order to obtain a reference threshold for a corre-

sponding probability of false alarm. Following the same procedure as (2.8)(2.9)(2.10),

we have
4

o 1 1/2
Yssad = Mssad <8ND In 1_ (1 — PFA)l/Wssad> . (215)

Maximum Combining Segment Sync Autocorrelation Detector (MCSSAD)

When we accumulate a large number of data segment sync elements, i.e., when the
sensing time is long, timing drift effects will restrict the improvement of the performance
that comes from a longer sensing time. In order to alleviate the timing drift effect, we
can slice the total sensing time into several time slots and then apply a SSAD detector
to each time slot. Then, finally, we use the average of the maximum absolute value
of autocorrelation of each time slot as our detection statistic. We call this detector
the Maximum Combining Segment Sync Autocorrelation Detector (MCSSAD). The

threshold is still determined by (2.15) by adjusting the value of pissqq.

2.2 Cyclostationarity Based Spectrum Sensing Algorithms

2.2.1 Review of Cyclostationary Properties

In this section, we present a brief summary of some useful equations relevant to cyclo-
stationarity. Details of cyclostationary properties can be found in [17] [19]. The cyclic
auto-correlation function of a stochastic process z(t) for a given cyclic frequency « can

be defined as follows
At/2 ‘
RS (1) = lim —/ x(t +7/2)x*(t — 7/2)e 2™ dt (2.16)
or

At/2
R(r) = Jim /_ o T2 (2.17)
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where u(t) = x(t)e” 7™ and v(t) = z(t)et/™" are frequency shifted versions of x(t)
so that RY(7) can be understood as the cross-correlation of u(t) and v(t). The cyclic
spectrum of z(t) for a given cyclic frequency « is defined as
o0
s2(f) = [ RO dr = S, (218)
—o0
where the second equality comes from (2.17). Thus, the cyclic spectrum SZ(f) can also
be understood as the cross-spectral density of frequency shifted signals u(t) and v(¢).
In light of this interpretation, the cyclic spectrum is also called a Spectral Correlation

Density (SCD) function. In this thesis, we will use the terms cyclic spectrum and SCD

interchangeably.

2.2.2 Measurement of Spectral Correlation

It can be shown that the cyclic spectrum is obtainable from the following limit oper-
ations applied to temporally smoothed products of spectral components described by

the expression

At)2
Sp(f) = Jim Jim /_AW AfXyyar(t, f+a/2)
X{jap(t f = a/2)dt (2.19)

where X;/af(t,v) is the short-term Fourier transform of z(¢) with center frequency v
and approximate bandwidth A f
t+1/2Af '
Xy/ap(t,v) = / z(N)e T2, (2.20)
t—1/2Af
It also can be shown that S%(f) is given by the limit of spectrally smoothed products

of spectral components

I S
o(f) = lim lim —— Xt 2
Sal) = o Ry ), Ay o)
X7 (t, v —af2)dv (2.21)

where Xa¢(t, f) is defined by (2.20) with 1/Af being replaced by At. Equations (2.19)
and (2.21) are described in [18]. In this thesis, we present a third method which is

also based on spectrally smoothed products of spectral components. Let x(t, u) denote
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the frequency down-converted signal which has carrier frequency p. Then, the cyclic

spectrum is given by

S 1 1 ! Fead 1 X
a _ . . - s 2
ac(f) A}IEOAtlinoo Af PN At At(tvuvf + Oé/ )
'XZt(ta M, f - 04/2)dﬂ (222)
where
A A2 '
Xae(t, p,v) —/ (X, p)e 127N, (2.23)
t—At/2

Note that (2.21) and (2.22) represent basically the same approach for the measure-
ment of spectral correlation. The cyclic spectrum is obtained by spectrally smoothed
products of spectral components. The difference will be easily seen in their digital

implementations.

2.2.3 Digital Implementation

The digital implementation of (2.19), (2.21) and (2.22) is based on use of the fast Fourier
transform (FFT) algorithm for computation of a discrete-time/discrete-frequency coun-
terpart of the sliding-window complex Fourier transform of (2.20) and (2.23). Note
that in digital implementation, the frequency variable f and cyclic frequency variable
a should be a multiple of Fs. The parameter Fy = 1/NTy is the frequency sampling
increment and Ty is the time-sampling increment. Let f = [F; and a = 2DFj, the

discrete-frequency smoothing method of (2.21) is given by

L Moy
v=—(M-1)/2
X*[l - D+ (2.24)
where
N-1 '
X = z[k]e 72mk/N (2.25)
k=0

which is the DFT of the sampled signal xz[k] = x(kTs), and M is the smoothing factor.

The parameter N is the number of time samples used in DFT. The frequency smoothing
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method of (2.22) is given by

L, -y
Szl N =T M > X[I+D,y
T p=—(M-1)/2
X*[l - D, ] (2.26)
where
N—-1
X[y u) =Y wlk, ple 7>mHN (2.27)
k=0

and zlk, p] = x(kTs, frr+ p-0f) is frequency down-converted signal having carrier fre-
quency frr+ p-0f. The parameter frp is an intermediate frequency. Unless otherwise
noted, here x(t) is the frequency down-converted signal which has central frequency
frr. Now, we can see the difference between (2.21) and (2.22) in their digital imple-
mentations. For (2.21), spectral smoothing is performed over nearby subcarriers of the
DFT output given by (2.15), and therefore, it is called a discrete-frequency smoothing
method. As for (2.22), spectral smoothing is performed over the same subcarrier of the
DFT output of down-converted signals which have slightly different carrier frequencies
given by (2.27). Therefore, by controlling the parameter ¢ f, we can obtain more pre-
cise frequency resolution without increasing the DFT size. The discrete-time average

method is given by

1 1 KM-1
o] = X,[l+D]- X[l - D 2.2
where
N-1 ‘
Xuv] = Y ay[k]e72mRIN (2.29)
k=0

which is the DFT of the sliding sampled signal z,[k] = x(u(%l)ﬂ + kTs). The pa-
rameter K is the block overlapping factor. When K is 1, all data segments are non-
overlapping. For more detail about the measurement of a cyclic spectrum, the reader

is referred to [18].
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2.2.4 Statistical Analysis of the Measured AWGN SCD

Probability Distribution Function of the Computed AWGN SCD Using

Equation (2.24)

Upon substituting x(t) with w(¢) which is a white Gaussian process, we obtain the
SCD of an additive white Gaussian noise (AWGN). The corresponding short-term
Fourier transform of AWGN is denoted as W(v], Wiy, u] and W,[v] in (2.25), (2.27)
and (2.29). We know that w[k] are independently and identically distributed (i.i.d.)

Gaussian random variables with zero-mean and variance o2

. It can be easily shown
that W], v = 0,1,...,N — 1 are circularly symmetric i.i.d. complex Gaussian
random variables with zero-mean and variance No?. In (2.24), the random variable
Wl + D + v]W*[l — D + v] has zero-mean, while its real and imaginary parts are un-
correlated and have the same variance N?¢0#/2. Then, by the Central Limit Theorem,
for sufficiently large M

2 4
lim S9[1] — CN(0, —>__C

e, NP2 (2:30)

where C'N(u,0?) represents the circularly symmetric complex Gaussian distribution
with mean p and variance o2. We can easily determine that the random vectors S% =
[S¢10], ... SGIN — 1]] are jointly circular symmetric complex Gaussian with zero-mean

and possess the covariance matrix
Cov(S%) = E[sesaf] = T (2.31)

where T? is a Toeplitz matrix having the entries

M—|m—n| N254
MZ  (N-1)27%2

m —n| <M

T, = (2.32)

0 |m —n| > M.

Probability Distribution Function of the Computed AWGN SCD Using

Equation (2.26)

In (2.26), the random variables X|[l, u] for different p are not necessarily independent.

However, they are almost independent for sufficiently large difference in frequency index



16

wu or subcarrier index [. Therefore, we assume, for ease of analysis, that they are
independent. The resulting distribution yields a good approximation. As a result, it
can be easily shown that the distribution of S{[l] is given by (2.30) for sufficiently large
M. Furthermore, by appropriately choosing df, random variables, S&[l]’s, are nearly

independent.

Probability Distribution Function of the Computed AWGN SCD Using

Equation (2.28)

First, we should note that, for the random variables corresponding to the same fre-
quency subcarrier, Wy, [v] and W, [v] are not independent for |u — r| < K because they
are Fourier transformed by overlapping samples of a white Gaussian process. How-
ever, for the random variables taken from different frequency of W, [v] and W, [w] are
always independent. Let ZP[l] = W,[l + D]W/}[l — D], note again that the com-
plex random variable Z2[l] has zero-mean, variance No?, and most important of
all, its real part and imaginary part are uncorrelated. Define the random vector

ZP( = [ZzP, ZP(0),. .., 2R, _,[1]], then ZP([l] is zero-mean with covariance matrix
Cov(ZPN1)) = E[ZP[)ZP[)"] = T? (2.33)
where T is a Toeplitz matrix having the entries

(1- M)2]\f204(3(m,n) lm —n| < K
TZ = K (2.34)

0 lm —n| > K

with e(m,n) = e J4mPM=n)/K e can write (2.28) as

sall) = (N—ll)Ts s >z (2.35)

and the variance of Sg[l] is

1 1
Var(Sil) = =1 (rarp 2 2
1 N2g4
(KM (N — 1212
K-1 .
(KM + Zl (KM —i)(1 - %) - 2cos(4in D/ K))

(2.36)
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Then, by the Central Limit Theorem, for the case of dependent random variables, we

have that

Kjl\/i[rgoO % — CN(0,1). (2.37)
Fortunately, the random variables associated with different carriers of S$[l] are inde-
pendent. Hence, the random vector S = [S$[0],...SS[N — 1]] obtained by using the
discrete-time average method consists of i.i.d. circularly symmetric complex Gaussian

random variables having zero-mean and variance given by (2.36).

2.2.5 Discussion

1. Computing the SCD using the discrete-frequency smoothing method, (2.24), usu-
ally needs a large FFT size which increases overall complexity. We can see from
(2.32) that the random variables of the measured SCD corresponding to AWGN
noise are dependent. This is an unwanted property and contradictory to the true
SCD of AWGN. The inherent dependence of the SCD is also an undesired prop-
erty in the detection of a signal. For example, we may use the maximum of the
moving average amplitude of the measured SCD as our decision statistic. The
dependence of the random variables of SCD means that large values of the moving
average could occur with high probability for AWGN noise. On the other hand,
the random variables of the measured SCD of AWGN noise obtained by using the

other two methods are independent or nearly independent.

2. The variance of the measured SCD corresponding to AWGN using discrete-time
average method, (2.28), is given by (2.36). We can see that if the ratio of D/K is
1/2 or integers, then the cosine term becomes 1. As a consequence, the variance
of the SCD is approximately the same as the variance of the power spectrum
density which means the SCD of AWGN is not approaching zero. This is the
cycle leakage effect described in [18] and is revealed here in (2.36). Therefore,
we have to increase the block-overlap parameter K to avoid the undesired cycle

leakage effect. However, increasing K results in larger complexity.
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3. The computed SCD corresponding to AWGN using (2.26) possesses the best prop-
erty that the random variables of different frequency subcarriers are almost in-
dependent, and there is no cycle leakage effect. However, when using (2.26) to
compute SCD, the down conversion operation must be applied many times which

results in a large complexity.

In the application of signal detection or spectrum sensing in the presence of AWGN
noise, based on the discussion above, we find that the SCD corresponding to AWGN
measured by the three different methods has some drawbacks. The features of cyclic
spectrum of the transmitted signal are also different among each of these three methods.
Therefore, we should choose one of the three methods that offers the best tradeoff

between desired features and unwanted properties.

2.2.6 Cyclostationary Signal Model

Let x(t) be the transmitted continuous time signal, that encounters a linear time-
invariant channel denoted by h(t). Then, the channel output is corrupted by an AWGN

noise w(t). The received signal y(t) is therefore given by
y(t) = z(t) ® h(t) + w(t) (2.38)

where w(t) is a a white Gaussian process with zero-mean and its cyclic auto-correlation

function is given as

a%5(1), a=
R%(7) = o, ’ (2.39)

0, a#0.
In [17], stationary signals are divided into two categories. Those stationary signals
with R%(7) # 0 for some o # 0 are called cyclostationary and those stationary signals
with RY(7) = 0 for all a # 0 are referred to as purely stationary. Thus, AWGN is
a purely stationary signal. It is shown in [17] that when a signal z(¢) undergoes an
LTI transformation (z(t) = x(t) ® h(t)), the input SCD and output SCD are related
acconding to

Se(f) = H(f + o/2)H* (f — «/2)55(f) (2.40)
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Here the function H(f) is the frequency response of the channel impulse response.
This relationship can be easily understood by considering the SCD as being the cross-
spectrum of the spectral components of z(t) at frequencies f + /2 and these two
spectral components are scaled by H(f 4+ «/2) after passing through an LTI channel.
Finally, since in (2.38) z(t) = z(t) ® h(t) and w(t) are independent, the cyclic spectrum

of the received signal y(t) is

Sy(f) = S2() +Su(f)

S:(f) + Suw(f) a=0
- (2.41)

S2(f) a0

and therefore, we have
Sy(f)=H(f +o/2)H*(f —a/2)S7(f), a#0. (2.42)

The importance of (2.41) is that cyclostationary properties provide a way to separate
cyclostationary signals from random noise which is purely stationary. As long as the
SCD of the received signal is not identically zero, we can perform spectrum sensing by

measuring the cyclic spectrum of the received signal.

2.2.7 Application to IEEE 802.22 WRAN

According to [1], ATSC DTV signals are vestigial sideband (VSB) modulated. Before
VSB modulation, a constant of 1.25 volts is added to the 8-level pulse amplitude mod-
ulated (8-PAM) signal. Therefore, there is a strong pilot tone in the power spectrum
density (PSD) of the ATSC DTV signal. Let z(t) be this pilot tone signal which is a
sinusoidal signal in the time domain, and further assume that this strong pilot tone is

located at frequency fy , i.e.,
z(t) = V2P cos (27 fot + 6) ® h(t) (2.43)

where P and 6 are the power and the initial phase of the sinusoidal function, respectively.
Here, the function h(t) is the channel impulse response. The received signal must
contain the signal

y(t) = z(t)ed > Iat fap(t) (2.44)
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where w(t) is stationary additive white Gaussian noise and fa is the amount of fre-
quency offset in units of Hz. The cyclic spectrum of the received signal must contain

the cyclic spectrum of y(¢) which is given by (2.41) and (2.42) where

6(f = fo— fa) +0(f + fo+ fAIH(f)]? + o? (2.45)

v | Y

Sy (f) =

for « = 0 and
o P

S(NIH(f = fo— fa)H™(f + fo+ fa) (2.46)
for a = £2(fo + fa).

Figure 2.6 illustrates the overall procedure of the cyclostationary feature detector. Fol-
lowing [15], the capture data is filtered by a 6 MHz bandpass filer and then scaled so
that the signal x[n] has a preset, desired signal power. Then a 6 MHz bandpass noise is
added to form the experimental data y[n]. Note that the bandpass noise process is still
purely stationary. Because we would like to detect the pilot tone in the cyclic spectrum,
we can filter out those frequency components other than the pilot tone. Therefore, we
apply a narrow bandpass filter to obtain a small band which contains the pilot tone and
then perform a D times decimation to reduce the sampling rate in order to reduce the
computational complexity. Finally, we compute the cyclostationary feature and make
the decision regarding the presence of a signal based on this feature. We will use the
frequency average method, (2.26), to compute the SCD of the received signal because
it is the best method to compute SCD which contains pilot tones. According to (2.46),
the pilot tone appears in zero frequency of the cyclic spectrum. Thus, we compute the
zero frequency component of cyclic spectra for several cyclic frequencies and use their

maximum value as the decision statistic for the detector

T = max [S[0]]. (2.47)

2.2.8 Probability of False Alarm

Hypothesis H corresponds to the presence of noise only, i.e., y[n] = w[n|. The random

variables S%[0] obtained by using the frequency average method, (2.26), are nearly
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Figure 2.6: System implementation of the Cyclostationary Feature Detector.

ii.d. circularly symmetric complex Gaussian random variables having zero-mean and
variance given by (2.30). Denote the variance obtained by (2.30) as 0%, It can be easily
shown that the cumulative distribution function of T is given by
2 L
Fr(t: Hy) = ( t 2—365%du> (2.48)
0 0g
where L is the number of observed cyclic frequencies. Then, for a particular value of

false alarm probability (Pp4), the corresponding threshold « can be found from
Pra=1— Fr(y: Hy). (2.49)

Finally, after some straightforward calculation, we have

) 1 1/2
= 1 . 2.50
Y P(Us nl—(l—PFA)l/L> ( )

where p is an heuristic adjusting factor added artificially to account for the approxima-

tion mentioned in Section 2.2.4.

2.2.9 Simulation Results

We use the ATSC A/74 DTV signal captures which are real field captured data to test
our spectrum sensing algorithms. The file names of the ATSC DTV signal captures
and their corresponding symbols used in the figures illustrating simulation performance

results are listed in Table 2.1.

The FSCD Based Algorithms

Figures 2.7 and 2.8 illustrate the operating characteristic curves for the FSCD using
a binary sequence (p[n]) and a VSB modulated sequence (s[n]). We can see that for

different capture data, the detection performance is different due to different channel
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ATSC DTV Capture Date File Name
WAS_3_27_06022000_REF
WAS_311_36-06052000_-REF
WAS_06-34_06092000_-REF
WAS_311_48_06052000_-REF
WAS_51_35_05242000_REF
WAS_68_36-05232000_REF
WAS_86_48_07122000_REF
WAS_311_35_06052000_-REF
WAS_47_48_06132000_opt
WAS_32_48_06012000-OPT
WAS_49_34_06142000_opt
WAS_49_39_06142000_opt
Ave Average

w2
<
=
=2
=3

ol S B = s e B B 5 Bl w B @ Rl ov

Table 2.1: ATSC DTV Capture Data file names and their corresponding symbols used
in the performance figures.

conditions. Generally speaking, the detector using a VSB modulated sequence has
better performance than that obtained when using a binary sequence. A total of 12
reference capture data cases were simulated as recommended by [13] [14]. For most
cases of DTV capture data, using a VSB modulated sequence, a performance gain of 2

to 3 dB was realized.

The SSAD Based Algorithms

Figure 2.9 illustrates the detection performance of (MC)SSAD when 400 Segment Sync
elements are used. When 400 Segment Sync elements are sliced into 8 time slots and the
MCSSAD applied, a performance gain of 2.5 dB is realized. There are various restric-
tions placed on the sensing time according to different reasons given to the tiger team
in the development of their spectrum sensing proposals. According to these limitations
in sensing time, we evaluate the detection performance of the (MC)SSAD as shown in
Fig. 2.10. For the 4.06 ms case, the sensing time is short so that the SSAD detector is
applied in that sensing time. For the 9.25 ms case, we slice 9.25 ms into two time slots

and then apply the MCSSAD method. As can be seen in Fig. 2.10, for (MC)SSAD, a
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longer sensing time results better performance.

The Cyclostationarity Based Algorithm

In Fig. 2.6, the real-valued DTV signal capture data r[n| are obtained by sampling
DTV channels at a rate of 21.524476 MHz, which is 2X over-sampled and then down
converted to have a carrier frequency equal to 5.38 MHz [13] [14]. Because the pilot
tone of the capture data is located around 2.69 MHz, the parameter f, in Fig. 2.6 is
(2.69-frr) MHz. The bandpass filter used to filter the pilot tone has a bandwidth of 40
kHz and f;g is 17 kHz. The decimation factor is 200 and the decimation filter is a 50
kHz low-pass filter. The size of FFT is 2048. The parameter M in (2.26) is 5 and fa is
set to be half of the subcarrier spacing divided by M. The file names of the ATSC DTV
signal captures and their corresponding legend symbols used in the simulation figures
are listed in Table 2.1. Figures 2.11 and 2.12 show the spectrum sensing performance
for Pry = 0.1 and Prgq = 0.01. Both of these simulations use 19.03 ms as the sensing
time. We can see from Figs. 2.11 and 2.12 that for average detection performance to
achieve Py;p=0.1, when Pr4=0.1, the needed SNR is -25 dB and when Pr4=0.01, the
needed SNR is -24.3 dB. It means that the proposed algorithm is not sensitive to a
change in the Pp4 (threshold). This is a desired and important feature of the proposed
algorithm. Figure 2.13 shows the spectrum sensing performance for Pr4 = 0.1, and
the noise uncertainty equals 1 dB. A 1 dB noise uncertainty means that instead of
knowing the exact value of the noise PSD, it has a range of & 1 dB. For a more detailed
discussion about noise uncertainty, interested readers are referred to [7]. We use the
worst case scenario, i.e, the PSD of noise is -95.2185 dBm at room temperature, and
we assume that the PSD of noise is -94.2185 dBm to calculate the decision threshold.
We can see that with 1 dB of noise uncertainty, for average detection performance to
achieve Py;p=0.1, when Pr4=0.1, the needed SNR is -23 dB which reveals that the

proposed spectrum sensing algorithm is not sensitive to the noise uncertainty.
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2.3 Conclusions

In this chapter, we introduced several signature-based spectrum sensing algorithms for
ATSC DTV signals. From the simulation results, we can see that only the cyclostationarity-
based algorithm can easily achieve the spectrum sensing requirements specified by the
sensing tiger team of the IEEE 802.22 WG. The reason is that both Segment Sync and
Field Sync are not strong features. For the Segment Sync, there are only four symbols
for every 832 symbols. For the Field Sync, there is only one Field Sync segment for
every 313 segments. Both Segment Sync and Field Sync are very sparse and there-
fore, it is difficult for algorithms based on these two features to work in the required
extremely low SNR environments. The cyclostationary properties can be viewed as a
signature of a signal as well. The cyclostationarity-based sensing algorithm described
in this chapter relies on the strong pilot tone embedded in the spectrum of the ATSC
DTV signals. The pilot tone is a dominant feature so that the sensing algorithms based
on it works well in extremely low SNR environments. Furthermore, the noise rejection
property of the cyclostationarity-based algorithm permits the performance of spectrum

sensing over a shorter sensing time and at a lower complexity.
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Figure 2.9: Comparison of the detection performance of the SSAD method (Np =
400(31ms)) and the MCSSAD method (averaged over 12 referenced capture data en-
sembles).
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Figure 2.10: Comparison of the detection performance of the SSAD method for different
Np (averaged over 12 referenced capture data ensembles).
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Figure 2.11: Spectrum sensing performance of the Cyclostationary Feature Detector,

Pra = 0.1 and sensing time=19.03 ms.
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Chapter 3

Spectrum Sensing for ETSI DVB-T Systems

The DTV signal used in North America is that of the ATSC DTV signal [1]. Therefore,
the main task in spectrum sensing for IEEE 802.22 WRAN is to detect the existence
of the ATSC DTV signal within the DTV bands. Nowadays, OFDM techniques are
adopted by many existing or progressing wireless communication standards [2] [25] [26].
Thus, a robust spectrum sensing algorithm for OFDM modulated signals is highly de-
sired to implement CR when the primary signal uses OFDM modulation. Motivated
by this demand, a Time-Domain Symbol Cross-Correlation based spectrum sensing
algorithm (TDSC method) is presented in this chapter. The algorithm makes use of
the property that the mean of the TDSC of two OFDM symbols is not zero if the
same frequency-domain pilot tones are embedded in them. The statistical behavior of
the proposed spectrum sensor is explicitly analyzed and a theoretical lower bound on
the misdetection probability is derived in this chapter. An intuitive spectrum sensing
method which utilizes the Cyclic Prefix nature of the OFDM modulated signals (CP
method) is also described in this chapter as a reference detection scheme for compari-
son. Finally, we use the DVB-T Standard [2] as an example of an application model to
illustrate the proposed spectrum sensing algorithm. The spectrum sensing algorithms
described in this chapter have also been made available in the literature [27]. The spec-
trum sensing algorithm for OFDM signals that exploits their cyclostationary property

has also been reported in [28].
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3.1 Statistical Development of the Cross-Correlation Function of Two

OFDM Symbols

Under the assumption that L, the length of the Cyclic Prefix (CP), is longer than the
length of the time-invariant channel, the n** sample of the I** OFDM symbol can be

modeled as
1 V-1
— pJ@rfan/N+0;) j2mkn /N
xy[n] = e?“MIA ! ¥ ,}_0 H[k|X;[k]e’ + wy[n] (3.1)

where fa is the carrier frequency offset normalized to the subcarrier spacing. The phase
0, = 2 fAlM/N + g is the initial phase of the [ OFDM symbol where M = N + L
is the length of an OFDM symbol. The parameter N is the number of subcarriers,
and X;[k] which is taken from a finite complex alphabet constellation denotes the data
symbols at the k*" subcarrier of the I*" OFDM symbol. Moreover, H[k] is the complex
channel gain of the k' subcarrier and wj[n] is a sample of a complex additive white
Gaussian noise (AWGN) process. We will assume that wi[n] is a circularly symmetric
complex Gaussian random variable which has zero-mean and a variance of o2 /N. Most
of the existing standards which adopt OFDM modulation [2] [25] [26] allocate pilot
symbols in the frequency domain. These pilot symbols are called pilot tones. Let P,
a=0,1,... A—1, denote the sets of all possible pilot tone positions for the transmitted
OFDM symbols. Assume that P is the set of pilot tone positions of the [!* OFDM
symbol and X;[k] = P;[k| for k € P. Here, we should note that the pilot symbols P; [k]
are predefined and have the same amplitude. For most cases, P;[k] is a fixed constant
and in some cases they change sign. Assume that the I** and m OFDM symbols have

the same pilot tone positions and define

1 N-1

R(l,m) = > wilnla,n] (3.2)
=0

3
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which is the Time-Domain Symbol Cross-Correlation (TDSC) function of two OFDM

symbols. After some straightforward calculations, it can be shown that

Rm) = el—m)ss S [HIKPHP

kePy,
+ e(l—m)% Z | HIK][* X [k] X, [K]
kEP,
1 N-1
+ w7 2 HIFXKW (K]
|
+ 5w > HIMX MWl
et
+ o 2 wiln]wy[n] 3.3)
n=0

where the function e(p) = e/27#M/a /N represents a phase rotation caused by the carrier

frequency offset and

N-1
Wilk] = Z (wy[n]ed @ fan/N+600))o=j2mkn/N (3.4)
n=0

is the discrete Fourier transform (DFT) of w;[n] multiplied by a phase rotation. Further-
more, W,,[k] is defined in the same way. Then, by recognizing that F(X;[k] X/ [u]) =
026(k — u) for k,u ¢ P, and that the received signal and noise are independent, it can

be shown that the mean value of R(l,m) is

2
E[R(L.m)] = e(l =m) - £ > [H[K]* (3.5)
keP,

and its variance is given by

Var[R(l,m)] =

N-1
0_2

4

O-S w

T3 H I+ 2 S )
k¢Pq k=0

2 N-1 4
+ 2 S Hk X[k + 225 (3.6)
k=0
where p? = | P,[k]|?>. Here we can see that the second term in the right-hand side of (3.3)
is the frequency-domain cross-correlation of two received OFDM symbols for non-pilot

subcarriers. Its mean is zero and variance is given by the first term of the right-hand
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side of (3.6). Moreover, the third and fourth terms in the right-hand side of (3.3) are
the frequency-domain cross-correlations of the received signal and noise. The means of
these two terms are zero and their variances are given by the second and third terms in
the right-hand side of (3.6). It can be easily seen that the variances of these three terms
are relatively small compared to the last term in the right-hand side of (3.6) especially
when the SNR is very small (less than -10 dB). Therefore, it is reasonable to ignore

these three terms in (3.3). As a consequence,

p2
R(l,m) = m—myNEXNHmF

keP,
1 N-1
*‘NZWW%W- (3.7)
k=0

Note that from (3.7), R(l,m) simply consists of a constant term and a noise term. The
fact that the mean value of R(l,m) is not zero makes it different from noise, and we

are able to exploit this property to perform spectrum sensing.

3.2 TDSC Based Spectrum Sensing Algorithm (TDSC Method)

Let v =1 — m be the symbol index difference of two OFDM symbols. Note that in all
OFDM standards, two OFDM symbols which have their symbol index difference equal
to v have the same pilot tone positions. Further define C'(v) as the accumulated TDSC

function

m—Il=v
p2 1 A-1
= ) TS HP
a=0 kEP,
1 N-1
o 3wl (38)
Y m—l=v k=0

where S, is the number of R(l,m) which are accumulated and added. Here S, is
selected to be an integer multiple of A. We can see from (3.8) that the mean of C(v)
is unchanged no matter how many TDSC are accumulated. However, the variance of

the noise term (second term) in C(v) is inversely proportional to S,. Therefore, as
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long as the accumulated number of R(l,m), denoted by S,, is large enough, the noise
term in C'(v) will be significantly reduced. Due to this property, we are able to perform
spectrum sensing in very low SNR environments. For the convenience of derivation and

readability, we rewrite C'(v) as

C(v)=e(v)A +&(v) (3.9
where
21 A-1
A= 5 go kezp |H[K]|? (3.10)

is the average received signal power in the pilot tone positions divided by N? and

0.4

€) ~ ON(0. 1)

(3.11)

is a circularly symmetric complex Gaussian random variable. Furthermore, £(v) and
&(u) are independent for v # p. Note that because of the carrier frequency offset, there
is a phase term e(r) in (3.9) which is a function of v = m —[. As a result, we cannot

linearly combine C(v) for different v. In order to solve this problem, let

Qr,v+d) = C)C*(v+d)
= e(-d)A +A-(EW)+E WV +d)

+ W) (v+d) (3.12)

which is the conjugate product of two accumulated TDSC functions. It is easily seen
that

E[Q(v,v +d)] = e(—d)A? (3.13)

and

Var|Q(v,v +d)] =

ol ol oS

_ A2, w w w
=A% ( R Sy+dN3) SR (3.14)

Then the phase term embedded in Q (v, v+d) becomes a function of d, and hence, we can
linearly combine Q(v, v + d) for different v. Therefore, let I' be the linear combination
of Q(v,v +d)

I'=> a,Q(,v+d (3.15)
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where a, is a combining ratio. The problem arises as to how the a, should be chosen
so as to achieve the best detection performance for a fixed probability of false alarm.
However, traditional detection theorems, e.g., Neyman-Pearson and Bayes Risk meth-
ods [8], are not suitable to use because the probability distribution functions for both
Hypothesis one (H;) and Hypothesis zero (Hy) are functions of the combining ratios a,.
Here, we shall use an intuitive criterion. That is, we choose a, such that the Kullback-
Leibler divergence is maximized. The Kullback-Leibler divergence of two densities f

and g is defined by [29]
f
D(slg) = [ 108, (3.16)
According to the Central Limit Theorem, when the number of terms added in (3.15) is

sufficiently large, the probability distribution of I' for both hypotheses is given by

pr(t;H1) ~ CN(u,07)

pr(t; Ho) ~ CN(0,09) (3.17)
where

po= e(—d)AQZaV

of = Y alVar[Qv,v+d)

8
2 _ 2 Tw
o5 = %} aVSVSV+d 5 (3.18)

For two complex Gaussian random variables, the Kullback-Leibler divergence is given

by
2 2 2
-0
D(H,||Hp) =1n 28 + e . | + (3.19)

71 90 a0

Then, by computing
D(H,||H
Oa,,

for all v, the optimal combining ratios are obtained. However, (3.20) is too complex to
solve. As a result, we make an assumption that o3 and o are approximately equal in
order to obtain suboptimal combining ratios. By substituting o = 0% into (3.20), we

obtain

ay =S,y 4. (3.21)
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Note that this choice of the combining method is essentially that of Maximum Ratio
Combining (MRC) [30] if we ignore two cross terms in (3.12). Before defining the
decision statistic used for performing spectrum sensing, we should note that the lack
of symbol timing information has not been considered in our derivation. When symbol
timing is lacking, the usual approach is to try all possible symbol timing instances in
order to compute (3.15). Then use the resulting maximum amplitude as the decision
statistic. Due to the CP nature of the OFDM signal, our previous derivations are valid
as long as the initial sample time instance is taken from any point within an intersymbol

interference (ISI) free region [31]. Suppose that the maximum channel delay is D, then

the length of the ISI free region is L — D + 1. Thus, if we search over [L]fzgf‘rl] points
which are equally spaced by L — D as the initial sample time instances, there must
be one point in the ISI free region. The function [b] is the smallest integer which is
larger than or equal to b. Typically, we don’t know the maximum channel delay D
when we are performing spectrum sensing. Consequently, let Z = [%L and then use
the Z points which are separated by L — 1 as initial sample time instances. Although
this suboptimal approach will introduce some ISI when none of the Z points are in
the ISI free region, the detection performance will not be degraded too much since the
IST introduced is small when the CP length is much larger than the root mean-square
(RMS) delay-spread of the wireless channel. Consequently, we use these Z points as

initial sample time instances to compute (3.15) and use the maximum amplitude as the

decision statistic. Hence, the decision statistic is defined as
Tyt = max |I'(no)| (3.22)
no

where I'(ng) is given by (3.15), and we use ng as the initial sample time instance.

The approach of performing spectrum sensing by computing time-domain correla-
tion function R(l,m) can be easily applied to any OFDM system employing pilot tones.
However, the pilot tone patterns used in various standards are different. Thus, the ac-
tual spectrum sensing algorithms that are used might be slightly different. In the next
section, we use the DVB-T Standard as an example and describe how to perform spec-

trum sensing for DVB-T OFDM systems. Through this example, the spectrum sensing
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algorithm for other OFDM systems which embed pilot tones can be easily developed.

3.3 Spectrum Sensing for DVB-T OFDM Systems

Every transmitted OFDM symbol contains two kinds of pilot tones [2]. One is continued
pilot and the other is scattered pilot. The positions of continued pilots are the same
for all transmitted OFDM symbols. The scattered pilots are inserted every twelve
subcarriers and their positions are shifted by three subcarriers for the next OFDM
symbol so that the positions of scattered pilots are repeated every four OFDM symbols,
hence we have that

Pa,scatter = {k’k‘ = 12] + 3(a + 1)} (323)

for { =0,1,..., and a = 0,1,2,3. Therefore, there are four sets of pilot tone patterns
for DVB-T OFDM. We should note that the number of scattered pilots is much larger
than the number of continued pilots. For a 2K-subcarrier mode, there are 45 continued
pilot tones and 141 scattered pilot tones in an OFDM symbol. Therefore, we shall
compute C(v) for the case where v is a multiple of four, except zero, because by doing
so, the absolute mean value of C(r) is maximized. The decision statistic is given by
(3.22) where I'(ng) is defined by

K

D= SuSuk+aQ(4k, 4k + 4) (3.24)
k=1

and ng is used as the initial sample time instance.

3.4 A Lower Bound on the Misdetection Probability for T,

The probability distribution function of random variables |I'(ng)| for various ng is a
joint Rayleigh distribution. The joint Rayleigh distribution for more than four random
variables with arbitrary covariance matrix is still an open research problem [32]. Thus,
we shall not try to derive the exact probability of misdetection for a specific probability
of false alarm. It is obvious that the misdetection probability when using |I'(n¢)| as
the decision statistic, where ng is a correct symbol timing, will be a lower bound on

the misdetection probability for (3.22). The probability distribution of |I'(7)| for both
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hypotheses is given by (3.17) and (3.18). For a specific probability of false alarm P4,

the corresponding threshold ~ is given by

v =1/—0§InPra (3.25)

and the corresponding probability of misdetection Pa;p, which is a lower bound for

(3.22), is given by
2
Pup =1 Quan(2)- (3.26)

)
01

The function
o0

1 exp[%l(t + (V) dt (3.27)

@z (@) = / 5

xT

is the right-tail probability of the non-central Chi-Squared distribution with two degrees

of freedom and A = |u|?/o?. The function

27 dé
Ip(u) = / exp(ucosf)— (3.28)
0 2

is the modified Bessel function of the first-kind and order-zero.

3.5 Algorithms Based on the Cyclic Prefix Property (CP Method)

Due to the CP nature of the OFDM technique, it is straightforward to use the CP to
perform coherent detection for spectrum sensing. We shall define the CP correlation

function as

5—-1L—-1
1
ch[n]:EZZ:c[n—Fm—FN—FuM]x*[n—Fm—FuM] (3.29)

u=0 m=0
where S is the number of OFDM symbols accumulated for CP correlation and z[n] is
the received signal. Noting that symbol timing information is lacking, and that it is
expected the absolute value of R.p[n] is maximum for the correct symbol timing. Thus,

the decision statistic for the CP method is given by

Tep = 0<nef-1 | Rep[n]|- (3.30)
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3.6 Probability of False Alarm

3.6.1 TDSC Based Method

As mentioned in Section 3.4, the probability distribution of T} for hypothesis Hy is
still an open research problem. However, assuming that the random variables I'(ng) are
independent provides a good approximation. Thus for a specific Pg 4, the corresponding

threshold ~,; is given by

) 1 1/2
= 1 3.31

where €, is an heuristic adjusting factor added artificially to account for the approxi-

mation of independence between random variables.

3.6.2 CP Method

For hypothesis Hg and sufficiently large SL product, by the Central Limit Theorem,
Rcp[n] in (3.29) approaches a circularly symmetric complex Gaussian distribution, i.e.,
4

Repln] — CN(0, %). (3.32)

Observing that the random variables R.,[n] are not necessarily independent, once again,
we assume that they are independent in order to calculate an approximate threshold.
Similarly, for a specific probability of false alarm P4, the threshold 4., can be given

by
- Uil 1 1/2
P)/Cp—ecp SL nl—(l—PFA)l/M

where €., is an heuristic adjusting factor artificially added to account for the approxi-

(3.33)

mation mentioned above.

3.7 Simulation Results

The performance of the spectrum sensor for the OFDM signals employing frequency-
domain pilot tones is demonstrated by computer simulation. The simulation environ-

ments are AWGN, multipath Rayleigh fading, and multipath Ricean channels specified
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in [2]. The performances on misdetection probability are evaluated for a false alarm
probability equal to 0.01 and a sensing time of 50 ms. Both TDSC and CP meth-
ods are simulated for four CP ratios defined in [2] and compared to the theoretical
lower bound of the TDSC method. From Fig.s’ 3.1-3.4, we can see that the TDSC
method can achieve a misdetection probability of 0.1 when SNR equals -20.5 dB for
four CP ratios. The TDSC method outperforms the CP method in all cases. The TDSC
method outperforms CP method for 2 dB and 6 dB when the CP ratio is 1/4 and 1/32,
respectively. Furthermore, the TDSC method has approximately the same detection
performance for different CP ratios while the detection performance of the CP method
degrades dramatically when the CP ratio becomes small. Results also reveal that the
simulated performance is very close to the theoretical lower bound indicating that the

lower bound can be used as a good prediction of performance.

3.8 Conclusions

An OFDM spectrum sensor which makes use of the existence of the frequency-domain
pilot tones was presented in this chapter. The proposed TDSC method requires that
only correlations be computed and a small number of amplitude comparison operations
are needed to perform spectrum sensing. Hence, it is very low complexity and easy
to apply in practice. The simulation results show that the proposed spectrum sensor
has excellent performance. The proposed spectrum sensor can achieve a misdetection
probability of 0.1 with respect to a probability of false alarm set to 0.01 for a sensing
time of 50 ms when the SNR is -20.5 dB. When the TDSC method is compared to the
CP method, the TDSC method outperforms the CP methods for the four CP ratios in
the range from 2 dB to 6 dB. The simulation results also show that the misdetection
probability found by simulation is very close to the lower bound derived in this study.
Thus, the lower bound on the misdetection probability given herein can be used as a
good prediction of performance. Finally, and most important of all, in this study, we
have shown that a simple and accurate spectrum sensing algorithm for OFDM signals

does exist and can be easily applied in practical systems.
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Chapter 4

Spectrum Sensing for NSPRC DMBT Systems

In China, the DTV signal structure is specified by the NSPRC Digital Multimedia
Broadcasting-Terrestrial (DMB-T) Standard [3]. Therefore, spectrum sensing algo-
rithms which are dedicated to DTV signals in China are needed. In DMB-T systems,
a time-domain synchronous OFDM (TDS-OFDM) technique is adopted. Instead of
cyclic prefixes, pseudonoise (PN) sequences are inserted as guard intervals. The DMB-
T signals consist of signal frames. A signal frame consists of a frame header and a
frame body. There are three frame header modes defined in the DMB-T Standard.
Although the frame headers of different modes consist of PN sequences, the structures
for the different modes are different. As a consequence, different spectrum sensing al-
gorithms are designed for different frame header modes. A theoretical lower bound on
the misdetection probability for each spectrum sensor is derived in this chapter. The
performances of the spectrum sensing algorithms presented in this study are demon-
strated by computer simulations and compared to corresponding lower bounds on the
misdetection probability. The spectrum sensing algorithms described in this chapter

has also been made available in the literature [34].
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4.1 Frame Structure of the DMB-T System

First, we briefly describe the signal frame structure of the DMB-T system [3]. As shown
in Fig. 4.1, a signal frame consists of two parts. The first part is that of a frame header
which contains a PN sequence serving as pilot symbols. The second part is the frame
body which contains information symbols. Three signal frame structures are defined
in [3] according to the length of the frame header. The frame header may contain 420,
595, or 945 symbols within the PN sequence. These three frame structures have the
same frame body length and a frame body contains N = 3780 information symbols.
For Frame Header Mode 1, as shown in Fig. 4.2, the frame header contains L, = 420
symbols (PN420) which consist of one front synchronization, one PN255 sequence and
one rear synchronization. The front and rear synchronizations are cyclic extensions
of the PN255 sequence. The length of the front synchronization is 82 symbols and
the length of the rear synchronization is 83 symbols. For Frame Header Mode 1, a
group of 225 signal frames form a superframe and these 225 frames use PN sequences
generated by the same 8th-order linear shift register but have different initial phases.
For Frame Header Mode 2, the frame header contains Ly = 595 symbols (PN595) which
is truncated from a 10th-order maximum length sequence. For Frame Header Mode 2, a
group of 216 signal frames form a superframe. Unlike Frame Header Mode 1, all frame
headers contain the same PN595 sequence. The structure of Frame Header Mode 3 is
similar to the structure of frame mode 1 as shown in Fig. 4.2. The frame header contains
L3 = 945 symbols (PN945). The front and rear synchronizations are cyclic extensions
of the PN511 sequence. The lengths of both the front and rear synchronizations are 217
symbols. For Frame Header Mode 3, a group of 200 signal frames form a superframe
and these 200 frames use PN sequences generated by the same 9th-order linear shift

register having different initial phases.

Frame Header Frame Body (system information and data)
(420, 595, or 945 symbols) (3780 symbols)

Figure 4.1: Signal frame structure used in the DMB-T system.
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Front Synchronization
82 (217) symbols

Rear Synchronization

PN 255 (511) 83 (217) symbols

Figure 4.2: Frame header structure, PN420 (PN945), of the DMB-T system.
4.2 Spectrum Sensing for Frame Header Mode 2

4.2.1 The PN Correlation (PNC) Method

For Frame Header Mode 2, all frame headers contain the same PN595 sequence. Because
the PN595 sequence is only a part of the whole PN sequence, it is difficult to use any
property related to PN sequences to perform spectrum sensing. As a result, we simply
utilize the correlation of PN595 in two consecutive frame headers as the basic approach

to perform spectrum sensing for Frame Header Mode 2. Let
r[n] = yln] + win] (4.1)

where y[n] is the received signal and w(n| is an additive white Gaussian noise (AWGN).
We will assume that w[n| is a complex circularly symmetric Gaussian random variable
which has zero-mean and a variance of 02. Because every frame header contains the
same PN595 sequence, it can be expected that the correlation of two consecutive frame
headers will generate a peak amplitude. Following this approach, we define the decision

statistic of the PN Correlation (PNC) method for Frame Header Mode 2 as

Tpnc,2 = ogr%%[(rl ‘tpnc,Q(m)’ (42)
where
1 So—1La—1
tpnc,?(m) = SoLoy Z Z T[m +k+ nM?]
n=0 k=0
“r¥m 4k + (n+ 1) Ms] (4.3)

The parameter My = N + Lo is the length of a signal frame for Frame Header Mode 2

and S5 is the number of signal frames used to perform spectrum sensing.
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4.2.2 A Lower Bound on the Misdetection Probability for 7},

Note that in (4.2), because the timing information is lacking, M, possible initial frame
sampling instances were tried. We use the maximum amplitude over all trials as the
decision statistic. The detector defined in (4.2) is suboptimal compared to the detector
with perfect timing information. The performance of the operating detector defined in
(4.2) will be bounded by the performance of the detector with perfect timing information
[8]. We will use this idea to derive a lower bound on the misdetection probability for
all detectors considered in this study. Therefore we give a general description and
derivation here.

Let t(ng) be a decision statistic of a detector which uses ng as initial frame sample
time instance and assume that t(ng) is a complex random variable. Let 7' = [t(f)]
where ng is the correct initial frame sample time instance. Therefore T is the decision
statistic of the detector with perfect timing information. Let 7" be decision statistic of
the detector that lacks precise timing information. Then, without the use of special
conditions, an exhaustive search for all possible initial frame sample time instances is
usually used. Thus, a detector having the decision statistic T = max,, [t(ng)] is the
general detector structure when we use t(ng) as decision statistic and timing information
is unavailable. The detection performance of T is bounded by the detection performance
of T'. If the probability distribution functions for both hypothesis H; (signal plus noise)

and Hy (noise only) for t(7g) are given as

Pu(ao)(t; H1) ~ CN(u,07)

pt(ﬁo)(t;HO) ~ CN(O,J(Q]) (4.4)

where C'N(j1,0%) denotes a complex Gaussian distribution with mean p and variance
o2. Then, the random variable T is Rayleigh distributed for hypothesis Hy and is
Rician distributed for hypothesis Hi. For a specific probability of false alarm Pr4, the

corresponding threshold ~; is given by

’)/T = —08 hlPFA (45)
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and the corresponding probability of misdetection probability P,,, + is given by

2

’YA
Prp =1 Qun(55) (4.6)
where the function
*1 -1
Q y3(®@) = / 5 bl ¢+ N To(VAD) di (@7)

is the right-tail probability of the non-central Chi-Squared distribution with two degrees

of freedom and A = |u|?/o?. The function

do

2m
Io(u)—/o exp(ucos@)% (4.8)

is the modified Bessel function of the first-kind and order-zero. Then, the misdetection
probability calculated according to (4.6) is a performance lower bound on the misde-
tection probability for the detector which uses T as a decision statistic.

Let 1. pne,2 = |tpne,2(Mo)| where g is the correct initial frame sample time instance.
Then, from the Central Limit Theorem, for sufficiently large S3Lo, the probability
distribution functions of ¢y 2(70) for both hypothesis H; (signal plus noise) and Hy
(noise only) will approach circularly symmetric complex Gaussian distributions
2050120 + Ufu)

SoLs
) (4.9)

Ptynes(ing)(ti H1) ~ CN(oy,

ptpnc,Q(mo)(t; HO) ~ CN(O,

where the parameter ag is the average energy of the received signal frame header. Then
by substituting the parameters of (4.9) into (4.5) and (4.6), we can obtain a lower bound

for the misdetection probability of the PNC detector for Frame Header Mode 2.

4.3 Spectrum Sensing for Frame Header Mode 1 and Mode 3

4.3.1 The Cyclic Extension Correlation (CEC) Method

As shown in Fig. 4.2, for Frame Header Modes 1 and 3, a frame header consists of a
PN sequence and its cyclic extension. Thus, the first 165 (434) symbols of the frame

header are a repetition of the last 165 (434) symbols of the frame header for Frame
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Header Mode 1 (mode 3). It is intuitive to use the correlation of these two components

to perform spectrum sensing. Define the decision statistic of the CEC method as

Teee,i = 0<r7r7113%)§\/[. ‘tcec,i(’m)’, 1=1,3 (4.10)

with

| Sim1Gi-l
teeci(m) = S.C T;) kZ:O rim + k + nM;)

7 [m+k+Gi+nby, i=1,3 (4.11)

where C7 = 165 (C3 = 434) is the number of the cyclic extended symbols and G = 255
(G3 = 511) is the length of the PN sequence for Frame Header Mode 1 (mode 3). The
parameter M; = N + L; is the length of a signal frame for Frame Header Mode ¢, and
i=1,3.

4.3.2 A Lower Bound on the Misdetection Probability for T ;

Similarly, let Tcec,i = |teec,i(Tho)| where 1y is the correct initial frame sample time
instance. Then, from the Central Limit Theorem, for sufficiently large .5;C;, the prob-
ability distribution functions of tccc;(1mo) for both hypothesis H; and Hy will approach

complex Gaussian distributions

20202 + ol
ptcec,i(mO) (t’ Hl) ~ CN(O_%’ pSwC =
i

g

SiC;

ptcec,i(mo) (t’ HO) ~ CN(07 ) (412)

Again, by substituting the parameters of (4.12) into (4.5) and (4.6), we can obtain a
lower bound on the misdetection probability for the CEC detector for Frame Header
Mode 1 and mode 3.

4.3.3 The PN Correlation Method

For Frame Header Modes 1 and 3, the signal frame headers in a superframe use PN
sequences which are generated by the same linear shift register having different initial
phases. These PN sequences are cyclic shifts of each other. The initial phases of the

PN sequences for each signal frame of a superframe are listed in [3]. After computer
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verification, we found that the PN sequences have the following structure. Let the
PN sequence in the first signal frame be a reference PN sequence and, let P;(l) be the
PN sequence which is cyclically right shifted by [ places relative to the reference PN

sequence for Frame Header Mode i. Then

7

Pi(1/2), 1=0,2,...,112
F(l)=4 P(254—(1—1)/2), 1=1,3...,111 (4.13)
Fi(224 —1—1), [=113,...,224
\

and for Frame Header Mode 3, we have that

P3(1/2), 1=0,2,4,...,100

F3(l) =9 P3(510—(1—1)/2), 1=1,3,5,...,99 (4.14)

F3(200 — 1), [=101,102,...,199

where Fy (1) (F5(1)) is the PN sequence which is used in the [ signal frame for Frame
Header Mode 1 (mode 3). Although the PN sequences used in signal frames of a
superframe follow the rules given in (4.13) and (4.14), it is still not easy to utilize
the properties associated with PN sequence and the rules to perform spectrum sensing
because the PN sequence in every other signal frame is not always cyclically right-
shifted or left-shifted. However, except for the two signal frames in the middle, the
cyclic shift of the PN sequence for every other signal frame is either one place to the
right or one place to the left. Therefore, we define the decision statistic associated with

the PNC method for Frame Header Mode 1 and Mode 3 as

Topes = ; 4.1
pne,i Ogmgr(n]\/%)jci]q ‘tpnc,Z(m)‘ (4.15)
where
1 S;i—1 1 G;—1
tpne,i(m) = 55, Z Z Z rmC; + k 4+ nM;]
P p=0 a=0 k=0
¥ mC; + k+ (n+2)M; + (—1)] i=1,3 (4.16)

Note that because of the cyclic extension of the PN sequence in the frame header, as

long as the initial sample is taken from the first 165 (434) symbols for Frame Header
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Mode 1 (Mode 3), we can obtain the entire PN255 (PN511) sequence. Thus, instead of
searching over M; possible initial frame sampling time instances, we only need to try
[M;/C;] points which are uniformly separated by C;—1. The function [b] is the smallest
integer which is larger than or equal to b. It is easily seen that one of these points will
fall within the first 165 (434) symbols. For the multipath channels, this approach is
not completely correct. However, the performance will not degrade too much as long
as the length of the cyclic extension is much larger than the root mean-square (RMS)

delay-spread of the wireless channel.

4.3.4 A Lower Bound on the Misdetection Probability for 7)., and

Tpnc,3

Again, let T, pnei = |tpne,i(ho)|, @ = 1,3 where 7 is the correct initial frame sample
time instance. Then, from the Central Limit Theorem, for sufficiently large S;C;,
the probability distribution functions of tce. (1) for both hypothesis Hy and Hy will
approach circularly symmetric complex Gaussian distributions

0’;1 + 4050120 + 20
45,G;

2
Jp
ptpnc,i(ﬁlo)(t;Hl) ~ CN(;,

g

4
QSZ-Gi)'

Plyne.(iino) (B Ho) -~ CN(0, (4.17)

Then, by substituting the parameters of (4.17) into (4.6), we can obtain a lower bound
on the misdetection probability for the PNC detector for Frame Header Mode 1 and

Mode 3.

4.4 Probability of False Alarm

Following the terminology that was used in deriving a lower bound on misdetection
probability in Section 4.2.2, let t(ng) be a decision statistic of a detector which uses ng
as an initial frame sample time instance. For hypothesis Hy, which corresponds to the
presence of noise only, the random variable t(ng) is a circularly symmetric Gaussian
random variable. The random variables t(ng) for a period of time instances are identical,

but not necessarily, independently distributed. Therefore the random variable T =
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maxy, |t(no)| is jointly Rayleigh distributed and the joint Rayleigh distribution for more
than four random variables with arbitrary covariance matrix is still an open research
problem [32]. However, assuming that the random variables t(ng) are independent
provides a good approximation. Thus for a specific Pr4, the corresponding threshold

V¢ is given by

, 1 1/2
= = €5 1 4.18

where €7 is an heuristic adjusting factor added artificially to account for the approxi-
mation of independence between the random variables, and W is the number of time

instances that were considered.

4.5 Simulation Results

The performances of the proposed spectrum sensing methods are demonstrated via
computer simulations. The probability of false alarm and sensing time are set to 0.01
and 50 ms, respectively. The simulated channel environments are the steady state
multipath Rayleigh channel and multipath Rayleigh fading channel with root mean
square (RMS) delay spread equal to 1.24 us (9.37 samples). Here, each path of the
steady state multipath Rayleigh fading channel is multiplied by a constant path gain.
Thus, for each single path, its envelope is a constant and the Rayleigh fading occurs due
to the sum of these paths. For the multipath Rayleigh fading channel, the envelope of
each single path is Rayleigh distributed and the channel gains of each path are generated
in accordance with Jakes fading model [33]. For Frame Header Mode 2, as shown in
Fig. 4.3, the probability of misdetection (Py/p) equal to 0.1 is achieved when the SNR
is -18.8 dB for the multipath Rayleigh fading channel and -19.8 dB for the steady state
channel. For Frame Header Mode 1, as shown in Fig.s 4.4 and 4.5, the performances
of the CEC and PNC methods are approximately the same. A Pyp equal to 0.1 is
achieved when the SNR is -16 dB for a multipath Rayleigh fading channel and -17.2
dB for the steady state channel. For Frame Header Mode 3, as shown in Fig.s 4.6 and
4.7, the CEC method outperforms the PNC method. A Pysp equal to 0.1 is achieved
when the SNR is -18.5 dB for the multipath Rayleigh fading channel and -18 dB for
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the steady state channel. In all figures, the performance of the steady state channel is
close to the theoretical lower bound indicating that the lower bound can be used as a

good of performance predictor for the spectrum sensing algorithm.

4.6 Conclusions

Spectrum sensing for DMB-T systems using PN frame headers has been considered in
this chapter. Spectrum sensing algorithms which make use of the cyclic extension of
the PN sequence in frame headers and PN structures associated with frame headers
in a superframe are described in detail. The statistical analysis of all the detectors
considered in this study has been provided and a corresponding lower bound of misde-
tection probability has been given. The performances of the proposed spectrum sensing
algorithms are demonstrated by computer simulation for the multipath Rayleigh fading
and steady state multipath Rayleigh fading channels. Simulation results show that the
misdetection probability evaluated by computer simulations is close to the lower bound
on the misdetection probability for a steady state multipath Rayleigh channel. When
the probability of false alarm is 0.01 and a 50 ms of sensing time is used, a misdetection
probability equal to 0.1 is achieved when the signal to noise power ratio is -16 dB, -18.8
dB, and -18 dB for Frame Header Modes 1, 2, and 3 in the multipath Rayleigh fading
channel, respectively. Furthermore, the lower bound on the misdetection probability

developed in this study yields a good prediction of the spectrum sensing performance.
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Figure 4.3: Spectrum sensing performance of the PNC method for Frame Header Mode
2 and its lower bound for Pr4 = 0.01 and sensing time = 50 ms.
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Figure 4.4: Spectrum sensing performance of the CEC method for Frame Header Mode
1 and its lower bound for Pr4 = 0.01 and sensing time = 50 ms.
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Figure 4.5: Spectrum sensing performance of the PNC method for Frame Header Mode

3 and its lower
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Figure 4.6: Spectrum sensing performance of the CEC method for Frame Header Mode

1 and its lower

bound for Pr4 = 0.01 and sensing time = 50 ms.
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Figure 4.7: Spectrum sensing performance of the PNC method for Frame Header Mode
3 and its lower bound for Prs = 0.01 and sensing time = 50 ms.
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Chapter 5

Spectrum Sensing for Wireless Microphone Signals

Wireless microphones are low-power secondary licensed signals operated in the locally
unused DTV bands. Therefore, the main task in spectrum sensing for IEEE 802.22
WRAN also includes the detection of the existence of a wireless microphone signal.
From various signal models of the wireless microphone [38] [40], it is found that the
power of the WM signal is highly concentrated in the frequency domain. Due to this
property, spectrum sensing can be performed by simply detecting the maximum peak of
the estimated PSD of the received signal. The probability of false alarm is analytically
derived for the WM detector presented in this chapter. The performance of the WM
detector is demonstrated by computer simulations using WM signal models provided
in [38] [40]. The spectrum sensing algorithms described in this chapter have also been

made available in the literature [35].
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5.1 Characteristics of Wireless Microphone Signals

Most of the wireless microphone devices use analog frequency modulation (FM) and
the signal bandwidth is less than 200 kHz [36]. Let m(t) be the voice signal, then the

transmitted FM signal s(¢) can be generated by

s(t) = A, cos [27 fut + 21k; /0 tm(T)dT] (5.1)

where A, is the carrier amplitude [37]. The term f. is the carrier frequency, and
the constant k; is the frequency sensitivity of the modulator. In [38], three wireless
microphone operating situations and two environment conditions are suggested to test
spectrum sensing algorithms for wireless microphone signals. As a consequence, there

are six wireless microphone signal models. The three system operating situations are:

1. Silent:
The system user is silent. In this situation, m(t) is a 32 kHz sinusoid signal and

the FM deviation factor is +5 kHz.

2. Soft Speaker:
The system user is a soft speaker. In this situation, m(¢) is modeled as a 3.9 kHz

sinusoid signal with the FM deviation factor being £15 kHz.

3. Loud Speaker:
The system user is a loud speaker. In this situation, m(t) is modeled as a 13.4

kHz sinusoid signal with the FM deviation factor being +32.6 kHz.
The two environmental conditions are:

1. Outdoor, LOS:
In this case, the wireless microphone system is used in an outdoor environment
where a line of sight (LOS) transmission path between transmitter and receiver

exists. Therefore, it is an AWGN channel model.

2. Indoor, Rayleigh Faded:

In this case, the wireless microphone system is used indoors. Because the distance
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between transmitter and receiver is short, a single-path Rayleigh fading channel
is good enough to model the indoor channel. Therefore, a flat fading channel is
used. Moreover, the speed of the user is assumed to be 0.6 m/s. At this speed,
and a possible maximum carrier frequency of 806 MHz, the maximum Doppler
shift is computed to be 1.612 Hz. Because the maximum Doppler shift is very
small, the Doppler effect can be ignored. Hence, this channel is a single-path

time-invariant channel.

Furthermore, a more accurate model of voice signals is used in [39] [40]. The audio
signal m(t) is simulated using colored noise generated by passing white noise through
the circuit described in the ETSI document [40]. Then, the audio signal is passed
through a pre-emphasis filter prior to FM modulation. Figures 5.1 to 5.8 show the
PSDs of the various noise-free WM signal models and their corresponding PSDs when
the SNR is -20 dB. We can see from these figures that the power of the WM signal
concentrates within a small frequency band which is less than 200 kHz. Moreover, there
are apparent peaks contained in the PSDs of the various WM signal models. Also, from
these figures, it can be seen that for the same operating mode, the PSDs of the WM
signal look almost the same as the PSDs of the WM signal passed through a fading
channel. This is because the channel is a flat fading channel. A flat fading channel does
not change the shape of the PSD of a signal [41]. As a result, we can perform spectrum
sensing of the WM signal by detecting peaks of the estimated PSD corresponding to a
6 MHz DTV channel. For simplicity, we use the maximum peak of the estimated PSD

as the decision statistic.

5.2 Wireless Microphone Detector

Let the received sampled signal y[n] be described according to

yln] = s[n] @ hin] + win] (5.2)

where s[n] is the transmitted WM signal, h[n] is channel impulse response and w[n]

is additive white Gaussian noise (AWGN) noise. We will further assume that w[n] is
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zero-mean and has a variance of o2. The PSD of the signal y[n] is estimated by [42]

1 | M-l
Syll] = —c — Y [u, 1] 5.3
u=0
where T is the sampling period, and
N—-1
Yu,l] = Z ylu - N + kleI2mtk/N (5.4)
k=0

which is the DFT of the non-overlapping sliding sampled signal [42]. The parameter N

is the size of the DFT. Then, the test statistic to be used is given by

T = max 1Sy [1]]- (5.5)

5.3 Probability of False Alarm

For hypothesis Hy, which corresponds to the presence of noise only, i.e., y[n] = w(n].
We know that w[n| are independently and identically distributed (i.i.d.) Gaussian ran-
dom variables with zero-mean and variance o2. It can be easily shown that Wu,l], [ =
0,1,..., N —1 computed by (5.4) are circularly symmetric i.i.d. complex Gaussian ran-
dom variables with zero-mean and variance No?. Therefore, |W[u,l]|, | =0,1,..., N —
1 are i.i.d. Rayleigh distributed. Then, Sy [l] computed by (5.3) are i.i.d. Gamma dis-
tributed random variables

No? 1

Sulll ~ TV, =537

(5.6)

From the Central Limit Theorem, when M is sufficiently large, S,[l] approaches that

of a Gaussian distribution

lim Sy[l] — N(M6, M6?) (5.7)
M—o0
where 0 = % ﬁ Therefore, the cumulative distribution function of the test statis-

tic for hypothesis Hy is given by

_ (u—M6)? N
Fr(xz: Hy) = 2M62 du) . (5.8)

(L7

Then, for a particular Pg4, the corresponding threshold A can be found by

PFA =1- FT()\ : H()) (59)
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Finally, after some straightforward calculation, we have
A= MO+ VM- Q71— (1— Ppa)/N) (5.10)

where Q7!(-) is the inverse function of the function

Q(x):/ L degy, (5.11)
5.4 Simulation Results

We use the WM signal models described in Section 5.1 to test the proposed spectrum
sensing algorithm. Figures 5.9 and 5.11 show the operational curves of the six WM
signal models provided in [38] when Prgq = 0.1 and Ppyg = 0.01, respectively, and
a sensing of 10 ms is used. For the worse case, the required SNR for WM detector
to achieve 0.1 of Pyp is about -24.8 dB and -23.8 dB for Pry = 0.1 and Prpy =
0.01, respectively. We can see that the detection performance is better when the FM
deviation factor is smaller. It is because the smaller the FM deviation factor, the more
concentrated is the signal power in the frequency domain. We can also see that the
single-path Rayleigh fading channel does not have a significant effect on the detection
performance. Figures 5.10 and 5.12 show the performance curves for the WM device
when operated in the Soft Speaker and the Loud Speaker Modes as described in [38].
However, here colored noise has been used as a voice source [40] instead of tone signals.
We can see that when we use colored noise as a voice source, the detection performances
are similar for the four cases. The required SNR for WM detector to achieve a Py p =
0.1 is about -27 dB and -26 dB for Pra = 0.1 and Pr4 = 0.01, respectively. Compared
with the eigenvalue-based detector described in [9], the required SNR for an eigenvalue-
based detector to achieve Py;p = 0.1 with respect to Prg = 0.1 using a sensing time of
9.3 ms is -20 dB. Therefore, the proposed WM detector developed in this study provides
a significant performance improvement. Furthermore, the complexity of the proposed

WM detector is much smaller than the complexity of the eigenvalue-based detector.
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5.5 Conclusions

A simple spectrum sensor for wireless microphone has been described in this chapter.
The presented WM spectrum sensor uses the maximum peak of the estimated PSD
of the received signal. Computer simulations show that the the required SNR for the
proposed spectrum sensor to achieve Py;p = 0.1 with respect to Pr4 = 0.1 using a
sensing time of 10 ms is -24.8 dB. Thus the WM spectrum sensor performs very well
and has a very low complexity making it attractive for use in a variety of practical

applications.
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Figure 5.1: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Outdoor, LOS, Silence.
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Figure 5.2: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Outdoor, LOS, Soft Speaker.
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Figure 5.3: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Outdoor, LOS, Loud Speaker.
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Figure 5.4: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Indoor, Rayleigh Faded, Silence.
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Figure 5.5: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Indoor, Rayleigh Faded, Soft Speaker.
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Figure 5.6: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Indoor, Rayleigh Faded, Loud Speaker.
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Figure 5.7: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB) using colored noise as voice source, Soft Speaker.
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Figure 5.8: PSDs of the WM signal and the WM signal plus AWGN (SNR=-20 dB)using
colored noise as the voice source, Loud Speaker.
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Figure 5.9: Spectrum sensing performance of the WM detector using a tone signal as
the voice source, Pr4 = 0.1 and sensing time=10 ms.



65

10 T
10’1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
[a)
s
a
107 | —— Outdoor, LOS, Soft Speaker — [::::iiiiiiiiiiiiigiiiig
—— Outdoor, LOS, Loud Speaker
—+&— Indoor, Rayleigh, Soft Speaker
—=4— Indoor, Rayleigh, Loud Speaker
10° i )
-35 -30 -25

SNR (dB)

Figure 5.10: Spectrum sensing performance of the WM detector using colored noise as
the voice source, Pr4 = 0.1 and sensing time=10 ms.
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Figure 5.11: Spectrum sensing performance of the WM detector using a tone signal as
the voice source, Pr4 = 0.01 and sensing time=10 ms.
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Figure 5.12: Spectrum sensing performance of the WM detector using colored noise as
the voice source, Pr4 = 0.01 and sensing time=10 ms.
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Chapter 6

Hardware Implementation

In this chapter, we describe the hardware implementation of the cyclostationarity-based
spectrum sensing algorithm for the ATSC DTV signals presented in Chapter 2. We
utilize two software packages, AccelDSP and System Generator, which are products
of Xilinx, Inc. The AccelDSP software can transfer high level Matlab language code
to low level Register Transfer Language (RTL) code including VHDL and Verilog lan-
guages. The transferred RTL languages can either be implemented directly in a Field
Programmable Gate Array (FPGA), or be converted into a block structure which can
be used in the System Generator software package. Therefore, the AccelDSP software
package is used to generate the required blocks for the cyclostationarity-based spectrum
sensing algorithm. Then, the blocks provided by the System Generator, as well as the
blocks generated by the AccelDSP, are used to construct the spectrum sensor. Once
the spectrum sensor has been properly constructed, a hardware co-simulation block is
then generated by the System Generator. The hardware co-simulation block is used to
implement the spectrum sensor within the FPGA platform. Details of the AccelDSP

software can be found in [43].
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6.1 Introduction to the Xilinx AccelDSP and System Generator Soft-

ware

As mentioned before, Accel DSP can generate a block having a specific function, and
this block can subsequently be used in the System Generator. It is intuitive to think of
this block as being a user-defined Matlab function. Moreover, a function call in Matlab
corresponds to a clock cycle in the circuit, and indeed, this is the case in AccelDSP.
Therefore, in order to begin the implementation of hardware operations, one needs to
create a function m-file and a script m-file which calls the m-function. In the script m-
file, any Matlab function can be used. Typically, data curves are plotted to determine
if the designed function works correctly. However, in the function m-file, only limited
Matlab functions are supported by AccelDSP. In this chapter, we will use a narrow
bandpass IIR filter design to illustrate how to use the AccelDSP software. After we
complete development of both the script m-file and the function m-file in the Matlab

programming environment, we can launch the AccelDSP software as shown in Fig. 6.1.

System Environment
Tris page is also avaikable dinectly from the “Help™ manu
7 Shaw the page = st
= Work Directory
= AccefVork
c 8 201 128A vk
- Available Tools
= MATLAB
| pwh ]
THO 26T (RN0SM  c 'matisb'r 20050
= System Generator
Path
a0 C iedaptsoin® I 01 1008 ayagen
= HDL Semutstors
[ fosi | Varlable bame | Pt ]
[ [T —
= RTL Synhesizers.
xsT e € il 3
- Place and Route Tooks
=N
BE e C S
= Tools Not Available
= HOL Samutators
|_toot | vaiistie tiame | vwti | Exuinple P |
Rros NEMSABE Chch Te S C Pvecnibin
NCSem  NCEMEN Chek Te Sl CWUSHDoly e

Figure 6.1: Starting page of the AccelDSP software.
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Figure 6.2: Verification of floating-point simulation result for the designed filter.

By clicking the Project icon in the top left side, we can create a new AccelDSP
project called Bandpass_Filter_Design_proj. Then, click the Verify Floating Point
bottom and select the script m-file to simulate the filter design by using floating point
variables as shown in Fig. 6.2. In this step, AccelDSP will call the Matlab software

package to verify the consistency of the program, and then perform the floating point

simulation.
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Figure 6.3: Spectrum of the designed filter using floating-point arithmetic.

After the Verify Floating Point step is finished, a Matlab workspace and various
curves plotted in response to the script m-file will appear as depicted in Fig. 6.3. In the
Matlab workspace, the dimension, maximum and minimum values of each variable are
listed, as shown in Fig. 6.3. This information is very useful in deciding the word lengths
and fractional lengths of the variables that will be used in the fixed-point design. From
the figures illustrating the bandpass filter behavior, it can be determined if the designed

filter posseses the required properties.
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Figure 6.4: Statistics of the floating-point input and output data.

AccelDSP provides a very useful function, or tool, called Accel Prob that displays
the statistics of any variable involved in the designed Matlab function for both floating-
point and fixed-point results. In particular, the displayed statistics are the histograms
of the original signal values, and their floating representations are shown in Fig. 6.4.
This function provides guidance as to how to assign required word lengths and fractional
lengths of the variables that are to be used in the fixed-point design. Take our bandpass
filter design for example, we would like to know the statistics of the data fed into the
filter and the data outputted from the filter. By examining the statistics of these two
variables, we can determine if the word lengths and fractional lengths are set correctly,

i.e., the quantization error is tolerable and the complexity is acceptable.
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Figure 6.5: Analysis of Matlab code and creation of an in-memory model.

After the Verify Floating Point step is complete. An Analyze icon is displayed
as illustrated in Fig. 6.5. In this step, AccelDSP will create an in-memory model of
the design. In later steps, design directives may be added as needed to this in-memory
model to guide AccelDSP toward finding the best hardware architecture for the designed

filter, i.e., function.
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Figure 6.6: Determination of the fixed-point number of bits for the variables used by

AccelDSP.

Then, by clicking the Generate Fixed Point, AccelDSP will assign word lengths

and fractional lengths for each variable. Figure 6.6 illustrates the fixed-point report.

Sometimes, the AccelDSP cannot determine the word lengths of some variables, and

occasionally, the word lengths and fractional lengths assigned by the AccelDSP software

package are not suitable. Therefore, it is more often the case wherein the word lengths

and fractional lengths must be provided manually by the designer.
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Figure 6.7: Resulting fixed-point spectrum of the designed bandpass filter.

After the word lengths and fractional lengths of all variables have been adjusted, the
Verify Fixed Point step is to be executed. After this step is complete, the results of
the fixed-point simulation are displayed, as shown in Fig. 6.7. By comparing the figures
of floating-point and fixed-point simulation results, the designer can roughly identify if

the word lengths and fractional lengths have been properly assigned.
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Figure 6.8: Statistics of the fixed-point input and output data.

In order to know precisely if the assigned word lengths and fractional lengths are
proper, the fixed-point statistics of the selected data need to be determined and evalu-
ated. As shown in Fig. 6.8, the upper two plots show the exact values of the original
input and output samples for both floating-point and fixed-point. In these plots the
floating-point and fixed-point results are superimposed on top of each other. The lower
two plots show the histograms of the input and output samples for both the floating-
point and the fixed-point realizations. In addition, a signal-to-quantization-noise ratio
is calculated. Based on these statistics, we can adjust the word length and fractional
length of each variable on an iterative basis, until the fixed-point result is as close to the
floating-point result as desired, and the overall computational complexity is affordable

in the context of the target implementation.
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Figure 6.9: Final adjustment of the number of bits

used for fixed-point quantities.

Figure 6.9 shows the word lengths and fractional lengths of the variables after ad-

justment.
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Figure 6.10: Generation of Register Transfer Language constructs.

After the Verify Fixed Point step is finished, by clicking the Generate RTL icon,

the AccelDSP software package will generate both VHDL and Verilog codes. After the

Generate RTL step is complete, a Generate RTL report is shown. In this report,

the number of multipliers, adders, and subtractors used are listed. In the Performance

Summary section, the item Startup Clock Cycles is set equal to one indicating that

there is one hardware clock cycle delay for this particular design. When the Hardware

Clock Cycles Per Design Function Call is set equal to one, this indicates that the design

requires one hardware clock cycle for every function call. In AccelSDP, the designer

must be sure to adjust the program code so that the Hardware Clock Cycles Per Design

Function Call equals one. This is necessary because for every function call there must

be some data fed into the function and some data outputted from the function.
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Figure 6.11: Synthesis of the Register Transfer Language constructs.

After the Generate RTL step, the designer has two choices. There is a Flow
selection in the top left side. If the designer chooses ISE, a Synthesize RTL icon will
appear. By performing this step, a Synthesis Report is generated. This report provides
information about the resource utilization of this design, as well as a performance

summary including the maximum operating frequency and the timing path summary.
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Figure 6.12: Creation of the system generator block.

If the designer chooses the Flow selection to be the System Generator, a Generate
System Generator icon will be shown. By performing this step, AccelDSP will create
a system generator block corresponding to the designed bandpass filter function which

can be used in conjunction with the System Generator software.
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Figure 6.13: Simulink Library Browser.

After the Generate System Generator step is complete, a system generator block

called BandPass_IIR _Filter will appear in the Simulink Library Browser as shown in

Fig. 6.13.
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Figure 6.14: Block diagram of the designed spectrum sensor algorithm.

The overall block diagram of the cyclostationarity-based spectrum sensor for ATSC
DTV signals is shown in Fig. 6.14. The blocks in Fig. 6.14 had been either generated by

the AccelDSP software package, or provided by the System Generator software package.
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Figure 6.15: System Generator blocks.

By clicking the System Generator icon located at the top of the block diagram, the
designer can set up the required parameters. Subsequently, a hardware co-simulation

block will be generated as shown in Fig. 6.16.
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Figure 6.17: Hardware co-simulation structure of the spectrum snesor.

As shown in Fig. 6.17, the generated hardware co-simulation block is configured
such that the hardware co-simulation can be executed. The output of this block is the

result from the FPGA-based hardware implementation.

6.2 FPGA Implementation Results

The cyclostationarity-based spectrum sensing algorithm for ATSC DTV signals was
selected for implementation in a FPGA-based hardware platform. The details of this
algorithm were described in Section 2.2 of Chapter 2. The overall system block diagram
is shown in Fig. 6.14. However, due to hardware resource limitations of the FPGA
board, the algorithm based on a 2048-point FFT operation could not be implemented.
In this spectrum sensor, two narrow band IIR filters are needed in the design. The
filter coefficients of these two IIR filters need to have word lengths which are larger
than 20. Hence, several tens of long-length multipliers are required. As such, these two

IIR filters consume sixty percent of the available FPGA resource. On the other hand,
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in order to calculate the cyclic spectrum, a large amount of data must be buffered and
the AccelDSP does not allow for such a large data buffering operation. The Xilinx
support team is currently working to fix this software-related problem. As a result, it
was decided to reduce the size of the FFT employed in the spectrum sensor to that
of 256 points. The same ATSC A/74 DTV real field captured data used in Chapter
2 is taken as the FPGA input data source. These data are used to compare with the
software simulation results. As shown in Fig.s’ 6.18 to 6.20, the performance of the
spectrum sensor is degraded due to the reduction of the FFT size. This is because
the cyclostationarity-based spectrum sensor relies on the pilot tones that appear in the
cyclic spectrum. Thus, the sensing performance will depend on the spectral resolution.
Since an FFT operation with a larger size provides higher spectral resolution, the
spectrum sensor with larger FFT size will provide better performance. Furthermore,
it can be seen that the hardware implementation results are very close to the software
simulation results. Hence, the cyclostationarity-based spectrum sensing algorithm can
be conveniently and efficiently implemented in hardware with performance similar to

that predicted by the software simulation results.
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Figure 6.18: Comparison of the hardware implementation and software simulation re-
sults for capture data file: WAS_3_27_06022000_REF.
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Figure 6.19: Comparison of the hardware implementation and software simulation re-
sults for capture data file: WAS_311_36_06052000_REF.
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Figure 6.20: Comparison of the hardware implementation and software simulation re-
sults for capture data file: WAS_32_48 06012000_OPT.
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Chapter 7

Summary and Conclusions

In this thesis, various spectrum sensing algorithms have been developed for different
kinds of licensed signals. These signals include three DTV broadcast signals [1] [2] [3],
and wireless microphone signals. The spectrum sensing algorithms developed in this
thesis are the best known results available to date, and they can efficiently detect the
presence of primary licensed signals when the SNR is as low as -20 dB. Theoretical
analyses of the probability of false alarm and probability of misdetection for various
spectrum sensing algorithms have also been explicitly derived. A hardware implementa-
tion of the cyclostationarity-based spectrum sensing algorithm for ATSC DTV signals
is described in this thesis. Future extensions of the work reported in this thesis are
primarily related to the hardware implementation of spectrum sensing algorithms. In
particular, spectrum sensing algorithms for the OFDM and wireless microphone signals
are to be implemented in an FPGA-based hardware platform. A real-time spectrum
sensor that includes an RF antenna, an analog to digital converter (ADC), and an

FPGA board will be built as a prototype for potential use in Cognitive Radio systems.



90

References

[1] ATSC, "Digital Television Standard, Revision E with Amendments No. 1 and No.
2, ANNEX D,” ATSC, September 2006.

[2] ETSI, ”Digital Video Broadcasting: Framing Structure, Channel Coding, and Mod-
ulation for Digital Terrestrial Television,” European Telecommunication Standard
EN300744, August 1997.

[3] NSPRC, ”Framing Structure, Channel Coding and Modulation for Digital Television
Terrestrial Broadcasting System,” NSPRC, August 2007.

[4] FCC, Spectrum Policy Task Force Report, ET Docket No. 02-155, November 2002.

[5] J. Mitola III, ”Cognitive Radio: An Integrated Agent Architecture for Software
Defined Radio,” Ph.D. Thesis, Royal Institute of Technology, Sweden, May 2000.

[6] S. Shellhammer, ”Performance of the Power Detector,” IEEE 802.22-06/0075r0,
May 2006.

[7] S. Shellhammer and R. Tandra, ”Performance of the Power Detector with Noise
Uncertainty,” IEEE 802.22-06/0134r0, July 2006.

[8] S. M. Kay, Fundamentals of Statistical Signal Processing, Detection Theory, Prentice
Hall, Upper Saddle River, NJ, 1993.

[9] Y. Zeng and Y. Liang, ” Performance of Eigenvalue Based Sensing Algorithms for De-
tection of DTV and Wireless Microphone Signals,” IEEFE 802.22-06/186r0, Septem-
ber 2006.

[10] H. Chen, W. Gao, and D. G. Daut, ”Signature Based Spectrum Sensing Algorithms
for IEEE 802.22 WRAN,” IEEE ICC CogNets Workshop, Glasgow, Scotland, June
2007.

[11] H. Chen, W. Gao, and D. G. Daut, ”Spectrum Sensing Using Cyclostationary
Properties and Application to IEEE 802.22 WRAN,” IEEE Globecom 2007, Wash-
ington D.C., December 2007.

[12] S. Shellhammer, V. Tawil, G. Chouinard, M. Muterspaugh, and M. Ghosh, ”Spec-
trum Sensing Simulation Model,” IEEE 802.22-06/0028r10, September 2006.

[13] V. Tawil, "DTV Signal Captures,” IEEE 802.22-06/0038r0, March 2006.
[14] V. Tawil, "DTV Signal Captures Database,” IEEFE 802.22-06/0081r0, May 2006.

[15] S. Mathur, R. Tandra, S. Shellhammer, and M. Ghosh, ”Initial Signal Processing
of Captured DTV Signals for Evaluation of Detection Algorithms,” IEEE 802.22-
06/0158r4, September 2006.



91

[16] A. Papoulis, Probability, Random Variables, and Stochastic Processes, Third Edi-
tion, McGraw Hill, New York, NY, 1991.

[17] W. A. Gardner, ”Exploitation of Spectral Redundancy in Cyclostationary Signals,”
IEEE Signal Processing Magazine, Vol. 8, No. 2, pp. 14-36, April 1991.

[18] W. A. Gardner, "Measurement of Spectral Correlation,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 5, pp. 1111-1123, Oc-
tober 1986.

[19] W. A. Gardner, Statistical Spectral Analysis: A Nonprobabilistic Theory, Engle-
wood Cliffs, NJ: Prentice-Hall, 1987.

[20] S. Shellhammer, "An ATSC Detector Using Peak Combining,” IEEE 802.22-
06/243r5, March 2007.

[21] L. Lv, S. Chang, and Z. Wu, ”Sensing Schemes for DVB-T,” [EEE 802.22-
06/0127r2, July 2006.

[22] T. Pollet, P. Spruyt, and M. Moeneclaey, " The BER Performance of OFDM Sys-
tems Using Non-Synchronized Sampling,” Proc. IEEE Globecom, pp. 253-257, San
Francisco, CA, 1994.

[23] H. Bolceskei, ”Blind Estimation of Symbol Timing and Carrier Frequency Offset
in Wireless OFDM Systems,” IEEE Trans. Commun., Vol. 49, No. 6, pp. 988-999,
June 2001.

[24] M. Ghosh, V. Gaddam, and G. Turkenich, "DTV Signal Sensing Using Pilot De-
tection,” IEEE 802.22-07 /xxxx-00-0000, March 2007.

[25] ETSI, ”Digital Video Broadcasting (DVB); Transmission System for Handheld Ter-
minals (DVB-H),” European Telecommunication Standard EN302304 1.1.1, Novem-
ber 2004.

[26] IEEE Standard, "IEEE Standard for Information Technology-Telecommunications
and Information Exchange Between Systems-Local and Metropolitan Area
Networks-Specific Requirements - Part 11: Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications,” IEEE, New York, NY, June
2007.

[27] H. Chen, W. Gao, and D. G. Daut, ”Spectrum Sensing for OFDM Systems Em-
ploying Pilot Tones and Application to DVB-T OFDM,” Proc. IEEE ICC 2008,
Beijing, China, June 2008.

[28] H. Chen, W. Gao, and D. G. Daut, ”Spectrum Sensing and Transmission Mode De-
tection Algorithms for DVB-T OFDM,” ACM CWXNets 2007, Vancouver, Canada,
August 2007.

[29] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Series in
Telecommunications, John Wiley & Sons, Inc., New York, NY, 1991.

[30] D. G. Brennan, ”Linear Diversity Combining Techniques,” Proceedings of the
IEEE, Vol. 91, No. 2, pp. 331-356, February 2003.



92

[31] C. Sheu and C. Huang, ” A Novel Guard Interval Based ISI-Free Sampling Region
Detection Method for OFDM Systems,” Proc. IEEE VTC, Vol. 1, pp. 515-519,
September 2004.

[32] Y. Chen and C. Tellambura, ”Infinite Series Representations of the Trivariate
and Quadrivariate Rayleigh Distribution and Their Applications,” IEEE Trans. on
Comm., Vol. 53, No. 12, pp. 2092 - 2101, December 2005.

[33] P. Dent, E. G.. Bottomley, and T. Croft, ”Jakes Fading Model Revisited,” FElec-
tronics Letters, Vol. 29, No. 13, pp. 1162-1163, June 1993.

[34] H. Chen, W. Gao, and D. G. Daut, ”Spectrum Sensing for DMB-T Systems Using
PN Frame Headers,” Proc. IEEE ICC 2008, Beijing, China, June 2008.

[35] H. Chen, W. Gao, and D. G. Daut, ”Spectrum Sensing for Wireless Microphone
Signals,” submitted to IEEE Workshop on Networking Technologies for Software
Defined Radio (SDR) Networks, San Francisco, CA, June 2008.

[36] E. Reihl, "Wireless Microphone Characteristics,” IEEE 802.22-06/0070r0, May
2006.

[37] S. Haykin, Communication Systems, Fourth Edition, John Wiley & Sons, Inc.,
New York, NY, 2001.

[38] C. Clanton, M. Kenkel and Y. Tang, ”Wireless Microphone Signal Simulation
Method,” IEEE 802.22-07/0124r0, March 2007.

[39] J. Unnikrishnan and S. Shellhammer, ”Simulation of Eigenvalue Based Sensing of
Wireless Microphone,” IEEFE 802.22-07/0357r0, July 2007.

[40] ETSI, ”Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Wire-
less Microphones in the 25 MHz to 3 GHz Frequency Range; Part 1: Technical Char-
acteristics and Methods of Measurement,” European Telecommunication Standard,
Draft EN 300 422-1 V1.3.1, April 2007.

[41] T. S. Rappaport, Wireless Communications, Principles and Practice, Second Edi-
tion, Prentice Hall, Upper Saddle River, NJ, 2002.

[42] P. Stoica and R. Moses, Spectral Analysis of Signals, Prentice Hall, Upper Saddle
River, NJ, 2005.

[43] Xilinx Inc., ” Accel DSP Synthesis Tool, User Guide,” Release 9.2.00, August 2007.



93

Curriculum Vita

HOU-SHIN CHEN

Education

09/04 — 05/08 Rutgers, The State University Of New Jersey, New Jersey, USA Ph.D.
Department of Electrical and Computer Engineering GPA: 3.94/4.00
Advisor: Dr. David G. Daut

09/02 — 06/04 National Taiwan University, Taipei, Taiwan MS
Graduate Institute of Communication Engineering GPA: 4.00/4.00
Advisor: Dr. Yumin Lee

09/98 — 06/02 National Taiwan University, Taipei, Taiwan BS
Department of Electrical Engineering GPA: 3.71/4.00

Expertise

Spectrum Sensing for DTV Broadcast Systems: Spectrum sensing for digital television
broadcast systems include ATSC DTV Standard, ETSI DVB-T Standard and NSPRC DMB-T
Standard.

Receiver Design for Multi-User OFDM systems: Timing synchronization, frequency offset
estimation, sampling clock offset estimation and channel estimation for multi-user OFDM
systems.

Receiver Design for GPRS Systems: Design and analysis for receiver with space-time
diversity for GPRS system.

Honors and Awards

2005 Graduate Fellowship, ECE Department, Rutgers University

2002  National Taiwan University Science and Technology Thesis Competition Award
2002 Chinese Engineering Association Student Thesis Competition Award

2001 National Science Council Undergraduate Student Specific Project Scholarship

EXxperiences

03/03/2008 ~ 02/28/2010 R&D Engineer — Thomson
Development and proposal for next generation digital TV broadcast in cable.
09/25/2006 ~ 01/16/2008 Intern — Thomson

Develop various spectrum sensing algorithms for different signals including ATSC DTV,
DVB-T, DMB-T and wireless microphone signals. Implement various spectrum sensing
algorithms by FPGA and perform real world test.

Patents (being filed with the US Patent and Trademark Office)

O 60995782: Time and frequency synchronization and frame number detection for DMB-T
systems.

O 60995781: Spectrum sensing for DMB-T systems using PN frame headers.

O 60959372: Spectrum sensing for OFDM signals by utilizing pilot tones.

O 60934715 Detection of signals containing sine-wave components through measurement of
power spectral density (PSD) and cyclic spectrum.

O 60927815: Spectrum sensing and transmission mode detection algorithms for DVB-T OFDM.

O 60919807: Spectrum sensing using cyclostationary properties and application for IEEE
802.22 WRAN.




000D

94

60905691: Apparatus and method for sensing a signal using cyclostationarity.

60899055: Apparatus and method for sensing an ATSC signal in low signal-to-noise ratio.
60880081: Apparatus and method for sensing an ATSC signal in low signal-to-noise ratio.
10436138: Method of processing an OFDM signal and OFDM receiver using the same
method.

Publications

a

Q

Hou-Shin Chen, Wen Gao, and David G. Daut, "Spectrum Sensing for OFDM Systems
Employing Pilot Tones," submitted to IEEE Trans. on Wireless Communications.

Hou-Shin Chen, Wen Gao, and David G. Daut, "Spectrum Sensing for Wireless Microphone
Signals," submitted to IEEE SECON 2008.

Hou-Shin Chen, Wen Gao, and David G. Daut, "Spectrum Sensing for OFDM Systems
Employing Pilot Tones and Application to DVB-T OFDM," IEEE ICC 2008, June 2008.
Hou-Shin Chen, Wen Gao, and David G. Daut, "Spectrum Sensing for DMB-T Systems
Using PN Frame Headers," IEEE ICC 2008, June 2008.

Hou-Shin Chen, Wen Gao, and David G. Daut, "Spectrum Sensing Using Cyclostationary
Properties and Application to IEEE 802.22 WRAN," IEEE Globecom 2007, December 2007.
Hou-Shin Chen, Wen Gao, and David G. Daut, "Spectrum Sensing and Transmission Mode
Detection Algorithms for DVB-T OFDM," ACM CWNets 2007, August 2007.

Hou-Shin Chen, Wen Gao, and David G. Daut, "Signature Based Spectrum Sensing
Algorithms for IEEE 802.22 WRAN," IEEE ICC CogNets Workshop, June 2007.

Hou-Shin Chen, Yumin Lee and David G. Daut, "Robust Timing Synchronization for Uplink
Multi-Carrier Spread-Spectrum Systems, " IEEE Globecom, 2005.

Hou-Shin Chen, Yumin Lee and David G. Daut, " “Robust Multi-User Frequency Offset
Estimation for Uplink Systems Using OFDM Technique," IEEE VTC, Fall 2005.

Shiou-Hong Chen, Way-Hong He, Hou-Shin Chen and Yumin Lee, "Mode Detection,
Synchronization, and Channel Estimation for DVB-T OFDM," IEEE Globecom, 2003.
Hou-Shin Chen and Yumin Lee, "Novel Sampling Clock Offset Estimation for DVB-T
OFDM," IEEE VTC, Fall 2003.





