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Spectrum sensing is the methodology used to determine the existence of a specific

signal type in very low signal to noise power ratio (SNR) environments. Spectrum

sensing is one of the core technologies for the application of Cognitive Radio (CR).

An IEEE 802.22 Working Group has developed a Standard to implement CR in the

wireless services spectrum. The spectrum, however, has already been allocated to

the TV Broadcast Service which delivers ATSC Digital TV (DTV) signals. Cognitive

Radio systems are intended to co-exist within the spectrum licensed to TV channels and

operate on a non-interfering basis. At present, there are three TV broadcast Standards

worldwide, namely the ATSC DTV Standard [1], ETSI DVB-T Standard [2], and the

NSPRC DMB-T Standard [3]. The transmitted signals defined by these three Standards

possess different characteristics. Thus, in order to apply CR in the DTV bands, different

spectrum sensing techniques are needed for these three broadcast Standards. In this

thesis, the focus is on the development of suitable spectrum sensing algorithms for

the DTV signals defined by these three Standards. In addition, wireless microphone

devices use frequency bands that are located within the allocated DTV bands. Cognitive

Radio systems should transmit and receive using spectrum that is idle. Hence, in this

thesis, spectrum sensing algorithms are also designed to detect the presence of wireless
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microphone signals. When developing an algorithm to perform spectrum sensing for a

specific signal, we make use of particular characteristics embedded in the transmitted

signals to design effective detector structures that can discriminate between the presence

or absence of licensed information bearing signals. One useful method employed in this

thesis is to utilize the cyclostationary property that is present in most of the transmitted

data signals to perform spectrum sensing. Additionally, the probability of false alarm

and probability of misdetection performance metrics for signal detectors employing

different spectrum sensing algorithms are analyzed. The spectrum sensor operating

characteristic curves for the different detectors are demonstrated by the use of computer

simulations. Simulation results indicate that the spectrum sensing algorithms developed

in this thesis can efficiently detect the presence of primary licensed signals when the SNR

is as low as -20 dB. Finally, selected spectrum sensing algorithms are implemented using

an FPGA-based hardware platform. The hardware implementation of the spectrum

sensors verified their performance, as well as demonstrated their practicality due to the

low complexity of the algorithms.
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Chapter 1

Introduction

1.1 Background Review

Today, more and more electronic devices are becoming wireless, while the Federal Com-

munications Commission’s (FCC) frequency allocation chart is already crowded. How-

ever, recent studies show that most of the assigned spectrum is under-utilized. In fact,

a fairly recent FCC research report [4] reveals that, in some locations or at some times

of day, 70 percent of the allocated spectrum may be sitting idle, even though it is offi-

cially spoken for. Therefore, it is possible to utilize the idle spectrum and not affect the

primary licensed communication systems. As a consequence, Cognitive Radio [5] was

proposed to implement negotiated, or opportunistic, spectrum sharing. Under the char-

ter of an IEEE 802 Standards Committee, a Working Group named IEEE 802.22 was

established to develop a standard for a Cognitive Radio-based PHY/MAC/air interface

for use by license-exempt devices on a non-interfering basis in spectrum that has already

been allocated to the DTV Broadcast Service. The IEEE 802.22 Working Group is also

called the WRAN group since it is essentially developing an air interface for a Wireless

Regional Area Network (WRAN) with a range as large as 30 miles. To implement Cog-

nitive Radio without interference within the licensed signal, it is important to be able

to detect the existence of licensed signals in very low SNR environments. To this end,

the IEEE 802.22 WRAN group established a sensing tiger team to take responsibility

for investigating spectrum sensing methodologies. The requirements of the spectrum

sensing ability specified by the sensing tiger team is that the misdetection probability

(PMD) should not exceed 0.1 subject to a 0.1 probability of false alarm (PFA) when the

SNR is -20.8 dB. For spectrum sensing, a power detector, or energy detector, is often

used to determine the presence of signals without the use of any prior knowledge of
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signals. However, for power detectors to work well, the SNR should not be very low [6].

When the SNR is very low, accurate noise power levels and large data sample sizes

are needed. But, as is well known, the noise power can be affected by several factors,

for example, by temperature and system calibration. Therefore, we are often not able

to know the exact noise power level. The lack of knowledge about the noise power is

called the noise uncertainty [7]. As shown in [7], noise uncertainty can be as large as ±1

dB. When the noise uncertainty equals 1 dB, a power detector fails if the SNR is less

than -3.3 dB even when a very long sensing time is used. Matched filtering is optimal

in a Neyman-Pearson (NP) sense for signal detection in communication systems [8].

However, due to the lack of channel knowledge, its performance is reduced, and its

detection performance highly depends on the channel condition. We will discuss the

matched filter based detector in Chapter 2. Recently, an eigenvalue based spectrum

sensing algorithm was proposed to the tiger team [9]. It makes use of the property that

the eigenvalues of the AWGN noise sample covariance matrix are approximately the

same when the collected samples are large enough. However, the main disadvantage

of the eigenvalue based method is that it cannot distinguish between interference sig-

nals and the licensed signals. Therefore, compared to those detectors that determine

whether the received signal is purely AWGN noise or not, signature-based spectrum

sensing algorithms have an advantage in that, when the signals other than noise are

detected, it is almost certain that they are licensed signals. Another possible way to

perform spectrum sensing is to utilize a signal’s cyclostationary property because of its

noise rejection ability. It is known that ideally, the stationary Gaussian process has a

zero-valued cyclic spectrum, or spectrum correlation density function (SCD) [17], at a

non-zero cyclic frequency. Therefore, we can detect the desired signal by computing its

cyclic spectrum provided that the signal is cyclostationary and that its cyclic spectrum

is not identically zero at some non-zero cyclic frequency.

1.2 Contributions of this Dissertation

DTV signals use a wide range of wireless spectrum. The spectrum is divided into

many non-overlapping bands and each band corresponds to one TV channel. There
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are hundreds of TV channels and not all of them are used. Hence, it is very likely

to find some idle channels within the various DTV bands. Consequently, the DTV

spectrum is an appropriate candidate for sharing with CR systems. There are three

DTV broadcast standards worldwide. They are ATSC DTV Standard [1], ETSI DVB-T

Standard [2], and NSPRC DMB-T Standard [3]. The IEEE 802.22 WRAN Standard is

applicable to CR that will be used in North American area wherein ATSC DTV signals

are broadcast. It can be expected that standards which are defined to apply CR in

those areas which adopt DVB-T and DMB-T standards will be developed soon. Thus,

in this study, spectrum sensing algorithms are developed for the DTV signals defined

by these three Standards. The major contributions of this dissertation span several

major areas. First, the development of spectrum sensing algorithms for the three DTV

broadcast Standards will enable CR to operate in the licensed DTV bands. In addition

to spectrum sensing algorithms for DTV signals, the development of spectrum sensing

algorithms for wireless microphone signals is undertaken so as to prevent interference

to the wireless microphone devices when CR systems are operating nearby. Second,

analytical aspects of this study include the development and evaluation of performance

metrics, to the extent possible, for various spectrum sensing algorithms. In particu-

lar, the false alarm probability and misdetection probability are evaluated for selected

algorithms. The third major area of contribution is the development, and execution,

of computer simulations to obtain overall performance evaluation of various spectrum

sensing algorithms. The simulation results provide a useful means of comparison be-

tween the various algorithms. The fourth major area of contribution is the hardware

verification of selected algorithms that have significant practical value. Through FPGA

implementation of selected spectrum sensing algorithms, and the use of real-world test

data, evaluation of the performances of the developed algorithms are obtained. Fur-

thermore, the practical utility of the spectral sensing algorithms is demonstrated.
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Chapter 2

Spectrum Sensing for ATSC DTV Systems

Spectrum sensing for the presence of ATSC DTV signals in VHF/UHF TV bands under

very low SNR environments is one of the core technologies in IEEE 802.22 WRAN. In

order to implement CR without interference to the licensed signal, the sensing tiger

team of the IEEE 802.22 Working Group specified the requirements of the spectrum

sensing of ATSC DTV signals. In particular, the probability of misdetection should not

exceed 0.1 subject to a 0.1 of probability of false alarm when the SNR is -20.8 dB. There

are multiple signatures embedded in the ATSC DTV signals and these signatures can

be utilized to perform spectrum sensing. Compared with the power detector [6] [7] and

eigenvalue-based sensing algorithms [9]. Signature-based spectrum sensing algorithms

have an advantage in that when the signals other than noise are detected, we are almost

sure that they are signals we want to detect. Thus, in this chapter, several signature

based spectrum sensing algorithms are presented. Furthermore, we make use of the

noise rejection property of the cyclostationarity which exists in most transmitted data

signals to perform spectrum sensing. The sensing algorithms are based on measurement

of the cyclic spectrum of the received signals. The statistics of the cyclic spectrum of the

stationary white Gaussian process are fully analyzed for three measurement methods of

the cyclic spectrum mentioned in this chapter. The false alarm probability for detectors

employing different algorithms is also analytically derived. The operating characteristic

curves for different spectrum sensors are determined from computer simulations using

an ATSC A/74 DTV signal captures database as a testbed. The spectrum sensing

algorithms described in this chapter have also been made available in the literature [10]

[11].
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Figure 2.1: ATSC DTV data signal segment.

2.1 Signature Based Spectrum Sensing Algorithms

First, we shall briefly describe the structure of ATSC DTV signals [1]. DTV data are

modulated using 8-Vestigial Sideband (8-VSB). In addition to the eight-level digital

data stream, a two-level (binary) four-symbol data segment sync (Segment Sync) is

inserted at the beginning of each data segment. A complete segment consists of 832

symbols: four symbols for the data segment sync and 828 data symbols. The data

segment sync pattern is a 1001 pattern, as described in Fig. 2.1. Multiple data segments

(313 segments) comprise a data field. The first data segment in a data field is called

the data field sync segment (Field Sync). The structure of the data field sync segment

is shown in Fig. 2.2.

2.1.1 Signature Based Spectrum Sensing Simulation Model

Since we desire to utilize signatures embedded in the data transmission to perform spec-

trum sensing, we have to compute the baseband complex envelope of the received signal

r̂[n]. Figure 2.3 illustrates the spectrum sensing simulation model of the signature-based

PN511 PN63 PN63 PN63
VSB mode+ 
Reserved + 

Precode

+7
+5
+3
+1
-1
-3
-5
-7

Data
Segment 

Sync
511 symbols

832 symbols

63 
symbols

63 
symbols

63 
symbols

128 
symbols

Data
Segment 

Sync

Figure 2.2: ATSC DTV signal field sync segment.



6

sensing algorithms. This model describes a procedure which computes the baseband

signal (complex envelope). The real-valued DTV signal capture data r[n] are obtained

by sampling DTV channels at a rate of fs = 21.524476 MHz and then down converted

to a low central frequency fIF = 5.38 MHz [13] [14]. The carrier frequency parameter

fc in Fig. 2.3 is 2.69 MHz. Then, r̂[n] is scaled in amplitude to produce x[n] which has

the desired signal power

x[n] =
r̂[n]
α

(2.1)

where α is the power scaling factor, and

α = 10(PDesired−PS)/20. (2.2)

The parameters PDesired and PS are the desired signal power and the signal power of

r̂[n] in units of dBm, respectively. Finally, we add a filtered complex additive white

Gaussian noise (AWGN) w[n] to x[n] to form the needed experimental data y[n], hence

y[n] = x[n] + w[n]. (2.3)

We will further assume that w[n] is zero-mean and the noise power spectral density

(PSD) is N0 = −174+11 = −163 dBm/Hz where −174 is thermal noise power spectral

density under normal temperature conditions and 11 is noise figure of the receiver [15].

Therefore, the noise power is N0B = -163dBm/Hz·6MHz = -95.2185 dBm. Filtering of

the noise is accomplished by the lowpass filter employed in Fig. 2.3.

Capture 
Data

Lowpass Filter
H(f)

Signature Based
Detector

r[n] y[n]Scaling to 
desired signal 

power

Filtered AWGN
w[n]

][][][
~

njrnrnr QI +=

x[n]

tfcπ2cos2

tfcπ2sin2−

Lowpass Filter
H(f)

j

rI[n]

rQ[n]

][
~

nr

Figure 2.3: Spectrum sensing simulation model of the Signature Based Detector.
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2.1.2 Field Sync Based Algorithms

Field Sync Correlation Detector (FSCD)

As mentioned before, a Field Sync occurs regularly every 24.2 ms. Hence, it is intuitive

to implement a correlation detector (matched filter) to perform spectrum sensing using

the Field Sync. Let q[n] denote the 832 symbols in Fig. 2.2. Because the second PN63

sequence is inverted every other field and the last 128 symbols are unknown, we will

simply zero-out these two parts of q[n]. Furthermore, the capture data r[n] has a double

symbol rate as does y[n]. Thus, q[n] is 2X upsampled to form the sequence p[n] which

has a double symbol rate. Define the test statistic Tfscd as

Tfscd = max
0≤i≤Wfscd−1

∣∣∣∣∣
L−1∑
n=0

p[n]y∗[i + n]

∣∣∣∣∣ (2.4)

where L = 1664 is the length of p[n] and Wfscd = 520892 is the number of samples of

y[n] that appear in 24.2 ms.

VSB Modulated Pilot Sequence

In the previous section, we use a binary pilot sequence p[n] and correlate it with the

received signal. However, the received pilot sequence is, of course, not binary. Thus,

we should use a sequence that, to the best of our knowledge, matches the received

pilot sequence. According to [1], the transmitted signal is a Vestigial Sideband (VSB)

modulated signal. Therefore, instead of simply 2X upsampling q[n] to form the pilot

sequence p[n], we shall add a lowpass interpolation filter and a VSB modulator so

that the sequence s[n] shown in Fig. 2.4 best matches the transmitted Field Sync

sequence. It has been shown through simulations, that with this modification, the

detection performance can be improved by 2 to 3 dB in terms of SNR for most of the

DTV capture data cases considered.
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Probability of False Alarm for FSCD

We now provide an explicit calculation of the false alarm rate. For hypothesis H0,

which corresponds to the presence of noise only, i.e., y[n] = w[n], denote

Ti =
L−1∑
n=0

p[n]w∗[i + n] (2.5)

which is the result of the complex correlations before taking the absolute value in (2.4).

For convenience, we normalize p[n] such that

L−1∑
n=0

|p[n]|2 = 1. (2.6)

Because the linear combination of joint Gaussian random variables is still Gaussian

distributed, Ti is a complex Gaussian random variable. Therefore, the quantity |Ti| is

Rayleigh distributed according to

f|Ti|(t : H0) =

⎧⎪⎪⎨
⎪⎪⎩

2t
σ2 e−

t2

σ2 , t ≥ 0

0, t < 0
(2.7)

where σ2 is noise variance and σ2 = N0Bfs. According to (2.4), the test statistic

Tfscd is the maximum of |Ti| over a sample-size window of Wfscd. Because the random

variables {Ti}Wfscd−1
i=0 are identical but not necessarily independently distributed, it is

difficult to find the exact probability distribution of Tfscd. However, assuming that

the random variables {Ti}Wfscd−1
i=0 are independent gives a good approximation of the

probability distribution of Tfscd. By making the assumption that the {Ti}Wfscd−1
i=0 are

independent, from [16], we find that the cumulative probability distribution of Tfscd is

FTfscd
(t : H0) =

(∫ t

0

2u
σ2

e−
u2

σ2 du

)Wfscd

. (2.8)

2X Upsampling
q[n]

Interpolation 
Filter

p[n]
VSB Modulator

s[n]

Figure 2.4: Procedure for generating a VSB modulated sequence in the context of a 2X
symbol rate.
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Then, for a particular value for the probability of false alarm (PFA), the corresponding

threshold γfscd can be found by

PFA = 1 − FTfscd
(γfscd : H0). (2.9)

Finally, after some straightforward calculation, we have

γfscd = µfscd

(
σ2 ln

1
1 − (1 − PFA)1/Wfscd

)1/2

(2.10)

where µfscd is an heuristic adjusting factor added artificially to account for the ap-

proximation mentioned above. Note that when a VSB modulated sequence (s[n]) is

used, the calculation of the probability of false alarm is the same as that when a binary

sequence (p[n]) is used. Thus, we still use (2.10) to compute the threshold when a

VSB modulated sequence is used. However, the value of µfscd needs to be re-adjusted.

According to simulation results, when the binary sequence p[n] is used, µfscd = 1 gives

a very accurate value for the desired probability of false alarm which means that the

Ti are very close to being independent in this situation.

2.1.3 Segment Sync Based Algorithms

Segment Sync Autocorrelation Detector (SSAD)

In Section 2.1.2, we made use of the Field Sync to perform spectrum sensing. There

are two disadvantages to using the Field Sync. One is that the results of the correlation

between received signals and the pilot sequence are severely affected by frequency offset

and multipath fading channel impairments. The other is that the pilot sequence is very

sparse in the transmission of the ATSC DTV signal. There is only one Field Sync every

24.2 ms, so that we have to observe a received signal up to Wfscd = 520892 samples

and perform a correlation 520892 times. Thus, the complexity is high for the Field

Sync correlation detector. As a result, instead of using the Field Sync, we can utilize

the data segment sync as shown in Fig. 2.1 to perform spectrum sensing. There is

a data segment sync consisting of 4 symbols at the beginning of every ATSC DTV

signal data segment. Because the time difference between two consecutive Segment

Sync components is only 0.077 ms (832 symbols) which is very short, it is reasonable to
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assume that they encounter the same channel effects including timing offset, frequency

offset, and multipath fading. Consequently, we use the autocorrelation of the two

consecutive Segment Sync elements as our basic approach to perform spectrum sensing.

Furthermore, using data segment sync to perform spectrum sensing has the advantage

that we only need to observe a window of Wssad = 1664 samples which is much smaller

the correlation times when compared to that used by the Field Sync method. Figure

2.5 shows the block diagram of the Segment Sync Autocorrelation Detector. Define the

test statistic Tssad as

Tssad = max
0≤m≤Wssad−1

|Tm| (2.11)

where

Tm =
1

ND

ND−1∑
n=0

1
8

7∑
k=0

y[m + k + nL]y∗[m + k + (n + 1)L]. (2.12)

The parameter ND is the number of collected Segment Sync elements used to perform

autocorrelation. The Segment Sync has 4 symbols but an 8 sample autocorrelation is

performed because the sequence y[n] is at double the symbol rate.

Probability of False Alarm of SSAD

For hypothesis H0, the decision statistic of the SSAD method is given by

Tm =
1

ND

ND−1∑
n=0

1
8

7∑
k=0

w[m + k + nL]w∗[m + k + (n + 1)L]. (2.13)

According to the Central Limit Theorem, when ND is large, Tm will approach a circu-

larly symmetric complex Gaussian distribution, that is

lim
ND→∞

Tm → CN(0,
σ4

8ND
). (2.14)

y[n]

832×2 
Sample Delay Conjugate

8-Sample Sliding 
Window Addition

Compare with 
threshold

Accumulator

Select Maximum 
over 832×2 

Sampling Instances

Compute 
Magnitude

832×2 
Sample Delay

Figure 2.5: Segment-Sync Autocorrelation Detector.
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Because {Tm}Wssad−1
m=0 are identical but not independently distributed, it is difficult to

determine the probability distribution of Tssad. We will follow the same philosophy

that was used in calculating the probability of false alarm for the FSCD. We suppose

that {Tm}Wssad−1
m=0 are independent in order to obtain a reference threshold for a corre-

sponding probability of false alarm. Following the same procedure as (2.8)(2.9)(2.10),

we have

γssad = µssad

(
σ4

8ND
ln

1
1 − (1 − PFA)1/Wssad

)1/2

. (2.15)

Maximum Combining Segment Sync Autocorrelation Detector (MCSSAD)

When we accumulate a large number of data segment sync elements, i.e., when the

sensing time is long, timing drift effects will restrict the improvement of the performance

that comes from a longer sensing time. In order to alleviate the timing drift effect, we

can slice the total sensing time into several time slots and then apply a SSAD detector

to each time slot. Then, finally, we use the average of the maximum absolute value

of autocorrelation of each time slot as our detection statistic. We call this detector

the Maximum Combining Segment Sync Autocorrelation Detector (MCSSAD). The

threshold is still determined by (2.15) by adjusting the value of µssad.

2.2 Cyclostationarity Based Spectrum Sensing Algorithms

2.2.1 Review of Cyclostationary Properties

In this section, we present a brief summary of some useful equations relevant to cyclo-

stationarity. Details of cyclostationary properties can be found in [17] [19]. The cyclic

auto-correlation function of a stochastic process x(t) for a given cyclic frequency α can

be defined as follows

Rα
x (τ) = lim

∆t→∞
1

∆t

∫ ∆t/2

−∆t/2
x(t + τ/2)x∗(t − τ/2)e−j2παtdt (2.16)

or

Rα
x(τ) = lim

∆t→∞
1

∆t

∫ ∆t/2

−∆t/2
u(t + τ/2)v∗(t − τ/2)dt (2.17)
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where u(t) = x(t)e−jπαt and v(t) = x(t)e+jπαt are frequency shifted versions of x(t)

so that Rα
x(τ) can be understood as the cross-correlation of u(t) and v(t). The cyclic

spectrum of x(t) for a given cyclic frequency α is defined as

Sα
x (f) =

∫ ∞

−∞
Rα

x(τ)e−j2πατdτ = Suv(f) (2.18)

where the second equality comes from (2.17). Thus, the cyclic spectrum Sα
x (f) can also

be understood as the cross-spectral density of frequency shifted signals u(t) and v(t).

In light of this interpretation, the cyclic spectrum is also called a Spectral Correlation

Density (SCD) function. In this thesis, we will use the terms cyclic spectrum and SCD

interchangeably.

2.2.2 Measurement of Spectral Correlation

It can be shown that the cyclic spectrum is obtainable from the following limit oper-

ations applied to temporally smoothed products of spectral components described by

the expression

Sα
x (f) = lim

∆f→0
lim

∆t→∞
1

∆t

∫ ∆t/2

−∆t/2
∆fX1/∆f (t, f + α/2)

·X∗
1/∆f (t, f − α/2)dt (2.19)

where X1/∆f (t, ν) is the short-term Fourier transform of x(t) with center frequency ν

and approximate bandwidth ∆f

X1/∆f (t, ν)
�
=
∫ t+1/2∆f

t−1/2∆f
x(λ)e−j2πνλdλ. (2.20)

It also can be shown that Sα
x (f) is given by the limit of spectrally smoothed products

of spectral components

Sα
x (f) = lim

∆f→0
lim

∆t→∞
1

∆f

∫ f+∆f/2

f−∆f/2

1
∆t

X∆t(t, ν + α/2)

·X∗
∆t(t, ν − α/2)dν (2.21)

where X∆t(t, f) is defined by (2.20) with 1/∆f being replaced by ∆t. Equations (2.19)

and (2.21) are described in [18]. In this thesis, we present a third method which is

also based on spectrally smoothed products of spectral components. Let x(t, µ) denote
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the frequency down-converted signal which has carrier frequency µ. Then, the cyclic

spectrum is given by

Sα
x (f) = lim

∆f→0
lim

∆t→∞
1

∆f

∫ f+∆f/2

f−∆f/2

1
∆t

X∆t(t, µ, f + α/2)

·X∗
∆t(t, µ, f − α/2)dµ (2.22)

where

X∆t(t, µ, ν)
�
=
∫ t+∆t/2

t−∆t/2
x(λ, µ)e−j2πνλdλ. (2.23)

Note that (2.21) and (2.22) represent basically the same approach for the measure-

ment of spectral correlation. The cyclic spectrum is obtained by spectrally smoothed

products of spectral components. The difference will be easily seen in their digital

implementations.

2.2.3 Digital Implementation

The digital implementation of (2.19), (2.21) and (2.22) is based on use of the fast Fourier

transform (FFT) algorithm for computation of a discrete-time/discrete-frequency coun-

terpart of the sliding-window complex Fourier transform of (2.20) and (2.23). Note

that in digital implementation, the frequency variable f and cyclic frequency variable

α should be a multiple of Fs. The parameter Fs = 1/NTs is the frequency sampling

increment and Ts is the time-sampling increment. Let f = lFs and α = 2DFs, the

discrete-frequency smoothing method of (2.21) is given by

Sα
x [l] =

1
(N − 1)Ts

1
M

(M−1)/2∑
ν=−(M−1)/2

X[l + D + ν]

·X∗[l − D + ν] (2.24)

where

X[ν] =
N−1∑
k=0

x[k]e−j2πνk/N (2.25)

which is the DFT of the sampled signal x[k] = x(kTs), and M is the smoothing factor.

The parameter N is the number of time samples used in DFT. The frequency smoothing
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method of (2.22) is given by

Sα
x [l] =

1
(N − 1)Ts

1
M

(M−1)/2∑
µ=−(M−1)/2

X[l + D,µ]

·X∗[l − D,µ] (2.26)

where

X[ν, µ] =
N−1∑
k=0

x[k, µ]e−j2πνk/N (2.27)

and x[k, µ] = x(kTs, fIF + µ · δf) is frequency down-converted signal having carrier fre-

quency fIF + µ · δf . The parameter fIF is an intermediate frequency. Unless otherwise

noted, here x(t) is the frequency down-converted signal which has central frequency

fIF . Now, we can see the difference between (2.21) and (2.22) in their digital imple-

mentations. For (2.21), spectral smoothing is performed over nearby subcarriers of the

DFT output given by (2.15), and therefore, it is called a discrete-frequency smoothing

method. As for (2.22), spectral smoothing is performed over the same subcarrier of the

DFT output of down-converted signals which have slightly different carrier frequencies

given by (2.27). Therefore, by controlling the parameter δf , we can obtain more pre-

cise frequency resolution without increasing the DFT size. The discrete-time average

method is given by

Sα
x [l] =

1
(N − 1)Ts

1
KM

KM−1∑
u=0

Xu[l + D] · X∗
u[l − D] (2.28)

where

Xu[ν] =
N−1∑
k=0

xu[k]e−j2πνk/N (2.29)

which is the DFT of the sliding sampled signal xu[k] = x(u(N−1)Ts

K + kTs). The pa-

rameter K is the block overlapping factor. When K is 1, all data segments are non-

overlapping. For more detail about the measurement of a cyclic spectrum, the reader

is referred to [18].
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2.2.4 Statistical Analysis of the Measured AWGN SCD

Probability Distribution Function of the Computed AWGN SCD Using

Equation (2.24)

Upon substituting x(t) with w(t) which is a white Gaussian process, we obtain the

SCD of an additive white Gaussian noise (AWGN). The corresponding short-term

Fourier transform of AWGN is denoted as W [ν], W [ν, µ] and Wu[ν] in (2.25), (2.27)

and (2.29). We know that w[k] are independently and identically distributed (i.i.d.)

Gaussian random variables with zero-mean and variance σ2. It can be easily shown

that W [ν], ν = 0, 1, . . . , N − 1 are circularly symmetric i.i.d. complex Gaussian

random variables with zero-mean and variance Nσ2. In (2.24), the random variable

W [l + D + ν]W ∗[l − D + ν] has zero-mean, while its real and imaginary parts are un-

correlated and have the same variance N2σ4/2. Then, by the Central Limit Theorem,

for sufficiently large M

lim
M→∞

Sα
w[l] → CN(0,

N2

(N − 1)2T 2
s

σ4

M
) (2.30)

where CN(µ, σ2) represents the circularly symmetric complex Gaussian distribution

with mean µ and variance σ2. We can easily determine that the random vectors Sα
w =

[Sα
w[0], . . . Sα

w[N − 1]] are jointly circular symmetric complex Gaussian with zero-mean

and possess the covariance matrix

Cov(Sα
w) = E[Sα

wSα
w

H ] = TS (2.31)

where TS is a Toeplitz matrix having the entries

T S
mn =

⎧⎪⎪⎨
⎪⎪⎩

M−|m−n|
M2

N2σ4

(N−1)2T 2
s

|m − n| < M

0 |m − n| ≥ M.

(2.32)

Probability Distribution Function of the Computed AWGN SCD Using

Equation (2.26)

In (2.26), the random variables X[l, µ] for different µ are not necessarily independent.

However, they are almost independent for sufficiently large difference in frequency index
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µ or subcarrier index l. Therefore, we assume, for ease of analysis, that they are

independent. The resulting distribution yields a good approximation. As a result, it

can be easily shown that the distribution of Sα
w[l] is given by (2.30) for sufficiently large

M. Furthermore, by appropriately choosing δf , random variables, Sα
w[l]’s, are nearly

independent.

Probability Distribution Function of the Computed AWGN SCD Using

Equation (2.28)

First, we should note that, for the random variables corresponding to the same fre-

quency subcarrier, Wu[ν] and Wr[ν] are not independent for |u − r| < K because they

are Fourier transformed by overlapping samples of a white Gaussian process. How-

ever, for the random variables taken from different frequency of Wu[ν] and Wr[ω] are

always independent. Let ZD
u [l] = Wu[l + D]W ∗

u [l − D], note again that the com-

plex random variable ZD
u [l] has zero-mean, variance Nσ2, and most important of

all, its real part and imaginary part are uncorrelated. Define the random vector

ZD[l] = [ZD
0 [l], ZD

1 [l], . . . , ZD
KM−1[l]], then ZD[l] is zero-mean with covariance matrix

Cov(ZD[l]) = E[ZD[l]ZD[l]
H

] = TZ (2.33)

where TZ is a Toeplitz matrix having the entries

TZ
mn =

⎧⎪⎪⎨
⎪⎪⎩

(1 − |m−n|
K )2N2σ4e(m,n) |m − n| < K

0 |m − n| ≥ K

(2.34)

with e(m,n) = e−j4πD(m−n)/K . We can write (2.28) as

Sα
w[l] =

1
(N − 1)Ts

1
KM

KM−1∑
u=0

ZD
u [l] (2.35)

and the variance of Sα
w[l] is

V ar(Sα
w[l]) =

1
(N − 1)2T 2

s

1
(KM)2

∑
m

∑
n

TZ
mn

=
1

(KM)2
N2σ4

(N − 1)2T 2
s

·(KM +
K−1∑
i=1

(KM − i)(1 − i

K
) · 2cos(4iπD/K))

(2.36)
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Then, by the Central Limit Theorem, for the case of dependent random variables, we

have that

lim
KM→∞

Sα
w[l]√

V AR(Sα
w[l])

→ CN(0, 1). (2.37)

Fortunately, the random variables associated with different carriers of Sα
w[l] are inde-

pendent. Hence, the random vector Sα
w = [Sα

w[0], . . . Sα
w[N − 1]] obtained by using the

discrete-time average method consists of i.i.d. circularly symmetric complex Gaussian

random variables having zero-mean and variance given by (2.36).

2.2.5 Discussion

1. Computing the SCD using the discrete-frequency smoothing method, (2.24), usu-

ally needs a large FFT size which increases overall complexity. We can see from

(2.32) that the random variables of the measured SCD corresponding to AWGN

noise are dependent. This is an unwanted property and contradictory to the true

SCD of AWGN. The inherent dependence of the SCD is also an undesired prop-

erty in the detection of a signal. For example, we may use the maximum of the

moving average amplitude of the measured SCD as our decision statistic. The

dependence of the random variables of SCD means that large values of the moving

average could occur with high probability for AWGN noise. On the other hand,

the random variables of the measured SCD of AWGN noise obtained by using the

other two methods are independent or nearly independent.

2. The variance of the measured SCD corresponding to AWGN using discrete-time

average method, (2.28), is given by (2.36). We can see that if the ratio of D/K is

1/2 or integers, then the cosine term becomes 1. As a consequence, the variance

of the SCD is approximately the same as the variance of the power spectrum

density which means the SCD of AWGN is not approaching zero. This is the

cycle leakage effect described in [18] and is revealed here in (2.36). Therefore,

we have to increase the block-overlap parameter K to avoid the undesired cycle

leakage effect. However, increasing K results in larger complexity.



18

3. The computed SCD corresponding to AWGN using (2.26) possesses the best prop-

erty that the random variables of different frequency subcarriers are almost in-

dependent, and there is no cycle leakage effect. However, when using (2.26) to

compute SCD, the down conversion operation must be applied many times which

results in a large complexity.

In the application of signal detection or spectrum sensing in the presence of AWGN

noise, based on the discussion above, we find that the SCD corresponding to AWGN

measured by the three different methods has some drawbacks. The features of cyclic

spectrum of the transmitted signal are also different among each of these three methods.

Therefore, we should choose one of the three methods that offers the best tradeoff

between desired features and unwanted properties.

2.2.6 Cyclostationary Signal Model

Let x(t) be the transmitted continuous time signal, that encounters a linear time-

invariant channel denoted by h(t). Then, the channel output is corrupted by an AWGN

noise w(t). The received signal y(t) is therefore given by

y(t) = x(t) ⊗ h(t) + w(t) (2.38)

where w(t) is a a white Gaussian process with zero-mean and its cyclic auto-correlation

function is given as

Rα
w(τ) =

⎧⎪⎪⎨
⎪⎪⎩

σ2δ(τ), α = 0

0, α �= 0.
(2.39)

In [17], stationary signals are divided into two categories. Those stationary signals

with Rα
x(τ) �= 0 for some α �= 0 are called cyclostationary and those stationary signals

with Rα
x(τ) = 0 for all α �= 0 are referred to as purely stationary. Thus, AWGN is

a purely stationary signal. It is shown in [17] that when a signal x(t) undergoes an

LTI transformation (z(t) = x(t) ⊗ h(t)), the input SCD and output SCD are related

acconding to

Sα
z (f) = H(f + α/2)H∗(f − α/2)Sα

x (f). (2.40)
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Here the function H(f) is the frequency response of the channel impulse response.

This relationship can be easily understood by considering the SCD as being the cross-

spectrum of the spectral components of x(t) at frequencies f ± α/2 and these two

spectral components are scaled by H(f ± α/2) after passing through an LTI channel.

Finally, since in (2.38) z(t) = x(t)⊗h(t) and w(t) are independent, the cyclic spectrum

of the received signal y(t) is

Sα
y (f) = Sα

z (f) + Sα
w(f)

=

⎧⎪⎪⎨
⎪⎪⎩

Sz(f) + Sw(f) α = 0

Sα
z (f) α �= 0

(2.41)

and therefore, we have

Sα
y (f) = H(f + α/2)H∗(f − α/2)Sα

x (f), α �= 0. (2.42)

The importance of (2.41) is that cyclostationary properties provide a way to separate

cyclostationary signals from random noise which is purely stationary. As long as the

SCD of the received signal is not identically zero, we can perform spectrum sensing by

measuring the cyclic spectrum of the received signal.

2.2.7 Application to IEEE 802.22 WRAN

According to [1], ATSC DTV signals are vestigial sideband (VSB) modulated. Before

VSB modulation, a constant of 1.25 volts is added to the 8-level pulse amplitude mod-

ulated (8-PAM) signal. Therefore, there is a strong pilot tone in the power spectrum

density (PSD) of the ATSC DTV signal. Let z(t) be this pilot tone signal which is a

sinusoidal signal in the time domain, and further assume that this strong pilot tone is

located at frequency f0 , i.e.,

z(t) =
√

2P cos (2πf0t + θ) ⊗ h(t) (2.43)

where P and θ are the power and the initial phase of the sinusoidal function, respectively.

Here, the function h(t) is the channel impulse response. The received signal must

contain the signal

y(t) = z(t)ej2πf∆t + w(t) (2.44)
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where w(t) is stationary additive white Gaussian noise and f∆ is the amount of fre-

quency offset in units of Hz. The cyclic spectrum of the received signal must contain

the cyclic spectrum of y(t) which is given by (2.41) and (2.42) where

Sα
y (f) =

P

2
[δ(f − f0 − f∆) + δ(f + f0 + f∆)]|H(f)|2 + σ2 (2.45)

for α = 0 and

Sα
y (f) =

P

2
δ(f)H(f − f0 − f∆)H∗(f + f0 + f∆) (2.46)

for α = ±2(f0 + f∆).

Figure 2.6 illustrates the overall procedure of the cyclostationary feature detector. Fol-

lowing [15], the capture data is filtered by a 6 MHz bandpass filer and then scaled so

that the signal x[n] has a preset, desired signal power. Then a 6 MHz bandpass noise is

added to form the experimental data y[n]. Note that the bandpass noise process is still

purely stationary. Because we would like to detect the pilot tone in the cyclic spectrum,

we can filter out those frequency components other than the pilot tone. Therefore, we

apply a narrow bandpass filter to obtain a small band which contains the pilot tone and

then perform a D times decimation to reduce the sampling rate in order to reduce the

computational complexity. Finally, we compute the cyclostationary feature and make

the decision regarding the presence of a signal based on this feature. We will use the

frequency average method, (2.26), to compute the SCD of the received signal because

it is the best method to compute SCD which contains pilot tones. According to (2.46),

the pilot tone appears in zero frequency of the cyclic spectrum. Thus, we compute the

zero frequency component of cyclic spectra for several cyclic frequencies and use their

maximum value as the decision statistic for the detector

T = max
α

|Sα
y [0]|. (2.47)

2.2.8 Probability of False Alarm

Hypothesis H0 corresponds to the presence of noise only, i.e., y[n] = w[n]. The random

variables Sα
w[0] obtained by using the frequency average method, (2.26), are nearly
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Figure 2.6: System implementation of the Cyclostationary Feature Detector.

i.i.d. circularly symmetric complex Gaussian random variables having zero-mean and

variance given by (2.30). Denote the variance obtained by (2.30) as σ2
S, It can be easily

shown that the cumulative distribution function of T is given by

FT (t : H0) =

(∫ t

0

2u
σ2

S

e
− u2

σ2
S du

)L

(2.48)

where L is the number of observed cyclic frequencies. Then, for a particular value of

false alarm probability (PFA), the corresponding threshold γ can be found from

PFA = 1 − FT (γ : H0). (2.49)

Finally, after some straightforward calculation, we have

γ = ρ

(
σ2

S ln
1

1 − (1 − PFA)1/L

)1/2

. (2.50)

where ρ is an heuristic adjusting factor added artificially to account for the approxima-

tion mentioned in Section 2.2.4.

2.2.9 Simulation Results

We use the ATSC A/74 DTV signal captures which are real field captured data to test

our spectrum sensing algorithms. The file names of the ATSC DTV signal captures

and their corresponding symbols used in the figures illustrating simulation performance

results are listed in Table 2.1.

The FSCD Based Algorithms

Figures 2.7 and 2.8 illustrate the operating characteristic curves for the FSCD using

a binary sequence (p[n]) and a VSB modulated sequence (s[n]). We can see that for

different capture data, the detection performance is different due to different channel
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Symbol ATSC DTV Capture Date File Name

A WAS 3 27 06022000 REF
B WAS 311 36 06052000 REF
C WAS 06 34 06092000 REF
D WAS 311 48 06052000 REF
E WAS 51 35 05242000 REF
F WAS 68 36 05232000 REF
G WAS 86 48 07122000 REF
H WAS 311 35 06052000 REF
I WAS 47 48 06132000 opt
J WAS 32 48 06012000 OPT
K WAS 49 34 06142000 opt
L WAS 49 39 06142000 opt
Ave Average

Table 2.1: ATSC DTV Capture Data file names and their corresponding symbols used
in the performance figures.

conditions. Generally speaking, the detector using a VSB modulated sequence has

better performance than that obtained when using a binary sequence. A total of 12

reference capture data cases were simulated as recommended by [13] [14]. For most

cases of DTV capture data, using a VSB modulated sequence, a performance gain of 2

to 3 dB was realized.

The SSAD Based Algorithms

Figure 2.9 illustrates the detection performance of (MC)SSAD when 400 Segment Sync

elements are used. When 400 Segment Sync elements are sliced into 8 time slots and the

MCSSAD applied, a performance gain of 2.5 dB is realized. There are various restric-

tions placed on the sensing time according to different reasons given to the tiger team

in the development of their spectrum sensing proposals. According to these limitations

in sensing time, we evaluate the detection performance of the (MC)SSAD as shown in

Fig. 2.10. For the 4.06 ms case, the sensing time is short so that the SSAD detector is

applied in that sensing time. For the 9.25 ms case, we slice 9.25 ms into two time slots

and then apply the MCSSAD method. As can be seen in Fig. 2.10, for (MC)SSAD, a
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longer sensing time results better performance.

The Cyclostationarity Based Algorithm

In Fig. 2.6, the real-valued DTV signal capture data r[n] are obtained by sampling

DTV channels at a rate of 21.524476 MHz, which is 2X over-sampled and then down

converted to have a carrier frequency equal to 5.38 MHz [13] [14]. Because the pilot

tone of the capture data is located around 2.69 MHz, the parameter fω in Fig. 2.6 is

(2.69-fIF ) MHz. The bandpass filter used to filter the pilot tone has a bandwidth of 40

kHz and fIF is 17 kHz. The decimation factor is 200 and the decimation filter is a 50

kHz low-pass filter. The size of FFT is 2048. The parameter M in (2.26) is 5 and f∆ is

set to be half of the subcarrier spacing divided by M. The file names of the ATSC DTV

signal captures and their corresponding legend symbols used in the simulation figures

are listed in Table 2.1. Figures 2.11 and 2.12 show the spectrum sensing performance

for PFA = 0.1 and PFA = 0.01. Both of these simulations use 19.03 ms as the sensing

time. We can see from Figs. 2.11 and 2.12 that for average detection performance to

achieve PMD=0.1, when PFA=0.1, the needed SNR is -25 dB and when PFA=0.01, the

needed SNR is -24.3 dB. It means that the proposed algorithm is not sensitive to a

change in the PFA (threshold). This is a desired and important feature of the proposed

algorithm. Figure 2.13 shows the spectrum sensing performance for PFA = 0.1, and

the noise uncertainty equals 1 dB. A 1 dB noise uncertainty means that instead of

knowing the exact value of the noise PSD, it has a range of ± 1 dB. For a more detailed

discussion about noise uncertainty, interested readers are referred to [7]. We use the

worst case scenario, i.e, the PSD of noise is -95.2185 dBm at room temperature, and

we assume that the PSD of noise is -94.2185 dBm to calculate the decision threshold.

We can see that with 1 dB of noise uncertainty, for average detection performance to

achieve PMD=0.1, when PFA=0.1, the needed SNR is -23 dB which reveals that the

proposed spectrum sensing algorithm is not sensitive to the noise uncertainty.
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2.3 Conclusions

In this chapter, we introduced several signature-based spectrum sensing algorithms for

ATSC DTV signals. From the simulation results, we can see that only the cyclostationarity-

based algorithm can easily achieve the spectrum sensing requirements specified by the

sensing tiger team of the IEEE 802.22 WG. The reason is that both Segment Sync and

Field Sync are not strong features. For the Segment Sync, there are only four symbols

for every 832 symbols. For the Field Sync, there is only one Field Sync segment for

every 313 segments. Both Segment Sync and Field Sync are very sparse and there-

fore, it is difficult for algorithms based on these two features to work in the required

extremely low SNR environments. The cyclostationary properties can be viewed as a

signature of a signal as well. The cyclostationarity-based sensing algorithm described

in this chapter relies on the strong pilot tone embedded in the spectrum of the ATSC

DTV signals. The pilot tone is a dominant feature so that the sensing algorithms based

on it works well in extremely low SNR environments. Furthermore, the noise rejection

property of the cyclostationarity-based algorithm permits the performance of spectrum

sensing over a shorter sensing time and at a lower complexity.
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Figure 2.7: Detection performance of the FSCD method using a Binary Sequence.
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Figure 2.8: Detection performance of the FSCD method using a VSB Modulated Se-
quence.
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Figure 2.9: Comparison of the detection performance of the SSAD method (ND =
400(31ms)) and the MCSSAD method (averaged over 12 referenced capture data en-
sembles).
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Figure 2.10: Comparison of the detection performance of the SSAD method for different
ND (averaged over 12 referenced capture data ensembles).
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Figure 2.11: Spectrum sensing performance of the Cyclostationary Feature Detector,
PFA = 0.1 and sensing time=19.03 ms.
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Figure 2.12: Spectrum sensing performance of the Cyclostationary Feature Detector,
PFA = 0.01 and sensing time=19.03 ms.
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Figure 2.13: Spectrum sensing performance of the Cyclostationary Feature Detector,
PFA = 0.1, noise uncertainty = 1 dB and sensing time=19.03 ms.
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Chapter 3

Spectrum Sensing for ETSI DVB-T Systems

The DTV signal used in North America is that of the ATSC DTV signal [1]. Therefore,

the main task in spectrum sensing for IEEE 802.22 WRAN is to detect the existence

of the ATSC DTV signal within the DTV bands. Nowadays, OFDM techniques are

adopted by many existing or progressing wireless communication standards [2] [25] [26].

Thus, a robust spectrum sensing algorithm for OFDM modulated signals is highly de-

sired to implement CR when the primary signal uses OFDM modulation. Motivated

by this demand, a Time-Domain Symbol Cross-Correlation based spectrum sensing

algorithm (TDSC method) is presented in this chapter. The algorithm makes use of

the property that the mean of the TDSC of two OFDM symbols is not zero if the

same frequency-domain pilot tones are embedded in them. The statistical behavior of

the proposed spectrum sensor is explicitly analyzed and a theoretical lower bound on

the misdetection probability is derived in this chapter. An intuitive spectrum sensing

method which utilizes the Cyclic Prefix nature of the OFDM modulated signals (CP

method) is also described in this chapter as a reference detection scheme for compari-

son. Finally, we use the DVB-T Standard [2] as an example of an application model to

illustrate the proposed spectrum sensing algorithm. The spectrum sensing algorithms

described in this chapter have also been made available in the literature [27]. The spec-

trum sensing algorithm for OFDM signals that exploits their cyclostationary property

has also been reported in [28].
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3.1 Statistical Development of the Cross-Correlation Function of Two

OFDM Symbols

Under the assumption that L, the length of the Cyclic Prefix (CP), is longer than the

length of the time-invariant channel, the nth sample of the lth OFDM symbol can be

modeled as

xl[n] = ej(2πf∆n/N+θl) · 1
N

N−1∑
k=0

H[k]Xl[k]ej2πkn/N + wl[n] (3.1)

where f∆ is the carrier frequency offset normalized to the subcarrier spacing. The phase

θl = 2πf∆lM/N + θ0 is the initial phase of the lth OFDM symbol where M = N + L

is the length of an OFDM symbol. The parameter N is the number of subcarriers,

and Xl[k] which is taken from a finite complex alphabet constellation denotes the data

symbols at the kth subcarrier of the lth OFDM symbol. Moreover, H[k] is the complex

channel gain of the kth subcarrier and wl[n] is a sample of a complex additive white

Gaussian noise (AWGN) process. We will assume that wl[n] is a circularly symmetric

complex Gaussian random variable which has zero-mean and a variance of σ2
w/N . Most

of the existing standards which adopt OFDM modulation [2] [25] [26] allocate pilot

symbols in the frequency domain. These pilot symbols are called pilot tones. Let Pa,

a = 0, 1, . . . A−1, denote the sets of all possible pilot tone positions for the transmitted

OFDM symbols. Assume that Pâ is the set of pilot tone positions of the lth OFDM

symbol and Xl[k] = Pâ[k] for k ∈ Pâ. Here, we should note that the pilot symbols Pâ[k]

are predefined and have the same amplitude. For most cases, Pâ[k] is a fixed constant

and in some cases they change sign. Assume that the lth and mth OFDM symbols have

the same pilot tone positions and define

R(l,m) =
1
N

N−1∑
n=0

xl[n]x∗
m[n] (3.2)
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which is the Time-Domain Symbol Cross-Correlation (TDSC) function of two OFDM

symbols. After some straightforward calculations, it can be shown that

R(l,m) = e(l − m)
1

N2

∑
k∈Pâ

|H[k]Pâ[k]|2

+ e(l − m)
1

N2

∑
k/∈Pâ

|H[k]|2Xl[k]X∗
m[k]

+
1

N2

N−1∑
k=0

H[k]Xl[k]W ∗
m[k]

+
1

N2

N−1∑
k=0

H∗[k]X∗
m[k]Wl[k]

+
1
N

N−1∑
n=0

wl[n]w∗
m[n] (3.3)

where the function e(ϕ) = ej2πϕMf∆/N represents a phase rotation caused by the carrier

frequency offset and

Wl[k] =
N−1∑
n=0

(wl[n]ej(2πf∆n/N+θl))e−j2πkn/N (3.4)

is the discrete Fourier transform (DFT) of wl[n] multiplied by a phase rotation. Further-

more, Wm[k] is defined in the same way. Then, by recognizing that E(Xl[k]X∗
l [u]) =

σ2
sδ(k − u) for k, u /∈ Pa and that the received signal and noise are independent, it can

be shown that the mean value of R(l,m) is

E[R(l,m)] = e(l − m) · ρ2

N2

∑
k∈Pa

|H[k]|2 (3.5)

and its variance is given by

V ar[R(l,m)] =

σ4
s

N4

∑
k/∈Pa

|H[k]|4 +
σ2

w

N4

N−1∑
k=0

|H[k]Xl[k]|2

+
σ2

w

N4

N−1∑
k=0

|H[k]Xm[k]|2 +
σ4

w

N3
(3.6)

where ρ2 = |Pa[k]|2. Here we can see that the second term in the right-hand side of (3.3)

is the frequency-domain cross-correlation of two received OFDM symbols for non-pilot

subcarriers. Its mean is zero and variance is given by the first term of the right-hand
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side of (3.6). Moreover, the third and fourth terms in the right-hand side of (3.3) are

the frequency-domain cross-correlations of the received signal and noise. The means of

these two terms are zero and their variances are given by the second and third terms in

the right-hand side of (3.6). It can be easily seen that the variances of these three terms

are relatively small compared to the last term in the right-hand side of (3.6) especially

when the SNR is very small (less than -10 dB). Therefore, it is reasonable to ignore

these three terms in (3.3). As a consequence,

R(l,m) ∼= e(l − m) · ρ2

N2

∑
k∈Pa

|H[k]|2

+
1
N

N−1∑
k=0

wl[n]w∗
m[n]. (3.7)

Note that from (3.7), R(l,m) simply consists of a constant term and a noise term. The

fact that the mean value of R(l,m) is not zero makes it different from noise, and we

are able to exploit this property to perform spectrum sensing.

3.2 TDSC Based Spectrum Sensing Algorithm (TDSC Method)

Let ν = l − m be the symbol index difference of two OFDM symbols. Note that in all

OFDM standards, two OFDM symbols which have their symbol index difference equal

to ν have the same pilot tone positions. Further define C(ν) as the accumulated TDSC

function

C(ν) =
1
Sν

∑
m−l=ν

R(l,m)

= e(ν)
ρ2

N2
· 1
A

A−1∑
a=0

∑
k∈Pa

|H[k]|2 +

1
NSν

∑
m−l=ν

N−1∑
k=0

wl[n]w∗
m[n] (3.8)

where Sν is the number of R(l,m) which are accumulated and added. Here Sν is

selected to be an integer multiple of A. We can see from (3.8) that the mean of C(ν)

is unchanged no matter how many TDSC are accumulated. However, the variance of

the noise term (second term) in C(ν) is inversely proportional to Sν . Therefore, as
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long as the accumulated number of R(l,m), denoted by Sν , is large enough, the noise

term in C(ν) will be significantly reduced. Due to this property, we are able to perform

spectrum sensing in very low SNR environments. For the convenience of derivation and

readability, we rewrite C(ν) as

C(ν) = e(ν)Λ + ξ(ν) (3.9)

where

Λ =
ρ2

N2
· 1
A

A−1∑
a=0

∑
k∈Pa

|H[k]|2 (3.10)

is the average received signal power in the pilot tone positions divided by N2 and

ξ(ν) ∼ CN(0,
σ4

w

SνN3
) (3.11)

is a circularly symmetric complex Gaussian random variable. Furthermore, ξ(ν) and

ξ(µ) are independent for ν �= µ. Note that because of the carrier frequency offset, there

is a phase term e(ν) in (3.9) which is a function of ν = m − l. As a result, we cannot

linearly combine C(ν) for different ν. In order to solve this problem, let

Q(ν, ν + d) = C(ν)C∗(ν + d)

= e(−d)Λ2 + Λ · (ξ(ν) + ξ∗(ν + d))

+ ξ(ν)ξ∗(ν + d) (3.12)

which is the conjugate product of two accumulated TDSC functions. It is easily seen

that

E[Q(ν, ν + d)] = e(−d)Λ2 (3.13)

and

V ar[Q(ν, ν + d)] =

= Λ2 · ( σ4
w

SνN3
+

σ4
w

Sν+dN3
) +

σ8
w

SνSν+dN6
. (3.14)

Then the phase term embedded in Q(ν, ν+d) becomes a function of d, and hence, we can

linearly combine Q(ν, ν + d) for different ν. Therefore, let Γ be the linear combination

of Q(ν, ν + d)

Γ =
∑

ν

aνQ(ν, ν + d) (3.15)
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where aν is a combining ratio. The problem arises as to how the aν should be chosen

so as to achieve the best detection performance for a fixed probability of false alarm.

However, traditional detection theorems, e.g., Neyman-Pearson and Bayes Risk meth-

ods [8], are not suitable to use because the probability distribution functions for both

Hypothesis one (H1) and Hypothesis zero (H0) are functions of the combining ratios aν .

Here, we shall use an intuitive criterion. That is, we choose aν such that the Kullback-

Leibler divergence is maximized. The Kullback-Leibler divergence of two densities f

and g is defined by [29]

D(f ||g) =
∫

f log
f

g
. (3.16)

According to the Central Limit Theorem, when the number of terms added in (3.15) is

sufficiently large, the probability distribution of Γ for both hypotheses is given by

pΓ(t;H1) ∼ CN(µ, σ2
1)

pΓ(t;H0) ∼ CN(0, σ2
0) (3.17)

where

µ = e(−d)Λ2
∑

ν

aν

σ2
1 =

∑
ν

a2
νV ar[Q(ν, ν + d)]

σ2
0 =

∑
ν

a2
ν

σ8
w

SνSν+dN6
. (3.18)

For two complex Gaussian random variables, the Kullback-Leibler divergence is given

by

D(H1||H0) = ln
σ2

0

σ2
1

+
|µ − 0|2

σ2
0

+
σ2

1

σ2
0

− 1. (3.19)

Then, by computing
∂D(H1||H0)

∂aν
= 0 (3.20)

for all ν, the optimal combining ratios are obtained. However, (3.20) is too complex to

solve. As a result, we make an assumption that σ2
0 and σ2

1 are approximately equal in

order to obtain suboptimal combining ratios. By substituting σ2
0 = σ2

1 into (3.20), we

obtain

aν = SνSν+d. (3.21)
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Note that this choice of the combining method is essentially that of Maximum Ratio

Combining (MRC) [30] if we ignore two cross terms in (3.12). Before defining the

decision statistic used for performing spectrum sensing, we should note that the lack

of symbol timing information has not been considered in our derivation. When symbol

timing is lacking, the usual approach is to try all possible symbol timing instances in

order to compute (3.15). Then use the resulting maximum amplitude as the decision

statistic. Due to the CP nature of the OFDM signal, our previous derivations are valid

as long as the initial sample time instance is taken from any point within an intersymbol

interference (ISI) free region [31]. Suppose that the maximum channel delay is D, then

the length of the ISI free region is L − D + 1. Thus, if we search over � N+L
L−D+1	 points

which are equally spaced by L − D as the initial sample time instances, there must

be one point in the ISI free region. The function �b	 is the smallest integer which is

larger than or equal to b. Typically, we don’t know the maximum channel delay D

when we are performing spectrum sensing. Consequently, let Z = �N+L
L 	, and then use

the Z points which are separated by L − 1 as initial sample time instances. Although

this suboptimal approach will introduce some ISI when none of the Z points are in

the ISI free region, the detection performance will not be degraded too much since the

ISI introduced is small when the CP length is much larger than the root mean-square

(RMS) delay-spread of the wireless channel. Consequently, we use these Z points as

initial sample time instances to compute (3.15) and use the maximum amplitude as the

decision statistic. Hence, the decision statistic is defined as

Tpt = max
n0

|Γ(n0)| (3.22)

where Γ(n0) is given by (3.15), and we use n0 as the initial sample time instance.

The approach of performing spectrum sensing by computing time-domain correla-

tion function R(l,m) can be easily applied to any OFDM system employing pilot tones.

However, the pilot tone patterns used in various standards are different. Thus, the ac-

tual spectrum sensing algorithms that are used might be slightly different. In the next

section, we use the DVB-T Standard as an example and describe how to perform spec-

trum sensing for DVB-T OFDM systems. Through this example, the spectrum sensing
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algorithm for other OFDM systems which embed pilot tones can be easily developed.

3.3 Spectrum Sensing for DVB-T OFDM Systems

Every transmitted OFDM symbol contains two kinds of pilot tones [2]. One is continued

pilot and the other is scattered pilot. The positions of continued pilots are the same

for all transmitted OFDM symbols. The scattered pilots are inserted every twelve

subcarriers and their positions are shifted by three subcarriers for the next OFDM

symbol so that the positions of scattered pilots are repeated every four OFDM symbols,

hence we have that

Pa,scatter = {k|k = 12l + 3(a + 1)} (3.23)

for l = 0, 1, . . ., and a = 0, 1, 2, 3. Therefore, there are four sets of pilot tone patterns

for DVB-T OFDM. We should note that the number of scattered pilots is much larger

than the number of continued pilots. For a 2K-subcarrier mode, there are 45 continued

pilot tones and 141 scattered pilot tones in an OFDM symbol. Therefore, we shall

compute C(ν) for the case where ν is a multiple of four, except zero, because by doing

so, the absolute mean value of C(ν) is maximized. The decision statistic is given by

(3.22) where Γ(n0) is defined by

Γ =
K∑

k=1

S4kS4k+4Q(4k, 4k + 4) (3.24)

and n0 is used as the initial sample time instance.

3.4 A Lower Bound on the Misdetection Probability for Tpt

The probability distribution function of random variables |Γ(n0)| for various n0 is a

joint Rayleigh distribution. The joint Rayleigh distribution for more than four random

variables with arbitrary covariance matrix is still an open research problem [32]. Thus,

we shall not try to derive the exact probability of misdetection for a specific probability

of false alarm. It is obvious that the misdetection probability when using |Γ(n̂0)| as

the decision statistic, where n̂0 is a correct symbol timing, will be a lower bound on

the misdetection probability for (3.22). The probability distribution of |Γ(n̂0)| for both
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hypotheses is given by (3.17) and (3.18). For a specific probability of false alarm PFA,

the corresponding threshold γ is given by

γ =
√

−σ2
0 ln PFA (3.25)

and the corresponding probability of misdetection PMD, which is a lower bound for

(3.22), is given by

PMD = 1 − Qχ′2
2(λ)(

γ2

σ2
1

). (3.26)

The function

Qχ′2
2(λ)(x) =

∫ ∞

x

1
2

exp[
−1
2

(t + λ)]I0(
√

λt) dt (3.27)

is the right-tail probability of the non-central Chi-Squared distribution with two degrees

of freedom and λ = |µ|2/σ2
1 . The function

I0(u) =
∫ 2π

0
exp(u cos θ)

dθ

2π
(3.28)

is the modified Bessel function of the first-kind and order-zero.

3.5 Algorithms Based on the Cyclic Prefix Property (CP Method)

Due to the CP nature of the OFDM technique, it is straightforward to use the CP to

perform coherent detection for spectrum sensing. We shall define the CP correlation

function as

Rcp[n] =
1

SL

S−1∑
u=0

L−1∑
m=0

x[n + m + N + uM ]x∗[n + m + uM ] (3.29)

where S is the number of OFDM symbols accumulated for CP correlation and x[n] is

the received signal. Noting that symbol timing information is lacking, and that it is

expected the absolute value of Rcp[n] is maximum for the correct symbol timing. Thus,

the decision statistic for the CP method is given by

Tcp = max
0≤n≤M−1

|Rcp[n]|. (3.30)
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3.6 Probability of False Alarm

3.6.1 TDSC Based Method

As mentioned in Section 3.4, the probability distribution of Tpt for hypothesis H0 is

still an open research problem. However, assuming that the random variables Γ(n0) are

independent provides a good approximation. Thus for a specific PFA, the corresponding

threshold γpt is given by

γpt = εpt

(
σ2

0 ln
1

1 − (1 − PFA)1/Z

)1/2

(3.31)

where εpt is an heuristic adjusting factor added artificially to account for the approxi-

mation of independence between random variables.

3.6.2 CP Method

For hypothesis H0 and sufficiently large SL product, by the Central Limit Theorem,

Rcp[n] in (3.29) approaches a circularly symmetric complex Gaussian distribution, i.e.,

Rcp[n] → CN(0,
σ4

w

SL
). (3.32)

Observing that the random variables Rcp[n] are not necessarily independent, once again,

we assume that they are independent in order to calculate an approximate threshold.

Similarly, for a specific probability of false alarm PFA, the threshold γcp can be given

by

γcp = εcp

(
σ4

w

SL
ln

1
1 − (1 − PFA)1/M

)1/2

(3.33)

where εcp is an heuristic adjusting factor artificially added to account for the approxi-

mation mentioned above.

3.7 Simulation Results

The performance of the spectrum sensor for the OFDM signals employing frequency-

domain pilot tones is demonstrated by computer simulation. The simulation environ-

ments are AWGN, multipath Rayleigh fading, and multipath Ricean channels specified
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in [2]. The performances on misdetection probability are evaluated for a false alarm

probability equal to 0.01 and a sensing time of 50 ms. Both TDSC and CP meth-

ods are simulated for four CP ratios defined in [2] and compared to the theoretical

lower bound of the TDSC method. From Fig.s’ 3.1-3.4, we can see that the TDSC

method can achieve a misdetection probability of 0.1 when SNR equals -20.5 dB for

four CP ratios. The TDSC method outperforms the CP method in all cases. The TDSC

method outperforms CP method for 2 dB and 6 dB when the CP ratio is 1/4 and 1/32,

respectively. Furthermore, the TDSC method has approximately the same detection

performance for different CP ratios while the detection performance of the CP method

degrades dramatically when the CP ratio becomes small. Results also reveal that the

simulated performance is very close to the theoretical lower bound indicating that the

lower bound can be used as a good prediction of performance.

3.8 Conclusions

An OFDM spectrum sensor which makes use of the existence of the frequency-domain

pilot tones was presented in this chapter. The proposed TDSC method requires that

only correlations be computed and a small number of amplitude comparison operations

are needed to perform spectrum sensing. Hence, it is very low complexity and easy

to apply in practice. The simulation results show that the proposed spectrum sensor

has excellent performance. The proposed spectrum sensor can achieve a misdetection

probability of 0.1 with respect to a probability of false alarm set to 0.01 for a sensing

time of 50 ms when the SNR is -20.5 dB. When the TDSC method is compared to the

CP method, the TDSC method outperforms the CP methods for the four CP ratios in

the range from 2 dB to 6 dB. The simulation results also show that the misdetection

probability found by simulation is very close to the lower bound derived in this study.

Thus, the lower bound on the misdetection probability given herein can be used as a

good prediction of performance. Finally, and most important of all, in this study, we

have shown that a simple and accurate spectrum sensing algorithm for OFDM signals

does exist and can be easily applied in practical systems.
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Figure 3.1: Performance comparison of the CP method, TDSC method and its lower
bound for PFA = 0.01, CP length = 1/4 and sensing time = 50 ms.
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Figure 3.2: Performance comparison of the CP method, TDSC method and its lower
bound for PFA = 0.01, CP length = 1/8 and sensing time = 50 ms.
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Figure 3.3: Performance comparison of the CP method, TDSC method and its lower
bound for PFA = 0.01, CP length = 1/16 and sensing time = 50 ms.
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Figure 3.4: Performance comparison of the CP method, TDSC method and its lower
bound for PFA = 0.01, CP length = 1/32 and sensing time = 50 ms.
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Chapter 4

Spectrum Sensing for NSPRC DMBT Systems

In China, the DTV signal structure is specified by the NSPRC Digital Multimedia

Broadcasting-Terrestrial (DMB-T) Standard [3]. Therefore, spectrum sensing algo-

rithms which are dedicated to DTV signals in China are needed. In DMB-T systems,

a time-domain synchronous OFDM (TDS-OFDM) technique is adopted. Instead of

cyclic prefixes, pseudonoise (PN) sequences are inserted as guard intervals. The DMB-

T signals consist of signal frames. A signal frame consists of a frame header and a

frame body. There are three frame header modes defined in the DMB-T Standard.

Although the frame headers of different modes consist of PN sequences, the structures

for the different modes are different. As a consequence, different spectrum sensing al-

gorithms are designed for different frame header modes. A theoretical lower bound on

the misdetection probability for each spectrum sensor is derived in this chapter. The

performances of the spectrum sensing algorithms presented in this study are demon-

strated by computer simulations and compared to corresponding lower bounds on the

misdetection probability. The spectrum sensing algorithms described in this chapter

has also been made available in the literature [34].



43

4.1 Frame Structure of the DMB-T System

First, we briefly describe the signal frame structure of the DMB-T system [3]. As shown

in Fig. 4.1, a signal frame consists of two parts. The first part is that of a frame header

which contains a PN sequence serving as pilot symbols. The second part is the frame

body which contains information symbols. Three signal frame structures are defined

in [3] according to the length of the frame header. The frame header may contain 420,

595, or 945 symbols within the PN sequence. These three frame structures have the

same frame body length and a frame body contains N = 3780 information symbols.

For Frame Header Mode 1, as shown in Fig. 4.2, the frame header contains L1 = 420

symbols (PN420) which consist of one front synchronization, one PN255 sequence and

one rear synchronization. The front and rear synchronizations are cyclic extensions

of the PN255 sequence. The length of the front synchronization is 82 symbols and

the length of the rear synchronization is 83 symbols. For Frame Header Mode 1, a

group of 225 signal frames form a superframe and these 225 frames use PN sequences

generated by the same 8th-order linear shift register but have different initial phases.

For Frame Header Mode 2, the frame header contains L2 = 595 symbols (PN595) which

is truncated from a 10th-order maximum length sequence. For Frame Header Mode 2, a

group of 216 signal frames form a superframe. Unlike Frame Header Mode 1, all frame

headers contain the same PN595 sequence. The structure of Frame Header Mode 3 is

similar to the structure of frame mode 1 as shown in Fig. 4.2. The frame header contains

L3 = 945 symbols (PN945). The front and rear synchronizations are cyclic extensions

of the PN511 sequence. The lengths of both the front and rear synchronizations are 217

symbols. For Frame Header Mode 3, a group of 200 signal frames form a superframe

and these 200 frames use PN sequences generated by the same 9th-order linear shift

register having different initial phases.

Frame Header 
(420, 595, or 945 symbols)

Frame Body (system information and data)
 (3780 symbols) 

Figure 4.1: Signal frame structure used in the DMB-T system.
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Front Synchronization
82 (217) symbols PN 255 (511) Rear Synchronization

83 (217) symbols

Figure 4.2: Frame header structure, PN420 (PN945), of the DMB-T system.

4.2 Spectrum Sensing for Frame Header Mode 2

4.2.1 The PN Correlation (PNC) Method

For Frame Header Mode 2, all frame headers contain the same PN595 sequence. Because

the PN595 sequence is only a part of the whole PN sequence, it is difficult to use any

property related to PN sequences to perform spectrum sensing. As a result, we simply

utilize the correlation of PN595 in two consecutive frame headers as the basic approach

to perform spectrum sensing for Frame Header Mode 2. Let

r[n] = y[n] + w[n] (4.1)

where y[n] is the received signal and w[n] is an additive white Gaussian noise (AWGN).

We will assume that w[n] is a complex circularly symmetric Gaussian random variable

which has zero-mean and a variance of σ2
w. Because every frame header contains the

same PN595 sequence, it can be expected that the correlation of two consecutive frame

headers will generate a peak amplitude. Following this approach, we define the decision

statistic of the PN Correlation (PNC) method for Frame Header Mode 2 as

Tpnc,2 = max
0≤m≤M2−1

|tpnc,2(m)| (4.2)

where

tpnc,2(m) =
1

S2L2

S2−1∑
n=0

L2−1∑
k=0

r[m + k + nM2]

· r∗[m + k + (n + 1)M2] (4.3)

The parameter M2 = N + L2 is the length of a signal frame for Frame Header Mode 2

and S2 is the number of signal frames used to perform spectrum sensing.
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4.2.2 A Lower Bound on the Misdetection Probability for Tpnc2

Note that in (4.2), because the timing information is lacking, M2 possible initial frame

sampling instances were tried. We use the maximum amplitude over all trials as the

decision statistic. The detector defined in (4.2) is suboptimal compared to the detector

with perfect timing information. The performance of the operating detector defined in

(4.2) will be bounded by the performance of the detector with perfect timing information

[8]. We will use this idea to derive a lower bound on the misdetection probability for

all detectors considered in this study. Therefore we give a general description and

derivation here.

Let t(n0) be a decision statistic of a detector which uses n0 as initial frame sample

time instance and assume that t(n0) is a complex random variable. Let T̂ = |t(n̂0)|
where n̂0 is the correct initial frame sample time instance. Therefore T̂ is the decision

statistic of the detector with perfect timing information. Let T̃ be decision statistic of

the detector that lacks precise timing information. Then, without the use of special

conditions, an exhaustive search for all possible initial frame sample time instances is

usually used. Thus, a detector having the decision statistic T̃ = maxn0 |t(n0)| is the

general detector structure when we use t(n0) as decision statistic and timing information

is unavailable. The detection performance of T̃ is bounded by the detection performance

of T̂ . If the probability distribution functions for both hypothesis H1 (signal plus noise)

and H0 (noise only) for t(n̂0) are given as

pt(n̂0)(t;H1) ∼ CN(µ, σ2
1)

pt(n̂0)(t;H0) ∼ CN(0, σ2
0) (4.4)

where CN(µ, σ2) denotes a complex Gaussian distribution with mean µ and variance

σ2. Then, the random variable T̂ is Rayleigh distributed for hypothesis H0 and is

Rician distributed for hypothesis H1. For a specific probability of false alarm PFA, the

corresponding threshold γT̂ is given by

γT̂ =
√

−σ2
0 ln PFA (4.5)
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and the corresponding probability of misdetection probability PMD,T̂ is given by

PMD,T̂ = 1 − Qχ′2
2(λ)(

γ2
T̂

σ2
1

) (4.6)

where the function

Qχ′2
2(λ)(x) =

∫ ∞

x

1
2

exp[
−1
2

(t + λ)]I0(
√

λt) dt (4.7)

is the right-tail probability of the non-central Chi-Squared distribution with two degrees

of freedom and λ = |µ|2/σ2
1 . The function

I0(u) =
∫ 2π

0
exp(u cos θ)

dθ

2π
(4.8)

is the modified Bessel function of the first-kind and order-zero. Then, the misdetection

probability calculated according to (4.6) is a performance lower bound on the misde-

tection probability for the detector which uses T̃ as a decision statistic.

Let T̂pnc,2 = |tpnc,2(m̂0)| where m̂0 is the correct initial frame sample time instance.

Then, from the Central Limit Theorem, for sufficiently large S2L2, the probability

distribution functions of tpnc,2(m̂0) for both hypothesis H1 (signal plus noise) and H0

(noise only) will approach circularly symmetric complex Gaussian distributions

ptpnc,2(m̂0)(t;H1) ∼ CN(σ2
p,

2σ2
pσ

2
w + σ4

w

S2L2
)

ptpnc,2(m̂0)(t;H0) ∼ CN(0,
σ4

w

S2L2
) (4.9)

where the parameter σ2
p is the average energy of the received signal frame header. Then

by substituting the parameters of (4.9) into (4.5) and (4.6), we can obtain a lower bound

for the misdetection probability of the PNC detector for Frame Header Mode 2.

4.3 Spectrum Sensing for Frame Header Mode 1 and Mode 3

4.3.1 The Cyclic Extension Correlation (CEC) Method

As shown in Fig. 4.2, for Frame Header Modes 1 and 3, a frame header consists of a

PN sequence and its cyclic extension. Thus, the first 165 (434) symbols of the frame

header are a repetition of the last 165 (434) symbols of the frame header for Frame
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Header Mode 1 (mode 3). It is intuitive to use the correlation of these two components

to perform spectrum sensing. Define the decision statistic of the CEC method as

Tcec,i = max
0≤m≤Mi

|tcec,i(m)|, i = 1, 3 (4.10)

with

tcec,i(m) =
1

SiCi

Si−1∑
n=0

Ci−1∑
k=0

r[m + k + nMi]

·r∗[m + k + Gi + nMi], i = 1, 3 (4.11)

where C1 = 165 (C3 = 434) is the number of the cyclic extended symbols and G1 = 255

(G3 = 511) is the length of the PN sequence for Frame Header Mode 1 (mode 3). The

parameter Mi = N + Li is the length of a signal frame for Frame Header Mode i, and

i = 1, 3.

4.3.2 A Lower Bound on the Misdetection Probability for Tcec,i

Similarly, let T̂cec,i = |tcec,i(m̂0)| where m̂0 is the correct initial frame sample time

instance. Then, from the Central Limit Theorem, for sufficiently large SiCi, the prob-

ability distribution functions of tcec,i(m̂0) for both hypothesis H1 and H0 will approach

complex Gaussian distributions

ptcec,i(m̂0)(t;H1) ∼ CN(σ2
p,

2σ2
pσ

2
w + σ4

w

SiCi
)

ptcec,i(m̂0)(t;H0) ∼ CN(0,
σ4

w

SiCi
). (4.12)

Again, by substituting the parameters of (4.12) into (4.5) and (4.6), we can obtain a

lower bound on the misdetection probability for the CEC detector for Frame Header

Mode 1 and mode 3.

4.3.3 The PN Correlation Method

For Frame Header Modes 1 and 3, the signal frame headers in a superframe use PN

sequences which are generated by the same linear shift register having different initial

phases. These PN sequences are cyclic shifts of each other. The initial phases of the

PN sequences for each signal frame of a superframe are listed in [3]. After computer
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verification, we found that the PN sequences have the following structure. Let the

PN sequence in the first signal frame be a reference PN sequence and, let Pi(l) be the

PN sequence which is cyclically right shifted by l places relative to the reference PN

sequence for Frame Header Mode i. Then

F1(l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P1(l/2), l = 0, 2, . . . , 112

P1(254 − (l − 1)/2), l = 1, 3 . . . , 111

F1(224 − 1 − l), l = 113, . . . , 224

(4.13)

and for Frame Header Mode 3, we have that

F3(l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P3(l/2), l = 0, 2, 4, . . . , 100

P3(510 − (l − 1)/2), l = 1, 3, 5, . . . , 99

F3(200 − l), l = 101, 102, . . . , 199

(4.14)

where F1(l) (F3(l)) is the PN sequence which is used in the lth signal frame for Frame

Header Mode 1 (mode 3). Although the PN sequences used in signal frames of a

superframe follow the rules given in (4.13) and (4.14), it is still not easy to utilize

the properties associated with PN sequence and the rules to perform spectrum sensing

because the PN sequence in every other signal frame is not always cyclically right-

shifted or left-shifted. However, except for the two signal frames in the middle, the

cyclic shift of the PN sequence for every other signal frame is either one place to the

right or one place to the left. Therefore, we define the decision statistic associated with

the PNC method for Frame Header Mode 1 and Mode 3 as

Tpnc,i = max
0≤m≤�Mi/Ci�−1

|tpnc,i(m)| (4.15)

where

tpnc,i(m) =
1

2SiGi

Si−1∑
n=0

1∑
a=0

Gi−1∑
k=0

r[mCi + k + nMi]

·r∗[mCi + k + (n + 2)Mi + (−1)a] i = 1, 3 (4.16)

Note that because of the cyclic extension of the PN sequence in the frame header, as

long as the initial sample is taken from the first 165 (434) symbols for Frame Header
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Mode 1 (Mode 3), we can obtain the entire PN255 (PN511) sequence. Thus, instead of

searching over Mi possible initial frame sampling time instances, we only need to try

�Mi/Ci	 points which are uniformly separated by Ci−1. The function �b	 is the smallest

integer which is larger than or equal to b. It is easily seen that one of these points will

fall within the first 165 (434) symbols. For the multipath channels, this approach is

not completely correct. However, the performance will not degrade too much as long

as the length of the cyclic extension is much larger than the root mean-square (RMS)

delay-spread of the wireless channel.

4.3.4 A Lower Bound on the Misdetection Probability for Tpnc,1 and

Tpnc,3

Again, let T̂pnc,i = |tpnc,i(m̂0)|, i = 1, 3 where m̂0 is the correct initial frame sample

time instance. Then, from the Central Limit Theorem, for sufficiently large SiCi,

the probability distribution functions of tcec,i(m̂0) for both hypothesis H1 and H0 will

approach circularly symmetric complex Gaussian distributions

ptpnc,i(m̂0)(t;H1) ∼ CN(
σ2

p

2
,
σ4

p + 4σ2
pσ

2
w + 2σ4

w

4SiGi
)

ptpnc,i(m̂0)(t;H0) ∼ CN(0,
σ4

w

2SiGi
). (4.17)

Then, by substituting the parameters of (4.17) into (4.6), we can obtain a lower bound

on the misdetection probability for the PNC detector for Frame Header Mode 1 and

Mode 3.

4.4 Probability of False Alarm

Following the terminology that was used in deriving a lower bound on misdetection

probability in Section 4.2.2, let t(n0) be a decision statistic of a detector which uses n0

as an initial frame sample time instance. For hypothesis H0, which corresponds to the

presence of noise only, the random variable t(n0) is a circularly symmetric Gaussian

random variable. The random variables t(n0) for a period of time instances are identical,

but not necessarily, independently distributed. Therefore the random variable T̃ =
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maxn0 |t(n0)| is jointly Rayleigh distributed and the joint Rayleigh distribution for more

than four random variables with arbitrary covariance matrix is still an open research

problem [32]. However, assuming that the random variables t(n0) are independent

provides a good approximation. Thus for a specific PFA, the corresponding threshold

γT̃ is given by

γT̃ = εT̃

(
σ2

0 ln
1

1 − (1 − PFA)1/W

)1/2

(4.18)

where εT̃ is an heuristic adjusting factor added artificially to account for the approxi-

mation of independence between the random variables, and W is the number of time

instances that were considered.

4.5 Simulation Results

The performances of the proposed spectrum sensing methods are demonstrated via

computer simulations. The probability of false alarm and sensing time are set to 0.01

and 50 ms, respectively. The simulated channel environments are the steady state

multipath Rayleigh channel and multipath Rayleigh fading channel with root mean

square (RMS) delay spread equal to 1.24 µs (9.37 samples). Here, each path of the

steady state multipath Rayleigh fading channel is multiplied by a constant path gain.

Thus, for each single path, its envelope is a constant and the Rayleigh fading occurs due

to the sum of these paths. For the multipath Rayleigh fading channel, the envelope of

each single path is Rayleigh distributed and the channel gains of each path are generated

in accordance with Jakes fading model [33]. For Frame Header Mode 2, as shown in

Fig. 4.3, the probability of misdetection (PMD) equal to 0.1 is achieved when the SNR

is -18.8 dB for the multipath Rayleigh fading channel and -19.8 dB for the steady state

channel. For Frame Header Mode 1, as shown in Fig.s 4.4 and 4.5, the performances

of the CEC and PNC methods are approximately the same. A PMD equal to 0.1 is

achieved when the SNR is -16 dB for a multipath Rayleigh fading channel and -17.2

dB for the steady state channel. For Frame Header Mode 3, as shown in Fig.s 4.6 and

4.7, the CEC method outperforms the PNC method. A PMD equal to 0.1 is achieved

when the SNR is -18.5 dB for the multipath Rayleigh fading channel and -18 dB for
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the steady state channel. In all figures, the performance of the steady state channel is

close to the theoretical lower bound indicating that the lower bound can be used as a

good of performance predictor for the spectrum sensing algorithm.

4.6 Conclusions

Spectrum sensing for DMB-T systems using PN frame headers has been considered in

this chapter. Spectrum sensing algorithms which make use of the cyclic extension of

the PN sequence in frame headers and PN structures associated with frame headers

in a superframe are described in detail. The statistical analysis of all the detectors

considered in this study has been provided and a corresponding lower bound of misde-

tection probability has been given. The performances of the proposed spectrum sensing

algorithms are demonstrated by computer simulation for the multipath Rayleigh fading

and steady state multipath Rayleigh fading channels. Simulation results show that the

misdetection probability evaluated by computer simulations is close to the lower bound

on the misdetection probability for a steady state multipath Rayleigh channel. When

the probability of false alarm is 0.01 and a 50 ms of sensing time is used, a misdetection

probability equal to 0.1 is achieved when the signal to noise power ratio is -16 dB, -18.8

dB, and -18 dB for Frame Header Modes 1, 2, and 3 in the multipath Rayleigh fading

channel, respectively. Furthermore, the lower bound on the misdetection probability

developed in this study yields a good prediction of the spectrum sensing performance.
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Figure 4.3: Spectrum sensing performance of the PNC method for Frame Header Mode
2 and its lower bound for PFA = 0.01 and sensing time = 50 ms.
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Figure 4.4: Spectrum sensing performance of the CEC method for Frame Header Mode
1 and its lower bound for PFA = 0.01 and sensing time = 50 ms.
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Figure 4.5: Spectrum sensing performance of the PNC method for Frame Header Mode
3 and its lower bound for PFA = 0.01 and sensing time = 50 ms.
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Figure 4.6: Spectrum sensing performance of the CEC method for Frame Header Mode
1 and its lower bound for PFA = 0.01 and sensing time = 50 ms.



54

−25 −24 −23 −22 −21 −20 −19 −18 −17 −16 −15
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

P
M

D

 

 

Multipath Rayleigh Fading Channel
Steady State Rayleigh Channel
Lower Bound

Figure 4.7: Spectrum sensing performance of the PNC method for Frame Header Mode
3 and its lower bound for PFA = 0.01 and sensing time = 50 ms.



55

Chapter 5

Spectrum Sensing for Wireless Microphone Signals

Wireless microphones are low-power secondary licensed signals operated in the locally

unused DTV bands. Therefore, the main task in spectrum sensing for IEEE 802.22

WRAN also includes the detection of the existence of a wireless microphone signal.

From various signal models of the wireless microphone [38] [40], it is found that the

power of the WM signal is highly concentrated in the frequency domain. Due to this

property, spectrum sensing can be performed by simply detecting the maximum peak of

the estimated PSD of the received signal. The probability of false alarm is analytically

derived for the WM detector presented in this chapter. The performance of the WM

detector is demonstrated by computer simulations using WM signal models provided

in [38] [40]. The spectrum sensing algorithms described in this chapter have also been

made available in the literature [35].
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5.1 Characteristics of Wireless Microphone Signals

Most of the wireless microphone devices use analog frequency modulation (FM) and

the signal bandwidth is less than 200 kHz [36]. Let m(t) be the voice signal, then the

transmitted FM signal s(t) can be generated by

s(t) = Ac cos
[
2πfct + 2πkf

∫ t

0
m(τ)dτ

]
(5.1)

where Ac is the carrier amplitude [37]. The term fc is the carrier frequency, and

the constant kf is the frequency sensitivity of the modulator. In [38], three wireless

microphone operating situations and two environment conditions are suggested to test

spectrum sensing algorithms for wireless microphone signals. As a consequence, there

are six wireless microphone signal models. The three system operating situations are:

1. Silent:

The system user is silent. In this situation, m(t) is a 32 kHz sinusoid signal and

the FM deviation factor is ±5 kHz.

2. Soft Speaker:

The system user is a soft speaker. In this situation, m(t) is modeled as a 3.9 kHz

sinusoid signal with the FM deviation factor being ±15 kHz.

3. Loud Speaker:

The system user is a loud speaker. In this situation, m(t) is modeled as a 13.4

kHz sinusoid signal with the FM deviation factor being ±32.6 kHz.

The two environmental conditions are:

1. Outdoor, LOS:

In this case, the wireless microphone system is used in an outdoor environment

where a line of sight (LOS) transmission path between transmitter and receiver

exists. Therefore, it is an AWGN channel model.

2. Indoor, Rayleigh Faded:

In this case, the wireless microphone system is used indoors. Because the distance
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between transmitter and receiver is short, a single-path Rayleigh fading channel

is good enough to model the indoor channel. Therefore, a flat fading channel is

used. Moreover, the speed of the user is assumed to be 0.6 m/s. At this speed,

and a possible maximum carrier frequency of 806 MHz, the maximum Doppler

shift is computed to be 1.612 Hz. Because the maximum Doppler shift is very

small, the Doppler effect can be ignored. Hence, this channel is a single-path

time-invariant channel.

Furthermore, a more accurate model of voice signals is used in [39] [40]. The audio

signal m(t) is simulated using colored noise generated by passing white noise through

the circuit described in the ETSI document [40]. Then, the audio signal is passed

through a pre-emphasis filter prior to FM modulation. Figures 5.1 to 5.8 show the

PSDs of the various noise-free WM signal models and their corresponding PSDs when

the SNR is -20 dB. We can see from these figures that the power of the WM signal

concentrates within a small frequency band which is less than 200 kHz. Moreover, there

are apparent peaks contained in the PSDs of the various WM signal models. Also, from

these figures, it can be seen that for the same operating mode, the PSDs of the WM

signal look almost the same as the PSDs of the WM signal passed through a fading

channel. This is because the channel is a flat fading channel. A flat fading channel does

not change the shape of the PSD of a signal [41]. As a result, we can perform spectrum

sensing of the WM signal by detecting peaks of the estimated PSD corresponding to a

6 MHz DTV channel. For simplicity, we use the maximum peak of the estimated PSD

as the decision statistic.

5.2 Wireless Microphone Detector

Let the received sampled signal y[n] be described according to

y[n] = s[n] ⊗ h[n] + w[n] (5.2)

where s[n] is the transmitted WM signal, h[n] is channel impulse response and w[n]

is additive white Gaussian noise (AWGN) noise. We will further assume that w[n] is
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zero-mean and has a variance of σ2. The PSD of the signal y[n] is estimated by [42]

Sy[l] =
1

(N − 1)Ts

1
M

M−1∑
u=0

|Y [u, l]|2 (5.3)

where Ts is the sampling period, and

Y [u, l] =
N−1∑
k=0

y[u · N + k]e−j2πlk/N (5.4)

which is the DFT of the non-overlapping sliding sampled signal [42]. The parameter N

is the size of the DFT. Then, the test statistic to be used is given by

T = max
l

|Sy[l]|. (5.5)

5.3 Probability of False Alarm

For hypothesis H0, which corresponds to the presence of noise only, i.e., y[n] = w[n].

We know that w[n] are independently and identically distributed (i.i.d.) Gaussian ran-

dom variables with zero-mean and variance σ2. It can be easily shown that W [u, l], l =

0, 1, . . . , N −1 computed by (5.4) are circularly symmetric i.i.d. complex Gaussian ran-

dom variables with zero-mean and variance Nσ2. Therefore, |W [u, l]|, l = 0, 1, . . . , N−
1 are i.i.d. Rayleigh distributed. Then, Sw[l] computed by (5.3) are i.i.d. Gamma dis-

tributed random variables

Sw[l] ∼ Γ(M,
Nσ2

(N − 1)Ts

1
M

). (5.6)

From the Central Limit Theorem, when M is sufficiently large, Sw[l] approaches that

of a Gaussian distribution

lim
M→∞

Sw[l] → N(Mθ,Mθ2) (5.7)

where θ = Nσ2

(N−1)Ts

1
M . Therefore, the cumulative distribution function of the test statis-

tic for hypothesis H0 is given by

FT (x : H0) =
(∫ x

−∞

1√
2πMθ2

e−
(u−Mθ)2

2Mθ2 du

)N

. (5.8)

Then, for a particular PFA, the corresponding threshold λ can be found by

PFA = 1 − FT (λ : H0). (5.9)
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Finally, after some straightforward calculation, we have

λ = Mθ +
√

Mθ · Q−1(1 − (1 − PFA)1/N ) (5.10)

where Q−1(·) is the inverse function of the function

Q(x) =
∫ ∞

x

1√
2π

e−
1
2
u2

du. (5.11)

5.4 Simulation Results

We use the WM signal models described in Section 5.1 to test the proposed spectrum

sensing algorithm. Figures 5.9 and 5.11 show the operational curves of the six WM

signal models provided in [38] when PFA = 0.1 and PFA = 0.01, respectively, and

a sensing of 10 ms is used. For the worse case, the required SNR for WM detector

to achieve 0.1 of PMD is about -24.8 dB and -23.8 dB for PFA = 0.1 and PFA =

0.01, respectively. We can see that the detection performance is better when the FM

deviation factor is smaller. It is because the smaller the FM deviation factor, the more

concentrated is the signal power in the frequency domain. We can also see that the

single-path Rayleigh fading channel does not have a significant effect on the detection

performance. Figures 5.10 and 5.12 show the performance curves for the WM device

when operated in the Soft Speaker and the Loud Speaker Modes as described in [38].

However, here colored noise has been used as a voice source [40] instead of tone signals.

We can see that when we use colored noise as a voice source, the detection performances

are similar for the four cases. The required SNR for WM detector to achieve a PMD =

0.1 is about -27 dB and -26 dB for PFA = 0.1 and PFA = 0.01, respectively. Compared

with the eigenvalue-based detector described in [9], the required SNR for an eigenvalue-

based detector to achieve PMD = 0.1 with respect to PFA = 0.1 using a sensing time of

9.3 ms is -20 dB. Therefore, the proposed WM detector developed in this study provides

a significant performance improvement. Furthermore, the complexity of the proposed

WM detector is much smaller than the complexity of the eigenvalue-based detector.
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5.5 Conclusions

A simple spectrum sensor for wireless microphone has been described in this chapter.

The presented WM spectrum sensor uses the maximum peak of the estimated PSD

of the received signal. Computer simulations show that the the required SNR for the

proposed spectrum sensor to achieve PMD = 0.1 with respect to PFA = 0.1 using a

sensing time of 10 ms is -24.8 dB. Thus the WM spectrum sensor performs very well

and has a very low complexity making it attractive for use in a variety of practical

applications.
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Figure 5.1: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Outdoor, LOS, Silence.
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Figure 5.2: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Outdoor, LOS, Soft Speaker.

2.1 2.12 2.14 2.16 2.18 2.2 2.22 2.24 2.26 2.28

x 10
6

−190

−180

−170

−160

−150

−140

Frequency (Hz)

P
S

D
 (

dB
/H

z)

2.1 2.12 2.14 2.16 2.18 2.2 2.22 2.24 2.26 2.28

x 10
6

−160

−155

−150

−145

−140

Frequency (Hz)

P
S

D
 (

dB
/H

z)

Figure 5.3: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Outdoor, LOS, Loud Speaker.
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Figure 5.4: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Indoor, Rayleigh Faded, Silence.
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Figure 5.5: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Indoor, Rayleigh Faded, Soft Speaker.
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Figure 5.6: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB), Indoor, Rayleigh Faded, Loud Speaker.
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Figure 5.7: PSD of the WM signal and PSD of the WM signal plus AWGN (SNR=-20
dB) using colored noise as voice source, Soft Speaker.
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Figure 5.8: PSDs of the WM signal and the WM signal plus AWGN (SNR=-20 dB)using
colored noise as the voice source, Loud Speaker.
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Figure 5.9: Spectrum sensing performance of the WM detector using a tone signal as
the voice source, PFA = 0.1 and sensing time=10 ms.
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Figure 5.10: Spectrum sensing performance of the WM detector using colored noise as
the voice source, PFA = 0.1 and sensing time=10 ms.
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Figure 5.11: Spectrum sensing performance of the WM detector using a tone signal as
the voice source, PFA = 0.01 and sensing time=10 ms.
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Figure 5.12: Spectrum sensing performance of the WM detector using colored noise as
the voice source, PFA = 0.01 and sensing time=10 ms.
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Chapter 6

Hardware Implementation

In this chapter, we describe the hardware implementation of the cyclostationarity-based

spectrum sensing algorithm for the ATSC DTV signals presented in Chapter 2. We

utilize two software packages, AccelDSP and System Generator, which are products

of Xilinx, Inc. The AccelDSP software can transfer high level Matlab language code

to low level Register Transfer Language (RTL) code including VHDL and Verilog lan-

guages. The transferred RTL languages can either be implemented directly in a Field

Programmable Gate Array (FPGA), or be converted into a block structure which can

be used in the System Generator software package. Therefore, the AccelDSP software

package is used to generate the required blocks for the cyclostationarity-based spectrum

sensing algorithm. Then, the blocks provided by the System Generator, as well as the

blocks generated by the AccelDSP, are used to construct the spectrum sensor. Once

the spectrum sensor has been properly constructed, a hardware co-simulation block is

then generated by the System Generator. The hardware co-simulation block is used to

implement the spectrum sensor within the FPGA platform. Details of the AccelDSP

software can be found in [43].
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6.1 Introduction to the Xilinx AccelDSP and System Generator Soft-

ware

As mentioned before, AccelDSP can generate a block having a specific function, and

this block can subsequently be used in the System Generator. It is intuitive to think of

this block as being a user-defined Matlab function. Moreover, a function call in Matlab

corresponds to a clock cycle in the circuit, and indeed, this is the case in AccelDSP.

Therefore, in order to begin the implementation of hardware operations, one needs to

create a function m-file and a script m-file which calls the m-function. In the script m-

file, any Matlab function can be used. Typically, data curves are plotted to determine

if the designed function works correctly. However, in the function m-file, only limited

Matlab functions are supported by AccelDSP. In this chapter, we will use a narrow

bandpass IIR filter design to illustrate how to use the AccelDSP software. After we

complete development of both the script m-file and the function m-file in the Matlab

programming environment, we can launch the AccelDSP software as shown in Fig. 6.1.

Figure 6.1: Starting page of the AccelDSP software.
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Figure 6.2: Verification of floating-point simulation result for the designed filter.

By clicking the Project icon in the top left side, we can create a new AccelDSP

project called Bandpass Filter Design proj. Then, click the Verify Floating Point

bottom and select the script m-file to simulate the filter design by using floating point

variables as shown in Fig. 6.2. In this step, AccelDSP will call the Matlab software

package to verify the consistency of the program, and then perform the floating point

simulation.
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Figure 6.3: Spectrum of the designed filter using floating-point arithmetic.

After the Verify Floating Point step is finished, a Matlab workspace and various

curves plotted in response to the script m-file will appear as depicted in Fig. 6.3. In the

Matlab workspace, the dimension, maximum and minimum values of each variable are

listed, as shown in Fig. 6.3. This information is very useful in deciding the word lengths

and fractional lengths of the variables that will be used in the fixed-point design. From

the figures illustrating the bandpass filter behavior, it can be determined if the designed

filter posseses the required properties.
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Figure 6.4: Statistics of the floating-point input and output data.

AccelDSP provides a very useful function, or tool, called Accel Prob that displays

the statistics of any variable involved in the designed Matlab function for both floating-

point and fixed-point results. In particular, the displayed statistics are the histograms

of the original signal values, and their floating representations are shown in Fig. 6.4.

This function provides guidance as to how to assign required word lengths and fractional

lengths of the variables that are to be used in the fixed-point design. Take our bandpass

filter design for example, we would like to know the statistics of the data fed into the

filter and the data outputted from the filter. By examining the statistics of these two

variables, we can determine if the word lengths and fractional lengths are set correctly,

i.e., the quantization error is tolerable and the complexity is acceptable.
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Figure 6.5: Analysis of Matlab code and creation of an in-memory model.

After the Verify Floating Point step is complete. An Analyze icon is displayed

as illustrated in Fig. 6.5. In this step, AccelDSP will create an in-memory model of

the design. In later steps, design directives may be added as needed to this in-memory

model to guide AccelDSP toward finding the best hardware architecture for the designed

filter, i.e., function.
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Figure 6.6: Determination of the fixed-point number of bits for the variables used by
AccelDSP.

Then, by clicking the Generate Fixed Point, AccelDSP will assign word lengths

and fractional lengths for each variable. Figure 6.6 illustrates the fixed-point report.

Sometimes, the AccelDSP cannot determine the word lengths of some variables, and

occasionally, the word lengths and fractional lengths assigned by the AccelDSP software

package are not suitable. Therefore, it is more often the case wherein the word lengths

and fractional lengths must be provided manually by the designer.
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Figure 6.7: Resulting fixed-point spectrum of the designed bandpass filter.

After the word lengths and fractional lengths of all variables have been adjusted, the

Verify Fixed Point step is to be executed. After this step is complete, the results of

the fixed-point simulation are displayed, as shown in Fig. 6.7. By comparing the figures

of floating-point and fixed-point simulation results, the designer can roughly identify if

the word lengths and fractional lengths have been properly assigned.
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Figure 6.8: Statistics of the fixed-point input and output data.

In order to know precisely if the assigned word lengths and fractional lengths are

proper, the fixed-point statistics of the selected data need to be determined and evalu-

ated. As shown in Fig. 6.8, the upper two plots show the exact values of the original

input and output samples for both floating-point and fixed-point. In these plots the

floating-point and fixed-point results are superimposed on top of each other. The lower

two plots show the histograms of the input and output samples for both the floating-

point and the fixed-point realizations. In addition, a signal-to-quantization-noise ratio

is calculated. Based on these statistics, we can adjust the word length and fractional

length of each variable on an iterative basis, until the fixed-point result is as close to the

floating-point result as desired, and the overall computational complexity is affordable

in the context of the target implementation.
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Figure 6.9: Final adjustment of the number of bits used for fixed-point quantities.

Figure 6.9 shows the word lengths and fractional lengths of the variables after ad-

justment.
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Figure 6.10: Generation of Register Transfer Language constructs.

After the Verify Fixed Point step is finished, by clicking the Generate RTL icon,

the AccelDSP software package will generate both VHDL and Verilog codes. After the

Generate RTL step is complete, a Generate RTL report is shown. In this report,

the number of multipliers, adders, and subtractors used are listed. In the Performance

Summary section, the item Startup Clock Cycles is set equal to one indicating that

there is one hardware clock cycle delay for this particular design. When the Hardware

Clock Cycles Per Design Function Call is set equal to one, this indicates that the design

requires one hardware clock cycle for every function call. In AccelSDP, the designer

must be sure to adjust the program code so that the Hardware Clock Cycles Per Design

Function Call equals one. This is necessary because for every function call there must

be some data fed into the function and some data outputted from the function.
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Figure 6.11: Synthesis of the Register Transfer Language constructs.

After the Generate RTL step, the designer has two choices. There is a Flow

selection in the top left side. If the designer chooses ISE, a Synthesize RTL icon will

appear. By performing this step, a Synthesis Report is generated. This report provides

information about the resource utilization of this design, as well as a performance

summary including the maximum operating frequency and the timing path summary.
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Figure 6.12: Creation of the system generator block.

If the designer chooses the Flow selection to be the System Generator, a Generate

System Generator icon will be shown. By performing this step, AccelDSP will create

a system generator block corresponding to the designed bandpass filter function which

can be used in conjunction with the System Generator software.
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Figure 6.13: Simulink Library Browser.

After the Generate System Generator step is complete, a system generator block

called BandPass IIR Filter will appear in the Simulink Library Browser as shown in

Fig. 6.13.



81

Figure 6.14: Block diagram of the designed spectrum sensor algorithm.

The overall block diagram of the cyclostationarity-based spectrum sensor for ATSC

DTV signals is shown in Fig. 6.14. The blocks in Fig. 6.14 had been either generated by

the AccelDSP software package, or provided by the System Generator software package.
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Figure 6.15: System Generator blocks.

By clicking the System Generator icon located at the top of the block diagram, the

designer can set up the required parameters. Subsequently, a hardware co-simulation

block will be generated as shown in Fig. 6.16.
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Figure 6.16: Generation of the hardware co-simulation block.
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Figure 6.17: Hardware co-simulation structure of the spectrum snesor.

As shown in Fig. 6.17, the generated hardware co-simulation block is configured

such that the hardware co-simulation can be executed. The output of this block is the

result from the FPGA-based hardware implementation.

6.2 FPGA Implementation Results

The cyclostationarity-based spectrum sensing algorithm for ATSC DTV signals was

selected for implementation in a FPGA-based hardware platform. The details of this

algorithm were described in Section 2.2 of Chapter 2. The overall system block diagram

is shown in Fig. 6.14. However, due to hardware resource limitations of the FPGA

board, the algorithm based on a 2048-point FFT operation could not be implemented.

In this spectrum sensor, two narrow band IIR filters are needed in the design. The

filter coefficients of these two IIR filters need to have word lengths which are larger

than 20. Hence, several tens of long-length multipliers are required. As such, these two

IIR filters consume sixty percent of the available FPGA resource. On the other hand,
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in order to calculate the cyclic spectrum, a large amount of data must be buffered and

the AccelDSP does not allow for such a large data buffering operation. The Xilinx

support team is currently working to fix this software-related problem. As a result, it

was decided to reduce the size of the FFT employed in the spectrum sensor to that

of 256 points. The same ATSC A/74 DTV real field captured data used in Chapter

2 is taken as the FPGA input data source. These data are used to compare with the

software simulation results. As shown in Fig.s’ 6.18 to 6.20, the performance of the

spectrum sensor is degraded due to the reduction of the FFT size. This is because

the cyclostationarity-based spectrum sensor relies on the pilot tones that appear in the

cyclic spectrum. Thus, the sensing performance will depend on the spectral resolution.

Since an FFT operation with a larger size provides higher spectral resolution, the

spectrum sensor with larger FFT size will provide better performance. Furthermore,

it can be seen that the hardware implementation results are very close to the software

simulation results. Hence, the cyclostationarity-based spectrum sensing algorithm can

be conveniently and efficiently implemented in hardware with performance similar to

that predicted by the software simulation results.
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Figure 6.18: Comparison of the hardware implementation and software simulation re-
sults for capture data file: WAS 3 27 06022000 REF.
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Figure 6.19: Comparison of the hardware implementation and software simulation re-
sults for capture data file: WAS 311 36 06052000 REF.
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Software Simulation − FFT size = 256

Figure 6.20: Comparison of the hardware implementation and software simulation re-
sults for capture data file: WAS 32 48 06012000 OPT.
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Chapter 7

Summary and Conclusions

In this thesis, various spectrum sensing algorithms have been developed for different

kinds of licensed signals. These signals include three DTV broadcast signals [1] [2] [3],

and wireless microphone signals. The spectrum sensing algorithms developed in this

thesis are the best known results available to date, and they can efficiently detect the

presence of primary licensed signals when the SNR is as low as -20 dB. Theoretical

analyses of the probability of false alarm and probability of misdetection for various

spectrum sensing algorithms have also been explicitly derived. A hardware implementa-

tion of the cyclostationarity-based spectrum sensing algorithm for ATSC DTV signals

is described in this thesis. Future extensions of the work reported in this thesis are

primarily related to the hardware implementation of spectrum sensing algorithms. In

particular, spectrum sensing algorithms for the OFDM and wireless microphone signals

are to be implemented in an FPGA-based hardware platform. A real-time spectrum

sensor that includes an RF antenna, an analog to digital converter (ADC), and an

FPGA board will be built as a prototype for potential use in Cognitive Radio systems.
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