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ABSTRACT OF THE DISSERTATION

Probing Small-Scale Structure in Galaxies with Strong

Gravitational Lensing

by ARTHUR BENJAMIN CONGDON

Dissertation Director: Charles R. Keeton

We use gravitational lensing to study the small-scale distribution of matter in galaxies.

First, we examine galaxies and their dark matter halos. Roughly half of all observed

four-image quasar lenses have image flux ratios that differ from the values predicted by

simple lens potentials. We show that smooth departures from elliptical symmetry fail

to explain anomalous radio fluxes, strengthening the case for dark matter substructure.

Our results have important implications for the “missing satellites” problem. We then

consider how time delays between lensed images can be used to identify lens galaxies

containing small-scale structure. We derive an analytic relation for the time delay be-

tween the close pair of images in a “fold” lens, and perform Monte Carlo simulations

to investigate the utility of time delays for probing small-scale structure in realistic

lens populations. We compare our numerical predictions with systems that have mea-

sured time delays and discover two anomalous lenses. Next, we consider microlensing,

where stars in the lens galaxy perturb image magnifications. This is relevant at op-

tical wavelengths, where the size of the lensed source is comparable to the Einstein

radius of a typical star. Our simulations of negative-parity images show that raising

the fraction of dark matter relative to stars increases image flux variability for small

sources, and decreases it for large sources. This suggests that quasar accretion disks and
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broad-emission-line regions may respond differently to microlensing. We also consider

extended sources with a range of ellipticities, which has relevance to a population of

inclined accretion disks. Depending on their orientation, more elongated sources lead

to more rapid variability, which may complicate the interpretation of microlensing light

curves. Finally, we consider prospects for observing strong lensing by the supermassive

black hole at the center of the Milky Way, Sgr A*. Assuming a black hole on the

million-solar-mass scale, we predict that the probability of observing strong lensing of a

background star is roughly 56%. We also consider how lensing by Sgr A* could be used

to test general relativity against alternative theories, concluding that microarcsecond

resolution would make this possible.
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Preface

This thesis consists of six chapters. Chapter 1 provides a thorough introduction to the

theory and astrophysical applications of strong gravitational lensing. In the remaining

chapters, we use gravitational lensing to study small-scale structure in galaxies in a wide

variety of contexts. Chapter 2 presents multipole models of four-image lens systems

to determine whether dark matter substructure provides the only viable explanation

of anomalous flux ratios that have been observed in several radio lenses. This chapter

is based on Congdon & Keeton (2005), which was published in Monthly Notices of

the Royal Astronomical Society (MNRAS, 364, 1459-1466). Chapters 3 and 4 show

how time delays between lensed images can be used to identify galaxies with small-

scale structure. These chapters are based on Congdon, Keeton & Nordgren (2008),

and are in preparation for submission to Journal of Mathematical Physics and The

Astrophysical Journal, respectively. Chapter 5 considers microlensing of an extended

source by a distribution of stars and dark matter, which can be used to probe the

structure of lensed quasars and lensing galaxies. This is based on Congdon, Keeton &

Osmer (2007), which appeared in Monthly Notices of the Royal Astronomical Society

(MNRAS, 376, 263-272). Chapter 6 considers prospects for observing strong lensing

by the supermassive black hole at the center of the Milky Way, and describes how

such measurements could be used to test general relativity. This is based on Congdon,

Keeton & Nordgren (2007) which has been submitted to Physical Review D.
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Chapter 1

Introduction

Gravitational lensing describes the bending of light rays that pass near massive objects

between a light source and an observer (see Schneider et al. 1992, for a comprehensive

discussion of lens theory). Three roughly distinct subfields of lensing have emerged

over the past couple of decades: microlensing in the Local Group, weak lensing, and

strong lensing (see Kochanek et al. 2006, for a thorough review). Each of these has

contributed greatly to our understanding of the universe.

Microlensing within the Local Group has become a powerful tool in the search for

dark matter. As a massive compact halo object (MACHO) passes in front of a more

distant star, the latter will appear to brighten and dim over the duration of the event,

which is typically on the order of months (Paczyński 1986b). This effect allows for

the otherwise invisible foreground object to be detected. Microlensing can also be

used to search for extrasolar planets. A lens that consists of a star and planet will

produce brightness variations in a lensed background star that differ from what would

be observed if the lens were composed of a single massive object.

On a larger scale, the apparent shape of a distant galaxy can be distorted as its light

is bent by mass concentrations along the line of sight. While such weak lensing is subtle,

the combined signal of many lensed galaxies can constrain the amount of matter along

the line of sight. This technique has been used to address a number of astrophysical

problems, including the determination of galaxy cluster masses, from which the cluster

mass function can be derived. This information makes it possible to constrain the value

of w, which parameterizes the equation of state for dark energy.

Perhaps the most dramatic effect of light bending is strong lensing, where multiple

images of a background source are produced. In typical situations, the lensing object is
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a galaxy, while the lensed source is a quasar or galaxy. To date, roughly eighty quasar

lenses 1 and seventy galaxy lenses 2 (Bolton et al. 2008) have been discovered. The

positions and fluxes of lensed images provide important constraints on the structure

of the lensed source and lensing object. Strong lensing can be used to study a wide

range of astrophysical objects, from galaxies to clusters of galaxies. Such investigations

have provided deep insight into the process of hierarchical structure formation, which

is the foundation of modern cosmological theory. In this thesis, we use strong lensing

to probe the small-scale structure of galaxies.

1.1 From Newton to Einstein

The law of universal gravitation presented by Isaac Newton in his Philosophiæ Naturalis

Principia Mathematica constituted the first theory in the modern sense, in that it

provided a framework for describing the motion of massive objects, whether observed

on Earth or in the night sky. With the advent of classical mechanics, it became possible

to explain the orbits of celestial bodies in terms of simple physical ideas expressed in a

compact mathematical language. One of the first great successes of Newtonian gravity

was to derive Kepler’s laws of planetary motion. Since a light ray was thought to

consist of a beam of particles, it seemed natural to consider the behavior of light in the

presence of gravity. Michell (1784) and Laplace (1795) showed that a light ray leaving

the surface of a body with mass M cannot escape the gravitational attraction if the

object has a radius less than

Rs =
2GM
c2

, (1.1)

where c is the speed of light and G is the gravitational constant. This work anticipated

the concept of a black hole, which emerged from the work of Schwarzschild (1916a,b),

who solved the Einstein field equation for a non-rotating, spherically-symmetric mass

distribution. For this reason, Rs is now termed the Schwarzschild radius.

Another consequence of gravitational theory is that a light ray passing near a massive

1See the CASTLES website: http://www.cfa.harvard.edu/castles/

2See the SLACS Survey website: http://slacs.org/
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body will undergo a deflection, such that its apparent position to a foreground observer

will differ from its true position. Assuming that a light ray travels at a constant speed

c, Soldner (1804) calculated the bending angle due to a point mass:

tan
α̃

2
=
GM

c2r
⇒ α̃ ≈ 2GM

c2r
, (1.2)

where we assume 0 < α̃� 1. This is reasonable since typical deflection angles are ∼ 1′′.

To see this, consider the vector

α̃ = v̂i − v̂f =
∫

γ

dv̂
dl
dl , (1.3)

where v̂i and v̂f are unit vectors that specify the initial and final directions of a light

ray moving with velocity v. In the absence of lensing, v̂i = v̂f . If α̃ is small, we

can identify its magnitude with the bending angle. Since the direction of the light

ray will change continuously as it travels from the source to the observer, we must

integrate dv̂/dl along the path γ from the observer to the source. Following C. R.

Keeton (personal communication), we write the integrand as

dv̂
dl

=
dt

dl

d

dt

[
v
|v|

]
=

1
|v|

[
a
|v|

− a · v
|v|3

v
]

=
1
|v|2

[a− (a · v̂)v̂]

≡ a⊥
|v|2

= − ∇⊥Φ
c2

, (1.4)

where a is the acceleration vector and Φ is the gravitational potential. The subscript

⊥ denotes the component perpendicular to the direction of motion. The bending angle

can now be written as

α̃ = − 1
c2

∫
γ
∇⊥Φ dl . (1.5)

It is not straightforward to perform this integral, since the path γ of the light ray

depends on the deflection angle for which we are solving. If the deflection angle is

small, we can approximate the trajectory of the light ray by a straight line, which we

take to be along the z-axis. We have

α̃ = − 1
c2

∫ −∞

∞
∇⊥Φ(x, y, z) dz =

1
c2

∫ ∞

−∞
∇⊥Φ(x, y, z) dz . (1.6)
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Since the size of a typical lensing object is small compared with the total path length

of a light ray, we assume that the light source and observer are infinitely far from the

lens. It is conventional for the source to be located at z → −∞ and the observer at

z → +∞. Thus we integrate over the range −∞ < z <∞ (cf. Eq. 1.3).

For a point-mass lens, the potential is given by

Φ = −GM
r

≡ − GM√
R2 + z2

, (1.7)

where r and R are the spherical and cylindrical radii of the light ray, respectively. The

magnitude of the deflection angle takes the form

α̃ =
1
c2

∫ ∞

−∞

∂Φ(R, z)
∂R

dz

=
GMR

c2

∫ ∞

−∞

dz

(R2 + z2)3/2

=
2GM
c2R

, (1.8)

where R represents the impact parameter of the incoming light ray. This expression

is identical to the small-angle formula derived by Soldner (1804). This result received

little attention, and the problem of light deflection was not seriously considered again

for more than a century. Einstein (1915) used his general theory of relativity to predict

that the deflection angle is twice that obtained by Soldner (1804). This expression can

be derived by making use of the spacetime metric in the weak-field limit:

ds2 =
(

1 +
2Φ
c2

)
d(c t)2 −

(
1− 2Φ

c2

)(
dx2 + dy2 + dz2

)
, (1.9)

where Φ is the Newtonian potential used above. Light rays follow null geodesics, along

which ds2 = 0. We can therefore write

c dt =

√
1− 2Φ/c2

1 + 2Φ/c2
dl ≈

(
1− 2Φ

c2

)
dl , (1.10)

where dl2 ≡ dx2 + dy2 + dz2. We keep only the first-order term in 2Φ/c2, since this

quantity is small in the weak-field limit.

Consider a light ray emitted by a distant source at time ti, which follows the path

γ, and is received by an observer at tf . The travel time is given by

c(tf − ti) =
∫

γ
F (x, y, z) dl =

∫ tf

ti

F (x, y, z)|v|dt , (1.11)
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where F ≡ 1 − 2Φ/c2. Fermat’s principle says that a light ray will follow the path of

extremal time. This means that the functional F |v| obeys the Euler-Lagrange equations

(C. R. Keeton, personal communication):

d

dt

∂F |v|
∂ẋi

− ∂F |v|
∂xi

= 0 , (1.12)

which becomes

|v|∂F
∂xi

−
∑
j

∂F

∂xj

ẋiẋj

|v|
− F

ẍi

|v|
+ Fẋi

∑
j ẋj ẍj

|v|3
= 0 , (1.13)

where xi labels the spatial coordinates. We can write Equation (1.13) in vector form as

|v|∇F − (∇F · v)v̂ − F

|v|
[a− (a · v̂)v̂] = 0 . (1.14)

Dividing by F |v|, and using Equation (1.4), we find

dv̂
dl

=
∇⊥F

F

= − 2
c2

(
1− 2Φ

c2

)−1

∇⊥Φ

≈ − 2
c2

(
1 +

2Φ
c2

)
∇⊥Φ

≈ − 2
c2

∇⊥Φ , (1.15)

which is accurate to first order in 2Φ/c2. The relativistic deflection angle is then

α̃ = − 2
c2

∫
γ
∇⊥Φ dl

=
2
c2

∫ ∞

−∞
∇⊥Φ dz (1.16)

(see discussion between Eqs. [1.5] and [1.6]).

This equation was confirmed for the case of a point mass deflector by Eddington

during the solar eclipse of 1919. He found that the deflection angle of a light ray

passing the solar limb agrees with Einstein’s prediction of α̃ = 1.′′75. The result was

announced at a joint meeting of the Royal Society and Royal Astronomical Society, and

was published the following year (Dyson et al. 1920). Although this is perhaps the most

famous confirmation of general relativity, the deflection angle measured by Eddington

was subject to errors of ∼ 30%. The errors have now been reduced to ∼ 0.01% (Shapiro

et al. 2004).
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The term “lens” was first used in the context of gravity by Lodge (1919), who com-

mented that the gravitational field is not a lens in the optical sense, since no focal length

can be assigned. In any case, an analogy between gravitational light bending and opti-

cal lensing serves a useful pedagogical purpose and we will use the term “gravitational

lensing” throughout this thesis.

In addition to altering the trajectory of a light ray, gravitational lensing can magnify

light from a distant source and can lead to the production of multiple images. Eddington

(1920) considered the case of a background star lensed by a foreground star. He found

that if the stars are sufficiently aligned, two images of the background star will be

produced. While he correctly determined that there is a bright primary image and a

faint secondary image, the values he obtained for the magnification factors were in error.

Einstein (1936) obtained the correct expression for the magnification of the background

star, and Chwolson (1924) showed that the parity of the secondary image is negative,

i.e., that the secondary is the inverted image of the primary. Chwolson (1924) also

showed that if the foreground and background stars are perfectly aligned, a ring-shaped

image of the background star will be formed. This result was later demonstrated by

Einstein (1936) and such images are known as “Einstein rings.” Because it was not

possible to resolve lensed images of a star, Einstein (1936) concluded that it would be

unlikely for gravitational lensing to be observed.

1.2 Strong Lensing

While Zwicky (1937a,b) agreed with Einstein (1936) that the probability of observing

lensing of a background star by a foreground star is small, he proposed that lensing of a

background galaxy by a foreground galaxy is observationally feasible, due to the large

masses of galaxies as compared with stars. As exciting a prospect as this was, it would

be more than twenty-five years before further progress in lensing was made.

Several important results emerged during the 1960s and 1970s. A renewed interest

in lensing (Klimov 1963; Liebes 1964; Refsdal 1964a) was inspired by the discovery

of quasars by Schmidt (1963). Because quasars are so far away, there is a significant
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probability that a foreground galaxy will act as a gravitational lens. In addition, quasars

are bright enough to be seen at cosmological distances. Taken together, these two facts

make quasars ideal targets for lensing observations and provide a powerful way to

constrain cosmological parameters and models. Refsdal (1964a) showed that there is

a time delay between lensed images, and discussed (1964b) how this effect could be

used to constrain the Hubble constant. He also considered the possibility of testing

cosmological theories with gravitational lensing (1966).

All of the papers mentioned above treat the lensing object as a point mass. Sanitt

(1971) considered the case of lensing by spherical mass distributions. He noted that

continuum-emission regions in quasars should be magnified to a greater extent than

line-emission regions, since the former are smaller than the latter. We return to this

idea in the context of microlensing in Chapter 5. Bourassa et al. (1973) and Bourassa &

Kantowski (1975, 1976) generalized to the case of spheroidal lenses. Cooke & Kantowski

(1975) derived an expression for the time delay between lensed images for a lens galaxy

whose potential is described by a sum of point masses. They found that the time

delay can be decomposed into a geometric term that accounts for the different paths

corresponding to different lensed images, and a term due to the gravitational potential

through which the light rays propagate. We derive this expression in the following

subsection, and apply it to lensed quasars in Chapters 3 and 4. Finally, Chang &

Refsdal (1979) showed that adding a point-mass perturber to a lens galaxy can alter the

image magnifications. This effect is now referred to as quasar microlensing (Paczyński

1986a).

Most of this work seemed rather esoteric until the discovery of the first lensed

quasar, 0957+561, by Walsh et al. (1979). The remainder of this section is devoted

to the theory of strong lensing, where multiple images of a background source are

produced. We discuss astrophysical applications in Section 1.3.

1.2.1 The Thin Lens Approximation

As we noted in Section 1.1, a typical strong gravitational lens is sufficiently localized so

that we may assume that the observer and source are infinitely far from the lens. We
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can therefore assume that the deflection of a light ray occurs at a single point (x, y) in

the plane defined by z = 0 about which the lens is centered. It is then possible to write

the deflection angle in terms of a projected potential φ(x, y) and surface mass density

Σ(x, y).

To see this, consider the gravitational potential in three dimensions:

Φ(x, y, z) = −G
∫

ρ(x′, y′, z′)dx′dy′dz′

[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2
. (1.17)

If the lens is confined to the plane z = 0, we can write the volume mass density as

ρ(x, y, z) = Σ(x, y)δ(z) , (1.18)

where δ(z) is the Dirac delta function. The deflection angle (Eq. [1.16]) then takes the

form

α̃(x, y) = −2G
c2

∫ ∞

−∞
dz

(
i
∂

∂x
+ j

∂

∂y

)∫ Σ(x′, y′)δ(z′)dx′dy′dz′

[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2

=
2G
c2

∫
dx′dy′

∫ ∞

−∞
dz

(x− x′)i + (y − y′)j

[(x− x′)2 + (y − y′)2 + z2]3/2
Σ(x′, y′)

=
4G
c2

∫
d2x′

(x− x′)Σ(x′)
|x− x′|2

=
4G
c2

∇
∫

Σ(x′) ln |x− x′|d2x′

≡ 4
c2

∇φ(x, y) , (1.19)

where x and x′ are two-dimensional position vectors, i and j are unit vectors, and ∇

denotes the gradient with respect to x. Comparing Equations (1.16) and (1.19), we

find that φ and Φ are related by

φ(x, y) =
1
2

∫ ∞

−∞
Φ(x, y, z)dz + const . (1.20)

We can ignore the constant term, since no lensing observables depend on it. We note

for future reference that φ satisfies the two-dimensional Poisson equation,

∇2φ = 2πGΣ . (1.21)
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The preceding analysis shows that we can transform the intrinsically three-dimensional

situation of light deflection into a two-dimensional problem, provided that Equation

(1.18) holds. This is called the thin lens approximation,3 and we will use it throughout

this thesis. Within this framework, a light ray travels in a straight line from the source

(z → −∞) to the lens plane (z = 0), where it is bent by the angle α̃. It then continues

in a straight line to the observer (z →∞).

1.2.2 Positions, Magnifications and Time Delays of Lensed Images

In this subsection, we consider lensing of a point source by a spherical mass distribution.

We generalize to non-spherical lens potentials in Section 1.2.4. In realistic lensing

situations, the observer and source are not infinitely far from the lens, but lie at finite

distances. Since these distances are extremely large, we cannot apply the rules of

Euclidean geometry, but must instead measure distances by means of the spacetime

metric that describes the large-scale geometry of the universe (see Hogg 1999 for an

overview of cosmological distances). The concordance cosmological model indicates

that the universe is spatially flat (e.g., Spergel et al. 2007), and is therefore described

by the Robertson-Walker (RW) metric:

ds2 = c2dt2 −R2(t)
(
dξ21 + dξ22 + dξ23

)
= R2(η)

(
dη2 − dσ2

)
, (1.22)

where R(t) sets the spatial scale of the universe, dσ2 ≡
∑

i dξ
2
i , and the conformal time,

η, is defined by

η =
∫

c dt

R(t)
. (1.23)

The comoving coordinates, ξi, are related to the physical coordinates, xi, by xi = R(t)ξi.

The utility of conformal time and comoving coordinates will become clear.

Note that the RW metric applies to a homogeneous universe and therefore does not

account for the lensing object. Since the lens is confined to a small region, we can use

3In the case that more than one lensing object is present along the line of sight to a background
source, it is possible to construct multiple lens planes centered on the various lensing objects (see
Schneider et al. 1992).
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the RW metric to compute the path length of a lensed light ray. In order to calculate

the deflection angle, however, we must use the perturbed Minkowski metric of equation

(1.9).

We now determine the angular positions of lensed images for a given source position

and gravitational potential. Consider a light source, S, with angular position β, whose

comoving distance from the observer, O, is dS . A light ray emitted at S travels a

distance dLS to the lens plane, L. The light ray is then bent through an angle α̃, and

then proceeds a distance dL to O. From Figure 1.1, we see that images form at angular

positions θ such that β = θ − α. We would like to write the angle α in terms of the

physically meaningful angle α̃. To do this, note from Figure 1.1 that

dS sinβ + dLS sin (α̃− θ) + dLS cos (α̃− θ) tan θ = dS cosβ tan θ . (1.24)

Assuming that β, θ, and α̃ are small, which is appropriate in the weak-field limit, this

becomes

β = θ − dLS

dS
α̃ = θ − DLS

DS
α̃ , (1.25)

where we have converted from comoving distance, d, to physical (angular diameter)

distance, D. From this equation, we see that

α =
DLS

DS
α̃ . (1.26)

We refer to α as the reduced deflection angle. Note that α is a function of θ. In general,

Equation 1.25 has multiple solutions for θ.

As noted earlier, lensed images will be magnified relative to an unlensed source. For

a source of infinitesimal size, the magnification is defined to be the ratio of image area

to source area, viz.,

µ =
θ dθ dϕ

β dβ dϕ
. (1.27)

Note that the differential azimuth, dϕ, is the same in the lens and source planes, since

the deflection angle for a spherical lens has only a θ-component. Equation 1.25 gives

the dependence of β on θ for a given lens potential, so it is more convenient to work

with the inverse magnification,

µ−1 =
β

θ

dβ

dθ
. (1.28)
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Figure 1.1 Schematic lensing diagram (see text for details).

In addition to the positions and magnifications of lensed images, a deflected light

ray will experience a time delay relative to one that is not lensed. This time delay

consists of two terms. If no lens were present, a light ray would travel in a straight

line from S to O. A deflected light ray, however, follows a longer path. To compute

the time difference, we make use of the conformal time. Since ds2 = 0 for light rays,

conformal time and comoving distance are identical. From Figure 1.1, the “geometric”

time delay is given by ∆ηgeom = dL + dLS − dS . We can write dS in terms of dL and

dLS by partitioning the triangle defined by dL, dLS and dS into two right triangles. We

then have

∆ηgeom = dL + dLS − [dLS cos (α̃− α) + dL cosα]

= dL + dLS −
{
dLS cos

[(
dS

dL
− 1

)
α

]
+ dL cosα

}
. (1.29)

Applying the small-angle approximation cosx ≈ 1 (0 < x � 1), we find ∆ηgeom = 0.

To obtain the first non-vanishing term, we must use the higher-order approximation
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cosx ≈ 1− x2/2. We then have

∆ηgeom =

[
(dS − dLS)2

dLS
− dL

]
α2

2
. (1.30)

Since we are only interested in the leading-order non-vanishing term in ∆ηgeom, we may

write dS ≈ dL + dLS in this equation. We therefore obtain

∆ηgeom =
dLdS

dLS

α2

2
=

DLDS

R(zL)DLS

α2

2
, (1.31)

where we write the scale factor, R, as a function of the lens redshift, zL. To convert

from conformal time to physical time, we combine Equation (1.23) with the fact that

the relevant time scale is short compared to the Hubble time. We find

∆tgeom =
R0

c
∆ηgeom

=
R0DLDS

cR(zL)DLS

=
1 + zL
c

DLDS

DLS
, (1.32)

where R0 is the scale factor at the present epoch, and we have used the relation R(z) =

(1 + z)−1R0.

In addition to the geometric time delay, the gravitational potential leads to an

increase in travel time. To compute the “potential” time delay, we take the difference

of the travel time when a gravitational field is present, and that for which the potential

vanishes. Using Equation (1.10), we find

c∆tpot

1 + zL
=
∫ (

1− 2Φ
c2

)
dl −

∫
dl = − 2

c2

∫ ∞

−∞
Φ dz = − 4

c2
φ , (1.33)

where the factor 1 + zL accounts for the fact that the time measured by the observer

differs from that measured at the lens plane.

We now combine the geometric and gravitational terms to obtain

∆t =
1 + zL
c

DLDS

DLS
− 4(1 + zL)

c3
φ =

1 + zL
c

DLDS

DLS

[
(θ − β)2

2
− ψ

]
, (1.34)

where we introduce the lens potential,

ψ ≡ 4
c2

DLS

DLDS
φ . (1.35)
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In terms of this potential, the reduced deflection angle is given by α = ∂ψ/∂θ, which

implies that

β = θ − ∂ψ

∂θ
. (1.36)

This is called the lens equation. Although we used a geometric argument to determine

the image positions, an alternative approach that has become widely used is to derive

the time delay, and then determine its stationary points in θ, which are the image

positions (e.g., Blandford & Narayan 1986; Schneider et al. 1992).

To conclude this subsection, we compute the image positions and magnifications for

a point-mass lens. We do not consider time delays for this lens model, as they will not

be needed in this thesis. Using Equations (1.7) and (1.16), the reduced deflection angle

of a point mass is given by

α =
DLS

DS

4GM
c2R

=
DLS

DLDS

4GM
c2

1
θ
, (1.37)

where we have written the radial coordinate R in terms of the angular coordinate θ,

i.e., R = DLθ. Defining the Einstein angle as

θE ≡
√

DLS

DLDS

4GM
c2

, (1.38)

the lens equation takes the simple form

β = θ − θ2
E

θ
. (1.39)

Multiplying by θ, and applying the quadratic formula, we find the image positions:

θ± =
1
2

(
−β ±

√
β2 + 4θ2

E

)
. (1.40)

The corresponding magnifications are

µ± =
θ4
±

θ4
± − θ4

E

. (1.41)

The above expressions show that a point-mass lens always produces two images

of a background source. The primary image at θ+ has positive parity and is always

magnified (µ+ > 1), while the secondary image at θ− has negative parity and can be

magnified or demagnified (µ− < 0). The magnifications of the two images satisfy the
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relation µ+ + µ− = 1. In the special case that β = 0, the two images are infinitely

magnified. One actually observes a ring-shaped image when β = 0, due to the circular

symmetry of this case. The angular “radius” of the ring is θE . In the limit β � θE , the

position and magnification of the primary image approach the values for the true source

position. Meanwhile, the secondary image approaches θ = 0, and its magnification

vanishes. In other words, if the projected separation between the source and lens

is large, light bending can be neglected, and the apparent and true source positions

and magnifications coincide. We return to point-mass lensing in Chapter 6, where we

consider lensing by the supermassive black hole at the center of the Milky Way.

1.2.3 Conditions for Multiple Imaging

For the point-mass lens, we found that two images of a background source are always

produced. In general, the number of images that are created depends both on the

source position and on the lens model. Our interest in this subsection is to determine

the conditions required for strong lensing. We begin by considering spherical mass

distributions, for which the deflection angle takes the form

α(θ) =
4G
c2

DLS

DLDS

M(θ)
θ

, (1.42)

where we have used Gauss’s Law (cf. Eq.[1.37]). If the source lies directly behind the

lens, Equation (1.36) becomes

0 = θE −
4G
c2

DLS

DLDS

M(θE)
θE

. (1.43)

The mass enclosed by the Einstein angle is then

M(θE) =
c2

4G
DLDS

DLS
θ2
E . (1.44)

The mean surface density within the Einstein ring is given by

〈Σ〉 =
M(θE)
πD2

Lθ
2
E

=
c2

4πG
DS

DLDLS
≡ Σcrit . (1.45)

Physically, this equation means that if an Einstein ring is produced, the enclosed mean

surface density of the lens is Σcrit, which is independent of the lens model. Equiva-

lently, if the surface density is always less than Σcrit, an Einstein ring cannot form.
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In all situations of practical importance, a lens can only produce multiple images of a

background source if it can create an Einstein ring. For this reason, Σcrit is called the

critical density for lensing. Although this interpretation of Σcrit is strictly valid only

for spherical lenses, it provides a useful rule of thumb for determining whether a lens

can produce multiple images.

It is convenient to write the surface density in units of the critical density, viz.,

κ ≡ Σ/Σcrit. This quantity is known as the convergence. In terms of κ, the (two-

dimensional) Poisson equation is

∇2ψ = 2κ (1.46)

(cf. Eq. [1.21]), whose solution is

ψ(x) =
1
π

∫
κ(x′) ln |x− x′|d2x′ , (1.47)

where x and x′ are two-dimensional angular position vectors (cf. Eq. [1.19]). Unless

otherwise indicated, vectors appearing in the remainder of this thesis refer to angular

coordinates rather than physical displacements.

Even for lenses that can produce multiple images, it is often the case that strong

lensing results for some source positions but not for others. To illustrate this point,

we consider the singular isothermal sphere (SIS), which is often used in galaxy lensing

(e.g., Chapter 5). The SIS possesses a flat rotation curve, which is a feature of many

observed galaxies. In addition, its lensing properties can be determined analytically.

Its volume density (including both luminous and dark matter) is given by

ρ =
σ2

4πG
1
r2

=
σ2

4πG
1

R2 + z2
, (1.48)

where σ is the velocity dispersion of the SIS. The mass enclosed within an angle θ is

given by

M(θ) =
σ2

4πG

∫ ∞

−∞
dz

∫ DLθ

0
dR

2πR
R2 + z2

=
πσ2DL

2G
θ , (1.49)

which implies a deflection angle of

α(θ) = 2π
(
σ

c

)2 DLS

DS
≡ θE . (1.50)

In elliptical galaxies, which are most relevant to this thesis, luminous matter dominates

at small radii while dark matter is dominant at large radii. Lensed images typically
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form at intermediate radii, so lensing offers a way to probe the distribution of both

stars and dark matter in galaxies.

It is customary to require that β > 0, but it is possible for θ to be positive or nega-

tive. This would have been apparent if we had included the direction of the deflection

angle rather than considering only its magnitude. In particular, θ > 0 ⇒ α > 0, while

θ < 0 ⇒ α < 0. If θ > 0, the lens equation takes the form θ = β + θE . This equation

is satisfied for all β. If θ < 0, we have θ = β − θE , which is satisfied only if β < θE .

In other words, two images are produced if β < θE , while there is only one image for

β > θE . If β = 0, an Einstein ring with radius θE is produced. It is quite common

for different regions of the source plane to correspond to different numbers of lensed

images, as described in the next subsection.

1.2.4 Lensing by Non-Spherical Mass Distributions

We now turn to the case of non-spherical lenses. The SIS provides a useful “toy” model,

but it cannot by itself be used to describe realistic lens galaxies. It can, however,

be modified to yield lens models that are both realistic and have properties that are

straightforward to compute, albeit not analytically for most source positions. These

models maintain an isothermal radial density profile (ρ ∝ r−2), but allow for departures

from spherical symmetry. The latter property makes it possible to produce four-image

lenses, which are the focus of Chapters 2 through 5. Asymmetry is typically modeled

in one of two ways. First, the lens galaxy could remain spherical, but lie near mass

concentrations that produce tidal forces. We model this effect by an external shear field.

The other possibility is that the lensing object could be intrinsically non-spherical. To

account for this effect, we introduce ellipticity into the lens galaxy. We will consider

these two models in turn.

Before proceeding, we must write the lens equation in vector form. If the lens is

spherical, the lens, source and images are collinear on the sky. This will no longer be

the case if asymmetry is introduced to the lens potential. In this case, we replace the

angles β and θ with two-dimensional vectors u and x. We must also work with the

vector quantity α(x), which generally includes a non-radial component (see Eq. [1.19]).
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We can then write the lens equation as

u = x−α(x) = x−∇ψ(x) . (1.51)

The magnification is again given by the ratio of image area to source area. The appro-

priate generalization of Equation (1.27) is given by the determinant of the magnification

tensor. In terms of the source position u, and image position x, we have

µ−1 = det
(
∂u
∂x

)
, (1.52)

where

∂u
∂x

≡

 ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 , (1.53)

and is known in mathematical terms as the Jacobian of u. In component form, we have

u = (u, v) and x = (x, y).

The Shear Approximation

Suppose that a perturbing galaxy lies far from the primary lens. We can then expand

the potential of the perturber in a Taylor series:

ψ(x, y) = ψ 0 + ψx x+ ψy y +
1
2

(
ψxx x

2 + ψyy y
2
)

+ ψxy xy + . . . . (1.54)

We choose coordinates (x, y) centered on the primary lens. The Taylor coefficients

give the partial derivatives of the potential evaluated at the origin (e.g., ψ0 = ψ(0),

ψx = ∂ψ(0)/∂x, ψxy = ∂2ψ(0)/∂x∂y). We can set ψ0 = 0, since constant terms in the

potential have no effect on lensing observables (cf. Eq. [1.20]). The linear terms in the

potential correspond to constant terms in the reduced deflection angle, which represents

a translation of the source position. Since the source position is unobservable, such

terms can be neglected,4 i.e., ψx = ψy = 0. We have thus shown that the leading-order

contribution to the potential is quadratic. For convenience we define

κ0 ≡
1
2

(ψxx + ψyy) , γ1 ≡
1
2

(ψxx − ψyy) and γ2 ≡ ψxy . (1.55)

4Linear terms in the potential do affect the general expression for the time delay, but do not affect
the “differential” time delay between lensed images (Gorenstein et al. 1988). Since only the differential
time delay is observable, we ignore linear terms in the potential.
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This allows us to write the potential as

ψ(x, y) =
1
2

[
(κ0 + γ1)x2 + (κ0 − γ1) y2

]
+ γ2 xy

=
r2

2
[κ0 + γ cos 2(θ − θγ)] , (1.56)

where (x, y) ≡ (r cos θ, r sin θ) and (γ cos 2θγ , γ sin 2θγ) ≡ (γ1, γ2). The parameters γ

and θγ specify the amplitude and direction of the shear, respectively. Note that shear

describes the quadrupole term of the perturbing potential, and is therefore invariant

under rotations by π. This accounts for the factor of two appearing in the argument of

the cosine in Equation (1.56).

Physically, the external convergence, κ0, gives the surface density of the perturbing

mass at the lens galaxy, and gives rise to isotropic magnification. While κ0 is small,

it cannot usually be ignored (Keeton & Zabludoff 2004). Unfortunately, the external

convergence is not observable. To circumvent this difficulty, we rescale the distance

factors in such a way that κ0 = 0 (Gorenstein et al. 1988). This transformation does

not affect image positions or magnifications, but does alter the time delays. This is

known as the mass-sheet degeneracy, and we will return to it in Section 1.3.2.

Unlike convergence, shear produces anisotropic amplification. For example, it causes

a circular source to appear elliptical. For reference, the typical shear amplitude is γ ∼

0.1 in galaxy strong lensing (Keeton et al. 1997; Holder & Schechter 2003; Momcheva

et al. 2006).

Singular Isothermal Sphere with Shear

We can now consider lensing by an SIS embedded in a shear field. Without loss of

generality, we choose coordinates aligned with the direction of shear (θγ = 0). In

rectangular coordinates, the potential of the SIS takes the form ψ(x, y) = θE

√
x2 + y2,

which comes from integrating Equation (1.50) over the radial coordinate. The lens

equation then reads,

u = x− θE x√
x2 + y2

+ γ x (1.57)

v = y − θE y√
x2 + y2

− γ y . (1.58)
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We first consider the simplest case, where the source is at the origin (u = 0). We find

four images with positions

(x, y) =
(

0,± θE

1− γ

)
and (x, y) =

(
± θE

1 + γ
, 0
)
. (1.59)

We see that the breaking of spherical symmetry prevents the formation of Einstein rings.

Images resembling Einstein rings can be formed if the source is spatially extended.

Let us now consider a source away from the origin. For the sake of analytic tractabil-

ity, we assume that the source lies on a symmetry axis of the potential. We begin with

the case v = 0. We find the following solutions:

(x, y) =
(
u+ θE

1 + γ
, 0
)

(always) (1.60)

(x, y) =
(
u− θE

1 + γ
, 0
)

(if u < θE) (1.61)

(x, y) =

 u

2γ
, ±
√

θ2
E

(1− γ)2
− u2

4γ2

 (if u < 2γθE/(1− γ) . (1.62)

We see from these solutions that for γ < 1/3, four images are produced if u < 2γθE/(1−

γ), two images are produced if 2γθE/(1 − γ) < u < θE and one image is produced if

u > θE . Although typical shear amplitudes are smaller than 1/3, it is possible, although

as yet unseen (Holder & Schechter 2003), to have γ > 1/3. In that case, four images

are produced if u < θE , three images are produced if θE < u < 2γθE/(1 − γ) and one

image is produced if u > 2γθE/(1 − γ). We now turn to the case of a source on the

v-axis (u = 0). We find images at

(x, y) =
(

0,
v + θE

1− γ

)
(always) (1.63)

(x, y) =
(

0,
v − θE

1− γ

)
(if v < θE) (1.64)

(x, y) =

±√ θ2
E

(1 + γ)2
− v2

4γ2
, − v

2γ

 (if v < 2γθE/(1 + γ) . (1.65)

We see from these solutions that for γ < 1, four images are produced if v < 2γθE/(1+γ),

two images are produced if 2γθE/(1+γ) < v < θE and one image is produced if v > θE .

Shear amplitudes exceeding unity are not observed and would indicate that terms in

the perturbing potential beyond the quadrupole cannot be neglected (i.e., the shear
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approximation breaks down). Note that a source on the v-axis must be closer to the

origin than a source on the u-axis to produce four images.

For a source that is not on a symmetry axis, we must solve the lens equation

numerically (e.g., Keeton 2001). While this precludes the type of analysis given in the

preceding discussion, the results presented there are indicative of the general properties

of lensing by non-spherical mass distributions. For a source on a symmetry axis, we

found that different source positions correspond to different numbers of images. These

transitions are marked by specific points on the u- and v-axes. It turns out that the

source plane is divided into regions of differing image multiplicity by closed curves

known as caustics. Examples of caustics for an SIS with shear are shown in Figure 1.2.

For reference, the left-hand panel shows an SIS without shear. In that case, the source

plane is separated by the Einstein angle into regions where one and two images are

produced (cf. §1.2.3).

For a shear amplitude of 0.1 (middle panel), there are two caustics. The dotted

curve shows the “radial” caustic, outside which one image is produced. Our analysis

for on-axis sources would suggest that sources within the radial caustic produce two

images. However, this is not actually the case. The reason is that realistic galaxies

are presumably not singular at the origin, but instead have cores of finite density. The

introduction of a central core causes sources within the radial caustic to produce three

images, although one of them is typically too faint to be observed (see below). The solid

curve shows the “tangential” caustic. In mathematical terms, the tangential caustic has

the shape of an astroid. The four points are called “cusps” and the connecting curves

are called “folds.” The term “cusp” is clear enough, while the term “fold” comes

from geometric considerations that are beyond the scope of this introduction. Whereas

singular models predict that a source within the astroid will appear as four separate

images, “softened” models predict five images, with one of the images being highly

demagnified. It turns out that an odd number of images is produced for a lens whose

three-dimensional density profile is shallower than r−2 (Burke 1981), where r is the

spherical radius. Since one of the images in a three-image or five-image configuration

cannot readily be detected, we refer to these systems as two-image and four-image
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lenses.

When γ = 0.5 (right-hand panel), the tangential caustic becomes quite large while

the size of the radial caustic is unchanged. This is consistent with the result for on-axis

sources that the boundary between the one-image and two-image regions is independent

of the external shear. The structure of the tangential caustic also meets our expecta-

tions: its long axis is oriented in the u-direction, while its short axis is oriented in the

v-direction. In other words, a source on the v-axis must be closer to the center of the

caustic than a source on the u-axis to produce four images. Note also that the short-

to-long axis ratio of the astroid increases with the shear amplitude. In particular, it is

given by (1 − γ)/(1 + γ), as indicated by our analytic results. Finally, we see that for

γ = 0.5, the tangential caustic pokes through the radial caustic along the horizontal

axis. Since the horizontal cusps are not “clothed” by the radial caustic in this case, they

are referred to as “naked.” A source within the naked region of the astroid produces

three observable lensed images, although such configurations are not often observed

(see below).

Since the lens equation cannot be solved analytically for an arbitrary source position,

finding the caustics might seem to be a daunting task. However, it turns out that

caustics are curves along which the magnification is formally infinite (although we

note that infinite magnification is not observed in practice, because no source is truly

infinitesimal in size). The magnification is a function of image coordinates (x, y), so it

is most natural to work in the lens plane. We set µ−1 = 0 in Equation (1.52), and solve

for y in terms of x, which can often be done analytically. The resulting curve in the lens

plane is known as the critical curve (see Fig. 1.3 and discussion thereof). We can then

use the lens equation to determine the corresponding curve in the source plane, viz.,

the caustic. For a source just inside the radial caustic, one of the lensed images will be

highly elongated in the radial direction, and mutatis mutandis for a source inside the

tangential caustic, whence the terms “radial” and “tangential.”
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γ = 0 γ = 0.1 γ = 0.5

Figure 1.2 Caustics for a singular isothermal sphere with shear. The shear is aligned
with the horizontal axis. From left to right, panels show cases with no shear (γ = 0),
moderate shear (γ = 0.1) and large shear (γ = 0.5). Caustics are curves that sepa-
rate regions of the source plane corresponding to different numbers of images. In each
panel, the dotted curve shows the radial caustic while the solid curve shows the tangen-
tial caustic. A source outside the radial caustic produces one image; a source between
the radial and tangential caustics produces three images; a source within both caus-
tics produces five images. For a source inside a caustic, one of the images is typically
too faint to be observed, so in practice, two-image and four-image configurations are
observed. Three-image configurations can be observed for a source between the tangen-
tial and radial caustics if γ > 1/3 (see text). Such configurations are known as “naked
cusps” (right-hand panel). If the shear vanishes, the tangential caustic collapses to a
single point (left-hand panel).
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Singular Isothermal Ellipsoid without Shear

We now consider the singular isothermal ellipsoid (SIE), which was described in detail

by Kormann et al. (1994). Its density profile is the same as that of the SIS except

that the angular “radius”is replaced by
√
q2x2 + y2, where q is the minor-to-major axis

ratio of the lens. The corresponding potential is quite complicated, so for pedagogical

purposes, we here consider the simpler singular isothermal elliptical potential (SIEP)

defined by ψ = θE

√
q2x2 + y2. While the corresponding density profile is somewhat

unrealistic, especially for small values of q, the qualitative features are similar for the

SIE and SIEP. In subsequent chapters, we use the SIE to model elliptical galaxies. The

lens equation for the SIEP has the form

u = x− q2θE x√
q2x2 + y2

(1.66)

v = y − θE y√
q2x2 + y2

. (1.67)

We can solve these equations analytically if the source lies along one of the symmetry

axes of the galaxy. Consider the case v = 0. We find the following solutions:

(x, y) = (u+ q θE , 0) (always) (1.68)

(x, y) = (u− q θE , 0) (if u < q θE) (1.69)

(x, y) =

(
u

1− q2
, ±
√
θ2
E −

q2u2

(1− q2)2

)
(if u < (1− q2)θE/q) . (1.70)

We see from these solutions that for q > 1/
√

2, four images are produced if u <

(1 − q2)θE/q, two images are produced if (1 − q2)θE/q < u < qθE , and one image

is produced if u > qθE . When q < 1/
√

2, qθE < (1 − q2)θE/q, and naked cusps

are produced. SIE lenses can also produce naked cusps, but the axis ratio must be

somewhat smaller: q < 0.394 (Keeton et al. 2005b). Such axis ratios are relevant for

lensing by spiral galaxies (Keeton & Kochanek 1998), although only one such lens is

known to have a naked cusp (Lewis et al. 2002). Naked cusps can form for systems

with larger axis ratios if the inner density profile is shallower than isothermal (Oguri

& Keeton 2004). One example of a naked cusp produced by such a system is the lens

SDSS J1029+2623 (Oguri et al. 2008).



24

As in the case of an SIS with shear, SIE lenses are modeled in practice with small

finite-density cores. This means that caustics separate regions where one, three and

five images are created. In the case of multiple imaging, we again find that one of

the images is very dim. Because this image is expected to form near the center of the

lens galaxy, the term “central image” has been introduced. Since the lens galaxy is

often quite luminous at optical wavelengths, it is difficult to detect central images in

optical lenses. To date, central images have only been detected in the quasar lenses

PMN J1632-0033 (Winn et al. 2004) and SDSS J1004+4112 (Inada et al. 2005). At

radio wavelengths, contamination from the lens galaxy should not be a problem, so it

is surprising that central images are not found in radio lenses5 (e.g., Rusin & Ma 2001;

Boyce 2006). This may not be so surprising in light of the work of Keeton (2003b). He

found that massive galaxies with steep density profiles are most efficient at producing

strong lenses, but that the central images they produce are much fainter than the other

images. Moreover, Mao et al. (2001) found that the presence of a supermassive black

hole at the center of the lens galaxy can also suppress central images. We return to

lensing by black holes in the context of the Milky Way in Section 1.3.4 and Chapter 6.

We now describe the general properties of SIE lenses, ignoring the existence of

central images. Caustics and critical curves for an SIE lens with projected ellipticity

e = 1 − q = 0.5 are shown in Figure 1.3. The radial and tangential caustics have

the same basic shape as for an SIS with moderate shear (middle panel of Fig. 1.2).

The basic image configurations are also the same for the SIS with shear and the SIE.

We only discuss four-image systems here, so the source is understood to be within the

tangential caustic. For a source near a fold (filled circle in left-hand diagram in top

panel), two of the four images (squares in right-hand diagram) are highly magnified

and straddle the critical curve (ellipse in right-hand diagram). For a source near a cusp

(filled circle in left-hand diagram in middle panel), three of the four images (squares in

right-hand diagram) lie near the critical curve with two of the images outside and one

inside. For a source that is not near the caustic (bottom panel), none of the images lie

5The central image in the lens B2319+051 reported by Boyce (2006) turned out to be a false detection
upon deeper follow-up observations (E. R. Boyce, personal communication).
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near the critical curve, and the image configuration is known as a “cross.”

Figure 1.3 The three basic four-image lens configurations (based on Figure 1 of Keeton
et al. 2005). Caustics (left) and critical curves (right) are shown for a singular isothermal
ellipsoid (SIE) with axis ratio q = 0.5. The relationship between source position and
image number is the same as that for an SIS with shear (see Fig. 1.2). Caustics are
mapped via the lens equation (Eq. [1.51]) to critical curves (ellipse and dot in right-hand
diagrams). In each panel, the lensed source (circle) produces four images (squares). A
source lying near the tangential caustic (upper two panels) produces a pair (top) or
triplet (middle) of bright images that straddle the tangential critical curve (ellipse).

Singular Isothermal Ellipsoid with Shear

In realistic lens systems, we must include the effects of both intrinsic ellipticity in the

lens galaxy and tidal shear from perturbing bodies. Figure 1.4 shows caustics for an

SIE with shear. We vary the ellipticity, e, from top to bottom, and the shear angle,

θγ , from left to right. We fix the shear amplitude at γ = 0.1. For a fixed value of
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θγ , increasing the ellipticity enlarges the tangential caustic, similar to what we found

when increasing γ for an SIS with shear. For e = 0.9, which would be appropriate for

a nearly edge-on disk (see Keeton & Kochanek 1998), naked cusps are produced for

all three values of θγ . Meanwhile, the aspect ratio of the radial caustic decreases with

increasing ellipticity, in agreement with our analysis of the SIEP, where this ratio is

simply q = 1− e. For an SIEP, the height of the radial caustic is constant, in contrast

to its behavior seen in Figure 1.4. This is not surprising, since the SIEP and SIE make

different predictions when the ellipticity is large.

We now consider the effects of shear angle on the structure of the caustics. When

θγ = 0◦, we find a small naked-cusp region when e = 0.5. If there were no external

shear, we would need to have e > 0.606 in order to produce naked cusps. In other

words, the shear conspires with the ellipticity to create a larger tangential caustic

than would be possible with ellipticity alone. When θγ = 45◦, the tangential caustic

undergoes a counter-clockwise rotation, its size decreases and its shape is altered. Even

with these changes, the tangential caustic maintains its identity as an astroid. We see

that the reduction in size of the tangential caustic for θγ = 45◦ removes the naked

cusps for θγ = 0◦, assuming an ellipticity of 0.5. When the shear and ellipticity are

perpendicular (θγ = 90◦), the shear and ellipticity partially cancel out, leading to a

substantial decrease in the size of the tangential caustic.

Although the values of ellipticity and shear angle we have considered do not represent

an exhaustive sampling of the e − γ plane, the nine parameter combinations whose

caustics are shown in Figure 1.4 provide a fair representation of caustic topologies

expected for realistic lens populations. In particular, the tangential caustic almost

always has an astroid shape, i.e., four cusps connected by four folds (Schneider et al.

1992; Petters et al. 2001). It is possible, given an appropriate combination of shear and

ellipticity, to generate caustics for which six, or even eight, lensed images can be formed

(Keeton et al. 2000). Such caustics are known as “swallowtails,” and are discussed by

Schneider et al. (1992) and Petters et al. (2001). These exotic structures are expected

to be rare and we do not discuss them further.
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Figure 1.4 Caustics for an SIE with shear. The shear amplitude is fixed at γ = 0.1.
From top to bottom, rows show caustics for an SIE with ellipticity e ≡ 1− q of 0.1, 0.5
and 0.9. From left to right, columns show caustics for an external shear with position
angle θγ (measured from the horizontal axis) of 0◦, 45◦ and 90◦.

Beyond Ellipticity and Shear

Most lens systems can be quite accurately described by an SIE with shear. However,

there are some cases where it is necessary to include more complicated structure. It

is known that elliptical galaxies often have “boxy” or “disky” isophotes (Bender et al.

1989; Saglia et al. 1993), indicating the presence of higher-order multipole terms. It

is usually sufficient to include Fourier modes up to fourth order. In Chapter 2, we

consider models that allow for arbitrary truncation order and consider whether such

models can explain the “flux-ratio anomalies” observed in many four-image quasar

lenses. In addition to the “global” features of the lens potential (e.g., shear, ellipticity
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and higher-order multipoles), it is possible for discrete objects, such as dark matter

clumps, stars and black holes, to have a noticeable effect on lensing observables. These

“local” features are considered in Chapters 3 through 6.

1.3 Astrophysical Applications

We now discuss the astrophysical applications of strong lensing, with particular empha-

sis on those aspects central to this thesis. After the discovery of the system 0957+561

(Walsh et al. 1979), and the subsequent identification of the lens galaxy (Young et al.

1980; Stockton 1980), it became clear that lensing could become an observational tool

for probing cosmology. There remained one difficulty, however: two-image lenses such

as 0957+561 (hereafter 0957) provide too few constraints to be useful for constraining

the mass distribution of the lens (but see Grogin & Narayan 1996), which is one of the

primary goals of lens modeling. Fortuitously, the lens PG 1115+080 (hereafter 1115)

was discovered only a year after 0957. Although it was originally thought that 1115

had three images (Weymann et al. 1980), further observation managed to resolve one

of the images into a closely-spaced doublet, showing that this lens actually contains

four images (Hege et al. 1980, 1981). The unambiguous identification of this system as

a gravitational lens would need to await the discovery of the lens galaxy several years

later (Shaklan & Hege 1986).

In many ways, the lens 1115 is ideal for astrophysical investigation. For one thing,

1115 is a fold lens. As we will discuss in more detail in Chapters 2 through 4, fold

lenses can be used to study small-scale structure in lens galaxies. In addition, the time

delays between the lensed images of 1115 have been measured, which provides a way

to constrain the Hubble constant (Keeton & Kochanek 1997) along the lines described

by Refsdal (1964b).

The lens 1115 was the first of many four-image systems to be discovered. There are

now more than twenty such systems known (for a compilation, see Chapter 4). In a

pioneering work, Kochanek (1991) performed detailed lens modeling for twelve lens sys-

tems, including 1115 and four other quadruply-imaged quasars. Since galaxies contain
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large amounts of dark matter, it is often not possible to determine their mass distrib-

utions using photometry. Gravitational lensing is sensitive to all mass, and therefore

provides a unique probe of distant galaxies. In his study, Kochanek (1991) modeled the

lens galaxies in his sample with five simple but reasonable potentials. He found that the

image positions tightly constrain the mass they enclose, but they are not as useful for

determining higher-order effects such as ellipticity. He used only the image positions as

constraints. In principle, he could have used flux ratios as well, but simple lens models

generally find it difficult to reproduce these data. This discrepancy between theory and

observation inspired the term “flux-ratio anomaly.” This problem has turned out to be

one of the most important challenges in lensing over the past decade or so. Flux-ratio

anomalies are specifically addressed in Chapter 2, and are also relevant to Chapter 5.

Since there is a time-delay between lensed images, one might suspect that a perceived

anomaly is simply due to this effect. In order for this to be the correct explanation,

intrinsic variability of the lensed source would be required. However, there are several

lens systems in which the combination of intrinsic variability and time delay is insuf-

ficient to explain the observed anomalies (e.g., Fassnacht et al. 1999). In addition, as

we will see in Chapters 3 and 4, time delays between images in a fold pair or cusp

triplet tend to be short, meaning that very rapid, large-amplitude variability would be

needed for brightness variations in the source to be responsible for the anomalies in

these systems. Since fold and cusp lenses comprise the relevant lens sample, and do

not exhibit flux variation on the required timescale, we conclude that anomalous flux

ratios are not a consequence of time delays, and thus constitute a genuine astrophysical

problem.

As lens models and observational capabilities have improved, gravitational lensing

has become an increasingly important technique for studying cosmology in general,

and galaxies in particular. It is now possible to constrain not only the global properties

of galaxy mass distributions, but also the small-scale structure of galaxies, which has

profound implications for the cold dark matter (CDM) paradigm. We consider a number

of lensing-based channels for studying small-scale structure in galaxies. The remainder

of this introduction provides an overview of the specific problems studied in this thesis.
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1.3.1 Anomalous Flux Ratios and Gravitational Millilensing

If the theory of hierarchical structure formation is correct, all CDM halos should contain

substructure in the form of clumps with a wide range of masses. In particular, galaxies

are expected to contain satellites with typical masses of ∼ 106 − 108M�. Although the

number of observed Galactic satellites has been steadily increasing (e.g., Martin et al.

2007), this number remains nearly an order of magnitude smaller than the number of

dwarf galaxies predicted to orbit the Milky Way (Moore et al. 1999; Klypin et al. 1999).

The discrepancy is even greater for the Local Group as a whole.

There may be a link between CDM substructure and lensed quasars. Roughly half

of all observed four-image quasar lenses have image flux ratios that differ from the

values predicted by a smooth mass distribution for the lens galaxy, regardless of the

specific model assumed (Keeton et al. 2003, 2005). At optical wavelengths, microlensing

by stars in the lens galaxy (see Chapter 5) may at least partly explain some of the

flux-ratio anomalies. In contrast, radio-emitting regions in quasars are large enough

to smooth over the effects of individual stars, so some other explanation is required.

Dalal & Kochanek (2002) found that CDM substructure can explain the six known radio

anomalies, if a few percent of the total mass of the lens galaxy is in the form of ∼ 106M�

clumps, which is in broad agreement with the predictions of N-body simulations (Moore

et al. 1999; Klypin et al. 1999).

To understand the effect of a clump on lensing observables, we consider a lens

described by a smooth mass model, plus a clump in front of one of the lensed images.

We assume a point source for simplicity (for the case of a finite source, see Dobler &

Keeton 2006). As described in Section 1.2.4, we can expand the lens potential in a Taylor

series about an appropriate origin. In the present situation we expand the potential of

the primary lens about one of the lensed images. As in our earlier discussion, we choose

coordinates aligned with the direction of shear (θγ = 0), which in this case comes from

the lens galaxy itself. The shear amplitude is again denoted by γ. The parameter κ0

represents the surface density at the image position.

A lensed image described by κ0 and γ can be categorized according to its parity. In
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the absence of the perturbing clump, the magnification tensor is diagonal with elements

λ± = 1− κ0± γ. If λ+ and λ− are both positive, the image occurs at a local minimum

of the time-delay function; if λ+ is positive and λ− is negative, the image forms at

a saddle point, and is inverted in the direction orthogonal to the shear; if λ+ and

λ− are both negative, the image forms at a local maximum, and is inverted along

both coordinate axes. Because of their relation to image orientation, minima and

saddle points are referred to as positive-parity and negative-parity images, respectively.

Maximum images are rarely observed in galaxy lensing since they usually correspond

to the faint central images discussed in Section 1.2.4. As we will see, the effect of a

clump depends on the parity of the “macro”-image described by κ0 and γ.

We model the perturbing clump by an SIS. Since the clump is located at the origin,

it cannot be modeled by an external convergence and shear. Using angular coordinates

(r, θ), the potential of an SIS clump is given by

ψ(r, θ) = RE r (1.71)

where RE is the Einstein angle of the clump. The lens equation for a source at the

origin then takes the form

(λ−r −RE) cos θ = 0 (1.72)

(λ+r −RE) sin θ = 0 . (1.73)

We would like to solve these equations to find the image positions. To do this, we

consider three cases:

i) x 6= 0 ; y 6= 0 ⇒ cos θ 6= 0 ; sin θ 6= 0 . The lens equation takes the form

λ−r −RE = 0 (1.74)

λ+r −RE = 0 , (1.75)

which implies that RE/r = λ+ = λ−. Given that γ > 0, this cannot be satisfied, so

either x or y must vanish.
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ii) x 6= 0 ; y = 0 ⇒ cos θ 6= 0 ; sin θ = 0 . The lens equation takes the form

λ−r − RE = 0. For a saddle or maximum (λ− < 0), there are no solutions, since r

cannot be negative. For a minimum (λ− > 0), we find the solutions x = ±RE/λ−.

iii) x = 0 ; y 6= 0 ⇒ cos θ = 0 ; sin θ 6= 0 . The lens equation takes the form

λ+r − RE = 0. “Micro”-images are produced for minima and saddles where λ+ > 0.

Their positions are y = ±RE/λ+.

To summarize, a clump at the origin produces micro-images at

(x, y) =
(

0,± RE

λ+

)
(minima and saddles) (1.76)

(x, y) =
(
±RE

λ−
, 0
)

(minima only) . (1.77)

For a maximum, no micro-images are created.

These results show that the separation between the lensed images is ∼ RE . For

typical values of the distance factors DL, DS and DLS , the Einstein angle is given by

RE ∼
(

M

1012M�

)1/2

× 1′′ . (1.78)

Formally, the mass of an SIS is infinite, and this formula does not apply to such a clump.

The Einstein angle is given instead in terms of the velocity dispersion (see Eq. [1.50]).

Note, however, that the infinite mass of an SIS is related to its infinite spatial extent,

which is clearly unphysical. In practice, a truncation radius is introduced so that the

mass of the clump becomes finite. For the type of clump predicted by CDM cosmology,

a mass of ∼ 106M� is typical (see above). This means that the Einstein angle, and

hence also the image separation, is 0 .′′001, in agreement with detailed lensing studies

of clumps (Dalal & Kochanek 2002; Dobler & Keeton 2006; Chen et al. 2007). It is for

this reason that lensing by clumps is called “millilensing.” Astrometric perturbations

on this scale are difficult to detect, but millilensing can still be observed thanks to the

deviations in image magnification induced by clumps.

Let us now find the magnifications of the images. The magnification tensor is given

by

∂u
∂x

=

 λ− − RE
r sin2 θ RE

r sin θ cos θ

RE
r sin θ cos θ λ+ − RE

r cos2θ

 , (1.79)
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whose determinant is

µ−1 = µ−1
0 − RE

r
(1− κ0 − γ cos 2θ) , (1.80)

where µo = [(1 − κ0)2 − γ2]−1 is the magnification produced by the background

convergence and shear. For the images on the y-axis, the inverse magnification is

µ−1 = −2γλ+ = (−2γ/λ−)µ−1
0 ; for the images on the x-axis, the inverse magnification

is µ−1 = 2γλ− = (2γ/λ+)µ−1
0 .

The total magnification (in absolute value) due to the macro-image and clump

is given by the sum of the unsigned magnifications produced by each of the micro-

images, viz., A ≡
∑

i |µi| . For a negative-parity macro-image, the total magnification

is A− = |(λ−/γ)µ0|. This quantity can be larger or smaller than |µ0|, depending on

the specific combination of κ0 and γ. It will be larger if λ− < −γ or κ0 > 1, and will

be smaller otherwise. This means that a clump can magnify or demagnify a saddle-

point image. Previous investigations have shown that perturbing bodies such as CDM

clumps (Keeton 2003a; Kochanek & Dalal 2004) and stars (Schechter & Wambsganss

2002) tend to cause demagnification of saddles. To understand this result consider a

macro-image with κ0 = γ = 0.55, which corresponds to |µ0| = 10. Such values are

typical for quadruply-imaged quasars. If an SIS clump is placed in front of the image,

the magnification is reduced by a factor of ∼ 5, which is easily observable. For a

positive-parity macro-image, the total magnification is A+ = |[2(1 − κ0)/γ]µ0|, which

always exceeds µ0 since λ− > 0. For typical macro-parameters of κ0 = γ = 0.45, a

clump increases the magnification by more than a factor of two.

The preceding discussion provides an accurate qualitative description of clump lens-

ing, but there are a few caveats. In realistic situations, a population of clumps will act

in concert to produce magnification shifts that cannot be quantitatively described by

the analysis given here for a single clump. Another complication is that the positions

of clumps are not known, due to their presumed lack of light emission. It is possible

to derive analytic expressions for the magnification due to a clump as a function of

source position (Keeton 2003a), but we must resort to numerical simulations if we wish

to consider a distribution of clumps with random positions.
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Dalal & Kochanek (2002) accounted for the effects that were not included here, and

they found that magnification perturbations induced by substructure are indeed great

enough to resolve radio flux anomalies. This remarkable success does not, however,

preclude other mechanisms from playing a role in understanding anomalous flux ratios.

Globular clusters and luminous dwarf satellites have the appropriate masses, but are

not abundant enough to account for the observed anomalies (Mao & Schneider 1998;

Chiba 2002). Another alternative to CDM substructure is “smooth” perturbations to

the lens potential, which might represent astrophysical features such as shells or tails.

We show in Chapter 2 that multipole models provide poor fits to the flux-ratio data in

four of the most highly anomalous radio lenses. Together with the constraints provided

by Einstein rings (Yoo et al. 2005), our results provide strong evidence that CDM

clumps offer the most attractive solution to the flux-ratio problem. In order for flux

ratios to reach their potential in probing CDM substructure, we must identify a robust

method for determining whether a given system is anomalous. Keeton et al. (2005)

used perturbation theory to obtain an analytic expression for the fluxes of the two

bright images in a fold lens. In Chapter 3, we apply their formalism to the three bright

images in a cusp configuration and derive a scaling law whose validity currently rests

on numerical simulations. Our results show that perturbation theory has an important

role to play in gravitational lensing.

1.3.2 Differential Time Delays and Dark Matter Substructure

After establishing in Chapter 2 that CDM clumps are very likely present in lens galaxies,

we work to identify new ways of detecting their presence with lensing. To complement

flux-ratio studies (Keeton et al. 2003, 2005), Keeton & Moustakas (2008) have discussed

the possibility of constraining substructure properties with lens time delays. In order to

apply their method, it is first necessary to identify systems whose time delays reveal the

presence of small-scale structure. This is the subject of Chapters 3 and 4. In Chapter

3, we derive an analytic expression for the time delay between the bright images in

a fold configuration. Motivated by this result, we employ Monte Carlo simulations in

Chapter 4 to identify small-scale structure in lens systems for which time delays have
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been measured, and we make predictions for systems without observed time delays.

One difficulty we must overcome in using time delays is our ignorance of cosmological

parameters. To see this, consider the time delay of an image at x for a source at u:

τ(x) = τ0

[
1
2
|x− u |2 − ψ(x)

]
. (1.81)

The scale factor is given by

τ0 =
1 + zL
c

DLDS

DLS
. (1.82)

The lens redshift, zL, is not always known, and the distance factors DL, DS and DLS

depend on the Hubble constant, whose value is not certain. In addition, we must con-

tend with the mass-sheet degeneracy, which says that adding a constant convergence to

the lens alters the time delay between images. Since this convergence is not observable,

we cannot determine the time delay unambiguously. Fortunately, we can largely avoid

these issues by constructing time-delay ratios. Such quantities do not involve τ0, and

are thus independent of cosmological parameters. Since the convergence due to a mass

sheet is the same for all of the images in a lens system, the degeneracy between constant

convergence and time delay is also removed by using time-delay ratios.

There is one remaining difficulty that we cannot entirely overcome, known as the

“radial profile” degeneracy: changing the slope of the density profile alters the time

delays, but leaves all other observables unaffected (Keeton & Kochanek 1997; Saha

2000; Kochanek 2002). Fortunately, the systematic errors introduced by this degeneracy

are not expected to be large for time-delay ratios (Keeton & Moustakas 2008). We can

understand this qualitatively by noting that lensed images are typically confined to an

annulus whose thickness is smaller than the Einstein radius of the lens galaxy (Kochanek

2002). This means that all images are affected in nearly the same way, and thus the

radial profile degeneracy is mitigated by constructing time-delay ratios.

1.3.3 Galaxy Structure and Quasar Microlensing

Clumps of dark matter are not the only objects that can noticeably alter lensing observ-

ables. Nearly three decades ago, Chang & Refsdal (1979) considered the problem of a

star embedded in an external convergence and shear. They concluded that even a single
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star can affect the brightness of a lensed image. This problem is analogous to lensing

by a galaxy plus a dark matter clump, except that we model the perturbing body (i.e.,

a star) as a point mass rather than an SIS (cf. §1.3.1). The deflection angle due to a

star is given by α(r) = (R2
E/r) (cos θ, sin θ). We can then write the lens equation as

(
λ−r

2 −R2
E

)
cos θ = 0 (1.83)(

λ+r
2 −R2

E

)
sin θ = 0 , (1.84)

for a star at the origin. The solutions are

(x, y) =

(
0,± RE√

λ+

)
(minima and saddles) (1.85)

(x, y) =

(
± RE√

λ−
, 0

)
(minima only) . (1.86)

For a star with mass ∼ M�, the image separation is ∼ RE ∼ 1µas (microarcsecond).

Lensing perturbations due to stars are therefore known as “microlensing.” Note that

microlensing in the present context differs from its usage in the beginning of this chapter.

Let us now find the magnifications. The magnification tensor is given by

∂u
∂x

=

 λ− −
R2

E
r2 cos 2θ R2

E
r2 sin θ cos θ

R2
E

r2 sin θ cos θ λ+ −
R2

E
r2 cos 2θ

 . (1.87)

We therefore find the inverse magnification to be

µ−1 = µ−1
0 − R2

E

r2

(
R2

E

r2
− 2γ cos 2θ

)
. (1.88)

For the images on the y-axis, we have µ−1 = −4γ λ+ = −(4γ/λ−)µ−1
0 . For the images

on the x-axis, we have µ−1 = 4γ λ− = (4γ/λ+)µ−1
0 . For a negative-parity macro-image,

we have A− = (λ−/2γ)µ0 , where we have summed over the unsigned magnifications of

the two micro-images. The image will be demagnified relative to µ0 if κ0 < 1, which is

satisfied for typical values of κ0. For instance, κ0 = γ = 0.55 → µ ≈ 0.1µ0, where µ is

the signed magnification. For a positive-parity macro-image, the total magnification is

A+ = [(1− κ0)/γ]µ0, which is always larger than µ0. Using parameters κ0 = γ = 0.45,

the magnification exceeds µ0 by roughly 20%. As in the case of CDM clumps, we find

that minima are magnified while saddles are suppressed.



37

The complications we discussed in Section 1.3.1 in the context of CDM clumps

are relevant for stars as well. For microlensing, we must face an additional challenge.

Because the number of stars near a lensed image is much greater than the number of

clumps, the determination of magnification perturbations becomes a nonlinear problem.

Wambsganss (1999) has developed a powerful numerical method that can handle the

complicated “caustic networks” characteristic of quasar microlensing. In Chapter 5 we

perform simulations using the software he has created to study microlensing of extended

sources. This is relevant for determining the relative amount of stars and dark matter

near lensed macro-images.

1.3.4 Supermassive Black Holes and Strong Lensing

As we mentioned in Section 1.2.4, black holes, particulary those of the supermassive

variety, can have dramatic effects on lensing. In the case of a lensed quasar, a black

hole at the center of the lens galaxy can cause the central image to be pushed below the

detection limit. This is because there is a complicated interplay between the potentials

describing the central black hole and the lensing galaxy in which it resides. There are

other astrophysical situations in which a black hole is the only deflecting body. One

example of this is lensing of stars in the Milky Way by the presumed supermassive

black hole (SMBH) at the Galactic center (GC). It has already been established that

a very massive, extremely compact object known as Sgr A* lies at the GC. While an

SMBH is the likely explanation for the orbital dynamics of stars near the GC, lensing

of a background star by the central object would virtually prove the existence of an

SMBH in our galaxy. This is the subject of Chapter 6, where we consider prospects

for observing strong lensing by Sgr A*, and use our results to discuss the possibility of

testing general relativity.
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Chapter 2

Multipole Models of Four-Image Gravitational Lenses

with Anomalous Flux Ratios

Abstract

It has been known for over a decade that many four-image gravitational lenses exhibit

anomalous radio flux ratios. These anomalies can be explained by adding a clumpy cold

dark matter (CDM) component to the background galactic potential of the lens. As an

alternative, Evans & Witt (2003) have suggested that smooth multipole perturbations

provide a reasonable alternative to CDM substructure in some but not all cases. We

generalize their method in two ways so as to determine whether multipole models can

explain highly anomalous systems. We carry the multipole expansion to higher order,

and also include external tidal shear as a free parameter. Fitting for the shear proves

crucial to finding a physical (positive-definite density) model. For B1422+231, working

to order kmax = 5 (and including shear) yields a model that is physical but implausible.

Going to higher order (kmax = 9) reduces global departures from ellipticity, but at

the cost of introducing small-scale wiggles in proximity to the bright images. These

localized undulations are more pronounced in B2045+265, where kmax = 17 multipoles

are required to smooth out large-scale deviations from elliptical symmetry. Such modes

surely cannot be taken at face value; they must indicate that the models are trying

to reproduce some other sort of structure. Our formalism naturally finds models that

fit the data exactly, but we use B0712+472 to show that measurement uncertainties

have little effect on our results. Finally, we consider the system B1933+503, where two

sources are lensed by the same foreground galaxy. The additional constraints provided

by the images of the second source render the multipole model unphysical. We conclude

that external shear must be taken into account to obtain plausible models, and that a
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purely smooth angular structure for the lens galaxy does not provide a viable alternative

to the prevailing CDM clump hypothesis.

2.1 Introduction

It has been suspected since the time of Newton that a light ray would be deflected when

it passes near a massive object. This phenomenon, now known as gravitational lensing,

provided one of the earliest tests of the validity of general relativity. Since that time,

lens theory has matured into an active field of astronomy (see Kochanek et al. 2006, for

a recent review). Probing the structure of galaxies is one of the many areas to which

lensing has been applied over the past fifteen years (e.g., Kochanek 1991; Keeton et al.

1998). Because lensing is sensitive to all mass, it is possible to study both dark and

luminous components within galaxies.

In the case of strong lensing, where the light source is multiply imaged, we can use

the positions and fluxes of the images to study small-scale structure within the lens

galaxy. This technique can be most readily applied to four-image systems in a cusp or

fold configuration. For a cusp lens we expect the three brightest images to satisfy the

magnification sum rule (e.g., Schneider & Weiss 1992; Mao & Schneider 1998; Keeton

et al. 2003),

µ1 + µ2 + µ3 ≈ 0. (2.1)

In the fold case an analogous relation holds for the two brightest images (Gaudi &

Petters 2002a; Keeton et al. 2005):

µ1 + µ2 ≈ 0. (2.2)

Although these relations should hold for all smooth lens potentials, there are a

number of observed systems for which they are violated (Mao & Schneider 1998; Keeton

et al. 2003, 2005). Since the magnifications are not directly observable, systems that

violate the sum rule are said to have “flux-ratio anomalies,” with the observed fluxes

being related to the magnifications by the flux of the source (see also §3.1).

One might argue that violations of the magnification sum rule originate in elec-

tromagnetic effects of the interstellar medium on light emitted by the lensed source.
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However, dust extinction is negligible at radio wavelengths, which are much larger than

the typical size of a dust grain. The lack of wavelength dependence in radio flux ra-

tios rules out electromagnetic effects as an explanation for radio anomalies (see e.g.,

Kochanek & Dalal 2004; Keeton et al. 2003, 2005, and references therein).

Explaining the observed anomalies therefore requires the addition of small-scale

structure to the gravitational potential of the galaxy (Mao & Schneider 1998). A

possible candidate for this substructure emerged through the work of Moore et al.

(1999) and Klypin et al. (1999), whose numerical simulations predicted a quantity of

cold dark matter (CDM) halos with masses ∼ 106 − 108M�, greatly exceeding the

observed numbers of such objects. This result motivated Metcalf & Madau (2001) to

consider how the abundance of predicted CDM substructure might affect lensing. They

pointed out that even if the small halos are completely dark — invisible to standard

luminosity-based studies — they could still affect lens flux ratios and perhaps explain

the observed anomalies. Indeed, Dalal & Kochanek (2002) found that putting ∼ 2% of

the mass in ∼ 106M� halos could reproduce the observed flux ratios for six anomalous

lens systems, while broadly matching the predictions of the numerical simulations. But

does this mean that the flux ratio problem is really solved, and that the “missing” CDM

satellites have been found? Are there other plausible models that can solve the flux

ratio problem?

Possibilities may include stellar microlensing, and complex structure such as isophote

twists or triaxiality in the lens galaxy. Since the radio-emitting regions of the quasar

sources we will consider have a much larger angular scale than the Einstein radius of a

typical star in the lens galaxy, microlensing can be eliminated as a potential cause of

flux-ratio anomalies. That leaves the question of whether models that alter the global

structure of the lens potential offer a viable explanation of flux ratio anomalies. Our

goal is to see whether we can fit four anomalous radio lenses using models with general

but reasonable angular structure.

We begin with the self-similar multipole model of Evans & Witt (2003). In this

framework, the potential of the lens galaxy is described by a generalized isothermal
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model whose angular dependence is expressed as a Fourier series. The multipole co-

efficients are determined by fitting the observed image positions and flux ratios. The

truncation order of the series is chosen so that the matrix of constraints is square. Evans

& Witt (2003) found that such a model could explain some but not all observed lenses.

In particular, for B1422+231 (the only radio anomaly they studied), they could find a

physically acceptable model only by inflating the errorbars on the data, and even that

model was highly non-elliptical and implausible.

In this chapter we extend the multipole formalism to include external shear — tidal

distortions from objects near the lens galaxy (e.g., Keeton et al. 1997) — and higher

order multipole modes. Shear in particular will prove essential for obtaining sensible

solutions. While this is not the most general method, it is mathematically simple and

may be a reasonable alternative to substructure in some lenses.

As a test case, we first apply our model to Q2237+0305, which is not anomalous at

radio wavelengths. Then, we apply the model to B1422+231, B2045+265, B0712+472,

and B1933+503, which are all highly anomalous. An exhaustive study of the known

radio anomalies would also include B1555+375, but the position of the lens galaxy (a

key ingredient in our formalism) is unknown.

2.2 Methods

We begin by writing the convergence (dimensionless surface mass density), κ, and lens

potential, ψ, for a galaxy with a flat rotation curve and arbitrary angular structure.

This model is often referred to as a generalized isothermal model (Witt et al. 2000;

Zhao & Pronk 2001; Evans & Witt 2001, 2003):

κ(r, θ) =
1

2 r
G(θ) ; ψ(r, θ) = rF (θ) . (2.3)

Noting that ∇2ψ = 2κ, we find that F and G are related by

G(θ) = F (θ) + F ′′(θ) . (2.4)

For a given source position, u ≡ (u, v), we can find the image positions, x ≡ (r cos θ, r sin θ),

via the lens equation,

u = x−∇ψ(x) . (2.5)
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The inverse magnification of an image at x is given by

µ−1 = det
(
∂u
∂x

)
= 1− G(θ)

r
. (2.6)

An important property of the lens potential is the critical curve, along which the

magnification is formally infinite. The critical curve in the image plane maps to the

caustic in the source plane, which marks the transition between 2-image and 4-image

systems. We see from Equation (2.6) that the critical curve is given by rcrit(θ) = G(θ),

which is equivalent to the isodensity contour with κ = 1/2.

2.2.1 Multipole Lens Models

Let us write the angular part of the potential, F , as a multipole (Fourier) expansion in

θ, i.e.

F (θ) ≡ a0

2
+

kmax∑
k=1

(ak cos kθ + bk sin kθ) , (2.7)

for some appropriate kmax. In the case of a circular lens, the Einstein radius is given by

REin ≡ a0/2. While our models are non-circular, it is sometimes convenient to work in

units of REin. We can find the unknown source position, u, and the Fourier coefficients,

ak and bk, by introducing observational constraints, viz. the image positions and flux

ratios.

From Equations (2.3) and (2.7), the lens equation (2.5) becomes

u = rl cos θl −
a0

2
α0(θl)−

kmax∑
k=1

[akαk(θl) + bkβk(θl)] , (2.8)

v = rl sin θl −
a0

2
α̂0(θl)−

kmax∑
k=1

[
akα̂k(θl) + bkβ̂k(θl)

]
, (2.9)

where l = 1, 2, . . . , n is the image number. The functions αk, α̂k, βk, and β̂k are defined

in Evans & Witt (2003), equations (13) and (14):

αk(θ) = cos θ cos kθ + k sin θ sin kθ , (2.10)

α̂k(θ) = sin θ cos kθ − k cos θ sin kθ , (2.11)

βk(θ) = cos θ sin kθ − k sin θ cos kθ , (2.12)

β̂k(θ) = sin θ sin kθ + k cos θ cos kθ . (2.13)
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Another set of constraints comes from the flux ratios. Relative to image n, we have

fnl =
µn

µl
. (2.14)

We then use (2.4), (2.6) and (2.7) to obtain

(fnl − 1)rnrl =
a0

2
γ0(θl) +

kmax∑
k=1

[akγk(θl) + bkδk(θl)] , (2.15)

where l = 1, 2, . . . , n−1. The functions γk and δk are defined by Evans & Witt (2003),

equation (18):

γk(θl) = (1− k2)[fnlrl cos kθn − rn cos kθl] (2.16)

δk(θl) = (1− k2)[fnlrl sin kθn − rn sin kθl] . (2.17)

We can combine Equations (2.8), (2.9) and (2.15) into a single matrix equation:

A · χ = b, (2.18)

where χ is the (2kmax + 3)-dimensional vector of parameters for which we are solving;

χ = (u, v, a0, a2, b2, . . . , akmax , bkmax). We drop a1 and b1, which represent an unobserv-

able translation of coordinates in the source plane. The (3n− 1)-dimensional vector b

contains the observed image positions and flux ratios;

b = (x1, . . . , xn, y1, . . . , yn,

(fn1 − 1)rnr1, . . . , (fn,n−1 − 1)rnrn−1), (2.19)

where xl = rl cos θl and yl = rl sin θl. The (3n− 1)× (2kmax + 3) matrix, A, is defined

in equation (22) of Evans & Witt (2003):

A =



1 0 α01 α21 β21 . . .

...
...

...
...

...
...

1 0 α0n α2n β2n . . .

0 1 α̂01 α̂21 β̂21 . . .

...
...

...
...

...
...

0 1 α̂0n α̂2n β̂2n . . .

0 0 γ01 γ21 δ21 . . .

...
...

...
...

...
...

0 0 γ0,n−1 γ2,n−1 δ2,n−1 . . .



, (2.20)
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where αkl ≡ αk(θl) etc. Evans & Witt (2003) choose kmax such that A is square. We

then have kmax = 5 for a 4-image system (n = 4). With this choice of kmax we can

simply multiply equation (2.18) by A−1 to solve for χ, provided that A is non-singular.

To ensure numerical stability, however, Evans & Witt (2003) solve for χ using singular

value decomposition (SVD).

2.2.2 The Minimum Wiggle Model

There are two main limitations of the method of Evans & Witt (2003). On a technical

point, their requirement that A be square prevents one from probing the contributions

of higher-order multipoles. More significantly, the effects of external shear have not

been included for several of the systems they analyze. We now set out to address these

two concerns.

In the case of arbitrary kmax, SVD produces a particular solution χ(0) as well as a

basis for the null space of A: {ν(i)}. We then have a family of solutions,

χ = χ(0) +
Np−Nc∑

i=1

ci ν
(i), (2.21)

where Np = (2kmax+3) > Nc = (3n−1) are the numbers of parameters and constraints,

respectively. We must now select appropriate coefficients ci in order to construct the

most plausible solution. Since the lens galaxies we are considering are elliptical, it seems

reasonable to find the model with the smallest deviation from elliptical symmetry. In

other words, we want to minimize the wiggles in the isodensity contours.

For a curve of constant κ, the deviation δr(θ) from perfect elliptical symmetry is

given by:

δr(θ) ≡ r(θ)− r0(θ),

=
1

2κ

kmax∑
k=3

(
1− k2

)
(ak cos kθ + bk sin kθ) , (2.22)

where

r0(θ) =
1

2κ

[
a0

2
− 3(a2 cos 2θ + b2 sin 2θ)

]
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is an isodensity curve for a perfectly elliptical galaxy.1 To quantify the wiggles, we

average δr2 over θ:

δr2rms ≡ 〈δr2〉θ =
1

8κ2

kmax∑
k=3

(1− k2)2(a2
k + b2k). (2.23)

We are interested in the solution for which the root mean square wiggle is minimized.

If we consider higher order multipoles but ignore shear, we simply need to minimize

the RMS wiggle with respect to the coefficients ci. Since 〈δr2〉 is quadratic in ak and

bk, and hence also in ci, this minimization is straightforward.

When shear is included, the task of minimizing 〈δr2〉 becomes somewhat more in-

volved. In particular, the lens potential of Equation (2.3) must be modified:

ψ(r, θ) = rF (θ)− γ1

2
r2 cos 2θ − γ2

2
r2 sin 2θ, (2.24)

for constants γ1, γ2. This modification requires that the functions γk and δk of Equation

(2.15), and the vector b of Equation (2.18) be redefined by the expressions of Appendix

D of Evans & Witt (2003). Namely,

γk(θl) = (1− k2)
[
fnlrl cos kθnW (θn)

−rn cos kθlW (θl)
]

(2.25)

δk(θl) = (1− k2)
[
fnlrl sin kθnW (θn)

−rn sin kθlW (θl)
]

(2.26)

where

W (θl) = 1 + γ1 cos 2θl + γ2 sin 2θl (2.27)

and

b = [(1 + γ1)x1 + γ2y1, . . . , (1 + γ1)xn + γ2yn,

(1− γ1)y1 + γ2x1, . . . , (1− γ1)yn + γ2xn,

(fn1 − 1)rnr1(1− γ2
1 − γ2

2), . . . ,

(fn,n−1 − 1)rnrn−1(1− γ2
1 − γ2

2)]. (2.28)

1Strictly speaking, an ellipse contains contributions from all Fourier modes with even k, but ignoring
terms with k > 2 should provide a reasonable approximation (see Evans & Witt 2003).
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We see that including (γ1, γ2) as parameters to be determined leads to a set of non-linear

equations. To deal with this problem, we use a non-linear optimization procedure. For

specific values of (γ1, γ2), we can use SVD along with the minimum wiggle criterion to

solve for the source position and Fourier coefficients. A minimization function can be

employed to find the optimal values for (γ1, γ2). We refer to the resulting solution as

the minimum wiggle model.

2.3 Results

Let us now apply our methods to five quadruply-imaged quasars. We begin with the

Einstein cross, Q2237+0305 (Huchra et al. 1985), which does not exhibit anomalous

flux ratios at radio wavelengths, thus providing a simple test case for the multipole

expansion approach. Figure 2.1 shows a model with kmax = 5 and no external shear (cf.

Evans & Witt 2003, Figure 2). The model exactly fits the observational data presented

by Falco et al. (1996) and the CASTLES website2. The elliptical appearance of the

isodensity contour confirms that the multipole method can find reasonable solutions

in lens systems that do not require small-scale structure. Now let us turn to four

anomalous systems: B1422+231, B2045+265, B0712+472, and B1933+503.

2.3.1 External Shear

To motivate the need for external shear, we first study B1422+231 using a model that

does not include shear. To facilitate comparison with the results of Evans & Witt

(2003), we consider a fifth-order multipole model, which exactly fits the data of Impey

et al. (1996) and Patnaik et al. (1999). It is clear from Figure 2.2(a) that this model

is unphysical. In addition to having a completely non-elliptical appearance, the model

isodensity contour crosses the origin, indicating that r becomes negative. Evans & Witt

(2003) found a slightly better solution by inflating the measurement uncertainties (see

their Figure 6). Even so, the model is incompatible with the observed structure of

elliptical galaxies, a point noted by the authors.

2http://www.cfa.harvard.edu/castles/
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Figure 2.1 Isodensity contour with κ = 1/2 (coincident with critical curve) for
Q2237+0305 with kmax = 5 and no shear. The axes are labeled in arcseconds.
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Figure 2.2 Isodensity contours with κ = 1/2 (solid) and critical curves (dashed)
for B1422+231. Panel (a) shows a model with kmax = 5 and no shear. Panel
(b) shows the solution for the same value of kmax, but nonzero shear parameters
(γ1, γ2) = (0.029, 0.170). The dots show the image positions (suppressed in panel (a)
for clarity). Note that with nonzero shear, isodensity contours and critical curves are
not identical.
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Figure 2.3 Isodensity contours (solid) and critical curves (dashed) for minimum wiggle
models of B1422+231. Panel (a) shows a model for kmax = 9 and shear parameters
(γ1, γ2) = (0.028, 0.175). Panel (b) shows a model for kmax = 25 and shear parameters
(γ1, γ2) = (0.030, 0.167).

When we extend the model by including shear, it becomes possible to find a physical

— albeit not necessarily plausible — angular structure for the lens galaxy, as can be

seen in Figure 2.2(b). Before we can draw any conclusions from this result, however,

we must determine whether the shear parameters and Fourier coefficients we obtain are

compatible with other observations. The shear parameters we find for B1422+231 are

reasonable, because the lens lies in a group of galaxies that create a strong tidal field

(see Kundić et al. 1997; Momcheva et al. 2006). In particular, our shear amplitude of

γ ≡
√
γ2

1 + γ2
2 = 0.172, and orientation θγ ≡ (1/2) tan−1 (γ2/γ1) = 40◦ are similar to

those quoted by Kundić et al. (1997).

The Fourier coefficients through order 4, plus some other model properties, are

given in Table 2.1. To interpret them, we can determine the dimensionless octopole

amplitude, A4, which describes the “boxiness” or “diskiness” of the isodensity contours,

and compare it with the octopole amplitudes measured for the isophotes of elliptical

galaxies. The comparison is not perfect because lens models involve the mass while

observations involve the light, but we can at least get a sense of whether the lens
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Figure 2.4 Isodensity contours (solid) and critical curves (dashed) for minimum wiggle
models of B2045+265. Panel (a) shows the solution with kmax = 9 and (γ1, γ2) = (0.119,
0.125). Panel (b) shows the solution with kmax = 17 and (γ1, γ2) = (0.092,0.090).

models are reasonable. The octopole amplitude A4 is just the Fourier coefficient for the

density, expressed in a coordinate frame aligned with the major axis of the galaxy, and

normalized by the semi-major axis length. In terms of the coefficients in Table 2.1, the

major axis lies along the angle θ2 = (1/2) tan−1(b2/a2). Rotating into this coordinate

frame then yields

A4 = − 15
Rein

(a4 cos 4θ2 + b4 sin 4θ2) . (2.29)

(The factor of −15 comes from 1 − k2, which appears when we convert from Fourier

coefficients in the potential to those in the density.) If A4 is negative (positive), the

isodensity contours are boxy (disky). For B1422+231, our model with kmax = 5 has

A4 = −0.056. For comparison, the octopole amplitudes for the isophotes of real ellip-

tical galaxies are in the range −0.015 <∼ A4 <∼ 0.045 (Bender et al. 1989; Saglia et al.

1993). In other words, the kmax = 5 model is much more boxy than real galaxies, which

is not surprising in light of Figure 2.2(b). If we increase kmax to 9 (see below), we find

A4 = −0.021 which is still rather boxy. Going to kmax = 25 yields A4 = −0.010, which

is no more boxy than many observed elliptical galaxies.
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2.3.2 Higher Order Multipoles

Our next step is to include higher order multipole terms. In the case of B1422+231, the

lowest-order series for which a somewhat elliptical isodensity contour can be obtained

is for kmax = 9 (see Fig. 2.3). As we increase kmax, the long-wavelength components

of galactic structure disappear in favor of wiggles that are localized near the positions

of the bright images A, B, and C. In other words, away from the images the model

is smooth thanks to the minimum wiggle criterion. But there must be small-scale

structure in the vicinity of the images in order to explain the observed flux ratios.

Since the wiggles in the isodensity contour are not dramatic, it is not clear whether

they should be interpreted as real features or just as approximations of other sorts of

structure (such as CDM clumps).

Let us now turn our attention to B2045+265. We find models that exactly fit the

data of Fassnacht et al. (1999). Unlike the case of B1422+231, the isodensity contour

we obtain for kmax = 9 is completely unreasonable, and we must include multipoles of

order 17 to obtain a remotely plausible model (see Fig. 2.4). Similar to B1422+231, we

find that including higher order multipoles reduces the RMS wiggle, but pronounced

deviations from ellipticity remain, primarily near the bright images. This suggests that

the structure required to fit the anomaly in B2045+265 truly is local to the images.

While the most obvious anomaly in B2045+265 is in the A/B/C triplet, it is worth

noting that our models also have small-scale structure in the vicinity of the faint image

D. Dobler & Keeton (2005) also concluded that the flux of image D is puzzling, and

suggested that it has more to do with complex structure in the lens galaxy (such as

an isophote twist) than with substructure per se. We cannot examine that hypothesis

here because our models are intrinsically self-similar, but it will be interesting to keep

this image in mind as we develop more general models in the future.

When examining isodensity contours, it may not be completely obvious that high-

order models with small-scale undulations really have a smaller total wiggle than low-

order models. To understand that, recall that our minimum wiggle criterion is designed

to select the model whose isodensity contours deviate least from elliptical symmetry.
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Figure 2.5 Normalized RMS wiggle (δrrms/REin) as a function of kmax.

As kmax increases, large-scale departures from ellipticity can be traded for smaller-scale

features localized near the images in a way that does in fact decrease the total wiggle.

Indeed, Figure 2.5 shows that δrrms/REin does decrease monotonically as the order of

the multipole expansion increases. The decrease is rapid at small kmax but slows down

as kmax increases, and that gives us a sense of the order at which the multipoles have

basically converged to have the minimum amount of small-scale structure.

2.3.3 Measurement Uncertainties

So far we have considered models that fit the data exactly, since that is the natural

outcome of an SVD analysis of the underconstrained matrix equation (Eq. [2.18]).

However, it is important to consider whether measurement uncertainties affect our con-

clusions. While we could do this analysis for B2045+265, we believe that the puzzling

flux of image D would complicate the interpretation. We turn instead to B0712+472.

We assume the image positions to be precise to within ±3 mas, which is slightly
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conservative compared to the 1 mas uncertainties claimed by Jackson et al. (2000). For

the flux ratios, we use the data of Koopmans et al. (2003), who found the uncertainties

in the flux ratios of images B, C, and D relative to A to be 7.2%, 8.9%, and 43%,

respectively. To be conservative, we construct models for which we take the B/A and

C/A uncertainties to be 10% and 20%, while we always use the observed flux uncertainty

of 43% for image D.

Since our formalism always produces models that fit the data exactly, the way we

include measurement uncertainties is to add noise to the data and repeat our analysis.

For every run, we perturb each datum by a random number drawn from a normal

distribution with the appropriate dispersion, and then fit our model. We repeat this

process 100 times, and select the case that has the smallest mean square wiggle. In

this way we find the minimum wiggle model that fits the data within the measurement

uncertainties.

Figure 2.6 shows the results for B0712+472. As we would expect, including mea-

surement uncertainties produces models with slightly smaller wiggles. However, the

changes are not significant enough to transform an implausible model into an accept-

able solution.

2.3.4 A Multi-Source Lens Model

To conclude this section, we study B1933+503, where two sources are lensed by a single

galaxy into two four-image configurations (Cohn et al. 2001, and references accompa-

nying their Table 1). Both the image positions and flux ratios corresponding to one

source are known, while only the image positions of the second source have been de-

termined to reasonable precision. We therefore have Nc = 2(n1 + n2) + n1 − 1 = 19

constraints, compared with Nc = 3n− 1 = 11 for the other systems we have analyzed,

where n1 = n2 = 4. Since we must now fit a second source position, our list of pa-

rameters increases by two: Np = 2kmax + 3. The matrix A then has the dimensions

[2(n1 + n2) + n1 − 1] × (2kmax + 3), and is given by adding more rows that represent

the additional position constraints, as follows:
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Figure 2.6 Model isodensity contours for B0712+472 with increasing multipole order.
The solid curve in each panel fits the data exactly. The short and long-dashed curves
fit the data to within 10% and 20% flux uncertainties, respectively (except for faint
image D, whose flux uncertainty is fixed at the observed value of 43%; see Koopmans
et al. 2003).
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A =


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(1)
01 α
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21 . . .
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0n1
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2n1
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. . .

0 1 0 0 α̂
(1)
01 α̂

(1)
21 β̂
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21 . . .
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...
...

...
...

...
...

0 0 1 0 α
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01 α

(2)
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(2)
21 . . .

...
...

...
...

...
...

...
...

0 0 1 0 α
(2)
0n2

α
(2)
2n2

β
(2)
2n2

. . .

0 0 0 1 α̂
(2)
01 α̂

(2)
21 β̂

(2)
21 . . .

...
...

...
...

...
...

...
...

0 0 0 0 γ
(1)
01 γ

(1)
21 δ

(1)
21 . . .

...
...

...
...

...
...

...
...

0 0 0 0 γ
(1)
0,n1−1 γ

(1)
2,n1−1 δ

(1)
2,n1−1 . . .



(2.30)

We first consider just the primary set of four images, which are labeled 1, 3, 4, and

6. (There is a flux ratio anomaly such that image 4 is brighter than expected.) The

minimum wiggle model with kmax = 8 that fits these images is not very plausible — it

has a large protrusion near image 4, and a smaller one near image 1 — but at least the

density is positive definite. When we add the additional constraints from the positions

of images 2a, 2b, 5, and 7, they dramatically reduce the solution space (kmax = 8 is

the lowest order case that is not over-constrained). The only models that remain are

unphysical. Modestly increasing kmax does not help. In other words, multipole models

cannot simultaneously fit the anomalous fluxes of images 1, 3, 4 and 6, and the positions

of images 2a, 2b, 5 and 7.
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Figure 2.7 Isodensity contours (solid) and critical curves (dashed) for two models of
B1933+503. Panel (a) includes the constraints for images 1, 3, 4 and 6. Panel (b)
shows a model in which all of the observational constraints have been fit. Both models
account for external shear and multipoles up to kmax = 8.
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2.4 Conclusions

We have shown that extending the method of Evans & Witt (2003) by including external

shear and higher-order Fourier terms is essential for understanding whether multipole

models can fit observed lenses. The results for B1422+231 we have obtained are of

a very different character from those of Evans & Witt (2003). Even so, we cannot

conclude that the multipole approach provides an acceptable explanation of flux-ratio

anomalies.

The system B2045+265 requires multipoles of order >∼ 15. Even this level of small-

scale structure leads to a rather wiggly angular dependence of density near the three

bright images. Next, our analysis of B1933+503 reveals that a fundamental difficulty

exists in fitting a multi-source lens with a simple multipole model. Finally, our method

naturally finds models that fit the data exactly, but we have shown that our conclusions

are not very sensitive to measurement uncertainties.

Our results suggest that there is a more fundamental problem with the global ap-

proach taken by Evans & Witt (2003) and ourselves in the current chapter. It is

possible that the problem simply comes from our choice of small-scale structure. Sines

and cosines provide a useful but by no means unique basis for carrying out a series

expansion of the angular part of the potential. In addition, we have assumed a self-

similar, isothermal form for the radial dependence, which may need to be modified in

order to find an acceptable galactic density function. While the present analysis rules

out simple multipole models, the question of whether CDM clumps provide the only

plausible solution has yet to be fully answered.
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Chapter 3

Analytic Relations for Fold and Cusp Lenses: Application

to Galactic Structure

Abstract

Gravitational lensing provides a unique and powerful probe of distant galaxies. We

consider lenses with fold or cusp configurations, where a bright pair or triplet of images

is formed. Within the framework of singularity theory, we derive analytic relations that

are satisfied for a light source that lies a small but finite distance from the astroid caustic

of a four-image lens. Using a perturbative expansion of the image positions, we show

that the time delay between the close pair of images in a fold lens scales with the cube

of the image separation, with a constant of proportionality that depends only on one of

the third derivatives of the lens potential. We also apply our formalism to cusp lenses,

where we develop perturbative expressions for the image positions, magnifications and

time delays for any pair of images in a cusp triplet. These results were derived previously

for a source asymptotically close to a cusp point, but using a simplified form of the lens

equation whose validity may be in doubt for sources that lie at astrophysically relevant

distances from the caustic. Along with the work of Keeton et al. (2005), this paper

demonstrates that perturbation theory promises to play an important role in theoretical

lensing studies.

3.1 Introduction

Gravitational lensing, or the bending of light by gravity, offers an exciting synergy

between mathematics and astrophysics. Singularity theory provides a powerful way

to describe lensing near critical points (Petters et al. 2001), which turns out to have
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important implications for astrophysics and the quest to understand dark matter. Four-

image lensed quasars can be broadly classified, according to image geometry, as either

folds, cusps or crosses. In fold and cusp lenses, a pair or triplet of bright images

is formed. These configurations occur when the light source is close to the caustic

curve, along which the lensing magnification is infinite. By expanding the gravitational

potential of the lens galaxy in a Taylor series, one finds that the image magnifications

satisfy simple analytic relations, viz.

|µA| − |µB| ≈ 0 and |µA| − |µB|+ |µC | ≈ 0 (3.1)

for folds and cusps, respectively (Blandford & Narayan 1986; Mao 1992; Schneider &

Weiss 1992; Schneider et al. 1992; Gaudi & Petters 2002a,b; Keeton et al. 2003, 2005).

For a fold pair, the two images have opposite parity, hence the negative sign. For a

cusp triplet, the middle image (B) has opposite parity from the outer images (A and C).

Note that in practice, one works with the image fluxes, which are directly observable,

rather than the magnifications, which are not. This leads to the equivalent relations:

Rfold ≡
FA − FB

FA + FB
≈ 0 and Rcusp ≡

FA − FB + FC

FA + FB + FC
≈ 0, (3.2)

where the image flux Fi is related to the source flux F0 by Fi = |µi|F0.

It was discovered (e.g., Hogg & Blandford 1994; Falco et al. 1997; Keeton et al.

1997) that several observed lenses violate these relations. Mao & Schneider (1998)

showed that if the lens galaxy contains small-scale structure, it is possible to explain

the strong “flux-ratio anomalies” observed in the quasar lens B1422+231. Subsequent

work suggested that this small-scale structure is in the form of cold dark matter (CDM)

clumps with masses of >∼ 106M�. Dalal & Kochanek (2002) showed that the amount

of CDM substructure needed to explain anomalous flux ratios broadly agrees with

theoretical predictions. This conclusion seemed to show that violations of the ideal fold

and cusp relations indicate the presence of CDM substructure. However, Keeton et al.

(2003, 2005) pointed out that the ideal relations only hold for a source asymptotically

close to the caustic; thus, for a realistic lens population, one would expect Rfold and

Rcusp to be non-zero. Keeton et al. (2003) used a Taylor-series approach to demonstrate
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that Rcusp = 0 to leading order, and used Monte Carlo simulations to suggest that

Rcusp ∝ d 2
1 , where d1 is the separation between a pair of cusp images. In order to derive

the leading-order scaling for Rcusp analytically, one must extend the Taylor series to a

higher order of approximation. This has not been done before, since including higher-

order terms substantially complicates the analysis. Instead, previous authors have made

assumptions about which terms are important and which terms can be neglected, thus

resulting in an analytically manageable problem.

As we shall see, perturbation theory provides a natural way to overcome the diffi-

culties of the Taylor-series approach. Keeton et al. (2005) used perturbation theory to

show that for fold lenses, Rfold is proportional to the image separation d1 of the fold

pair. We extend their analysis in several important ways. We derive the leading-order

nonvanishing expression for Rcusp using perturbation theory. We also show how this

approach can be used to study time delays between lensed images for both cusp and

fold systems. In the following chapter, we will show how this analysis can be used in

practice to identify lenses with small-scale structure.

3.2 Mathematical Preliminaries

To study lensing of a source near a caustic, it is convenient to work in coordinates

centered at a point on the caustic. Nonspherical lenses typically have two caustics.

The “radial” caustic separates regions in the source plane for which one (outside) and

two (inside) images are produced. Within the radial caustic is the “tangential” caustic

or astroid, which separates regions in the source plane for which two (between the

two caustics) and four (inside the astroid) images are produced. We are interested

in four-image lenses, where the source is within the astroid. We therefore make no

further reference to the radial caustic. A typical astroid is shown in Figure 3.1(a)

for a lens galaxy modeled by a singular isothermal ellipsoid (SIE), which is commonly

used in the literature (e.g., Kormann et al. 1994). It is customary to define source-

plane coordinates (y1, y2) centered on the caustic and aligned with its symmetry axes.

However, for fold and cusp configurations, where the source is a small distance from the

caustic, it is more natural to work in coordinates (u1, u2) centered on the fold or cusp
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point. For convenience, we define the u1 axis tangent to (and the u2 axis orthogonal

to) the caustic at that point. Transforming from the (y1, y2) plane to the (u1, u2) plane

requires a translation plus a rotation. To derive this coordinate transformation, we

follow the discussion in appendix A1 in Keeton et al. (2005), which summarizes the

results of Petters et al. (2001).

We begin by considering the lens equation y = x−∇ψ(x), which maps the image

plane to the source plane. The solutions to this equation give the image positions

x ≡ (x1, x2) corresponding to a given source position y ≡ (y1, y2). The function ψ(x)

is the dimensionless gravitational potential of the lens galaxy projected onto the source

plane. A caustic is a curve along which the magnification is infinite, i.e., det(∂y/∂x) =

µ−1 = 0, where ∂y/∂x is the Jacobian of y, and is known as the magnification tensor.

We choose coordinates such that the origin of the source plane y = 0 is on the caustic.

In addition, we require that the origin of the lens plane x = 0 maps to the origin of

the source plane. We consider sources sufficiently close to the caustic so that we may

expand the magnification tensor in a Taylor series about the caustic point. For x = 0

we have

∂y
∂x

∣∣∣∣
0

=

 1− 2â −b̂

−b̂ 1− 2ĉ

 , (3.3)

where

â =
1
2
ψ11(0), b̂ = ψ12(0), ĉ =

1
2
ψ22(0). (3.4)

The subscripts indicate partial derivatives of ψ with respect to x. Note that ψ has no

linear part (since y = 0 when x = 0). For y = 0 to be a caustic point, we must have

(1− 2â)(1− 2ĉ)− b̂2 = 0. In addition, at least one of (1− 2â), (1− 2ĉ), and b̂2 must be

non-zero (Petters et al. 2001, p. 349). Consequently, (1− 2â) and (1− 2ĉ) cannot both

vanish. Without loss of generality, we assume that 1− 2â 6= 0.

We now introduce the orthogonal matrix (see Petters et al. 2001, p. 344)

M =
1√

(1− 2â)2 + b̂2

 1− 2â −b̂

b̂ 1− 2â

 , (3.5)

which diagonalizes ∂y/∂x|0. We then define new orthogonal coordinates by

θ ≡ (θ1, θ2) ≡ Mx, u ≡ (u1, u2) ≡ My. (3.6)
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Note that the coordinate changes are the same in the lens and source planes. The

advantage of using the same transformation in both the lens and source planes is that

the lens equation takes the simple form

u = θ −∇ψ(θ). (3.7)

The old and new coordinate systems in the source and image planes are shown in

Figure 3.1. In the source plane, the dotted and dashed axes are centered on fold and

cusp points, respectively. Since the caustic in the source plane maps to the critical

curve in the image plane, the origin of the (θ1, θ2) frame can be determined from that

of the (u1, u2) frame. The orientation of the (θ1, θ2) axes is determined by the matrix

M, and is independent of the tangent to the critical curve.

Using the local orthogonal coordinates u and θ, Petters et al. (2001, p. 346) showed

that x = 0 is a fold critical point if and only if the following conditions hold

(1− 2â)(1− 2ĉ) = b̂2, 1− 2â 6= 0, ψ222(0) 6= 0. (3.8)

For a cusp, the third condition above is replaced by the requirements that

ψ222(0) = 0, ψ122(0) 6= 0, ψ2222(0) 6= 0. (3.9)

Note in particular that ψ222(0) = 0 for a cusp while ψ222(0) 6= 0 for a fold; this indicates

that these two cases must be treated separately.

We are interested in obtaining the time delays for a fold doublet and the image

positions, magnifications and time delays for a cusp triplet. Since these quantities

depend only on the behavior of the lens potential near the fold or cusp point, we can

expand ψ(θ) in a Taylor series about the point θ = 0. To obtain all the quantities

of interest to leading order, we must expand the lens potential to fourth order in θ

(Petters et al. 2001, pp. 346–347):

ψ(θ1, θ2) =
1
2

(1−K) θ2
1 +

1
2
θ2
2 + e θ3

1 + f θ2
1θ2 + g θ1θ

2
2 + h θ3

2

+k θ4
1 +mθ3

1θ2 + n θ2
1θ

2
2 + p θ1θ

3
2 + r θ4

2, (3.10)

where the coefficients {K, e, f, g...r} are partial derivatives of the potential evaluated at

the origin. Lensing observables are independent of a constant term in the potential, so
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we have not included one. Since θ = 0 maps to u = 0, any linear terms in the potential

must vanish. In the second order terms, the coefficients of the θ1θ2 and θ2
2 terms are

set to 0 and 1/2, respectively, following the arguments in Appendix A1 of Keeton et al.

(2005).

3.3 The Fold Case

In this section, we use perturbation theory (e.g., Bellman 1966) to derive an analytic

relation between the time delays in a fold pair. To derive this expression, we must first

obtain the image positions at which the time delay is evaluated. These results were

derived by Keeton et al. (2005). We offer a summary of their analysis in Section 3.3.1

and present our new results for the time delay in Section 3.3.2.

3.3.1 Image Positions

Since we are considering a source near a fold point, we write its position in terms of

a scalar parameter ε which we take to be small but finite. In particular, let u → εu.

Combining Equations (3.7) and (3.10) we can write the lens equation as

εu1 = K θ1 −
(
3e θ2

1 + 2f θ1θ2 + g θ2
2

)
−
(
4k θ3

1 + 3mθ2
1θ2 + 2n θ1θ2

2 + p θ3
2

)
, (3.11)

εu2 = −
(
f θ2

1 + 2g θ1θ2 + 3h θ2
2

)
−
(
mθ3

1 + 2n θ2
1θ2 + 3p θ1θ2

2 + 4r θ3
2

)
(3.12)

(see Petters et al. 2001, Theorem 9.1). To find the image positions, we expand θ1 and

θ2 in a power series in ε. Since the left-hand sides of Equations (3.11) and (3.12) are

accurate to O(ε), the right-hand sides must be accurate to the same order. Noting that

the lowest-order terms on the right-hand side are linear or quadratic in θ, we write

θ1 = α1 ε
1/2 + β1 ε+O (ε)3/2 , (3.13)

θ2 = α2 ε
1/2 + β2 ε+O (ε)3/2 . (3.14)

Substituting into the lens equation, we obtain

0 = (α1K)ε1/2 − (3α2
1e+ 2α1α2f + α2

2g − β1K + u1)ε+O (ε)3/2 , (3.15)
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(a) Source plane

(b) Image plane

Figure 3.1 Local orthogonal coordinates defined by the rotation matrix M, for a singular
isothermal ellipsoid (SIE) lens with minor-to-major axis ratio q = 0.5. (a) A source
with position (y1, y2) measured from the center of the caustic (astroid) has position
(u1, u2) in the rotated coordinates centered on a fold point (dotted-axes) or a cusp
(dashed-axes). (b) An image with position (x1, x2) measured from the center of the
critical curve (ellipse) has position (θ1, θ2) in the rotated coordinates. The origin of
the (θ1, θ2) frame is given in terms of that for the (u1, u2) frame by means of the lens
equation.
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0 = −(α2
1f + 2α1α2g + 3α2

2h+ u2)ε− [2α1β1f + 2(α1β2 + α2β1)g

+6α2β2h+ α3
1m+ 2α2

1α2n+ 3α1α
2
2p+ 4α3

2r
]
ε3/2 +O (ε)2 . (3.16)

Note that these equations are carried to different orders in ε, since the leading-order

term in Equation (3.11) is linear in θ, while the leading-order term in Equation (3.12)

is quadratic in θ.

Since ε is non-zero, Equations (3.15) and (3.16) must be satisfied at each order in

ε. We can then write the image positions as

θ±1 =
3hu1 − gu2

3hK
ε+O (ε)3/2 , (3.17)

θ±2 = ±
√
−u2

3h
ε1/2 − 3ghu1 − g2u2

9h2K
ε+O (ε)3/2 , (3.18)

where the ± labels indicate the parities of the images. From these equations, we see that

two images form near the point θ = 0 on the critical curve, provided that (−u2/3h) > 0.

Since h ≤ 0 for standard lens potentials (e.g., an isothermal ellipsoid or isothermal

sphere with shear), we must have u2 > 0. In other words, the source must lie inside the

caustic in order to produce a pair of fold images. In practice, a more useful quantity is

the image separation, defined by

d1 =
√
−4u2

3h
ε1/2 +O (ε)3/2 . (3.19)

3.3.2 Time Delays

To find the time delay between the two fold images, we begin with the general expression

for the scaled time delay

τ̂(θ) ≡ τ(θ)/τ0 =
1
2
|θ − u |2 − ψ(θ). (3.20)

The scale factor is given by

τ0 =
1 + zL
c

DLDS

DLS
, (3.21)

where DL, DS and DLS are the angular-diameter distances from the observer to lens,

observer to source, and lens to source, respectively. The lens redshift is denoted by zL.

Making the substitution u → (εu1, εu2), we have for the two fold images

τ̂− ≡ τ̂(θ−) =
√
− 4

27h
(εu2)3/2 +O (ε)2 , (3.22)
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τ̂+ ≡ τ̂(θ+) = −
√
− 4

27h
(εu2)3/2 +O (ε)2 . (3.23)

The time delay between images is then

∆τ̂fold ≡ τ̂− − τ̂+ =
√
− 16

27h
(εu2)3/2 +O (ε)2 = − h

2
d3

1 +O (ε)2 , (3.24)

which is positive, in agreement with the general result that images with negative parity

trail those with positive parity. We find that the only coefficient from the lens potential

that enters the expression for the differential time delay is the parameter h = ψ222(0)/6.

We also see that to leading order in ε, the image separation and the differential time

delay depend only on the u2 component of the source position. Unlike the image

positions, our expression for the time delay does not involve any of the fourth-order

terms in the potential. This is because the time delay involves the potential directly,

while the image positions depend on first derivatives of the potential. This means that

all fourth-order terms in the potential enter the time delay at O (ε)2, while these same

terms enter at O (ε)3/2 in quantities involving derivatives.

To summarize, ∆τ̂fold ∝ (εu2)3/2 ∝ d3
1. For comparison, Rfold ∝ d1. Since d1 is

small, a violation of the ideal relation ∆τ̂fold = 0 is more likely to indicate the presence

of small-scale structure in the lens galaxy than would be indicated by a non-zero value

of Rfold.

Our analytic expression for ∆τ̂fold is only valid for sources close to the caustic. To

quantify this statement (see Fig. 3.2), we compare our prediction with the differential

time delay computed numerically from the exact form of the lens equation. This requires

that we assume a specific lens model. For this purpose, we consider an SIE with axis

ratio q = 0.5, which provides a representative example. We use the software of Keeton

(2001) to obtain the time delay numerically. The first step is to compute the astroid

caustic for the model. We then choose a point on the caustic, far from a cusp, to

serve as the origin of the (u1, u2) frame. For a given value of u2, we solve the exact

lens equation to obtain the image positions and time delay for the fold doublet. In

the left-hand panel of Figure 3.2 we plot the time delay in units of squared Einstein

angle, θ2
E , as a function of u2 in units of θE . The analytic and numerical results are

in excellent agreement for sources within 0.05θE of the caustic, although the curves
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Figure 3.2 Dependence of the time delay of a fold pair on source position (left) and
image separation (right), for an SIE lens with axis ratio q = 0.5. The solid line shows
our analytic approximation while the dotted line shows the exact result obtained from
solving the lens equation numerically. The quantities u2 and d1 are defined in the text,
and are shown here in units of the Einstein angle, θE .

begin to diverge slightly at u2 ∼ 0.02θE . Since u2 is not observable, we show the time

delay versus d1 in the right-hand panel. The range of d1 corresponds to that used for

u2 in the left-hand panel. For a canonical fold lens with d1 = 0.46θE (Keeton et al.

2005), our scaling nearly matches the numerical result, indicating that our analysis can

be applied to astrophysically-relevant situations. Although the difference between the

curves is small, note that the numerical prediction is always larger than the analytic

result. This suggests that the next non-vanishing term in the Taylor expansion of the

time delay is positive.

3.4 The Cusp Case

We now apply our perturbative method to the case of a source near a cusp point. This

approach has not been applied to cusp lenses before. Appendix A of Keeton et al.

(2003) derives the image positions and magnifications for a cusp triplet assuming a

simplified form of the lens equation. As we noted in Section 3.1, this simplified lens

equation assumes that certain terms may be set to zero, using criteria that are less
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than rigorous. We use the lens equation derived from the fourth-order lens potential,

and using perturbation theory, verify the results of Keeton et al. (2003) and extend the

analysis to a higher order of approximation. We also study time delays for a cusp lens

for the first time. Our analysis does not involve simplifying assumptions, and indicates

that perturbation theory could become a powerful method in the study of lensing.

3.4.1 Image Positions

We again expand the image positions, magnifications and time delays in the parameter

ε, but with one notable difference. For a cusp oriented in the u1 direction, a small

“horizontal” displacement of εu1 from the cusp point permits a “vertical” displacement

of only ε3/2u2 (see Fig. 3.1), since larger vertical displacements would imply a source

position outside the caustic (Blandford & Narayan 1986). The lens equation is then

εu1 = K θ1 −
(
3e θ2

1 + 2f θ1θ2 + g θ2
2

)
−
(
4k θ3

1 + 3mθ2
1θ2 + 2n θ1θ2

2 + p θ3
2

)
, (3.25)

ε3/2u2 = −
(
f θ2

1 + 2g θ1θ2
)
−
(
mθ3

1 + 2n θ2
1θ2 + 3p θ1θ2

2 + 4r θ3
2

)
(3.26)

(see Petters et al. 2001, Theorem 9.1), where the θ2
2 term of Equation (3.12) does not

appear, since ψ222(0) = 0 for a cusp, corresponding to h = 0 in Equation (3.10).

As before, we write the image positions as a series expansion in ε, but now keeping

an additional term (i.e., γiε
3/2). This is necessary since the vertical component of the

source position enters the lens equation as ε3/2u2, rather than εu2 as in the fold case.

We have

θ1 = α1 ε
1/2 + β1 ε+ γ1 ε

3/2 +O (ε)2 , (3.27)

θ2 = α2 ε
1/2 + β2 ε+ γ2 ε

3/2 +O (ε)2 . (3.28)

The lens equation then becomes

0 = α1Kε
1/2 −

(
3eα2

1 + 2fα1α2 + gα2
2 − β1K + u1

)
ε

−
[
4kα3

1 + 3mα2
1α2 + pα3

2 + 2α1(nα2
2 + 3eβ1 + fβ2)

+2α2(fβ1 + gβ2)−Kγ1] ε3/2 +O (ε)2 , (3.29)
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0 = −(fα2
1 + 2gα1α2)ε

−
(
u2 +mα3

1 + 2nα2
1α2 + 3pα1α

2
2 + 4rα3

2 + 2fα1β1 + 2gα2β1 + 2gα1β2

)
ε3/2

−
{
β1(fβ1 + 2gβ2) + α2

1(3mβ1 + 2nβ2) + 3α2
2(pβ1 + 4rβ2) + 2gα2γ1

+2α1 [α2 (2nβ1 + 3pβ2) + fγ1 + gγ2]} ε2 +O (ε)5/2 . (3.30)

As in the fold case (see Eq. [3.15]), we find α1 = 0. Note that γ2 appears only in

the ε2 coefficient of Equation (3.30), but in a term multiplied by α1. Hence, it will not

be possible to solve for γ2. Fortunately, it turns out that the expressions we would like

to derive do not involve this parameter.

We can now write the lens equation as

0 = −
(
gα2

2 − β1K + u1

)
ε

−
[
pα3

2 + 2α2(fβ1 + gβ2)−Kγ1

]
ε3/2 +O (ε)2 , (3.31)

0 = −
(
u2 + 4rα3

2 + 2gα2β1

)
ε3/2 − (β1 (fβ1 + 2gβ2)

+3α2
2(pβ1 + 4rβ2) + 2gα2γ1

)
ε2 +O (ε)5/2 . (3.32)

Recalling that these equations must be satisfied at each order in ε, we then solve for

the unknown coefficients:

β1 =
gα2

2 + u1

K
, (3.33)

β2 = −(5fg2 + 5gKp)α4
2 + (6fgu1 + 3Kpu1)α2

2 + fu2
1

2K
(
3g2α2

2 + 6Krα2
2 + gu1

) , (3.34)

γ1 =
[
K2

(
3g2α2

2 + 6Krα2
2 + gu1

)]−1 [
(fg3 − 2g2Kp+ 12fgKr + 6K2pr)α5

2

+(2fg2u1 − 2gKpu1 + 12fKru1)α3
2 + fgu2

1α2

]
(3.35)

where α2 satisfies the equation

α3
2 +

gu1

2Kr + g2
α2 +

Ku2

4Kr + 2g2
= 0. (3.36)

This is equivalent to equation (A8) from Keeton et al. (2003), after making the replace-

ments α2 → z, K → c, g → −b/2, r → −a/4. To leading order, the image positions

can be written as

θ1 = β1ε =
gα2

2 + u1

K
ε, (3.37)

θ2 = α2ε
1/2, (3.38)
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which are equivalent to equation (A7) from Keeton et al. (2003). The distance between

any two images i and j is then

dij = [α(i)
2 − α

(j)
2 ]ε1/2 +O (ε) . (3.39)

3.4.2 Magnifications

The inverse magnification of a cusp image is given by

µ−1 = −2[gu1 + 3(g2 + 2Kr)α2
2] ε

+[(24fr − 12gp)α3
2 + (6Kp− 4fg)α2β1 − (8g2 + 24Kr)α2β2 − gKγ1)] ε3/2

+O (ε)2 . (3.40)

We then find from Equation (3.2) that

Rcusp = 0 +O (ε) ≈ Acuspd
2
1 , (3.41)

where d1 = minij dij . This expression implies that correction terms to the ideal cusp

relation enter at second order in the image separation, which agrees with the numerical

result of Keeton et al. (2003). To see this, we define mi ≡ |µ−1
i |, which allows us to

write

Rcusp =
mBmC −mAmC +mAmB

mBmC +mAmC +mAmB
. (3.42)

If the leading-order term in the numerator vanishes, so does the leading-order term in

Rcusp. The zeroth-order term in Rcusp corresponds to a term of O (ε)2 in the numerator,

since the leading-order term in the denominator is O (ε)2. By substituting the solutions

for α2 into the numerator, we find that Rcusp = 0 to lowest order, in agreement with

Keeton et al. (2003). We repeat this procedure for the next-leading term of O (ε)5/2

in the numerator, and find that Rcusp = 0 at linear order in d1 [i.e., O (ε)1/2] as well;

this result was unattainable using the formalism of Keeton et al. (2003). Moving to the

next term, we find that Rcusp is nonvanishing at quadratic order in d1 [i.e., O (ε)]. The

coefficient of d 2
1 is denoted by Acusp, which we do not here write out explicitly (since

that would require several pages). We have thus placed the numerical result of Keeton

et al. (2003) on solid mathematical ground.
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3.4.3 Time Delays

For the cusp case, the scaled time delay takes the form

τ̂ =
1
2

[
(θ1 − εu1)2 + (θ2 − ε3/2u2)2

]
− ψ(θ1, θ2). (3.43)

We find

τ̂ =
1

2K

[
(3g2 + 6Kr)α4

2 + 2gu1α
2
2 + (K − 1)u2

1

]
ε2 +O (ε)5/2 , (3.44)

corresponding to a differential time delay of

∆τ̂ (ij)
cusp =

1
4K

[
2g
(
α

(i)
2 + α

(j)
2

)
u1 + 3Ku2

] (
α

(j)
2 − α

(i)
2

)
ε2. (3.45)

Unlike the fold case, the time delay for a pair of cusp images depends on both source

coordinates (u1, u2). This means that it is not possible to write our current expression

strictly in terms of observables, such as the image separation. Instead, all we can say is

that the time delay scales quadratically with ε, or alternatively, with the fourth power

of the image separation.

In the fold case, we found that the time delay scales as ε3/2 and only depends on

the lens potential through the parameter h. For a cusp, however, h = 0, so it is not

surprising that the lowest-order term in the time delay is of O (ε)2. Furthermore, if

we had not included the γi ε
3/2 terms in our expansions of the image positions for a

cusp (Eqs. [3.27] and [3.28]), it would not have been possible to obtain a perturbative

expression for the time delay; instead, we would simply have found τ̂ = 0 +O (ε)2.

3.5 Summary

We have developed a unified, rigorous framework for studying lensing near fold and

cusp critical points, which can (in principle) be extended to arbitrary order. We have

found that the differential time delay of a fold pair assumes a particularly simple form,

depending only on the image separation and the Taylor coefficient h = ψ222(0)/6. This

result is astrophysically relevant, since it is quite accurate even for sources that are not

asymptotically close to the caustic. We have also obtained perturbative expressions for

the image positions, magnifications and time delays of a cusp triplet. These results rest
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on the key insight that a source at a given distance ε from a cusp along the relevant

symmetry axis of the caustic can only move a perpendicular distance of ε3/2 in order to

remain inside the caustic (Blandford & Narayan 1986). We have shown rigorously that

the distance dependence of the magnification ratio Rcusp conjectured by Keeton et al.

(2003) is correct. We have also demonstrated that the leading-order expression for the

image positions is given by the relations presented by Keeton et al. (2003), and have

provided the necessary framework for deriving the image positions corresponding to a

Taylor expansion of the lens potential at arbitrary truncation order. Finally, we have

derived cusp time delays analytically for the first time.
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Chapter 4

Using Differential Time Delays to Identify Gravitational

Lenses with Small-Scale Structure

Abstract

We examine the ability of gravitational lens time delays to identify galaxies that contain

small-scale structure. Inspired by the simple analytic scaling relation for the time delay

between the close pair of images in a “fold” lens, which we derived in the previous

chapter, we study the dependence of the time delay on various lens properties. For a

lensed source near a caustic, we find that the time delay is not very sensitive to the exact

position of the source along the caustic, provided that the source is not in the immediate

neighborhood of a cusp. For a lens modeled as an elliptical galaxy with octopole

perturbations, we find that the time delay increases with the projected ellipticity, but

is nearly independent of the octopole moment. In realistic lensing situations, it is often

difficult to determine the mass distribution of the lens galaxy, so we must perform Monte

Carlo simulations in order to compare predicted time delays with observed values.

Motivated by our theoretical results for individual lenses, we construct mock lenses with

parameters determined from observational samples of elliptical galaxies. Using a simple

criterion for matching mock lenses and observed systems, we construct distributions for

the time delay between lensed images, and use this information to look for “time-delay

anomalies” in four-image lenses. We find evidence that the cusp lenses RX J1131−1231

and RX J0911+0551 are anomalous. Based on our work, we suggest that time delays

provide an important complementary probe to flux ratios for identifying lens systems

with small-scale structure.
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4.1 Introduction

Gravitational lensing has become a powerful probe of dark matter in distant galaxies.

A growing body of evidence suggests that anomalous flux ratios observed in many four-

image lenses can be explained if a few percent of the lens galaxy’s mass is contained in

cold dark matter (CDM) substructure (Dalal & Kochanek 2002). Keeton & Moustakas

(2008) recently proposed that time delays between lensed images could provide a way

to determine properties of the CDM “clumps,” which is not possible with flux ratio

studies. In particular, they discuss the possibility of using time delays to constrain the

substructure mass function, and show that it is possible for substructure to alter the

arrival-time order of lensed images compared with smooth mass models. In order to

apply their method in practice, it is necessary to determine whether a given four-image

lens is likely to contain CDM substructure. Since the time delays predicted by a smooth

model differ from those resulting from a model with substructure, we expect lenses with

substructure to have “time-delay anomalies.” Developing an approach to identify such

anomalies is the focus of this chapter.

We follow the approach of Keeton et al. (2003, 2005), who derived analytic flux-

ratio relations for lenses with fold or cusp configurations, in order to identify lenses

with small-scale structure. To be more specific, a fold lens contains a bright pair of

images whose fluxes FA and FB satisfy the equation

Rfold =
FA − FB

FA + FB
≈ Afold d1, (4.1)

where d1 is the image separation and Afold depends on properties of the lens potential.

For a cusp lens, a triplet of images is produced, whose fluxes satisfy the relation

Rcusp =
FA − FB + FC

FA + FB + FC
≈ Acusp d

2
1 , (4.2)

where d1 is the distance between the closest pair of images and Acusp depends on

properties of the lens potential. These relations should be obeyed by all lenses with

smooth potentials, so any systems that violate these relations are said to be anomalous.

However, in practice, determining that a given lens is anomalous requires some care.

Since similar image configurations can be produced by lens potentials with different
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parameter values, Keeton et al. (2003, 2005) performed Monte Carlo simulations to

determine distributions for Rfold and Rcusp. With this information, it is possible to

determine the probability that an observed lens is anomalous and hence contains small-

scale structure.

Oguri (2007) employs the method of Keeton et al. (2003, 2005) to study time de-

lays, although his emphasis is different from ours. For a multiple-image lens system,

he characterizes a given image pair by the image asymmetry and opening angle, as

measured from the lens center. He then examines the dependence of the time delay on

the assumed potential of the lens galaxy, for a given image configuration. Using this

information, he determines which image morphologies are best suited for computing

the Hubble constant. While we are also interested in the dependence of time delays on

the lens potential, we focus on fold and cusp lenses, which are best suited for identi-

fying the presence of small-scale structure within the lens galaxy. We note here that

small-scale structure is not synonymous with substructure, since the former includes

other effects such as microlensing by stars. However, Keeton & Moustakas (2008) find

that time delays are insensitive to stars and other low-mass objects, so it is likely that

CDM substructure is present in lenses with anomalous time delays.

4.2 Dependence of Time Delay on Lens Potential and Position along

Caustic

In Chapter 3 we showed that the time delay between a close pair of images in a fold

lens scales with the cube of the image separation and depends on the coefficient h that

comes from the Taylor expansion for the lens potential about the fold point. In this

section we examine the dependence of the time delay ∆τ̂fold both on the lens potential

and the distance between the fold point and the nearest cusp point. This is equivalent

to studying the dependence of h on these properties. Since h < 0, we find it more

convenient to work with its absolute value.

Almost all lens galaxies are elliptical, so we compute |h| for a singular isothermal

ellipsoid (SIE) lens. To determine an appropriate value for the ellipticity parameter
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Figure 4.1 Values of |h| at various points on the caustic for an SIE lens with e = 0.1.
Insets show close-up views of the upper and right-hand cusp points.

e, we turn to the lens samples of Bender et al. (1989), Jørgensen et al. (1995) and

Saglia et al. (1993). These collaborations find mean ellipticities and dispersions of

(ē, σe) = (0.28, 0.15), (0.31, 0.18) and (0.30, 0.16) respectively. Note that these values

measure the distribution of light rather than mass, so it is possible that the dark matter

halo in which the galaxy presumably resides is rounder or flatter than the observed

isophotes.

To account for this possibility, we compute |h| at various points on the caustic, for

ellipticities of 0.1, 0.3 and 0.5 as shown in Figures 4.1, 4.2 and 4.3, respectively. While

this does not encompass the full range of possible values, the results presented here are
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Figure 4.2 Same as Figure 4.1, but for e = 0.3.

not very sensitive to the specific ellipticity assumed. We see that |h| remains roughly

constant for points away from the cusps. This suggests that lenses whose fold pairs have

comparable separations will have similar time delays as well, at least for galaxies with

similar ellipticities. Testing this prediction will require large samples of fold lenses, for

which both the differential time delay between the fold pair and the ellipticity of the

lens galaxy are known. For points near a cusp, |h| varies rapidly, as seen more clearly

in the insets of the figures. For a source at the cusp, |h| = 0 as it must (see §3.2).

Finally, we see that |h| depends on the size of the caustic. It is not yet clear whether

this merely reflects the correlation between |h| and e or is indicative of a more subtle

model-independent relationship between caustic size and the time delay for a fold pair.
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Figure 4.3 Same as Figure 4.1, but for e = 0.5.

In addition to ellipticity, Bender et al. (1989) and Saglia et al. (1993) find that many

galaxies have “disky” or “boxy” isophotes, which require higher-order multipole terms.

The octopole (m = 4) Fourier mode, with coefficient denoted by a4, is the relevant

term to account for these departures from elliptical symmetry. For typical values of

a4 = −0.01, 0.01, 0.02 we find maximum |h|-values of 0.07, 0.08 and 0.09, respectively.

We therefore conclude that octopole terms have little effect on the time delay for a fold

pair, regardless of whether the isophote is disky (a4 > 0) or boxy (a4 < 0).

Since many lensed galaxies lie within groups or clusters, a nonzero tidal shear is

expected. Using numerical simulations and semianalytic models, Holder & Schechter

(2003) find that shear is described by a lognormal distribution with mean γ̄ = 0.11 and
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dispersion σγ = 0.15. For such shear amplitudes, the caustic structure is similar to

what is seen in Figures 4.1-4.3, so we do not show its effect on |h|. We return to shear

when considering realistic lens populations in the following section.

4.3 Time Delay Distributions for a Realistic Lens Population

For a random lens galaxy, we cannot know its exact lens potential or parameters. For

a large collection of galaxies, however, we can describe the population in terms of a

statistical distribution of parameters. Having characterized the lens population, we can

determine the distribution of time delays by using Monte Carlo simulations. We use

the galaxy samples discussed above (Bender et al. 1989; Jørgensen et al. 1995; Saglia

et al. 1993). Although the mean ellipticities and dispersions are roughly the same for

all three samples, the underlying galaxy population is not uniform among the samples.

Jørgensen et al. (1995) and Saglia et al. (1993) include galaxies within clusters, while

Bender et al. (1989) use bright nearby galaxies to construct their sample. In addition,

the Bender et al. (1989) and Saglia et al. (1993) samples contain a4 distributions, while

those of Jørgensen et al. (1995) do not. The numerical method described below is

carried out separately for each of the three galaxy samples. To model the environment

of a lens galaxy, we add tidal shear using 100 random values drawn from the distribution

of Holder & Schechter (2003).

We follow the approach of Keeton et al. (2003, 2005). We create a lens galaxy with

model parameters drawn from a distribution appropriate to one of the three galaxy

samples. For the Jørgensen et al. (1995) catalog, we can simply construct a histogram

of e, and choose lens ellipticities from this distribution. For the Bender et al. (1989)

and Saglia et al. (1993) catalogs, we could construct separate distributions for e and a4;

however, these two parameters are correlated, so we instead construct lenses with the

(e, a4) pairs measured by these collaborations. This results in 87 independent model

lens galaxies for the Bender et al. (1989) sample and 54 model galaxies for the Saglia

et al. (1993) sample.

For each model lens, we use the software of Keeton (2001) to solve the lens equation
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numerically to obtain the image positions and time delays. We perform this process for

a large set of random source positions on the sky. While our assumed lens potential can

produce configurations with one, two, or four images, we are only interested in four-

image configurations, which can produce cusps and folds. We thus create a mock lens

catalog consisting of all four-image lenses produced by the simulations. The catalogs

generated from the data of Bender et al. (1989), Jørgensen et al. (1995) and Saglia et al.

(1993) contain 1,267,555, 2,205,515 and 851,261 mock lens systems, respectively.

Motivated by our analytic relation for the time delay between the images in a

fold pair (Eq. [3.24]), we wish to compare our simulated lenses with observed lenses,

particularly those with folds and cusps.1 To do this, we select in turn each of the four

mixed-parity image pairs from a given observed lens, and characterize the pair by its

separation, d1, as well as the distance to the next-nearest image, d2. To obtain d2, we

consider the distance between each image of the original pair and its next-nearest image

of opposite parity, and use the smaller of these two distances. We only consider pairs

whose images have opposite parity, since this is the situation for a fold pair, for which

our analytic expression for the time delay was derived. For a fold lens, d1 � d2 ∼ θE ;

for a cusp lens, d1 ∼ d2 � θE ; for a cross lens, d1 ∼ d2 ∼ θE . The Einstein angle, θE ,

sets the overall scale of the lens system.

For a given image pair in an observed lens system, we scan through our mock lens

catalog and select all image pairs with values of d1 and d2 that agree with those for

the observed pair to within a tolerance of 0.05θE . To fully characterize the image

configuration of a four-image lens system, we would need to know the distance of the

fourth image from the image pair in question. Without this information, our criteria

for matching mock images and observed lenses may allow for the inclusion of mock

lenses with image configurations that differ from that of a given observed lens. Since

we seek a model-independent way of identifying small-scale structure in observed lenses,

we only require that an image pair of a mock lens match a pair in an observed lens.

1We do not use Equation (3.24) to make quantitative predictions in this chapter, so it is reasonable
to consider non-fold pairs, as well as cusp and cross lenses, in our comparisons between observed lenses
and Monte Carlo simulations.
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For each mock image pair that satisfies our distance filter, we compute the differential

time delay, and then combine these data to construct a time-delay histogram. We can

then determine whether the corresponding observed lens is anomalous (see below); if

so, this indicates the presence of small-scale structure.

4.4 Application to Observed Lenses

The number of observed four-image lenses has been steadily increasing in recent years;

22 such systems are currently known (see Table 4.1). The time delays computed from

our simulations are in units of θ 2
E . To compare these values with observed time delays,

we must divide the observed data by τ0θ 2
E . We use model values for θE obtained from

Keeton et al. (2005). The scale factor is given by

τ0 =
1 + zL
c

DLDS

DLS
, (4.3)

where DL, DS and DLS are the angular-diameter distances from the observer to lens,

observer to source, and lens to source, respectively. The distance factors in τ0 depend

on both the lens redshift zL and the source redshift zS . To compute τ0, we assume

cosmological parameters ΩM = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1. Since

zL and zS are not both known for every four-image lens, there are some systems with

measured time delays that we cannot compare with our simulations. Table 4.1 includes

fold, cusp and cross lenses, whose image morphologies are defined in Section 1.2.4.

We are interested in determining whether an observed time delay indicates an anom-

aly. We do this by comparing the observed value to the values predicted by our simu-

lations. We compute the statistical P-value, which gives the fraction of predicted time

delays that are smaller than the observed value. To remove the dependence of our

results on cosmology, we compute P-values for ratios of time delays as well. It is con-

venient to construct a ratio that is always positive. To do this, we adopt the following

sign convention. By definition, any image pair we consider will consist of a minimum

(positive parity) image and a saddle (negative parity) image. If the next-nearest image

is a minimum, we have a triplet consisting of a saddle surrounded by two minima. We
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Table 4.1 Data for the known four-image lenses, as given by Oguri (2007) and the
CASTLES website (http://www.cfa.harvard.edu/castles/). Question marks indicate
parameters for which no measured value is available. The Einstein angle θE is computed
from lens models (Keeton et al. 2003, 2005). The timescale τ0 depends on zL and zS .
We assume cosmological parameters ΩM = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.
The table is divided into three sections: fold lenses (top), cusp lenses (middle) and cross
lenses (bottom).

Lens Name zS zL θE (arcsec) τ0 (days/arcsec2)

B0128+437 3.12 ? 0.20 ?
HE 0230−2130 2.16 0.52 0.82 85.7
MG 0414+0534 2.64 0.96 1.08 193.2
B0712+472 1.34 0.41 0.68 72.9
SDSS 0924+0219 1.52 0.39 0.87 64.8
SDSS 1004+4112 1.73 0.68 6.91 140.7
PG 1115+080 1.74 0.31 1.03 46.5
B1555+375 ? ? 0.24 ?
B1608+656 1.39 0.63 0.77 143.7
B1933+503 2.63 0.76 0.49 135.8
WFI 2026−4536 2.23 ? 0.65 ?
WFI 2033−4723 1.66 0.66 1.06 137.6
RX J0911+0551 2.80 0.77 0.95 134.8
RX J1131−1231 0.66 0.30 1.81 65.0
B1422+231 3.62 0.34 0.76 46.1
B2045+265 1.28 0.87 1.13 342.1
HE 0435−1223 1.69 0.46 1.18 75.0
HST 12531−2914 ? 0.69 0.55 ?
HST14113+5211 2.81 0.46 0.83 68.8
H1413+117 2.55 ? 0.56 ?
HST 14176+5226 3.40 0.81 1.33 135.7
Q2237+030 1.69 0.04 0.85 4.9
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denote the minima by M1 and M2 and the saddle by S, and define

∆t1 = t(M1)− t(S) and ∆t2 = t(M2)− t(S), (4.4)

where the image pair of interest is M1S and t(x) denotes the scaled time delay of image

x. The time-delay ratio is given by ∆t1/∆t2 > 0, since saddles trail (i.e., have larger

time delays than) minima. In the case that the next-nearest image is a saddle, we define

∆t1 = t(S1)− t(M) and ∆t2 = t(S2)− t(M), (4.5)

where the pair of interest is MS1. Again, the ratio ∆t1/∆t2 > 0. When labeling

images, we always list the minimum first, as we have done here.

To get a better picture of the meaning of a given P-value, we show histograms of the

scaled time delay and time-delay ratio for all image pairs in the 22 known four-image

lenses. There are many lenses for which observational data are not available, but the

histograms for those cases are still pedagogically useful and provide a way to predict

what the time delay should be if the lens in question is not anomalous. We begin by

discussing the general features of our time-delay histograms. We next analyze the lenses

with known time delays, and then make predictions for the remainder.

4.4.1 Time-Delay Histograms

For all four mixed-parity image pairs in each lens, we construct histograms of the

scaled time delays (Figs. 4.4-4.8) and time-delay ratios (Figs. 4.9-4.13). For each

lens, we define d ∗1 to be the smallest value of the image separation d1. We divide

the lenses into three groups: folds, cusps and crosses. The vertical arrangement of

lenses in each group is such that d ∗1 increases from top to bottom. For each given lens,

the panels are arranged from left to right in order of increasing d1. As a check for

systematic effects, we compute and plot separately the distributions corresponding to

the Bender et al. (1989), Jørgensen et al. (1995) and Saglia et al. (1993) samples (solid,

dashed and dotted curves, respectively). We find that our conclusions do not depend

on the assumed galaxy sample, so we do not distinguish between the three datasets

in the following discussion. In each panel, the horizontal axis runs from four standard
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deviations below to four standard deviations above the mean time delay (or ratio). We

expand this range if data would otherwise be excluded from the plot. Each panel is

vertically scaled to the peak height of the three histograms.

We first consider Figures 4.4-4.8, which show histograms of the scaled time delay,

measured in units of τ0θ 2
E . We notice two general trends. First, for almost all image

pairs, we find that the time delays are described by a bimodal distribution. This makes

sense in light of our criterion for matching mock image pairs with observed pairs. We

only require that the d1 and d2 values for a given mock pair agree with the values for an

observed pair, without reference to image parity. According to the sign convention as

defined above, if the triplet of images formed by a given pair and its nearest neighbor

image comprise a minimum flanked by two saddles, then the differential time delay

for the pair of interest will be positive; while a triplet consisting of a saddle between

two minima will result in a negative time delay for the pair of interest. Each image

morphology gives rise to separate peaks in the distribution, whose positions (relative

to ∆t1 = 0) and widths display varying degrees of asymmetry. A moderate degree of

asymmetry is not surprising, but there are several cases where the peaks centered at

positive and negative values of the time delay are noticeably different from each other.

This is straightforward to understand for cusp lenses. For the two pairs in the cusp

triplet, the values of d1 and d2 do not contain any information about image parity.

However, this is not the case for the two pairs that involve the image that is not part

of the cusp triplet. The position of this image relative to the lens center indicates

whether the lensed source lies on the long or short symmetry axis of the caustic. For

a source on the long axis, it is a general result of lens theory that the middle image

in the cusp triplet has negative parity, which implies a negative parity for the non-

cusp image as well. For convenience, we refer to the two image pairs that involve the

non-cusp image as “non-cusp pairs.” A non-cusp pair and its closest neighboring pair

form a triplet, whose middle image is one of the positive-parity cusp images, and whose

outer images are the central cusp image and the non-cusp image (both of which have

negative parity); hence, the time delays for the non-cusp pairs will be positive. This

can be seen in the third and fourth panels for the long-axis cusp lenses B2045+265,
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RX J1131-1231, and B1422+231, where the peak centered at the positive scaled time

delay contains more weight than that centered at the negative value. The system RX

J0911+0551 is a short-axis cusp lens, where we would expect more of the weight to be

contained in the left-hand peak, since the non-cusp image has positive parity in this

case. This is indeed borne out by the figure. We also find asymmetric behavior for the

third and fourth pairs in the fold lenses, although there is a great degree of variation

from one lens to another. The reasoning we apply to short-axis and long-axis cusps has

no obvious analog for folds, so this behavior is a bit puzzling and will require closer

scrutiny. For the cross lenses, no significant asymmetry is expected or found.

The second general feature in our histograms of scaled time delays does not require

detailed explanation. In particular, as d ∗1 increases from one lens to the next, and d1

increases from one image pair to the next, the peaks begin to separate and become

broader. This is consistent with our analytic scaling of Chapter 3, which shows that

the time delay increases with image separation, of which both d1 and d ∗1 provide a

measure. The width of the distribution simply increases in proportion to the median

value.

We now consider the histograms for time-delay ratios (Figs. 4.9-4.13). The bimodal-

ity we noted above for the scaled time delays now disappears. This is simply because

our sign convention was chosen so that the time-delay ratios are always positive. We

also find that the overall structure of the histograms shown in these figures does not

vary much from one lens to another, or between image pairs of a given lens. This is a

sign that conclusions drawn from time-delay ratios are not terribly sensitive to parity

or to the image morphology (fold, cusp, or cross), which may prove quite useful. We

do find one subtlety in these histograms: the distributions are slightly skewed to the

right, toward larger time-delay ratios. The simplest explanation is that the time-delay

ratios are bounded by zero on the left, but unbounded on the right. In the cases of HE

0230-2130 and B1608+656, the skewness is manifested as a “shoulder” on the right side

of the main peak for the image pair with smallest separation. Each of these systems

contains two lens galaxies, and it is likely that this unusual feature in the histograms

is related to the complexity in the lens potential. Our simulations assume a single lens
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galaxy, so the connection between our simulations and the observed lens systems is

subtle. In any case, these shoulders do not dramatically alter the overall shape of the

distributions.

4.4.2 Identifying Time Delay Anomalies in Observed Lenses

For image pairs with observed differential time delays, we can use our simulations to

determine whether any of their host lenses contain small-scale structure. Seven of the 22

lenses in the observed sample of quadruply-imaged systems have at least one image pair

with an observed time delay. We discuss each of these systems in turn (see also Tables

4.2 and 4.3). Since our choice of galaxy sample does not affect our conclusions, the

P-values discussed in this subsection were computed using only the sample of Bender

et al. (1989), which is the larger of the two samples that include octopole contributions.

SDSS J1004+4112

This lens (hereafter 1004) is produced by a cluster of galaxies and contains five lensed

images (Inada et al. 2005). The temporal ordering of the images is C-B-A-D-E (Fohlmeis-

ter et al. 2007b). The images C and B are minima, A and D are saddles, and E is a

maximum. Maximum images are rarely observed, so we do not consider them here.

The time delays for pairs BA and CA are known (Fohlmeister et al. 2007a), but the

time delays of the pairs DB and DC are not known. (Note that the temporal ordering

given by Fohlmeister et al. 2007a for images A and B is incorrect.) The P-value for the

fold pair BA is 0.365 for ∆t1, which does not indicate an anomaly. This is somewhat

surprising, since we would not expect an SIE with shear to be a very good model for a

cluster lens, mainly because the density profile is expected to be shallower than isother-

mal and the shear should lie at the high-γ tail of the distribution. Since observed time

delays have error bars, perhaps our conclusion that BA is not anomalous is in doubt.

We thus compute the P-values for the lower and upper values of the error interval, and

find values of 0.353 and 0.378; these values do not change our conclusion. We cannot

construct the time-delay ratio ∆t1/∆t2 for pair BA because we do not know the time

delay for the closest neighboring pair (BD). We now turn to the pair CA, which involves
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one of the fold images. Its P-value is 0.275, slightly lower than that for pair BA, but

still not anomalous. Since the spatial scale probed by the pair CA is relatively large,

we would expect to find structure on scales smaller than the image separation, so it is

not surprising the the P-value for this pair is farther from 0.5 (the median) than BA. It

is possible to construct the time-delay ratio for CA, since its nearest neighboring image

pair is BA. The corresponding P-value is 0.0243, which indicates a marginal anomaly.

Perhaps the discrepancy in P-values for the scaled time delay and time-delay ratio arises

from the inclusion of the fold pair in the ratio.

PG 1115+080

This lens (hereafter 1115) was the first observed fold, and has a well-known flux-ratio

anomaly at optical wavelengths. The time-delay data for 1115 provided in Tables 4.2

and 4.3 come from the optical band. If flux ratios and time delays both provide a

measure of small-scale structure within the lens, we might expect a flux-ratio anomaly

to have a corresponding time-delay anomaly. The flux anomaly in 1115 is due to

microlensing, which has been shown by Keeton & Moustakas (2008) not to affect time

delays. It is therefore no great surprise that none of the P-values for the scaled time

delays nor time-delay ratios reveal anomalies. As we found for the lens 1004, the image

pair in 1115 with the largest separation (CA2) has the P-value for scaled time delay

that deviates most from the median, although not enough to be considered anomalous.

Again, this is to be expected for an image pair with a large separation.

B1608+656

Like 1004, this system (hereafter 1608) has a lens that we would not expect to be

described by our assumed lens potentials, which apply to single galaxies. In this case,

the reason is that the lensed images of 1608 are caused by two lens galaxies. The P-

values quoted in the tables do not reveal anomalous time delays. The dashes in the

entries for image pair BD indicate that that P-values cannot be properly constructed

for this pair. This is because only one simulated image pair matches BD. In other

words, the distances d1 and d2 for the pair BD cannot be produced by a lens potential
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that includes only a single galaxy.

RX J0911+0551

We now turn to the cusp lenses. Although the system RX J0911+0551 (hereafter

0911) has two close pairs of images, we cannot use them to probe small-scale structure

because the relevant time delays have not been measured with sufficient precision. We

nevertheless find clear evidence of a time-delay anomaly using the image pairs with the

two largest separations. Since the lens galaxy in 0911 should be well described by the

sample of Bender et al. (1989), P-values that exceed 0.99 are surprising, even though

the image separations of the pairs DC and DA are relatively large. To be absolutely

sure that we have found a time-delay anomaly, we need to construct time-delay ratios,

which can be done once the time delays for the cusp triplet have been measured precisely

enough. Given that initial values have been measured, albeit with large error bars, we

are hopeful that the data we need will become available in the near future (see Chartas

et al. 2001).

RX J1131−1231

Keeton & Moustakas (2008) provide strong evidence that dark-matter substructure is

present in this lens (hereafter 1131). For the scaled time delays, the cusp pairs BA

and CA have P-values of 0, even when the error bars on the time delay are taken into

account. This provides nearly irrefutable evidence for small-scale structure. That the

corresponding P-values for the time-delay ratios are on the border between anomalous

and normal is a bit surprising. One explanation is that a clump of dark matter is

affecting both image pairs in a way that partially cancels upon division of their time

delays. Another interesting result is that the P-values for the time-delay ratios indicate

anomalies for the pairs BD and CD, but the corresponding P-values for the scaled time

delays do not. There is no obvious interpretation of this, but at the very least, this

finding provides additional evidence that 1131 is an unusual lens that warrants further

study.
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B1422+231

The behavior of the time delays in this system (hereafter 1422) is similar to what we

found for 1131. P-values for the scaled time delays of the image pairs in the cusp

triplet (AB and CB) show a strong anomaly, while the P-values of the time-delay ratios

are within the range expected for a lens galaxy described by the Bender et al. (1989)

dataset.

HE 0435−1223

As a reference case, we consider the cross lens HE 0435−1223 (hereafter 0435). As we

would expect, all of the P-values are consistent with a galaxy modeled as an SIE with

octopole perturbations and external shear.

4.4.3 Predictions for the Remaining Lenses

To conclude this section, we offer a compilation of confidence intervals of the scaled

time delays (Table 4.4) and time-delay ratios (Table 4.5) for all mixed-parity image

pairs in all 22 known four-image lenses, which should be a valuable source for identify-

ing anomalous lenses in the future, as more observational data on lensing time delays

become available. For each lens, we use the histograms derived from the galaxy sample

of Bender et al. (1989) to compute the median value of the scaled time delay and the

time-delay ratio. This gives a sense of what the observed value will be for a lens that is

described adequately by an elliptical galaxy subject to tidal shear, but we cannot use

this information to determine whether a given system is anomalous. For this purpose,

we compute confidence intervals, whose endpoints are chosen such that a specified frac-

tion of the simulated data lie within this range. We would not consider a lens to be

anomalous if it lies within the 95% confidence interval. A lens that lies outside the 95%

interval but within the 99% interval might be regarded as marginally anomalous, while

any lens falling outside the 99% interval would very likely be anomalous. The case for

an anomaly is strongest if both the scaled time delay and the time-delay ratio separately

appear anomalous. Since there is currently great interest in lens monitoring (see Oguri
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2007), we are optimistic that the sample of time delays will increase significantly in the

near future, making it possible to apply our results to the existing lens sample as well

as to those that have not yet been discovered.

4.5 Discussion and Conclusions

In the decade since Mao & Schneider (1998) pointed out that simple lens models have

great difficulty reproducing the observed flux ratios in four-image gravitational lenses,

it has become generally accepted that lens galaxies contain clumps of dark matter,

in agreement with predictions from numerical simulations (Moore et al. 1999; Klypin

et al. 1999). Placing constraints on the amount of substructure with lensing depends

on having a reliable way to identify lens galaxies that contain small-scale structure.

Keeton et al. (2003, 2005) have developed such a method in the context of flux ratios.

We have sought in this chapter to extend their formalism to differential time delays.

To get a sense of how this could work, we determined the dependence of the time delay

between the close pair of images in a fold lens on the position of the lensed source along

the caustic, and the assumed form of the lens potential. For a source near a fold point,

we found that the time delay remains approximately constant. There is a small region

around a cusp point where the time delay quickly drops to zero. This is a reflection

of the analytic scaling we used, which is strictly valid only for sources sufficiently far

from a cusp point. While an analogous scaling relation for cusps has not been fully

worked out, we can nevertheless understand the general behavior of the time delays for

sources near these points. If the lens is modeled as an elliptical galaxy with octopole

perturbations, the time delay increases with the ellipticity of the galaxy, but is not

very sensitive to the octopole amplitude. For a galaxy that is subject to tidal shear,

we expect that the time delay will increase with the shear amplitude, in analogy with

ellipticity.

Using Monte Carlo simulations, we have constructed distributions of the time delays

in four-image lenses. This approach can handle fold, cusp and cross lenses, which

comprise the three basic four-image lens morphologies. By constructing a catalogue of

mock lenses based on observed populations of elliptical galaxies, we have computed the
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range of time delays that would be expected for a smooth lens potential. To compare

our mock lenses with observed systems, we require that the distance between the images

in a chosen pair, as well as the distance to the next-nearest image, agree for a simulated

lens and an actual lens. Since it is not possible to measure these distances with infinite

precision, we have allowed for a discrepancy of ±0.05θE between the simulated and

measured image separations. For all mock lenses that meet this criterion, we calculated

the time delays for the pair in question and the closest neighboring pair. From these

data, we have looked for anomalous time delays, which would be a clear sign that small-

scale structure is present in an observed lens. By computing P-values for all image pairs

in all lenses with observed time delays, we have seen that the systems RX J1131−1231

and RX J0911+0551 are anomalous. In the case of 0911, almost all of the simulated

time delays have larger absolute values than the observed time delays, at least for the

two image pairs for which precise time delays have been obtained observationally. Our

result for 1131 is consistent with conclusions based on anomalous flux ratios, and agrees

with the recent work of Keeton & Moustakas (2008), who were the first to consider time

delays in the context of dark-matter substructure.

To avoid cosmology dependence in our conclusions, we have constructed histograms

for time-delay ratios. Since the time delay and Hubble constant are degenerate, it is

desirable to work with time-delay ratios, where the Hubble constant is not involved.

These ratios also serve to scale out any global effects, which would affect all image pairs

in roughly the same way, but would be hard to distinguish from small-scale structure.

The histograms we have obtained are more uniform than those we found for scaled time

delays, indicating that we have successfully removed those features that depend on the

specific image morphology. The only drawback of using time-delay ratios is that we

must have more data, since two time delays are needed to construct a single ratio.

In the hope that the sample of observed time delays will increase, we have computed

confidence intervals for all 22 known four-image lenses, and all image pairs in each lens.

We have provided criteria for identifying whether a lens is normal, marginally anomalous

or highly anomalous. If lens galaxies really contain dark-matter substructure, time

delays should be able to find it. All that will be required is to compare an observed
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time delay with the values we have tabulated. Flux ratios provide a powerful way

to find small-scale structure, but they are not unique in this; time delays hold great

promise for contributing to our understanding of the role played by dark matter in the

universe.

Figure 4.4 Time-delay histograms for 4 of the 12 known fold lenses. The horizontal
axes show the scaled time delay in units of τ0θ2

E . The vertical axes are in arbitrary
units, with each panel scaled to the maximum value of its three histograms. From top
to bottom, systems are arranged in order of increasing d ∗1 ; the abbreviated lens name
appears at far left. (See Table 4.1 for the full names.) From left to right, the panels
correspond to image pairs with increasing values of d1. The solid, dotted and dashed
curves show histograms corresponding to the data of Bender et al. (1989), Jørgensen
et al. (1995) and Saglia et al. (1993), respectively. For image pairs with observed time
delays, vertical dashed lines show the measured values.
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Figure 4.5 Continuation of Figure 4.4.
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Figure 4.6 Continuation of Figure 4.5.
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Figure 4.7 Same as Figure 4.4, but for the 4 known cusp lenses.
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Figure 4.8 Same as Figure 4.4, but for the 6 known cross lenses.



105

Figure 4.9 Histograms of time-delay ratios for 4 of the 12 known fold lenses. The
horizontal axes show the (dimensionless) time-delay ratio. The vertical axes are in
arbitrary units, with each panel scaled to the maximum value of its three histograms.
From top to bottom, systems are arranged in order of increasing d ∗1 ; the abbreviated
lens name appears at far left. (See Table 4.1 for the full names.) From left to right,
the panels correspond to image pairs with increasing values of d1. The solid, dotted
and dashed curves show histograms corresponding to the data of Bender et al. (1989),
Jørgensen et al. (1995) and Saglia et al. (1993), respectively. For image pairs where it
is possible to construct time-delay ratios from observational data, vertical dashed lines
show these values.
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Figure 4.10 Continuation of Figure 4.9.
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Figure 4.11 Continuation of Figure 4.10.



108

Figure 4.12 Same as Figure 4.9, but for the 4 known cusp lenses.
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Figure 4.13 Same as Figure 4.9, but for the 6 known cross lenses.
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Table 4.2. P-values for scaled time delays

Lens Image Rank obs. ∆t1 error P-value P-values for
Name Pair (days) interval for ∆t1 err. interval

1004 BA 1 40.6 (38.8, 42.4) 0.365 (0.353, 0.378)
1004 CA 3 −822. (−824., −819.) 0.275 (0.275, 0.275)
1115 A1A2 1 0.149 (0.143, 0.155) 0.392 (0.382, 0.401)
1115 A1B 2 11.7 (10.5, 12.9) 0.520 (0.480, 0.564)
1115 CB 3 −25.0 (−26.6, −23.4) 0.509 (0.503, 0.513)
1115 CA2 4 −13.3 (−14.3, −12.3) 0.927 (0.924, 0.931)
1608 AC 1 −4.50 (−6.00, −3.00) 0.258 (0.258, 0.258)
1608 BC 2 −36.0 (−37.5, −34.5) 0.574 (0.560, 0.584)
1608 AD 3 45.5 (44.0, 47.0) 0.930 (0.930, 0.930)
1608 BD 4 77.0 (76.0, 79.0) — (—, —)
0911 DC 3 −154. (−170., −138.) 0.998 (0.998, 0.998)
0911 DA 4 −143. (−149., −137.) 0.997 (0.997, 0.997)
1131 BA 1 −12.0 (−13.3, −10.5) 0 (0, 0)
1131 CA 2 −9.60 (−11.2, −7.60) 0 (0, 0)
1131 BD 3 99.0 (91.0, 107.) 0.626 (0.583, 0.669)
1131 CD 4 96.6 (88.6, 105.) 0.575 (0.535, 0.618)
1422 AB 1 −1.50 (−2.90, −0.100) 0 (0, 0.425)
1422 CB 2 −8.20 (−10.2, −6.20) 0 (0, 0)
0435 CB 1 5.90 (5.10, 6.70) 0.483 (0.470, 0.499)
0435 AB 2 8.00 (7.30, 8.80) 0.505 (0.491, 0.525)
0435 CD 3 −12.3 (−13.1, −11.5) 0.435 (0.427, 0.442)
0435 AD 4 −14.4 (−15.2, −13.5) 0.432 (0.424, 0.441)

Note. — Column 1 gives abridged lens names (see Table 4.1 for the correspond-
ing full names). Image pairs contain one minimum and one saddle. The labels in
column 2 list the minimum image first. We rank image pairs according to their
separation in column 3, with smaller numbers corresponding to smaller separations.
Columns 4 and 5 list the observed time delays, as well as the minimum and maxi-
mum values allowed by the measurement uncertainties. The time-delay data given
here can be found in Table 1 of Oguri (2007), except for the lens 1004, where we
use the data of Fohlmeister et al. (2007a). (However, note the incorrect temporal
ordering for images A and B given in Fohlmeister et al. 2007a.) Columns 6 and
7 give P-values for the time delays shown in columns 4 and 5, using the galaxy
sample of Bender et al. (1989).



111

Table 4.3. P-values for time-delay ratios

Lens Image Rank observed error P-value P-values for
Name Pair ∆t1/∆t2 interval for ∆t1/∆t2 err. interval

1004 AC 3 20.2 (19.3, 21.2) 0.0243 (0.0159, 0.0354)
1115 A1A2 1 0.0127 (0.0109, 0.0146) 0.122 (0.0640, 0.198)
1115 A1B 2 78.5 (67.3, 89.7) 0.830 (0.734, 0.892)
1115 CB 3 2.14 (1.78, 2.49) 0.527 (0.295, 0.674)
1115 CA2 4 89.3 (79.0, 99.6) 0.324 (0.233, 0.409)
1608 AC 1 0.125 (0.0781, 0.172) 0.537 (0.131, 0.701)
1608 BC 2 8.00 (5.00, 11.0) 0.518 (0.150, 0.755)
1608 AD 3 10.1 (6.41, 13.8) 0.766 (0.296, 0.907)
1608 BD 4 2.14 (2.02, 2.28) — (—, —)
1131 BA 1 1.25 (0.854, 1.61) 0.948 (0.502, 0.988)
1131 CA 2 0.800 (0.567, 1.05) 0.0515 (0.00652, 0.321)
1131 BD 3 8.25 (6.55, 9.81) 0.000673 (0.000158, 0.00336)
1131 CD 4 10.1 (7.13, 12.6) 0.00977 (0.000470, 0.0573)
1422 AB 1 0.183 (−0.0324, 0.398) 0.112 (0, 0.962)
1422 CB 2 5.47 (−0.969, 11.9) 0.888 (0, 0.999)
0435 CB 1 0.738 (0.564, 0.902) 0.214 (0.0317, 0.528)
0435 AB 2 1.36 (1.05, 1.68) 0.786 (0.383, 0.950)
0435 CD 3 2.08 (1.67, 2.50) 0.535 (0.226, 0.751)
0435 AD 4 1.80 (1.52, 2.07) 0.403 (0.183, 0.593)

Note. — Columns 1-3 have the same meaning as in Table 4.2. Columns 4 and 5 list
time-delay ratios and corresponding error intervals constructed from observed time delays.
Columns 6 and 7 give P-values for the time-delay ratios shown in columns 4 and 5, using the
galaxy sample of Bender et al. (1989).



112

Table 4.4. Median values and confidence intervals for scaled time delays

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1 interval interval

0128 AB 0.14 0.000415 (−0.000912, 0.00148) (−0.00110, 0.00185)
0128 AD 0.27 0.00379 (−0.00609, 0.0123) (−0.00734, 0.0150)
0128 CD 0.42 −0.0361 (−0.0478, 0.0871) (−0.0498, 0.0905)
0128 CB 0.5 −0.0571 (−0.0686, −0.0455) (−0.0711, −0.0412)
0230 AB 0.74 0.0482 (−0.0575, 0.0634) (−0.0634, 0.0702)
0230 CD 1.46 0.401 (−0.522, 0.557) (−0.556, 0.601)
0230 AD 1.64 −0.348 (−0.514, 1.28) (−0.559, 1.35)
0230 CB 1.65 −0.360 (−0.523, 1.29) (−0.569, 1.36)
0414 A1A2 0.41 0.00226 (−0.00469, 0.00890) (−0.00584, 0.0110)
0414 BA2 1.71 0.215 (−0.222, 0.688) (−0.256, 0.885)
0414 A1C 1.96 0.531 (−0.386, 1.68) (−0.460, 1.92)
0414 BC 2.13 0.676 (−1.17, 1.84) (−1.29, 2.15)
0712 AB 0.17 0.000206 (−0.000528, 0.000909) (−0.000672, 0.00137)
0712 CB 0.91 0.0321 (−0.0428, 0.108) (−0.0488, 0.138)
0712 CD 1.18 0.0856 (−0.240, 0.388) (−0.266, 0.470)
0712 AD 1.25 0.218 (−0.154, 0.748) (−0.181, 0.807)
0924 AD 0.69 0.0135 (−0.0323, 0.0482) (−0.0385, 0.0587)
0924 AC 1.18 0.0645 (−0.118, 0.210) (−0.141, 0.255)
0924 BD 1.46 0.136 (−0.201, 0.410) (−0.239, 0.492)
0924 BC 1.53 0.124 (−0.397, 0.636) (−0.438, 0.770)
1004 AB 3.73 0.396 (−0.635, 1.03) (−0.780, 1.20)
1004 DB 11.44 12.7 (−12.4, 37.8) (−14.7, 49.4)
1004 AC 11.84 16.2 (−14.2, 47.8) (−16.9, 59.0)
1004 DC 14.38 58.7 (−62.7, 103.) (−69.1, 107.)
1115 A1A2 0.48 0.00439 (−0.00826, 0.0145) (−0.0101, 0.0177)
1115 A1B 1.67 0.239 (−0.239, 0.731) (−0.282, 0.970)
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Table 4.4 (cont’d)

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1 interval interval

1115 CB 1.99 −0.581 (−1.05, 1.50) (−1.21, 1.76)
1115 CA2 2.16 −0.547 (−0.756, 1.94) (−0.841, 2.15)
1555 AB 0.09 0.0000952 (−0.000193, 0.000377) (−0.000245, 0.000494)
1555 CB 0.35 0.00687 (−0.00807, 0.0216) (−0.00928, 0.0268)
1555 AD 0.4 0.0177 (−0.0139, 0.0531) (−0.0165, 0.0673)
1555 CD 0.42 −0.0145 (−0.0341, 0.0500) (−0.0370, 0.0601)
1608 AC 0.87 0.0797 (−0.0977, 0.111) (−0.110, 0.122)
1608 BC 1.51 −0.296 (−0.456, 1.11) (−0.498, 1.18)
1608 AD 1.69 −0.596 (−0.714, 1.19) (−0.745, 1.30)
1608 BD 2 0.593 − −
1933 4 3 0.46 0.00558 (−0.0137, 0.0197) (−0.0169, 0.0238)
1933 4 6 0.63 0.0164 (−0.0338, 0.0558) (−0.0412, 0.0675)
1933 1 3 0.9 0.0566 (−0.127, 0.349) (−0.142, 0.404)
1933 1 6 0.91 −0.0870 (−0.157, 0.319) (−0.171, 0.393)
2026 A1A2 0.33 0.00151 (−0.00347, 0.00594) (−0.00415, 0.00764)
2026 A1C 0.83 0.0235 (−0.0396, 0.0850) (−0.0454, 0.102)
2026 BC 1.19 −0.111 (−0.248, 0.477) (−0.272, 0.601)
2026 BA2 1.28 −0.131 (−0.231, 0.759) (−0.258, 0.805)
2033 A1A2 0.72 0.0112 (−0.0249, 0.0399) (−0.0303, 0.0503)
2033 A1C 1.54 0.131 (−0.197, 0.412) (−0.235, 0.497)
2033 BA2 2.01 −0.176 (−0.572, 1.90) (−0.640, 2.04)
2033 BC 2.13 0.955 (−1.09, 2.20) (−1.17, 2.33)
0911 BA 0.48 0.00160 (−0.00461, 0.00799) (−0.00533, 0.0112)
0911 BC 0.62 0.00322 (−0.00877, 0.0160) (−0.0102, 0.0222)
0911 DC 2.96 −2.43 (−2.60, −2.14) (−2.62, −2.02)
0911 DA 3.08 −2.65 (−2.81, −2.31) (−2.82, −2.23)
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Table 4.4 (cont’d)

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1 interval interval

1131 BA 1.19 0.0152 (−0.0387, 0.0666) (−0.0471, 0.0864)
1131 CA 1.26 0.0184 (−0.0445, 0.0826) (−0.0512, 0.102)
1131 BD 3.14 1.16 (−1.09, 3.36) (−1.29, 4.16)
1131 CD 3.18 1.26 (−1.17, 3.64) (−1.39, 4.46)
1422 AB 0.5 0.00403 (−0.00948, 0.0151) (−0.0111, 0.0184)
1422 CB 0.82 0.0168 (−0.0346, 0.0640) (−0.0399, 0.0785)
1422 AD 1.25 0.148 (−0.160, 0.438) (−0.194, 0.573)
1422 CD 1.29 0.150 (−0.233, 0.448) (−0.266, 0.559)
2045 AB 0.28 0.000209 (−0.000669, 0.00156) (−0.000875, 0.00252)
2045 CB 0.56 0.00172 (−0.00351, 0.0100) (−0.00431, 0.0131)
2045 AD 1.91 0.385 (−0.282, 1.21) (−0.334, 1.55)
2045 CD 1.93 0.417 (−0.358, 1.24) (−0.427, 1.56)
0435 CB 1.53 0.0897 (−0.257, 0.330) (−0.301, 0.390)
0435 AB 1.59 0.104 (−0.285, 0.373) (−0.334, 0.443)
0435 CD 1.85 0.177 (−0.481, 0.666) (−0.550, 0.791)
0435 AD 1.88 0.177 (−0.513, 0.702) (−0.591, 0.829)
12531 BC 0.77 0.0249 (−0.0759, 0.0923) (−0.0867, 0.108)
12531 AC 0.78 0.0243 (−0.0796, 0.0984) (−0.0913, 0.116)
12531 BD 0.91 0.0454 (−0.128, 0.177) (−0.144, 0.210)
12531 AD 1.02 −0.120 (−0.208, 0.350) (−0.223, 0.441)
14113 CD 1.13 0.138 (−0.194, 0.227) (−0.210, 0.250)
14113 CB 1.38 0.113 (−0.291, 0.421) (−0.330, 0.500)
14113 AD 1.41 0.130 (−0.314, 0.476) (−0.356, 0.568)
14113 AB 1.42 −0.171 (−0.423, 0.491) (−0.474, 0.560)
1413 AB 0.76 0.0452 (−0.0829, 0.0992) (−0.0913, 0.109)
1413 AC 0.87 0.0343 (−0.105, 0.138) (−0.120, 0.165)
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Table 4.4 (cont’d)

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1 interval interval

1413 DC 0.91 0.0373 (−0.143, 0.176) (−0.155, 0.198)
1413 DB 0.96 0.0606 (−0.146, 0.223) (−0.166, 0.267)
14176 CB 1.73 0.260 (−0.427, 0.506) (−0.470, 0.563)
14176 AB 2.09 0.233 (−0.631, 0.878) (−0.721, 1.04)
14176 CD 2.13 0.256 (−0.663, 0.944) (−0.757, 1.10)
14176 AD 2.13 0.277 (−0.824, 1.00) (−0.891, 1.11)
2237 AD 1.01 0.0360 (−0.102, 0.129) (−0.120, 0.154)
2237 BD 1.18 0.0625 (−0.158, 0.219) (−0.184, 0.260)
2237 AC 1.37 0.120 (−0.255, 0.396) (−0.293, 0.470)
2237 BC 1.4 0.102 (−0.297, 0.406) (−0.335, 0.482)

Note. — The first column gives the abbreviated lens name (the full names
appear in the first column of Table 4.1). The next two columns list the
image pair label and the separation between the images in arcseconds. The
last three columns present data computed from our numerical simulations,
using the galaxy sample of Bender et al. (1989). The fourth column gives
the median value of the differential time delay, and the fifth and sixth
columns give the 95% and 99% confidence intervals of this same quantity.
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Table 4.5. Median values and confidence intervals for time-delay ratios

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1/∆t2 interval interval

0128 AB 0.14 0.121 (0.0667, 0.215) (0.0533, 0.290)
0128 AD 0.27 8.26 (4.65, 15.0) (3.44, 18.6)
0128 CD 0.42 4.85 (2.60, 10.5) (2.24, 12.0)
0128 CB 0.5 41.7 (27.1, 101.) (25.2, 160.)
0230 AB 0.74 0.0508 (0.0332, 0.142) (0.0312, 0.161)
0230 CD 1.46 0.760 (0.458, 1.21) (0.404, 1.38)
0230 AD 1.64 15.8 (7.56, 37.6) (6.51, 57.0)
0230 CB 1.65 15.9 (7.62, 37.5) (6.59, 56.5)
0414 A1A2 0.41 0.0129 (0.00530, 0.0275) (0.00375, 0.0337)
0414 BA2 1.71 77.4 (36.3, 191.) (29.7, 291.)
0414 A1C 1.96 194. (63.1, 890.) (53.0, 1490)
0414 BC 2.13 2.41 (1.45, 6.41) (1.24, 8.53)
0712 AB 0.17 0.00795 (0.00319, 0.0174) (0.00242, 0.0254)
0712 CB 0.91 126. (57.5, 313.) (39.4, 407.)
0712 CD 1.18 3.07 (1.69, 9.18) (1.43, 12.6)
0712 AD 1.25 702. (196., 3620) (159., 6260)
0924 AD 0.69 0.232 (0.135, 0.393) (0.112, 0.512)
0924 AC 1.18 4.31 (2.54, 7.39) (1.95, 8.89)
0924 BD 1.46 7.60 (4.23, 15.8) (3.47, 20.8)
0924 BC 1.53 2.99 (1.65, 8.88) (1.41, 12.3)
1004 AB 3.73 0.0301 (0.0130, 0.0598) (0.00983, 0.0713)
1004 DB 11.44 38.1 (18.0, 107.) (15.2, 181.)
1004 AC 11.84 48.2 (20.3, 172.) (17.2, 315.)
1004 DC 14.38 2.74 (1.49, 6.33) (1.27, 7.22)
1115 A1A2 0.48 0.0213 (0.00910, 0.0431) (0.00697, 0.0513)
1115 A1B 1.67 49.7 (23.8, 129.) (20.0, 206.)



117

Table 4.5 (cont’d)

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1/∆t2 interval interval

1115 CB 1.99 2.09 (1.30, 5.80) (1.09, 8.17)
1115 CA2 2.16 112. (51.3, 327.) (44.4, 505.)
1555 AB 0.09 0.0163 (0.00745, 0.0336) (0.00556, 0.0441)
1555 CB 0.35 61.4 (29.7, 134.) (22.7, 178.)
1555 AD 0.4 136. (54.2, 487.) (45.9, 901.)
1555 CD 0.42 2.44 (1.44, 6.70) (1.24, 9.05)
1608 AC 0.87 0.120 (0.0651, 0.282) (0.0603, 0.332)
1608 BC 1.51 7.82 (3.85, 18.9) (3.33, 27.9)
1608 AD 1.69 7.44 (4.78, 19.0) (4.22, 25.0)
1608 BD 2 2.21 − −
1933 4 3 0.46 0.364 (0.220, 0.595) (0.178, 0.776)
1933 4 6 0.63 2.75 (1.68, 4.54) (1.29, 5.60)
1933 1 3 0.9 11.9 (5.72, 43.8) (4.90, 60.2)
1933 1 6 0.91 4.20 (2.28, 12.5) (1.92, 17.6)
2026 A1A2 0.33 0.0698 (0.0376, 0.135) (0.0298, 0.212)
2026 A1C 0.83 14.3 (7.40, 26.6) (4.71, 33.2)
2026 BC 1.19 4.30 (2.30, 13.3) (1.94, 17.9)
2026 BA2 1.28 78.4 (35.9, 292.) (30.8, 486.)
2033 A1A2 0.72 0.0985 (0.0515, 0.177) (0.0405, 0.230)
2033 A1C 1.54 10.2 (5.64, 19.4) (4.34, 24.7)
2033 BA2 2.01 32.9 (14.9, 128.) (12.8, 192.)
2033 BC 2.13 3.66 (1.95, 8.62) (1.67, 10.4)
0911 BA 0.48 0.502 (0.302, 0.827) (0.221, 1.12)
0911 BC 0.62 1.99 (1.20, 3.30) (0.850, 4.37)
0911 DC 2.96 118. (73.6, 292.) (55.1, 551.)
0911 DA 3.08 292. (156., 741.) (126., 912.)
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Table 4.5 (cont’d)

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1/∆t2 interval interval

1131 BA 1.19 0.852 (0.511, 1.40) (0.357, 1.83)
1131 CA 1.26 1.17 (0.712, 1.96) (0.546, 2.79)
1131 BD 3.14 29.0 (12.5, 105.) (10.3, 172.)
1131 CD 3.18 26.6 (11.2, 98.8) (9.43, 156.)
1422 AB 0.5 0.247 (0.148, 0.432) (0.118, 0.669)
1422 CB 0.82 4.05 (2.31, 6.76) (1.46, 8.40)
1422 AD 1.25 20.5 (10.1, 54.5) (8.37, 94.5)
1422 CD 1.29 5.43 (2.85, 15.6) (2.40, 25.4)
2045 AB 0.28 0.153 (0.0668, 0.324) (0.0502, 0.391)
2045 CB 0.56 6.47 (3.04, 14.9) (2.44, 19.7)
2045 AD 1.91 411. (143., 1650) (116., 3150)
2045 CD 1.93 60.4 (24.9, 207.) (21.2, 371.)
0435 CB 1.53 0.888 (0.548, 1.43) (0.450, 1.78)
0435 AB 1.59 1.13 (0.700, 1.83) (0.563, 2.24)
0435 CD 1.85 2.03 (1.23, 3.77) (1.02, 4.66)
0435 AD 1.88 1.93 (1.18, 3.65) (0.999, 4.64)
12531 BC 0.77 0.962 (0.612, 1.52) (0.509, 1.86)
12531 AC 0.78 1.10 (0.704, 1.78) (0.586, 2.16)
12531 BD 0.91 2.04 (1.25, 4.49) (1.06, 6.34)
12531 AD 1.02 2.95 (1.69, 8.21) (1.44, 11.5)
14113 CD 1.13 0.563 (0.307, 0.950) (0.236, 1.20)
14113 CB 1.38 2.30 (1.37, 5.29) (1.16, 7.57)
14113 AD 1.41 2.59 (1.49, 6.87) (1.26, 10.3)
14113 AB 1.42 1.61 (0.832, 4.00) (0.690, 5.35)
1413 AB 0.76 0.730 (0.421, 1.14) (0.338, 1.44)
1413 AC 0.87 1.63 (1.02, 2.87) (0.870, 3.55)
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Table 4.5 (cont’d)

Lens Image d1 Median 95% conf. 99% conf.
Name Pair (arcsec) ∆t1/∆t2 interval interval

1413 DC 0.91 1.50 (0.851, 2.73) (0.705, 3.61)
1413 DB 0.96 2.62 (1.50, 7.23) (1.27, 10.8)
14176 CB 1.73 0.590 (0.325, 0.967) (0.252, 1.18)
14176 AB 2.09 2.06 (1.24, 3.89) (1.02, 4.86)
14176 CD 2.13 2.21 (1.32, 4.36) (1.10, 5.66)
14176 AD 2.13 1.31 (0.740, 2.49) (0.609, 3.28)
2237 AD 1.01 0.596 (0.361, 0.961) (0.299, 1.16)
2237 BD 1.18 1.68 (1.04, 2.78) (0.859, 3.38)
2237 AC 1.37 2.98 (1.75, 6.13) (1.47, 8.03)
2237 BC 1.4 1.99 (1.23, 4.16) (1.04, 5.73)

Note. — The first three columns are the same as those in Table
4.4. The last three columns present data computed from our numerical
simulations, using the galaxy sample of Bender et al. (1989). The fourth
column gives the median value of the time-delay ratio ∆t1/∆t2. The
subscripts on ∆t refer to the time delay of the labeled image pair (∆t1)
and that for the closest neighboring pair (∆t2). The fifth and sixth
columns give the 95% and 99% confidence intervals of the time-delay
ratio.
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Chapter 5

Microlensing of an Extended Source by a Power-Law

Mass Distribution

Abstract

Microlensing promises to be a powerful tool for studying distant galaxies and quasars.

As the data and models improve, there are systematic effects that need to be explored.

Quasar continuum and broad-line regions may respond differently to microlensing due

to their different sizes. To understand this effect, we study microlensing of finite sources

by a mass function of stars. We find that microlensing is insensitive to the slope of the

mass function, but does depend on the mass range. For negative-parity images, diluting

the stellar population with dark matter increases the magnification dispersion for small

sources and decreases it for large sources. This implies that the quasar continuum

and broad-line regions may experience very different microlensing in negative-parity

lensed images. We confirm earlier conclusions that the surface brightness profile and

geometry of the source have little effect on microlensing. Finally, we consider non-

circular sources. We show that elliptical sources that are aligned with the direction of

shear have larger magnification dispersions than sources with perpendicular alignment,

an effect that becomes more prominent as the ellipticity increases. Elongated sources

can lead to more rapid variability than circular sources, which raises the prospect of

using microlensing to probe source shape.

5.1 Introduction

Microlensing is an increasingly important tool for studying small-scale structure in

lens galaxies and source quasars. In recent years, microlensing has been observed in a
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number of multiply-imaged quasars (e.g., Woźniak et al. 2000; Schechter et al. 2003;

Richards et al. 2004; Keeton et al. 2006; Paraficz et al. 2006). Microlensing modeling

has also been improving. For example, Kochanek (2004) has introduced a sophisticated

technique for analyzing light curves. Even so, there are aspects of the models for the lens

and source that still need to be considered for microlensing to reach its full potential.

This is especially important for quasar microlensing, where several length scales are

involved.

Different regions of a quasar emit radiation in roughly distinct bands. For example,

continuum (blackbody) radiation in the optical and x-ray bands is emitted from the

accretion disk surrounding the supermassive black hole, while broad emission lines in

the optical and UV are thought to originate from clouds in a region outside of and larger

than the accretion disk. Radio emission comes from even larger structures. Roughly

speaking, a source can only be affected by objects in the lens galaxy whose Einstein

radii are comparable to or larger than the source size. Consequently, the continuum,

broad-line and radio regions probe different structures in the lens galaxy. Radio jets can

be used to probe dark matter substructure (Metcalf & Madau 2001; Dalal & Kochanek

2002) in lens galaxies, while the accretion disk (Jaroszyński et al. 1992; Mortonson

et al. 2005; Pooley et al. 2007) and broad-line region (BLR) are used for studying the

stellar component (Schneider & Wambsganss 1990; Richards et al. 2004; Keeton et al.

2006). In principle, both methods can also be used to examine the light source. This

is of particular interest for the BLR, whose properties are not well understood (e.g.,

Peterson & Horne 2005). In this chapter, we investigate the potential of microlensing

to deepen our knowledge of the BLR and accretion disk, and to determine both the

abundance and mass function of stars in lens galaxies.

Until recently, sources relevant for microlensing could not be resolved. Therefore,

many theoretical models have assumed a point source, and have focused on determin-

ing properties of the lensing galaxy. Such investigations have found that microlensing

magnification distributions are not very sensitive to the shape of the microlens mass

function if it spans an order of magnitude or so in mass (e.g., Wyithe & Turner 2001).
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The magnification distributions do look different if there are two distinct mass compo-

nents: not just stars, but also dark matter that could come in the form of a smooth

mass component (e.g., Schechter & Wambsganss 2002) or a set of discrete objects that

are much less massive than the stars (Schechter et al. 2004; Lewis & Gil-Merino 2006).

We generalize the previous studies by considering microlensing of an extended source.

The source size, RS , introduces a new length scale, which heuristically divides the mi-

crolenses into two categories: microlenses with RE >∼ RS are massive enough to be felt

individually, while those with RE <∼ RS act collectively as a smooth component. We

therefore conjecture that the finite source size makes the magnification distributions

sensitive to the microlens mass function, even when it spans just 1–1.5 orders of mag-

nitude. Lewis & Gil-Merino (2006) recently studied microlensing of an extended source

by a bimodal mass function. We now consider a continuous mass function.

Studying microlensing of an extended source is especially relevant for the BLR, be-

cause recent observations suggest it has a size of RBLR ∼ 1016–1018 cm (Richards et al.

2004; Keeton et al. 2006), which is comparable to stellar Einstein radii. Understand-

ing the effects of source size should help us probe BLR length scales more precisely.

In principle, microlensing can also be used to probe the shape, geometry and surface

brightness profile of the source, although we note that Mortonson et al. (2005) found

that microlensing for a circular source is not very sensitive to the surface brightness

profile.

The possibility of a non-circular source has not been considered in previous mi-

crolensing analyses. However, accretion disks viewed at random inclinations would

generically appear elliptical rather than circular. A similar situation may apply to the

BLR if it has a disky structure (e.g., Murray & Chiang 1998; Elvis 2000; Richards et al.

2004). We also consider annular accretion disks. Such models are important for two

reasons. First, quasar accretion disks have inner radii defined by the innermost stable

circular orbit of a particle in motion around the central black hole. Second, typical

models (e.g., the Shakura-Sunyaev disk), emit over a wide range of wavelengths, with

each band corresponding to a different annular region.

This chapter is organized as follows. Lens modeling and simulations are discussed
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in Section 5.2. Our results are presented in Section 5.3. We first consider the general

problem of how source size and lens mass impact microlensing (§5.3.1). In following

subsections, we investigate the effects of dark matter (§5.3.2), source profile (§5.3.3),

source ellipticity and position angle (§5.3.4) and accretion disk geometry (§5.3.5). We

construct light curves in Section 5.3.6 to investigate variability timescales. Our conclu-

sions are summarized in Section 5.4.

5.2 Methods

We consider microlensing of an extended source by a distribution of stars and dark

matter. We zoom in on a region in the lens galaxy around a lensed image. The size

of the region is chosen to satisfy two conditions. First, it must be large compared to a

typical stellar Einstein radius, which is the relevant scale for microlensing. Second, it

must be small compared to the scale of the lens galaxy, namely the image separation.

The latter allows us to take the mean densities of stars and dark matter to be constant.

These criteria are not very restrictive, since stellar Einstein radii are typically on scales

of microarcseconds, while image separations are on scales of arcseconds.

We describe the stellar population of the lens by a mass function, dN/dm, which

gives the number of stars per unit mass between m and m+ dm. We use a power law

of the form
dN

dm
∝ m−α (m1 ≤ m ≤ m2) , (5.1)

for some m1 and m2. Rather than specifying the mass limits explicitly, we adopt the

equivalent approach of giving the mass ratio m1/m2 along with the mean mass, m̄. A

typical choice for the power law index is α = 2.35, the Salpeter initial mass function.

The mass function is normalized so that the scaled mass density of stars is κ∗. In

addition to stars, the galaxy may include a continuous component with density κc. The

total scaled density is then κ ≡ κ∗ + κc. The final ingredient is the shear, γ, which

accounts for tidal forces from outside the patch of stars being considered. To obtain a

relation between κ and γ, we must choose a mass model for the lens galaxy. We use

a singular isothermal ellipsoid, for which κ = γ. This model is simple and provides a
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reasonable fit to observed systems (e.g., Treu & Koopmans 2004; Rusin & Kochanek

2005; Treu et al. 2006).

In the absence of microlensing, the magnification of a lensed image is given by

µ0 = [(1− κ)2 − γ2]−1 . (5.2)

We consider a typical bright image with µ0 = ±10, corresponding to κ = γ = 0.5∓0.05.

In microlensing, the spatial distribution of stars is random, so the magnification at a

given time will be drawn from a probability distribution. If the distribution is broad,

chances are high that the magnification will differ from that predicted for a smooth

model, viz., µ0. The effects of microlensing are therefore naturally described by the

dispersion (standard deviation) of the probability distribution.

Computing the magnification distribution for given κ, γ and dN/dm can only be

done numerically. We use the microlensing code of Wambsganss (1999), which gives

the magnification of a point source1 as a function of position over a square region

of the source plane with side length L = 15RE(M�). In units of the mean stellar

mass, the side-length is given by L = 15RE(m̄) for m1/m2 = 1, L = 31.71RE(m̄) for

m1/m2 = 0.1 and L = 52.26RE(m̄) for m1/m2 = 0.03. We create magnification maps

with a resolution of L/1024 (see Fig. 5.1). To obtain a statistical sample, we perform

100 realizations for each set of parameters we consider.

We must convolve the magnification map with a surface brightness profile in order

to compute the magnification of an extended source. We use Gaussian, uniform and

linear profiles, respectively defined by

I1(R) ≡ ln 2
πR2

S

exp

(
−R

2 ln 2
R2

S

)
(0 ≤ R <∞), (5.3)

I2(R) ≡ 1
2πR2

S

(0 ≤ R ≤
√

2RS) (5.4)

and

I3(R) ≡ 3
4πR2

S

(
1− R

2RS

)
(0 ≤ R ≤ 2RS) , (5.5)

1Strictly speaking, the map gives the magnification of a source with the shape of the pixel. In
practice, the source sizes that interest us are much larger than the pixels.
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Figure 5.1 Magnification maps for a positive-parity image with κ = γ = 0.45, implying a
macro-magnification of µ0 = 10. The gray scale indicates the magnification with values
in the range µ = 1 (black) and µ = 30 (white). Panels show Salpeter mass functions
with m1/m2 = 1 (left), 0.1 (middle) and 0.03 (right). Each map has a side-length
of L = 15RE(m̄). Magnification histograms are generated by convolving the surface
brightness profile of the source (indicated by circles) with the magnification map.

where RS is the half-light radius of the source, and the sources are normalized to

unit flux. In microlensing, the natural length scale is the Einstein radius of the mean

stellar mass (e.g., Lewis & Irwin 1996). We henceforth quote the source size as rS ≡

RS/RE(m̄).

These models are simple but nevertheless useful. The Gaussian model is popular

in microlensing studies (e.g., Wambsganss et al. 1990; Wyithe et al. 2002), the uniform

disk is the simplest model conceivable and the linear disk has at least one physical

connection (see Abajas et al. 2002). These same three models were used by Mortonson

et al. (2005), so we can compare their results with ours. While Mortonson et al. (2005)

(and many others) applied the models to accretion disks, they may also be useful for

describing BLRs as well. In particular, the linear disk is similar to the biconical BLR

of Abajas et al. (2002).

We consider an elliptical source by making the substitution

I(R) → I(ρ)/q, (5.6)

where q is the minor-to-major axis ratio and the elliptical “radius” is defined by ρ2 ≡

R2 cos2 θ + R2 sin2 θ/q2. We also consider a uniform annular disk with inner-to-outer
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radius ratio Q by making the replacement

I2(R) → I2(R)
1 +Q2

1−Q2
, (5.7)

for radii satisfying √
2QRS

1 +Q2
≤ R ≤

√
2RS

1 +Q2
. (5.8)

In the following section our fiducial model assumes a Gaussian source and a lens

described by a stellar population whose masses are given by a Salpeter mass function

with m1/m2 = 0.1. We assume that κ = κ∗ = 0.5 ∓ 0.05 for images of positive and

negative parity, respectively. We explicitly state when other models are used.

5.3 Results

We now study microlensing of an extended source by a power-law mass distribution.

Wyithe & Turner (2001) conclude that point-source microlensing magnification dis-

tributions are not significantly affected by the choice of mass function. We consider

whether this result can be extended to the case of a finite source (§5.3.1). Dark matter

can affect microlensing in surprising ways, raising the possibility of using microlensing

to measure the density of dark matter at the image positions (Schechter & Wambsganss

2002, 2004). We generalize earlier work by including a mass function of stars and an

extended source (§5.3.2).

We also explore how varying properties of the source impacts microlensing magnifi-

cation distributions. In Section 5.3.3, we describe a source by three surface brightness

profiles. We broaden the discussion in Section 5.3.4 to include elliptical sources. Such

models lead to particularly interesting implications, so we construct light curves in Sec-

tion 5.3.6 to examine the dependence of microlensing on source shape in more detail.

Finally, we consider annular sources in Section 5.3.5.

5.3.1 Source Size and Lens Mass

We begin by examining how microlensing of a finite source is affected when we vary

the mass range and logarithmic slope of the mass function (cf. Wambsganss 1992).
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Figure 5.2 Mass functions with fixed means, m̄, for various mass ranges, m1/m2, and
logarithmic slopes, α. The top panel shows mass functions with α = 2.35. The solid,
dotted and dashed curves have m1/m2= 1, 0.1 and 0.03, respectively. The bottom
panel shows mass functions with m1/m2 = 0.1. The solid, dotted and dashed curves
show α= 1.85, 2.35 and 2.85, respectively.
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Figure 5.3 Magnification histograms for different source sizes and mass functions for a
positive-parity image with |µ0| = 10. Columns show source sizes in mean-mass Einstein
radii of rS =0.1, 0.4, 0.7 and 1.0. The top row shows mass functions with logarithmic
slopes of α = 2.35. The solid, dotted and dashed curves have m1/m2=1, 0.1 and
0.03, respectively (see Figure 5.2, top panel). The bottom row shows mass functions
with m1/m2=0.1. The solid, dotted and dashed curves have α =1.85, 2.35 and 2.85,
respectively (see Figure 5.2, bottom panel).
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Figure 5.4 Same as Figure 5.3, but for a negative parity image with |µ0| = 10.

Figure 5.2 shows the mass functions we use. Figures 5.3 and 5.4 show magnification

histograms for the different mass functions and different source sizes for positive and

negative parity. First, we consider the effects of the mass range, shown in the top row of

each figure. Increasing the mass range causes the magnification distribution to broaden,

especially for larger sources. This is shown more directly in the top panel of Figure

5.5, which plots the magnification dispersion versus source size for the different mass

ranges (for the positive-parity case). When the source is small, we recover the previous

result that the mass range does not affect the magnification distribution (Wyithe &

Turner 2001). However, as the source gets larger, there is a greater difference between

the three mass functions.

To understand why the magnification dispersion increases as the mass range in-

creases, we return to Figure 5.2. The top panel shows that increasing the mass range
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Figure 5.5 Dispersion in log |µ| computed from histograms for source sizes in the range
0 ≤ rS ≤ 4 (see Fig. 5.3) versus source size for different mass functions for a positive-
parity image with |µ0| = 10. The top panel shows mass functions with logarithmic
slopes of α = 2.35. The solid, dotted and dashed curves have m1/m2 = 1, 0.1 and 0.03,
respectively. The bottom panel shows mass functions with m1/m2 = 0.1. The solid,
dotted and dashed curves have α = 1.85, 2.35 and 2.85, respectively.

causes the mass function to spread out: the lower limit decreases slightly, while the

upper limit can increase substantially. A high upper limit allows massive stars to ex-

ist, although they will be fairly rare because the mass function is steep. Thus, some

magnification maps will contain one or a few massive stars that significantly affect the

microlensing, while many will not. We believe this explains why increasing the mass

range increases the magnification dispersion. It also explains why the mass range be-

comes more important as the source size increases: large sources are most sensitive to

massive stars.

Now consider the slope of the mass function. Figures 5.3–5.5 show that the slope

hardly affects microlensing at all, regardless of the source size. The reason is that
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changing the slope shifts the mass function left or right (see Fig. 5.2), but not dramat-

ically.

We conclude that microlensing of an extended source may offer the possibility of

determining the dynamic range (m1/m2) of the stellar mass function, but not for de-

termining the mass function slope. In light of this result, we henceforth restrict our

attention to a Salpeter mass function (α = 2.35), and we focus attention on the case

m1/m2 = 0.1.

5.3.2 Dark Matter Content

We now consider how the mass fraction in dark matter affects microlensing. Con-

troversy remains as to whether cosmological simulations of dark matter agree with

galaxy observations (e.g., Spekkens et al. 2005; Gerhard 2006, and references therein).

Part of the problem is that most observations (e.g., galaxy dynamics and gravitational

macrolensing) depend on the global mass distribution in a galaxy, rather than the local

mass density. Schechter & Wambsganss (2002, 2004) argue that microlensing offers a

new way to measure the density of dark matter at the positions of the lensed images.

They consider a uniform mass function and a point source; we generalize the analysis

to a mass function and an extended source.

Figure 5.6 shows magnification histograms for dark matter mass fractions of fc ≡

κc/κ = 0.2, 0.4, 0.6, 0.8 and 0.99. One might expect that as fc increases, microlensing

becomes less important, since fewer stars produce simpler caustic networks. For fc → 1,

the magnification distribution indeed approaches a δ-function centered at µ0, as seen in

the bottom row of Figure 5.6. For smaller values of fc, however, the histograms show

more structure. In particular, secondary peaks appear in several of the histograms

(see also Rauch et al. 1992). The different peaks correspond to different numbers of

microimages (see Granot et al. 2003, especially their Figure 4). If dark matter is the

primary mass component, the probability that a source will have multiple microimages

is low. In that case, the magnification distribution has a single peak near the expected

magnification in the absence of microlensing (e.g., fc = 0.99). For smaller values of

fc, the density of caustics increases, which in turn raises the probability that a source
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will have extra microimage pairs. The magnification distribution therefore acquires

a second peak associated with regions of the source plane for which an extra image

pair is created (see left-hand column of Fig. 5.6). When fc is low, regions with extra

microimages become the norm, and the peaks corresponding to different numbers of

microimages become less distinct. Also, an extended source often covers regions with

different numbers of microimages, smearing out the effects of additional microimages

(see right-hand column of Fig. 5.6).

Figure 5.6 also demonstrates the importance of parity. We find that negative-parity

images lead to distributions with tails at low magnification. Schechter & Wambsganss

(2002) find the same behavior for a point source. As the source size is increased, the

tails become less apparent. When rS = 1.0 (not shown), the two parities give nearly

identical results. One surprise is that a difference between positive and negative parity

can be observed in the skewness of the distributions even for fc = 0.99. This means

that even a small stellar mass fraction gives rise to noticeable parity-dependent effects.

Figure 5.7 uses the magnification dispersion to quantify the effects of parity and

source size. In the positive-parity case (top panel), replacing stars with dark matter

decreases the dispersion for all source sizes, which makes intuitive sense. However, in

the negative-parity case (bottom panel), when the source is small, diluting the stars

with dark matter increases the dispersion, at least in the range fc ≤ 0.8. Schechter &

Wambsganss (2002) first found this result for a point source and a uniform stellar mass

function. We now see that it holds for small extended sources as well. We discover

though, that when the source is large, the trend reverses: increasing the dark matter

fraction decreases the magnification dispersion. It seems notable that the curves of

dispersion versus source size for different dark matter fractions all cross at roughly the

same source size (rS ∼ 0.8), although we do not know whether this is significant.

It is worth pointing out that Dobler et al. (2007) examine the effects of dark matter

and source size on the magnification for demagnified lensed images. They find that

increasing the dark matter fraction always decreases the magnification dispersion for

a demagnified negative-parity image. (Recall that our negative-parity image is magni-

fied.) However, for a demagnified central image, diluting the stars with dark matter
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increases the dispersion for a small source, but decreases the dispersion for a large

source. Direct comparison between those results and ours is not possible due to the

different macro parameters. Nevertheless, it seems clear that the effects of dark matter

on microlensing depend in a complicated way on the parity, the macro-magnification

and the source size.

Our findings imply that the continuum and broad-line regions may experience very

different microlensing in negative-parity lensed images. The continuum emission region

is small and should therefore have a magnification dispersion that increases with the

dark matter fraction. By contrast, in many cases, the BLR may be large enough that

the dispersion will decrease as the dark matter fraction increases (Richards et al. 2004;

Keeton et al. 2006). For positive-parity images, the accretion disk and BLR will both

have a dispersion that decreases with the dark matter fraction. This may turn out to

be a very important physical effect allowing us to probe both the dark matter content

of lens galaxies and the structure of lensed quasars.

5.3.3 Source Profile

In the remaining subsections, we return to models consisting purely of a stellar mass

component and consider how microlensing depends on properties of the source. We first

examine different surface brightness profiles, following Mortonson et al. (2005). Figure

5.8 shows the dispersion versus source size for Gaussian, uniform and linear profiles

(defined in §5.2). We see that the dispersion decreases as the profile becomes steeper,

although the effect is not strong. We therefore confirm that the dispersion depends

weakly on the source profile.

5.3.4 Ellipticity and Position Angle

We now allow the source to be non-circular. This possibility has not been consid-

ered in previous microlensing analyses, although it is an important physical effect (see

Kochanek et al. 2007). For a population of thin disks with random inclinations, a

face-on source is rare; the average projected ellipticity is ē = 0.5. Therefore, models

of microlensing need to allow a non-circular shape for the source. This is especially
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Figure 5.8 Dispersion in log |µ| versus source size for a positive-parity image with
different source profiles. Solid, dotted and dashed curves have uniform, linear and
Gaussian source profiles, respectively. A Salpeter mass function with m1/m2 = 0.1 is
used.

important for continuum microlensing, where the source is presumably a thin accretion

disk. Non-circular source models may be relevant to broad-line microlensing as well,

given evidence that BLRs may have some disky structure (e.g., Murray & Chiang 1998;

Elvis 2000; Richards et al. 2004).

Figure 5.9 shows how the magnification dispersion depends on the ellipticity, e ≡

1− q, and position angle, PA, of the source. In each panel, we see that the dispersion

increases monotonically with position angle, an effect which becomes more pronounced

for large ellipticities. To understand this behavior, first note that PA=0◦ describes

a source whose major axis is orthogonal to the direction of shear, which defines the

long axis of the caustics. An extended source with PA=0◦ is likely to cover one or

more caustics, regardless of where it is centered (see Fig. 5.10). Small changes in the

source position do not produce dramatic changes in the magnification. By contrast, for

a source with PA=90◦ (aligned with the caustics), small displacements of the source

can change the number of caustics covered, with corresponding large deviations in the

magnification. This explains why the magnification dispersion is higher for sources
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Figure 5.10 Illustration of why microlensing magnifications depend on the orientation
of an elliptical source. Both ellipses have semimajor axes with lengths a = RE(m̄) and
ellipticities e = 0.6.

aligned with the caustics (PA=90◦) than for orthogonal sources (PA=0◦). These effects

become even more pronounced for more highly elongated sources.

In Figure 5.11, most of the effects discussed so far are considered simultaneously.

As in Figure 5.5, the dispersion is larger for our fiducial model (m1/m2 = 0.1, dashed

and dot-dashed curves) than for a uniform mass function (solid and dotted curves). As

in Figure 5.8, the dispersion is smaller for the Gaussian profile (dotted and dot-dashed

curves) than for the uniform source profile (solid and dashed curves). Perhaps the most

interesting point is that as the source ellipticity increases, the difference between the

four curves becomes smaller, i.e., the dispersion becomes even less sensitive to the mass

function and source profile.
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Figure 5.12 Dispersion in log |µ| versus source size for a positive-parity image with
different disk geometries. The source is modeled as an annulus with a given half-light
radius. The solid, dotted, dashed and dot-dashed curves have hole-to-total area ratios
of Q2 = 0.01, 0.1, 0.5 and 0.9, respectively.

5.3.5 Accretion Disk Geometry

Finally, we consider whether variations in accretion disk geometry result in observable

differences for microlensing. We model the source as an annulus with a given half-light

radius, rS , and hole-to-total area ratio, Q2. This approach is useful in two ways. First,

quasar accretion disks have inner radii defined by the innermost stable circular orbit

of a particle in motion around the central black hole. Second, typical models (e.g.,

the Shakura-Sunyaev disk) emit over a wide range of wavelengths. Roughly distinct

annular regions within the disk are revealed by observations in different bands (see,

e.g., Mortonson et al. 2005). It is important to determine whether microlensing can be

used to find the mass of the central black hole or the scale of the annulus within the

disk emitting at some wavelength.

For simplicity, we focus on a uniform source. Figure 5.12 shows the dispersion versus

source size for disks with Q2 = 0.01 (solid curve), 0.1 (dotted), 0.5 (dashed) and 0.9
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(dot-dashed). For small sources (rS <∼ 1.5), the dispersion is nearly identical for all

values of Q2. For larger sources, the dispersion remains similar for Q2 = 0.01 and for

Q2 = 0.1. However, the cases Q2 = 0.5 and Q2 = 0.9 have larger dispersions, suggesting

that only large holes can significantly affect microlensing.

5.3.6 Light Curves

While our analysis has focused on magnification distributions, microlensing has a time

domain as well, and we would like to understand whether variability timescales can

provide more information about the lens and source. Although a complete study of

microlensing light curves and light curve statistics is beyond the scope of this chapter,

we can examine sample light curves and begin to identify useful results. We have found

that source ellipticity and orientation have pronounced effects on the magnification

distribution, so we now see how they affect light curves.

To obtain sample light curves, we move the source through the magnification map

along some trajectory, as shown in Figure 5.13. The natural time scale is the Einstein

crossing time, tE = RE(m̄)/v⊥, where v⊥ is the relative transverse velocity between the

lens and source. Figure 5.14 (left) shows the resulting light curves for a source with rS =

1 and the same set of ellipticities and orientations used in Figure 5.9. Increasing either

the ellipticity or the position angle increases the amount of variability, especially on

short timescales. This is consistent with our previous interpretation: small changes to

the source position have more effect when the source is aligned with the shear (PA=90◦)

than when the source is perpendicular (PA=0◦). This can lead to a striking amount of

rapid variability for highly flattened sources.

To quantify the amount of variability on different timescales, we follow Lewis & Irwin

(1996) and use the structure function as a statistical measure of temporal variability.

The structure function is defined to be the mean square change in the brightness after

time ∆t: S(∆t) = 〈[M(t+ ∆t)−M(t)]2〉, where M is the apparent magnitude, and the

average is over t. To obtain statistically meaningful results, we average the structure

function over 100 realizations of light curves for a given set of parameters.

The structure functions are shown in Figure 5.14 (right). They all have a roughly
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Figure 5.13 Construction of light curves. A source with ellipticity e = 0.6 and PA= 90◦

is moved along the trajectory from lower left to upper right. The resulting light curves
are shown in the middle panel of the left column of Figure 5.14.

linear rise to a plateau beginning around ∆t/tE ∼ 5. They confirm that there is more

variability on shorter timescales when the source is elongated and/or aligned with the

shear. It is customary to define a characteristic variability time scale as the interval

at which the structure function reaches half its plateau value (see Lewis & Irwin 1996;

Schechter et al. 2003). We see that this time scale can vary by a factor of ∼2 depending

on the ellipticity and orientation of the source.

The important implication is that elongated sources can lead to more rapid variabil-

ity than circular sources that have identical half-light radii. This effect must be taken

into account when interpreting observed variability timescales. It is not clear whether

source shape can explain the rapid variability observed by Schechter et al. (2003) and

Paraficz et al. (2006), but it should at least be considered as a possible alternative to

relativistic motion.
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5.4 Conclusions

We have presented a systematic study of microlensing of finite sources. We have ex-

tended earlier work by combining an finite source with a lens described by a stellar mass

function. Following Mortonson et al. (2005), we have explored how the surface bright-

ness profile and geometry of the source affect microlensing (§5.3.3 and §5.3.5). We find

that both effects are of minimal importance, although subtle differences are apparent:

making the source surface brightness profile steeper (Fig. 5.8) and introducing a large

hole in the source (Fig. 5.12) both increase the magnification dispersion.

The mass function can play a more significant role. Although the slope of the

mass function does not lead to noticeable changes in the magnification dispersion, the

dynamic range can be important. The dispersion for an extended source becomes larger

as the mass range increases. This result has been seen before for a broad, bimodal mass

function (Schechter et al. 2004; Lewis & Gil-Merino 2006), but we have demonstrated

it for a continuous and relatively narrow mass function, as would be appropriate for

stars. This raises the possibility of using microlensing to determine the dynamic range

of stellar mass functions in distant galaxies.

Our discussion of dark matter in Section 5.3.2 reveals many interesting results. We

find that the monotonic increase in dispersion for a point source lensed by a mixture of

stars and dark matter (Schechter & Wambsganss 2002) extends to the case of combining

a small extended source with a power-law mass distribution. However, for moderately

large sources, we find that microlensing becomes less pronounced as the dark matter

mass fraction is increased. As in previous studies (e.g., Schechter & Wambsganss 2002),

we find multiple peaks in the magnification histograms for moderate dark matter frac-

tions. We also see that negative-parity images have tails to low magnifications (see

Schechter & Wambsganss 2002), but only when the source is small.

Finally, we have for the first time considered non-circular sources with a range of

position angles. We find that sources aligned with the shear have larger magnification

dispersions than sources orthogonal to the shear.

Apart from source size, which is fundamentally important, we believe that two of
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the effects we have identified have important physical implications. First, the contin-

uum and BLR will be very different in their sensitivity to dark matter near a lensed

image, particularly a negative-parity image. Thus, attempts to measure the dark mat-

ter content of galaxies with microlensing (see Schechter & Wambsganss 2004) would

greatly benefit from spectroscopic observations (see Keeton et al. 2006). Second, ellip-

tical sources, which are relevant for inclined disks, may experience much more rapid

variability than circular sources. This effect will surely be important when interpreting

microlensing variability time scales.
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Chapter 6

Prospects for Testing General Relativity with Lensing by

Massive Black Holes

Abstract

Gravitational lensing by massive black holes may provide a way to test theories of

gravity. While the theoretical foundation for such tests has been developed for many

interesting cases, little has been done to determine whether the tests are observationally

feasible. We consider prospects for observing strong lensing by the supermassive black

hole at the Galactic center (Sgr A*). We compute the expected number of lensed stars

in the central cusp, bulge and disk behind Sgr A*. We explicitly include density profiles

and luminosity functions in our analysis, and we count only lenses where the two lensed

images are resolved and bright enough to be detectable. For a K-band magnitude

limit of 17, we find the total number of strong lenses to be 0.56, with the Galactic

disk providing the dominant contribution. This number increases quickly with the

limiting magnitude, reaching roughly 20 for a threshold of K = 21.5 mag. We examine

various systematic uncertainties in our predictions, including extinction by dust. We

also consider massive black holes in other stellar systems. If a globular cluster contains

an intermediate-mass black hole, the probability that it lenses a star on the far side

of the cluster is of order 10−6. By contrast, the supermassive black hole in a typical

massive elliptical galaxy should lens ∼100 stars in its host galaxy, and this number could

reach ∼5800 for a giant elliptical galaxy such as M87. Using our results for Sgr A*, we

consider how strong lensing could be used to constrain theories of gravity, finding that

observations with a resolution of ∼10 micro-arcsec would make this possible.
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6.1 Introduction

Much theoretical work has been devoted in recent years to investigating how gravita-

tional lensing can be used to probe the spacetime around black holes and constrain

theories of gravity. However, a thorough analysis of how these ideas could be tested

observationally has been lacking. The principal concept is that when a light source is

lensed by a compact object, the positions, magnifications and time delays of the images

will differ from their quasi-Newtonian, weak-field values due to higher-order gravity

effects. If the higher-order terms can be measured, they can be used to test general

relativity against alternate theories of gravity.

When a star is lensed by a black hole, there are various effects that may be used to

probe gravity beyond the weak-field limit. A light ray that passes through the strong-

field regime close to a black hole may execute a partial orbit, or even multiple orbits,

on its way to the observer. For example, light from a foreground star can loop halfway

around the black hole, although such “retrolensing” is unlikely to be observed (Holz &

Wheeler 2002). The looping trajectories yield infinitely many images of a background

star, and these “relativistic images” have drawn much theoretical interest (Darwin 1958;

Atkinson 1965; Luminet 1979; Ohanian 1987; Virbhadra & Ellis 2000; Bozza et al. 2001;

Eiroa et al. 2002; Bozza 2002, 2003; Bhadra 2003; Bozza & Mancini 2004; Bozza et al.

2005; Majumdar & Mukherjee 2005a,b; Eiroa 2005; Whisker 2005). Unfortunately,

they are exceedingly faint and will be very difficult to observe (Virbhadra & Ellis 2000;

Petters 2003). The primary and secondary lensed images, which reach the observer

without looping around the black hole, are much more likely to be detectable; and

while they do not pass through the strong-field regime, they may still carry the imprint

of the spacetime beyond the weak-field limit. Keeton & Petters (2005, 2006) have

developed a formalism for computing the higher-order effects on lensing observables for

gravity theories in the post-post-Newtonian framework (which covers a wide range of

generalizations of general relativity). Sereno & de Luca (2006) have recently extended

the formalism to the case of a spinning (Kerr) black hole in general relativity.

Putting these theoretical ideas into practice requires that we identify appropriate
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black holes and background stars, and assess whether detecting the lensed images is

observationally feasible. The Galactic center (GC) provides a natural laboratory for

this work. There is strong evidence that the GC harbors a supermassive black hole

(SMBH) that coincides spatially with the radio source Sgr A*. This conclusion is

based on observations of stars near the GC that execute Keplerian orbits about Sgr

A*. Combining constraints from several stars yields an SMBH mass of (3.6 − 3.7) ×

106M� (Ghez et al. 2005; Eisenhauer et al. 2005), and together with earlier work rules

out alternatives to a single supermassive black hole, such as a dense cluster of stellar

remnants (Maoz 1998) or a concentration of degenerate fermions (e.g., Tsiklauri &

Viollier 1998; Munyaneza & Viollier 2002). The dark cluster hypothesis is difficult to

maintain in light of the measured central density for the dark object at the GC of

>∼ 1013M�pc−3 (Eckart & Genzel 1997; Ghez et al. 1998, 2000; Eckart et al. 2002). For

example, a central density of 2.4×1014M� pc−3 would yield a cluster lifetime of only a

few Myr (Maoz 1998; Eckart et al. 2002). On the other hand, if Sgr A* were a fermion

ball, its total mass and radius would imply a particle mass of ∼ 74 keV c−2 (Ghez et al.

2005), which is several orders of magnitude above upper limits on the neutrino mass

from observations of the cosmic microwave background (Spergel et al. 2003). Thus, the

compactness of Sgr A* is inconsistent with either a dark stellar cluster or a fermion

ball. Although a massive boson star at the GC cannot rigorously be excluded as an

SMBH alternative, accretion of surrounding material would likely cause such an object

to collapse into an SMBH in a time less than the Galactic age (Schödel et al. 2002).

The stars observed to orbit Sgr A* are obvious candidates for lensing. The star

S14, in particular, should produce a secondary image that will attain a peak brightness

of 23.3 in the K-band (Bozza & Mancini 2005). However, this is still much fainter

than the current detection threshold of ∼17 mag. If a star with a somewhat larger

orbit (out to ∼1 pc) passes behind Sgr A*, we would observe a change in its brightness

without resolving the individual images. Alexander & Sternberg (1999) investigated

whether such “microlensing” might be able to explain flares at the GC observed at

x-ray (Baganoff et al. 2001) and infrared (Genzel et al. 2003; Trippe et al. 2007) wave-

lengths with durations of minutes to hours. (While flares could arise from physical
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processes in the accretion disk around the black hole, it was worthwhile to consider

whether microlensing could provide an alternate explanation.) For a spherical black

hole, the microlensing light curve would be symmetric in time. However, there may

be perturbations from stars in the central stellar cusp (Bahcall & Wolf 1977), which

extends ∼10–100 pc from the GC, and from stellar remnants such as neutron stars and

black holes that occupy the central parsec of the Galaxy (Miralda-Escudé & Gould

2000). For sources in the Galactic bulge (Chanamé et al. 2001) and disk (Alexander &

Loeb 2001), the perturbations would increase the magnification and duration of a mi-

crolensing event. They would also increase the microlensing probability (cf. Alexander

& Sternberg 1999), although the overall probability remains small (∼1% within 2 arcsec

of the GC) (Alexander & Loeb 2001). In addition to amplifying the brightness of a

background star, lensing by the Galactic SMBH would also perturb the star’s apparent

position at the level of 0.1–2 milliarcsec (mas) (Nusser & Broadhurst 2004).

One aspect of lensing by Sgr A* that has not been fully explored is the case where

the images of a background source can be spatially resolved. Such strong lensing is

of particular relevance to stars in the bulge and disk, which move too slowly for mi-

crolensing variability to be observed. For example, a star with an orbital radius of

10 kpc would take 500 years to cross the Einstein radius. The first study of strong

lensing by Sgr A* (Wardle & Yusef-Zadeh 1992) considered only the stellar cusp, and

the results were limited by incomplete knowledge of the stellar density profile and lu-

minosity function. One of our goals in this chapter is to carry out a thorough study of

strong lensing by Sgr A*. We consider the full population of stars on the far side of the

Galaxy ranging from ∼1 pc to ∼25 kpc from the black hole, and we incorporate new

data on those populations. We seek to determine how many stars are expected to be

lensed by Sgr A* such that detecting both the primary and secondary lensed images is

observationally feasible.

We also consider lensing by massive black holes in other stellar systems. Although

we lack the data to support a detailed treatment, we can obtain rough estimates for the

expected number of strongly lensed stars in different systems. There is strong evidence

that central black holes are present in galaxies other than the Milky Way (see Kormendy
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& Richstone 1995, for a review). In fact, many galaxies may have black holes with

masses >∼ 108M� at their centers. There have also been claims of intermediate-mass

black holes (IMBHs) in galactic (Gerssen et al. 2002) and extragalactic (Gebhardt et al.

2002; Maccarone et al. 2007) globular clusters. However, a conclusive measurement has

not yet been made, and IMBH alternatives (Gerssen et al. 2003; Baumgardt et al.

2003a,b; Ho et al. 2003) such as a dense cluster of stellar remnants can explain the data

equally well in some cases. It is conceivable that lensing could provide a way to resolve

the controversy.

Our assessment of prospects for observing lensing by massive black holes goes into

the most detail for Sgr A*, since it is the nearest SMBH and therefore the most accessible

laboratory for testing general relativity. In Section 6.2 we compute the expected number

of stars strongly lensed by Sgr A*, using realistic models of the population of stars

behind the black hole, and taking care to consider only lenses for which both images are

detectable. We carefully examine the systematic uncertainties in our lensing forecasts.

In Section 6.3 we broaden our focus and consider lensing by black holes other than

Sgr A*. We derive a rough estimate of the number of lensed stars in elliptical galaxies

containing SMBHs, and in globular clusters containing IMBHs, in order to understand

whether these systems are interesting from the lensing standpoint. In Section 6.4 we

describe how lensing by SMBHs (particularly Sgr A*) may be used to constrain theories

of gravity. We offer concluding remarks in Section 6.5.

6.2 Strong Lensing by the Galactic Supermassive Black Hole

We make detailed calculations for lensing by Sgr A* since it is the nearest supermassive

black hole, and is surrounded by a stellar population whose parameters are reasonably

well constrained. In Section 6.2.1 we identify the populations of stars that could be

lensed, and specify their density profiles and luminosity function. In Section 6.2.2

we derive an expression for the number of stars that are strongly lensed by Sgr A*,

accounting for the fact that we want both lensed images to be resolved and bright

enough to detect. In Section 6.2.3 we present results for fiducial values of the model

parameters, and we consider various systematic uncertainties in Sections 6.2.4–6.2.7.
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We discuss the angular distribution of lensed images in Section 6.2.8.

6.2.1 Stellar Density Profiles and Luminosity Function

In order to compute the number of stars that should be strongly lensed by Sgr A*

we must characterize the stellar population. For our purposes the Galaxy may be

divided into three stellar components. The central SMBH gives rise to a stellar cusp

that extends to ∼ 10–100 pc. The stellar bulge extends out to a few kpc, while the

disk dominates the density profile for radii 3 kpc <∼ r <∼ 25 kpc. We assume spherical

symmetry for the cusp and bulge. For the disk, note that the Solar System is ∼30 pc

out of the midplane of the disk, so a star lying 25 kpc behind Sgr A* along the line of

sight to the GC is only ∼90 pc from the midplane. This is small compared with the

scale height of the disk (Carroll & Ostlie 1996), so we can equate the cylindrical radius

with its spherical counterpart.

Kinematics of stars near the GC implies that the cusp is described by the density

profile (Schödel et al. 2003)

ρcusp(r) = ρ0

[
1 +

(
r

r0

)2
]−α/2

, (6.1)

with central density ρ0 = 3.6 × 106M� pc−3 and core radius r0 = 0.34 pc. The power

law index is α = 1.8, similar to the theoretically expected value α = 1.75 (Bahcall &

Wolf 1977). The cusp is expected to be important only near the GC, so the density

profile in Equation (6.1) should presumably be truncated at some radius, but the precise

value of the truncation radius is unknown. Beyond ∼1 kpc the bulge and disk are the

important stellar components, with the profiles (Kent 1992)

ρbulge(r) = ρ1K0(r/r1) and ρdisk(r) = ρ2e
−r/r2 , (6.2)

where the scale densities of the bulge and disk are ρ1 = 3.53M� pc−3 and ρ2 =

3M� pc−3, respectively, while the scale radii are r1 = 667 pc and r2 = 3001 pc. The

function K0(x) is the modified Bessel function of the second kind.1 The density profiles

of the three components are shown in Figure 6.1.

1Here K0(x) indicates a Bessel function, but elsewhere in this chapter K refers to the 2.2 µm
near-infrared band.
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Figure 6.1 Stellar number density profiles (left vertical axis) of the Galactic cusp (dotted
line), bulge (dashed line), disk (dot-dashed line) and the sum of all three components
(decreasing solid line). The Einstein area (rising solid line) at a given lens-source
distance provides a heuristic measure of the effective cross-section for lensing (right
vertical axis).

The density profiles give the total mass density in stars, but we can observe only a

subset of the stellar population. At optical wavelengths there is too much extinction by

dust along the line of sight for observations of stars in or behind the GC to be practical.

Infrared light is less affected by dust, so modern observations use the near-infrared K-

band (2.2 µm) (e.g., Ghez et al. 2005; Eisenhauer et al. 2005). Therefore, we focus

on stars that emit in the K-band. The number of stars we can actually see depends

strongly on the luminosity function. We write the K-band luminosity function (KLF)

as a power law (Alexander & Sternberg 1999),

φK(L) ∝ L−p with p = 1.875. (6.3)
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The KLF is normalized to unity,∫ ∞

Lmin

φK(L) dL ≡ 1 , (6.4)

where Lmin is the minimum luminosity. Although a realistic stellar population will not

have stars with luminosities greater than some finite threshold Lmax, we can let Lmax →

∞, since bright stars contribute little to the KLF. We assume that this luminosity

function describes all three stellar components (Alexander & Sternberg 1999).

6.2.2 Strong Lensing of a Background Source Population by a Point

Mass

For a source with angular position β relative to the lens, two images are produced with

angular positions2

θ± =
1
2

(
β ±

√
β2 + 4θ2

E

)
, (6.5)

where the Einstein angle for a lens with mass M• is

θE ≡
√

4GM•
c2

DLS

DLDS
. (6.6)

Here DL, DS and DLS are the distances from observer to lens, observer to source, and

lens to source, respectively. The image at θ+ is called the primary image, while that at

θ− is known as the secondary image. The image separation is

∆θ ≡ θ+ − θ− =
√
β2 + 4θ2

E . (6.7)

We require that the two images be resolvable, i.e., ∆θ ≥ θmin for some resolution limit

θmin.

The magnifications of the two images are

µ± ≡ µ(θ±) =
θ4
±

θ4
± − θ4

E

. (6.8)

The primary image is always magnified relative to the unlensed source, while the sec-

ondary image can be magnified or demagnified, depending on θ (or equivalently β).

2Here we consider lensing in the weak-field limit (see §6.4 for comments on corrections to weak-field
lensing).
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The number of stars with two detectable images has the form

Nlens = 2π
∫

DS>DL

neff
∗ (DS , β;Lcut)D2

S sinβ dβ dDS , (6.9)

where neff
∗ (DS , β;Lcut) is the effective stellar number density, i.e., the number density

of stars brighter than the cutoff luminosity, Lcut. It is related to the mass density of

detectable sources, ρeff
∗ (DS , β;Lcut), by (Alexander & Sternberg 1999)

neff
∗ (DS , β;Lcut) =

fK

m̄
ρeff
∗ (DS , β;Lcut) . (6.10)

Here fK is the fraction of stars that emit in the K-band, while m̄ is the mean stellar

mass. In the absence of lensing, the faintest observable source has luminosity Lcut = L0

for some L0. To observe strong lensing, the fainter of the two images must be observable,

so that the luminosity cutoff is given by Lcut = L0/|µ−|. Note that for a flux-limited

survey, the limiting luminosity L0 depends on the distance to the source.

We can now write the effective number density as

neff
∗ (DS , β;Lcut) =

fK

m̄
ρ∗(DS , β)

∫ ∞

Lcut

φK(L) dL (6.11)

=
[
Lmin|µ−(DS , β)|

L0(DLS)

]p−1

n∗(DS , β) ,

where ρ∗(DS , β) is the total mass density, and n∗ ≡ (fK/m̄) ρ∗ is the number density

of K-emitting stars. The number of strong lenses can then be written as

Nlens = 2π
∫ ∞

rmin

r2 dr

∫ π/2

0
ϑ dϑn∗(r)

(
|µ−|

Lmin

L0

)p−1

(6.12)

with galactocentric coordinates (r, ϑ) that are related to the geocentric coordinates

(DS , β) by

DSβ = DLS ϑ ≈ rϑ and DLS = r cosϑ ≈ r . (6.13)

The advantage of galactocentric coordinates is that the density depends only on r,

rather than DS and β. The two coordinate systems are illustrated in Figure 6.2. The

nonzero lower limit rmin of the radial integral comes from the requirement that both

lensed images be resolvable (see §6.2.3).

In addition to the total number of lenses, it is also of interest to compare the number

of lensed images and the number of (unlensed) stars along a given line of sight. Consider
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Figure 6.2 Lensing by a supermassive black hole (SMBH). Light from a background
star (far right) is deflected by an SMBH (filled circle) on its way to the observer (open
circle). As seen by the observer, the true source position is given by the angle β, while
the image positions are θ±. For clarity, only the primary image θ+ is shown. The
integral in Equation (6.12) is performed in terms of galactocentric coordinates (r, ϑ);
see § 6.2.2 for details.

an annulus of radius θ and width dθ (recalling that θ is the angle on the sky measured by

the observer). Let dN∗/dθ be the total number of stars per unit angle, while dNlens/dθ

is the number of lensed images. We first rewrite Equation (6.12) in terms of the source

angle β,

Nlens = 2π
∫ ∞

rmin

D2
s dr

∫
β dβ n∗(r)

(
|µ−|

Lmin

L0

)p−1

. (6.14)

To obtain dNlens/dθ, we must convert from source angle β to image angle θ. Since the

lensing magnification is the Jacobian of the transformation between source and image

planes, we have the relation β dβ = θ dθ/|µ(θ)|. We also need to express µ− in terms of

θ rather than β. To do this, we note that µ(θ) ≡ µ− if θ < θE , while µ(θ) ≡ µ+ = 1−µ−

if θ > θE (Keeton & Petters 2005). Thus, we can write

µ− = µ(θ) Θ(θE − θ) + [1− µ(θ)] Θ(θ − θE), (6.15)

where Θ(x) is the Heaviside step function. Recall that µ also depends on r through θE .

We can now obtain

dNlens

dθ
= 2πθ

∫ ∞

rmin

D2
s n∗(r)

1
|µ|

(
|µ−|

Lmin

L0

)p−1

dr . (6.16)

A similar expression applies to the unlensed stars, with the simplification that the

magnification is unity when there is no lensing, and hence

dN∗
dθ

= 2πθ
∫ ∞

rmin

D2
s n∗(r)

(
Lmin

L0

)p−1

dr . (6.17)
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We compute and discuss dNlens/dθ and dN∗/dθ in Section 6.2.8.

6.2.3 Fiducial Model

The mass of Sgr A* determined from the Keplerian orbits of its nearby stars is usually

taken to be (3.6 − 3.7) × 106M� (Ghez et al. 2005; Eisenhauer et al. 2005). However,

the analysis of stellar kinematics that leads to the stellar cusp model Equation (6.1)

yields a black hole mass of 2.87 × 106M� (Schödel et al. 2003). We adopt the smaller

mass in order to have a consistent model. The lensing cross section scales with the

black hole mass, so it is conceivable that we are underestimating the number of lenses

by ∼25%. We take the distance to the GC to be DL = 8 kpc (Reid 1993). For these

parameters, and assuming an angular resolution of θmin = 0.05 arcsec (Ghez et al.

1998), the condition that the two images be resolvable (see Eq. [6.7]) corresponds to

the condition DLS ≥ 1.71 pc ≡ rmin.3

We use a faint limit of the KLF that corresponds to the absolute magnitude MK
max =

3.5 mag (Alexander & Sternberg 1999). The absolute magnitude of the faintest star that

can be observed depends on the detection threshold K0 and the amount of extinction

along the line of sight, given by AK :

MK
0 = K0 − 5 log

(
DS

1 kpc

)
−AK − 10 . (6.18)

The luminosity ratio appearing in Equation (6.12) is then

Lmin

L0
= 10−0.4(MK

max−MK
0 ). (6.19)

We use the fiducial values K0 = 17 mag (Alexander & Sternberg 1999) and AK = 2.6

mag (Schödel et al. 2007), although we consider other possibilities below.

We numerically integrate Equation (6.12) for each stellar component (cusp, bulge,

and disk). Even though the density profiles naturally decrease with radius (see Fig. 6.1),

it is convenient to impose a finite truncation radius. We truncate the bulge and disk

components at 3 kpc and 25 kpc, respectively, although the specific values are not very

3Strictly speaking, this limit on DLS applies when β = 0. When β > 0 the source can be slightly
closer to the lens and still yield resolvable images, but the difference is not important for our analysis.
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important. The extent of the cusp component is less well defined. We adopt a fiducial

truncation radius of 100 pc, but consider other possibilities in Section 6.2.7.

In contrast with previous work, we do not truncate the angular integral at the

Einstein angle. A source can be located outside the Einstein angle and still be multiply-

imaged, although as β increases, the secondary image gets fainter and falls below the

detection threshold. In practice, we find that integrating ϑ out to 1◦ works well; this

range is large enough to include all the weight in the integral, yet small enough for

small-angle approximations to remain valid.

For our fiducial model we find N c
lens = 0.085, N b

lens = 0.032 and Nd
lens = 0.440, giving

a total of N tot
lens = 0.557. The superscripts denote the cusp, bulge and disk contributions,

respectively. We see that the number of lensed disk stars is nearly an order of magnitude

greater than in the cusp and bulge. While the cusp has a much higher density of stars,

it is confined to small radii, where the lensing cross section is small (see Fig. 6.1). By

contrast, the disk extends to much larger radii, where the lensing cross section is much

larger. It was not obvious a priori whether the increased volume could compensate for

the reduced density to allow the disk to contribute to the lensing signal; clearly it does,

at least for our fiducial model.

6.2.4 Limiting Magnitude

Table 6.1 shows how the number of lenses changes as the limiting magnitude varies. For

comparison, the magnitude of Sgr A* is K = 16.1 in quiescence (Genzel et al. 2003).

The number of lenses increases by a factor of ∼ 60 as the limiting luminosity decreases

by a factor of 100. This comes directly from the luminosity function. The KLF decreases

as L−1.875, so the number of stars brighter than L0 is proportional to L−0.875
0 . When we

decrease L0 by a factor of 100, i.e., from K0 = 16.5 mag to K0 = 21.5 mag, the change

in the number of detectable stars is a factor of 1000.875 = 56.2. (The maximum limit

K0 = 21.5 corresponds to a detection threshold equal to the minimum luminosity of the

KLF.) We see that increasing the limiting magnitude greatly enhances the probability

of observing strong lensing. This is promising because continued observations of the

GC are making it possible to observe fainter and fainter stars.
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Table 6.1 Number of strong lenses for limiting magnitudes, K0 (Col. 1), spanning a
factor of 100 in luminosity. Cols. 2–4 give the number of lenses for the cusp, bulge and
disk, respectively, while Col. 5 gives the total number of lenses.

K0 N c
lens N b

lens Nd
lens N tot

lens

16.5 0.06 0.02 0.29 0.37
17.5 0.13 0.06 0.66 0.85
18.5 0.28 0.11 1.47 1.86
19.5 0.63 0.25 3.30 4.18
20.5 1.42 0.53 7.39 9.34
21.5 3.18 1.20 16.55 20.93

6.2.5 Extinction by Dust

To this point we have assumed that all lines of sight near the GC are subject to 2.6

mag of extinction. There is some spatial variation—Baade’s window has only 0.4 mag

of extinction—although only on scales larger than the Einstein radius even for a distant

source. More problematic is our assumption that all background stars suffer the same

amount of extinction no matter how far behind Sgr A* they are. If the distribution of

dust on the far side of the GC is similar to that on the near side, we would expect a

star in the disk 8 kpc behind Sgr A* to have a total AK = 5.2 mag. If we assume this

value for the entire disk, Nd
lens decreases by a factor of 8.13.

We explore the effect of extinction on Nlens by assuming a simple linear distance

dependence for AK , viz.:

AK(DLS) = 2.6
(

1 +
DLS

8 kpc

)
. (6.20)

This toy model provides a way to assess the importance of dust, while avoiding un-

certainties related to the distribution of dust behind the GC. A complete treatment

of extinction would require detailed knowledge of the dust distribution in the Galaxy,

which is beyond the scope of this chapter. Instead, our main goal is to get a sense of

how much extinction affects our results.

The linear extinction model yields Nlens = 0.084, 0.025 and 0.157 for the cusp, bulge

and disk, respectively. We see that additional extinction is not very important for the



162

    

0.1

0.2

0.3

0.4

0.5

0.6

N
le

ns
(r

)

cuspcusp
bulgebulge
diskdisk
totaltotal

1 2 3 4
log (r/pc)

0.05

0.10

0.15

0.20

0.25

0.30

N
le

ns
(r

)

Figure 6.3 Cumulative number of strongly-lensed stars behind Sgr A* within galacto-
centric radius r. The top panel accounts only for extinction between the observer and
Sgr A* (AK = 2.6 mag) while the bottom panel includes additional extinction between
Sgr A* and a background source (AK = 2.6[1 + r/8 kpc] mag). The dotted, dashed
and dot-dashed curves show the contributions of the cusp, bulge and disk, respectively.
The solid line is the sum of all components.

cusp and bulge, but is significant for the disk (cf. §6.2.3). This makes sense intuitively

since the cusp and bulge are confined to the inner ∼100–1000 pc of the Galaxy, while

the disk extends to 25 kpc from the GC. For comparison, in our linear extinction model

the extinction is AK = 2.63 mag at 100 pc, 3.58 mag at 3 kpc and 10.7 mag at 25 kpc.

To facilitate comparison between the two extinction models, we plot the cumulative

number of strong lenses within radius r in Figure 6.3. We show the separate con-

tributions from the cusp, bulge, and disk, as well as the total. The cusp and bulge

contributions are virtually identical in the two extinction models. The differences are

clearly in the disk contribution, which rises more slowly and saturates at a lower value
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of Nlens(r) in the linear extinction model.

When interpreting these results, it is important to remember that our model for AK

is overly simplistic. In particular, since dust is largely confined to the central regions

of the Galaxy, our model probably overestimates the extinction for distances >∼8 kpc

behind the GC. Again, for our purposes, the important thing is to have an estimate of

how uncertainty in the amount of extinction affects the expected number of lenses.

6.2.6 Slope of the Luminosity Function

We now consider how Nlens depends on the assumed KLF. We focus on the power

law index p, because the effects of varying Lmin can be understood in terms of our

earlier discussion of the limiting magnitude (§6.2.4). The power law index p = 1.875

was derived from observations of the bulge (Blum et al. 1996), and it agrees with

stellar population-synthesis models (Alexander & Sternberg 1999). It seems reasonable

to apply this value to the cusp as well. However, there may be a different stellar

population and hence KLF in the disk.

In Figure 6.4 we see that Nlens decreases as p increases. As we vary p by ±0.2,

Nlens varies by a factor of 5. We can understand the result qualitatively as follows.

Increasing p means making the KLF steeper, which means that more of the stars are

fainter, so the number of stars (and hence lenses) brighter than our magnitude limit is

smaller. The quantitative scaling is more complicated, because the terms in Equation

(6.12) that involve p vary with position. Thus, the p dependence cannot be isolated,

and it ought to be different for stellar components with different spatial distributions.

The cusp and disk curves in Figure 6.4 are in fact not quite parallel to each other.

Nevertheless, it is interesting to see that the variation in Nlens with p is quite similar

for the two very different source populations.

6.2.7 Truncation Radius of the Cusp

Taken at face value, the model for the stellar cusp given by Equation (6.1) implies that

the cusp component dominates the density out to ∼1 kpc, and always exceeds the bulge

density (see Fig. 6.1). This is implausible, because the cusp owes its existence to the
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Figure 6.4 Number of strongly-lensed stars behind Sgr A* vs. the power-law slope, p, of
the KLF. The solid and dotted curves denote the disk and cusp contributions to Nlens,
respectively. The two curves are similar but not quite parallel.

SMBH, so it should not continue to dominate well beyond the black hole’s sphere of

influence. Formally, the problem is that the profile in Equation (6.1) was determined

from observations of stars in the central few parsecs, and should not be extrapolated to

arbitrarily large radii. In our fiducial model we truncate the cusp component at 100 pc,

which is consistent with earlier studies of lensing by Sgr A* (Alexander & Sternberg

1999). However, as the truncation is not well constrained by physical considerations,

we wish to understand how changing the truncation radius affects the number of strong

lenses.

For cusp truncation radii of 10 pc, 100 pc, 1 kpc, and 10 kpc, we find N c
lens = 0.03,

0.08, 0.17, and 0.28, respectively. The truncation of the cusp produces a prominent
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Figure 6.5 Angular distribution of lensed images. The solid lines give the number of
lensed images per arcsecond (dNlens/dθ), while the dotted lines show the number of
stars per arcsecond (dN∗/dθ). The three panels show the contributions of the cusp
(left), the disk (middle), and their sum (right). Note that the angular range differs
from one panel to the next.

bump in the plot of the cumulative number of lenses within galactocentric radius r

(see Fig. 6.3). The fact that this bump moves around, and N c
lens changes, as we vary

the truncation radius indicates that precise predictions for lensing will require more

knowledge of how the cusp density decreases and blends into the bulge. (Understanding

this would be of general interest for GC studies, beyond our specific focus on lensing.)

Nevertheless, since a reasonable cusp provides a modest contribution to the total lensing

signal, the details do not affect our general conclusions about lensing by Sgr A*.

6.2.8 Angular Distribution of Lensed Images

In order to observe strong lensing by Sgr A*, we will need to distinguish lensed images

from unlensed stars, and from Sgr A* itself. Since lensed images tend to form in

the vicinity of the Einstein radius, they will have a different distribution on the sky

than unlensed stars. (The Einstein radius depends on the distance to the source, of

course, but our formalism automatically accounts for this effect.) We use the functions

dNlens/dθ and dN∗/dθ from Equations (6.16) and (6.17) to identify the regions near

Sgr A* where it is most favorable to look for lensed images.

Figure 6.5 shows dNlens/dθ (solid lines) and dN∗/dθ (dotted lines) for the cusp, the

disk, and the combination, using our fiducial model. (We omit the bulge component
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here since our previous analysis has shown that it provides only a modest contribution

to the number of lenses.) For both the cusp and disk, dN∗/dθ increases linearly with

observing angle; this is simply a consequence of the increasing size of the annulus, and

is evident from Equation (6.17). The slope of the line is determined by the integral of

the number density of stars along the line of sight, and is much steeper for the cusp

than for the disk, when looking within a few arcsec of the GC.

The dependence of dNlens/dθ on observing angle is more complicated. For angles

much larger than the Einstein radius, if we see a lensed image it will be the brighter

image (θ = θ+), and its counter-image at θ− may be too faint to be detected. Specif-

ically, at large θ we have µ ≈ 1 + (θE/θ)4 and µ− ≈ −(θE/θ)4 from Equations (6.8)

and (6.15). Then Equation (6.16) yields dNlens/dθ ∝ θ5−4p, where p is the slope of the

KLF. For our fiducial value p = 1.875, this yields dNlens/dθ ∝ θ−2.5 at large angles.

For observing angles much smaller than θE , any lensed image present will be the

fainter image (θ = θ−), and the closer it is to the lens the fainter it will be. This is

counteracted to some degree by the slope of the KLF. Specifically, µ− ≈ −(θ/θE)4 at

small θ, so Equation (6.16) yields dNlens/dθ ∝ θ4p−7. For our fiducial value p = 1.875,

this yields dNlens/dθ ∝ θ0.5 at small angles. Note that if we had p < 1.75 the function

dNlens/dθ would actually diverge at small θ.

The angular range in which dNlens/dθ is appreciable depends on the Einstein radius

and hence the distance to the source. Since cusp stars have small Einstein radii, to

see lensing it would be ideal to observe within θ <∼ 0.05 arcsec, although this would be

challenging given that the flux from Sgr A* itself fills the central resolution element.

Even at θ = 0.3 arcsec, though, the prospects of observing lensing are still reasonable:

unlensed stars outnumber lensed images by about a factor of 120, which is actually

smaller than the ratio of unlensed to lensed quasars.

For disk stars, the greater distance to the source causes the dNlens/dθ curve to

peak at a larger angle θ ≈ 0.6 arcsec. At this angle the number of lensed images is

comparable to the number of lensed stars. Even for an angle as large as θ = 3 arcsec,

the factor by which stars outnumber lensed images is only about 60. In other words,

the “background” of unlensed stars is not such a daunting problem, at least within a
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few arcseconds of Sgr A*.

6.3 Lensing by Massive Black Holes in Other Systems

We now turn to black holes other than Sgr A* and make simple estimates (rather than

detailed predictions) to understand whether it may be worthwhile to look for lensing

in other stellar systems.

Stellar dynamical observations have recently provided good evidence for supermas-

sive black holes (SMBHs) in nearby galaxies, and revealed correlations between the

mass of the black hole and the properties of the host galaxy, including the velocity

dispersion (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002), mass

(Magorrian et al. 1998), and luminosity (McLure & Dunlop 2002) of the bulge, and

the rotational velocity of the disk (Ferrarese 2002; Baes et al. 2003). Outside of the

nearby universe, SMBH masses have been probed only in Active Galactic Nuclei (AGN)

through reverberation mapping (Kaspi et al. 2000; Peterson et al. 2004). Some previous

work has considered whether lensed quasars can be used to constrain SMBH masses

in distant lens galaxies (Bowman et al. 2004; Rusin et al. 2005), although the method

relies on faint, “central” lensed images that are difficult to detect, and can probe only

a narrow range of black hole masses. Rather than considering lensing of background

quasars, we focus on lensing of stars within the galaxy hosting an SMBH.

There is evidence from velocity dispersion measurements (Gebhardt et al. 2002)

and x-ray observations of an accretion flow (Maccarone et al. 2007) for intermediate

mass black holes (IMBHs) in two extragalactic globular clusters, although a definitive

discovery of an IMBH has yet to emerge (Gerssen et al. 2002, 2003; Baumgardt et al.

2003a,b; Ho et al. 2003). There are also theoretical reasons to believe globular clusters

may host IMBHs. In these dense stellar systems, frequent interactions between stars

would likely cause a black hole to form, which would then grow to the appropriate

mass through accretion of nearby stars and stellar-mass black holes (Miller & Hamilton

2002). The velocity dispersions of globular clusters correspond to what we would expect

for the host of an IMBH, if the correlation between black hole mass and host velocity
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dispersion can be extrapolated downwards. The formalism we develop to consider

lensing by SMBHs in galaxies may also be applied to lensing by IMBHs in globular

clusters.

We seek an order-of-magnitude estimate of the number of lenses in a dynamical

system containing a black hole of mass M• that is surrounded by stars with mass M∗

(we assume the stars are identical for simplicity) and number density n∗. If M• �M∗

the black hole dominates the lensing signal (there is little star-star lensing). We estimate

the number of lenses as the number of stars within the black hole’s Einstein area, πR2
E :

Nlens ∼
∫

DLS>0
πR2

E n∗ dDLS . (6.21)

This estimate omits many of the details that we included for Sgr A* (cf. Eq. [6.12]);

in particular, it considers sources only out to the Einstein angle, and counts stars of all

luminosities. Nevertheless, it is adequate for our purposes here.

To obtain n∗, we first use the virial theorem to estimate the total mass of a system

with velocity dispersion σ and size L to be Mtot ∼ σ2L/G. If the stars are uniformly

distributed, the number density is

n∗ ∼
3σ2

4πGM∗L2
. (6.22)

Although the assumption of uniform density is not realistic, it is consistent with our

goals in this section.

The Einstein radius, RE ≡ DS θE , can be written as

RE =

√
4GM•
c2

DSDLS

DL
≈

√
4GM•DLS

c2
. (6.23)

In the second step we make the approximation DL ≈ DS , which is reasonable for the

systems of interest: globular clusters typically have DL >∼ 10 kpc and DLS ≤ L ∼ 10

pc; while galaxies are at distances DL >∼ 1 Mpc and have sizes L ∼ 10 kpc.

We can then evaluate the integral in Equation (6.21) to find

Nlens ∼
3
2
M•
M∗

(
σ

c

)2

. (6.24)
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To proceed further, we estimate the black hole mass from the M•–σ relation (Tremaine

et al. 2002),

M• = 1.35× 108
(

σ

200 km s−1

)4.02

M� . (6.25)

(We neglect the scatter in this relation since it has little impact on our estimates.) This

relation is observed to hold for nearby galaxies; we assume that it can be extended

down to the velocity dispersions of globular clusters, since the IMBH masses it predicts

are consistent with theoretical models.

Using Equation (6.25) in Equation (6.24), and assuming the stars have mass M∗ ∼

M�, we obtain an estimate for the number of lensed stars that depends only on the

velocity dispersion of the system:

Nlens ∼ 1.3× 10−6
(

σ

10 km s−1

)6.02

(6.26)

∼ 90
(

σ

200 km s−1

)6.02

. (6.27)

The reference units for σ in these relations are appropriate for globular clusters and

galaxies, respectively. Recall that this is our estimate for the number of stars in a

globular cluster or galaxy that are lensed by a massive black hole within the same

stellar system.

We see that the lensing optical depth is very small for a globular cluster; we would

need to observe on the order of a million clusters to have a good chance of finding

an instance of lensing. It is worth saying that high stellar density in globular clusters

could invalidate our assumption that the only object relevant for lensing is the central

IMBH (cf. Chanamé et al. 2001; Alexander & Loeb 2001). Including the effects of other

stars could enhance the optical depth. Nevertheless, the enhancement would have to

be dramatic to make globular clusters viable candidates for lensing.

The situation is very different in galaxies. Our estimate indicates that for a typical

massive elliptical galaxy with σ ∼ 200 km s−1 there ought to be ∼100 stars that are

strongly lensed. For a particularly massive galaxy, such as the giant elliptical M87 with

σ ∼ 400 km s−1, the number of lensed stars could approach ∼5800. It is interesting

to speculate about how we might look for evidence of this lensing. We could not
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resolve individual lensed stars; rather, we would see an enhancement of the flux on an

angular scale comparable to the Einstein radius, which for M87 is θE ∼ 0.02 arcsec.

Roughly speaking, half the stars within this radius (those behind the black hole) would

be magnified, and the average magnification for a point mass lens is 〈µ〉 =
√

5, so in

total the flux within ∼ θE would be enhanced by a factor of ∼1.6. A more careful

analysis would account for the variation in both the Einstein radius and stellar density

with radius in the galaxy. While that is beyond the scope of this chapter, it would be

worthwhile to consider, since we conclude that every massive elliptical galaxy ought to

contain many stars that are strongly lensed by the SMBH at the center of the galaxy.

6.4 Constraining Gravity with SMBH Lensing

Having found that it may be possible to observe lensing of stars by SMBHs, we now

consider the prospects that such observations would allow us to probe the spacetime

geometry around a black hole and thereby test general relativity and other theories of

gravity. We return our focus to Sgr A*, because it is still the best place to look for

black hole lensing, and because the formalism we developed in Section 6.2 permits us to

forecast in some detail the ability of lensing observations to constrain gravity theories.

Keeton & Petters (2005, 2006) have presented a theoretical framework for lensing

by a static, spherically symmetric compact object in the post-post-Newtonian (PPN)

framework. Their formalism rests on three assumptions, all of which hold for our

example: (i) The spacetime geometry far from the lens is flat. (ii) Both the observer

and source lie in the asymptotically flat region of the spacetime; indeed, the smallest

galactocentric distance we use is DLS ∼ 1 pc, whereas the gravitational radius of Sgr

A* is GM•/c
2 ∼ 10−7 pc. (iii) The impact parameter of a light ray is much larger

than the lens’s gravitational radius; as we shall see, the ratio of light impact parameter

to lens gravitational radius is >∼ 104 in our examples. With these assumptions, the

properties of the lensed images can be written as Taylor series in the parameter

ε ≡ θ•
θE

=
RE

4DLS
, (6.28)
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where

θ• ≡ tan−1
(
GM•
c2DL

)
≈ GM•
c2DL

(6.29)

is the angle subtended by the gravitational radius of the black hole, and RE ≡ DSθE

(cf. Eq. [62] in Keeton & Petters 2005). For example, one of the more interesting Taylor

series involves the geometric mean of the image positions,

|θ+θ−|1/2 =
A1

4
θE +

A2(A1 + 2β̂2)
4A1(A1 + β̂2)1/2

θE ε+O
(
ε2
)
, (6.30)

where β̂ = β/θE is the dimensionless source position. The constants A1 and A2 depend

on the gravity theory. In general relativity A1 = 4 and A2 = 15π/4, while in the PPN

framework these constants can be expressed in terms of the usual PPN parameters

(α′, β′, γ′, δ′) as

A1 = 2(α′ + γ′), (6.31)

A2 =
π

4
[
8α′(α′ + γ′)− 4β′ + 3δ′

]
. (6.32)

Measurements of light bending by the Sun constrain A1 = 3.99966± 0.00090 (Shapiro

et al. 2004), but there are currently no good observational constraints on A2. It is

interesting to consider whether we can use black hole lensing to measure A2.

Keeton & Petters (2005, 2006) discuss this issue in some detail; here we mainly want

to use the expansion parameter ε to quantify the amplitude of higher-order effects. First

consider some illustrative examples. We fix the mass and distance of Sgr A* as given

in Section 6.2.3. Then a cusp star with DLS = 1 pc has ε = 1.9 × 10−4. A bulge

star with DLS = 1 kpc has ε = 6.2 × 10−6. Finally, a disk star with DLS = 10 kpc

has ε = 2.8 × 10−6. To give more detail, we use our formalism4 from Section 6.2 to

compute the cumulative number of lenses for which the correction terms are larger than

ε, which is plotted in Figure 6.6. Note that ε� 1, which verifies assumption (iii) of the

formalism, and also indicates that we have not made large errors by using weak-field

lensing in Section 6.2.2.

4Specifically, for each value of ε, we solve for the corresponding value of DLS and use this as the
upper limit for the radial integral in Equation (6.12).
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Figure 6.6 Cumulative number of strongly-lensed stars behind Sgr A* for which the
PPN expansion parameter is larger than ε. The expansion parameter quantifies the
strength of higher-order corrections to the usual weak-field approximation for lensing.
The solid curve assumes our fiducial model (§ 6.2.3), including the limiting magnitude
K0 = 17. The dotted curve assumes our linear extinction model (§ 6.2.5). The bump
at log ε ∼ −4.75 is caused by truncating the cusp at r = 100 pc (cf. Fig. 6.3).

We can think of ε as an order-of-magnitude estimate for the fractional corrections

to the image positions, magnifications, and time delays. Measuring such small changes

to the image brightnesses would be very challenging. Measuring such corrections to the

time delay may be feasible if the source varies rapidly, as would be the case for a lensed

pulsar. However, since pulsars comprise a small fraction of stars, it seems unlikely that

we will be so fortunate as to observe a lensed pulsar.

For the image positions, it is more interesting to consider the absolute correction

term, which is of order ε θE = θ• (cf. Eq. [6.30]). Notice that the position correction

is independent of the distance from the lens to the source. For Sgr A* the correction



173

is of order θ• = 3.5 µas. While this level of astrometric precision is not currently

feasible, it could be achieved with future instruments such as the Space Interferometry

Mission (Unwin et al. 2008) and the Global Astrometry Interferometer for Astrophysics

(Perryman et al. 2001) if these instruments include near-infrared capabilities.

If µas-level precision is achieved, how could we identify higher-order effects? From

Equation (6.30), the geometric mean of the image positions is independent of the source

position in the weak-field limit. Therefore, if we observe lensing of a source that moves

and we find that |θ+θ−|1/2 varies with time, we will know we have detected higher-

order effects. A source moving with the typical Galactic velocity of 220 km s−1 will

move (0.1, 0.03, 0.01) Einstein radii per year if it lies (10, 100, 1000) pc from Sgr A*.

Therefore, in order to test theories of gravity with black hole lensing, our best hope

is to observe lensing of a cusp star and then monitor the images as the source moves.

Based on our results in Section 6.2.4, we are optimistic that this will be possible as

observations of the GC continue.

6.5 Conclusions

We have considered prospects for testing theories of gravity with lensing by massive

black holes, with particular emphasis on the Galactic SMBH Sgr A*. While previous

authors have focused on theoretical aspects of black hole lensing, we have considered

many practical issues that must be addressed before the theory can be implemented.

In particular, we have sought to assess the likelihood that SMBH lensing can actually

be observed.

We have complemented earlier work on lensing by massive black holes in several

important ways. For the case of Sgr A*, we have focused on strong lensing, where the

two images of a background star can be resolved. We have found that stars in the disk

actually contribute more lenses than stars in the bulge or the central cusp; the lensing

cross section for stars in the disk is high enough to compensate for the lower stellar

density in the disk beyond the GC. Using the K-band luminosity function, we have

explicitly computed the number of lenses for which both images are brighter than some
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detection threshold. Using our fiducial parameters, we find the expected number of

lenses to be in the range ∼0.3–0.6 for the present magnitude limit K = 17 mag, where

the range encompasses the choice of extinction model. Raising the magnitude limit to

K = 18.5 mag increases the expected number of lenses by a factor of ∼3.

Our encouraging results for Sgr A* motivated us to consider black holes in other

stellar systems. Even if globular clusters contain intermediate-mass black holes, the

lensing probability is very low (∼ 10−6), so lensing does not seem to provide a use-

ful method for confirming or refuting the existence of IMBHs. Our results are more

promising for supermassive black holes in other galaxies. A typical galaxy could contain

∼100 lensed stars; the number of lenses could reach ∼5800 for galaxies such as M87

that contain central black holes with masses in excess of ∼ 109M�. This effect could be

observable as an increase in the flux inside the Einstein radius, which is ∼0.02 arcsec

for M87.

Having established that there is a reasonable chance of observing SMBH lensing in

either the Milky Way or an external galaxy, we considered whether such observations

would allow us to probe gravity beyond the weak-field limit. For Sgr A*, measuring the

image positions with microarcsecond-scale resolution would make it possible to detect

higher-order gravity effects and test general relativity against alternate theories. Of

course, the first step is to discover a strongly lensed star.

Acknowledgments

We thank Tal Alexander, Reinhard Genzel, Avi Loeb, M. Coleman Miller, and Tad

Pryor for helpful discussions.

Bibliography

Alexander T., Loeb A., 2001, ApJ, 551, 223

Alexander T., Sternberg A., 1999, ApJ, 520, 137

Atkinson R. d., 1965, AJ, 70, 517



175

Baes M., Buyle P., Hau G. K. T., Dejonghe H., 2003, MNRAS, 341, L44

Baganoff F. K., Bautz M. W., Brandt W. N., Chartas G., Feigelson E. D., Garmire

G. P., Maeda Y., Morris M., Ricker G. R., Townsley L. K., Walter F., 2001, Nature,

413, 45

Bahcall J. N., Wolf R. A., 1977, ApJ, 216, 883

Baumgardt H., Hut P., Makino J., McMillan S., Portegies Zwart S., 2003a, ApJ, 582,

L21

Baumgardt H., Makino J., Hut P., McMillan S., Portegies Zwart S., 2003b, ApJ, 589,

L25

Bhadra A., 2003, Phys. Rev. D, 67, 103009

Blum R. D., Sellgren K., Depoy D. L., 1996, ApJ, 470, 864

Bowman J. D., Hewitt J. N., Kiger J. R., 2004, ApJ, 617, 81

Bozza V., 2002, Phys. Rev. D, 66, 103001

—, 2003, Phys. Rev. D, 67, 103006

Bozza V., Capozziello S., Iovane G., Scarpetta G., 2001, General Relativity and Grav-

itation, 33, 1535

Bozza V., de Luca F., Scarpetta G., Sereno M., 2005, Phys. Rev. D, 72, 083003

Bozza V., Mancini L., 2004, General Relativity and Gravitation, 36, 435

—, 2005, ApJ, 627, 790

Carroll B. W., Ostlie D. A., 1996, Modern Astrophysics. Reading, MA: Addison-Wesley
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