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Abstract of the Thesis 

INFRARED SPECTRAL AND STATISTICAL ANALYSIS OF LEAF LITTER 

DECOMPOSITION FROM THE NEW JERSEY PINE BARRENS 

By KRISTIN LAMMERS 

Thesis Directors: Professors Georgia Arbuckle-Keil and John Dighton 

 

The soil of the New Jersey pine barrens is developed from porous, sandy and acidic 

deposits.  The cycling of mineral nutrients and leaf litter decomposition within this low 

nutrient environment is important for sustained forest growth. Periodic disturbances through 

fire can be an important influence on the cycling of nutrients within the ecosystem.  The 

control burns release mineral nutrients, but the changes in the organic composition of leaf 

litter and soil humus need to be characterized.  Fourier-transform infrared spectroscopy (FT-

IR) was used to compare the chemistry and chemical changes in composition of leaf litters 

before and after a fire.  Principal component analysis (PCA) of the presence/absence of 

vibrational modes in addition to differentiated IR spectra revealed changes in the 

carbohydrate chemistry of leaf litter at each temperature. Analysis of the identical IR data 

using numerical values gave supplementary and complementary data to the original binary 

presence and absence.  

Evolved gas analysis (EGA) was applied to each litter species using Thermal 

Gravimetric Analysis (TGA-IR) to further characterize the changes induced by heating.  

EGA indicated that CH, CO2 and CO along with other IR regions of gases evolved while 

heating from ~225˚C to ~600˚C.  Time series ANOVA verifies different weight loss steps in 

the IR gaseous regions. FT-IR microspectroscopy highlighted differences between the 

adaxial and abaxial sides of leaves as well as between undisturbed and decomposed leaves.  
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Chapter One: An Introduction to the Pine Barrens Ecosystem, Infrared 

Spectroscopy and Leaf Litter Chemistry 

 

I.  Introduction 

The pine barrens of New Jersey is an oligotrophic pine-oak ecosystem that has 

been given International Biosphere status.  This natural area covers about a third of New 

Jersey with its most extensive tracts along the middle Atlantic Seaboard, and yet only 25 

miles from Philadelphia and 35 miles from New York City. The core areas of the pine 

barrens lie mainly in 55-60% of Burlington County, together with all of Ocean County, 

and small segments of Camden and Atlantic Counties (Boyd, 1991).  These areas also 

comprise the drainage areas of the Toms, Mullica and Batsto Rivers as well as the 

Rancocas Creek in Burlington County and the Great Egg Harbor and Tuckahoe rivers in 

Atlantic and Camden Counties (Boyd, 1991). A map illustrating the extent of the NJ pine 

barrens and the some of the sampling sites in shown in Figure 1.   

The names used to describe this area in New Jersey, termed as the “pine barrens” 

or “pinelands,” are usually used interchangeably.  Early settlers referred to this unique 

area as “barren” for the reason of incapable growth of crops and vegetables due to the 

sandy, acidic soil (Boyd, 1991).  However, in modern times, these regions are not 

“barren” due to the fact that many forms of plant life like the beech family, pine family 

and the heath family (huckleberry, blueberry and cranberries) do well in these sandy soils  

(Boyd, 1991) despite the fact that it is still termed the pine barrens.  The term “pinelands” 

actually refers to the part of the pine barrens landscape that is protected by federal and 

state legislation (Boyd, 1991). The term pine barrens is preferred because ecologically, it 
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refers to a larger area in New Jersey (1.25 - 1.4 million acres) than the protected 

pinelands (Boyd, 1991).   

Most of the area is entirely forested, lacks industrialization and is sparsely 

inhabited.  The current industries present in the pine barrens include cranberry and 

blueberry crops, eco-tourism and recreation. Both cranberries and blueberries are native 

to the region, thriving in sandy soils with high water tables. New Jersey's cranberry 

production, which ranks third nationally, is carried out almost exclusively in the 

Preservation Area, which includes an Ocean Spray® plant (Boyd, 1991). 

1.1  Leaf Species 

The New Jersey pine barrens ecosystem depends on three main families of plant 

species commonly found in this area.  Of the few types of pine trees present in the region, 

pitch pine (Pinus rigida) is the most typical and abundant tree species.  Pines are 

softwood, evergreen trees. However, not all of their needles die and fall to the ground 

(Boyd, 1997).  Few fall off and the remaining green needles stay on the tree.  Pitch pine 

is also the tree the pine barrens is known for and represented by.  Its irregular and thick 

bark makes it resistant to fires and its dense mats of needles growing from the trunk and 

branches make it unique only to this pine (Boyd, 1997).  

In the beech family, white oak (Quercus alba), well represented among the oaks, 

also creates the forest canopy.  Oaks are hardwood, deciduous trees.   They shed all of 

their leaves and remain bare in the winter months (Boyd, 1997).  In general, the oak and 

pine species actually compete for survival in the pine barrens’ forest canopy despite 

being different types of tree species. 
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In addition to the two families already discussed, there exists another plant family 

prominent in the pine barrens. The heaths dominate the shrub layer of the pine barrens, 

and black huckleberry (Gaylussacia baccata) leads the ericaceous shrub layer and is also 

the most abundant of this family (Boyd, 1997).  Cranberries and blueberries also are 

included in this shrub family.  These members of the heath family do better than the other 

plant species families of the pine barrens due to their ability to tolerate the low nutrient 

and acidic soil conditions. 

  The soil of the region is nutrient poor with much of the nutrient capital 

concentrated in above ground and forest floor organic material (Boerner et al., 1988), 

therefore the cycling of mineral nutrients and leaf litter decomposition within this low 

nutrient environment is very important for sustained forest growth and the root systems 

of plants have evolved to avoid nutrient loss by leaching (Garnett et al., 2004). In this 

forest, rates of atmospheric nutrient addition are low and internal cycling of nutrients is 

important for forest productivity (Wang, 1984). Nitrogen deposition within the area is 

between 3.6 – 7.8 kg ha-1 y-1 (kg/hectare year) (Dighton et al., 2004).  Mineralization 

processes are conservative to prevent nutrient and carbon loss leaching through the sandy 

soil.   

 

II.  Control Burns 

The pine barrens is a region of fires.  The pine barrens ecosystems are fire 

adapted, thus periodic disturbances through fire can be an important influence on the 

cycling of nutrients within and through an ecosystem.  These fires can accelerate the 

return of nutrients to circulation by breaking down organic matter that has nutrients 
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locked up (Whelan, 1995).  The present pine barrens and its vegetation have been shaped 

in large part by extensive wildfires.  The highly flammable vegetation burns readily. 

These fires that are fueled by the resins of the pitch pines and the dried out but still-

resinous leaves of the various huckleberries repeatedly burn off all the aboveground 

vegetation as well as the duff on the dry forest floor (Boyd, 1991).  However, many 

crown fires are fast moving and deep penetration of fire into soil is rare.  As a result, few 

plants are actually killed by fire, and plant remnants have adopted strategies for regrowth 

such as epicormic buds in pitch pine and root crown buds in the ericaceous shrubs such as 

huckleberry and the shrub form of the oak community (Forman, 1998).  This display of a 

defense mechanism is not true of the tree form of the oak community.  Fire, in fact, 

enhances the growth and survival of many hardwood species while increasing soil 

nutrient availability.   

Prescribed or control burning began in 1928 and became an official policy in 

1947 by the New Jersey Division of Parks and Forestry mainly to suppress wildfires and 

protect property (Boyd, 1991). These managed burns are significantly different from 

wildfires in that they are set on the forest floor during the winter and against the wind, 

thus they burn slower and with lower intensity than a wildfire.  These controlled fires are 

designed to burn off the ground cover of dead, dry leaves, pine needles and fallen 

branches to reduce fuel (Boyd, 1991).  Since these fires are part of large-scale 

management of the ecosystem, they are ecologically and economically important.   

The temperatures achieved in a prescription fire regime are termed “cool” due to 

temperatures being less than 800ºC whereas temperatures in wildfires usually exceed 

1000ºC.  The heat of the fire decreases rapidly down the soil profile in moist soils since 
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vaporizing water molecules absorb the heat of the fire (Debano, 2000).  These prescribed 

fires are cool given that there is the potential for organic compound degradation and 

carbon oxidation to be complete at temperatures of 400-500ºC.  The temperature of these 

burns varies on a micro-spatial scale, due to the patchy distribution of leaf litter species 

and mass. The control burns release mineral nutrients (Tuininga et al., 2002), but the 

changes in the organic composition of leaf litter and soil humus need to be characterized. 

Consequently, studies of chemical changes in leaf litter species during natural and 

thermal decomposition can give some understanding of the changes in resources 

available to plants and microbes.   

Disturbance by fire causes inorganic nutrients to be mineralized from organic 

material thus enabling nutrients to be available for species. Gray and Dighton (2006) 

have determined the temperature dependant mineralization dynamics of the characteristic 

litter species.  These results indicate that both the temperature of a fire and the litter 

species composition affects the availability of inorganic nutrients after a prescribed burn. 

It was also reported that black huckleberry leaf litter was the most nutrient rich, with 

soluble nitrogen, sulfur, phosphate, calcium and magnesium becoming available upon 

heating to 200°C. They also reported that pitch pine was the most nutrient poor, with low 

rates of nutrient mineralization and white oak falling somewhere in between in rates of 

mineralization.  Leaf litters had different patterns of nutrient release and binding.  For 

example, huckleberry had a bimodal ammonium-N release pattern (100 and 300˚C) 

whereas pine and oak had a single release at 300˚C. One of the primary goals of this 

present work is to provide information on the thermal decomposition processes and 

changes of leaf carbohydrate chemistry of oak, pine and huckleberry leaf litter over a 
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range of temperatures, in relation to control burns by using the same temperature range as 

Gray and Dighton (2006).  

 

III.  Fourier Transform Infrared Spectroscopy (FT-IR) 

3.1  Theory 

Fourier transform-infrared (FT-IR) absorption spectroscopy is a powerful 

analytical tool for identifying organic and inorganic compounds.  Mid-infrared 

spectroscopy occurs within the 4000-400 cm-1 region of the electromagnetic spectrum 

(Figure 2).   The process that generates an infrared spectrum involves infrared energy 

that excites vibrational transitions (Skoog et al, 2004).  However, the way infrared 

spectroscopy measures vibrational energy of a molecular species is limited due to 

selection rules.  In order for a molecule to absorb infrared radiation, it must exhibit a 

dipole moment change during vibration (Drago, 1977; Housecroft and Sharp, 2005).  As 

a result, homonuclear diatomic molecules will not absorb infrared radiation (Drago, 

1977).  The second selection rule stems from quantum mechanics.  This selection rule is 

derived from the harmonic oscillator approximation and states that transitions for which 

∆ν = + 1 are allowed (Drago, 1977).  Most transitions will occur from the initial state, ν0, 

to ν1 and the frequency corresponding to this energy is the fundamental frequency 

(Drago, 1977).  Since most molecules are not perfect harmonic oscillators, transitions 

from ν0 to ν2 and ν0 to ν3 occur and are referred to as overtones (Figure 3) (Drago, 1977).   

Vibrational spectroscopy also deals with the degrees of vibrational freedom.  The 

vibration of a molecule depends on the number of atoms and bonds.  For linear and 

nonlinear molecules with N molecules, there are 3N degrees of freedom, which describe 
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the rotations, translations and vibrations of the molecule (Mirabella, 1998; Housecroft 

and Sharp, 2005).  For non-linear and linear molecules, there are 3N-6 and 3N-5 degrees 

of vibrational freedom, respectively (Housecroft and Sharp, 2005; Mirabella, 1998).  

These forms of vibration can be described as either stretching or deformation modes.  In a 

stretching mode, a molecule’s bond lengths are affected in either an asymmetric or 

symmetric way. In a deformation mode (bending), a molecule’s bond angles change and 

a wide array of deformation modes exist as the number of functional groups varies in a 

molecule (Mirabella, 1998).  There are several types of bending modes including 

scissoring, wagging, rocking and twisting as well.  An illustration of the types of 

stretching and bending vibrational modes is shown in Figure 4.  These normal vibration 

modes that are observed in the infrared spectrum are described by what is called the force 

constant.  The frequency of a vibration is described by the equation, (where K is the force 

constant and μ is the reduced mass of the vibrating atoms μ =
m1 ∗ m2

m1 + m2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ): 

ν =
1

2πc
K
μ

 

The force constant varies as the bonds vary since it is proportional to the strength of the 

covalent bond linking the two bonded atoms (m1 and m2).  For instance, the force 

constants for double bonds (C=C, ν  = 1650 cm-1, K= 1000 N/m) are twice as strong as 

single bonds (C-C, ν  = 1200 cm-1, K= 500 N/m).  In the same way, force constants for 

triple bonds (C≡C, ν  = 2150 cm-1) are three times as strong as double bonds (Pavia et 

al., 2001). Similarly, as the mass of atoms increase, μ increases and ν  decreases (Pavia et 

al., 2001).  When comparing the stretching and bending modes, stretching modes occur at 

higher frequency than bending modes due to the lower value of K (Pavia et al., 2001).  
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For example, the infrared stretching frequency of C-H is ~3000 cm-1 and its bending 

frequency is ~1340 cm-1 (Pavia et al., 2001).   

3.2 Instrumentation 

 Fourier transform-infrared spectrometers are the most commonly used instrument 

for infrared spectroscopy.  They offer high sensitivity, speed of data collection and 

resolution, which all together make for a quality instrument.   These spectrometers also 

contain a Michelson interferometer, which is often called the “heart of the IR” and 

distinguishes these instruments from their older counterparts.  The interferometer 

produces interference patterns that contain all the infrared spectral information (Skoog et 

al., 2004).  There are five major components of the IR spectrometer, which include a light 

source, two perpendicular plane mirrors (one moving and the other fixed), beamsplitter 

and detector (Skoog et al., 2004). An instrument diagram of an FT-IR spectrometer is 

illustrated in Figure 5. 

The second mirror in the FT-IR brings the IR beam to a component known as the 

detector.  The most common and standard detector for the mid-IR is a room temperature 

deuterated triglycine sulfate (DTGS) detector. This detector is simple, inexpensive and is 

adequate for most IR analyses including solid or liquid samples.  The second major 

detector for IR instruments is a liquid nitrogen-cooled detector such as the mercury-

cadmium-telluride (MCT) detector.  These detectors need to be cooled or else their own 

heat being given off will be detected, thus giving rise to noise (Smith, 1996). The 

advantages that this liquid nitrogen-cooled detector offers are its greater sensitivity and 

speed, which works well when a large number of scans are needed for analysis such as in 

reflectance spectroscopy.  In fact, they are five times faster and up to ten times more 
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sensitive than DTGS detectors (Coleman, 1993; Smith, 1996).  However, these sensitive 

detectors are more expensive and their cutoff in the mid-IR region is less than that of 

DTGS detectors.  The most sensitive MCT detectors are the narrow band detectors, 

which are sensitive in the 4000-700 cm-1 range while DTGS detectors cover the mid-

infrared range from 4000-400 cm-1 (Smith, 1996).  

3.3  Spectroscopic Techniques 

Transmission infrared spectroscopy is also resourceful since it is non-destructive 

and samples can be obtained from all three states of matter (solid, liquid and gas).  The 

choice of sample preparation is dependant on the type of analyte.  The analysis of 

gaseous samples can involve the spectrometer being coupled to a thermogravimetric 

analyzer (TGA) to form what is known as TGA-IR.  Gaseous samples can also be 

analyzed by construction of a vacuum line to which is connected an infrared cell and 

sample container (Mirabella, 1998).  Liquids can be analyzed using salt plates that range 

from NaCl to KBr.  The analysis of solids presents many options to choose from for 

analysis depending on their physical properties.  In the case of a solid that is a polymer, a 

film can be cast.   With powder samples, mulls or pellets can be employed.  These 

techniques require the samples to be ground up finely and mixed with either mulling oil 

(Nujol, a refined mineral oil) or an alkali halide for a pellet.  Pellets are more 

advantageous due to less interfering bands, preparation is fast, they produce better 

spectral resolution and they can be stored in a desiccator (Mirabella, 1998). 

a. Reflectance spectroscopy 

 When molecules absorb infrared radiation, the reemitted energy is dependant 

upon whether the method used is transmission or reflectance.  Reflectance spectroscopy 
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has proved to be an effective way to analyze solid samples (as well as liquids), such as 

polymers or films, which are difficult to analyze by transmittance methods.  Reflection of 

radiation involves a change in the direction of the imposing beam into the source of 

where it came from (Mirabella, 1998).  Reflectance spectra are very similar in appearance 

to absorption spectra and give the same information. However, mathematical corrections 

must be made in order to compare to transmission spectra due to differences in relative 

peak heights.  The types of reflectance spectroscopy include specular reflection, which is 

ideal for metallic surfaces, diffuse reflection, best for analysis of powders, and internal 

reflection such as attenuated total reflection (ATR) (films and liquids).  However, only 

attenuated total reflection is of relevance to the current study and will be discussed in 

more detail later.  

3.4 Application Towards Molecular Characterization of Complex Plant Materials 

FT-IR spectroscopy is a useful tool that allows molecular characterization of 

heterogeneous and complex plant materials such as carbohydrate analysis. By comparing 

the chemistry of leaf litters before and after a fire as a result of burning at different 

temperatures, the changes in composition can be determined using FT-IR.  Past studies 

by Mascarenhas et al., (2000) have shown that characterization of leaf litters undergoing 

chemical changes from natural decomposition provides an understanding about resources 

available for plants and microbes. Infrared spectroscopy is used often for the study of 

carbohydrates due to its ability to identify primary functional groups of plant sugars and 

complex carbohydrates (Gorgulu et al., 2007; Haberhauer and Gerzabek, 1999; 

Nikonenko et al., 2005; Kačuráková and Wilson, 2001; Kačuráková et al., 2000).  This 
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method is sensitive, rapid and an inexpensive form of analysis of compounds of 

biological importance and only requires a small amount of sample.   

 FT-IR identifies specific chemical functional groups within polymeric 

compounds.  Thus, it is able to give us an estimate of a plant’s many molecular 

components.  The vibration of a specific functional group may give rise to several 

different positions of absorption peaks in the FT-IR spectrum corresponding to the 

different modes of vibration.  

 

IV.  Leaf Litter Chemistry  

The main plant components to consider include soluble cytoplasmic sugars, such 

as sucrose, fructose and glucose (Figure 6), as well as complex, structural carbohydrates, 

which include cellulose, hemicellulose and lignin.  The cell wall of a plant is made up of 

90% carbohydrates and 10% proteins with the main carbohydrate component being 

cellulose (Heldt, 2005).  Cellulose is the most abundant organic component in plants 

(Nobel, 2005).  Cellulose is similar in all plants and consists of linear and unbranched 

repeating D-glucose monomers linked through β-1,4 glycosidic bonds (Figure 7) (Heldt, 

2005; Nobel, 2005; Schultz et al., 1985) giving an infrared signature ~ 1150-1170 cm-1 

(C-O-C) (Michell, 1990).  Individual glucose units are rotated 180˚ from each other thus 

enabling the formation of a long chain of 2,000 to 25,000 residues (Heldt, 2005).   

Cellulose polymers are arranged by hydrogen bonding into a crystalline lattice structure 

known as a microfibril (Heldt, 2005; Nobel, 2005).  These microfibrils are impermeable 

to water and resistant to chemical and biological degradation thus making it an extremely 

stable substance (Heldt, 2005).   
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Hemicelluloses are also an important element of a plant’s cell wall. 

Hemicelluloses are polymers linked via 1,4-linked β-D-xylopyranose units (xylans) 

(Nobel, 2005).  Attached to the backbone of the D-xylopyranosyl residues are other 

carbohydrates such as D-xylose, D-mannose, D-glucose, D-galactose, L-arabinose, D-

glucuronic acid, 4-O-methyl-D-glucuronic acid and D-galacturonic acid (Heldt, 2005; 

Tanner and Loewus, 1981; Xiao et al., 2001).  These basic residues are illustrated in 

Figure 8. In general, hemicelluloses have lower molecular weights than pectin or 

cellulose (Nobel, 2005).  The type and quantity of hemicellulose carbohydrates depend 

on the plant material. 

Pectin is also prominent in the plant cell wall, primarily in the non-woody part. 

Like hemicellulose, its amount and structure differs in species.  Pectin is composed of 

1,4-linked α-D-galacturonic acid residues (Figure 9) (Nobel, 2005).  Its dissociated 

carboxyl groups (-COOH) have a negative charge that leads to a cation-binding capacity 

of cell walls, which helps link different polymers together (Nobel, 2005) and yields 

wavenumbers at ~ 955 and ~1749 cm-1 in the infrared spectrum (Table 1).   

Lignin is the second most abundant natural substance found in plants.  These 

noncarbohydrate components are found in the secondary cell wall only (Nobel, 2005).  

Lignins are complex heteropolymers based on phenylpropanoid subunits (a 6-carbon 

ring, to which is attached a 3-carbon chain in phenylalanine, a lignin precursor) plus 

certain other residues, which are illustrated in Figure 10 (Nobel, 2005).  The subunits are 

connected by ether (C-O-C) and C-C bonds (Brinkmann et al., 2002), which are found in 

the 1060-1150 cm-1 region (Table 1) (Socrates, 1994; Boeriu et al., 2004).   Ether 

linkages, in particular β-O-4 bonds, dominate the linkages in softwoods and hardwoods 
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by more than 50% (Brinkmann et al., 2002).  In softwood species such as pitch pine, the 

most abundant precursor is coniferyl alcohol, which leads to an aromatic substitution by 

one methoxyl group, known as a guaiacyl structure (Saariaho et al., 2003).  p-Coumaryl 

alcohol precursors are also established in softwood species.  The polymerization of this 

precursor leads to p-hydroxyphenyl lignin that contains no methoxyl groups (Saariaho et 

al., 2003).  Hardwood species such as the ericaceous shrub black huckleberry and white 

oak contains sinapyl alcohol leading to syringyl structures, which include two methoxyl 

groups, attached to the aromatic ring (Saariaho et al., 2003). Hardwood lignin is 

essentially a mixture of guaiacyl and syringyl structures.  Both lignins contain 

predominantly glycerol-aryl ether linkages, but there are several C-C bonds, which serve 

as cross-links between the short, linear chains of phenylpropane units (Kubo and Kadla, 

2005).   The methoxyl content of these precursors determines the degree of cross-linking 

of the lignin polymer (Saariaho et al., 2003).  Softwood lignins contain fewer glycerol-

aryl ether linkages and a more macromolecular network structure (Kubo and Kadla, 

2005) and are less hydrophilic (Saariaho et al., 2003).  On the other hand, lignin derived 

from sinapyl alcohol is a linear polymer (Kubo and Kadla, 2005).  These variations in the 

structure of lignin contribute to its complexity.  

The quantification of lignin is difficult not only because of its varying monomeric 

composition, but also because lignins are covalently linked with other cell wall 

carbohydrates, proteins, phenolics or other compounds (Brinkmann et al., 2002).  Lignin 

gives mechanical strength to cell walls and gives the plant stability.  It also fills in the 

spaces of the cell wall between cellulose, hemicellulose and pectin components. The 

monomeric structure of lignin also influences the properties of the plant material.  
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Proteins and phenolics are also present in smaller amounts in plant cell walls.  

Leaf litters have different compositions of nutrients and polyphenols. In a study done by 

Jonsson et al., (2006), concentrations of nitrogen, phosphorus and phenolics of oak, pine 

and huckleberry leaf litters are reported during incubation in microcosms in Table 2.   

Pine had the least amount of phenolics and nitrogen, but the greatest amount of total 

condensed tannins (Jonsson et al., 2006).  However, on the other hand, oak had more 

phosphate and total phenols, but fewer condensed tannins (Jonsson et al., 2006).   The 

reported table specifies that each leaf litter is distinctive.   

The area and species of the pine barrens are dependant on fires, particularly 

control burns.  Control burns are a critical characteristic to the pine barren’s unique 

ecology and in shaping its vegetation and soil.  Previous studies have shown changes in 

the residual and leachate inorganic chemistry of leaf litter burned at a range of 

temperatures encountered in a heterogeneous burn.  As the litter burns, however, it is just 

as critical to monitor and examine the changes in carbohydrate chemistry.  Burning of 

three contrasting leaf litters may lead to small, but relevant changes in the plant 

carbohydrates that are available to plants and microbes. Characterization of the 

volatilization of the natural organic content can also be essential as heating is induced.   

There have been many studies on the characterization of plant carbohydrates using FT-IR 

spectroscopy including the application of IR microscopy to monitor changes (Dighton et 

al., 2001; Mascarenhas et al., 2000; Stewart, 1995; Stewart et al., 1995).  However, in 

complex mixtures, as in plant litter, it is still not possible to distinguish and identify all 

carbohydrate components, therefore the focus is narrowed down to concentrating on 

comparing overall spectral patterns between leaf litter species at specific combustion 
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temperatures.  This information combined with temperature dependant mineralization 

dynamics of the same leaf species as well as decomposition rates for the species in the 

New Jersey pine barrens (Conn and Dighton, 2000) can be essential in determining the 

availability of nutrients available to plants and microbes in the New Jersey pine barrens.   

In this project, evolved gas analysis (EGA) is also applied to each leaf species using 

Thermal Gravimetric Analysis (TGA-IR) to further characterize the changes induced by 

heating.  IR spectral changes of gas phase species during heating can be used with time 

series ANOVA to verify and quantify the different weight loss steps.  The IR analyses of 

thermally decomposed leaf litter in combination with chemometric techniques can be 

then compared to studies of chemical changes in leaf litter species during natural 

decomposition.   
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Chapter Two:  Thermal Decomposition 

I.  Introduction 

The vegetation of the pine barrens is both highly flammable and extremely 

resistant to killing by fire (Figure 11).  In fact, fire is and has been the single most 

important factor in shaping its vegetation.  The present day pine barrens has been shaped 

in large part by extensive wildfires.  Dry, acidic and infertile soils in combination with 

repeated fires leave only the characteristic pine barren species behind that can withstand 

these harsh conditions. Periodic disturbances can be an important influence on the 

cycling of nutrients within and through an ecosystem.  Fires, fueled by the resins of the 

pitch pines, burn off the tree and other plant tops, but few plants are actually killed.   

Pinus species, with its thick bark, produce new growth from main trunks or larger limbs. 

Since the 1930s, the use of prescribed or controlled burning has been used as a forest 

management tool based on the following benefits: the establishment of the Pinus 

seedbed, prevention of the exclusion of Pinus species by Quercus species, reducing the 

chances of wildfire occurrence and increase the soil nutrient availability by the release of 

nutrients from litter and humus (Boerner et al., 1988).  Ostman and Weaver (1992) and 

Boerner (1984) have shown successfully the correlation between nutrient availability and 

growth of Quercus species in other forests and in the New Jersey pine barrens, 

respectively.  Low intensity and low severity winter prescribed burning releases nutrients 

and is also practiced to reduce the risk of wildfires (Gray and Dighton, 2006).  Organic 

compound degradation is complete at temperatures of 400-550°C which is within the 

range of temperatures of control burns. FT-IR spectroscopy can be employed to 

determine and characterize the changes in the organic composition of leaf litter under 
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these ranges of burn temperatures.  FT-IR spectroscopy is used to identify the 

characteristic absorption bands and can be used semi-quantitatively. 

FT-IR is a useful tool that allows molecular characterization of heterogeneous and 

complex plant materials such as carbohydrate analysis. By comparing the chemistry of 

leaf litters before and after a fire as a result of burning at different temperatures, the 

changes in composition can be determined using FT-IR.  Past studies by Mascarenhas et 

al., (2000) have shown that characterization of leaf litters undergoing chemical changes 

from natural decomposition provides an understanding about resources available for 

plants and microbes.  Gorgulu et al., (2007), Haberhauer and Gerzabek (1999), 

Nikonenko et al. (2005), Kačuráková and Wilson (2001) and Kačuráková et al. (2000) 

have shown the application of infrared spectroscopy in the study of carbohydrates due to 

its ability to identify main functional groups of plant sugars and complex carbohydrates.  

This method is sensitive, rapid and an inexpensive form of analysis of compounds of 

biological importance and only requires a small amount of sample.   

 

II. Principal Component Analysis (PCA)  

Many times highlights from spectra are made by direct observations, but 

statistical comparison of spectra can also be helpful.  There are a number of multivariate 

tools to allow mathematical and statistical comparison of spectra of the same material 

under contrasting conditions. One of the limitations of FT-IR in making quantitative 

conclusions is overlapping band components and difficulties of band assignments from 

various complex carbohydrates such as cellulose, hemicellulose and lignin.  One way of 

resolving this problem and analyzing the spectra is the use of principal component 
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analysis (PCA).   PCA is a multivariate technique in which a number of related variables, 

several spectral data points are transformed into a smaller number of dimensions 

(Jackson, 2003).  PCA is a chemometric and factor based technique.  The factors in this 

present case would be the relevant wavenumbers.  Chemometrics has been defined by 

Kowalski (1975) as the application of mathematical and statistical methods to chemical 

measurement.  It is also used to describe the organization of chemical data into matrices 

for the extraction of useful information (Kowalski, 1975).  The field of chemometrics 

developed during the 1970s as an interdisciplinary field of and has had a huge impact on 

the field of spectroscopy (Geladi, 2003).  One of the aims in spectroscopy is to correlate 

chemical differences between many variables.  When the technique of PCA is applied to 

the interpretation of this kind of data, it breaks it down into its most basic differences. 

This methodology can be used to detect sample patterns and groupings and requires no a 

priori knowledge of data; therefore application of FT-IR along with multivariate analysis 

allows easier processing of information obtained from spectra.  Other advantages are that 

this technique is best for analysis of complex mixtures and it gives an easier 

interpretation of the correlation between scores and loadings since the loading plot will 

contain fewer variables than the original data set (Janné et al., 2001).  The objective of 

the analysis is to represent a data set containing many variables with a smaller number of 

composite variables.  The strongest similarities among variables emerge in the first few 

axes and are represented by the coordinate scores. 

PCA is the most commonly used type of multivariate analysis to gain both 

qualitative and quantitative insight on data of chemical interest.  It also forms the basis 

for regression methods such as principal component regression (PCR) and partial least 
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squares (PLS), all of which are factor-based techniques that include quantitative 

calibrations for analysis of data.  However, PCR and PLS require calibration models for 

data modeling.  PCR relates variations in a response variable to variation of spectra with 

explanatory or predictive purposes (Thermo Electron Corporation, 2008).  This works 

well when various spectra express common information and there is a large amount of 

correlation. However, spectra at different temperatures (control to 550˚C) are predicted to 

be dissimilar.  The PCR technique is a two-step method with PCA carried out first then 

the principal components being used as predictors in a multiple linear regression (Thermo 

Electron Corporation, 2008).  A problem with PCR is that colinearity of absorbance data 

will make calibration unstable and calibration by PCA factors is expected to be unstable 

(Takeshi, 2002).  Another method to apply to generate a set of factors and reproduce the 

observed spectra is PLS.  PLS is a calibration method developed from PCR and believed 

to be the best calibration method for data modeling (Takeshi, 2002).  However, through 

the use of PCA, no previous knowledge is needed thus any complicated calibration 

procedures are not needed.  PCA is a most favorable fit for the analysis of spectra of 

different unheated and heated plant litters to reveal significant differences.  This will 

enable differences to be categorized in the data and show changes in plant species 

abundance.  Normalization is also important in PCA.  To yield optimum results, PCA 

depends on how well the relationship among the variables can be presented by linear 

functions (McCune and Grace, 2002).  From our analysis, it appears that the use of 

presence and absence of individual components (selected wavenumbers) is also suitable 

to reduce the complexity of the analysis.  Studies of the combined use of microscopic FT-

IR spectroscopy and PCA have been reported to analyze the changes in carbohydrate 
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chemistry (Cadet et al., 1997; Dighton et al., 2001; Elliot et al., 2007; Hori and 

Sugiyama, 2003; Mascarenhas et al., 2000).    

In the current study, a combined FT-IR and statistical analysis approach was 

applied to thermally decomposed leaf litter in order to evaluate the changes of chemical 

composition as well as give information on leaf carbohydrate chemistry. The use of 

presence and absence of IR data was used for data analysis.  By comparing the chemistry 

of leaf litters before and after a fire as a result of burning at different temperatures, the 

changes in composition can be evaluated using FT-IR.  Based on the information from 

Gray and Dighton (2006) showing different mineralization patterns of nutrient elements 

at contrasting temperatures of leaf litter composition, we investigated the corresponding 

changes in carbohydrate chemistry to determine if patterns of change could explain their 

findings. This information combined with temperature dependant mineralization 

dynamics of the same leaf species as well as decomposition rates for the species in the 

New Jersey pine barrens (Conn and Dighton, 2000) can be essential in determining the 

availability of nutrients available to plants and microbes in the New Jersey pine barrens.  

In the following chapter, additional spectral manipulation will be applied in order to 

provide numerical values of IR absorbances for subsequent principal component analysis.   

 

III.  Experimental Methods 

3.1. Thermal Decomposition Experiments 

Leaf litters of white oak (Quercus alba), pitch pine (Pinus rigida) and black 

huckleberry (Gaylussacia baccata) were selected that represent the species primarily 

found in the New Jersey pine barrens ecosystem.  Leaves were selected at abscission and 
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air dried until required.  To ensure homogeneity and uniform particles, the leaves were 

ground in a Wiley mill. Three replicates of each litter type were placed in oven-dried 

crucibles.  The crucibles were then placed in muffle furnace and each separately heated to 

100°C, 200°C, 300°C, 400°C and 550°C for two hours. This method was adopted to 

allow direct comparison with Gray and Dighton (2006) as a means of controlling 

combustion and simulating field conditions during a prescribed burn.  Heating the leaf 

litter was done over a range of temperatures for a few reasons. During a prescribed burn, 

there may be patches that are more intensely burned then other patches due to variations 

in combustion conditions (fuel, heat and oxygen).  In addition, since the pine barrens are 

comprised of a mix of different species, the heterogeneity of quality and quantity of litter 

mass also contributes to the temperature of combustion.  Although our method is not 

equivalent to in situ combustion, it does provide an even temperature for replication and 

avoids the heterogeneity that will naturally occur in a freely burned leaf, which will be 

differentially scorched at different temperatures. The temperatures used are representative 

of the range seen in prescribed fires in the New Jersey pine barrens (Tuininga, 2000). All 

replicates used for infrared analysis at each temperature were heated together.   Unburned 

litter of each species was used as a control.  

3.2. Optimization Process 

Transmission FT-IR analysis was conducted on potassium bromide (KBr) pellets, 

which were prepared with an appropriate amount of litter material for FT-IR 

measurement.  An initial trial utilizing oak litter was conducted to observe within sample 

variation as well as to develop a suitable protocol. Three replicate samples of ground 

unburned oak litter (~55 mg) were each divided into three more replicate sample subsets 
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containing ~9 mg of oak litter.  From each of these sample subsets, three additional 

sample subsets were created varying in weight between 1 and 5 mg. Altogether, 27 KBr 

pellets from the three replicates of unheated oak litter type were prepared.  Varying 

amounts (~375-850 mg) of KBr was added to each particular smaller subset with the 

varying amounts of oak sample to make KBr pellets.  KBr and the sample were first 

ground separately; then ground together in a mortar to ensure homogeneity in particle 

size.  About a third of the litter sample and KBr were actually deposited into the die from 

the mortar while varying the ratio of sample to KBr each time. A pellet was prepared 

with the use of a hand press (Wilmad Lab Glass) and constant pressure.  Care was taken 

to ensure that each pellet was translucent. Approximately 5 mg of sample along with 

~660 mg of KBr gave optimum transmission IR spectra.  This corresponds to a sample to 

KBr ratio of 0.75%.  This ratio and method for preparing KBr pellets was applied to the 

remaining triplicate samples of each species at all temperatures. 

3.3. FT-IR Analysis 

All analyses were carried out using a Varian (formerly BioRad) FTS 6000 FT-IR 

spectrometer.  Spectral collection was conducted under ambient conditions.  The 

operating range was from 4000 to 400 cm-1 with a resolution of 4 cm-1 using a DTGS 

detector.  In all cases, 64 interferograms per sample were coadded and averaged for each 

spectrum.     

Following the pellet preparation, KBr pellets were immediately placed into the 

sample compartment of the spectrometer, left to purge with dry air for 15 minutes to 

remove ambient water vapor and FT-IR spectra were subsequently recorded.  All spectra 

were measured with a blank KBr pellet as the background and were ratioed against the 
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background.  Figure 12c illustrates optimum spectral quality as a result of optimization 

of sample to KBr ratio versus poor spectral quality (Figures 12 a and 12b). 

3.4. Statistics and Spectral Analysis   

For the analysis of spectra from unheated (control) and heated (100-550°C) oak, 

pine and huckleberry litters, the presence and absence of spectral peaks of about 52 

selected wavenumbers was used.  These wavenumbers identify characteristic absorption 

bands of key functional groups present in organic compounds.   Significant spectral peaks 

were identified using a combination of the Win-IR Pro software (Version 3.4, Digilab 

Win-IR Pro, Randolph, Massachusetts, USA), which automatically selects peaks, along 

with visual assessment and manual selection of other peaks deemed to be of significant 

intensity.  Absolute transmission peak intensities were not used due to normalization 

difficulties.  In order to normalize infrared spectra, a spectral band that does not change 

during the course of treatment is needed, which did not exist in this situation.  Hence, 

presence or absence values for ~52 selected peaks of the three leaf litters at 6 

temperatures were used for a variance-covariance PCA analysis (PC-ORD, Version 4.0, 

MjM Software, Gleneden Beach, Oregon, USA). Significance of the separation of litter 

treatments in wavenumber space along both PC axes 1 and 2 was determined by analysis 

of variance (ANOVA) and coordinate scores (SAS Institute Inc. Version 6.12, SAS 

Institute, Cary, N. Carolina, USA).   

 

IV.  Results 

The transmission FT-IR spectra illustrating the optimization process are shown in 

Figure 12a-c.  The spectra in Figure 12a and 12b contain ratios of oak to KBr ~ 0.57% 
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and 0.25% respectively, which demonstrate unsatisfactory spectral quality.  Increasing 

the ratio of oak to KBr to ~ 0.75% presents desired spectral conditions (Figure 12c) 

providing clear consistent repetition of peak separation.  

Table 2 indicates primary infrared peaks characteristic of each unburned (or low 

temperature (100-200˚C)) litter species as determined by PCA (separation along PC axis 

2) (Figure 13).  PCA is one of the most common multivariate techniques.  The purpose 

of this method is to reduce the data matrix with the source of the data variability in the 

first few PC axes.  Interpretation of the scatter plots of the PCs can give information 

about groups of different species at various temperatures.  The order of these 

wavenumbers is relevant; they range from the most to the least significant cause of 

separation.  Thus, the wavenumbers given at each end of each axis in Figure 13 are the 

most significant wavenumbers for separation of the data according to the PCA results.  

No peaks were reported to be characteristic of only pine according to the PCA, although 

peaks were shared with oak.  The peaks that described this similarity were 896 and 1462 

cm-1.   Nonetheless, there were certain wavenumbers that were common to all samples as 

well.  Band assignments for the observed significant factors, or wavenumbers, are shown 

in Table 3. 

Results of the PCA analysis of the binary (presence/absence) FT-IR data are 

presented in Figure 13. Principal component axes 1 and 2 accounted for 25.54% and 

10.74% of the variance in the data set, respectively.  All three species at all six 

temperatures (control (unheated) to 550°C) are distributed from the right to the left of PC 

axis 1 by increasing temperature (Figure 13).  The separation of litter species and species 

by combustion temperature was determined by analysis of variance of coordinate scores.  
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ANOVA of coordinate scores along PC axis 1 and 2 was highly significant (F=489.80, 

P=0.0001 and F=128.07, P=0.0001, respectively).  Post hoc Tukey’s HSD means 

separation test information is shown in Tables 4a and b for PC1 and PC2, respectively. 

As can be seen from Table 4a, the first PC axis corresponds mainly to the effects of 

temperature on leaf litter composition. Pine and huckleberry litters at 25oC (control) to 

200oC all cluster to the right of PC1 (Tukey groups A, AB, BC) and are largely 

significantly separate from oak leaf litter at the same temperatures (Tukey groups CD and 

D). All three litter species cluster together at 300oC (Tukey group E) and are significantly 

different from those at low temperatures and from those at 400 – 500oC that separate 

significantly as a group to the left of PC1 (Tukey group F). 

PC axis 2 separates leaf litter species. Oak, pine and huckleberry leaf litter 

separates significantly at low temperatures (unheated and 100oC) with Tukey groups of 

A, B, C and K, respectively.  Spectra of control (unheated) white oak, pitch pine and 

black huckleberry are shown in Figure 14 to visually illustrate these differences in terms 

of infrared spectra.  Litters at 200 – 300oC have increasingly similar chemistries 

according to PCA and tend not to separate significantly.  Calculation of mean 

wavenumber peak richness (number of peaks contributing to the data set) for each 

temperature shows a significant difference in the number of wavenumbers between 

temperatures (F=5.23, P=0.009) with an average of 13 wavenumbers occurring at 300oC 

for all litter species, compared to between 21 to 25 at lower temperatures and 19 at higher 

temperatures.  However, at high temperatures (400 – 550oC) PCA results tend to show 

greater separation between pine (Tukey group CDE), oak (Tukey group EFGHIJ) and 

huckleberry (Tukey group IJ). Due to the fact than only 10.74% of the variance in the 
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data is accounted for by PC2, separation of litters along this axis is less well defined 

compared to PC1. 

The primary pattern observed with higher temperature was that differences within 

species decreased as the temperature increased (Figure 13).  Differences between litter 

species became less distinguishable starting around 300°C.  The wavenumbers 

characteristic of all 3 leaf litters at 550˚C, in order of eigenvector loadings, include 875, 

2520, 619 and 1797 cm-1 and are shown in Figure 15.   Wavenumber 848 cm-1 also 

contributed to this separation of temperature along the first axis, but is unique to 

huckleberry.    

In summary, there is a significant divergence of carbohydrate chemistry between 

leaf litter species at low temperatures. At 300˚C, a convergence of spectra and significant 

reduction in number of spectral peaks is evident, followed by a subsequent litter species 

divergence of spectra at high (400 and 550˚C) temperatures with an increase in number of 

spectral peaks that appear to be related to inorganic ions.   

 

V.  Discussion  
 

We have investigated the effect of combustion temperature on the polymeric 

carbohydrate chemistry of leaf litter following the observation of Gray and Dighton 

(2006) that the release of and adsorption patterns of major inorganic nutrients seemed not 

to follow a logical pattern.  To this end we have used FT-IR spectroscopy to identify 

changes in the carbohydrate chemistry of oak, pine and huckleberry leaf litter combusted 

at six temperatures. By comparing the chemistry of leaf litters before and after a fire as a 
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result of burning at different temperatures, the changes in composition can be determined 

using FT-IR.   

FT-IR is a valuable tool for measuring many chemical constituents in plant 

material.  FT-IR has previously been used in the study of carbohydrates (Cadet et al., 

1997; Gorgulu et al., 2007; Kačuráková et al., 2000; Nikonenko et al., 2005; Tul’chinsky 

et al., 1976) and has been shown to be useful in identifying patterns of change in 

chemistry between and within plant species.  In order to identify the major sugar 

components, we based our findings on known functional groups that may belong to 

particular polysaccharides. 

In order to achieve maximum efficiency from our method, (KBr sample analysis) 

we optimized our protocol. Several factors can lead to poor quality spectra including low 

concentration of sample (Figure 12a), opaque KBr pellet, and unsatisfactory spectral 

conditions due to IR atmospheric absorption of water vapor and CO2 (Figure 12b).  

These unwanted conditions led to sloping baselines and negative relative intensities.  

Successful removal of these interferences involve optimizing an appropriate sample to 

KBr ratio, purging the sample compartment of the spectrometer and ratioing each KBr 

sample pellet to a blank KBr pellet (background). This removed any water absorbed by 

the hydroscopic KBr pellet as well as atmospheric water vapor.  

In addition to visual observation of the FT-IR spectra, we adopted the use of 

multivariate analysis of major absorbance peaks using PCA.  Past studies have shown the 

effectiveness of chemometric analysis on FT-IR spectra (Bertrand et al., 1987; Elliot et 

al., 2007).  Our study clearly showed significant separation of leaf litters at contrasting 

combustion temperatures, with PC axis 1 corresponding to the effects of temperature on 



 28

leaf litter composition and PC axis 2 to leaf litter species separation.  Differences 

between species were observed for unburned treatments and low temperature (100-

200°C), which is illustrated on the right side of the graph on PC axis 1 (Figure 13).  

Changes in plant carbohydrate chemistry were observed between the infrared 

spectra of each litter species at each temperature.  Many bands overlap in the region 

characteristic of sugars, which makes identification of specific carbohydrate compounds 

difficult and causes a decrease in the confidence of specific carbohydrate identification 

due to several possible assignments.  It is especially difficult to analyze the spectra below 

1400 cm-1 based on the complexity of bands in the carbohydrate region.  Several 

vibrational modes are common to this IR region and there is no single wavenumber that 

represents cellulose, lignin or other primary structural components in plant material, 

whose structures are shown in Figures 6-10.  Therefore, PCA is especially useful to 

characterize the general similarities and minor differences between these infrared spectra. 

Figure 14 shows spectra of all unburned litter species.  All three spectra show 

primary wavenumbers typical of the major components of leaves, that is cellulose, lignin 

and hemicellulose.  The bands noted are similar to those based on PCA results.  An 

attempt will be made to discuss and assign the significant wavenumbers with large 

loadings according to the PCA results.  The band ~ 1514 cm-1 arises from aromatic 

vibrations of the lignin matrix and the CH deformation of lignin (Boeriu et al., 2004; 

Owen and Thomas, 1989; Kubo and Kadla, 2005) (Table 1).  This band had the most 

significance in all species as highlighted by the PCA.  The wavenumber at 1156 cm-1, that 

induced separation along PC1 and is shared by all unburned litters, is also a considerable 

peak. The region between 1200-1000 cm-1 shows vibrations associated with glycosidic 



 29

bonds (C-O-C) (Figure 7b), ring vibrations and stretching of side group C-OH 

(Kačuráková et al., 2000; Gidman et al., 2003).  This is consistent with the assignment of 

the 1050-1170 cm-1 region to cellulose and hemicellulose (Inbar et al., 1989).   The 

structures of cellulose including other carbohydrate residues that were discussed in detail 

in chapter one and compose hemicellulose are illustrated in Figures 7 and 8. Applying 

careful analysis to the stretching vibrations of polysaccharides, Nikonenko et al., (2005) 

found the appearance of many absorbance bands in the 1140-1175 cm-1 range to be due to 

different conformational states of polysaccharide molecules, and as a result, used the 

method of deconvolution.  Nikonenko et al.’s (2005) deconvolved spectra of cellulose 

indicated several absorption components appear in this region such as 1170, 1163, 1155 

and 1147 cm-1 instead of a single band at 1150 cm-1.  It is possible that the peak observed 

at 1156 cm-1 in all spectra could be representing cellulose and is associated with the C-O-

C asymmetric stretch of the glycosidic linkage (Michell, 1990; Kačuráková et al., 2000). 

The vibrational mode at 1616 cm-1, which also occurred in all of the unheated and 

low temperature (100-200°C) spectra and was significant according to the PCA, denotes 

the carboxylate region (COOH) of galacturonic acid residues, which make up pectin, a 

prominent component of the cell wall (Figure 9) (Chatjigakis, et al., 1998; Stewart, 

1995).   The bands appearing ~1452 and 1319 cm-1 could be assigned to many different 

spectral components including the CH bending motion of aliphatic molecules (Francioso 

et al., 1998) and C-O bands of decomposed carbohydrate group components or possibly 

NH of amide III bending motions (Haberhauer et al., 2000; Francioso et al., 1998).  There 

is also possible evidence shown by Stewart (1995) that these bands could be due to the 

presence of suberin and cutin.  Suberin is a phenylpropanoid (derived from phenylalanine 
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(Figure 10a)) composed of aliphatic and aromatic compounds, while cutin is composed 

of hydroxy-fatty acid monomers (of C16 and C18 families) that are linked via ester bonds 

forming aliphatic polyesters and some phenylpropanoids (Stewart, 1995; Kolattukudy, 

1981).   Suberin is found in the cell wall of the endodermal layer and cutin is found in the 

plant cuticle. The monomers of the aromatic and aliphatic structures of suberin are shown 

in Figure 16a-c which include hydroxycinnamic acids, p-coumaric acid and cinnamic 

acids.  The aliphatic monomers that link themselves together with the aromatic 

compounds include α-hydroxyacids, diacids and glycerol (Figure 16c), which is the 

major component of suberin. Cutin’s major monomers are illustrated in Figure 17 and 

include palmitic acid, oleic acid and stearic acid.  The biosynthesis pathway of suberin 

and cutin is also similar to lignin in that it starts from the amino acid phenylalanine.  The 

presence of these compounds is found in the region 1050-1480 cm-1.  It is possible that 

absorbances of these polymers can mask the cellulose absorbances in the ~1170 cm-1 

region. 

We have shown that there is a significant separation between plant litter species 

when unburned and at low burn temperatures (represented as separation along PC axis 2).  

It appears that oak differs from huckleberry, but shares similarities with pine and that 

huckleberry shares no similarities with either species.  Leaves of different plant species 

have been distinguished by FT-IR spectra (Gorgulu et al., 2007) and between different 

varieties of the same plant species (Haberhauer et al., 2000).  Despite clustering between 

species on axis 2, there are a few wavenumbers that are shared by both oak and pine 

species.  These have the highest eigenvector loading in the PCA and therefore contribute 

significantly to the separation and clustering along axis 2 (i.e. oak and pine near each 
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other along the positive side of axis 2 in wavenumber space as shown in Figure 13).  It 

has been reported that bands around our observed 896 cm-1 may correspond to the 

stretching of the pyranose ring (a six-membered ring consisting of 5 carbons and one 

oxygen) of glucose, galactose and/or mannose (Figure 8) (Tul’chinsky et al., 1976). The 

IR band at 1462 cm-1 could correspond to the C-H deformation vibration of suberin and 

cutin (Stewart, 1995).  The band assignment of suberin and cutin could indicate a high 

occurrence of these outer surface waxes on oak and pine as well as huckleberry since 

they all share a frequency ~ 893-896 cm-1 as well.     

Bands specific to only oak at low temperatures (positive region of axis 2; Figure 

13) could be due to an increased amount of starch content, suberin/cutin content or a band 

assignment due to cellulose according to the literature (Stewart, 1995; Michell, 1990).  

Literature evidence for the presence of suberin and cutin suggests this to be the most 

likely assignment.  Suberin is actually found more commonly in oak species than in 

leaves of other tree species.  

The peaks that were deemed significant by PCA for huckleberry according to 

their negative eigenvalues along PC axis 2 are in the low frequency end of the infrared 

spectra only, unlike the other species whose wavenumbers cover a vast region of the 

infrared spectra.  These peaks are shown in Table 3.  It is these bands that cause the 

significant separation of huckleberry from both oak and pine along axis 2.  These peaks 

(669, 605, 697 and 763 cm-1) could indicate the presence of a high amount of basic 

sugars, fatty acids and aldehydes in this particular leaf species (Stewart, 1995; Mathlouthi 

and Koenig, 1986).   
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Separation by temperature, along PC axis 1, shows that unburned and low 

temperature burned litters of all species were significantly different from samples heated 

to 300°C and different again from those heated to 400-550°C.  Convergence of 

similarities starting ~ 300°C between litters seems to indicate increasingly comparable 

chemical composition.  Indeed, the significantly lower number of peaks contributing to 

the data set at 300oC (average of 13 wavenumbers) than at the other temperatures 

(average of 21-25 at low temperatures and 19 at the high temperatures), irrespective of 

species, indicates a reduction in diversity and homogeneity of chemistry.    

IR spectra of oak and pine at 300°C both exhibit a band at 1236 cm-1 as shown in 

Figure 13 by color coding which corresponds to the C-O-C stretch of aliphatic esters that 

could relate to the outer surface waxes (Socrates, 1994; Stewart, 1995).  This is not the 

first time we see similarities between the oak and pine species.  It was stated previously 

that oak and pine share some peaks that may be due to cutin and suberin content.  This 

peak may suggest an increased amount of outer surface wax content, which is thermally 

stable at this temperature and is a reason for similarities in chemistry between all litter 

species at 300˚C.  All 300oC spectra contain the IR band at 1606 cm-1 that corresponds to 

the ester region (C=O stretch) and may belong to pectin  (Chatjigakis et al., 1998; 

Stewart, 1995), which also appeared in all of the unheated and low temperature spectra.  

At this stage, it is not possible to deduce whether or not this carbonyl stretch is due to 

pectin, other carbohydrates or outer surface waxes since they all contain this 

functionality.  This shared frequency at 1606 cm-1 may confirm the beginning of similar 

composition among plant species given that its eigenvector loading is significant.  

Wavenumber 1707 cm-1, also common to all spectra, appears to be significant in this 
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separation of species (PC axis 1) at 300°C.  This absorption band could be assigned to the 

C=O group which represents ester-containing compounds belonging to cell wall pectin or 

hemicellulose as found by Stewart and Morrison (1992) and Kačuráková and Wilson 

(2001). Alternatively, it has been reported that a band ~ 1705-1720 cm-1 that corresponds 

to the carbonyl/carboxyl stretch can be associated with lignin which may still be present 

in all species at this phase of thermal decomposition (Boeriu et al., 2004).  

The spectrum of pine at 300˚C also contains a significant wavenumber at 1423 

cm-1, which falls into the region (1050-1480 cm-1) corresponding to the CH deformation 

(1300-1480 cm-1) of suberin and cutin (Stewart, 1995; Stewart et al., 1995).  It appears 

that pine may have an increased amount of plant waxes from the observed functional 

groups.       

The spectra of both huckleberry and oak at 300°C also exhibited a band at 1383 

cm-1 likely assigned to lignin.   As discussed previously, there have not been many 

similarities in the data set between these two plant species.   Lignin is a crucial 

component in litter decomposition due to its high molecular weight and varying subunits 

(Figure 10a-e). During decomposition, lignin is recalcitrant and has been shown 

according to Berg and McClaugherty (2003) to increase in relative proportion to other 

cellular components and increase in relative abundance.  Don and Kalbitz (2005) have 

observed that the aromatic content actually increases due to the enrichment of lignin in 

soil.    Phenolic compounds such as vanillyl, syringyl and cinnamyl units are indicative of 

lignin content (Kalbitz et al., 2006).  Vanillyl and syringyl units may be present as 

aldehydes, carboxylic acids and ketones; while cinnamyl units usually are p-coumaric 

acid and ferulic acid (Kalbitz et al., 2006).  Since lignin it derived from phenylalanine, it 
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is not unexpected to see some of the same subunits that are present in suberin.  The 

structures of these monomers are found in Figures 10a-e and 16a-c.  The region ~ 1370-

1375 cm-1 can be associated with phenolic OH and aliphatic C-H in methyl groups 

(Socrates, 1994) for all lignin samples (Boeriu et al., 2004).  It would not be surprising to 

see lignin around at this stage of thermal decomposition since it has been observed that 

the sum of phenolic compounds actually increased during natural decomposition (Kalbitz 

et al., 2006).  The region between 1050-1300 cm-1 may also suggest a possibility of a C-

O stretch corresponding to suberin and cutin content (Stewart, 1995).  In addition to these 

possibilities, there is also a known peak at 1370 cm-1 that may be assigned to cellulose 

thus indicating some cellulose may remain at this temperature (Stewart, 1995).   This 

interpretation of the presence of outer surface wax content is for the reason that these 

observed peaks are not within the polysaccharide stretching region.  The sudden decrease 

in wavenumber richness at this temperature also indicates primary plant components are 

being reduced due to thermal decomposition.  

 The spectra of all litter species at 400°C and 550°C significantly separates from 

other temperatures along PC axis 1.  As expected, most of what is left of all plant litter is 

reduced to similar composition between species and is observed on the PCA plot with all 

high temperature species clustered together (Figure 13).  However, the cluster is less 

tight than at 300˚C suggesting a degree of divergence in chemistries between species.  It 

is, therefore, worthwhile to note that there is an increase in the wavenumber richness 

from 13 (300°C) to 19 wavenumbers (400°C and 550°C), suggesting an evolution of new 

peaks due to combustion. These new bands are probably due to the presence of inorganic 

materials and possible fused aromatics at this stage of thermal decomposition.  The 
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higher temperature spectra of all three species seem to exhibit peaks indicative of 

inorganic ions such as carbonate (CO3
2-) and sulfate (SO4

2-) ions.  IR peaks ~740, ~860 

and a broad peak ~ 1450 cm-1 that appear in all spectra of species heated at 550°C are 

consistent with CO3
2- infrared vibrations (Mayo et al., 2004).  We would expect to see 

nutrients such as Ca since it is one of the macronutrients needed for growth in plants and 

is less mobile during decomposition. The IR spectrum of calcium carbonate is fairly 

distinctive with sharp absorption bands ~712, ~876, ~1795, ~2520 and a broad band 

~1430 cm-1 (Gressel et al., 1995; Hunt et al., 1950; Jackson, 1998).  These absorbance 

bands can clearly be observed in the high temperature spectra making a positive 

assignment.  Other metal carbonates have bands around these distinct IR peaks, but do 

not correspond directly with our observed absorbances.  Spectra of different metal 

carbonates tend to differ slightly due to polymorphism (Mayo et al., 2004).  Nevertheless, 

other common polyatomic inorganic ions such as sulfate (SO4
2-) and phosphate (PO4

3-) 

are also seen in the form of metal salts at this stage of decomposition.  The range of their 

infrared vibrational modes is found in the observed spectra of all species heated to 550°C 

(Figure 15 and Table 1), which also confirms the distinction and presence of inorganic 

materials.   

Gray and Dighton (2006) found more nitrogen, sulfur and phosphate present in 

huckleberry.  The high temperature spectrum of huckleberry (Figure 15) shows more 

intense sulfate and phosphate bands (thus greater peak area) around the 500-670 cm-1 and 

1020-1100 cm-1
 regions indicating greater mineralization in huckleberry (Table 1).  Our 

observations are consistent with the presence of more sulfate, phosphate and carbonate 

content in huckleberry in contrast with oak and pine. 
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  There is also a possibility of fused aromatics left at 550˚C (C-H stretch) in the 

region of 3000-3100 cm-1 (Socrates, 1994).  Polyconjugated units from macromolecules 

such as lignin and suberin may still be evident even at this stage of decomposition.  

Bands attributed to the OH stretch (~ 3300 cm-1) in all spectra are still apparent because 

dehydroxylation occurs within the temperature range of 440-620°C (de Santana et al., 

2006). 

5.1. Conclusion 

Significant separation of leaf litter chemistries both between species and within 

species during thermal decomposition by infrared spectroscopy used in conjunction with 

PCA analysis of the spectra has been illustrated.  Although identification of individual 

carbohydrate chemistries is still problematic in such complex mixtures, a divergence in 

chemistry between litters is shown when they are unheated or heated to 100˚C.  On 

further heating, there appears to be a convergence of chemistry between litter species at 

around 300˚C followed by a degree of divergence at higher temperatures of 400-500˚C.  

At 400°C and 550°C, certain wavenumbers are present in all species indicating thermal 

decomposition reduces the materials to similar composition.  

Understanding the decomposition of leaf litter is important because plants and 

microbes utilize the nutrients released during thermal decomposition. The biosynthesis 

and structure of some plant compounds such as lignin, pectin, suberin and cutin is unique 

and varies in each species making specific identification of aromatic and aliphatic 

components complex.  Several primary plant compounds have many of the same 

functional chemical groups in common which lead to comparable infrared vibrations 

within the carbohydrate spectral region.  The identification presented here is based on the 
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major functional groups present in common plant carbohydrates as reported in the 

literature.  Evaluation of the spectra becomes complicated during degradation of plant 

litter as aromaticity and complexity of litter compounds changes as well as increases. 

Future steps, which include normalization of the data as well as spectral manipulation to 

examine the spectra in greater detail, will be presented in the following chapter.    
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Chapter Three: Derivative and PCA Analysis on IR Spectra of Thermally 

Decomposed Leaf Litter 

I.  Introduction 

 Infrared spectroscopy is employed to study structural properties of polymeric 

compounds such as plant carbohydrates.  In many cases however, determining the 

wavelength and absorbance of individual bands becomes difficult due to the presence of 

other interfering bands.   Such problems can be overcome by differentiating IR spectra.  

Derivative spectroscopy facilitates the separation of overlapping bands and resolves the 

absorbance spectra, which in turn, yields more useful information. More clearly defined 

spectra can then be used to extract the relevant intensity information for quantitative 

measurement.   

Acquiring just the IR absorbance intensity value without a reference point is 

neither ideal nor recommended due to several problems such as background 

interferences, neighboring absorptions, light scattering, sample handling methods, 

instruments and differing sample concentrations.  In most cases, it is beneficial to have a 

reference point acting like a baseline point.   However, difficulties arise when there are 

several bands present in a complex envelope and underlying absorptions need to be 

considered.  This makes calculating and selecting baselines problematic.  An example of 

an offset baseline is presented in Figure 12a and b.   

The most frequently used preprocessing tools for multivariate analysis or 

calibration is the use of derivatives (Brown et al., 2000).  The use of first and second 

derivatives on infrared spectra can eliminate background interferences and, assist in the 

selection of a baseline.  The baselines of derivatives normally reside at zero or close to 
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zero (Coates, 2002). Theoretically, first- and higher-order spectra should be free of 

baseline offset effects (Brown et al., 2000).  First-order derivatives, dA
dλ

= ′ f (λ), are the 

rate of change of absorbance with respect to wavelength (Bridge et al., 1987; Owen, 

1995).    An odd-order derivative starts and ends at zero and passes through zero at the 

absorbance band’s maximum wavelength (λmax) (Figure 18).  On either side of this point, 

there are positive and negative lobes with maximum and minimum values at the same 

wavelengths as the inflection points in the undifferentiated spectrum (Owen, 1995).  In 

the second derivative, d2A
dλ2 = ′ ′ f (λ), there exists a negative band with a minimum at the 

same wavelength as the maximum on the original spectrum signified by an arrow in 

Figure 18.  There are also two additional positive satellite bands.  A negative band with a 

minimum at the same wavelength as the maximum absorbance band is characteristic of 

even-order derivatives (Owen, 1995). The similarity between the zero order, A = f λ( ), 

and even-order derivative spectra makes the even-order practical for analytical studies 

(Bridge et al., 1987).  However, if the zero-order spectrum is open-ended, then odd-

ordered derivatives should be used (Bridge et al., 1987).  The number of bands observed 

in derivatives is equal to the derivative order plus one (Owen, 1995).  Also, as derivative 

order increases, fine spectral detail is enhanced since overlapping bands are becoming 

gradually more resolved (Bridge et al., 1987).   

1.1 Quantification 

The advantages of derivatization and its use on complex spectra can be applied to 

the quantification of resolved peaks in an “envelope.”  The derivative spectra will be 

more useful and contain fewer errors for the measurement of the intensity of a smaller 
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peak in the presence of a large, overlapping band (O’Haver and Green, 1975). However, 

the quantification of wavelengths in derivative spectra is not as straightforward as the 

quantification in absorbance spectra.  For odd-order derivatives, the band information is 

distributed between the positive and negative lobes about the zero crossing point (Coates, 

2002).  The band of interest is best measured as the difference between the most positive 

(maximum) and most negative (minimum) value of the derivative (Bridge et al., 1987; 

Coates, 2002; O’Haver and Green, 1975; O’Haver and Green, 1976; Owen 1995).  The 

measurement of the second derivative amplitudes involves a number of possibilities and a 

notation has been created by Fasanmade and Fell (1985) and illustrated by Bridge et al. 

(1987) are shown in Figure 19.  Some measurement possibilities, as illustrated in Figure 

19, include the absolute amplitude of the centroid peak with respect to the baseline, any 

combination of the amplitude difference between the positive satellite peaks and the most 

negative peak in the second derivative, the difference between the derivative peak and its 

tangential baseline or the measure of the differences between either satellite peak with 

respect to the baseline (Bridge et al., 1987).  Fasanmade and Fell (1985) found that 

amplitude measured with respect to the zero baseline should be used with caution since 

shifting occurs caused by errors such as matrix interferences.  O’Haver and Green (1975) 

and Fasanmade and Fell (1985) have shown the successful use of derivative spectroscopy 

for the quantitative analysis of overlapping analyte bands.    

The primary advantages of derivative spectroscopy are the ability to detect minor 

spectral features, quantitative measurement and a reduction of error in the measurement 

of overlapping bands (O’Haver and Green, 1976). Resolution is also enhanced at the 

expense of its increased specificity since changes in slope are analyzed.  It has been 
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found that the second derivative curve gives an increased resolution in comparison to 

normal and first derivative spectra (O’Haver and Green, 1975).  However, the negative 

effect of differentiating spectra is the signal-to-noise (SNR) ratio decreases as the 

derivative order increases.  The amount of “noise” of a spectrum is also amplified during 

this process.   Consequently, it is often necessary to increase the amount of smoothing as 

higher order derivatives are employed.   Care must be taken not to increase the number of 

smoothing points too much since n-1 data points are cut off at the beginning and end of a 

spectrum as well as a reduction in resolution (Owen, 1995; Thermo Electron Corporation, 

2008).  Therefore, it is best to pick the number of smoothing points based on the peak 

width of the defined narrowest peak in the original, or normal spectrum to increase the 

signal to noise ratio (SNR).   

1.2 Savitzky-Golay Method 

There are several approaches to mathematically differentiating a spectrum.  The 

most popular and common calculation of the derivative is via the Savitzky-Golay 

method. The method proposed and described by Savitzky and Golay (1964) calculates up 

to the ninth derivative and adjusts a convoluting function to give a desired derivative 

order and degree of smoothing.  To calculate the derivative, a polynomial is fitted to a 

window of ±n data points using the least squares best fit method (Owen, 1995; Thermo 

Electron Corporation, 2008). It was shown that a moving polynomial fit to 2n + 1 

neighboring points (n being ≥ to the order of the polynomial) is similar to a sliding 

weighted average since the coefficients of the smoothing method are constant for all y 

values (Bridge et al., 1987).  The equation for smoothing a time series by a polynomial 

about a central point is defined as follows:  
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Yt =
Yt − n + ...+ Yt − 1 + Yt + Yt + 1 + ...+ Yt + n( )

2n +1
 

This method’s benefit includes the ability to simply smooth the data.  The concept of 

convolution is generalized by substituting the weighted average for the simple average 

with each Yj( j = t − n to t + n) multiplied by a weighing factor, Cj and the sum of CjYj is 

divided by a normalizing factor, N (Bridge et al., 1987; Savitzky and Golay, 1964):  

Yt =
CjYt + j

Nj=−n

n

∑  

The Cj factors are the integral coefficients of the convolution function (Bridge et al., 

1987).  The number of convolution points will provide smoothing points based on the 

graphically defined narrowest peak present in the spectrum.  Only odd numbers are used 

for the number of convolution points (Thermo Electron Corporation, 2008).  As 

previously mentioned, using an excessively large number of smoothing points is 

unfavorable since the data points at the beginning and end of the wavelength range are 

lost and the data is distorted (Owen, 1995; Thermo Electron Corporation, 2008). In order 

to get most favorable results from using the Savitzky-Golay algorithm, it is best to match 

the parameters to the existing data.  Therefore, in the case of using the Savitzky-Golay 

method, this means being able to vary the number of data points and the order of 

polynomial used. Varying the degree and the width of convolution function (polynomial) 

has an effect on noise and signal distortion.   

To summarize the steps in this classic paper, first, a polynomial (curve) of 

preferred degree is fit to the data, the preferred order of the derivative is calculated, the 

expression for the derivative of the polynomial at the desired point to be differentiated is 

evaluated and finally, the formulas were converted into coefficients and are used to 
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multiply the spectrum to produce the derivative value according to the polynomial fit 

(Savitzky and Golay, 1964; Mark and Workman, 2003). 

Calculating derivatives with the use of numerical methods such as the simplified 

least squares method of Savitzky-Golay has been used numerous times for the 

quantification and identification of fine spectral features that is difficult to achieve in zero 

order spectra.   In fact, the Savitzky-Golay paper is a classic; it is one of the most often 

cited papers in literature (Mark and Workman, 2003) and one of the 75 most cited 

publications in the journal of Analytical Chemistry.  Zhang and Yan (2004) applied the 

use of second derivative spectra in probing conformational changes in proteins.   

Although they found the use of second derivative IR spectroscopy inconclusive in 

calculating protein structural components, it was predicted to be useful in analyzing 

protein conformations (Zhang and Yan, 2004).  Horvath et al. (1999) have also employed 

the use of the simplified least-squares method for the calculation of the second derivative 

electronic absorption spectra.  It was found that this method, when compared to 

differentiation in the Fourier domain, was computationally more efficient (Horvath et al., 

1999). Baldauf et al. (2006), Kher et al. (2007), Lasch et al. (2002) and Mouwen et al. 

(2005) have used the Savitzky-Golay algorithm to compute the first and/or second 

derivative in order to quantitate or compare spectral characteristics. 

Hori and Sugiyama (2003) used a combined FT-IR microscopy and principal 

component analysis on the study of polysaccharide composition from lignified woody 

plant cell walls.  Though they did apply secondary derivatization to highlight the 

differences between spectra, it was unclear which method for differentiation was used.  

This combined method facilitated the discovery of groupings based on cell wall 
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composition (Hori and Sugiyama, 2003).  Kansiz et al. (1999) also applied the use of 

derivatizing IR spectra in a combined FT-IR microscopy and chemometrics study to 

discriminate between cyanobacterial strains.  It was found that the best results were 

obtained using first derivative spectra that were differentiated using the Savitzky-Golay 

algorithm.    

 Based on the reason that the existing data set can only be analyzed by principal 

component analysis in binary form, the influence of derivatizing and normalizing the data 

will be tested.  However, these spectra have sloping baselines and are not normalized. 

Thus, mathematical resolution enhancement on infrared spectra is considered practically 

necessary if separating individual bands from complex spectra for quantitative analysis is 

desirable.  In fact, preprocessing techniques such as normalized and differentiated spectra 

are required for obtaining optimum results from statistical analysis programs such as 

PCA.  We have seen previously from an input of presence and absence of selected 

wavenumbers from burned leaf litter into PCA that differences existed between unheated 

and heated samples.  Although this PCA analysis gave some understanding regarding the 

changes in resources as decomposition occurs, analysis of IR data using measurable 

values is needed to quantify and analyze in greater detail the chemical changes that occur.  

Differentiation and normalization of spectra will aid in obtaining values for comparative 

and supplementary PCA analysis. Despite the lack of details about how to quantify peak 

heights in derivative spectra in the literature, quantitative values from leaf litter spectra 

are investigated using first and second derivatives.  The differentiated spectra will then be 

examined and compared to determine if different analyses yield similar interpretations of 

the same data set or if they deviate from initial spectra. 
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II. Experimental Methods 

2.1Normalization  

 Infrared spectra of unheated (control) and heated (100˚-550˚C) oak, pine and 

huckleberry litter that were analyzed in chapter two by the use of presence and absence 

data were imported as GRAMS.spc files and normalized to the entire area under the 

spectral curves according to the method of Gaigneaux et al.  (2006).    Previous analyses 

of these spectra did not include normalized data, hence presence and absence of selected 

peaks was only utilized for the results presented in chapter two.  Since there were 

triplicate samples of each leaf material at each temperature, each spectrum was divided 

by the average area of the control of the corresponding species.  For instance, all oak 

litter spectra at all heated temperatures (100˚-550˚C) were divided by the control’s 

average (including the control itself).  The normalization of the data to the area under the 

entire spectrum was applied due to the nonexistence of a most intense, yet static spectral 

band during the course of treatment as well as varying concentrations of leaf material 

between prepared KBr pellets.   Normalization is a common pre-processing step and 

required for adequate PCA results.  This treatment is employed because it deletes 

differences between spectra due to different amounts of sample and path length variation 

(Mariey et al., 2001; Kher et al., 2007).  Normalizing spectra does not substantially affect 

the relative intensities within a spectrum.    

2.2 Derivatives 

The resultant spectra were differentiated to remove the effects of baseline drift 

and enhance resolution prior to multivariate analysis.  First and second derivatives were 

computed in Grams/AI (Version 8.0, Thermo Electron Corporation) using the Savitzky-
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Golay algorithm with five and nine smoothing points, respectively, and a polynomial 

degree of two. The number of smoothing points for the first derivative was based on the 

peak width of the defined narrowest peak in the undifferentiated spectrum and 

automatically picked by the Grams/AI spectroscopy software program.  As the derivative 

order increases, noise increases and therefore the number of smoothing points should 

increase to a certain extent.   However, care must be taken since spectral characteristics 

diminish as spectra are smoothed.     

2.3 Quantitative Analysis and PCA 

   For the analysis of the differentiated spectra of unheated (control) and heated 

(100˚- 550˚C) oak, pine and huckleberry litters, significant spectral peaks were identified 

using the template from the previously analyzed presence and absence spectral data.   

Peak amplitudes corresponding to previously selected wavenumbers from the first- and 

second-derivative spectra were then calculated in the Grams/AI software.  The 

measurements of the derivative amplitudes were based on methods and notations by 

Fasanmade and Fell (1985) and Bridge et al. (1987).  The value taken for the first 

derivatives was the difference between the derivative peak’s maximum and its tangent 

baseline labeled as “4” (DB) in Figure 19.  In the case of measuring the second derivative 

peak amplitude containing two shoulders, the difference between the more positive peak 

(shoulder) and its tangent baseline was calculated and used.  First and second derivative 

peak amplitudes at the significant wavenumbers were than transferred to a Microsoft 

Excel spreadsheet and multiplied by 1.00E06 to obtain whole numbers for subsequent 

PCA.  
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Since the initial analysis of the raw spectral data was conducted on peak presence 

and absence data, a separate analysis was also performed on presence/absence data for 

both of the derived spectra to see if derivatization altered the interpretation.  Hence, 

wavenumbers that had numerical values were set to 1 for another presence and absence 

PCA study.  Consequently, four PCA runs were performed consisting of the first 

derivative peak amplitudes, second derivative peak amplitudes and the presence and 

absence data set of the three leaf litters at six temperatures were used for a variance-

covariance PCA analysis (PC-ORD, Version 4.0, MJM Software). Significance of the 

separation of litter treatments in wavenumber space along both PC axes 1 and 2 was 

determined by analysis of variance (ANOVA) of coordinate scores (SAS Institute Inc., 

Version 6.12).  

    

III.  Results  

 Normalization of the FT-IR spectrum of oak (control) is shown in Figure 20 and 

previously presented in Figure 12c (not normalized). Normalizing lowered the 

absorbance values since all litter at all temperatures were divided by the average of the 

control. The change in absorbance axis should be noted; however, the relative intensities 

within a spectrum are unchanged.  Normalization of the data to the area under the entire 

spectral curve was performed to compensate for path length differences (KBr pellet 

variability) and small differences in the amount of KBr to sample ratio used for each 

pellet.  

  Figure 21 shows first and second derivative control spectra of oak leaf litter.  

Baseline shifts and slopes were eliminated upon computing the derivatives.  First and 
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second derivative IR spectra were smoothed with a 5- and 9-point Savitzky-Golay filter, 

respectively, based on the defined narrowest peak.  A 9-point Savitzky-Golay smoothing 

gave optimum spectral quality despite the increase of noise at higher derivatives.     

 Choosing the correct value of the derivative amplitudes was based on Bridge et al. 

(1987) and Fasanmade and Fell (1985) and is shown in Figure 19.   The optimum means 

of measuring derivative values were with respect to the tangent baseline, as illustrated in 

Figure 22 for the first and second derivatives.    The choice of the particular measure was 

with the aid of the spectroscopy software program.  

3.1 Comparison of Derivative PCA plots  

 In general, the first derivative spectra of all species at their corresponding 

temperatures appeared similar.  The same was true for the second derivative spectra.  

However, PCA is applied to distinguish the slight variations of the spectra between 

species at different temperatures.  The PCA analysis of ~54 spectral peak heights 

obtained from differentiated spectra of the three leaf litter species at six different 

temperatures (control (unheated) to 550˚C) (triplicate samples) showed the same general 

features.  PCA is an appropriate technique since it reduces the data set to a smaller 

number of variables.  The visualization of the PCA plots from the first and second 

derivative FT-IR data are shown in Figures 23 and 24.  Principal component axes 1 and 2 

from the first derivative accounted for 95.9% and 1.70% of the variance in the data set, 

respectively. Axis 1 accounts for 96.47% of variance in the data set and axis 2 accounts 

for 1.27% of variance in the second derivative PCA plot.  The general pattern of 

groupings and clustering is similar between the first and second derivative plots.  It is 

apparent in both PCA plots of a separation of temperature along axes 1 and 2.  The 
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separation of litter species and species by combustion temperature was determined by 

analysis of variance of the coordinate scores from the PCA. ANOVA of coordinate scores 

were highly statistically significant along PC axis 1 and 2 from the first (F=45.3 and 

P<.0001 and F=35.4 and P<.0001, respectively) and second derivative (F=45.9 and 

P<.0001 and F=40.1 and P<.0001, respectively).  Post hoc Tukey’s HSD means 

separation test information is shown in Tables 5 and 6 for species in addition to 

temperature of (a) PC Axis 1 and (b) PC Axis 2 coordinate scores of leaf litter treatments 

in wavenumber space for first and second derivative spectra.  Means with the same letter 

are not significantly different.  As can be seen from Tables 5a and 6a, the first PC axis 

corresponds to a separation of huckleberry (Tukey group A) from pine and oak (Tukey 

groups B) and a separation again along axis 1 due to temperature at 400˚ and 550˚C 

(Tukey group A), which is evident in both PC plots.  This result is due to huckleberry 

having the most intense band when compared to pine and oak as illustrated in Figure 15.  

Pine and oak litter share some similarities according to their Tukey grouping (Tukey 

groups B) for PC1.  The clustering of oak and pine at 400˚C and 550˚C also reinforces 

their similarities and is shown on both PCA plots.  These groupings indicate a separation 

due mainly to temperature along axis 1.  

  PC axis 2 of both PCA plots (first and second derivatives) may have temperature 

contributing to the separation, although it is difficult to interpret from the PCA analysis.  

Control spectra are different from spectra of litter heated at 100˚C.  However, litters from 

200-400˚C (Tukey groups A, AB) share some similarities. This grouping could be from 

the beginning of a convergence of chemistries as temperatures increase, however, due to 

the fact that only 1.70% and 1.27% (first and second derivative, respectively) of the 
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variance in the data set is accounted for by PC2, separation of litters is less defined 

compared to axis 1. In general, both derivative spectra gave these similar PCA results. 

3.2 Comparison of Derivative and Original Binary (presence/absence) PCA plots 

PCA analysis on normalized, differentiated spectra was used to extract relevant 

intensity information for quantitative measurement and to compare to the original 

presence and absence PCA output from chapter two.  Firstly, it is apparent that the PCA 

scores plot of the original binary (presence/absence) FT-IR data (Figure 15) is 

surprisingly dissimilar to both derivative PCA plots.  From examination of the derivative 

PCA plots versus the original binary data, it appears there is a loss of the separation of 

species, especially at the low temperatures, where it was thought that each leaf material 

was chemically different (Figure 15).     However, the input of numerical values into 

PCA illustrated a different clustering pattern (Figures 23 and 24).  The pattern of the 

separation of temperature and species along axis 1 and 2, respectively, was not seen in 

the derivative PCA plots.  The greatest separation came from a response from 

temperature, illustrated by the clustering of species at each temperature.  The intensity 

values introduced another variable responsible for different grouping patterns and 

perhaps extracting out more differences.   

3.3 Comparison of Original Binary to Derivative Binary Data  

An additional PCA analysis was also performed on binary data from both 

derivative templates (wavenumbers that had numerical values were set to 1) and 

compared to the original binary data set (presence/absence), as discussed in chapter two, 

as well as the derivative data sets.  The new PCA scores plots of binary data of both first 

and second derivatives are shown in Figures 25 and 26.  The two binary plots from the 
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resulting derivative template generally agreed with one another.  Closer inspection of this 

PCA plot indicates additional similarities to the original presence/absence PCA plot 

(Figure 13 vs. Figures 25 and 26).  PC axes 1 and 2 for the first derivative template 

accounted for 33.03% of variance in the data set and axis 2 accounts for 11.54% of 

variance while axis 1 accounts for 31.01% of variance in the data set and axis 2 accounts 

for 11.12% of variance for the second derivative template.  This is comparable to the 

original presence/absence data set variability. Analysis of variance of coordinate scores 

along axes 1 and 2 are significant (F=16005.6 and P<.0001 and F=979.8 and P<.0001, 

respectively) for the first derivative template and analysis of variance of coordinate 

scores along axes 1 and 2 for the second derivative template are significant (F=6768.3 

and P<.0001 and F=F18.93 and P<.0001, respectively).  The pattern of separation is 

comparable to the original binary data set and is dissimilar from the PCA of the first and 

second derivatives. Post hoc Tukey’s HSD means separation test information is shown in 

Tables 7 and 8 for species in addition to temperature of (a) PC Axis 1 and (b) PC Axis 2 

coordinate scores of leaf litter treatments in wavenumber space for first and second 

derivative binary data set.  Means with the same letter are not significantly different.  As 

can be seen from Tables 7 and 8, the first PC axis of both derivative binary data 

corresponds mainly to the effects of temperature on leaf litter composition and resembles 

the original binary data set separation.  Despite the visible clustering of pine, oak and 

huckleberry litters at control to 200˚C, they are slightly different (litter species Tukey 

groups A, B,C) due to the pull of temperature on PC axis 1.  All three leaf litters on both 

plots (Figure 25 and 26) illustrate the clustering of all litter at 300˚C and are separate 

from litter at low and high temperatures.  
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PC axis 2 separates leaf species.   In the first derivative binary PC plot, pine and 

huckleberry share more similarities than shown in the second derivative binary PC plot 

(Tukey groups B, B and A respectively).  PC2 loading also illustrates that temperatures 

400˚C and 550˚C are similar (Tukey groups E and A for first and second derivative 

binary data, respectively).  In general, both derivative binary templates have similar 

grouping patterns based on temperature and species, thus similar loadings.  There are 

wavenumbers, of course, that appear in either both, none or in some combination of the 

PCA plots. These differing results may indicate that numerical wavenumber values, 

indeed, add to differing clustering patterns.   

 

IV.  Discussion 

 These analyses allow the comparison of three different methods of analyzing the 

same IR data set.  It is the desire for the different analyses of the identical data to agree as 

well as to possibly obtain new significant variables.  Derivative spectroscopy, in general, 

has some capability of revealing quantitative differences between leaf litters at different 

temperatures.  These different manipulations of all the spectra lay a foundation, or hold 

some significance, to be used as a reference and guide for input of data into statistical 

programs such as PCA.   

 The removal of experimental variability through the use of normalization, allowed 

for more accurate interpretation of spectra. In fact, normalization of the spectral data set 

is needed for the application of PCA and thus, optimum output.  Odd- and even-ordered 

derivatives are useful for correction of baseline shifts and are common and useful 

preprocessing steps.   All baseline problems were greatly reduced by the use of 



 53

derivatives in this data set, even the worst offset baseline such as ones that appear in the 

300˚C spectra of all species (Figure 27).  

4.1 Comparison of Derivative to the Original Binary (presence/absence) Data 

Differentiation between species and their derivative spectra at different 

temperatures was achieved using PCA.  First and second derivative of all litters at all 

temperatures provided some interesting results in comparison with the original binary 

data set from chapter two.  In general, there are only slight differences, if not any, 

between first and second derivative values that were put into the PCA.   Since we have 

utilized the first and derivative spectra only for quantitative analysis by using a similar 

template of selected wavenumbers used in the original analysis of presence and absence 

for PCA input, we would expect differences based only on intensity values.  Utilizing 

derivative spectra for identification of new peaks was not the present objective, though 

cannot be ruled out for future analysis of these convoluted carbohydrate spectra.   

We have seen how infrared spectroscopy differentiated between plant 

carbohydrates of each litter species at each temperature previously.  Bands overlap in the 

carbohydrate region and thus make identification difficult.  Several vibrational modes are 

common to all primary structural components of leaf material including cellulose, lignin 

and hemicellulose.  A comparison of all litter components by examining the first and 

second derivative spectral values and using PCA in the same manner as in chapter two 

can help extract differences between species at different temperature treatments.  

Analysis and comparison of the PCA loadings (wavenumbers) from the original binary 

data set, the first derivative and the second derivative at low temperatures are shown in 

Table 9.  This highlights the wavenumbers which have the highest eigenvector loading in 
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the PCA and therefore contribute significantly to any separation and clustering along the 

PC axes that can be seen in all three PCA plots (original binary data, first and second 

derivative data).  In general, the wavenumbers that are responsible for the clustering of 

low temperature spectra along each axis are seen in all three plots for the most part, 

which is the focus of the study.  The concurrence of these primary wavenumbers typical 

of major plant components indicates that all these methods of investigation for PCA are 

complementary.  However, the fact that some wavenumbers appear in some combination 

of the three plots does not indicate one PCA plot is superior to the others.  These findings 

simply propose they should be used collectively.   

The observed band at 1514 cm-1 was brought out by both derivative PCA plots in 

agreement with the original binary PCA plot.  This band, appearing in all species (C-

200˚C), is identified as the aromatic vibration of the lignin matrix and the CH 

deformation of lignin (Boeriu et al., 2004; Owen and Thomas, 1989; Kubo and Kadla, 

2005) (Table 3).  This band had the most significance in all species as highlighted by the 

binary PCA as well as the derivative PCA plots (Figures 13, 23 and 24).  However, close 

examination of the first and second derivative PCA plots revealed two new peaks that 

were not significant in the original binary plot.  The bands at 2850 and 2918 cm-1 were 

considered the most significant in all low temperature species and represent the C-H 

stretch of aliphatic compounds (Socrates, 1994) (Table 3).  These IR frequencies 

disappear around 300˚C, which is expected due to combustion of organic compounds.  

The vibrational mode at 1616 cm-1, which is present in all low temperature litter spectra 

(C-100˚C) has been previously identified in chapter two as the vibration of COOH of 

galacturonic acid residues that make up pectin (Chatjigakis et al., 1998; Stewart, 1995) 
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(Table 3).   However, it was not significant according to the second derivative PC plot, 

but was in the original and first derivative plots.  The IR band at 1737 cm-1 was identified 

as significant by the first and second derivative PCA plots despite its absence in the 

original binary plot.  This band appearing in all species (C-100˚C) could most likely be 

assigned as the vibration of ester carbonyls belonging to various polysaccharides 

(Stewart, 1995).    

The wavenumbers 1452 cm-1 and 1319 cm-1 are also considered important by the 

original binary and derivative PC plots.  Despite 1452 cm-1 not appearing as significant in 

the second derivative PC loadings plot, it has been assigned to many different spectral 

components, along with 1319 cm-1, which does appear significant in all plots.  These 

wavenumbers present in this complex carbohydrate region of the IR spectrum could 

describe the C-H bending motion of aliphatic molecules (Francioso et al., 1998) or 

possibly N-H of amide III bending motions (Haberhauer et al., 2000; Francioso et al., 

1998).  There is also a possibility of the assignment of C-O bands of decomposed 

carbohydrate group components  (Haberhauer et al., 2000; Francioso et al., 1998).  This 

could be a possibility for wavenumber 1452 cm-1 since it appeared in oak at temperatures 

400-550˚C and in huckleberry at 550˚C.  The presence of suberin and cutin could also be 

another potential assignment.  As described in chapter two, the presence of these 

compounds is found in the region 1480-1050 cm-1 and can possibly mask the absorbance 

of cellulose.   

There were also some wavenumbers that were distinct in the original binary and 

only the second derivative PCA plot as seen in Table 9.  The vibrational mode at 1462 

cm-1 characterizes both oak and pine litter only (control-200˚C) in both PC loading plots. 
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A close look at the distribution of low temperature litter species in wavenumber space in 

Figures 13 and 24 illustrates the relative positions of low temperature oak and pine.  

Suberin and cutin are possibly characterized by 1462 cm-1 and corresponds to the C-H 

deformation.  As indicated in chapter two, this band assignment of cutin and suberin 

could indicate a higher occurrence of these outer surface waxes on oak and pine.  

Wavenumber 657 cm-1 was recently identified as significant in and only in the 

second derivative PCA plot.  It appears in all species, but at different temperature 

treatments.  For instance, control and 100˚C spectra of oak revealed the existence of this 

peak.  It also existed not only in the 100˚C spectra of pine, but also in the 400˚C spectra.  

This peak also existed in the 400-550˚C spectra of huckleberry only.   In order to identify 

the cause of this peak, its appearance at a specific temperature must be taken into 

consideration.  This vibrational mode could indicate the possibility of the presence of 

basic sugars, fatty acids or aldehydes (Stewart, 1995; Mathlouthi and Koenig, 1986) at 

low temperatures, which could be the situation for the oak and pine litter.  At higher 

temperatures (400-550˚C), the wavenumber is most likely due to the presence of 

inorganic ions (Table 3).   

The wavenumbers that do not appear significant in one or more of the PCA plots 

does not mean they do not exist at all.  However, the frequency of these variables in all 

the PCA plots increases the confidence of the analyses.  Their appearance also enables 

the identification of the small changes that are occurring at the chemical level.    

4.2 Comparison of the Derivative PCA Plots  

There are several wavenumbers that contribute to the pull along the positive side 

of axis 2 that are significant in the derivative PCA plots but nonexistent in the original 
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PCA plot (Table 9).   These wavenumbers are responsible for the clustering around this 

region.  Most of these newly identified wavenumbers are from higher temperature 

spectra.  All spectra at 400-550˚C exhibit a vibrational mode at 713 cm-1.  This band has 

been identified from the derivative PCA plots as the most significant band and most 

likely indicates the presence of calcium carbonate left over at this stage of decomposition 

(400-550˚C) (Table 3).  As discussed in chapter two, the presence of calcium carbonate 

is distinctive with sharp absorption bands ~712, 876, 1795 and 1430 cm-1 (Gressel et al., 

1995; Hunt et al., 1950; Jackson, 1998).  However, only wavenumbers 875 cm-1 and 1797 

cm-1 of calcium carbonate from the original binary data set were identified as significant 

by the PCA despite the other accompanying peaks of calcium carbonate appearing in the 

spectra.  Wavenumbers 875, 1797 and 713 cm-1 were deemed significant by the derivative 

input therefore indicating input of quantitative values as a superior method or 

complementary method of analysis in the distinction of vibrational modes of molecules.   

The derivative spectra of oak and pine at ~400-550˚C both exhibit a peak at 572 

cm-1.    This vibrational mode is most likely due to the presence of inorganic ions such as 

the sulfate ion (SO4
2-) expected at these temperatures.  The deformation of S-O occurs 

~580-670 cm-1 and 1100 cm-1.  This is not the first time we have seen similarities 

between the oak and pine species.  The PCA of both derivatives have revealed the spatial 

relationship between oak and pine also at 400-550˚C.  Infrared peak at 605 cm-1 found 

only by second derivative PCA is also most likely due to presence of SO4
2- but is shared 

with all three species at the higher temperatures. Closer examination of significant peaks 

from the derivative PC loadings seems to reveal more information about identification of 

molecular species.   It was observed in chapter two that absorbance bands were clearly 
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seen but not significant in the binary PCA plot.  Common polyatomic inorganic ions such 

as sulfate (SO4
2-) and phosphate (PO4

3-) are expected at this stage of decomposition in the 

form of metal salts.  The range of their infrared vibrational modes is found in the 

observed spectra of all species heated to 550˚C (Figure 15 and Table 3).  

Other vibrational modes found only significant by derivative PCA (along the 

positive region of axis 2) were wavenumbers at 1114 cm-1, which appeared only in oak at 

400-550˚C and in pine at 200˚C, and wavenumber 1412 cm-1, which appeared only in 

pine at high temperatures.  The appearance of 1114 cm-1 at two very different stages of 

thermal treatment may indicate two different assignments. The presence of intense 

polysaccharides in the region (1480-1050 cm-1) may explain the appearance of this band 

in pine ~200˚C which may imply greater polysaccharide content.  The presence of this 

peak at high temperatures is most likely accounted for by a deformation of SO4
2- (Table 

3).  The previous identification of peak 572 cm-1 as SO4
2-, though appearing in both oak 

and pine, raises some questions about the identification by PCA alone. If the 

identification of SO4
2- were to be successfully made, then it would be consistent in its 

appearance in both species and at all expected vibrational modes.  Furthermore, the 

absorption in pine at 1412 cm-1 could also be due to the presence of inorganic ions, such 

as carbonate.   

Finally, following along with the increasing temperature across the PCA plots as 

well as the comparison of plots, wavenumbers responsible for the pull along the positive 

end of axis 1 and indicative of high temperature species, primarily huckleberry (Figures 

23 and 24) are the same for both derivative sets.  In fact, these wavenumbers are 

significant elsewhere and responsible for pull on the positive and negative side of axis 1 
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(713 cm-1 and 657 cm-1, respectively). Two other significant wavenumbers, 875 cm-1 and 

619 cm-1, appear in the original binary data set as well.   All of these peaks have been 

previously identified as inorganic content that noticeably contributes to the separation of 

species at high temperatures (400-550˚C).  However, the outlier of the usual spatial 

relationships is the IR spectra of huckleberry at 550˚C.  The reason for this is evident as 

one looks at the higher temperature spectra (550˚C) of all litter species (Figure 15).  The 

distinct cluster based on intensity values provided by derivative data is evidence of 

additional information, indicating a more powerful classification technique is acquired 

with numerical intensity values.   

In spite of this huckleberry outlier, the separation from oak and pine on PC1 is 

really an artifact of the divergence of huckleberry at 400 and 550˚C from everything else.  

This actually skews the interpretation.  Huckleberry control and 100-300˚C spectra, in 

fact, are not different from oak and pine same temperature spectra.  As apparent in 

Figures 23 and 24, divergence seems to be the greatest at 400 and 550˚C, with greatest 

separation of huckleberry species from oak and pine.  However, there is some separation 

of oak and pine as well.  This suggests that along with the distinct chemistry of 

huckleberry at high temperatures (less labile inorganics), there exists some uniqueness of 

chemistries (inorganics) of all litter species at 400-550˚C.   

4.3 Comparison of All PCA Plots  

Post hoc Tukey’s HSD means separation test information analysis gives the 

information of which species and temperatures along the axes are different (Tables 4-8).  

From this analysis, comparisons can be made. However, overall, it is apparent that 

species behave differently at different temperatures from the significant interaction term 
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(species*temp), which leads to the uncertainty of exact clustering on the PCA plot.  This 

uncertainty has increased especially in the derivative PCA loading plots. A clear 

separation of temperature and species existed in the original binary PCA plots along axes 

1 and 2, respectively.  However, the clear distinct separation disappeared in the first and 

second derivative PCA plots.  The separation along axis 2 of both derivative plots 

especially led to more ambiguity.  The circles that appear are only to highlight 

approximate clustering; they do not strictly relate to significant differences between litter 

species and combustion temperature.  This therefore indicates some differences in their 

chemical composition unique to each litter component at each temperature treatment.     

In order to evaluate the changes and compare data on all levels of analysis, two more 

additional PCA analyses was run on binary data using the first and second derivative 

templates and provided interesting results.    

4.4  Binary Derivative Data 

 The results of the binary derivative data share similarities with the original binary 

(presence/absence) PC loading plots.  The similarities to the original binary data set 

include the separation of temperature and species along axes 1 and 2, respectively.  The 

groupings of the derivative binary data set show, surprisingly, few similarities to the 

derivative PCA plots.   

 Figures 25 and 26 represent the principal component scores for the binary data 

set of the first and second derivative data, respectively.  In these scatter plots, the 

difference between species and temperature are more pronounced.  In addition, the 

general trends are useful for comparison to the original binary data set rather than the 

derivative PC loadings.  The interpretation and comparison of the groupings between the 
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derivatives and their binary counterparts are not straightforward; therefore comparison 

will just be kept between binary data sets.  Despite the exact location of the groups in 

wavenumber space, the clustering pattern is similar between the two plots.  The 

variability accounted for by each axis is similar as well.  Axis 1 accounts for ~ 33% of 

variance in data set and axis 2 accounts for ~11.54% of variance for both derivative and 

original binary data sets.  The groupings on both positive sides of axis 1 seem to illustrate 

the same clustering pattern as the original binary data set (Figure 13).  The wavenumbers 

1514 and 1319 cm-1, both present in the PC1 loadings, are found as significant in the 

original binary data and both derivative PC plots as well.  These peaks were seen as 

prominent peaks and identified as representing lignin and cutin.  Interpretation of the 

presence of the significant peak at 2520 cm-1 only appearing in first derivative binary set 

is questionable.   This peak appeared previously in the original data set as significant and 

characteristic of high temperature species.  Wavenumbers 2918, 1737 and 1319 cm-1 all 

appeared and had the most significance in separation along the positive end of axis 1.  

These wavenumbers have been seen before in the derivative PC loading as characteristic 

of low temperature species and therefore identified.  The wavenumbers that are brought 

out only by the input of binary data using the first derivative template are 1101 cm-1 and 

719 cm-1.   The result of new peaks brought out as significant by only one binary data is 

interesting.  The second derivative binary data set brought out significant wavenumbers 

that may not have contributed to separation along PC axis 1 of the first derivative binary 

data set, but did in the original binary data set (2850 cm-1 and 896 cm-1).    

 Another interesting element pulled from the analysis of binary data is the 

differences between the separation/clustering of low temperature species.  The first 
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derivative binary PC plot illustrates the clustering of pine and huckleberry species (Tukey 

groups B, Table 7) whereas the second derivative binary PC plot illustrates the distinct 

separation of all species at low temperatures (Tukey groups A, B and C, Table 8).  This 

observation makes interpretation and comparison of different ways of analyzing data 

complicated.   

 PCA results from both derivative binary plots illustrate strong evidence for 

similarities between species beginning at 300˚C.  It was seen in the previous binary plot 

(in chapter two and Figure 13) that differences between litters disappear.  The variables 

which are responsible for this clustering in both plots are 1608, 783, 518 and 1368 cm-1.  

The ranking, or order of significance of each wavenumber does vary between binary 

plots.  The band at 1608 cm-1 appears in oak (from 100-300˚C) and pine (300˚C only) 

species only and most likely indicates the breakdown, or decomposition of pectin’s 

functional groups since it absorbs in the main region of absorbance for pectin 

(Chatjigakis et al., 1998; Stewart, 1995) (Table 3).  This also explains the relative 

positions of the litters (oak and pine) on the PCA plots.  Wavenumber 783 cm-1, present 

again in only oak and pine, could indicate decomposing carbohydrate groups of the basic 

sugars or fatty acids and aldehydes within this IR region (Table 3).  Its presence in only 

oak and pine results in strong evidence of spectral grouping according to species.  

Similarly, peak 1368 cm-1, found in oak and pine indicates possibly the breakdown of 

lignin.  As discussed previously, the decomposition of lignin increases the aromatic 

content in litter and thus interpretation of these peaks as lignin absorbing in the region is 

likely.  Assignment of the wavenumber that exists in all species at 518 cm-1 is too low for 

polysaccharide absorption and possibly indicates the early presence of inorganic ions, 
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though only speculative (Table 3).  This group of common wavenumbers, however, was 

not seen in the corresponding derivative PCA plots.   

 Comparison within the two binary PCA plots brought out two new wavenumbers 

in each plot, though their existence as significant was found either in the original or 

derivative PCA plots.  Wavenumbers 1423 cm-1 and 669 cm-1 were extracted from the 

first derivative binary PC loadings.  1423 cm-1, found in oak and pine species, was seen in 

the original binary data set and was seen to represent the absorbance of suberin and cutin.  

At around 300˚C, there has been strong evidence of the similarities between oak and pine.  

This is different from the clustering or grouping of oak and huckleberry that was evident 

at low temperatures.  This variation in the clustering could relate to the classification of 

tree species. Oaks and pine trees are hardwood and softwood trees, respectively.  

Huckleberry, physically different from both trees, dominates the shrub layer and is part of 

the heath family. The new wavenumber, 669 cm-1, present in all species has not been 

observed in other PCA plots and is an interesting observation regarding the binary data.  

This wavenumber is actually seen in low temperature spectra as well indicating the 

region of absorbance of the CH out of plane deformation of fatty acids and aldehydes 

rather than the presence of inorganic ions.   

 Wavenumbers 1707 cm-1 and 833 cm-1, though not present in the first derivative 

binary PCA plot, were deemed significant by the second derivative binary PCA plot.  The 

band at 1707 cm-1 appearing in oak and huckleberry spectra has been significant in the 

original binary and first derivative plots as well. It most likely to be the carbonyl stretch 

assigned to lignin (Boeriu et al., 2004) (Table 3).   However, vibrational mode 833 cm-1 

is appearing for the first time and is seen in the oak control and pine 300˚C spectra.  
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Vibration of the pyranose ring of the simple sugars is most likely the assignment 

(Tul’chinsky et al., 1976).   

Comparison of the derivative binary data at higher temperatures seems to agree 

attributing the same wavenumbers as the cause of separation along axes 1.  The 

significant wavenumbers seem to appear in some combination of the 5 PCA plots 

(original binary, first derivative, second derivative, first derivative-binary and second 

derivative-binary) and agree on the presence of inorganics left at this stage of 

decomposition (400-550˚C).   

4.5.  Conclusion 

 Despite using PCA in the same manner as it was used in chapter two, input of 

actual numerical values led to differences in the PCA plots. Perhaps the combination of 

quantitative analysis as well as presence and absence data leads to easier detection of 

sample patterns and groupings as well as outliers.  It is difficult to say one method for 

PCA input and analysis is superior to another since it was observed that all methods were 

complementary to each other.    The FT-IR method in combination with PCA analysis is 

a powerful method for obtaining information on the effect of temperature treatments of 

the polysaccharide composition on plant species.  The derivative method has entered 

numerical information about spectral intensities and has resulted in very different 

clustering patterns than the binary data clustering.  The inexact clustering of species, 

through the use and results of Tukey groupings, has proven that grouping plant species 

based on composition is not straightforward and indicates each species “behaves” a 

certain way at each temperature.  These different methods of analyzing the same data via 

PCA for the detection of temperature effect on species have the potential of becoming 
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complementary and providing supplementary information needed to discern the chemical 

properties of samples.  
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Chapter Four: Evolved Gas Analysis (EGA) and Thermal Decomposition 

I.  Introduction    

1.1 Evolved Gas Analysis 

Further information on the thermal properties and decomposition products of the leaf 

litter is gained by the use of thermal gravimetric analysis coupled with infrared 

spectroscopy (TGA-IR). Thermogravimetric analysis measures weight loss as a function 

of either time or temperature in a controlled atmosphere. TGA-IR is capable of 

identifying vapor-phase substances that are evolved during thermal gravimetric analysis 

(Figure 28).  The two main components of the TGA include a balance and furnace with a 

controlled gas flow across both.  The temperature range of the furnace can vary up to 

1000˚C and a ramp rate ≥ 1˚C min-1 to 200˚C min-1 can be employed.  A small 

thermocouple located near the sample measures temperature.  A purge gas system is 

present to provide an inert or reactive atmosphere.  Usually, a Pt sample pan is utilized 

and preferred due to its unreactive nature.  TGA has been increasingly important in the 

analysis of liquids and solids such as polymers and fossil fuels (Coleman, 1993).  It is 

also versatile for analysis of both organics and inorganics.  Soudais et al. (2007) notes 

how TGA-IR can be utilized for the investigation of the degradation of polymers and 

biopolymers under pyrolysis.  An analysis of contaminated soil using TGA-IR provided 

information about the total organic content and the amount lost upon pyrolysis (Thermo 

Electron Corporation, 2005).  

The change in weight of a sample as a function of time or temperature is acquired 

with the evolution of gases due to volatilization of the sample.  TGA experiments alone 

cannot identify components of the sample of interest, hence the coupling of the two 
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analytical techniques (TGA and IR).  Evolved gases are transported to the spectrometer 

via a heated transfer line.  During the continuous collection of spectra, the spectroscopy 

kinetics software program produces a Gram-Schmidt (GS) chromatogram that plots the 

total IR intensity versus time.  Time and temperature in the study can be related via the 

experimental ramp rate.  The advantage of a GS chromatogram is the ability to extract 

information from the collected IR spectra at any point (temperature) during the 

experiment and observe the IR spectra of the gases evolving from the sample of interest.  

The decomposition of several compounds can be studied with careful control of the TGA 

furnace, ramp rate and carrier gas, all of which are dependant upon desired experimental 

conditions.    

1.2 Two-way Analysis of Variance (ANOVA) 

 The exploitation of several different statistical techniques is advantageous for the 

interpretation of experimental data.  The method of analysis of variance (ANOVA), made 

famous by R.A. Fisher in his book Statistical Methods for Research Works published in 

1925, has been implemented in many statistical studies and is a powerful statistical 

testing technique.  Today, in laboratories, there is a concern with precision and accuracy 

of chemical methods.  ANOVA can give some understanding and breakdown of the 

errors encountered in experimental methods. ANOVA resolves the problems such as 

determining if sample groups have the same mean (Mark and Workman, 2003). 

Comparison of multiple means, however, cannot be used with only a Student’s t test and 

thus ANOVA is utilized.  One-factor, or one-way ANOVA, is the simplest form of 

ANOVA.  ANOVA allows the ability to compare the variability between groups to the 

variability within each group.  In the analysis of variance method, estimates for the 



 68

variance of individual groups are calculated.  If there is no effect due to the use of the 

different groups, then the estimates should agree (Mark and Workman, 2003).  However, 

if the variances are far apart, then the assumption that all the sample means are the same 

is wrong and the null hypothesis is wrong (Mark and Workman, 2003).  This is where the 

F value becomes worth mentioning.  The F value indicates what is considered “too far;” 

it measures whether the two estimates of variance around a mean value are alike, that is 

from the same groups, or from different groups (not alike) (Mark and Workman, 2003).   

There also exist several types of ANOVA depending on the number of 

independent factors and their effect on a subject.  Two-way ANOVA, also called two-

factor ANOVA, is optimum for analysis of data from the existing experiment. Two-way 

ANOVA is of interest in the current study on functional group peak height 

chromatograms in order to examine how a response (intensity) is affected by two 

independent factors (time and species). Two-way ANOVA is concerned with three 

questions (Moltulsky, 2003):  1) Does the first factor systematically affect the results? So 

for the existing data example, are the mean responses the same for all the time steps?  2) 

Does the second factor systematically affect the results?  In the present case, are the mean 

responses the same for all litter species? 3) Do the factors interact?  In the present 

example, are there differences in time of gas evolution between species?  Or, is the 

difference between species the same during the time series?  Although the dependant 

variable, the outcome, is a continuous variable, the factors must be definite (Moltulsky, 

2003). The comparison of the variability between groups and the variability within each 

group will be tested.  Two-way ANOVA will test whether the possible main effects and 

interaction effects are statistically significant and aid in providing information about the 
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thermal decomposition of each litter species at increasing temperatures.  In general, the 

combined techniques of TGA/IR will aid in identifying decomposition products that are 

composed of organics.  The specific degradation products evolved at each temperature 

step are expected to be similar between plant species. Thus, a link to further the 

information on stability and volatilization of chemical species during control burns can be 

investigated.   

 

II.  Experimental Methods 

2.1 TGA-IR Analysis  

Dry, unburned leaf material consisting of white oak (Quercus alba), black 

huckleberry (Gaylussacia baccata) and pitch pine (Pinus rigida) were ground in a Wiley 

mill to produce uniform particles and homogeneity.   Triplicate samples of all biomass 

material weighing between 12-18 mg were placed in a platinum (Pt) pan.  Evolved gases 

were analyzed by coupling the TGA (TGA 2050, TA Instruments) via a heated transfer 

line set at 250˚C to a Varian (formerly BioRad) FTS 6000 FT-IR spectrometer using a 

DTGS detector.  Dry air set at a constant flow of 90 cc min-1 entering the furnace and a 

ramp rate of 50˚C min-1 from ambient to 1000˚C were conditions used to mimic 

combustion processes and simulate field conditions during a control burn.  A low volume 

of nitrogen (10 cc min-1) flowed through the balance chamber to prevent back flow of the 

primary purge gas (TA Instruments Brochure).  FT-IR spectra (20 scans) were recorded 

continuously in the spectral range of 4000 cm-1 to 400 cm-1 at a spectral resolution of 4 

cm-1 and a time resolution of 1.00 second.  Mass loss (weight %) versus temperature were 

recorded along with IR spectra of the evolved gases.  The gas purge to the spectrometer 
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was closed off over night to rule out interferences by atmospheric conditions (water 

vapor and CO2) and to ensure optimum background conditions.  The gas purge was then 

reopened and the dry, CO2 free air was allowed to flow through the spectrometer for at 

least 30 minutes prior to the start of each experiment.  All spectra were recorded with a 

background purged with dry air.  Triplicate runs of each litter were carried out using the 

same conditions.   

2.2 Spectral Analyses and Two-way ANOVA 

 Extractions (every 50˚C intervals) from spectra collected continuously were 

created and analyzed.  These extractions illustrated temperature ranges at which most of 

the gaseous components are coming off.  Extracted spectra of all litter were smoothed (7 

points) in order to acquire peak height chromatograms of functional groups.   

 Each peak height chromatogram consisting of intensity versus time of specific IR 

regions of gases evolved during heating of each leaf litter was imported into a Microsoft 

Excel spreadsheet.  The values were normalized by dividing through by the biomass 

weight from each TGA experiment. Subsequently, these values were multiplied by 1000 

with a threshold set at <.05 to select data above noise threshold.  Every half-minute 

interval was averaged to reduce the number of data points.  Lastly, two-way ANOVA 

(GraphPad Prism, Version 4.0, GraphPad Software, Inc. San Diego, CA) was performed 

on the manipulated data of peak height chromatograms of specific wavenumbers of IR 

regions of gases evolved to measure how a response is affected by two different factors. 

 Time series analysis of variance, repeated measures test and Tukey’s Studentized 

Range (HSD) (SAS Institute Inc. Version 6.12, SAS Institute, Cary, N. Carolina, USA) 

between treatments (oak, pine and huckleberry) were performed on all the peak height 
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chromatograms.  The temperature range over which most of the weight loss occurred was 

evaluated.    

III.  Results and Discussion 

 The transmission FT-IR spectra (KBr pellet) of each control (unheated) oak, pine 

and huckleberry samples to illustrate the similarities and differences between spectra are 

shown in Figure 29.  These small differences have been extracted through the use of 

PCA.  Further characterization through additional analysis by thermogravimetric analysis 

can provide additional information regarding thermal decomposition of leaf material.  

Carbohydrates are thermally fragile molecules.  These complex biomolecules may 

degrade in multiple steps.  Differences in weight loss between species can be determined 

and analyzed.  The coupling of TGA with infrared spectroscopy can provide additional 

information since these degradation products absorb in the IR region.  However, it is 

necessary to point out that despite the presence of many gas molecules, only IR active gas 

phase molecules can be observed.  One should also note that intensity does not directly 

correlate with quantity since different infrared vibrational modes have different molar 

absorptivites.   

The evolved gas analysis data for all species indicate the main weight loss event 

occurring in the range of ~275˚C to ~500˚C as illustrated in the thermograms of weight 

percent versus temperature for oak, pine and huckleberry (Figure 30).  Analysis of all 

triplicate data generally agrees.  However, in each set of triplicate data, there did exist 

one trial run that deviated from the others due to sample weight variation.  Sample weight 

should be kept constant for future trial runs and analyses.  The TGA curves of all litters 

have a similar shape except for oak having a unique weight loss.  All curves show a 
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weight loss of H2O around 60-75˚C.  Oak, pine and huckleberry had similar amounts of 

water loss (~4 - 5%) as illustrated in Table 10 which reports average % weight losses and 

average derivative peak temperatures for each of the weight loss steps.  There exists two 

main weight loss steps starting at ~225˚C for all three litters according to the derivative 

curve in the thermograms (Figure 31a, b and c).  Huckleberry is generally comparable to 

pine.  The large weight loss that begins ~ 100˚C and continues until ~ 500˚C can be 

examined in more detail on the derivative weight (%/˚C) plots in Figure 31.  At about 

315˚C, the derivative curves show an inflection point corresponding to the first weight 

loss step.  The resulting average weight loss is ~ 54%, 64% and 57% for oak, pine and 

huckleberry, correspondingly (Table 10).  At about 370˚C, the weight loss sharply 

increases again as seen from the derivative plots (Figure 31).  The temperature at which 

the second main weight loss occurs varies in all litter species.  Oak litter demonstrates 

this weight loss of 37% occurring at ~377˚C on the derivative plot.  Pine loses ~ 30% of 

its weight at this step at ~434˚C while huckleberry loses 31% at ~429˚C as summarized 

in Table 10 with average values.   While oak had the greatest weight loss, it lost the 

second component the earliest explaining the steeper slope of the thermogram. 

Observation of the delayed weight loss in huckleberry from the thermograms (Figure 30 

and 31b) may indicate that nutrients are less labile in huckleberry. A small weight loss 

step (~.8-1%) around 660-675˚C occurs in oak and huckleberry while pine only has a loss 

of ~ .4% at ~ 670˚C, again indicating dissimilarity.  These distinctions and variations 

from the other litter species could correspond to the derivative PCA results that indicate 

huckleberry is different at high temperatures (Figures 23 and 24). 
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 However, TGA alone cannot identify the specific evolved gaseous decomposition 

products, thus TGA is coupled to an infrared spectrometer.  IR is valuable in identifying 

functional groups and low molecular weight species such as H2O, CO, CO2 and NH3 due 

to its sensitivity (Slager and Prozonic, 2005). However, interpretation of the IR gas 

spectra can be complicated at times due to overlapping bands in combination with the 

interfering IR absorptions of water vapor.  However, the combined techniques 

supplement each other with the quantitative aspect and identification taken care of by the 

thermal analyzer and the IR, respectively (Slager and Prozonic, 2005).  The findings from 

these two methods are complementary and enable additional comparative analysis. 

Infrared data corresponded to the weight loss illustrated by the TGA via the Gram-

Schmidt and functional group profiles exhibited by each species.  The Gram-Schmidt 

curve of each species plots the total IR intensity versus time.  The IR spectra confirm that 

the initial weight loss observed in the thermograms between 50˚C and 100˚C is water 

vapor.  Oak’s Gram-Schmidt profile and thermogram exhibit the same curve shapes 

indicating faster decomposition. The bulk of the weight loss starting ~300˚C is seen in all 

species’ Gram-Schmidt curves (Figure 32).  Pine and huckleberry’s Gram-Schmidt also 

agree with the first derivative curve of the thermograms in the appearance of multiple 

steps in the main weight loss event ~375˚C.  Despite the lack of two clearly defined 

peaks as exhibited by the Gram-Schmidt plots of pine and huckleberry, two steps are 

observed and brought out by the oak derivative thermogram (Figure 31a).  Figure 33 

illustrates extractions (50˚C intervals) of the IR regions during the main weight loss event 

of the evolved gases from oak litter (during heating from ~325-625˚C).  The overall 

spectral changes of oak are similar and generally comparable to pine and huckleberry.  
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These IR spectra indicate that H2O, CO2 (3716, 2349 and 667 cm-1) and CO (2143 cm-1) 

are evolving.  Additional spectral regions include CH (3000-2850 cm-1), IR regions 

~1250-1050 cm-1 and ~1840-1650 cm-1. Peak area profiles of each specific IR region 

were created and agreed with the observed weight loss seen by the thermograms and the 

Gram-Schmidt (Figure 34).  These profiles compare the time (and temperature) at which 

the evolution of gases between species occurs.   

 According to the vertex of the derivative curve shown in Figure 31 a-c, the first 

weight loss occurred approximately at an average of 310˚C for all species (Table 10). 

Soudais et al., (2007) has observations that are consistent with the present data that the 

degradation of cellulose begins with CO2, CO and H2O ~336˚C at a ramp rate of ~30˚C 

min-1 followed by a larger weight loss after 350˚C corresponding to alkanes, alkenes, 

aldehydes and ketones.    Cellulose is the main constituent of biomass and the focus on its 

thermal decomposition is critical.   The present findings are comparable to the pyrolysis 

behavior of cellulose.  Our existing main weight loss was characterized by a combination 

of CO2, CO, H2O and CH (alkanes).  Alkanes absorb in the 3000-2800 cm-1, while IR 

spectra of alkenes contain bands ~ 3150-3050 cm-1.  The CH that exists in the leaf litter 

study most likely belongs to an aliphatic compound given the observed intensity (3000-

2800 cm-1).  Despite the ambiguity of the molecular compound to which the functional 

group can be assigned, the basic chemical features of hydrocarbons in complex mixtures 

vary little from one hydrocarbon to another (Gardiner, 2000).  The main differences arise 

from the relative amounts of aliphatic, olefinic and aromatic hydrocarbons. 

The IR spectral extractions of each species show two additional regions evolving 

~ 1840-1650 cm-1 and ~ 1250-950 cm-1 that contribute to the Gram-Schmidt.  The 
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complex leaf litter mixtures of hydrocarbon content (various polysaccharides) make it 

difficult to identify specific compounds, however the spectral regions will be discussed.  

The IR gaseous region of 1840-1650 cm-1 could possibly indicate the evolution of either 

ketones and/or aldehydes.  Ketones and aldehydes absorb ~ 1750-1690 cm-1 and 1800-

1740 cm-1, respectively (Soudais et al., 2007). This IR region is difficult to resolve due to 

the overlapping bending bands of H2O as well.  The presence of these compounds is 

expected and has been confirmed by Soudais et al. (2007) as main components during 

cellulose degradation.  Since leaf material contains various sugars and thus varying 

functional groups, any combination could be a possibility.    The degradation of cellulose 

has been known to be difficult to investigate and complex in comparison to other 

polymers (ethylene vinyl acetate and polyvinyl chloride) (Soudais et al., 2007).   The 

region ~ 1250-950 cm-1 could most likely be the assignment for aromatic content (C-H 

deformation; 1290-1000 cm-1) (Socrates, 1994) or the presence of other bands in this 

region, i.e. due to the stretching of C-O or C-C of various functional groups.   

CO2, CO and carbon compounds are common combustion products of carbon 

compounds when oxygen is present in ambient air, hence their existence in large 

quantities during the thermal analysis. According to CO’s profile of intensity versus time 

(Figure 34), its evolution appears to lag behind when compared to the remaining gaseous 

compounds. The second weight loss, occurring the earliest for oak (377˚C) and ~ 434˚C 

and 429˚C for pine and huckleberry, respectively, included gas phase evolution in the 

regions for CO, CO2, CH, ~ 1840-1650 cm-1 and ~ 1250-950 cm-1.   

As mentioned previously, the emission of CO2 has been observed in the major 

weight loss event from ~ 300-600˚C.  Soudais et al. (2007) also observed a large amount 
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of this molecular species during cellulose degradation and indicated it may be used as a 

tool to monitor degradation.  However, as functional group profiles were created from 

evolved species, it was apparent that indeed the peak around 3750-3700 cm-1 was a 

Raman and IR combination band of CO2 (Herzberg, 1991) thus also indicating its 

presence during thermal degradation.  As a rule, only three of the four vibrational normal 

modes are observed because two modes are degenerate.  Therefore, the normally 

expected IR active vibrational frequencies for CO2 are ~2349 cm-1 (asymmetric stretch) 

and ~667 cm-1 (bend).  The symmetric vibration is IR inactive while both bending 

vibrations are equal in energy.  This lack of frequent recognition of the combination band 

in the vapor phase is partially due to overlapping in the H2O stretching region.  However, 

as a result of temperature increasing, the H2O band disappears while CO2 still exists as a 

product of degradation.  Figure 35 illustrates the peak area profiles of all three CO2 

vibrational frequencies.  This identification of the combination band was partly due to the 

creation of the peak area profile.  The small peak observed in the combination band 

(3750-3700 cm-1) ~175˚C (3 minutes) is a result of the water vapor since the water 

stretching vibration exists in this region as well.  

Small differences between the leaf litter species are illustrated in their profiles of 

evolved gases.  Figure 36 demonstrates the differing CH gaseous region in each species. 

Small differences in chromatograms are pulled out by two-way ANOVA.  Two-way 

ANOVA determines how intensity is affected by 2 factors such as time/temperature and 

species.  Two-way ANOVA was performed on peak height chromatograms of the CH 

region (~3020-2800 cm-1) of each species.  The CH region is comprised of 3 peaks (as 

seen in Figure 36) including ~2862, 2932 and 2967 cm-1.  Peak height chromatograms 
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were produced from each of these peaks within the CH region.  Two-way ANOVA was 

also performed on wavenumber region 1840-1620 cm-1
, which included the maximum 

band at 1772 cm-1 and 1769 cm-1 for oak and huckleberry, respectively, and 1748 cm-1 for 

pine.  In addition to these wavenumber regions, 1250-1050 cm-1 also was evaluated 

utilizing two-way ANOVA, which consisted of three peaks: 1032, 1060 and 1180 cm-1.     

 The two-way ANOVA on the CH region indicated for all selected wavenumbers 

that time/temperature affected the intensity of each peak.  Time accounted for 87%, 84% 

and 81% of the total variance for wavenumbers ~2862, 2932 and 2967 cm-1, respectively, 

while species accounted for ~1-2% of the total variance. All effects were considered 

significant from their observed F and p values <0.0001.  Table 11 summarizes and 

indicates the significant values of the independent variables. Table 12 describes the 

results of the two-way ANOVA procedure on the peak height chromatograms of the IR 

region of 1250-950 cm-1.  The results are consistent with the CH results that temperature 

of the heating treatment does indeed affect the outcome of the intensity.  Although, the 

effect of species on intensity is significant, it is not to the same extent as significant as 

temperature.  Interaction between time and species appear to be significant as well in all 

IR regions of evolved gases.  A significant difference is indicated by a high F value and a 

p value <0.05.  Figures 37a-c and 38a-d are comparative histograms of selective peak 

height profiles of each peak in the CH region (2862, 2932 and 2967 cm-1) and each 

maximum peak of the IR gaseous region 1250-950 cm-1 (1032, 1060 and 1180 cm-1) and 

1840-1620 cm-1 of normalized intensity versus time (integrated at 0.5 minutes) for the 

three species.  The maximum peaks correspond to the temperature of the greatest weight 

loss and thus agrees that temperature is responsible for the outcome. 
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Analysis of variance between treatments (oak, pine and huckleberry) was 

performed for each of the time steps starting at ~225˚C and continuing until 525˚C (5 to 

10 minutes).  This region corresponds to the greatest weight loss as seen in Figures 37 

and 38.  A summary of the results of the time series ANOVA for each shoulder in each 

IR region is reported below.  These histograms of the peak height profiles of each range 

of selected wavenumbers of spectra from all litter species represents the raw data which 

was analyzed by the two-way ANOVA for the effects of time and species as variables as 

well as the interaction.  Investigation of the significance of the high interaction terms 

provides information on the different behaviors of the three species over time.  Since the 

interaction terms of all the peak height profiles are significant, the patterns over time are 

different between species as revealed below.   

3.1 CH Spectral Region: 

a.  CH  (2862 cm-1) 

 The ANOVA indicated differences starting at time step 5.5 (300˚C) (F = 7.7 and p 

= .0220) and time step 6 (325) (F = 8.46 and p = .0179).  Differences were also found 

between species for 7.5-8 minutes (400˚C) and at 9 minutes (470˚C).  The repeated 

measures test shows that there are significant differences overall between species (F 

=14.9 and p = .0047).  Tukey’s studentized range (HSD) test agrees with the ANOVA 

that at averaged time steps 5.5 minutes, 6, 7.5-8 and 9 minutes (300-475˚C), species are 

generally different.  At time steps 5.5 minutes, 6, 7.5 and 9 minutes, huckleberry and oak 

were both similar, but both are different from pine.  At 8 minutes, pine and oak are both 

different with huckleberry sharing a letter with each species.  Means with the same letter 
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are not significantly different. The results for Tukey’s studentized range for each time 

step are found in the appendix. 

b. CH (2932 cm-1) 

 The ANOVA reported that the only difference between species lie at time steps 

7.5 and 8 minutes (400-425˚C) with very high F values and very low p values (F = 33.1, 

p = .0006 and F = 28.1 and p = .0009, respectively).  The repeated measures test show 

that there is no significant difference overall between species even though there are 

points during the time when species are different.  The HSD test showed that huckleberry 

was completely different from both oak and pine in both time steps. 

c. CH (2967 cm-1) 

 The ANOVA again reported that the only difference between species lie at time 

7.5 and 8 minutes (400-425˚C) (F = 15.5, p= .0027 and F = 7.05, p = .0266, respectively).  

The repeated measures tests also show that there was not a major significant difference 

overall between the species which is expected with an F value = 2.09 and p = 0.205. The 

HSD tests indicate that at time step 7.5 (400˚C), oak and pine are both similar and both 

different from huckleberry.  The test for time step 8 minutes shows that huckleberry and 

pine are different with oak sharing letters with both species. 

 Overall, the peaks at 2932 cm-1 and 2967 cm-1 were similar due to the same 

species contributing to the variance at the same time steps/temperature. The peak at 2862 

cm-1 seems to have a longer period of evolution along with pine being the distinctive 

species.  The univariate tests of hypothesis for within subjects effects (repeated measures) 

for all three peaks within the CH region shows that the height of the spectrum was 

significantly different over time as expected.  
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3.2 1250-950 cm-1 Spectral Region: 

a. 1032 cm-1  

 The ANOVA between species indicated that one variable, time step 7.5 (400˚C), 

was where differences between species existed with an F value (7.39) and a low p value 

(.0240). The repeated measures test show that there is no significant difference overall 

between species even though there are points during the time when species are different. 

According to Tukey’s studentized range (HSD), around time step 5 (275˚C), all species 

were similar.  Means with different letters are significantly different.  This was observed 

at 7.5 minutes.  Pine and oak were significantly different from each other, but 

huckleberry appeared to share similarities with both oak and pine.  Species at all other 

time steps during the main weight loss event were similar.  

b. 1060 cm-1  

 The ANOVA between species at each time step revealed that at 7 and 8 minutes 

(375-425˚C), there were significant differences between species with an F value of 5.99 

and a p value at .0372 and an F value of 6.08 and p-value of .0360, respectively.  The 

repeated measures test shows that in fact there is a significant difference overall between 

species, because the F value is very high (35.5) with a low p value of .00004. The HSD 

test agrees with the ANOVA that at time 7 and 8 minutes, species are different.  At time 7 

minutes, pine and huckleberry are completely different while oak shares a letter with 

each.   

c.  1180 cm-1

 The ANOVA between species at the time steps 7 through to 9 minutes (375-

475˚C) showed significant differences between species indicated by low p values and 
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high F values.  The repeated measures test shows that there are significant differences 

overall between species (F value = 10.7 and p value = .0105).  The HSD results indicate 

that at time step 7, pine and huckleberry were similar, but both differed from oak.  At 7.5, 

8 and 8.5 time steps, all species were different except for huckleberry appearing to share 

similarities with both oak and pine.  At time step 9, (475˚C) and towards the end of the 

weight loss event, oak and huckleberry were both similar and dissimilar from pine.   

As expected, the univariate tests of hypothesis for within subjects effects (repeated 

measures) for all peaks within this IR region shows that the height of the spectrum was 

significantly different over this period of significant gas species evolution.  

3.3  1840-1620 cm-1

 The greatest IR absorbance appeared to start earlier than usual, ~ 200˚C, and 

ended at time step 11 (575˚C) due to the apparent greater area beneath the histogram 

curve (Figure 38d).  The ANOVA for all of the time steps indicates similarities up until 

time 6.5 minutes (350˚C) with an F value = 5.75 and p value = 0.0403.  Differences 

between species were not apparent at 7 minutes, but were present at 7.5 minutes (F = 8.67 

and p = .017) and 8 minutes (F = 9.11 and p = .0152).  The subsequent occurrence of 

species dissimilarities occurred at time steps 9.5 minutes (500˚C) (F = 6.45 and p = 

.0320) and at 10.5 minutes (550˚C) (F = 5.28 and p = .0476).  The repeated measures test 

show that there is no significant difference overall between species even though there are 

points during the time when species are different.  The univariate tests of hypothesis for 

within subjects effects (repeated measures) shows that the height of the spectrum was 

significantly different over time.  The HSD test also agreed with the results of the 

repeated measures procedure.  At time steps 6.5 and 7.5 minutes, oak and pine were very 



 82

different from each other, but not from huckleberry.  At time step 8 minutes, differences 

vanished between oak and huckleberry and pine was unique from both oak and 

huckleberry.  At 9.5 and 10.5 minutes, oak and pine were again different from each other 

but was comparable to huckleberry.  Species were not significantly different from each 

other at all other time steps.   

3.4 Conclusion  

 The combination of a thermogravimetric analyzer with an IR indicates the main 

weight losses of all three litters occur between the temperatures of 300-600˚C.  This main 

weight loss occurred in two steps with a combination of CO, CO2, H2O, aliphatic 

compounds (CH) and a combination of hydrocarbons as part of the degradation process.  

The precise identification of the functional groups and compounds is difficult; complex 

mixtures such as leaf material have various polymers with various degradation processes.   

 Time series ANOVA was employed in order to look at each wavenumber and 

track how it changes with respect to time (temperature).  The repeated measures ANOVA 

was also performed since a particular wavenumber was measured frequently in three litter 

species. On the whole, in all wavenumbers analyzed in the ANOVA procedures, there 

was no difference overall between species, despite species variation at the main weight 

loss event.  Overall, since these wavenumbers represent the evolving compounds, it is 

reasonable to see that they all differ within this time period of ~7-9 minutes (375-475˚C) 

since that is where the main weight loss occurs and therefore results in a time of highest 

intensity observed in the spectra. As expected due to the evolved gases, temperature 

affected intensity as was confirmed in the two-way ANOVA procedure.    
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The two-way ANOVA procedure was also utilized in order to evaluate the small 

changes in the peak height profiles of each evolved IR gaseous region. Both independent 

factors, species and temperature, and their effect on intensity, were significant according 

to very high F values and p values < .05.  Although, the effect of species on intensity is 

significant, it was not to the same extent as significant as temperature.  Interaction 

between time and species appear to be significant as well in all IR regions of evolved 

gases.  As a result, the three “main questions” that were posed previously to test whether 

the possible main effects and interaction effects are statistically significant for the 

significance of the two-way ANOVA procedure were answered.   

Through the use of several statistical models and procedures, it is common and 

expected to obtain the same end results, thus indicating confidence and precision in the 

data set.  Employing the suggestion of using CO2 as a marker for degradation of 

biomaterial, analysis on this region could aid in understanding the complex pyrolysis.  

Also, a comparative TGA/IR experiment just on pure biopolymers such as lignin, 

cellulose and pectin would be useful in differentiating the breakdown of biopolymers and 

compare with the leaf litter results presented here. 
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Chapter Five: Natural Decomposition  

I.  Introduction 

 Decomposition of leaf litter is a major source of nutrients in the New Jersey pine 

barrens.   Natural decomposition is a biological process carried out by bacteria, fungi and 

insects in the soil (Coleman et al., 2004).  Chemical changes associated with the 

decomposition of leaf litter in this ecosystem include leaching, humification and 

mineralization (Coûteaux et al., 1998).  Humification is the breakdown of complex 

organic compounds into simpler forms termed humus.  Humus refers to the dark colored 

organic material present in the soil.  The accumulation of organic matter in the soil from 

decomposition of leaf litter is important since it affects soil fertility and nutrient 

availability to plants.  Plant litter contains these organic compounds such as 

carbohydrates, proteins, lignins and plant waxes and the decay of organic matter in the 

soil begins first with the decomposition of sugars from the carbohydrates, which break 

down easily (Coleman et al., 1998).   Compounds rich in recalcitrant substrates such as 

tannins and lignins are not easily digested by microbes, but are utilized by fungi 

(Coleman et al., 2003).  Consequently, the ratio of these compounds in organic litter 

influences the overall rate of litter breakdown.  In terrestrial ecosystems such as the pine 

barrens, a mixture of these labile and recalcitrant substrates is present due to the presence 

of highly lignified leaves of Quercus species and conifer needles of Pinus species 

(Colman et al., 2003).  In general, due to the different decomposition rates of various 

compounds, chemical quality of litter changes over time, which in addition influences the 

ongoing decomposition (Coûteaux et al., 1998).  Trees on nutrient poor soils generally 

produce leaf litters that decompose slowly which in turn reduce the rate of nutrient 
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turnover (Sariyildiz and Anderson, 2005).  Cornelissen (1996) reported experimental 

screening of leaf decomposition rates for 125 species in order to quantify general patterns 

in functional plant types and taxa.  The multispecies screening revealed a large variation 

in leaf decomposition rates among species.   The discrepancy in the decomposition rate is 

most likely due to the variation in structural chemistry among leaf species.  Vibrational 

spectroscopy can be used to study leaf litter decomposition.  FT-IR, specifically, can be 

used to characterize organic matter of leaf litter at different stages of decomposition.    

1.1 Attenuated Total Reflectance Fourier-transform Infrared (ATR FT-IR) Microscopy 

Attenuated total reflection infrared spectroscopy can be applied to numerous 

applications including qualitative, quantitative, biological, environmental and surface 

analyses.  Its attractiveness in these diverse applications is due to its ease of use and 

preparation while providing chemical and structural information.  However, the 

combination of an FT-IR and a microscope has gained popularity because of the ability to 

study small and biological samples on a microscopic scale.  IR microscopes were 

introduced in the 1950s, but their utility has increased recently. IR microscopes are 

versatile as well; they can analyze samples in reflection or transmission mode.  However, 

what makes ATR FT-IR microscopy so attractive for this application is its ability to 

monitor surface processes such as leaf decomposition or leaf senescence and aging  

(Ivanova and Sing, 2002).  An illustration and schematic of the IR microscope is in 

Figure 39.   The infrared microscope is similar to a regular microscope in some ways 

with sample illumination and binocular viewing.  The microscope includes a 2” x 3” 

manual stage although the option of a motorized stage does exist. Also integrated in the 

microscope is the main objective (15X) with an aperture for both IR analysis and viewing 
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and a parfocal 4X visual objective.  The sample area is viewed through the same aperture 

that is used for defining the infrared beam.  Of course the most obvious element that sets 

FT-IR microscopes apart from regular microscopes is the infrared beam. This source of 

radiation is from the IR itself. Both the IR and visible beams follow the same path 

through the microscope optics to the sample with the visible radiation removed by a 

filtering system when the infrared radiation is in use (Mirabella, 1998).  After the IR 

beam interacts with the sample, it is directed to an MCT detector that is optimized for 

small sampling between 250 μm and 1 mm (Coates, 2005).  However, the optical 

components of the IR microscope are reflecting instead of glass since the latter is not IR 

transparent (Mirabella, 1998).  Thus, the main objective, condenser, the detector optics 

and the lens that focus the radiation onto the detector are all on-axis Schwarzschild-type 

(BioRad, Mirabella, 1998).  On-axis elements refer to two mirrors working together to 

form a lens although there could be off-axis elements as well, which would then consist 

of a paraboloidal mirror (Mirabella, 1998). All IR microscopes use Schwarzschild-type 

lens that are sometimes referred to as Cassegrainian lens (Mirabella, 1998).  

When the IR microscope is used in reflection mode, an ATR objective coupled 

with an ATR crystal must be employed via a slide-on mechanism. The ATR objective 

allows viewing and contact modes for sample analysis.  The theory of ATR spectroscopy 

deals with the measurement of the infrared beam into an internal reflection element (IRE) 

with a high refractive index, which then is internally reflected and creates an evanescent 

wave that penetrates the sample in contact to the depth of one micrometer (Coates, 2005; 

Coleman, 1993; Mirabella, 1993). This is why good contact is so significant.  Since the 

sample absorbs the energy, the evanescent wave is attenuated, or reduced and the 
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reflected radiation goes to the MCT detector. The depth of penetration, Dp, is the 

qualitative measure of the depth, which the evanescent wave extends into the sample 

(Mirabella, 1998; Spectra-Tech Inc.).  Dp is defined as the distance from the interface of 

the crystal and sample to where the intensity decays to 1
e

 of its original value (Mirabella, 

1998; Spectra-Tech Inc.).   Dp is calculated as: Dp =
λ
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 where λ is the 

wavelength of infrared radiation, n  is the crystal’s refractive index and n  is the ratio of 

the refractive indices of the sample and IRE (Mirabella, 1998; Spectra-Tech Inc.).  In 

order for internal reflection to occur, certain conditions must be met.  The angle of 

incident radiation, θ, must be greater than the critical angle θ  (Coates, 2005; Mirabella, 

1998; Spectra-Tech Inc.).  An illustration showing internal reflection is illustrated in 

Figure 40.  The critical angle is a function of the refractive indices of the crystal and the 

sample and is defined as: 

1 21

c

θc = sin−1 n2

n1
 where n  and n  being the ATR crystal’s and the 

sample’s refractive index, respectively (Coates, 2005; Coleman, 1993; Mirabella, 1998).  

Crystals with higher refractive indices are recommended to minimize the critical angle 

(Mirabella, 1998; Spectra-Tech Inc.).   Most organic samples have a refractive index of 

1.5 (Coleman, 1993).  The most commonly seen internal reflection elements for the ATR 

objective include Ge, Si, ZnSe or diamond.  Germanium (refractive index = 4.0) is 

recommended and ideal for strongly absorbing samples such as paper, ceramics and 

carbon-filled rubber since it creates a shorter pathlength through these samples (Spectra-

Tech Inc., 1995).  Ge crystals are also commonly used for ATR microscopy applications.  

Silicon (refractive index = 3.4) is used for hard materials and when samples have a high 

1 2
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refractive index (Spectra-Tech Inc., 1995).  Zinc selenide (refractive index = 2.4) is the 

most cost effective which makes it the most standard crystal while diamond has the same 

refractive index, but is extremely durable and chemical resistant.  It is the hardest ATR 

crystal available.  This capability is ideal for coatings or hard substrates (Spectra-Tech 

Inc., 1995).  Thus, the ideal choice of IREs is dependant on the refractive index, 

robustness, price and spectral range (Coates, 2005). In general, the choice of the 

appropriate IRE depends on the analyte.   

Of course in order to obtain ideal spectra, the sample must be in good contact with 

the IRE, otherwise the overall reflectance will be small and a sloping baseline will occur.  

This also matters if there is a possibility of a single bounce IRE.  Consequently, there is a 

need for an increase in the number of scans.  The type of accessory that permits actual 

pressure readings to be obtained is a contact or alert system that allows reproducible 

contact force in addition to preventing IRE breakage.  These systems are especially useful 

for crystals that are not transparent in the visible region.   

 Despite ATR being a quick and nondestructive sampling procedure, there are 

some factors to consider.  As a consequence of the Dp equation, ATR spectra are less 

intense at shorter wavelengths and more intense at longer wavelengths in comparison to 

transmission spectra (Mirabella, 1998).  This situation can be reduced by choosing an 

IRE with a high refractive index and increasing the angle of incident IR radiation 

(Mirabella, 1998).    ATR spectra can also be “corrected” to correspond to true 

transmission spectra by spectroscopy software programs.  This method of correction is 

done by multiplying intensity values by a wavelength ratio factor, λref/λ, with a chosen λ 

ref  (Mirabella, 1998).  Therefore, if values exist that are smaller or larger than λ ref, 
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multiplying the intensities by the ratio will correct the distortion of intensities at the short 

and long wavelengths.   

The benefit of matching a microscope to an IR provides the ability to obtain 

spectra on samples as small as 10 µm in diameter (Coleman, 1993).   It also permits the 

analysis of changes at the scale of tens of micrometers in leaf surface area and sampling 

depth into the leaf material is of the order of 1-2 µm.  ATR IR microscopy is a 

resourceful sampling method due to its allowance of a wide range of samples to be 

analyzed with little or no sample preparation.  Its benefits and versatility is taken into 

consideration as it is used as a screening tool to evaluate the changes in plant chemical 

composition of decomposed leaf litters. 

 A very preliminary study of natural decomposition of leaf litter was undertaken to 

increase the understanding of the deposition of nutrients released.  Analysis regarding the 

duration and the comparison of different forms of decomposition will be performed. It is 

apparent that leaves are complex and as they break down, identification of patterns of 

changes in polymeric chemistry can be detected using IR spectroscopy. Despite the 

biologist/ecologist point of view of obtaining patterns of change versus a chemist’s view 

of obtaining specifics and the meaning of vibrational modes, they both share the overall 

view about the complexity of leaves.  

 

II.  Experimental Methods 

 Dry leaf material of white oak (Quercus alba) were placed in three 1 ml mesh 

plastic litterbags and situated between the interface of the mineral soil and the top of the 

organic horizon to naturally decompose in November of 2005.  Litter samples were taken 
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out in October 2006 in a separate experiment performed at the pine barrens field station.  

FT-IR analysis of terrestrial litter (control and naturally decomposed) was carried out 

using a Varian FTS 6000 spectrometer (formerly Bio-Rad, Cambridge, MA) with a 

Varian UMA 500 IR microscope (formerly Bio-Rad, Cambridge, MA) contacting the 

sample via a Ge crystal.  Reflectance spectra were obtained using a MCT detector at a 

frequency of 20 kHz, a resolution of 4 cm-1 and 512 scans were collected and averaged as 

well as ATR corrected.  A contact alert (Spectra Tech; Model 049-490) was employed to 

maintain constant pressure between the ATR crystal and sample. ATR spectra were 

corrected to correspond to true transmission spectra by the spectroscopy software 

program. Random selection of spots on the adaxial and abaxial sides of the leaves was 

analyzed to rule out variance. The term adaxial refers to the ventral, or the upper surface 

of the leaf and abaxial refers the underside of the leaf with the veins facing away from the 

stem. Veins of the leaves were avoided due to poor contact.  Lastly, spectral subtraction 

was also performed on all leaves for spectral analysis using Win-IR Pro software 

(Version 3.4, Digilab Win-IR Pro, Randolph, Massachusetts, USA).  For spectral 

subtraction analysis, microscopic ATR IR spectrum of Whatman filter paper as a source 

of pure cellulose was obtained.  A lignin KBr pellet was prepared as well. 

 

III.  Results and Discussion 

 Microscopic attenuated total reflected (ATR) infrared spectroscopy was applied to 

freshly abscised leaves (control) and naturally decomposed oak litter to evaluate and 

compare the changes in the carbohydrate chemistry as well as to compare to thermally 

decomposed data.  FT-IR microscopy allows the analysis of the changes at the scale of 



 91

tens of micrometers in leaf surface area and is good for analysis of small samples and 

small areas of large samples.  Decomposed triplicate samples of oak leaves were 

collected from the pinelands field station to rule out variability.  Table 13 indicates the 

amount of biomass left after a decomposition experiment performed at the field station 

after almost one year.  

Figure 41 illustrates the random selection of spots on the control leaves for IR 

analysis on the adaxial (Figure 41a) and abaxial (Figure 41b) sides of the oak leaf.  This 

selection of spots was performed on all triplicate control samples and decomposed 

samples.  “Dark” spots (red arrow, Figure 41a) were also chosen for analysis as well. 

The final selection of multiple spots was to rule out variance and obtain optimum results.  

The random selection of spots between and within all control oak leaves generally gave 

similar spectra.   

Comparison of the control spectra indicates differences exist between the adaxial 

and abaxial sides of the control leaves (Figure 42). It is apparent that the adaxial sides of 

the leaves contain more surface waxes, as one would expect.  These outer surface waxes 

contain suberin and cutin as well as various polysaccharides.    

Analysis of the decomposed (~11 months) oak biomass introduces more 

interesting and complicated results than the control data.  Comparison of the decomposed 

spectra implies that differences existed within and between sides of the leaves (Figure 

43).  It was found that various spots among all of the analyzed decomposed leaves 

resulted in different spectra. 

Despite having complex spectra due to the overlapping bands in the carbohydrate 

region, an attempt is made to discuss and assign wavenumbers extracted from the adaxial 
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and abaxial sides of both control and decomposed leaves from Figures 42 and 43.  Table 

14, used in conjunction with Table 3 which identified and assigned wavenumbers based 

on the PCA results of chapter two, shows the comparison of the IR reflectance peak 

wavenumbers.   To specifically identify peaks due to cellulose and lignin, a microscopic 

ATR IR spectrum of cellulose (filter paper) and a transmission infrared spectrum of 

lignin (KBr pellet) were obtained as shown in Figure 44a and b.  Despite the fact that the 

lignin IR spectrum is a transmission spectrum, representative peaks agreed with 

vibrational bands reported in the literature and are used for general identification and 

verification.  Initial spectral subtraction utilizing reflectance spectra of the sample and 

cellulose was also performed, but resulted in poor results.  Subtraction resulted in 

identifying only ~ 3 positive cellulose peaks.  Obtaining the corrected subtraction factor 

was complicated and difficult.  Optimum results at the present time were through 

comparison of the control and decomposed spectra to the spectra of cellulose and lignin.  

Consequently, the identification of the majority of the IR reflectance peak wavenumbers 

of the adaxial side of the control oak leaf resulted in identification of cellulose content.  

Cellulose absorbances that were present are summarized in Table 14.  The transmission 

FT-IR spectrum of lignin (Figure 44b) corresponded to strong absorbances ~ 1512 cm-1 

and 1458 cm-1 in the control spectrum of the upper side of the leaf.   The IR vibrational 

frequencies ~2850 cm-1 and ~ 2918 cm-1 that were present in almost all spectra, 

correspond to aliphatic content (C-H stretch).  The adaxial control spectrum also 

appeared to show bands that could be due to esterified and carboxylated pectin content at 

~ 1728, 1651 and 1611 cm-1 (Chatjigakis et al., 1998; Stewart, 1995).  This stretch of 

bands is also present on both sides of the decomposed leaf (Figure 42).    The adaxial 
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sides of all leaves as well as the spectra of decomposed leaves also contain bands 

centered ~ 781 cm-1 and 720 cm-1 in the region of fatty acid C-H out of plane bending 

(Stewart et al., 1995; Socrates, 1994) suggestive of cutin. Figure 17 illustrated cutin’s 

major monomers that include C16 and C18 families and are composed of hydroxy-fatty 

acids. 

The abaxial side of the control oak leaf is less complicated (fewer wavenumbers) 

than its corresponding adaxial side and the differences are highlighted in their spectra 

(Figure 42) and Table 14. As a result, polysaccharide content is small with no apparent 

absorbance bands representative of cellulose or lignin, main plant constituents.  Positive 

assignments include bands representative of the outer surface waxes, suberin and cutin.  

Strong bands 1483 cm-1 and 1423 cm-1 are in the region of CH deformation and the C-O 

stretch of the outer surface content.  The smaller number of bands allows easier analysis 

and identification of bands that otherwise may have been masked due to greater 

polysaccharide content usually found on the corresponding adaxial sides.   

As mentioned previously, the adaxial side of the decomposed leaf had similar 

vibrational frequencies indicating similar content.  Bands appeared shifted suggestive of 

decomposition. Analysis of cellulose absorbances could yield quantitative information 

regarding leaf senescence as a result of decomposition.  A decrease in intensity would 

indicate less cellulosic material.  However, the decomposed spectra do contain fewer 

peaks due to cellulose indicating a decrease in cellulose content.  Pectin, lignin, cutin and 

aliphatic compound content remain generally the same, therefore indicating 

decomposition occurs at a slow rate.   The most obvious feature is the comparison of the 

abaxial side to the adaxial side of the decomposed leaf.  IR peak presence and thus 
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polysaccharide content seems comparable.  However, this is not the case regarding the 

control leaves.  Perhaps, as a result of decomposition, the abaxial sides decompose 

quicker due to a reduced amount of outer surface wax content used as a protective barrier, 

resulting in basic plant content.   

During decomposition of complex carbohydrates, simple sugars are released 

which may be used by fungi. Overall, natural decomposition is much slower and 

generally difficult to compare to the thermal decomposition data at this time.  This is 

evident just by the visual comparison of the spectra in Figures 15, litter heated at 550˚C, 

the extreme case of thermal decomposition and Figure 43.  Natural decomposition takes 

place at various stages due to the apparent variation in spectra of different spots on 

decomposed leaves.  FT-IR microscopy has facilitated the initial analysis on the changes 

that have occurred in oak leaves that have been terrestrially decomposed.  Preliminary 

evidence from the identification of peaks due to cellulose, lignin, pectin and cutin/suberin 

content can give a basis on what to track during the decomposition processes.   

However, by now it is clear that leaves and their decomposition processes are 

complex, since different spots on the same leaf result in different spectra. Consequently, 

there is a need to perform more sampling on several more spots to understand this 

complex plant chemistry before moving on to the other leaf species, pine and 

huckleberry. Also, analyzing naturally decomposed leaves at different stages by means of 

this method of spectroscopy may provide further substantiation of decomposition of 

complex sugars and the time of appearance of intermediates in the decomposition 

process. Consequently, further analyses on natural decomposition needs to be performed.   
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Chapter Six: Conclusion and Suggested Work 
 

 The characteristics of the soil in the New Jersey pine barrens is dependant upon 

the organic matter and the plant litter, which is usually the primary source.  The release 

and cycling of nutrients from decomposing litter controls the activity of the ecosystem.  

Decomposition is characterized by the changes in the chemical functional groups of the 

primary carbohydrates from litter of species dominant in the New Jersey pine barrens.  

Chemical changes that occur during thermal and natural decomposition were monitored 

and analyzed through the combined use of Fourier transform infrared spectroscopy and 

statistical analyses.   

The use of principal component analysis (PCA) and infrared spectroscopy was 

investigated to describe and assess the presence and absence of selected infrared spectral 

data obtained from oak, pine and huckleberry leaf litters at different heating temperatures.  

From this method, an attempt to assign vibrational frequencies at each stage of thermal 

decomposition was made.  Evaluation of spectra is complicated during degradation of 

plant litter; several primary plant compounds have many of the same chemical functional 

groups in common leading to multiple assignments within the carbohydrate region.  

However, significant separation of leaf litter chemistries both between species and within 

species during thermal decomposition by infrared spectroscopy used in conjunction with 

PCA has been effectively revealed.  

Preprocessing techniques such as the normalization and differentiation of spectra 

were utilized and analyzed for obtaining comparative results from PCA.  We have seen 

previously from an input of presence and absence of selected wavenumbers from burned 

leaf litter into PCA that differences existed between unheated and heated samples 
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(Figure 13). Analysis of the identical IR data using numerical values obtained from 

derivative spectra confirmed that chemical changes had occurred. Additional PCA 

indicated that first and second derivative spectra give supplementary and complementary 

data to the original binary presence and absence.  Different analyses yielded similar 

interpretations as well as deviations of the same data set and thus should be used 

collectively.  Furthermore, derivative spectroscopy can be extended beyond quantitative 

purposes; its use can be advantageous for the discovery and identification of new peaks 

that were not fully resolved in these convoluted spectra.   

The combination of a thermogravimetric analyzer with an IR spectrometer has 

indicated that the main weight losses of all three litters occur between the general 

temperature range of ~300-600˚C and corresponds to a combination of CO, CO2, H2O, 

aliphatic compounds (CH) and a combination of hydrocarbons as part of the degradation 

process.  The precise identification of compounds is difficult; complex mixtures such as 

leaf material are composed of various biopolymers with various degradation processes. 

Statistical analyses such as the two-way ANOVA procedure was utilized in order to 

evaluate the small changes in the peak height profiles of each specific IR region of gases 

evolved.  Independent factors, species and temperature, influenced intensity and were 

significant according to very high F values and p values < .05.   

Time series ANOVA and repeated measures ANOVA were also employed in 

order to look at each wavenumber and track how it changes with respect to temperature.  

Both agreed with the outcome of the two-factor ANOVA and as projected temperature 

affected intensity. On the whole, in all wavenumbers analyzed in the ANOVA 

procedures, there was no difference overall between species, even though species differed 
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from each other at the main weight loss stage (375-475˚C).  Further investigation on 

these specific IR regions of gases evolving such as CO2 is suggested to use as a marker 

for degradation of biomaterial and understand the complex pyrolysis.  Also, a 

comparative TGA/IR experiment just on pure biopolymers such as lignin, cellulose and 

pectin would be useful in determining the breakdown of biopolymers.   

The initial studies presented on natural decomposition and their connections to 

thermal decomposition suggest that FT-IR microscopy is sensitive and specific to analyze 

the changes of carbohydrate chemistry during decomposition.  FT-IR microspectroscopy 

highlighted differences between the adaxial and abaxial sides of leaves as well as 

between undisturbed and decomposed leaves.  The present study suggests that natural 

decomposition does not have the same comparable rate to that of thermal decomposition.  

The next steps in this study include additional IR analysis of numerous locations on 

leaves since decomposition takes place at various stages.   Continuation of microscopic 

ATR IR analysis on oak and other plant species at different stages of decomposition may 

highlight differences between species.  Other forms and processes of natural 

decomposition, such as aquatic decomposition, would also be worth investigating and 

monitoring.    
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Table 1. Phenolic and nutrient content of leaf litter. Oak had the most phosphate and total 

phenols but fewer condensed tannins (Jonsson et al., 2006). 

 
 

Litter Type  
Leaf litter Content 

 
 

Huckleberry
 

Oak 
 

Pine 

Total Phenolics ‡TAE 
(mg/g) 

 

51.6 
 

67.3 
 

42.1 
 

 
Phenolics 

Condensed tannins 
‡CWEE (mg/g) 

 

460.8 
 

81.2 
 

475.6 
 

N (mg/g) 
 

5.38 
 

5.56 
 

4.53 
 

 
Nutrients 
 PO4-P (mg/g) 0.296 

 
0.902 

 
0.333 

 
 
‡TAE-tannic acid equivalents, CWEE-crude wattle extract equivalents 
 
 
 
Table 2. Wavenumbers (in order of decreasing eigenvector loadings of the PCA analysis) 

unique to each litter species in unheated or low temperature (100-200°C) spectra. 

 

Oak (cm-1) Huckleberry (cm-1) All species  

1226 669 1514 

1039 605 1319 

1365 697 1452 

 763 1616 

  1156 

 
 



 107

Table 3.  Wavenumbers of IR vibration frequencies of possible common plant 

carbohydrates that have been reported in the literature for solid phase substances. 

Wavenumber (cm-1) Functional Group Compound Reference 
~500, ~1020 Deformation and P-O str Phosphate anion (PO4

3-) Mayo et al., 2004 
 

580-670, 1100 Deformation and S-O str Sulfate anion (SO4
2-) Mayo et al., 2004 

 
700-1000 CH out of plane deformation Fatty acids and aldehydes  Stewart, 1995 

Socrates, 1994 
 

800-1000 Vibration of the pyranose ring Glucose, galactose and 
mannose 
 

Tul’chinsky et al., 1976 
 

712, 860, 1430, 1795  Carbonates (CO3
2-) str and 

deformation 
Calcium Carbonate  Gressel et al., 1995; 

Hunt et al., 1950; Jackson, 1998;  
Mayo et al., 2004 
 

980-1150 C-O str Starch Stewart, 1995 
 

1060-1150 C-O-C (ether) Lignin Socrates, 1994 
 

1050-1130, 1370  Intense polysaccharide  Cellulose Stewart, 1995 
 

1050-1300 C-O and C-O-C str Suberin/cutin Stewart, 1995 
 

1130-1160 Glycosidic linkage (C-O-C)  Mixed polysaccharides Kačuráková et al., 2000 
 

1150-1170 C-O-C antisymmetric str   
(β-1,4 glycosyl) 

Cellulose  Michell, 1990 

1215-1220 C-C, C-O, C=O (combination) Lignin Boeriu et al., 2004  
 

1300-1480 CH deformation and C-O stretch  Outer surface-suberin/cutin  Stewart, 1995; Stewart et al., 
1995 
 

1370-1375 Phenolic OH region and aliphatic CH 
str 

Lignin Boeriu et al., 2004 
 

1515, 1595  Aromatic skeletal vibration and CH 
deformation  

Lignin Boeriu et al., 2004 
Owen and Thomas, 1989 
Kubo and Kadla, 2005 
 

1605-1630, 1749  
1600-1680, 1260, 955 

Carboxylate, COOH 
Ester  

Pectin 
 

Chatjigakis, et al., 1998 
Stewart, 1995 
 

1660-2000  C=C str Polyconjugated systems Socrates, 1994 
 

1705-1720 Carbonyl/carboxyl str Lignin Boeriu et al., 2004 
 

1732, 1742 Ester carbonyls, C=O Various polysaccharides Stewart, 1995 
 

1738 Acetyl group, C=O Fatty acid esters (outer 
surface waxes) 

Stewart, 1995 

2800-3000 C-H str Aliphatic Compounds Socrates, 1994 
 

3000-3100 C-H str Aromatic Compounds Socrates, 1994 
 

3300 OH str Various polysaccharides, 
alcohols 

Socrates, 1994 
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Table 4.  Post hoc means separation test (Tukey groups) from analysis of variance of (a) 

PC  Axis 1 and (b) PC Axis 2 coordinate scores of leaf litter treatments in wavenumber 

space (Fig. 2).  (P= Pine, H= Huckleberry, O= Oak, C= control).  PC Axis 1 is strongly 

related to chemical changes due to temperature changes and PC Axis 2 is more strongly 

related to differences between plant litter species. See Figure 13 for the corresponding 

principal coordinate analysis plot. 

 

(a)       (b) 

PC Axis 1 means separation 

Litter 
Species 

Temperatur
e (C-
550°C) 

PC 
Axis 1 
score 

Tukey 
group 

P 100 2.41 A 
P C 2.33 A 
P 200 2.18 AB 
H 100 2.05 AB 
H C 2.03 AB 
H 200 1.72 BC 
O 100 1.37 CD 
O C 1.03 D 
O 200 0.97 D 
O 300 -0.68 E 
P 300 -0.74 E 
H 300 -0.74 E 
P 550 -2.13 F 
P 400 -2.13 F 
O 550 -2.32 F 
H 550 -2.39 F 
H 400 -2.45 F 
O 400 -2.51 F 

PC Axis 2 means separation 

Litter 
Species 

Temperatur
e (C-
550°C) 

PC 
Axis 2 
score 

Tukey 
group 

O 100 2.8 A 
O C 1.97 B 
P C 0.97 C 
P 100 0.85 CD 
P 550 0.76 CDE 
P 400 0.75 CDE 
P 200 0.32 DEF 
O 400 0.17 EFG 
P 300 0.13 FGH 
O 300 -0.21 FGHI 
O 550 -0.27 GHIJ 
O 200 -0.44 HIJ 
H 400 -0.63 IJ 
H 550 -0.64 IJ 
H 300 -0.81 J 
H 200 -1.65 K 
H 100 -1.95 K 
H C -2.07 K 
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 Table 5. Post hoc means separation test (Tukey groups) from analysis of variance for 

species and temperature of (a) PC Axis 1 and (b) PC Axis 2 coordinate scores of leaf 

litter treatments in wavenumber space for first derivative spectra. Means with the same 

letter are not significantly different.   (P= Pine, H= Huckleberry, O= Oak, C= control). 

See Figure 23 for the corresponding principal coordinate analysis plot. 

 
       (a)     (b) 

PC Axis 1 means 
separation 

Litter 
Species 

PC 
Axis 1 
score 

Tukey 
group 

H 426.6 A 
P -132.8 B 
O -329.7 B 

PC Axis 1 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC 
Axis 1 
score 

Tukey 
group 

550 1584.1 A 
400 1362.9 A 
300 -710.4 B 
200 -735.8 B 
100 744.0 B 
C 756.7 B 

PC Axis 2 means 
separation 

Litter 
Species 

PC 
Axis 2 
score 

Tukey 
group 

O 21.89 A 
P 20.83 A 
H -42.72 B 

PC Axis 2 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC Axis 
2 score 

Tukey 
group 

300 140.10 A 
400 79.87 AB 
200 75.30 AB 
550 46.40 B 
100 -64.89 C 
C -276.78 D 
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Table 6. Post hoc means separation test (Tukey groups) from analysis of variance for 

species and temperature of (a) PC Axis 1 and (b) PC Axis 2 coordinate scores of leaf 

litter treatments in wavenumber space for second derivative spectra. Means with the same 

letter are not significantly different.   (P= Pine, H= Huckleberry, O= Oak, C= control). 

See Figure 24 for the corresponding principal coordinate analysis plot. 

 
 
    (a)     (b) 

PC Axis 1 means 
separation 

Litter 
Species 

PC 
Axis 1 
score 

Tukey 
group 

H 156.76 A 
P -50.34 B 
O -106.43 B 

PC Axis 1 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC 
Axis 1 
score 

Tukey 
group 

550 462.42 A 
400 412.10 A 
300 -212.49 B 
200 -218.70 B 
100 -220.39 B 
C -222.94 B 

PC Axis 2 means 
separation 

Litter 
Species 

PC 
Axis 2 
score 

Tukey 
group 

O 8.074 A 
P 5.944 A 
H -14.017 B 

PC Axis 2 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC Axis 
2 score 

Tukey 
group 

300 26.331 A 
400 23.839 A 
550 20.434 A 
200 13.823 A 
100 -18.605 B 
C -65.821 C 
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Table 7. Post hoc means separation test (Tukey groups) from analysis of variance for 

species and temperature of (a) PC Axis 1 and (b) PC Axis 2 coordinate scores of leaf 

litter treatments in wavenumber space for first derivative spectra (binary). Means with the 

same letter are not significantly different.   (P= Pine, H= Huckleberry, O= Oak, C= 

control). See Figure 25 for the corresponding principal coordinate analysis plot. 

 
 
    (a)     (b) 

PC Axis 1 means 
separation 

Litter 
Species 

PC 
Axis 1 
score 

Tukey 
group 

P -.19843 A 
H .00553 B 
O -.20392 C 

PC Axis 1 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC 
Axis 1 
score 

Tukey 
group 

C 2.2393 A 
100 2.0674 B 
200 1.2069 C 
300 -.9594 D 
400 -2.2367 E 
550 -2.4073 F 

PC Axis 2 means 
separation 

Litter 
Species 

PC 
Axis 2 
score 

Tukey 
group 

O .63293 A 
P -.02933 B 
H -.33958 B 

PC Axis 2 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC Axis 
2 score 

Tukey 
group 

300 1.7997 A 
200 .61503 B 
100 -.30904 C 
C -.57131 D 
400 -.73213 E 
550 -.80227 E 
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Table 8. Post hoc means separation test (Tukey groups) from analysis of variance for 

species and temperature of (a) PC Axis 1 and (b) PC Axis 2 coordinate scores of leaf 

litter treatments in wavenumber space for second derivative spectra (binary). Means with 

the same letter are not significantly different.   (P= Pine, H= Huckleberry, O= Oak, C= 

control). See Figure 26 for the corresponding principal coordinate analysis plot. 

 
    (a)     (b) 

 
PC Axis 2 means 

separation 

Litter 
Species 

PC 
Axis 2 
score 

Tukey 
group 

P .36066 A 
H .23885 B 
O -.59951 C 

PC Axis 2 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC Axis 
2 score 

Tukey 
group 

550 .72343 A 
400 .62623 A 
C .48410 B 
100 .07974 C 
200 -.11256 D 
300 -1.8009 E 

PC Axis 1 means 
separation 

Litter 
Species 

PC 
Axis 1 
score 

Tukey 
group 

P .18139 A 
H -.07174 B 
O -.10966 C 

PC Axis 1 means 
separation 

Litter 
Temp. 
(C-
550˚C) 

PC 
Axis 1 
score 

Tukey 
group 

C 2.1530 A 
100 1.8849 B 
200 1.3087 C 
300 -.84309 D 
400 -2.1232 E 
550 -2.3804 F 



 113

Table 9. Comparison of wavenumbers that significantly influence litter species and 

combustion temperature separation on the three PCA plots. (f(x)= original binary plot, 

f’(x)=first derivative plot, f’’(x)=second derivative plot, where P= Pine, H= Huckleberry, 

O= Oak, C= control (air dried litter) and other combustion temperatures referred to by the 

numerical value).  

Wavenumber (cm-1) Species and Temperature  PCA plot appearance 
572 O: 400 

P: 550 
f’(x) and f’’(x) 

605 O: 400-550 
H: 300-550 
P: 400-550 

f(x) and f’’(x) 

657 O: C-100 
H: 400-550 
P: 100-400 

f’’(x) only 

713 O, P, H; 400-550 f’(x) and f’’(x) 
763 O: 550, 

H: C-100 
f’(x) and f(x) 

1114 O: 400-550 
 P: 200  

f’(x) and f’’(x) 

1122 H: 400-550 
P: 400 

f’(x) and f’’(x) 

1319 O: C-300 
H: C-100; 300 
P: C-200 

All 

1412 P: 400-550 
 

f’(x) and f’’(x) 
 

1452 O: C-100; 400-550 
P: C-200 
H: C-200; 550 

f(x) and f’(x)  

1462 O: C-200 
P: C-100 

f’’(x) and f(x)  

1514 All litter, C-200 All 
1616 All litter, C-200 f(x) and f’(x) 
1707 O: 300 

H: 300 
f’(x) and f(x) 

1737 All litter, C-100 f’(x) and f’’(x) 
1797 O: 400-550 

H: 300-550 
P: 400-550 

f(x) and f’’(x) 

2850 All litter, C-300 f’(x) and f’’(x) 
2918 All litter, C-300 f’(x) and f’’(x) 
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Table 10.  Average weight losses and derivative peak temperatures of three TGA trial 

runs for evolved gases. 

 

Derivative Peak 
Temperature (˚C) 

Weight loss (%) Species 

 H2O 
Loss 

First 
Loss 

Second 
Loss 

Third 
Loss 

H2O 
Loss 

First 
Loss 

Second 
Loss 

Third 
Loss 

Oak 70 316 377 658 4.0 54 37 .9 
Pine 68 319 434 667 4.1 64 30 .4 
Huckleberry 72 301 429 674 5.0 57 31 1.3 

 

 

Table 11.  Two-way ANOVA summary of results and interactions effects of the CH 

region. 

2862 2932 2967 CH (cm-1) 

% 
Variance  

F 
Value 

P 
Value 

% 
Variance 

F 
Value 

P 
Value 

% 
Variance  

F 
Value 

P 
Value 

Temperature 87.1 125 <.0001 83.5 64.4 <.0001 81.2 63.5 <.0001 

Species 1.15 33.1 <.0001 1.46 22.6 <.0001 1.96 30.6 <.0001 

Interaction 7.43 5.35 <.0001 7.06 2.72 <.0001 9.04 3.54 <.0001 
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Table 12. Two-way ANOVA summary of results and interactions effects of the IR region 

1250-950 cm-1.  

 

1032 1060 1180 1250-950 
(cm-1) 

% 
Variance 

F 
Value 

P 
Value 

% 
Variance 

F 
Value 

P 
Value 

% 
Variance 

F 
Value 

P 
Value 

Temperature 6.27 2.45 <.0001 12.2 12.9 <.0001 7.97 8.47 <.0001 
Species 0.27 4.17 .0166 2.38 101 

 
<.0001 0.58 24.7 <.0001 

Interaction 85.6 66.7 <.0001 82.5 175 <.0001 88.6 188 <.0001 
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Table 13.  Percentage of remaining decomposed mass of triplicate oak litter after 

collection in October 2006. 

 

Litter Species Month Collected % Mass Remaining 

Oak October 65.48 

Oak October 80.47 

Oak October 81.4 

Average = 75.08 

Standard Deviation = 5.156 
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Table 14.  Comparison of wavenumbers of IR frequencies and assignment of common 

plant components observed in the undisturbed and terrestrial decomposed leaves.  

Assignments are based on Table 3. Ad = adaxial, Ab = abaxial and Comp.= compound. 

Control Leaf (Wavenumber (cm-1)) Decomposed Leaf (Wavenumber (cm-1)) 

Ad  Comp. Ab Comp. Ad Comp. Ab Comp. 

720 Cutin 718 Cutin 719 Cutin 719 Cutin 

781 Cutin 729 Cutin 780 Cutin 780 Cutin 

833 Lignin 1472 Suberin/Cutin     

1063 Cellulose 1483 Suberin/Cutin 1046 Cellulose 1045 Cellulose 

1104 Cellulose 1651 Polyconjugated 
systems 

    

1170 Cellulose 1710 Polyconjugated 
systems 

1161 Cellulose 1160 Cellulose 

1208 Cellulose   1200 Cellulose   

1315 Cellulose   1314 Cellulose 1314 Cellulose 

1363 Cellulose   1377 Lignin 1373 Lignin 

1458 Lignin   1464 Lignin 1460 Lignin 

1512 Lignin     1514 Lignin 

1611 Pectin   1615 Pectin 1613 Pectin 

1651 Pectin   1658 Pectin 1656 Pectin 

1728 Pectin   1734 Pectin 1730 Pectin 

2850 Various 
Aliphatic 
compounds 
(CH) 

2847 Various 
Aliphatic 
compounds 
(CH) 

2850 Various 
Aliphatic 
compounds 
(CH) 

2850 Various 
Aliphatic 
compounds 
(CH) 

2918 Various 
Aliphatic 
compounds 
(CH) 

2914 Various 
Aliphatic 
compounds 
(CH) 

2917 Various 
Aliphatic 
compounds 
(CH) 

2915 Various 
Aliphatic 
compounds 
(CH) 
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Figure 1.  Map of the New Jersey pine barrens illustrating its extent surrounding the 

metropolitan areas.  
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Figure 2.  The electromagnetic spectrum.  The mid-infrared region, 4000-400 cm-1, deals 

with the fundamental vibrations of molecules (Coleman, 1993). 
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Figure 3.  Vibrational states in a harmonic oscillator.  The fundamental frequency is 

illustrated by arrow (1) (Drago, 1977). 
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Figure 4.  Infrared active stretching and bending modes (Pavia et al., 2001).   
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Figure 5.  Diagram for an FT-IR spectrometer illustrating the components of a Michelson 

interferometer (Skoog et al., 2004).   
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Figure 6.  Common simple sugars present in the majority of plants.   
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Figure 7.  (a) Cellulose polymer consisting of glucose molecules (b) which are connected 

to each other by glycosidic β-1,4 linkages.  
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Figure 8. Variety of residues that lead to a hemicellulose structure.  Amount and 

structure of the carbohydrate varies depending on the plant material.   

 
 
      

O

OH

OH OH

HO

OH

Mannose

O
OH

OH
OH

OH

Xylose

O

HO

OH

OH

OH

OH

Galactose

OH O

OH

OH

HO

Arabinose

OH

OH

OH

HO

O
HO

O

Glucuronic acid

O
OH

OH
OH

OH

Xylose

OH

OH

OH

HO

O

Beta-D-xylopyranose units (xylans)



 126

Figure 9. 1,4 α linked D-galacturonic acid residues constitute pectin, a noncellulosic 

polysaccharide.  Galacturonic acid differs from galactose due to a –COOH, instead of a –

CH2OH group on the six carbon position (Nobel, 2005). 
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Figure 10. Monomers that form lignin when copolymerized together.  (a)  Phenylalanine  

(Phe), a lignin precursor, forms the basis of phenylpropanoids, which are biosynthesized 

from Phe.; (b) Coniferyl alcohol, the most abundant precursor in softwood species, leads 

to the guaiacyl structure;  (c)  Coumaryl alcohol, also present in softwood lignins, 

contains no methoxyl groups; (d) Sinapyl alcohol leading to syringyl structures found in 

hardwood species.  Hardwood lignin contains both syringyl and guaiacyl structures; (e) 

aromatic units indicative of decomposed lignin content. 

 

H2N CH C

CH2

OH

O

Phenylalanine

(a)

   

 
 
 



 128

 

HO

O

OH

R2O

O

R1

Coniferyl alcohol Guaiacyl

OH

O

O

HO

O

O

R2O R1

SyringylSinapyl alcohol

HO

OH

R2O

R1

Coumaryl alcohol p-Hydroxyphenyl

(b)

(c)

(d)

 

HO

O

O

Vanillin

O

OH

O

HO

Ferulic Acid

O O

p-Coumaric Acid

(e)

 



 129

Figure 11: Photograph of a control burn occurring in the New Jersey pine barrens.  
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Figure 12. Optimization transmission FT-IR spectra of pellets consisting of differing 

concentrations of KBr and oak litter.   (a) (oak:KBr = 0.57%) poor spectral quality due to 

low concentration of oak resulting in negative absorbance values; (b) (oak:KBr = 0.25%) 

poor spectral quality due to decreased concentration of sample and the presence of water 

vapor and CO2 leading to a sloping baseline; (c) (oak:KBr = 0.75%) optimum spectral 

quality resulting from a translucent pellet giving clear peak separation.  A.U. = Arbitrary 

Units. 
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Figure 13. Principal coordinate analysis plot of white oak, pitch pine and black 

huckleberry leaf litter burned at different temperatures in wavenumber space.  Axis 1 

accounts for 25.54% of variance in the data set and Axis 2 accounts for 10.74%.  

Analysis of variance of coordinate scores along axis 1 and axis 2 are significant 

(F=489.80, P=0.0001 and F=128.07, P=0.0001 respectively). ■= oak, ●=pine, 

▲=huckleberry. “O, P and H from C-550˚C” represents species oak, pine and 

huckleberry at control to 550˚C. Points represent the mean of three replicates and their 

associated standard error (SE). Consult Table 4 for Post hoc means separation test 

(Tukey groups) from the ANOVA for species and temperature along both axes.   
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Figure 14.  Transmission FT-IR spectra of unburned white oak, pitch pine and black 

huckleberry. Peak labels indicate similarities between species according to the PCA. 
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Figure 15.  Transmission FT-IR spectra of thermally decomposed (550˚C) white oak, 

pitch pine and black huckleberry. Peak labels indicate similarities between species 

according to the PCA. 
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Figure 16.  Aromatic and aliphatic suberin monomers.  (a) Hydroxycinnamic acids and 

cinnamic acid derived from phenylalanine (Phenylpropanoids); (b) p-coumaric acid, a 

derivative of cinnamic acid, is part of the biosynthesis pathway; (c) glycerol, the major 

component of suberin, links the aliphatic with the aromatic monomers. 
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Figure 17.  Major monomers of cutin include C16 and C18 families and are composed of 

hydroxy-fatty acids.   
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Figure 18.   (a) Undifferentiated, (b) first and (c) second derivative spectra.   (Stuart,  

1996).  Arrows represent the location of the original absorbance band’s maximum  

wavenumber in each case. 
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Figure 19.  Second derivative plot illustrating various ways to measure derivative peak  

amplitudes.  Method 4, DB, the tangent baseline method was applied (Bridge at al., 1987). 
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Figure 20. Illustration of a normalized transmission FT-IR spectrum (white oak).   

Absorbance values are decreased slightly in comparison with Figure 12c.   
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Figure 21. (a) Five-point first-derivative normalized and (b) nine-point second-derivative  

normalized control spectra of oak.  CO2, an inevitably prominent peak, is  

present ~2350 cm-1.   
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Figure 22. (a) First and (b) second derivative spectra of oak depicting the measurement  

of the derivativ k amplitude with respect to the tangent baseline.   e pea

(a) 

) 
U

.
A

.
( 

nc
e

ba
A

bs
or

   Wavenumber (cm-1) 

   Wavenumber (cm-1) 

(b) 

A
bs

or
ba

nc
e 

(A
.U

.) 



 142

Figure 23. First derivative principal coordinate analysis plot of white oak, pitch pine and  

black huckleberry.  Axis 1 accounts for 95.9% of variance in the data set and axis 2 

accounts for 1.70% of variance.  Analysis of variance of coordinate scores along axis 1 

and 2 are significant (F=45.32 and P<.0001 and F=35.42 and P<.0001, respectively). 

Wavenumbers indicate significant differences that contribute to the separation, or pull, of 

species along axes 1 and 2.  The circles are only approximate and do not strictly relate to 

significant differences between litter species and combustion temperatures. Consult 

Table 5 for Post hoc means separation test (Tukey groups) from the ANOVA for species 

and temperature along both axes. 
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Figure 24. Second derivative principal coordinate analysis plot of white oak, pitch pine  

and black huckleberry.  Axis 1 accounts for 96.47% of variance in the data set and axis 2 

accounts for 1.27% of variance.  Analysis of variance of coordinate scores along axis 1 

and 2 are significant (F=45.86 and P<.0001 and F=40.07 and P<.0001, respectively). 

Wavenumbers indicate significant differences that contribute to the separation, or pull of 

species along axes 1 and 2. The circles are only approximate and do not strictly relate to 

significant differences between litter species and combustion temperatures. Consult 

Table 6 for Post hoc means separation test (Tukey groups) from the ANOVA for species 

and temperature along both axes. 
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Figure 25. First derivative (binary data) principal coordinate analysis plot of white oak,  

pitch pine and black huckleberry.  Axis 1 accounts for 33.03% of variance in the data set 

and axis 2 accounts for 11.54% of variance.  Analysis of variance of coordinate scores 

along axis 1 and 2 are significant (F=16005.6 and P<.0001 and F=979.8 and P<.0001, 

respectively). Wavenumbers indicate significant differences that contribute to the 

separation, or pull of species along axes 1 and 2.  Pink wavenumbers have the same 

loading. Consult Table 7 for Post hoc means separation test (Tukey groups) from the 

ANOVA for species and temperature along both axes. 
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Figure 26.  Second derivative (binary data) principal coordinate analysis plot of white 

oak, pitch pine and black huckleberry.  Axis 1 accounts for 31.01% of variance in the 

data set and axis 2 accounts for 11.12% of variance.  Analysis of variance of coordinate 

scores along axis 1 and 2 are significant (F=6768 and P<.0001 and F=18.9 and P<.0001, 

respectively). Wavenumbers indicate significant differences that contribute to the 

separation, or pull of species along axes 1 and 2. Pink wavenumbers have the same 

loading.  Consult Table 8 for Post hoc means separation test (Tukey groups) from the 

ANOVA for species and temperature along both axes. 
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Figure 27. (a) Original spectrum of white oak at 300˚C with a sloping baseline  

(b) first and (c) second  derivative spectra illustrating the improved baseline.  Sloping  

baselines occurred most frequently in all spectra of all litter burned at 300˚C.  
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Figure 28.   Components of a thermogravimetric analyzer (TGA 2050, TA Instruments) 

that can be interfaced with an FT-IR for evolved gas analysis (TGA-IR).  (TA 

Instruments Brochure). 
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Figure 29.  FT-IR spectra (KBr pellet) of control (unheated), oak (solid), pine (dotted) 

and huckleberry (dashed).  
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Figure 30.  Thermograms of weight percent versus temperature (˚C) of oak (solid), pine  

(dashed) and huckleberry (dotted) leaf litter.  The weight loss of each species with 

increasing temperature is plotted and illustrates that oak has a unique weight loss step 

when compared with pine and huckleberry. 
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Figure 31.  TGA curve (solid) and the first derivative curve (dashes) of the observed  

weight losses of the evolved gases for (a) oak (13.1700 mg); (b) huckleberry (15.721 mg) 

and (c) pine (18.1730 mg). 
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Figure 32. Gram-Schmidt plots illustrating that the total spectra absorbance versus  

Time/temperature (˚C) of oak (solid), pine (dotted) and huckleberry (dashed) parallels  

the weight loss shown by the thermograms of each species. 
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Figure 33. 3-D evolved gas IR of extractions in the ~325˚C to ~625˚C range for  

oak litter during heating.  These extractions (50˚C intervals) illustrate the temperature 

range at which most of the gaseous components (CO2, CO and CH) are evolving during 

the course of the experiment.  The spectral changes for oak are similar and generally 

comparable to pine as well as huckleberry.  
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Figure 34. Peak area profiles of intensity versus time of specific IR regions of gases  

evolved during heating of (a) oak, (b) pine and (c) huckleberry leaf litters that correlate 

with the main weight loss event observed by the TGA.   
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Figure 35. Peak area profiles of intensity versus time for the three vibrational modes of  

CO2 in (a) oak and (b) huckleberry illustrating that evolution of CO2 occurs between 

300˚-600˚C. 
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Figure 36. 3-D evolved gas IR analysis of the CH region (~3020-2800 cm-1) in (a) pine,  

(b) huckleberry and (c) oak from ~325-625˚C.  These extractions illustrate how the C-H 

region differs in each species.  
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Figure 37. Comparative histograms of normalized intensity versus time (integrated at  

0.5 minutes) of selective peak height profiles of each peak within the CH region, (a) 

2862, (b) 2932 and (c) 2967 cm-1 for each species.  
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Figure 38. Comparative histograms of normalized intensity versus time (integrated at  

0.5 minutes) of selective peak height profiles of each maximum peak within the IR 

gaseous region 1250-950 cm-1 ((a) 1032, (b) 1060 and (c) 1180 cm-1) and (d) 1840-1620 

cm-1 for each species.   
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Figure 39. Diagram of a Varian (formerly BioRad) UMA 500 FT-IR microscope 

accessory.    
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Figure 40.  Illustration of the infrared radiation entering an IRE in contact with a sample.  

This creates an evanescent wave that projects into the sample where it is absorbed and 

then directed to the detector.   Internal reflection occurs when the angle of incidence (θ) 

is greater than the critical angle (θc).   (Specra-Tech Inc.).   
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Figure 41. Example of the random selection of spots on the (a) adaxial and (b) abaxial  

sides of leaves. Red arrows-“dark spots.” 
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Figure 42. Microscopic attenuated total reflectance FT-IR spectra of the (a) adaxial and  

(b) abaxial sides of a freshly abscised oak leaf.  
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Figure 43. Microscopic attenuated total reflectance FT-IR spectra of the (a) adaxial and  

(b) abaxial sides of a naturally (terrestrially) decomposed oak leaf.  
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Figure 44.  (a) Microscopic ATR IR spectrum of cellulose (filter paper) and (b) a  

transmission infrared spectrum of lignin (KBr pellet) used for comparison and  

verification of IR reflectance peak wavenumbers. 
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