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ABSTRACT OF THE DISSERTATION

Descriptive aspects of torsion-free

abelian groups

by Samuel Gregory Coskey

Dissertation Director: Simon Thomas

In recent years, a major theme in descriptive set theory has been the study of the

Borel complexity of naturally occurring classification problems. For example, Hjorth

and Thomas have shown that the Borel complexity of the isomorphism problem for the

torsion-free abelian groups of rank n increases strictly with the rank n.

In this thesis, we present some new applications of the theory of countable Borel

equivalence relations to various classification problems for the p-local torsion-free abelian

groups of finite rank. Our main result is that when n ≥ 3, the isomorphism and quasi-

isomorphism problems for the p-local torsion-free abelian groups of rank n have incom-

parable Borel complexities. (Here two abelian groups A and B are said to be quasi-

isomorphic if A is abstractly commensurable with B.) We also introduce a new invariant,

the divisible rank, for the class of p-local torsion-free abelian groups of finite rank; and

we prove that if n ≥ 3 and 1 ≤ k ≤ n − 1, then the isomorphism problems for the p-

local torsion-free abelian groups of rank n and divisible rank k have incomparable Borel

complexities as k varies.

Our proofs rely on the framework developed by Adams and Kechris, whereby cocy-

cle superrigidity results from measurable group theory are applied in the purely Borel

setting. In particular, we make use of the recent cocycle superrigidity theorem, due to

Ioana, for free ergodic profinite actions of Kazhdan groups.
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Chapter 1

Introduction to superrigidity and Borel equivalence relations

1.1 Classification problems and equivalence relations

The study of Borel equivalence relations is motivated by the idea that a “classification

problem” can often be viewed formally as an equivalence relation E on a suitable space X.

(This idea was first introduced in Friedman–Stanley [FS] and Hjorth–Kechris [HK].) For

this to be useful, we must require that X be a very concrete space; otherwise one could

just take X to be the abstract set of objects to be classified and E the equality relation.

Informally, let us say that the E has been solved if one can find invariants i(x) for the

elements of X such that x and y are E-equivalent exactly when i(x) = i(y). Again, for

this to be meaningful, the map i and its set of values must be very concrete or else one

could simply take i(x) = the equivalence class of x, considered as an element of X/E.

The first step in addressing these difficulties is to take X to be a standard Borel space,

i.e., a separable, complete metric space equipped only with its σ-algebra of Borel sets.

Examples include the analytic spaces Rn, C, the p-adic numbers Qp, and also the de-

scriptive set-theoretic spaces such as the Cantor space 2N (which is the same as P(N))

and the Baire space NN. Moreover, we have that a Borel subset of a standard Borel space

is again standard Borel; so for instance the interval (0, 1) with its subspace σ-algebra is

standard Borel, even though it isn’t complete with the subspace topology. We will fre-

quently use the remarkable fact due to Kuratowski (Theorem 15.6 of [Kec2]) that up to

Borel isomorphism, there is a unique uncountable standard Borel space; it serves as the

universe for all of the mathematical objects that we shall investigate.

As an example, we consider the classification problem for countable groups up to iso-

morphism. Let G be a countable group and suppose, without loss of generality, that the
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domain of G is N. Then G is determined by the information contained in its multiplica-

tion function, ×G. Hence, the space:

X = {×G ⊂N3 : the group axioms hold}

encompasses all countable groups. Moreover, X is easily seen to be a Borel subset of the

standard Borel space P(N3), and so X is a standard Borel space in its own right. Since

a permutation of the domain N takes any encoding of G to another one, it is clear that

a single abstract group will occur many times in X. Understanding the classification

problem for countable groups amounts to understanding the isomorphism equivalence

relation ∼= on X.

We will soon see many more examples of classification problems from algebra as well

as some important equivalence relations from descriptive set theory.

1.2 Borel reducibility

The equivalence relation E on X is called completely classifiable, or smooth for short, if there

exists a standard Borel space Y and a Borel function f : X → Y such that:

x E x′ ⇐⇒ f (x) = f (x′)

Here, f is called Borel if its graph is a Borel subset of X×Y. For instance, the isomorphism

relation on the space of countable divisible abelian groups is smooth. To see this, note

that by Theorem 23.1 of [Fuc], any such group decomposes into a direct sum of copies of

Q and the Prüfer groups Z(p∞) = {z ∈ C∗ : (∃n)zpn = 1} and that they are classified up

to isomorphism by the sequence consisting of the number of copies of each such factor.

It is necessary to explain the hypothesis that the function f is Borel. Recall that the

Borel subsets of X × Y (or of any standard Borel space) are precisely those which can be

constructed from the open sets by means of a countable process of unions, intersections,

and complements. We take the view that the Borel subsets are precisely those which are

explicitly described. Hence, E is smooth iff the elements of X can be classified up to E in

an explicit manor using invariants from another standard Borel space Y.
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Vastly generalizing the notion of smoothness, Friedman and Stanley defined in [FS]

a preordering ≤B on equivalence relations, which should be thought of as a complexity

comparison on classification problems. Suppose that E, F are equivalence relations on

standard Borel spaces X, Y. Then E Borel reduces to F, written E ≤B F, if there exists a

Borel function f : X → Y such that for all x, x′ ∈ X we have:

x E x′ ⇐⇒ f (x) F f (x′)

In this case, we call the associated map f a Borel reduction. With this notion in hand, the

smooth relations are precisely those E which are Borel reducible to the equality relation

on a standard Borel space Y. The existence of a Borel reduction from E to F means all of

the following:

• The elements of X can be effectively classified up to E using complete invariants

from the quotient space Y/F.

• The quotient X/E, itself considered as a space of potential invariants, is no more

complicated than Y/F.

• The map f effectively reduces the problem of classifying elements of X up to E to

that of classifying elements of Y up to F.

We remark that the last point does not capture the meaning ≤B on its own; f is uncon-

vincing as a reduction in this sense if it has a much higher (descriptive set-theoretic)

complexity than both E and F.

We say that E and F are Borel equivalent, written E ≡B F, if there exists a bijective

function f that is a Borel reduction from E to F. We say that E is Borel bireducible with F,

written E ∼B F, if E ≤B F and F ≤B E. The latter, weaker notion is more flexible and

plays a much more central role in the theory. Finally, we say that E is strictly less complex

than F, written E <B F, if E ≤B F but F 6∼B E.

1.3 Borel equivalence relations

An equivalence relation E on the standard Borel space X is said to be Borel if it is a Borel

subset of the product space X × X. We shall see later that the example considered in
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the first section, namely the isomorphism relation on the space of countable groups, is

not Borel. The following are examples of Borel equivalence relations on standard Borel

spaces.

• The isomorphism relation on the subspace of P(N3) consisting of the finitely gen-

erated groups.

• The isomorphism relation on the subspace of P(N2) consisting of the connected

locally finite graphs.

• The equivalence relation Eset on the space RN of functions N → R defined by

f Eset g iff f and g have the same range.

The structure of the partial order <B on the Borel equivalence relations is of great interest.

The Borel equivalence relations with at most countably many classes are characterized up

to Borel bireducibility by the number of classes, and so from now on we omit these from

consideration. If the Borel equivalence relation E has uncountably many classes, then it

necessarily has continuum many classes. Indeed, it is a consequence of Silver’s theorem

(Theorem 35.20 of [Kec2]) that the equality relation ∆(X) on an uncountable standard

Borel space X reduces to any Borel equivalence relation with uncountably many classes.

As a corollary, we have that up to Borel bireducibility, ∆(X) is the least complex Borel

equivalence relation with uncountably many classes.

One might ask if similarly there is a universal Borel equivalence relation, that is, a Borel

equivalence relation F such that E ≤B F for every Borel equivalence relation E. It follows

from a result of Friedman and Stanley that no such Borel equivalence relation F exists.

Indeed, in Section 1.2 of [FS], it is proved that there is a jump construction which for any

Borel equivalence relation F yields a Borel equivalence relation F′ such that F <B F′.

However, [FS] does give examples of analytic equivalence relations F such that E ≤B

F for every Borel equivalence relation E. Here, a subset A of the Polish space X is said

to be analytic if there exists a standard Borel space Z and a Borel function f : Z → X

such that f (Z) = A. For instance, the isomorphism relation on the space of countable

groups is universal for the Borel equivalence relations, as is the isomorphism relation on
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the space of countable graphs. Indeed, the corresponding classification problems should

be thought of as completely intractable.

1.4 Countable Borel equivalence relations

The equivalence relation E is called countable if each of its equivalence classes is count-

able. Few of the relations described so far have this property, but there are many natural

examples.

• The isomorphism relation on the space G2 of 2-generator groups, where a group G

is encoded as the set of words in x, y which represent the identity in G.

• The Turing equivalence relation on P(N) defined by A ≡T B iff A and B lie in the

same Turing degree.

• The orbit equivalence relation EΓ induced by the Borel action of a countable group

Γ on a standard Borel space, defined by x EΓ y iff x, y lie in the same Γ-orbit.

It is a remarkable fact that the last example includes all countable Borel equivalence re-

lations. That is, a theorem of Feldman and Moore (Theorem 1 of [FM]) states that any

countable Borel equivalence relation is the orbit equivalence relation arising from a Borel

action of a suitably chosen countable group.

We shall now discuss the structure of the countable Borel equivalence relations under

Borel reducibility. We have already observed that the smooth relations are the <B-least

among the Borel equivalence relations with uncountably many classes, and hence also

among the countable Borel equivalence relations.

The simplest nonsmooth relation is the eventual equality relation, denoted by E0 and

defined on the Cantor space 2N of infinite binary sequences by:

{an} E0 {bn} ⇐⇒ an = bn for all but finitely many n

Later we shall present a measure-theoretic argument that E0 is indeed nonsmooth. It is

easily observed that E0 is hyperfinite, meaning that there exist Borel equivalence relations:

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · ·
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such that all classes of all Fi are finite and E0 = ∪Fi. By Theorem 1 of [DJK], E0 is a univer-

sal hyperfinite relation, in the sense that F ≤B E0 for every hyperfinite F. By Theorem 1.1

of [HKL], E is non-smooth iff E0 ≤B E. Thus, the class of nonsmooth hyperfinite Borel

equivalence relations form the immediate <B-successor to the class of smooth relations.

There is also a universal countable Borel equivalence relation E∞, in the sense that

E ≤B E∞ for every countable Borel equivalence relation E. Clearly, all of the univer-

sal countable Borel equivalence relations lie in a single ∼B-class. An example of such

a relation is the orbit equivalence relation induced by the translation action of the free

group F2 on its power set P(F2). For a proof that this is universal, see Section 1 of [DJK].

The results in this section are summarized in the following diagram (Figure 1.4.1) of

the countable Borel equivalence relations.

E∞

our domain
of discourse

E0

∆(X)

Figure 1.4.1. The countable Borel equivalence relations.

1.5 Essentially countable Borel equivalence relations

It is worth mentioning that there is a sense in which the countable Borel equivalence

relations encompass a much larger collection of problems than would at first appear.

This is because it is possible for a non-countable Borel equivalence relation to be Borel

bireducible with a countable Borel equivalence relation. We call such relations essentially

countable.

A large collection of essentially countable Borel equivalence relations can be obtained
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as follows. Let G be a locally compact second countable group, and suppose that G acts

in a Borel fashion on the standard Borel space X. Then the orbit equivalence relation

EG induced by the action of G on X need not be countable, but by [Kec1] it is always

essentially countable.

In [HK], Hjorth and Kechris provided many natural examples of essentially countable

Borel equivalence relations. We first introduce a generalization of the construction of

the space of countable groups. Let L = {Ri} be a countable (without loss of generality)

relational language, and suppose that for all i, Ri is an ni-ary relation. Then XL denotes

the space of L-structures with domain N, namely:

XL = ∏ P(Nni)

If σ is a sentence of the infinitary language Lω1,ω, then the subset Xσ ⊂ XL consisting of

the models of σ will always be a standard Borel space. We let∼=σ denote the isomorphism

relation on Xσ. As with the case of countable groups, ∼=σ need not be Borel, but we have:

1.5.1. Theorem (Theorem 4.3 of [HK]). Let σ be a sentence of Lω1,ω. Then ∼=σ is essentially

countable iff every model M of σ is determined up to isomorphism by a tuple ā ∈ Mn and the

truth values in M of countably many Lω1,ω formulas over ā.

With this in hand, it is easy to see that many of the examples discussed so far are

essentially countable. For instance, the isomorphism relation on the space of finitely

generated countable groups is essentially countable (for ā, use any finite generating set).

Similarly, the isomorphism relation on the space of connected locally finite graphs is

essentially countable. On the other hand, it can be shown that E∞ <B Eset, and so Eset is

Borel but not essentially countable.

1.6 Torsion-free abelian groups

One of the first “real world” applications of the methods of countable Borel equivalence

relations was to the classification problem for torsion-free abelian groups of finite rank.

If A is an abelian group then A is torsion-free if na 6= 0 for all n ∈ Z\{0} and a ∈ A\{0}.
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A basis for A is a maximal Z-independent subset of A. The rank of A is the cardinality of

a maximal basis; it is easy to check that this is well-defined.

In his 1937 paper [Bae], Baer classified the torsion-free abelian groups of rank 1 as

follows. Let A be such a group and let a ∈ A be any nonzero element. Then the type of A

is the equivalence class of the set of pairs:

〈(p, n) : p is prime and pn divides a in A〉

where two such sets are identified if their symmetric difference is finite. It is not hard to

verify Baer’s result: the type of A is independent of the choice of a ∈ A\{0}, and A is

determined up to isomorphism by its type.

Immediately after Baer’s result, Kurosh and Malcev attempted to generalize it to

higher ranks. Their efforts failed in the sense that the invariants they provided are no

easier to distinguish than the groups themselves! Even the rank 2 torsion-free abelian

groups resisted satisfactory classification for sixty years. In 1998, Hjorth used the theory

of countable Borel equivalence relations to prove that the classification problem for the

rank 2 groups is genuinely more complex than that for the rank 1 groups. We will now

give a more detailed account of this result.

Following Hjorth, we wish to view the torsion-free abelian groups of finite rank as

elements of a standard Borel space. As with all countable groups, we could again use

a subspace of P(N3). However, the isomorphism relation on this subspace would be

essentially countable and not countable, so in a sense it is not the simplest domain to use.

Instead, observe that if A has rank n, then fixing a basis for A yields an embedding of A

into Qn. Hence, studying the torsion-free abelian groups of rank n reduces to studying

the subgroups of Qn. We shall denote by R(n) the standard Borel space of subgroups of

Qn of rank exactly n, and the isomorphism relation on R(n) by ∼=n. It is not hard to show

that ∼=n is Borel, and since for any group A there are only countably many choices of a

basis for A, ∼=n is a countable Borel equivalence relation.

With this set-up, it is easy to see that Baer’s classification of torsion-free abelian

groups of rank 1 by their type implies that ∼=1 ≤B E0. It is also easy to check that in

fact ∼=1 ∼B E0. Hjorth’s theorem can now be expressed as follows:
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1.6.1. Theorem ([Hjo1]). E0 <B ∼=2.

Hence, the classification problem for torsion-free abelian groups of rank 2 is strictly

more complex than that for rank 1.

This left open many questions about the torsion-free abelian groups of higher finite

rank. Observe that we always have ∼=n ≤B ∼=n+1, as it is easily checked that the map

A 7→ A ⊕ Q is a Borel reduction. But after Hjorth’s proof, it was still far from clear

whether ∼=3 was strictly more complex than ∼=2, or whether ∼=2 was already universal for

torsion-free abelian groups of all finite ranks. At the time, it was conceivable (and not

out of the question) that ∼=2 is not universal but that ∼=3 was universal. This problem

remained open for several years; we shall discuss the solution shortly.

1.7 Measurable dynamics

By the result of Feldman and Moore, every countable Borel equivalence relation is in-

duced by the action of some countable group Γ. We remark that the group Γ and its action

are not canonically determined by EΓ. For instance, there is no known, “natural” group

action that induces the Turing equivalence relation ≡T.

Fortunately for Hjorth, in the case of ∼=n, much more structure is available. Namely,

for A, B ∈ R(n), we have A ∼=n B iff there exists g ∈ GLn(Q) such that g(A) = B.

Hence, ∼=n is precisely the orbit equivalence relation induced by a very natural action of

the group GLn(Q).

In order to exploit this situation, it is necessary to study two key hypotheses on a

group action: invariant measures and freeness. If Γ acts on X in a Borel fashion (which

we shall frequently denote by Γ y X), then a Borel probability measure µ on X is said

to be Γ-invariant if for every Borel A ⊂ X and γ ∈ Γ, µ(γA) = µ(A). In this case we say

that Γ preserves µ and we sometimes write Γ y (X, µ). We are exclusively interested in

nonatomic measures, i.e., measures with the property that every countable set is null.

For instance, the eventual equality relation E0 is the orbit equivalence relation in-

duced by a measure preserving action. To see this, identify the Cantor space 2N with the

elements of the group G = ∏i∈N Z/2Z. This space carries a measure that is invariant
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for the left multiplication action of G on itself. Namely, let µ be the product of the { 1
2 , 1

2}

measures on the coordinates of G. Clearly, E0 is precisely the orbit equivalence relation

induced by the action of the countable subgroup
⊕

i∈N Z/2Z.

Next, we say that the action Γ y X is free if for every x ∈ X we have 1 6= γ ∈ Γ

implies that γx 6= x. For instance, the action that we have just described, which induces

E0, is clearly free.

Returning to Theorem 1.6.1, recall that Hjorth wished to prove that ∼=2 does not re-

duce to E0, i.e., that∼=2 is not hyperfinite. To do so, he made use of the result (Theorem 1.7

of [JKL]) that any free, measure preserving action of a nonamenable group is not hyperfi-

nite. This is not directly applicable to ∼=n, since unfortunately GLn(Q) neither preserves

a measure on R(n) nor acts freely. However, for n ≥ 2, Hjorth was able to find a mea-

sure on R(n) that is preserved by the restricted action of SLn(Z). Moreover, this measure

happens to concentrate on a set on which SLn(Z) acts freely. This information, together

with a few other elementary results, was sufficient for Hjorth to complete the proof.

There is another extremely important property to consider when studying measure

preserving actions. We say that Γ y (X, µ) is ergodic if whenever the Borel subset A ⊂ X

is Γ-invariant, A is null or conull. For instance, it is a standard exercise (which we shall

explain in Chapter 3) that
⊕

i∈N Z/2Z acts ergodically on the Cantor space with the

invariant measure µ described above.

The ergodicity hypothesis is extremely useful. For instance, if Γ y (X, µ) is ergodic

then EΓ already cannot be smooth. For, suppose that f : X → R is a Borel map such

that x EΓ x′ implies f (x) = f (x′). Then f is Γ-invariant, and it is easy to show using

ergodicity that f must be constant on a conull set. Since µ is nonatomic, such a map f

clearly cannot be a Borel reduction. In particular, this verifies our earlier claim that E0 is

not smooth.

1.8 Initial applications of superrigidity

We have already mentioned that besides ∆(X), E0, and E∞, all countable Borel equiva-

lence relations must lie in the interval (E0, E∞). Many open questions revolve around
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the structure of the partial order <B on this interval. We shall now discuss some of the

principle results concerning this interval, beginning with the fact that it is nonempty.

It is a matter of folklore (due ultimately to Adams and explained in Section 3.5 of

[JKL]) that the universal treeable equivalence relation ET∞ does indeed satisfy E0 <B

ET∞ < E∞. Here, an equivalence relation E on X is said to be treeable if there exists a

Borel acyclic graph on X whose connected components are precisely the E-classes. For

instance, any free action of a free group is treeable; the trees correspond to copies of the

Cayley graph of the acting group. The universal treeable relation ET∞ can be realized as

the orbit equivalence relation arising from the action of the free group F2 not on its whole

power set, but rather on the subset X ⊂ P(F2) on which F2 acts freely.

Adams’s work can also be adapted to prove that the product relation E2
T∞ is non-

treeable and non-universal. Here, E2
T∞ is the relation on X × X defined by (x, y) E2

T∞

(x′, y′) iff x ET∞ x′ and y ET∞ y′. Thus in 2000, there were five known ∼B-classes of

countable Borel equivalence relations, linearly ordered by <B:

∆(X) <B E0 <B ET∞ <B E2
T∞ <B E∞

This set the scene for the biggest breakthrough to date in the study of countable Borel

equivalence relations:

1.8.1. Theorem (Theorem 1 of [AK]). Let B denote the set of Borel subsets of R. Then the

partial ordering (B, () embeds into the partial ordering ((E0, E∞), <B).

In particular, there are uncountably many distinct countable Borel equivalence rela-

tions, and their structure is extremely rich. In proving this theorem, it was necessary for

Adams and Kechris to find many pairs of equivalence relations E, F which are Borel in-

comparable, that is, E 6≤B F and F 6≤B E. Their key insight was to mimic some methods

from orbit equivalence theory. Here, two probability measure preserving actions Γ y X

and Λ y Y are said to be orbit equivalent if there exists a measure preserving bijection

f : X → Y satisfying:

Γx = Γx′ ⇐⇒ Λ f (x) = Λ f (x′)
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for almost all x ∈ X. We have the following well-known construction of orbit inequiva-

lent ergodic actions.

1.8.2. Theorem (Theorem 5.2.2 of [Zim]). Let G0, G1 be connected simple higher-rank Lie

groups with finite center. Let Γi < Gi be lattices and suppose that Γi y Xi are free, ergodic

probability measure preserving actions. If the two actions are orbit equivalent, then G0 and G1

are isogenous.

This is called a “superrigidity” result because it gives conditions under which the

orbit structure of a group action determines some information about the acting group.

We will give further meaning to the term superrigidity in Chapter 4.

Theorem 1.8.2 implies that if Γα are lattices in sufficiently unrelated higher rank Lie

groups Gα, and Γα y Xα are free ergodic probability measure preserving actions, then

their orbit equivalence relations EΓα are pairwise orbit inequivalent. This result was not

of direct use to Adams and Kechris, since of course a Borel reduction need not preserve

any measure. Their proof required more care in the choice of Γα, as well as some finer

results of Zimmer.

Adams next used superrigidity methods to provide in [Ada] the first example of

countable Borel equivalence relations E ⊂ F such that E 6≤B F. His examples are again

orbit equivalence relations induced by the actions of lattices Γ in a higher rank Lie group

G. Adams supposed additionally that Γ embeds densely into a compact simple Lie group

K, and considered the orbit equivalence relation EΓ induced by the left-translation action

of Γ on K. If Λ < Γ is a subgroup of finite index, then clearly EΛ ⊂ EΓ. However, super-

rigidity methods can be used to prove that EΓ and EΛ are in fact Borel incomparable.

Another question, similar to the one that Adams solved, asked whether there exists a

Borel equivalence relation E such that E <B 2E. Here, if E is an equivalence relation on

X, then 2E is the equivalence relation on X × {0, 1} defined by (x, i) 2E (x′, j) iff x E x′

and i = j. Thomas observed in [Tho2] that if E = EΓ is the equivalence relation described

in the previous paragraph, then E satisfies E <B 2E.

This example of Adams is important, at least in a motivating sense, for our results

as well. Indeed, the relations that we shall consider in Theorem B (of Section 2.2) give
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new examples of relations E ⊂ F such that E and F are incomparable. In our arguments,

we shall work with SLn(Z), which is simultaneously a lattice in SLn(R) and a dense

subgroup of the compact (but not Lie) group SLn(Zp).

This work of Adams and Thomas left open the very important problem of whether

E∞ ⊂ F implies E∞ ≤B F. If this is the case, then it would follow that the Turing relation

≡T is universal and it has been shown that this implies that the Martin conjecture is false!

Lastly, we remark that the analogous questions about the structure of the interval

(E0, ET∞) are almost all still open. The question of whether it is nonempty was solved by

Hjorth, who proved in [Hjo2] that there indeed exists a non-universal, non-hyperfinite

treeable equivalence relation. But so far, Hjorth’s relation is the only one known to lie in

this interval.

1.9 Applications to torsion-free abelian groups

In this section, we explore some extremely interesting applications of the methods of

Adams and Kechris to the study of the complexity of the classification problem for torsion-

free abelian groups of higher finite ranks.

We first discuss Thomas’s answer in [Tho3] to Hjorth’s question of whether ∼=2 is

universal for all torsion-free abelian groups of finite rank. In fact, the ∼=n form a chain

of classification problems of strictly increasing complexity. This gave the first naturally

occurring example of an infinite chain of countable Borel equivalence relations.

1.9.1. Theorem (Theorem 1.3 of [Tho3]). For n ≥ 2, we have ∼=n <B ∼=n+1.

Let us give a rough idea of how Theorem 1.9.1 is proved. Suppose that f : R(n + 1)→

R(n) is a Borel reduction from∼=n+1 to∼=n. Recall that∼=n is the orbit equivalence relation

induced by the action of GLn(Q) on R(n). Slightly simplifying matters, we instead con-

sider the orbit equivalence relation En induced by the action of SLn(Z) on R(n). In view

of Zimmer’s results, one might guess that if there is a Borel reduction from En+1 to En

then we should expect to obtain an embedding from SLn+1(R) → SLn(R), a clear con-

tradiction. This implication is far from true as stated; one key difficulty is that Hjorth’s
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SLn(Z)-invariant measure on R(n) fails to be ergodic. Yet Thomas does essentially pro-

ceed along these lines; we shall see more aspects of his proof later on.

Thomas next found a naturally occurring infinite ≤B-antichain, again consisting of

the isomorphism relations on various spaces of torsion-free abelian groups of finite rank.

This was accomplished by considering the collection of local groups. Here, if A is a

torsion-free abelian group and p is a prime, then A is said to be p-local if it is infinitely

q-divisible for every prime q 6= p. We let R(n, p) denote the space of p-local subgroups

of Qn of rank n, and ∼=n,p denote the restriction of the isomorphism relation to R(n, p).

The local groups are a natural class to consider; in their attempted classification of

torsion-free abelian groups of finite rank, Kurosh and Malcev reduced the study of arbi-

trary A ≤ Qn to that of local groups by considering the sequence of p-localizations of A.

Here, the p-localization A(p) of A is defined by:

A(p) = A⊗Z(p)

where A⊗Z(p) is set of Z(p)-linear combinations of elements of A, considered inside Qn.

(Note that Z(p) denotes the group { a
b ∈ Q : p - b}.) It is not hard to prove that A can

be recovered as the intersection
⋂

A(p) of its p-localizations. One might wonder whether

the isomorphism problem ∼=n,p for p-local groups of rank n is just as hard as that for all

torsion-free abelian groups of rank n. This is ruled out by the following result:

1.9.2. Theorem (Theorem 1.2 of [Tho1]). Fix n ≥ 3. Then for distinct primes p, q, we have

that ∼=n,p and ∼=n,q are incomparable with respect to Borel reducibility.

(Though only stated here for n ≥ 3, we remark that the result was also proved for

n = 2 by Hjorth and Thomas, see [HT].) The proof requires a finer version of Zimmer’s

theorem, which we are now ready to discuss. Let f be a Borel reduction from ∼=n,p to

∼=n,q. Recall that both equivalence relations are induced by an action of GLn(Q). It is not

difficult to imagine that matters would be much simpler if f had the additional property

that it preserved the action of GLn(Q).

Here we have in mind the following. Suppose that Γ y X and Λ y Y are ac-

tions of countable groups on standard Borel spaces. A permutation group homomorphism



15

Γ y X −→ Λ y Y is a pair (φ, f ) where φ : Γ → Λ is a group homomorphism and

f : X → Y is a Borel map satisfying:

f (γx) = φ(γ) f (x)

for all γ ∈ Γ and x ∈ X. A permutation group homomorphism need not be a Borel

reduction from EΓ to EΛ, but it satisfies a weaker condition. A Borel homomorphism from

EΓ to EΛ is a Borel map f : X → Y satisfying:

x EΓ y =⇒ f (x) EΛ f (y)

If (φ, f ) is a permutation group homomorphism from Γ y X to Λ y Y, then clearly f is

a Borel homomorphism from EΓ to EΛ.

It is not so difficult to prove that there does not exist a “nontrivial” permutation group

homomorphism between the actions GLn(Q) y R(n, p) and GLn(Q) y R(n, q). Hence,

Theorem 1.9.2 would follow from the very implausible assertion that every Borel reduc-

tion from ∼=n,p to ∼=n,q comes from a permutation group homomorphism.

Again, there is no reason in general to expect something like this to hold, and this

is where Zimmer’s cocycle superrigidity theorem is needed. With strong hypotheses on

the actions Γ y X and Λ y Y (the hypotheses of Theorem 1.8.2 plus more), Zimmer’s

theorem implies that if f is a Borel homomorphism from EΓ to EΛ, then there exists a

perturbation f ′ of f such that f ′ is a homomorphism of permutation groups. The pertur-

bation itself has no adverse effect, as we will have that f ′(x) EΛ f (x) for all x ∈ X.

Of course,∼=n,p is induced by the action of GLn(Q) and not by the action of any lattice.

In order to use Zimmer’s theorem to prove Theorem 1.9.2, it was necessary for Thomas

to first reduce the question to the analogous question for En,p, where En,p denotes the

orbit equivalence relation induced by the action of the SLn(Z) on R(n, p). Additionally,

Thomas needed to find an ergodic, invariant measure for the action of SLn(Z). In this

thesis, we shall investigate such measures in great detail. We shall also give an in-depth

analysis of the equivalence relations ∼=n,p and En,p.
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Chapter 2

Precise statement of results

2.1 Another invariant: divisible rank

Let us revisit the theorem of Thomas which states that ∼=n+1 6≤B ∼=n for all n. At the heart

of Thomas’s proof is a “dimension” argument, that is, the ∼=n+1-classes in some sense do

not fit into ∼=n classes. His next result states that the isomorphism equivalence relations

on the spaces R(n, p) of p-local torsion-free abelian groups of rank n are incomparable as

p varies. Since the rank n is fixed, dimension does not play a large role in this argument.

The incompatibility is due rather to a structural difference between the actions of GLn(Q)

on R(n, p) and on R(n, q).

In this section, we will give a new result of the latter sort. For a fixed rank n ≥ 3 and

prime p, we consider the space R(n, p) of p-local groups of rank n. Within this class, we

will isolate a third, finer invariant for local groups which we call the divisible rank. We

will show that as the divisible rank varies, the corresponding orbit equivalence relations

are Borel incomparable.

Before defining the invariant, it is necessary to discuss the Kurosh-Malcev invariants,

which were introduced by Kurosh and Malcev in their unsatisfactory classification of the

torsion-free abelian groups of rank n ≥ 2. First, recall that a torsion-free abelian group

of rank n is determined by its sequence of p-localizations. Now, working with a fixed

p-local subgroup A of Qn, Kurosh and Malcev considered its p-adic completion, i.e., the

Zp-submodule of Qn
p defined by:

Λp(A) = A⊗Zp

More precisely, Λp(A) denotes the set of Zp-linear combinations of elements of A, con-

sidered as a subset of Qn
p. It is a basic consequence of the theory of Zp-modules that
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Λp(A) (and indeed any Zp-submodule of Qn
p) admits a decomposition:

Λp(A) = VA ⊕ L

where VA is a vector subspace of Qn
p and L is a free Zp-module of finite rank. The Kurosh-

Malcev invariant for A essentially consists of a vector space basis for VA together with a

basis for L, modulo a very complex equivalence relation. Notice that VA is the divisible

part of Λp(A) and hence it is uniquely determined by A.

2.1.1. Definition. The divisible rank of A is k = dim VA.

It is not difficult to see that if g ∈ GLn(Q), then we have dim VA = dim VgA. Hence,

the divisible rank is an isomorphism invariant on the space R(n, p). Refining our notation

from the last chapter, let R(n, p, k) ⊂ R(n, p) denote the subspace of p-local torsion-free

abelian groups of rank n and divisible rank k, and let ∼=k
n,p denote the restriction of the

isomorphism relation to the space R(n, p, k). Our first result is that these isomorphism

equivalence relations are Borel incomparable.

Theorem A. Fix n ≥ 3 and p prime. Then for 1 ≤ k 6= l ≤ n− 1, we have that ∼=k
n,p and ∼=l

n,p

are incomparable with respect Borel reducibility.

This result is not surprising after Thomas’s work, but may seem puzzling in view of

the following abelian group-theoretic characterization of the divisible rank.

2.1.2. Proposition (essentially Exercise 93.1 of [Fuc]). Let A be a p-local torsion-free abelian

group of finite rank. Then the divisible rank k of A is precisely the maximum of the ranks of all

divisible quotients of A.

This result will be proved in Appendix 7.1. It says, in a sense, that if k′ < k then

the elements of R(n, p, k) are closer to being a divisible groups than the elements of

R(n, p, k′). But as we have mentioned, the classification problem for countable divisi-

ble abelian groups is smooth, and so we might say that the groups of large divisible rank

have a large factor that is easy to understand. Nevertheless, by Theorem A, the classifica-

tion problems for groups of divisible rank k do not decrease in complexity as k increases.
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2.2 Quasi-isomorphism

We next discuss an important weakening of the notion of isomorphism of torsion-free

abelian groups called quasi-isomorphism. First, groups A, B ≤ Qn are said to be quasi-

equal, written A ≈ B, if A∩ B has finite index in A and in B (in other words, iff A and B are

commensurable). They are said to be quasi-isomorphic, written A ∼ B, if A is quasi-equal

to an isomorphic copy of B. It is straightforward to check that this is indeed symmetric

and transitive. Write∼n for the restriction of the quasi-isomorphism relation to the space

R(n) of torsion-free abelian groups of rank n.

In establishing Theorem 1.9.1, Thomas initially proved the corresponding result for

the quasi-isomorphism relation, that is, he proved for all n that ∼n <B ∼n+1. There

are several reasons that this was a necessary stepping stone. First, he simply found the

quasi-isomorphism relation easier to work with than the isomorphism relation. Second,

we shall see that the quasi-isomorphism relation on R(n, p) is Borel bireducible with

the orbit equivalence relation induced by the action of GLn(Q) on the Grassmann space

GrQn
p of all vector subspaces of Qn

p, and it is much easier to apply Zimmer’s theorem to

such classical actions.

This situation led Thomas to ask in Questions 3.9, 3.10 of [Tho3] which of the two

classification problems is more complex: the quasi-isomorphism problem or the isomor-

phism problem. Thomas suspected that the two equivalence relations were incomparable

up to Borel reducibility; our main result precisely verifies this conjecture.

In analogy with our earlier notation, we let ∼n,p denote the quasi-isomorphism rela-

tion on the space R(n, p) of p-local torsion-free abelian groups of rank n. Let ∼k
n,p denote

the restriction of ∼n,p to the subspace of groups with divisible rank exactly k. Then we

have:

Theorem B. If n ≥ 3 and 1 ≤ k ≤ n− 2, then ∼=k
n,p and ∼k

n,p are incomparable with respect to

Borel reducibility.

The case when k = n − 1 must be omitted from the theorem, since it is not hard to

show (see Theorem 4.4 of [Tho1]) that for the p-local groups of rank n and of divisible
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rank n− 1, the quasi-isomorphism and isomorphism relations coincide.

One will immediately recognize that Theorem B provides an Adams-like example of

equivalence relations E ⊂ F such that E 6≤B F. Recall that in Adams’ examples, E ⊂ F

and F is of finite index over E in the sense that each F-class is a union of finitely many

E-classes. The situation in Theorem B is slightly different. If E ⊂ F then let us say that F

is a smooth extension of E if the following conditions are satisfied:

• F is the join of E with a smooth relation S, meaning that F is the smallest equivalence

relation containing E and S, and

• E and S commute, meaning that whenever x E y S z for some y, we also have

x S y′ E z for some y′.

(For many results concerning these notions, see Sections 23 and 24 of [KM].) Now, the

quasi-isomorphism relation∼k
n,p is not of finite index over the isomorphism relation∼=k

n,p.

But by Lemma 4.4 of [Tho3], the quasi-equality relation on R(n, p, k) is smooth, and it

follows easily that ∼k
n,p is a smooth extension of ∼=k

n,p.

There is a second viewpoint from which the result of Theorem B appears unusual.

This concerns the fact that the torsion-free abelian groups have a more reasonable struc-

ture theory with respect to quasi-isomorphism than they do with respect to isomorphism.

For instance, there does not exist a “unique decomposition” theorem for torsion-free

abelian groups of finite rank (in contrast with such classes of groups as the finitely gen-

erated abelian groups or the countable divisible groups).

To elaborate, we say that A is indecomposable if there does not exist a direct sum de-

composition A = A1 ⊕ A2 where A1, A2 6= 0. Any torsion-free abelian group of finite

rank may be decomposed into a direct sum of indecomposable groups, but in general

this cannot be done in a unique way.

2.2.1. Theorem (Corner, Theorem 90.2 of [Fuc]). Let n ≥ 2 and fix k ≤ n. There exists

A ≤ Qn with the property that for any partition n = r1 + · · · + rk into ri ≥ 1, there is a

decomposition:

A = A1 ⊕ · · · ⊕ Ak
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where Ai are indecomposable and rank Ai = ri.

The situation is much better in the category where quasi-isomorphism replaces iso-

morphism. Here, we say that A ≤ Qn is strongly indecomposable if A cannot be written as

A ≈ A1 ⊕ A2, where A1, A2 6= 0.

2.2.2. Theorem (Jónsson, Theorem 92.5 of [Fuc]). Let A be a torsion-free abelian group of

finite rank and suppose that A admits two quasi-decompositions:

A ≈ A1 ⊕ · · · ⊕ Ak ≈ B1 ⊕ · · · ⊕ Bl

where Ai, Bj are strongly indecomposable. Then k = l and there exists a permutation π of

{1, . . . , k} such that Ai ∼ Bπ(i) for 1 ≤ i ≤ k.

Despite this result, Theorem B implies that a solution to the isomorphism problem

for p-local torsion-free abelian groups of rank n does not yield a solution for the quasi-

isomorphism problem!

2.3 Strategy of the proofs

Theorems A and B are closely related, and their proofs will be intertwined. We now give

an outline of the proof of one direction of Theorem B:

∼=k
n,p 6≤B ∼k

n,p

Although this is perhaps the less interesting direction of Theorem B, its proof is not too

technical and it will serve as a template for the proofs of our other results. Now, if the

proof was to be given all at once and in a purely mechanical order, then it might be broken

into three steps.

Step 1. Transfer the domain of discourse from the rather complicated space of torsion-

free abelian groups to the much simpler “Grassmann” space.

As a start, instead of working with the space R(n, p) of p-local torsion-free abelian

groups of rank n, we shall work with the space of completed groups. In Appendix 7.1,

it will be shown that the completion map Λp is a GLn(Q)-preserving bijection onto the
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space M(n, p) of Zp-submodules of Qn
p. Hence,∼=n,p is Borel equivalent to the orbit equiv-

alence relation induced by the action of GLn(Q) on the space M(n, p).

Now, any Zp-submodule M ≤ Qn
p splits into VM ⊕ L, where VM is a vector subspace

and L is free. By definition of the divisible rank k, each subset R(n, p, k) maps to the

set M(n, p, k) of modules M ≤ Qn
p with dim VM = k. This shows that there is a close

connection between R(n, p, k) and the space GrkQn
p of k-dimensional vector subspaces of

Qn
p. In Chapter 5, we shall work to establish the following results:

2.3.1. Theorem (Theorem 4.3 of [Tho1]). Let Ek
GLnQ denote the orbit equivalence relation

induced by the action of GLn(Q) on GrkQn
p. Then the quasi-isomorphism relation ∼k

n,p is Borel

bireducible with Ek
GLnQ.

2.3.2. Theorem. Let Ek
SLnZ denote the orbit equivalence relation induced by the action of SLn(Z)

on GrkQn
p. Then the isomorphism relation ∼=k

n,p is Borel bireducible with an equivalence relation

Ek∼= on GrkQn
p which satisfies Ek

SLnZ ⊂ Ek∼= ⊂ Ek
GLnQ.

We remark that Ek∼= will not be an orbit equivalence relation induced by a natural

action of any group Γ such that SLnZ ⊂ Γ ⊂ GLn(Q). However, the containments

provided by Theorem 2.3.2 are sufficient for our arguments, as well shall see.

Now, if there exists a Borel reduction from ∼=k
n,p to ∼k

n,p, then by Theorems 2.3.1 and

2.3.2, there exists a Borel reduction f from Ek∼= to Ek
GLnQ. Also by Theorem 2.3.2,

(SLnZ)x = (SLnZ)y =⇒ x Ek∼= y

and so f is a Borel homomorphism from Ek
SLnZ to Ek

GLnQ.

Step 2. Derive a superrigidity result which implies that any such Borel homomor-

phism is, after a slight perturbation, a permutation group homomorphism:

SLn(Z) y GrkQn
p −→ GLn(Q) y GrkQn

p

This part is more or less already done for us, thanks to a recent superrigidity theo-

rem of Adrian Ioana (see Theorem 3.3.2 of [Ioa]); but we shall spend Chapters 3 and 4

developing the tools necessary to apply Ioana’s theorem. Let Γ y X be a measure pre-

serving group action satisfying certain hypotheses (which are satisfied, for instance, by
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SLn(Z) y GrkQn
p, with respect to the p-adic probability measure). Let Λ be a countable

group and Λ y Y a free action, and suppose that f is a Borel homomorphism from EΓ

to EΛ. Then, slightly oversimplifying matters, Ioana’s theorem implies that there exists a

homomorphism φ : Γ→ Λ and a slight perturbation f ′ of f such that f ′(γx) = φ(γ) f ′(x)

for all γ ∈ Γ and almost every x ∈ X.

We must remark that GLn(Q) y GrkQn
p is not actually a free action. To get around

this difficulty, we will rely on a highly nontrivial result of Thomas (essentially Lemma

5.1 of [Tho1]) that we may suppose that GLn(Q) acts freely on the range of f . We shall

say more about the presence of this result in our argument shortly.

Step 3. Characterize the permutation group homomorphisms which arise in Step 2.

In Chapter 3, we shall establish a version of the following result:

2.3.3. Theorem. Suppose that (φ, f ) : SLn(Z) y GrkQn
p −→ GLn(Q) y GrkQn

p is a

permutation group homomorphism, and that φ is injective. Then there exists h ∈ GLn(Q) such

that f (x) = hx, for almost all x ∈ GrkQn
p (with respect to a certain probability measure).

Finally, suppose that there exists a Borel reduction from ∼=k
n,p to ∼k

n,p. Then by Step

1 there exists a Borel reduction f from Ek∼= to Ek
GLnQ. By Steps 2 and 3, we may suppose

that there exists h ∈ GLn(Q) such that f (x) = hx. Since h ∈ GLn(Q) and we are only

interested in values of f modulo GLn(Q), we conclude that the identity map is a Borel

reduction from Ek∼= to Ek
GLnQ. But this is impossible, since whenever E is a proper sub-

equivalence relation of F, the identity map is not a Borel reduction from E to F! (In the

actual proof, we will need to show that there is no positive measure subset of GrkQn
p on

which the identity map is a Borel reduction; this will require a little more effort.)

This concludes the proof outline.

We should remark that it is almost certainly possible to apply Zimmer’s theorem to

reach our goals. So, one might ask why the use of Zimmer’s theorem has been replaced

by Ioana’s more recent result; the answer is simply that Ioana’s theorem is much more

directly applicable. First, it applies directly to the SLn(Z)-actions that we are considering.

Second, since there are no restrictions whatsoever on the target group, we may greatly
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simplify the proof by considering the full action of GLn(Q) on the right-hand side (rather

than attempting to restrict to just the action of the lattice SLn(Z)).

It should be mentioned that Zimmer’s theorem has not been totally eliminated from

our arguments. We have already said that we will make use of an analog of Lemma 5.1

from [Tho1]; and this result relies on Zimmer’s theorem. It is interesting to ask whether

it is possible to completely eliminate the use of Zimmer from our arguments.

2.4 Future work

We conclude this chapter by presenting a couple of questions which naturally follow

upon the work of this thesis.

Recall that Hjorth and Thomas proved that∼=n+1 6≤B ∼=n. In other words, they showed

that in some sense the rank n can be recovered from the ∼B-class of the equivalence

relation ∼=n. Their proof method can easily be adapted to show that similarly, ∼=n+1,p 6≤B

∼=n,q for any primes p and q. In view of Thomas’s result that ∼=n,p ⊥B ∼=n,q for p 6= q, one

might wonder if the following holds:

2.4.1. Conjecture. If m ≥ n ≥ 3 and p, q are distinct primes, then ∼=n,p ⊥B ∼=m,q.

Let us briefly consider this question. Simplifying matters somewhat, for n ∈ N and

p prime, let Hn,p denote the orbit equivalence relation arising from the action of SLn(Z)

on SLn(Zp). In [Tho4], Thomas proved that if n ≥ 3 and p 6= q, then Hn,p and Hn,q are

incomparable. As a first step in answering the conjecture, one might attempt to show

that if m ≥ n ≥ 3 and p 6= q, then Hn,p and Hm,q are Borel incomparable. Even this result

would be interesting in its own right.

The solution to the latter problem, after an appeal to superrigidity, would involve a

classification of the permutation group homomorphisms of the form:

(φ, f ) : SLn(Z) y SLn(Zp) −→ SLm(Z) y SLm(Zq)

For this, it is also necessary to consider the representations of SLn(Z) inside SLm(R).

For instance, if m = n + 1 then there are only two distinct such representations up to
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conjugacy: the identity embedding, and the inverse-transpose embedding. Hence, the

problem is likely to be much easier in this case.

Let us preface our next question by noting that it follows easily from Theorems A and

B that the isomorphism and quasi-isomorphism relations for all p-local groups of rank

n are Borel incomparable. Using this, together with Theorem 4.7 of [Tho1], it isn’t hard

to prove that the isomorphism and quasi-isomorphism relations on the space of all local

(that is, p-local for any p) torsion-free abelian groups of rank n are also incomparable. It

would be surprising if the following general result did not hold:

2.4.2. Conjecture. For n ≥ 3, the isomorphism and quasi-isomorphism relations on the space

R(n) of torsion-free abelian groups of rank n are Borel incomparable.

In [Tho3], Thomas was able to study the quasi-isomorphism relation on torsion-free

abelian groups of rank n using information about just the local groups. This was accom-

plished using Lady’s theorem: A is quasi-equal to B iff the following hold:

(a) for all primes p, the localizations A(p) and B(p) are quasi-equal, and

(b) for all but finitely many primes p, A(p) = B(p).

Despite Thomas’s success, we remain unable to use this tool to extend our results on local

groups to all torsion-free abelian groups of finite rank.
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Chapter 3

Ergodic theory and Grassmann spaces

In this chapter, we remind the reader of the definition of ergodicity of a measure pre-

serving action, which plays an essential role in the theory of countable Borel equivalence

relations. We introduce the notion of a homogeneous space, i.e., standard Borel spaces

X on which a compact group K acts transitively, and we consider the action on X of a

countable dense subgroup Γ < K. Such actions will be measure-preserving and ergodic

with respect to a certain measure on X, and have many additional useful properties. We

conclude with an analysis of the Grassmann space of k-dimensional subspaces of Qn
p; this

is a homogeneous space for the compact group K = SLn(Zp).

Although some of the material of this chapter has been mentioned in the introduction,

the present chapter shall be essentially self-contained. But recall that we are motivated

by the fact, also explained in Section 2.3, that there is a close relationship between the

k-Grassmann spaces and spaces of p-local torsion-free abelian groups.

3.1 Ergodicity

Let Γ be a countable group acting in a Borel fashion on the standard Borel space X, and

suppose that X carries a Γ-invariant Borel probability measure µ. Recall that the action

Γ y (X, µ) is ergodic if every Γ-invariant Borel subset of X is null or conull for µ. We shall

use the following well-known characterization of ergodicity:

3.1.1. Proposition. The action Γ y (X, µ) is ergodic iff for every Γ-invariant function f : X →

Y into a standard Borel space Y, there exists a conull subset A ⊂ X such that f |A is a constant

function.
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The ergodic actions are in some sense the building blocks for all measure preserving

actions. Indeed, there is a fundamental result of ergodic theory which says roughly that

any Γ-invariant measure can be built up from ergodic measures as a “direct integral.”

Although we shall have no use for this fact, we shall often be motivated to work with

orbit equivalence relations induced by ergodic actions. For example, in the introduction

we have already proved the following fact:

3.1.2. Proposition. Let µ be a nonatomic probability measure on X. Then for any ergodic action

Γ y (X, µ), the induced orbit equivalence relation EΓ is not smooth.

3.2 F-ergodicity and weak Borel reducibility

We begin this section by recalling the definition of a Borel homomorphism. This notion

is significantly more flexible than that of a Borel reduction, and it will frequently arise

in our arguments. If E, F are equivalence relations on standard Borel spaces X, Y, then a

Borel homomorphism from E to F is a Borel function f : X → Y satisfying:

x E x′ =⇒ f (x) F f (x′)

for all x, x′ ∈ X. In other words, f is similar to a Borel reduction, but with some “collaps-

ing” allowed.

Notice that a Γ-invariant function into the standard Borel space Y is exactly a Borel

homomorphism from EΓ to ∆(Y) (recall that ∆(Y) denotes the equality relation on Y).

Hence, the characterization of ergodicity in Proposition 3.1.1 gives that the action of Γ on

(X, µ) is ergodic iff every Borel homomorphism from EΓ to ∆(Y) is constant on a µ-conull

set.

Generalizing this property, if F is a Borel equivalence relation on the standard Borel

space Y, then we say that the action Γ y (X, µ) is F-ergodic if for every Borel homomor-

phism f from EΓ to F, there exists a µ-conull subset A ⊂ X such that f (A) is contained in

a single F-class. This condition implies that the induced orbit equivalence relation EΓ is

very incompatible with F. When Γ y (X, µ) is F-ergodic and µ is clear from context, we

often say that EΓ is F-ergodic.
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Although we are primarily interested in the ≤B partial ordering on equivalence re-

lations, there is a second notion of reduction which will be useful in our arguments. If

E, F are Borel equivalence relations on X, Y, then a weak Borel reduction from E to F is a

countable-to-one Borel homomorphism from E to F. We write E ≤w
B F if there exists a

weak Borel reduction from E to F. It is worth noting the following elementary facts:

3.2.1. Proposition. Let E and F be countable Borel equivalence relations on X and Y respectively.

(a) If E 6≤w
B F then E 6≤B F.

(b) Suppose additionally that E is the orbit equivalence relation induced by the action Γ y X.

If X carries a nonatomic Γ-invariant measure µ and E is F-ergodic, then E 6≤w
B F.

Proof. Part (a) is clear from the definitions. For part (b), if E = EΓ is F-ergodic and f is a

weak Borel reduction from E to F, then there exists a conull subset M ⊂ X such that f (M)

is contained in a single F-class. Since E and F are countable and f is countable-to-one, it

follows that M is a countable conull set, contradicting the fact that µ is nonatomic.

See Section 4 of [Tho5] for a discussion of further properties of weak Borel reductions.

3.3 Ergodic components

Suppose that Γ acts ergodically on the probability measure space (X, µ). If Λ < Γ is an

arbitrary subgroup, then of course Λ need not act ergodically on (X, µ). However, if Λ is

a subgroup of finite index in Γ, then there exists a partition X = Z1 t · · · t ZN of X into

Λ-invariant subsets such that for each i ≤ N:

(a) µ(Zi) > 0, and

(b) Λ acts ergodically on (Zi, µi), where µi denotes the (normalized) probability mea-

sure induced on Zi by µ.

To see this, first observe that by ergodicity of Γ y (X, µ) we have that if Z ⊂ X is a

Λ-invariant subset of positive measure, then µ(Z) ≥ 1/n, where n = [Γ : Λ]. Now, if

Λ does not act ergodically on X, then there exists a partition of X into two Λ-invariant
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subsets of positive measure. If Λ again fails to act ergodically on either subset, then it can

be further subdivided. This splitting process must terminate, since each subdivision has

measure at least 1/n. The final partition consists of at most n cells, and Λ necessarily acts

ergodically on each.

It is easily seen that the set of cells {Zi} in the partition satisfying (a), (b) is determined

uniquely up to null sets by Λ and the action Γ y (X, µ). The cells Zi (each together with

its measure preserving action Λ y (Zi, µi)) are called the ergodic components for the action

of Λ on X.

3.4 Homogeneous spaces

If the compact, second countable group K acts continuously and transitively on the stan-

dard Borel space X, then X is said to be a homogeneous K-space. Clearly, every homo-

geneous K-space X is isomorphic as a K-space with the quotient K/L, where L is the

stabilizer in K of some point in X. It follows that any such X carries a unique K-invariant

probability measure, called the Haar measure. Indeed, if we regard X as a quotient K/L,

then this measure is the projection to K/L of the Haar probability measure on K.

We shall be interested in the action of a countable subgroup Γ < K on a homogeneous

K-space X. It is not difficult to prove that if Γ is a dense subgroup of K, then any Γ-

invariant measure is necessarily K-invariant. It follows that in this case, the Haar measure

is the unique Γ-invariant measure on X.

3.4.1. Definition. The action Γ y Y is called uniquely ergodic if there exists a unique

Γ-invariant measure on Y.

It is easy to see that if Γ y Y is uniquely ergodic and µ is the Γ-invariant measure,

then Γ y (Y, µ) is ergodic. Indeed, if Y0 ⊂ Y were a Γ-invariant subset such that 0 <

µ(Y0) < 1, then the normalized restriction of µ to Y0 would be a Γ-invariant measure on

Y that is distinct from µ. Using this together with our earlier remarks, we conclude that

the action of a dense subgroup of K on a homogeneous K-space is always ergodic.

We now provide a characterization of the ergodic components for the action of a dense
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subgroup of K on a homogeneous K-space.

3.4.2. Proposition (Proposition 2.2 of [Tho4]). Let K be compact and let K/L be a homoge-

neous K-space. Suppose that Γ < K is a dense subgroup, and let Λ ≤ Γ be a subgroup of finite

index.

(a) The ergodic components for the action of Λ are precisely the orbits of Λ̄ on K/L. Here, Λ̄

denotes the closure in K of Λ.

(b) Each ergodic component is again a homogeneous space for the compact group Λ̄.

(c) If Λ / Γ is a normal subgroup of finite index, then Γ acts as a transitive permutation group

on the Λ̄-orbits, i.e., on the ergodic components for the action of Λ.

Proof. First note that if x ∈ K/L then the orbit Λ̄x has positive measure. Indeed, we

have [K : Λ̄] < ∞ and if k1, . . . , km are coset representatives in K for Λ̄ then
⋃

kiΛ̄x = X.

Since Λ̄x is a homogeneous Λ̄-space and Λ is dense in Λ̄, by our earlier remarks Λ acts

ergodically on Λ̄x. This proves (a) and (b). For (c), note that if Λ / Γ then clearly Γ

normalizes Λ̄ and hence it acts on the Λ̄-orbits. To see that this action is transitive, note

that Γ(Λ̄x) is Γ-invariant and so by ergodicity of Γ it is conull.

3.5 Affine maps

In this section, we describe the natural morphisms between homogeneous spaces. For

i = 0, 1 let Ki be compact and Li a closed subgroup. Then a function f : K0/L0 → K1/L1

is said to be affine if there exists an isomorphism φ : K0 → K1 and an element t ∈ K1 with

the following properties:

(a) φ(L0) = tL1t−1, and

(b) f (kL0) = φ(k)tL1 for k ∈ K0.

The terminology is motivated by the following special case. A map f : K0 → K0 is affine

iff it is obtained by composing an automorphism of K0 with a translation by an element
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K0. We remark that condition (a) is redundant, as in fact f is affine iff there exists an

isomorphism φ : K0 → K1 such that f (kx) = φ(k) f (x) for all x ∈ K0/L0 and k ∈ K0.

If f : K0/L0 → K1/L1 is an affine map with φ as in (a), (b), and Γ0 < K0 is a

dense subgroup, then the pair (φ, f ) is clearly a permutation group homomorphism from

Γ0 y K0/L0 to φ(Γ0) y K1/L1. We shall make use of the following result, which implies

that many permutation group homomorphisms between homogeneous spaces actually

come from affine maps.

3.5.1. Lemma. For i = 0, 1 let Ki/Li be a homogeneous space for the compact group Ki, let

Γi < Ki be a countable dense subgroup, and suppose that

(φ, f ) : Γ0 y K0/L0 −→ Γ1 y K1/L1

is a permutation group homomorphism. If φ extends to an isomorphism Φ : K0 → K1, then after

adjusting f on a set of measure zero, f is an affine map.

Proof. Following an argument of Gefter (see the proof of Theorem 3.3 of [Gef]), we define

the map β : K0 → K1/L1 by:

β(k) = Φ(k)−1 f (kL0)

Notice first that β is Γ0-invariant. Indeed, for γ ∈ Γ0, we compute that:

β(γk) = Φ(γk)−1 f (γkL0) = Φ(k)−1Φ(γ)−1φ(γ) f (kL0) = Φ(k)−1 f (kL0) = β(k)

Hence by ergodicity of Γ0 y K0, there exists t ∈ K1 such that β(k) = tL1 for (Haar) almost

every k ∈ K. It follows that for almost every kL0 ∈ X, we have that f (kL0) = Φ(k)tL1, as

desired.

We remark that there is a significantly more general version of this result, due to

Furman. Specifically, Proposition 7.2 of [Fur] gives a similar conclusion without the hy-

pothesis that φ extends to an isomorphism K0 → K1. Furman used this result to compute

the outer automorphism groups of some equivalence relations which are closely related

to those considered in this thesis.
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3.6 Grassmann spaces over the p-adics

We now introduce an important family of homogeneous spaces that we shall spend a

great deal of time studying in future chapters.

If V is a vector space of dimension n and k ≤ n, then the k-Grassmann space of V,

denoted GrkV, is the set of k-dimensional subspaces of V. We will be interested in the

spaces GrkQn
p, where Qn

p denotes the canonical n-dimensional vector space over the field

Qp of p-adic numbers. The next proposition shows that GrkQn
p is indeed a homogeneous

space.

3.6.1. Proposition (Proposition 6.1 of [Tho4]). The compact group SLn(Zp) acts transitively

on GrkQn
p, where Zp denotes the ring of p-adic integers.

Hence, we can view GrkQn
p as a homogeneous SLn(Zp)-space by identifying GrkQn

p

with SLn(Zp)/L, where L is the stabilizer in SLn(Zp) of some point in GrkQn
p. Ac-

cordingly, it carries a corresponding Haar probability measure and the dense subgroup

SLn(Z) < SLn(Zp) acts (uniquely) ergodically on GrkQn
p.

We now describe the “principle congruence components” of the k-Grassmann space.

Recall that for any natural number m, the principal congruence subgroup Γm / SLnZ is

defined by:

Γm = ker[SLn(Z)→ SLn(Z/mZ)]

where the map on the right-hand side is the canonical surjection. It is easily seen that the

closure in SLn(Zp) of Γm is exactly Km, where Km is defined as:

Km = ker[SLn(Zp)→ SLn(Zp/mZp)]

Hence by Proposition 3.4.2, the ergodic components of GrkQn
p corresponding to the action

of Γm are precisely the Km-orbits. We call these the mth principle congruence components

of the k-Grassmann space. Note that we always have Km = Kpt , where pt is the highest

power of p which divides m.

As an example, let us consider the ergodic component for Γpt given by the Kpt -orbit of

V0 := Qpe1 ⊕ · · · ⊕Qpek. Clearly, any V in this orbit can be written as the column space
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of a matrix
[

a
v

]
, where a is congruent to the k× k identity matrix Ik modulo pt and v is

congruent to 0 modulo pt. Since any such a is invertible, one can use column operations

to suppose without loss of generality that a = Ik. So we have:

(3.6.2) (Kpt)V0 =
{

col
[

Ik

v

]
: pt | v

}
where pt | v means that for each entry x of v, we have that x/pt lies in Zp.

We shall use the fact (see [BLS]) that SLn(Z) has the congruence subgroup property for

n ≥ 3, which means that every subgroup of SLn(Z) of finite index contains a principle

congruence subgroup. We immediately obtain the following:

3.6.3. Proposition. If n ≥ 3 and Γ ≤ SLn(Z) is a subgroup of finite index, then any ergodic

component for the action of Γ on GrkQn
p contains a principle congruence component.

In Appendix 7.2, we shall find the exact number of principle congruence components

of GrkQn
p for each subgroup Γm of SLn(Z).

3.7 Mappings between Grassmann spaces

Recall that superrigidity theorems can be used to show that Borel homomorphisms come

from permutation group homomorphisms. We close this chapter with a characteriza-

tion of the permutation group homomorphisms between ergodic components of the k-

Grassmann spaces. This will be used in the next chapter to show that certain orbit equiv-

alence relations on the k-Grassmann spaces are Borel incomparable.

3.7.1. Theorem. Let n ≥ 3 and suppose that k, l ≤ n. Let Γ0, Γ1 be subgroups of SLn(Z) of finite

index, X0 an ergodic component for the action of Γ0 on GrkQn
p, and X1 an ergodic component for

the action of Γ1 on GrlQ
n
p. Suppose that:

• φ : Γ0 → Γ1 is an isomorphism,

• f : X0 → X1 is a Borel function, and

• (φ, f ) : Γ0 y X0 −→ Γ1 y X1 is a permutation group homomorphism.
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Then l = k or l = n− k, and:

(a) In the case l = k 6= n− k, there exists h ∈ GLn(Q) such that f satisfies f (x) = hx for

almost every x ∈ X0.

(b) In the case l = n− k 6= k, there exists h ∈ GLn(Q) such that f satisfies f (x) = hx⊥ for

almost every x ∈ X0, where x⊥ denotes the orthogonal complement of x with respect to the

usual dot product.

First, we give a characterization of the isomorphisms φ which can arise in Theorem

3.7.1. Although Lemma 3.7.2 applies more generally than necessary for this purpose, the

full result will be useful later.

3.7.2. Lemma. Let n ≥ 3 and Γ0 ≤ SLn(Z) be a subgroup of finite index. Let φ : Γ0 → SLn(Z)

be an injective homomorphism. Then φ decomposes as φ = ε ◦ χh ◦ (−T)i where:

• χh(g) = h−1gh is conjugation by some element h ∈ GLn(Q),

• −T is the inverse-transpose map and i = 0 or 1, and

• ε is an automorphism of SLn(Z) satisfying ε(γ) = ±γ.

Proof. We first consider the image Γ̄0 of Γ0 in PSLn(Z), so that Γ̄0 is a lattice in the

simple Lie group PSLn(R) (of course, this is unnecessary if n is odd). Letting I denote

the identity element of SLn(Z), if −I ∈ Γ0 then −I is in the center of Γ0. It follows that

φ(−I) is in the center of SLn(Z) and so φ(−I) = −I. Hence, there exists a map φ̄ such

that the following diagram commutes:

(3.7.3) Γ0
φ //

π

��

SLn(Z)

π
��

Γ̄0 φ̄
// PSLn(Z)

where π is the canonical projection.

We now argue that φ̄ extends to an automorphism Φ of PSLn(R). By Theorem VIII.3.10

of [Mar], the Zariski closure in H of φ̄(Γ̄0) in PSLn(R) is semisimple. Let ψi : H → Hi

denote the projections of H onto its simple factors, and let φ̄i := ψi ◦ φ̄. Then φ̄i(Γ̄0) is
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Zariski dense in Hi, and so by the Mostow-Margulis superrigidity theorem (see Theorem

5.1.2 of [Zim]), φ̄i extends to a homomorphism Φi : PSLn(R) → Hi for each i. Since

PSLn(R) is simple, there is exactly one Φi with infinite image, and it follows that the

corresponding factor Hi is actually PSLn(R) itself. Hence, we have that φ̄ extends to an

automorphism Φ of PSLn(R).

Now, it is well known that any such Φ can be written as χs ◦ χr ◦ (−T)i, where χs is

conjugation by an element s ∈ SLn(R), χr is conjugation by a permutation matrix r, and

i = 0 or 1. (When n is odd, then Φ can be written more simply as χs ◦ (−T)i. However,

when n is even, it is sometimes necessary to also include conjugation χr by a permutation

matrix r of determinant −1.) Next, since Φ(Γ0) is again a lattice of PSLn(R), we have

that Φ commensurates PSLn(Z) and hence so does χs. By the proof of Proposition 6.2.2

of [Zim] (the statement found there is slightly inaccurate), there exists a ∈ R∗ such that

as ∈ GLn(Q). Taking h = asr, we have that φ̄ = χh ◦ (−T)i. Finally, φ̄ lifts to the map

φ′ : Γ0 → SLn(Z) defined by the same formula, and it is clear from equation (3.7.3) that

φ = ε ◦ φ′ where ε is as required.

In the next proposition we shall use the following notation. For V ∈ GrkQn
p, let stab V

denote the stabilizer in GLn(Qp) of V. If H ≤ GLn(Qp), then let stabH V denote the

stabilizer in H of V.

3.7.4. Proposition. Let n ≥ 3 and k, l ≤ n, and suppose that V ∈ GrkQn
p and W ∈ GrlQ

n
p. If

K ≤ SLn(Zp) is a subgroup of finite index and stabK V ⊂ stab W, then l = k and W = V.

Proof. Since K are Zariski dense in H = SLn(Qp) (it is an open subgroup), we have

that stabH V ⊂ stabH W. It is well-known that H acts primitively on each k-Grassmann

space, i.e., H acts transitively on GrkQn
p and the stabilizer in H of each point of GrkQn

p is

a maximal subgroup of H. It follows immediately that we have stabH V = stabH W.

Now, it is not hard to see that V is uniquely determined by stabH V and so V = W. (To

prove this last fact directly, first consider V0 = Qpe1 ⊕ · · · ⊕Qpek. Then stabH V0 consists

of all matrices of the form: [
A B

0 D

]
∈ H
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where 0 denotes the (n− k)× k zero matrix. It is routine to compute that V0 is the unique

subspace stabilized by this set. Since H acts transitively on GrkQn
p, we can conclude that

V is the unique subspace of Qn
p stabilized by stabH V.)

Proof of Theorem 3.7.1. In the notation of Lemma 3.7.2, we have that φ = ε ◦ χh ◦ (−T)i.

Since the center of SLn(Z) acts trivially on GrlQ
n
p, we may suppose that ε is the identity

map and that φ = χh ◦ (−T)i.

Having done so, φ clearly lifts to an automorphism Φ of GLn(Qp), again defined by

the formula χh ◦ (−T)i. For i = 0, 1, let Ki denote the closure in SLn(Zp) of Γi, so that Xi

is a homogeneous Ki-space. Since Φ(K0) is a compact group containing Γ1, we have that

Φ(K0) ⊃ K1. By the same reasoning, we have Φ−1(K1) ⊃ K0, and so Φ(K0) = K1. Hence

by Lemma 3.5.1, after adjusting f on a null set, we may suppose that Φ makes f into an

affine map.

Now, for all k ∈ K0 we have:

kx = x =⇒ Φ(k) f (x) = f (x)

and hence Φ(stabK0 x) ⊂ stabK1 f (x). Since Φ is either χh or χh ◦ (−T), we have either

stabK1(h−1x) ⊂ stabK1 f (x) or stabK1(h−1x⊥) ⊂ stabK1 f (x). In the first case, we can apply

Proposition 3.7.4 to conclude that l = k and f (x) = h−1x. In the second case we conclude

that l = n− k and f (x) = h−1x⊥.
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Chapter 4

Superrigidity

We have said that in order to construct Borel incomparable equivalence relations, it is

sometimes possible to adapt methods of constructing orbit inequivalent actions. In both

settings, it is desirable that very different groups should give rise to very different orbit

equivalence relations. Of course, this can only hold in special cases. Note for instance

that by Dye’s theorem (see Section 7 of [KM]), any ergodic measure preserving actions of

two amenable groups are necessarily orbit equivalent.

Superrigidity theorems give hypotheses under which there is a hope that such col-

lapsing does not occur. We take a moment to discuss the superrigidity phenomenon,

which comes from the theory of discrete subgroups of semisimple groups. For us, it has

come to have several closely related meanings, including but not limited to the following:

(a) A lattice in a Lie group is recognizable as such just from its structure as an abstract

group.

(b) Given a measure preserving action of a lattice, its orbit structure remembers the

ambient Lie group.

(c) Given a measure preserving action of a lattice, its orbit structure remembers the

lattice and its action.

We emphasize that these statements are quite strong and hold only in restrictive senses.

We have already used rigidity of type (a) in the proof of Lemma 3.7.2 to show that some

homomorphisms defined on a lattice extend to the ambient Lie group. We have also

explained that a type (b) result, namely Zimmer’s Theorem 1.8.2, can be used to find

incomparable countable Borel equivalence relations. In this chapter, we shall see several

instances of rigidity results of type (c).



37

4.1 Cocycles

We begin with a brief interlude on Borel cocycles, wherein we will explain their impor-

tance in rigidity theory. If it is desired, the reader may skip Sections 4.1–4.3. In later

sections we shall use only Corollary 4.3.3, the statement of which makes no mention of

cocycles.

4.1.1. Definition. Let Γ and Λ be countable groups. If Γ y X, then a Borel function

α : Γ× X → Λ is called a (strict) cocycle if it satisfies:

(4.1.2) α(δγ, x) = α(δ, γx)α(γ, x)

for all γ, δ ∈ Γ and all x ∈ X.

The property (4.1.2) is known as the cocycle property. If Γ y X preserves a probability

measure on X, it is more useful to consider the slightly weaker notion of a measurable

cocycle in which (4.1.2) is only required to hold for almost every x ∈ X. For us, the terms

“cocycle” and “Borel cocycle” will usually mean measurable cocycle.

The presence of cocycles in this subject is motivated by the following extremely im-

portant example. Again let Γ y X, and suppose additionally that Λ acts freely on the

standard Borel space Y. Suppose that f : X → Y is a Borel homomorphism from EΓ to

EΛ. Then since Λ acts freely, for every x ∈ X and γ ∈ Γ there exists a unique λ ∈ Λ such

that f (γx) = λ f (x). Hence, we may let:

α(γ, x) := the unique λ such that f (γx) = λ f (x)

and it is easy to verify that this α satisfies the cocycle property (see Figure 4.1.3). We call

α the cocycle corresponding to f .

Since we will be working with it a great deal, we shall make a few remarks about

this example. First, without the hypothesis that Λ acts freely, we would still be able to

choose a λ satisfying f (γx) = λ f (x). However, it is not possible in general to choose

elements of Λ in a coherent (and Borel) fashion so as to satisfy the cocycle property.

Second, the corresponding cocycle is in fact strict, and this is occasionally useful when

applying superrigidity results.
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x_

γ

��

f (x)
_

α(γ,x)

��

α(δγ,x)

%%
γx � δ // δγx

ΓyX
f (γx) � α(δ,γx) // f (δγx)

ΛyY

f //_________________

Figure 4.1.3. The cocycle α corresponds to f .

Now let α be the cocycle corresponding to a Borel homomorphism f from EΓ to EΛ,

and consider the special case that there exists a homomorphism φ : Γ→ Λ which makes

(φ, f ) : Γ y X −→ Λ y Y into a permutation group homomorphism. Then since

f (γx) = φ(γ) f (x), we must always have that α(γ, x) = φ(γ).

4.1.4. Definition. A cocycle is called trivial if it is independent of the second coordinate.

More precisely, α : Γ× X → Λ is trivial iff α(γ, x) = α(γ, x′) for all x, x′ ∈ X.

In this case, we can define a function φ(g) := α(g, ·), and the cocycle property implies

that φ is a homomorphism. Hence, if α corresponds to f , then α is trivial exactly when

f (γx) = φ(g) f (x) is a permutation group homomorphism.

We next seek to characterize when a Borel homomorphism can be “slightly perturbed”

to become a permutation group homomorphism. Here, if E and F are Borel equivalence

relations on X and Y and f is a Borel homomorphism from E to F, then we informally

say that the Borel map f ′ is a slight perturbation of f if f (x) F f (x′) for all x, x′ ∈ X. If F

is induced by the action of Λ on Y, then f ′ is a slight perturbation of f iff there is a Borel

function b : X → Λ such that f ′(x) = b(x) f (x). It turns out that this can be expressed in

terms of cocycles.

4.1.5. Definition. Suppose that Γ y X is a measure preserving action, and that α, α′ :

Γ × X → Λ are cocycles. We say that α and α′ are cohomologous iff there exists a Borel

function b : X → Λ such that:

(4.1.6) α′(γ, x) = b(γx)α(γ, x)b(x)−1
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for every γ ∈ Γ and almost every x ∈ X. (Since Γ is countable, we may write the quanti-

fiers in either order.)

It is easy to verify that if α is the cocycle corresponding to the Borel homomorphism

f , and if b and α′ are as in Definition 4.1.5, then α′ is (almost equal to) the cocycle corre-

sponding to the function f ′(x) = b(x) f (x) (see Figure 4.1.7).

x_

γ

��

f (x)
_

α(γ,x)

��

�
b(x)

// f ′(x)
_

α′(γ,x)

��
γx

ΓyX
f (γx) � b(γx) // f ′(γx)

ΛyY

f
//_________________

Figure 4.1.7. If f , f ′ differ only by multiples of Λ, then
their corresponding cocycles α, α′ are cohomologous.

Together with the preceding remarks, this leads to the key observation that f can be

slightly perturbed (by a Borel function) to become a permutation group homomorphism

iff its corresponding cocycle is cohomologous to a trivial cocycle. This explains the pres-

ence of cocycles in rigidity; the most general results give hypotheses under which an

arbitrary cocycle α is equivalent to a trivial one.

4.2 Cocycle superrigidity theorems

Recall that Adams and Kechris used Zimmer’s Theorem 1.8.2 to produce uncountably

many incomparable countable Borel equivalence relations. We now give a more complete

statement of the cocycle superrigidity theorem underlying this result. We first remark

that the definition of a Borel cocycle can easily be extended to the case that the countable

groups Γ, Λ are replaced by topological groups G, H.

4.2.1. Theorem (Theorem 3.4 of [AK], Theorem 5.2.5 of [Zim]). Suppose that G is a con-

nected simple Lie group of higher rank, and X carries a G-invariant ergodic probability measure.

Let H be a noncompact connected simple real algebraic group and suppose that α : G× X → H
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is a cocycle. If α is not cohomologous to a cocycle taking values in a proper algebraic subgroup of

H, then α is cohomologous to a trivial cocycle.

This theorem can be used to prove, in special cases, that any Borel homomorphism f

from EΓ to EΛ can be slightly perturbed to become a permutation group homomorphism.

To have any hope of doing so using Zimmer’s theorem, one must assume:

(a) Γ is a lattice in a connected simple higher rank Lie group G,

(b) X carries a Γ-invariant ergodic measure,

(c) Λ is contained in a noncompact connected simple real algebraic group H,

(d) Λ acts freely on Y.

We have seen in the previous section that clause (d) guarantees that one can define a

cocycle α : Γ×X → Λ corresponding to f . Clauses (a) and (b) (together with the fact that

the induced cocycle is strict) allow the construction of an induced cocycle α̂ : G× X̂ → H,

which is a canonical lifting of α to a cocycle on G. Here, X̂ is a somewhat complicated

space, and the action G y X̂ contains many “twisted” copies of the action Γ y X.

Zimmer’s Theorem 4.2.1 can then be applied to the induced cocycle, and with some more

technical results about cocycles, this yields a proof of Zimmer’s Theorem 1.8.2.

Zimmer’s theorem is no longer the only superrigidity result that is applicable to

countable Borel equivalence relations. If E is a countable Borel equivalence relation, then

E is said to be essentially free if there exists a free action Γ y X of a countable group such

that E ∼B EΓ. For many years it was unknown whether the universal countable Borel

equivalence relation E∞ was essentially free. This was recently solved by Thomas (see

Corollary 3.10 of [Tho5]) using a superrigidity theorem of Popa.

In order to describe this result, we must first define the following canonical free action

associated with a countable group Γ. Recall that the space 2Γ of functions from Γ to {0, 1}

carries a unique Γ-invariant measure, namely the product of the { 1
2 , 1

2} measures. It is

well-known that there exists a conull subset (2)Γ ⊂ 2Γ on which Γ acts freely. The action

Γ y (2)Γ is called the Bernoulli action associated with Γ.
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4.2.2. Theorem (a special case of the main result in [Pop]). Let S be an arbitrary countable

group, and let Γ = SL3(Z)× S. If Λ is an arbitrary group, then any cocycle α : Γ× (2)Γ → Λ

is cohomologous to a trivial cocycle.

The full statement of Popa’s theorem is more general, for instance SL3(Z) may be

replaced by an arbitrary infinite Kazhdan group. However, we shall see that the true

power of Popa’s theorem lies in the fact that the target group Λ is arbitrary; there is no

mention of linear groups or geometry.

For example, let us outline the argument that E∞ isn’t essentially free. Suppose, to-

wards a contradiction, that Λ y X is a free action and that the induced orbit equivalence

relation EΛ is universal countable. Choose any countable simple group S which does not

embed into Γ, and let Γ = SL3(Z) × S. Since EΛ is universal countable, there exists a

Borel reduction f from EΓ to EΛ. By Popa’s theorem, the corresponding cocycle is coho-

mologous to a trivial cocycle. Hence, after deleting a null seubset of (2)Γ, we can suppose

that f comes from a permutation group homomorphism (φ, f ). Clearly, S ≤ ker φ and

so the Borel map f is S-invariant. Since S acts ergodically on (2)Γ, this implies that f is

constant on a conull subset of (2)Γ, which is a contradiction.

There is another consequence of Popa’s theorem that is worth mentioning, since it

concerns torsion-free abelian groups. We have already seen that the isomorphism re-

lation ∼=n on the space of torsion-free abelian groups of rank n is not universal; since by

Thomas’s Theorem 1.9.1 we have that∼=n <B ∼=n+1 for all n. On the other hand, Thomas’s

result certainly implies that the isomorphism equivalence relation ∼=fin on the space of all

torsion-free abelian groups of finite rank is very complex, and so one might ask whether

∼=fin is universal. In theorem 6.1 of [Tho5], Thomas used the fact that ∼=fin is closely re-

lated to an essentially free equivalence relation together with Popa’s theorem to answer

this question in the negative.

4.3 Ioana’s superrigidity theorem

In this section, we will introduce a recent cocycle superrigidity theorem of Adrian Ioana

(see Chapter 3 of [Ioa]). As we have mentioned, Ioana’s theorem is much more directly
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applicable to our needs than Zimmer’s theorem. We shall also derive a straightforward

corollary which will be used in the proofs of our main theorems.

For i ∈ N, let Γ y (Xi, µi) and let ρi : Xi+1 → Xi be a factor map (i.e., a Γ-invariant

measure preserving map). Then the corresponding inverse limit is a Γ-space (X, µ) to-

gether with factor maps πi : X → Xi satisfying πi = ρi ◦ πi+1 and the usual universal

property associated with inverse limits.

4.3.1. Definition. If (Xi, µi) are finite Γ-spaces (with factor maps as above), then the

inverse limit (X, µ) is called a profinite Γ-space.

4.3.2. Theorem (Theorem 3.3.2 of [Ioa]). Suppose that Γ is a countable Kazhdan group, and let

(X, µ) be a profinite Γ-space with corresponding factor maps πi : X → Xi. Suppose additionally

that the action Γ y (X, µ) is ergodic and free. If α : Γ× X → Λ is a cocycle into an arbitrary

countable group Λ, then there exists i ∈N such that α is cohomologous to a cocycle Γ×Xi → Λ.

More precisely, there exists i ∈N and a cocycle αi : Γ×Xi → Λ such that α is cohomologous

to the cocycle α′ defined by α′(g, x) = αi(g, πi(x)).

As with Zimmer’s theorem, this is most useful in the case that α is a cocycle corre-

sponding to a Borel homomorphism f from EΓ to EΛ, where EΛ is the orbit equivalence

relation induced by a free action of Λ.

4.3.3. Corollary. Suppose that Γ is a countable Kazhdan group, and let (X, µ) be a free, ergodic

profinite Γ-space. Let Λ be a countable group and let Λ y Y be a free action. Suppose that f

is a Borel homomorphism from EΓ to EΛ. Then there exists an ergodic component Γ0 y X0 for

Γ y X and a permutation group homomorphism (φ, f ′) : Γ0 y X0 −→ Λ y Y such that for

all x ∈ X0, we have that f ′(x) EΛ f (x) (i.e., f ′ is a slight perturbation of f ).

Proof. Let α : Γ y X → Λ be the cocycle corresponding to f . By Theorem 4.3.2, there ex-

ists a finite factor (X′, µ′) of (X, µ) (denote the projection map by π), and a Borel function

b : X → Λ such that the adjusted cocycle:

α′(g, x) := b(gx)α(g, x)b(x)−1

depends only on g and π(x). Choose any x0 ∈ X′, and let Γ0 be the stabilizer of x0 in
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Γ. Clearly Γ0 ≤ Γ is a subgroup of finite index, and by 3.1.2(ii) of [Ioa], X0 := π−1(x0)

is an ergodic component for the action of Γ0. Since π is constant on X0, the restriction

of α′ to Γ0 × X0 is independent of x ∈ X0. It follows that φ(γ) := α′(γ, ·) defines a

homomorphism Γ0 → Λ, and so letting f ′ = b f it is easily seen that (φ, f ′) satisfies our

requirements. (Of course, since α′ need only satisfy the cocycle identity (4.1.2) almost

everywhere, one may need to delete a null set of X0.)

4.4 An application to p-adic Grassmann spaces

Fix n ∈ N and a prime p. We shall now use Ioana’s theorem to study some orbit equiv-

alence relations on the k-Grassmann space GrkQn
p. In this section and in future chapters,

we shall use the following notation:

4.4.1. Notation. Let Ek
SLnZ denote the orbit equivalence relation induced by the action

of SLn(Z) on GrkQn
p, and let Ek

GLnQ denote the orbit equivalence relation induced by the

action of GLn(Q) on GrkQn
p.

Recall that we have already studied the equivalence relation Ek
SLnZ in the context of

homogeneous spaces. We shall use Corollary 4.3.3 in conjunction with the main result of

the last chapter (Theorem 3.7.1) to establish the following Borel incomparability result.

4.4.2. Theorem. Let n ≥ 4 and k, l ≤ n, and suppose that l is neither k nor n− k. Then Ek
GLnQ

is Borel incomparable with El
GLnQ.

In the next chapter, we shall see that this theorem implies that the quasi-isomorphism

relations on the spaces R(n, p, k), R(n, p, l) are Borel incomparable. In order to establish

Theorem 4.4.2, it will be necessary to prove the following stronger result:

4.4.3. Theorem. Let n ≥ 4 and k, l < n, and suppose that l is neither k nor n− k. Then Ek
SLnZ

(together with the Haar measure on GrkQn
p) is El

GLnQ-ergodic.

Theorem 4.4.2 follows immediately; any Borel reduction from Ek
GLnQ to El

GLnQ is clearly

a weak Borel reduction from Ek
SLnZ to El

GLnQ, and Theorem 4.4.3 implies that Ek
SLnZ 6≤w

B

El
GLnQ.
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Proof. Let f : GrkQn
p → GrlQ

n
p be a Borel homomorphism from Ek

SLnZ to El
GLnQ, and sup-

pose towards a contradiction that f does not map a conull set into a single GLn(Q)-orbit.

We first reduce the analysis to a situation where the hypotheses of Corollary 4.3.3 hold.

Since SLn(Z) acts ergodically on GrkQn
p, we need only argue that both SLn(Z) y GrkQn

p

and GLn(Q) y GrlQ
n
p are free actions. While neither action is literally free, it will suffice

to establish the following statements:

Claim (a). The action of PSLn(Z) on GrkQn
p is almost free.

Claim (b). The function f maps a (Haar) conull set into the free part of the action of

PGLn(Q) on GrlQ
n
p.

Here, if the countable group Γ acts on a standard Borel space X, then we let:

Fr(Γ y X) := {x ∈ X : 1 6= g ∈ Γ =⇒ gx 6= x}

denote the free part of the action of Γ on X. If X carries a (not necessarily Γ-invariant)

probability measure, then we say that Γ y X is almost free if Fr(Γ y X) is conull.

4.4.4. Lemma (essentially Lemma 5.1 of [Tho1]). Suppose that f : GrkQn
p → GrlQ

n
p is a

Borel homomorphism from Ek
SLnZ to El

GLnQ. Then either f maps a conull set into a single GLn(Q)-

orbit, or there exists a conull M ⊂ GrkQn
p such that f (M) ⊂ Fr(PGLn(Q) y GrlQ

n
p).

It is clear that the lemma establishes Claim (b); also Claim (a) follows by applying it in

the case l = k and f is the identity map on GrkQn
p. Thomas stated Lemma 4.4.4 only in the

case that k = n− 1, but he never used this detail in his argument. Due to its importance,

we now summarize the proof.

Suppose, toward a contradiction, that f does not map a conull set into the free part

for the action of PGLn(Q) on GrlQ
n
p. Note that if there exists 1 6= g ∈ PGLn(Q) such

that g f (x) = f (x), then considering f (x) as a linear subspace of
∧l Qn

p, we have that

f (x) is contained in an eigenspace for g. Using the ergodicity of the action of SLn(Z) on

GrkQn
p, one can argue that there exists a conull set of x such that f (x) is contained in a

single proper subspace E <
∧l Qn

p. By choosing an appropriate such E, one can argue that

the group H of projective linear transformations induced on E by the action of PGLn(Q)
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does act freely on Gr1E. Hence Zimmer’s superrigidity theorem can be applied, and a

contradiction arises from the fact that H is contained in an algebraic group of strictly

smaller dimension than that of SLn(R).

We now resume the proof of Theorem 4.4.3.

Claim. We may suppose that there exists an ergodic component Γ0 y X0 for the action

SLn(Z) y GrkQn
p and a homomorphism φ : Γ0 → GLn(Q) such that

(φ, f ) : Γ0 y X0 −→ GLn(Q) y GrlQ
n
p

is a homomorphism of permutation groups.

In the proof, we will in fact produce a φ such that φ(Γ0) is a subgroup of SLn(Z) of

finite index.

Proof of claim. Using Claims (a) and (b) together, it is not difficult to see that we may

apply Corollary 4.3.3 to suppose that there exists an ergodic component Γ̄0 y X0 for

PSLn(Z) y GrkQn
p and a homomorphism of permutation groups:

(φ̄, f ) : Γ̄0 y X0 −→ PGLn(Q) y GrlQ
n
p

We wish to lift φ to a map Γ0 → GLn(Q), where Γ0 is the preimage in SLn(Z) of Γ̄0.

First, suppose that φ̄ is not injective. In this case, by Margulis’s theorem on normal

subgroups (Theorem 8.1.2 of [Zim]), the kernel of φ̄ has finite index in Γ̄0. Hence, φ̄ has

finite image and so passing to an ergodic subcomponent, we can suppose without loss of

generality that φ̄ = 1. This implies that f is Γ̄0-invariant and since Γ̄0 y X0 is ergodic,

f is almost constant. Hence, in this case f maps a conull set into a single GLn(Q)-orbit,

which is a contradiction.

Next, suppose that φ̄ is injective. In this case, we shall again make use of Margulis’s

results. The next lemma will be used in tandem with Lemma 3.7.2.

4.4.5. Lemma. If Γ0 ≤ SLn(Z) is a finite index subgroup and φ : Γ0 → GLn(Q) is a

homomorphism, then there exists a finite index subgroup Λ ≤ Γ0 such that φ(Λ) ≤ SLn(Z) is a

subgroup of finite index.
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Proof. Since Γ0 is Kazhdan (see Theorem 1.5 of [Lub]), we have that Γ′0 := [Γ0, Γ0] is a

finite index subgroup of Γ0 (see Corollary 1.29 of [Lub]). Now since GLn(Q)/SLn(Q) ∼=

Q× is abelian, we have that:

φ(Γ′0) ≤ [GLn(Q), GLn(Q)] ≤ SLn(Q)

(In fact, the latter ≤ is an equality.) Hence, replacing Γ0 by Γ′0 if necessary, we may sup-

pose without loss of generality that φ(Γ0) ⊂ SLn(Q). Repeating the proof of Lemma

3.7.2, after slightly adjusting φ if necessary, we may suppose that it extends to an au-

tomorphism of SLn(R) (the adjustment is by ε, in the notation of 3.7.2). It follows that

φ(Γ0) is again a lattice of SLn(R). Since φ(Γ0) ⊂ SLn(Q), by IX.4.14 of [Mar] we have

that φ(Γ0) is commensurable with SLn(Z). The lemma follows easily.

Although Lemma 4.4.5 has been stated so that it will be useful later on, for the present

circumstances let us note that the same proof easily applies to the case of homomor-

phisms into PGLn(Q). In other words, replacing X0 with a smaller ergodic component,

we may suppose without loss of generality that φ̄(Γ0) is a subgroup of PSLn(Z) of fi-

nite index. Moreover, the proof of Lemma 3.7.2 shows that φ̄ lifts to a homomorphism

φ : Γ0 → SLn(Z). Since φ is a lifting, we easily obtain that f (γx) = φ(γ) f (x) for all

γ ∈ Γ0, which completes the proof of the claim. a

We now wish to maneuver into a situation where we can apply Theorem 3.7.1.

Claim. We may suppose that f (X0) ⊂ X1, where X1 is an ergodic component for the

action of φ(Γ0) on GrlQ
n
p.

Proof of claim. Let Z1, . . . , Zm be the ergodic components for the action of φ(Γ0) on GrlQ
n
p.

Now, each f−1(Zi) is Γ0-invariant, and since Γ0 y X0 is ergodic, exactly one of the

f−1(Zi) is conull. Deleting a null subset of X0, we may suppose that f (X0) ⊂ Zi, as

desired. a

Finally, we may apply Theorem 3.7.1 to conclude that l = k or l = n− k, contradicting

our initial hypothesis. This completes the proof of Theorem 4.4.3.
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Chapter 5

The space of completed groups

In this chapter, we shall remind the reader of the definition of the completion of a p-

local torsion-free abelian group, a notion which was used by Kurosh and Malcev in their

classification of torsion-free abelian groups of finite rank. This will allow us to replace

the space R(n, p) of p-local torsion-free abelian groups of rank n with the more analytic

space M(n, p) of Zp-submodules of Qn
p.

We shall then observe that each completed group M can be decomposed as the direct

sum of a “vector space part” and a “lattice part.” The map which sends M to its vector

space part provides a relationship between M(n, p) and the k-Grassmann spaces GrkQn
p.

This will allow us to prove in Section 5.4 that the isomorphism relation on the space

R(n, p, k) (of p-local torsion-free abelian groups of divisible rank k) is Borel bireducible

with an equivalence relation Ek∼= on GrkQn
p which is closely related to the orbit equivalence

relation Ek
GLnQ.

Finally, in Section 5.5 we shall combine the work of this chapter with Theorem 4.4.3

to establish a large fragment of Theorem A, namely that the isomorphism relations on

R(n, p, k) and R(n, p, l) are Borel incomparable whenever l 6= k and l 6= n− k.

5.1 Completion of local torsion-free abelian groups

We begin by collecting several definitions and facts surrounding the notion of the com-

pletion of a local torsion-free abelian group. Nearly all of this section is gleaned from

Section 93 of [Fuc]; some of the more technical proofs will be given in Appendix 7.1.

Recall that A ∈ R(n) is p-local if it is q-divisible for all primes q 6= p, and that R(n, p)

denotes the subset of R(n) consisting of just the p-local groups. For any such group A,
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we define its p-adic completion by:

Λ(A) := A⊗Zp

That is, Λ(A) is just the set of Zp-linear combinations of elements of A, where A is con-

sidered as a subset of Qn
p. (Note that we have slightly altered our notation from that of

Section 2.1, where we wrote Λp(A) rather than Λ(A).) On R(n, p), Λ takes values in the

standard Borel space M(n, p) of Zp-submodules of Qn
p with Zp-rank exactly equal to n.

In fact, as we shall prove in Appendix 7.1, Λ is a GLn(Q)-preserving bijection between

R(n, p) and M(n, p).

Suppose now that M ∈ M(n, p). In Appendix 7.1 (or see Exercise 93.3 of [Fuc]), we

shall prove that M can be decomposed as a direct sum:

(5.1.1) M = VM ⊕ L

where VM is a vector subspace of Qn
p and L is a free Zp-submodule of Qn

p. The vector sub-

space part VM is uniquely determined by M, but there are many possible complementary

submodules L. In any such decomposition, we will have that rank L + dim V = n.

5.1.2. Definition. For A ∈ R(n, p), the divisible rank of A is the dimension of VΛ(A).

We let R(n, p, k) denote the subspace of R(n, p) consisting of those groups of divisible

rank exactly k. Then we have that Λ is a GLn(Q)-preserving bijection between R(n, p, k)

and the space M(n, p, k) consisting of those modules M ∈ M(n, p) with dim VM = k.

Thus, we have the following result:

5.1.3. Proposition. The isomorphism relation ∼=k
n,p on R(n, p, k) is Borel equivalent to the orbit

equivalence relation induced by the action of GLn(Q) on M(n, p, k).

5.2 Lattices in p-adic vector spaces

Let M ∈ M(n, p) be a Zp-submodule of Qn
p. In our study of GrkQn

p, we have already

given a great deal of attention to the vector space part VM of M. In this section we begin

to understand the complementary module L. Since L is a free Zp-submodule of Qn
p, it

can be regarded as a lattice in its linear span W.
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5.2.1. Definition. Let K be a discrete valuation field, and let R denote its ring of integers.

If V is an l-dimensional vector space over K, then a lattice of V is a free R-submodule of

V of rank exactly l. Equivalently, a lattice of V is the R-span of l linearly independent

elements of V. We denote the set of lattices of V by L(V).

Observe that there are only countably many lattices in Ql
p. Indeed, by the discussion

in Section II.1.1 of [Ser], since Q is a dense subfield of Qp the map L 7→ L ⊗ Zp is a

bijection between the lattices of Ql (with respect to the p-adic valuation on Q) and the

lattices of Ql
p. Hence, any lattice of Ql

p may be expressed as the Zp-span of l linearly

independent elements of Ql .

We shall say a great deal more about the structure of the space of lattices of Ql
p in the

next chapter.

5.3 Decomposition of the space of completed groups

Fix V ∈ GrkQn
p and let M ∈ M(n, p, k) be an arbitrary Zp-submodule of Qn

p such that

VM = V. If W is any complementary subspace of V, meaning that V ∩W = 0 and V⊕W =

Qn
p, then M can always be written uniquely as V ⊕ L where L < W. Hence, the set:

{M ∈M(n, p, k) : VM = V}

is in a natural bijection with the lattices of W.

Since there are only countably many lattices of W, the map M 7→ VM that sends M

to its vector space part is countable-to-one. By Exercise 18.14 of [Kec2], any countable-

to-one Borel function between standard Borel spaces admits a Borel section. It follows

easily that there exists a Borel bijection f : GrkQn
p × L(Qn−k

p ) → M(n, p, k) satisfying

Vf (V,L) = V for all V, L.

In this section we will define a particular such bijection; among other things, this will

provide us with a canonical embedding of GrkQn
p into M(n, p, k).

5.3.1. Definition. If V ∈ GrkQn
p, let Vc be the unique complementary subspace of V

spanned by basis vectors ej1 , . . . , ejn−k and with the following properties:
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(a) The Zp-span of (V ∩Zn
p) ∪ (Zpej1 ⊕ · · · ⊕Zpejn−k) is all of Zn

p.

(b) 〈ji〉 is the lexicographically greatest sequence satisfying condition (a).

We call Vc the canonical complementary subspace of V.

We now discuss how to find and identify such a sequence 〈ji〉; in particular we will

show that Vc exists. The key is that we can write V as the column space of a n× k matrix

A satisfying:

• Each row of the k × k identity matrix appears as a row of A (call these the pivot

rows); and

• Every entry of A is in Zp.

(To obtain such a matrix, begin with an arbitrary matrix whose column space is V. Rescale

the first column so that all entries are p-adic integers and at least one entry is 1. Then, use

this 1 to zero out the other entries in its row. Repeat this for the second column, etc.) It

is easily seen that the sequence ji of indices of the non-pivot rows of A satisfies (a) above.

Our requirement that 〈ji〉 is lex-greatest amounts to the more natural assertion that the

sequence of indices of the pivot rows of A is lex-least.

For example, we have already seen in equation (3.6.2) that if V0 = Qpe1 ⊕ · · · ⊕Qpek

then any V ∈ (Kpt)V0 can be written as the column space of a matrix of the form
[

Ik

v

]
,

where the entries of v are in Zp. It follows that the canonical complementary subspace

for V is Vc = Qpek+1 ⊕ · · · ⊕Qpen.

Now, for V ∈ GrkQn
p and a lattice L < Qn−k

p , let L[V] be the isomorphic copy of L

inside Vc induced by following the obvious map (that is, the linear map defined by the

abuse of notation ei 7→ eji ). We define the adjoining of V and L to be:

(V, L) := V ⊕ L[V]

It is clear from our construction that the adjoining operation defines a Borel bijection:

(·, ·) : GrkQn
p ×L(Qn−k

p )→M(n, p, k)
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It may be necessary to explain why this map is Borel. First, it is possible to argue using the

technique of Section 4 of [Tho3] that there exists a Borel map from M(n, p, k) to (Qn
p)k ×

(Qn
p)n−k which sends V ⊕ L to a sequence v1, . . . , vk, w1, . . . , wn−k, where v1, . . . , vk is a

Qp-basis for V and w1, . . . , wn−k is a Zp-basis for L. Next, there is clearly a Borel map

which given v1, . . . , vk, w1, . . . , wn−k produces a basis w′1, . . . , w′n−k for the unique L′ ∈

L(Qn−k
p ) such that (V, L′) = V ⊕ L. Finally, by Exercise 12.14 of [Kec2], there exists a

Borel map (Qn
p)k → GrkQn

p sending a sequence of vectors to its linear span, and a Borel

map (Qn
p)n−k → L(Qn−k

p ) sending a sequence of vectors to its Zp-span.

5.4 Relations on the completed groups

We now take up the task of expressing the isomorphism and quasi-isomorphism relations

on R(n, p, k) as relations on GrkQn
p. If we are to have any hope of applying the results of

Chapter 4, these relations should have something to do with Ek
GLnQ. The following result

of Thomas already addresses the case of the quasi-isomorphism relation.

5.4.1. Lemma (Thomas). The quasi-isomorphism relation ∼k
n,p on the space R(n, p, k) is Borel

bireducible with the orbit equivalence relation Ek
GLnQ induced by the action of GLn(Q) on GrkQn

p.

Proof. By Theorem 4.3 of [Tho1], we have A ∼k
n,p B iff there exists g ∈ GLn(Q) such that

VΛ(B) = g(VΛ(A)). Hence, the map f (A) = VΛ(A) is a Borel reduction from ∼k
n,p to Ek

GLnQ.

Next, since Λ is bijective and M 7→ VM is countable-to-one, we have that f is countable-

to-one. By Exercise 18.14 of [Kec2], f admits a Borel section σ, and this map is clearly a

Borel reduction from Ek
GLnQ to ∼k

n,p.

Thus, Theorem 4.4.2 translates to the following statement about the quasi-isomorphism

relation, which is interesting in its own right.

5.4.2. Corollary. Let n ≥ 4 and let k, l < n be such that l is neither k nor n − k. Then the

quasi-isomorphism relations ∼k
n,p and ∼l

n,p are Borel incomparable.
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Our next target is the isomorphism equivalence relation, which we shall show is Borel

bireducible with an equivalence relation that is contained in Ek
GLnQ. This will be accom-

plished by investigating the “canonical” copy of GrkQn
p in M(n, p, k). Letting L0 denote

the standard lattice Zn−k
p of Qn−k

p , we put Y0 := {(V, L0) : V ∈ GrkQn
p}. First, we have

the following characterization:

5.4.3. Proposition. Y0 is precisely the orbit (SLnZp)M0, where M0 is the module:

M0 := (V0, L0) = (Qpe1 ⊕ · · · ⊕Qpek)⊕ (Zpek+1 ⊕ · · · ⊕Zpen)

Proof. We must show that for any g ∈ SLn(Zp), we have g(V0, L0) ∈ Y0. Then, since the

action of SLn(Zp) on GrkQn
p is transitive, Y0 must be precisely the orbit (SLnZp)(V0, L0).

Suppose first that g(V0, L0) is of the form (V0, L), in other words suppose that gV0 =

V0. In this case, g acts on the quotient Qn
p/V0 (in the basis represented by ek+1, . . . , en)

via its (n − k) × (n − k) lower right-hand corner gc. It follows easily that g(V0, L0) =

(V0, gcL0). Since the entries of gc lie in Zp, we clearly have gcL0 = L0. Hence, g(V0, L0) =

(V0, L0) is an element of Y0.

Now suppose that g(V0, L0) = (V, L) is arbitrary. It suffices to show there exists

g1 ∈ SLn(Zp) such that g1(V0, L) = (V, L), for then, g−1
1 g(V0, L0) = (V0, L) and we are

in the previous case. Permuting the standard basis if necessary, we can suppose that

V = col
[

Ik

v

]
where the entries of v are in Zp. It follows easily that

g1 :=

[
Ik 0

v In−k

]
satisfies our requirements.

While Y0 is not invariant for the action of GLn(Q), the last proposition shows in par-

ticular that Y0 is invariant for the action of the subgroup SLn(Z(p)). However, it is not

difficult to see that ∼=k
n,p|Y0 is not induced by the action of any subgroup of GLn(Q). In-

deed, let g = diag(p, 1, . . . , 1), where diag(d1, . . . , dn) denotes the diagonal matrix with

diagonal entries aii = di. One can easily find an x ∈ Fr(PGLnQ y GrkQn
p) such that

g(x, L0) ∈ Y0. Hence any subgroup of GLnQ which induces ∼=k
n,p|Y0 must include some

h = ag. But one can also find an x ∈ GrkQn
p such that ag(x, L0) /∈ Y0.
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5.4.4. Proposition. Y0 is a complete section for the orbit equivalence relation induced by the

action of GLnQ on M(n, p, k).

Here, a subset A ⊂ X is said to be a complete section for the equivalence relation E on

X if A meets every E-class. A countable Borel equivalence relation is always bireducible

with its restriction to any complete Borel section. Hence, using the obvious bijection of

Y0 with GrkQn
p, we obtain that the orbit equivalence relation induced by the action of

GLn(Q) on M(n, p, k) is bireducible with the following equivalence relation on GrkQn
p:

5.4.5. Definition. For V, V ′ ∈ GrkQn
p, we define that V Ek∼= V ′ if there exists g ∈ GLn(Q) such

that (V, L0) = g(V ′, L0).

Proof of Proposition 5.4.4. We must prove that for every (V, L) ∈M(n, p, k), there exists

g ∈ GLn(Q) and V ′ such that g(V, L) = (V ′, L0). (Of course, V ′ will be gV.) Permuting

the standard basis if necessary, we may suppose that V = col
[

Ik

v

]
where the entries of v

are in Zp. Recall that L has a rational basis over Zp, and hence there exists h ∈ GLn−k(Q)

such that hL = L0. Now, choose a matrix j with rational entries such that the entries of

j + hv lie in Zp, and let:

g =

[
Ik 0

j h

]

Then both V and gV = col
[

Ik

j + hv

]
each have the canonical complementary subspace

V1 = Qpek+1⊕ · · · ⊕Qpen. One now easily computes that g(V, L) = (gV, hL) = (gV, L0),

as desired.

The following lemma summarizes the work of this section.

5.4.6. Lemma. The equivalence relation Ek∼= on the space GrkQn
p satisfies the containments:

Ek
SLnZ ⊂ Ek∼= ⊂ Ek

GLnQ

Moreover, Ek∼= is Borel bireducible with the isomorphism relation ∼=k
n,p on R(n, p, k).

Proof. To see that Ek
SLnZ ⊂ Ek∼=, suppose that g ∈ SLn(Z) and gV = V ′. Then by Propo-

sition 5.4.3, we have g(V, L0) = (V ′, L0) and so V Ek∼= V ′. To see that Ek∼= ⊂ Ek
GLnQ, notice

that if g ∈ GLn(Q) and g(V, L0) = (V ′, L0), then clearly gV = V ′.
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We have already remarked that by Proposition 5.4.4, the relation Ek∼= is Borel bire-

ducible with the orbit equivalence relation induced by the action of GLn(Q) on M(n, p, k).

But since Λ witnesses that the latter relation is Borel equivalent to ∼=k
n,p, we conclude that

Ek∼= is Borel bireducible with ∼=k
n,p.

5.5 An application to torsion-free abelian groups

Using the results of the last section, we can already prove:

5.5.1. Theorem A, case 1. Let n ≥ 4 and 1 ≤ k, l ≤ n − 1, and suppose that l 6= k and

l 6= n− k. Then ∼=k
n,p is Borel incomparable with ∼=l

n,p.

Proof. By the second clause of Lemma 5.4.6, it suffices to prove that the relations Ek∼= and

El∼= are Borel incomparable. So, suppose that f : GrkQn
p → GrlQ

n
p is a Borel reduction

from Ek∼= to El∼=. Using the containments described in Lemma 5.4.6, we clearly have that f

is a weak Borel reduction from Ek
SLnZ to El

GLnQ, but this contradicts Theorem 4.4.3.

This argument evidently relies on the fact that the orbit equivalence relations induced

by the action of GLn(Q) on GrkQn
p and on GrlQ

n
p are highly incompatible. We remark that

the same argument will not work in the case that l = n− k. For, we have:

5.5.2. Proposition. The actions GLn(Q) y Grk(Qn
p) and GLn(Q) y Grn−kQn

p are isomorphic

as permutation groups. Indeed, the map (−T,⊥) defined by g 7→ g−T and V 7→ V⊥ is such an

isomorphism.

It follows also that the quasi-isomorphism relations ∼k
n,p on R(n, p, k) and ∼n−k

n,p on

R(n, p, n−k) are Borel equivalent. In the next chapter, we shall see how to get around

this difficulty.
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Chapter 6

The proofs of the main theorems

We will begin this chapter with the definition of the type of a lattice, a notion which will

help us understand the equivalence relations Ek∼= that we have defined on GrkQn
p. We will

then proceed with the first half of Theorem B, namely that if n ≥ 3 and k ≤ n− 2, then the

isomorphism relation ∼=k
n,p on R(n, p, k) is not Borel reducible to the quasi-isomorphism

relation ∼k
n,p on R(n, p, k). Actually, we shall prove instead that Ek∼= 6≤B Ek

GLnQ, which is

equivalent by Lemmas 5.4.6 and 5.4.1.

Moving on to Theorem A, first recall that we have already shown in Theorem 5.5.1

that ∼=k
n,p and ∼=l

n,p are Borel incomparable when l 6= k and l 6= n− k. To show that ∼=k
n,p

is Borel incomparable with ∼=n−k
n,p will require the additional technical step of replacing

the space M(n, p, l) with a closely related space M∗(n, p, l) on which PGLn(Q) acts al-

most freely. We shall prove that the orbit equivalence relation (∼=l
n,p)∗ induced by the

action of GLn(Q) on this space is Borel bireducible with the isomorphism relation ∼=l
n,p

on R(n, p, l). Then, we will prove that Ek∼= is not Borel reducible to (∼=n−k
n,p )∗.

6.1 The type of a lattice

In this section, we introduce a key invariant on the space L(Ql
p) of lattices of Ql

p, which

will be used in the proofs of Theorems A and B.

6.1.1. Definition. For a lattice L ∈ L(Ql
p), let A be any matrix such that L is equal to the

Zp-span of the columns of A. Then the type of L, denoted tp(L), is the reduction modulo

l of νp(det A), where νp denotes the p-adic valuation on Q∗p.

We must first verify that tp(L) is independent of the choice of the matrix A. Indeed,

if the Zp-span of the columns of A′ is the same as that of A, then A′ can be obtained from
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A by column operations over Zp. Hence there exists s ∈ GLn(Zp) such that As = A′,

and it follows that νp(det A) = νp(det A′). Similarly, one can easily deduce the following

fact.

6.1.2. Proposition. If s ∈ GLl(Qp) then tp(sL) ≡ νp(det s) + tp(L), modulo l.

In section 5.4, it will be necessary to work with the notion of the class of a lattice.

6.1.3. Definition. Let K and V be as in Definition 5.2.1. If L is a lattice of V, then its class

Λ is the set of all scalar multiples {aL : a ∈ K∗}.

Proposition 6.1.2 easily implies that the type of a lattice depends only on its class.

Hence, we may define the type of a lattice class as the type of any of its members.

6.1.4. Remark. In the case l = 2, there is a natural graph structure on the set of lattice

classes. Join Λ and Λ′ by an edge iff there are L ∈ Λ and L′ ∈ Λ′ such that L′ is a maximal

proper sublattice of L (or vice versa). The resulting graph is the (p + 1)-regular tree and

the types correspond to the colors in a 2-coloring of the tree. See the cover of the most

recent printing of [Ser] for a picture in the case that p = 2.

6.2 The proof of Theorem B

We now attack the main case of Theorem B, which we recall was outlined in Section 2.3.

The argument will closely follow the proof of Theorem 4.4.3.

6.2.1. Theorem B, part 1. Suppose that n ≥ 3, and let k ≤ n− 2. Then Ek∼= 6≤B Ek
GLnQ.

As mentioned in Section 2.2, this result also gives new examples of countable Borel

equivalence relations E ⊂ F such that E 6≤B F.

Proof. Suppose that f : GrkQn
p → GrkQn

p is a Borel reduction from Ek∼= to Ek
GLnQ. Then f

is a weak Borel reduction from Ek
SLnZ to Ek

GLnQ. Using the arguments in the proof of The-

orem 4.4.3, we may suppose there is an ergodic component Γ0 y X0 for SLn(Z) y GrkQn
p

and a homomorphism φ : Γ0 → GLn(Q) such that (φ, f ) : Γ0 y X0 −→ GLn(Q) y GrkQn
p

is a homomorphism of permutation groups.
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By Lemma 4.4.5, we may replace Γ0 y X0 by an ergodic subcomponent to suppose

that φ(Γ0) ≤ SLn(Z) is a subgroup of finite index. Shortly, we shall argue that we can

suppose that f (X0) is an ergodic component for the action of φ(Γ0). However, since our

argument is timing-sensitive, we must first reduce to the case that X0 is especially simple.

This will be used to simplify the computations at the end of the proof.

By Proposition 3.6.3, we may replace X0 with an ergodic subcomponent to suppose

that Γ0 y X0 is a principle congruence component. By definition this means that we may

assume that Γ0 = Γpt for some t ≥ 0 and that X0 is equal, modulo a null set, to a Kpt -orbit.

Claim. We may suppose that the domain X0 of f is equal, modulo a null set, to the

particular ergodic component Z0 = (Kpt)V0.

Recall that the ergodic component Z0 was described in equation (3.6.2).

Proof of claim. By Proposition 3.4.2, SLn(Z) acts transitively on the Kpt -orbits. Hence,

there exists γ ∈ SLn(Z) such that γZ0 = X0, modulo a null set. Consider the map f ′(x) =

f (γx). By Lemma 5.4.6, SLn(Z) preserves Ek∼=, and so we still have that f ′ is a Borel

reduction from Ek∼= to ∼=k
n,p. Clearly, the domain of f ′ is as desired. Moreover, it is easily

checked that (φ′, f ′) is a permutation group homomorphism, where φ′(g) = φ(γgγ−1).

Since γ ∈ SLn(Z), we have retained that φ′(Γ0) ⊂ SLn(Z). Hence, by replacing (φ, f )

with (φ′, f ′) the proof of the claim is complete. a

Now, by the ergodicity of Γ0 y X0, we may delete a null subset of X0 to suppose

that f (X0) is an ergodic component for the action of φ(Γ0). By Theorem 3.7.1, there exists

h ∈ GLn(Q) such that f (x) = hx for all x ∈ X0.

Claim. We may suppose that h = 1 and so f (x) = x for all x ∈ X0.

Proof of claim. We want to replace f (x) = hx with f ′ = h−1 f , but we must check that

f ′ retains all properties of f that we have accumulated in previous claims. Since h ∈

GLn(Q), f ′ is still a Borel reduction from Ek∼= to Ek
GLnQ. Moreover, it is easily checked that

(φ′, f ′) is a permutation group homomorphism, where φ′ = h−1φh. We can thus replace

(φ, f ) with (φ′, f ′) to complete the proof of the claim. a
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Before proceeding to the final contradiction, we give a brief outline. If indeed f (x) =

x is a Borel reduction from the restriction to X0 of Ek∼= to that of Ek
GLnQ, then whenever

x, gx ∈ X0 and g ∈ GLn(Q), we will have x(Ek∼=)gx. If we additionally suppose that

x, gx ∈ Z0, then by the observations of Section 5.3, x and gx each have the canonical

complementary subspace V1 = Qpek+1 ⊕ · · · ⊕Qpen,. In order to obtain a contradiction,

we shall choose the matrix g so that it acts nontrivially on V1.

Turning to the details, let g = diag(1, . . . , 1, p), where diag(d1, . . . , dn) denotes the

diagonal matrix with aii = di. Using equation (3.6.2) one easily checks that gZ0 ⊂ Z0, and

since X0 = Z0 modulo a null set, we have that gX0 is almost contained in X0. Together

with Lemma 4.4.4, this implies that we can choose x ∈ Fr(PGLn(Q) y GrkQn
p) in such a

way that x, gx ∈ X0 ∩ Z0. Then x(Ek∼=)gx, and so Definition 5.4.5 gives h ∈ GLn(Q) such

that:

h(x, L0) = (gx, L0)

Now, hx = gx and since we have chosen x so that it is not fixed by any element of

PGLn(Q)\{1}, there exists a ∈ Q∗p such that h = ag. Since x, gx ∈ Z0, each has the

canonical complementary subspace V1 = Qpek+1 ⊕ · · · ⊕ Qpen. Since h is diagonal, it

clearly acts on V1 via its (n − k) × (n − k) lower right-hand corner hc. It follows that

h(x, L0) = (hx, hcL0) and hence hc stabilizes L0. But it is readily seen that νp(det hc) ≡ 1

mod (n − k), so Proposition 6.1.2 implies that hc does not stabilize L0, a contradiction.

6.3 The almost free space M∗

In Section 6.4, we will prove that the isomorphism relation on R(n, p, k) is not Borel re-

ducible to the isomorphism relation on R(n, p, n−k). In order to apply Corollary 4.3.3,

it will be necessary to prove that ∼=n−k
n,p is Borel bireducible with an orbit equivalence

relation induced by an almost free action. We can realize ∼=n−k
n,p as the orbit equivalence

relation induced by the action of GLn(Q) on M(n, p, k), and in order to obtain a free action

we should then consider the action of PGLn(Q). Unfortunately, PGLn(Q) does not act on

M(n, p, k)! Instead, we must work with the action of PGLn(Q) on the space M∗(n, p, l) of
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equivalence classes [M] = {aM : a ∈ Q∗p}, where M ∈M(n, p, l).

6.3.1. Proposition. The set M∗(n, p, l) is a standard Borel space, with its quotient Borel struc-

ture.

Proof. It is sufficient to check that the equivalence relation E on M(n, p, l), which identi-

fies M and M′ iff [M] = [M′], is a smooth relation. First, recall that any M ∈ M(n, p, l)

may be uniquely represented as V ⊕ L, where L is contained in the canonical comple-

mentary subspace Vc of V. We then define σ(V ⊕ L) = V ⊕ (ptL), where t is the least

integer such that ptL ⊂ Vc ∩Zn
p. It is not hard to see, using the methods described at the

end of Section 5.3, that σ is Borel. Clearly, σ is a Borel reduction from E to the equality

relation on M(n, p, l).

Now, we may let (∼=l
n,p)∗ be the orbit equivalence relation induced by the action of

GLn(Q) on M∗(n, p, l).

6.3.2. Proposition. The equivalence relation (∼=l
n,p)∗ is Borel bireducible with ∼=l

n,p.

Proof. The map M 7→ [M] is clearly a Borel reduction from ∼=l
n,p to (∼=l

n,p)∗. On the other

hand, the map σ described in the proof of Proposition 6.3.1 is clearly a Borel section of

M 7→ [M], and it follows that σ is a Borel reduction from (∼=l
n,p)∗ to ∼=l

n,p.

The advantage of working with the space M∗(n, p, l) is that we can establish the fol-

lowing variant of Lemma 4.4.4.

6.3.3. Lemma. Suppose that f : GrkQn
p → M∗(n, p, l) is a weak Borel reduction from Ek

SLnZ to

(∼=l
n,p)∗. Then there exists a conull subset M ⊂ GrkQn

p such that:

f (M) ⊂ Fr(PGLn(Q) y M∗(n, p, l))

Proof. If [M] = [M′], it is clear that VM = VM′ (see the notation of (5.1.1)). Hence the

map [M] 7→ VM is well-defined, and we let f̄ : GrkQn
p → GrlQ

n
p denote the composition

of this map with f . Clearly, f̄ is a weak Borel reduction from Ek
SLnZ to En−k

GLnQ
. We claim

that there exists a conull subset M ⊂ GrkQn
p such that:

f̄ (M) ⊂ Fr(PGLn(Q) y GrlQ
n
p)
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If this is not the case, then Theorem 4.4.4 implies that there exists a conull subset M′ ⊂

GrlQ
n
p such that f̄ (M′) is contained in a single GLn(Q)-orbit of GrlQ

n
p. Since f is countable-

to-one, it follows that f (M′) is contained in a countable set, contradicting that the Haar

measure is nonatomic.

Now, for x ∈ M, we have that f̄ (x) ∈ Fr(PGLn(Q) y GrlQ
n
p). This means by def-

inition that 1 6= g ∈ PGLn(Q) implies gVf (x) 6= Vf (x). Clearly, gVf (x) = Vg f (x), and

so we have Vg f (x) 6= Vf (x). It follows that g f (x) 6= f (x), which means that f (x) ∈

Fr(PGLn(Q) y M∗(n, p, l)), as desired.

We extend the notion of type to M∗(n, p, l) by letting tp[(V, L)] = tp(L). This is well-

defined, as we have already observed that the type of L depends only on its class. The

following fact is the last that we shall need in the proof of Theorem 6.4.2.

6.3.4. Proposition. The group SLn(Zp) acts in a type-preserving fashion on M∗(n, p, l).

Proof. We must show that whenever g ∈ SLn(Zp) and g(V, L) = (V ′, L′), we have that

tp(L) = tp(L′). First suppose that V = V ′ = V0, where this time V0 = Qpe1 ⊕ · · · ⊕Qpel .

In particular, g fixes V0. Letting gc denote the (n− l)× (n− l) lower right-hand corner

of g, we can argue as in the proof of Proposition 5.4.3 that g(V0, L) = (V0, gcL) and so

L′ = gcL. But gc ∈ GLn−l(Zp), and so Proposition 6.1.2 implies that tp(L′) = tp(L).

Also as in the proof of Proposition 5.4.3, this special case can be translated to establish

the result in the general case.

6.4 The proof of Theorem A

We are now ready to give a proof of the main case of Theorem A. Afterwards, we will tie

up a couple of loose ends.

6.4.1. Theorem A, case 2. Let n ≥ 3 and suppose that 2 ≤ k < n/2. Then ∼=k
n,p is Borel

incomparable with ∼=n−k
n,p .

This is an immediate consequence of the following slightly stronger result.

6.4.2. Theorem. Suppose that 2 ≤ k 6= n− k ≤ n− 1. Then Ek∼= 6≤w
B (∼=n−k

n,p )∗.
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Proof of Theorem 6.4.2. Suppose that f : GrkQn
p → M∗(n, p, n−k) is a weak Borel

reduction from Ek∼= to (∼=n−k
n,p )∗. Then clearly f is a weak Borel reduction from Ek

SLnZ to

(∼=n−k
n,p )∗. Applying the arguments of Theorem 4.4.3 (and using Lemma 6.3.3 instead of

Lemma 4.4.4 to define a cocycle), we may suppose that there exists an ergodic component

Γ0 y X0 for SLn(Z) y GrkQn
p, and a homomorphism φ : Γ0 → GLn(Q) such that

(φ, f ) : Γ0 y X0 −→ GLn(Q) y M∗(n, p, n−k) is a homomorphism of permutation

groups.

Since the map [M] → VM is GLn(Qp)-preserving, the composition f̄ : x 7→ Vf (x)

makes

(φ, f̄ ) : Γ0 y X0 −→ GLn(Q) y Grn−kQn
p

into a homomorphism of permutation groups. By Lemma 4.4.5, we may replace Γ0 y X0

with an ergodic subcomponent to suppose that im(φ) ⊂ SLn(Z). We now have the

following analogues to the claims we made in Theorem 6.2.1.

Claim. We may suppose that Γ0 = Γpt is a principle congruence subgroup and that X0 is

equal, modulo a null set, to the particular component Z0 = (Kpt)V0. a

Claim. We may suppose that (φ, f ) is a permutation group homomorphism that makes f̄

into an affine map f̄ (x) = hx⊥. Adjusting f by h, we may suppose that f̄ (x) = x⊥. a

For the next claim, recall that we have defined that tp([M]) is the type of any L such

that (V, L) ∈ [M].

Claim. We can suppose that there is a fixed 0 ≤ t < k such that tp( f (x)) = t for all x ∈ X0.

Proof of claim. Let F(M∗(n, p, n−k)) denote the standard Borel space of closed subsets of

M∗(n, p, n−k) (considered with the quotient topology induced by the map M 7→ [M]).

Since φ(Γ0) ⊂ SLn(Z), we clearly have that the map X0 → F(M∗(n, p, n−k)) given by:

x 7→ (SLnZp) f (x)

is Γ0-invariant. By ergodicity of Γ0 y X0, we can suppose that f (X0) is contained in a

fixed SLn(Zp)-orbit. Hence, the claim follows from Proposition 6.3.4. a
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Now, for any z ∈ Z0, the canonical complementary subspace of z is V1 = Qpek+1 ⊕

· · · ⊕Qpen, and the canonical complementary subspace of z⊥ is V0 = Qpe1 ⊕ · · · ⊕Qpek.

In this argument, we shall choose an element g ∈ GLn(Q) which acts trivially on V1, so it

preserves the restriction to Z0 of Ek∼=; and nontrivially on V0, so it fails to preserve lattice

types on f (X0).

Proceeding, let g = diag(1/p, 1, . . . , 1), where diag(d1, . . . , dn) denotes the diagonal

matrix with aii = di. Arguing as in the proof of Theorem 6.2.1, we can choose x ∈ X0 such

that gx ∈ X0 and x⊥ ∈ Fr(PGLn(Q) y Grn−kQn
p). Now, both x and gx have the canonical

complementary subspace V1 = Qpek+1 ⊕ · · · ⊕Qpen. Since g acts on V1 by the identity

map, we clearly have g(x, L0) = (gx, L0), and so g witnesses that x(Ek∼=)gx. It follows that

f (x)(∼=n−k
n,p )∗ f (gx). Since (∼=n−k

n,p )∗ is induced by the action of GLn(Q) on M∗(n, p, n−k),

there exists h ∈ GLn(Q) such that h f (x) = f (gx). It follows that h f̄ (x) = f̄ (gx), so now:

hx⊥ = h f̄ (x) = f̄ (gx) = (gx)⊥ = g−Tx⊥

Since we have chosen x⊥ so that it is not fixed by any element of PGLn(Q)\{1}, there

exists a ∈ Q∗p such that h = ag−T = diag(ap, a, . . . , a) (see Figure 6.4.3 below).

x_

g

��

f (x)
_

h

��

x⊥_

g−T

��
gx

X0
f (gx)

f (X0)
(gx)⊥

(X0)⊥

f //____________
[M] 7→VM //____________

Figure 6.4.3. We have forced that an element of the form
h = ag−T witnesses that f (x)(∼=n−k

n,p )∗ f (gx).

Finally, x⊥, (gx)⊥ each have the canonical complementary subspace V0 = Qpe1 ⊕

· · · ⊕Qpek. Letting hc denote the upper left-hand corner of h, we have νp(hc) ≡ 1 mod k.

By Proposition 6.1.2, hc acts in a type-altering fashion on L(V0). But we have arranged for

tp( f (x)) = tp( f (gx)), a contradiction.

The second part of Theorem B follows immediately.

6.4.4. Theorem B, part 2. Let n ≥ 3 and suppose that k ≤ n− 2. Then Ek
GLnQ 6≤w

B Ek∼=.
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Proof. Recall that by Proposition 5.5.2 we have that Ek
GLnQ is Borel bireducible with En−k

GLnQ

Hence, if Ek
GLnQ ≤w

B Ek∼= then there exists a weak Borel reduction f from En−k
GLnQ

to Ek∼=.

Clearly, f is also a weak Borel reduction from En−k∼= to Ek∼=, contradicting Theorem 6.4.2.

The keen-eyed reader will have noticed that Theorem A is as yet incomplete.

6.4.5. Theorem A, case 3. We have E1∼= 6≤B En−1∼= .

Proof. By Theorem 4.4 of [Tho1], for groups A, B ∈ R(n, p, n−1) we have that A is quasi-

isomorphic to B iff A is isomorphic to B. In particular, ∼=n−1
n,p is Borel bireducible with

∼n−1
n,p , and it follows that En−1∼= is Borel bireducible with En−1

GLnQ
. (Indeed, the case k = n− 1

has been omitted from Theorem B for a good reason.) By Proposition 5.5.2, En−1
GLnQ

is Borel

bireducible with E1
GLnQ, and so we have established that the right-hand side En−1∼= is Borel

bireducible with E1
GLnQ. Hence, the result follows from Theorem B, part 1.
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Chapter 7

Appendices

7.1 More on torsion-free abelian groups

In this section, we shall make Chapter 5 more self-contained by providing proofs for

some of the abelian group theoretic facts that we have used. The content is taken almost

entirely from [Fuc]. The author finds it a valuable contribution to rewrite and, in some

cases, slightly clarify the proofs.

Recall that R(n, p) denotes the set of p-local subgroups of Qn of rank n. For A ∈

R(n, p), recall that the completion of A is Λ(A) = A ⊗Zp. Here, A ⊗Zp denotes the

set of all Zp-linear combinations of elements of A, considered as a subset of Qn
p. The

completion map Λ thus takes values in the space M(n, p) of Zp-submodules of Qn
p. We

first verify that Λ is bijective.

7.1.1. Proposition. The map Λ is a GLn(Q)-preserving bijection from R(n, p) onto M(n, p).

The inverse map is σ(M) = M ∩Qn.

Proof. That Λ is GLn(Q)-preserving is clear. Injectivity is Lemma 93.1 of [Fuc]; surjectiv-

ity is Theorem 93.5 of the same. We reproduce the arguments.

Suppose first that A ∈ R(n, p). It is clear that A ⊂ σΛ(A); we must show that

σΛ(A) ⊂ A. For any a ∈ σΛ(A), we have that a ∈ Λ(A) and so we may express

a = z1a1 + · · · + zmam where zi ∈ Zp and ai ∈ A. We may suppose without loss of

generality that n ≤ m and a1, . . . an are a basis for Qn, so write:

(7.1.2) a = (z1a1 + · · ·+ znan) + (zn+1an+1 + · · ·+ zmam)

Next, since an+1, . . . , am depend on a1, . . . , an, we can assume without loss of generality

that zi+1, . . . , zm are elements of Z(p). To see this, write an+1 = q1a1 + · · · qnan where
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qi ∈ Q. Let pt be the highest power of p in all the denominators of the qi, and write

zn+1 = zlo
n+1 + zhi

n+1 where zlo
n+1 ∈ Z(p) and pt | zhi

n+1. Now zhi
n+1an+1 can be folded into

the first term of (7.1.2) and so zn+1 can be replaced by zlo
n+1.

Since a ∈ Qn, we now have:

z1a1 + · · · znan = a− (zn+1an+1 + . . . + zmam) ∈ Qn

Since a1, . . . , an also form a basis for Qn
p, it follows that z1, . . . , zn are rational. We have

established that a is a Z(p)-linear combination of elements of A. Since A is p-local this

implies a ∈ A. This proves that A = σΛ(A).

Suppose now that M ∈M(n, p). It is clear that Λσ(M) ⊂ M; we must show that M ⊂

Λσ(M). First, notice that M contains a lattice of Qn
p. By the discussion in Section II.1.1 of

[Ser], any lattice of Qn
p has a rational basis over Zp. In particular, M contains a full rank

subset of Qn, and so any m ∈ M can be expressed as a Qp-linear combination of elements

of σ(M). Using the fact that any p-adic number is the sum of a rational number and a

p-adic integer, write m = q + z where q is a rational combination of elements of σ(M) and

z is a p-adic integral combination of elements of σ(M). By definition, z ∈ Λσ(M), and

hence by the easy inclusion, z ∈ M. It follows that q = m− z ∈ M as well. But already

q ∈ Qn and so q ∈ σ(M). Hence, m ∈ Λσ(M). This proves that M = Λσ(M).

We now work towards establishing some prerequisites to the definition of divisible

rank. In what follows, remember that we are assuming that A is a p-local group. Define

that a subset {a1, . . . , al} ⊂ A\{0} is p-independent if whenever z1, . . . , zl ∈ Z and

z1a1 + · · ·+ zlal ∈ pA

then z1, . . . , zl ∈ pZ. Now, {a1, . . . , al} is said to be a p-basis of A if it is a maximal p-

independent set. Notice that {a1, . . . , al} is a p-basis iff its image in A/pA is a vector

space basis over the finite field Fp. Moreover, if P is the subgroup of A generated by

{a1, . . . , al}, then it is easily seen that A/P is p-divisible. Since A was p-local already,

A/P is divisible.

Now, since any divisible group factors as a direct sum of copies of Q and torsion, we
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have an exact sequence:

(7.1.3) 0 // P // A // Qn−l ⊕ T // 0

where T is a torsion group. Now, it is well known that any torsion-free group is flat, and

so we may tensor the sequence (7.1.3) with Zp to obtain:

(7.1.4) 0 // L // Λ(A) // Qn−l
p

// 0

where L = P⊗Zp is the free Zp module generated by a1, . . . , al . (Note that T ⊗Zp = 0,

since T contains no p-torsion. Indeed, it is easily checked that whenever pa ∈ P we must

have a ∈ P.)

7.1.5. Proposition. The sequence (7.1.4) is split. Hence we have that:

Λ(A) = VA ⊕ L

where VA is a vector subspace of Qn
p and L is a free Zp-module.

Proof. Let D be the divisible part of Λ(A). We shall prove first that L∩D = 0 and second

that L + D = Λ(A). For the first, it suffices to show that no element of L is infinitely p-

divisible in Λ(A). Suppose that z1, . . . , zl ∈ Zp and that:

z1a1 + · · ·+ zlal ∈ pΛ(A)

is infinitely p-divisible. Dividing through by the common divisor of the zi, we can sup-

pose that some zi is a unit. Now, write zi = z0
i + pwi where z0

i ∈ {0, 1, . . . p − 1} and

wi ∈ Zp. Then

z0
1a1 + · · ·+ z0

l al + p(w1a1 + · · ·+ wlal) ∈ pΛ(A)

and it follows that z0
1a1 + · · ·+ z0

l al ∈ pΛ(A) as well. But clearly z0
1a1 + · · ·+ z0

l al ∈ A,

and so z0
1a1 + · · · + z0

l al ∈ A ∩ pΛ(A). Now, it is easily seen that A ∩ pΛ(A) ⊂ pA.

(Indeed, if a ∈ A and a/p ∈ Λ(A) then since a/p ∈ Qn as well, by Proposition 7.1.1 we

have a/p ∈ A.) Hence, we have z0
1a1 + · · ·+ z0

l al ∈ pA. Now {a1, . . . , al} is a p-basis for

A, so we have p | z0
i for all i and hence none of the z1, . . . , zl are units, a contradiction.
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To see that L + D = Λ(A), let a ∈ Λ(A) be arbitrary. Since Λ(A)/L is divisible, for

any n we can write a = pnan + bn where an ∈ Λ(a) and bn ∈ L. Since L is compact in the

p-adic topology, there exists {ni} ⊂ N such that bni → b ∈ L. Then letting d = a− b ∈

Λ(A) we have pni ani → d and hence d is infinitely p-divisible in Λ(A). Thus, we have

written a = b + d as an element of L + D. This concludes the proof.

Recall that the divisible rank of A was defined to be the dimension of VA. Since VA

is the divisible part of Λ(A), it depends only on A and not on the choice of p-basis. In

particular, the divisible rank is well-defined. It also follows from this proposition that all

p-bases of A have the same length, namely l = n− dim VA. This will allow us to verify

the following proposition which gives an equivalent formulation of the divisible rank

(initially stated just after Theorem A in Chapter 2).

7.1.6. Proposition. Let A be a p-local torsion-free abelian group of finite rank. Then the divisible

rank of A is precisely the maximum possible rank of a divisible quotient of A.

Proof. It suffices to show that if B ≤ A and A/B is divisible then B contains a p-basis; it

follows that the rank of divisible quotients A/B is bounded by k. Letting b1, . . . , bm be a

p-basis for B, we shall show that the residues of b1, . . . , bm in A/pA form a spanning set.

Then, by deleting elements from b1, . . . , bm we obtain a subset whose residues in A/pA

form a basis, i.e., a p-basis for A.

To see that b1, . . . , bm spans modulo p, we let a ∈ A be arbitrary. Since A/B is divisible,

there exist a′ ∈ A and b ∈ B such that a = pa′ + b. Since B/〈b1, . . . , bm〉 is already

divisible, there exist b′ ∈ B and z1, . . . , zm ∈ Z such that b = pb′ + ∑ zibi. We now have

that a = pa′ + pb′ + ∑ zibi, so that a is in the span of b1, . . . , bm, modulo p.

7.2 Ergodic components of Grassmann space

In this appendix we explore the ergodic components for the homogeneous space GrkQn
p

more thoroughly. We begin by considering the following alternative version of Theorem

3.7.1:
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7.2.1. Theorem. Suppose that n ≥ 3 and let k, l ≤ n. Let Γ y X be an ergodic component

for SLn(Z) y GrkQn
p, and let Λ y Y be an ergodic component for SLn(Z) y GrlQ

n
p. If there

exists a permutation group isomorphism Γ y X −→ Λ y Y, then l = k or l = n− k.

This result is of interest in itself. Using the superrigidity methods of this thesis, The-

orem 7.2.1 can be used to give a proof of the following:

7.2.2. Theorem. Suppose that n ≥ 3 and let k, l ≤ n satisfy l 6= k and l 6= n− k. Then the

orbit equivalence relations induced by the actions SLn(Z) y GrkQn
p and SLn(Z) y GrlQ

n
p are

Borel incomparable.

This theorem is the Borel analog of Theorem 5.2.15(c) of [Zim], which states that the

same actions are orbit inequivalent. In this section, we shall give a new proof of Theorem

7.2.1. The idea of the present argument is the following. If ∆′ ≤ ∆ ≤ Γ are subgroups

of finite index, then each ergodic component for the action of ∆ on X breaks up into a

finite union of ergodic components for the action of ∆′. Hence, a chain of finite index

subgroups of Γ corresponds to a tree of ergodic subcomponents of X, the elements of

the ith level being the ergodic components for the action of the ith subgroup. Roughly

speaking, we shall show that the shape of this tree determines the set {k, n− k}.

It will be convenient to work with the principle congruence components, which were

defined in Chapter 3. So for each m we shall count the number of ergodic components

for the action on X of the principle congruence subgroup Γm < SLn(Z). Recall that the

closure of Γm in SLn(Zp) is Kpt where pt is the highest power of p in M. By Proposition

3.4.2, the ergodic components for the action of Γm on GrkQn
p are just the Kpt -orbits on

GrkQn
p. We begin with the general task of counting the number of Kpt orbits on GrkQn

p for

all t.

7.2.3. Lemma. For t > 0, each Kpt -orbit on GrkQn
p breaks up into pk(n−k) many Kpt+1-orbits.

Hence, every ergodic component for the action of Γm on GrkQn
p breaks up into pk(n−k) many

ergodic components for the action of Γpm.

For the record, we note the following consequence.
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7.2.4. Corollary. Let ck denote the integer such that GrkQn
p breaks up into ck many Kp1-orbits.

(In fact ck = |GrkFn
p|, but we omit the proof.) Then there are exactly ck pk(n−k)t many Kpt -orbits

on GrkQn
p.

We now begin the proof of Lemma 7.2.3. By Proposition 3.4.2, SLn(Z) acts transitively

on the Kpt orbits. Hence, it suffices to fix a base point V0 ∈ GrkQn
p and work with the Kpt

orbit of V0; as usual we arbitrarily choose V0 = Qpe1 ⊕ · · · ⊕Qpek. Observe that V0 can

be written as the column space V0 = col
[

Ik

0

]
, where Ik denotes the k× k identity.

7.2.5. Proposition. The orbit (Kpt)V0 consists precisely of those subspaces of Qn
p which can be

written as col
[

Ik

ptr

]
, where Ik is the k× k identity and r is a (n− k)× k matrix with entries in

Zp.

Proof. Clearly,

g =

[
Ik 0

ptr In−k

]

satisfies gV0 = col
[

Ik

ptr

]
and g ∈ Kpt . Hence, we need only show that every element of

(Kpt)V0 can be written in the desired form. Let g ∈ Kpt , and divide g into blocks:

g =

[
A B

C D

]

where A is k× k. Then we have gV0 = col
[

A
C

]
. Here, A is congruent modulo pt to Ik, and

C is congruent to 0 modulo pt. In particular, A is invertible, and so we may right multiply

by A−1 (which amounts to performing column operations) to obtain gV0 = col
[

Ik

CA−1

]
.

Clearly CA−1 is again congruent to 0 modulo pt and so we have expressed gV0 in the

desired form.

Now, consider the set of pk(n−k) elements of (Kpt)V0 of the form:

col
[

Ik

ptv

]
where v is a (n− k)× k submatrix such that each entry of v lies in {0, 1, . . . , p− 1}. We

claim that these form a system of representatives for the orbits of Kpt+1 on (Kpt)V0. This

claim clearly follows from the following proposition:
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7.2.6. Proposition. Suppose that V = col
[

Ik

ptv

]
, where all entries of v lie in {0, 1, . . . , p− 1}.

Then the orbit (Kpt+1)V consists precisely of those subspaces of Qn
p which can be written

col
[

Ik

ptv + pt+1r

]
where the entries of r lie in Zp.

Proof. This time using the matrix

g =

[
Ik 0

pt+1r In−k

]
we clearly have:

gV = col
[

Ik

ptv + pt+1r

]
Hence, we need only show that every element of (Kpt+1)V can be written in the desired

form. Let g ∈ Kpt+1 be arbitrary, and again divide g into blocks:

g =

[
A B

C D

]
where A is k× k. Then we have:

gV = col
[

A + ptBv
C + ptDv

]
Now, A + ptBv is congruent modulo pt+1 to Ik, and C + ptDv is congruent to ptv modulo

pt+1. So this time right-multiplying by (A + ptBv)−1, we have gV = col
[

Ik

C′

]
where again

C′ is congruent to ptv modulo pt+1. This concludes the proof of Proposition 7.2.6.

The proof of Lemma 7.2.3 is now complete.

Turning to the proof of Theorem 7.2.1, let us suppose that Γ y X and Λ y Y are as

in the statement, and let (φ, f ) : Γ y X −→ Λ y Y be an isomorphism of permutation

groups. Shortly, we shall make use of Proposition 3.6.3 to pass to a principle congruence

component contained in X. This next proposition tells us roughly that (φ, f ) doesn’t

move principle congruence subgroups too far.

7.2.7. Proposition. There exists D ∈ N, depending only on φ, such that for any m ∈ N we

have ΓDm ≤ φ(Γm) and ΓDm ≤ φ−1(Γm).
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Proof. Recall that by 3.7.2, we can suppose that φ = χh ◦ (−T)i, where χh is conjugation

by some h ∈ GLn(Q), −T is transpose-inverse, and i = 0, 1. Suppose first that φ = χh.

Let d be the least common multiple of all the denominators of entries in h and h−1. We

will show that D = d2 meets our requirements.

Indeed, let us show that any γ ∈ Γd2m necessarily satisfies γ ∈ φ(Γm); the same goes

for φ−1 by symmetry. Write γ = I + d2mB where I is the identity matrix and B is some

matrix with integer entries. Then:

φ−1(γ) = I + d2mφ−1(B)

= I + d2mhBh−1

= I + m(dh)B(dh−1)

= I + mB′

where B′ again has integer entries. Hence φ−1(γ) ∈ Γm, as desired. The case φ = χh ◦

(−T) is similar.

We next claim that (φ, f ) is an isomorphism of measure preserving permutation groups.

That is, we claim that f is actually a measure preserving map. To see this, let µ, ν denote

the normalized Haar measures on X, Y, respectively. Then clearly Λ preserves f∗(µ), but

recall that Λ y Y is uniquely ergodic. It follows that f∗(µ) = ν, as desired. We have now

proved the following result:

7.2.8. Proposition. Let ∆′ ≤ ∆ ≤ Γ be subgroups of finite index, and let X0 ⊂ X be an ergodic

component for the action of ∆. Then f (X0) is an ergodic component for the action of φ(∆), and

if X0 breaks up into M ergodic subcomponents for the action of ∆′, then f (X0) breaks up into M

ergodic subcomponents for the action of φ(∆′).

To conclude the proof, fix a congruence subgroup Γm ≤ Γ and let t be arbitrary. By

Proposition 7.2.7, we have the following chain of subgroups of Λ:

φ(ΓD2mpt) ≤ ΓDmpt ≤ ΓDm ≤ φ(Γm)
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By Lemma 7.2.3, each ergodic component for the action of ΓDm on Y breaks up into pl(n−l)t

ergodic subcomponents for the action of ΓDmpt . By Lemma 7.2.3 together with Proposi-

tion 7.2.8, each ergodic component for the action of φ(Γm) on Y breaks up into Apk(n−k)t

ergodic subcomponents for the action of φ(ΓD2mpt), where A is a constant depending only

on D. Thus, we have:

pl(n−l)t ≤ Apk(n−k)t

But a similar argument using φ−1 gives:

pk(n−k)t ≤ Bpl(n−l)t

Since these equations hold for all t, it follows that k(n − k) = l(n − l), and hence that

k = l or k = n− l. This concludes the proof of Theorem 7.2.1.
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