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Defects are one of the factors that show a negative effect on the ballistic 

performance. Uniform microstructures with a low percentage of well distributed porosity 

could possibly demonstrate high ballistic strength; therefore, it is of interest to estimate 

the parameters that define the spatial arrangement of defects. This aspect of 

microstructures was investigated in a variety of silicon carbide ceramics ranging from 

off-density sintered samples to high density hot-pressed armor grade samples.  

The spatial distribution of defects was examined by various techniques including 

nearest neighbor distance distributions, tessellation analysis, and pair correlation 

functions. Random distributions were observed for most of the samples with some degree 

of clustering. Hardness was selected as a mechanical property to correlate with 

microstructural findings. Hardness contour maps were constructed by indenting samples 

with a statistically significant number of indents per load to see the variation in terms of 

location. The large number of indents allowed for Weibull analysis to be used to examine 

the spread in the data and to test spatial variability. A high degree of correlation was 
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obtained between microstructural parameters and hardness/Weibull modulus values. 

Smaller defect sizes and homogenous distribution of defects were shown to provide 

higher hardness values. 

A sintered SiC tile was examined using ultrasound to determine high and low 

amplitude regions in C-scan image maps. Serial sectioning was performed on diced 

samples from these two regions. Although no significant difference was observed in 

terms of density and average defect size, statistical tests showed that the difference in the 

largest defect size detected in low amplitude and high amplitude regions was significant. 

Clusters of defects were also identified in the samples from the low amplitude regions. 

The signal loss that was observed in C-scans maps could partially be attributed to these 

results. 

A particularly high degree of correlation was shown between average defect size, 

spatial distribution parameters and hardness data. These findings exhibit the strong effect 

of microstructure on the quasi-static properties and may affect ballistic performance.  

 



 

 iv

ACKNOWLEDGEMENTS 

First and foremost, I would like to start by thanking my thesis advisor Dr. Richard 

A. Haber for his continued support and invaluable suggestions during this work. He was 

always there for help and guidance when needed. I am extremely grateful to him for 

giving me an opportunity and having faith in me. 

Secondly, I would like to thank my committee members Dr. Dale E. Niesz, Dr. 

W. Roger Cannon and Dr. Vimal K. Pujari for helping this work head in the right 

direction with their valuable comments and ideas.  

I would like to acknowledge the Ceramic and Composite Materials Center and 

Materials Center of Excellence for funding this research. 

I wish to thank Dr. Lisa Klein for all her help as a graduate director. I would like 

to thank Dr. Victor Greenhut not only for his assistance on electron microscopy but also 

for his enlightening speeches on anything in life, including the origin of my name, which 

I had not known before. I wish to acknowledge Dr. George Siegel and Dr. Manish 

Chhowalla for their support all throughout my studies at Rutgers.   

I am thankful to the all departmental staff, specifically, Laura Chirichillo, Phyllis 

Cassell, Claudia Kuchinow, Michelle Sole. I also would like to thank John Yaniero, who 

has been a crucial part of this department as the lab manager. 

I would like to acknowledge the past and current members of Haber Group, 

including Ray Brennan, Navin Venugopal, Dan Mairoano, Steve Mercurio, Steve 

Bottiglieri, Andrew Portune, Cari August, Vlad Domnich, Mihaela Jitianu, Chris 

Ziccardi, Anil Kaza, Laura Reynolds, Shawn Nycz. They were the members of such a 

pleasant working environment that made come to work enthusiastically every day. I 



 

 v

would like thank the undergrad technicians, Han Lin, Joe Pantina and Rich Delgado for 

spending many hours in the lab to help doing repetitive duties. 

Finally, I would like to thank my family starting with my mother, Nagehan 

Demirbaş, and my father, Bülent Demirbaş for their constant and irreplaceable love and 

support. I wish to thank my aunt, Neslihan Karakaya, who has been like a second mother 

to me. I would like to acknowledge my fiancé and soon-to-be wife Başak Alptürk for 

helping me get through the fun but stressful final year of this degree. Lastly, I apologise 

to the people I overlooked in these few paragraphs but I am thankful for anyone who has 

touched my life. 



 

 vi

TABLE OF CONTENTS         
 
ABSTRACT OF THE DISSERTATION ........................................................................... ii 

ACKNOWLEDGEMENTS............................................................................................... iv 

TABLE OF CONTENTS................................................................................................... vi 

LIST OF TABLES............................................................................................................ xii 

LIST OF ILLUSTRATIONS........................................................................................... xiii 

1. INTRODUCTION .......................................................................................................... 1 

2. LITERATURE REVIEW ............................................................................................... 4 

2.1. Response of Ceramics to Dynamic Loading............................................................ 4 

2.2. Defects in Ceramics ............................................................................................... 10 

2.2.1. Types and Sources of Defects......................................................................... 10 

2.2.2. Defect Populations .......................................................................................... 13 

2.2.3. Defects in SiC ................................................................................................. 14 

2.2.4. Identification of Porosity by Image Analysis ................................................. 19 

2.3. Spatial Data Analysis............................................................................................. 31 

2.3.1. Randomness, Regularity and Clustering......................................................... 32 

2.3.2. Planar Point Processes .................................................................................... 33 

2.3.3. K-function ....................................................................................................... 34 

2.3.4. Pair Correlation Function................................................................................ 35 

2.3.5. Nearest Neighbor Distance Distributions ....................................................... 36 

2.3.6. Tessellation Analysis ...................................................................................... 38 

2.4. Hardness of Ceramics and Its Relation with Armor Performance......................... 43 

2.4.1. Hardness of Ceramics ..................................................................................... 43 



 

 vii

2.4.2. Dependence of hardness on porosity .............................................................. 46 

2.4.3. The Relationship between Hardness and Ballistic Performance .................... 47 

2.5. Statistical Examination of Property Data in Ceramics .......................................... 53 

2.5.1. Normal Distribution ........................................................................................ 53 

2.5.2. Log-normal Distribution ................................................................................. 53 

2.5.3. Weibull distribution ........................................................................................ 54 

2.5.4. Weibull Statistics and Its Correlation with Defect Distributions.................... 58 

2.5.3. Weibull Distribution of Hardness data ........................................................... 61 

2.6. Nondestructive Evaluation by Ultrasound............................................................. 64 

3. METHOD OF ATTACK .............................................................................................. 66 

3.1. First objective: To develop a method for determining microstructural uniformity of 

second phases................................................................................................................ 67 

3.2. Second objective: To assess microstructural uniformity of second phases on a 

series of commercially available armor ceramics......................................................... 67 

3.3. Third objective: To determine microstructural uniformity using quasi-static 

properties ...................................................................................................................... 69 

3.4. Fourth objective: To correlate microstructural parameters with the quasi-static 

properties ...................................................................................................................... 69 

4. EXPERIMENTAL PROCEDURE ............................................................................... 71 

4.1. Sample Preparation for Microscopy ...................................................................... 72 

4.1.1 Grinding and Polishing .................................................................................... 72 

4.1.2. Serial Sectioning ............................................................................................. 72 

4.1.3. Etching ............................................................................................................ 73 



 

 viii

4.2. FE-SEM ................................................................................................................. 73 

4.3. Optical Microscopy................................................................................................ 74 

4.4. Spatial Data Analysis............................................................................................. 74 

4.4.1. Nearest Neighbor Distance Distributions ....................................................... 74 

4.4.2. Tessellation of Microstructures....................................................................... 76 

4.4.3. Pair Correlation Functions .............................................................................. 77 

4.5. Image Analysis ...................................................................................................... 78 

4.5.1. Porosity Measurements ................................................................................... 78 

4.5.2. Defect Size Distributions ................................................................................ 78 

4.6. Mechanical Testing................................................................................................ 78 

4.6.1. Microindentation............................................................................................. 78 

4.6.2. Grain size analysis .......................................................................................... 79 

4.6.3. Fracture Mode................................................................................................. 80 

4.7. Nondestructive Evaluation by Ultrasound............................................................. 81 

5. RESULTS AND DISCUSSION................................................................................... 86 

5.1. Off-Density Sintered Hexoloy-like Samples ......................................................... 86 

5.1.1. Density ............................................................................................................ 86 

5.1.2. Micrographs .................................................................................................... 86 

5.1.3. Average Pore Size and Pore Size Distribution ............................................... 87 

5.1.4. Nearest Neighbor Distance Distributions ....................................................... 87 

5.1.5. Tessellation Analysis ...................................................................................... 88 

5.1.6. Pair Correlation Functions .............................................................................. 90 

5.1.7. Assessment of Spatial Data Analysis Techniques .......................................... 90 



 

 ix

5.1.8. Serial Sectioning ............................................................................................. 91 

5.1.8.1. Average Pore Size and Pore Size Distribution ........................................ 91 

5.1.8.2. Nearest Neighbor Distance Distributions ................................................ 92 

5.2. Cercom Hot-Pressed SiC Samples......................................................................... 93 

5.2.1. First Set of Hot-Pressed SiC Samples............................................................. 93 

5.2.1.1. Density ..................................................................................................... 93 

5.2.1.2. Microstructural Evaluation ...................................................................... 93 

5.2.1.3. Average Pore Size and Pore Size Distribution ........................................ 94 

5.2.1.4. Nearest Neighbor Distance Distributions ................................................ 94 

5.2.2. Lundberg Samples .......................................................................................... 95 

5.2.2.1. Microstructural Evaluation ...................................................................... 95 

5.2.2.2. Density ..................................................................................................... 96 

5.2.2.3. Average Pore Size and Size Distribution................................................. 96 

5.2.2.4. Nearest Neighbor Distance Distributions ................................................ 97 

5.3. SiC Hexoloy SA Tile ............................................................................................. 98 

5.3.1. Ultrasound Image............................................................................................ 98 

5.3.2. High Magnification Images ............................................................................ 99 

5.3.2.1. Average Defect Size and Size Distribution ............................................. 99 

5.3.2.2. Nearest Neighbor Distance Distributions .............................................. 100 

5.3.3. Low Magnification Results........................................................................... 101 

5.3.3.1. Nearest Neighbor Distance Distributions .............................................. 102 

5.3.3.2. Locating Defect Clusters........................................................................ 103 

5.3.4. Serial Sectioning of Hexoloy SA Tile........................................................... 104 



 

 x

5.3.4.1. Nearest Neighbor Distance Distributions .............................................. 106 

5.4. Property Measurements ....................................................................................... 140 

5.4.1. Off-density Hexoloy SiC .............................................................................. 140 

5.4.1.1. Average Hardness .................................................................................. 140 

5.4.1.2. Comparison of Hardness Results with Rice’s model............................. 142 

5.4.1.3. Hardness Contour Maps......................................................................... 143 

5.4.1.4. Weibull Analysis.................................................................................... 145 

5.4.1.5. Interpretation of Weibull plots............................................................... 147 

5.4.1.6. Crack Paths ............................................................................................ 148 

5.4.2. Cercom Hot-Pressed SiC Samples................................................................ 150 

5.4.2.1. Average Hardness .................................................................................. 150 

5.4.2.2. Weibull Analysis.................................................................................... 151 

5.4.2.3. Grain Size Distribution around High and Low Density Regions .......... 153 

5.4.3. SiC Hexoloy SA Tile .................................................................................... 154 

5.4.3.1. Average Hardness .................................................................................. 154 

5.4.3.2. Hardness Contour Maps......................................................................... 154 

5.4.3.3. Weibull Analysis........................................................................................ 155 

5.4.4. Lundberg Samples ........................................................................................ 155 

5.4.4.1. Average Hardness .................................................................................. 156 

5.4.4.2. Weibull Analysis.................................................................................... 156 

5.5. Correlation between Microstructural Findings and Property Data...................... 176 

5.5.1. Off-Density Hexoloy Samples ...................................................................... 176 

5.5.2. SiC Hexoloy SA Tile .................................................................................... 177 



 

 xi

5.5.3. Cercom Hot-Pressed Samples....................................................................... 178 

5.5.4. Lundberg Samples ........................................................................................ 180 

5.5.5. Comparison between hot-pressed and sintered............................................. 182 

5.6. Practical Implications of This Thesis................................................................... 197 

6. CONCLUSION........................................................................................................... 199 

6.1. Off-Density Hexoloy Samples............................................................................. 199 

6.2. Cercom Hot-pressed SiC samples........................................................................ 201 

6.3. Lundberg Samples ............................................................................................... 202 

6.4. Hexoloy SA Tile .................................................................................................. 204 

6.5. Overall Conclusions............................................................................................. 206 

7. FUTURE WORK........................................................................................................ 208 

8. REFERENCES ........................................................................................................... 210 

9. CURRICULUM VITA ............................................................................................... 220 

 



 

 xii

LIST OF TABLES 
Table 4.1. Grinding/Polishing Procedure at 5-8 lbs/sample of force at 150 rpm ............. 81 

Table 4.2. Data generated in Image Processing Toolkit 5.0 ............................................. 83 

Table 5.2. P1 and P2 values of off-density sintered SiC samples.................................... 113 

Table 5.3.  Q and V results from each layer ................................................................... 115 

Table 5.5. T-test results of density between Region 1 and Region 2.............................. 135 

Table 5.6. T-test results of density between Region 3 and Region 2.............................. 135 

Table 5.7. T-test results of average defect size between Region 1 and Region 2........... 136 

Table 5.8. T-test results of average defect size between Region 3 and Region 2........... 136 

Table 5.9. T-test results of largest defect size observed between Region 1 and Region 2

......................................................................................................................................... 137 

Table 5.10. T-test results of largest defect size observed between Region 3 and Region 2

......................................................................................................................................... 137 

Table 5.11. Weibull modulus values for different loads................................................. 165 

Table 5.12. Percentage of fracture modes....................................................................... 166 

Table 5.13. Percentage of hardness values in each hardness range ................................ 172 

Table 5.14. Quasi-static and dynamic properties of Lundberg samples [14,183] .......... 174 

Table 5.15. Number of defects and average defect size for sintered and hot-pressed SiC

......................................................................................................................................... 194 



 

 xiii

LIST OF ILLUSTRATIONS 
Figure 1.1. An example of random variation in microstructures from location to location 3 

Figure. 2.1. An illustration of the projectile penetrating the ceramic armor [1]................. 8 

Figure 2.2. Representative shock compression profile in ceramics and schematic of brittle 

shear fracture process within shock-wave front [5]............................................................ 9 

Figure 2.3. Pore distributions in a sintered body and variations present due to (a) variation 

in grain sizes (b) die friction (c) local packing and agglomeration differences and (d) 

more rapid pore elimination near surfaces........................................................................ 18 

Figure 2.4. The hypothetical situation of a pore connected to three grains in an infinite 

solid................................................................................................................................... 24 

Figure 2.5. SEM micrographs of four different coatings showing pullouts [84].............. 25 

Figure 2.6. SEM images of a PSZ coating showing differences between a pore and a 

pullout [86]........................................................................................................................ 26 

(a) ...................................................................................................................................... 27 

(b)...................................................................................................................................... 27 

Figure 2.7. The images of (a) a pore, and (b) a pullout, after segmentation..................... 27 

Figure 2.8. (a) SEM image of a sintered SiC (b) Blown up feature in the center of the 

image (c) Form factor values shown after segmentation .................................................. 28 

Figure 2.9. (a) Another SEM image of a sintered SiC (b) Blown up area from the center   

(c) Form factor values shown after segmentation............................................................. 29 

Figure 2.10. (a) Another SEM image of a sintered SiC (b) Blown up image of an oval 

shaped feature (c) Form factor values shown after segmentation..................................... 30 

Figure 2.11. Four different types of spatial point pattern ................................................. 41 

Figure 2.12. Map of Q and V indices................................................................................ 42 



 

 xiv

Figure 2.13. Variation of the Minimum Solid Area with porosity for idealized pores cubic 

stacking (1) cylindrical pore axis perpendicular to the stress axis (2) cylindrical pore axis 

parallel to the stress axis [131].......................................................................................... 51 

Figure 2.14. Ballistic mass efficiency as a function of Knoop hardness for the materials 

tested using depth of penetration [138]............................................................................. 52 

Fig. 2.15. Relative density of flaw sizes versus flaw size. The dashed line shows a typical 

distribution, the full line the behavior necessary for a Weibull distribution. The dashed 

area gives the density of destructive flaws [164].............................................................. 63 

Figure 4.1. The shape of indent after each polishing step during serial sectioning.......... 82 

Figure 4.3. (a) Part of an original FESEM image (b) Processed image (c) After 

application of “invert” filter (d) “Skeletonize” filter applied (e) Second application of 

“invert” (f)Combined image of defects and cells around defects ..................................... 84 

Figure 4.4. Conversion of a rectangle shape into a circle for obtaining dequivalent where the 

areas of the figures are equal ............................................................................................ 85 

Figure 5.1. Micrographs of (a) SA-1 (b) SA-2  (c) EXT (d) SP ..................................... 108 

Figure 5.2. Average defect size for all samples .............................................................. 108 

Figure 5.3. Pore size distribution (a) SA-1 (b) SA-2 (c) EXT (d) SP............................. 109 

Figure 5.4. NND distribution of (a) SA-1 (b) SA-2 (c) EXT (d) SP .............................. 110 

Figure 5.5. Tessellated microstructures of (a) SA-1 (b) SA-2 (c) EXT (d) SP............... 111 

Figure 5.6. Cell area distributions of (a) SA-1 (b) SA-2 (c) EXT (d) SP ....................... 112 

Figure 5.7. P1 and P2 for all four samples ....................................................................... 112 

Figure 5.8. Pair correlation function plots of (a) SA-1 (b) SA-2 (c) EXT (d) SP........... 113 



 

 xv

Figure 5.9. Pore size distributions from (a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer

......................................................................................................................................... 114 

Figure 5.10. Nearest neighbor distance distribution from for (a) 1st layer (b) 2nd layer (c) 

3rd layer (d) 4th layer........................................................................................................ 115 

Figure 5.11. Micrographs of (a) LD (b) DEF (c) AG ..................................................... 116 

Figure 5.12. Average defect size for all three hot-pressed samples................................ 116 

Figure 5.13. Defect size distribution of all three hot-pressed samples ........................... 117 

Figure 5.14. Nearest neighbor distance distributions of all three hot-pressed samples.. 117 

Figure 5.15. Q-V plot of all three hot-pressed samples .................................................. 118 

Figure 5.16. Micrographs of (a)SiC-HPN (b)SiC-SC-1RN (c)SiC-N (d)SiC-B ............ 118 

Figure 5.17. Average defect size of Lundberg samples.................................................. 119 

Figure 5.18. Pore size distribution of Lundberg samples ............................................... 119 

Figure 5.19. Nearest neighbor distance distribution of (a)SiC-HPN (b)SiC-SC-1RN          

(c)SiC-N (d)SiC-B .......................................................................................................... 120 

Figure 5.20. Q-V map showing (a) each individual point (b) all points combined ........ 120 

Figure 5.21. C-scan image by ultrasound of Hexoloy SA3 ............................................ 121 

Figure 5.22. Representative micrographs of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12

......................................................................................................................................... 122 

Figure 5.23. Average defect size of each sample............................................................ 122 

Figure 5.24. Defect size distribution of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12 .... 123 

Figure 5.25. Defect size distribution of (a) Region 1 (b) Region 2 (c) Region 3 ........... 124 

Figure 5.26. Nearest neighbor distance distributions of (a) N1 (b) N4 (c) N5 (d) N8 (e) 

N9 (f) N12....................................................................................................................... 125 



 

 xvi

Figure 5.27. Nearest neighbor distance distributions of each region.............................. 126 

Figure 5.28.  Q-V plots based on (a) region (b) sample ................................................. 126 

Figure 5.29. Low magnification images of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12127 

Figure 5.30. Average defect size of all examined samples............................................. 128 

Figure 5.31. Defect size distributions of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12... 129 

Figure 5.32. Nearest neighbor distance distributions of (a) N1 (b) N4 (c) N5 (d) N8 (e) 

N9 (f) N12....................................................................................................................... 130 

Figure 5.33.  Q-V plot according to the low magnification images ............................... 131 

Figure 5.34. An illustration of the interevent distance.................................................... 131 

Figure 5.35. One of the ten images from N9 .................................................................. 132 

Figure 5.36. Binary image of N9 .................................................................................... 132 

Figure 5.37. Optimum limiting interevent distance determination................................. 133 

Figure 5.38. Demonstration of clusters when R=20 μm................................................. 133 

Figure 5.39. Demonstration of clusters and random background when R=20 μm......... 134 

Figure 5.40. Demonstration of clusters in the original image......................................... 134 

Figure 5.41. Density values from 5 layers obtained by serial sectioning ....................... 135 

Figure 5.42. Average defect size values from 5 layers obtained by serial sectioning .... 136 

Figure 5.43. Largest defect observed at 5 layers obtained by serial sectioning.............. 137 

Figure 5.44. Q-V maps showing (a) The identified regions (b) 1st layer (c) 2nd layer (d) 3rd 

layer (e) 4th layer (f) 5th layer .......................................................................................... 138 

Figure 5.45. Q-V maps of all five layers from (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12

......................................................................................................................................... 139 

Figure 5.46. Average hardness vs. load for off-density SiC samples ............................. 158 



 

 xvii

Figure 5.47. Average hardness values of off-density SiC samples (a) 2 Kg (b) 1 Kg (c) 

0.5 Kg (d) 0.3 Kg (e) 0.1 Kg........................................................................................... 159 

Figure 5.48. Contour maps at 2 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP.................... 160 

Figure 5.49. Contour maps at 1 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP.................... 161 

Figure 5.50. Contour maps at 0.5 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP................. 162 

Figure 5.51. Contour maps at 0.3 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP................. 163 

Figure 5.52. Contour maps at 0.1 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP................. 164 

Figure 5.53. Weibull plot at (a) 2 Kg (b) 1 Kg (c) 0.5 Kg (d) 0.3 Kg (e) 0.1 Kg where          

A = SA-1, B = SA-2, C = EXT, D = SP ......................................................................... 165 

Figure 5.54. Average hardness at (a) 2 Kg (b) 1 Kg (c) 0.5 Kg (d) 0.3 Kg (e) 0.1 Kg... 166 

Figure 5.55. Weibull plot at 2 Kg for Cercom SiC samples ........................................... 167 

Figure 5.56. Weibull plots of (a) AG (b) LD (c) DEF at all loads.................................. 167 

Figure 5.57. (a) Selected areas in the contour map of Cercom SiC samples (b) a 

micrograph from high hardness region (c) a micrograph from low hardness region ..... 168 

Figure 5.58. Grain size distribution around (a) high hardness region (b) low hardness 

region .............................................................................................................................. 169 

Figure 5.59. Grain size clustering around high and low hardness regions ..................... 170 

Figure 5.60. Indents from Hexoloy samples of (a) N2 (Region 1) (b) N6 (Region 2)          

(c) N10 (Region 3) .......................................................................................................... 171 

Figure 5.61. Average hardness of Hexoloy samples (N2, N6 and N10) ........................ 171 

Figure 5.62. Contour maps of Hexoloy samples N2, N6 and N10 ................................. 172 

Figure 5.63. % Hardness vs. hardness range .................................................................. 173 

Figure 5.64. Weibull modulus of each Hexoloy sample at 2 Kg.................................... 173 



 

 xviii

Figure 5.65. Average hardness of Lundberg samples at 2 Kg ........................................ 174 

Figure 5.66. Weibull plots for each sample .................................................................... 175 

Figure 5.67. Average hardness vs. d(1,1) for off-density SiC density samples.............. 185 

Figure 5.68. Average hardness vs. average defect size for off-density SiC samples ..... 185 

Figure 5.69. Average hardness vs. average defect size for SiC Hexoloy tile ................. 186 

Figure 5.70. Weibull modulus vs. average defect size for SiC Hexoloy tile.................. 186 

Figure 5.71. Average hardness vs. d(1,1) for SiC Hexoloy tile...................................... 187 

Figure 5.72. Weibull modulus vs. d(1,1) for SiC Hexoloy tile....................................... 187 

Figure 5.73. % Hardness vs. average defect size for SiC Hexoloy tile .......................... 188 

Figure 5.74. % Hardness vs. d(1,1) for SiC Hexoloy tile ............................................... 188 

Figure 5.75. Average hardness at 2 Kg vs. d(1,1) for hot-pressed SiC samples from 

Cercom............................................................................................................................ 189 

Figure 5.76. Average hardness at 0.3 Kg vs. d(1,1) for hot-pressed SiC samples from 

Cercom............................................................................................................................ 189 

Figure 5.77. Average hardness vs. average defect size for hot-pressed SiC samples from 

Cercom............................................................................................................................ 190 

Figure 5.78. Weibull modulus at 0.1 Kg vs. average defect size for hot-pressed SiC 

samples from Cercom ..................................................................................................... 190 

Figure 5.79. Weibull modulus at 0.1 Kg vs. d(1,1) for hot-pressed SiC samples from 

Cercom............................................................................................................................ 191 

Figure 5.80. (a) Average hardness vs. average defect size (b) Average hardness vs. d(1,1) 

for Lundberg samples ..................................................................................................... 191 



 

 xix

Figure 5.81. (a) Elastic modulus vs. average defect size (b) Elastic modulus vs. d(1,1) for 

Lundberg samples ........................................................................................................... 192 

Figure 5.82. (a) Fracture toughness vs. average defect size (b) Fracture toughness vs. 

d(1,1) for Lundberg samples........................................................................................... 192 

Figure 5.83. (a) Transition velocity vs. average defect size (b) Transition velocity vs. 

d(1,1) for Lundberg samples........................................................................................... 193 

Figure 5.84. (a) Penetration velocity vs. average defect size (b) Penetration velocity vs. 

d(1,1) for Lundberg samples........................................................................................... 193 

Figure 5.85. (a) Average normalized projectile erosion rate vs. average defect size (b) 

Average normalized projectile erosion rate vs. d(1,1) for Lundberg samples................ 194 

Figure 5.86. Defect size distribution of (a) sintered (b) hot-pressed SiC ....................... 195 

Figure 5.87. Nearest neighbor distance distributions of sintered and hot-pressed SiC .. 195 

Figure 5.88.  Q-V plot for sintered and hot-pressed SiC ................................................ 196 

Figure 5.89. Average hardness for sintered and hot-pressed SiC ................................... 196 



1 

 

1. INTRODUCTION 
Armor ceramics are important components of advanced armor systems designed 

to defeat a variety of threats. Therefore, the material properties of armor ceramics are 

vital in order to be capable of handling the kinetic energy and momentum of the 

projectile.   

Ceramics offer many promising properties for armor applications, such as high 

specific stiffness, high specific strength, high hardness, and chemical inertness. The 

unique combination of the low density, superior hardness, and high compressive strength 

has made wide varieties of ceramics primary candidates for armor systems that are 

subject to ballistic threats. If properly designed, ceramic armors can erode or fragment 

armor piecing projectiles and spatially spread the impact energy.  

However, ceramics must be free of any unwanted inclusions and possess high 

formed density with small amounts of porosity so that their potential superior properties 

could be realized. Carbonaceous defects are commonly present in ceramic armor samples 

and porosity in small percentages is also unavoidable, therefore, more thorough 

characterization on these flaws is required. The spatial arrangement of pores or second 

phases, such as inclusions, is a microstructural characteristic expected to affect the 

ballistic performance of ceramic armor materials. For example, at a given volume 

fraction and average size of pores, clustered porosity or agglomerated second phases are 

expected to be more detrimental to the ballistic performance of an armor plate than it is 

when porosity or second phase is uniformly distributed. Therefore, it is of interest to 

estimate the statistical descriptors of the spatial arrangement of porosity and inclusions.  
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High percent theoretical density has generally been desired for maintaining 

structural integrity and is believed to be one of the acceptance criteria for product 

selection. Hot pressing is a more powerful technique to produce dense SiC than sintering 

is; however, inclusions and especially porosity are inevitable in both techniques. Pores 

may be present in different shapes and volumes, which will have a certain effect on the 

ballistic performance of the final product. The microstructure of armor materials must be 

examined thoroughly to set selection standards.  

The scale of microstructural examination is a key issue in determining the 

microstructural integrity of materials. Micro-scale observations lead to morphology 

characterization such as shapes, sizes, spatial distributions, networks, volume fractions. 

Therefore, some techniques are required to quantitatively describe microstructures. 

In this thesis, the relationship between flaw density/distribution and quasi-static 

properties will be correlated. When loading leads to localized stresses, local flaw 

distributions dominate. Weak spots at the micro-scale might lead to macro-scale failures. 

In view of this information, microstructural characterization concentrated on the spatial 

arrangement of features must be performed due to its importance in the performance of 

final product. 

Different types of defects or flaws, such as carbon inclusions, metallic inclusions, 

pores could be found in sintered or hot-pressed materials. The emphasis in this thesis is 

given to density reducing and porosity attributed to carbon inclusions. Location of a 

feature is an important concept as well as its size and size distribution. Microstructure 

usually varies randomly from location to location as demonstrated in Fig. 1.1 and still, 

spatial distribution is often times overlooked. However, these microstructural 
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inhomogeneities cause the variations in density, which might be detrimental to the 

properties such as elastic modulus, hardness and strength of a material. Microstructural 

investigation is a good way to assess these variations in density, which is a result of 

pores, inclusions, their location and possible clustering.  

 

 
Figure 1.1. An example of random variation in microstructures from location to location 
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2. LITERATURE REVIEW 

2.1. Response of Ceramics to Dynamic Loading 
The reaction of a ceramic material to a ballistic event is complex. Several 

parameters come into play in the ballistic performance of a material. The sequence of 

events during penetration of a projectile can simply be explained using Figure 2.1 [1]. 

According to Luo et al. [1], as the projectile hits the target ceramic material, it is either 

stopped or dwells.  This dwell allows the shock wave to propagate through the ceramic. It 

is through the interaction of the shockwave and the microstructure where cracks are 

introduced. These cracks will rapidly propagate and form a crack network, which will 

create a comminuted zone around the tip of the penetrator. Small ceramic fragments 

ahead of the penetrator flow radially around the tip of penetrator as it proceeds into the 

damaged zone. Then, those fragments are pushed back as erosion of the penetrator 

occurs. In the later stages of penetration, the fragments continue to wear down the 

penetrator up to the point where either the projectile erodes or the target material is 

penetrated. Ballistic performance of a material is highly influenced by the resistance of 

material to comminution [2, 3]. 

Time plays a key role in ballistic events, where the duration of loading 

drastically affects the response of a material [4-8]. The loading rate has a direct 

correlation with the amount of energy lost to the mechanisms other than crack 

propagation [9,10]. The energy absorbed by a specimen in dynamic fragmentation has 

several components, such as the surface energy consumed in the formation of fragments 

and the kinetic energy of fragments. In addition, branching cracks near the fracture 

surface and micro-cracks within the fragments produced under dynamic loading were 

also detected [11,12]. Both the branching cracks near the fracture surfaces and the micro-
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cracks within the fragments must consume input energy to a certain degree. Therefore, 

the energy absorbed by the target consists of three main parts: the surface energy, the 

kinetic energy, and the energy spent during producing inner cracking damage of the 

fragments.  

Shock waves created during a ballistic event show different loading paths 

depending on the target material. The loading starts elastically in metals. A sharp “knee” 

is observed at the beginning of inelastic deformation. This ‘‘knee’’ stands for the 

Hugoniot Elastic Limit (HEL), which in metals is defined as the point where plastic 

deformation starts. In ceramics, a different structure of the compressive loading path is 

monitored. The intensity of the incoming shock dictates the shape of the curve. If the 

stress is in the range of 1.0–1.5 times the HEL, the curve rises until the stress is relieved 

by a release wave. When the stress range approaches twice the HEL value or more, the 

curve starts ramping and continues with a steeper slope [5].  

Compression wave profiles were studied were studied by Grady, where he 

observed three distinct regions before failure, shown in Fig. 2.2. Initially, a sudden elastic 

rise to the failure limit (HEL) is observed. The failure ramp is a representation of rapidly 

changing compressibility. This stage is followed by deformation shock, where shear 

fracture grows within the shock front. [5].  

Armor system designs have been focused on the capability of defeating high 

velocity projectiles on the surface of the ceramic, which is called interface defeat. This 

concept shows that the projectile material is forced to flow radially outwards on the 

surface of the ceramic without any considerable penetration. When the surface load 

produced by the penetrator goes above a critical value, a transition between interface 
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defeat and normal penetration behavior occurs at a critical impact velocity of the 

projectile [13,14]. Ceramic behaves as exceptionally strong below this transition velocity 

while it behaves considerably worse at a value above [13]. The amount of time spent by a 

projectile before it starts penetrating is called dwell time. This notion is important in the 

sense that a longer dwell time dissipates more energy and increasing dwell time will help 

interface defeat [15]. 

Three regimes of penetration can be observed in a range of impact velocities, 

which varies from the subsonic velocity to hyper velocities. In the first regime of lower 

velocity range (less than 103 m/s), non-deformable projectile penetration is valid where 

physical property values dictate the degree of penetration. Studies by Chen and Li [16,17] 

introduced two parameters, which were the impact function I and the geometry function 

of projectile N, in order to predict depth of penetration. The results showed good 

agreement with penetration on various types of materials. 

The second regime is based on the Alekseevskii–Tate model, concerning long-

rod penetration into a thick target where erosion and penetration occurs simultaneously 

[18]. 1.0 km/s to 3.0 km/s is the typical impact velocity range for this regime, which also 

depends very much on the material properties of the projectile and the target material.  

This part is also called the semi-hydrodynamic regime, followed by the hydrodynamic 

regime of penetration, where the impact velocity is greater than 3.0 km/s. Unlike the 

lower velocity range, material properties of neither the projectile nor the target material is 

important since fluid-fluid interaction occurs [19,20]. 

The effect of microstructure and the presence of defects play an important role 

in a ballistic event. When microstructure is considered, defects should also be taken into 
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account as they are inevitable components of a system. The effect of stress rate plays an 

important role as very low stress rates instigate the breaking of the dominant defect of a 

whole population [20].  A model was developed by Paliwal and Ramesh, for brittle 

failure under compressive loading by accounting of micro-crack interactions. It was 

shown that the influence of flaw distribution at different strain rates is significant. The 

spread of the distribution is the determining factor at low rates whereas total defect 

density starts to dominate as strain rate increases [21]. 

Molinari et al. modeled the ballistic event in a solid having a microstructure 

[22-26]. He looked at the influence of defect distributions on the fragmentation process, 

which showed rate-hardening of the material. An increase in the failure strength of the 

test bar was observed with strain rate increases. In the extreme condition of very high 

strain rate, the material demonstrated average material strength rather the weakest-link 

strength in the quasi-static region. The spatial distribution of defects was taken account in 

that study as well. The relationship between the average fragment size and the strain rate 

was examined using spatial distribution of defects, where, random distribution and 

regular distribution were contrasted. A smooth hardening effect was observed as well as a 

continuous strain rate and average fragment size relationship, where the defects were 

randomly distributed in a material. It was also found that the spread in fragment size 

distributions were narrower when the spatial distribution of defects were regular [26]. 

As a part of the microstructural investigation, Warner and Molinari proposed a 

model to study the intergranular fracture in alumina by taking the constitutive properties 

of the grain boundaries into account. An insight on the relationship between the grain 

boundary strength and macroscopic response was developed. According to the model, the 
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length of the longest microcrack cluster or the variance of microcrack length might offer 

a standard to predict possible catastrophic failure [24]. 

 

 

 

 

Figure. 2.1. An illustration of the projectile penetrating the ceramic armor [1] 
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Figure 2.2. Representative shock compression profile in ceramics and schematic of brittle 
shear fracture process within shock-wave front [5] 
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2.2. Defects in Ceramics 

2.2.1. Types and Sources of Defects 
Defects are critical for ceramics since they are the root causes of mechanical 

failure. Porosity, inclusions, density gradients, insufficient or excessive additive use, non-

uniform additive distributions, large grains could be listed as the main categories in the 

subject of defects [27]. Most defects are introduced into the system during processing. 

Some are initiated during post-processing, such as surface cracks created during 

machining or surface finishing [28].  

Process-derived defects could arise from the starting powder. Particle size 

variations in the starting material might produce pore concentration differences 

throughout the material. A significant amount of defects were caused by the presence of 

agglomerates of the fine particles. These fine particles sinter rapidly, which leads to inter-

agglomerate pores. Bridging of agglomerates might also lead to larger voids during 

sintering.  These variations in the initial green body might give rise to a wide pore size 

distribution and the lack of elimination of larger pores might contribute to this in the final 

product [27]. 

Careful and proper application of dry-pressing step in ceramic manufacturing is 

important as it has a significant effect on sintering shrinkage, final density, microstructure 

and mechanical properties [29-31]. The inhomogeneities in the green body unavoidably 

cause development of defects. The importance of particle size distributions on 

sinterability were studied by Yeh and Sacks [29]. The conclusion of this study was that 

less shrinkage was observed in the materials with broad particle size distributions. Zhao 

and Harmer [30] studied the densification rate as a function of increasing green densities. 
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They observed an increase in densification rate in addition to a rise in grain growth rate 

with increasing pre-sintering densities. 

The effect of green density on the final properties was examined by Occhionero 

and Halloran [31]. Samples with equal sintered densities but different green densities 

were analyzed in terms of the pore size distribution and significant differences were 

observed in the size range of voids. The sample with the highest green density showed a 

narrow pore size distribution, while the sample with the lowest density displayed a much 

broader distribution. This study could provide explanation to density variations inside 

green bodies. While high density regions possess narrow pore size distribution, broader 

size distributions could be present in lower density regions. Therefore, local porosity 

differences inside samples could be linked to particle packing [32-34]. An important 

factor to fluctuations of density inside a sample is the die-wall friction during pressing. 

More rapid pore elimination near surfaces has been observed in ceramic pieces during 

sintering which promotes inhomogeneous distribution of pores [27]. 

Binder removal is another issue that plays a key role in the defect and porosity 

formation. This process might cause structural change; therefore, the distribution of 

binders in a green body is critical [35,36]. Molten binder at high temperatures is 

redistributed inside the material by capillary forces, which is variable with physical 

properties of the binder and volatile product removal rate.  Due to the common problem 

of non-uniform sample density, binder redistribution and differential shrinkage are 

frequently observed. This leads to inhomogeneous dimensional changes and distortion of 

the end product [36]. 
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Low levels of binder (<10 vol%) are employed in pressing operations and 

sintering, which might produce green bodies that have enough open porosity for removal 

of volatile materials from the core to the surface. Green bodies of this type are called 

open-pore compacts. The connected porosity acts as a route for volatile material 

elimination. This aspect of green compacts makes it fairly easy to debind [37]. Although 

it is advantageous to use these chemical stabilizers as explained above, the presence of 

sintering aids and binders causes a certain amount of porosity in the final product. [38-

41]. Flaws could also be introduced into ceramics by post-processing steps such as 

machining damage resulting in cracks and cracks triggered by thermal expansion 

anisotropy [38,39,42]. Pore distributions in a sintered body are given in Fig. 2.3. 

Inclusions are another type of flaws common in ceramics. It is the result of a 

foreign material trapped within the host material, and can occur from impurities, 

contamination, or excess sintering additives. They are one of the major sources of failure 

since they act as stress concentrators. Thermal expansion coefficient mismatch between 

the inclusion and the matrix is a possible source of generating interfacial stresses. [28] 

Contraction of grains during cooling in the densification stage is another possible 

source of producing interfacial stresses due to the resistance from neighboring grains. As 

contraction and resistance occur simultaneously, residual stresses build up inside the 

material at grain boundaries and triple junctions. Microcracking might occur as a result of 

this interaction [43]. 
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2.2.2. Defect Populations 
Defect populations were studied extensively due to their close relationship with 

the failure of ceramics. Size distributions and orientation of flaws were investigated by 

Jayatilaka and Trustrum. The conclusion to their study was that the distribution of the 

strength data is caused by the distribution of sizes and orientations of the flaws for a 

brittle and homogeneous material. Weibull distribution of strength was observed for flaw 

populations with a monotonically decreasing density of flaw sizes [44]. 

Uematsu et al. did noteworthy research on defect size distributions, where they 

looked at thin sections of alumina using transmission optical microscopy [45-47]. Pore 

size distributions were plotted and it was related to the experimental strength tests. The 

size distribution of defects was found to follow power law function [45,46,48] shown 

below: 

baxy −=            2.1 

 

The fit to power law has been observed in other studies where distribution 

changed monotonously in the region of defect size larger than a few micrometers for 

sintered Si3N4 [49] and HIP-Al2O3 [47]. Takahashi et al. [49] reported the relationship 

between the defect distribution in sintered silicon nitride and the dispersion of the slurry. 

The defect size distribution follows the power law, and the constants, a and b, for the 

materials made from the flocculated slurry were bigger than those from well-dispersed 

slurry.  

Gee studied the dependence of the predictions on the assumed form the defect-

size distribution for two different distributions: a power law and an exponential law for 6 
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wt.% Co-WC. The two derived failure stress distributions were compared with three 

point bend test results and both fit the experimental data well. However, when predictions 

were later made for larger components, a discrepancy was found between the predictions 

made with the two distributions. As the component volume was increased and the 

required failure probability was decreased, the power law gave the most conservative best 

failure probability predictions [50].  

In his PhD thesis, Bakas examined rubbles of ballistically tested hot pressed SiC 

tiles and he focused on inclusions, mainly C and Al/Fe/O. He examined ballistically 

impacted tiles that performed well and tiles that performed poorly and tried to identify 

differences in terms of inclusion populations. He observed that the distribution of 

inclusions on the rubble made a good fit to a modified inverse power law function 

derived by Jayatilaka and Trustrum [51]. 

Defect size distributions have been a key part in several studies involving 

different materials and they appeared to obey the power law. This will be put to the test in 

this thesis as pore size distributions will be obtained from sintered and hot-pressed silicon 

carbide samples. 

 

2.2.3. Defects in SiC 
As any other ceramic, silicon carbide armor materials are known to contain 

microstructural defects, including inclusions, isolated pores and porous areas, large 

grains, non-uniform distribution of additives at grain boundaries. These defects play an 

important role mechanical property variations and possibly, in ballistic efficiency. As 

some of the defects are common such as porosity, some of them are anomalous in the 
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sense they are not as frequent. Examples to the anomalous defects are pores that are much 

greater than the grain size, foreign inclusions or a very low percentage of porous areas 

within a dense matrix. Although not as common, these could be equally significant in the 

ballistic performance of a silicon carbide armor plate as they might activate macroscopic 

cracking near the beginning of a ballistic event [52,53]. 

SiC is a covalently bonded material, possessing only 9% to 12% ionic character. 

The shortness, directionality and strength of the bonds make it very difficult to achieve to 

high density [54]. A partial solution to this problem is using additives such as boron, 

carbon and aluminum during sintering [54-64] or hot pressing [65-70]. Although they 

considerably enhance densification, they might also act as defects in the cases where non-

uniform distribution and their excessive or insufficient use come into play. 

Carbon is the most common additive among the ones mentioned above. 

Hamminger [54] studied the inclusions of excess free carbon, which was found in the 

form of graphite, using Auger electron spectroscopy and TEM. The size range of these 

carbon inclusions showed a large variation, mainly due to the starting concentration and 

the uniformity distribution. He stressed the importance of their spatial distribution as 

inhomogeneities of these defects could lead to agglomerate-type flaw dimensions.  

More et al. studied boron-containing phases in sintered SiC. This phase, which 

was B4C containing minor levels of Si, was a result of the densification aids used in the 

sintering. It was stated that they could also evolve as 20 nm precipitates during annealing 

well below the sintering temperature. According to the observations, grain boundaries 

were free of any boron-containing phase [71]. 
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Extensive TEM analysis of SiC grain boundaries was performed by Carpenter et 

al.  They examined liquid phase sintered SiC with additions of Al2O3 and Al4C3 using 

high resolution TEM.  It was found out that grain triple junctions and some grain 

boundaries have considerable amounts of Al, C, O and Si.  These zones were mostly free 

of glassy phases, indicating that high degree of crystallization was obtained during 

cooling stage [72].  

Prior to the study by Zhang et al. [73], secondary-phase inclusions in ABC–SiC 

phases [74], such as Al8B4C7 [75,76] and Al4C4O [77] were identified, which were 

mostly isolated or located at triple junctions [78]. Zhang et al extended these studied by 

looking at triple junctions, inside grains and at grain boundaries using TEM. Boron-free 

phases of Al(Si)-O-C and Al(Si)-O were observed at triple junctions. Sulfur 

contamination was also detected in Al(Si)-O-C phase. Al2O2.2(B0.9C2.1) was the 

composition of the phase found as intra-grain and inter-grain inclusions, although 

fluctuations of B and C content were observed other than the specified composition. 

Shape differences between these inclusions were also seen as intra-grain inclusions were 

spherical while slabs of the same phase were squeezed in between grains [73].  

Sherman studied defects in sintered and hot-pressed silicon carbide and tried to 

separate intergranular and transgranular chemistries using Auger electron spectroscopy. 

He found out that the hot pressed material he used in the study showed mixed 

intergranular and transgranular fracture. Si, C, Al, Ca, Zr, O, and N were the elements 

detected at the grain facets while transgranular facets showed only Si and C. On the other 

hand, sintered SiC showed mostly transgranular fracture. Both transgranular and 
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intergranular sites showed similar elemental data, with a small amount of boron on both 

[79]. 

As mentioned previously, Bakas examined the surface of ballistic rubble from two 

different hot-pressed SiC V50 targets in order to investigate any relationship between 

defects and ballistic performance. Two types of defects were observed; those having 

carbonaceous inclusions and those inclusions with Al/Fe/O peaks. Carbon inclusions 

could be accepted as voids in their mechanical behavior due to the elastic constant 

mismatch with SiC. The second type of inclusions with Al/Fe/O peaks was observed to 

be larger than carbon. Bakas predicted that these elements belong to alumina or alumino-

silicate spinel with different levels of iron contamination. The distributions obtained from 

carbonaceous defects were considerably different for the “good” and “bad” target while 

that was not the case for Al/Fe/O inclusions [51].  

Consequently, during the tailoring of SiC microstructure, a significant amount of 

additives are used which increase the likelihood of introducing defects to the system as 

pores and certain types of inclusions are common in armor silicon carbide. Since, their 

presence is unavoidable to a certain extent, size and spatial distribution information must 

be determined as these parameters possibly affect ballistic efficiency. 
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Figure 2.3. Pore distributions in a sintered body and variations present due to (a) variation 
in grain sizes (b) die friction (c) local packing and agglomeration differences and (d) 

more rapid pore elimination near surfaces  
 

 

 

 

 

 



19 

 

2.2.4. Identification of Porosity by Image Analysis 
Pore identification is a critical step in microstructural analysis. The basics of pore 

evolution and curvatures in pores should be emphasized in order to make an assessment 

on pore morphology.  

During sintering, the hypothetical situation of a pore connected to three grains in 

an infinite solid, given in Fig. 2.4, can be considered. Equilibrium will impose two 

important requirements on the geometry. First, the chemical potential of the atoms under 

the pore surface must be same everywhere. Therefore, the curvature of pore surface must 

be the same everywhere, consisting of circular arcs in two-dimensional models. Second, 

no net force must be present at the junction of the pore surface and the grain boundary. 

This leads to a specific angle of intersection between the surface and the grain boundary 

at the junction. Representing the interfacial tensions as vectors, with magnitudes equal to 

the surface and grain boundary tensions and with directions tangential to the pore surface 

or in the direction of the grain boundary, then force balance gives: 

 

     gbSV γψγ =
2

cos2             2.2 

 

where γsv is the surface energy, γsb is the grain boundary energy, and ψ is the 

dihedral angle. Surface and grain boundary energies are susceptible to changes due to 

impurities and crystal orientation, so the dihedral angle may not be the same everywhere 

[80]. Careful measurements of thermal grooves in MgO and Al2O3 show a wide variety 

of dihedral angles in each material [81]. The distribution for undoped Al2O3 is 

particularly broad but becomes considerably narrower upon doping with MgO. The 
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average dihedral angle is ~120°, but many of the angles are less than 120°, corresponding 

to γsv< γgb. Values of dihedral angle range from 105° to 113° for ceramics, implying that 

γgb / γsv is 1.1 to 1.2 [80]. The geometrical considerations can be extended to three 

dimensions, in which case, the pore is a polyhedron. This analysis was carried out by 

Kingery and Francois [82]. 

During microstructural analysis, pores might not be identified as easily due to the 

deviation of shapes from the theoretical cases explained above. In addition to that, during 

grinding and polishing ceramics, specific problems are encountered that are related to the 

high hardness and brittle behavior of this class of materials. Pullouts are frequently 

observed during the grinding of ceramic samples. These pullouts can result in an 

incorrect microstructural analysis, since it is more difficult to identify pores. Besides, 

measurement of grain size, determination of particle distribution and other related 

problems arise due to the presence of pullouts. Although the pullout effect can be reduced 

by modifying the grinding parameters of the sample preparation machine, such as longer 

polishing times and lower applied forces that could lead to a small improvement in the 

quality of the polished samples, total elimination might still be difficult and the pullout 

problem might not be solved completely [83]. 

Studies were carried out to examine the polishing-induced pullouts in a 

microstructure [84,85].  Li and Ding characterized microstructures of plasma sprayed 

Cr3C2-NiCr coatings by scanning electron microscopy and image analysis techniques. 

The fractal character of the circumferences of polishing-induced pull outs of plasma 

sprayed Cr3C2-NiCr coatings was observed by means of the perimeter-area relationship. 

The purpose of this study was to report the fractal dimensions of circumferences of 
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polishing-induced pull outs of the coatings sprayed using different starting powders and 

correlate that with fracture toughness. 

SEM micrographs of four different coatings from that study are given in Fig. 2.5.  

It was reported that although some of the pits on polished surfaces of the coatings were 

pores formed during spraying, most of the pits were pullouts produced during the 

polishing process. The circumferences of the pullouts were irregular and their lengths 

were obviously longer than the corresponding smooth circumferences. These pullouts 

were formed due to crack propagation and fracturing of lamellar splats caused by 

indentation stress fields of the hard abrasive particles. Li and Ding mentioned that it 

seemed promising to use shape parameters to characterize circumferences of polishing-

induced pullouts of some thermal sprayed coatings with which fracture toughness of the 

coatings can be correlated [84].  

In a study by Deshpande et al.,  image analysis methods were applied to a variety 

of thermally sprayed coatings; materials of interest in this study being produced from 

partially stabilized zirconia (PSZ, ZrO2+8% Y2O3) and alumina ceramics. The results 

have been complemented with the microstructural information obtained using advanced 

characterization techniques, such as small-angle neutron scattering (SANS) and computer 

micro-tomography (CMT) carried out on similar coatings.  

Fig. 2.6 shows an SEM image of a typical PSZ coating microstructure with 

various features highlighted. It can be seen how the higher depth-of-field of the SEM, to 

a large degree, enables to distinguish between pores and pullouts. Pores are more or less 

circular features with a planar inner surface whereas pullouts are irregular in shape and 

indicate material removal with their rough internal surface. Then, for conducting image 
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analysis, similar sized regions were chosen from the micrographs by discarding areas 

with pullouts [86]. 

According to the statements above, attributes to a feature, mainly shape, could be 

used as a determining factor for distinguishing between a pullout and a pore. The fact that 

“irregularity” of the shape of feature is critical; a shape parameter could be used to assign 

a number to each feature.  

Form factor is a widely used parameter in image analysis and it can be calculated 

by the following formula: 

 

  2Perimeter
Areafactor Form ⋅

=
π4

           2.3 

 

The form factor is 1.0 for a perfect circle. Any other shape will have more 

perimeter for the same area and the form factor describes this increase. As the irregularity 

of the shape increases, it becomes much smaller. A many-petalled flower may have form 

factors of 0.05 or even less [87]. Use of form factor serves the same purpose the fractal 

dimensions does, taking perimeter and area relationship into account.  

Fig. 2.7 shows the images from Fig. 2.6 after segmentation was performed and the 

form factor values are given on the images.  The form factor value for the pore was 

calculated as 0.867 while the value for the pullout was 0.258. This example roughly 

shows the distinction between a pore and a pullout in terms of a shape parameter. A 

certain value in between the two can be set as a baseline for removing pullouts from the 

images. Defining a certain threshold value for this might be difficult but density could be 

used to verify whether a correct threshold value is used or not. 
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Three images of defects from a Hexoloy SiC tile used in thesis are given in Fig. 

2.8, Fig. 2.9 and Fig. 2.10. Fig. 2.8 shows a large feature at the centre and a smaller one 

close to the left corner. The large feature possesses an obvious irregularity and the inner 

part shows material removal therefore, this could easily be defined as a pullout. 

Although, not as distinct, same statements are valid for the other feature. Image analysis 

was performed on this image and the form factor values are obtained for each one, 0.358 

and 0.532, for the large feature and the smaller one, respectively.  

Fig. 2.9 shows a group of pores, and possibly, pullouts. The largest one in the 

image has the attributes to that of pullout. There is another possible pullout close to the 

lower right corner that looks like a “teardrop” with a very sharp corner that is a result of 

meeting two straight lines, which is uncharacteristics of pores according to the 

explanations stated earlier. A few pullouts other than these two can also be identified in 

the image. Form factors values were calculated again and they are written on each feature 

in Fig. 2.9. The values are 0.284 and 0.614 for the largest feature and “the teardrop”, 

respectively. The ones that look like pores have values around 0.800. 

Fig. 2.10 shows an oval shaped feature. The irregularity of the perimeter is still 

valid and the inner part of the feature indicate material removal so this is accepted as a 

pullout according to the previous descriptions. There are four other features in the field of 

view, all of which look like pores but the one right above the central large feature. Form 

factor values were obtained again, with the values of 0.642 and 0.623 for the two possible 

pullouts. 

According to the observations and the literature shown above, it is reasonable to 

say that form factor values of pullouts go up to approximately 0.650. The features in 
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images that resemble pores possesses form factor values of approximately 0.800 and 

above. Therefore, these observations might imply that a threshold value between these 

two numbers likely eliminates pullouts from micrographs and enables microstructural 

analysis to be more accurate. Previous tries using 0.700 as a threshold value was 

successful as the density obtained from micrographs matched up well with the actual 

density values. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. The hypothetical situation of a pore connected to three grains in an infinite 
solid 
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Figure 2.5. SEM micrographs of four different coatings showing pullouts [84] 
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Figure 2.6. SEM images of a PSZ coating showing differences between a pore and a 
pullout [86] 
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Figure 2.7. The images of (a) a pore, and (b) a pullout, after segmentation 
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Figure 2.8. (a) SEM image of a sintered SiC (b) Blown up feature in the center of the 
image (c) Form factor values shown after segmentation 
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Figure 2.9. (a) Another SEM image of a sintered SiC (b) Blown up area from the center   

(c) Form factor values shown after segmentation 
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(c) 

 
Figure 2.10. (a) Another SEM image of a sintered SiC (b) Blown up image of an oval 

shaped feature (c) Form factor values shown after segmentation 
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2.3. Spatial Data Analysis 
It was shown in Section 2.2 that inhomogeneities in ceramics are common. The 

degree of homogeneity or how well features are distributed inside a material is one of the 

key aspects of materials characterization. It is believed that more uniform microstructures 

with small amounts inclusions demonstrate better ballistic strength. The issue, in this 

case, is to “quantify” the uniformity and give a rank to a specific sample while 

characterizing certain number of samples. For example, the difference between the 

performance of 3.18 gr/cm3 and 3.19 gr/cm3 SiC samples in a production batch cannot be 

predicted easily and the performance of these two materials could be dependant on the 

spatial distribution of defects rather than the overall percentage of defects, which is very 

close to each other in this case. As a result, an answer to how “uniform” the 

microstructure is will be determined and relate this to the ballistic data and ultrasound 

results, which could be ultimately used for assessing ceramic armor tiles. 

The defects found in SiC will be evaluated in terms of “location” and spatial 

data analysis will be carried out in order to assess spatial distributions of features in a 

ceramic armor body. In the following sections, a review of some of the relevant aspects 

of spatial data analysis will be presented. The methodology that will be explained here is 

an approach to the particular problem of distinguishing samples with homogenous defect 

distributions from the ones where grouping, clustering or inhomogeneities in defects 

locations occur. Alternate approaches to the analysis exist [88-90], and they will be 

covered in the next few sections. 

The distribution of the features on a metallographic section can be represented 

by the distribution of points on a plane. This type of a distribution is called a spatial point 

pattern. In general, the study of spatial point patterns is called spatial data analysis, or 
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cluster analysis. Spatial data analysis has been employed in a variety of areas and 

subjects, such as the study of the distribution of trees in the field of ecology, or the study 

of the distribution of cell nuclei in the area of microbiology, due to the inherent clustering 

nature of certain biological processes. Spatial data analysis was also utilized in the field 

of materials science as most studies concentrated on the study of second phase particles 

[88,90-94] and the characteristics of grains [95]. Yang et al. studied finite-size particles 

distributions in metal matrix composites to investigate the effects of particle size, shape, 

orientation and area fraction on the quantification of homogeneity [96]. A similar study 

was performed on TiB2-Fe composites, concentrating on the analysis of the homogeneity 

of phase repartition [97]. 

Apart from the spatial analysis on second phases, pores were studied in several 

different materials [98-100].  Geometrical structure of the system of artificial pores in 

autoclaved concrete was studied by means of stereological methods [100]. Zhang et al. 

[98] used spatial data analysis to study the distribution of microporosity, and observed 

inhomogeneous distribution of porosity throughout the sample. Tewari et al. monitored 

clustering of pores in aluminum alloy plate casting, and concluded that the clustering 

tendency was relatively constant throughout the casting [99]. 

 

2.3.1. Randomness, Regularity and Clustering 
It is very important to define the terms commonly used in spatial data analysis; 

therefore, an example drawing is given in Fig. 2.11, where four spatial point patterns are 

shown. Each point represents an event (e.g., a defect). Qualitative observation does not 

show any clear structure in Fig. 2.11(a) and this pattern is considered as completely 
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“random.” The second pattern in Fig. 2.11(b) could be categorized as a “regular” 

distribution since points are approximately homogenous over the entire area. This kind of 

pattern is common in systems where there is repulsion between events which promote an 

even spatial distribution. A good example of from forestry is the regular distribution of 

trees in a forest, which is a natural result of competition for light. Due to the competition 

for light, the trees are all kept at a minimum distance from their neighbors, producing a 

regular distribution. Fig. 2.11(c) shows groups, or clusters of points. However, Schwarz 

and Exner state that, this type of pattern is not common in material science applications 

[101].  Usually, clustered events are superimposed on a random background, which is 

shown Fig. 2.11(d). It must also be noted that that in the “random” point pattern, there 

seems to be a small amount of clustering, since some degree of grouping could be 

observed even in a random distribution, due to probability [101].  

The spatial point patterns described above comes in at this point and it could be 

used as a tool to distinguish between samples with small differences in porosity levels 

from a single production batch. The separation between “good” and “bad” can be drawn 

by using this concept as the significance of this thesis comes from the standpoint of 

uniformity.  

 

2.3.2. Planar Point Processes 
In order to analyze planar point fields, which are acquired from planar images 

of material structures, determination of the point coordinates is sufficient in most cases. 

Statistical methods are employed frequently in order to describe the components of a 

materials system by means of functions using planar point fields.  
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First step in this process is the estimation of the intensity λ, which is the mean 

number of points in unit area. Usually, it is adequate to estimate the intensity by 

determining the number of points in the field of view. Second order characteristics such 

as pair correlation functions use this information in order to find out the spread of the 

points in a plane and their relative location to one another. The inter-point distance r is 

introduced in the second order functions, as the statistical data is represented as a 

function of this value. The statistical summary displays the type of interaction that exists 

in between points at any given distance. As mentioned in the previous section, the type of 

interaction could vary, as attraction (clustering), repulsion, or no interaction between the 

points might exist [102,103].  

 

2.3.3. K-function 
K-function, K(r), is one of most frequently used functions in spatial data 

analysis. If Ki(r) is the total number of points contained in a circle where (xi,yi) is the 

center of the circle,  K(r) can be obtained by averaging Ki(r) over all the point centroid 

locations (xi,yi) in the microstructural plane. The reference point, (xi,yi), is selected 

randomly in point processes. The other points are spread unsystematically, a state which 

is called complete spatial randomness of points (CSR) [104-106]. Under this condition, 

the product of the area of the circle and the intensity gives λπr2 points on average. When 

this is divided by the value of λ, the K-function is obtained for the totally random planar 

point process:  

    2)( rrK π=             2.4 
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A value higher than this is a sign of clustering while a lower one shows repulsion. The 

initial part of the curve with K(r) = 0 shows that the inter-point distance does not go 

below a certain minimum value. In the case of a composite material with particulates, 

overlapping becomes impossible due to the physical size of the particles [107,108].  

 

2.3.4. Pair Correlation Function 
A complement to the K-function is the pair correlation function g(r), which 

could be derived after differentiation of K-function: 

 

   ( ) ( )
dr

rdK
r

rg
π2
1

=             2.5 

 

In the case of a totally random planar point process, the following equation is 

obtained: 

    ( ) 1=rg             2.6 

 

for all r by insertion of K(r)= πr2 into g(r). The concept mentioned in the previous section 

comes into consideration as values below this point to repulsion while values above one 

indicate clustering. At this point, “hard-core point field” concept must be taken into 

account. It is a random point field, in which the components, or points, of this field are 

not allowed to lie closer together than a certain minimum distance [104]. This hard-core 

effect once again leads to zero values of initial part of g(r).  
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In order to simulate a planar Poisson point process or other planar point 

processes and to obtain illustrations of K (r) and g(r) functions, specific software, such as 

STG 4.1 (Stochastic Geometry for Windows) could be employed. 

 

2.3.5. Nearest Neighbor Distance Distributions 
Nearest neighbor distance distributions are important quantitative descriptors of 

short range using first nearest neighbors as well as intermediate and long-range spatial 

arrangements of objects in space using higher order nearest neighbors. As a result, this 

technique will serve as a key tool to model nearest neighbor distributions and the 

corresponding mean nearest neighbor distances between objects in spatial patterns 

[109,110]. 

One method to assess spatial distribution of features is to define nearest neighbor 

distance distribution and compare the observed and mean and variance for a random 

Poisson distribution. 

If P(R) is defined as density function, then the nearest neighbor distribution 

function of pores in a plane is described so that P(R)·dR is equal to the probability that 

there is no other pore centroid in R distance and there is at least one pore centroid in 

(R+dR) distance. Then the average nearest neighbor distance is calculated by; 

 

   ∫
∞

=
0

)( dRRRPR            2.7 
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If the points are randomly distributed in a plane, then 〈R〉 is equal to {0.5/√NA}, 

where NA is the number of points per unit area. Second, third, n-th nearest-neighbor 

distributions can also be calculated by using a similar approach. 

To be more quantitative, in terms of centroid distributions, two parameters, Q and 

V, were developed in order to describe the nature of distribution, where; 

 

distances  neighbor-nearest mean  expected
distances  neighbor-nearest mean  observedQ

e

o ==
μ
μ

         2.8 

distances  neighbor-nearest of  variance  expected
distances  neighbor-nearest of  variance  observed

var
varV

e

o ==               2.9 

 

The expected mean and variance are for a random distribution of events. Different 

types of distributions can be determined by these two parameters and the conditions for 

these distributions are as follows: (a) random distributions, Q ≈ 1 and V ≈ 1; (b) regular 

distributions, Q > 1 and V < 1; (c) clustered distribution, Q < 1 and V < 1; and (d) 

random distribution with clusters, Q < 1 and V > 1 [96,111,112]. Expected values are 

calculated by the Image Processing Toolkit 5.0. Q-V map is given as example in Fig. 

2.12. The rule for calculating the expected mean and the variance of the nearest neighbor 

distances are given in the following formulas; 
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where, L is the length of the boundary of the area, A, that contains n, number of 

events [111].  

 

2.3.6. Tessellation Analysis 
Another way to define near neighbors, detect clustering and the anisotropy of 

spacing is provided by Tessellation Analysis. This method involves a geometric 

construction of two dimensional cells or polygons around each particle on the plane-of-

polish.   

Tessellations have been used in the literature for assessing microstructures of 

various materials, especially composites. Metal matrix composites were studied on 

micrographs of 2-D images and 3-D microstructures by construction of 2-D images 

obtained using serial sectioning. Spatial distribution of features, orientation distributions 

and size distributions were examined and minor differences were observed between 2-D 

and 3-D [113,114]. 

Tessellations can be grouped into two, first of which, is called Voronoi 

tessellation. It is a basic separation method of d-dimensional space into d-dimensional 

polyhedral cells. It is also called Dirichlet tessellation [88,89,115]. If N represents a set 

of points, with positions r1, r2,…,rN in volume V in d spatial dimensions, ith point at ri is 

associated with a Voronoi cell or tile. This cell or tile consists of the area closer to the 

point at ri than to any other point in the set. These cells in 2-D are convex polygons, 

while they are convex polyhedrons in 3-D [92]. All points within each polygon are closer 

to the center of the particle than to any particle outside the polygon. To construct the 

polygons, lines are drawn from a particle to neighboring particles. Subsequently, 
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perpendicular lines bisecting these lines are drawn. These lines will intersect and form 

polygons. The lines that intersect to form the polygons are from only the nearest 

neighbors. Thus, a unique area can be associated with each feature [88,115,116]. 

The second type of tessellation is called Johnson-Mehl tessellation. This one 

separates from the first by subtle differences. The main distinction between Voronoi and 

Johnson-Mehl tessellations is the origin of the features, according to which polygons are 

constructed. In Voronoi tessellations, regardless of the features size, the centroids of 

features are accepted as origins. However, in Johnson-Mehl tessellations, polygons are 

constructed according to the surface of features. Consequently, in the former technique, 

tile boundaries can partially or completely lie within the boundaries of the seed particles. 

The latter makes this impossible since starting points are on the surface of features. Due 

to this attribute, Johnson-Mehl tessellation is sensitive to size of the features [91]. 

The cell area distributions that are obtained from either type of tessellation tell a 

lot about the spatial distribution of any group of features. Further quantification has been 

implemented in different studies, one of which was performed by Murphy et al. Two 

parameters, P1 and P2, were identified, which help to quantify the microstructure in terms 

of clustering. P1 is based on the variance of the cell area distribution. It is a parameter that 

the extent of spread in a distribution can be found since the variance from a real 

microstructure is compared to that of a random microstructure. P2 is a measure of 

skewness, which shows the asymmetry in a distribution. If there is a tail in the 

distribution, that would increase the skewness of that distribution. The extraction of 

parameters P1 and P2 is given in following equations: [116] 
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where; 
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skewness of random distribution,  Srandom                                                           2.19 

 

This technique is capable of providing a way to quantify local microstructural 

features and fluctuations [91]; therefore, it will be used as one of the methods to assess 

microstructures.  

 

 

 

Figure 2.11. Four different types of spatial point pattern 
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Figure 2.12. Map of Q and V indices 
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2.4. Hardness of Ceramics and Its Relation with Armor Performance 

 2.4.1. Hardness of Ceramics 
Hardness can simply be described as the resistance of a material to plastic 

deformation by an indenter [117]. Several different models were used in order to interpret 

hardness in terms of tensile strength and ease of plastic flow, surface energy and 

chemical bond strength [118]. 

The hardness "number" has meaning only with reference to a specific test and the 

test conditions. It is a measure of a reaction of a material to the type of disturbing force 

imposed (different hardness test results for different techniques) and relates to the ease of 

dislocation movement e.g. to shear modulus G and yield stress, the type of atomic 

bonding, the presence of impurities in solid solution or at grain boundaries and/or as 

precipitates, or inclusions, the microstructure (grain size and texture, porosity), phase 

composition and residual stresses. 

Hardness increases in an order similar to the increase in stiffness as metals rank 

lowest and carbides/borides rank highest in a spectrum of different materials. Oxides rank 

somewhere in between the two.  

Attempts to calculate the hardness of defect-free monocrystals by modeling 

dislocation movement under an indenter give underestimated values.  Theoretical 

hardness calculations give: H ≈ 0.001 G, whereas hardness measurements give: H ≈ 0.1 

G, where G is Shear Modulus.  The strong anisotropy of hardness values for single 

crystals reflects the directional characteristics of dislocation movement [119]. 

Usually the measured value of hardness is load-dependent. At low loads, the 

measured values of microhardness tend to increase. The microhardness also depends on 

the relationship of surface properties vs. bulk properties and on environmental 
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interactions.  At high loads, such as several kg, the measured hardness of ceramics 

decrease due to the fracture of the material under the indenter [117,118]. 

One of the other factors that affect the hardness of a ceramic are grain-size, where 

Hall-Petch equation is valid as the hardness of a ceramic is inversely proportional to the 

square root of grain size: 

 

    D
H 1~           2.20 

 

where D is the grain size [120,121]. 

The temperature dependence of hardness reflects the mechanism of dislocation 

movement: athermal at low temperatures; glide, climb and diffusion at high temperatures, 

such that   

 

   ( )cTHH −= exp0           2.21 

 

where H0 = hardness at T=0 K,  c = thermal softening factor, a characteristic of 

the material.  For instance, in ceramics 'c' is sensitive to grain boundary glassy phases at 

intermediate temperatures and to structural obstacles to dislocation movement at high 

temperatures [122]. 

Proper selection of indenter geometry is crucial in determining hardness of 

ceramics. Usually, the preferred geometry is the pyramid type. Spherical or blunt 

indenters are not recommended in hardness measurements of ceramics due to the brittle 
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nature of this type of materials. With a spherical indenter, the surface stresses during 

loading are tensile, which might lead to extensive cracking. However, pyramid indenters 

such as Vickers or Knoop introduce tensile stresses only on unloading stage, which can 

help keep the sample away from ring cracking and surface spalling. Even, at very low 

loads, these damages are hard to avoid with a spherical indenter [118] 

Although spherical indenters are not very common for hardness determination of 

ceramics, they are frequently employed in armor ceramics for the particular reason of the 

similarity between the damage in a ballistic event and the damage in a spherical 

indentation [123]. 

An indent made by a sharp indenter on a ceramic material is surrounded by a 

plastic zone, which is a result of exceeding elastic compressive strength of the ceramic 

material. Two crack systems of radial cracks or lateral cracks can be observed outside the 

plastic zone. The radial cracks observed on the surface originate from the corners of the 

indent. Significant amount of microcracking could be introduced by the indenter in the 

plastic zone [124]. 

In the case of a ballistic event, hardness is an important physical property both for 

the penetrator and the target material. The penetrating ability of a projectile is improved 

by increasing strength and hardness values. In order to defeat a projectile, the armor must 

have a higher hardness value than that of the penetrator. One of the reasons that ceramics 

are commonly used as armor is the incapability of steel armor to defeat high hardness 

projectiles, such as tungsten rods [125]. 
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2.4.2. Dependence of hardness on porosity  
Rice has set up a categorization of the different porosity dependences [126]. The 

first category involves properties such as lattice parameter, coefficient of thermal 

expansion, which do not have any dependence on porosity. The second category consists 

of the properties which depend only on the volume fraction of porosity, such as density 

and heat capacity. The third category is composed of properties which depend on both 

volume fraction and porosity characters. Most of the mechanical properties categorized 

under this group. Out of this group, the effect of porosity on Young’s modulus and 

flexure strength were investigated extensively studies while properties such as fracture 

energy and toughness were not studied. In addition, most of the models were only 

concerned with the porosity level without considering other porosity characteristics. 

Therefore, Rice put forward a model based on the Minimum Solid Area concept (MSA) 

in order to explain the porosity dependences of the third category properties. The porosity 

dependence of hardness has also been in agreement with the Minimum Solid Area (MSA) 

model [126-128]. MSA model was utilized in numerous different studies for explaining 

porosity dependence on properties including ultrasonic velocity [126,129], fracture 

strength [130], and elastic modulus [126,131,132], dielectric constant [133] of various 

ceramic materials.  

This model makes the assumption that different properties have similar type of 

dependence with porosity. MSA variation with porosity has been modeled for different 

pore characteristics and this is shown in Fig. 2.13. A semi-logarithmic plot of the log 

MSA against the volume fraction of porosity (P) demonstrates a linear decrease of MSA 

with P at low levels of porosity. The slope (-b) is a characteristic parameter of the pore 

stacking. Subsequently, an increase of porosity causes a higher decrease of the MSA. In 
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the last part, the MSA drops considerably when the volume fraction of porosity reaches 

the critical value of porosity Pc.  This value could be accepted as the percolation limit of 

the solid phase. It should be mentioned that for the porosity range 0 to 1/3 – 1/2 Pc, the 

variation of the MSA or property with porosity can be defined by the following equation: 

 

   ( )bPAA −= exp0          2.22 

 

For hardness, the MSA model can be represented by HV  

 

   ( )bPHHV −= exp0          2.23 

 

where HV is the measured Vickers hardness, H0 is the Vickers hardness value 

corresponding to a specimen with zero porosity, b is a material dependence constant and 

P is the volume fraction porosity of the specimen [134,135]. 

 

2.4.3. The Relationship between Hardness and Ballistic Performance 
Several studies [136-143] were performed previously in order to correlate quasi-

static properties to ballistic performance of armor plates. A thorough analysis of 

parameters that affect ballistic performance was carried out by Viechnicki et al. A group 

of four different materials consisting of alumina, silicon carbide, titanium boride and 

boron carbide, were used in this study. One of the conclusions from this study was that 

monolithic ceramics with minimal amounts of second phases and porosity have better 

ballistic performance than multiphase ceramics and composites. Regarding the quasi-
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static parameters, a group of static properties, not a single one, affect ballistic 

performance. The group of properties consists of hardness, sonic velocities, elastic 

modulus, Poisson’s ratio, density and porosity. Interestingly, a negative correlation was 

shown between fracture toughness and ballistic performance. It was also claimed that 

hardness was the only static property that alone helps predict the ballistic performance 

[136].  

Medvedovski explained the factors, consisting of density and porosity, hardness, 

fracture toughness, Young’s modulus, sonic velocity and mechanical strength, which play 

an important role in the ballistic performance of ceramics. He claimed that any single 

property is not enough to predict ballistic performance, due to the complicated nature of 

fracture after impact and very rapid loading. The microstructural features have a strong 

influence on physical properties, which drastically affects crack propagation mechanisms 

and ballistic performance. Therefore, ballistic performance of a material must be assessed 

considering all relevant properties, as well as ceramic microstructural features. As one the 

results of his conclusions, he stated that the hardness of a ceramic armor should be higher 

than the projectile hardness for desired performance [137].  

Experience shows that materials with high fracture toughness values do not 

exhibit significant ballistic performance [138]. Ideally, some balance between levels of 

hardness and fracture toughness must be maintained [137,139,140]  

Rozenberg and Yeshurun revealed that the performance of ceramic type armor 

materials is a function of material strength/hardness (typical static compression strengths 

of 3-7 GPa and hardness values of 2000 - 3000 kg/mm2 for various ceramics). They 

agreed on the notion that when “interface defeat” or "dwell" type mechanisms are 
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responsible for penetrator destruction, the strength and/or hardness of the ceramic 

material is especially important [141]. 

Another study was carried out by Flinders et al., who prepared SiC by hot-

pressing using Al–B–C (ABC) or Al–Y2O3 (YAG) as additives. After ballistic testing, it 

was revealed that Depth-of-penetration was controlled by hardness of the SiC-based 

materials, while V50 values for 14.5 mm WC–Co cored projectiles were in the range of 

720–750 m/s for all materials tested. The data is shown in Fig. 2.14, where increasing 

hardness results in lower depth of penetration and therefore a higher mass efficiency 

[138]. 

Sternberg studied the parameters that could be important in determining the 

resistance of ceramics to projectile penetration. This was performed by analyzing the 

target strength term that is included in the analytical representations of high velocity 

penetration 

  ( ) pptt YUVRUp +−=+= 22

2
1

2
1 ρρ         2.24 

 

where U is the rate at which the interface is penetrating into the target and V is the 

rod velocity relative to the target. The strength terms for the target and the penetrator are 

represented by Rt and Yp, respectively. Sternberg stated that the dependence of the 

strength term on the elastic moduli and yield strength of the target for ductile targets 

could be directly related to the pressure required for quasi-static expansion of a cavity in 

the material. Theoretical results should be pertinent to high velocity impact as, where the 

pressure required for cavity expansion could be represented by the target strength term 

when dynamic values of the yield stress were taken into account. Consequently, it was 
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claimed that hardness measurements could be used instead of the expansion theory as a 

basis for determining the magnitude of strength terms in ceramics. Hardness 

measurements were carried out to determine roughly the highest possible value for the 

strength term for each ceramic with ballistic data. He stated that the hardness is more or 

less equal to the target strength term over a broad range, on the condition that the 

dynamic yield stress is substituted for the static yield stress [142]. 

Lundberg et al. [143] used indentation as the same route to determine yield 

strength in a study where he investigated the critical impact velocity for the transition 

between interface defeat and normal penetration, both theoretically and experimentally. 

The transition impact velocity was assessed for different combinations of metallic 

projectile and ceramic target. Then, comparison between this transition impact velocity 

and velocities determined experimentally was performed for various combination of 

projectile materials such as, tungsten (WHA) and molybdenum, and five target materials, 

consisting of two types of silicon carbide, boron carbide, titanium diboride and Syndie (a 

diamond composite). The indentation method used for yield strength calculation of 

ceramic materials appeared to provide reasonable values. As a result, the yield strength of 

10.4 GPa obtained for silicon carbide was comparable to the value of 12.5 GPa obtained 

from plate impact tests. When the strain rates do not reach extreme values in ceramic 

targets under conditions of interface defeat, static yield strengths could be utilized in the 

estimation of transition impact velocities [143]. 

To be brief, there is an agreement in armor community that hardness is one of the 

key parameters on prediction of ballistic performance. Therefore, it will be used as a 

gauge in this study in order to verify microstructural examinations. Although effect of 
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porosity on hardness was studied extensively, minor levels of porosity will be the main 

concern, therefore, providing the opportunity to study a different issue. 

 

 

 
 

Figure 2.13. Variation of the Minimum Solid Area with porosity for idealized pores cubic 
stacking (1) cylindrical pore axis perpendicular to the stress axis (2) cylindrical pore axis 

parallel to the stress axis [131] 
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Figure 2.14. Ballistic mass efficiency as a function of Knoop hardness for the materials 
tested using depth of penetration [138] 
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2.5. Statistical Examination of Property Data in Ceramics 
Flaws, which are distributed either randomly or in a certain pattern in the 

material, are usually the origins that lead to fracture [28]. Therefore, mechanical 

properties of materials are affected by the presence of flaws. This fact makes it common 

to determine any property of brittle materials by using statistics and probability functions 

[144,145]. The Normal, Lognormal and Weibull distributions are extensively used for 

statistical examination of experimental data, especially for ceramics [146,147].  

 

2.5.1. Normal Distribution 
Various physical measurements demonstrate the symmetrical, bell-shaped curve, 

which is called the normal distribution, or Gaussian distribution. The normal probability 

density is given below 
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where μ is the population mean, σ is the standard deviation and f(x) is the value of 

the curve at a specified x value [148]. This type of distribution is occasionally used in 

reliability field of materials regarding yield strength, tensile strength and reduction of 

area from the tension test [149]. 

 

2.5.2. Log-normal Distribution 
This is a skewed distribution and it is especially useful to model the cases where 

the tail of the plot has significant amount of data points. The lognormal probability 

density is given by the following equation 
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where μ is the log mean and σ is log standard deviation and f(x) is the value of the curve 

at a specified x value [148]. This type of distribution is employed when “life” of a 

component is concerned, such as in the fatigue life of ceramics [150]. 

 

2.5.3. Weibull distribution 
Apart from these two types of distributions, Weibull distribution has been 

preferred for describing properties of materials, where property distributions can be 

highly skewed or broadly distributed [146,147].  

Weibull distribution is based on the weakest link approach, in which the property 

of material is dictated by the products of the survival likelihood for the individual volume 

elements. “Strength” is the most common mechanical property that this type of 

distribution has been employed [151-154]. This method usually tries to determine the 

probability of failure at a given stress, rather than establishing a stress at which a ceramic 

component fails catastrophically [155].  

According to Weibull statistics, the cumulative failure probability F(σ) of a 

material subjected to a stress σ is given by  
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where σ0 is a normalized factor known as the characteristic strength, σth is the 

threshold stress below which no failure occurs, and m is the Weibull modulus. Here, the 

Weibull modulus is a measure of strength diversity and is also called the shape factor. In 

most cases, for the sake of simplicity, σth is usually assumed to be zero. Then, the 

Weibull distribution can be reduced to two-parameter form, such as 
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Although Weibull distributions are frequently used for “strength”, any property 

can be substituted as x instead of σ. In that case, x0 would be the characteristic value (or 

scale factor) below which 63.2 % of data lie, and m is the Weibull modulus (or shape 

factor), which reflects the data scatter [156-158].  

There are multiple techniques to determine the Weibull parameters including the 

Weibull plot, maximum likelihood estimation (MLE), linear estimator, and direct non-

linear curve fitting.  

Weibull plots are frequently based on MOR data obtained on a representative 

group of samples prepared and tested in a way similar to that which the products will be 

subjected to during service [151-154]. In order to proceed in Weibull plot method, 

equation presented above can be rearranged by taking the natural logarithms twice, and it 

gets the following form [146,147]:  
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The technique of determining F(x), which is the cumulative density function of 

probability, in the above equation can be performed according the nature of the 

distribution [159,160]. The mean value of F(x) can be obtained by sorting the data in 

ascending order and letting  

    ( )
1+

=
n

ixF          2.30 

 

where n is the total number of data points, and i is the ith order in ascending data 

set. The mean value is generally used since it signifies the expected value of the 

probability density function within the distribution. However, in highly skewed 

distributions the median value, where  
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might be more suitable. Other estimators such as  
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have also been utilized [160]. 

The second approach to perform Weibull analysis is the maximum likelihood 

(ML) method. The likelihood function, L, is a mathematical expression, which represents 

the probability of acquiring the experimental data. The log-likelihood function can be 

obtained by taking the natural logarithm of this function: 
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The values of m and x0, which maximize the Weibull likelihood function, can be 

found in three steps. Intially, the log-likelihood function is differentiated with respect to 

m and x0. Then, the resulting expressions were equated to zero, and finally, they were 

solved for m and x0. On reorganization, the two following equations are obtained: 
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After the parameters are obtained by the Weibull plot method, they can be used as 

starting points for an iterative process, in which enables Weibull values to converge. 

Based on this method, an estimate for the confidence limits employs the χ2 distribution. 

In the log-likelihood equation, the Weibull parameters are put through the following 

conditions: 

  
2
,1

~~

0

~

0 ,ln2,ln2 αχ=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛− mxLmxL         2.37 

 



58 

 

  
2
,1

~~

00

~
,ln2,ln2 αχ=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
− mxLmxL        2.38 

where 
~
m and 0

~
x  are Weibull parameters, acquired from any method. 

An estimated α confidence interval is obtained by finding the set of x0, represent 

lower and higher bounds, and the set of m values by applying the previous two equations 

above [146]. 

The method for estimating the expected performance of a ceramic by applying the 

Weibull distribution to property tests is valid, as long as a sufficient number of samples 

are taken. The higher the Weibull modulus of a ceramic, the greater the number of test 

specimens is required to achieve true sampling of the defect population [44]. 

 

2.5.4. Weibull Statistics and Its Correlation with Defect Distributions 
While the Weibull modulus is related to the defect population that causes failure, 

real ceramic materials have a number of concurrent defect populations.
 
Different testing 

configurations distribute stresses within the sample differently and may manipulate 

failure from a specific type of defect [161,162]. During testing, samples must fail from 

the same types of defects that will cause failure in the final application of the material in 

order for the testing to be relevant. The most commonly used test is the bend bar test, 

loaded in either a three or four point configuration. These bars are used because of the 

relative ease of creating samples. Bend bars are vulnerable to failure from surface 

scratches and machining damage because of their size and loading configuration. A 

higher proportion of failures in bend bar testing occur from surface scratches than tension 

bars [163].
 
Tests with higher effective volume are more likely to fail from internal 
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defects, such as pores and inclusions. The performance of small volume test specimens 

can be used to estimate the performance of larger specimens only if failure results from 

the same defect population. If a different population of defects controls failure as the 

effective volume of the test increases, then predicting performance for a ceramic product 

with a large volume by using tests of small effective volume will not be accurate.
 
Tests 

with small effective volume tests (bend bars) may predict high strength and performance, 

but at a higher effective volume, rarer and more severe defects may be encountered 

which lower the strength of the material [162]. 

The dependence of the number of destructive flaws and the applied load has to be 

known for design purposes. The relative frequency of flaws sizes (flaw size a) can be 

described by a function g(a,r) [defects/m4], which may also depend on the position vector 

r [164]. 

Jayatilaka and Trustrum [44] demonstrated in their study that, for a brittle and 

homogeneous material, the distribution of the strength data is caused by the distribution 

of sizes and orientations of the flaws, and that a Weibull distribution of strength will be 

observed for flaw populations with a monotonically declining density of flaw sizes. 

The decisive factor for failure ties the size of the flaw with a critical load. The 

Griffith/Irwin criterion forecasts that crack-like flaws get critical, if their stress intensity 

factor K=σY√πa goes above the value of fracture toughness KIc [145,165] 

 

     IcKK ≥          2.39 
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where Y is a geometric factor, which is of the order of one for flaws which are 

small compared to the specimen size. The critical crack size is then 
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The relative flaw size density function versus the flaw size is given in Fig. 2.15. 

All flaws larger in size than the critical value of ac(σ) leads to failure. The density of 

flaws could be calculated by the following formula: 
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The lower integration limit may shift to the left depending on the increasing stress 

level. This is an indication of giving a higher density of destructive flaws at higher 

stresses. The average number of destructive flaws can be obtained after integration over 

the volume 

   ( ) VrnN cSc d⋅= ∫ ,)(, σσ         2.42 

 

Generally, the relative occurrence of flaw sizes g(a,r) is not known. Assumptions 

were made such that the tensile stress field (stress amplitude r) is uniform and the flaws 

can be described by a single parameter which characterizes their size, (e.g. the crack 



61 

 

radius) and that the crack-like flaws are perpendicularly oriented to the stress direction. 

The flaw density is strictly related to the production process in most cases [164]. 

Evans gave examples of typical flaws, examples of which are large grains, pores 

resulting from organic inclusions, pressing defects or agglomerates [28]. Surface flaws 

might also be introduced by the machining of the component (surface flaws) and are then 

severely related to the direction of the movement of the machining tool. Poor handling in 

service may initiate contact damage such as Hertzian cracks [166]. In addition to previous 

assumptions, another one is that a material only contains homogenously distributed 

volume flaws with a relative flaw size density similar to continuous line in Fig. 2.15 

[164].  

The strength values obey a Weibull distribution, if the number of the pores 

decreases with increasing pore length according to a power law [167]. Thus, the 

statistical distribution of the flaw dimensions is closely connected to the fracture stresses 

obtained by mechanical tests [168,169]. 

 

2.5.3. Weibull Distribution of Hardness data 
Although advanced processing techniques are employed and high theoretical 

densities are achieved in armor ceramics, defects such as pores and cracks are inevitable 

as in any other ceramic. Since these areas have the highest probability of failure 

according to the weakest link theory, Weibull distribution can also be applied to this 

group of materials [44,159,160].  

However, Weibull distribution on hardness data was often utilized in coating 

research rather than the armor ceramics [146,147,158,170-173]. Lin and Berndt studied a 
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thermal barrier coating system consisting of a NiCoCrAlY bond coat and cerium-

stabilized zirconia sprayed onto a metallic substrate and Weibull statistics were utilized to 

assess the reliability of the coating system [146]. Lima et al. examined the mechanical 

behavior of nanostructured partially stabilized zirconia (PSZ) using Knoop indentation. 

Bimodal distribution in Weibull plots justified the presence of two separate phases, 

molten and non-molten [170]. Bimodal or multimodal Weibull modulus values can be 

observed not only due to different phases but also due to the existence of one or a 

combination of inhomogeneities, pores, inclusions, second phases, cracks [174]. 

Li and Ding measured the microhardness of plasma-sprayed Cr3C2-NiCr coatings. 

Weibull distributions were also employed in this study to assess the variability of the data 

within the coatings [147]. In a study by Valente, Vickers microhardness tests were used 

to assess the heterogeneity of a wide range of thermally sprayed coatings. Three different 

loads were used to evaluate the influence of the test volume on load-hardness 

dependence. Statistical elaboration of obtained results was performed by using variance 

analysis using Gaussian and Weibull distributions, in order to separate variation due to 

scatter of data and due to different materials properties. Load-hardness dependence was 

evidenced specially for ceramic coatings, due to their brittle nature, whereas for the two 

metallic coatings tested (Ti-6Al-4V and CoNiCrAlY) a bimodal distribution seems to 

exist at small loads [158]. 

Apart from coating studies, powder metallurgy was another area where Weibull 

distributions were utilized to analyze the spread in hardness data. Data sets of pressed and 

sintered FC0208, FN0208 and Ancorloy 4 alloys prepared in a single lot were analyzed 
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and it was reported that Weibull statistics generated a better fit than the fits using normal 

distributions [157]. 

The effect of creep deformation of hot-pressed β-sialon on Vickers hardness and 

fracture toughness was investigated in a study by Lin et al. Vickers hardness values were 

used in Weibull distribution, and Weibull modulus values from crept samples and  as-

received samples were compared [175]. 

As examples of Weibull statistics applied on hardness data rather than 

conventionally on strength data have shown, this method is effective on studying 

hardness results.  

 

Fig. 2.15. Relative density of flaw sizes versus flaw size. The dashed line shows a typical 
distribution, the full line the behavior necessary for a Weibull distribution. The dashed 

area gives the density of destructive flaws [164] 
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2.6. Nondestructive Evaluation by Ultrasound 
Nondestructive evaluation is a method of material characterization, performed 

without actually damaging the object. It is a technique for finding defects and examining 

internal changes in materials. This characterization method relies on propagation of 

sound waves in a material. The interaction between the wave and microstructural features 

in an object is recorded and a signal profile is obtained at the end. The signal sent through 

the material provides C-scan image maps, which show the variations either in the 

intensity of reflected signal or the transit time of signal through the sample, known as 

time-of-flight (TOF). TOF scans are used to examine acoustic wave velocity and 

impedance whereas reflected signal amplitude scans detect the loss in the ultrasound 

signal. Both techniques are functional in detecting and locating defects and anomalies 

inside an object.  

Amplitude and TOF histogram curves can be used for quantitative analysis as 

area-under-the-curve values, full-width at half-maximum values, tail regions of plots can 

assist in characterizing materials and identifying differences between samples [176]. 

Ultrasound technique is frequently used due to the several advantages; including 

the opportunity for rapid evaluation, ease of adaptation to on-line manufacturing settings, 

non-hazardous nature, sensitivity to defects, and accuracy in determining size, position 

and depth of defects. In addition, elastic properties of materials can be obtained using 

longitudinal, shear and surface wave velocities [176,177]. Ceramic armor examination is 

well suited for this technique due to the qualities explained above. Size, shape and 

roughness of the material are key parameters in obtaining good quality scans. They could 

be the limitations on whether a material can be tested or not. Due to nature of large, 
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polished specimens with parallel surfaces, ceramic armor tiles could be easily tested 

using ultrasound [176]. 

Although, this technique is not performed by the author in this study, C-scan 

images of samples, further examined by the author, will be used frequently throughout 

the text. Therefore, this small section is provided for a brief explanation of the ultrasound 

technique. Much more detail could be obtained from Raymond Brennan’s Ph.D. thesis, 

titled “Ultrasonic Nondestructive Evaluation of Armor Ceramics”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



66 

 

3. METHOD OF ATTACK 
In armor materials, density is an important qualitative criterion that can be used as 

a threshold to accept or reject parts. The size and amount of secondary phases, i.e. pores 

or residual carbon, present in SiC armor is directly correlated with density. For equal 

density materials, small differences in the mixedness of a second phase can alter ballistic 

performance. For example, it is not reasonable to expect similar behavior between a 

material with a singular large pore in a theoretically dense matrix and a material 

consisting of micro pores dispersed throughout. Homogeneity in a microstructure is 

another key parameter that is often times overlooked. At a given volume fraction and 

average size of pores, clustered or agglomerated second phases might be more 

detrimental to the ballistic performance than a uniformly distributed second phase. A 

second phase that diminishes properties can be considered a defect. Specific defects must 

be examined in terms their spatial distribution as well as their size distribution. 

The goal of this thesis is to determine methodology for differentiating small 

percentages of porosity or residual carbon in armor grade SiC and to determine the effect 

on physical properties. In meeting this goal, four objectives will be met. First one is to 

develop a method for determining microstructural uniformity of second phases. The 

second one is to assess microstructural uniformity of second phases on a series of 

commercially available armor ceramics. The third one is to determine microstructural 

uniformity using quasi-static properties. The fourth one is to correlate microstructural 

parameters with the quasi-static properties. 
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3.1. First objective: To develop a method for determining microstructural 
uniformity of second phases 

The objective of the first part of this thesis is to identify second phases and assess 

the degree of their uniformity using multiple techniques. It is important to note that a few 

terms will be used interchangeably in this thesis. Second phase could be defined as 

density reducing defect. This description omits grain boundaries and small impurities. In 

SiC, the primary second phases are pores and residual carbon. This thesis will examine 

common second phase classes, namely porosity and carbon inclusions, that are artifacts 

of their process history. Later, quasi-static property measurements will be used to 

determine how these second phases contribute to local microstructural/property 

variations. 

Microstructure homogeneity will be spatially quantified using tessellation, 

nearest-neighbor distance distribution and pair correlation functions. These techniques 

will enable numerical quantification of spatial defect patterns on stereological sections. 

The images will be obtained by FE-SEM or optical microscopy. Additionally, size and 

size distributions of defects will be determined, which will provide another parameter for 

differentiating samples. Lastly, through sample ultrasound imaging will be used as a 

volumetric analysis to be contrasted to the areal analysis obtained stereologically. 

3.2. Second objective: To assess microstructural uniformity of second phases on a 
series of commercially available armor ceramics 

After establishing the method for evaluating microstructures, four distinctly 

different set of samples will be used examined. Each set represents commercially relevant 

SiC material types. Initially, four sintered off-density Hexoloy-like SiC samples (Saint-

Gobain Advanced Ceramics, Northboro, MA) will be evaluated. These samples will be 

used for establishing defect mixedness protocols. Two of these four samples (SA-1 and 
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SA-2) are Hexoloy SA sintered samples, although they are not the typical Hexoloy SA 

due their lower-than-standard density. Qualitatively, they have small, evenly distributed 

pores. Hexoloy Extruded (EXT) is extruded SiC which has elongated pores due to the 

nature of extrusion process. Hexoloy SP contains large, non-interconnected spherical 

pores that are dispersed throughout. The distinctive characteristics of defects in this 

sample set provide the opportunity to see the differences between samples clearly when 

microstructural parameters are obtained at the end of spatial analyses.  

Two sets of hot-pressed samples will be presented. One set consists of three 

commercial hot-pressed SiC samples (Cercom Inc., Vista, CA) from a single production 

lot. Two of the samples were under a minimum density and considered “rejects” and the 

third one was representative of a saleable, “good” armor grade commercial material 

(AG). Rejected tile 1 had a low density region (LD) and rejected tile 2 had a white spot 

on the surface (DEF). Prior to stereological analyses, they were tested nondestructively 

by using ultrasound.  

The second set of hot-pressed samples consists of four armor grade samples 

(Cercom Inc., Vista, CA) studied by Lundberg et al [1], which will referred to as 

“Lundberg Samples” to distinguish between the previous hot-pressed SiC set. They will 

be called SiC-HPN, SiC-N, SiC-SC-1RN and SiC-B throughout this thesis. These are the 

pieces from the actual samples that Lundberg et al. used in his ballistic study. These 

specific samples have known ballistic data consisting of transition velocity, penetration 

velocity and erosion velocity. They will be particularly valuable for the last objective of 

this thesis, where correlations with microstructural parameters and physical properties 

will be made. 
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The final sample class is a single, sintered SiC Hexoloy tile. A lot of eight tiles 

were scanned using ultrasound and low amplitude regions were determined. One tile 

from that lot was selected for further microstructural evaluation and the questionable 

regions were examined by sectioning distinct regions from identified areas. This sample 

will enable a correlation between an ultrasound C-scan map and microstructural 

characteristics stereologically derived.  

 

3.3. Third objective: To determine microstructural uniformity using quasi-static 
properties 

The objective of the third part of the thesis was to use hardness as a relevant and 

convenient method to obtain volumetric information regarding the homogeneity of 

microstructures. The output being volumetric comes from the fact that five different loads 

will be used and the area of interaction between an indent and the defects under the 

indent will change with each load. Hardness maps will be constructed by placing a 

statistically significant number of one hundred indents per load, to see the variation in 

terms of location since “location” is the main focus in this thesis. The large number of 

indents enables performing Weibull analysis to examine the spread in the data and to test 

spatial variability. Hardness values will provide a means of linking microstructural data 

and physical property variability.  

 

3.4. Fourth objective: To correlate microstructural parameters with the quasi-static 
properties 
 The objective of the final part of this thesis is to combine microstructural 

parameters and physical properties. They will be graphed against each other and any 
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trends or correlations will be searched for in these plots. This analysis will be applied to 

all four sample sets that are discussed in this thesis. Additionally, Lundberg samples have 

the ballistic data which provides the opportunity to test any correlation between 

microstructure, physical property and ballistic performance. 
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4. EXPERIMENTAL PROCEDURE 
Examination procedures were developed during the course of this thesis and used 

throughout for sample preparation, microstructural investigation, quasi-static tests and 

nondestructive testing by ultrasound. 

Parameters regarding the size and shape of features might not provide sufficient 

information at times, as spatial distribution of features could be equally important in 

microstructural characterization. In order to assess features in microstructures based on 

location, spatial data analysis including nearest neighbor distance distributions, 

tessellation analysis and pair correlations were performed on several sets of SiC samples. 

Image analysis was applied to images from FE-SEM and optical microscope and 

quantitative information was obtained on microstructures.  

The results from microstructural analysis were complemented by hardness tests, 

performed on areas which were examined previously in terms microstructural 

homogeneity. Cracks resulting from indentations were examined, which helped 

determine the fracture mode of the samples, therefore providing another parameter to 

evaluate materials on microstructural properties and tying other parameters with the 

fracture mode. 

Nondestructive evaluation by ultrasound tests were carried out using 75 and 125 

MHz frequency transducers to determine defect distributions from an entire tile instead of 

local examination using microscopy. This was incorporated into this study in order to 

compare results from microscopy, which provided to opportunity to look at only multiple 

sections at most.  
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4.1. Sample Preparation for Microscopy 

4.1.1 Grinding and Polishing 
Initially, samples were cut using a diamond saw. They were then mounted in 

epoxy from a mixture of EpoxiCure hardener and resin (Buehler, Lake Bluff, IL). 

Samples were ground and polished using two different grinder/polishers, which are VP-

50 Vari/Pol grinder/polisher (Leco Corp., St. Joseph, MI) and ECOMET 3000 (Buehler, 

Lake Bluff, IL, USA). Grinding was performed using 125 and 45 μm diamond wheels 

and polished with 15, 9, 3 and 1 μm diamond suspensions. Colloidal silica was used in 

the final step of polishing. The exact sample preparation sequence is given in Table 4.1. 

Time was kept at 10 minutes at all times for each step. The force applied was maintained 

at 5 to 8 lbs per sample and the speed of wheels was maintained at 150 rpm.  

Extreme care was taken during sample cleaning for FE-SEM examination. First, 

epoxy mounts were put in an organic solution named Epoxy Dissolver (Allied High Tech, 

Rancho Dominguez, CA) after grinding and polishing steps. The solution was brought to 

a boil, and epoxy mounts were kept in the solution until epoxy cracks and samples were 

liberated. The samples were then put into a small of amount of ethanol in ultrasonic bath. 

Ultrasonication was performed for 10 minutes to remove any organic residue. 

Ultrasonication was repeated in de-ionized water. 

The samples were placed on aluminum studs using carbon tape to provide 

conductivity and avoid effects of charging. The samples were then placed into a 

desiccator for removal of moisture one day prior to examination. 

4.1.2. Serial Sectioning 
Key component of serial sectioning was to mark the sample so that areas from the 

same rectangular prism were analyzed. This was achieved by using indents. Several 
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indents were placed on the corners of the samples after the first polishing step. They were 

used as points of reference during image collection and further polishing steps. The 

indentation sizes were measured at the beginning and the samples were polished until the 

indents disappeared. As a result, a certain distance between each plane was roughly kept. 

The shape of indent after each polishing step is given in Fig. 4.1. 

 

4.1.3. Etching 
Chemical etching was used for SiC samples using Murakami’s solution, which 

was a mixture of H2O-KOH-FeK3(CN)6. 1 part of H2O and 1 part of KOH was mixed 

with 8 parts of FeK3(CN)6. The solution was brought to a boil and the samples were put 

into the solution. Different etching times were used starting from 10 minutes up to 30 

minutes at 5 minute intervals. Mostly, grains and boundaries were revealed best at 20 

minutes, but the effect of etching agents varied depending on the sintering aids so it was 

changed accordingly after trial and error for each sample. 

 

4.2. FE-SEM 
Leo-Zeiss 982 field emission scanning electron microscope (Leo Electron 

Microscopy, Inc., Thornwood, NY) with energy dispersive capability was used to 

examine polished surfaces, etched surfaces and indent marks after hardness tests. 

Imaging was performed at 5.0 keV using secondary electrons collected with a standard 

Everhart-Thornley detector. The working distance was kept between 10-12 mm for most 

of the work. Samples were uncoated due to the conductive nature of silicon carbide, 

which showed minimal amount of charging during examination. Pictures that were 
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analyzed afterwards were mostly taken at ×1000. Random areas were selected for 

imaging defects. Consecutive pictures were taken for some samples from neighboring 

area in order to combine images in image analysis step. Totally random selections were 

made in each picture for the rest of the samples.  

 

4.3. Optical Microscopy 
 An optical microscope from Olympus CKX series (Olympus, Center Valley, PA) 

was used for examining polished surface at low magnifications. An Olympus digital 

camera was attached to the microscope, which was also connected to a PC for a quick 

way of image collection. When the area of interest was larger, particularly for the 

comparison of ultrasound and microscopy, low magnification images of sintered SiC tile 

pieces at ×100 and ×200 were taken using this equipment. It was also utilized for imaging 

indents from hardness tests. 

 

4.4. Spatial Data Analysis 

4.4.1. Nearest Neighbor Distance Distributions 
Image analysis has been used to obtain quantitative information on the 

microstructures. Image Processing Toolkit 5.0 (Reindeer Games, Inc., Asheville, NC) 

which adds many functions as a plug-in to Adobe Photoshop (Photoshop 7.0, Adobe 

Systems Inc, San Jose, CA) has been used for image analysis.  

First step of the image analysis was “thresholding”, that is whenever a pixel’s 

value is greater than a certain number, its value is replaced by 1 and if its value is less 
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than or equal to that number, it is replaced by zero.  A binary image was obtained after 

thresholding step.  

This step was followed by “close” filter, which is defined as a “dilation” operation 

with a given structuring element followed by “erosion” with the same structuring 

element. Both “dilation” and “erosion” filters examine each binary pixel and change the 

value accordingly. In erosion, it is changed from ON to OFF if it has any neighbors that 

are OFF. Dilation is the reverse of erosion, so any OFF pixel is changed to ON if it has 

ON neighbors. The purpose of “close” operation is to smooth features and to remove 

isolated pixel noise from the image. It also helps to keep small features in the image, 

while small voids are filled, and gaps in features are connected. 

The next filter applied after closing was “fill holes”. This filter is based on the 

definition that a hole within a feature is a region of background that is isolated and does 

not connect to the background that reaches the edge of the image. This operation 

eliminates the holes inside pores, which might be excluded due to thresholding. The final 

step was cutting off edge-touching features in order to include only the features in the 

field of view [87,178]. This procedure is given in Fig. 4.2. Finally, a report on the 

features is obtained, which provides information such as area, equivalent diameter, form 

factor, x- and y- coordinates of each feature in the image for further analysis. The 

parameters included in this report are given in Table 4.2. 

For estimation of the nearest-neighbor distribution, (x,y) centroid coordinates of 

the pores observed in the ceramographic plane were measured. Then, if m is the total 

number of pores on which the measurements are performed, and (x1,y2), (x1,y2), . . ., 

(xi,yi), . . ., (xm,ym) are the centroid coordinates of the pores, the distances between the 
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pore at location (xi,yi) and all other (m-1) particles were calculated using corresponding 

centroid coordinates. The procedure was then repeated for all the pores. From this 

information, the nearest neighbor distance for each pore was calculated and a distribution 

of nearest neighbor distances was obtained from the features in the image. 

4.4.2. Tessellation of Microstructures 
This method involves a geometric construction of two dimensional cells or 

polygons around each particle on the plane-of-polish. It is a promising approach to 

characterizing especially clustering, since the cell area is a dependent on the whole 

surrounding environment of the particle concerned. All points within each polygon are 

closer to the center of the particle than to any particle outside the polygon. To construct 

the polygons, lines are drawn from a particle to neighboring particles. Next, 

perpendicular lines bisecting these lines are drawn. These lines will intersect and form 

polygons. The lines that intersect to form the polygons are from only the nearest 

neighbors. Thus, a unique area can be associated with each feature [110,116]. 

A certain procedure in .image analysis was performed for creating tessellated 

microstructures. Again, The Image Processing Toolkit 5.0 was utilized to form 

tessellations. Procedurally, the first step was thresholding. A binary image was created 

after thresholding. Then, an “invert” filter was used on the image, which reversed the 

pixel values assigned in thresholding step. The next step was to use Skeletonization filter. 

It is a specialized form of “erosion” and is also named Medial Axis Transform (MAT). 

This filter basically forms a line of pixels that mark the midline of a feature. If there is 

branching in a feature, the skeleton has also the same branches, only in reduced form and 

line shape [179]. Since tessellations must be made up of continuous lines, removal of 
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unconnected lines must be performed. This was achieved using “prune” filter, which 

eliminates lines with end points. 

“Thicken” filter was applied to enable the software to detect each cell or tile 

during quantification. During application of previous filters, gray levels might appear on 

tile boundaries. Thresholding was used to eliminate this problem. 

The image was then inverted again in order to get the quantitative information of 

each tile or cell created. The sequence of image analysis steps is given in Fig. 4.3. 

Generation of tile boundaries was followed by generating cells or tiles using 

random Poisson distribution. This was accomplished by using STG Software 4.1 

(Institute of Statistics, Freiberg, Germany), which is used for generation, presentation and 

statistical analysis of models with stochastic geometry. The average number of cells was 

determined per image for each sample, and the same number of points was entered under 

“Generate” column. This image was carried over to Adobe Photoshop and same 

procedure for tessellating images was performed. This part of the work provided the 

ground for comparison of real tessellated microstructures with that of total random 

microstructures. 

 

4.4.3. Pair Correlation Functions 
Generating pair correlation functions followed the previously explained image 

analysis procedures, where same filters were applied to images as in nearest neighbor 

distance distributions. The x- and y- coordinates were copied to a Notepad file and the 

total number of points was written on the top of the file in order to match up with format 

the software required. This file was carried over to STG software. Coordinates of features 
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formed a two dimensional point map, which was an exact representation of defects from 

the original image. Pair correlation functions were obtained by using the function button 

under statistics column.  

4.5. Image Analysis 

4.5.1. Porosity Measurements 
One of the steps in image analysis was to measure porosity levels for each 

sample. After each image was converted to binary form, the image analysis software 

provided the percentage of defects, which were represented by black features, to the 

overall image. “Global” filter was performed for obtaining this type of information. 

Although porosity values obtained by this method gave results based on two dimensional 

images, this was acceptable due to the principles of stereology. 

4.5.2. Defect Size Distributions 
Collected images went through same image analysis procedure as in the images 

for calculating nearest neighbor distance distributions. The second column of the report 

file presented “equivalent diameter” parameter. This term is the distance of a feature 

which corresponds to the radius of a circle with same area [180]. This is shown in Fig. 

4.4. After data bins were created, the equivalent diameters of defects were then graphed, 

showing the amount of defects, either in absolute values or in percentages, in each bin or 

data range. 

4.6. Mechanical Testing 

4.6.1. Microindentation 
Microstructural investigation was followed by hardness tests. Microhardness was 

measured by Knoop indentation using Leco M-400-G3 Hardness Tester (Leco Corp., St. 
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Joseph, MI).  The length of longer diagonal was measured in microns and it was 

substituted into the following equation for obtaining Knoop hardness: [117] 

 

    2

14229
L

FKHN ×
=            4.1 

 

 where   KHN = Knoop Hardness Number 

F = Load (g) 

   L = Long Diagonal Length (μm) 

 

A series of indentations at five different loads were performed on polished 

samples. The loads were chosen as 2 Kg, 1 Kg, 0.5 Kg, 0.3 Kg and 0.1 Kg. Knoop 

indentation was used on all of the measurements and a square array of indents were 

performed on polished sections. Hardness maps were obtained by indentation of samples 

100 times, forming a square of 10×10 indents and they are presented here as contour 

maps. The distance between each indent was kept constant at 0.5 mm at larger loads, and 

the distance was reduced down to 0.15 mm at lower loads. The dwell time was selected 

arbitrarily at 10 seconds. The starting position for indentation arrays was chosen 

arbitrarily and the place to be indented was not changed according to positions of defects. 

4.6.2. Grain size analysis 
Images of etched surfaces were collected using FE-SEM. This analysis was 

performed on microstructures from indented samples and around regions that show low 

and high hardness to see if grain size has any effect on the hardness results. Grain size 

analysis was performed after several image processing steps. Before converting image to 
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binary, “Kuwahara” filter, which is an edge-preserving filter that reduces noise, was 

applied. This filter compares the variance of subregions within the neighborhood and 

keeps the mean value of whichever subregion has the smallest variance [87]. It also helps 

lessen the appearance of polishing scratches and to reveal the grain boundaries. Then, the 

image was converted into binary form by using “threshold” filter. Following the 

conversion step, “invert” filter was applied and grains were observed as black. “Fill 

holes” filter was used to close any gaps inside grains and a closing operation was applied 

afterwards. The edge-touching features were removed from analysis by using “cut-off” 

filter. Finally, “watershed” filter, which uses distance maps for segmentation of features, 

was applied [87]. This filter helps separate touching features, however it can also draw 

false boundaries. Therefore, the processed image was examined closely and those types 

of boundaries were removed manually. 

 

4.6.3. Fracture Mode 
The indentations in hardness tests occasionally caused cracking, especially at the 

higher loads. The indents were made and they were observed either by the optical 

microscope or by FE-SEM. Electron microscope showed better assessment on 

transgranular/intergranular cracking due to the fact that, FESEM provides higher 

magnification which was required for SiC samples with small grain size. After an 

assessment was made on each indent, the results were presented in percentages by the 

amount of fracture type each sample showed. 
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4.7. Nondestructive Evaluation by Ultrasound 
For the ultrasound study, tiles were scanned using 75 and 125 MHz transducers to 

provide a high degree of detail and resolution for detection of defects. Higher frequency 

transducers produce ultrasound waves with shorter wavelengths that enable the detection 

of smaller features in the test sample [176]. C-scans images were produced by 125 MHz 

frequency transducers. The scans shown in this thesis were mainly utilized for providing 

insight to determine the areas for further destructive evaluation. 

 

 
Table 4.1. Grinding/Polishing Procedure at 5-8 lbs/sample of force at 150 rpm 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Abrasive (μm) Time (minutes) Wheel/Holder Spin 

125 10 Complementary 

45 10 Contra 

15 10 Complementary 

9 10 Complementary 

3 10 Contra 

1 10 Complementary 
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Figure 4.1. The shape of indent after each polishing step during serial sectioning 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2. (a) Original FESEM image from a polished section (b) After thresholding       
(c) Previous picture with a highlighted corner for a closer look for further steps  (d)After 
application of “close” and “fill holes” filters (e) After application of “cut-off” filter. Gray 

feature due to the filter were shown with red arrows (f) Final processed image 
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Table 4.2. Data generated in Image Processing Toolkit 5.0 
Feature Number Number of Holes Mean Ext. Branch 

Length (μm) 

Density 

Area (μm2) Formfactor Mean Int. Branch 

Length (μm) 

Integrated Optical Density 

Filled Area (μm2) Roundness Mean Fiber Width 

(μm) 

X- and Y- Centroid (μm) 

Convex Area (μm2) Aspect Ratio Width Standard Dev. 

(μm) 

Moment Angle 

Length (μm) Solidity Mean Red Weighted X- and Y- Center (μm) 

Breadth (μm) Convexity Mean Green X- and Y- Geometric Center (μm)

Equivalent Diameter 

(μm) 

Symmetry 

 

Mean Blue Nearest Nbor Distance (μm) 

Inscribed Radius (μm) Hole Fraction Mean Hue Nearest Nbor Dir. 

Circum. Radius (μm) Radius Ratio Mean Saturated Nearest Nbor ID 

Perimeter (μm) Elongation Mean Luminance Min. Seperation Distance (μm) 

External Perimeter 

(μm) 

Skeleton Length 

(μm) 

Max. Intensity Min. Seperation ID 

Convex Peri. (μm) Skel. End Points Min. Intensity Adjacent Feature Count 

X- and Y- Feret Skel. Branch 

Points 

Intensity Std. Dev. 

 

Adjusted Count 
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Figure 4.3. (a) Part of an original FESEM image (b) Processed image (c) After 
application of “invert” filter (d) “Skeletonize” filter applied (e) Second application of 

“invert” (f)Combined image of defects and cells around defects 
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Figure 4.4. Conversion of a rectangle shape into a circle for obtaining dequivalent where the 
areas of the figures are equal 
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5. RESULTS AND DISCUSSION 
After presenting the literature background, the method of attack and the 

experimental procedure, the results will be presented in this chapter with subsequent 

discussions. The chapter is divided into three parts, first of which involves 

microstructural examinations and the results from those examinations. In the second part, 

hardness is employed as a validation method for the microstructural results. The third part 

combines microstructural findings and hardness data and tries to draw conclusions from 

these two parts 

5.1. Off-Density Sintered Hexoloy-like Samples 

5.1.1. Density 
Density measurements were performed using Archimedes’ principle. The density 

values of SA-1, SA-2, EXT and SP are 3.16, 3.18, 3.11, 3.10 gr/cm3, respectively. 

Density of the samples was also calculated using image analysis from a total of ten 

micrographs for each sample at 1000× magnification. The values from image analysis are 

3.11, 3.12, 3.07, 3.09 gr/cm3, respectively. 

5.1.2. Micrographs 
 Representative micrographs for each sample are given in Fig. 5.1. SA-1 and SA-2 

have qualitatively very similar microstructures with evenly distributed pores in the field 

of view. EXT has elongated features that are evidently the result of extrusion process. SP 

has large circular pores in a matrix of homogeneously distributed smaller pores. EXT and 

SP have visibly distinctive features which provide the opportunity to see the differences 

between samples clearly when microstructural parameters are obtained at the end of 

spatial analyses. 
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5.1.3. Average Pore Size and Pore Size Distribution 
Average pore size and pore size distribution of four samples were calculated using 

the image analysis procedure that was explained in Experimental chapter. Equivalent 

diameter of features is used for calculation of average pore diameter. Average pore size 

for each sample is given in Fig. 5.2. Among all samples, SA-2 has the smallest pore size 

with an average value of 1.01 μm. Samples EXT and SP have an average pore size of 

1.05 μm and SA-1 has the largest average pore size with 1.28 μm. However, SA-1 has a 

much lower standard deviation, ±0.89 μm, when compared to EXT and SP, ±1.43 and 

±1.57, respectively. These values verify the visual observations that samples EXT and SP 

have a broader pore size distribution than the other samples.  

Pore size distributions are given in Fig. 5.3. The graphs were plotted based on the 

percentage of number of occurrences (% Frequency) on the y-axis. Among the largest 

peaks of each graph, SA-2 has the largest bar with the y-axis value above 45 percent. The 

right side of the plots for SA-1 and SA-2 do not extend beyond 6 μm, however that is not 

the case for the other two samples due to the presence of elongated pores for EXT and 

large round pores for SP. These results are in agreement with the qualitative observations 

obtained from the micrographs. SA-2 seems to have smaller pores when compared to 

EXT and SP and that is verified by the defect size distribution plots. 

 

5.1.4. Nearest Neighbor Distance Distributions 
Apart from the average pore size and pore size distribution, the focus in this study 

is on the location of pores and their spatial distribution, therefore more information will 

be extracted from the micrographs 
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The nearest neighbor distance (nnd) distributions for the samples are given in Fig. 

5.4. Sample SA-1 and SA-2 show relatively narrow nearest neighbor distance 

distributions with small values for variance of the distributions, 2.32 and 2.09 μm2, 

respectively. This narrow distribution of nnd can be observed by looking at the right 

corner of the histogram where the % Frequency of distances longer than arbitrary 14 μm 

is given and it is zero for both samples. The nnd distributions for samples EXT and SP 

show a different behavior on the contrary. Broader nnd distributions can be seen easily 

for both samples, with variance values 10.83 and 6.97 μm2, respectively. The other 

important observation for these two histograms is that there is considerable amount of 

nnd values on the right side of the histogram. This is a clear indication of inhomogeneous 

microstructures that these two samples possess. 

Q and V parameters were introduced in the Literature Review chapter. Observed 

mean and variance nearest neighbor distance (nnd) values were calculated from the 

distributions given in Fig. 5.4. These two parameters are given in Table 5.1. The Q values 

for all four samples are approximately equal to 1; however the V values differ strongly 

from the random case. SA-2 is the only one whose V value is roughly 1. Other three 

samples, especially EXT and SP, have V values way off the random value, ~1. Overall, 

all samples can be accepted in “Random” category due to the fact that points fall in 

between two straight lines parallel to the y-axis. 

 

5.1.5. Tessellation Analysis 
Microstructures were tessellated and divided into smaller areas, “cells” or “tiles”, 

as previously explained in the Experimental chapter. This is a good way to assess 
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microstructures since the cell area is dependent on the whole surrounding environment of 

the pore concerned. After going through the image analysis steps, representative 

tessellated microstructures are given in Fig. 5.5. The images look like the microstructure 

of an etched material, where the tile boundaries resemble grain boundaries. SA-1 and SA-

2 seem to have an even cell are distribution. EXT and SP possess large cells due the 

presence large features in the original images. 

Cell area distributions are shown in Fig. 5.6. ‘More’ in Fig. 5.6 refers to cell areas 

larger than 100 μm2 .The distribution for SA-1 is very broad in between the limits 0-100 

μm2 but the cell area percentage above 100 μm2 is low when compared to EXT and SP. 

SA-2 has the narrowest distribution among all and the cell area percentage larger than 

100 μm2 is minimal compared to the other three samples. 

P1 and P2 parameters were introduced in the Literature Review section, and in 

principle, they represent the same concepts as Q and V does that are relevant to nearest 

neighbor distance distributions. P1 is based on the variance of the cell area distribution 

and it is a parameter that can be used to find the extent of spread in a distribution since 

the variance from a real microstructure is compared to that of a random microstructure. 

P2 is a measure of skewness, which shows the asymmetry in a distribution. 

These two parameters were calculated for all samples, which are given in Fig. 5.7. 

SP has the largest values, 3.28 and 15.78, respectively, as opposed to 1, which is the 

expected value for random distribution of particles. The complete P1 and P2 results are 

given in Table 5.2. 
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5.1.6. Pair Correlation Functions 
Pair correlation functions (pcf) from these samples are given in Fig. 5.8. The 

different curves in each graph represent estimation from different micrographs. Most of 

the curves in each graph are dominated by plots which rise monotonically to its 

asymptotic value and is distinguished by relative lack of structure. Some of the curves for 

EXT and SP have sharp peaks very close to the y-axis. Strong first peak at a distance well 

below the mean interparticle distance (r0) followed by a weak minimum at about this 

distance is an indication of clustering. The curves for SA-1 and SA-2 are typical random 

distribution curves. 

An order parameter for pair correlation functions has been introduced by 

Hubalkova and Stoyan [102]; 
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where; 

r1 is the position, g(r1) is the value of the first maximum of the pcf and r0 is the 

hard core distance. This O parameter characterizes the average growth rate of the pcf 

between r0 and r1 and a larger value indicates a lower degree of homogeneity in the 

structure. The values for each sample were calculated. No significant difference was 

observed between the O values for four samples.  

 

5.1.7. Assessment of Spatial Data Analysis Techniques 
Three different techniques, nearest neighbor distance distributions, tessellation 

analysis, and pair correlation functions, were used to examine spatial distribution of pores 
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in SiC. The trends that were observed in one technique were validated by another and 

consequently, no significant difference was observed among the three. Therefore, from 

this point on, nearest neighbor distance distributions will be used due to the ease of 

application compared to the other two techniques, which require more tedious effort to 

get the same type of information. 

 

5.1.8. Serial Sectioning 
The results shown above were from a single layer. Grinding and polishing was 

applied on the samples multiple times, obtaining micrographs at each layer so that the 

microstructural information was obtained not only from a single section but also from the 

volume underneath. This was performed for statistical purposes and a possible way of 

combining the micrographs to form a three-dimensional visualization of a volume instead 

of looking at the layers individually. Eventually, three dimensional images could not be 

obtained due to the difficulty in aligning all images from all layers but valuable 

information was obtained from each section. 

 

5.1.8.1. Average Pore Size and Pore Size Distribution 
Initially, pore size distributions were calculated and they are given in Fig. 5.9.  

Graphs were plotted based on the number of pores observed in the field of view. As it can 

be seen from the graphs, SA-1 has smaller number of pores; however, the average pore 

size is larger. The overall number of pores is the highest for SA-2 in all the layers and it 

has the smallest pores. EXT have similar graphs except the third layer, where the number 

of pores observed is significantly less than the other three layers. In the first layer for SP, 
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a significant number of finer pores was observed, which is not valid for the second layer. 

The number of pores is fairly higher for the third and fourth layer and their distribution 

close to each other. 

 

5.1.8.2. Nearest Neighbor Distance Distributions 
The nearest neighbor distance (nnd) distributions for the four layers are given in 

Fig. 5.10. In the graph for the first layer, EXT has the narrowest distribution among the 

four. The major peaks are around 2 μm and the graph does not extend beyond 5 μm. The 

second one is SA-2, where some peaks are observable beyond 5 μm mark. SA-1 and SP 

show relatively broader distribution, where the right part of the graphs extends further. 

Also, major peaks are not as strong as they are for SA-2 and EXT. 

In the second layer, SA-2 has the narrowest distribution this time, with the longest 

major peaks and the shortest range from the smallest nnd to the longest nnd. EXT has a 

slightly broader range and SP is similar to EXT except that the major peaks are shorter. 

SA-1 behaves differently again, with the widest spread. Small peaks are observable even 

around 10 μm which is not the case for the other three samples. 

The third layer shows different results from what is observed in the first and 

second layers. SA-2 and SP have very similar graphs in the sense that both have the same 

range and the same height of major peaks. SA-1 shows a large spread with the major 

peaks reaching around 400 in the number of pores axis. The graph for EXT has a similar 

shape except that major peaks reach about 300. 
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In the fourth layer, SA-2 has again the narrowest distribution among all. EXT and 

SP have similar ranges, only the heights of peaks change slightly. SA-1 has again an 

observable difference from the other three samples. 

Q-V values from all layers are given in Table 5.3. The data points for SA-2 are 

the closest to the (1,1) point, which represents the random point. As the points move 

away from this spot, the deviation from randomness starts. It can be concluded that SA-2 

has the closest microstructure to random.  

 

5.2. Cercom Hot-Pressed SiC Samples 
As mentioned in the introduction part of this chapter, hot-pressed samples were 

studied in addition to the sintered samples. First, the results from three commercial hot-

pressed SiC tiles, referred to as LD, DEF and AG, from a single production lot will be 

presented. Then, the findings from the second set, which is “Lundberg Samples”, will be 

shown.  

 

5.2.1. First Set of Hot-Pressed SiC Samples 

5.2.1.1. Density 
Density measurements were performed using Archimedes’ principle. The density 

values are 3.19, 3.18 and 3.20 gr/cm3 for DEF, LD and AG respectively.  

 

5.2.1.2. Microstructural Evaluation 
The micrographs from the three samples can be seen in Fig. 5.11. On the 

appearance, they have similar average pore size and spatial distribution. However, careful 
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analysis of the images will expose possible differences in the defect size distribution and 

the level of clustering of pores. Visually, DEF seems to have more of elongated shaped 

features while AG and LD seem to have very similar micrographs qualitatively.  

 

5.2.1.3. Average Pore Size and Pore Size Distribution 
Average pore size values are given in Fig. 5.12 and were calculated to be 0.78 ± 

0.49 μm, 0.94 ± 0.47 μm, and 1.08 ± 0.54 μm for DEF, AG and LD, respectively. Among 

the three samples, DEF has the smallest pore size. LD has the largest pore size and also 

the highest standard deviation. 

Pore size distributions are given in Fig. 5.13. LD has the broadest distribution 

among the three, which is consistent with the previously mentioned ultrasound results. 

AG and DEF have tighter distributions than LD has as the peaks in each range beyond 

1.5 μm have very close values for both samples. The ones lower than 1.5 μm are different 

as DEF has significant amount of data points in the lowest 0.5-1 μm range and AG has a 

very small peak in that range. In addition to that, AG has the largest peak in the 1-1.5 μm, 

that reaches up to 70% of the of the data points. As a result, AG and DEF have narrower 

distributions when compared to that of LD. 

 

5.2.1.4. Nearest Neighbor Distance Distributions 
Nearest neighbor distance distributions were performed on these samples using 

image analysis and the results can be seen in Fig. 5.14. The ‘More’ column in the plot 

refers to values larger than 15 μm for the nnd distributions. AG and DEF show relatively 

narrow nearest neighbor distance distributions with the variance values of 3.47 and 2.94 
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μm2, respectively. This narrow distribution of nearest neighbor distances can be observed 

qualitatively on the right side of the graph, as LD has clearly higher peaks above 10 μm. 

LD shows a higher variance value with 5.51 μm2 and broader distribution compared to 

the other two samples. This is an indication of inhomogeneous distribution of defects that 

LD possesses.  

Q-V plots for these samples are given in Fig. 5.15. All points fall in between the 

two lines that could be labeled as “random”. However, there is a minor difference 

between LD and the other two samples where LD is in the region of random distribution 

with clusters while AG and DEF do not show any clustering according to the plot. 

Although, this topic was extensively covered in Literature Review chapter, it 

would be useful to remind the reader again briefly what “random” stands for. When a 

qualitative observation does not show any apparent structure in a pattern, it could be 

regarded as “random.” When the events are about evenly spread over the entire area, the 

pattern could be labeled as “regular”. “Clustering” is the type of pattern where events are 

noticeably grouped rather than being regularly or randomly spaced. A mixture of 

clustering with random or regular case could also be observed in a pattern. The Q-V plots 

show briefly where the spatial distribution falls, (1,1) point representing the ultimate 

random point. More information on this matter could be found in Literature Review 

chapter. 

 

5.2.2. Lundberg Samples 

5.2.2.1. Microstructural Evaluation 
The micrographs of four Lundberg samples are given in Fig. 5.16. Initial 

observations show that SiC-HPN seems to have the lowest amount of features among all 
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four. SiC-SC-1RN looks like it has smaller features than the other three while SiC-B 

possesses features with larger sizes than the rest.  

One crucial step was added during image processing of micrographs, which was 

setting a shape factor threshold for differentiating between pullouts and pores. The details 

on this subject are covered extensively on the Literature Review chapter. 

 

5.2.2.2. Density 
Densities of the samples were initially calculated by Archimedes’ method and 

they were all found to be 3.20 gr/cm3. Image analysis was also employed in density 

determination. The results from SiC-N and SiC-SC-1RN agreed with Archimedes’ 

method as they came out to be 3.20 while SiC-B and SiC-HPN showed slight decrease in 

density with values of 3.19 gr/cm3. 

 

5.2.2.3. Average Pore Size and Size Distribution 
Some of the qualitative observations were verified using image analysis. Bar chart 

for average pore size is given in Fig. 5.17. SiC-N and SiC-SC-1RN have smaller average 

pore size than the other two samples. SiC-B and SiC-HPN have also larger standard 

deviation values.  

Pore size distributions are given in Figure 5.18. The longest bar in SiC-HPN chart 

is from 0.4-0.6 μm range and the maximum number of defects observed in that range is 

300. The graph extends up to 2.8 μm. For SiC-SC-1RN, the maximum number of defects 

observed in a bin, which is close to 800, is from the same 0.4-0.6 μm range. The largest 

bin in the graph goes up to 1.4-1.6 μm range. SiC-B shows a very similar trend in the plot 
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as is shows more spread in the size data than SiC-SC-1RN and SiC-N and the largest pore 

size bin is from 2.6-2.8 μm range. The largest bar in SiC-N chart is from 0-0.75 μm range 

and it reaches right below 600 for the number of defects.  SiC-N and SiC-SC-1RN 

possess similar curves and same is valid SiC-HPN and SiC-B. 

Curve fitting was performed on the plots and R2 values for all of them were above 

0.90, SiC-SC-1RN with the highest value of 0.99 and SiC-HPN with the lowest value of 

0.94. 

5.2.2.4. Nearest Neighbor Distance Distributions 
Spatial data analysis was performed once again using nearest neighbor distance 

distributions and plots are given in Fig. 5.19. Minor differences were observed on the 

plots, especially on the right side where higher values of nearest neighbor distance 

distributions were present. SiC-N extends up to 22 μm, which shows the highest values 

among all. Then, the highest value of 21 μm was observed for SiC-HPN. SiC-N and SiC-

SC-1RN have lower highest values of 18 and 15 μm, respectively. These values do not 

mean that there are significant differences in the spatial distributions of defects; however, 

minor dissimilarities should be pointed for further categorization.  

Q-V plots are given in Fig. 20, where the distributions that were explained above 

were compared to that of expected random distributions. The first graph, Fig. 20 (a) 

shows data points from each micrograph used in calculation of nearest neighbor distance 

distributions. The second graph, Fig. 20 (b) combines all data points for each sample and 

presents the data with the error bars. All points slightly fall into “random with clusters” 

region, where SiC-SC-1RN is the closest to the random point and SiC-HPN is the farthest 
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from the random point. This shows the same trend that was observed in the nearest 

neighbor distance distribution plots. 

 

5.3. SiC Hexoloy SA Tile 

5.3.1. Ultrasound Image 
In this section, microstructural results from a SiC Hexoloy tile will be presented. 

A set of several tiles had been previously scanned and low amplitude regions, which 

could be a result of cluster of impurities, pores, grain size changes etc., were determined. 

These questionable regions were examined for one of that set of tiles by using diced 

pieces from those areas. Spatial distribution and size distribution of pores were 

determined and correlations with ultrasound results were obtained.  

C-scan image of SiC Hexoloy tile is given in Fig. 5.21. The color scale represents 

the amplitude of ultrasound signals in millivolt (mV). The blue areas are low amplitude 

regions that are segregated on two sides of the tile. The tile was cut and diced from those 

regions as shown in Fig. 5.21. The pieces from these two cuts represent “bad” regions. 

Another cut was made from the middle part of the tile which had predominantly shades 

of yellow and red regions. The pieces from this cut represent “good” regions. The signal 

sent through the material provides C-scan image maps, which show the variations in the 

intensity of reflected signal. “Good” and “bad” areas are determined according to the 

signal amplitude obtained from those regions. “Bad” regions are caused by the presence 

of features such as pores, inclusions that instigate higher signal loss.  

There were totally 12 pieces. Numbers 1 to 4 and 9 to 12 were from “bad” regions 

and numbers 5 to 8 were from “good” regions. Six of these of twelve pieces were studied, 

namely N1, N4, N5, N8, N9, and N12.  
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5.3.2. High Magnification Images 
The micrographs from each piece are given in Fig. 5.22. There are minor 

differences in each one and they all look very similar qualitatively. One big round pore 

could be seen on the left side of the micrograph of N1. Several pores are located in the 

middle of the micrograph for N4. Clustering of defects seems to be present in the 

micrograph for N9. No significant observations are required to be emphasized for the 

other three micrographs which look alike. 

5.3.2.1. Average Defect Size and Size Distribution 
Initially, the density of the tile was measured by Archimedes’ principle and all 

values came out to be 3.16 gr/cm3. The average defect size and size distributions were 

measured afterwards. Bar chart for the six samples is given in Fig. 5.23. The graph on the 

right shows each sample and the one on the left shows results based on the regional 

information. N5 possesses the smallest pore size of 0.92 μm with the smallest standard 

deviation of 0.54 μm. N12 and N1 follow as they have average sizes of 0.98 and 0.99 μm, 

and standard deviations of 0.59 and 0.61 μm, respectively. The one with the largest 

average pore size is N4 with 1.06 μm and with a standard deviation of 0.65 μm. It is 

reasonable to have N5 and N8 have smaller average pore sizes since they are from high 

amplitude regions or “good” regions of the tile. The results from N5 support this 

statement however this is not the case for N8.  

Pore size distribution of each sample is given in Fig. 5.24. N5 and N8 have plots 

that end at roughly 4 μm size while x-axis in plots of N4 and N9 extend to 6 μm. N1 

possesses the largest sized features as the graph ends at 7 μm. This size difference 

between samples could provide partial explanation for the changes in ultrasound signals 

within the tile. 



100 

 

Curves were fitted as mentioned previously and FreundlichEXT function was 

used once more. R2 values for all samples except N4 are 0.99. N4 has a R2 value of 0.97, 

which still makes it a very good fit. 

Size distributions were also plotted according to regions, given in Fig. 5.25. 

Region 2 has defects up to 4 μm in size while the curves for Region 1 and Region 3 

extend right below 6 and 7 μm, respectively. The large-sized features could also be 

important in the ultrasound scans; therefore, this result is noteworthy. 

5.3.2.2. Nearest Neighbor Distance Distributions 
Nearest neighbor distances were calculated for all samples and no significant 

differences were observed among the plots given in Fig. 5.26. The largest peak for N1 

reaches 150 at around 3 μm and the graph extends right above 12 μm. The values 

regarding the highest peak are very close to N1 for N4 and N12, while the plot goes up to 

a nearest neighbor distance value of 11 μm. The graph for N5 from the “good” region is 

not very different from the two previous plots. The largest peak reaches up to 150 at a 

value of around 2.5 μm. The largest nearest neighbor distance recorded is 11.4 μm for 

N5. The plot for N8 is narrower than the previous three plots, almost all nearest neighbor 

distance values are between 1 μm and 10 μm. The highest peak once again reaches 150. 

N9 has nearest neighbor distance values between up to 12 μm and the graph is very 

similar to N4.  

As mentioned in the beginning, there is not a major difference among six samples. 

The only one that is outstanding is N8 has a plot narrower than the other five plots. 

Narrower nearest neighbor distance distribution graphs show more homogeneity in 

spatial defect distributions in the microstructure. 
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Fig. 5.27 looks at the distributions from the regional perspective, and probably 

due to the effect of N8, the graph for Region 2 shows a narrower distribution. 

Q-V plots were obtained using the nearest neighbor distance data and it is given in 

Fig. 5.28. The data point fall very close to each so it is hard to speculate on the spatial 

distribution differences between samples. The insignificant differences observed in 

distribution plots can be also seen here. 

 

5.3.3. Low Magnification Results 
Similar type of analysis was performed on the same samples. Optical microscopy 

was employed since low magnification of 100× was sufficient in this part of the study 

and there was no need to go with scanning electron microscopy. The purpose of using 

lower magnification was to cover as much a larger area as possible in order to create 

more valid comparison with ultrasound.  

The images are given in Fig. 5.29. Ten pictures from each sample were combined 

in the images in Fig. 5.29 and this makes the features in each image hard to spot. They 

are presented in this way in order to give an idea of the total area examined. It is roughly 

0.5 mm2, which corresponds to almost half of the surface of the sample. This is a 

significantly larger area than the previous one at higher magnification; therefore, it might 

provide an insight that could have been missed in the previous examinations.  

The average defect size is given in Fig. 5.30. Values are very close each other as 

they vary between 4.46 μm and 4.63 μm. The one with the smallest average defect size is 

N12, which is from the “bad” region. However, in the order from the one with the 

smallest defect size to the largest one, the next two samples are N5 and N8, which are 
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from the “good” region. The number of defects, density calculated by image analysis, 

average defect size, standard deviation of defect size and the maximum defect size is all 

given in Table 5.4. 

Defect size distributions are given Fig. 5.31. The R2 values are all above 0.91, 

which signifies a very good fit. Another observation from the plots is the largest sized 

features found in each sample. This is also shown in Table 5.4. The largest sized features 

that N4, N5 and N9 possess are all in the between 20-30 μm, while that value increases 

gradually, reaching up to 63 μm for N1.  

5.3.3.1. Nearest Neighbor Distance Distributions 
Nearest neighbor distance distributions are shown in Fig. 5.32, where, broadness 

of the curves is important for evaluation. According to the plots and the standard 

deviation values, N8 shows the narrowest distribution with a standard deviation value of 

12.88 μm. Although the maximum value is 136 μm, the data point decreases suddenly 

below 80 μm mark, while the others demonstrate nearest neighbor distance distribution 

values above 80 μm mark. 

Q-V map, given in Fig. 5.33, shows some interesting results. The average data 

points for three out of six samples fall into the region of “clustering in a random 

background”. The samples from “good” region and N4 fall in the confidence interval of a 

“random” distribution. These results could be very significant in terms of explaining the 

differences observed in an ultrasound C-scan map. Clustering of defects could be a 

noteworthy factor among other possible reasons for variations.  
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5.3.3.2. Locating Defect Clusters 
The deviations from “random” distribution have been emphasized up to this point. 

One further step is to actually locate these clusters. This component of the study is 

important since it provides the opportunity to visualize the problematic regions and 

further studies can be built upon this. 

In order to find clusters on images, the concept of limiting interevent distance (R) 

must be established. This is the radius of a cluster which contains all the features, or 

events, inside a circle. All the features outside this circle of radius R, is not a part of the 

cluster. An illustration of the interevent distance is shown in the pictures in Fig. 5.34.  

The value of R must be determined carefully in order to obtain a reasonable 

representation of clustering and non-clustered regions in an image. Anson and Gruzlezski 

[111] suggest two methods of determining the value of R. The first one is performed 

qualitatively, where, R is varied and the efficiency of the grouping is examined visually 

according to the value of R. The other technique is quantitative, where; different values 

are assigned to R, from zero to very large values, until all the features in the image will 

be a part of one cluster. If R is plotted against the number of clusters, a plateau will be 

observed. R value that corresponds to the start of the plateau could be accepted as the 

optimum R value.  

The quantitative method was applied to one of the images from N9, which is 

given in Fig. 5.35. This sample has some degree of clustering according to the Q-V map; 

therefore, these clusters could be identified. Initially, the image was processed and the 

final form can be seen in Fig. 5.36. Then, using Image Processing Toolkit 5.0, R value 

was varied from zero to 100. In Fig. 5.37, the blue curve shows the number of clusters as 

R changes while the green curve demonstrates the number of features in clusters. The 
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plateau that was mentioned above can be observed between the values of 20 μm to 30 

μm. Therefore, 20 μm can be accepted as the limiting interevent distance, R, according to 

the spatial distribution of features in this image. Fig. 5.38 shows the clusters in red, 

omitting the other features in the binary image that have nearest neighbor distance values 

above 20 μm. All defects can be seen in Fig. 5.39, where clustered defects are shown in 

red again. Finally, clusters are demonstrated in the original image in Fig. 5.40. 

This section of the study is important since the clusters can be identified in the 

images. This will provide more insight in the subsequent tests, such as hardness or 

dynamic tests since knowing the actual location of clusters help determine the effect of 

them on the overall performance.  

 

5.3.4. Serial Sectioning of Hexoloy SA Tile 
In order to have more valid comparison between ultrasound and microscopy, 

serial sectioning was performed. Four other layers were examined in addition to the layer, 

results of which were presented.  

The density plot from all five layers is given in Fig. 5.41. There is no clear trend 

as the variation between values for each sample and region is fairly high. For example, 

N8 seems to have the highest density value at the 4th and 5th layers while it has the second 

lowest density at the 1st layer. These fluctuations are observed for all samples, therefore 

no correlation was observed qualitatively between layers.  

Since there are six different samples and five different layers from each one, it is 

hard to recognize trends in the plot, if any. Therefore, in order to check if there is a 

difference in terms of density between “good” and “bad” regions, t-tests were employed. 
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T-tests assess whether the means of two groups are statistically different from each other. 

The results are given in Table 5.5 and 5.6. P values obtained from this test are compared 

with α value, which represent the %95 confidence interval. In both cases where Region 2 

was compared with Region 1 and Region 3 separately, P values came out to higher than 

α. This shows that there is not a significant difference statistically between “good” and 

“bad” regions in terms of density. 

Fig. 5.42 shows average defect size values from all five layers. On the first look, 

all samples seem to have relatively close values and high standard deviation values are 

observed. 4th layer in N8 has the smallest average defect size of 3.87 ± 1.87 μm among all 

samples while the average size value of 3rd layer in N8 is 4.49 ± 2.05 μm, which ranks 

among the highest values among all samples. This example summarizes the variation 

observed between samples. T-tests were also employed in order to reveal difference, f 

any. Once again, the samples were not statistically different from each other in terms of 

average defect size values. The t-test results are given in Table 5.7 and 5.8.  

After examining the average defect size, the next parameter was the largest defect 

size observed in each layer. The plot is given in Fig. 5.43. Unlike the previous two 

graphs, this difference between samples and layers is more distinct, even qualitatively. 

Samples from “good” region clearly have lower values than the ones from “bad” regions. 

Especially N5 have consistency over five layers in terms of this parameter. In order 

verify these observations; t-tests were performed once again. The results from t-tests are 

given in Table 5.9 and Table 5.10. P value of the one-tail distribution for the t-test 

between Region 1 and Region 2 is 0.021, which is smaller than α value of 0.05. This 

shows that the difference between Region 1 and Region 2 is statistically significant. Same 
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type of information is obtained in the comparison between Region 2 and Region 3. P 

value of the one-tail distribution is 0.042, which is smaller than α value of 0.05 once 

again.  

The observations summarized above are relevant to the ultrasound results since 

any type of distinction between high amplitude and low amplitude regions is valuable. 

These small differences most likely contribute to the dissimilar amplitude regions 

observed in C-scan maps. 

 

5.3.4.1. Nearest Neighbor Distance Distributions 
In addition to the examination regarding the size of defects, their spatial 

distribution was studied. The plots for the five layers are given in Fig. 5.44. The first 

observation is that the locations of all the points are very close to each other. This is 

reasonable due to the fact that all samples come from a tile, which is actually an armor 

grade material. As a results of this, it would be logical not expect a huge difference 

between samples.  

From all the Q-V plots shown, one common observation is that N5 and N8 fall in 

“random” area while some of the points fall into “clustering over random background” 

regions for samples from “bad” regions. Another remark could be made about the 

distance of the points to the random point of (1,1). It is important to mention once again 

that the samples can be ranked according to their location in the Q-V plot. When this 

parameter is also taken into account, N5 and N8 are closer to the random point in most 

layers, if not all, as opposed to the samples from “bad” regions that fall into “random” 

region of the plots. 



107 

 

These results show us the clustering effect present in the low amplitude regions of 

amplitude maps. The significance of this statement comes from the fact that cluster of 

defects could be misinterpreted by the transducer, depending on the maximum resolution, 

and therefore could come out as one large pore. Therefore, the presence of clusters could 

possibly cause signal loss.  

In Fig. 45, Q-V graphs are plotted for each sample, showing the change in the 

spatial distribution of defects in each layer. The spatial distribution of defects could vary 

from the surface to the inside; therefore, it is worth looking at this aspect. 

N1 does not show any significant pattern from the 1st layer to the 5th layer. The 

three layers in between the first and fifth fall into the random region while first and fifth 

layer values fall into the random with clusters regions.   

N4 shows a different pattern from N1 where the first two layers are in random 

region, then the next three are in random with clusters region. According to this result, 

the spatial distribution of defects changes from the surface to the inner parts of a tile. This 

could be attributed to the more rapid pore elimination near the surface.  

In the plots of N5 and N8 from the good regions, a subtle trend can be observed. 

The first two layers for both samples are closer to the total random case. The following 

three layers have data points further away from the total random case, although the 

difference is not very significant.  

N9 shows a reverse trend observed for N4. In this case, the first two layers show 

random distribution with clusters while in the next three layers, the data points fall into 

the random regions. N12 does not show any pattern among the five layers. 
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Figure 5.1. Micrographs of (a) SA-1 (b) SA-2  (c) EXT (d) SP 
 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 5.2. Average defect size for all samples 
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Figure 5.3. Pore size distribution (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.4. NND distribution of (a) SA-1 (b) SA-2 (c) EXT (d) SP 
 
 
 
 
 
 
 
 
 



111 

 

 
Table 5.1. Q and V values of off-density sintered SiC samples 

 
 MEAN 

NND 
(µ 

VARIANCE 
NND 

MEAN 
NND 
(RANDOM) 

VARIANCE 
NND 
(RANDOM) 

Q V 

SA-1 7.550 9.029 6.542 2.423 1.154 3.726 
SA-2 3.769 2.103 3.262 1.208 1.155 1.174 
EXT 6.093 10.798 5.753 2.131 1.059 5.068 
SP 5.167 6.971 4.674 1.731 1.104 4.027 
 

 

Figure 5.5. Tessellated microstructures of (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.6. Cell area distributions of (a) SA-1 (b) SA-2 (c) EXT (d) SP 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.7. P1 and P2 for all four samples 
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Table 5.2. P1 and P2 values of off-density sintered SiC samples 
 

 Variance Variance 
(random) 

Skewness Skewness 
(random) 

P1 P2 

SA-1 1011.5 1416.7 1.702 1.704 0.71 0.99 
SA-2 669.3 820.2 2.28 1.27 0.82 1.80 
EXT 2809.3 1855.5 4.55 1.36 1.51 3.35 
SP 5443.8 1660.6 19.79 1.25 3.28 15.78 
 

 

Figure 5.8. Pair correlation function plots of (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.9. Pore size distributions from (a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer 
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Figure 5.10. Nearest neighbor distance distribution from for (a) 1st layer (b) 2nd layer (c) 
3rd layer (d) 4th layer 

 

Table 5.3.  Q and V results from each layer 
 

 1st layer 2nd layer 3rd layer 4th layer 
 Q V Q V Q V Q V 
A 1.175604 3.337682 1.143111 4.488916 1.19307 3.636714 1.192785 3.414291
B 1.118401 3.190134 1.139574 2.6975 1.1657 2.348868 1.168456 2.29572 
C 1.223332 2.586455 1.173615 2.675832 1.161939 4.024303 1.334786 2.795571
D 1.08343 4.308038 1.130662 3.926532 1.167692 2.727393 1.26739 3.041789
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Figure 5.11. Micrographs of (a) LD (b) DEF (c) AG 

 
 

 

 

 

 

 

 

 

 

Figure 5.12. Average defect size for all three hot-pressed samples 
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Figure 5.13. Defect size distribution of all three hot-pressed samples 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Nearest neighbor distance distributions of all three hot-pressed samples 
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Figure 5.15. Q-V plot of all three hot-pressed samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Micrographs of (a)SiC-HPN (b)SiC-SC-1RN (c)SiC-N (d)SiC-B 
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Figure 5.17. Average defect size of Lundberg samples 
 

 

Figure 5.18. Pore size distribution of Lundberg samples 
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Figure 5.19. Nearest neighbor distance distribution of (a)SiC-HPN (b)SiC-SC-1RN          
(c)SiC-N (d)SiC-B 

 

Figure 5.20. Q-V map showing (a) each individual point (b) all points combined 
 



121 

 

 

 

Figure 5.21. C-scan image by ultrasound of Hexoloy SA3 
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Figure 5.22. Representative micrographs of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23. Average defect size of each sample 
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Figure 5.24. Defect size distribution of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12 
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Figure 5.25. Defect size distribution of (a) Region 1 (b) Region 2 (c) Region 3 

 

 

 

 

 

 

 
 



125 

 

 
Figure 5.26. Nearest neighbor distance distributions of (a) N1 (b) N4 (c) N5 (d) N8 (e) 

N9 (f) N12 
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Figure 5.27. Nearest neighbor distance distributions of each region 

 

Figure 5.28.  Q-V plots based on (a) region (b) sample 
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Figure 5.29. Low magnification images of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12 
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Figure 5.30. Average defect size of all examined samples 
 

 

 

Table 5.4. Image analysis results from all examined samples 

  N1 N4 N5 N8 N9 N12 

No. of defects 14754 14455 15452 16445 14615 15359 

Density (gr/cm3) 3.185 3.187 3.187 3.187 3.188 3.188 

Ave. Def. Size (μm) 4.63 4.58 4.52 4.47 4.63 4.46 

Std. Dev. 2.20 1.93 1.71 1.65 1.79 1.62 

Max. Def. Size (μm) 63.10 35.58 25.54 21.95 27.76 38.41 
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Figure 5.31. Defect size distributions of (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12 
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Figure 5.32. Nearest neighbor distance distributions of (a) N1 (b) N4 (c) N5 (d) N8 (e) 
N9 (f) N12 
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Figure 5.33.  Q-V plot according to the low magnification images 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.34. An illustration of the interevent distance 
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Figure 5.35. One of the ten images from N9 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.36. Binary image of N9 
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Figure 5.37. Optimum limiting interevent distance determination 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.38. Demonstration of clusters when R=20 μm 
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Figure 5.39. Demonstration of clusters and random background when R=20 μm 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.40. Demonstration of clusters in the original image 
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Figure 5.41. Density values from 5 layers obtained by serial sectioning 
 

Table 5.5. T-test results of density between Region 1 and Region 2 
 

 

 

 

 

 

Table 5.6. T-test results of density between Region 3 and Region 2 
t-Test: Two-Sample Assuming 
Unequal Variances region 3 region 2 
Mean 3.189 3.189 
Variance 5.45E-06 5.25E-06 
Observations 10 10 
df 18   
t Stat 0.347   
P(T<=t) one-tail 0.366   
t Critical one-tail 1.734   

 

t-Test: Two-Sample Assuming 
Unequal Variances region 1 region 2 
Mean 3.188 3.189 
Variance 3.42E-06 5.25E-06 
Observations 10 10 
df 17   
t Stat 1.026   
P(T<=t) one-tail 0.159   
t Critical one-tail 1.739   
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Figure 5.42. Average defect size values from 5 layers obtained by serial sectioning 

 

Table 5.7. T-test results of average defect size between Region 1 and Region 2 
 

t-Test: Two-Sample 
Assuming Unequal Variances region 1 region 2 
Mean 4.479 4.355 
Variance 0.028 0.049 
Observations 10 10 
df 17   
t Stat 1.404   
P(T<=t) one-tail 0.089   
t Critical one-tail 1.739   

 

Table 5.8. T-test results of average defect size between Region 3 and Region 2 
t-Test: Two-Sample 
Assuming Unequal Variances region 3 region 2 
Mean 4.380 4.355 
Variance 0.057 0.049 
Observations 10 10 
df 18   
t Stat 0.237   
P(T<=t) one-tail 0.407   
t Critical one-tail 1.734   



137 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.43. Largest defect observed at 5 layers obtained by serial sectioning 
 

Table 5.9. T-test results of largest defect size observed between Region 1 and Region 2 
t-Test: Two-Sample Assuming 
Unequal Variances region 1 region 2 
Mean 37.894 27.564 
Variance 154.650 59.801 
Observations 10 10 
df 15   
t Stat 2.230721461   
P(T<=t) one-tail 0.020695494   
t Critical one-tail 1.753050325   

 

Table 5.10. T-test results of largest defect size observed between Region 3 and Region 2 
 

t-Test: Two-Sample Assuming 
Unequal Variances region 3 region 2 
Mean 35.915 27.564 
Variance 143.874 59.801 
Observations 10 10 
df 15   
t Stat 1.850   
P(T<=t) one-tail 0.042   
t Critical one-tail 1.753   
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Figure 5.44. Q-V maps showing (a) The identified regions (b) 1st layer (c) 2nd layer (d) 3rd 
layer (e) 4th layer (f) 5th layer 
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Figure 5.45. Q-V maps of all five layers from (a) N1 (b) N4 (c) N5 (d) N8 (e) N9 (f) N12 
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5.4. Property Measurements 
Completion of the microstructural investigation was followed by mechanical 

analyses. Hardness was chosen as the primary method for obtaining property data. The 

selection criteria for hardness were explained extensively in Literature Review chapter. In 

a few words, it is a relevant and convenient method to obtain volumetric information 

regarding the homogeneity of microstructures. Additionally, there has been an agreement 

in armor community that hardness is one of the key parameters on prediction of ballistic 

performance [136-142]. 

 

5.4.1. Off-density Hexoloy SiC 

5.4.1.1. Average Hardness 
As mentioned in the previous section, off-density SiC samples consist of SA-1, 

SA-2, EXT and SP. Hardness tests were performed according to the procedure presented 

in the Experimental chapter. Measurements were carried out at five different loads, which 

start from 2 Kg down to 0.1 Kg. The intermediate loads were 1 Kg, 0.5 Kg and 0.3 Kg.  

Fig. 5.46 shows the average hardness value against the load applied. The curve 

shapes are as expected, which obeys indentation size effect (ISE) [119]. At intermediate 

loads, SA-1 exhibits the highest values while SA-2 possesses higher average hardness at 

2 Kg and 0.1 Kg. Also, it can be seen that SA-2 has the smallest standard deviation for 

majority of the indentation loads. 

The bar chart for 2 Kg load is given Fig. 5.47 (a). SA-2 possesses the highest 

hardness values with an average value of 1615.5 +/- 214.3 Kg/mm2. Another observation 

from the plot is that EXT and SP have significantly high standard deviation values. This 

could be attributed to the presence of large elongated defects in EXT and large circular 
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defects in SP. It is reasonable to say that the effect of these defects will be lessened with 

load as the smaller indent size will reduce the likelihood that these defects will fall within 

the indented volume and will affect the indentation results.   

The indent size changes considerably as the indentation load varies, which will 

enable covering areas of different sizes. Typical indent size at 2 Kg load is approximately 

120 μm. At 1 Kg, this value decreases to 90 μm. At the succeeding loads of 0.5 Kg, 0.3 

Kg and 0.1 Kg, the indent size goes down to 60 μm, 45 μm and 25 μm, respectively. It 

should be noted that these values are approximate but, they provide a rough estimate on 

the extent of area covered by an indent. 

Fig. 5.47 (b) provides the bar chart at 1 Kg. SA-1 has the highest hardness value 

with 2237.0 +/- 162.8 Kg/mm2. EXT has the lowest hardness value at this indentation 

load. The effect of indent size on the hardness is also shown here as 1 Kg load covers an 

area 3.6 times that of covered with a 0.1 Kg indenter. This increases the likelihood that an 

indent will interact with the large elongated defects in EXT or the clusters of defects, 

which will reduce the average hardness. 

Fig. 5.47 (c) and Fig. 5.46 (d) show bar charts for 0.5 Kg and 0.3 Kg, 

respectively. SA-1 has the highest values again and SA-2 has the smallest standard 

deviation at both indentation loads. Fig. 5.47 (e) shows the results from smallest 

indentation load at 0.1 Kg. SA-2 possesses the highest hardness value with 4037.8 +/- 

414.3 Kg/mm2. This sample also has the smallest standard deviation value among these 

four samples, following the trend, exhibited at previous indentation loads. Hardness 

values from all samples seem to get closer to each other at lower loads, although the 

standard deviation is still high for EXT and SP even at 0.1 Kg load.  
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5.4.1.2. Comparison of Hardness Results with Rice’s model 
Rice demonstrated that the presence of defects leads to lower hardness values. He 

exhibited a change in hardness with porosity. The following equation is used for the 

calculations: 

   ( )bPHHV −= exp0            5.2 

 

where HV is the measured Vickers hardness, H0 is the Vickers hardness value 

corresponding to a specimen with zero porosity, b is a material dependence constant and 

P is the volume fraction porosity of the specimen [131,134,135]. Reynaud and Thevenot 

used this model and tested its validity for SiC [131]. SiC samples were indented using 0.5 

Kg load. After performing curve fits for the samples with varying levels of porosity, the 

preexponential factor, b, was found to be 3.89. H0 was calculated to be 2059.8 Kg/mm2 

after the plots were extrapolated at P = 0.  

These parameters were used for calculation of hardness values at 0.5 Kg load. The 

values for SA-1, SA-2, EXT and SP were found to be 1824.3, 1846.7, 1738.6 and 1780 

Kg/mm2, respectively. The actual measured values at 0.5 Kg are 2128.0, 1925.0, 1676.0, 

and 2016.9 Kg/mm2. The discrepancy between calculated values and measured values is 

quite obvious. It is especially pronounced for SA-1 and SP with significant differences 

between the measured and calculated values. This example clearly shows that the 

likelihood of indent interaction with pores changes the expected hardness results 

considerably. This subject will also be discussed in the next section of contour maps 

where local variations are examined. 
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5.4.1.3. Hardness Contour Maps 
Hardness contour maps were obtained by indenting the samples in an array of 

10×10 square. The procedure was explained in details in Experimental chapter.  

The contour maps at each load are given between Figures 5.48-5.52. Among the 

four samples, SA-2 shows more uniformity compared to the other three at the 2 Kg load. 

SA-1 has a fairly homogenous distribution of hardness data, with most data points in the 

range of 1000-1500 Kg/mm2. Whereas in SA-2, they are in 1500-2000 Kg/mm2 range. 

EXT and SP show regions of extreme high and low values. This outcome is predictable 

for EXT and SP since strong deviation from random case was observed previously in 

their respective spatial defect distribution patterns. Overall, the trends observed in the 

microstructures data can be seen in the hardness data as well. 

For the 1 Kg load, SA-1 has the highest average hardness but the spread in the 

data is apparent in the map containing all colors representing different hardness ranges. 

SA-2 contains values almost only between 1600 and 2000 Kg/mm2, therefore showing 

the narrowest spread among the hardness maps for 1 Kg. EXT contains large amount of 

area with very low values while SP possesses high and low hardness regions together, 

showing a large spread. 

At the 0.5 Kg load, SA-1 displays regions of high and low values. The difference 

between SA-1 and SA-2 is also not as apparent as the 1 Kg load. Hardness values of SA-

2 are more consistent in the range of 1800-2200 Kg/mm2. The hardness map of EXT 

exhibits low hardness areas once again. SP has regions of high values in 2600-2800 

Kg/mm2 range. 

SA-1 and EXT have regions that show values above 3000 Kg/mm2 at 0.3 Kg load. 

Unlike the previous loads, EXT has the largest area in the highest color range, which is 
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3000 Kg/mm2 and above. SA-2 has the largest area in the 2000-2200 Kg/mm2 range, 

which is on lower part of the scale. SP has a significant portion of the map in 2200-2400 

Kg/mm2 range, which is uncharacteristically higher than that of SA-2 when compared to 

the previous three loads. 

At the final indentation load of 0.1 Kg, highest hardness values are observed for 

SA-2 and SP, with both samples having areas in 4600 Kg/mm2 and above range. 

However, SA-2 does not have low hardness regions like SP does, which is in the 2600-

2200 Kg//mm2 range. SA-1 and EXT have areas in the 4200-4600 Kg/mm2 range. 

Especially EXT possesses a significant amount of low hardness regions as in the previous 

loads. 

 Consequently, the following trends were observed. SA-2 showed fairly high 

values and more importantly, values on a very narrow range. SA-1 has the largest areas 

of high hardness especially at 1 Kg, 0.5 Kg and 0.300 Kg loads. EXT and SP show large 

variations in the areas tested almost at every indentation load.  

As indicated previously, apart from the pore size and volume fraction, the spatial 

arrangements of pores are just as important for microhardness. With the change in indent 

size, the area that an indent can cover changes considerably. The lower indentation loads 

produced average hardness values that closer to each other for each sample. This result 

could be attributed to that fact that smaller areas are covered at low indentation loads. 

The starting point for the indent arrays in this study are chosen randomly, 

although a constant distance was maintained between indents. Therefore, it can be 

accepted that the area is chosen totally random and in that case, the likelihood that an 

indent falls on a pore, a group or cluster of pores or on the matrix changes significantly 
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with the indent size. Large indents will naturally cover a larger area and this will increase 

the likelihood that the indent falls partially or completely on large defects or clusters of 

defects. As the indentation loads decreases, the likelihood between an indent and a defect 

interaction is lessened.  

The theoretical hardness values calculated at 0.5 Kg load using Rice’s model are 

worth mentioning here. It was shown above that the calculated values, which are 1824.3, 

1846.7, 1738.6 and 1780 Kg/mm2 for SA-1, SA-2, EXT and SP, respectively, do not 

match up well with the measured average values. The calculated values could be used in 

a comparison with the contour maps. Since these values were obtained at 0.5 Kg, the 

contour maps at 0.5 Kg must be taken into account. Only a small part in the middle parts 

of the contour map of SA-1 corresponds to the calculated value of 1824.3 Kg/mm2. For 

SA-2, a better match could be observed as hardness numbers close to the calculated value 

could be seen at almost 60 % of the map. In the map of EXT, a significant amount of data 

below 1800 Kg/mm2 can be observed. These values are lower than the calculated one. 

The influence of defects is strictly observed in this map due the values much lower than 

the predicted value. The discrepancy is not that pronounced for SP as higher hardness 

regions than the predicted value are common. Apart from the average hardness, contour 

maps show the influence of defects by using Rice’s model of hardness as a function of 

porosity.  

 

5.4.1.4. Weibull Analysis 
Statistics and probability functions are commonly used in property determination 

of brittle materials due to the presence of flaws and their influence on mechanical 
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properties [144,145]. The normal, lognormal and Weibull distributions are the most 

common ones employed for statistical examination of experimental data [146,147].  

Weibull distribution is based on the weakest link approach, in which the property 

of material is dictated by the most serious flaws [151-154]. Although advanced 

processing techniques are employed and high apparent densities are achieved in armor 

ceramics, the presence of defects such as pores and inclusions are common. Their 

presence creates the highest probability of reducing hardness. As a result, Weibull 

distribution would be valuable in describing statistical interpretation of hardness data 

[44,159,160].  

It was clearly shown in the Literature Review chapter that Weibull statistics are 

effective in studying hardness results. Weibull analysis was chosen to study the 

variability and the extent of spread in hardness data. It was also employed in order to get 

a representative number out of the quasi-static tests so that a correlation between 

microstructural data and hardness data can be drawn [146,147].  

The Weibull plot for each load is given in Fig. 5.53 and Weibull modulus values 

are provided in Table 5.11. SA-2 has the highest modulus value 18.92, preceding SA-1 

with 9.35. EXT and SP have much lower values compared to those of SA-1 and SA-2 at 

2 Kg of load. Same trend is observed at 1 Kg load except that a bimodal distribution is 

apparent for SP. The results from 0.5 Kg load show the same trend as SA-2 has the 

highest values, followed by SA-1, SP comes third and EXT has a bimodal distribution 

and the lowest values with 1.98 and 7.42. The order does not change for 0.3 Kg of load. 

At 0.1 Kg load, SA-1 and SP have values very close to each other. SA-2 once again has 

the highest value with 11.81 among all four samples.  
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5.4.1.5. Interpretation of Weibull plots 
Ideally, in the case where the distribution of all phases is homogeneous, Weibull 

plot will be indicative of that, having a linear distribution. When the phases in a 

microstructure are evenly spread, each indentation samples all phases at the same time; 

therefore, no individual phase will dominate hardness results. However, the regions 

exhibiting higher degree of homogeneity would probably present higher Weibull modulus 

values and less data scattering than those regions with lower degree of homogeneity, 

thereby giving rise to the bimodal distribution. The bimodal distribution characteristic is 

a clear indication that different phases are present in the material. In the case of these 

Hexoloy SiC samples, other than the matrix and pores, carbon inclusions are present in 

the microstructure. These inclusions could very well contribute to the bimodal 

distribution in these samples. 

It is reasonable to predict that as the defect concentration decreases or when the 

defect distribution is more uniform at the same concentration, the length of the upper 

slope increases and the lower slope tends to be minimized. From this observation, it can 

be inferred that if the second phase content decreases to lower values or it becomes more 

evenly spread, the bimodal distribution will tend to disappear.  

When Table 5.11 is examined carefully, it is obvious that bimodal distributions 

are observed at higher loads of 1 Kg and 0.5 Kg. The plots at 0.3 Kg and 0.1 Kg loads 

have single modes for all samples. At low indentation loads, only a small volume of 

materials is analyzed. However, at higher indention loads, defects affect the hardness 

results significantly since the likelihood that the indents interact with defects increases 

with the increasing defect size. As mentioned in the beginning of this chapter, a typical 

indent size for SiC at 2 Kg load is roughly 120 μm while this number decreases to 25 μm 
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at 0.1 Kg load, so the indent size for 0.1 Kg is approximately five times smaller than that 

of 2 Kg. The mean nearest neighbor distance values give an idea of spacing between 

pores, with the corresponding values for SA-1, SA-2, EXT, SP are 3.81 μm, 3.77 μm, 

6.10 μm, 5.17 μm, respectively. Even at low loads such as 0.1 Kg, an indent with a size 

of 25 μm will likely interact with a minimum number of four or five defects. As the 

indent size increases to 120 μm, this number will reach up to 30.  High load indents will 

also have higher probability that there are large defects or defect clusters under the 

indent, leading to more variability in the data. This will be reflected in the slopes of 

Weibull plots. 

5.4.1.6. Crack Paths 
Latest part regarding off-density samples involves taking a close look at the 

fracture path of indentation cracks. Indentation causes cracking to a certain degree, 

especially at the higher loads. Fracture mode of cracking is strongly dependent on the 

grain boundary strength of ceramics and it can provide information in that microstructural 

aspect. In addition, fracture mode was used as a tool to speculate on ceramic armor 

performance. Viechnicki et al. studied the fracture mode in armor ceramics and reported 

that transgranular fracture was associated with superior armor performance rather than 

intergranular fracture [136]. However, intergranular fracture has its own benefits in 

providing crack deflection along grain boundaries, which prolongs the route of crack 

expansion, leading to increased fracture toughness. This argument was put forward in a 

study by Shih et al, who claimed that intergranular fracture was favored in armor 

ceramics due to more energy consumption during this type of fracture [181]. In a study 

by Ray et al., fracture modes of several hot-pressed SiC were examined, where; quasi-
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static fracture modes varied from mainly transgranular to largely intergranular, leading to 

a significant increase in the single-edged pre-cracked beam (SEPB) fracture toughness 

[182]. 

The cracks resulting from high load indentation of 2 Kg in these four SiC samples 

were investigated. Both intergranular and transgranular cracking was observed, along 

with no cracking cases at some of the indents.  

The results are given in Table 5.12 as the type of fracture mode is represented in 

terms of percentage. SA-2 has the highest percentage of intergranular mode with 14%, 

and the lowest number for transgranular mode with 46%. Also, 40% of the indents 

examined show no cracking for SA-2, which is the highest “no cracking” percentage 

among all. Intergranular mode was rarely observed in EXT and SP as both samples have 

2% of all cracks in this mode. SP has 92% of the cracks examined in transgranular 

fracture mode. SA-1 has intermediate values for all three cases. 

A certain degree of distinction in fracture modes between these four samples is 

clearly apparent. However, their interpretation is somewhat difficult due to explanations 

made above on the fracture modes of ceramics. To be able to understand what contributes 

to these results, the components in these materials must be known. Hexoloy SA was 

doped with boron and carbon and the major secondary phase observed in this material 

was graphite, as particulates within SiC grains and at large triple junctions. According to 

Moberlychan et al., the crack paths in Hexoloy SA exhibited strictly transgranular 

fracture [183]. Although transgranular fracture is still dominant at 46%, intergranular 

fracture is significantly observed at a value of 14%. It is reasonable that cracks are 
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deflected from the carbon inclusions/SiC matrix interfaces and consequently, a 

significant amount of intergranular fracture mode could be seen.  

As a result of this analysis, SA-2 came out to be the sample with higher hardness 

numbers, superior microstructural data and with the highest amount of intergranular 

fracture, which indicates higher fracture toughness.  

 

5.4.2. Cercom Hot-Pressed SiC Samples 

5.4.2.1. Average Hardness 
Fig. 5.54 (a) shows average hardness values at 2 Kg for this set of samples. AG 

and DEF have average hardness values close to each other with 2009.1+/- 44.5 Kg/mm2 

and 2026.2 +/- 59.8 Kg/mm2, respectively. An important observation from this graph is 

the significantly low average hardness value of 1759.7 +/- 43.9 Kg/mm2 observed in LD. 

This is a promising result in terms of supporting ultrasound data and how low amplitude 

regions provide important information without destructive evaluation of tiles. 

Average hardness values are shown at the other four loads from Fig. 5.54 (b) 

through Fig. 5.54 (e). Results from 1 Kg and 0.5 Kg do not follow the trend that is 

observed at 2 Kg load. However, as the measurements proceed to lower loads, LD shows 

inferiority to the other two samples. At 0.3 Kg, the average hardness values for LD, DEF 

and AG are 2115.0 +/- 200.6 Kg/mm2, 2220.3 +/- 183.3 Kg/mm2 and 2201.3 +/- 194.6 

Kg/mm2. DEF and AG have roughly equal values while the results from LD are one 

notch below DEF and AG. Hardness data from 0.1 Kg load shows more distinct results as 

AG has an average hardness value of 4010.8 +/- 533.3 Kg/mm2, which is significantly 

higher that the other two samples. LD has the lowest average value among the three with 
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3444.9 +/- 658.7 Kg/mm2. DEF has an average value in between AG and LD with 3594.7 

+/- 581.6 Kg/mm2.  

Although some inconsistencies are present at intermediate loads, it can be 

concluded that lower average hardness results are observed for LD for majority of the 

measurements. Ultrasound results are significantly affected by inhomogeneities, defects, 

or anything that is abnormal to the matrix of a ceramic, as they could cause low signal 

amplitude. Hardness is also affected considerably by the presence of defects as 

mentioned previously. When the density values, which are 3.18 g/cm3, 3.19 g/cm3 and 

3.20 g/cm3 for LD, DEF and AG, respectively, are considered, these hardness findings 

become especially reasonable. Off-density values are typical reasons for low amplitude 

signals in ultrasound. Off-density values would also cause lower hardness outputs; 

therefore, the current findings are not surprising. 

 

5.4.2.2. Weibull Analysis 
First, Weibull plot for 2 Kg is given in Fig. 5.55. LD and DEF present single 

mode of distribution while AG has a bimodal Weibull distribution. The number of data 

points for the first mode is considerably large as 85 data points were grouped into the first 

mode and 15 data point were grouped into the second. Therefore, the dominant mode in 

this distribution is the first one, which provides an appreciably greater Weibull modulus 

value with 90.7 at R2 value of 0.988. Modulus values are considerably smaller for LD and 

DEF with values 49.2 at R2 value of 0.982 and 41.3 at R2 value of 0.972.  

As mentioned previously, AG has the highest density with a value of 3.20 g/cm3 

among all three samples and it also has the highest Weibull modulus value. According to 
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these results, the high density is confirmed by the Weibull plot, which shows the degree 

of variability in the hardness data.  

Weibull plots of AG, DEF and LD are given in Fig. 5.56 at all five loads. Bimodal 

Weibull distributions can be observed in the plots for all three samples and at most of the 

indentation loads except at 0.1 Kg for AG, at 2 Kg and 0.1 Kg for LD, at 2 Kg and 0.5 Kg 

for DEF. AG has the highest Weibull modulus with 90.7 at 2 Kg load. The trend is 

reversed at 1 Kg, with LD having the highest value of 67.9. DEF has the highest value at 

0.5 Kg with 57.3 while LD and AG have very close modulus values with each other, at 

34.3 and 35.7, respectively. At 0.3 Kg, DEF possesses the highest value again with 32.5. 

DEF has the largest Weibull modulus once again with 18.7 at 0.1 Kg. No definite trend 

was apparent according to these results. 

However, one important observation from these plots is that as the indentation 

load decreases, the slopes of the curves tend to decrease accordingly. Lower indentation 

loads affect smaller areas. Due to the less likelihood of the tip to come across with pores, 

or clusters of pores, a larger spread is obtained at the end. It might be mentioned that as 

the indent size decreases, the hardness value depends very much on the number of 

present pores under the indent. However, with higher indentation loads, the effective area 

under the indent is much larger. Therefore, a small change in the number of defects does 

not affect the results drastically. Again, probability is an important factor in the variation 

of hardness values. The likelihood that an indent falls partially or completely on a defect 

or a group of defects affects the hardness value drastically. Especially at low indentation 

loads, the probability of an indent and a defect interaction is lessened. Since the spatial 

arrangement of defects is one of the focal points of this study, comparison between the 
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scales of homogeneity of the defects against the scale of indenters will provide insight to 

the spatial arrangement. This will be discussed in the last part of this chapter, where 

results from hardness tests and microstructural analysis will be correlated.  

 

5.4.2.3. Grain Size Distribution around High and Low Density Regions 
Grain size has a considerable contribution to measured hardness [118]. In order to 

test if grain size distribution contributes to the variations in hardness maps, certain 

regions from 2 Kg load map were examined more closely after etching. Fig. 5.57 shows 

the selected areas in the hardness map, which are from low and high hardness regions. 

Fig. 5.58 shows grain size distribution from both high and low hardness areas. Average 

grain size for LD on the low hardness region and high hardness region are 1.73 μm and 

3.60 μm, respectively. Materials with smaller grain sizes typically exhibit higher hardness 

values, however this trend was not observed in this sample. Same procedure was repeated 

for DEF. The average grain size values are 1.72 μm and 1.92 μm from low hardness and 

high hardness regions, respectively. The values are much closer to each other for DEF 

while it also has no correlation with the trend explained above. The only sample that 

higher hardness regions have smaller grain size is sample AG. However, when the results 

are assessed entirely, it can be concluded that hardness value changes cannot be attributed 

to grain size variations in each sample. Therefore, the presence of defects, on the surface 

or underneath, plays an important role in the indentation process without a significant 

effect from grain size for these particular samples. 

Apart from grain size distribution around these specified regions, grain size 

clustering was also examined. This is important due to the fact that carbon inclusions 
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could affect the grain size distribution around themselves. By performing nearest 

neighbor distance distributions to this data, spatial distribution of grains was studied. Fig. 

5.59 shows the Q-V plot from grains around low and high hardness regions again. A 

significant difference between two cases was observed although none of the points fall 

into the “clustering on a random background” region. As mentioned previously, (1,1) 

point is the totally random case. The data point for the low hardness region is much 

closer to the random point than the one from high hardness region, therefore, a strong 

deviation from random distributions is valid for the second one. Carbon inclusions could 

be the main reason for this result, which shows another variation in the microstructure 

apart from nonuniform spatial distribution of defects. 

 

5.4.3. SiC Hexoloy SA Tile 

5.4.3.1. Average Hardness 
The indents for each sample can be seen in Fig. 5.60. Knoop indenter was used to 

indent the samples as usual. The distance between each indent was kept at 0.5 mm. N2 

represents Region 1, N6 represents Region 2 and N10 represents Region 3. Average 

hardness data is given in Fig. 5.61. Average hardness for Region 2 (N6) is slightly higher 

than the other two regions.  

 

5.4.3.2. Hardness Contour Maps 
Contour maps are given Fig. 5.62 and the percentage of hardness values in each 

hardness range is given in Table 5.13 for each sample. The contour maps for N6 and N10 

show more homogeneity while N2 seems to possess significant amount of hardness 
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values from all the ranges given in the scale. As it is shown in Table 5.13, Region 2 has 

the highest percentage of hardness data with 84.69% in the most dominant data range, 

1800-1900 Kg/mm2, represented by “light green" color. Region 3 is close with 83.20%. 

However, for the higher range, 1900-2000 Kg/mm2, it is much lower to Region 2 with 

5.99 % to Region 2’s 9.16%. Region 1 has a wide large spread as this is quantified in 

Table 5.13.  

The percentage values are shown against the hardness range in Fig. 5.63. The 

uniformity is more easily observed in this plot as Region 2 has the largest peak in 1800-

1900 Kg/mm2 range and relatively smaller peaks in the other hardness ranges.  

 

5.4.3.3. Weibull Analysis 
Weibull plot is given in Fig. 5.64. Modulus values are written on the graph. 

Bimodal distributions were observed for Region 1 and Region 2 while a single mode was 

observed for Region 3. Highest modulus was obtained from Region 2 with a value of 

56.1. Region 1 and Region 2 are close second and third with values of 40.8 and 38.8, 

respectively.  

Consequently, the difference observed in amplitude of ultrasound signals was also 

obtained using hardness test. This is an encouraging step towards interpretation of 

ultrasound scans and how they could be utilized. 

 

5.4.4. Lundberg Samples 
Static and dynamic test results from the literature [14,184] are given in Table 

5.14. SiC-SC-1RN possesses the highest hardness while SiC-HPN has the highest 
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fracture toughness among all four. Elastic modulus values are close, with SiC-N slightly 

having the highest modulus value. Transition velocity is the highest for SiC-HPN with 

1625 ±12 m/s while penetration velocity shows the ideal lowest value for this parameter 

with 370 m/s. 

 

5.4.4.1. Average Hardness 
In addition to the results obtained from literature, hardness tests were performed 

to this sample set using the same procedure which provides contour maps. First, average 

hardness values are given in Fig. 5.65. As shown in Table 5.14, SiC-SC-1RN has the 

highest Vickers hardness value 28.85 +/- 1.92 GPa while SiC-B has the lowest value with 

25.20 +/- 1.74 GPa. SiC-HPN is a close second with an average value of 25.32 +/- 2.02 

GPa. Exact same trend was obtained in the measurements performed in this thesis. SiC-

SC-1RN is the hardest material among all with 2159.6 +/- 76.6 Kg/mm2 while SiC-B and 

SiC-HPN possess the lowest values with 1890.3 +/- 61.1 Kg/mm2 and 1956.1 +/- 93.8 

Kg/mm2, respectively.  

 

5.4.4.2. Weibull Analysis 
Weibull plots were obtained from the hardness data and they are given in Fig. 

5.66. All samples except SiC-N display bimodal distribution. SiC-N, SiC-B and SiC-SC-

1RN have very close moduli values with 47.7, 51.2 and 49.7, respectively. SiC-HPN has 

a modulus value of 36.9, which is moderately different from the grouping observed with 

the other three samples. Moduli values from the second modes for SiC-B, SiC-HPN and 

SiC-SC-1RN are 12.4, 19.0 and 25.5, respectively. None of the samples show any great 
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difference to the others in terms Weibull modulus. This could be attributed to the high 

density/low defect population of all samples in this set. Although ballistic tests showed 

differences between samples, this was not observed distinctively in hardness tests. More 

thorough examination of hardness results will be presented in next section where they are 

compared to the microstructural findings. 
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Figure 5.46. Average hardness vs. load for off-density SiC samples 
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Figure 5.47. Average hardness values of off-density SiC samples (a) 2 Kg (b) 1 Kg (c) 
0.5 Kg (d) 0.3 Kg (e) 0.1 Kg 
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Figure 5.48. Contour maps at 2 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.49. Contour maps at 1 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.50. Contour maps at 0.5 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.51. Contour maps at 0.3 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.52. Contour maps at 0.1 Kg for (a) SA-1 (b) SA-2 (c) EXT (d) SP 
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Figure 5.53. Weibull plot at (a) 2 Kg (b) 1 Kg (c) 0.5 Kg (d) 0.3 Kg (e) 0.1 Kg where          
A = SA-1, B = SA-2, C = EXT, D = SP 

 

Table 5.11. Weibull modulus values for different loads 
 

 m 2 Kg 1 Kg 0.5 Kg 0.300 Kg 0.1 Kg 
m1 9.35 15.46 13.00 9.18 6.12 SA-1 
m2 - - - - - 
m1 18.92 21.27 14.69 15.72 11.81 SA-2 
m2 - - - - - 
m1 3.06 4.16 1.98 2.62 2.77 EXT 
m2 - - 7.42 - - 
m1 4.36 3.00 2.05 4.84 6.12 SP 
m2 - 10.38 10.15 - - 
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Table 5.12. Percentage of fracture modes 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.54. Average hardness at (a) 2 Kg (b) 1 Kg (c) 0.5 Kg (d) 0.3 Kg (e) 0.1 Kg 

 Transgranular (%) Intergranular (%) No cracking (%) 
SA-1 78 10 12 
SA-2 46 14 40 
EXT 68 2 30 
SP 92 2 6 
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Figure 5.55. Weibull plot at 2 Kg for Cercom SiC samples 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.56. Weibull plots of (a) AG (b) LD (c) DEF at all loads 
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Figure 5.57. (a) Selected areas in the contour map of Cercom SiC samples (b) a 

micrograph from high hardness region (c) a micrograph from low hardness region 
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Figure 5.58. Grain size distribution around (a) high hardness region (b) low hardness 
region 
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Figure 5.59. Grain size clustering around high and low hardness regions 
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Figure 5.60. Indents from Hexoloy samples of (a) N2 (Region 1) (b) N6 (Region 2)          
(c) N10 (Region 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.61. Average hardness of Hexoloy samples (N2, N6 and N10) 
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Figure 5.62. Contour maps of Hexoloy samples N2, N6 and N10 

 

 

 

Table 5.13. Percentage of hardness values in each hardness range 
 

% <1600 1600-
1700 

1700-
1800 

1800-
1900 

1900-
2000 

2000-
2100 

2100-
2200 

2200< 

Region 1 0 0.23 20.77 68.35 9.67 0.98 0 0 
Region 2 0 0.02 5.95 84.69 9.16 0.18 0 0 
Region 3 0 0.27 10.54 83.20 5.99 0 0 0 
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Figure 5.63. % Hardness vs. hardness range 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.64. Weibull modulus of each Hexoloy sample at 2 Kg 
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Table 5.14. Quasi-static and dynamic properties of Lundberg samples [14,183] 

 
 Vickers 

H 
(GPa) 

KIc 
(MPam1/2) 

E 
(GPa) 

Transition 
Velocity 

(m/s) 

Penetration 
Velocity (m/s)

Ave. 
Norm. 

Projectile 
Erosion 

V. 
SiC-SC-

1RN 
28.85 

+/-1.92 
2.84 +/- 

0.22 
440 1526 +/- 25 480 0.67 +/- 

0.05 

SiC-HPN 25.32 
+/- 2.02 

3.17 +/- 
0.13 

448 1625 +/- 12 600 0.57 +/- 
0.04 

SiC-N 27.16 
+/- 1.76 

2.75 +/- 
0.32 

449 1507 +/- 5 580 0.64 +/- 
0.03 

SiC-B 25.20 
+/- 1.74 

3.00 +/- 
0.44 

441 1549 +/- 19 370 0.58 +/- 
0.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.65. Average hardness of Lundberg samples at 2 Kg 
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Figure 5.66. Weibull plots for each sample 
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5.5. Correlation between Microstructural Findings and Property Data 
Microstructural results do not mean a lot when there is not enough property 

information that can be correlated with. Therefore, the information from these two 

sources will be tested to see if there is any link in between. This will be applied to all the 

samples that were discussed up to this point. Lundberg samples have the additional 

information of ballistic data which provides the opportunity to test any correlation 

between microstructure and ballistic performance. 

 

5.5.1. Off-Density Hexoloy Samples 
Initially, average hardness values at 2 Kg were plotted against [(Q-1)2 + (V-1)2]1/2 

parameter, which can also be called d(1,1). This parameter was obtained from nearest 

neighbor distance distribution to gauge the distance to the random point, (1,1). The plot is 

given in Fig. 5.67. Q and V values were averaged from the four layers that were 

analyzed. d(1,1) parameter was calculated for SA-1, SA-2, EXT and SP as 2.73, 1.64, 

2.03 and 2.51, respectively. According to the plot, as the spatial distribution of defects 

approaches random ideal random point, an increase in hardness is observed. The R2 value 

was reasonably high with 0.74.  

Another factor that should be considered was the average defect size. This 

parameter was plotted against average hardness value at 2 Kg. The combined results from 

all layers are given in Fig. 5.68. The plot shows fairly good correlation between average 

defect size and average hardness with R2 value of 0.70. Overall, both average defect size 

and spatial distribution of defects generate an interesting link with hardness. It is hard to 

separate which one is more important in affecting hardness data; however, it could be 
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likely that each one contributes to the result significantly. As discussed earlier, hardness 

has a close correlation with ballistic performance; therefore, we can extrapolate the 

current results and conclude that spatial distribution of defects is as important as the size 

of the defects present in the material, which can impact the ballistic performance of a 

material.  

 

5.5.2. SiC Hexoloy SA Tile 
Correlations with microstructure and hardness data were performed using the data 

from the pieces of SiC Hexoloy SA tile. The first graph is given in Fig. 5.69 where 

average hardness was plotted against average defect size. As mentioned previously, the 

“good” area, which is Region 2, possesses slightly lower average defect size and again, 

somewhat higher hardness. This produces a trend shown in Fig. 5.69 as the defect size 

decreases; there is an increase in the average hardness. The R2 value is quite high with 

0.94. This result is consistent with some of the data presented previously.  

Fig. 5.70 looks at the link between the average defect size and Weibull modulus. 

There is again a positive correlation between these two parameters with R2 value of 0.76.  

Fig. 5.71 displays the link between distance to the random point and average 

hardness. The R2 number is significantly high with a value of 0.99. However, it should be 

mentioned that this is a correlation that is counterintuitive. As discussed previously in the 

microstructure section, smaller numbers indicate proximity to the random case where 

larger numbers show deviation from this. As a result, this high R2 value is misleading and 

it does not present a positive correlation.  



178 

 

Similar trend was observed in Fig. 5.72 where d(1,1) was plotted against Weibull 

modulus. The argument made in the previous paragraph is still valid with R2 of 0.87. This 

is contradictory to what is expected. On the other hand, differences between these three 

values regarding the spatial distribution of defects are minor. It is actually showing a very 

small difference, therefore, it does not really demonstrate that spatial distribution of 

defects is not important in terms of its effect on properties. It just shows that 

differentiation among very similar samples is not enough to comment on this aspect of a 

microstructure. 

Fig. 5.73 shows another link between hardness data and microstructural properties 

where percentage hardness data was plotted against average defect size. The homogeneity 

of the hardness contour map was linked with the average defect size, which shows a 

positive correlation. The R2 value is reasonably high with 0.72. This translates into the 

notion that smaller defect sizes produce uniformity in the hardness data. 

The homogeneity of the hardness values were plotted against the microstructural 

spatial distribution parameter, which is given in Fig. 5.74. The R2 coefficient is 

considerably low with a value of 0.58. If the results in Fig. 5.73 and Fig. 5.74 are 

considered, it implies that size is a more important factor in terms of hardness 

homogeneity than the spatial distribution of defects for this particular set of samples. 

 

5.5.3. Cercom Hot-Pressed Samples 
Microstructure and hardness results are also correlated using the data on three hot-

pressed samples from Cercom. First, the distance of data points to the random point (1,1) 

in the Q-V plot is obtained. The values for LD, AG and DEF are 2.85, 1.85 and 1.38, 
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respectively. These values are plotted against average hardness values. Fig. 5.75 shows 

d(1,1) against average hardness value at 2 Kg. The graph has a negative slope as AG and 

DEF have lower d(1,1) values and higher hardness averages with respect to LD. The fit 

value for this plot is reasonably high with 0.93.  

Same graph was plotted for hardness data at 0.3 Kg in Fig. 5.76. This looks very 

much like the previous graph where hardness data at 2 Kg was used. The fit value is 

higher in this case with a value of 0.98.  These results are consistent with the thought that 

presence of pore clusters might cause lower hardness values as opposed to the situation of 

more uniform spatial distribution of defects. 

One of the correlations that should be performed is the link between average 

defect size and average hardness, which is plotted in Fig. 5.77. The fit value is fairly high 

with 0.77; however, it is not as high as the values observed on the previous two graphs 

that show the link between hardness and spatial distribution of defects. The contribution 

of each parameter to hardness results could not be determined as mentioned previously 

since it is impossible to separate the effect of each one. Demonstrated earlier by using the 

off-density samples, similar outcome is obtained in this set of hot-pressed samples. 

Weibull modulus values were also utilized to make a correlation between 

microstructure data and hardness data. Fig. 5.78 shows Weibull modulus at 0.1 Kg 

against average defect size. Linear dependence was observed in the plot with a fit value 

of 0.93. According to this plot, there is a good correlation between Weibull modulus at 

0.1 Kg and average defect size. 

The link between Weibull modulus and spatial distribution of defects was also 

examined using the plot in Fig. 5.79. A positive correlation was observed as the sample 
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with a microstructure closer to a random distribution produced higher modulus values. 

The fit value was 0.76. The results regarding Weibull modulus provide reasonable 

outcome as smaller average defect size and low d(1,1) values were shown to lead to 

higher uniformity and therefore, higher, Weibull modulus values. This outcome is 

rational as random distribution of defects would yield more consistency in the property 

data. 

 

5.5.4. Lundberg Samples 
Correlation between spatial data and dynamic and static properties were obtained 

using the previously mentioned data and the microstructural results. Average defect size 

and [(Q-1)2 +(V-1)2]1/2 parameters were used to test the degree of correlation between the 

two groups of data. The distances to the random point, d(1,1), are 1.75, 1.83, 1.48 and 

2.21 for SiC-N, SiC-B, SiC-SC-1RN and SiC-HPN, respectively.  

Fig. 5.80 shows two plots of microstructural data against hardness. As it can be 

observed from both graphs, there is a certain degree of correlation with R2 values of 0.84 

and 0.71, for average defect size and d(1,1), respectively. These results are reasonable 

since smaller defect sizes and more homogenous distribution of defects provide higher 

hardness values.  

Elastic modulus was correlated with microstructural findings in Fig 5.81. There is 

not any correlation observed either between elastic modulus and defect size or with the 

spatial distribution of defects.  

A certain degree of correlation was observed in Fig. 5.82 between fracture 

toughness and microstructural data with R2 values of 0.74 and 0.69, for size and spatial 
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distribution, respectively. However, this is contradictory to the expected, where larger 

defect sizes and higher d(1,1) values give higher fracture toughness values.  

As it comes to the dynamic results in Fig.5.83, transition velocity does not show 

any correlation with average defect size with low R2 value of 0.52. On the second plot, 

SiC-HPN, the sample with the highest transition velocity, shows the largest deviation 

from the random case.  

Fig. 5.84 shows the plots of penetration velocity against average defect size and 

spatial distribution of defect size. There is no correlation observed for this parameter with 

the microstructural parameters. 

The correlation between defects and average normalized projectile erosion rate 

was tested in Fig. 5.85. High R2 values were obtained both for size and spatial 

distribution data, 0.90 and 0.79, respectively.  

To sum up, it can be concluded that only small differences in the size distributions 

and spatial distributions of defects were observed due to the high quality of Lundberg 

samples. These findings were correlated with previously published and presented 

property data. Certain degree of correlation was observed between hardness and defect 

size and along with its spatial distribution. Other static property data, KIc and E, did not 

match up well with defect size and its spatial correlation results. Out of the dynamic 

properties, average normalized projectile erosion rate produced positive correlation with 

spatial distribution of defects and their size. 
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5.5.5. Comparison between hot-pressed and sintered 
Since several sintered and hot-pressed samples were studied, it is reasonable to 

make an evaluation between the samples from two different processing routes. Two 

samples that seem to represent the good qualities of each processing technique will be 

used for evaluation. SiC-SC-1RN was chosen from Lundberg samples representing the 

hot-pressed samples and N5 from Region 2 was chosen from the Hexoloy tiles 

representing the sintered samples. The initial assessment will be based on the number of 

defects and the average size of defects observed in each sample. It should be mentioned 

once again the results were obtained from 10 images at ×1000. 

The number of defects and the average defect size is compared in Table 5.15. The 

number of defects for SiC-SC-1RN is 1923 while this number is reasonably high for 

Hexoloy SiC-N5 with a value of 2402. The values are also considerably different in terms 

of average defect size as hot-pressed SiC-SC-1RN has an average defect size value of 

0.48 +/- 0.24 μm. As opposed to this value, sintered Hexoloy SiC-N5 has an average 

defect size value of 0.91 +/- 1.15 μm. The striking difference can be observed here as the 

value for the sintered sample is doubled by that of hot-pressed SiC. 

Defect size distribution is another aspect that should be taken into account during 

comparison between the samples from two processing routes.  Although it was presented 

earlier, the defect size distributions are given here side by side in Fig. 5.86. The curve for 

the sintered material reaches up to 4 μm in size while the plot of hot-pressed material 

ends below 2 μm. This is natural result of processing technique differences and the 

superiority of hot-pressed samples both in average defect size and defect size distribution 

could be predicted. However, these results validate the predictions based on the 

processing routes of samples. 
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The next aspect in comparison is the spatial distribution of defects. Nearest 

neighbor distance distributions are given in Fig. 5.87. The plot for the hot-pressed SiC-

SC-1RN is significantly narrower than that of sintered Hexoloy SiC. Sintered SiC shows 

more of a bell-shaped curve while SiC-SC-1RN has several large peaks followed by a tail 

showing very low values. The maximum peaks correspond to 200 on y-axis for hot-

pressed SiC. Sintered SiC has a maximum value of 145. This difference makes it easy to 

explain the spread in the data of the sintered sample. Considering the fact that sintered 

sample has significantly higher number of defects and a lower maximum peak numbers, 

the spread in the data is quite reasonable. 

A Q-V plot for the sintered and hot-pressed sample is given Fig. 5.88. The 

difference between two samples is not very significant, as the data point for hot-pressed 

SiC fall right by the y-axis with coordinate values of 0.99 and 2.48, for Q and V, 

respectively. The coordinates of the data point for sintered SiC is 1.13 and 1.93, for Q 

and V, respectively. Q value for the hot-pressed sample is almost 1, which is the ideal 

random value whereas that value is 1.13 for the sintered sample. In that case, hot-pressed 

sample is clearly closer to the ideal “random” case than the sintered sample. When it 

comes to V values, which is the ratio of variances between the calculated value and the 

expected value, there is a minor difference between the two samples. The variance value 

is higher for hot-pressed which puts the data point in Q-V map farther from (1,1) point 

than that of sintered sample. The reason behind this could possibly be the number of data 

points examined for both samples. This is considerably low for the hot-pressed sample. 

This relates to the fact that application of this spatial data analysis techniques depends a 

lot on the number of features in the field of view. Small changes could be accepted, 
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however, deviations from this might lead to higher variance numbers. However, it is still 

reasonable to say that sintered sample possesses more uniformity in terms spatial defect 

distributions.  

In addition to microstructural differences between sintered and hot-pressed 

samples, property differences will also be presented. As mentioned before, hardness 

results are based one hundred indentations performed as a square array of indents using a 

Knoop indenter.  

The average hardness values at 2 Kg for sintered and hot-pressed samples are 

given in Fig. 5.89. Sintered Hexoloy SiC has an average hardness value of 1854.2 +/- 

60.8 KHN, whereas, hot-pressed SiC has an average value of 2159.6 +/- 76.6 KHN, 

which is a considerable difference. The defect size and number could be attributed to the 

difference between hot-pressed and sintered sample. 

Uniformity of hardness values across the sample was examined, as explained 

previously, and is compared between sintered and hot-pressed samples. Hot-pressed SiC 

has data in three ranges in the contour map, starting from 2000-2100 KHN up to 2200-

above. The major one is 2100-2200 KHN, where 60.8 % of the area is in this range. For 

the sintered sample, the maximum percentage is 84.7 % in the data range of 1800-1900. 

Hardness data for the sintered sample scatters into four ranges as opposed to hot-pressed 

sample’s three, starting from 1700-1800 KHN up to 2000-2100 KHN. According to these 

results, sintered SiC displays more homogeneity. However, there is a significant 

difference in the contour maps since the highest range in sintered is the lowest for the 

hot-pressed material. Therefore, uniformity is probably inferior to absolute average in the 
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case of ballistic environment. The uniformity in hardness of sintered samples could be 

attributed to the more uniform spatial distribution of the sintered sample. 

 

 

 

 

 

 

 

 

 

 
Figure 5.67. Average hardness vs. d(1,1) for off-density SiC density samples 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.68. Average hardness vs. average defect size for off-density SiC samples 
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Figure 5.69. Average hardness vs. average defect size for SiC Hexoloy tile 
 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 5.70. Weibull modulus vs. average defect size for SiC Hexoloy tile 
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Figure 5.71. Average hardness vs. d(1,1) for SiC Hexoloy tile 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.72. Weibull modulus vs. d(1,1) for SiC Hexoloy tile 
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Figure 5.73. % Hardness vs. average defect size for SiC Hexoloy tile 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.74. % Hardness vs. d(1,1) for SiC Hexoloy tile 
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Figure 5.75. Average hardness at 2 Kg vs. d(1,1) for hot-pressed SiC samples from 
Cercom 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5.76. Average hardness at 0.3 Kg vs. d(1,1) for hot-pressed SiC samples from 
Cercom 
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Figure 5.77. Average hardness vs. average defect size for hot-pressed SiC samples from 
Cercom 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.78. Weibull modulus at 0.1 Kg vs. average defect size for hot-pressed SiC 

samples from Cercom 
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Figure 5.79. Weibull modulus at 0.1 Kg vs. d(1,1) for hot-pressed SiC samples from 
Cercom 

 

Figure 5.80. (a) Average hardness vs. average defect size (b) Average hardness vs. d(1,1) 
for Lundberg samples 
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Figure 5.81. (a) Elastic modulus vs. average defect size (b) Elastic modulus vs. d(1,1) for 
Lundberg samples 

 
 
 
 
 
 

Figure 5.82. (a) Fracture toughness vs. average defect size (b) Fracture toughness vs. 
d(1,1) for Lundberg samples 



193 

 

 

Figure 5.83. (a) Transition velocity vs. average defect size (b) Transition velocity vs. 
d(1,1) for Lundberg samples 

 

 

Figure 5.84. (a) Penetration velocity vs. average defect size (b) Penetration velocity vs. 
d(1,1) for Lundberg samples 
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Figure 5.85. (a) Average normalized projectile erosion rate vs. average defect size (b) 
Average normalized projectile erosion rate vs. d(1,1) for Lundberg samples 

 

 

 

Table 5.15. Number of defects and average defect size for sintered and hot-pressed SiC 
 Sintered SiC Hot-pressed SiC 

Number of defects 2402 1923 

Average defect size (μm) 0.91 0.48 

Standard deviation (μm) 1.15 0.24 
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Figure 5.86. Defect size distribution of (a) sintered (b) hot-pressed SiC 
 

 

Figure 5.87. Nearest neighbor distance distributions of sintered and hot-pressed SiC 
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Figure 5.88.  Q-V plot for sintered and hot-pressed SiC 
 
 
 

 
 

 

 

 

 

 

 

 

 

 
Figure 5.89. Average hardness for sintered and hot-pressed SiC 
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5.6. Practical Implications of This Thesis 
This thesis provides a methodology for utilizing spatial data analysis in materials 

science. Microstructural characterization focused on the spatial arrangement of defects 

was performed due to its importance in the performance of the final product. Quasi-static 

property determination was used to obtain volumetric information regarding the 

homogeneity of microstructures. Possible implications of this methodology include four 

distinct applications including green body examination, final part examination in 

manufacturing, at decision making during purchasing of parts, and on investigation of 

different material subgroups other than bulk ceramics. 

Uniformity in green bodies is essential since characteristics before sintering are 

carried over to the final product after sintering. The methodology used in this thesis could 

be applied to green bodies, where defect distribution uniformity is assessed, and parts that 

do not match preset standards could be rejected. The integrity of green bodies could be 

achieved by epoxy impregnation, which would hold the material together. Assessment on 

green bodies is particularly important due to conservation of time and energy by avoiding 

the unnecessary sintering of poor quality green bodies that would eventually provide poor 

quality materials. If lower-than-standard green bodies could be detected before sintering, 

the yield at the end of product line would be higher. In addition, recycling of rejected 

green bodies is technically much more feasible than rejected sintered bodies. 

The second application could be in manufacturing line where pass/fail criteria are 

required in armor ceramics. The absolute density is used as a threshold value for 

accepting or rejecting parts, however, density variation within a part could be just as 

important as explained throughout this thesis. The destructive nature of this technique 

could be a drawback in manufacturing since quick assessment is important; however, this 
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method could be coupled with ultrasound to obtain a better assessment on sample 

uniformity. This method could also be valuable for the customer as much as the 

manufacturer. It could be used as a decision making criteria during purchasing.  

Although, this thesis was focused in silicon carbide armor ceramics, same type of 

analysis could be very valuable regardless of the material of interest and the field of 

study. The methodology used in this thesis could be applicable to any material where 

homogeneity of microstructure plays an important role and uniformity is a desired 

attribute. Research on coatings, particle reinforced or fiber composites could be potential 

areas since homogeneity is a key attribute. 
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6. CONCLUSION 
A means of quantifying microstructures were established in order to develop the 

criterion for good/bad armor. Quasi-static tests were conducted to correlate the results 

from microstructural analysis. Serial sectioning has been carried out to examine the 

degree of variability between layers. Nondestructive ultrasound results and spatial data 

analysis were combined in order to assess uniformity in SiC armor ceramics. 

 

6.1. Off-Density Hexoloy Samples 
Initially, three different techniques, nearest neighbor distance distributions, 

tessellation analysis, and pair correlation functions, were used to examine spatial 

distribution of pores in SiC. This sample set was used as a standard to test the feasibility 

of different spatial analysis methods 

According to the nearest neighbor distance distributions, Q values for all four 

samples are approximately equal to 1; however the V values differ strongly from the 

random case. SA-2 is the only one whose V value is roughly 1. Tessellation analysis 

results produced close values as P1 and P2 parameters were calculated for all samples. SP 

has a strong deviation from the random case with the P1 and P2 values of 3.28 and 15.78, 

respectively, as opposed to 1, which is the expected value for random distribution of 

particles. Pair correlation functions provided plots of EXT and SP that have sharp peaks 

very close to the y-axis. Strong first peak at a distance well below the mean interparticle 

distance (r0) followed by a weak minimum at about this distance is an indication of 

clustering. The curves for SA-1 and SA-2 were typical random distribution curves. 

As summarized above, similar trends were observed in each technique and no 

significant difference was observed among the three. Therefore, nearest neighbor distance 
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distributions was established as a convenient method to evaluate spatial distribution of 

defects.  

Hardness tests were then used to obtain volumetric information regarding the 

homogeneity of microstructures. Theoretical values according to Rice’s model and 

calculated values were compared. The calculated values for SA-1, SA-2, EXT and SP 

were found to be 1824.3, 1846.7, 1738.6 and 1780 Kg/mm2, respectively. The actual 

measured values at 0.5 Kg were 2128.0, 1925.0, 1676.0, and 2016.9 Kg/mm2. The 

discrepancy between calculated values and measured values was attributed to the 

inhomogeneity of microstructures and nonuniform defect distribution. 

Weibull analysis showed bimodal Weibull distributions at multiple indentation 

loads. This observation was attributed to the presence of different phases in SiC. In the 

case of these Hexoloy SiC samples, other than the matrix and pores, carbon inclusions are 

present in the microstructure. According to the results, these inclusions contribute to the 

bimodal distribution in these samples. 

The crack paths were examined after indentation at 2 Kg load. Intergranular 

fracture was seen at 14% of all the indentations observed. This was due to the cracks 

being deflected from the carbon inclusions/SiC matrix interfaces and consequently, a 

significant amount of intergranular fracture mode was observed. 

Microstructure and hardness correlations were performed. According to the plots, 

as the spatial distribution of defects approaches random point, an increase in hardness 

was observed. The average defect size was tested by plotting it against average hardness 

value at 2 Kg. The plot showed fairly good correlation between average defect size and 
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average hardness. Both average defect size and spatial distribution of defects generated a 

strong correlation with hardness. 

6.2. Cercom Hot-pressed SiC samples 
Microstructural and property determination analyses were performed on three hot-

pressed SiC samples that had low density region (LD), a white spot that caused rejection 

of the tile (DEF), and an armor grade material (AG). Among the three samples, DEF has 

the smallest pore size. LD has the largest pore size and also the highest standard 

deviation. In terms of defect size distributions, LD has the broadest distribution among 

the three, which is consistent with the previously ultrasound results.  

AG and DEF show relatively narrow nearest neighbor distance distributions with 

the variance values of 3.47 and 2.94 μm2, respectively, while LD shows a higher variance 

value with 5.51 μm2 and broader distribution compared to the other two samples. This is 

an indication of inhomogeneous distribution of defects that LD possesses. In Q-V plots, 

all points fall in between the two lines that could be labeled as “random”. However, there 

is a minor difference between LD and the other two samples where LD is in the region of 

random distribution with clusters while AG and DEF do not show any clustering 

according to the plot. In addition to the larger average defect size, clustering of defects 

were also observed, which contributed to the lower ultrasound signal. 

Lower average hardness results were observed for LD for most indentation loads. 

Off-density values would cause lower hardness outputs so, when the density values, 

which were 3.18 g/cm3, 3.19 g/cm3 and 3.20 g/cm3 for LD, DEF and AG, respectively, 

were considered, these hardness findings become especially reasonable.   
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A change in indentation load lead to a decrease in slopes at Weibull plots. Lower 

indentation loads affected smaller areas. Due to the less likelihood of the indenter coming 

in contact with pores, or clusters of pores, a larger statistical spread was obtained at the 

end. The likelihood that an indent fell partially or completely on a defect or a group of 

defects affected the hardness value drastically. Especially at low indentation loads, the 

probability of an indent and a defect interaction was lessened.  

According to grain size distributions around high and low hardness regions, it can 

be concluded that hardness value changes cannot be attributed to grain size variations in 

each sample. The conclusion was that the presence of defects, on the surface or 

underneath, plays an important role in the indentation process without a significant effect 

from grain size for these particular samples. Apart from grain size distribution around 

these specified regions, grain size clustering was also examined. A strong deviation from 

random distributions was observed around the area of low hardness regions. According to 

this result, carbon inclusions are the main reason of grain size variation in the 

microstructure. 

Positive correlations were found between average hardness values and d(1,1), 

Weibull modulus and average defect size. R2 values up to 0.98 were reached in these 

correlations.  The effect of defect size and homogeneity of distribution was verified with 

these results. 

 

6.3. Lundberg Samples 
This sample set showed small differences regarding the size of defects. This could 

be attributed to the fact that all samples were high quality, armor grade SiC ceramics. 
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Curve fitting was performed on the defect size distribution plots. It was observed that the 

function used for the fit was a version of inverse power law. Defect size distributions 

were found to obey inverse power law according to numerous studies, therefore, the 

current observation noteworthy. R2 values for all of them were above 0.90, SiC-SC-1RN 

with the highest value of 0.99 and SiC-HPN with the lowest value of 0.94. 

Weibull analysis data showed close values with SiC-N, SiC-B and SiC-SC-1RN 

having 47.7, 51.2 and 49.7, respectively. SiC-HPN has a modulus value of 36.9, which is 

moderately different from the grouping observed with the other three samples. None of 

the samples showed any significant difference to the other, which could again be 

attributed to the high quality of the samples, although ballistic tests displayed a certain 

degree of difference.  

Correlation between spatial data and dynamic and static properties were obtained. 

Average defect size and, [(Q-1)2 +(V-1)2]1/2  or d(1,1), parameters were used to test the 

degree of correlation between the two groups of data. In the plots of microstructural data 

against hardness, there is a certain degree of correlation with R2 values of 0.84 and 0.71, 

for average defect size and d(1,1), respectively. These results are reasonable since smaller 

defect sizes and more homogenous distribution of defects provide higher hardness values.  

One of the dynamic properties, the transition velocity does not show any 

correlation with average defect size with low R2 value of 0.52. On the second plot, SiC-

HPN, the sample with the highest transition velocity, shows the largest deviation from the 

random case. There is also no correlation observed for this parameter with the 

microstructural parameters in the plots of penetration velocity against average defect size 

and spatial distribution of defect size. However, the correlation between defects and 
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average normalized projectile erosion rate was tested and high R2 values were obtained 

both for size and spatial distribution data, 0.90 and 0.79, respectively.  

It can be concluded that only small differences in the size distributions and spatial 

distributions of defects were observed due to the high quality of Lundberg samples. 

These findings were correlated with previously published and presented property data. 

Certain degree of correlation was observed between hardness and defect size and along 

with its spatial distribution. Other static property data, KIc and E, did not match up well 

with defect size and its spatial correlation results. Out of the dynamic properties, average 

normalized projectile erosion rate produced positive correlation with spatial distribution 

of defects and their size. 

 

6.4. Hexoloy SA Tile 
A lot of eight SiC Hexoloy tiles were scanned using ultrasound. Low and high 

amplitude regions were identified and one tile from that lot was selected for further 

microstructural evaluation by using diced pieces from those regions. Initially, high 

magnification assessment was performed. In the pore size distribution plots, N5 and N8 

have graphs that end at roughly 4 μm size while x-axis in plots of N4 and N9 extend to 6 

μm. N1 possesses the largest sized features as the graph ends at 7 μm. This size 

difference between samples could provide partial explanation for the changes in 

ultrasound signals within the tile. High R2 values were obtained once again using a 

version of inverse power law for all samples. Regional information showed that Region 2 

has defects up to 4 μm in size while the curves for Region 1 and Region 3 extend right 

below 6 and 7 μm, respectively. Again, the large-sized features could also be important in 
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the signal loss observed in certain parts of the tile. In the low magnification examinations, 

the largest sized features that N4, N5 and N9 possess were all in the between 20-30 μm, 

while that value increased gradually, reaching up to 63 μm for N1.  

The Q-V map showed remarkable results as the average data points for three out 

of six samples fell into the region of “clustering in a random background”. The samples 

from “good” region and N4 fall in the confidence interval of a “random” distribution. 

These results are very significant in terms of explaining the differences observed in an 

ultrasound C-scan map. Clustering of defects is a considerable factor among other 

possible reasons for variations.  

A method for identification of clusters was established by defining a parameter 

called limiting interevent distance, which was described as the radius of a cluster which 

contains all the features, or events, inside a circle. This value was found to be equal to 20 

μm after rigorous iterations. This method is particularly important for assessing the effect 

of clusters in dynamic tests.  

Serial sectioning was performed for all SiC samples in this set. Although, no 

significant difference was observed in terms of density and average defect size, t-tests 

showed that the difference in the largest defect size observed in “good” and “bad” regions 

was statistically significant. The signal loss observed in ultrasound C-scans could 

partially be attributed to this fact. 

The correlation between high amplitude regions of ultrasound and hardness data 

was observed in contour maps as Region 2 has the highest percentage of hardness data 

with 84.69% in the most dominant data range, 1800-1900 Kg/mm2. Region 3 is a close 

second with 83.20%. However, for the higher range, 1900-2000 Kg/mm2, it is much 
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inferior to Region 2 with 5.99 % to Region 2’s 9.16%. The difference in ultrasound 

signals in the sintered Hexoloy SA tile was conformed by hardness contour maps. 

 

6.5. Overall Conclusions 
Microstructure homogeneity was spatially assessed using tessellations, nearest-

neighbor distance distributions and pair correlation functions. Numerical quantification of 

spatial defect patterns was obtained by these three techniques. Trends that were observed 

in one technique were validated by another and consequently, no significant difference 

was observed among the three. Therefore, nearest neighbor distance distributions was 

established as the most convenient technique to evaluate spatial distribution of defects.  

Hardness tests were then used to obtain volumetric information regarding the 

homogeneity of microstructures. Weibull distributions were used for studying variability 

of hardness data. Bimodal Weibull distributions were noticed at multiple indentation 

loads, which were attributed to the presence of different phases such as pores and carbon 

inclusions common in sintered SiC. Decrease in indentation load led to a decrease in 

slopes of Weibull plots. Especially at low indentation loads, the probability of an indent 

and a defect interaction was found to be lessened, which is the reason for change in 

slopes. 

According to the crack path observations, a significant amount of intergranular 

fracture was attributed to the cracks being deflected from the carbon inclusions/SiC 

matrix interfaces. 

Positive correlations were found between average hardness values and d(1,1), 

Weibull modulus and average defect size. R2 values up to 0.98 were reached in these 
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correlations.  The effect of defect size and homogeneity of distributions on hardness was 

verified with these results. 

Regarding Lundberg samples with the ballistic data, a certain degree of 

correlation was observed between hardness and defect size and along with its spatial 

distribution. KIc and E did not produce any positive correlation with defect size and 

spatial analysis results. Average normalized projectile erosion rate was the only property 

that produced positive correlation with spatial distribution of defects and their size.  

Serial sectioning was performed on pieces from a Hexoloy SiC tile. Although, no 

significant difference was observed in terms of density and average defect size, t-tests 

showed that the difference in the largest defect size observed in “good” and “bad” regions 

was statistically significant. The signal loss that was observed in ultrasound C-scans is 

partially attributed to this fact. 

Particularly high degree of correlation was observed between average defect size, 

spatial distributions parameters and hardness data. These findings exhibit the strong 

effect of microstructure on the quasi-static properties, and ultimately, ballistic 

performance.  
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7. FUTURE WORK 
This study laid the groundwork on microstructural assessment concentrated on the 

spatial distribution of defects and its correlation with the quasi-static property 

measurements. Although it is difficult to obtain ballistic data or have ballistic tests done 

due to regulations, ballistic tests should be incorporated in order to assess the type of 

correlation using the data obtained throughout this study. Sphere-on-plate impact 

evaluation would be valuable in order to acquire dynamic properties for the studied 

samples. 

The interaction between defects and indents could be studied more extensively 

since clusters of defects were identified using nearest neighbor distance distributions. 

Knowing the exact location of clusters could also be important during the dynamic tests 

as their effect on the performance could be quantified.  

The database created on different sets of sintered and hot-pressed samples could 

be used as input for Finite Element Modeling (FEM). The effect of clustering on the 

ballistic performance could be simulated by FEM. This would provide the insight to 

determine local stress and strain fields in the microstructures made up of clusters of 

defects as opposed a random distribution of defects.  

In addition to the destructive characterization techniques, nondestructive 

evaluation by ultrasound could be performed on the same set of samples and the amount 

of collaboration between these two techniques shown in this thesis could be extended 

further.  

This study concentrated mainly on silicon carbide; however, the same type of 

analysis could be performed on different armor materials. The technique introduced in 
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this thesis could even be valuable for evaluating materials other the field of armor 

ceramics. 

Eventually, the results from microscopy, property analysis, FEM modeling and 

ultrasound could be correlated for a better ballistic assessment of armor ceramics. 
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