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ABSTRACT OF THE DISSERTATION

Graded traces and irreducible representations of Aut(A(Γ))

acting on graded A(Γ) and A(Γ)!

by Colleen M. Duffy

Dissertation Director: Robert L. Wilson

In this work we will study the structure of algebras A(Γ) associated to directed, layered

graphs. The algebras for which we find a decomposition are the algebras related to pseudo-

roots of noncommutative polynomials and algebras associated to the Hasse graphs of poly-

topes, to the lattice of subspaces of a finite-dimensional vector space over a finite field,

and to the complete layered graph. We will first find the filtration-preserving automor-

phism group of these algebras and develop methods of calculating the graded trace of an

automorphism acting on the algebra. We will then find the multiplicities of the irreducible

representations of Aut(A(Γ)) acting on the homogeneous components of A(Γ) and A(Γ)!.

The methods developed lead us to consider subalgebras of grA(Γ).
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Chapter 1

Introduction

This research project began with the desire to better understand an algebra, called Qn,

related to factorizations of noncommutative polynomials of degree n. The factorization of

noncommutative polynomials is an interesting and nontrivial problem that has been studied

by I. Gelfand, S. Gelfand, Retakh, Serconek, and Wilson. A classical problem regarding

generic monic polynomials over a (noncommutative) algebra with unity is to express the

coefficients of a polynomial P (t) = tn + an−1t
n−1 + · · · + a0 = (t − y1)(t − y2) · · · (t − yn)

in terms of the right (or left) roots, where above yn (resp. y1) is a right (resp. left) root.

Call all y1, ..., yn pseudo-roots. The pseudo-roots can be written as rational expressions in

a set of n right roots of the polynomial. Thus, the coefficients of P (t) can be written in

terms of the right roots (sums and products of pseudo-roots). The algebra Qn describes

the factorizations of P (t) and is the universal algebra of pseudo-roots [GRSW].

We can relate the factorizations of polynomials to algebras associated with directed,

layered graphs, and study properties of such algebras via this description. Qn can be

associated with the lattice of subsets of a set of n right roots of a polynomial of degree

n and hence with the lattice of subsets of {1, ..., n}, L[n] (as a directed, layered graph)

(see [GRSW, GGRW, RSW3]). Qn has a natural grading, and the automorphism group

Aut(Qn) of Qn acts on each homogeneous component of grQn. Because Aut(L[n]) is finite

and we will take Qn to be over a field of characteristic zero, each homogeneous component

can be written as a direct sum of irreducible Aut(L[n])-modules. This work finds such a

decomposition for Qn and its dual.

This question of decomposition is also interesting for more general algebras, called A(Γ),

associated with directed, layered graphs. The algebra A(Γ) is generated by the edges in

the graph Γ. The relations are defined by associating to each path in Γ a polynomial with

coefficients in the free algebra on the set of edges and requiring that the polynomials for

two paths connecting the same pair of vertices are equal in A(Γ). This family of algebras
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includes A(Γ) for a number of interesting special cases of Γ such as: L[n] (so A(Γ) = Qn),

graphs Γ whose automorphism group is the dihedral group on n elements, graphs Γ whose

automorphism groups are Coxeter groups, the complete layered graph, and the Hasse graph

of the lattice of subspaces of a finite-dimensional vector space over a finite field.

The technique needed to decompose graded A(Γ) is interesting in its own right. Further-

more, subalgebras of A(Γ) that naturally (and necessarily) arise in studying this question

have provided a rich source of examples of algebras associated with more general graphs.

Structure of the Paper

In this paper we will be considering directed graphs Γ satisfying certain hypotheses.

There exists an algebra A(Γ) over a field k, an associated graded algebra grA(Γ), and a

dual algebra A(Γ)! associated with each of these graphs. In Chapter 2 we will give some

preliminaries on how these algebras are built from the graphs as well as a basis for A(Γ).

The definition of the dual algebra and of subalgebras that will play an integral role in what

follows will be given in Chapter 3. We will go into more detail about these objects in

Chapter 7.

The automorphism group of the graph injects into the automorphism group AutA(Γ) of

A(Γ). Furthermore, the nonzero scalars inject into the automorphism group of the algebra.

Thus, one is naturally led to ask how these automorphism groups are related. This question

will be answered in Chapter 4.

A second question that we are led to is to describe the homogeneous components of A(Γ)

and A(Γ)!. We will decompose the algebra and its dual into irreducible Aut(A(Γ))-modules

by calculating the graded trace generating functions. These graded trace generating func-

tions are actually the graded dimensions of certain subalgebras of grA(Γ). Hence, the

technique for calculating the graded trace generating functions is to abstract the problem

into finding the graded dimension of subalgebras. In Chapter 5 we will explain why this is

true and how these graded dimensions are found.

In Chapters 6, 8, 9, and 10 we will define a variety of algebras associated with directed,

layered graphs and find their graded trace generating functions and their decompositions.

We will also consider the decomposition of the dual of these algebras.
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Future Directions

There are several questions that have arisen while conducting this research that have yet

to be answered. The first is to find a complete decomposition of the algebra associated to

the Hasse graph of the lattice of subspaces of a finite-dimensional vector space over a finite

field. Also, the search continues for more graphs that give rise to interesting algebras as

well as known algebras which may be efficiently studied in this manner. Finally, the reader

will notice that the algebras in this work have a property relating the graded dimension of

the algebras and their duals (c.f. Section 6.5.3) that is related to Koszulity. We wish to

explain why the algebras have this property and what it means for our algebras. It would

be interesting to know what the class of algebras with this property is.
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Chapter 2

Preliminaries

2.1 The Algebra A(Γ)

Certain algebras, denoted A(Γ), associated to directed graphs were first defined by Gelfand,

Retakh, Serconek, and Wilson [GRSW]. We recall the definitions of A(Γ) and grA(Γ)

following the development found in [[RSW], §2]. Let k be a field and for any set W let

T (W ) be the free associative algebra on W over k. Let Γ = (V,E) be a directed graph where

V is the set of vertices, E the set of edges, and there are functions t, h : E → V (tail and head

of e). We say Γ is a layered graph if V =

n
⋃

i=0

Vi, E =

n
⋃

i=0

Ei, t : Ei → Vi, and h : Ei → Vi−1.

If v ∈ Vi (e ∈ Ei), we say the level of v, (respectively e) is i; denote this by |v|, (resp. |e|).

We will assume throughout this paper that V0 = {∗} and that for all v ∈ V+ =
n
⋃

i=1

Vi,

there exists at least one e ∈ E such that t(e) = v. For each v ∈ V+, fix some ev ∈ E with

t(ev) = v; call this a distinguished edge.

A path from v ∈ V to w ∈ V is a sequence of edges π = {e1, ..., em} such that t(e1) =

v, h(em) = w, and t(ei+1) = h(ei), 1 ≤ i < m. We will say t(π) = v, h(π) = w, and the

length of π, l(π), is m. Write v > w if there exists a path from v to w. For π = {e1, ..., em},

define e(π, k) :=
∑

1≤i1<...<ik≤m

ei1 · · · eik . For each v ∈ V there is a path πv = {e1, ..., em},

called the distinguished path, from v to * defined by e1 = ev, ei+1 = eh(ei) for 1 ≤ i < m,

and h(em) = ∗. When πv is the distinguished path from v to *, we will write e(v, k) in lieu

of e(πv, k). Let R be the two-sided ideal of T (E) generated by

{e(π1, k) − e(π2, k) : t(π1) = t(π2), h(π1) = h(π2), 1 ≤ k ≤ l(π1)}.

Definition. A(Γ) = T (E)/R

Let ê(v, k) denote the image in A(Γ) of e1 · · · ek. Finally say that (v, k) covers (w, l) if

v > w and k = |v| − |w|, write this as (v, k) m (w, l).
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Theorem 2.1. [[RSW],Thm 1] - Let Γ = (V,E) be a layered graph, V =
n
⋃

i=0

Vi, V0 = {∗}.

Then

B(Γ) := {ê(v1, k1) · · · ê(vl, kl) : l ≥ 0, v1, ..., vl ∈ V+, 1 ≤ ki ≤ |vi|, (vi, ki) 6 m(vi+1, ki+1)}

is a basis for A(Γ).

There is also a presentation of A(Γ) as a quotient of T (V+) [[RSW2],§3]. Every edge

may be expressed as a linear combination of distinguished edges, and the distinguished

edge ev may be identified with v ∈ V+. Define S1(v) := {w ∈ V|v|−1 : v > w}. A layered

graph is uniform if for every v ∈ Vj, j ≥ 2, every pair of vertices u,w in S1(v) satisfies

S1(u) ∩ S1(w) 6= ∅ (“diamond condition”).

Proposition 2.2. [[RSW2],Prop 3.5] Let Γ be a uniform layered graph.

Then A(Γ) ∼= T (V+)/RV where RV is the two-sided ideal generated by

{v(u − w) − u2 + w2 + (u − w)x : v ∈
n
⋃

i=2

Vi, u, w ∈ S1(v), x ∈ S1(u) ∩ S1(w)}.

Remark: From now on we will just write e(v, k) for ê(v, k).

2.2 Associated Graded Algebra grA(Γ)

Next we will describe a filtration and grading on A(Γ). Here we will also denote by V the

span of V in T (V ), and by E the span of E in T (E), when no confusion will arise. Let

W =
∑

k≥0

Wk be a graded vector space (in our case W = V or E). Then T (W ) is bigraded.

One grading T (W ) =
∑

i T (W )[i] is given by degree in the tensor algebra; i.e., T (W )[i] =

span{w1 · · ·wi : w1, ..., wi ∈ W}. The other grading is given by T (W ) =
∑

i≥0

T (W )i where

T (W )i = span{w1 · · ·wr : r ≥ 0, wj ∈ Wlj , l1 + ... + lr = i}. The second grading induces an

increasing filtration on T (W ):

T (W )(i) = span{w1 · · ·wr : r ≥ 0, wj ∈ Wlj , l1 + · · · + lr ≤ i} = T (W )0 + · · · + T (W )i.

Because T (W )(i)/T (W )(i−1)
∼= T (W )i, T (W ) can be identified with its associated

graded algebra. Define a map gr : T (W )\{0} → T (W )\{0} = grT (W ) by w =

k
∑

i=0

wi 7→ wk
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where wi ∈ T (W )i, wk 6= 0. Of course, gr is not an additive map. [[RSW2],§2]

Lemma 2.3. [[RSW2],Lemma 2.1] Let W be a graded vector space and I an ideal in T (W ).

Then gr(T (W )/(I)) ∼= T (W )/(grI).

Thus the associated graded algebra of A(Γ), grA(Γ), is isomorphic to T (E)/grR. The

graded relations, grR, are that for paths π1 = {e1, ..., em} and π2 = {f1, ..., fm},

{e1 · · · ek = f1 · · · fk, 1 ≤ k ≤ m} (the leading term of e(v, k)). Another way to consider

this is that e(v, k + l) − e(v, k)e(u, l) is in grR where v > u, k = |v| − |u|. Recalling the

definition of B(Γ) from Theorem 2.1, we see that {gr(b) : b ∈ B(Γ)} is a basis for grA(Γ).

Let us now look at our second description of A(Γ) as isomorphic to T (V+)/RV .

Proposition 2.4. [[RSW2],Prop 3.6] Let Γ be a uniform layered graph. Then grA(Γ) ∼=

T (V+)/grRV where grRV is generated by {v(u − w) : v ∈
n
⋃

i=2

Vi, u, w ∈ S1(v)}.

Also, A(Γ)i = (T (E)i + R)/R = (T (V+)i + RV )/RV and A(Γ)(i) = (T (E)(i) + R)/R =

(T (V+)(i) + RV )/RV .
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Chapter 3

The Dual A(Γ)! and the Subalgebra A(Γσ)

3.1 The Dual A(Γ)!

Definition (A!). [[BVW],§ 2] Let A = T (E)/(R), R ⊆ E⊗2. Then A! = T (E∗)/(R⊥)

where E∗ is the dual vector space of E and R⊥ is the annihilator of R; i.e. R⊥ = {f ∈

(E⊗2)∗ : f(x) = 0∀x ∈ R} of (E⊗2)∗ where (E⊗2)∗ is canonically identified with E∗⊗2.

Definition (A(Γ)!). The dual of grA(Γ) is A(Γ)! := T (E∗)/(grR)⊥.

The dual element to the generator e(v, k) in A(Γ) will be denoted e(v, k)∗.

Proposition 3.1. A(Γ)! has a presentation with generators {e(v, 1)∗} and relations

{e(v, 1)∗e(u, 1)∗ : v 6 mu} ∪ {e(v, 1)∗
∑

vmu

e(u, 1)∗}

We will give a proof of this proposition and a basis for the dual in Chapter 7.

3.2 The Subalgebra A(Γσ)

We will now define a subalgebra of grA(Γ). Let σ be an automorphism of the layered graph

Γ; i.e. an automorphism that preserves each level of the graph. Define Γσ := (Vσ, Eσ) where

Vσ is the set of vertices v ∈ V such that σ(v) = v and Eσ is the set of edges that connect

the vertices minimally. Here minimally means that there is an edge e ∈ Eσ from v to w,

v, w ∈ Vσ if and only if v ≥ u ≥ w, u ∈ Vσ, implies u = v or u = w.

Definition (A(Γσ)). Define A(Γσ) to be spanBσ,

Bσ = {e(v1, k1) · · · e(vl, kl) : l ≥ 0, v1, ..., vl ∈ Vσ\∗, 1 ≤ ki ≤ |vi|, (vi, ki) 6 m(vk+1, ki+1)}.

Bσ is, in fact, a basis. The elements are linearly independent because the set is the subset

of a basis.
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Theorem 3.2. A(Γσ) is a subalgebra of grA(Γ).

A presentation for A(Γσ) is given by generators G′ = {e′(v, k) : v ∈ Vσ, 1 ≤ k ≤ |v|} and

relations R′ = {e′(v, k + l) − e′(v, k)e′(u, l) : v > u ∈ Vσ, k = |v| − |u|}.

Proof. Define φ : T (G′) → grA(Γ) by φ(e′(v, k)) = e(v, k). We have φ(T (G′)) ⊇ A(Γσ)

because elements of Bσ are formed from products of elements in G′.

In A(Γ) we have

(∗) e(v, k)e(u, l) − e(v, k + l) ≡
∑

i0,ir+1≥0,i1,...,ir≥1
i0<k,i0+...+ir≤k
i0+...+ir+1=k+l

(−1)r+1e(v, i0)e(u, i1) · · · e(u, ir+1)

mod R [[GRSW], p6]. However, the elements on the right-hand side are all of lower degree

than those on the left-hand side [[GRSW], Lemma 2.2]. Note that the elements on the left-

hand side have degree k+l and are in (T (E)/R)[(k+l)|v|−(k+l)(k+l+1)/2]. Therefore, in grA(Γ),

the terms on the right-hand side are zero. Hence, we have e(v, k)e(u, l) − e(v, k + l) ≡ 0.

Consequently φ(e′(v, k)e′(u, l)) = φ(e′(v, k + l)).

Let b′ = e′(v1, k1) · · · e
′(vl, kl) be a monomial in T (G′). In T (G′)/ < R′ >, we may

replace every occurrence of e′(vi, ki)e
′(vi+1, ki+1) such that (vi, ki) m (vi+1, ki+1) in b′ with

e′(vi, ki + ki+1). Thus b′ ≡ e′(v′1, k
′
1) · · · e

′(v′l, k
′
l) such that (v′i, k

′
i) 6 m(v′i+1, k

′
i+1) in

T (G′)/ < R′ >. Hence φ(b′) ∈ A(Γσ), and so φ(T (G′)) = A(Γσ).

By (*), R′ ⊆ kerφ and we have an induced surjective homomorphism

φ′ : T (G′)/ < R′ >→ A(Γσ).

Let f =
∑

kib
′
i ∈ kerφ′, where ki is an element in the field and b′i a monomial in

T (G′)/ < R′ >. Then 0 = φ′(f) =
∑

kiφ
′(b′i) =

∑

kibi is a linear combination of basis

elements in A(Γσ). This implies that ki = 0∀i and so f = 0. Therefore, φ′ is an isomor-

phism.

We will write e(v, k) for e′(v, k) from now on.

Remark: There are two natural duals related to A(Γσ). One is to take the dual of A(Γ)

and then look at fixed points. The other is to take the dual of the subalgebra grA(Γσ).

These two constructions are described in Chapter 7.
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For x a basis element of A(Γ)[i], write σ(x) as a linear combination of basis elements

and say the coefficient of x in σ(x) is α. Denote this value α by tσ(x). Then, for finite-

dimensional A(Γ)[i], Trσ(A(Γ)[i]) =
∑

x∈basis tσ(x). In this paper we will be looking at the

trace of σ acting on A(Γ)[i] and A(Γ)![i].
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Chapter 4

Automorphism Group of A(Γ)

Throughout this paper Aut(A) will denote the filtration-preserving automorphisms of the

graded algebra A (see Chapter 2).

Lemma 4.1. Aut(A(Γ)) ⊇ k∗ × Aut(Γ)

Proof. Any automorphism σ̃ of the graph extends to an automorphism σ of T (E). Since

σ̃ preserves paths, σ preserves the ideal R defined in Section 2. Hence it induces an auto-

morphism, again denoted by σ, of A(Γ) = T (E)/R. Also, for any scalar α, multiplication

by α is an automorphism because the relations are homogeneous. Thus Aut(A(Γ)) ⊇

k∗ × Aut(Γ).

Let Γ be a graph with a unique minimal vertex at level 0, V0 = {∗}, whose vertices are

labeled in the following manner. Label the vertices in level one by {v1, ..., vm} and index

those in level r, 2 ≤ r ≤ n, by a subset of the power set of {1, ...,m}. Let the edges connect

vertices by minimal containment of their indices. There is a path from vA (|vA| > |vi|) to

vi if and only if i ∈ A.

Theorem 4.2. Let Γ be a graph as described above. If Γ satisfies i) |V1| > 2, ii) no two

vertices have the same label, and iii) there are either zero or two paths between any two

vertices which are two levels apart in Γ, then Aut(A(Γ)) = k∗ × Aut(Γ), k the base field.

Proof. By Lemma 4.1, Aut(A(Γ)) ⊇ k∗ × Aut(Γ). Any automorphism of the algebra must

preserve the relations. Thus, for all subsets B,C ⊆ A ⊆ {1, ...,m} such that vA, vB , vC ∈

Γ, |vA| ≥ 2, and |vA|− |vB | = |vA|− |vC | = 1, |vA|− |vB∩C | = 2 (i.e. vA, vB , vC , vB∩C form a

diamond), the image of vA(vB−vC)−v2
B+v2

C+(vB−vC)vB∩C must equal zero. Consider first

paths from level 2 to level 0. Because of our assumption that there are exactly two paths

from each vertex in level two, |A| = 2 for vA ∈ V2. Let σ ∈ Aut(A(Γ)) and vA1 , ..., vAm2
be
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vertices in level 2; then σ(vij) = aij
A1

vA1 + · · · + aij
Am2

vAm2
+ bij

1 v1 + · · · + bij
mvm for all i, j

such that vij ∈ Γ and σ(vi) = ci
1v1 + ... + ci

mvm for all i, where all coefficients are in k.

Now σ(vij(vi − vj)) = σ(v2
i − v2

j ) implies

(aij
A1

vA1 + · · · + aij
Am2

vAm2
+ bij

1 v1 + · · · + bij
mvm)((ci

1 − cj
1)v1 + · · · + (ci

m − cj
m)vm)

= (ci
1v1 + · · · + ci

mvm)2 − (cj
1v1 + · · · + cj

mvm)2.

There are no v′As with |A| = 2 on the right-hand side, and so we must use our relations to

eliminate them from the left-hand side. Thus, every occurrence of vkl must be followed by

vk − vl; and hence, ci
k − cj

k = −(ci
l − cj

l ) and ci
m − cj

m = 0 if m 6= k, l. Therefore, if aij
kl 6= 0,

(ci
1 − cj

1)v1 + · · · + (ci
m − cj

m)vm = (ci
k − cj

k)(vk − vl). (4.1)

This has two consequences. First, at most one aij
kl can be nonzero. If all aij

kl were zero,

the element vi j /∈ (A(Γ))(1) would be sent to an element in (A(Γ))(1), which we cannot allow

because then σ would not be invertible. Thus aij
kl must be nonzero for exactly one {kl}.

Let us denote this set by {τ(i)τ(j)}. Then σ(vij) = aij
τ(i)τ(j)vτ(i) τ(j) + bij

1 v1 + · · · + bij
mvm.

If τ(ij) = τ(kl), then σ(vi j − aij
τ(i)τ(j)(a

kl
τ(k)τ(l))

−1vk l) ∈ (A(Γ))(1); this implies that {ij} =

{kl}. Thus τ is one-to-one, and so is in Sn.

A second consequence of (4.1) is that ci
r − cj

r is zero if and only if r 6= τ(i), τ(j).

We now have from (4.1): (aij
τ(ij)

vτ(i) τ(j) + bij
1 v1 + ...+ bij

mvm)(ci
τ(i) − cj

τ(i)
)(vτ(i) − vτ(j)) =

(ci
1v1 + ... + ci

mvm)2 − (cj
1v1 + ... + cj

mvm)2. (Recall ci
τ(i) − cj

τ(i) = −(ci
τ(j) − cj

τ(j)).)

Let z =
∑

r 6=τ(i),τ(j)

ci
rvr =

∑

r 6=τ(i),τ(j)

cj
rvr. Then

(aij
τ(ij)vτ(i) τ(j) + bij

1 v1 + ... + bij
mvm)((ci

τ(i) − cj
τ(i))(vτ(i) − vτ(j)) (4.2)

= (ci
τ(i)vτ(i) + ci

τ(j)vτ(j) + z)2 − (cj
τ(i)vτ(i) + cj

τ(j)vτ(j) + z)2

= (ci
τ(i)vτ(i) + ci

τ(j)vτ(j))
2 − (cj

τ(i)vτ(i) + cj
τ(j)vτ(j))

2 + (ci
τ(i)vτ(i) + ci

τ(j)vτ(j))z

+ z(ci
τ(i)vτ(i) + ci

τ(j)vτ(j)) − (cj
τ(i)vτ(i) + cj

τ(j)vτ(j))z − z(cj
τ(i)vτ(i) + cj

τ(j)vτ(j)).

On the left-hand side of (4.2), vr, for r 6= τ(i), τ(j), is never the second term of the

product of two v′rs. Hence, (ci
τ(i)vτ(i) + ci

τ(j)vτ(j) − cj
τ(i)vτ(i) − cj

τ(j)vτ(j))z = 0. This implies
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that either ci
τ(i) = cj

τ(i) and ci
τ(j) = cj

τ(j), which is a contradiction since σ(vi) 6= σ(vj), or

z = 0. Thus z = 0 and so ci
r = cj

r = 0 for all r 6= τ(i), τ(j). Now we have

(aij
τ(ij)vτ(i) τ(j) + bij

1 v1 + · · · + bij
mvm)(ci

τ(i) − cj
τ(i))(vτ(i) − vτ(j)) ≡

aij
τ(ij)(c

i
τ(i) − cj

τ(i))(v
2
τ(i) − v2

τ(j)) + (bij
1 v1 + · · · + bij

mvm)(ci
τ(i) − cj

τ(i))(vτ(i) − vτ(j)) =

((ci
τ(i))

2−(cj
τ(i))

2)v2
τ(i)+(ci

τ(i)c
i
τ(j)−cj

τ(i)c
j
τ(j))(vτ(i)vτ(j)+vτ(j)vτ(i))+((ci

τ(j))
2−(cj

τ(j))
2)v2

τ(j)

Because the right-hand side is in the subspace generated by vτ(i), vτ(j), the left-hand

side is as well. Therefore, only bij
τ(i), b

ij
τ(j) can be nonzero.

Let us write down what we know so far. For any i, j, 1 ≤ i, j ≤ n, we have:

1) σ(vi j) = aij
τ(ij)vτ(i)τ(j) + bij

τ(i)vτ(i) + bij
τ(j)vτ(j)

2) σ(vi) = ci
τ(i)vτ(i) + ci

τ(j)vτ(j)

3) σ(vj) = cj
τ(i)vτ(i) + cj

τ(j)vτ(j)

and

4) (aij
τ(ij)vτ(i)τ(j) + bij

τ(i)vτ(i) + bij
τ(j)vτ(j))(c

i
τ(i) − cj

τ(i))(vτ(i) − vτ(j)) ≡

aij
τ(ij)(c

i
τ(i) − cj

τ(i))(v
2
τ(i) − v2

τ(j)) + (bij
τ(i)vτ(i) + bi

τ(j)vτ(j))(c
i
τ(i) − cj

τ(i))(vτ(i) − vτ(j)) =

((ci
τ(i))

2−(cj
τ(i))

2)v2
τ(i)+(ci

τ(i)c
i
τ(j)−cj

τ(i)c
j
τ(j))(vτ(i)vτ(j)+vτ(j)vτ(i))+((ci

τ(j))
2−(cj

τ(j))
2)v2

τ(j)

Applying (1) and (3) above to {ik} (we are using here that |V1| > 2) we find that

σ(vi) = ci
τ(i)vτ(i) + ci

τ(k)vτ(k). Because σ(vi) 6= 0, ci
τ(i) and ci

τ(j) cannot both be zero.

Furthermore, τ(i), τ(j), and τ(k) are distinct, so ci
τ(i) 6= 0 and ci

τ(j) = ci
τ(k) = 0. Thus,

σ(vi) = ci
τ(i)vτ(i).

Because we have ci
τ(i) − cj

τ(i)
= −(ci

τ(j) − cj
τ(j)

) and ci
τ(j) = 0 = cj

τ(i)
, we see that ci

τ(i) is

independent of i; call this coefficient c. Thus,

aij
τ(ij)c(v

2
τ(i) − v2

τ(j)) + (bij
τ(i)vτ(i) + bij

τ(j)vτ(j))c(vτ(i) − vτ(j)) = c2(v2
τ(i) − v2

τ(j))

⇒ bij
τ(i) = bij

τ(j) = 0 and aij
τ(ij) = c for all {ij}.

What σ does on level one forces what happens on the levels above. We may compose σ

with the automorphism that multiplies each element by 1/c; call this composition σ̂. We

have shown that σ̂ permutes the vertices in levels 1 and 2. Assume that σ̂ permutes the

vertices in levels less than or equal to k − 1;i.e. σ̂(vB) = vτ(B). Let vA, vA1 , ..., vAmk
∈ Vk,

vB , vC , vB1 , ..., vBmk−1
∈ Vk−1. Each vertex vA in level k is present in at least one relation

vA(vB−vC)−v2
B+v2

C+(vB−vC)vB∩C = 0. Apply σ̂ to this relation and we get (aA
A1

vA1+· · ·+
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aA
Amk

vAmk
+bA

B1
vB1+· · ·+bA

Bmk−1
vBmk−1

)(vτ(B)−vτ(C))−v2
τ(B)+v2

τ(C)+(vτ(B)−vτ(C))vτ(B∩C)

by the induction hypothesis. In order for this to equal 0, we must have that vA goes to

vτ(B)∪τ(C) = vτ(B∪C) = vτ(A). Thus, σ̂(vA) = vτ(A) for all vA ∈ V , and so τ ∈Aut(Γ).

Therefore, Aut(A(Γ)) = k∗ × Aut(Γ).

Consequently, the Aut(A(Γ))-submodules of A(Γ)[i] are precisely the Aut(Γ)-submodules.

Since Aut(Γ) is finite we have that A(Γ)[i] is a completely reducible Aut(A(Γ))-module

whenever characteristic k = 0.
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Chapter 5

Graded trace generating functions

Pass to the associated graded algebra, grA(Γ). Let φ1, ..., φl denote all of the distinct

irreducible representations of AutA(Γ) and let χj denote the character afforded by φj .

AutA(Γ) acts on each A(Γ)[i], and so the completely reducible AutA(Γ)-module A(Γ)[i]

may be written as
l
⊕

j=1

mijφj . Basis B(Γ) of A(Γ) is invariant under the automorphism σ.

Therefore, the trace of σ on grA(Γ), Trσ|A(Γ), is the number of fixed basis elements.

Remark: Trσ is the dimension of the subalgebra A(Γσ), which is not the same as the

dimension of the fixed point space. The subalgebra A(Γσ) described in Chapter 3 is the

span of the set of fixed elements of the basis. On the other hand, the fixed point space is

the span of the sums of orbits of σ. Averages over orbits are in the fixed point space, but

not in the subalgebra.

The Hilbert series gives the graded dimension of an algebra; the coefficient of tk is

the k-th graded dimension (see Chapter 2 for the grading on our algebras). Write this

as H(t) =
∑

dim(A(Γ)[k])t
k. We will be finding graded trace generating functions which

generalize the idea of Hilbert series; the graded trace generating functions for A(Γ) are

Hilbert series for A(Γσ). We will give two methods by which to find the graded trace

generating functions for general A(Γ). The first will be to essentially count “allowable”

and “non-allowable” words - a generating function that gives the number of irreducible

words in each grading in the subalgebra A(Γσ). The second will generalize Theorem 2 in

[RSW], which gives the Hilbert series for A(Γ), to use on the subgraph Γσ and subalgebra

A(Γσ). These graded trace generating functions will be used to find the multiplicities of

irreducible representations.
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5.1 Method 1 - Counting fixed words:

The Trσ|A(Γ)[i] is the number of fixed basis elements of degree i. In other words, the number

of sequences (x1, k1), ..., (xl, kl) such that 1 ≤ kj ≤ |xj |, k1+· · ·+kl = i, e(xi, k1) · · · e(xl, kl)

is irreducible, and σxj = xj ∀j. Recall that e(xi, k)e(xj , l) is reducible if there is a path

from xi to xj and the level of xi equals the level of xj plus k.

Lemma 5.1. Let X be a vector space with fixed basis B. Let Z = {V ⊆ X : V subspace, V =

span(V ∩ B)}. Then Z(+,∩) is a lattice isomorphic to the lattice of P(B)(∩,∪).

Proof. The map φ : Z → P(B) defined by φ(V ) = V ∩ B is a lattice isomorphism.

Remark: The lattice of subsets of B is distributive, and so Z is distributive.

Theorem 5.2. Let X =
∑

Xi be a graded vector space and let the basis X of X consist

of homogeneous elements; X = ∪Xi, where Xi = X ∩ Xi. Then T (X) is bi-graded with

T (X)i,j = span{xl1 · · · xli : xlk ∈ Xlk , l1 + ... + li = j}. Let Y be a finite set of quadratic

monomials in X , and define Y =< Y >⊆ T (X). Let | · | denote the bi-graded dimension of

the space. Then

|T (X)/Y | =
1

1 − |X| + |Y | − |XY ∩ Y X| + |X2Y ∩ XY X ∩ Y X2| − · · ·
.

Proof. Denote T (X)/Y by A in this proof. The graded dimension of T (X) is 1
1−|X| . Because

each generator in Y is a quadratic monomial, as vector spaces we can identify A with the

subspace of T (X) spanned by words not containing a subword in Y .

For i ≥ 0 define Y (i) :=

i
⋂

j=0

XjY Xi−j ; note that Y (0) = Y . It will also be convenient to

define Y (−1) := X and Y (−2) := k. For i ≥ −2, let

Ti := T (X)Y (i)/(T (X)Y Xi+2T (X)∩T (X)Y (i)). Also, define T−3 := T (X)/(T (X)XT (X)).

Now define a map φi : Ti → Ti−1 for i ≥ −1 by a + T (X)Y Xi+2T (X) ∩ T (X)Y (i) 7→

a+T (X)Y Xi+1T (X)∩T (X)Y (i−1). Also, define φ−2 : T−2 → T−3 by a+T (X)Y T (X) 7→ a+

T (X)XT (X). Because Y (i) = XY (i−1) ∩ Y Xi ⊆ XY (i−1), T (X)Y (i) ⊆ T (X)Y (i−1). Also,

T (X)Y Xi+2T (X) ⊆ T (X)Y Xi+1T (X) since Xi+2T (X) = Xi+1XT (X) ⊆ Xi+1T (X).

Thus, φi is a well-defined map.
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Next we will show that the sequence · · · → Tj → Tj−1 → · · · → T−2 → T−3 → 0 is exact.

For i ≥ 0, φi−1(φi(a+T (X)Y Xi+2T (X)∩T (X)Y (i))) = a+T (X)Y XiT (X)∩T (X)Y (i−2).

Now a ∈ T (X)Y (i) ⊆ T (X)Y (i−1) ⊆ T (X)Y (i−2). Also, a ∈ T (X)Y (i) =

T (X)(Y Xi ∩ · · · ∩ XiY ) ⊆ T (X)Y Xi ⊆ T (X)Y XiT (X). Thus, the image is 0 and

imφi ⊆ kerφi−1.

To show the other inclusion, note that kerφi−1 = {a+T (X)Y Xi+1T (X)∩T (X)Y (i−1) :

a ∈ T (X)Y XiT (X)∩T (X)Y (i−2)}. For a ∈ T (X)Y (i−1) define ā = a+T (X)Y Xi+1T (X)∩

T (X)Y (i−1). Assume that ā ∈ kerφi−1. Then a ∈ T (X)Y XiT (X). We want that a ∈

T (X)Y (i). To show this first observe that a ∈ T (X)Y (i−1)∩T (X)Y XiT (X) = T (X)Y (i−1)∩

(T (X)Y Xi + T (X)Y Xi+1T (X)). Let B be the set of all monomials of X ; B is a basis for

T (X) and Y ⊆ B. Consider the set of XiY Xj . Now XiY Xj is equal to the span of

X iYX j , and so Lemma 5.1 applies. Therefore, the lattice generated by all the XiY Xj

is distributive. Hence, we have that T (X)Y (i−1) ∩ (T (X)Y Xi + T (X)Y Xi+1T (X)) =

T (X)Y (i−1)∩T (X)Y Xi+T (X)Y (i−1)∩T (X)Y Xi+1T (X). Since T (X)Y (i−1)∩T (X)Y Xi ⊆

T (X)Y (i), a ∈ T (X)Y (i) and ā ∈ imφi. Therefore, imφi = kerφi−1 for i ≥ 0.

Since φ−1 is homogeneous in degree, imφ−1 = A ∩ T (X)X = kerφ−2. Furthermore,

the image of φ−2 is nonzero and maps to a one-dimensional space, and thus is surjective.

Therefore, the sequence is exact.

Finally we will show that Ti
∼= AY (i). We will do this by proving that

T (X)Y (i) = AY (i) ⊕T (X)Y Xi+2T (X)∩T (X)Y (i). T (X)Y (i) = (A+T (X)Y T (X))Y (i) ⊆

AY (i) + T (X)Y T (X)Y (i) ⊆ AY (i) + T (X)Y Xi+2T (X) ∩ T (X)Y (i). Also,

AY (i) ∩ T (X)Y Xi+2T (X) ⊆ AXi+2 ∩ T (X)Y T (X)Xi+2 ⊆ (A ∩ T (X)Y T (X))Xi+2 = (0).

Thus, our claim is proved and Ti
∼= AY (i). In particular,

T0 = T (X)Y/(T (X)Y X2T (X) ∩ T (X)Y ) ∼= AY,

T−1 = T (X)X/(T (X)Y XT (X) ∩ T (X)X) ∼= AX,

T−2 = T (X)/T (X)Y T (X) ∼= A, and

T−3 = T (X)/T (X)XT (X) ∼= k. Hence, we can write our exact sequence as

· · · → AY (j) → AY (j−1) → · · · → AY → AX → A → k → 0.
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Therefore, 1 = |k| =
∑

(−1)i|Ti| = |A| − |A||X| +
∑

i≥0(−1)i|A||Y (i)| =

|A|(1 − |X| +
∑

i≥0(−1)i|Y (i)|) implies that

|A| =
1

1 − |X| +
∑

i≥0(−1)i|Y (i)|

Define another grading on A(Γ) by

A(Γ)[[k]] = span{e(v1, i1) · · · e(vk, ik) : (vj , ij) 6 m(vj+1, ij+1)}. This induces an increasing

filtration on A(Γ), A(Γ)((k)) = span{e(v1, i1) · · · e(vj , ij) : j ≤ k, (vj , ij) 6 m(vj+1, ij+1)}.

Thus as a vector space we can identify A(Γ) with its associated graded algebra, gr′A(Γ).

Lemma 5.3. Define W (Γσ) = span{e(v, k) : l ≥ 0, v ∈ Vσ, 1 ≤ k ≤ |v|} and R(Γσ) the

two-sided ideal in T (W (Γσ)) generated by R̃(Γσ) = span{e(v, k)e(u, l) : v > u ∈ Vσ, k =

|v| − |u|}. Then A(Γσ) = T (W (Γσ))/R(Γσ) as a subalgebra of gr′A(Γ).

Proof. This follows from the definitions of A(Γσ) and of gr′A(Γ).

W (Γσ) and R(Γσ) satisfy the hypotheses for Theorem 5.2. Therefore,

|A(Γσ)| =
1

1 − |W (Γσ)| + |R̃(Γσ)| − |R̃(Γσ)W (Γσ) ∩ W (Γσ)R̃(Γσ)| + · · ·
.

5.2 Method 2 - Generalizing the Hilbert Series Equation for

A(Γ):

Theorem 2 in [RSW] gives the Hilbert series of A(Γ) as:

H(A(Γ), t) =
1 − t

1 +
∑

v1>···>vl≥∗

(−1)lt|v1|−|vl|+1
. (5.1)

We would like to apply the equation H(A(Γ), t) to the subalgebras created by our fixed

points. Take the subgraph of Γ consisting of the points fixed by an automorphism σ. This

generates a subalgebra of grA(Γ) in the way described in Chapter 3. Thus, we are using
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Equation (5.1) with the additional condition that the vertices in the sum are fixed by

σ ∈ Aut(A(Γ)); call this modified formula Trσ(A(Γ), t).

Theorem 5.4. Let Γ be a layered graph with unique minimal element * of level 0 and σ

an automorphism of the graph. Let Γσ be the subgraph of Γ with vertices being those fixed

by σ (as described in Chapter 3). Denote the Hilbert series of the subalgebra A(Γσ), which

is the graded trace function of σ acting on A(Γ), by Trσ(A(Γ), t) (or Trσ(t) when A(Γ) is

clear). Then

Trσ(A(Γ), t) =
1 − t

1 − t
∑

v1>···>vl≥∗
v1,...,vl∈Vσ

(−1)l−1t|v1|−|vl|
. (5.2)

Proof. Write Tr(t) for Trσ(A(Γ), t) in this proof. Let v1, ..., vl, v, w ∈ Vσ. Recall that the

basis for A(Γσ) is

Bσ = {e(v1, k1) · · · e(vl, kl) : v1, ...vl ∈ Vσ, 1 ≤ ki ≤ |vi|, e(vi, ki)6 me(vi+1, ki+1)}.

For v ∈ (Vσ)+, define Cv =

|v|
⋃

k=1

e(v, k)Bσ , Bv = Cv ∩ Bσ, Dv = Cv\Bv. Then Bσ =

{∗} ∪
⋃

v∈(Vσ)+

Bv. Let Trv = Trσ(Bv, t), the graded dimension of the span of Bv. Then

Tr(t) = 1+
∑

v∈(Vσ)+
Trv(t). We also have Trσ(Cv , t) = (t+ ...+ t|v|)Tr(t) = t( t|v|−1

t−1 )Tr(t)

and, because Dv =
⋃

v>w>∗

e(v, |v| − |w|)Bw, Trσ(Dv, t) =
∑

v>w>∗

t|v|−|w|Trw(t). Thus,

Trv(t) = t

(

t|v| − 1

t − 1

)

Tr(t) −
∑

v>w>∗

t|v|−|w|Trw(t). (5.3)

This equation may be written in matrix form. Put an order on Vσ, arrange the elements

in decreasing order, and index the elements of vectors and matrices by this ordered set.

Let ~Tr(t) denote the column vector with Trv(t) in the v-position and 0 in the *-position.

Let ~s denote the column vector with entry t|v| − 1 in the v-position, let ~1 denote the

column vector having 1 as each entry, and let ζ(t) denote the matrix with the entry in the

(v,w)-position being t|v|−|w| if v ≥ w and 0 otherwise. Then rewriting Equation 5.3 gives

ζ(t) ~Tr(t) = t
t−1~sTr(t).

Now ζ(t)− I is a strictly upper triangular matrix, and so ζ(t) is invertible; ζ−1(t) = I −

(ζ(t)−I)+(ζ(t)−I)2−· · · . Thus the (v,w)-entry of ζ−1(t) is
∑

v=v1>···>vl=w≥∗

(−1)l+1t|v1|−|vl|.
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Thus we can multiply ζ(t) ~Tr(t) = t
t−1~sTr(t) by ζ−1 and then multiply by ~1T to obtain

~1T ~Tr = Tr(t) − 1 = t
t−1

~1T ζ−1(t)~sTr(t). Solving for Tr(t) we get

Tr(t) =
t − 1

t − 1 − t~1T ζ−1(t)~s
=

1 − t

1 − t
∑

v1>···>vl≥∗

(−1)l−1t|v1|−|vl|
.

Remark 1: ζ is the standard zeta matrix and ζ−1 is the Möbius matrix when t = 1.

Remark 2: We will normally apply this method; although, both methods can theoretically

be applied in all layered graph algebras.

In general, if σ and τ are conjugate, Γσ and Γτ are isomorphic (by the conjugation

acting on the subscripts of vertices). Thus, it is enough to find the graded trace functions

for any one representative of each conjugacy class.
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Chapter 6

Decomposition of Two Algebras: A(ΓDn
) and Qn

6.1 Definition and Hilbert Series of Two Algebras

6.1.1 Hasse graph of an n-gon: ΓDn

A Hasse graph, or Hasse diagram, is a graph which represents a finite poset P. The vertices

in the graph are elements of P and there is an edge between x, y ∈ P if x < y and there

does not exist a z ∈ P such that x < z < y. Furthermore, the vertex for x, vx, is in a lower

level than that for y, vy (if we talk about layers in the graph, |vx| = |vy| − 1).

Consider a polytope. We can put a partial order on the set of k-faces in the polytope

by x < y if x is an (n − 1)-face, y is an n-face and x is a face of y. For example, if there is

an edge e between v and w in the polytope, then e > v,w and e ≯ u for all u 6= v,w.

Thus, the Hasse graph of an n-gon has one vertex in levels 0 and 3 and n vertices on

levels 1 and 2. The top vertex is connected to all vertices in level 2 (all edges are in the

2-dimensional polygon), each vertex in level 2 is connected to the vertex directly below it

and the one to that vertex’s right, with wrapping around to the first vertex in level one

for the last vertex in level two (each edge connects two adjacent vertices), and each vertex

in level 1 is connected to the minimal vertex. Label the vertices by using subscripts in

Z/(n). In level 1 call the vertices w1, ..., wn, call the vertices in level 2 v12, ..., vn1 (where

the subscripts indicate to which vertices in level 1 the vertex is connected), and the top

vertex is u. See Figure 6.1.

We consider the algebra A(ΓDn) determined by this graph. The construction of this

algebra is described in [GRSW] (see Chapter 2). In brief (using the definition given in

Proposition 2.2), the generators are the vertices and the relations are that two paths which

have the same starting and ending vertices are equivalent. We can write these relations by:
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*

u

vn1

wn

v12

w1

Figure 6.1: The Graph ΓDn

1) vii+1(wi − wi+1) − w2
i + w2

i+1

2) u(vii+1 − vi+1i+2) − v2
ii+1 + v2

i+1i+2 + (vii+1 − vi+1i+2)wi+1, 1 ≤ i ≤ n.

We will give here two bases for A(ΓDn), one for each of the two definitions of A(Γ) given

in Chapter 2. First we will give a basis in terms of the vertices (Proposition 2.2).

Proposition 6.1. A basis B of A(ΓDn) consists of ∗ and the set of all words in u, vi i+1,

and wi such that the following conditions on the words hold: the subword vii+1wj only

occurs if j 6= i + 1, the subword uvii+1 only if i = 1, and uvii+1wj only if i = j = 1.

Proof. We can describe a basis of monomials for A(ΓDn) using Bergman’s Diamond Lemma

[Berg]. Put a partial order on the generators such that u > vi i+1 > wj∀i, j and vi i+1 >

vj j+1 and wi > wj if i > j. Order monomials lexicographically. The reductions are

uvi+1 i+2 ≡ uvi i+1 − v2
ii+1 + v2

i+1i+2 + (vii+1 − vi+1i+2)wi+1, 1 ≤ i ≤ n − 1 and

vii+1wi+1 ≡ vii+1wi − w2
i + w2

i+1, 1 ≤ i ≤ n.

We need to find a complete list of reductions so that all ambiguities resolve. The only

ambiguity will occur when we have a word that ends in v overlapping with one beginning

with v; i.e. uvi+1 i+2wi+2.

(uvi+1 i+2)wi+2 ≡ (uvii+1 − v2
ii+1 + v2

i+1i+2 + (vii+1 − vi+1i+2)wi+1)wi+2 ≡ uvii+1wi+2 −

v2
ii+1wi+2+vi+1i+2(vi+1i+2wi+1−w2

i+1+w2
i+2)+(vii+1wi−w2

i +w2
i+1)wi+2−vi+1i+2wi+1wi+2 ≡

uvii+1wi+2 − v2
ii+1wi+2 + v2

i+1i+2wi+1 − vi+1i+2w
2
i+1 + vi+1i+2wi+1wi+2 −w2

i+1wi+2 +w3
i+2 +

vii+1wiwi+2−w2
i wi+2+w2

i+1wi+2−vi+1i+2wi+1wi+2 = uvii+1wi+2+v2
i+1i+2wi+1−v2

ii+1wi+2−

vi+1i+2w
2
i+1 + vii+1wiwi+2 + w3

i+2 − w2
i wi+2 and

u(vi+1 i+2wi+2) ≡ u(vi+1i+2wi+1 − w2
i+1 + w2

i+2) ≡ (uvii+1 − v2
ii+1 + v2

i+1i+2 + (vii+1 −

vi+1i+2)wi+1)wi+1−uw2
i+1 +uw2

i+2 ≡ uvii+1wi−uw2
i +uw2

i+1−vii+1(vii+1wi−w2
i +w2

i+1)+
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v2
i+1i+2wi+1+vii+1wiwi+1−w2

i wi+1+w3
i+1−vi+1i+2w

2
i+1−uw2

i+1+uw2
i+2 ≡ uvii+1wi+uw2

i+2−

uw2
i −v2

ii+1wi+vii+1w
2
i −vii+1wiwi+1+w2

i wi+1−w3
i+1+v2

i+1i+2wi+1+vii+1wiwi+1−w2
i wi+1+

w3
i+1−vi+1i+2w

2
i+1 = uvii+1wi+uw2

i+2−uw2
i +v2

i+1i+2wi+1−v2
ii+1wi−vi+1i+2w

2
i+1+vii+1w

2
i .

Thus we need to add an additional reduction; namely, uvii+1wi+2 ≡ uvii+1wi +uw2
i+2 −

uw2
i + v2

ii+1wi+2 − v2
ii+1wi − vii+1wiwi+2 + vii+1w

2
i − w3

i+2 + w2
i wi+2. This does not create

additional ambiguities since this reduction ends in w and we have no reductions which

begin in w. Also, no reductions end in u. Thus, all ambiguities now resolve.

Therefore, by Bergman’s Diamond Lemma, A(ΓDn) may be identified with the k-module

of monomials which are irreducible under these reductions. Hence, B is a basis for A(ΓDn).

Next follows a basis in terms of edges (Thm 2.1).

Proposition 6.2. B′ = {e(x1, k1) · · · e(xl, kl) : l ≥ 0, x1, ..., xl ∈ {u, v12, ..., vn1, w1, ..., wn},

1 ≤ ki ≤ |xi|, (xi, ki) 6 m(xi+1, ki+1)} is a basis for A(ΓDn).

Proof. This follows directly from Theorem 2.1.

In the preliminaries we stated that the algebra is generated by distinguished edges and

so we can identify the distinguished edges with the vertices which are their tails - ev is

identified with v. Thus e(v, k) can be expressed as a product of k vertices (recall we are

writing e(v, k) in lieu of ê(v, k)), and so there is a correlation between the bases B, B′ as

follows:

e(u, 3) ↔ uv12w1 e(u, 2) ↔ uv12 e(u, 1) ↔ u

e(vii+1, 2) ↔ vii+1wi e(vii+1, 1) ↔ vii+1 e(wi, 1) ↔ wi

It is important to observe that in the associated graded algebra, σ ∈ Aut(A(Γ)) permutes

the elements of grB and grB′.

Recall that the Hilbert series of a graded algebra is H(A, t) =
∑

dim(A[k])t
k.

Proposition 6.3. The Hilbert series for A(ΓDn) is

H(A(ΓDn), t) =
1

1 − (2n + 1)t + (2n − 1)t2 − t3
=

1 − t

1 − (2n + 2)t + 4nt2 − 2nt3 + t4
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Proof. We will give two proofs of this proposition. The first one uses Proposition 6.1 and

induction to count basis elements. This will give us a recursion that can then be written

as a generating function. The second method of proof uses Equation 5.1.

Method 1: By Proposition 6.1, there are n(n−1) subwords of the form vii+1wj which can

occur in an element of B and exactly one of the forms uvi i+1 and uvi i+1wj. This means

that there are n subwords of the form vii+1wj which cannot occur, n−1 of the form uvi i+1,

and n2 − 1 of the form uvi i+1wj.

Let dk = dim(A(ΓDn)[k]).

We will proceed by induction.

• d0 = 1

• d1 = 2n+1: Every word of length one belongs to the basis since all reducible subwords

are of length greater than one. A basis is: {u, vii+1, wi}.

• d2 = 4n2 + 2n + 2: There are (2n + 1)2 elements of length two and 2n − 1 of them

are reducible. Hence, the dimension is (2n + 1)2 − (2n − 1) = 4n2 + 2n + 2. A basis

is: {wiu, wivj j+1, wiwj , uu, uv1 2, uwi, vii+1u, vii+1vjj+1, vii+1wj}.

Use induction to determine dk:

• If x ∈ B is a word of length k − 1, then wix ∈ B. Thus there are ndk−1 words of

length k in B starting with wi.

• If x ∈ B is a word of length k − 1, then vii+1x ∈ B if and only if x does not begin

with wi+1. As determined in the previous bullet, there are ndk−2 basis elements

starting with wj, 1 ≤ j ≤ n in degree k − 1, and thus dk−2 of them beginning with

wi+1. Hence, for each i, there are dk−1 − dk−2 possibilities for x. Therefore, there are

n(dk−1 − dk−2) words of length k of the form vi i+1x.

• We will treat the case of words beginning with u in three cases. If x ∈ B of length

k − 2, uux ∈ B if and only if x does not begin with vii+1, 2 ≤ i ≤ n. There are

dk−1 −ndk−2−n(dk−2− dk−3) words beginning with u in degree k− 1 (from previous

bullets). Thus, there are that many words of the form uux ∈ B. Next uv12x ∈ B if
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and only if x does not begin with wi, 2 ≤ i ≤ n. Thus, there are dk−2 − (n − 1)dk−3

words of the form uv12x. Finally, uwix ∈ B for all x. Thus, there are ndk−2 words of

this form. This gives us a total of dk−1−2ndk−2+ndk−3+dk−2−(n−1)dk−3+ndk−2 =

dk−1 − (n − 1)dk−2 + dk−3 words beginning with u.

Thus, dk = ndk−1 + n(dk−1 − dk−2) + dk−1 − (n − 1)dk−2 + dk−3

= (2n + 1)dk−1 − (2n − 1)dk−2 + dk−3.

We can write this recurrence formula as a generating function following the method

described by Wilf in [[Wilf],§1.2]. Let H(t) =
∑

i≥0 dit
i denote the generating function

that we are trying to find. Let d−2 = d−1 = 0, d0 = 1. Multiply both sides of the recursion

by ti and sum over i ≥ 0. Then on the left-hand side we have d1 +d2t+d3t
2 + ... = H(t)−d0

t .

And on the right hand side we have (2n + 1)H(t) − (2n − 1)tH(t) + t2H(t). Solving for

H(t):

H(t) − 1 = H(t)[(2n + 1)t − (2n − 1)t2 + t3] ⇒

H(t)[1 − (2n + 1)t + (2n − 1)t2 − t3] = 1 ⇒

H(t) = 1
1−(2n+1)t+(2n−1)t2−t3

.

Method 2: Recall that the Hilbert series formula is

H(A(Γ), t) =
1 − t

1 +
∑

v1>···>vl≥∗

(−1)lt|v1|−|vl|+1
.

In this example, the possible sequences indexing the sum are: u, vii+1,wi,∗, u > vii+1,

vii+1 > wi, vii+1 > wi+1, wi > ∗, u > wi, u > vii+1 > wi, u > vii+1 > wi+1, vii+1 > ∗,

vii+1 > wi > ∗, vii+1 > wi+1 > ∗, u > ∗, u > vii+1 > ∗, u > wi > ∗, u > vii+1 > wi > ∗, and

u > vii+1 > wi+1 > ∗. Thus, the coefficients of t, t2, t3, and t4 are −(2n+2), n+2n+n =

4n, n + n − 2n − 2n = −2n, and 1 − 2n + 2n = 1, respectively. The coefficient of tk for

k ≥ 5 is zero.

Thus H(A(ΓDn), t) = 1−t
1−(2n+2)t+4nt2−2nt3+t4

.
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6.1.2 The Algebra Qn

The algebras Qn are the algebras associated with the lattice of subsets of {1, 2, ..., n}. Label

the vertices in level i by {vA : A ⊆ {1, ..., n}, |A| = i}. The lattice to which Q4 is associated

is shown in Figure 6.2 below. Their history and some properties are discussed in [GRSW].
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Figure 6.2: The lattice of subsets of {1, 2, 3, 4}

Following the definition given in Proposition 2.2, the generators of Qn are the vertices

{vA : A ⊆ {1, ..., n}} and the relations are

(∗){vA(vA\i − vA\j) − v2
A\i + v2

A\j + (vA\i − vA\j)vA\{i,j} : A ⊆ {1, ..., n}, i, j ∈ A}.

Furthermore,

Proposition 6.4. BQ = {e(vA1 , k1) · · · e(vAl
, kl) : l ≥ 0, A1, ..., Al ⊆ {1, ..., n}, 1 ≤ ki ≤

|vAi
| = |Ai|, (vAi

, ki) 6 m(vAi+1 , ki+1)} is a basis for Qn.

Proof. This follows directly from Theorem 2.1.

In [[RSW],Thm 3], Retakh, Serconek, and Wilson prove that

H(Qn, t) =
1 − t

1 − t(2 − t)n

using Equation 5.1.
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6.2 Automorphism Groups of A(ΓDn
) and Qn

Lemma 6.5. Aut(ΓDn) = Dn.

Proof. Any automorphism of the graph must preserve the set of vertices at each level and

so acts on the set {w1, ..., wn} of all n vertices in level 1. We may say σ(wi) = wσ(i)

(slightly abusing the use of σ). Thus we can think of an automorphism of the graph as

being a permutation in Sn acting on the subscripts/labels of the vertices of level 1. This

will uniquely determine what happens on higher levels; i.e. σ(vij) = vσ(i) σ(j). Labeling the

vertices in level two by the vertices they are connected to in level one ensures that as long

as the set of vertices in each level is preserved, the edges will be as well.

Recall that V2 refers to the vertices in level two of the graph. Only permutations which

send the set V2 = {(i i + 1) : 1 ≤ i ≤ n} to itself are allowed. Clearly r = (12...n) fixes

V2. We may replace σ by riσ for some i and assume σ(1) = 1. Then σ(12) is either (12)

or (1n), which implies either σ(2) = 2 (and thus σ = id) or σ(2) = n. In the latter case

σ = (2n)(3n − 1)(4n − 2) · · · = s. Thus r and s generate the automorphism group of

ΓDn ; this is the dihedral group on n elements, Dn. Note that these automorphisms may be

viewed as reflections and rotations of the n-gon.

Theorem 6.6. a) If n ≥ 3, Aut(A(ΓDn)) = k∗ × Dn, k the base field

b) If n = 2,

Aut(A(ΓD2))
∼= {M ∈ GL(3, k) : M =













c1
1 + c1

2 c2
1 − c1

2 c1
2 − c2

1

0 c1
1 c1

2

0 c2
1 c1

1 + c1
2 − c2

1













, cj
i ∈ k ∀i, j}

Proof. a) By Lemma 6.5, Aut(ΓDn) = Dn. It is clear by looking at the graph ΓDn (Figure

6.1) that for n > 2 ΓDn satisfies the conditions of Theorem 4.2. Therefore, Aut(A(ΓDn)) =

k∗ × Dn.

b) In this case, ΓD2 fails to satisfy condition (i) of Theorem 4.2; there are only two

vertices on level 1. Consider the proof of Theorem 4.2. The proof is valid up until we apply

(1) and (3) to {ik} to find that σ(vi) = ci
τ(i)vτ(i) + ci

τ(k)vτ(k). In the case where n = 2,
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τ(i)+1 = τ(i−1)+2 = τ(i−1) in Z/(2), so ci
τ(i)+1 = ci

τ(i−1) can be nonzero. Thus, wi can go

to a sum of multiples of w1 and w2; σ(wi) = ci
1w1+ci

2w2. Because we only have one vertex in

level two, v12, it can only go to a multiple of itself plus multiples of w1 and w2. Thus we can

drop the sub and superscripts on a and the superscripts on bi: σ(v12) = av12 + b1w1 + b2w2.

We can rewrite (4) in the proof of Theorem 4.2 as a(c1
1 − c2

1)(w
2
1 −w2

2)+ (b1w1 + b2w2)(c
1
1 −

c2
1)(w1 −w2) = ((c1

1)
2 − (c2

1)
2)w2

1 + (c1
1c

1
2 − c2

1c
2
2)(w1w2 + w2w1) + ((c1

2)
2 − (c2

2)
2)w2

2. We can

conclude from this that a + b1 = c1
1 + c2

1, a + b2 = c1
2 + c2

2, and −b1(c
1
1 − c2

1) = c1
1c

1
2 − c2

1c
2
2 =

b2(c
1
1 − c2

1) ⇒ −b1 = b2 (else c1
1c

1
2 = c2

1c
2
2 ⇒ c1

1 = c2
1 and c1

2 = c2
2, which is not possible).

These imply that 2a = c1
1 + c1

2 + c2
1 + c2

2 ⇒ a = c1
1 + c1

2 ⇒ b1 = c2
1 − c1

2 = −b2.

Write the element rv12 + sw1 + tw2 as the vector [ r s t ]. Then a way to visualize

what this automorphism group looks like is to consider the invertible transformation matrix

M that sends [ r s t ] 7→ [ r s t ] ∗ M

M =













c1
1 + c1

2 c2
1 − c1

2 c1
2 − c2

1

0 c1
1 c1

2

0 c2
1 c1

1 + c1
2 − c2

1













This matrix is conjugate to a triangular matrix and thus stabilizes a flag. The spaces

M stabilizes can be found by solving [ r s t ] ∗ M = α[ r s t ]. M stabilizes the

one-dimensional spaces k
[

1 −1 −1

]

and k
[

0 1 −1

]

.

Denote the lattice of subsets of {1, ..., n} by L[n]. In other words, Qn = A(L[n]).

Lemma 6.7. If n ≥ 3, Aut(L[n]) = Sn.

Proof. Any automorphism of the graph must preserve the set of vertices at each level and

so acts on the set {v1, ..., vn} of all n vertices in level 1; so, we may say σ(vi) = vσ(i)

(slightly abusing the use of σ). Thus we can think of an automorphism of the graph as

being a permutation in Sn acting on the subscripts/labels of the vertices of level 1. This

will uniquely determine what happens on higher levels; i.e. σ(vA) = vσ(A). Labeling the

vertices in levels two and higher by the vertices to which there is a path to in level one

ensures that as long as the set of vertices in each level is preserved, the edges will be as
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well. Since for each subset of {1, ..., n} of cardinality i level i has a vertex labeled by that

subset, every element of Sn is an automorphism of the graph. In other words, for every

τ ∈ Sn, τ will permute the vertices on each level.

Theorem 6.8. If n ≥ 3, Aut(Qn) = k∗ × Sn.

Proof. We can see that L[n] satisfies conditions (i) and (ii) of Theorem 4.2 since each subset

of {1, ..., n} occurs exactly once as a vertex in the lattice and for n > 2 there are more than

2 singleton subsets. Condition (iii) is satisfied because each vertex vB directly below a

vertex vA is obtained by removing exactly one element from A. Thus for any vertex vC

two levels below vA, |C| = |A| − 2. Say C = A\{i, j}. There are only two ways to obtain

C: first remove i then j or vice versa. Therefore, there are only two paths from vA to vC .

Therefore, by Lemma 6.7 and Theorem 4.2, Aut(Qn) = k∗ × Sn.

6.3 Graded Trace Generating Functions for A(ΓDn
) and Qn

Let us calculate the generating functions for our algebras. First of all, the graded trace of

the identity acting on the algebra is the graded dimension of the algebra. We will derive it

using the theorems above to show that we get the same result as the Hilbert series given

earlier.

6.3.1 The Algebra A(ΓDn)

We will now find Trσ(A(ΓDn), t) = 1
1−(a1t+a2t2+a3t3)

using Method 1 in Chapter 5. Notice

that because ΓDn has three levels, R̃(Γid
Dn

)(i) = {0} for i ≥ 2. W (Γid
Dn

) has basis {e(u, 3),

e(u, 2), e(u, 1), e(vi i+1, 2), e(vi i+1, 1), e(wi, 1), 1 ≤ i ≤ n}. Hence |W (Γid
Dn

)| = (2n + 1)t +

(n + 1)t2 + t3.

The reducible words of degree 2 are e(u, 2)e(wi, 1), e(u, 1)e(vi i+1, 2), e(u, 1)e(vi i+1, 1),

e(vi i+1, 1)e(wi, 1), e(vi i+1, 1)e(wi+1, 1). As this set is a basis for R̃(Γid
Dn

) we have |R̃(Γid
Dn

)| =

3nt2 + 2nt3.
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The overlaps of reducible words are e(u, 1)e(vi i+1, 1)e(wi, 1), e(u, 1)e(vi i+1, 1)e(wi+1). This

set is a basis for R̃(Γid
Dn

)W (Γid
Dn

) ∩ W (Γid
Dn

)R̃(Γid
Dn

) and so

|R̃(Γid
Dn

)W (Γid
Dn

) ∩ W (Γid
Dn

)R̃(Γid
Dn

)| = 2nt3.

Hence a3 = 1 − (n + n) + (n + n) = 1, a2 = (1 + n) − (n + n + n) = 1 − 2n, and

a1 = 1 + n + n = 2n + 1.

Thus, we have

Trid(A(ΓDn), t) =
1

1 − ((2n + 1)t − (2n − 1)t2 + t3)
,

which agrees with the earlier results.

Now since only u is fixed by ri, W (Γri

Dn
) = span{e(u, 3), e(u, 2), e(u, 1)} and R̃(Γri

Dn
) =

{0}. Hence,

Trri(A(ΓDn), t) =
1

1 − (t + t2 + t3)
.

If n is even, W (Γs
Dn

) has basis {e(u, 3), e(u, 2), e(u, 1), e(v12, 2), e(v12, 1), e(vn/2+1 n/2+2, 2),

e(vn/2+1 n/2+2, 1)} and R̃(Γs
Dn

) has basis {e(u, 1)e(vi i+1, 2), e(u, 1)e(vi i+1, 1) : i = 1, n
2 +1}.

Also, W (Γrs
Dn

) has basis {e(u, 3), e(u, 2), e(u, 1), e(w2 , 1), e(wn/2+2, 1)} and R̃(Γrs
Dn

) has basis

{e(u, 2)e(w2 , 1), e(u, 2)e(wn/2+2 , 1)}. If n is odd, W (Γs
Dn

) has basis

{e(u, 3), e(u, 2), e(u, 1), e(v12 , 2), e(v12, 1), e(w(n+3)/2 , 1)} and R̃(Γs
Dn

) has basis

{e(u, 1)e(v12 , 2), e(u, 1)e(v12, 2), e(u, 2)e(w(n+3)/2 , 1)}. Computing each separately we see

that

Trs(A(ΓDn), t) = Trrs(A(ΓDn), t) =
1

1 − (3t + t2 − t3)
.

Using Method 2 we can get our graded trace generating functions by applying Equation

(5.2) to the subalgebras of A(ΓDn). The automorphism ri only fixes u and the minimal

vertex (see Figure 6.3). Since we have two vertices, no vertices one or two levels apart, and

one pair of vertices three levels apart (and only one path between them),

Trri =
1 − t

1 − (2t − t4)
=

1 − t

1 − t(2 − t3)
=

1

1 − (t + t2 + t3)
.

The automorphism s acting on the algebra when n is even fixes the top vertex, the
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*

u

Figure 6.3: The subgraph Γr
Dn

minimal vertex, and two vertices on level two (v12 and vn/2+1 n/2+2)(see Figure 6.4). Simi-

larly, when n is odd s fixes the top vertex, the minimal vertex, and one vertex on each of

levels one and two (v12 and w(n+3)/2). Finally, rs fixes the top vertex, the minimal vertex,

and two vertices on level one (w2 and wn/2+2). Thus, in each case, there are 4 vertices,

two edges of length one, and two of length two. For the coefficient of t4, we have u > ∗,

u > vertex > ∗, and u > vertex > ∗. Thus,

Trs(t) = Trrs(t) =
1 − t

1 − (4t − 2t2 − 2t3 + t4)
=

1 − t

1 − t(2 − t)(2 − t2)
=

1

1 − (3t + t2 − t3)
.
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Figure 6.4: The subgraphs Γσ
Dn

The graded traces for the first few graded pieces are given in Example 6.1 below.

Example 6.1. n = 4

Trσ|A(ΓD4
)[i] is:

i 1 r ... rm s rs

1 9 1 ... 1 3 3

2 74 2 ... 2 10 10

3 604 4 ... 4 32 32

4 4927 7 ... 7 103 103
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6.3.2 The Algebra Qn

Recall that Vσ denotes the set of vertices in Γ fixed by σ.

Theorem 6.9. Let σ ∈ Sn and σ = σ1 · · · σm be its cycle decomposition. Denote the length

of σj by ij (so ij ≥ 1, i1 + · · · + im = n). Then

Trσ(Qn, t) =
1 − t

1 − t

m
∏

j=1

(2 − tij)

. (6.1)

First of all, notice that when σ = (1), this yields H(Qn, t) given above.

We will prove this using Equation 5.2 from Chapter 5:

Trσ(A(Γ), t) =
1 − t

1 − t
∑

v1>...>vl≥∗
v1,...,vl∈Vσ

(−1)l−1t|v1|−|vl|
.

If w ⊆ {1, ..., n} is σ-invariant, let ‖w‖ be the number of σ-orbits in w. Also, let Oj denote

the non-trivial orbit of σj.

The following Lemma and Corollary and their proofs are parallel to [[RSW],Lemma 2]

and [[RSW],Corollary 1]. In the case where σ is the identity, they are the same.

Lemma 6.10. Let w ⊆ {1, ..., n} be fixed by σ. Then
∑

w=w1⊃···⊃wl=∅

(−1)l = (−1)‖w‖+1

where the sum is over all chains of σ-fixed subsets of w.

Proof. If ‖w‖ = 1, then w = Oj for some j. Thus, there are no fixed proper subsets of

w, and we get that both sides are equal to 1. Assume the result holds for all sets with

‖ · ‖ < ‖w‖. Then
∑

w⊃···⊃wl=∅

(−1)l =
∑

w⊃w2⊇∅

∑

w2⊃···⊃wl=∅

(−1)l =
∑

w⊃w2⊇∅

(−1)‖w2‖ by the

induction assumption.

Now
∑

w⊃w2⊇∅

(−1)‖w2‖ =





∑

w⊇w2⊇∅

(−1)‖w2‖



− (−1)‖w‖. Say w = O1 ∪O2 ∪ · · · ∪Or. Then

the number of w2 such that w2 ⊆ w and ‖w2‖ = i is
(r

i

)

. Hence, we have
∑

w⊃w2⊇∅

(−1)‖w2‖ =





∑

w⊇w2⊇∅

(−1)‖w2‖



− (−1)‖w‖ =

r
∑

i=0

(

r

i

)

(−1)i + (−1)‖w‖+1 = (−1)‖w‖+1, as desired, since
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the alternating sum of the binomial coefficients is zero.

Corollary 6.11. Let {1, ..., n} ⊇ v ⊇ w be fixed by σ. Then
∑

v=v1⊃v2⊃···⊃vl=w

(−1)l = (−1)‖v‖−‖w‖+1 where the sum is over all chains of σ-fixed subsets.

Proof. Let w′ denote the complement of w in v. Sets u invariant under σ and satisfying

v ⊇ u ⊇ w are in one-to-one correspondence with the σ-invariant subsets of w′ via the map

u 7→ u ∩w′. Thus,
∑

v=v1⊃v2⊃···⊃vl=w

(−1)l =
∑

w′=v′
l
⊃···⊃v′1=∅

(−1)l = (−1)‖w
′‖+1 by the lemma.

Because ‖w′‖ = ‖v‖ − ‖w‖, this gives us what we want.

Proof of Theorem 6.9. By Corollary 6.11,

∑

v1⊃···⊃vl⊇∅

(−1)lt|v1|−|vl|+1 =
∑

{1,...,n}⊇v1⊇vl⊇∅

(−1)‖v1‖−‖vl‖+1t|v1|−|vl|+1

=
∑

w,vl

w∩vl=∅

(−1)‖w‖+1t|w|+1 =
∑

w

2m−‖w‖(−1)‖w‖+1t|w|+1

The σ-invariant sets w are unions of σ-orbits. Write aj = 1 if Oj is contained in w and

aj = 0 if not. Then the m-tuple {a1, ..., am} tells us which orbits are contained in w.

We can then write
∑

w

2m−‖w‖(−1)‖w‖+1t|w|+1 as
∑

a1,...,am∈{0,1}

(−1)
∑

aj+12m−
∑

aj t
∑

(aj ij)+1.

This equals

− t
∑

a1,...,am∈{0,1}

m
∏

j=1

(−1)aj 21−aj taj ij

= −t

m
∏

j=1

1
∑

aj=0

(−1)aj 21−aj taj ij

= −t
m
∏

j=1

(2 − tij )

Therefore, we have (6.1).

Example 6.2. Here are the graded trace functions for Q4:

Tr(1)(Q4, t) =
1 − t

1 − t(2 − t)4
Tr(12)(Q4, t) =

1 − t

1 − t(2 − t2)(2 − t)2
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Tr(123)(Q4, t) =
1 − t

1 − t(2 − t3)(2 − t)
Tr(12)(34)(Q4, t) =

1 − t

1 − t(2 − t2)2

Tr(1234)(Q4, t) =
1 − t

1 − t(2 − t4)

6.4 Representations of Aut(A(Γ)) acting on A(Γ)

Now let us determine the multiplicities of the irreducible representations. Assume A(Γ)[i]

is a completely reducible Aut(Γ)-module. Note that this is true in our examples. Fix

n. Let the graded trace generating function be denoted by Trσ(t) =
∑

i Trσ,it
i where

Trσ,i = Trσ|A(Γ)[i] . Let φ be an irreducible representation of Aut(Γ) and mφ(t) =
∑

i mφ,it
i

where mφ,i is the multiplicity of φ in A(Γ)[i]. Finally, let the matrix C = [χσφ] where χσφ

is the trace of σ on the module which affords the irreducible representation φ; i.e. C is the

character table of Aut(Γ).

Then, if we fix the degree, Trσ,i =
∑

φ χσφmφ,i; so, we have Trσ(t) =
∑

φ χσφmφ(t).

Write ~Tr(t) = [Trσ1(t)...T rσl
(t)]T and ~m(t) = [mφ1(t)...mφl

(t)]T . Finally,

~Tr(t) = CT ~m(t) =⇒ ~m(t) = (CT )−1 ~Tr(t).

6.4.1 Representations of Aut(A(ΓDn)) acting on A(ΓDn)

Recall that the character table for Dn where n = 2m is even is:

1 r ... rj ... rm s rs

χtriv 1 1 ... 1 ... 1 1 1

χ1−1 1 1 ... 1 ... 1 -1 -1

χ−11 1 -1 ... (−1)j ... (−1)m 1 -1

χ−1−1 1 -1 ... (−1)j ... (−1)m -1 1

χk 2 2 cos(2πk/n) ... 2 cos(2πkj/n) ... 2 cos(2πkm/n) 0 0

where (1 ≤ k ≤ m − 1), r = (12...n), and s = (12)(3n)(4n − 1)...(n
2 + 1 n

2 + 2); so,

rs = (13)(4n)...(n
2 + 1 n

2 + 3).
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When n = 2m + 1 is odd the character table is:

1 r ... rj ... rm s

χtriv 1 1 ... 1 ... 1 1

χ1−1 1 1 ... 1 ... 1 -1

χk 2 2 cos(2πk/n) ... 2 cos(2πkj/n) ... 2 cos(2πkm/n) 0

where (1 ≤ k ≤ m), r = (12...n) and s = (12)(3n)...(n+1
2

n+5
2 ).

Proposition 6.12. Let ~m(t) be the vector of the graded multiplicities of the irreducible

representations of Dn as described above. Set

a = 1
1−((2n+1)t−(2n−1)t2+t3)

, b = 1
1−(t+t2+t3)

, and c = 1
1−(3t+t2−t3)

.

a) Let n be even. Then,

~m(t) =







































1
2na + n−1

2n b + 1
2c

1
2na + n−1

2n b − 1
2c

1
2n (a − b)

1
2n (a − b)

1
n(a − b)

...

1
n(a − b)







































b) Let n be odd. Then,

~m(t) =

























1
2na + n−1

2n b + 1
2c

1
2na + n−1

2n b − 1
2c

1
n(a − b)

...

1
n(a − b)

























This is obtained from deleting the third and fourth entries in the n is even case.
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Proof. Multiply the transpose of the character table of Dn by ~m(t). The result is

~Tr(t) =

































a

b

...

b

c

c

































as desired.

Notice that all of the representations are realized; and, with large multiplicity.

The multiplicities for the first few degrees when n = 4 are given in Example 6.3.

Example 6.3. The multiplicities of the representations in A(ΓD4)[i] for 1 ≤ i ≤ 4 are:

χtriv χ1−1 χ−11 χ−1−1 χk

mφ,1 3 0 1 1 2

mφ,2 15 5 9 9 18

mφ,3 95 63 77 77 154

mφ,4 670 567 615 615 1230

6.4.2 Representations of Sn acting on Qn

Unlike the A(ΓDn) case, we cannot write down one table giving all of the values in terms of

the graded trace functions. However, we can give them in terms of the Frobenius formula.

First, however, we will give an example.

Example 6.4. Irreducible Representations for Q4:

The character table for S4 is:
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(1) (12) (123) (1234) (12)(34)

χtriv 1 1 1 1 1

χsgn 1 -1 1 -1 1

χ3 2 0 -1 0 2

χreg 3 1 0 -1 -1

χsgn⊗reg 3 -1 0 1 -1

Let a = Tr(1)(Q4, t) = 1−t
1−t(2−t)4

b = Tr(12)(Q4, t) = 1−t
1−t(2−t2)(2−t)2

,

c = Tr(123)(Q4, t) = 1−t
1−t(2−t3)(2−t)

d = Tr(1234)(Q4, t) = 1−t
1−t(2−t4)

e = Tr(12)(34)(Q4, t) = 1−t
1−t(2−t2)2

Then, the multiplicities of the irreducible representations of S4 acting on Q4 as sums of

the graded trace generating functions are:

mtriv = 1
24a + 1

4b + 1
3c + 1

4d + 1
8e

msgn = 1
24a − 1

4b + 1
3c − 1

4d + 1
8e

m3 = 1
12a − 1

3c + 1
4e

mreg = 1
8a + 1

4b − 1
4d − 1

8e

msgn⊗reg = 1
8a − 1

4b + 1
4d − 1

8e

The numerical values for the first few degrees are given below:

χtriv χsgn χ3 χreg χsgn×reg

mφ,1 4 0 1 3 0

mφ,2 26 1 17 36 13

mφ,3 219 54 239 434 273

We can also write the multiplicities in terms of Frobenius’ formula. First we will give

the notation used in the formula. Let Ci be a representative from the conjugacy class i and

ij be the number of j-cycles in i. Also, let λ be a partition of n (representing an irreducible

representation), ∆(x) =
∏

i<j

(xi−xj) and Pj(x) = xj
1+· · ·+xj

k where k is at least the number

of rows in λ. Set l1 = λ1 +k−1, l2 = λ2 +k−2, ..., lk = λk. Finally, for f(x) ∈ C[x1, ..., xk]

the scalar f(x)l1,...,lk is defined by f(x) =
∑

l1,...,lk
f(x)l1,...,lkx

l1
1 xl2

2 · · · xlk
k . Then Frobenius’

formula says χλ(Ci) = [∆(x)
∏

j Pj(x)ij ]l1,...,lk .
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Proposition 6.13. Let r denote the degree and λl the irreducible representation. Then

mλl,r =





1

n!

∑

j=partition of n

χλl
(Cj)|C(j)|Tr(j)





(l1,...,lk,r)

Proof. Let

S =













χλ1(C1) · · · χλ1(Ck)

...
...

χλk
(C1) · · · χλk

(Ck)













be the character table of Sn. By the orthogonality relations,

ST S = D =



















∑

i χλi
(C1)

2 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0
∑

i χλi
(Ck)

2



















.

Thus

S−1 = D−1ST =













χλ1(C1)/
∑

i χλi
(C1)

2 · · · χλk
(C1)/

∑

i χλi
(C1)

2

...
...

χλ1(Ck)/
∑

i χλi
(Ck)

2 · · · χλk
(Ck)/

∑

i χλi
(Ck)

2













.

Because ~m(t)S = ~Tr(t), ~m(t) = ~Tr(t)S−1; and so,

mλl
(t) =

χλl
(C1)Trσ1

∑

i χλi
(C1)2

+ · · · +
χλl

(Ck)Trσk
∑

i χλi
(Ck)2

.

However,
∑

i χλi
(Cj)

2 = [Sn : C(j)] = n!/|C(j)|, where |C(j)| is the size of the conjugacy

class of partition j. Thus,

mλl,r =





1

n!

∑

j=partition of n

χλl
(Cj)|C(j)|Tr(j)





(l1,...,lk,r)
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6.5 Representations of Aut(A(Γ)) acting on A(Γ)!

We will use the same methodology as for A(Γ) to determine the irreducible representations

that are realized in A(Γ)!. See Chapter 3 for the definition of the dual. However, we will see

that Trσ(A(Γ)!, t) has negative coefficients and so is not a generating function of a graded

dimension, unlike in the case of A(Γ).

6.5.1 Representations of Aut(A(ΓDn)) acting on A(ΓDn)!

Proposition 6.14. The set {∗, u∗, v∗ii+1, w∗
i 1 ≤ i ≤ n, u∗v∗ii+1 1 ≤ i ≤ n − 1, v∗ii+1w

∗
i

1 ≤ i ≤ n, and u∗v∗12w
∗
1} is a basis for the graded dual algebra A(ΓDn)!.

Proof. The generators of A(ΓDn)! are u∗, v∗ii+1, w∗
i 1 ≤ i ≤ n. In the associated graded

algebra the relations are vii+1(wi −wi+1) and u(vii+1 − vi+1i+2). Thus, the relations in the

dual are u∗2, u∗w∗
i , v

∗
ii+1u

∗, w∗
i u

∗, w∗
i w

∗
j , v

∗
ii+1v

∗
jj+1, w∗

i v
∗
jj+1, u

∗(v∗12 + · · · + v∗n1), v
∗
ii+1w

∗
j if

j 6= i, i + 1, v∗ii+1(w
∗
i + w∗

i+1). The elements in the graded dual follow.

Now let us determine the trace on the graded pieces by seeing how each conjugacy

class acts on the elements in the dual. As A(ΓDn)! = A(ΓDn)![0] ⊕ A(ΓDn)![1] ⊕ A(ΓDn)![2] ⊕

A(ΓDn)![3], there are only three degrees in the dual; so, we can calculate each independently.
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Case 1: n=2m is even

The traces on the graded pieces are:

1 r ... rj ... rm s rs

Trσ,1 2n+1 1 ... 1 ... 1 3 3

Trσ,2 2n-1 -1 ... -1 ... -1 -1 -1

Trσ,3 1 1 ... 1 ... 1 -1 -1

Now that we have the graded traces we can find the multiplicities of the representations by

solving the system of equations:
∑

φ mφ,i ∗ χσφ(x) = Trσ,i(x), x ∈ Dn. They are:

χtriv χ1−1 χ−11 χ−1−1 χk

mφ,1 3 0 1 1 2

mφ,2 0 1 1 1 2

mφ,3 0 -1 0 0 0

Case 2: n=2m+1 is odd

The traces on the graded pieces are:

1 r ... rj ... rm s

Trσ,1 2n+1 1 ... 1 ... 1 3

Trσ,2 2n-1 -1 ... -1 ... -1 -1

Trσ,3 1 1 ... 1 ... 1 -1

The multiplicities are given below:

χtriv χ1−1 χk

mφ,1 3 0 2

mφ,2 0 1 2

mφ,3 0 -1 0

Notice that the graded traces and multiplicities are the same in both the even and odd

cases.
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These values give graded trace functions (in both even and odd cases) of:

Tr(1)(A(ΓDn)!, t) = 1 + (2n + 1)t + (2n − 1)t2 + t3

Trri(A(ΓDn)!, t) = 1 + t − t2 + t3

Trs(A(ΓDn)!, t) = Trrs(A(ΓDn)!, t) = 1 + 3t − t2 − t3

6.5.2 Representations of Sn acting on Q!
n

[[GGRSW],§6] determines a basis for Q!
n as follows:

Let A ⊆ {1, ..., n}, B be the sequence (b1, ..., bk), and B′ = {b1, ..., bk}. Define S(A : B) =

s(A)s(A\b1) · · · s(A\b1\...\bk) where s(A) is the image in Q!
n of the generator dual to

e(A, 1) ∈ Qn. Then S = {S(A : B)|minA /∈ B and b1 > · · · > bk} ∪ {∅} is a basis for

Q!
n. The relations in the associated graded dual are:

1) s(A)
∑

a∈A s(A\a) = 0, |A| ≥ 2

2) s(A)s(A\i)s(A\i\j) = −s(A)s(A\j)s(A\i\j)

3) s(A)s(B) = 0 if B * A or |B| 6= |A| − 1.

As opposed to the case of Qn, σ does not permute the basis elements of Q!
n. Thus, it is

not enough to count fixed basis elements to determine the trace. For each S(A : B) ∈ S,

we must write σS(A : B) as a linear combination of elements S. Write this as σS(A : B) =

S(σA : σB) =
∑

S(C:D)∈S

aσAσBCDS(C : D). Then Trσ =
∑

S(A:B)∈S

aσAσBAB . We are going

to get three possible values for a basis element’s contribution to the trace: −1, 0, or 1.

If B is σ-invariant, then let lB(σ) be the number of pairs i, j with i < j and σbi < σbj .

This is the length of σ restricted to B. If there exists c ∈ B such that σ(c) = minA, then

define σ′ := (cminA)σ.

Recall that B′ is the set {b1, ..., bk}.
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Proposition 6.15.

aσAσBAB =















































(−1)lB(σ) if σA = A,minA /∈ σB′, σB′ = B′

(−1)lB(σ′)+1 if σA = A,minA ∈ σB′

and for some b ∈ B′, σ(B′\b) = B′\minA

0 otherwise

Proof. If σ ∈ Sn and σB′ = B′, then by relation (2) above we have that

S(A : σB) = (−1)lB(σ)S(A : B). (6.2)

If min A ∈ B′, then by relation (1)

S(A : B) = −
∑

c∈A\B′

S(A : (b1, ..., bk−1, c)). (6.3)

Let us break this down into parts.

(*) aABCD = 0 if C 6= A. This is true because no relation changes the first factor, s(C), of

S(C : D).

(**) aABCD = 0 unless B′ = D′ or B′ = (B′ ∩D′)∪ {minA}. Only relation (1) can change

which elements are removed, and that relation can only change one element.

Recall σS(A : B) = S(σA : σB) =
∑

S(C:D)∈S

aσAσBCDS(C : D). We need to know the

value of aσAσBAB . By (*) and (**), this is 0 unless σA = A and σB′ = B′ or σB′ =

(B′ ∩ σB′) ∪ {minA}. If σA = A and σB′ = B′, then, by Equation 6.2, aσAσBAB =

(−1)lB(σ). If σA = A and σB′ = (B′ ∩ σB′) ∪ {minA}, write σ(bj) = minA. Then

(bj minA)σB′ = σ′B′ = B′. Thus, by Equation 6.3, σS(A : B) =

−S(A : (σ(b1), ..., b̂j , ..., σ(bk), bj))+other terms. And, again by Equation 6.2, σS(A : B) =

(−1)lB(σ′)(−S(A : B)). Hence, aσAσBAB = (−1)lB(σ)+1.

Now that we know what each basis element contributes to the trace, we want to find

Trσ(Q!
n, t).

Let us introduce some notation. For σ ∈ Sn, write σ = σ1 · · · σm, a product of disjoint
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cycles. Denote the orbits of σ by {O1,O2, ...,Om} and put an ordering on the orbits given

by Oi < Oj if the minimal element of Oi is less than that of Oj. Say O1 < O2 < · · · < Om.

Let ij be the size of Oj (equal to the length of σj).

Theorem 6.16.

Trσ(Q!
n, t) =

1 + t

m
∏

k=1

(2 − (−t)ik)

1 + t

Proof. In order to prove the formula, we must take the sum over all S(A : B) ∈ S of

aσAσBAB , each of their contribution to the trace. We will do this in cases based on the

value of the basis element’s contribution to the trace.

Case 1: σA = A, minA /∈ σB′, σB′ = B′

Consider B = Or1 ∪ ... ∪Orl
, where r1 < · · · < rl. Because B′ ⊆ A and minA /∈ σB′, A

must contain all of Or1 , ...,Orl
and at least one Or0 such that r0 < r1 (so, r1 6= 1). Thus

we must choose a nonempty subset of {O1, ...,Or1−1} and a subset A′ of {Or1+1, ...,Om}

such that A′ ∩ {Or1+1, ...,Om} = ∅. This gives 2m−r1−(l−1)(2r1−1 − 1) = 2m−l − 2m−r1−l+1

choices for A. Because lB(σri
) = iri

− 1, lB(σ) =
∑

1≤i≤l

lB(σri
) = ir1 + · · · + irl

− l. Also,

the degree of S(A : B) is ir1 + · · · + irl
+ 1. Thus the contribution toward Trσ for all such

S(A : B) given B is d(B) = (−1)ir1+···+irl
−l[2m−l − 2m−r1−l+1]tir1+···+irl

+1. Summing over

all B in this case, we obtain

∑

B

d(B) =
∑

2≤r1<...<rl≤m
1≤l≤m−1

(−1)ir1+···+irl
−l[2m−l − 2m−r1−l+1]tir1+···+irl

+1.

We will denote this by c1 for ease of referencing later.

Case 2: σA = A, minA ∈ σB′ and for some b ∈ B′, σ(B′\b) = B′\minA

Fix B, say B′ ⊂ Or1 ∪ ... ∪ Orl
. B′ must contain all elements in {Or2 , ...,Orl

} since

B′ and σB′ can only differ by one element; and, that must occur in Or1 because minA

must be in Or1 and cannot be in B′. Say σr1 = (cir1−1...c1 minA). Then B must also

contain consecutive elements {c1, ..., cj}, 1 ≤ j ≤ ir1 − 1, in Or1 . If this were not the

case, B′ and σB′ would differ by more than one element (cj /∈ σB). Consider σ′ =

(cj minA)(minAcir1−1 · · · c1)σr2 · · · σr1 = (cj minA)(minAc1) · · · (minAcir1−1)σr2 · · · σr1.
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Then lB(σ′) =

l
∑

k=2

(irk
− 1) + j + 1. Thus, by Proposition 6.15, the trace of σ acting on

S(A : B) is (−1)j+ir2+···+irl
−(l−1)+2 = (−1)j+ir2+···+irl

−(l−1).

Given B, A must contain {Or1 , ...,Orl
} and may contain other orbits greater than

Or1 . Thus, there are 2m−r1−(l−1) choices for A. Now there are ir1 − 1 subsets B ⊂

Or1 ∪ · · · ∪ Orl
. Putting this all together, given {Or1 , ...,Orl

}, S(A : B) contributes a total

of 2m−r1−(l−1)

ir1−1
∑

j=1

(−1)j+ir2+···+irl
−(l−1)tj+ir2+···+irl

+1 towards the graded trace function.

We will need to sum this over all {Or1 , ...,Orl
} and multiply by 1 + t. This gives us

∑

1≤r1<···<rl≤m
1≤l≤m

2m−r1−l+1(−1)ir2+···+irl
−l tir2+···+irl

+2

+
∑

1≤r1<···<rl≤m
1≤l≤m

2m−r1−l+1(−1)ir1+···+irl
−l tir1+···+irl

+1

(notice that the sum over j is telescoping.) Let us label the first sum by c2 and the second

by c3 for ease of referencing later.

Case 3: B = ∅.

Because σA = A, aσAσBAB = 1. Thus we have a contribution of 1 + (2m − 1)t towards

the graded trace. Multiplying by 1 + t gives us 1 + 2mt + (2m − 1)t2.

If we sum over all possibilities for the traces and multiply by 1 + t, we have that

Trσ(Q!
n, t) = 1 + 2mt + (2m − 1)t2 + c1 + c1t + c2 + c3

Consider the following pieces of the expression.

First sum (2m − 1)t2 and the l = 1 terms of c2.

(2m − 1)t2 + c2|l=1 = (2m − 1)t2 +
∑

1≤r1≤m

2m−r1(−1)−1t2

= t2[(2m − 1) −
m
∑

r1=1

2m−r1 ] = t2[(2m − 1) − (2m−1+1 − 1)] = 0.

Next sum the remaining terms of c2 (with l > 1) and tc1 where we do a change of variables

setting r1 to r2.
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c1t|r1 7→r2 + c2|l>1 =

(2m−l+1 − 2m−r2−l+1+1)(−1)ir2+...+irl
−(l−1)tir2+...+irl

+2

+

r2−1
∑

r1=1

2m−r1−l+1(−1)ir2+...+irl
−ltir2+...+irl

+2

= (−1)ir2+...+irl
−l+1 tir2+...+irl

+2[2m−l+1 − 2m−r2−l+2 −
r2−2
∑

r1=0

2m−r1−l]

= (−1)ir2+...+irl
−l+1 tir2+...+irl

+2[2m−l+1 − 2m−r2−l+2 − [

m−l
∑

r1=0

2r1 −
m−r2−l+1
∑

r1=0

2r1 ]]

= (−1)ir2+...+irl
−l+1 tir2+...+irl

+2[2m−l+1 − 2m−r2−l+2 − (2m−l+1 − 1) + (2m−(r2−1)−l+1 − 1)]

= 0.

Finally sum c1 and the terms of c3 with r1 6= 1.

c1 + c3|r1 6=1 =
∑

1≤r1<...<rl≤m
1≤l≤m−1

(−1)ir1+...+irl
−ltir1+...+irl

+1[2m−l − 2m−r1−l+1 − 2m−r1−l+1]

=
∑

1≤r1<...<rl≤m
1≤l≤m−1

(−1)ir1+...+irl
−l tir1+...+irl

+12m−l.

The terms of c3 with r1 = 1 are:
∑

1≤l≤m

(−1)i1+...+irl
−l ti1+...+irl

+12m−l.

Putting it all together we obtain:

1 + t[2m +
∑

1≤r1<...<rl≤m
1≤l≤m

(−1)l2m−l(−t)ir1+...+irl ] = 1 + t

m
∏

k=1

(2 − (−t)ik)

Therefore,

Trσ(Q!
n, t) =

1 + t

m
∏

k=1

(2 − (−t)ik)

1 + t

as desired.

Example 6.5. Here are the graded trace functions for Q!
4:

Tr(1)(Q
!
4, t) =

1 + t(2 + t)4

1 + t
= 1 + 15t + 17t2 + 7t3 + t4
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Tr(12)(Q
!
4, t) =

1 + t(2 − t2)(2 + t)2

1 + t
= 1 + 7t + t2 − 3t3 − t4

Tr(123)(Q
!
4, t) =

1 + t(2 + t3)(2 + t)

1 + t
= 1 + 3t − t2 + t3 + t4

Tr(12)(34)(Q
!
4, t) =

1 + t(2 − t2)2

1 + t
= 1 + 3t − 3t2 − t3 + t4

Tr(1234)(Q
!
4, t) =

1 + t(2 − t4)

1 + t
= 1 + t − t2 + t3 − t4

Now, to get the representations we do the same as in the case of the algebra. We have

that ~m(t) = (ST )−1 ~Tr(t) and Proposition 6.13 are still true if you replace Trσ(Qn, t) with

Trσ(Q!
n, t).

Example 6.6. Irreducible Representations of S4 acting on Q!
4:

There are only four degrees in the dual, so we can give all of the multiplicities:

χtriv χsgn χ3 χreg χsgn⊗reg

mφ,1 4 0 1 3 0

mφ,2 0 0 1 3 2

mφ,3 0 1 0 0 2

mφ,4 0 1 0 0 0

Notice that all of the representations are realized in at least one degree, but not in every.

Also, each representation occurs with a much smaller multiplicity than in the algebra.

6.5.3 Koszulity property

An interesting property of quadratic algebras is Koszulity. One of many equivalent defini-

tions of Koszulity is a lattice definition [F].

Definition (Koszul Algebra). [B] Let A = (V,R) be a quadratic algebra where V is the

span of the generators and R the span of the generating relations in V ⊗ V . Then A is

Koszul if the collection of subspaces {V ⊗i ⊗ R ⊗ V ⊗n−i−2, 0 ≤ i ≤ n − 2} generates a

distributive lattice in V ⊗n for any n.
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One property of Koszul algebras is that the Hilbert series of the algebra and its dual are

related by H(A, t) ∗ H(A!,−t) = 1. This property, however, is not equivalent to Koszulity.

One can easily check that the analogous property holds for the graded trace functions

that we found for A(Γ) and its dual A(Γ)! in our two algebras. Namely, Trσ(A(Γ), t) ∗

Trσ(A(Γ)!,−t)=1 where σ is an element in the automorphism group of the algebra.
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Chapter 7

More About the Subalgebra A(Γσ)

In this chapter we will define a subalgebra of the dual algebra A(Γ)! in Section 7.1 and

define a dual of the subalgebra A(Γσ) in Section 7.2. Also, we will show in Section 7.3

that the A(Γσ) are isomorphic to algebras corresponding to generalized layered graphs as

defined by Retakh and Wilson [RW]. While in succeeding chapters we will continue to find

the graded trace of A(Γ)! and not the dimension of these dual subalgebras and subalgebra

duals, these two objects are worth discussing because they naturally arise in our methods

and lead to a wealth of examples.

First we will recall some definitions from Chapters 2, 3. The associated graded algebra

grA(Γ) is isomorphic to T (E)/grR where grR is the two-sided ideal generated by

{e(v, k + l) − e(v, k)e(u, l) : v > u, k = |v| − |u|}. If σ is an automorphism of the layered

graph Γ, we define Γσ := (Vσ , Eσ) where Vσ is the set of vertices v ∈ Vσ such that σ(v) =

v and Eσ is the set of edges that connect the vertices minimally. Lastly, A(Γσ) is the

span{e(v1, k1) · · · e(vl, kl) : l ≥ 0, v1, ..., vl ∈ Vσ\∗, 1 ≤ ki ≤ |vi|, (vi, ki) 6 m(vk+1, ki+1)}. It

has generators {e(v, k) : v ∈ Vσ, 1 ≤ k ≤ |v|} and relations {e(v, k + l) − e(v, k)e(u, l) : v >

u ∈ Vσ, k = |v| − |u|}.

It will be convenient here to use a smaller generating set to define A(Γσ). For v 6= ∗, v ∈

Vσ, let l(v) denote the length of the longest edge with tail v. Also, fix a distinguished edge

ev such that the tail of ev is v and the length of ev = l(v). Note that in Γ = Γid, l(v) = 1

for all v and we can choose the distinguished edge ev to be the distinguished edge chosen

in Chapter 2.

Proposition 7.1. A set of generators for A(Γσ) is Gσ = {e(v, k) : 1 ≤ k ≤ l(v), v ∈ Vσ}.

Proof. We need to show that we can get all e(v, k) such that 1 ≤ k ≤ |v|. There is a path

from v to ∗. If there is no edge from v to w 6= ∗, then l(v) = |v| and we are done. If there

exists such a w, then consider the vertex w′ such that the edge from v to w′ is ev. Then
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e(v, |v|) = e(v, l(v))e(w′ , |w′|), e(v, |v| − 1) = e(v, l(v))e(w′ , |w′| − 1), ..., e(v, |v| − |w′|) =

e(v, l(v)); and, we already have those e(v, k) such that 1 ≤ k ≤ l(v). By induction, we can

do the same process with w′. Thus we have all e(v, k) such that 1 ≤ k ≤ |v| as desired.

Let Rσ be the relations in A(Γσ) using this new set of generators. Thus, Rσ =

{e(v, k)e(u, l) − e(v, k + l) : v m u ∈ Vσ, and k + l ≤ l(v)} ∪

{e(v, k)e(u, l) − e(v, k′)e(w, l′) : v m u,w ∈ Vσ, k + l = k′ + l′ > l(v)}.

Note that when σ is the identity, Gid = {e(v, 1)} and

Rid = {e(v, 1)e(u, 1) − e(v, 1)e(w, 1) : v > u,w, 1 = |v| − |u| = |v| − |w|}.

Example 7.1. a) Q
(1)
3 : The generators for Q

(1)
3 (as a subalgebra of itself) are: e(123, 1),

e(12, 1), e(13, 1), e(23, 1), e(1, 1), e(2, 1), e(3, 1). The relations are: e(12, 1)e(1, 1) −

e(12, 1)e(2, 1), e(13, 1)e(1, 1)−e(13, 1)e(3, 1), e(23, 1)e(2, 1)−e(23, 1)e(3, 1), e(123, 1)e(12, 1)−

e(123, 1)e(13, 1), e(123, 1)e(12, 1) − e(123, 1)e(23, 1), e(123, 1)e(13, 1) − e(123, 1)e(23, 1).

b) Q
(12)
3 has presentation

< e(123, 1), e(123, 2), e(12, 1), e(12, 2), e(3, 1)|e(123, 1)e(12, 2) − e(123, 2)e(3, 1) >.

7.1 Subalgebra A(Γ)!σ of A(Γ)!

We will consider here the subalgebra of A(Γ)! which has as generators those of A(Γ)! fixed

by an automorphism σ.

Write v m u for (v, 1) m (u, 1); i.e. v > u and |v| − |u| = 1. Recall S1(v) = {w : v >

w, |v| − |w| = 1}. Define Mv = {u : |u| = 1, v > u} and I(vi, vi+2) = {w : vi m w m vi+2}.

Define an order . on the vertices in level 1 of Γ. This defines an order on the Mv by a

lexicographical ordering on the sets. When drawing a graph, we will draw the vertices in

increasing order from left to right. Now define a partial order � on V . Say v � w if v > w

or |v| = |w| and Mv . Mw. Otherwise, they are incomparable.

We will now prove Proposition 3.1.

Proposition 3.1. A(Γ)! has a presentation with generators {e(v, 1)∗} and relations

R! = {e(v, 1)∗e(u, 1)∗ : v 6 mu} ∪ {e(v, 1)∗
∑

vmu

e(u, 1)∗}.
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Proof. Let R1 = {e(v, 1)e(u, 1) : v 6 mu} and R2 = {e(v, 1)∗
∑

vmu

e(u, 1)∗}. Recall that A(Γ)!

is defined to be T (E∗)/(grR)⊥ = T (G∗
id)/ < (Rid)

⊥ > with our new set of generators.

G∗
id = {e(v, 1)∗} is a set of generators for the dual. The relations in the algebra

are Rid = {e(v, 1)e(u, 1) − e(v, 1)e(w, 1) : v m u,w}. Because e(v, 1)∗e(u, 1) = δvu and

(e(v, 1)∗e(u, 1)∗)(e(w, 1)e(x, 1)) = (e(v, 1)∗e(w, 1))(e(u, 1)∗e(x, 1)), it is clear that R! anni-

hilates Rid. We must show that R! is all of R⊥
id. Assume b =

∑

e(v′i, 1)
∗e(u′

i, 1)
∗ is in R⊥

id.

This means that (
∑

e(v′i, 1)
∗e(u′

i, 1)
∗)(e(v, 1)e(u, 1) − e(v, 1)e(w, 1)) = 0 for all v, u,w such

that e(v, 1)e(u, 1) − e(v, 1)e(w, 1) in Rid. So, we must have that for every v′i m u′
i ∈ b there

exists j for every (u, 1) with v′i m u such that (u, 1) = (u′
j , 1). Thus, b ∈ R1 ∪ R2.

Theorem 7.2. B! = {e(v1, 1)
∗ · · · e(vl, 1)

∗ : l ≥ 0, vi m vi+1, vi+1 6= max�I(vi, vi+2) for 1 ≤

i ≤ l − 1, and vl 6= max�S1(vl−1)} is a basis for A(Γ)!.

Proof. If we have e(vi, 1)
∗e(vi+1, 1)

∗e(vi+2, 1)
∗ such that vi+1 = max�I(vi, vi+2), then by

R3 we may write this as −e(vi, 1)
∗(

∑

vimumvi+2
u 6=vi+1

e(u, 1)∗)e(vi+2, 1)
∗, which is a sum of elements

in B!. Likewise, if vl = max�S1(vl−1), we can write e(vl−1, 1)
∗e(vl, 1)

∗ =

−e(vl−1, 1)
∗
∑

vl−1mu
u 6=vl

e(u, 1)∗. This again is a sum of elements in B!. Thus B! spans A(Γ)!.

Let ~b =
∑

kibi be a linear combination of elements in B!. Assume that
∑

kibi = 0 and

that not all ki equal 0. ~b can only equal 0 if it is in R!. Because each bi is in B!, ~b 6∈ R1. Also,

for ~b to be in R2 it must contain the sum of all elements in I(vi, vi+2) or S1(vl−1); however,

we removed the maximum element from each of these sets. Thus, ~b 6= 0, and we have a

contradiction. Therefore, ki = 0∀i and the elements of B! are linearly independent.

Definition (A(Γ)!σ). A(Γ)!σ := span{e(v1, 1)
∗e(v2, 1)

∗ · · · e(vl, 1)
∗ : l ≥ 0, v1, ..., vl ∈ Vσ, vim

vi+1, vi+1 6= max�I(vi, vi+2) for 1 ≤ i ≤ l − 1, and vl 6= max�S1(vl−1)} = spanB!
σ

B!
σ is a basis for A(Γ)!σ because the set is a subset of a basis.

Theorem 7.3. A(Γ)!σ is a subalgebra of A(Γ)!. A(Γ)!σ has a presentation with generators

G∗
σ = {e′(v, 1)∗ : v ∈ Vσ} and relations R!

σ = {e′(v, 1)∗e′(u, 1)∗ : v, u ∈ Vσ, v 6 mu} ∪

{e(v, 1)∗
∑

vmu

e(u, 1)∗ : v, u ∈ Vσ}



50

Proof. Define φ : T (G∗
σ) → A(Γ)! by φ(e′(v, 1)∗) = e(v, 1)∗. We have φ(T (G∗

σ)) ⊇ A(Γ)!σ

because elements of B!
σ are formed from products of elements in G∗

σ. In A(Γ)! we have

e(v, 1)∗e(u, 1)∗ ≡ 0 whenever v 6 mu and e(v, 1)∗
∑

vmu

e(u, 1)∗ ≡ 0. Consequently

φ(e′(v, 1)∗e′(u, 1)∗) = 0 and φ(e′(v, 1)∗
∑

vmu

e′(u, 1)∗) = 0. Thus, R!
σ ⊆ kerφ.

Let b′ = e′(v1, 1)
∗ · · · e′(vl, l)

∗ 6= 0 be a monomial in T (G∗
σ). In T (G∗

σ)/ < R!
σ >, we may

replace every occurrence in b′ of e′(vi, 1)
∗e′(vi+1, 1)

∗ such that vi 6 mvi+1 with 0. Also, if

vi+1 = max�I(vi, vi+2), then we may replace e′(vi, 1)
∗e′(vi+1, 1)

∗ with −e′(v, 1)∗
∑

u 6=vi+1
vmu

e(u, 1)∗.

Likewise, if vl = max�S1(vl−1), we replace e′(vl−1, 1)
∗e′(vl, 1)

∗ with e′(vl−1, 1)
∗
∑

u 6=vl
vmu

e′(u, 1)∗.

Thus b′ ≡ e′(v1, 1)
∗ · · · e′(vl, l)

∗ such that vi m vi+1, vi+1 6= max�I(vi, vi+2), and vl 6=

max�S1(vl−1) in T (G!
σ)/ < R!

σ >. Hence φ(b′) ∈ A(Γ)!σ, and so φ(T (G∗
σ)) = A(Γ)!σ . Also,

we have an induced surjective homomorphism φ′ : T (G∗
σ)/ < R!

σ >→ A(Γ)!σ.

Let f =
∑

kib
′
i ∈ kerφ′, where ki is an element in the field and b′i a monomial in

T (G∗
σ)/ < R!

σ >. Then 0 = φ′(f) =
∑

kiφ
′(b′i) =

∑

kibi is a linear combination of ba-

sis elements in A(Γ)!σ. This implies that ki = 0∀i and so f = 0. Therefore, φ′ is an

isomorphism.

We will now write e(v, 1)∗ for e′(v, 1)∗.

Example 7.2. a) Q
!(1)
3 : The basis of Q

!(1)
3 consists of the elements ∗, e(v, 1)∗∀v,

e(12, 1)∗e(1, 1)∗, e(13, 1)∗e(1, 1)∗, e(23, 1)∗e(2, 1)∗, e(123, 1)∗e(12, 1)∗, e(123, 1)∗e(13, 1)∗,

and e(123, 1)∗e(12, 1)∗e(1, 1)∗. Thus its graded dimension is 1 + 7t + 5t2 + t3.

b) Q
!(12)
3 has basis elements e(123, 1)∗ , e(12, 1)∗, e(3, 1)∗, and e(123, 1)∗e(12, 1)∗. Thus,

its graded dimension is 1 + 3t + t2. Notice that this is not the same as the graded trace

(1 + 3t − t2 − t3) found earlier in the paper.
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7.2 The Dual A(Γσ)! of A(Γσ)

Definition (A(Γσ)!). A(Γσ)! := T (G∗
σ)/R⊥

σ .

Proposition 7.4. R⊥
σ = {e(v, k)∗e(u, l)∗ : (v, k) 6 m(u, l)}∪{

∑

u,k+l=r

e(v, k)∗e(u, l)∗ : (v, k)m

(u, l), r > l(v)} ∪ {e(v, r)∗ +
∑

u,k+l=r

e(v, k)∗e(u, l)∗ : (v, k) m (u, l), r ≤ l(v)}.

Proof. Denote {e(v, k)∗e(u, l)∗ : (v, k) 6 m(u, l)} by R1, {
∑

u,k+l=r

e(v, k)∗e(u, l)∗ : (v, k) m

(u, l), r > l(v)} by R2, and {e(v, r)∗ +
∑

u,k+l=r

e(v, k)∗e(u, l)∗ : (v, k) m (u, l), r ≤ l(v)} by

R3. Recall that Rσ = {e(v, k)e(u, l)−e(v, k+ l) : vmu ∈ Vσ, k+ l ≤ l(v)}∪{e(v, k)e(u, l)−

e(v, k′)e(w, l′) : v m u,w ∈ Vσ, k + l = k′ + l′ > l(v)}. R⊥
σ is the annihilator of these sets.

One can easily check that R1,R2, and R3 annihilate Rσ.

Assume b =
∑

e(v′i, k
′
i)
∗e(u′

i, l
′
i)
∗ + e(w′

i, r
′
i)
∗ is in R⊥

id. This means that

(
∑

e(v′i, k
′
i)
∗e(u′

i, l
′
i)
∗)(e(v, k)e(u, l) − e(v, r)e(w, s)) = 0 and

(
∑

e(v′i, k
′
i)
∗e(u′

i, l
′
i)
∗ + e(w′

i, r
′
i)
∗)(e(v, k)e(u, l) − e(v, k + l)) = 0 for all v, u,w such that

e(v, k)e(u, l) − e(v, r)e(w, s) and e(v, k)e(u, l) − e(v, k + l) are in Rσ. In the first case this

means that for every (v′i, k
′
i) m (u′

i, l
′
i) with k′

i + l′i > l(vi) in b there exists j for every (u, l)

with (v′i, k)m (u, l) and k + l = k′
i + l′i such that (u, l) = (u′

j , l
′
j) and (v′j , k

′
j) = (v′i, k). Thus,

b ∈ R1∪R2. In the second case this means that for each i such that (v′i, k
′
i)m(u′

i, l
′
i), v′i = w′

j

for some j and k′
i+l′i = r′j. Also, for each (w′

i, r
′
i) such that there exists (w′

i, k
′
i)m(u′

i, r
′
i−k′

i),

e(w′
j , k

′
i)
∗e(u′

i, r
′
i − k′

i)
∗ appears in the sum. Thus, b ∈ R1 ∪ R3. Thus, R1 ∪ R2 ∪ R3 is all

of R⊥
σ .

Thus, we have a presentation for A(Γσ)! with generators {e(v, k)∗ : v ∈ Vσ, 1 ≤ k ≤ l(v)}

and relations as given by R⊥
σ .

Example 7.3. a) Q
(1)!
3 : This is the same as Q

!(1)
3 above because all of the elements in the

dual are fixed by the identity.

b) Q
(12)!
3 has basis elements e(123, 1)∗, e(123, 2)∗, e(12, 1)∗, e(12, 2)∗, e(3, 1)∗, and

e(123, 1)∗e(12, 2)∗. Thus its graded dimension is 1 + 3t + 2t2 + t3.
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We can see in these examples that A(Γ)!σ � A(Γσ)!. Also, notice that while the graded

traces of A(Γ) and A(Γ)! satisfy the Koszulity property Trσ(A(Γ), t) ∗ Trσ(A(Γ)!,−t) = 1,

the graded traces of A(Γσ) and A(Γσ)! do not.

7.3 Generalized Layered Graphs

In this section we will show the correspondence between the subalgebras A(Γσ) and algebras

associated to generalized layered graphs as defined by Retakh and Wilson [RW].

A generalized layered graph Γgen = (V,Egen) is a directed (layered) graph where the

edges do not necessarily have length 1. Define the length of an edge from vertex v to w

to be l(e) = |v| − |w| and say the level of e is |e| = |v|. In this section Γgen will have a

unique minimal vertex *. We will also choose to connect the vertices “minimally”, where

minimally means that there is an edge e ∈ Egen from v to w, if and only if v ≥ u ≥ w,

implies u = v or u = w (although the relations will make it so that extra edges do not

affect the algebra).

For each edge, define a polynomial Pe(t) = (1 − ce
1t + ce

2t
2 − ... + (−1)l(e)ce

l(e)t
l(e))

with central variable t associated with that edge. Note that when an edge has length 1

Pe(t) = 1 − et, which corresponds to what we had for A(Γ) in Chapter 2.

Definition (A(Γgen)). [RW] The algebra A(Γgen) associated with the generalized layered

graph Γgen is defined by the following presentation. The generators of A(Γgen) are ce
1, ..., c

e
l(e)

for all edges e ∈ Γgen. If the sequences of edges e1, ..., ep and f1, ..., fq define paths with the

same origin and end, then they define a relation Pe1(t) · · ·Pep(t) = Pf1(t) · · ·Pfq(t). Pairs

of paths with the same origin and end define all of the relations.

By [RW] we can pick a distinguished path from v = v1 to *. As in the subalge-

bra case, at each vertex vi along the path let us always choose an edge evi
with tail

vi and length l(vi). Let Pv(t) = (1 − c
ev1
1 t + c

ev1
2 t2 − · · · + (−1)l(ev1 )c

ev1

l(ev1 )t
l(ev1 ))(1 −

c
ev2
1 t+ c

ev2
2 t2−· · ·+(−1)l(ev2 )c

ev2

l(ev2 )t
l(ev2 )) · · · (1− c

evk
1 t+ c

evk
2 t2 − ...+(−1)l(evk

)c
evk

l(evk
)t

l(evk
))

be the polynomial corresponding to the distinguished path from v to *. We can write
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Pv(t) = 1 +

|v|
∑

j=1

(−1)j ê(v, k)tj . Let U denote the set of all sequences of integers (i1, ..., ik)

such that i1 + · · · + ik = j, 0 ≤ ij ≤ l(evj
). Then ê(v, j) :=

∑

(i1,...,ik)∈U

cv
i1 · · · c

vk

ik
[RW].

Theorem 7.5. [[RW],Theorem 3.2] A basis for A(Γgen) is Bgen = {ê(v1, k1) · · · ê(vl, kl) :

l ≥ 0, v1, ..., vl ∈ V \∗, 1 ≤ ki ≤ |vi|, (vi, ki) 6 m(vi+1, ki+1) for 1 ≤ i ≤ l − 1}

In light of this, the following theorem should not surprise us.

Theorem 7.6. The associated graded algebra A(Γσ
gen) generated by the subgraph Γσ as a

generalized layered graph and the subalgebra A(Γσ) defined in Definition 3.2 are isomorphic.

Proof. It is clear that Γσ is a generalized layered graph. Recall that a basis for A(Γσ) is

{e(v1, k1) · · · e(vl, kl) : l ≥ 0, v1, ..., vl ∈ Vσ\∗, 1 ≤ ki ≤ |vi|, (vi, ki) 6 m(vi+1, ki+1) for 1 ≤ i ≤

l − 1}. Because we have one distinguished path for each vertex that we choose to be the

same in both contexts, if we can show a correspondence between e(v, k) and ê(v, k), then

the two algebras have isomorphic bases and thus we have proved our theorem.

The polynomial associated with ev in Γσ is (1 − ev
1t) · · · (1 − ev

l(v)t). For 1 ≤ k ≤ l(v),

e(v, k) is the coefficient of tk in this polynomial: e(v, k) = e1 · · · ek. Likewise, the polynomial

associated with ev in Γσ
gen is 1 − cev

1 t + · · · + (−1)l(v)cev

l(v)t
l(v). Thus, ê(v, k) = cev

k . Hence,

for an edge there is a correspondence e(v, k) = e1 · · · ek ↔ cev

k = ê(v, k).

Now let us consider e(v, k) for any 1 ≤ k ≤ |v|. We claim that e(v, k) is in correspon-

dence with cv
l(ev) · · · c

vi−1

l(evi−1 )c
vi

j where l(ev1) + · · · + l(evi−1) + j = k. We will induct on the

number of edges in a distinguished path with tail v. The polynomial associated with a

path is a product of the polynomials associated with each edge in the path. Thus, e(v, k) =

e(v, l(v))e(v2 , l(v2)) · · · e(vi−1, l(vi−1))e(vi, j), where l(v) + l(v2) + · · · l(vi−1) + j = k, in the

associated graded algebra. By above we have that this equals cv
l(ev) · · · c

vi−1

l(evi−1 )c
vi

j , where

again l(ev1) + · · · + l(evi−1) + j = k. However, this equals ê(v, k) in the associated graded

algebra. Therefore, there is an isomorphism between {e(v, k)} and {ê(v, k)}, and the bases

are isomorphic.
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Example 7.4. Q
(12)
3gen

(12)

(123)

(3)

∗

Figure 7.1: The generalized layered graph L
(12)
[3]gen

associated with Q
(12)
3gen

We have (1 − a123
1 t)(1 − b12

1 t + b12
2 t2) = (1 − c123

1 t + c123
2 t2)(1 − d3

1t) ⇒ a1 + b + 1 =

c1 + d1 ≡ a1 = c1 in the associated graded algebra, a1b1 + b2 = c1d1 + c2 ≡ a1b1 = c2, a1b2 +

c2d1. And so, a1b1 = e(123, 1)e(12, 1) = e(123, 2) = c2 and a1b2 = e(123, 1)e(12, 2) =

e(123, 2)e(3, 1) = c2d1.
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Chapter 8

Examples of A(Γ) Associated with Coxeter Groups

In this section we will give examples of A(Γ) associated with more general Coxeter groups.

We will consider the algebras associated with graphs whose automorphism groups are sym-

metry groups of regular polytopes. We have already seen two examples of this: Sn is the

Weyl group of the type An−1 root system and is the group of symmetries of the regular

(n-1)-dimensional simplex and D2m is the symmetry group of the m-gon. We will first give

some definitions and general results. Then we will give the graded traces and decomposi-

tion into homogeneous components of the algebras associated to the Hasse graphs of the

octahedron and the cube.

8.1 Definitions and Preliminary Theorems

Definition (Coxeter Group). [BB] A Coxeter group with identity e is defined by the pre-

sentation < s1, s2, ..., sn|(sisj)
mij = e > where mii = 1 and mij ≥ 2 for i 6= j.

A Coxeter group can be associated with the graph having vertices S = {s1, ..., sn} and

an edge between si and sj if and only if mij ≥ 3. If mij > 3, the edge between si and sj

is labeled by that number. In the case where the graph has no branches, i.e. mij > 2 only

if j = i + 1, then write the Coxeter group as [m12,m23, ...,mn−1 n]; see Figure 8.1. These

Coxeter groups are the ones we will consider in what follows.

m12 m23 mn−1n

Figure 8.1: Coxeter Group [m12,m23, ...,mn−1 n]

Definition (Polytope). [MS] An abstract n-polytope P is a partially ordered set with prop-

erties (P1)-(P4) given below.
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The elements of P are called faces. Two faces F,G are incident if F ≥ G or G ≥ F .

A chain is a totally ordered subset of P, and a flag is a maximal chain. For any two faces

F ≥ G, a section of P is F/G := {H : H ∈ P, G ≤ H ≤ F}. P is connected if n ≤ 1

or n ≥ 2 and for any two proper faces F,G there exists a finite sequence of proper faces

F = H0,H1, ...,Hk = G such that each Hi−1 and Hi are incident. If each section of P is

connected, then P is strongly connected.

(P1 P contains a least face, F−1, and a greatest face, Fn.

(P2) Each flag has length n − 1.

(P3) P is strongly connected.

(P4) For each i = 0, ..., n − 1, if F and G are incident faces of P of ranks i + 1 and

i − 1, respectively, then there are exactly two i-faces H of P such that F > H > G.

Definition (Schläfli symbol). [MS] The Schläfli symbol of a polytope P is {p1, ..., pn−1}

where the pi are defined as follows. Let F be an (i − 2)-face and G an (i + 1)-face of P

which is incident with F . Then pi is the number of i-faces of P in the section G/F . These

numbers (in our case) do not depend on the choice of F and G since we will be working

with regular polytopes.

For example, the n-cube has Schläfli symbol {4, 3n−2}. In a cube, symbol {4, 3}, four

edges make up each face and 3 faces meet at each vertex.

Theorem 8.1 ([MS],Theorem 3A5). The symmetry group of a convex regular n-polytope

is a Coxeter group. More precisely, if {p1, ..., pn−1} is the Schläfli symbol of the polytope,

then this Coxeter group is [p1, ..., pn−1].

For example, the n-dimensional hypercube and hyperoctahedron have symmetry groups

the Coxeter groups [4, 3n−2] and [3n−2, 4], respectively, which are the Weyl groups of the

special orthogonal group and sympletic groups, Bn = Cn. The icosahedron, {3, 5}, and

dodecahedron, {5, 3}, have the Coxeter group [3, 5] = H3 as their symmetry group.

Consider the Hasse graph of a n-dimensional polytope. In the Hasse graph of a polytope

the faces of the same rank have vertices on the same level in the graph. There is an edge

only between two vertices on adjacent levels, and this if and only if the corresponding faces
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are incident in the polytope. Thus we may label the vertices in level one by {v1, ..., vm},

where m is the number of vertices in the polytope, and the vertices in level r, 2 ≤ r ≤ n

by vA where A = {i1, ..., is} ⊆ {1, ...,m} and vA > vij , ∀ 1 ≤ j ≤ s. Denote the algebra

associated with the Hasse graph of the polytope {p1, ..., pn−1} by A(Γ{p1,...,pn−1}).

Lemma 8.2. The automorphism group of Γ{p1,...,pn−1} is [p1, ..., pn−1].

Proof. Any automorphism of the graph must preserve the set of vertices at each level and

so acts on the set {v1, ..., vm} of all m vertices in level 1. We may say σ(vi) = vσ(i). Thus

we can think of an automorphism of the graph as being a permutation in Sn acting on

the subscripts/labels of the vertices of level 1. This will uniquely determine what happens

on higher levels; i.e. σ(vA) = vσ(A). Labeling the vertices in levels two through n by the

vertices they lie over in level one ensures that as long as the set of vertices in each level is

preserved, the edges in the graph will be as well.

Preserving the set of vertices in each level is precisely given by the symmetries of the

polytope. Symmetries of the polytope send i-faces to i-faces in a one-to-one fashion and

preserve incidence.

Theorem 8.3. If {p1, ..., pn−1} 6= {2},

Aut(A(Γ{p1,...,pn−1})) = k∗ × [p1 = m12, ..., pn−1 = mn−1n], k the base field.

Proof. Aut(Γ{p1,...,pn−1}) = [p1, ..., pn−1] by Lemma 8.2. For {p1, ..., pn−1} 6= {2}, the num-

ber of vertices in level 1 is greater than 2. Clearly, no two faces have the same underlying

vertex set in the polytope and so each vertex in the graph will have a unique label. Finally,

by property (P4) in the definition of a polytope, there are either zero or two paths between

any two vertices two levels apart. Thus, Theorem 4.2 applies.

8.2 Decomposition of A(Γ{3,4}) and A(Γ{4,3})

We can find the graded trace generating functions and decomposition of A(Γ{p1,...,pn−1}) as

we did in Sections 6.3, 6.4 using the methods described in Chapter 5. In this section, we

will do so for the algebras associated with the octahedron and the cube. Note that the
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octahedron and the cube are dual polytopes, and hence their Hasse graphs are upside-down

images of each other. Thus, they will produce the same generating functions (easy to see

by looking at the graphs of the subalgebras and using Method 2) and decompositions.

The Octahedron:

The octahedron has 6 vertices, 12 edges, and 8 faces. See Figure 8.2 below. In its Hasse

graph label the vertices in level 1 by v1, ..., v6, those in level 2 by v12, v13, v14, v15, v23, v24,

v26, v35, v36, v45, v46, v56, and those in level 3 by v123, v124, v135, v145, v236, v246, v356, v456.

v123

v123456

v4
v12 v56

v456

v2
v6

v6

v1
v1

*

v5

v3

Figure 8.2: Octahedron, Γ{3,4}

The Coxeter group [3, 4] has presentation < s1, s2, s3|s
2
1 = s2

2 = s2
3 = (s1s2)

3 = (s2s3)
4 =

(s1s3)
2 = e >. Let s1 = (12)(56), s2 = (13)(46), s3 = (34). Use (1), (123)(654), (1265),

(16)(25), (12)(56)(34), (16)(25)(34), (1265)(34), (123654), (16), and (12)(56) as the conju-

gacy class representatives of the Coxeter group.

Theorem 8.4. The graded trace generating functions for A(Γ{3,4}) are:

a := Tr(1)(A(Γ{3,4}), t) =
1 − t

1 − t(28 − 62t + 48t2 − 14t3 + t4)

b := Tr(123)(654) = Tr(1265) = Tr(16)(25)(A(Γ{3,4}), t) =
1 − t

1 − t(2 − t)(2 − t3)

c := Tr(12)(56)(34)(A(Γ{3,4}), t) =
1 − t

1 − t(2 − t2)2

d := Tr(16)(25)(34) = Tr(1265)(34) = Tr(123654)(A(Γ{3,4}), t) =
1 − t

1 − t(2 − t4)

e := Tr(16)(A(Γ{3,4}), t) =
1 − t

1 − t(10 − 12t + 4t3 − t4)

f := Tr(12)(65)(A(Γ{3,4}), t) =
1 − t

1 − t(10 − 10t − 4t2 + 6t3 − t4)
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Proof. You may use either Method 1 or 2; we will use Method 2: Equation 5.2

Trσ(A(Γ), t) =
1 − t

1 − t
∑

v1>...>vl≥∗
v1,...,vl∈Vσ

(−1)l−1t|v1|−|vl|
.

For this proof, write u for v123456.

a) The possible sequences indexing the sum are: u, vijk(8), vij(12), vi(6), *, u > vijk(8),

vijk > vi′j′(24), vij > vi′(24), vi > ∗(6), u > vij(12), vijk > vi(24), vij > ∗(12), u > vijk >

vi′j′(24), vijk > vi′j′ > vi′′(48), vij > vi′ > ∗(24), u > vi(6), vijk > ∗(8), u > vijk > vi′(24),

u > vij > vi′(24), u > vijk > vi′j′ > vi′′(48), vijk > vi′j′ > ∗(24), vijk > vi′ > ∗(24),

vijk > vi′j′ > vi′′ > ∗(48), u > ∗(1), u > v > ∗(26), u > vijk > vi′j′ > ∗(24), u >

vijk > vi′ > ∗(24), u > vij > vi′ > ∗(24), u > vijk > vi′j′ > vi′′ > ∗(48). The numbers

after each sequence represent how many of this type there are. Thus, the coefficients of

t, t2, t3, t4, and t5 are -1-8-12-6-1=-28, 8+24+24+6=62, 12+24+12-24-48-24=-48, 6+8-24-

24+48-24-24+48=14, and 1-26+24+24+24-48=-1 respectively. The coefficient of tk for

k ≥ 6 is 0.

b) The vertices fixed by (123)(654) are u, v123 and v456. Those fixed by (1265) and

(16)(25) are u, v3 and v4. We will give the sequences indexing the sum for the first,

however, it is clear that the second gives the same result. The sequences are: u, v123, v456, ∗,

u > v123, u > v456, v123 > ∗, v456 > ∗, u > ∗, u > v123 > ∗, u > v456 > ∗. Thus, the

coefficients of t, t2, t3, t4, and t5 are −4, 2, 0, 2, 1− 2 = −1, respectively. The coefficient of

tk for k ≥ 6 is 0.

c) The vertices fixed by (12)(56)(34) are u, v12, and v56. The sequences indexing the

sum are: u, v12, v56, ∗, u > v12, u > v56, v12 > ∗, v56 > ∗, u > ∗, u > v12 > ∗, u > v56 > ∗.

Thus, the coefficients of t, t2, t3, t4, and t5 are −4, 0, 4, 0, 1 − 2 = −1, respectively. The

coefficient of tk for k ≥ 6 is 0.

d) Only u is fixed by (16)(25)(34), (1265)(34), (123654). Thus, we only have u, ∗, u > ∗.

Hence, the coefficients of t, t2, t3, t4, and t5 are −2, 0, 0, 0, 1, respectively. The coefficient

of tk for k ≥ 6 is 0.

e) The vertices fixed by (16) are u, v23, v24, v35, v45, v2, v3, v4, v5. Hence the possible
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sequences indexing the sum are u, vij(4), vi(4), ∗, vij > vi′(8), vi > ∗(4), u > vij(4), vij >

∗(4), vij > vi′ > ∗(8), u > vi(4), u > vij > vi′(8), u > ∗, u > v > ∗(8), u > vij > vi′ > ∗(8).

Thus, the coefficients of t, t2, t3, t4, and t5 are −10, 8 + 4 = 12, 4 + 4 − 8 = 0, 4 − 8 =

−4, 1 − 8 + 8 = 1, respectively. The coefficient of tk for k ≥ 6 is 0.

f) The vertices fixed by (12)(56) are u, v123, v124, v356, v456, v12, v56, v3, v4. Hence the pos-

sible sequences indexing the sum are u, vijk(4), vij(2), vi(2), ∗, u > vijk(4), vijk > vi′j′(4), vi >

∗(2), u > vij(2), vijk > vi′(4), vij > ∗(2), u > vijk > vi′j′(4), u > vi(2), vijk > ∗(4), u >

vijk > vi′(4), vijk > vi′j′ > ∗(4), vijk > vi′ > ∗(4), u > ∗(1), u > v > ∗(8), u > vijk > v >

∗(8). Thus, the coefficients of t, t2, t3, t4, and t5 are −10, 4 + 4 + 2 = 10, 2 + 4 + 2 − 4 =

4, 2+4−4−4−4 = −6, 1−8+8 = 1, respectively. The coefficient of tk for k ≥ 6 is 0.

Now let us determine the multiplicities of the irreducible representations. Recall the

following from Section 6.4. A(Γ{p1,...,pn−1})[i] is a completely reducible [p1, ..., pn−1]-module.

Let the graded trace generating function be denoted by Trσ(t) =
∑

i Trσ,it
i where Trσ,i =

Trσ|A(Γ{p1,...,pn−1}
)[i] . Let φ be an irreducible representation of [p1, ..., pn−1] and mφ(t) =

∑

i mφ,it
i where mφ,i is the multiplicity of φ in A(Γ{p1,...,pn−1})[i]. Finally, let the matrix C =

[χσφ] where χσφ is the trace of σ on the module which affords the irreducible representation

φ; i.e. C is the character table of [p1, ..., pn−1].

Then, if we fix the degree, Trσ,i =
∑

φ χσφmφ,i; and so we have Trσ(t) =
∑

φ χσφmφ(t).

Write ~Tr(t) = [Trσ1(t)...T rσl
(t)]T and ~m(t) = [mφ1(t)...mφl

(t)]T . Finally,

~Tr(t) = CT ~m(t) =⇒ ~m(t) = (CT )−1 ~Tr(t).

The character table of the Coxeter group [3, 4] is given in Table 8.1[Wi].
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Theorem 8.5. Let a, b, c, d, e, and f be as in Theorem 8.4. Then the multiplicities for the

representations of A(Γ{3,4}) are:

~m(t) =
1

48



























































a + 17b + 6c + 15d + 3e + 6f

a + 5b − 6c − 3d − 3e + 6f

a + 5b − 6c + 3d + 3e − 6f

a + 17b + 6c − 15d − 3e − 6f

2a − 2b − 6d + 6e

2a − 2b + 6d − 6e

3a + 3b − 6c + 9d − 3e − 6f

3a − 9b + 6c + 3d + 3e − 6f

3a − 9b + 6c − 3d − 3e + 6f

3a + 3b − 6c − 9d + 3e + 6f



























































Proof. We verify the assertion by multiplying the transpose of the character table of [3, 4]

by ~m(t). The result is

~Tr(t) =
[

a b b b c d d d e f

]T

as desired.

Definition (Dual Directed Graph). Let Γ = (V,E). The dual directed graph is Γ↑ := (V,E)

such that if t(e) = v1 and h(e) = v2 in Γ, then t(e) = v2 and h(e) = v1 in Γ↑.

Proposition 8.6. Algebras A(Γ) and A(Γ↑) which are associated with dual directed graphs

have the same graded trace generating functions and irreducible representations.

Proof. The vertices and paths in Γ and Γ↑ are in one-to-one correspondence with each

other. Thus, A(Γ) and A(Γ↑) have the same graded trace generating functions by Theorem

5.4. The automorphism groups of Γ and Γ↑ are clearly the same. Hence, the character

tables for the automorphism groups of the algebras are the same. Therefore, A(Γ) and

A(Γ↑) have the same irreducible representations.
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The Cube:

The cube has 8 vertices, 12 edges, and 6 faces. In its Hasse graph, label the vertices in

level one by v1, ..., v8, those in level two by v12, v13, v15, v24, v26, v34, v37, v48, v56, v57, v68, v78

and those in level three by v1234, v1256, v1357, v2468, v3478, v5678. The cube is dual to the octa-

hedron, and hence their Hasse graphs are dual directed graphs. Therefore, by Proposition

8.6 A(Γ{3,4}) and A(Γ{4,3}) have the same graded trace generating functions and irreducible

representations, except the labels (conjugacy class representatives) are different.

The Coxeter group [4, 3] has presentation < s1, s2, s3|s
2
1 = s2

2 = s2
3 = (s1s2)

4 = (s2s3)
3 =

(s1s3)
2 = e >. Use (1), (235)(647), (1342)(5786), (14)(23)(58)(67), (18)(24)(36)(57),

(18)(27)(36)(45), (1647)(2835), (18)(265734), (25)(47), and (15)(26)(37)(48) as the conju-

gacy class representatives of the Coxeter group, listed in the same order as for the character

table of [3, 4].

Theorem 8.7. The grading trace generating functions for A(Γ{4,3}) are:

a := Tr(1)(A(Γ{4,3}), t) =
1 − t

1 − t(28 − 62t + 48t2 − 14t3 + t4)

b := Tr(235)(647) = Tr(1342)(5786) = Tr(14)(23)(58)(67)(A(Γ{4,3}), t) =
1 − t

1 − t(2 − t)(2 − t3)

c := Tr(18)(24)(36)(57)(A(Γ{4,3}), t) =
1 − t

1 − t(2 − t2)2

d := Tr(18)(27)(36)(45) = Tr(1647)(2835) = Tr(18)(265734)(A(Γ{4,3}), t) =
1 − t

1 − t(2 − t4)

e := Tr(25)(47)(A(Γ{4,3}), t) =
1 − t

1 − t(10 − 12t + 4t3 − t4)

f := Tr(15)(26)(37)(48)(A(Γ{4,3}), t) =
1 − t

1 − t(10 − 10t − 4t2 + 6t3 − t4)

Proof. By Proposition 8.6, the graded trace generating functions are the same as in Theo-

rem 8.4. To see that they correspond in the manner given, we consider the fixed vertices

of the automorphisms. All permutations fix v12345678, ∗. The permutation (235)(647) fixes

v1 and v8, (1342)(5786) and (14)(23)(58)(67) fix v1234 and v5678, (18)(24)(36)(57) fixes

v24 and v57, (18)(27)(36)(45), (1647)(2835), and (18)(265734) only fix u, ∗, (25)(47) fixes

v1, v3, v6, v8, v13, v68, v1256, v3478, and (15)(26)(37)(48) fixes v15, v26, v37, v48, v1256, v1357,
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v2468, v3478.

In view of Proposition 8.6 and Theorem 8.7, the multiplicities for the representations

of A(Γ{4,3}) are given by Theorem 8.5.

8.3 Decomposition of A(Γ{3,4})
! and A(Γ{4,3})

!

Recall that a basis for A(Γ)! is {e(v1, 1)
∗e(v2, 1)

∗ · · · e(vl, 1)
∗ : l ≥ 0, vi m vi+1, vi+1 6=

max�I(vi, vi+2) for 1 ≤ i ≤ l − 1, and vl 6= max�S1(vl−1)} by Theorem 7.2.

Therefore, we have the following Theorem.

Theorem 8.8. A(Γ{3,4})
! has basis {∗, e(v1, 1)

∗, e(v2, 1)
∗, e(v3, 1)

∗, e(v4, 1)
∗, e(v5, 1)

∗,

e(v6, 1)
∗, e(v12, 1)

∗, e(v13, 1)
∗, e(v14, 1)

∗, e(v15, 1)
∗, e(v23, 1)

∗, e(v24, 1)
∗, e(v26, 1)

∗,

e(v35, 1)
∗, e(v36, 1)

∗, e(v45, 1)
∗, e(v46, 1)

∗, e(v56, 1)
∗, e(v123, 1)

∗, e(v124, 1)
∗, e(v135, 1)

∗,

e(v145, 1)
∗, e(v236, 1)

∗, e(v246, 1)
∗, e(v356, 1)

∗, e(v456, 1)
∗, e(v12, 1)

∗e(v1, 1)
∗,

e(v13, 1)
∗e(v1, 1)

∗, e(v14, 1)
∗e(v1, 1)

∗, e(v15, 1)
∗e(v1, 1)

∗, e(v23, 1)
∗e(v2, 1)

∗,

e(v24, 1)
∗e(v2, 1)

∗, e(v26, 1)
∗e(v2, 1)

∗, e(v35, 1)
∗e(v3, 1)

∗, e(v36, 1)
∗e(v3, 1)

∗,

e(v45, 1)
∗e(v4, 1)

∗, e(v46, 1)
∗e(v4, 1)

∗, e(v56, 1)
∗e(v5, 1)

∗, e(v123, 1)
∗e(v12, 1)

∗,

e(v123, 1)
∗e(v13, 1)

∗, e(v124, 1)
∗e(v12, 1)

∗, e(v124, 1)
∗e(v14, 1)

∗, e(v135, 1)
∗e(v13, 1)

∗,

e(v135, 1)
∗e(v15, 1)

∗, e(v145, 1)
∗e(v14, 1)

∗, e(v145, 1)
∗e(v15, 1)

∗, e(v236, 1)
∗e(v23, 1)

∗,

e(v236, 1)
∗e(v26, 1)

∗, e(v246, 1)
∗e(v24, 1)

∗, e(v246, 1)
∗e(v26, 1)

∗, e(v356, 1)
∗e(v35, 1)

∗,

e(v356, 1)
∗e(v36, 1)

∗, e(v456, 1)
∗e(v45, 1)

∗, e(v456, 1)
∗e(v46, 1)v, e(u, 1)∗e(v123, 1)

∗,

e(u, 1)∗e(v124, 1)
∗, e(u, 1)∗e(v135, 1)

∗, e(u, 1)∗e(v145, 1)
∗, e(u, 1)∗e(v236, 1)

∗,

e(u, 1)∗e(v246, 1)
∗, e(u, 1)∗e(v356, 1)

∗, e(u, 1)∗e(v456, 1)
∗, e(v123, 1)

∗e(v12, 1)
∗e(v1, 1)

∗,

e(v124, 1)
∗e(v12, 1)

∗e(v1, 1)
∗, e(v135, 1)

∗e(v13, 1)
∗e(v1, 1)

∗, e(v145, 1)
∗e(v14, 1)

∗e(v1, 1)
∗,

e(v236, 1)
∗e(v23, 1)

∗e(v2, 1)
∗, e(v246, 1)

∗e(v24, 1)
∗e(v2, 1)

∗, e(v356, 1)
∗e(v35, 1)

∗e(v3, 1)
∗,

e(v456, 1)
∗e(v45, 1)

∗e(v4, 1)
∗, e(u, 1)∗e(v123, 1)

∗e(v12, 1)
∗, e(u, 1)∗e(v123, 1)

∗e(v13, 1)
∗,

e(u, 1)∗e(v124, 1)
∗e(v14, 1)

∗, e(u, 1)∗e(v135, 1)
∗e(v15, 1)

∗, e(u, 1)∗e(v236, 1)
∗e(v26, 1)

∗,

and e(u, 1)∗e(v123, 1)
∗e(v12, 1)

∗e(v1, 1)
∗}.
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Theorem 8.9. The graded trace generating functions for A(Γ{3,4})
! are:

a := Tr(1)(A(Γ{3,4})
!, t) = 1 + 27t + 35t2 + 13t3 + t4

b := Tr(123)(654) = Tr(1265) = Tr(16)(25)(A(Γ{3,4})
!, t) = 1 + 3t − t2 + t3 + t4

c := Tr(12)(56)(34)(A(Γ{3,4})
!, t) = 1 + 3t − 3t2 − t3 + t4

d := Tr(16)(25)(34) = Tr(1265)(34) = Tr(123654)(A(Γ{3,4})
!, t) = 1 + t − t2 + t3 − t4

e := Tr(16)(A(Γ{3,4})
!, t) = 1 + 9t + 3t2 − 3t3 − t4

f := Tr(12)(65)(A(Γ{3,4})
!, t) = 1 + 9t + t2 − 5t3 − t4

Proof. Recall that a presentation for A(Γ{3,4})
! is given by generators {e(v, 1)∗} and re-

lations {e(v, 1)e(u, 1) : v 6 mu} ∪ {e(v, 1)∗
∑

vmu

e(u, 1)∗} ∪ {e(v, 1)∗(
∑

vmumw

e(u, 1)∗)e(w, 1)∗}

(Proposition 3.1). Using these relations and the basis given above, we can calculate the

graded trace functions. You can easily check the contribution to the trace of each basis

element given below. We will write v for e(v, 1)∗ in this proof.

a) Count the basis elements.

b) For (123)(456), the following are sent to a linear combination of basis elements

involving themselves: u, v123, v456, uv123, v123v12v1, uv123v12v1.

The following are sent to a linear combination involving their negatives: v123v12, v456v46.

The remainder of the basis elements are sent to a linear combination of basis elements

not involving the one we started with.

c) The following are sent to a linear combination of basis elements involving themselves:

u, v12, v56, uv123v12v1.

The following are sent to a linear combination involving their negatives: v12v1, v56v5,

uv356, uv123v12.

The remainder of the basis elements are sent to a linear combination of basis elements

not involving the one we started with.

d) For (16)(25)(34), the following are sent to a linear combination of basis elements

involving themselves: u, v123v12.
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The following are sent to a linear combination involving their negatives: uv123, v123v12.

The remainder of the basis elements are sent to a linear combination of basis elements

not involving the one we started with.

Example calculation: uv123v12 7→ uv456v56 ≡ −uv356v56 ≡ uv356(v35+v36) ≡ −uv135v35−

uv236v36 ≡ uv135(v13 + v15)+uv236(v23 + v26) ≡ uv135v15 +uv236v26 −uv123v13 −uv123v23 ≡

uv135v15 + uv236v26 − uv123v13 + uv123v12 + uv123v13.

e) The following are sent to a linear combination of basis elements involving themselves:

u, v23, v24, v35, v45, v2, v3, v4, v5, v23v2, v24v2, v35v3, v45v4.

The following are sent to a linear combination involving their negatives: uv145, uv123v13,

uv124v14, uv135v15, uv123v12v1.

The remainder of the basis elements are sent to a linear combination of basis elements

not involving the one we started with.

f) The following are sent to a linear combination of basis elements involving themselves:

u, v123, v124, v356, v456, v12, v56, v3, v4, v123v12, v124v12, uv123, uv124, uv356, uv123v12.

The following are sent to a linear combination involving their negatives: v56v5, v12v1,

v124v14, v123v13, uv123v13, uv124v14, v123v12v1, v124v12v1, v356v35v3, v456v45v4, uv123v12v1.

The remainder of the basis elements are sent to a linear combination of basis elements

not involving the one we started with.

Theorem 8.10. The multiplicities for the representations of A(Γ{3,4})
! are:

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10

mφ,1 4 1 0 0 2 0 0 1 2 3

mφ,2 0 1 1 0 2 1 2 2 2 3

mφ,3 0 0 1 1 0 1 2 1 0 0

mφ,4 0 0 0 1 0 0 0 0 0 0

Proof. We verify the assertion by multiplying the transpose of the character table of [3, 4]

by ~m(t) for each graded piece.

We can write down a basis for A(Γ{4,3})
! by using Theorem 7.2. By Proposition 8.6,
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A(Γ{4,3})
! will have graded trace generating functions given by Theorem 8.9 and multiplic-

ities of irreducible representations given by Theorem 8.10 with the same correspondence of

conjugacy classes as given above.

Notice that A(Γ{3,4})
! and A(Γ{4,3})

! also have the Koszulity property that Trσ(A(Γ), t)∗

Trσ(A(Γ)!,−t) = 1, where σ is an element in the automorphism group of the algebra.
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Table 8.1: Character table for the Coxeter groups [3, 4] and [4, 3]
[3, 4] (1) (123)(654) (1265) (16)(25) (12)(56)(34) (16)(25)(34) (1265)(34) (123654) (16) (12)(56)

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 -1 1 -1 -1 1 -1 -1 1
χ3 1 1 -1 1 -1 1 -1 1 1 -1
χ4 1 1 1 1 1 -1 -1 -1 -1 -1
χ5 2 -1 0 2 0 2 0 -1 2 0
χ6 2 -1 0 2 0 -2 0 1 -2 0
χ7 3 0 1 -1 -1 3 1 0 -1 -1
χ8 3 0 -1 -1 1 -3 1 0 1 -1
χ9 3 0 -1 -1 1 3 -1 0 -1 1

χ10 3 0 1 -1 -1 -3 -1 0 1 1
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Chapter 9

The Complete Layered Graph

A layered graph Γ is complete if for every i, 1 ≤ i ≤ n, and for every v ∈ Vi, w ∈ Vi−1,

there exists a unique edge e such that the tail of e is v and its head is w. A complete

layered graph is determined up to isomorphism by the cardinalities of each level. [RSW]

Let Γ[r1,...,rn] be the complete layered graph with a minimal vertex * and rj vertices in level

j, 1 ≤ j ≤ n.

Lemma 9.1. Aut(Γ[r1,...,rn]) = Sr1 × · · · × Srn.

Proof. Label the vertices in level j of Γ[r1,...,rn] by v1, ..., vrj
. Any automorphism of the

graph must preserve the set of vertices at each level and so acts on the set {v1, ..., vrj
} of all

rj vertices in level j. We may say σ(vi) = vσ(i). Thus we can think of an automorphism of

the graph as being a permutation in Sr1 × · · · ×Srn acting on the subscripts of the vertices

of each level. Because the graph is complete, edges between vertices will automatically be

preserved. Thus, we may permute the vertices in each level independently of the other

levels. Therefore, the automorphism group of the graph is Sr1 × · · · × Srn .

Proposition 9.2. Aut(A(Γ[r1,...,rn])) ⊇ k∗ × Sr1 × · · · × Srn, k the base field.

Proof. This follows from Lemmas 4.1 and 9.1.

We will consider the graded traces of Sr1×· · ·×Srn acting on A(Γ[r1,...,rn]) because these

graded trace generating functions are interesting generalizations of the Hilbert series of the

algebra found in [RSW]. Also, we can use them to find some irreducible representations of

the algebra.

Theorem 9.3. Let mj be the number of vertices in level j fixed by σrj
∈ Srj

.

Let σ = σr1 × · · · × σrn ∈ Sr1 × · · · × Srn . Then Trσ(A(Γ[r1,...,rn]), t) =

1 − t

1 − t
∑n

k=0

∑n
j=k(−1)kmj(mj−1 − 1)(mj−2 − 1) · · · (mj−k+1 − 1)mj−ktk
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Proof. We will prove this using Theorem 5.4. Because we have a complete layered graph,

all that matters in calculating the graded trace is how many vertices on each level are

fixed, not which ones. Also, there exists a path from every vertex in level i to every vertex

in a lower level. Thus, the number of chains v1 > · · · > vl with |vi| = ji, 1 ≤ i ≤ l, is

mj1mj2 · · ·mjl
. Therefore, the coefficient of tk+1 is the number of chains from level j to

level j − k where we may include from 0 to k − 1 vertices, all from different levels, in the

middle of the chain. Let ~s be a sequence of 0’s and 1’s of length k− 1. Then the coefficient

of tk+1 is

∑

v1>···>vl≥∗
vi∈Vσrj

|v1|−|vl|=k

(−1)l =

n
∑

j=k

−mj(
∑

~s

(−1)
∑

sims1
j−1m

s2
j−2 · · ·m

sk−1

j−k+1)(−mj−k)

=
n
∑

j=k

(−mj)(1 − mj−1)(1 − mj−2) · · · (1 − mj−k+1)(−mj−k)

= (−1)k+1mj(mj−1 − 1) · · · (mj−k+1 − 1)mj−k.

Hence, the theorem is proved.

We will not give the irreducible representations because of the complexity of writing

down the character table of Sr1 × · · · × Srn . However, the methodology used in earlier

chapters applies equally well here.

9.1 Dual Algebra A(Γ[r1,...,rn])
!

We will now give a basis for the dual algebra A(Γ[r1,...,rn])
! and its graded trace generating

functions.

Choose one vertex in each level j, 1 ≤ j ≤ n, and call it vrj
.

Theorem 9.4. A basis for A(Γ[r1,...,rn])
! is {e(v1, 1)

∗e(v2, 1)
∗ · · · e(vl, 1)

∗ : l ≥ 0, vi m

vi+1, and for 2 ≤ i ≤ l, vi 6= vrj
∀j}.

Proof. This is true by Theorem 7.2. Because each vertex has a path to every vertex in

level 1, we cannot put a partial order on the set of vertices. However, we can choose one
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vertex to be the “maximum” vertex that we do not allow. These are the vertices vrj
we

have chosen.

Theorem 9.5. Let mj be the number of vertices in level j fixed by σrj
∈ Srj

.

Let σ = σr1 × · · · × σrn ∈ Sr1 × · · · × Srn . Then Trσ(A(Γ[r1,...,rn])
!, t) =

1 + t
n
∑

j=1

mj +
n
∑

k=2

n
∑

j=k

mj(mj−1 − 1)(mj−2 − 1) · · · (mj−k+1 − 1)tk

Proof. In order for σe(v1, 1)
∗ · · · e(vl, 1)

∗ to be a linear combination of basis elements con-

taining a nonzero multiple of ~e = e(v1, 1)
∗ · · · e(vl, 1)

∗, v1 must be fixed by σ. If vk is fixed

for all 1 ≤ k ≤ l, then the element’s contribution to the trace is 1. If vk is not fixed for some

k, then the only way the basis element is going to contribute to the trace is if σ(vk) = vrj
,

k > 1, vk, vrj
in the same level. Otherwise, ~e is sent to another basis element. In the case

where σ(vk) = vrj
, we can use the relation e(vi, 1)

∗
∑

vj ,vimvj

e(vj , 1)
∗ to write σ~e as a linear

combination of basis elements which will include (−1)~e. Let s~e be the number of vk ∈ ~e

such that σ(vk) = vrj
, for the appropriate j. Note that 0 ≤ s ≤ n, as at most one vertex

from each level may go to vrj
. If v1 is fixed and σ(vk) = vk or vrj

for all 2 ≤ k ≤ l, then

we have shown that ~e contributes (−1)s~e to the graded trace. Otherwise, the contribution

is zero.

Let us consider the coefficient of tk. This value is the contribution to the trace of basis

elements of degree k: e(vl1 , 1)
∗ · · · e(vlk , 1)∗, l1 ≥ k. Because vl1 must be fixed, there are

ml1 choices for e(vl1 , 1)
∗. We can then choose that s vertices in the basis element are fixed

and the other k − s of them are sent to vrj
, the appropriate j for each. This gives us that

the coefficient of tk is

n
∑

j=k

mj

∑

j>j1>···>js≥1
0≤s≤k−1

(−1)(k−1−s)mj1 · · ·mjs

=

n
∑

j=k

mj(mj−1 − 1)(mj−2 − 1) · · · (mj−k+1 − 1)

.
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Observe that

(1 + t
∑n

j=1 mj +
∑n

k=2

∑n
j=k mj(mj−1 − 1)(mj−2 − 1) · · · (mj−k+1 − 1)tk)(1 + t)

= 1 + t
∑n

k=0

∑n
j=k mj(mj−1 − 1)(mj−2 − 1) · · · (mj−k+1 − 1)mj−kt

k

= Trσ(A(Γ[r1,...,rn]),−t)−1(1 + t).

Thus, A(L(n, q)) also satisfies the Koszulity property that Trσ(A(Γ), t)∗Trσ(A(Γ)!,−t) = 1,

where σ is an element in the automorphism group of the algebra.
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Chapter 10

Hasse Graph of the Lattice of Subspaces

of a Finite-dimensional Vector Space over a Finite Field

Following the definition given in [RSW], we will denote by L(n, q) the Hasse graph of the

lattice of subspaces of an n-dimensional vector space V over the field Fq of q elements. Thus,

the vertices of L(n, q) are subspaces of Fn
q , the order relation > is inclusion of subspaces

⊃, the level |U | of a subspace U is its dimension, and the unique minimal vertex * is the

zero subspace (0).

In [RSW], the authors found the Hilbert series of the algebra A(L(n, q)) to be

1 − t

1 − t
∑n

m=0

(n
m

)

q
(1 − t)(1 − tq) · · · (1 − tqn−m−1)

.

We wish to find the graded trace generating functions as we have done for our other

examples in order to find the decomposition of A(L(n, q)) into irreducible representations.

However, in this case it is much more difficult to count chains of subspaces. Therefore, in

this chapter we will give the graded traces for small n and results that enable one to find

the graded traces for general q and specific n on a case-by-case basis.

Lemma 10.1. Aut(L(n, q)) ⊇ PGLn(Fq).

Proof. The automorphism group of V is GLn(Fq). An automorphism of V permutes sub-

spaces of each dimension and maintains subspace containment. Thus, edges are preserved.

Because each subspace is in the lattice, every M ∈ GLn(Fq) preserves the set of vertices at

each level. Hence, the automorphism group of the Hasse graph of the lattice of subspaces

contains GLn(Fq). The center of GLn(Fq), scalar multiples of the identity matrix, induces

the identity automorphism on the graph. Therefore, to eliminate scalar multiples of au-

tomorphisms, we may quotient out by the center. Thus, the automorphism group of the

graph contains PGLn(Fq).
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Proposition 10.2. Aut(A(L(n, q))) ⊇ k∗ × PGLn(Fq).

Proof. This follows from Lemmas 4.1 and 10.1.

We will consider the graded trace generating functions for PGLn(Fq) acting on A(L(n, q)).

Let σ ∈ PGLn(Fq). We may write Fn
q = V1 ⊕ · · · ⊕ Vr where each Vi is an inde-

composable σ-module and the minimum polynomial of σ|Vi
= fi(x)ki for some monic

irreducible fi(x) ∈ Fq[x] and some ki ≥ 1. Then, relative to an appropriate basis, σ|Vi

has matrix

























Ci J 0 · · · 0

0 Ci J · · · 0

...
. . .

. . .
...

0 · · · Ci J

0 · · · 0 Ci

























where Ci is the companion matrix of fi(x) and

J =



















0 · · · · · · 0

...
...

0 0

1 0 · · · 0



















[[J],Chapter 3]. If fi(x) splits over Fq, then Ci is a 1-by-1 matrix

and the above matrix is the Jordan canonical form of σ|Vi
.

We will deal primarily with those automorphisms which can be written in Jordan canon-

ical form. Furthermore, we need only deal with the case where the matrix has a single

eigenvalue (Ci is a 1-by-1 matrix and Ci = Cj for all i, j). This follows from Proposition

10.4 below.

Definition (P × Q). [S] Let P,Q be posets. The direct product of P and Q is the poset

P × Q on the set {(x, y) : x ∈ P, y ∈ Q} such that (x, y) ≤ (x′, y′) in P × Q if x ≤ x′ ∈ P

and y ≤ y′ ∈ Q.

We draw the Hasse graph of P × Q by replacing each element x of P by a copy Qx of

Q and connect corresponding elements of Qx and Qy if x and y are connected in the Hasse

graph of P [S]. See Figure 10.1 for an example of the Hasse graph of the direct product of

two lattices of subspaces of V over Fq.
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Definition (ζ). [S] The zeta function ζ(x, y) is defined by ζ(x, y) = 1 for all x ≤ y ∈ P .

Otherwise it is 0. To the zeta function is associated a matrix ζ where the (x, y)-entry in

the matrix is ζ(x, y). Note that it is a triangular, unipotent matrix.

Definition (Möbius function). [S] The Möbius matrix µ is ζ−1. The Möbius function

µ(x, y) is the (x, y)-entry in µ.

Proposition 10.3. [[S],3.8.2] Let P,Q be locally finite posets and let P ×Q be their direct

product. If (x, y) ≤ (x′, y′) ∈ P × Q, then µP×Q((x, y), (x′, y′)) = µP (x, x′)µQ(y, y′).

We can create the zeta-matrix ζ̂ as in the proof of Theorem 5.4 where the (v,w)-entry

is t|v|−|w| and the Möbius matrix µ̂ which is the inverse of ζ̂. Proposition 10.3 applies to µ̂

as well because ζ̂P×Q = ζ̂P ⊗ ζ̂Q and hence µ̂P×Q = µ̂P ⊗ µ̂Q.

Proposition 10.4. Let T ∈ GLn(Fq) be a matrix in Jordan canonical form with distinct

eigenvalues λ1, .., λk. Let Tλj
∈ GLnj

(Fq) be the submatrix of T containing only those

blocks with eigenvalue λj . Finally say 1−t
1−tfλj

is the graded trace generating function of Tλj

acting on A(L(nj , q)). Then TrT (A(L(n, q)), t) =
1 − t

1 − t
∏k

j=1 fλj

.

Proof. Any subspace U invariant under T can be written as a direct product of indecompos-

able summands corresponding to blocks having the same eigenvalue. Thus, the subgraphs

L(n, q)
Tλj in L(n, q)T are disjoint; i.e. if U ∈ L(n, q)

Tλj , then U 6∈ L(n, q)Tλi ∀i 6= j.

Therefore, the Hasse graph L(n, q)T = L(n, q)Tλ1 × · · · × L(n, q)Tλk .

We need to show that fλ1×···×λk
= fλ1 · · · fλk

. Recall from the proof of Theorem 5.4

that fλj
=

∑

v1>···>vl≥∗

(−1)l+1t|v1|−|vl| and that the (v,w)-entry of µ̂ is

∑

v=v1>···>vl=w≥∗

(−1)l+1t|v1|−|vl|. Let ~1 denote the column vector having 1 as each entry.

Consider ~1T µ̂~1; it is the sum of all the entries in µ̂. In other words, it is the sum of all chains

from v to w for all vertices v,w in the graph. Thus, ~1T µ̂~1 =
∑

v1>···>vl≥∗

(−1)l+1t|v1|−|vl| = f .
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Therefore, by Proposition 10.3 and the comment afterwards,

fλ1×···×λk
= ~1T

L(n,q)
Tλ1 ×···×L(n,q)

Tλk
µ̂

L(n,q)
Tλ1×···×L(n,q)

Tλk
~1

L(n,q)
Tλ1×···×L(n,q)

Tλk

= (~1T

L(n,q)
Tλ1

⊗ · · · ⊗~1T

L(n,q)
Tλk

)(µ̂
L(n,q)

Tλ1
⊗ · · · ⊗ µ̂

L(n,q)
Tλk

)(~1
L(n,q)

Tλ1
⊗ · · · ⊗~1

L(n,q)
Tλk

)

= (~1T

L(n,q)
Tλ1

µ̂
L(n,q)

Tλ1
~1

L(n,q)
Tλ1

) · · · (~1T

L(n,q)
Tλk

µ̂
L(n,q)

Tλk
~1

L(n,q)
Tλk

) = fλ1 · · · fλk
.

Let T ∈ GLn(Fq) be a matrix in Jordan canonical form with exactly one eigenvalue λ.

Let k be the number of its blocks. We want to determine the number of invariant subspaces

of an n-dimensional vector space over Fq when acted upon by T .

Let V = V[a] = Va1 ⊕ · · · ⊕ Vak
be indecomposable under T , where [a] = a1, ..., ak

are the sizes of the blocks in T . Let W = W[i] = Wi1 ⊕ · · · ⊕ Wir′ ⊕ Wir′+1
⊕ · · · ⊕ Wir

be an invariant subspace of V where [i] = i1, ..., ir are the sizes of its blocks. Say i1 ≥

i2 ≥ · · · ≥ ir′ > 1, ir′+1 = · · · = ir = 1, r ≤ k. Let V[a−1] = Va1−1 ⊕ · · · ⊕ Vak−1 and

W[i−1] = Wi1−1 ⊕ · · · ⊕ Wir′−1. Denote the number of invariant subspaces W[i] of V[a] by

N[a,i].

Proposition 10.5. The number of invariant W[i] ⊆ V[a] is N[a,i] = (qk−r)r
′(k−r′

r−r′

)

q
N[a−1,i−1].

Proof. Let S = T − λI; note that S is a nilpotent matrix. Then SV[a] = V[a−1] = Va1−1 ⊕

· · · ⊕ Vak−1 and SW[i] = W[i−1] = Wi1−1 ⊕ · · · ⊕ Wir′−1. The number of such SW in SV

is given by induction, N[a−1,i−1]. We need to multiply this induction by the number of W

which map down to Wi1−1⊕· · ·⊕Wir′−1. First of all you can add up to r−r′ W1’s because

they will go to (0) under S. In other words, we can add on anything in ker(S). The kernel

has one dimension from each of the k summands, but we must quotient out by the kernel

of S2 so that we do not double count; so, we can add on from a k − r′-dimensional space.

Thus we are picking a r − r′-dimensional subspace from a k − r′-dimensional space, which

gives us
(k−r′

r−r′

)

q
possibilities. Now fix one of these subspaces; i.e. fix W1’s space.

Now we need to pick the other Wi’s with i > 1. Each Wi is generated by a cyclic

vector; and, we can modify that vector by something that is annihilated by S. Thus we

have (qk−r)r
′
choices. The k−r is because we cannot modify by something we have already
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chosen and r′ because we are only modifying the cyclic vectors in SW . In other words,

there are qk−r ways of modifying each Wij−1, 1 ≤ j ≤ r′. Therefore, the number of W

which map down to SW is (qk−r)r
′(k−r′

r−r′

)

q
.

We will now give a description of N[a,i] in closed form. This will allow us to write an

explicit formula for the number of invariant subspaces of V . Let the sizes of the blocks of

T be a1 ≥ a2 ≥ · · · ≥ ak as above. Let kj be the number of blocks of size greater than or

equal to j, 1 ≤ j ≤ a1. Finally, let mj the multiplicity of ij; so, W = m1Wi1 ⊕· · ·⊕msWis .

Corollary 10.6. The number of invariant subspaces W with the notation given above is

∑

1≤ij≤am1+m2+...+mj

i1>i2>···>is
m1+...+ms=r

is−1
∏

j=1

(qkj−r)r · (qkis−r)r−ms

(

kis − (r − ms)

ms

)

q

·

is−1−1
∏

j=is+1

(qkj−(r−ms))r−ms · (qkis−1
−(r−ms))r−ms−ms−1

(

kis−1 − (r − ms − ms−1)

ms−1

)

q

·

· · ·
i1−1
∏

j=i2+1

(qkj−m1) ·

(

ki1

m1

)

q

Proof. We are applying the induction process to Proposition 10.5. Because the formula

only depends on k, r, r′, the induction only changes when SlVai
= V0, SlWij = W1, or

SlWij = W0 for some l, ai, ij . Hence, up until we have applied Sis , ij > 1∀j we have r′ = r

and (qk1−r)rN[a−1,i−1] = (qk1−r)r · · · (qkis−1−r)rN[a−is,i−is]. At the is stage in the induction,

r is the same, but r̃′ = r −ms. Then, at the is + 1 stage, r̃ = r −ms and r̃′ = r −ms until

the is−1 stage when Wis−1 is brought down to W1. This process continues.

We will now give the graded trace generating functions for a variety of examples. Recall

that from these examples we also have the generating functions for larger n when we have

distinct eigenvalues by using Proposition 10.4. In Tables 10.1 and 10.2, let f be such that

TrT (A(L(n, q)), t) = 1−t
1−tf . The generating functions can be found using Theorem 5.2 or

Theorem 5.4. The reader may easily check that the generating functions given are correct.

The graphs for each example with a single eigenvalue are shown in Figure 10.1.

In Table 10.1 let U ′ be a 2-dimensional vector space over Fq, V ′
j = span











1

j











,
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V ′
q+1 = span











0

1











. Also, let U be a three-dimensional vector space over Fq, Vjk =

span
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j
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, Vi = span
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, Vq+1 = span
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, Wij =

span



































1

i

j



































, Wi = span
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, and Wq+1 = span
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0

1



































. Assume 0 ≤ i, j ≤

q − 1 unless stated otherwise.

In Table 10.2 we will give the graded trace generating functions for some of the n = 4

cases and two general cases. We know the graded trace for all but one of the canonical

forms for n = 4 based on the information in the above table and Proposition 10.4. Rather

than listing the subspaces that are fixed, we will simply say how many of each type are

fixed. These numbers are obtained from Proposition 10.5. This is enough information to

calculate the graded trace; we will do the calculation for one example.

Example 10.1. We will calculate the graded trace of



















a 1 0 0

0 a 0 0

0 0 a 0

0 0 0 a



















acting on the 4-

dimensional vector space V = V2 ⊕ V1 ⊕ V1 using Proposition 10.5 and Theorem 5.4. First

of all we have (q3−2)1
(

3−1
2−1

)

q
∗ (q1−1)0

(

1−0
1−0

)

q
= q2 + q 3-dimensional invariant subspaces

of form W2 ⊕ W1 and (q3−3)0
(3−0
3−0

)

q
∗ 1 = 1 subspace of form W1 ⊕ W1 ⊕ W1. We have

(q3−1)1
(3−1
1−1

)

q
∗ (q1−1)0

(1−0
1−0

)

q
= q2 2-dimensional invariant subspaces of the form W2 and

(q3−2)0
(

3−0
2−0

)

q
∗1 = q2+q+1 of the form W1⊕W1. And, there are (q3−1)0

(

3−0
1−0

)

q
= q2+q+1

1-dimensional invariant subspaces of the form W1.

We also need to know how many subspaces each subspace has in order to count the

chains. Each subspace of the form W2 ⊕W1 has q subspaces of the form W2, 1 of the form

W1 ⊕ W1, and q + 1 of the form W1. Each subspace of the form W1 ⊕ W1 ⊕ W1 has 0

subspaces of the form W2, q2 + q + 1 of the form W1 ⊕W1, and q2 + q + 1 of the form W1.

Lastly, each subspace of the form W2 has 1 subspace and W1 ⊕ W1 has q + 1.
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Now we are ready to count the chains in the subgraph; i.e. calculate
∑

U1⊃···⊃Ul⊇(0)
Uj invariant under T

(−1)lt|U1|−|Ul|+1. The coefficient of t is the number of invariant subspaces,

which is −(1+ q2 + q +1+ q2 + q2 + q +1+ q2 + q +1+1) = −(4q2 +3q +5). The coefficient

of t2 is the number of Ui ⊃ Ui−1, which is q2 +q+1+(q2+q)(q+1)+1(q2+q+1)+q2(1)+

(q2 +q+1)(q+1)+q2 +q+1 = 2q3 +8q2 +6q+4. For t3, we count the number of Ui ⊃ Ui−2

minus Ui ⊃ Ui−1 ⊃ Ui−2. This gives us [1(2q2 +q+1)+(q2 +q)(q+1)+1(q2 +q+1)+2q2 +

q+1]− [1(q2+q)(q+1)+1∗1(q2+q+1)+(q2+q)q∗1+(q2+q)∗1∗(q+1)+1(q2+q+1)(q+

1)+ q2(1)+(q2 + q +1)(q +1)] = −(4q3 +4q2 +3q). To find the coefficient of t4 we consider

the number of chains of the forms Ui ⊃ Ui−3, Ui ⊃ Ui−1 ⊃ Ui−3, Ui ⊃ Ui−2 ⊃ Ui−3, and

Ui ⊃ Ui−1 ⊃ Ui−2 ⊃ Ui−3. There are [1(q2 + q + 1) + q2 + q + 1] − [1(q2 + q)(q + 1) + 1 ∗

1(q2 + q + 1) + 1q2 ∗ 1 + 1(q2 + q + 1)(q + 1) + (q2 + q)(q + 1) + 1(q2 + q + 1) + (q2 + q)(q +

1) + 1(q2 + q + 1)] − 2 ∗ [(q2 + q)(q)(1) + (q2 + q)(1)(q + 1) + 1(q2 + q + 1)(q + 1)] = 2q3.

Finally, for the coefficient of t5, we consider W2 ⊕ W1 ⊕ W1 ⊃ (0), W2 ⊕ W1 ⊕ W1 ⊃ Ui ⊃

(0), W2 ⊕ W1 ⊕ W1 ⊃ Ui ⊃ Uj ⊃ (0), W2 ⊕ W1 ⊕ W1 ⊃ U3 ⊃ U2 ⊃ U1 ⊃ (0). This gives us

1− [q2 +q+1+2q2+q+1+q2+q+1]+[(q2+q)(q+1)+q2+q+1+(q2+q)(q+1)+q2+q+

1+q2(1)+(q2 +q+1)(q+1)]− [(q2 +q)(q)+(q2+q)(q+1)+(q2 +q+1)(q+1)] = 0. Because

the graph has four levels, the coefficient of tk, k ≥ 6, is 0. Thus, TrT (A(L(n, q)), t) =

1 − t

1 − t((4q2 + 3q + 5) − (2q3 + 8q2 + 6q + 4)t + (4q3 + 4q2 + 3q)t2 − 2q3t3)

We can see through this example that Propositions 10.4 and 10.5 enable us to calculate

the graded trace for any matrix which can be put into Jordan canonical form acting on a

finite-dimensional vector space over Fq. We do have a conjecture for a general formula for

the graded trace in terms of T , as we have found for our other algebras.

In Figure 10.1 are the subgraphs L(n, q)T of L(n, q) which have vertices fixed by T .

The matrices T correspond to those given in Tables 10.1 and 10.2 and are labeled by

V = Va1 ⊕ · · · ⊕ Vak
where aj is the size of block j in T . The number following each

subspace is the number of that type invariant under T . The number in parentheses along

the edge from U to W (U ⊃ W ∈ L(n, q)T ) is the number of invariant subspaces with form

W of each subspace with form U .
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Table 10.1: TrT (A(L(n, q)), t) for n = 2, 3
Type of T Fixes W = Wi1 ⊕ · · · ⊕ Wir f
[

a 0
0 a

]

U ′ W1 ⊕ W1 (q + 3) − 2(q + 1)t
V ′

j , V
′
q+1 W1 +qt2

[

a 0
0 b

]

U ′ W1 ⊕ W1 (2 − t)2

V ′
0 , V ′

q+1 W1
[

a 1
0 a

]

U ′ W2 3 − 2t
V ′

0 W1
[

0 −a0

1 −a1

]

U ′ 2 − t2





a 0 0
0 a 0
0 0 a





U W1 ⊕ W1 ⊕ W1 (2q2 + 2q + 4)
Vjk, Vi, Vq+1 W1 ⊕ W1 −(q3 + 4q2 + 4q + 3)t

Wij ,Wi,Wq+1 W1 +2(q3 + q2 + q)t2 − q3t3




a 1 0
0 a 0
0 0 a





U W2 ⊕ W1

V0k, V0 W2,W1 ⊕ W1 2(q + 2) − (4q + 3)t
W0j,Wq+1 W1 +2qt2





a 1 0
0 a 1
0 0 a





U W3

V00 W2 4 − 3t
W00 W1





a 1 0
0 a 0
0 0 b





U W2 ⊕ W1

V00, V0 W2 (3 − 2t)(2 − t)
W00,Wq+1 W1





a 0 0
0 a 0
0 0 b





U W1 ⊕ W1 ⊕ W1

V00, Vi, Vq+1 W1 ⊕ W1 [(q + 3) − 2(q + 1)t + qt2]
Wi0,W0,Wq+1 W1 ∗(2 − t)





a 0 0
0 b 0
0 0 c





U W1 ⊕ W1 ⊕ W1

V00, V0, Vq+1 W1 ⊕ W1 (2 − t)3

W00,W0,Wq+1 W1




a 0 0
0 0 −b0

0 1 −b1





U
Vq+1 (2 − t)(2 − t2)
W00





0 0 −b0

1 0 −b1

0 1 −b2





U
(2 − t3)
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Table 10.2: TrT (A(L(n, q)), t) for n = 4 and special cases
Type of T W = Wi1 ⊕ · · · ⊕ Wis Number Fixed f









a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a









W1 ⊕ W1 ⊕ W1 ⊕ W1 1 (1 − t)(1 − tq)(1 − tq2)(1 − tq3)+
W1 ⊕ W1 ⊕ W1 1 + q + q2 + q3 (1 + q + q2 + q3)(1 − t)(1 − tq)(1 − tq2)+

W1 ⊕ W1 1 + q + 2q2 + q3 + q4 (1 + q + 2q2 + q3 + q4)(1 − t)(1 − tq)+
W1 1 + q + q2 + q3 (1 + q + q2 + q3)(1 − t) + 1









a 1 0 0
0 a 0 0
0 0 a 0
0 0 0 a









W2 ⊕ W1 ⊕ W1 1
W2 ⊕ W1,W1 ⊕ W1 ⊕ W1 q2 + q, 1 (4q2 + 3q + 5) − (2q3 + 8q2 + 6q + 4)t

W2,W1 ⊕ W1 q2, q2 + q + 1 +(4q3 + 4q2 + 3q)t2 − 2q3t3

W1 q2 + q + 1








a 1 0 0
0 a 0 0
0 0 a 1
0 0 0 a









W2 ⊕ W2 1
W2 ⊕ W1 q + 1 (q2 + 3q + 5) − 2(q2 + 3q + 2)t

W2,W1 ⊕ W1 q2 + q, 1 +q(q + 3)t2

W1 q + 1
















a 1 0 0 0

0
. . .

. . . 0 0

0 0
. . . 1 0

0 0 0 a 0
0 0 0 0 a

















Wn−1 ⊕ W1 1 ((n + 1) + (n − 1)q)−
Wj,Wj−1 ⊕ W1 q(n − 1) + 1, n − 2 (2(n − 1)q + n)t+
2 ≤ j ≤ n − 1 (n − 1)qt2

W1 q + 1













a 1 0 0

0
. . .

. . . 0

0 0
. . . 1

0 0 0 a













Wn 1 (n + 1) − nt
Wi 1

1 ≤ i ≤ n − 1









a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b









W a
1 ⊕ W a

1 ⊕ W b
1 ⊕ W b

1 1
W a

1 ⊕ W a
1 ⊕ W b

1 , W a
1 ⊕ W b

1 ⊕ W b
1 q + 1, q + 1 ((q + 3) − 2(q + 1)t + qt2)2

W a
1 ⊕ W a

1 ,W a
1 ⊕ W b

1 ,W b
1 ⊕ W b

1 1, (q + 1)2, 1
W a

1 , W b
1 q + 1, q + 1



81

V1 ⊕ V1

3V1

(q2 + q + 1)

L(3, q)T3V1

V1, 1

V2, 1

V3

V2, q

V1, q + 1

(q + 1)(q + 1)

V1, p + 1

L(2, q)TV2L(2, q)T2V1

L(3, q)TV2⊕V1

(1)

(1)

(1)
2V1, 1

(q)

V2 ⊕ V1

L(3, q)TV3

V1, 1

(0)

(0)(0)(0)

(0)

V2

2V1, q
2 + q + 1

V1, q
2 + q + 1

3V1, 1 V3, 1

V2, 1

V1, 1

V2, q
2 + q

V2 ⊕ V1, 1

L(4, q)TV3⊕V1 L(4, q)T2V2

(0)(0)

(0)(0)

V2 ⊕ V1, q + 1

2V2V3 ⊕ V1

V1 ⊕ V1, 1 V1 ⊕ V1, 1

V1, q + 1 V1, q + 1

L(4, q)TV2⊕2V1 L(4, q)TV4

2V1, q
2 + q + 1

V1, q
2 + q + 1

V2, q
2

V3, q

V2 ⊕ V1, q
2 + q

V2 ⊕ 2V1

V2, q

V4

V a
1 ⊕ 2V b

1 , q + 1

V b
1 , q + 1

2V a
1 ⊕ V b

1 , q + 1

V a
1 ⊕ V b

1 ,
2V b

1 , 1

(0)

(q + 1)2

2V a
1 ⊕ 2V b

1

2V a
1 , 1

V a
1 , q + 1

L(4, q)
T
2V a

1
⊕2V b

2

Figure 10.1: Subgraphs L(n, q)T of the Hasse graph of the lattice of subspaces of a finite-
dimensional vector space over Fq
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