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ABSTRACT OF THE DISSERTATION  
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Hiroki Tsurumi 

and  

Louise B. Russell 

  

 The purpose of this dissertation is to analyze three models in medicine and 

finance using Bayesian inference with the Markov chain Monte Carlo method. The model 

in medicine addresses cost-effectiveness analysis using copulas, and the two models in 

finance include discrete-time asset pricing models and a short-term interest rate model 

with stochastic volatility.  

 The first chapter develops the model that allows dependence between cost and 

effectiveness using copulas in cost-effectiveness analysis. The model was applied with 

sample of adults from the NHANES I Epidemiologic Follow-up Study, assuming a log-

normal distribution for cost and a Weibull distribution for effectiveness as the marginals. 

Cost-effectiveness analysis is conducted for two types of patients using the estimated 

posterior densities of parameters regarding the hypothetical intervention for hypertension.  

A simulation based on Bayesian predictive densities is also performed to analyze cost and 
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effectiveness at an individual patient level. The empirical result indicated a negative 

dependence between measures of effectiveness and cost. 

The second chapter conducts a Bayesian analysis of discrete-time asset pricing 

model. The chapter particularly discusses the naive discretization problem, which arises 

from using discrete-time data to estimate continuous-time models. Our results using 

generated data showed that the naive discretization would not work well when data 

generating process is unknown, when the data is sampled at low frequency, and averaged 

data is used.  

The final chapter develops a Bayesian analysis of a short-term interest rate model 

with stochastic volatility. The model was developed based on the CKLS model (Chan et 

al. 1992). We constructed MCMC algorithms suitable for the model based on the 

Jacquire, Polson and Rossi(1994) algorithm. The empirical results with the 3-month 

Treasury constant maturity rate suggested that there was high autocorrelation in volatility 

of the error terms.  Finally, the developed model was compared with the model with a 

GARCH error, using Bayesian predictive densities. The predictive densities obtained by 

CKLS with stochastic volatility have wider variance than the ones from CKLS-GARCH, 

and the realized value did not fall in the support of the predicted values for the CKLS-

GARCH model because of the tight variance in prediction.  
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Part I 

 

INTRODUCTION 

 

 Bayesian statistical tools have been widely used for analyses in social and natural 

science fields. In this context, several textbooks on Bayesian econometrics have been 

recently published in economics, long after the classic on Bayesian econometrics by 

Zellner (1971). These textbooks emphasize the application of Bayesian inference to 

issues in micro and macro economics,  and cover various topics ranging from models in 

time series (Koop(2003), Bauwens et al.(2000)), Geweke(2005), and Koop et al. (2007)) 

to topics in micro econometrics including analysis of limited dependent variables or panel 

data (Koop(2003) and Lancaster(2004)). In addition to the development in theoretical 

aspects of analysis, progress in the technical side, i.e., improvement in hard- and software 

in computational tools, contributed to the rise in the popularity of Bayesian inference in 

the applied fields as Bayesian inference often requires computer intensive analysis. 

Specific software has been developed for Bayesian analysis – such as WinBugs1 and the 

Bayesian module for SAS 9.1.3.2, – so that more researchers obtained access to tools of 

Bayesian inference.  

 

                                                 
1 The WinBugs was developed through the BUGS project (http://www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml).  The BUGS (Bayesian inference Using Gibbs Sampling) project 
started in the MRC Biostatistics Unit, Cambridge University, and developed jointly with the Imperial 
College School of Medicine at St Mary’s London and the University of Helsinki. WinBugs uses R 
language. 
2 Three procedures for Bayesian inference, in generalized linear models, accelerated life failure models, 
Cox regression models, and piecewise constant baseline hazard models, are available as experimental 
versions as of March 2008. 
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Bayesian statistical inference is made about a parameterθ , or unobserved data  y~  

in the case of predictive inference, in terms of probability terms, )|( yp θ  or )|~( yyp  

given the realized data y  using Bayes’ rule. For parameter inference, given the prior 

distribution )(θp  and the data distribution )|( θyp , the joint probability density for θ  

and y  is written as: 

)()|(),( θθθ pypyp = . 

The posterior density )|( yp θ  is therefore  

)(
)|()(

)(
),()|(

yp
ypp

yp
ypyp θθθθ ==  

                                                             )|()( θθ ypp∝ .  

The data distribution )|( θyp  is also called the likelihood function, which is a function of 

θ  for fixed (realized value) y . The posterior density )|( yp θ  shows the revision of our 

initial probability on )(θp  using new information in our data y  with Bayes’ rule.  

 A similar argument can be made for predictive inference. The distribution of 

unobserved y~ , given the realized value y , is obtained by the following equation. 

∫= θθ dyypyyp )|,~()|~(  

                                                                    ∫= θθθ dypyyp )|(),|~(  

                                                                    ∫= θθθ dypyp )|()|~( . 

, where the last equality holds because y  and y~  are independent conditioned on θ  . The 

distribution of y~  given the realized value y  is called the posterior predictive 

distribution. 
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The object of Bayesian is to obtain the posterior distribution for each model 

parameter given data, which requires integrating over the posterior distribution of models 

parameters to find the proportional to constant. Therefore, Bayesian inference potentially 

requires high-dimensional integration to make inference on model parameters or 

predictions, which is often analytically difficult or impossible. Markov chain Monte 

Carlo (MCMC) methodology, a simulation-based technique, provides a solution to the 

problem. The MCMC enables us to draw samples from probability distributions by 

constructing a Markov chain that has the target distribution as its equilibrium distribution. 

The two most well-known ways of constructing a Markov chain that has such a property 

are the Metropolis-Hastings algorithm (Metropolis et al. (1953) and Hasting (1970)) and 

the Gibbs sampling (Geman and Geman (1984)), which is the special case of the MH 

algorithm3. MCMC is an essential tool in recent research in economics and econometrics 

using Bayesian inference. 

 

  Part II of the dissertation consists of three essays on the application of Bayesian 

inference using MCMC to topics in economics. Chapter 1 deals with an application in 

modeling in health and medicine, and develops a cost-effectiveness analysis using 

Bayesian approach. Cost-effectiveness analysis based on the Bayesian approach is a form 

of  probabilistic cost-effectiveness analysis. Uncertainty in inference is well-captured by 

the probabilistic cost-effectiveness analysis, which is one of the reasons why this type of 

analysis has been increasing. 

                                                 
3 Casella and George(1992) and Chib and Greenberg(1995) provide an intensive summary about the Gibbs 
Sampling and the Metoopolis-Hastings algorithm.  
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A Bayesian approach is sometimes preferred because of its computational ease. 

For example, simulation-based inference is powerful enough to handle models with latent 

observations or variables. Chapter 2 and 3 discuss such cases.  

 Chapter 2 consists of a Bayesian analysis of a discrete-time asset pricing model. It 

is widely known that a bias occurs when one estimates a discrete-time asset pricing 

model, if the approximation from the original continuous-time model to the one in 

discrete-time is naive. One way of avoiding the bias was proposed by Eraker(2002),  who 

suggested augmenting data between the observables to make the approximation closer to 

the original using MCMC.  

 Chapter 3 analyzes another type of model in finance, the stochastic volatility 

model.  The stochastic volatility model includes the vector of volatility state, which is 

latent in the model. The existence of the latent variables makes estimation of the model 

cumbersome. With the help of MCMC, the estimation can be relatively easily handled.  

In Chapter 1 and Chapter 3, we use the concept of Bayesian predictive densities. 

Predictive densities can show uncertainty accompanied with forecasted values, which is 

important for decision making based on the forecast.  MCMC methodology is also useful 

to obtain predictive densities when the analytical predictive density is unavailable. 
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Part II 

 

CHAPTER 1: A BAYESIAN APPROACH TO MODELING DEPENDENCE IN COST-

EFFECTIVENESS ANALYSIS 

 

1.1 Introduction 

Cost-effectiveness analyses have been widely used not only in the field of health 

economics but also in other health and medical fields. The purpose of cost-effectiveness 

analysis is to compare the differences, or increments in cost and effectiveness between 

two treatments. Since the two variables are often related to each other, it is important to 

model cost and effectiveness simultaneously.  

O'Hagan et al.(2001) assume that cost C  and effectiveness E  are distributed as; 

                                 ),(~),( ΣαNcef                                                              (1.1) 

In their model, it is supposed that the measures of cost and effectiveness follow 

the bivariate normal distribution with the mean vector α  and the variance-covariance 

matrixΣ . Although the normal distribution is easy to handle, the model based on the 

normal distribution has some limitations. First, the normality assumption is not always 

appropriate for cost data that is often skewed; second, the model also does not allow a 

non-normal distribution in effectiveness measure, where survival function is often used in 

analysis. 

An alternative model assumes a joint density function ),( cef where the 

variable E  is categorical (O'Hagan and Stevens (2001); Heitjan and Li (2001).)  For 



 

 

6
 

 
 

 
 

example, O'Hagan and Stevens model the joint pdf of cost and effectiveness using the 

following equation: 

                                      
⎩
⎨
⎧ −

=
)|(

)|()1(
),,|,(

1

0
10 θφ

θφ
θθφ

cf
cf

cef   
if
if

   
1
0

=
=

e
e

                                   

, where φ  is the probability of 1=e and 0θ  is a vector of parameters of function 

)(cf when 0=e and 1θ  is a corresponding vector when 1=e . This approach is 

appropriate when the effectiveness is a categorical variable. 

The aim of this paper is to propose an alternative approach to model the joint 

distribution of ),( cef using copulas.  According to Nelson (2006), "Copulas are 

functions that join or "couple" multivariate distribution functions to their one dimensional 

marginal distribution functions." The study of copulas started in probability and statistics, 

and applications of copulas to finance and survival analysis have also been increasing 

(Cherubini et al. (2004); Shemyakin and Youn (2006); Rodeo et al.(2006).) 

One of the useful features of joint distributions based on copulas lies in the 

flexibility of the assumption one can make on the marginals. Equation (1.1) assumes that 

the marginal distributions of E  and C  are both normal, but one can choose any 

distributions as marginals in copula models.  In the example presented in this paper, we 

construct the distribution function ),( cef  using a Weibull distribution for )(ef and a log-

normal distribution for )(cf . 

Introduction of copulas into cost-effectiveness analysis was first made by Quinn 

(2005). Our model is different from his in three aspects. First, we conduct a Bayesian 

analysis while Quinn conducts his analysis from frequentists’ point of view. The 

Bayesian framework has recently become popular in cost-effectiveness analyses (Briggs 
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(1999); Heitjan et al.(1999); Al and Van Hout (2000); O'Hagan and Stevens (2001); 

O'Hagan et al. (2001); Vanness and Kim (2002); Vázquez Polo et al.(2005)). Bayesian 

methods allow us to incorporate prior information or ideas into the analysis through prior 

distributions. 

Second, we face censored data in the effectiveness measure while Quinn uses 

non-censored data. Our model assumes survival time as effectiveness, and available data 

for survival is often censored. Willan et al.(2005) developed a model for censored data 

with a joint normal assumption.  

 Third, Quinn assumes normal distribution for effectiveness equation while this 

study assumes Weibull distribution.  

                The paper is organized as follows. Section 1.2 introduces the model of a joint 

function of cost and effectiveness using three kinds of copulas. In section 1.3, Bayesian 

estimation of the copula models is developed. Section 1.4 explains the cost-effectiveness 

analysis. Section 1.5 illustrates our model with a sample of adults aged between 25 and 

74 years from the NHANES I Epidemiologic Follow-up Study (NHEFS). A simulation of 

cost-effectiveness analysis is conducted using the estimated model. Section 1.6 concludes 

the chapter. 

 

1.2 The Model 

Our model of the joint distribution of cost and effectiveness consists of two parts: 

(1) modeling the marginals for cost and effectiveness, and (2) choice of copulas. It is 

supposed that we have patient-level data from a clinical trial or a survey with 

observations on subject i ),....,1( ni = . Our approach is regression-based analysis, and for 
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each i , the data includes measurements of effectiveness ie , cost ic and a set of 

covariates ),.....,,,,1( 21 ikiiii yyyxz = . Here ix is the intervention dummy, which takes 1 if 

the patient received the intervention, and 0 if she did not. ikii yyy ,.....,, 21 are other 

covariates with k  the total number of the control variables. The control variables can 

include characteristics of patients such as age, sex and measures of health condition. It is 

of interest to estimate the cost and effectiveness equations using the Data 

},,{ iii zceD = for ni ,....,1= . Here, we assume that the covariates used in the two 

equations are the same, but more flexible assumptions would be possible. 

In this study, the duration of survival is used as the effectiveness measure E  

with 0>E . The survival function is written as )(1)Pr()( eFeEeS EE −=>= , where E  is 

a random variable denoting time to death and e is an arbitrary number, and )(eFE  is the 

cumulative distribution function of E . The cost variable C  is assumed to be a continuous 

random variable that has the cumulative distribution function )(cFC . 

The next step is to introduce the dependence between E  and C using copulas. 

Copulas are multivariate distribution functions where the marginal of each variable is a 

uniform distribution. This study deals with two-dimensional copulas to construct joint 

distributions of variables E  andC , and formally defines them as follows: 

 

A bivariate copula is a function ]1,0[]1,0[: 2 →C with the following properties: 

1. For every u  and  ],1,0[∈v  

),0(0)0,( vCuC ==  

and 
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uuC =)1,(  and ;),1( vvC =  

2. For every ]1,0[,,, 2121 ∈vvuu  such that 21 uu ≤  and 21 vv ≤ , 

0),(),(),(),( 11211222 ≥+−− vuCvuCvuCvuC  

The most well-known theorem on copulas is Sklar's theorem that states a copula 

recovers the joint distribution function of two random variables from their marginal 

distributions. For example, one can obtain the joint distribution function 

))(),((),( yFxFCyxF YXXY =  of the cumulative distribution functions (cdf) of two random 

variables )(xFX  and )(yFY using the associated copula C  with )(xFu X≡ and )(yFv Y≡ .  

Another example of copulas is survival copulas. A joint survival function of two 

random variables, X  and Y ,  is ),( yxS XY  and is defined by ))(),((ˆ ySxSC YX where Ĉ  

shows a survival copula and )(xS X is a survival function of random variable X  and 

)(ySY  is the corresponding function of random variable Y . Applications of copulas in 

survival analysis are found in Romeo et al. (2006) and Shemyakin and Youn (2006). 

In our case, effectiveness variable E  is more closely related to the survival 

function )(eSE rather than )(eFE  in its interpretation, and therefore it is natural to build 

the joint function of E  and C  based on )(eSE and )(cFC . Assuming  )(eSu E≡  and 

)(cFv C≡ given a dependence parameter , the joint function of the survival function and 

the distribution function for the cost equation based on a copula C is defined by 

                           ),Pr());(),((),( cCeEcFeSCceH CE ≤>== α                                  (1.2) 

It is important to notice that the function expressed by equation (1.2) is not a joint 

distribution function or joint survival function. Indeed, 0),( =−∞eH but 

0),( ≠−∞ cH and 1),( ≠∞∞H . 
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There are many classes of copulas, and an important class is known as 

Archimedean Copulas. This class of copulas is generated using the following function: 

                                 ))()((),( 1 vuvuC ϕϕϕ += − , ]1,0[, ∈vu                                          (1.3) 

, where is a continuous, strictly decreasing, convex function ],0[]1,0[ ∞→ such that 

∞=)0(ϕ and the inverse function 1−ϕ satisfies ]1,0[],0[:1 →∞−ϕ , 1)0(1 =−ϕ  

and 0)(1 =∞−ϕ . One of the important features of Archimedean copulas is their symmetry; 

),(),( uvCvuC = for all ]1,0[, ∈vu . 

Archimedean copulas are applied in wide range of studies mainly because of their 

ease of construction (Nelson 2006). Among a number of Archimedean copulas, the 

following three well-known families are considered: Clayton, Gumbel-Hougaard and 

Frank families. The three families are different in dependence structure between 

variables, and each copula is explained as follows. 

 

1. Clayton family 

A Clayton copula is generated by equation (1.3) with 

)1(1)( −= −α

α
ϕ xx . 

From this equation, we obtain )1)((1))(( −= −α

α
ϕ eSeS EE and )1)((1))(( −= −α

α
ϕ cFcF CC . 

The joint function equation (1.2) based on Clayton copula is given by 

11 )))(())((( −− + cFeS CE ϕϕϕ , which is 

                      ,)]0,1)()([max(),( /1 ααα −−− −+= cFeSceH CE  }0{\),1[ ∞−∈α .             (1.4) 
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The original form in Clayton(1978) allows only positive dependence, but this general 

version allows positive or negative dependence. As 0→α , we have 

)()(),( cFeSceH CE= . 

 

 2. Gumbel-Hougaard family 

The generating function for Gumbel-Hougaard family is given by 

αϕ −−= )ln()( xx . 

 In a similar way as Clayton family, this function together with (1.3) yields the following 

equation: 

       [ ]{ })/1()))(ln(()))(ln((exp),( ααα cFeSceH CE −+−−= ,     ),1[ ∞∈α                      (1.5) 

    As 1→α , we have )()(),( cFeSceH CE= . This family permits only positive 

dependence. 

 

 3. Frank family 

The generating function for Frank family is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−= −

−

1
1ln)( α

α

ϕ
e
ex

x

. 

The joint function given by equation (2) is therefore: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−−−
+⎟

⎠
⎞

⎜
⎝
⎛−=

1)exp(
)1))()(exp(1))((exp(1ln1),(

α
αα

α
cFeSceH CE      }0{\),( ∞−∞∈α      (1.6) 

This copula allows both negative and positive dependence. As 0→α , we 

have )()(),( cFeSceH CE= . 
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1.3 Bayesian Estimation 

A Bayesian estimation of models with copulas is made in Romeo et al.(2006), and 

we closely follow their method. The estimation consists of two steps: in the first step, 

parameters in the survival and cost equations are estimated assuming their independence; 

and in the second step, the parameter for dependence (α ) is estimated by the pseudo-

likelihood function with the estimated parameters from the first step integrated. 

The probability density function (pdf) of the survival function )(eSE is denoted 

as )(efE , and the pdf of )(cFC is written as )(cfC . The effectiveness measure, survival 

time, is usually censored and estimations are made with the observed (censored) 

variable },min{ iii tew = , where ie is a time to death and it is a censoring time. The binary 

for censoring is denoted as ][ iii ewI ==δ . 

We define Eφ and Cφ as the vectors of parameters in the survival function and cost 

equation respectively. The likelihood function for the survival function with censored 

data is expressed as: 

∏
=

−=
n

i
iEiEE

ii wSwfwL
1

1)()(),|( δδδφ  

    The likelihood function for the cost equation is straightforward and given by 

∏
=

=
n

i
iCC cfcL

1

)()|(φ  

    Together with the prior distributions for parameters, )( E
E φπ φ and )( C

C φπ φ  , the 

posterior pdfs of the parameters are given by 

                                       )(),|(),|( EEE
EwLw φπδφδφπ φ∝                                           (1.7)   

    and 
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                                             )()|()|( CCC
CcLc φπφφπ φ∝                                               (1.8) 

In the second step, the pseudo-likelihood function for the dependence parameter 

α  is formed, given the posterior means of parameters in the two equations, Eφ̂ and Cφ̂ . 

The derivation of the pseudo likelihood function is referred to Appendix A.  

i

i

n

i i

ii
iiCE c

cwHcwfcwL
δ

δ α
αφφδα

−

=
∏ ∂

∂
×=

1

1

);,();,(),,,,|(  

  Given the likelihood function and the prior distribution of α , )(απ α , the 

posterior pdf of the dependence parameter is given by 

                              )(),,,,|()ˆ,ˆ,,,|( απφφδαφφδαπ α
CECE cwLcw ∝                            (1.9) 

Three equations (1.7)(1.8) and (1.9) are obtained by the Markov Chain Monte 

Carlo method once the likelihood functions are formed. 

 

1.4 Cost-Effectiveness Analysis 

From the estimated joint distribution function of E  andC , a cost-effectiveness 

analysis is conducted. The cost-effectiveness of two treatments is often measured by the 

incremental cost-effectiveness ratio (ICER)     

                                          
12

12

EE
CCICER

−
−

≡                                                      (1.10) 

    where jC shows average costs for treatment j and jE shows average effects 

received from treatment ).2,1( =jj  The ICER shows the ratio of increment in cost of 

Treatment 2 over Treatment 1 to increment in effectiveness of Treatment 2 over 

Treatment 1; therefore a negative ICER suggests either Treatment 2 is more costly and 



 

 

14
 

 
 

 
 

less effective, or less costly and more effective. If the ICER is a positive number, either 

Treatment 2 exceeds Treatment 1 in both cost and effectiveness, or vice versa. Costs in 

cost-effectiveness analysis include direct costs of intervention, and effectiveness is often 

measured by life year saved. In the regression model in cost-effectiveness analysis, the 

different treatments are captured by a binary x  to show which of the treatments people 

received. If an individual i received Treatment 1 ix  takes 0; if she received Treatment 2, 

ix   is 1. 

    One can narrow down the information conveyed by the ICER by plotting the 

incremental cost and effectiveness, 12 CCC −≡Δ and 12 EEE −≡Δ , in the x-y plane. In 

the plane, called cost-effectiveness plane, the x-axis represents the difference in effects 

and y-axis represents the difference in costs between two treatments.  The south-east 

quadrant of the plane shows Treatment 2 is more effective and less costly than Treatment 

1. The north-west quadrant shows the dominance of Treatment 1. The north-east quadrant 

shows Treatment 2 is more effective but more costly; and the south-west quadrant means 

Treatment 1 is more effective but more costly. The plot of distributions of CΔ and EΔ  

reveals the probability of each possibility in the plane. 

 

1.5 An Example 

We apply the model developed in earlier sections to a sample of adults between 

25 and 74 years old from the NHANES I and its Epidemiologic Follow-up Study 

(NHEFS). The study examines the baseline health of a cross-section of individuals 

between 1971 and 75 and then follows their history over the next 20 years. Unfortunately 

the survey does not include an intervention, and we suppose a hypothetical scenario for a 
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cost-effectiveness analysis. The scenario assumes that a hypothetical intervention would 

lower systolic blood pressure below 140. Treatment 1 is "do- nothing" to treat high blood 

pressure, and Treatment 2 immediately cures high blood pressure as a result of the 

hypothetical intervention. In this setting, the binary of having high blood pressure is 

considered as the intervention variable in the model. 

The costs of Treatment 1 are the costs of medical care for the untreated high 

blood pressure. The costs of Treatment 2 are the costs of hypothetical intervention, which 

we assume to be zero for simplicity, and the costs of medical care that occur despite the 

treatment. The cost of medical care in each treatment is measured by hospital days per 

year. The monetary cost can be obtained by multiplying the hospital days per year by the 

cost per inpatient day, but the multiplication affects only the unit of cost and does not 

change the entire argument regarding the model itself. Hence we show the results based 

on hospital days per year as the cost variable C. 

To estimate the survival time E, the variable of duration at risk is used, which is 

the length of time between the first interview date of the survey and either the last 

interview date or the date of death, whichever occurred first. 

We assume the Weibull distribution for survival function, whose pdf is shown by 

the following equation: 

))exp(exp(),|( ωωφ −=EE zef  

,where )'(ln zep Eβω −=  and z  is a vector of constant term and a set of variables. A 

vector of parameters is defined as },{ pEE βφ ≡ .  The cost variableC , conditioned on the 

covariates is assumed to follow log-normal distribution 
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The covariates include only three variables and the constant term: (1) binary for 

having systolic blood pressure of 140 or higher as the "intervention" variable, (2) age, 

and (3) the number of chronic diseases from the following nine conditions: 

asthma/pleurisy/emphysema, diabetes, heart attack/failure, stroke, malignant tumor, 

spine/hip/wrist fracture, arthritis/gout, ulcer, and tuberculosis. 

 

1.5.1 Data 

Among the 11,419 respondents in the survey, we only use respondents who 

reported more than one hospital day during the sample period (n=7866). This is because 

our simple model assumes Log-Normal distribution in the cost equation, which does not 

allow 0 values. Table 1.1 shows descriptive statistics of the sample. The duration at risk, 

in the first row of the table, shows the period between the first interview and date of 

death, or date of the last interview when the respondent is alive at the time of the last 

interview. 

The mean of hospital days per year is 3.48. As shown in Figure 1.1, the 

distribution of the variable is highly skewed and the median value is 2.25. It shows that 

31% of the entire respondents in the sample belong to the range above 0 and less than or 

equal to 0.5. 
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Table 1.1: Descriptive statistics: sample from NHEFS 

(n=7866) Mean Std.D Max Min 
Duration at risk*, in years 16.4 4.81 22.06 0.02 
Hospital days per year 3.48 16.63 219.15 0.04 
Age, in years 50.7 15.28 76 24 
High blood pressure** (0 or 1) 0.39 0.49 1 0 
Number of chronic disease (9 maximum) 0.91 1.03 7 0 

 
* Duration at risk is the length of time between the first interview date and either the last interview date or 
date of death whichever occurred first 
** The variable takes 1 if the systolic blood pressure is 140 mm Hg or higher; 0 otherwise.  
 
 
 

As for the variables for covariates, 39% of the people have a systolic blood 

pressure of 140 or more in the sample and the mean age of the sample is 50.7. On 

average, people have one chronic disease where the maximum number of chronic 

diseases is 7 and the minimum is 0. 

The second panel of Figure 1.1 shows the plot of the duration at risk, from which 

the survival time is estimated, and the cost. A slight negative association between the 

variables is observed, and we attempt to capture the association between the two 

variables using copulas. 

 

1.5.2 Estimation 

The Bayesian estimation of Weibull survival and log-normal cost was done by the 

experimental version of SAS Bayesian module downloadable at 

http://support.sas.com/rnd/app/da/bayesproc.html. The module uses Gibbs-sampling to 

obtain the posterior density of the parameters. The Weibull regression, performed by the 

BLIFEREG procedure in the module, uses the algorithm proposed in Ibrahim et 

al.(2001). There after the full conditional distribution of each parameter is analytically 
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obtained, they sample from the full conditional using a rejection algorithm. For the log-

normal regression, the BGENMOD procedure was used. To make data smooth, the 

natural logarithm is taken in age. 

  For the estimation of the dependence parameterα , we use an efficient jump 

proposed by Gelman et al. (2004). The efficient jump method is one of the Metropolis-

Hastings algorithms, and useful in case we do not find a candidate theoretically as the 

proposal density. The estimates were obtained by 8000 interations after a burn-in of 2000 

values. To obtain the posterior statistics, every 3rd draw is kept. The priors of all the 

parameters are assumed to be non-informative and flat in this study. Choices of priors is 

an issue, and some discussions on the effect of prior distributions in cost-effectiveness 

analysis is found in O'Hagan and et al.(2001). 

 

1.5.3 Estimation Results 

Table 1.2 shows the posterior means and standard errors of the parameters in the 

model. Having high blood pressure, older age, and more chronic diseases are negatively 

related to survival, and positively related to hospital days per year. The scale parameter in 

the log-normal distribution for cost is 1.25, showing the high skewness of the cost 

variable. The posterior mean for the dependence parameter is 1.12 with Clayton, 1.48 

with Gumble-Hougaard, and 4.24 with Frank copulas. All the values indicate positive 

dependence between the two functions )(eSE and )(cFC . This implies that the variables 

E  and C  are negatively associated because function ES is a decreasing function of E  

and )(cFC is an increasing function of C . 
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Figure 1.1: Plot of variables from NHEFS 

(a) Distribution of hospital days per year 
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(b) Duration at risk and hospital days per year * 
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 * Duration at risk is the length of time between the first interview date and either the last interview date or 
date of death whichever occurred first. 
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The plot of posterior samples and posterior density for α  is also shown for each 

copula in Figure 1.2. The convergence of Markov Chains is visually confirmed in the top 

panels of the figure. The dependence parameters for different copulas cannot be 

compared directly with each other as the models are different; however, the range of the 

posterior densities stays away from 0 for Clayton, 1 for Gumble-Hougaard, and 0 for 

Frank, which indicates some dependence between the effectiveness and the cost. 

From the dependence parameter in copulas, one can easily obtain measures for 

dependence such as Kendall's tau and Spearman's rho. These measures of dependence are 

rank correlation coefficients, and have the following properties. If the agreement between 

the two rankings is perfect, the coefficient takes 1; if one ranking is the reverse of the 

other, the coefficient takes -1; and the rankings are independent, the coefficient takes 0 

value. Unlike measures of linear dependence between random variables, such as 

Pearson's correlation coefficient, Kendall's tau is a scale-invariant measure of 

dependence.  

From the estimated dependence parameter in each copula function, we obtained 

the following estimates for Kendall's tau. Tau is 0.36 for Clayton, 0.32 for Gumbel-

Hougaard,  and 0.41 for Frank. They show moderate association between the functions. 

To have a better idea of the shape of the density function with each copula, Figure 

1.3 shows the surface and contour of the pdf ),( cef for each copula. It is important to 

note that this is not the joint posterior density of  E  andC , but a simple draw of the joint 

pdf of the two variables when the parameters are fixed. The function is the joint pdf 

conditioned on the parameters αφφ ,, CE  and covariates z . In the figure, the parameter 

values are fixed at the posterior means, and the following assumption is used for 
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covariates z: binary for high blood pressure is assumed to be 1 (Treatment 2), age is 60, 

and the number of chronic diseases is 0. In each family of copula, the negative 

association between E  and C  is observed with the estimated value for the given 

parameters: the larger number for hospital days per year is associated with the shorter 

survival time.  

 

1.5.4 A simulation 

A small simulation is made using the estimated model to show an example of 

cost-effectiveness. This is a counter-factual experiment, and assumes that persons who 

have high blood pressure reduce their blood pressure to safe level. We assume a specific 

type of patient, who has high blood pressure, is 60 years old and has no other chronic 

conditions than high blood pressure, and examine the effect on costs and effects of 

reduction of blood pressure under 140. We can think of this as two different treatments 

for high blood pressure. The original treatment (Treatment 1) does not treat high blood 

pressure actively and leave the condition. 

First, we obtained the cost-effectiveness plane. The mean costs and effects are 

defined by the expected values of E and C , and denoted as )(EE and )(CE  . Using the 

expected values of E andC  , the equation can be rewritten as 
μ
γ

μμ
γγ

Δ
Δ

=
−
−

=
12

12ICER  

, where )( jj CE=γ  and )( jj EE=μ  with 2,1=j . For copula models, the expected values 

were calculated using Simpson's rule, a method of numerical integration. When assuming 

the independence between the two equations, the expected values were obtained using the 

standard formulas for expected values in Weibull and log-normal distributions.  
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Figure 1.4 shows the cost-effectiveness plane. Copulas affect only the distribution 

of E andC , and the means are invariant among the models. Therefore, we do not find 

much differences in the distribution of conditional expectations of E andC  among 

different models. This is also shown in summary statistics shown in Table 1.3. 

Although the cost-effectiveness analysis is usually conducted by using the mean 

cost and effectiveness for a particular group, it would be worth while seeing the 

distribution of cost and effectiveness for a particular person or patient at a patient level. 

The conditional distribution of mean cost and effectiveness shown in Table 1.3 and 

Figure 1.4 shows the information for a group of persons who have certain characteristics 

(persons aged 60 with no chronic condition in this example) while the distribution of 

individual cost and effectiveness shows the information for an individual patient who has 

certain characteristics. The distribution of cost and effectiveness for an individual can be 

obtained using Bayesian predictive density. Using predictive densities, we would be able 

to obtain predicted distributions of E andC  with a set of patient characteristics given. 

When a set of patient characteristics is denoted as z~ , and the predictive values of 

E andC  associated with the person's characteristics z~  are denoted as e~ and c~ , the joint 

posterior density for e~ , c~ and parameter α , is written as 

)ˆ,ˆ,,,,|()~,|~,~()ˆ,ˆ,~,,,,|,~,~( ECEC zcwzcefzzcwceh φφδαπαφφδα =  

The predictive density is obtained by integrating the parameter α out: 

             αδαπαδ dzcwzcefzzcwceh ),,,|()~,|~,~()~,,,,|~,~( ∫=               (1.11) 
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Table 1.2: Posterior statistics of parameters 

   Mean Std.D A.R.* 
Weibull regressions for survival     
  Intercept 18.1 0.16 N.A. 
  Binary for high blood pressure -0.12 0.02 N.A. 
  Log of age -2.17 0.04 N.A. 
  Number of chronic diseases -0.06 0.01 N.A. 
  Scale(1/p) 0.52 0.01 N.A. 
Log-normal regressions for cost     
  Intercept -5.81 0.22 N.A. 
  Binary for highblood pressure 0.26 0.03 N.A. 
  Log of age 1.44 0.06 N.A. 
  Number of chronic diseases 0.24 0.02 N.A. 
  Scale(v) 1.25 0.01 N.A. 
Dependence Parameter     
  Clayton 1.12 0.04 0.16 
  Gumbel-Hougaard 1.48 0.02 0.07 
  Frank 4.24 0.11 0.39 

 
* A.R.=Acceptance rates for the Metropolis-Hastings algorithm 
 N.A.=Not applicable 
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Figure 1.2: Plot of posterior draws and posterior pdf for the dependence parameter 

(a) Clayton family 

 

(b) Gumbel-Hougaard family 
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(c) Frank family 

 

The efficient jump method was used to obtain the posterior densities for the dependence parameter. The 
number of Markov chains is 10,000 and the first 2,000 was burned. 
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Figure 1.3: Contour and surface of joint pdf of effectiveness and cost with various 
copulas 
(a) Clayton family 
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(b) Gumbel-Hougaard family 
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(c ) Frank Family 

 

 

 

The parameters are fixed at the posterior mean. The covariates are set assuming the following 
characteristics: aged 60, with no chronic conditions and high blood pressure (systolic blood pressure 140 
mm Hg or more.) 
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Table 1.3: Means and standard deviations for cost, effectiveness and incremental cost and 
effectiveness for a group of persons aged 60 and no chronic condition (Low-risk persons) 
 
    Treatment 1 Treatment 2 Difference of two treatments 
    Hospital days Survival Hospital days Survival  Hospital days Survival 
Independent        
  Mean 3.04 21.25 2.35 24.08 -0.69 2.83 
  Std.D 0.09 0.38 0.08 0.51 0.09 0.49 
Clayton         
  Mean 2.89 20.85 2.3 23.27 -0.6 2.41 
  Std.D 0.08 0.37 0.07 0.49 0.08 0.48 
Gumbel-Haugaard        
  Mean 2.9 21.19 2.3 23.87 -0.6 2.68 
  Std.D 0.08 0.38 0.07 0.5 0.08 0.49 
Frank         
  Mean 2.89 21.23 2.3 23.9 -0.59 2.68 
  Std.D 0.08 0.38 0.07 0.51 0.08 0.49 
 
Treatment 1 is no active treatment for high blood pressure conducted, and Treatment 2 is treatment for high 
blood pressure was conducted and patients’ blood pressure was reduced to safe level.   
 
 
 
 

We obtain the joint predictive density of e~ and c~ , for a fixed value for the vector 

of covariates z~ using Equation (1.11). Since the binary for high blood pressure is used as 

the intervention variable, it is set to be 1 for Treatment 1 and 0 for Treatment 2. As a 

result, each treatment arm has a different predictive density for variables E andC . Under 

treatment i  the effectiveness is iE and the cost is iC  for 2,1=i . We can choose the values 

for other variables in z freely. We consider two sets of characteristics of a patient for z~ . 

The first type is the same as the previous case, and it is a person aged 60 with no chronic 

condition (low-risk person). In addition to this, we also consider another type of person: a 

person aged 60 who has 4 chronic conditions (high-risk person).  
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Figure 1.4: Cost-effectiveness plane for persons aged 60 with no chronic conditions (low-
risk persons) 
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)()( 1212 EEEE −=−≡Δ μμμ , and )()( 1212 CECE −=−≡Δ γγγ . 1E  and 1C show 
effectiveness and cost under Treatment 1 (No active treatment for high blood pressure was conducted) and  

2E  and 2C show effectiveness and under Treatment 2 (treatment for high blood pressure was conducted). 
The expected values of cost and effectiveness are conditioned on the parameters. 
 
 
 

(1) Person aged 60 with no chronic conditions (Low-risk person) 

The plot of predictive densities of cost and effectiveness under Treatment 1 is 

presented in Figure 1.5. Each panel shows the result from a different type of copula. For a 

comparison, the plot of predictive densities from two independent marginal densities 

(Weibull and log-normal distributions) is also shown in the first panel of the figure. From 

the model assuming two independent marginals, the realized e~  and c~ are randomly 

scattered; however, we observe a negative dependence - longer life time is associated 

with less cost, and shorter life time is associated with higher cost- in the result from the 
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three models with copulas. The figure shows that the predictive density from the copula 

model successfully incorporates the negative dependence between the effectiveness and 

cost. 

From the two sequences draws ),( 11 CE and ),( 22 CE , the sequence of the new 

variable ),( CE ΔΔ were calculated where 12 EEE −≡Δ and 12 CCC −≡Δ . The plot of EΔ  

against CΔ , the cost-effectiveness plane, is presented in Figure 1.6. The draws are most 

widely spread in the South-East quadrants of the plane among the four, indicating the 

probability that Treatment 2 dominates Treatment1 is the highest. We observe the 

negative dependence between E and C here too. 

The top panel of Table 1.4 shows the summary statistics. The mean of survival 

time under Treatment 1 ranges from 22.02 to 22.28 years while the mean survival time 

under Treatment 2 from 25.16 to 25.51. The highest mean cost is 3.10 and the lowest is 

2.34 in Treatment 1 and the corresponding costs are 2.31 and 1.83 days respectively in 

Treatment 2. From the results, we conclude that the means of the incremental cost are 

negative and those of the incremental effectiveness are positive values. 

Pearson's correlation coefficients between iE and iC as well as EΔ  and CΔ  are 

calculated. The model with copulas show moderate correlation between the two variables 

where the correlation coefficients range between -0.22 (Clayton family) and -

0.29(Gumbel-Hougaard and Frank families). 

 

        (2) Person aged 60 with 4 chronic conditions (High-risk person) 

A similar exercise was performed with the number of chronic conditions set to be 

a different value. The number of chronic conditions is set to be 4 instead of 0. Table 
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1.4(b) shows the summary statistics. The means of 1C  and 2C are more than twice as 

large as the low-risk individual case. The mean of the simulated survival time reduces 

from 22 to17 years for 1E and from 25 to 19 years. The means of CΔ  range between -

1.53 and -1.30, and those of EΔ range between 1.91 and 2.15. 1E , 1C , CΔ and EΔ  are 

plotted in Figure 1.7. The correlation among the variables remains unchanged. 
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Table 1.4: Means and standard deviations for cost, effectiveness, and incremental cost and 
effectiveness for two types of an individual  
(a) Person with age 60 and no chronic condition (Low-risk person) 

      Treatment 1 Treatment 2 
Difference of two 

treatments 

      
Hospital 

days Survival 
Hospital 

days Survival 
Hospital 

days Survival 
Independent 
   Mean 3.1 22.16 2.31 25.16 -0.79 3 
   Std.D 10.75 9.28 3.84 10.42 11.41 13.95 
Clayton 
   Mean 2.88 22.28 2.17 25.51 -0.7 3.22 
   Std.D 5.18 9.49 3.88 10.6 6.48 14.1 
Gumbel-Haugaard 
   Mean 2.34 22.16 1.83 25.29 -0.51 3.13 
   Std.D 3.37 9.35 2.65 10.53 4.28 14.08 
Frank 
   Mean 2.76 22.02 2.11 25.22 -0.65 3.2 
    Std.D 5.38 9.32 4.28 10.37 6.94 14.14 
Independent  Corr 0.01 0.02 0 
Clayton  Corr -0.23 -0.23 -0.22 
Gumbel-Haugaard Corr -0.29 -0.29 -0.29 
Frank   Corr -0.29 -0.28 -0.29 

 
 
 (b) Person with age 60 and 4 chronic conditions (High-risk person) 

      Treatment 1 Treatment 2 
Difference of two 

treatments 

      
Hospital 

days Survival 
Hospital 

days Survival  
Hospital 

days Survival 
Independent 
   Mean 7.85 17.21 6.32 19.35 -1.53 2.14 
   Std.D 13.91 7.18 12.47 8.04 18.66 10.75 
Clayton 
   Mean 7.58 17.2 6.11 19.11 -1.47 1.91 
   Std.D 14.54 7.11 11.56 7.87 18.51 10.46 
Gumbel-Haugaard 
   Mean 6.19 17.14 4.89 19.29 -1.3 2.15 
   Std.D 8.58 7.17 6.78 8.1 10.89 10.77 
Frank 
   Mean 6.76 17.35 5.25 19.49 -1.51 2.14 
    Std.D 14.7 7.25 9.52 8.14 17.53 10.77 
Independent  Corr 0 0.01 0 
Clayton  Corr -0.21 -0.2 -0.21 
Gumbel-
Haugaard Corr -0.27 -0.29 -0.27 
Frank   Corr -0.24 -0.28 -0.25 
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Figure 1.5: Posterior predictive densities of effectiveness and cost for a person aged 60 with 
no chronic conditions (low-risk person) under Treatment 1 
 
(a) Clayton                                                                   (b) Gumbel-Hougaard 
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(c) Frank 
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1E and 1C  show effectiveness and cost under Treatment 1 (no active treatment for high blood pressure was 
conducted). 
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Figure 1.6: Posterior predictive densities of incremental effectiveness and cost for a person 
aged 60 with no chronic conditions (low-risk person)* 
 
(a) Independent                                                             (b) Clayton 
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(c ) Gumbel-Haugaard                                                (d) Frank  
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1E and 1C show effectiveness and cost under Treatment 1 (no active treatment for high blood pressure was 

conducted) and 2E and 2C  show effectiveness and cost under Treatment 2 (treatment for high blood 

pressure was conducted.) 12 EEE −≡Δ  and 12 CCC −≡Δ . The y-axis of each figure is truncated at -
100 and 100 to focus on the center of the figure. 
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Figure 1.7: Comparison between low-risk (number of chronic condition 0) and high-risk 
persons (number of chronic conditions 4) 
 

(a) Predictive densities of effectiveness and cost under Treatment 1 
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(b) Predictive densities of incremental cost and effectiveness 
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1E and 1C show effectiveness and cost under Treatment 1 (no active treatment for high blood pressure was 

conducted) and 2E and 2C  show effectiveness and cost under Treatment 2 (treatment for high blood 

pressure was conducted.) 12 EEE −≡Δ  and 12 CCC −≡Δ . The y-axis of figure (b) is truncated at -
100 and 100 to focus on the center of the figure. 
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1.6. Discussion 

This study developed a Bayesian framework of cost-effectiveness analysis based 

on copulas. Copulas allow us to have both flexibility of assumptions in distributions for 

underlying cost and effectiveness, and to incorporate dependence between the variables 

into the model at the same time. We used a Weibull regression for the survival function 

as effectiveness and a log-Normal distribution for cost, which are common distributions 

for survival and cost analyses. 

The application to a sample from the NHANES I and NHEFS showed the 

existence of positive dependence between the survival and cost functions, which in turn 

indicated negative dependence between measures of effectiveness and cost. Two types of 

analysis were conducted. One is the estimation of the expected value of the differences in 

cost and effectiveness, and this type of analysis would be useful for policy makers. The 

other type of analysis is the prediction for an individual patient. By simulation using 

Bayesian predictive densities, it was shown that the negative dependence between cost 

and effectiveness affects the distribution of incremental cost and effectiveness for an 

individual patient.  Enormous variability was found at the level of the patient.  

 

The following extension of this paper would be considered: The first point is with 

respect to model selection. It is essential to compare good-of-fit among different types of 

copulas. For the model to be used for decision making, it is important to examine which 

type of copula would best fit the data. Second, it is important to discuss under what 

circumstance the copula method is superior over other methods such as the model using 

joint normal assumption.  
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Third, in Bayesian estimation, assumptions on prior distributions of parameters 

are important. Our simplest model assumed the flat prior, but more realistic assumptions 

should be imposed regarding priors. Finally, a more practical setting in cost-effectiveness 

analysis could be introduced. For example, we need to assume positive direct costs for 

intervention. Also, costs in cost-effectiveness analyses are usually indicated in a 

monetary unit. Converting the unit of cost from hospital days per year to the monetary 

cost of hospital stays would give us more intuitive understanding of the results. 
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CHAPTER 2: BAYESIAN ESTIMATION OF DISCRETE TIME ASSET PRICING 

MODELS 

 

    2.1 Introduction  

Diffusion models are widely used for pricing models in finance as well as in 

economics. In econometrics of finance, the main concern is in estimating the parameters 

of the model.  Although continuous time processes are useful tools for analysis of these 

models, estimating the parameters in diffusion models is often difficult because data are 

usually available only at discrete times. To estimate parameters in diffusion models, 

therefore, a number of researchers have suggested various methods.  

One way of estimation is to use discrete approximations of the continuous model. 

Chan, Karolyi, Longstaff, and Sanders (1992) (CKLS hereafter) estimates short-term 

risk-free interest rate models using a discrete-time specification. In their paper, the 

continuous-time model is given by a stochastic differential equation that implies the 

conditional mean and variance of changes in the short-term interest rate depend on the 

level of interest rates. The model is often referred as CEV (constant elasticity of variance) 

models, and widely nests many short-term interest rate models. The discrete-time 

specification is constructed so that it allows the variance of changes to depend on the 

level of the interest rate in a consistent manner with the continuous-time model. Brenner, 

Harjes and Kroner(1996) propose a discrete type short-term interest rate model, as an 

extension of CKLS model, that could have GARCH effects in the conditional variance of 

interest rate changes.  

However, as Eraker(2001) pointed out, naïve discretization might bias estimates 

towards incorrect ones if sampling times are infrequent. The problem that arises from 



 

 

40
 

 
 

 
 

using discrete-time data to estimate continuous-time models is called discretization bias, 

and estimates with discrete-approximation specification may be subject to discretization 

bias. 

A key point about discretization bias is how we set the value of time change. In 

general, researchers set the value to be equal to one when estimating the equation, which 

is naive discretization. However the value should be small enough so that the discrete-

time model could well approximate the continuous-time model. Therefore, Eraker 

suggested that the value should be an arbitrary number chosen by econometricians so that 

the discrete-time model could fully approximate the continuous-time model. To make it 

possible for us to choose a correct value, it is important to know how the choice of the 

value affects the estimates. In this paper, we investigate how the value of time change 

affects the estimates in various settings using simulated data. It is virtually impossible to 

create continuous-time data by simulation, and hence we will use the simulated data 

generated by the discrete-time model.  

Before starting to analyze a discrete-time asset pricing model, I will also consider 

another approach to estimate continuous-time models proposed by Aït-Sahalia(1999, 

2002b). He approximates transition probability functions by Hermite polynominal around 

the normal density and obtains an approximate likelihood functions. His approach is 

different from the discrete-time approach, but it is important to realize that his approach 

also depends on the value of time change.  

As for estimation method, Bayesian methods will be used to estimate models all 

through this paper. A number of other econometric methods have been developed; some 

of them are based on the Generalized Method of Moments (CKLS, Hansen and 
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Scheinkman(1995)) while the Efficient Method of Moments are discussed by Gallant and 

Tauchen(1996), Andersen and Lund(1997). Nonparametric methods are proposed by Aït-

Sahalia(1996a, b). Aït-Sahalia(1999,2002b) develops the approximation method of the 

maximum likelihood as mentioned earlier. From a Bayesian point of view, Eraker(2001), 

Durham and Gallant(2002), Durham(2002) and Jones(2003) conducted studies on 

estimation of continuous-time interest rate models. Jensen and Poulsen(1999) compare 

some of those methods in terms of multiple criteria. As widely known, MCMC methods 

have been proven very useful for handling diffusion models that involve the computation 

of a high-dimensional integral such as state-space models and the stochastic volatility 

models (Eraker 2001). In this sense, MCMC methods would be a good tool to handle 

diffusion models although our analysis in this paper is limited to a one-factor model. 

Lastly, a standard non-informative prior is used in all estimations in this paper.  

  As for the model, I will use a one-factor asset pricing model proposed by CKLS 

in most of my analysis in this paper. However, the Vasicek(1977) model is considered in 

section 2 for the purpose of analysis because the latter model has a known transition 

function.  

The remaining of this paper consists of the following: In section 2, the model we 

use in this paper is introduced and two approaches for estimation are discussed. In section 

3, one of the approaches, the Aït-Sahalia(1999, 2002b) approach, is discussed in terms of 

the importance of the value of time change through some numerical examples. In section 

4, numerical examples with the discrete-time model are shown in various settings: 

knowledge of the data generating process, different frequency of data, and use of 

averaged data. In section 4.1, we discuss when the data generation process is known to 
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us. In section 4.2, a more realistic case, when we do not know the data generation 

process, is dealt with. In section 4.3, Eraker’s data augmentation algorithm is introduced 

and we see how it works. In section 4.4, we discuss estimation with averaged data. In 

section 5, we show some empirical results with daily data of U.S. effective Federal Funds 

rate. Section 6 contains concluding remarks.  

 

2.2 Continuous Asset Pricing Models  

There are mathematics of finance and econometrics of finance. In the field of 

mathematical finance a stochastic differential equation such as 

                                       tttt dWYdtYdY );();( θσθμ +=                                          (2.1) 

is specified to model the dynamics of an asset price, tY . In equation (2.1), tW  is a Wiener 

or Brownian motion, and the drift dd RR →Θ×:μ  and diffusion ddd RR ×→Θ×:σ are 

known functions. The problem is then to solve for tY  under some market conditions such 

as arbitrage relations. 

In the field of econometrics of finance, on the other hand, the problem is to 

estimate unknown parametersθ  in equation (2.1), using data that are taken at discrete 

time t. The discrete time data are assumed to be generated according to equation (2.1). 

It is obvious that equation (2.1) cannot be used to form a likelihood function even 

if we know the distribution of tW  since it is impossible to obtain data on tdY . How can 

we reconcile this dilemma? There are two ways to solve it: 

1. Given the interval h at which the discrete data is collected, we form an 

approximate likelihood function using (2.1). 

2. We use a discrete-time model.  
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The first approach is followed by Aït-Sahalia(1999, 2002b). His approach is 

based on an idea of expanding a density function of tY  by using Hermite polynomials. 

The idea of Herminte expantion goes back to Gramer (1925), but Aït-Sahalia(2002a, b) 

introduced it to the area of finance. Since a continuous-time diffusion is a Markov 

process, the log-likelihood function is expressed by the following equation: 

                                         { }∑
=

−
−≡

n

i
hiihYn YYhpnl

1
)1(

1 );|,(ln)( θθ  .                                  (2.2) 

Conditional on h , his method gives us the closed-form expression of Yp , and 

therefore the likelihood function nl .  

  The second approach proceeds as follows. The discrete-time model version of 

equation (2.1) is 

                                           nnnn WYhYY Δ+=Δ );();( θσθμ                                          (2.3). 

nWΔ is a d-dimensional iid ),0( dhIN  random vector, where dI denotes a d -dimensional 

identity matrix, and h is the unit of time at which data is recorded. The subscript n   runs 

from 0,1  to N .  Let us introduce another index T  and m  such that mThTN ⋅== / .  

As 0→h , equation (2.3) approaches equation (2.1) under some regularity conditions 4. 

       The discrete time model approach has been commonly used in econometrics of 

finance. As long as we know mh /1=  for h  to be small enough, and use the data from 

Nn ,....,1= , there is no problem of discretization bias5. Discretization bias arises if we 

                                                 
4 We should remind ourselves that in general the solutions of difference equation (2.3) and that of the 
differential equation(2.1) are different, since differentiability in time is lost in the discrete time approach, 
e.g. see Kariya and Liu (2003, p4) . 
5 Generally the phrase discretization bias refers to the bias that occurs approximating tdY  in equation(2.1) 

by tYΔ  in equation (2.3) .However, unless 0→Δ , the bias will not disapper. In the discrete-time model 
of (2.3), a bias occurs if we do not know m . In this paper, we call this the discretization bias.  
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have data at Tt ,.....1=  and we do not know h . The relationship between Th,  and N  is 

explained in Figure 2.1.  

 

 

        In Figure 2.1, suppose that t  is a day (i.e. 24 hours or 6024× minutes, and we 

have a sample size of 100 )100( =T  i.e. 100 daily data. If the data is generated every 

hour, then 24/1=h , and if it is generated every minute, then )6024/(1 ×=h . 

 

As for the specification of functions );( θμ nY and );( θσ nY , there has been a 

number of research on the specification of these functions. The most general specification 

of one-factor models was proposed by CKLS (1992): 

                                          tttt dWYdtYdY βσθθ ++= )( 21                                    (2.4)                          

This model becomes the Vasicek(1977) model with 0=β . If 1=β , it is the Brennan and 

Schwartz(1980) model. With 5.0=β , it is the short-term interest rate model studied by 

Cox, Ingersoll and Ross (1985). A summary of these one-factor models is presented in 

CKLS (1992). Here β  measures the elasticity of volatility with respect to the level of the 

interest rate, and 2θ  captures the mean-reversion effect.   

t 
h 

N 

0 1 2 100 

0 24 48 2400 

T 

N 

each interval is h=1/24

Figure 2.1: Relationship between t, h, and N
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        The discrete time specification of the CKLS model (2.4) is given by the following 

equation: 

                               hYhYY ttt
βσθθ 1121 )( −− ++=Δ )1,0(~, Nuu tt                            (2.5). 

 

2.3 Numerical Examples with the Transition Function 

In this section, some numerical examples with Aït-Sahalia (1999, 2002b)’s 

method are demonstrated. The motivation is to reveal the relationship between h  and the 

estimates of coefficients. His method is applied for several models of short-term interest 

rates in his paper (1999), but I only use the Vasicek(1977) model because it has a known 

transition density of Yp . This makes it possible to compare the approximated transition 

function of Yp  to the exact Yp .  

The model we consider in this section is the Ornestein-Uhlenbeck specification by 

Vasicek(1977) for the short-term interest rate 

                                         ttt dWdtYdY σακ +−= )(  .                                             (2.6) 

This model is a special case of the CKLS model shown by equation (2.4).  

The Gaussian transition density of y is  

             { }22
0

)2/1(2
0 /))((exp)/();|,( γκαακπγθ κh

Y eyyyyhp −− −−−−=                (2.7) 

where ),,( σκαθ ≡ and )1( 222 he κσγ −−≡ .  h  is a given small number that shows the 

sampling  interval.  The detail of the derivation can be found in Appendix B. 

  In this simplest case we form the likelihood function using the closed-form 

expression (2.7), given the initial value 0y  and θ  . Our concern is how to set the value of 

h  in the equation. Since the transition density function is a function of h ,  the estimates 



 

 

46
 

 
 

 
 

depend on the value of h . In the study, h  is set to be 12/1  for a monthly sampling 

frequency and 52/1  for a weekly sampling frequency, normalizing a year to be 1.  

 To show the role of h  in estimation, we conduct the following analysis: first, we 

generate the data of Y with equation (2.7) with h set to be a particular value, ,3.,1 == κα  

and =σ 0.77916. Here, h  is set to be 1/24 so that the interpretation of h  should be 

consistent with other analyses in this paper.   Second, we estimate the coefficients ακ ,  

and σ  with 1=h (wrong value) as well as 24/1=h (true value), and compare between 

the results. To estimate the coefficients, Markov Chain Monte Carlo is used. In particular, 

Gibbs-Sampling method can be used because we know the correct distributions of the 

parameters. The detail of Gibbs-Sampling method with the transition density is explained 

in Appendix C.  

The estimation results are presented in Table 2.1. There are a couple of remarks. 

First, there is no influence of h in the estimation ofα . This is simply because the 

coefficient α is not a function of h  as can be seen in Appendix C. Secondly, the 

estimates of κ and σ  are influenced by how you set the value of h . That is, if we know 

the correct value of h , we obtain the almost correct results. However, if we miss-specify 

the value of h , the estimates are far from the true values. The reason is the same as the 

earlier case, and we need a correct value of h to calculate that parameters from estimates.  

Aït-Sahalia’s approach is explained in Appdenix D.

                                                 
6 The value of  σ   is taken from the empirical study of short-term interest rate in Aït-Sahalia (1999).  
κ and α are given arbitrary numbers by the author because the values in his study are closed to zero and it 
is difficult to see clear results.   
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Table 2.1: Posterior statistics for parameters with different values of h  with Vasicek model: 
Using the transition function  
 

  Posterior Statistics  True h Wrong h 

    h=1/24 h=1 

Alpha mean 0.7254 0.7254 
 variance 0.858 0.858 
Kappa mean 0.4 0.0167 
 variance 0.1166 0.0049 
Sigma mean 0.7536 0.1538 

  variance 0.0018 0.0004 
 
The true value for parameters are; 7791.0,3.0,1 === σκα and .Data is generated with 24/1=h . 
The same value is used for true h  to estimate the parameters, and 1 is used for wrong h . For all 
parameters, Gibbs sampling based on the transition function is used. 
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 2.4 Numerical Examples Using the CKLS Model 

2.4.1 When m  Is Known 

         In the previous section, we saw that setting 1=h causes problems in estimation 

and we needed to know a correct value for h . 

In this section, we will show some numerical examples with the discrete-time 

CKLS model7. As mentioned earlier, our concern is how to set h  when estimating 

equation (2.5). We obtain the posterior probability distributions of the parameters in 

equation (2.5) in various settings. 

  Our approach is as follows: First, We will generate data by equation (2.5), 

estimate parameters with the data, and see how the simulation works. To avoid 

discretization bias, it is important to choose an appropriate value for h . Therefore, we will 

start our analysis assuming that m , which is defined by h/1 , is known in subsection 4.1 

as a benchmark case, and deal with more realistic case, where m is unknown, in the next 

subsection. Next, we will introduce Eraker’s data augmentation method. Lastly, we will 

use averaged data instead of point-counted data.  

 

2.4.4.1 Using all data 

We generate data from equation (2.5) with various values of T and mh 1= . 

These generated data sets will approach to continuous data as m  gets large, or in this 

                                                 
7 A numerical example in Bayesian inferences is equivalent to a Monte Carlo sampling experiment in 
frequentists’ inference. In Bayesian inference, a sample is generated given the parameters and the error 
terms. Then given the sample, posterior probability densities (pdf’s) of the parameters are drawn by using 
Markov Chain Monte Carlo algorithms. In frequentists’ sampling experiments, a sample is drawn given the 
parameters and error terms, and point estimates of the parameters are obtained. Then another sample is 
drawn to obtain other point estimates. Repeating sample draws, we obtain the frequencies (empirical 
distributions) of the point estimates.  
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case equivalently h gets small. For example, when m is 24 and T is 100, the data stands 

for hourly data, and we have all observations which consists of 10024×=N .  

We generate data using (2.5) with  

                       7791.0,0876.0,007393.0 21 =−== σθθ  and 48.1=β  

and T is given by 100 and 500. The values of the coefficients are from the empirical 

study if short-term interest rates in Aït-Sahalia (1999). Since we use all the data, and m  

is known, the number of observations we have is mTN ×= . Two values of m  are 

chosen: 1 and 24.  The values correspond to the cases data is sampled daily and hourly 

respectively. We will try to obtain the posterior means of parameters using the generated 

data so that we could see whether the simulation works well. We will assume that the 

value of h (or equivalently m  here) is known all through this subsection.   

        We use Markov Chain Monte Carlo (MCMC) algorithms to draw the posterior 

pdfs of the parameters. The MCMC algorithms are given in appendix E. In MCMC, we 

obtain 6000 MCMC draws and discard the first 1000 draws. To save space, rather than 

presenting the graphs of the posterior pdf’s, we present the posterior summary statistics in 

Table 2.2. Panel A) reports the result with Metropolis-Hastings algorithm and panel B) 

with Gibbs-sampling for θ , which is a vector of coefficients. 

 In Table 2.2, the posterior probability densities (pdf) of the parameters are, in 

general, well centered around the true values. These well-behaved results come from the 

fact that all data generated are available and know h (or equivalently m , in this case). If 

we have all data in our hand and know the value of h , we can obtain posterior 

distributions of the parameters that are centered around the true parameter values. The 

value of h  does not change the result. So long as we know h  and we use all the  
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Table 2.2: Posterior statistics for parameters with various values for m : Using discrete-
time approximation 
 

A) Theta with Metropolis-Hastings algorithm   
    T=100  T=500  
  Posterior statistics m=1 m=24 m=1 m=24 
Sample size   100 2400 100 2400 
Theta1 mean 0.010 0.009 0.007 0.009 
 variance 0.005 0.005 19.438 0.002 
Theta2 mean -0.100 -0.094 -0.074 -0.090 
 variance 0.063 0.080 0.009 0.036 
Sigma mean 0.228 0.762 0.843 0.785 
 variance 0.068 0.045 0.096 0.024 
Beta mean 1.009 1.477 1.511 1.485 
  variance 0.112 0.024 0.041 0.012 
Acceptance rate Theta 0.151 0.075 0.161 0.043 
  Beta 0.152 0.077 0.171 0.040 
      
B) Theta with Gibbs-sampling algorithm    
    T=100  T=500  
  Posterior statistics m=1 m=24 m=1 m=24 
Sample size   100 2400 100 2400 
Theta1 mean 0.007 0.012 0.007 0.009 
 variance 0.003 0.082 0.003 0.034 
Theta2 mean -0.075 -0.110 -0.075 -0.089 
 variance 0.010 0.026 0.010 0.011 
Sigma mean 0.768 0.767 0.768 0.775 
 variance 0.025 0.011 0.025 0.005 
Beta mean 1.487 1.478 1.487 1.479 
  variance 0.015 0.008 0.015 0.003 
Acceptance rate Theta 1.000 1.000 1.000 1.000 
  Beta 0.012 0.004 0.012 0.002 

 
The true values for parameters are; 7791.0,0876.0,007393.0 21 =−== σθθ  and 48.1=β .T is 
the number of observations. m  shows how many data are in between eachT . Data frequency is assumed 
to be daily when 1=m , hourly when 24=m . The last two rows report the acceptance rates of 
Metropolis-Hastings algorithm for θ  and β . In panel A), Metropolis-Hastings algorithm for θ , and in 
panel B), Gibbs-sampling is used.  As for σ , Gibbs-sampling is used in both cases, and therefore 
acceptance rate is 1. 
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observations that are generated and sampled at every h -th interval we have no problem 

of discretization bias. 

 

2.4.4.2 Using every r -th observation 

         The second case is where we do not use all data that are generated. Here, we 

remove the first assumption that we have all the observations at hand, and see how the 

result will be affected.  

Let us assume that every r -th observation is available. That means that we could 

use limited frequency of data out of all generated data. For example, data is generated 

every hour but we use the subset that consists of observations at every two hours to 

estimate parameters.            

The way to construct the new data set is explained as follows; first, we generate 

data in the same way as we do in the previous subsection. m is set to 24, and the number 

of observations,T , is set to 100. That is, data are sampled hourly. This data set is called 

the original data set, and it has mTN ×=  data points in it. Next, we sample every r -th 

draw from the original data set we have obtained. The sample size now becomes 

rmT /)( × . How can we interpret this new data set? Let us take an example of 2=r . As 

mentioned earlier, the original data set is assume to be hourly, so we are supposed to have 

data every two hours in our hand when 2=r . In the same way, when 24=r , we would 

think that only daily data are available.  

We have to distinguish between generated and sampled data. The data is always 

generated at every m/1  interval but it is assumed to be sampled at r -th interval. We 

always know what r is since it shows the data frequency once m is fixed.  
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To obtain the posterior statistics for parameters, we need to specify the value of h  

in equation (2.5). When we know that the data is generated at every m/1  interval (i.e. we 

know m ) and we only have data that are sampled at every r -th interval, an appropriate h  

is equal to rm ×)/1( .  For example, we know that the data are generated at every hour 

(i.e. 1/24) and the data we have at hand is sampled every two hours ( r =2). In this case, 

the value for h  should be 2)24/1( × .   

Table 2.3 shows the results.  The choices of the number of  r  are 1, 2, 4, 8, 10 

and 24. Clearly, the first column ( 1=r ) of Table 2.3 corresponds to the second column 

of panel (A) of Table 2.2, which is the case when all data are available. The MCMC 

algorithms used for σ and β are same as before, and Metropolis-Hastings algorithm is 

used for 1θ  and 2θ . 

       When r  is small, we obtain almost exactly the same posterior means for all 

parameters as those when all data are available. However, the posterior means for 

parameters are less close to those when all data are available when r is large. This is 

especially true for parameterβ  andσ , and we see that the posterior means is 1.207 when 

24=r  for β  although the true value is 1.48. Forσ , the posterior mean is 0.404 when  

24=r  while the true value is 0.7791. This could be explained in terms of the error of 

approximation of equation (2.5) from equation (2.4). Equation (2.5) will be a good 

approximation of equation (2.4) only when  h  is small. But when r is a large number, 

h is not small enough because h is defined as rm ×)/1( . For example, let us think about 

the case of 24=r . Then the value of h  we used is one, which comes from 24)24/1( × , 

while the data is generated with 24/1=h . In this case, the results would be biased even if 

we use an appropriate value for h . 
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Table 2.3: Posterior statistics for parameters after sampling every r -th interval when m is 
known  
 

  
Posterior 
Statistics r=1 r=2 r=4 r=8 r=10 r=24 

Sample size 2400 1200 600 300 240 100 
Theta1 mean  0.009 0.009 0.010 0.010 0.009 0.010 
 variance 0.005 0.005 0.005 0.005 0.005 0.005 
Theta2 mean  -0.094 -0.093 -0.108 -0.105 -0.095 -0.107 
 variance 0.080 0.082 0.082 0.086 0.072 0.081 
Sigma mean  0.762 0.691 0.701 0.613 0.506 0.404 
 variance 0.045 0.067 0.077 0.090 0.091 0.110 
Beta mean  1.477 1.432 1.438 1.382 1.318 1.207 
 variance 0.024 0.036 0.042 0.056 0.067 0.095 
Acceptance rate theta 0.075 0.118 0.156 0.185 0.188 0.221 
  beta 0.077 0.121 0.154 0.184 0.189 0.215 

 
The true values for parameters are; 7791.0,0876.0,007393.0 21 =−== σθθ and 48.1=β . The 
statistics are obtained with 24=m  and 100=T . r  is the number of interval of draw. rm ×)/1(  is 
used as h . The last two rows report the acceptance rates of Metropolis-Hastings algorithm for θ  and β . 
For σ , Gibbs-sampling is used, and acceptance rate is 1. 
 

 

2.4.2 When m  Is Unknown 

As we saw in the previous subsection, data discretization bias can be avoided to 

some extent by using appropriate values for h  as long as we have knowledge about how 

the data is generated. However, this assumption does not often hold for the data we 

usually use. We usually do not know at what interval the data is generated. The only 

thing we know is that the data we have are sampled (not generated) every r . For 

example, let us assume that we have data that is sampled every 2 hours but we do not 

know the fact that the data is generated every hour. In such a case, in the literature, it is 

the common practice to set 1=h . This is called the naïve discretization. 
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Table 2.4:  Posterior statistics for parameters after sampling every r -th interval when m is 
unknown 

 

  
Posterior 
Statistics r=1 r=2 r=4 r=8 r=10 r=24 

Sample size 2400 1200 600 300 240 100 
Theta1 mean  0.000 0.001 0.002 0.003 0.004 0.010 
 variance 0.000 0.000 0.001 0.002 0.002 0.005 
Theta2 mean  -0.005 -0.009 -0.017 -0.035 -0.038 -0.107 
 variance 0.004 0.007 0.013 0.028 0.032 0.081 
Sigma mean  0.148 0.194 0.292 0.367 0.306 0.404 
 variance 0.008 0.014 0.033 0.055 0.066 0.110 
Beta mean  1.457 1.422 1.445 1.396 1.290 1.207 
 variance 0.021 0.029 0.044 0.059 0.087 0.095 
Acceptance rate theta 0.036 0.063 0.105 0.151 0.148 0.221 
  beta 0.039 0.066 0.102 0.152 0.145 0.215 

 
The true value for parameters are; 7791.0,0876.0,007393.0 21 =−== σθθ  and 48.1=β  The 
statistics are obtained with 24=m  and 100=T . r  is the number of interval of draw. Since m  is 
unknown, 1 is used as h . The last two rows report the acceptance rates of Metropolis-Hastings algorithm 
for θ  and β . For σ , Gibbs-sampling is used, and acceptance rate is 1. 
 

 

The result is shown in Table 2.4.  The posterior pdfs are not well-centered around 

the true value any more. This is because we do not use a proper value for h .  This means, 

if we do not know m , the results would be biased.  

From the argument in sections 2.4.1 and 2.4.2, I would conclude that we need two 

things to obtain the right estimates for the parameters; (1) the right knowledge on both m  

and r , and (2) small value for h . The results may not be correct if you do not have both 

(1) and (2).     
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2.4.3 Eraker’s Data Augmentation 

In section 2.4.1, we generated data and estimated parameters assuming that we 

know what m is. We found that as long as we know m , and all data are used for 

estimation (in our case, it also guarantees the small value of h ), then we could obtain 

correct results. In section 2.4.2, we assumed we do not know about m . In this case, we 

could not obtain good results anymore. In this section, we will introduce Eraker’s data 

augmentation algorithm, and augment the latent data that we sampled in section 2.4.1 and 

2.4.2, and see how it works.               

To obtain posterior probability density functions for parameters, again we need to 

specify h  in equation (2.5). In naïve discretization case, we usually set 1=h  and we 

would have data discretization bias. Now we will augment the missing data which is 

sampled every r -th draw, using Eraker’s data augmentation algorithm. The number of 

augmentation is fixed to 2, and the number of r  is changed with r  set to be 2, 4, 10 and 

24. When 2=r , for example, we can recover the same sample size of data set as the 

original one, because we sample every two draw, and augment the same number of data. 

Eraker’s data augmentation algorithm we use is explained in Appendix F.  

 

The posterior summary statistics are presented in Table 2.5(a). The estimation 

results become better than those before augmentation in the sense that it is closer to the 

true values except forβ . This is because we have increased the number between data. 

The sample size is now double, so it gets closer by the same amount. However, you can 

find that they are still far from the true values. If we have no idea on m , it is not possible 

to reach the true values even we augment data.  
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So far we have used 1=h . If we know m , then we may use a correct value for h . 

The correct value for h  is rm ×)/1(  in section 4.3.2, assuming that we know m . Now we 

augment one data between the observations, so the right value for h  should be 

)2/1()/1( ×× rm  here. Let us think about the case of   2=r . In this case, we have a new 

data set which consists of exactly the same amount of data. The correct value for  h  

should be  mm /1)2/1(2)/1( =××  in this case.  

The results are shown in Table 2.5(b). Here, we can see that the posterior means 

for each parameter never attain the true values even if we use the correct value for h  and 

modify the data discretization bias.  
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Table 2.5 (a) : Posterior statistics for parameters with Eraker’s data augmentation : naïve 
discretization  
 

  
Posterior 
Statistics r=2 r=4 r=10 r=24 

        
Sample size   2400 1200 480 200 
Theta1 mean 0.059 0.054 0.061 0.064 
 variance 0.001 0.016 0.002 0.004 
Theta2 mean -1.000 -0.906 -1.000 -1.000 
 variance 0.000 0.257 0.000 0.000 
Sigma mean 0.664 2.893 0.676 0.682 
 variance 0.029 35.522 0.073 0.129 
Beta mean -1.181 -0.751 -1.175 -1.161 
  variance 0.014 0.994 0.031 0.046 

 
The true value for parameters are; 7791.0,0876.0,007393.0 21 =−== σθθ and  48.1=β .  The 
statistics are obtained with 24=m  and 100=T . r  is the number of interval of draw. 1 is used for. The 
data is augmented by Eraker’s data augmentation algorithm, which is explained in Appendix F. 
 
 
 
Table 2.5(b) : Posterior statistics for parameters with Eraker’s data augmentation : exact 
value for h  
 

  
Posterior 
Statistics r=2 r=4 r=10 r=24 

        
Sample size   2400 1200 480 200 
Theta1 mean 0.004 0.158 0.133 0.090 
 variance 0.002 0.087 0.005 0.006 
Theta2 mean -0.047 -1.681 -2.191 -1.414 
 variance 0.025 0.924 0.000 0.000 
Sigma mean 0.845 0.667 0.667 0.685 
 variance 0.043 0.327 0.069 0.138 
Beta mean 1.395 0.531 -1.196 -1.173 
  variance 0.068 0.479 0.034 0.051 

 
The true value for parameters are; 7791.0,0876.0,007393.0 21 =−== σθθ and 48.1=β  . The 
statistics are obtained with 24=m  and 100=T . r  is the number of interval of draw. 

)2/1()/1( ×× rm  is used for h . The data is augmented by Eraker’s data augmentation algorithm, which 
is explained in Appendix F. 
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2.4.4 When Averaged Data is Used 

In this subsection, we look at a different type of data: data are not sampled at a 

point in time, but are averaged over some interval. Data are often given by the averaged 

value in some interval, say averaged daily, weekly or monthly. In such a case, the data 

are far from continuous any more, and therefore we expect that h plays totally a different 

role in equation (2.5).  

          To investigate this point, we now draw a data set which consists of the averaged 

data. The new data set is constructed by the following: First, data is generated 

with 24=m  and 100=T . Second, the data is averaged every m -th, which means the 

averaged data is assumed to be daily averaged data. For example, when 24=m , the data 

is generated every hour. Now, a new data set is averaged every 24-th, and it becomes 

daily averaged data.  

          Using the new data set, we obtained the posterior means for the parameters with 

the same MCMC algorithms as before.  

          Table 2.6 shows the results. An interesting finding is observed by comparing the 

result in Table 2.6 with the last column of Table 2.3. We can interpret that the former 

result is with the average price in a day, and the latter is with the opening of a day. In the 

latter case, the last column of Table 2.3 shows that we could obtain good performance in 

estimation at least for 1θ  and 2θ  by setting 1=h  assuming that we know m . When we use 

averaged data, however, this is not the case any more. The posterior means are 

004.01 =θ  and 037.02 −=θ , and both are not well centered around the true value. Also 

sigma is not close to the true value, which is a very intuitive result.       
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Table 2.6: Posterior statistics for parameters when observations are averaged 
 

Theta 1  mean 0.004 
  variance 0.004 
Theta 2 mean -0.037 
  variance 0.063 
Sigma mean 0.488 
  variance 0.129 
Beta mean 1.391 
  variance 0.1 
Acceptance rate Theta 0.22 
  Beta 0.229 

 
The true values for parameters are 7791.0,0876.0,007393.0 21 =−== σθθ  and 48.1=β . The 
statistics are obtained with 24=m  and 100=T . 1is used as h . The last two rows report the acceptance 
rates of Metropolis-Hastings algorithm for θ  and β . For σ , Gibbs-sampling is used, and acceptance rate 
is 1.  
 

 

2.5 Empirical Evidence with Short-term Interest Rates 

In the previous section, we saw the numerical example with the CKLS model. We 

found that h affected the posterior means of the parameters, and therefore we should be 

careful in using equation (2.5) as a discrete-time approximation of the continuous-time 

model shown by equation (2.4).  

        In this section, we estimate the model with short-term interest rates. We use the 

daily effective federal funds rate from 1/1/1960 to 7/31/2004. The sample size is 16284. 

We obtained the data from the website of the Federal Reserve Bank of St.Louis.8  The 

daily effective Federal Funds rate is a volume-weighted average of the rates, and it is 

calculated by the Federal Reserve Bank. The use of averaged data might lose the 

continuity of data as we discussed in 3.4. However, the errors in estimates of 1θ  and 2θ  

                                                 
8 8 http://research.stlouisfed.org/fred2/ 
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are small when the coefficients take small values. As can be seen later, our case is one of 

those cases. Table 2.7 shows the descriptive statistics.  

        We use the same MCMC algorithms as those we have used to obtain posterior 

pdfs..: Metropolis-Hasting Algorithms for 1θ , 2θ , and β , and Gibbs-sampling for σ . 

Here, MCMC draws are 25000 times, and the first 5000 draws are burned. h  is set to be 

one.  

       Table 2.8 shows the posterior statistics for parameters.  The pdfs  2θ  and  β  are 

also presented in Figure 2.2. The mean-reversion coefficient 2θ  shows a small value, -

0.007, and this implies that there is no mean-reversion in daily effective Federal Funds 

rate. These results are similar to earlier studies on short-term interest rates (Brenner, 

Harjes and Kroner(1996)). The heteroscedasiticity coefficient,β , takes 0.158 as the 

posterior mean. The value is smaller than those of 0.7608 in Eraker(2001), 0.67 in 

Andersen and Lund(1997), and 1.5 in CKLS(1992).  The parameter β  allows the 

volatility of interest rate to depend on the level of the interest rate, and therefore the 

higher value of β  means that the interest rate volatilities are more sensitive to interest 

rate levels. Our result shows that the volatility of interest rate depends less on the interest 

rate level than the earlier studies have found.       
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Table 2.7: Descriptive statistics of Daily Effective Federal Funds Rate (1/1/1960-7/31/2004) 

 
 
 
Table 2.8: Empirical results  
 

  
Posterior 
statistics 

Effective 
Federal Funds 
Rate (Daily) 

Theta 1 mean  0.047 
 variance 0.008 
Theta 2 mean  -0.007 
 variance 0.001 
Sigma mean  0.289 
 variance 0.013 
Beta mean  0.158 
  variance 0.035 
Acceptance rate  theta 0.031 
  beta 0.031 

 
The data used is daily effective Federal Funds rate, covering 1/1/1960 to 7/31/2004. The last two rows 
report the acceptance rates of Metropolis-Hastings algorithm for θ  and β . For σ , Gibbs-sampling is 
used, and acceptance rate is 1. 
 

 Mean Median Maximum Minimum  
y 6.22 5.53 22.36 0.13  

Difference in y 0.00 0.00 7.79 -7.89  

 Std.Dev. Skewness Kurtosis 
# of 

observations  
y 3.37 1.19 5.12 16283  

Difference in y 0.38 0.67 52.56 16282  
lag 1 2 3 4 5 
y 0.99 0.99 0.99 0.99 0.99 

Difference in y -0.20 -0.12 -0.08 -0.02 -0.04 
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Figure 2.2: Posterior pdf for 2θ  and β  from Empirical Analysis 
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2.6 Concluding Remarks 

  This paper was concerned with the Bayesian estimation of a discrete-time asset 

pricing model with Markov-Chain Monte Carlo (MCMC) methods. We have mainly dealt 

with a one-factor asset pricing model proposed by CKLS (1992).  

To estimate stochastic differential equations of the asset pricing model, it is 

common use the discrete-time approximation of the continuous-time equation. When we 

estimate the discrete-time model, in equation (2.5), the specification of h is important. To 

set 1=h  is the most common way to specify h , and it is called naïve discretization. In 

this paper, we have examined how naïve discretization could cause problems, using 

simulated data. Here are some findings we have obtained through our simulation-based 

analysis.  

       The first problem caused by setting 1=h  arises when we do not know the value 

of m . This case is obvious because the reason we use 1=h  is we do not know what m is. 

The second case happens the value of h is not small enough. Equation (2.5) is a discrete-

time approximation of the continuous-time model, and therefore, equation (2.5) works as 

a good approximation when h  is small. Our estimation with sampled data shows that we 

sample data at lower frequency, which means h  takes larger value, the posterior means 

of the parameters are not close to their true values. When we sample at every 24th, for 

example, the posterior pdf for β  is not well-centered around the true value. However, we 

also found that the proper value for h  also depends on how we sample data. One possible 

way to solve the data discretization problem is to augment the data and increase the 

number of observations artificially. We used the MCMC-based data augmentation 

algorithm proposed by Eraker (2001), and investigated how it works. Our results show 
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that the results with the augmented data are not well-behaved both when we know the 

value of m  and when do not it. Finally, when we use averaged data, the true value for 

h does not work well anymore. When we use the averaged data of a certain period, we 

could not obtain good estimates even we use a proper value for h .  

 This problem with respect to how we set h  is not unique in the discrete-time 

approach. One such example was shown using Aït-Sahalia(1999,2002b) method. His 

approach that uses an approximate likelihood function is subject to a similar problem. 

That is, if we mis-specify the value of h , we do not obtain good performance in 

estimation.  

       We have also applied the estimation with daily data of U.S. effective Federal 

Funds rate between 1/1/1960 to 7/31/2004. Our result shows that there is no evidence of 

mean reversion, which is constant with the earlier studies. Also, we have found the 

relatively small value for the coefficient showing the volatility of interest rate to the level, 

to the earlier studies.  

   Finally, there are a couple of possible extensions to be mentioned. First, in terms 

of Bayesian method of estimation, how to set prior functions is a big issue. In this paper, 

the simplest prior function was considered, but they need to be extended to incorporate 

different priors. In particular, the Litterman priors might be one of the candidates in the 

context of VAR approach.  Second, the model can be extended. One possible extension 

could be a multi-factor model such as the Stochastic Volatility model. Another would be 

a model where the error term follows an ARMA-GARCH process.  
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CHAPTER 3: A BAYESIAN COMPARISON IN SHORT-TERM INTEREST 

RATE MODELS 

 

3.1 Introduction 

Short-term riskless interest rates are one of the most important macroeconomics 

variables, and significant efforts have been devoted to develop models describing the 

dynamics of the variables. One of the remarkable studies for estimation of short-term 

interest rate models was conducted by Chan, Karolyi, Longstaff and Sanders(1992) 

(CKLS hereafter), where they proposed an econometric model for short-term interest 

rates based on the diffusion processes for continuous-time asset pricing models. Their 

model allows the variance of interest rate to change depending on the level of the interest 

rate in a consistent way with the continuous time model, and encompasses other 

important specifications such as Merton(1973), Vasicek(1977) ,Cox, Ingersoll and 

Ross(1985) and Brennan and Schwartz(1979). 

One of the extensions of the CKLS model is to allow non-Gaussian error terms. 

Brenner, Harjes and Kroner (1996) assume a Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) specification in the error term. This specification allows 

that the model to capture the phenomenon that the sensitivity of volatility to levels is 

higher when shocks are larger in absolute value than when they are stable. Other studies 

of the short-term interest model with GARCH class errors were conducted by Longstaff 

and Schwartz (1995), Andersen and Lund(1997), Koedijk, Nissen, Schotman, and 

Wolff(1997), and Bali(2000). 
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Another natural extension of the CKLS model would allow errors to have 

stochastic volatility. Stochastic volatility models have been often used to describe time-

varying volatility of financial time-series data. Such models are particularly helpful to 

capture sudden changes in the magnitude of variation of the observed values since it 

allows the conditional mean and variance to follow separate stochastic processes. In the 

estimation of stochastic volatility models, simulation based inference has been widely 

used (Jacquier, Polson and Rossi(1994 and 2004) (JPR hereafter); Kim, Shephard and 

Chib(1998); and Watanabe (2000)) because of the intractability of the likelihood function 

(Mahieu and Schotman(1998)). 

In this chapter, we develop a model for short-term interest rates, based on the 

CKLS model with stochastic volatility. After developing MCMC algorithms for the 

model, the model will be applied with the 3 month Treasury bill rate.  A comparison of 

our model with the CKLS with GARCH (1, 1) error term will be performed by using 

predictive densities to show a potential usefulness of the CKLS with stochastic volatility.  

The remaining of the paper goes as follows: In section 3.2, the model and MCMC 

algorithms are explained. Section 3.3 demonstrates some numerical examples to show 

how the proposed algorithms work. Empirical results with the 3 month Treasury bill rate 

are shown in Section 4. Section 5 contains a comparison of our model with the model 

with CKLS-GARCH(1,1) model using predictive densities. Section 5 summarizes the 

findings of the paper. 
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3.2 The Model and MCMC algorithms  

Our model is the extension of the short-term interest rate model by CKLS, where 

unobservable error terms are assumed to evolve stochastically. The model specification is 

given by the following equation: 

                                 ttttt rrr εσθθ γ
1121 −− ++=Δ             )1,0(~ Ntε  

                                 ttt v++= −
2

121
2 lnln σαασ            )1,0(~ Nvt                              (3.1) 

                                 nt ,......,1=  

, where trΔ  is defined as 1−− tt rr , and tε  and tv are independently and identically 

distributed across time, and tε  and tv  are assumed to be independently distributed. To 

perform Bayesian analyses of the CKLS model with stochastic volatility, we need the 

posterior density function of the model. The likelihood function of the model is given by 

                            )()|,(),,|()|,,( 1122121 ΘΘΘΘΘ∝ΘΘ pVpVYpYVp  

                                                      )()()|(),,|( 21121 ΘΘΘΘΘ∝ ppVpVYp  

where },,,{},,,{ 212
2

211 γθθσαα ≡Θ≡Θ v  n
ttV 1

2}{ =≡ σ , n
trY 1}{ =≡ . 

To draw ),,|( 21 YVp ΘΘ  and ),,|( 12 YVp ΘΘ , the Metropolis-Hasting algorithm 

is applied with equation (3.1). The likelihood function of the model is  
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and  

                                                               0vvt =                                              )0( =t  

                                                                    )( 2
121

2
−+−= tt σαασ                   ),........,1( nt =  

As a prior, we assume the flat prior. 

The proposal distribution is Normal distribution for the coefficients of the models, 

and inverse gamma distribution for 2
vσ . Since there is no obvious proposal density for the 

parameterγ , the efficient jumping rule is applied (German, Carlin, Stern and Rubin 

(2002)). 

 Draw of ),|(),,|( 121 YVpYVp Θ=ΘΘ follows Jacquier, Polson, and Rossi (1994 

and 2004), and we extend their algorithm to our modified CKLS model. The difficulty of 

creating Markov chains remains in drawing the vector of volatility n
ttV 1

2}{ == σ , that is 

latent in this model. We have the marginal density for the volatility state ),|( 1 YVp Θ , 

which is given by the following equation: 
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The derivation of ),|( 1 YVp Θ is found in JPR (1994 and 2004). 

 Let us denote )|( ⋅thp  . 
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Equation (3.3) is not recognized as a density and direct draws from the equation are not 

feasible.  JPR and Johannes and Polson (2002) suggest finding a proposal density by 

approximating equation (3.3). In their studies, they provide the proposal density based on 

the fact that the first term of equation (3.3) is the density function for an inverse gamma 

distribution. The second term of equation (3.3), which is log-normal kernel was 

approximated by an inverse gamma with same mean and variance, and was multiplied by 

the inverse gamma kernel shown by the first term of equation (3.3). This procedure yields 

an inverse gamma distribution: 

2)1(22 )|( teq tt
σ
λ

φσσ
−

+−∝⋅  

where 

)exp1/()exp21(5.0 22 σσφ −−+=  

and 

)5.0exp()1(5.0 22 σμφλ +−+= ttt y  

In addition to the proposal density for n
ttV 1

2}{ == σ  by JPR, I propose two new 

proposal densities. One of the proposal densities is the approximation of equation (3.3) to 

inverted gamma distribution as JPR suggested, but the mean and variance are obtained 

numerically instead of analytically. On each iteration, we calculate the numerical mean 

and variance of equation (3.3) using quadratic formula such as Simpson’s rule, and set 
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the parameter values of the invertse gamma distribution obtained from the mean and 

variance. We use the inverse gamma distribution as the proposal density.  The same 

process is conducted using inverse Gaussian distribution and used as the third proposal 

density.  

 

Given all of the arguments above, the MCMC algorithm works as follows: 

(i) Set initial values for ,, 0
2

0
1 ΘΘ and n

tt 1
2}{ =σ . 

(ii) Draw n
tt 1

2}{ =σ  by the MH algorithm with the proposal density (JPR, inverse gamma 

with numerical mean and variance, or inverse Gaussian with numerical mean and 

variance.) 

(iii) Given (ii), draw )(iγ by the efficient jump rule. 

(iv) Given (ii), draw )(
1
iΘ  by the MH algorithm. 

(v) Given all of above, draw )(
1

iθ  and )(
2

iθ  by the MH algorithm. 

(vi) Repeat (ii)-(v) until the sequences become stable. 

 

3.3 Numerical Examples  

This section shows the numerical examples of the algorithms developed for the 

CKLS stochastic volatility model. In each experiment, 20,000 MCMC samples were 

drawn, the first 10,000 were discarded, and every 10th iterate was saved. The data were 

generated where parameters values are given, and Bayesian estimations on the model 

parameters were made using the proposed algorithms. The parameters were set to be: 

1θ =0.7;  2θ =-0.3; γ =0.5; 1α =-0.1; 2α =0.8 and vσ =0.5. 
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Figure 3.1 plots the MCMC draws using three different algorithms. Panel (A) 

shows the figure generated with the proposal density by JPR, and panel (B) and panel (C) 

are experiments with the proposal density with numerical mean and variance. Inverted 

gamma and the inverse Gaussian are used in panel (B) and panel (C) respectively as 

proposal densities. This figure gives us an idea of the stability of Markov chain, but 

formal convergence tests would be necessary. 

The mean, standard deviation of posterior distributions and autocorrelation of 

MCMC draws are shown in Table 3.1. Overall, the posterior mean is well-centered on the 

true value. The acceptance rate is 1 except for one parameter, the parameter for volatility 

persistence. High to moderate autocorrelation are observed in the parameters in the 

volatility evolution equation.  
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Figure 3.1: Assessing convergence for parameters in the CKLS with stochastic 
volatility model 

(a) Jacquire, Polson and Rossi 

 

(b) Inverted Gamma with numerical mean and variance 
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(c ) Inverse Gaussian with numerical mean and variance 

 

This table plots the MCMC samples of each parameter of a simulated numerical example for the CKLS  
with stochastic volatility model. 20,000 Markov chains are generated, the first 10,000 are discarded and 
every 10 draw is kept.  
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Table 3.1: Numerical examples for the CKLS model with stochastic volatility  

    Theta 1 Theta 2 Alpha 1 Alpha 2 Sigma v square Gamma 
True Value -0.3 0.7 -0.1 0.8 0.2 0.5 
          
Posterior Statistics        
(A) JPR         
  Mean -0.301 0.691 -0.087 0.831 0.154 0.506 
  Std.D 0.021 0.032 0.03 0.046 0.042 0.033 
  AC* 0.084 0.06 0.607 0.708 0.854 0.645 
  AR** 1 1 1 1 1 0.098 
(B) Inverted gamma with numerical mean and variance     
  Mean -0.335 0.791 -0.153 0.671 0.252 0.483 
  Std.D 0.021 0.037 0.053 0.091 0.082 0.033 
  AC* 0.038 0.031 0.766 0.807 0.908 0.637 
  AR** 1 1 1 1 1 0.096 
(C) Inverse Guassian with numerical mean and variance     
  Mean -0.34 0.711 -0.073 0.827 0.219 0.478 
  Std.D 0.019 0.023 0.024 0.036 0.042 0.029 
  AC* 0.106 0.059 0.402 0.568 0.768 0.584 
  AR** 1 1 1 1 1 0.095 

 
This table provides means, standard deviations, and autocorrelations as well as acceptance rates for the 
Metropolis-Hastings algorithms for parameters of a simulated numerical example with sample size 1,000. 
20,000 Markov chains are generated, the first 10,000 are discarded and every 10 draw is kept. 
* Autocorrelation 
** Acceptance rate for the MH algorithm
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3.4 Empirical Results, Predictive Densities and Comparison with GARCH model  

This section shows an application of the model with a short-term interest rate. The 

data consist of the 3-month Treasury constant maturity rates for the period 01/08/82 to 

10/06/06, and were obtained from the Fred® by the Federal Reserve St. Louis. The data 

are weekly data, which is the average of business days in a week. The total number of the 

observations is 1292. Panel (A) of Figure 3.2 plots the observations of the interest rate 

while panel (B) presents the changes in the interest rate. In the beginning of the sample 

period, high interest rates higher than ten percent were recorded. This phenomenon is 

called Volcker disinflation, where the Fed conducted the monetary targeting experiment. 

Table 3.2 shows summary statistics for the data. The original sequence tr  is 

slightly right-skewed, which shows the asymmetry of the data. On the other hand, trΔ  

shows the skew the left, which indicates increases in the interest rate occurred less often 

than decreases in the sample period. 

The stochastic volatility model is applied with the weekly interest rate. For a 

comparison purpose, the CKLS model with GARCH(1,1) error, is also estimated: 

                                    ttttt rrr εσφφ τ
1121 −− ++=Δ  )1,0(~ Ntε  

                                    2
13

2
121

2
−− ++= ttt u σβββσ                                                           (3.4) 

                                     nt ,.....,1=  

, where tttu εσ≡  and tε  is independently and identically distributed. The definition of 

trΔ  follows the earlier model. This model allows the variance of error term to follow 

GARCH (1, 1) process, and was originally developed by Bollerslvev(1986).  
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     The algorithm for the model with GARCH (1, 1) effect closely follows the 

algorithm for regression models with ARMA-GARCH errors by Nakatsuma(2000). In his 

study, the MH algorithm was employed to draw the Monte Carlo sample from the joint 

posterior distribution.  

Our empirical results from the CKLS models with the stochastic volatility and 

with the model with GARCH (1, 1) error term are shown in Table 3.3. In stochastic 

volatility models, the volatility evolves with high autocorrelation, ranging from 0.90 to 

0.95.  

  One way of comparing models in Bayesian context can be done by Bayesian 

predictive densities. The draws of predicted values jtr +  are fairly easily obtained using 

MCMC. The joint pdf of the predicted values m
jjnrr 1}{~
=+=  and the parameter vector 

},{ 21 ΘΘ≡Θ is given by 

)|(),|~()|,~( YpYrfYrh ΘΘ=Θ  

,where )|( Yp Θ is the posterior pdf of Θ , and ),|~( Yrf Θ is the density of r~ . Integrating 

this over the parameters, the following equation is obtained: 

∫ ΘΘΘ= dYpYrfYrf )|(),|~()|~(  

     Figure 3.3 illustrates one and two period ahead predictive densities of the 3-

month Treasury bill rates based on the two models: CKLS model with stochastic 

volatility and with GARCH (1, 1) error terms. The JPR algorithm was employed for the 

stochastic volatility model. The model with GARCH (1, 1) error terms has by far smaller 

variance in both one and two period ahead predictions. 
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Figure 3.2: Weekly 3-month Treasury bill rate (01/08/1982-10/06/2006) 

(a) Original sequence 

 

(b) First difference 

 

The data consist of the observations of the 3-month Treasury constant maturity rate for the period 01/08/82 
to 10/06/06, and are weekly data that are the average of business days in a week. 
Source: Fred® by the Federal Reserve St. Louis 
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Table 3.2: Summary statistics: weekly 3-month Treasury bill rate (01/08/1982-
10/06/2006) 

  r Delta r 
Sample size 1292 1291 
Mean 5.466 -0.006 
Median 5.27 0 
Maximum 14.97 1.17 
Minimum 0.86 -1.95 
Std.D 2.616 0.161 
Skewness 0.468 -3.091 
Kurtosis 3.422 44.524 

 
The data consist of the observations of the 3-month Treasury constant maturity rate for the period 01/08/82 
to 10/06/06, and are weekly data that are the average of business days in a week. 
Source: Fred® by the Federal Reserve St. Louis 
 
 

Figure 3.4 shows the cumulative density functions (CDFs) of absolute deviation 

between the predicted and actual values. The actual values, for example, are the interest 

rate dated on 10/13/06 for one period ahead, which is 5.03, and the one dated on 10/20/06 

for two period ahead, which is 5.09. Since the GARCH (1, 1) model produces the tight 

prediction (Mean: 4.93, Std. D.: 0.009 for one-period ahead prediction; and Mean: 4.94: 

Std. D: 0.017 for two-period ahead prediction), the actual values do not fall in the 

predictive densities. The probabilities of making the prediction that is exactly equal to the 

realized value model is 0 from the GARCH, which is shown by the starting points of the 

CDFs at positive values in Figure 3.4. However since the GARCH model produces 

predictions with tighter variance, the CDFs attain 1 more rapidly than the SV models. 

The SV model produces predictions that allow wider uncertainty (Mean: 4.93, Std. D: 

0.36 for one period ahead prediction; and Mean: 4.93, Std.D: 0.68 for two period ahead 

prediction). As a result,  in one-period ahead prediction, the probability of making 

prediction which is close to the true value is higher than the probability from 

GARCH(1,1) model until the absolute value of error reaches approximately 0.1. The 
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CDFs increase at a slower rate, and it reaches 1 around the point where the absolute error 

is approximately 0.6. A similar argument can be made for two-period ahead prediction. 
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Table 3.3: Estimation results of the CKLS with stochastic volatility model and CKLS with 
GARCH (1, 1) model with 3 month Treasury bill rate 
 

1. CKLS with Stochastic Volatility 
  Theta 1 Theta 2 Alpha 1 Alpha 2 Sigma v Square  Gamma 
(A) JPR        
Mean 0.005 -0.001 -0.517 0.915 0.281 0.268 
Std.D 0.002 0 0.278 0.037 0.078 0.224 
AC* 0.184 0.105 0.91 0.865 0.909 0.998 
AR** 1 1 1 1 1 0.064 
(B) Inverted gamma with numerical mean and variance 
Mean 0.012 -0.003 -0.11 0.95 0.012 0.001 
Std.D 0.021 0.004 0.028 0.013 0.001 0.001 
AC* -0.005 0.002 0.414 0.418 0.607 0.978 
AR** 1 1 1 1 1 0.004 
(C)Inverse Gaussian with numerical mean and variance 
Mean 0.012 -0.003 -0.217 0.904 0.018 0.001 
Std.D 0.021 0.004 0.063 0.028 0.002 0.001 
AC* -0.015 0.001 0.748 749 0.753 0.973 
AR** 1 1 1 1 1 0.003 
         
2. CKLS with GARCH(1,1) 
  Theta 1 Theta 2 Beta 1 Beta 2 Beta 3 Tau 
Mean 0.005 -0.001 0.315 0.489 0.817 0.817 
Std.D 0.002 0 0.037 0.04 0.048 0.048 
AC* 0.227 0.117 0.437 0.633 0.704 0.704 
AR** 0.579 0.579 0.375 0.375 0.511 0.456 

 
This table provides means, standard deviations, and autocorrelations as well as acceptance rates for the 
Metropolis-Hastings algorithm for parameters of the CKLS SV model and CKLS GARCH(1,1) model. 
20,000 Markov chains are generated, the first 10,000 are discarded and every 10 draw is kept. 
* Autocorrelation 
** Acceptance rate for the MH algorithm 
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Figure 3.3: Predictive densities: one and two period ahead 

(a) Predictive density at t+1 

 

(b) Predictive density at t+2 

 

 
The figure provides the predictive densities of 3 month Treasury bill rate in one and two period ahead by 
the CKLS SV and CKLS GARCH (1, 1) model. 
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Figure 3.4: Cumulative density functions of absolute deviation of the predicted values from 
the actual vale 
 

(a) Prediction at t+1 

 
 

(b) Prediction at t+2 
 

 
 
The X axis shows the absolute deviation from the realized value. 
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3.5. Concluding Remarks  

In this chapter, I made a Bayesian inference of a short-term interest rate model 

with stochastic volatility. The model was developed based on the CKLS model, and 

MCMC algorithms suitable for the model were constructed. In addition to the algorithm 

that is a simple extension of the algorithm proposed by JPR, two additional algorithms 

were considered. After confirming that the algorithms worked well using numerical 

examples, the model was applied with the 3-month Treasury constant maturity rate for 

the period 01/08/82 to 10/06/06. The empirical results suggested that there was high 

autocorrelation in volatility of the error terms.  

 Finally, Bayesian predictive densities were used to compare the developed model 

was compared with the model with GARCH (1, 1) error. The predictive densities 

obtained by CKLS with stochastic volatility have wider variance than the ones from 

CKLS with GARCH in one- and two-period ahead predictions. However, the realized 

value did not fall in the support of the predictive values in CKLS with GARCH model 

because of the tighter variance in predictive density; therefore the probability that the 

absolute deviation from the realization is smaller was higher in the CKLS with stochastic 

volatility in a certain range of deviation.   
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Appendix A. Likelihood function of the joint function of survival and distribution 

functions 

 
Let )(eFE and )(cFC be cumulative density functions (cdfs) of E  and C  

respectively, and ),( ceF be the joint cdf of E andC  .Using a copulaC , the joint function 

of )(1)( eFeS EE −≡  and )(cFC is written as follows; 

))(),((),( cFeSCceH CE=  

In practice, available data to estimate the survival function is right censored. Bayesian 

estimation of the function ),( ceH is based on the following likelihood function: 

∏
=

−=>×===
n

i

ii cCeEcCeEceL
1

1),Pr(),Pr(),,|( δδδα  

Although function ),( ceH itself is not a distribution function, it is possible to 

define the two probability terms in the likelihood function using ),( ceH .  

First, the following equation holds: 

                            ),Pr(),( cCeEceH ≤>=  

                                                      ),Pr()Pr( cCeEcC ≤≤−≤=  

                                                      ),()( ceFcFC −=  

Using this, the probability density function (pdf) of ),( ceF denoted as ),( cef  is written 

as the following: 

                                          ),Pr(),( cCeEcef ===  

                                                       
ce
ceF

∂∂
∂

=
),(  

                                                       
ce

ceHcFC

∂∂
−∂

=
)),()((  
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ce

cFeSCcF CEC

∂∂
−∂

=
)))(),(()((  

                                                       ))())(())((),(( cfefcFeSc CECE −−=  

                                                       )()())(),(( cfefcFeSc CECE=  

 

 , where CECECE FScFeSCcFeSc ∂∂∂≡ /))(),(())(),(( , which is the density function 

associated with copulaC . 

                                         )Pr()|Pr(),Pr( cCcCeEcCeE =⋅=>==>  

                                                                      ∫
∞

⋅=
e CCE cfdecef )()|(|  

                                                                      )()|(1 | cfdecef C

e

CE ⋅⎟
⎠
⎞⎜

⎝
⎛ −= ∫ ∞−

 

                                                                       ( ) )()|(1 | cfceF CCE−=  

                                                                       )(),(
)(

11 cf
c

ceF
cf C

C

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−=  

                                                                        
c

ceFcfC ∂
∂

−=
),()(  

                                                                         
c

ceHcFcf C
C ∂

−∂
−=

)),()(()(  

                                                                          cceH ∂∂= /),(  
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Appendix B. Derivation of the transition function of Vasicek model 

The model is  

                                       )())(()( tdBdttXtdX σακ +−= .                                             (B1) 

Multiplying equation (B1) by the integrating factor teκ , we have  

                                       )()()( tdBedtedttXetdXe tttt κκκκ σκακ ++−=                          (B2) 

With 0=α , equation (B1) becomes  

                                       )()()( tdBdttXtdX σκ +−= .                                                    (B3) 

Applying the same procedure, we have  

                                     )()()( tdBedttXetdXe ttt κκκ σκ +−=                                           (B4) 

The total differentiation of )(tdXe tκ is  

                                      )()()]([ tdXedttXetXed ttt κκκ κ += , 

or  

                                      )]([)()( tXeddttXetdXe ttt κκκ κ +−= .                                       (B5) 

Equating equation (B2) and (B5), we have  

                                       )()]([ tdBedtetXed ttt κκκ σκα += .                                            (B6) 

Integrating out over 0t to t , we obtain  

                                     

∫

∫ ∫
+−=

+=

−

t

t

stt

t

t

t

t

st

tt

sdBeee

sdBedte

tXetXe

0

0

0 0

0

)()(

)(

)()( 0

κκκ

κκ

κκ

σα

σκα  

, or 

                                 ∫−−−−− +−+=
t

t

sttttt sdBeeeetXtX
0

00 )()1()()( )()(
0

κκκκ σα .              (B7) 
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If we define ∫=
t

t

s sdBetY
0

)()( κ , which is the Wiener integration with sesf κ=)( , )(tY  is a 

Gaussian process with mean 0 and variance, )( tYVar , given by  

                                       

)(
2
1

2
1

)()(

0

0

0

0

222

2

2

tt
t

t

s

t

t

s

t

t X
s

t

eee

dse

sdVeYVar

κκκ

κ

κ

κκ
−=⎥⎦

⎤
⎢⎣
⎡=

=

=

∫

∫
                                             (B8) 

Equation (B6) in the text is, therefore, the transition probability from previous h  to next 

h  by setting the previous h  to 0 each time.  
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Appendix C. MCMC algorithm for obtaining the posterior p.d.f. of parameters of 
Vasicek model using the transition function  
 

A Gibbs sampling MCMC goes as follows. 

1. We can think of the following regression model using the transition probability 

function (2.6).  

                          εβα ++= 0** yyh     ),0(~ 2τε N                                                 (C1) 

             , where 0y is the previously drawn hy .  

             Here, )1(* βαα −= , he κβ −=* , and 
κ
γτ
2

2
2 = . 

             Draw **,βα and 2τ . 

 

      2.   Transform **,βα and 2τ to γκα ,, andσ .  

            The relationships between them are: 

                                                      

2*1

2

*1
*

*ln

β
γσ

κτγ

β
αα

βκ

−
=

=

−
=

−=
h

                                                           (C2) 
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Appendix D. Ait-Sahalia’s approximation method of the transition functions 
 
Suppose that the model is expressed by the following equation. 

                                  tttt dWYdtYdY );();( θσθμ +=                                                       (D1) 

where tW is a standard Brownian motion and the drift μ and diffusion 2σ  are know 

functions. His method produces approximations in closed form to the (usually) unknown 

transition function );|,( 0 θyyhpY . The procedure consists of the following three steps9; 

 

1. Standardize the diffusion function of Y into another diffusion X  

Diffusion X is defined as 

                                ∫=≡ tY

tt uduYX );(/);( θσθγ                                             (D2) 

where any primitive of the function σ/1 may be selected. In finance the domain 

of Y and X would be ether whole real line ),( +∞−∞ or the half line ),0( +∞  in 

most cases. 

By applying Ito’s Lemma, X has unit diffusion: 

                                 ttXt dWdtXdX += );( θμ                                                   (D3) 

where 

                      ));;((
2
1

));;((
));;(();( 1

1

1

θθγσ
θθγσ
θθγμθμ x

yx
xxX

−
−

−

∂
∂

−= .                          (D4) 

Once we have the transition density of Xp , we can easily obtain Yp from 

Xp through the Jacobian formula 

                      
));;((

));;(|);(,();|,( 0
0 θθγσ

θθγθγθ
y

yyhpyyhp X
Y = .                                (D5) 

                                                 
9 The detail of the explanations can be found in Ait-Sahalia (1999, 2002b). 
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2. Explicit Expression for the Approximation 

One can derive an explicit expansion for the transition density of the variable 

X based on a Hermite expansion of its density );|,( 0 θxxhpx Xa  around a 

Normal density function. The expansion of Xp  up to order K is given by  

     ∑∫
=

− ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛ −

=
K

k

k

k

x

x X
K

X k
hxxcdww

h
xxhxxhp

0
02/1

02/1
0

)(

!
);|();(exp);|,(~

0

θθμφθ                  (D6) 

where πφ 2/)( 2/2zez −≡ is the N(0,1) density function, 1);|( 00 =θxxc , and for 

all ,1≥j   

               
{ }dwwywcxwcw

xwxxjxxc

jjX

x

x

jj
j

2/)/);|(();|()(

)()();|(

2
01

2
01

1
000

0

∂∂+×

−−=

−−

−− ∫
θθλ

θ
                        (D7) 

where 2/)/);();(();( 2 xxxx XXX ∂∂+−≡ θμθμθλ . 

 

3. Transform )(~ K
Xp into )(~ K

Yp using equation (D5). 
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Appendix E. MCMC algorithms for obtaining posterior p.d.f. of parameters 
 

To obtain posterior probability density functions of parameters, the following 

MCMC algorithms are used. The model is expressed by 

                               )1,0(~,)( 1121 NuuhYhYY ttttt
βσθθ −− ++=Δ . 

The posterior probability density functions of parameters are given by 

                                    ∏
=

∝
T

t
tt pYpY

1

)()|(),( θθθπ                                                         (E1) 

where the likelihood function is give by 

                        
( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−Δ
−=

−

−

−
hY

hYY
hY

Yp
t

tt

t
t ββ σ

θθ
σ

θ 2
1

2

2
121

1

)(
2
1exp1)|(                     (E2) 

and I assume the standard non-informative prior for )(θp . Once we define 

)/()( 11 hYYYy ttt
β
−−−≡  and [ ]ββ −

−
−
−≡ 1

11 tt YhYhX  for all t , equation(E2) is written as 

the likelihood function of a linear regression model of y on X , and therefore  

                                        ))(,(~,|),( 12
21

−′XXNY σθσθθ                                           (E3)                  

and  

                                                   ),2(~| 22 snIGY −−σ                                                 (E4)                        

where )()( 1 yXXX ′′= −θ  and ∑ −=
t tt Xyns 22 )(/1 θ . Eraker uses Gibbs sampling 

method to draw two θ s, but here we use Metropolis-Hastings algorithm with proposal 

density set equation (9), as well as Gibbs sampling. Metropolis-Hastings algorithm forθ s 

works as follows: we generate 1θ  and 2θ  by equation (9). We accept )( jθ  with 

probability  
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⎭
⎬
⎫

⎩
⎨
⎧

= −−−

−−

1,
)|,,(

)|,,(min )1()1()1(

)1()1()(

0 Yp
Yp

jjj

jjj

βσθ
βσθθ . 

Otherwise set )1()( −= jj θθ . 

       To estimate β , we use an efficient jump proposed by German, Carlin, Stern and 

Rubin(1995).  The effective jump rule is conducted as follows; 

045.),,(~| )1()( =− ccNY jj ββ  

 If 10 << β  , we accept )( jβ  with probability  

⎭
⎬
⎫

⎩
⎨
⎧

= − 1,
)|,,(

)|,,(min )1()()(

)()()(

0 Yp
Yp

jjj

jjj

βσθ
βσθβ . 

Otherwise set )1()( −= jj ββ .  

 

Having all of these in your hand, MCMC works as follows; 

1. Set initial values. I use OLS estimators for 1θ  and 2θ , 7791.0=σ  and 46.1=β . 

Set j =1.  

2. Draw )(
21 ),( jθθ  by either Metropolis-Hastings algorithm with proposal density as 

equation (D3), or Gibbs-sampling with equation (E3). 

3. Draw ( )( jσ ) by Gibbs-sampling with equation (E4).  

4. Draw )( )( jβ  by an efficient jump method. 

5. Increase j  and return to step 2.  
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Appendix F: MCMC algorithm for Data Augmentation proposed by Eraker 

To augment the data, we use the algorithms proposed by Eraker(2001). In short, 

he introduces a set of latent points in between each observation based on MCMC 

approach. He formulates the joint density for parameters together with observed and 

unobserved data, and then integrates the unobserved data out of the joint density. This 

method is referred to as “data augmentation”, originally formalized by Tanner and Wong 

(1987).  

The equation I work with is given by equation (2), and it is  

tttt WYtYY Δ+Δ=Δ );();( θσθμ . 

As denoted in section 2, μ is a drift function and σ is a diffusion function. tY  

includes all data which consists of both observable and non-observable data. Now what I 

would like to do is to substitute the missing data, tY  with simulations tŶ . Let  Ŷ  be the 

N×1  matrix, where all missing data are replaced by simulated data. Let iŶ  denote the 

thi − column of Ŷ . Conditioning on the first observation, the joint posterior density is 

given by 

                                              ∏
=

∝
n

i
i pYpY

1

)()|ˆ(),ˆ( θθθπ                                               (F1)        

where )(θp is the prior density for the parameter and the likelihood function )|ˆ( θiYp is 

given by  

              
⎭
⎬
⎫

⎩
⎨
⎧ ΔΔ−Δ−= −−

−−−

22/11
11

2/12
1 )()ˆ(

2
1exp)|ˆ( ttYYp iiiii σμσθ                               (F2)       



 

 

94
 

 
 

 
 

where ⋅ denotes the Euclidean norm. For simplicity of notation, the following are 

used: );ˆ(),;ˆ( θσσθμμ iiii YY == and 1
11

2
1 )( −

−−
−
− ′= iii σσσ . 

To draw Ŷ , we use the same blocking schemes in the Gibbs sampling as Eraker 

suggested, which is the Gibbs sampling updates one column vector of Ŷ at a time. The 

density for iŶ  is defined by the following relationship 

),,ˆ,ˆ|ˆ(),ˆ|ˆ( 11\ θθπ +−∝ iiiii YYYpYY  

where iY\  denotes all elements of Ŷ except the i th column, and 

    

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
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−+− 212/1

1

22/11
112/122/12

111

)()ˆ(
2
1

)()ˆ(
2
1

exp),ˆ,ˆ|ˆ(
ttY

ttY
YYYp

iii

iii

iiiii

σμ

σμ
σσθ .10         (F3) 

          Therefore, at the h th iteration of Gibbs sampling,  I draw 

);ˆ,ˆ|ˆ(~ˆ )1(
1

)(
1

)( θπ −
+−
h

i
h

ii
h

i YYYY  

for all .,...,1,0 ni =  Eraker showed the following; For a scalar process, RYt ∈ with 

constant drift and diffusion functions, 

                            ⎟
⎠
⎞

⎜
⎝
⎛ Δ+ +−+− tYYNYYY iiiii

2
1111 2

1),ˆˆ(
2
1~,ˆ,ˆ|ˆ σθ                                          (F4)            

where given parameter vector { }σμθ ,= . 

          Eraker has showed that if drift and diffusion functions satisfying Assumptions 

A1-A4 in Eraker, the following holds:  

⎟
⎠
⎞

⎜
⎝
⎛⇒⎟

⎠
⎞

⎜
⎝
⎛ +−Δ −+−

− 2
111

2/1

2
1,0)ˆˆ(

2
1ˆ

iiii NYYYt σ  

                                                 
10 See Eraker(2001) for the detail of the derivation.  
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as 0→Δt . Therefore, we have approximately  

⎟
⎠
⎞

⎜
⎝
⎛ Δ+ −+−+− tYYNYYY iiiiii

2
11111 2

1),ˆˆ(
2
1~ˆ,ˆ|ˆ σ , 

and (F4) can be used to draw latent variables.  
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