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ABSTRACT OF THE DISSERTATION

Explicit Solutions To A Pair Of Continuous Time

Stochastic Control Problems

by Lars Adam Jonsson Oduya
Dissertation Director: Larry Shepp

We study a pair of continuous time stochastic control problems, arising in financial and
engineering economics respectively. We first consider the optimal consumption and in-
vestment of a utility maximizing investor without an income. The optimal consumption
and investment plan is derived and a new way of obtaining closed form expressions for
these quantities is provided. We then consider a simple stochastic model for optimal
extraction from a groundwater aquifer that has surprising features. A result concerning

optimal policies that clarifies these features is proved.
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Chapter 1

Introduction

1.1 Stochastic Optimal Control

Let X be a set representing the possible states of some system. Fix g € X and define
inductively 411 = z¢(z¢) where each z; belongs to some collection A of transformations
of X. We may view the points xp,..., 2T as the successive states of the system at
times 0,1, ...,T, with the transformation z; applied at time ¢ chosen by an “observer”.
Let us assume that the observer carries certain preferences regarding the evolution and
prefers large values of
9(zo, 1, - TT, 20, -+ 27—1)

where ¢ is a given function. We call z = (zg,...,27-1) a policy and the problem of
how to optimally select a policy a control problem. This description is general enough

to allow many examples; economic, physical, and engineering. It is often natural to let
T—1

g(:po, L1y TTy20y. -+ ,ZT—l) = Z u(:vj, Zj)
j=0

where v is some “utility” function.

The problem is solved via the dynamic programming principle of optimality [1],
sometimes referred to as Bellman’s principle: An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must consti-
tute an optimal policy with regard to the state resulting from the first decision. Now

define
v¢(x) = total return starting in state z at time ¢ using an optimal policy

Bellman’s principle says,

vr() = max{u(z, z0) + vr-1(20(2))} (L1)



A function vy(z) is an upper bound on v¢(z) if and only if
my = ) u(wj,z;) + V()
j=0
is non-increasing for any z. If v4(z) is an upper bound and m; is constant for some z*,
then v (z) = vy(z) for all ¢,z and z* is optimal. To solve the control problem we guess

v¢(z) and show that it gives m; the stated properties.

The purpose of control theory is to provide a framework in which decision problems
can be studied mathematically. It is a fact that many real world decision problems in-
volve uncertainty in the sense that, in addition to the actions of the observer, unknown
quantities determine the evolution of the system. This uncertainty may be modeled by
letting A be a set of stochastic transformations, each taking the system into one of its
states according to a given probability distribution'. In this context a policy is a rule

for selecting zp and z;,¢ > 1, based on the random variables (o, ..., z¢, 20, - . ., 2t 1)

Example 1.1 Let X = N represent the wealth of an individual with initial wealth

zo € X. Define inductively xs11 = 2¢(x¢) = x4 + bywy — ¢; where ¢; represents consump-

tion at time ¢ and by, ...,byr_1 are iid with positive expectation. Set
T—1
g(zo,2) =Y ule))
j=0

where the utility u(c;) is some increasing function of ¢;. In this model wealth fluctuates
randomly, with the size of the fluctuations proportional to current wealth. If z; = 0
for some 0 < s < T then x; = 0,t = s+ 1,...,T and no additional consumption
can take place. The observer faces the problem of how to organize his consumption to

accumulate utility without exhausting his assets. [

!The distributions could be allowed to depend on both time and the current state. In this intro-
ductory chapter we do not address such issues in any detail. In order to keep the notation simple and
intuitive, we make no reference to a probability space and hope that the reader is not bothered by
questions of how to make a precise probabilistic description.

%In other words z: should be measurable with respect to the o-field generated by the random variables
LOy---yLty20y:-+yRt—1-



For any policy z, g(xo, z) is a random variable. It is common practice to assume3 that
the observer will attempt to maximize the expected value E[g(zo, z)]. The stochastic

control problem is to find z* such that
sup Elg(wo, 2)] = Elg(zo,27)]
A function vy(z) is a bound on
v¢(x) := expected return starting in state z at time ¢ using an optimal policy

if and only if the stochastic process M defined by My = vy(zp),

t—1

M; = u(xj, zj) + vg(ze),t =1,...,T (1.2)
j=0
satisfies
E[Mt+1|:v0,...,xt,z(),...,zt] SMt (13)

for any policy z. Indeed, if (1.3) holds for any policy then properties of (conditional)

expectation gives

T
Elg(zo,2)] = E[ )  u(zj, ;)]

J

= E[Mr]

|
—

Il
S

= E[E[Mr|zq, ..., 20,-- -, 2t]]

< E[M7 4]

IN

< E[M,] = vp(x0)

so that vp(x) is an upper bound on vy(zp). If also
E[Myi1|zo,. .. @4, 28,..., 27 = M, (1.4)

Vt for some particular z* then (with the inequalities above replaced by equalities)

E[g(z0, )] = vo(z0) (1.5)

3The expected utility maxim can be derived from a small set of axioms [6].



which implies vg(zg) = vo(zo) and that z* is optimal.

We note that solving a stochastic control problem, as we have defined it, is equivalent
to showing that the process M has certain martingale properties. We show that M is a
super-martingale (1.3) for each policy, with the martingale property (1.4) satisfied for
z* to prove that z* is optimal. We take the point of view that the only way to solve

stochastic control problems is to use martingales.

1.2 Stochastic Control in Continuous Time

We use stochastic differential equations to describe the continuous time behavior of a

system. The state at time ¢t will be represented by an Ito process satisfying

dXt = C(taXtaZt)dt+n(taXt7Zt)tha ( )
1.6

X0:$0

or a generalization of such a process. We assume that we can choose the value of
Z; € G from some fixed set G of real numbers, with ¢, real valued functions* defined
on D := [0,00) x R x G. The value of Z; must be based upon what has happened
up to time ¢, which is expressed by the requirement that as a stochastic process, Z; is
adapted to the filtration generated by the Brownian motion. Depending on the problem,
additional requirements on Z; will be introduced. Let U : D — [—00, 00) be the utility

rate and let 0 < T' < 400 be a constant. Our objective is to find Z* such that
T T
V(xg) = supE/ U(u, Xy, Zy)du = E/ U(u, Xy, Z;;)du
z 0 0

One approach to this problem, that we do not take, is to derive the Hamilton-Jacobi-
Bellman equation which gives necessary conditions on V' (z) ([12], Theorem 5.1). We
will seek conditions that a bound 17(:0) on V(x) needs to satisfy in order to endow
a suitable analogue of (1.2) with the martingale properties described in the previous
section. The Ito formula will be used as a basic tool, and we will make much use of

that the Ito process (1.6) with ¢ <0 is a super-martingale and a martingale if { = 0.

“We do not specify conditions on ¢, but simply assume that solutions to (1.3) exist at this point



1.3 Overview

We will study two continuous time stochastic optimal control problems. In Chapter 2
we consider the optimal consumption and investment of a utility maximizing retired
investor without a steady income. In Chapter 3 we prove a result regarding optimal
policies in a model for optimal groundwater extraction from an aquifer. We do not find
it unnatural that the optimization problems that we consider come from Economics,
the science of managing limited resources. We focus on simple models, ones that permit

explicit solutions, and the insight that can be gained from the analysis of these models.



Chapter 2

Optimal Consumption and Investment

2.1 Background

Imagine a retired investor without income, with a wealth of x invested in one safe
and one risky asset, e.g stock, at time ¢ = 0. His goal is to find an investment and
consumption plan to maximize the expected total utility, where utility is accumulated
at a rate u, depending on time ¢, wealth and the rate of consumption, until his random
time of departure, 7.

Given the amount of investors who find themselves in similar situations, a detailed
study of the problem needs little further justification and its solution under realistic
assumptions is both interesting and important. We shall study the problem under
certain simplifying assumptions. First, we assume that the investors preferences are

described by the utility function®

ult, 2 2(t) = ;="

where z; is the consumption rate at time t. We use the geometric Brownian motion
assumption regarding the time evolution of the price of the risky asset, a standard
assumption in financial modeling. We consider a simple, frictionless market model:
trading expenses are not taken into account, any amount of assets can be bought and
sold at any time, the actions of the investor do not affect the market and so on. We
also assume that the random time of exist 7 is independent of the Brownian motion
driving the price process of the risky asset, taking p(t) = P(7 > t) as a exogenously

given, non-random function.

L is known as the constant relative risk aversion utility function. The appendix includes some basic
utility theory.



We begin by studying optimal consumption in the case when a fixed fraction of
wealth is invested in risky assets. This problem is formulated in Section 2, and is
explicitly solved in the following two sections. We show that the optimal consumption
rate is a certain time-dependent multiple of the total wealth. An explicit expression
for this optimal relative rate is provided. We show that this function may also be
derived using the calculus of variations. We exploit this feature to solve the optimal
consumption and investment problem, which is considered in Section 4. The main result
is that the optimal fraction of wealth invested in the risky asset is a constant that is
independent of time, wealth, as well as survival the probabilities. A discussion of this

result can be found in the last section of this chapter.

2.2 Optimal Consumption

We study optimal consumption when a fixed fraction of wealth is invested in the risky
asset. The price of the risky asset is modeled by a process S; satisfying the stochastic
differential equation

dS; = Sy(&rdt + EadWy)
Assuming a rate of return r on safe investments, the wealth process X satisfies

dXt = Xt(,udt + O'th) - tht,
(2.1)
Xo=z9>0

where Z; is the rate of consumption at time ¢, for some real constants u,o > 0.

2.2.1 Problem Formulation

Below a short dictionary of terms is given.

p, survival probability function, smooth on [0,T)
T := sup{t|p(t) > 0} < 400
Uy(z) := 1i721*7, 0 < v < 1, utility from consumption at rate z > 0.

B > 0, subjective time preference factor of investor.

X¢ > 0, wealth of investor at time 0 <t < T.



Wi, F = {Fu}u<t, standard Brownian motion and its associated filtration

Definition 2.1: If (2.1) admits positive solutions X = {X;}o<t<1,Z = {Z;}o<i<T
on some probability space then the process Z is called a consumption policy and we

write Z € A.

Remark: What we really have in mind is

t t
A={((9Q,B,P),X,Z) : Xy = Xy +/ (Xup — Zy)du —i—/ odW,,a.s P,Vt}
0 0

An element of A is then a 4-tuple; a probability space, a Brownian motion on this space
and two F adapted processes X, Z for which (2.1) is satisfied. To keep the notation

simple we stick to the more intuitive definition given above. A

Example 2.2 Given a probability space on which a Brownian motion is defined,
Xt — xoe,utffot f(u)du+§Wt

. o (2.2)

Zy = f(t) Xy = f(t)zoettJo FWdutFWe

are positive solutions to (2.1) if f is a positive, non-random, function. This will
turn out to be an interesting example. We use the notation “Z = fX” to refer to this

example. [

To each policy Z corresponds a number

T
Vz(wo) = E/O e PUp(u)Uy (Zy)du (2.3)

Definition 2.3 We say that Z is optimal if

Vz(xo) = V(zg) := sup Vz(xp) (2.4)
ZeA



2.2.2 Dynamic Programming

The discussion in this section is heuristic. Rigorous arguments are postponed until the
proofs of the results.

Let Vi(z) denote the maximum amount of expected utility that an investor with
wealth X; = z at time ¢ can accumulate during [¢,7"). A function IZ,(:E) is an upper

bound on Vi(z) for all ¢,z if and only if
N t
My = Vi(Xy)e Pp(t) + / e Pup(u)U, (Zy)du (2.5)
0

is a super-martingale for any policy Z. If T7t(:r) is an upper bound and M is a martingale
when Z* is applied then this policy is optimal. This enables us to derive an equation

that V;(z) should satisfy. By the Ito formula,
t
My =My + [ Gl 20, X)e P pluldu (26)
0

plus an Ito-integral where ((u, Z,,x) =

2.2
~ ~ 1
T L 9Mw) = Vi (2) Zy + —— 71

(~8+ 20 @) + 20:@) + pa () + I

p(u) ou

2.7)

So M is a super-martingale if { is less than or equal to zero for all values of ¢, z, Z;.

By treating Z; as a real variable, regarding ¢, x as fixed, it is not difficult to show:

Lemma 2.4 { <0 if IZ,(:E) satisfies

! ~ ~ ~ o2 ~ ~ _1
(=8 + Eito) + 5 0o) + wai(o) + S0 w) + T2V =0 (29

and if in addition

7= V(@) (2.9)

then ¢ = 0.

Proof: See the appendix. [
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After some considerations that we do not give an account of, we make the ansatz

Vi(x) = cp(t)*”“if;. If ¢ satisfies the ordinary differential equation

/ 1p'(t) B (2.10)
¢+ (e = 22 olt) —p(t)? =0
where
0.2
6 = (B 0v1) = {8 = (1 =) + G =) (2.11)

then I//\}(:L‘) satisfies (2.8). Equation (2.10) has a unique? positive solution which tends

to infinity as t — T', namely

p(t)1/7e*0*(ﬂ,u,a,7)t
ftTp(u)l/’Ye*C* (B,11,07) gy

o(t) = 0<t<T (2.12)

We have a candidate V;(z) = ¢(t) 7 “il:; that satisfies (2.8) and therefore gives M the

super-martingale property. If Z = ¢ X then M is a martingale.

Remark: The martingale approach which is described and employed here is stan-
dard. We mention [7],[14] as examples of other problems that have been solved by this
method. An approach that is specific to this problem, is described in Section 2.3 below.

A

2.2.3 Results

We show that X is optimal, where ¢ is given by (2.12), under the following realistic3

assumption.

>The transformation ¢ = 1/¢ gives a linear ode. The general solution to (2.10) is

p(t)l/vefc*(ﬁﬁmow)t

co + ftTp(u)l/'Ye—C*(ﬂyMyU':'Y)udu

8The assumption is satisfied, for example, if p(T') = 0 for some T < oo
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Assumption: The function p satisfies p(t) < e~ when ¢ is large for some A > 0

such that c.(A + 3, u,0,7v) > 0.
Theorem 2.5 ¢ X is an optimal policy if ¢ is defined by (2.12).

Proof: For Z € A, we let

t
M = Ti(Xo)e Pip(t) + / e Pup(u)U, (Zu)du,

(2.13)
~ )
W(x) — SO( ) xl—’y
l—v
By construction and Lemma 2.4, M; is a super-martingale, so
1 ¢ PN -~
—F e Pz du < V(o) — EV (Xy)e Pt (2.14)
-7 Jo

Our assumptions on p(¢) imply that EV(Xt)e_ﬁt — 0,ast — T, a fact which is given a
detailed account of in the appendix, Lemma 4.1. By applying a convergence theorem,

we obtain

1 T .
ﬁE e PUZI du < V(o) (2.15)
- 0

and since Z was arbitrary, we must have
V(x()) S Vg(x(])

Equality holds in (2.14) if Z = ¢ X, in which case M is a martingale. We obtain, upon
taking t — T,
1 T .
T B [ e p(w)Xu)! T du = Vo (o) (2.16)
-7 Jo

which gives the result. [

Example 2.6 If ¢, (3 + A\, it,0,7) > 0 and p(t) = e~ then the function defined by
(2.12) is p(t) = ¢, for all t. In this case, Z = ¢, X is an optimal policy. On the other
hand if ¢.(8 + A, i, 0,7) is negative then the right hand side of (2.4) is +oo. This is
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because
0_2
Xy =goelh—ot T We (2.17)
0_2
Zy =cX; = cpgehO)tt s Wi
are positive solutions to (2.1) for any ¢ > 0 and if ¢ = —ﬁc* > 0, a direct computation

gives Vox (z9) = +o00. This illustrates that the assumption on p is needed for the control

problem to be well defined. [J

2.2.4 Variational Calculus for a Class of Policies

We can write down an expression for Vz(zg) if Z = ¢X for any positive smooth,
deterministic function ¢. This observation allows us to derive the optimal relative
consumption rate using methods from the calculus of variations. Let C denote the set

of all (non-random) smooth, positive functions. As was pointed out in Example 2.1,

Xt _ xoeut fO d’u-l— Wg
(2.18)
Zy == (t) Xy = (t)woe*™ I wlw)dut 5 W,

provide positive solutions to (2.1) on any probability space on which a Brownian motion

W is defined. Now, (the interchange of operations is justified by Fubini’s Theorem)
Vox(zo) =E / (p(t)Xy¢)dt
L / BePp(t) ()X, ds
—7Jo

T
_ 1 /Ew(I]ve—5t+logp(t)+(1—7)logw(t)+( ) (t— %t [ p(s)ds)+ (1 NoWe gt

T
Lo / =€ (B0 7)t+Hlog p(t) +(1—7) (log (1)~ f5 v(s)ds) g
0

(2.19)
Consider ¢ — V,x () as a functional on C. If $ is a maximum, and ¢(¢, €) = @(t)+en(t)

then we need, for any function 7,

0
5e Vot.0x(@0)le=0 =0

One can verify that this condition leads to the equation (2.10). An account of the

details is not given here, having already established the main result. Nevertheless, we
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will make use of the observation above to solve the optimal investment and consumption

problem.

2.3 Optimal Investment and Consumption

We take on the problem of optimal consumption and investment by assuming that the
investor can control ¢ and that the linear relationship 4 = ao + b holds for some fixed
numbers a,b. We thereby assume that the investor can rebalance his portfolio without

friction. For simplicity, we assume p(7T") = 0 for some T' > 0.

2.3.1 Problem Formulation

We consider non-negative, bounded controls ¢ of two variables. The wealth process is

assumed to satisfy

dXt = (aa(t, Xt) + b)Xtdt + O'(t, Xt)Xtth - tht ( )
2.20

X():x()

Definition 2.7 If (2.20) admits positive solutions Z, X on a probability space,
where Z is adapted to the filtration generated by the Brownian motion, we say that
(0,7) is an admissible investment and consumption pair. The class of admissible pairs

is denoted by A.

Example 2.8 If f, o are non-random functions then

X, := zoe Ji(ao(u)+b)du— [§ f(u)du—1 [T o?(u)dut [} o(u)dW
(2.21)
Zy = f(t)zoe Jiao(u)+b)du— [§ f(u)du—1 [T o?(u)dut [} o(u)dW

provide positive solutions to (2.20) on a probability space on which a Brownian motion

W is defined. We use the notation “(o,Z) = (o, fX)” to refer to this example. [J

For each pair (o, Z) corresponds a number

T
Voz(x0) == E/ e P, (Z,)dt
0
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Definition 2.9 We say that (o, Z) is an optimal investment and consumption pair
if
Voz(xo) = Va(zo) := sup E [ e PUp(u)U,(Z,)du (2.22)
(0,2)cA 0
Finding an optimal investment and consumption pair is the principal goal of the

remainder of this chapter.

2.3.2 A Preliminary Result

Example 2.8 provides a class of reasonable consumption and investment pairs. We de-

note by Ay C A the set of pairs of the form (o, f X)) where o > 0, f > 0 are non-random.

Claim 2.10 The supremum

sup Vo rx (o)
(0,2)EAp

is attained by o = a/v, f = ¢, where
p(t)l/'ye—nt

T
ft (u)t/7e=rudy,
a2

k(B,a,b,7) = (ﬂ—%—b(l— )

To justify the claim, let o, f be non-random functions. By using that fo u)dW, is

0 <

or(t) = t<T,

(2.23)

Gaussian with mean zero and variance fo o(u)%du, we obtain Ee Plp(t)U,(f(t)X;) =

Y
=50 oBty(t) BeAUs plw)du—[§ flu)du=3 J§ o® (w)dut 5 o(w)aWs}

-7

1 2 (2.24)
— Lo —vrt+logp(t)+(1-7){log f(t)+ [y[~F (o(u)—a/7)* f(u)]du}

1—v

a7
<Zo__ —yrt+logp(t)+(1—v){log f(t)+ [y —f (u)du}
15

and equality holds if and only if o(t) = a/v. Thus,

1—
x’Y

T
sup Vi px(10) = sup -2 / o~ t-+log p(t)+(1—){log F(8)+f; —F(w)du} gy
0

(0,f)€ Ao f 1=y

and comparing with Theorem 2.5 and equation (2.19) gives the result.

We show next that this investment and consumption pair is optimal.
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2.3.3 Main Result

Showing that

0 (2.25)

Uile) =en(t) T

is a super-martingale and a martingale for (0,Z2) = (%,cpﬁX ) proves that this is an
optimal investment and consumption pair. Here @, is defined by (2.23). By using the

Ito-formula one finds that

t t
M = Vi(ag) = / & T p(w)C (u, X, Zu) + / e " p(w)n(u, Xy Za)dWe
0 0

where C(t, Xt, Zt) =

Xl—’Y pl(t) QDI(t) (1 _ 7) Zl—'y
1 t_ 5 {—=vc«(B,a0(t, X¢) + b,0(t, Xyt),vy) + o0 — 0 - % Zi + o(t)? Xil—‘f}
(2.26)

Lemma 2.11 { <0 and {(t,z, px(t)z) =0 for all t > 0,2 > 0.

The proof of the Lemma is found in the appendix.

Theorem 2.12 (%, vxX) is an optimal investment and consumption pair.

Proof: Using the standard argument obtains the result. That EI/}t(Xt)e_Btp(t) —0

as t — T is Lemma 4.2 in the appendix. [

Theorem 2.11 shows that the optimal risk-return relationship depends on the pa-
rameter 7, but is independent of current wealth and, more remarkably, the survival
probability at any time ¢t > 0. A comment about the implications of this result can be

found in the next section.
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2.4 Discussion of Results

Although the result that consumption should optimally be at a rate proportional to
wealth is intuitively appealing our main result, Theorem 2.12, is contradicts what some
investment managers propose to their clients. Typically the advice is to take less risk,
but increase consumption, as one gets closer to the (random) horizon. The result has
been obtained under similar assumptions by a number of authors. It should be pointed
out that the author derived the results presented in this chapter not knowing that other
studies had considered similar formulations. An early study of optimal multi-period
investment strategies is Mossin [10] who characterizes the class of utility functions
for which it is optimal to maximize utility one period at a time. It is shown that a
constant portfolio policy is optimal if the utility function is in the crra class and the
yield distributions in the different periods are iid. In a model with a risk-free and a
risky asset, Samuelson (1969) studies the combined problem of optimal investment and
consumption, with results similar to those of Mossin in that for crra utility functions
the optimal portfolio decision is independent of time, wealth, and all consumption
decisions. Hakansson [5] studies a problem which is similar to that of Samuelson, but
also assumes a fixed non-capital income for the investor at the end of each period. It
is shown explicitly that if the current value of future income is added to the actual
wealth, one obtains the results of Samuelson; the optimal fraction of wealth invested in
the risky asset decreases as the present value of future non-capital income decreases.
Merton initiates the study of optimal investment and consumption in continuous
time in two seminal papers in 1969 [8] and 1971 [9]. Among the important more recent
papers are Pliska (1986), Karatzas et al (1986), Karatzas et al (1987). Cox and Huang
(1989) developed an important method to study investment problems and consider the
constrained optimization problem where wealth is required to be positive. Although
some studies ([4]) have considered the idea of using calculus of variations, the author
knows of no other study in which the closed form optimal consumption policy is derived

by such methods.
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Chapter 3

Optimal Groundwater Extraction

3.1 Introduction

An aquifer has been described as a saturated permeable geologic unit that can transmit
significant quantities of water under ordinary hydraulic gradients. In a water table
aquifer the water table forms the upper boundary while some layer of clay or rock
constitutes its lower boundary. These formations typically occur near the surface of
the earth. We consider a model of such a formation, originally proposed and studied in
[15], and the problem of extracting water to maximize revenue in a natural sense. It is
assumed that the marginal revenue from extraction is a decreasing, concave function of
the water depth. A continuous time stochastic model is used to describe the fluctuations
is the water table level due to water recharge. Most realistic effects are ignored in this
relatively simple model.

Some investigations indicated that an optimal policy may involve extraction when
the water table level is in either of two disjoint intervals[2],[3]. This anomaly was studied
and partially explained in [11], where it was suggested that the reason was the initial
model assumption of reflection of the water table level at the aquifers lower boundary.
We shall here prove that given a simplified boundary condition, the optimal strategy is
always of a simple and intuitive form. We thereby give the arguments presented in [11]

a clarification.
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3.2 Problem Formulation

The water table is modeled by a non-negative process X = {X;}¢>o, formally given by

(3.1)
Xt ::U0+/Lt+O-Wt+Zt

where the control process Z = {Z;}¢>¢ represents the amount of water extracted. Large
values of X; correspond to low water level. The zero level represents the surface of the

earth. Here p is real and o > 0.

Definition 3.1 Suppose that X, Z are non-negative processes on a probability space
satisfying (3.1). If Z is non-decreasing, right-continuous with left-hand limits and
adapted to the filtration {F;}¢>o generated by the Brownian motion we call Z a policy.

The set of policies is denoted A.

We do not restrict ourselves to the case when X is an Ito-process. In particular, we
do not wish to assume that Z; = fot ¢udu for some adapted process ¢. Being the sum
of a square-integrable martingale and a finite variation process, X is a semi-martingale

and we shall use a generalization of the Ito formula for such processes.

Example 3.3 Given a probability space (€2, B, P) on which a brownian motion W
with associated filtration F = {F;}¢>¢ is defined there exists for each a > 0 an adapted
process Z(®) which satisfies the conditions of definition 3.1, with

(i) 23" = (a — zo)*

(ii) Xt::r0+ut+aWt+Zt(a) >afort>0

(iii) t — Zt(a) is a.s continuous on (0,00) and constant on any interval [c,d], such
that X; > a,Vt € [c, d]

The process Z(® is the “local time push”! excerted at the threshold a. We call such

!The intuitive interepretation is that an amount (a — zo)" of water is instantaneously removed at
time ¢ = 0 followed by extraction at infinite rate when the water level reaches a so as to keep X: > a
at all times ¢ > 0.
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a policy a simple policy. [

Assumption 3.4: The marginal revenue function ¢ defined for x > 0 is both con-

cave and decreasing. We choose our units (length and money) so that ¢ satisfies

q(0) = 1,¢(1) = 0.

Definition 3.5 A policy Z is called optimal if?

Vz(xo) = sup Vz(xp),
ZeA

N (3.2)
where Vz(zo) : = Eq, / e "q(Xy)dZ,
0

The problem is therefore to maximize revenue, in a natural sense, using a discount rate
of r > 0. The properties of the function g reflect an assumption of increasing pumping

costs (e.g energy) when X is large. In the setup of Section 1.2

_ Az
U(t,X¢, Zs) = e rt(](Xt)E

(although we do not assume that Z; with positive probability be a differentiable function

of t).

3.3 Optimal Extraction May be Anomalous

Example 3.3 provides a class of policies that imply extraction at infinite rate when X
is in [0, a]. Under the additional assumption that X is reflected at the lower boundary
xp, xp > 1, there was evidence indicating that an optimal strategy need not be of this
simple type. For a given smooth, concave marginal revenue function it was known that
for certain parameter values one optimally extracts, at infinite rate, when X is in either

of two disjoint intervals [0, a1], [a2,a3] C [0,25]3.

The investigation in [11] partially
explained the reason for this anomaly although no rigorous results were presented.

It was argued that the reflection at the lower boundary creates two different ways

%the integral is taken in the Riemann-Stieltjes sense

%It should be pointed out that the relative gain in payoff (compared to the best simple policy) is
about 107°.



20

of making money: Besides extracting with high marginal revenue it is profitable to
extract, with relatively low marginal revenue, close to the point at which X is reflected.
It was also suggested that the anomaly somehow arises when the difference in payoff
for policies of these two types is very small.

It will be proved in the next section that this phenomena cannot occur under the
assumptions of section 3.2 if g is a smooth function. It is the author’s opinion that this
result clarifies the reason for the anomaly and that it should be kept in mind if one

wants to extend the model.

3.4 Result

Theorem 3.5 Given a smooth marginal revenue function q and the assumptions of

Section 3.2 the optimal policy is of the simple form.

The value of a for which Z(® is optimal is (see below) the root in [0, 1] of

q'(a)
Y-

—q(a) =0

The function ¢ is still assumed to satisfy the conditions of assumption 3.4. Thus,

(3.3)

3.4.1 Dynamic Programming

The proof of the theorem follows the method from Chapter 1, used in Chapter 2. We
look for a function V that gives the process
¢

M; = ?(Xt)e_rt —)—/ e "q(Xy)dZy,
0
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the super-martingale property, with the martingale property satisfied for some Z (@),

For a twice continuously differentiable function IA/, let

LV(z) = —rV(z) + puV'(x) + =V
NV (z) = V'(z) + q(x)

By the Ito-formula for semi-martingales (Theorem 32, [13]), using dZ; - dW; = 0,

t

t t
M, = V(o) + | LV(X,)e ™ du+ / V(X )e ™ dZ¢ + / e " (X )odW,,
0 0 0

R R t X, (3.5)
+ Y V(X)) = V(X )Je ™+ / e Mq(Xy)dZe + Y / q(2)dz
0<u<t 0 0<u<t?Xu-
where the countable sum is taken over the discontinuity points of X, X,_ := lim,_ g+ Xy—¢

and dZ¢ is the integral with respect to the continuous part of Z. If we write V(Xu) -
VX, )= Jx V'(2)dz then we get M; =
N t t Xu
V(o) + / LV (X, )e ™du + / LV(Xy)e ™dZs+ > e ™ / LV (z)dz (3.6)
0 0 0Zuct e

plus an Ito-integral.

We construct below a function V which is twice continuously differentiable and sat-
isfies LV (z) = 0,z € [a,00) and NV(z) =0,z € [0,a) for some a. The construction
implies that M is a martingale if 7 = Z (@), To show that this policy is optimal we then
verify that LV (z), NV (z) < z for all z > 0 so that, by (3.6), M is a super-martingale

for any policy Z.

Let the constants 7_ < 0 < 4 be the roots of the equation
2

g
—r — @y + ?72 =0 (3.7)

The value of a for which Z(® is optimal will be given by
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Definition 3.6 If |y_| < |¢’(0)| we let a = 0 and if |¢'(0)] < |y_| let a be the unique

root in [0, 1] of

To see that f has exactly one root in [0,1] if |¢(0)] < |y—| observe that f(0) <

-1, f(1) = q,’y(f) > 0, so a root exists. Furthermore,

f'(a) = —q'(a) >0

so f is increasing on [0, 1].

Definition 3.7 Let ¥ be defined by

. 1,
V(o) = (o) + / a(w)du,0 <z < a (3.9)

— T

-1
= —¢'(a)e’- (@=a) 2> q

By construction, V satisfies LV (z) = 0,z € [a,00) and NV (z) = 0,z € [0,a) and
V is twice continuously differentiable. We have used the so called principle of smooth

fit to construct V.

3.5 Proof Of Result

The following Lemma says that the function 1 gives M the super-martingale property.
The proof is, although straightforward, rather involved and can be found in the appen-

dix. The proof uses that ¢ is concave.
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Lemma 3.8 If 17(:6) is given by (3.9) then

for all values of © > 0.

Proof of Theorem 3.5: Let Z be a policy. Then
N t
M; = V(X;)e ™ +/ e " q(Xy) Zy
0
is a super-martingale by (3.6) and Lemma 3.8 so
t A~
E, / e "q(Xy)dZ, = E;My — EV(X;)e "
0

(3.10)
(z) — B,V (Xp)e ™

IA
<

Since V is bounded, taking ¢ — oo and applying monotone convergence on the left hand

side gives
S AN
Ex/ e "q(Xy)dZ, < V(x) (3.11)
0

This shows that V(z) < V(z). If Z = Z@ then, by our construction of V, M is a

martingale and we have
E/ e "q(X,)dZ® = V(x)
0

implying V (z) > 17(:0) Thus, V(z) = 17(:0) and Z(® is optimal. O]
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Chapter 4

Appendix

4.1 Some Basic Utility Theory

The expected utility maxim states that an economic agent, when faced with a choice
between different alternatives, should choose the one with the greatest expected utility
according to some utility function assigning a value of utility to each possible outcome.
The expected utility maxim can be deduced from a small set of axioms. In other words,
it can be shown that for an individual who obeys a few, basic rules, there exists a utility
function such that the expected utility maxim holds(see Herstein and Milnor [6]). A
utility function can be defined as an increasing and concave function u : R — [—00, 00).
It is also common to assume that u is twice continuously differentiable. The (absolute)

risk aversion function a : R — (—00, 00) is defined by

U”(ZE)

a(r) = —

The absolute risk aversion function is positive and measures the degree of risk aversion

(locally at x). The requirement that a utility function u be concave is equivalent to
requiring that the corresponding risk aversion function be positive.

An important class of utility functions is the class of so-called HARA (hyperbolic

absolute risk aversion) utility functions, which can be written in the form

1-— Bx Bx
u(e) = — (7= +n),
v l-nv 1—y
with 8 > 0 and v € R\{0,1}. This class includes some widely used utility functions as

+n7>0>

special cases: If n =0 and vy < 1, then u is a power utility function for v # 0, and it is
the logarithmic utility function in the limiting case v — 0. These are also called CRRA
(constant relative risk aversion) utility functions. If » = 1, then u is exponential in the

limiting case v — —oo we get u(z) = —e P2,
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4.2 Verification of a few Lemmas

Lemma 4.1 Let Z € A. If ¢ is defined by (23) then

lim Ep(t) "X} e Plp(t) =0
t—T

0_2
Proof: First note that P(X; > v) < P(X} > v),v > 0 where X} = ze(t=7)tHoWs ig

the solution to (2.1) for Z = 0. This implies

EX} e Bt < Bal el oW (1-7) gt
L g Bt (u— T (1) + 0 (4.1)

:x1*7€*70* (5,}11,0',’)’)t

This gives us

Enp(t)‘”thﬂe_ﬁtp(t) le—ve—vu(ﬁ.u,a,v)w(t)—vp(t)

T (4.2)
:xl—v(/ p(u)' /e (Botmai )t gy )y
t
which goes to zero as t — 7. [J
Proof of Lemma 2.4: We have
zt i) ¢ _ (1-9) i
t = £ {—ve. - - t)Y
((t,z,2) 1—73‘7( )T H{=vex (B, 0,7) + o0 Vo ozt e(t) )
(4.3)

for t > 0,z > 0,z > 0. We show that ((¢,z,p(t)z) = 0 for all values of ¢,z and

¢(t,z,2z) <0 for any t,z, z.

We have
:El_ ! !
Gt 00) =1 —t) " (—re B + 2 —1E v (0}
-
=~ T + HOR) - () (4.4)

=0
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since ¢(t) satisfies (21). Fix 0 <t < T,0 < . Then

e _ =
2 o(ta2) =0 - et S5
=0 + 0B S, (45)

2

%C(ta T, Z) = - 727(14»7)

We see that z — ((¢,z, z) is a concave function of z for z > 0 with %C(t, T, 2) |z —ap(t) =

C(t, @, 2)|;=pp(ty = 0. It follows that ((t,z,2) < 0,z > 0. Since t,z were arbitrary,
¢<0. 0

Proof of Lemma 2.11 Let ¢ = ¢, and suppose that o : [0,00) X (0,00) — [0, 00).
Define ¢ : [0,T) x (0,00) x (0,00) = R by {(¢t,z,2) =

ft;¢(t)7{—'yc*(ﬁ, ac(t,z) +b,o(t,z),v) + Pit)  _¢t) (1-9) 217

Then (i) {(t,xz,z) <O for any t,x,z. (it) If o(t,z) = a/7y,{(t,z,p(t)z) =0 for any t,x.

Proof: (ii) Since ¢(t) satisfies

@' (t) + ho(t)e(t) — (t)* =0 (4.7)
_ 1p'(t)
with ho(t) = &(5,a,b,7) 5 ()
we have
xlf ! !
Ot 0) =1 l0) " (—1cu(B,0% 1+ bafn) + 20— o)
T Pt) ¢
=T= 7sO(t) T{—vk(B,a,b,7) + o0 Vot ve(t)}
'~

= fysoa)“*”{so'(t) T ho(t)(t) — 0(t)°}
—0

(4.8)
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(i) Let ¢,z be arbitrary. Then

L1 B -
a2 =0 - e )
=Tt -1+ ol S, (49

d? 1
%C(taxaz) = - 72_( +’7)

We see that ((t,z,z) is a concave function of z for z > 0 with %C(t,m,zﬂz:w(t)

C(t, @, 2)| ;—gp(t) = 0. Tt follows that ¢ < 0. O

Lemma 4.2 Let (0,7Z) € A*. If ¢, is defined by (33) then

lim B, (t) 77X} Te Pp(t) = 0
t—T

Proof: Since Z; > 0 we have P(X; > v) < P(X] > v) where X] is the solution of

the wealth process without consumption (a solution exists since o is bounded). If we

let m(t) = EX;'~7 then m(t) is continous in ¢. This gives

Epu(t) X, e 'p(t) <m(t)pn(t) p(1)

T (4.10)
:m(t)e—vﬁ(ﬁ,a,bﬁ)t(/ plu)/ Ve FBabm gy )Y
t

which goes to zero as t — 7. [J

Lemma 3.8: The functions NTA/, LV are <0 for all values of © > 0.

We have

(4.11)

and
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Definition 3.3.6: If |[y_| < |¢'(0)| we set a = 0 and if |¢'(0)] < |y_]| let a be the

unique root in [0, 1] of

!
a
fla) = qv(_) —gla) =0 (4.12)
and
Definition 3.3.7:
- 1, ¢
V(@)= —d(@+ [ alwdn0<r<a (413)
_21 q/(a)e'y, (x—a), r>a

Proof of Lemma 3.8:

By construction, NV (z) = 0,z € [0,a]. To show that NV (z) < 0 it is therefore
enough to show that N’V (z) < 0 for > a, i.e that

;—1q'(a>e* (@=0) 4 g(z) < 0 (4.14)

for z in (@, 00). This inequality is trivial for z > 1 since y_ is negative and ¢(z) = 0.
We have equality at £ = a so it is enough to show that the derivative of the left hand

side is less than or equal to zero for z in (a,1] i.e
(@)= 4+ (&) <0 (4.15)

We have,

~q/(a)e" @) 4 ¢/(x) < ( by (4.11) part (ii5)
~¢(@)e" = + ¢ (a) = (416)

¢(a)(e-9 —1) <0

so N'V(z) < 0 holds for « in (a,00) and therefore for all > 0.
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We now show LV (z) = 0,z > 0. By construction, £V (z) = 0,z € (a,o0). For

LV (z) < 0 to hold for all z > 0 it therefore is sufficient to show that

d -~
— >
T LV(z) >0

for0 <z <a, or

2 (4.17)
By (4.11)(iii) we have

2

r(2) + ug' (@) - 4" (2) > (4.18)

rq(z) + pq' ()
so it is enough to show that this quantity is less than or equal to zero. By (4.11)(i7)

the inequality

rq(z) + pq'(z) > 0 (4.19)
is trivial if 4 < 0 so we assume p > 0.
We have,
rq(z) + pg'(z) > ( by (4.11) part (i7))
rq(a) + pg'(z) > ( by (4.11) part (iii))

rq(a) + pq'(a) = (by the definition of a)
¢(a) _ (4.20)

We have proved that £V (z) <0 for all z > 0. O
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