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ABSTRACT OF THE DISSERTATION

Geometric features of string theory at low-energy

by Sergio Lukic

Dissertation Director: Professor Gregory W. Moore

In this thesis we study several differential-geometric aspects of the low energy limit of string

theory. We focus on anomaly cancellation issues in M-theory on a manifold with boundary

and background fluxes, and the computation of non-holomorphic quantities in Calabi-Yau com-

pactifications. In the first chapter we introduce the motivation and the problems that we will

study.

In the second chapter we show how the coupling of gravitinos and gauginos to fluxes modifies

anomaly cancellation in M-theory on a manifold with boundary. Anomaly cancellation continues

to hold, after a shift of the definition of the gauge currents by a local gauge invariant expression

in the curvatures and E8 fieldstrengths. We compute the first nontrivial correction of this kind.

In the last chapter, we introduce methods to determine the form of the effective four-

dimensional field theory corresponding to compactifications of string theory. More precisely,

we develop iterative methods for finding solutions to the Ricci flat equations on a Calabi-Yau

variety, and to the hermitian Yang-Mills equation on stable holomorphic vector bundles, follow-

ing ideas developed by Donaldson. Finally, we show how these techniques can be understood

using the language of geometric quantization of Kähler manifolds, and suggest how one can use

these ideas to explicitly construct additional geometric objects.
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Quotations

To do great work, you have to have a pure

mind. You can think only about the mathe-

matics. Everything else is human weakness.
Mikhail Gromov

Madness is to think of too many things in suc-

cession too fast, or of one thing too exclusively.
Voltaire

The soul is healed by being with children.

Fyodor Dostoevsky

Anyone who keeps the ability to see beauty

never grows old.
Franz Kafka

Be that self which one truly is.

Søren Kierkegaard
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Chapter 1

Introduction

The particle physics phenomenology below the electroweak scale MEW ' 100GeV , is success-

fully described by an effective field theory (EFT) which couples the Standard Model (SM) with

General Relativity. However, the present framework cannot solve conceptual problems such as

the hierarchy problem, the cosmological constant problem and more ambitiously, quantum grav-

ity. Superstring theories are the best candidate quantum theories to unify gravity, Yang-Mills

theory and fundamental matter, and furthermore to solve these fundamental problems.

Unfortunately, a precise mathematical understanding of string theory is still missing. We still

do not know how the kinematics, dynamics and initial conditions of the theory are entangled; we

do not even know if such a question can be answered. It has been shown mathematical evidence

to support the existence of a unique theory –known as M-theory– which contains, in different

limits, every other string theory. However, it is not clear if such conjectural theory yields a

unique vacuum solution in which kinematics, dynamics and initial conditions are combined in

such a way that the four dimensional physics that we know appears in the low energy limit.

One more practical way to study string theory is to follow a phenomenological approach. In

such approach one integrates out all the string excitations that have very short wavelength (i.e.

the very massive excitations), and formulates an effective field theory that describes the light

(long wavelength) degrees of freedom. If one wishes to give a phenomenological description of

the consequences of string theory for low-energy physics, it should not be necessary to describe

explicitly what the massive states are doing. Such an effective description turns out to be

useful not only for a phenomenological analysis, but even as framework for addressing certain

theoretical issues, such as the occurrence of anomalies. One implication of this approach, is

that it allows the formulation of a huge number (maybe infinity) of possible low energy limits of

the theory; hence, in this framework one is just able to build models of particle physics, while

neglecting the ultraviolet completion of the EFT. If this multiplicity of models is an apparent

or a fundamental feature of the precise formulation of string/M-theory is still a matter of

discussion.

In this thesis, we study some aspects of the geometrical structures that appear in the effective
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field theory approach to the low-energy limit of string theory.

In chapter 2, we consider anomaly cancellation in the supergravity description of M-theory

on a manifold with boundary and background fluxes, [64]. We show how the coupling of

gravitinos and gauginos to fluxes modifies anomaly cancellation in M-theory on a manifold with

boundary. Although anomalies were originally understood as an ultraviolet effect, they can

also be understood as an infrared effect; after all, the anomaly is a failure of gauge invariance

that cannot be removed by adding any local counterterm to the effective action and therefore

cannot depend on unknown modifications of the short distance physics. Anomaly cancellation

in M-theory was discussed in the geometric framework in [42]. The ideas in chapter 2 begin to

fill a gap left open in [42] and indeed left open in the entire literature on anomaly cancellation

in 10- and 11-dimensional supergravities. Namely, in the past the coupling of gravitinos and

gauginos to fluxes was omitted. In our analysis, such couplings are retained.

In chapter 3, we introduce some numerical methods to describe accurately many differential

geometric objects that appear in the large volume limit of Calabi-Yau compactifications of string

theory. The goal is to use these ideas to extract the form of the effective four-dimensional field

theory corresponding to compactifications of string theory. For N = 1 supersymmetric com-

pactifications 1 we know that the effective supergravity theory depends on the Kähler potential

K(Ψ,Ψ†), the superpotential W (Ψ) and the gauge kinetic function f(Ψ), where Ψ represents

the chiral superfields surviving at low energies. These include both the charged matter super-

fields C and the singlet moduli superfields Φ. It is well known that W and f , being holomorphic,

are under much better control than the real function K. In particular K is not protected by

the standard non-renormalization theorems of N = 1 supersymmetry.

The standard way to extract the functional form of K, W and f at tree-level is by di-

mensionally reducing the original 10d theory, having carefully identified the appropriate 4d

superfields in terms of the corresponding 10d geometrical quantities (such as Ricci-flat metric

moduli, hermite-Yang-Mills connection moduli, etc.). This allows the determination of K,W

and f as functions of the moduli fields and some of the matter fields. The importance of

knowing the Kähler potential for the physical matter fields is clear: it is needed for correctly

identifying the canonically normalized fields and therefore determines the structure of most of

the observable physical quantities, such as the corresponding scalar potential, the Yukawa cou-

plings, etc. In particular, the matter Kähler potential plays a crucial role in the determination

of soft supersymmetry breaking terms.

1Although the validity of our discussion is general, we will concentrate mostly on Calabi-Yau compactifications
of heterotic string theory with gauge group E8 × E8.
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Summarizing, in chapter 3, we quickly review the basics on Calabi-Yau compactifications of

the heterotic string, we show how to use geometric quantization to “discretize” the differential

geometry of the Calabi-Yau threefold and how to use this to construct numerical algorithms that

compute relevant geometrical quantities, such as Einstein metrics. We conclude by pointing out

several applications of our techniques and future directions of research.
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Chapter 2

Anomaly cancellation with background fluxes

2.1 Overview

M-theory on a manifold with boundary exhibits some extraordinary features, first noted by

Horava and Witten [51, 52]. First among these features is a subtle anomaly cancellation,

requiring the presence of an independent E8 super-Yang-Mills multiplet (of either chirality) on

each boundary component. In general, anomaly cancellation is best addressed in the geometric

framework of determinant line bundles with connection [7, 6, 71, 65, 88, 4, 41]. For recent

discussions see, for example [42, 63]. This framework is conceptually clear, is the best approach

to cancellation of global anomalies, and is in any case the basis for the descent formalism. In

a word, it states that the effective action after integrating out fermions must be a section of

a geometrically trivialized line bundle, that is, a topologically trivial line bundle with a trivial

connection.

The natural connection on a determinant line bundle for an operator D is a regularized

version of TrD−1δD. Therefore, including couplings to the flux results in a change in the

connection on the determinant line bundle and hence in the curvature, i.e., it results in a

change in the (local) anomaly. In [42] it was shown that if we omit these couplings then there

is a canonical geometrical trivialization (termed there a canonical “setting of the integrand”) of

the line with connection LFermi ⊗ LCS . Here the fermion effective action is a section of LFermi

while LCS accomodates the Chern-Simons term. (See [30] for an in depth discussion of this

line bundle and its connection). Including the couplings of the fermions to the fluxes spoils the

geometrical trivialization. Nevertheless, as we show here, the curvature of LFermi ⊗ LCS is of

the form F = dA where A is a globally well-defined 1-form on the space of (gauge-equivalence

classes of) bosonic fields. Moreover, A is of the form
∫
X
I11 where I11 is local in the fields, and

X is the 10-dimensional boundary. Physically this means that although there is a change in

the anomaly polynomial I12, it changes by dI11 where I11 is gauge invariant. There is still a

physical consequence of this change - the change of connection needed to restore geometrical

trivialization corresponds to a change of the definition of the gauge current. We give an explicit
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formula for this change, to lowest order in fluxes and in flat space below.

2.1.1 Organization

The organization of this chapter is as follows: section 2 contains a definition of the one-loop ef-

fective action in M-theory, taking into acount their couplings with the flux. We derive explicitly

the contributions from the bulk and the boundary, and thus determine the line bundle LFermi,

where the exponentiated effective action is defined. In section 3, we analyze the geometry of

this line bundle. The contribution from the boundaries yields a non-vanishing local curvature

FFermi ∈ Ω2(T ) for LFermi. Here T is the space of (gauge inequivalent) bosonic field configu-

rations. After including the contribution of LCS , the total curvature is a globally exact form

F = dA. Thus, it is possible to obtain a geometrical trivialization by changing the connection.

Similarly, the contribution from the bulk gives rise to possible Z2-holonomies for loops in π1(T ),

due to an ambiguity in the definition of the sign of the Rarita-Schwinger determinant [89, 42].

We show how the flux corrections do not alter the usual Z2 (or parity) anomaly cancellation

mechanism. Section 4 provides explicit formulas for the curvature of the line bundle when the

boundaries of Y are flat Euclidean space. We show how our calculations, based on heat kernel

expansions and the descent formalism, confirm the general arguments given in section 3.

For completeness, we also study this local anomaly using Fujikawa’s method, determining

the flux correction to the gauge current as a gauge invariant 9-form in Ω9(R10). At the end

of the thesis, we include two appendices: one states our Clifford algebra conventions, and the

other briefly indicates the connection to supersymmetric quantum mechanics.

2.2 The one-loop effective action

In this section we sketch the gravitino partition function in the case of M-theory on a spin

11-dimensional manifold Y , which might have a nonempty boundary.

The supergravity multiplet consists of the metric g, a gravitino ψ, and a 3-form gauge

potential with corresponding field strength G. The low energy limit of M-theory is described

by 11-dimensional supergravity [28]. Here we focus on the quadratic part of the action for the

gravitino

−1
2

∫

Y

vol(g)
[
ψIγ

IJKDJψK +
`3

96
(
ψIγ

IJKLMNψN + 12ψ
J
γKLψM

)
GJKLM

]
(2.1)

with I, J, . . . worldindices, DI the spin connection and ` the eleven dimensional Planck length.

We are neglecting higher order terms in ψI . The local supersymmetry transformation for the
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gravitino up to 3-fermi terms, is

δψI = DIε+
`3

288
(γI JKLM − 8δJI γ

KLM )GJKLM ε := D̂Iε. (2.2)

We will write (2.2) as δψI = D̂Iε, and will refer to D̂I as the supercovariant derivative. We will

abbreviate the action as ∫

Y

ψRψ. (2.3)

Denote by S the spin bundle on Y . The generalized Rarita-Schwinger operator R : Γ(S ⊗
T ∗Y ) → Γ(S ⊗ T ∗Y ), fits into the complex

0 → Ω0(S) D̂−→Ω1(S) R−→Ω1(S) D̂
∗

−→Ω0(S) → 0, (2.4)

if we require the vanishing of R ◦ D̂. Furthermore, at the level of principal symbols the complex

is exact so (2.4) defines an elliptic complex. To check the exactness of (2.4) at the level of

symbols it is enough to work in flat space, thus if σD̂(k) = k ∈ T ∗Y is the principal symbol

associated to D̂ and the symbol for R is σR(k) = γMNP kN , then Ker(σR(k)) consists of the

elements sσD̂(k) for a spinor s.

The consistency condition R ◦ D̂ = 0 requires that the equations of motion for the bosonic

fields must be satisfied as we show below. Hence, if we write the equations of motion for the

gravitino field as [28]1

Rψ = γMNP D̂NψP = 0, (2.5)

we can write the condition R ◦ D̂ = 0 as

R ◦ D̂ = γMNP [D̂N , D̂P ] = 0. (2.6)

We can describe the bosonic configurations satisfying (2.6) by considering the seemingly

simpler relation

γP [D̂N , D̂P ] = 0. (2.7)

We claim that (2.6) and (2.7) are equivalent. That (2.7) implies (2.5) follows from γMNP =

γMγNγP + gNP γM − gMP γN + gMNγP . To prove the converse observe that

0 = (gQM +
1

11− 2
γQγM )× (γMNP [DN , DP ]) = 2γP [DN , DP ]. (2.8)

By a straightforward computation can express the condition (2.6) on the bosonic fields, using

the relation (2.7) as follows

γN [D̂M , D̂N ] = − `3

288
(D[NGPQRS])γMNPQRS +

5`3

144
(D[MGNPQR])γNPQR

1Note that we are expressing the Rarita-Schwinger operator R in two equivalent ways.
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− `
3

72

(
DNGNPQR +

`3

4× 288
GI1...I4GJ1...J4εI1...I4J1...J4PQR

)
gMT γ

TPQR

+
`3

12

(
DNGNMPQ +

`3

4× 288
GI1...I4GJ1...J4εI1...I4J1...J4MPQ

)
γPQ

−1
2

(
RMN − `6

6

(
GMPQRG

PQR
N − 1

12
gMNGPQRSG

PQRS
))
γN = 0. (2.9)

Here, we expand (2.7) in terms of completely antisymmetrized products of gamma matrices (see

appendix), hence (2.9) implies the following constraints for the bosonic fields

dG = 0 (2.10)

d ? G = −`
3

2
G ∧G (2.11)

RMN =
`6

6

(
GMPQRG

PQR
N − 1

12
gMN ? (G ∧ ?G)

)
(2.12)

where RMN is the Ricci tensor. These are just the classical equations of motion of 11-

dimensional supergravity.

2.2.1 The gravitino partition function

Since the local fermionic gauge symmetries of n = 11 supergravity do not close into a super

Lie algebra for off-shell bosonic backgrounds, we should in principle use the BV quantization

procedure to get a correct gauge fixed action. Here we determine the gauge fixed action for

backgrounds that satisfy (2.11), and (2.12). This allows us to use standard BRST procedures

[55, 68] and simplifies the discussion considerably. Of course, it leaves an important gap in our

treatment. Accordingly, we consider the gravitino partition function

Z =
∫

Ω1(S)/ImD̂

[dψ]e−
R

Y
ψRψ, (2.13)

It is useful to introduce the notation:

G/ = γPQRNGPQRN (2.14)

G/N = γPQRGPQRN = −γPQRGNPQR (2.15)

G/RN = γPQGPQRN . (2.16)

A direct calculation shows that

γM
PQRNGPQRN = γMG/− 4G/M , (2.17)

and therefore we can write (2.2) as

D̂M ε = DM ε+
`3

288
γMG/ ε+

`3

72
G/M ε. (2.18)
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Since γMγM = −11 and γMG/M = −G/, the associated supercovariant Dirac operator will be

D̂/ = γM D̂M = D/− 5`3

96
G/. (2.19)

Thus we can write the action (2.1) as

−1
2

∫

Y

vol(g)
[
ψIγ

IJKDJψK +
`3

96
ψI(γ

IKG/− 8γ[IG/K] − 24G/IK)ψK
]
. (2.20)

We now use the formal BRST procedure to determine the gravitino gauge fixed action, and

choose the gauge s = γ · ψ for an arbitrary spinor s ∈ Ω0(S). This leaves unfixed zeromodes of

the Dirac equation, constituting a finite dimensional space which we will deal with presently.

Following standard procedure we write

1 =
∫

Ω0(S)⊥
[dε] δ(s− γM (ψM + D̂M ε))(det′D̂/)−1 (2.21)

with Ω0(S)⊥ =
(
Ker D̂/

)⊥ and where D̂M and D̂/ were defined in (2.18) and (2.34). We now

insert (2.32) into ∫
[dψ]e−

R
Y
ψRψ (2.22)

and divide by the volume of the supergauge group to obtain the gauge-fixed expression

∫
[dψ]δ(s− γ · ψ)(det′D̂/)−1e−

R
Y
ψRψ. (2.23)

Ghost fields are introduced by writing the determinant (2.32) in terms of commuting ghost ε

and antighost β fields as

(det′D̂/)−1 =
∫

[dβ][dε]e−
R
βbD/ ε, (2.24)

the prime in the determinant denotes the omission of the null eigenvalues.

Furthermore we invoke the following algebraic identity for φM = ψM + 1
2γM (γ · ψ), which

allows us to split the gauge fixed action as a sum of functionally independent quadratic terms,

i.e. we have the relation

−φD̂/T∗Y φ = ψRψ − 1
4
(n− 2)(γ · ψ)D̃/ (γ · ψ), (2.25)

where R was defined in (2.20) to be

RIK = γIJKDJ +
`3

96
(γIKG/− 8γ[IG/K] − 24G/IK), (2.26)

while D̃/ and D̂/T∗Y are uniquely fixed to be the generalized Dirac operators

D̃/ = D/+
`3

288
G/ (2.27)
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and

D̂/T∗Y = D/T∗Y − `3

96
G/. (2.28)

Here, the subscript T ∗Y denotes the coupling with the cotangent bundle of Y . The identity

(2.25) is easy to check when we substitute the φ-field and the operators D̂/T∗Y and D̃/ in it and

use the following relations for G/ and the gamma matrices

γMG/−G/γM = 8G/M (2.29)

γMG/P +G/P γM = −6G/MP (2.30)

γIK = γIγK + gIK . (2.31)

At this point, rather than setting s = 0 we average over s = (γ · ψ) using the expression

1 =
1

(det′D̃/)1/2

∫

(Ω0(S))⊥
[ds] e−

R
seD/s. (2.32)

Formally, using (2.25) the gauge fixed partition function for the gravitino can be written as

Z ′ =
1

(detD̃/)1/2

∫
[dψ][dβ][dε]exp

(
− 2π

∫

Y

vol(g)(ψD̂/T∗Y ψ − βD̂/ ε)

)
. (2.33)

We still must fix the remaining global fermionic symmetries given by supercovariantly con-

stant spinors. We will assume the procedure described in [42], eq. (A.11) continues to hold.

The net result is the following key statement. 2

Let T denote the space of bosonic M-theory data on Y , i.e., the Riemannian metrics and

G-fluxes, and introduce the fibration Y → T whose fiber is the spacetime manifold Y . This

yields a family of operators (D̂/, D̃/, D̂/T∗Y ) built up fiberwise in Y through the geometric data

parametrized by T :

D̂/ = D/− 5`3

96
G/, (2.34)

D̃/ = D/+
`3

288
G/, (2.35)

D̂/T∗Y = D/T∗Y − `3

96
G/. (2.36)

Then, the gravitino partition function exp(−Γgravitino) is a section of the line bundle

Lgravitino := Pfaff D̂/T∗Y ⊗ (PfaffD̃/)−1 ⊗ (Det D̂/)−1 → T , (2.37)

In fact, this is a line bundle with connection, as we will discuss below. In addition, the Chern-

Simons term of M-theory is also a section of a line bundle with connection LCS → T , and hence

2We are unaware of an adequate treatment of the ghost zeromodes in the gravitino partition function in the
literature. In our analysis we sidestep that issue and assume that the gravitino effective action is a section of
the line bundle introduce below.
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the M-theory measure is a section of

Lgravitino ⊗ LCS → T (2.38)

2.2.2 Boundary contribution to the effective action

Let us now turn to the case where Y has a boundary. We denote by ∂Yi the different connected

components and by ω∂ Clifford multiplication by the volume 10-form on the boundary. We

follow closely the discussion of boundary conditions in [42]. We fix a spatial boundary condition

for the spinor field Ψ, by imposing

εiΨ∂ = Ψ∂ with εi = iω∂ or εi = −iω∂ (2.39)

at each connected component ∂Yi. The presence of boundaries produces local anomalies in the

theory.

The fermionic content at the boundary in the low energy description of M-theory comes

from the restriction of the gravitino and the presence of gauginos. We generalize the discussion

of Horava and Witten and attach an independent N = 1 super Yang-Mills multiplet with gauge

group E8 and chirality εi to each connected component of the boundary. According to [51], we

should write the quadratic part of the action for the gauginos, as

Si = − 1
4π`6

∫

∂Yi

vol(g∂)tr

[
χD/E8χ−

`3

24
χaγ(ινG∂)χa

]
. (2.40)

The superscript ∂ denotes restriction of the field on the boundary and ιν is the contraction with

the unit outward normal vector field to ∂Yi. As shorthand, we can write the action using the

generalized Dirac operator

D̂/E8
= D/E8 −

`3

24
γ(ινG∂), (2.41)

so the exponentiated effective action for χ is section of the line bundle

Lgaugino =
⊗

εi=−iω∂

(
PfaffD̂/

∂Yi

E8

) ⊗

εi=iω∂

(
PfaffD̂/

∂Yi

E8

)−1

−→ T , (2.42)

It is useful to decompose the boundary 4-form G, in its tangential and normal components

G∂ = ν[ ∧ ινG∂ + (1− ν[ ∧ ιν)G∂ = G∂N +G∂T (2.43)

with ν[ the 1-form dual to the unit normal vector field ν. Also, we introduce the local “torsion”

hl = − 1
24
`3ινG

∂ . (2.44)
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For the gravitino sector, we have to generalize the gauge fixed action exp(−Γgravitino) to the

case ∂Y 6= ∅. To do this recall the relation between a Dirac-like operator on the boundary ∂Yi

and that in the bulk close to the boundary ∂Yi × [0, ε)

D̂/ = γν(∂ν − D̂/
∂
) (2.45)

where ν is the normal unit vector field to the boundary. Then, as (γν)2 = −1, the generalized

Dirac operators that we have to study on the boundary are

D̂/T∗Y = D/T∗Y − `3

96
G/, ⇒ D̂/

∂

T∗Y = D/∂T∗Y −
`3

24
γ(ινGN + ν[ ∧GT ) (2.46)

D̃/ = D/+
`3

288
G/, ⇒ D̃/

∂
= D/∂ +

`3

72
γ(ινGN + ν[ ∧GT ) (2.47)

D̂/ = D/− 5`3

96
G/, ⇒ D̂/

∂
= D/∂ − 5`3

24
γ(ινGN + ν[ ∧GT ) (2.48)

as ινGN is a 3-form and ν[ ∧GT a 5-form, the operators D̂/
∂

T∗Y , D̃/
∂

and D̂/
∂

anticommute with

ω∂ and hence have a well defined index.

The restriction ψ∂ of the Rarita-Schwinger field ψ ∈ Ω1(S) to ∂Yi decomposes into tangential

and normal components:

ψ∂ = ψ∂T + ψ∂ν (2.49)

and their boundary conditions are given by the following definite choice of sign

ω∂ψ∂T = +iψ∂T (2.50)

ω∂ψ∂ν = −iψ∂ν . (2.51)

These boundary conditions imply that the gauge group must be restricted by

ω∂∇̂T ε∂ = +i∇̂T ε∂ (2.52)

ω∂∇̂νε∂ = −i∇̂νε∂ (2.53)

where

∇̂ν = νM D̂M (2.54)

∇̂T = D̂M − νM ∇̂ν (2.55)

and D̂M is the supersymmetric variation of the gravitino

D̂M = DM +
`3

288
γMG/+

`3

72
G/M . (2.56)

We then choose boundary conditions on the other ghost β, so that D̂/
∂

is skew-adjoint:

ω∂∇̂Tβ∂ = −i∇̂Tβ∂ (2.57)

ω∂∇̂νβ∂ = +i∇̂νβ∂ (2.58)
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The third ghost that comes from integrating over s (2.32), has the same boundary conditions

as γ · ψ:

ω∂(s∂) = −is∂ . (2.59)

As the chiralities of ε∂ and β∂ are opposite, (2.52), and (2.57), lead to pfaffian line bundles

which cancel, therefore D̂/
∂

does not appear in our analysis. On the other hand, as ψν comes

from a component of the Rarita-Schwinger field in Ω1(S), it couples to

D̂/
∂

ν = D/∂ − `3

96
γ(ινGN + ν[ ∧GT ) (2.60)

and s couples to D̃/
∂
, as defined in (2.46). Therefore, according to the theorems stated in [42],

the boundary contribution to the exponentiated effective action exp(−Γgravitino) is section of

Lgravitino =
⊗

−iω∂

[(
PfaffD̂/

∂Yi

T∗Y

)1/2 ⊗ (
PfaffD̂/

∂Yi

ν

)−1/2 ⊗ (
PfaffD̃/

∂Yi)−1/2
]

⊗

+iω∂

[(
PfaffD̂/

∂Yi

T∗Y

)−1/2 ⊗ (
PfaffD̂/

∂Yi

ν

)+1/2 ⊗ (
PfaffD̃/

∂Yi)+1/2
]
→ T (2.61)

where we are taking into account the contribution from every connected component of the

boundary. Finally we have

LFermi = Lgaugino ⊗ Lgravitino. (2.62)

In the following sections, we study the curvatures of the determinant line bundles associated

to generalized Dirac operators. The G-dependent contributions to the curvature of (2.62) are

given by terms constructed with the exterior derivatives d(ν[ ∧GT ) and dινGN . Now

d(ν[ ∧GT ) = dν[ ∧GT − ν[ ∧ dGT = 0. (2.63)

To see this, we work in the neighborhood of the boundary ∂Yi × [0, ε) such that dν[ = 0. Also,

as GT is closed on the boundary we have dGT = 0. Thus we can neglect the contributions from

ν[ ∧GT , and just work with the local torsion hl of (2.44).

2.2.3 Hořava-Witten reduction

It is useful to connect our formalism to the standard Hořava-Witten setup Y = X × [0, 1], used

to describe the strongly coupled heterotic string with gauge group E8 × E8, in its low energy

limit.

The H flux of heterotic string theory is recovered from the M-theory data according to

H =
∫

[0, 1]

dtG11MNPdxM ∧ dxN ∧ dxP (2.64)
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with t = x11 and 1 ≤M, N, P ≤ 10. On the other hand, using the decomposition of the G-flux

in terms of tangential and normal components to the 11th-coordinate

G = G11MNPdt ∧ dxM ∧ dxN ∧ dxP +GQRSTdxQ ∧ dxR ∧ dxS ∧ dxT = GN +GT (2.65)

with the indices M,N, . . . running between 1 and 10. On the boundaries ι∗(GT ) at t = 0, 1 we

have ι∗tGT = trF 2
t − 1

2 trR2
t ∈ Ω4(X) where Ft, t = 0, 1 is the curvature of the E8 bundle on

the boundary Xt. If we extend GT as a family of closed forms on X then

0 = d11G =
(
dt ∧ ∂

∂t
+ d

)
(GN +GT ) = dGN + dt ∧ ∂

∂t
GT (2.66)

(d and d11 are exterior derivatives on X and Y , respectively). Therefore, from (2.66)

dGN = −dt ∧ ∂

∂t
GT (2.67)

Using (2.64) and (2.67) we recover the usual formula

dH = trF 2
1 + trF 2

2 − trR2 (2.68)

Finally we would like to see how the interaction term

∆S =
1

96π`3

∫

X

vol(gX)Tr496
[
χγ(H)χ

]
, (2.69)

in heterotic string theory, is recovered from the boundary interactions of M-theory (2.40)

∆Si =
1

96π`3

∫

∂Yi

vol(g∂)Tr248
[
χiγ( hl )χi

]
. (2.70)

with i = 1, 2 labeling the boundaries of the cylinder X × [0, 1]. In the zeromode limit we have

LtGN = 0, or ιtGN = ιtG
∂1
N = ιtG

∂2
N = H = hl 1 = hl 2 (2.71)

i.e. GN is t-independent and the non-trivial t-dependence of G comes from GT . Therefore

∆S = ∆S1 + ∆S2.

2.3 Setting the bosonic measure in the presence of fluxes

In this section we will describe a connection on the gravitino and gaugino line bundles and

compute its curvature.

Without loss of generality, we can fix attention on one boundary component, and fix a

chirality. We choose to study

(
PfaffD̂/

∂

E8

)⊗ (
PfaffD̂/

∂Yi

T∗Y

)1/2 ⊗ (
PfaffD̂/

∂Yi

ν

)−1/2 ⊗ (
PfaffD̃/

∂Yi)−1/2 → T ∂ , (2.72)



14

where T ∂ is the space of bosonic fields on the boundary and the generalized Dirac operators in

(2.72) are

D̂/
∂

E8
= D/∂E8

+ γ( hl ), (2.73)

D̂/
∂

T∗Y = D/∂T∗Y + γ( hl ), (2.74)

D̂/
∂

ν = D/∂ν + γ( hl ), (2.75)

D̃/
∂

= D/∂ − 1
3
γ( hl ). (2.76)

where γ(·) denotes Clifford multilication by elements in Ω∗(X), with X := ∂Y .

A natural choice of connection on the determinant and Pfaffian line bundles follows the

discussion of Bismut and Freed [14, 13]. Working fiberwise in X → T ∂ , we can define generalized

Dirac operators D̂/ on X, as the ones which appear in the definition of the effective action, i.e.,

the operators (2.73), (2.74), (2.75) and (2.76). We now drop the superscript ∂ in the remainder

of this section. The generalized Dirac operator

D̂/ = D/+ α0γ( hl ), hl ∈ Ω3(X), (2.77)

(where α0 is α0 = 1, −1/3 in the case of interest here) can be viewed as an odd endomorphism

acting on the Hilbert bundle of spinors

Ω0(S+)⊕ Ω0(S−) → T ∂ , (2.78)

where the subindices + and − denote the chirality of the spinor. In the Weyl basis D̂/ decomposes

as

D̂/ =


 0 D̂/−

D̂/+ 0


 ,

Next, using a Riemannian structure on T ∂ we can then introduce a connection ∇̃ on the

Hilbert bundle Ω(S)⊗ Λ∗(T ∂) → T ∂ . This connection allows us to study the geometry of the

determinant line bundle where the effective action lives, i.e. given the Hilbert bundle (2.78) it

is possible to define its associated determinant line bundle

DetD̂/+ → T ∂ , (2.79)

which can be also written as3

detΩ0(S+)⊗ det(Ω0(S−)∨) → T ∂ . (2.80)

3See [71] and [14], for a rigorous definition of such infinite dimensional bundles.
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This line bundle has a natural connection on it which can be determined using heat kernel

expansions [13]. More concretely, when restricted to a 2 dimensional submanifold Σ ↪→ T ∂ , one

can compute its curvature as [14, 15]
∫

Σ

F(Det D̂/+ → T ∂) = 2πi
∫

π−1(Σ)

[
Trsa6(D̂/ )

]
(12)

, (2.81)

with F ∈ Ω2(Σ) and π : X → T ∂ the defining fibration of the family, with fiber X. 4 In (2.81)

we are using the heat kernel expansion

Trs
(
exp(−tD̂/ 2

)
)

=
Trsa0

t6
+

Trsa1

t5
+ . . .+ Trsa6 +O(t), (2.82)

where Trs( · ) = Tr(Γ13· ), and D̂/ the generalized Dirac operator on the spin bundle of the 12

manifold π−1(Σ), defined as

D̂/ = D/ + α0Γ( hl ), (2.83)

with D/ the usual Dirac operator on π−1(Σ), hl ∈ Ω3(X) and Γ( · ) denotes the Clifford multi-

plication in the Clifford algebra Cliff(12).

This approach allows us to compute the curvature of the line bundle form the integral over

two-dimensional submanifolds Σ ↪→ T ∂ .

2.3.1 Flux corrections to the line bundle’s curvature

If Trsa6(D̂/) is the heat kernel coefficient associated to the generalized Dirac operator D̂/, the

curvature of the physical line bundle which appears in M-theory (2.72) can be expressed as

F(Lgaugino ⊗ Lgravitino ⊗ LCS → T ∂) = F(LCS → T ∂)+

2πi
4

[ ∫

X

2Trsa6(D̂/E8
) + Trsa6(D̂/

∂

T∗Y )− Trsa6(D̂/
∂

ν )− Trsa6(D̃/
∂
)

]

(2)

, (2.84)

where [ · ](2) extracts the two-form part. Thus, evaluating the curvature of (2.72) is equivalent

to computing certain heat kernel coefficients.

Without evaluating the heat kernel coefficients we can make the following observation just

based on index theory. From [42] we know that the curvature (2.84) is zero for hl = 0. Since

the flux can be turned on by a compact perturbation the curvature will be an exact 2-form on

T ∂

F(Lgaugino ⊗ Lgravitino ⊗ LCS → T ∂) = dA, (2.85)

4The theorems of [13] and [15] that we use here were stated for families of ordinary Dirac operators and not
generalized Dirac operators. However the argument using Eq.(1.56) of [13], as well as the identity Eq.(5.4) of [15]
can be shown to extend to the case of generalized Dirac operators. One need only require some mild conditions
on the generalized Dirac operators, which turn out to be compatible with the physics of our problem.
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for some globally well-defined 1-form A ∈ Ω1(T ∂). As we have said, T ∂ is the space of gauge

inequivalent field configurations, that is, the base of the G := Diff(Y )×Aut(E) bundle

0 −→ G −→ Met(Y )×A π−→T ∂ −→ 0, (2.86)

with Met(Y ) the space of Riemannian metrics on Y and A the affine space of E8-gauge con-

nections on the E8 gauge bundle E → X. We can write the 12-form I12, used to define the

curvature of the line bundle F =
∫
X
I12, as the exterior differential of a G-equivariant 11-

form I11(R, F,G). Therefore, the descent formalism suggests that such flux corrections do not

contribute to the anomaly.

In order to justify the above claim we proceed as follows. As we showed above, we can

construct a generalized Dirac operator acting on the Hilbert bundle (2.78). If we now restrict

to an arbitrary 2-dimensional famliy Σ ⊂ T ∂ then the index of this operator, which we will

denote by Index D̂/ is given by

Index D̂/ =
∫

π−1(Σ)

Trsa6(D̂/ ). (2.87)

One the other hand, since D̂/ = D/ + γ( hl ) differ by a compact perturbation

Index D̂/ = IndexD/ . (2.88)

Since this applies to arbitrary families Σ we learn that
∫

X

Trsa6(D̂/ ) =
∫

X

Trsa6(D/ ) + dα, (2.89)

for some globally well-defined 1-form A on T ∂ . However, since the heat kernel expression is a

local expression in the fields we must have

Trsa6(D̂/ ) = Trsa6(D/ ) + dα, (2.90)

for some 11-form α, that becomes zero when hl = 0. In the next section we will verify this

explicitly for the case of flat space to lowest order in hl .

2.3.2 The Z2-anomaly

As noted in [42] there is a natural real structure on the gravitino line bundle, respected by the

Bismut-Freed connection, and hence the holonomy group is at most Z2. In fact, it can very

well be equal to Z2. The coupling of the gravitino to the G-flux respects this real structure,

and hence coupling to the G-flux cannot modify the Z2 anomaly cancellation. It will, however

change the one-loop measure. Here we give an expression for that change.



17

We need to compute

ξ(D/RS + `3Ξ ·G) := ξ
(
D/T∗Y − `3

96
G/
)
− ξ

(
D/+

`3

288
G/
)
− 2ξ

(
D/− 5`3

96
G/
)
. (2.91)

where ξ is the invariant appearing in the APS index theorem. We introduce a 1-parameter

family of such operators by scaling G→ tG and constructing the 12-dimensional operator:

D̂/ = σ2 ⊗ ∂

∂t
+ σ1 ⊗D/+ `3tσ1 ⊗G/, (2.92)

acting on spinors in the twelve-manifold Z = Y ×R. In order to apply index theory we should

think of the Dirac operator as

D̂/ := D/ + t`3Γ(?G), (2.93)

where Γ(?G) is the Clifford multiplication by ?G ∈ Ω7(Z) in Cliff(12), ? is the 11-dimensional

Hodge operator defined on Ω∗(Y ), and

D/ = σ2 ⊗ ∂

∂t
+ σ1 ⊗D/ (2.94)

is the Dirac operator in 12-dimensions. Then we have

∂ξ(D/+ `3G/t)
∂t

dt =
∫

Y

Trs
(
a6(D̂/ )

)
(12)

, (2.95)

with a6 being the t-independent part of the heat kernel expansion for exp(−tD̂/ 2
). We can write

the tensor products by the Pauli matrices in (2.92) as gamma matrices in 12 dimensions. The

12-form that we integrate on Y in (2.95) can be interpreted as the index density of D̂/ , hence in

order to extract information on the G-dependence of (2.91), we can use results from geometric

index theory for families of operators D̂/ , as we did in the case of the local anomaly.

The index of (2.93), is not modified by the presence of the G-flux, hence the flux-correction

to the 12-form Trs
(
a6(D̂/ )

)
(12)

will be

Trs
(
a6(D̂/ )

)
(12)

= Trs
(
a6(D/ )

)
(12)

+ `3dϕD(?G, R), (2.96)

with
∫
Y
ϕD(?G, R) : T 7→ R a well defined diffeomorphism-invariant function defined on the

functional space of bosonic configurations. Adding the contributions of the various terms we

obtain an expression of the form:

ξ
(
D/T∗Y − `3

96
G/
)
− ξ

(
D/+

`3

288
G/
)
− 2ξ

(
D/− 5`3

96
G/
)

= ξ(D/RS) + `3
∫

Y

ϕ(?G, R). (2.97)

Since ϕ(?G, R) is local and gauge invariant we see explicitly that the Z2 anomaly cancellation

is unchanged.
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2.4 Example: Eleven manifold with flat boundaries

Let X := ∂Y = R10 be flat 10-dimensional Euclidean space. Let E → X be the adjoint E8-

vector bundle, and DM = ∂M + AM the gauge connection on E, i.e. DM : Ω0(S ⊗ E) →
Ω1(S ⊗ E). Thus the quadratic action for the gaugino is constructed through the generalized

Dirac operator

D̂/E8
= γMDM + γ( hl ) (2.98)

where hl = − `3

24 iνG
∂ is the 3-form that comes from contracting the M-theory G-flux in the bulk

Y , with the normal unit vector field to the boundary ∂Y = X and

γ( hl ) = γM1M2M3 hl M1M2M3 . (2.99)

We consider the fibration X → T ∂ encoding the family of geometric data on the fiber X, i.e.

gauge connections and fluxes, and calculate the curvature of the Pfaffian line bundle Pfaff D̂/E8
→

Σ ↪→ T ∂ using (2.81) as follows

F(Pfaff D̂/E8
→ Σ ↪→ T ∂) = πi

∫

X

Trsa6(D̂/E8
) (2.100)

where Trsa6(D̂/E8
) is the t-independent finite part of the heat kernel expansion for

Trsexp(−tD̂/ 2

E8
) (2.101)

when t→ 0 while t > 0. Trs(·) := Tr(γ13·) means supertrace. In contrast to the case with zero

flux, there are nonzero divergent terms in the t → 0 expansion. However, these may be easily

cancelled by gauge invariant counterterms, so we focus on the t-independent term.

2.4.1 Determining a6 up to O( hl 2)

Formally, we can expand Trs(a6) as a series in hl :

Trs(a6) = α0( hl ) + α1( hl ) + α2( hl ) + α3( hl ) + . . . , (2.102)

with αi( hl ) a 2-form in T which scales homogeneously under scalings of the torsion, i.e. αi(λ hl ) =

λiαi( hl ). For simplicity, we determine only the lowest correction α1( hl ) to Trs(a6).

In order to evaluate Trsa6, we are going to use known results on heat kernel expansions for

generalized Laplacians of the type

∆ = −(∇N∇N + V ) (2.103)
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with ∇N = ∂N + QN a first order partial differential operator, QNdxN a matrix of one-forms

and V a scalar matrix. For such operators, the t-independent finite part of the heat kernel

expansion for

exp
(− t(∇N∇N + V )

)
(2.104)

has been calculated in flat space using different methods, see [40] and [84]. Thus we want to

write D̂/
2

E8
as an operator of the type (2.103). If we introduce the connection

∇M = ∂N + AN + 3 hl NM1M2γ
M1γM2 ,

we find

D̂/
2

E8
= −∇N∇N + FMNγ

MN + ∂M1 hl M2M3M4γ
M1γM2M3M4 + 4 hl M1M2M3 hl M1M2M3 . (2.105)

with F = dA+A∧A, the curvature of the vector bundle E → X. Hence, as ∇N = ∂N +AN +

3hl NM1M2γ
M1γM2 , V in (2.103) is fixed to be

V = −FMNγ
MN − ∂M1 hl M2M3M4γ

M1γM2M3M4 − 4 hl M1M2M3 hl M1M2M3 . (2.106)

Now, having written D̂/
2

E8
as a generalized Laplacian, we can use the coefficient calculated in

[40, 84],

a6 =
1
6!

[
V 6 + 6V 2∇N (V )V∇N (V ) + 4V 3∇N (V )∇N (V ) +O(V 4)

]
, (2.107)

to evaluate the lowest order flux correction in Trsa6(D̂/E8
), neglecting the O( hl 2) terms in V .

We now compute the contribution of every term in (2.107) as follows:

• Trs
[
V 6

]
. The most obvious contribution is the leading term Tr(F 6). The first order contri-

bution in hl is

6Trs
[
∂M1 hl M2M3M4γ

M1γM2M3M4γ(F )5
]
. (2.108)

As we are working with a 12 dimensional Clifford algebra, only the term proportional to

γM1M2...M12 contributes to the supertrace in (2.108). Thus, we determine the contribution

from (2.108) by studying the irreps of the rank 14 tensor

∂M1 hl M2M3M4FM5M6 . . . FM13M14 , (2.109)

defined in dimension 12 under the group SO(12). Some of the symmetries of (2.109) under the

permutation of indices are already known, for instance each curvature tensor FMiMj contributes

antisymmetric couplesMi, Mj , also we know that hl is a completely antisymmetric rank 3 tensor,

etc. A detailed analysis along these lines, shows how just the symmetric part ofM1 with the triad
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M2, M3 and M4 in (2.109), gives a non zero contribution to the supertrace (2.108). Therefore,

we find

6Trs
[
∂M1 hl M2M3M4γ

M1γM2M3M4γ(F )5
]

= 6(2− 12)∂M hl MM1M2dx
M1dxM2Tr(F 5). (2.110)

• Trs
[
V 2∇N (V )V∇N (V )

]
. Here, the hl term can come from the ∇N -derivative or from the

matrix V . When it comes from the (∇N = DN + 3hl NM1M2γ
M1γM2)-derivative, with DN =

∂N + AN the usual gauge differential, we find

−6Trs
[
γ(F )2 · hl NM1M2γ

M1M2 · γ(F )2DN (γ(F ))
]
, (2.111)

which is the same as

−6 hl M1M2M3dx
M2dxM3Tr

(
DM1(F )F 4

)
. (2.112)

If the hl -term comes from V , it cannot come from ∂N hl NM1M2γ
M1γM2 because we would combine

less than 12 gamma matrices. Thus, up to global numerical factors we find

Trs
[
(d hl )M1M2M3M4γ

M1M2M3M4γ(F )DN (γ(F ))γ(F )DN (γ(F ))
]

(2.113)

and

Trs
[
γ(F )2DN ((dhl )M1M2M3M4γ

M1M2M3M4)γ(F )DN (γ(F ))
]
. (2.114)

• Trs
[
V 3∇N (V )∇N (V )

]
. These terms are of the same type as in the previous case, just differing

in the order of terms. For example, we find

Trs
[
(dhl )M1M2M3M4γ

M1M2M3M4γ(F )2DN (γ(F ))DN (γ(F ))
]
, (2.115)

−6Trs
[
γ(F )3 · hl NM1M2γ

M1M2 · γ(F )DN (γ(F ))
]
, (2.116)

etc.

• Trs
[O(V 4)

]
. It is easy to check that these terms only contribute to O( hl 2).

Thus, the terms above determined are the only ones that contribute to α1( hl ) in the expansion

of the line bundle curvature in “powers” of hl . Furthermore, we can group the terms in α1( hl )

that scale as λ5α1( hl ) under scalings F 7→ λ ·F , of the gauge connection curvature F by λ ∈ R.

This set of terms coming from (2.108), (2.112) and (2.116), can be written as

Trs(V 6 + 6V 2∇N (V )V∇N (V ) + 4V 3∇N (V )∇N (V )) =

−60∂M hl MPQdxPdxQTr(F 5)− 60 hl MPQdxPdxQTr(DM (F )F 4) + . . . (2.117)

where the . . . refer to terms with different scaling properties.
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After evaluating the other supertraces, we find the forms DN (d hl )∧Tr
(
DN (F )F 3

)
and d hl ∧

Tr
(
FDN (F )FDN (F )

)
or d hl ∧Tr

(
F 2DN (F )DN (F )

)
, depending if it comes from Trs

[
V 2∇N (V )V∇N (V )

]

or Trs
[
V 3∇N (V )∇N (V )

]
.

Taking into account the numerical factors and recalling

F(Pfaff D̂/E8
→ T ∂) = πi

∫

X

Trsa6(D̂/E8
), (2.118)

we obtain the curvature for the Pfaffian line bundle

F(Pfaff D̂/E8
→ T ∂) = −πi

6!

∫

X

(
Tr(F 6) + 60∂M hl MTr(F 5)

+60 hl MTr(DM (F )F 4)− 20DN (d hl ) ∧ Tr
(
DN (F )F 3

)

−12d hl ∧ Tr
(
FDN (F )FDN (F )

)− 18d hl ∧ Tr
(
F 2DN (F )DN (F )

))
+O( hl 2), (2.119)

where F = dA + A ∧A and hl N = hl NMPdxM ∧ dxP . According to our general discussion, we

expect to be able to write the correction to the standard curvature TrF 6 as the total derivative

of a gauge invariant local expression. In the next section we will check this explicitly.

2.4.2 Writing the flux corrections as total derivatives

The formula (2.119) allows us to compute the curvature of the M-theory line bundle LG → T ∂ .
The curvature of the Chern-Simons bundle LCS → T ∂ exactly cancels the hl -independent part

of the curvature. Furthermore Lgravitino → T ∂ does not contribute terms to α0( hl ) nor α1( hl ) in

flat space. Therefore only the terms in (2.119) contribute to F(LG → T ∂), up to O( hl 2).

For the first correction, we work with the set of terms

−60∂M hl MTr(F 5)− 60 hl MTr(DM (F )F 4), (2.120)

which have identical behavior under scalings of hl and F . An obvious candidate to write (2.120)

as a total divergence seems to be

−60d
(
hl NTr(FMPdxPF 4)

)
δNM (2.121)

with δNM the Kronecker delta, which is the metric for the twelve dimensional space that we

are dealing with. Expanding (2.121) we find

d
(
hl NTr(FPMdxPF 4)

)
δNM = d hl NTr(FPMdxPF 4)δNM + hl NdTr(FPMdxPF 4)δNM . (2.122)

Furthermore, we can write the exterior differential of a trace over the color indices, as the trace

of the covariant exterior differential, i.e.,

dTr(FPMdxPF 4) = Tr
(
D(FPMdxPF 4)

)
(2.123)



22

with D = dxNDN · = dxN (∂N ·+[AN , · ]). The expression (2.123) holds because the trace of a

commutator is zero. Therefore, recalling the Bianchi identity DF = 0, we get

Tr
(
D(FPMdxPF 4)

)
= Tr

(
D(FPMdxP )F 4

)
= Tr

(
DM (F )F 4

)
, (2.124)

where we have used the identity D(FPMdxP ) = DM (F ), which follows from the antisymmetry

under permutation of couples of indices in the rank 3 tensor DMFPQ. Using (2.124) we can

write (2.121) as

d hl NTr(FPMdxPF 4)δNM + hl NTr
(
DM (F )F 4

)
δNM (2.125)

which is not yet clearly equal to (2.120), because the first term. To show how

dhl NTr(FPMdxPF 4)δNM = ∂M hl MTr(F 5), (2.126)

we study the irreps of the rank 14 tensor

∂M1 hl M2M3M4Tr(FM5M6FM7M8 . . . FM13M14) (2.127)

with the symmetries under the permutations of indices implicit in the L.H.S. of (2.126). These

consist in the completely antisymmetry of the sets {M2, M3,M4} and {M1, M3, M4, M6, M7,

M8, . . .M14} and the completely symmetry of the couple M2 and M6 which is to be contracted

with the symmetric tensor δM2M6 . Taken into account these constraints, we find that (2.127)

defined on a twelve dimensional space lies already in a unique irreducible representation of

SO(12) on (R12)⊗14. This irreducible representation also implies the complete symmetry under

permutations of the set of indices {M1, M2, M6}. Therefore, we can write

∂M1 hl M2M3M4Tr(FM5M6FM7M8 . . . FM13M14)dx
M1M3M4M6M7...M14 =

∂M6 hl M2M3M4Tr(FM5M1FM7M8 . . . FM13M14)dx
M3M4M1M6M7...M14 (2.128)

that after contracting with δM2M6 becomes identical to (2.126) as we wanted to prove. Hence

−60∂M hl MTr(F 5)− 60 hl MTr(DM (F )F 4) = −60d
(
hl NTr(FPMdxPF 4)δNM

)
. (2.129)

The second correction in (2.119) can be written as

−20DN (d hl ) ∧ Tr
(
DN (F )F 3

)
= −20∂N (d hl ) ∧ Tr

(
∂N (F )F 3

)
, (2.130)

because DNdhl = ∂Ndhl + [AN , dhl ] and [AN , dhl ] = 0. On the other hand, Tr([AN , F ]F 3) = 0,

thus

−20∂N (d hl ) ∧ Tr
(
∂N (F )F 3

)
= −5∂N (d hl ) ∧ ∂NTr

(
F 4

)
= −5

2

[
∂N∂

N
(
dhl ∧ Tr

(
F 4

))
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−∂N∂N
(
dhl

)
∧ Tr

(
F 4

)− dhl ∧ ∂N∂N
(
Tr

(
F 4

))]
, (2.131)

or using the Hodge Laplacian ∂N∂N = ?d?d+d?d? in Cartesian coordinates for the Euclidean

space X, we write (2.131), as

−20∂N (d hl ) ∧ Tr
(
∂N (F )F 3

)
= −5

2

[
d ? d ?

(
dhl ∧ Tr

(
F 4

))

−d ? d ?
(
dhl

)
∧ Tr

(
F 4

)− dhl ∧ d ? d ?
(
Tr

(
F 4

))]
. (2.132)

The operator ?d ? d never appears, because it always acts on closed forms.

Finally, the third and fourth correction in (2.119), can be written using the covariant Lapla-

cian DND
N , as

−dhl ∧ Tr
(
12FDN (F )FDN (F ) + 18F 2DN (F )DN (F )

)
=

d hl ∧ Tr
(
6DND

N (F )F 3 − 3DND
N (F 4) + 3DND

N (F 2)F 2
)
. (2.133)

Also, we can use a more transparent notation, using the covariant exterior derivative

D = dxN ∧DN = d + [A, · ] (2.134)

we can write the curvature F as F = D2, and the covariant Laplacian as

DND
N = ?D ? D +D ?D? (2.135)

with ? being the Hodge operator. Using the Bianchi identity DF = 0, we rewrite (2.133) as

d hl ∧ Tr
(
6DND

N (F )F 3 − 3DND
N (F 4) + 3DND

N (F 2)F 2
)

=

dhl ∧ Tr
(
(6D ?D ? (F )F 3 − 3D ?D ? (F 4) + 3D ?D ? (F 2)F 2

)
. (2.136)

Now note that

Tr
(
D ?D ? (F 4)

)
= dTr

(
? D ? (F 4)

)
+ Tr

(
[A, ?D ? (F 4)]

)
= dTr

(
? D ? (F 4)

)
(2.137)

is an exact form. On the other hand, consider the 6-forms Tr
(
D ? D ? (F )F 2

)
and Tr

(
D ? D ?

(F 2)F
)
, and differentiate them twice

d2Tr
(
D ?D ? (F )F 2

)
= dTr

(
D[D ?D ? (F )F 2]

)
=

dTr
(
? D ? (F )F 3

)
= Tr

(
D ?D ? (F )F 3

)
(2.138)

and

d2Tr
(
D ?D ? (F 2)F

)
= dTr

(
D[D ?D ? (F 2)F ]

)
=
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dTr
(
? D ? (F 2)F 2

)
= Tr

(
D ?D ? (F 2)F 2

)
(2.139)

therefore, by construction (2.138) and (2.139) are zero. This means that we can write (2.136),

as

d hl ∧ Tr
(
6D ?D ? (F )F 3 − 3D ?D ? (F 4) + 3D ?D ? (F 2)F 2

)
=

−3d hl ∧ dTr
(
? D ? (F 4)

)
. (2.140)

Using the identities (2.129), (2.132) and (2.140), we can write the curvature of the M-theory

line bundle as

F(LG → T ∂) = −πi
6!

∫

X

(
60d

(
hl NTr(FPMdxPF 4)δNM

)
+

5
2
d ? d ?

(
dhl

)
∧Tr

(
F 4

)− 5
2
d ? d ?

(
d hl ∧Tr

(
F 4

))− 1
2
d hl ∧ d ? d ?

(
Tr

(
F 4

)))
+O( hl 2). (2.141)

This formula agrees with the results explained in section 3, where we claimed that the curvature

of LG → T ∂ is an exact form dA, with A being a G-equivariant one form on Met(Y )×A. From

(2.141), we can write A as:

A = −πi
6!

∫

X

(
60

(
hl NTr(FPMdxPF 4)δNM

)
+

5
2
? d ?

(
dhl

)
∧ Tr

(
F 4

)

−5
2
? d ?

(
dhl ∧ Tr

(
F 4

))− 1
2
d hl ∧ ?d ?

(
Tr

(
F 4

))
)

+ . . . (2.142)

up to a globally exact form. The Hodge ? depends on a metric on Σ ↪→ T ∂ . Note that there is

a natural metric on T ∂ , induced by the Riemannian metric itself.

2.4.3 Covariant form of the Anomaly

To get a better understanding of these flux corrections to the anomaly, it is instructive to

calculate the contribution from the fluxes to the divergence of the gauge current using the

gaussian cutoff proposed by Fujikawa. This approach to anomaly cancellation leads to the so-

called covariant form of the anomaly. See [5, 11]. Fujikawa proposed to account for the local

chiral anomaly from the variation of the measure [dχ][dχ] under the action of the gauge group

in the path integral ∫
[dχ][dχ]exp

( ∫

X

χD̂/χ
)

(2.143)

If {Ta} is a basis for the Lie algebra of the gauge group G = E8, then an infinitesimal gauge

transformation can be expressed as g = II + ΛaTa +O(Λ2). We can compute

|dTadetD̂/E8
|

|detD̂/E8
|

:= dja = 2iTr
[
Taγ

11exp
(− tD̂/

2

E8

)]
, (2.144)
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where ja ∈ Ω9(X) is the gauge current.

Of course, Tr
(
Taγ

11exp
(− tD̂/

2

E8

))
must be regulated, and we do so by taking

Tr
[
Taγ

11exp
(− tD̂/

2

E8

)]
,

where t = 1/Λ should tend to zero. In stark contrast to the case without fluxes, the expression

for dja has divergent terms for t→ 0. These divergent terms can be shown to be total covariant

divergences of local gauge invariant expressions in the fields by a method explained below for

the t-independent part of the heat kernel. Thus the current must be renormalized by adding

these terms.

In order to evaluate the regulator independent part of the supertrace (2.144) we have to

determine the heat kernel coefficient a5. We can use again the results of [40], to calculate

(2.144) up to second order in hl , i.e.

dja = 2iTr
(
Taγ

11a5(D̂/E8
)
)

= β0( hl ) + β1( hl ) + . . . , (2.145)

where βk( hl ) are terms that scale homogeneously under dilations of hl , i.e. if λ is a real parameter

then βk(λ hl ) = λkβk( hl ).

Therefore, the only terms in a5 which contribute up to first order are

a5 =
1
5!

[
V 5 + 2V∇N (V )V∇N (V ) + 3V 2∇N (V )∇N (V ) +O(V 3)

]
. (2.146)

Doing a similar calculation as we did above for the heat kernel coefficient a6, we find

dja =
2i
5!

Tr
(
TaF

5
)

+
4i
5!

[
20∂N hl N ∧ Tr(F 4) + 4 hl N ∧ Tr(FDN (F )F 2)+

16 hl N ∧ Tr(F 3DN (F )) + dhl ∧ Tr
(
TaDN (F )FDN (F ) + 4TaFDN (F )DN (F )

)
+

∂N (dhl ) ∧ Tr
(
4TaF 2DN (F ) + TaFD

N (F )F
)]

+ β2( hl ) + . . . (2.147)

where DN = ∂N + AN is the gauge covariant derivative. The “Chern-Simons” terms, ex-

actly cancel the expression 2i
5!Tr

(
TaF

5
)

in (2.147). We can then write the flux corrections to

the anomalous divergence of the gauge current as the covariant exterior derivative of a gauge

invariant 9-form ∆j( hl ):

D∆j =
4i
5!

[
20∂N hl N ∧ F 4 + 4hl N ∧ FDN (F )F 2 + 16 hl N ∧ F 3 ∧DN (F ) + d hl ∧

(
DN (F )FDN (F ) + 4FDN (F )DN (F )

)
+ ∂N (dhl )∧

(
4F 2DN (F ) +FDN (F )F

)]
+ . . . (2.148)

where we have written the expression as a Lie-algebra valued form.
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We now show explicitly how this can be written as a total divergence of a gauge invariant

quantity. For the three first terms in (2.148), one can show how

20∂N hl NF 4 + 4hl NFDN (F )F 2 + 16hl NF 3DN (F ) =

D
(
4 hl NFFPMdxPF 2 + 16 hl NF 3FPMdxP

)
δNM . (2.149)

Expanding (2.149), using the identity DN (F ) = D(FMNdxM ) gives us

D
(
4 hl NFFPMdxPF 2 + 16 hl NF 3FPMdxP

)
δNM =

(
4d hl NFFPMdxPF 2+

16dhl NF 3FPMdxP )δNM + 4 hl NFDN (F )F 2 + 16 hl NF 3DN (F ), (2.150)

thus, we have to prove the identity

20∂N hl NF 4 =
(
4d hl NFFPMdxPF 2 + 16d hl NF 3FPMdxP )δNM . (2.151)

This can be achieved by analyzing the irreps of the rank 12 tensor

∂M1 hl M2M3M4FM5M6FM7M8 . . . FM11M12 , (2.152)

with antisymmetry under permutations of the sets of indices {M2, M3, M4} and {M1, M3,

M4, M5, M6, M7, . . .M12} and symmetry under permutations of the couple {M2, M8}. The

only irreducible representation of SO(10) in (R10)⊗12 which satisfies such properties under

permutations of indices, also verifies the complete symmetry of the set {M1, M2 and M8},
therefore we can prove the identity (2.151) by using the symmetry under permutations of M1

and M8, contracting M2 and M8 with the Kronecker delta δM2M8 and contracting the other

indices with their corresponding grassmann differentials. One should also consider the same

argument with M12 playing the role of M8 in order to achieve the full proof.

For the second set of terms, we realize that DN (F )FDN (F ) + 4FDN (F )DN (F ) using the

Laplacian DND
N = ?D ? D +D ?D?. A short calculation yields

DN (F )FDN (F ) + 4FDN (F )DN (F ) =
1
2
D ?D ? (F 3) +

3
2
FD ? D ? (F 2)

−1
2
D ?D ? (F 2)F − 3

2
FD ? D ? (F )F − 2F 2D ?D ? (F ). (2.153)

If again we use the identity DN (F ) = D(FMNdxM ) := D(FN ), then we can write (2.148) as

D∆j =
4i
5!

[
D

(
4 hl NFFMF 2 + 16hl NF 3FM

)
δNM + dhl ∧

(1
2
D ?D ? (F 3)+

3
2
FD ? D ? (F 2)− 1

2
D ?D ? (F 2)F − 3

2
FD ? D ? (F )F − 2F 2D ?D ? (F )

)
+
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∂N (dhl ) ∧
(
4F 2D(FN ) + FD(FN )F

)]
+ . . . (2.154)

Finally, using the Bianchi identity DF = 0, it is easy to prove that

∆j =
4i
5!

[
(
4 hl NFFMF 2 + 16 hl NF 3FM

)
δNM + dhl ∧

(1
2
? D ? (F 3)+

3
2
F ? D ? (F 2)− 1

2
? D ? (F 2)F − 3

2
F ? D ? (F )F − 2F 2 ? D ? (F )

)
+

∂N (dhl ) ∧
(
4F 2FN + FFNF

)]
+ . . . . (2.155)

This gives a non-trivial redefinition of the gauge current, by gauge invariant flux-dependent

9-forms ∆j( hl ).
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Chapter 3

Differential-geometric characterization of Calabi-Yau

compactifications

3.1 Motivation

The study of compactification of higher dimensional theories starts by making use of compactifi-

cation manifolds with a good deal of symmetry, such as the torus, sphere, squashed spheres and

so on. Such spaces have explicitly known metrics, allowing explicit solutions of the equations

of motion, and explicit Kaluza-Klein reduction. However their high degree of symmetry tends

to be a problem in trying to obtain models with the level of complexity of the Standard Model

or its often-postulated extensions.

A way of increasing the complexity of the models one can obtain, is by using manifolds for

which the relevant metrics are known to exist by general theorems, but for which explicit expres-

sions are not known. The most famous examples are the Ricci-flat Kahler metrics conjectured

to exist by Calabi and proven to exist by Yau [90]. In 1985, it was proposed by Candelas et al

[23] that compactification of the heterotic string on a Calabi-Yau manifold could lead to quasi-

realistic theories of particle physics, containing grand unified extensions of the Standard Model

and low energy supersymmetry. Since then, other metrics of this type, such as G2 holonomy

metrics, have been used in quasi-realistic compactifications; see for example [1].

Over the subsequent years, many tricks were developed to bypass the difficulties posed by not

knowing the compactification metric. These tricks began with the algebraic geometry behind

the theorems of Yau and Donaldson-Uhlenbeck-Yau, and gradually evolved into entire branches

of mathematical physics, such as topological string theory and special geometry. To drastically

oversimplify, the general picture is that certain “protected” quantities in the four dimensional

effective field theory, such as the superpotential in theories with four supercharges, and the

prepotential in theories with eight supercharges, can be computed using techniques combining

algebraic geometry with physical ideas. Other quantities, such as the Kahler potential in theories

with four supercharges, cannot be computed directly. Since a good deal of important physics

depends on the Kahler potential – precise values of particle masses, and the existence and
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stability of supersymmetry breaking vacua, this situation is not very satisfactory.

Almost all present knowledge about the Kahler potential in the EFT comes from studying

expansions around more computable limits. The best known example is the case of N = 1

compactifications which contain N = 2 subsectors, such as heterotic (2, 2) models, or type II

on Calabi-Yau orientifolds. In these cases, there is a limit in which part of the N = 1 Kahler

potential becomes equal to that of the related N = 2 theory, which is computable using special

geometry. Other examples include the solvable orbifold or Gepner model limits, at which the

entire Kahler potential is computable in principle using CFT techniques. However, it is not

clear at present how representative such results are of the general case. Even a limited ability

to compute in the general case would allow studying this question.

One completely general technique for addressing such problems is to compute the Ricci-flat

metrics and related quantities numerically. Numerical methods are unavoidable in other areas

of physics, beginning with such seemingly elementary problems as computing the spectrum

of the helium atom or integrating Newton’s equations for the three body problem in celestial

mechanics; it would be surprising if string theory could avoid this. To bring string theory closer

to a possible confrontation with real data, for example from collider physics, it may be valuable

to develop these missing parts of the theory of compactification.

One can start in this direction by showing two things, [35, 36]. First, we review how to

use existing mathematical techniques to numerically approximate metrics on Kahler manifolds,

along lines recently developed by Donaldson [33]; we will explain the numerical methods in

more detail and do some simple computations of terms in the EFT for compactification on a

quintic Calabi-Yau 3-manifold. Second, we extend these mathematical techniques to hermitian

Yang-Mills connections. It will be clear that these techniques could be pushed to compute

higher order terms, metrics on moduli spaces, special Lagrangian submanifolds, etc.

Our direct inspirations are Donaldson’s work [33] on numerical approximation of metrics,

and of Wang [85] developing the corresponding mathematics for vector bundles.

Let us briefly explain the problem and survey some of the approaches one might take towards

it, before beginning the detailed development in next section. Following [23], the derivation of

the matter Lagrangian in a heterotic compactification on a Calabi-Yau X carrying a bundle V

involves the following steps:

1. Find the Ricci-flat metric gij (with specified moduli) on X.

2. Find the hermitian Yang-Mills connection Ai on V .

3. Find the zero modes ψα of the Dirac operator. As is standard, on a Kahler manifold
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this amounts to finding harmonic differential forms ψ valued in V , i.e. solutions of 0 =

(∂ +A)ψ = (∂ +A)∗ψ, where ∗ denotes the adjoint operator.

4. Find an orthonormal basis of forms ψ.

5. Compute the integrals over X of wedge products of these forms to get the superpotential.

The key step for us is (4). Existing methods for computing the superpotential, such as [47, 24],

accomplish step (5) without needing the results of (1) and (2), by using unnormalized zero

modes. This leads to a superpotential defined in terms of fields whose kinetic term is ob-

tained from “some” unknown Kahler potential. To do better, we must either derive normalized

zero modes in (4) for use in (5), or else take the zero modes used in (5) and compute their

normalizations using the explicit metric from (1).

There seems to be no way of doing this without some knowledge of the Ricci-flat metric and

thus the first step is to choose some approximation scheme for this metric. One’s first thought

might be to follow standard practice in numerical relativity, as done in [49], and introduce a

six dimensional lattice which is a discrete approximation to the manifold X; in other words

a position space approach. Taking the Kahler potential K as the basic dynamical variable,

Einstein’s equations reduce to the complex Monge-Ampere equation

det(∂∂K) = Ω ∧ Ω (3.1)

which can be solved by relaxation methods. One would then need to find similar lattice ap-

proximations for the connection on V and the zero modes.

An alternative approach, introduced by Donaldson [33], is to use geometric quantization to

model the differential geometry of the compact manifold using finite dimensional data. One uses

the overcomplete basis of coherent states to recover the smooth geometry in the semiclassical

limit. Such basis of coherent states define a natural embedding of X into PN−1 provided by the

N sections of an ample line bundle Lk (we will explain this in detail below). We then take as

a candidate approximating metric on X the pull-back of a Fubini-Study metric on PN−1. Such

a metric is defined by an N × N hermitian matrix. By suitably choosing this matrix we can

try to make the associated Fubini-Study metric restrict to X in such a way that it gives a good

approximation to the Ricci-flat metric on X.

A major advantage of this approach is that it avoids the complications and arbitrariness

involved in choosing an explicit discretization of X; rather the entire approximation scheme

follows from a single parameter k, the scale of the first Chern class of L. Subsequent mathe-

matical development reveals more structure which can be used to our advantage. For example,
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a very natural approximation to the Ricci-flat metric, which becomes exact as k → ∞, is the

so-called “balanced” metric. In a sense, to be described below, this is the metric for which the

embedding of X into PN−1 has its center of mass at the “origin”. It also satisfies a simple fixed

point condition which can be used for relaxation, solving step (1).

Another advantage, which is key for the present application, is that Donaldson’s method can

be naturally extended to study holomorphic vector bundles on X. There is a standard relation

between holomorphic connections and hermitian metrics, which we review in section 2, in which

step (2) of the above prescription is turned into the problem of finding a hermitian-Einstein

metric on a vector bundle. For illustrative purposes we will explicitly study hermitian-Einstein

metrics on two spaces: complex projective space Pn and the Fermat quintic threefold.

The organization of this chapter is as follows. In Section 3.2 we review the basics of Calabi-

Yau compactifications of the heterotic string and we review an example of a quasi-realistic

compactification to show the degree of complexity involved in such models. In section 3.3

we provide an overview of the geometric background needed for our numerical construction

(in particular we will describe Donaldson’s approach for getting metrics of constant scalar

curvature). In Section 3.4 we explain a numerical approximation to the hermitian Einstein

metric on a holomorphic vector bundle by a simple adaptation of Donaldson’s scheme, building

on the mathematical work of Wang. In section 3.5 we describe some of the numerical methods

involved in our computation; for instance we explain the numerical integration algorithm to

approximate integrals on algebraic varieties. Finally, in section 3.6 we focus on several explicit

examples and specific results.

3.2 Calabi-Yau compactifications of the heterotic string

Let us assume we are given a 10 = 4 + 6 dimensional field theory. A compactification is then

a 10-dimensional space-time which is topologically the product of a 4-dimensional space-time

with an 6-dimensional manifold X, the compactification or “internal” manifold, carrying a

Riemannian metric and with definite expectation values for all other fields in the 10d theory.

These must solve the equations of motion, and preserve 4-dimensional Poincaré invariance.

The most general metric ansatz for a Poincaré invariant compactification is

GIJ =


fW ηµν 0

0 Gij


 ,

where the tangent space indices are 0 ≤ I < 10, 0 ≤ µ < 4, and 1 ≤ i ≤ 6. Here ηµν is the

Minkowski metric, Gij is a metric on X, and fW is a real valued function on X called the “warp
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factor.”

Contact with the SM requires finding compactifications to d = 4 with at most N = 1

supersymmetry, because the SM includes chiral fermions, which are incompatible with N > 1.

Let us start with the E8 × E8 heterotic string or “HE” theory 1.

Besides the metric, the other bosonic fields of the HE supergravity theory are a scalar Φ

called the dilaton, Yang-Mills gauge potentials for the group G ≡ E8×E8, and a two-form gauge

potential B (often called the “Neveu-Schwarz” or “NS” two-form) whose defining characteristic

is that it minimally couples to the heterotic string world-sheet. We will need their gauge field

strengths below: for Yang-Mills, this is a two-form F aIJ with a indexing the adjoint of G,

and for the NS two-form this is a three-form HIJK . Denoting the two Majorana-Weyl spinor

representations of SO(1, 9) as S and C, then the fermions are the gravitino ψI ∈ S ⊗ V , a spin

1/2 “dilatino” λ ∈ C, and the adjoint gauginos χa ∈ S. We use ΓI to denote Dirac matrices

contracted with a “zehnbein,” satisfying {ΓI ,ΓJ} = 2GIJ , and ΓIJ = 1
2 [ΓI ,ΓJ ] etc.

A local supersymmetry transformation with parameter ε is then

δψI = DIε+
1
8
HIJKΓJKε (3.2)

δλ = ∂IΦΓIε− 1
12
HIJKΓIJKε (3.3)

δχa = F aIJΓIJε. (3.4)

We now assume N = 1 supersymmetry. An unbroken supersymmetry is a spinor ε for which

the left hand side is zero, so we seek compactifications with a unique solution of these equations.

For simplicity we discuss the case H = 0. Setting δψµ in Eq. (3.2) to zero, we find that

the warp factor fW must be constant. The vanishing of δψi requires ε to be a covariantly

constant spinor. For a six-dimensional space X to have a unique such spinor, it must have

SU(3) holonomy, in other words X must be a Calabi-Yau threefold. In the following we use

basic facts about their geometry.

The vanishing of δλ then requires constant dilaton Φ, while the vanishing of δχa requires

the gauge field strength F to solve the hermitian Yang-Mills (HYM) equations,

F 2,0 = F 0,2 = GijFij = 0. (3.5)

Choose such a bundle E → X, where the HYM gauge connection lives; by the general discussion

above, the commutant of H in G will be the automorphism group of the connection on E and

thus the low energy gauge group of the resulting EFT. For example, since E8 has a maximal

1This choice is made rather than HO because only in this case can we find the SM fermion representations
as subrepresentations of the adjoint of the gauge group.
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E6 × SU(3) subgroup, if E has structure group H = SL(3), there is an embedding such that

the unbroken gauge symmetry is E6 × E8, realizing one of the standard grand unified groups

E6 as a factor.

The choice of E is constrained by anomaly cancellation. This discussion modifies the Bianchi

identity for H to

dH = Tr (R ∧R)− 1
30

∑
a

F a ∧ F a (3.6)

where R is the matrix of curvature two-forms.

Thus, specifying a classical vacuum of a N = 1 compactification, requires fixing a Ricci-flat

metric on X and a hermite Yang-Mills gauge connection on E → X. We explain in the next

section how we approximate such objects, building on ideas of S. Donaldson, S. T. Yau and

others [35, 36]. General arguments imply that these supersymmetric Minkowski solutions are

stable, so the small fluctuations consist of massless and massive fields. Let us now discuss a

few of the massless fields. Since the EFT has N = 1 supersymmetry, the massless scalars live

in chiral multiplets, which are local coordinates on a complex Kähler manifold.

First, the moduli of Ricci-flat metrics on X will lead to massless scalar fields: the complex

structure moduli, which are naturally complex, and Kähler moduli, which are not. However,

in string compactification the latter are complexified. Massless charged matter will arise from

zero modes of the gauge field and its supersymmetric partner spinor χa. Substituting these zero

modes into the ten-dimensional Yang-Mills action and integrating, one can derive the d = 4

EFT. For example, the cubic terms in the superpotential, usually called Yukawa couplings after

the corresponding fermion-boson interactions in the component Lagrangian, are obtained from

the cubic product of zero modes
∫

X

Ω ∧ Tr (φ1 ∧ φ2 ∧ φ3) ,

where Ω is the holomorphic three form on X, φi ∈ H0,1(X,RepE) are the zero modes, and Tr

arises from decomposing the E8 cubic group invariant.

3.2.1 The Kähler potential

One can go further and solve the zero mode equations for the charged matter fields, by linearizing

(3.5). Let us expand the 10d gauge connection around one solution to (3.5),

A(10)(z, x) = δAµ(x)dxµ +A
(6)
i dzi +A

(6)

j dzj +
∑
p

φp(x)δpAidzi +
∑

p

φ∗p(x)δpAjdz
j . (3.7)

Here {δpA(6)} is a basis of infinitesimal deformations of the connection A(6) which preserve

the hermitian Yang-Mills equations (3.5), and φp(x) are scalar fields in R4. These will include



34

both bundle moduli and charged matter fields, depending on the transformation properties of

the corresponding deformation {δpA(6)}p under the unbroken gauge symmetry. Our explicit

example in [37] consists of a SU(3) bundle, leaving unbroken E6 gauge symmetry. In this case,

we are interested in deformations which transform as the fundamental and adjoint of SU(3),

which correspond to charged matter fields according to the decomposition of the E8 adjoint

under SU(3)× E6 as

248 = (1, 78)⊕ (8, 1)⊕ (3, 27)⊕ (3, 27).

Of course, by N = 1 supersymmetry these scalar fields will come with partner fermions, corre-

sponding to massless solutions of the Dirac equation onX. One could derive the supersymmetric

effective field theory by working with either component; we will use the scalars and (3.7).

The kinetic term for the scalars φp is a sigma model kinetic term using the natural metric

on the moduli space of solutions of the hermitian Yang-Mills equations. We can derive this

physically by starting from the bosonic part of the ten-dimensional Yang-Mills action,

SYM =
∫

X×R4
dVol(10) Tr

(
FIJF

IJ
)
, (3.8)

and performing dimensional reduction, to obtain

Skin[φ] =
∫

X×R4
dVol(10) Tr

(
FiµFjν

)
Gijηµν (3.9)

=
∑

p,q

∫

X

dVol(6) Tr
(
δpAi, δqAj

)
Gij ×

∫

R4
d4x ∂µφp∂

µφ∗q , (3.10)

with Gij the Ricci-flat metric on X, and dVol(6) = Ω ∧ Ω the compatible volume form.

Thus, to get canonically normalized 4d fields, we need to use an orthonormal basis of defor-

mations in (3.7). Below we outline how this can be done.

3.2.2 Example: A quasi-realistic compactification

To illustrate the complexity involved in a quasi-realistic Calabi-Yau compactification of the

heterotic string, we review the construction of [16], which describes a model of particle physics

with similar matter content to the Minimal Supersymmetric Standard Model (MSSM). In [46],

the author and collaborators described the Kähler moduli of the compactification and study the

slope stability of the vector bundles involved. Note that these constructions are only a first step

to determining the associated effective action of the 4d theory; this example indicates the gap

of knowledge that we are trying to fill between the holomorphic data of the compactification

–which is known and shown in this example– and the non-holomorphic data, which we want to

determine. For more details, the reader can consult the references.
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The Elliptic Calabi-Yau and its Kähler Cone

First, we briefly recall the construction of the Calabi-Yau threefold used in such heterotic

standard model, following the reference [17]. Let X̃ be the fiber product over P1 of two rational

elliptic surfaces X̃ = B1 ×P1 B2, as in the diagram:

X̃

π1 ↙ ↘ π2

B1 ↓ π B2

β1 ↘ ↙ β2

P1

This kind of Calabi-Yau threefolds were already studied by C. Schoen in [76]. The geometry

of X̃, is basically encoded in the geometry of the rational elliptic surfaces B1 and B2. Due to

the phenomenological interest in finding threefolds which admit certain Wilson lines2, the aim

of [17] was to look for threefolds X̃ such that Z3 × Z3 ⊆ Aut(X̃). This search was achieved

thanks to the existence of certain elliptic surfaces that admit an action of Z3 × Z3 which can

be characterized explicitly through a proper understanding of the Mordell-Weil group of B.

Following the Kodaira’s classification of singular fibers, our elliptic surfaces B1 and B2 are

characterized by three I1 and three I3 singular fibers. Such rational elliptic surfaces are described

by one-dimensional families, that allow us to build fiber products X̃, corresponding to smooth

Calabi-Yau threefolds. Furthermore, X̃ admits a free action of G = Z3 × Z3 and the quotient

X = X̃/G is also a smooth Calabi-Yau threefold with fundamental group π1(X) = Z3 × Z3.

The threefold used in the description of this heterotic compactification is X = X̃/G, al-

though we will work with G-equivariant objects on X̃. In the rest of this section we describe

the G-invariant homology rings of B and X̃, and their corresponding G-invariant Kähler cones

(i.e. their ample cones, or spaces of polarizations).

For the homology of a surface B, we choose as set of generators: the 0-section σ, the generic

fiber F , the 6 irreducible components of the three I3 singular fibers that do not intersect the

0-section Θ1,1,Θ1,2, . . .Θ3,1,Θ3,2 and the two sections generating the free part of the Mordell-

Weil group3 ξ and αBξ. These generators are a basis for H2(B,Z)⊗Q, but adding the torsion

generator of the Mordell-Weil group

η = σ + F − 2
3

(
Θ1,1 + Θ2,1 + Θ3,1

)
− 1

3

(
Θ1,2 + Θ2,2 + Θ3,2

)
, (3.11)

2I.e. flat line bundles with non-trivial holonomy.

3See Appendix A, for a complete description of the Mordell-Weil group of the elliptic surface.
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we generate all H2(B,Z).

The intersection matrix of the homology generators is as follows:




σ

F

Θ1,1

Θ2,1

Θ3,1

Θ1,2

Θ2,2

Θ3,2

ξ

αBξ

η




T

·




σ

F

Θ1,1

Θ2,1

Θ3,1

Θ1,2

Θ2,2

Θ3,2

ξ

αBξ

η




=




−1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1 1

0 0 −2 0 0 1 0 0 0 0 1

0 0 0 −2 0 0 1 0 1 0 1

0 0 0 0 −2 0 0 1 0 1 1

0 0 1 0 0 −2 0 0 0 1 0

0 0 0 1 0 0 −2 0 0 0 0

0 0 0 0 1 0 0 −2 1 0 0

0 1 0 1 0 0 0 1 −1 1 0

0 1 0 0 1 1 0 0 1 −1 0

0 1 1 1 1 0 0 0 0 0 −1




The invariant homology under the action of G = Z3 × Z3, is generated by

H2(B,Z)G = spanZ
{
F, t = −σ + Θ2,1 + Θ3,1 + Θ3,2 + 2ξ + αBξ + η − F

}
, (3.12)

where t can be also expressed as the homological sum of three sections, i.e. t = ξ+αBξ+ η¢ ξ.

The cohomology ring of X, can be expressed as

H∗(X, Q) = H∗(X̃, Q)G (3.13)

using the G-invariant cohomology of X̃. Hence

H2(X̃, Q)G =

(
H2(B1, Q)⊕H2(B2, Q)

H2(P1, Q)

)G

=
H2(B1, Q)G ⊕H2(B2, Q)G

H2(P1, Q)
, (3.14)

that due to (3.12), is the same as

H2(X, Z) = H2(X̃, Z)G = spanZ
{
τ1 = π∗1(t1), τ2 = π∗2(t2), φ = π∗1(F1) = π∗2(F1)

}
, (3.15)

where t1 and t2 (respectively, F1 and F2) are the t-classes (respectively, F -classes) defined

in (3.12), corresponding to each surface B1 and B2. Using Poincaré duality, we know that

H4(X, Q) is isomorphic to H2(X, Q), also H1(X, Z) ' π1(X) = Z3×Z3 because the Hurewicz

theorem, thus H1(X, Q) = H1(X, Z)⊗Q = 0.

The ring H∗(X̃, Q)G generated through the cup product of the generators (3.15), is homomor-

phic to

H∗(X̃, Q)G = Q[τ1, τ2, φ]/〈φ2, φτ1 = 3τ2
1 , φτ2 = 3τ2

2 〉, (3.16)
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with the top cohomology element being τ2
1 τ2 = τ1τ

2
2 = 3{pt.}.

The Ample Cone of the Elliptic Surface

As first step to determine the Kähler cone on the threefold, we build the G-invariant ample

cone of the rational elliptic surface through the Nakai’s criterion. The set of ample classes is by

definition the integral cohomology part of the Kähler moduli.

Using the Looijenga’s classification of the effective curves in a rational elliptic surface [58],

we know that the cone of effective classes in H2(B, Z) is generated by the following classes

e ∈ H2(B, Z):

1) The exceptional curves e2 := −1, i.e. every section of the elliptic fibration.

2) The nodal curves e2 := −2, i.e. the irreducible components of the singular fibers.

3) The positive classes, i.e. the classes that live in the “future” side of the cone of e2 > 0.

Nakai’s criterion for surfaces says that a class s is ample if and only if s · s > 0 and e · s > 0

for every effective curve e. We will apply this criterion to the invariant classes s = aF + bt.

• Intersection of s with the exceptional curves. Although there is an infinite amount of excep-

tional curves or sections in the elliptic surface, we can characterize them completely thanks to

our understanding of the Mordell-Weil group.

As it is explained in the appendix of [46], the representation of the Mordell-Weil group

E(K) ' Z ⊕ Z ⊕ Z3 in End(H2(B, Z)), has as generators: (tξ)∗, (tαBξ)∗ and (tη)∗. Thus, the

homology of an arbitrary section can be expressed as

[
¢ xξ ¢ yαBξ ¢ zη

]
= (tξ)x∗(tαBξ)

y
∗(tη)

z
∗σ (3.17)

where ¢xξ (respectively ¢yαBξ and ¢zη) means ¢xξ = ξ ¢ ξ ¢ · · ·¢ ξ︸ ︷︷ ︸
x

.

Finding the Jordan canonical forms associated to (tξ)∗, (tαBξ)∗ and (tη)∗, allows us to

expand (3.17) explicitly4. Hence, the intersections of the exceptional curves with the generators

of the invariant homology are

F · [ ¢ xξ ¢ yαBξ ¢ zη
]

= 1 (3.18)

and

t · [ ¢ xξ ¢ yαBξ ¢ zη
]

= x2 + y2 − xy − x. (3.19)

4We exhibit the list of homology classes associated to the sections in the appendix of [46].
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It is easy to check that x2 + y2−xy−x, as a function Z⊕Z→ Z, is non-negative and becomes

zero for (x = 0, y = 0), (x = 1, y = 0) and (x = 1, y = 1). Therefore a G-invariant ample class

s = aF + bt, has to verify

s · [ ¢ 0ξ ¢ 0αBξ ¢ zη
]

= a > 0, (3.20)

and

s · [ ¢∞ξ ¢∞αBξ ¢ zη
]

= a+∞b > 0, ⇒ b > 0. (3.21)

• Intersection of s with the nodal curves. The nodal curves are identified with the irreducible

components Θi,j of the singular fibers, thus their intersections with the invariant class s = aF+bt

give us

s ·Θi,j = b > 0. (3.22)

Identical result to the inequality (3.21), derived above.

• Intersection of s with the positive classes. Let K+(B) be the cone of positive classes in B,

i.e. K+(B) = {e ∈ H2(B,Z)| e · e > 0}. As K+(B) is a convex set and we have to take

intersections of elements in K+(B) with invariant classes in H2(B,Z)G, only the intersection

K+(B)∩H2(B,Z)G matters. From the intersection matrix of the homology generators, we know

that the intersection matrix of the invariant homology H2(B,Z)G is


 F

t



T

·

 F

t


 =


 0 3

3 1




hence, we find

K+(B) ∩H2(B,Z)G :=
{
e = xF + yt| 6xy + y2 > 0

}
, (3.23)

being the edges of such “future” cone F and 6t− F . Furthermore, their intersections with our

ample candidate s = aF + bt, give us the conditions

s · F = (aF + bt) · F = 3b > 0 (3.24)

s · (6t− F ) = 18a+ 6b− 3b = 18a+ 3b > 0 (3.25)

that do not constrain the inequalities (3.20), and (3.21).

Finally, as the cone generated by F and t is within K+(B) ∩ H2(B,Z)G, the last Nakai’s

condition s ·s > 0 or positivity of the Liouville’s measure, is verified. Therefore, the G-invariant

ample cone associated to the elliptic surface B is simply

K(B)G = spanZ+

{
F, t

}
. (3.26)
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Ampleness in the Threefold

Once we have characterized the G-invariant ample cone on the rational surface, we can construct

G-invariant ample classes on the threefold X̃ as product of ample classes on the surfaces B1

and B2. In fact, the following proposition shows that the amples classes on X̃ constructed in

this way determine explicitely its G-invariant ample cone K(X̃)G = K(X).

Proposition 3.1 The G-invariant ample cone of X̃ is

K(X̃)G = spanZ+

{
τ1, τ2, φ

}
. (3.27)

Proof. If Li is an ample class in Bi, then π∗1L1 ⊗ π∗2L2 is an ample class in X̃, hence K(X̃)G

contains the positive linear span of τ1, τ2 and φ.

To show the opposite inclusion, we apply Nakai’s criterion to some effective classes. Let

H = aτ1 + bτ2 + cφ be an ample class. If C1 be the class of a fiber of π1,

0 < H · C1 = 0a+ 3b+ 0c = 3b

Analogously, if C2 is the class of a fiber of π2, we obtain a > 0. Let i : B1 ×P1 B2 → B1 × B2.

Let C be the class of σ1 ×P1 σ2, let c1, c2 be two integers with c = c1 + c2, and denote [Bi]

(respectively, [pt]) the class of Bi in H0(Bi,Z) (respectively, of a point in H4(Bi,Z)).

0 < H · C = i∗
(
(at1 + c1f1)⊗ [B2] + [B1]⊗ (bt2 + c2f2)

) · i∗[σ1 ⊗ σ2]

= i∗
(
(at1 + c1f1)σ1 [pt]⊗ σ2 + σ1 ⊗ [pt] (bt2 + c2f2)σ2

)

= i∗
(
c1 [pt]⊗ σ2 + c2 σ1 ⊗ [pt]

)

= c1 + c2 = c (3.28)

♠

The vector bundles of the compactification

The rank-2 sub-bundle of the vector bundle Eh → X (the gauge group action on its fibers is the

adjoint action of the hidden E8 gauge group) defined through the short exact sequence

0 −→ O eX(2τ1 + τ2 − φ) −→ H −→ O eX(−2τ1 − τ2 + φ) −→ 0, (3.29)

is the vector bundle used on the hidden sector of the compactification, [16].

Now, we recall the construction of the visible bundle [16]. First it is defined an equivariant

rank 2 vector bundle V2 on B of trivial determinant given as nontrivial extension

0 −→ OB(−2F ) −→ V2 −→ IZ(2F ) −→ 0, (3.30)
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with Z the scheme of 9 points, together with an equivariant structure on V2 so that this extension

is equivariant

0 −→ O eX(−2φ) −→ π∗2V2 −→ IΘ(2φ) −→ 0. (3.31)

Here, Θ the lifting to X̃ of Z by the second projection. Then, the visible rank 4 vector bundle

V4 of trivial determinant, is defined through the extension

0 −→ O(−τ1 + τ2)⊕O(−τ1 + τ2) −→ V4 −→ V2(τ1 − τ2) −→ 0, (3.32)

together with an equivariant structure making this extension equivariant, and general among

such extensions.

Figure 3.1: Polarizations which make V4 stable.

The stability analysis made in [46] determined the set of ample classes that allow solutions

to the Hermite Yang-Mills equations on these bundles. In the figure above we have plotted the

region of the Kähler cone which satisfies the conditions that make the vector bundle V4 stable.

In the rest of the thesis we explore how one can actually approximate solutions to the Ricci

flat equations, the Hermite Yang-Mills equations and others, in compactifications like the one

explained above.

3.3 Geometric quantization and balanced metrics

Using numerical methods to solve PDEs, involves finding natural discrete approximations of

the space where the PDE is defined. In many important examples, the PDE to be solved is



41

defined on some subset of the Euclidean space. In such a case, one can use an equally-spaced

lattice to approximate functions on the Euclidean space as the finite collection of the values of

the function at each node of the lattice. However, if one deals with a PDE defined on a general

Calabi-Yau variety X there is not a natural way to introduce a lattice onto it. More abstractly,

a “discretization” of X can be roughly defined as a sequence of vector spaces Hk labeled by a

positive integer k (of increasing dimension as k increases), such that C∞(X) is approximated

by Hk when k is large enough.

When X is Kähler, there is a natural beautiful discrete approximation given by geometric

quantization, as we explain in the following section.

3.3.1 Geometric quantization

Classical mechanics and geometric quantization have a beautiful formulation using the language

of symplectic geometry, vector bundles, and operator algebras [8, 39]. In this language, sym-

plectic manifolds X are interpreted as phase spaces, and spaces of smooth functions C∞(X) as

the corresponding classical observables.

Kähler quantization is understood far better than quantization on general symplectic mani-

folds; for this reason we only consider Kähler manifolds (which are symplectic manifolds endowed

with a compatible complex structure). (X, L⊗k) denotes a polarized Kähler manifold X with

a very ample hermitian line bundle5 L⊗k, and k ∈ Z+ a positive integer. For simplicity, we

consider X to be compact and simply connected. We work with a trivialization of L|U → U ,

where U ⊂ X is an open subset; we define K(z, z) to be the associated Kähler potential and

e−kK(z,z) the hermitian metric on L⊗k → X. If dimC Z = n and {zi}0<i≤n is a local holomor-

phic coordinate chart for the open subset U ⊂ X, we can write the Kähler metric on X and its

compatible symplectic form as

ikgidx
i ⊗ dx = kωidz

i ∧ dz = ik
∂

∂zi
∂

∂z
K(z, z)dzi ⊗ dz. (3.33)

Classically, the space (C∞(X), ω) of observables has, in addition to a Lie algebra structure

defined by the Poisson bracket

{f, g}PB = ωi(∂if∂g − ∂ig∂f), f, g ∈ C∞(X),

the structure of a commutative algebra under pointwise multiplication,

(fg)(x) = f(x)g(x) = (gf)(x).

5In other words, L⊗k is an element of the Kähler cone associated to X.
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Quantization can be understood as a non-commutative deformation of C∞(X) parameterized

by ~, with commutativity recovered when ~ = 0. We will discuss the formalism of deformation

quantization in the next section, although generally speaking, quantization refers to an assign-

ment T : f → T (f) of classical observables to operators on some Hilbert space H. When X is

compact, the Hilbert space will be finite-dimensional with dimension dim H~ = volX
~n +O(~1−n).

The assignment T must satisfy the following requirements:

• Linearity, T (af + g) = aT (f) + T (g), ∀a ∈ C, f, g ∈ C∞(X).

• Constant map 1 is mapped to the identity operator Id, T (1) = Id.

• If f is a real function, T (f) is a hermitian operator.

• In the limit ~→ 0, the Poisson algebra is recovered [T (f), T (g)] = i~T ({f, g}PB)+O(~2).

In geometric quantization the positive line bundle L⊗k is known as prequantum line bundle. The

prequantum line bundle is endowed with a unitary connection whose curvature is the symplectic

form kω (which is quantized, i.e., ω ∈ H2(X,Z)). The prequantum Hilbert space is the space of

L2 sections

L2(L⊗k, X) =
{
s ∈ Ω0(L⊗k) :

∫

X

hk〈s, s〉ω
n

n!
<∞

}
,

where hk is the compatible hermitian metric on L⊗k. The Hilbert space is merely a subspace of

L2(L⊗k, X), defined with the choice of a polarization on X. In the case of Kähler polarization,

the split of the tangent space in holomorphic and anti-holomorphic directions, TX = TX(1,0)⊕
TX(0,1), defines a Dolbeault operator on L⊗k, ∂ : Ω(0)(L⊗k) → Ω(0,1)(L⊗k). The Hilbert space

Hk is only the kernel of ∂, i.e., the space of holomorphic sections H0(X, L⊗k).
As a final remark, the quantization map T is not uniquely defined; there are different

assignments of smooth functions on X to matrices on Hk that obey the same requirements

stated above, giving rise to equivalent classical limits. For simplicity, we mention only the most

standard ones [21]:

• The Toeplitz map:

T (f)αβ =
∫

X

f(z, z)sα(z)sβ(z)h
k(z, z)

ω(z, z)n

n!
,

with sα a basis of sections for Hk and sα(z) the corresponding evaluation of sα at z ∈
U ⊂ X.

• The geometric quantization map: Q(f) = iT
(
f − 1

2∆f
)
, with ∆ the corresponding Lapla-

cian on X.
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We will work only with completely degenerated Hamiltonian systems (i.e. a constant Hamilto-

nian function on M); therefore the choice of quantization map will not be important. Rather

we will study the semiclassical limit of the corresponding quantized system by determining the

semiclassical vacuum states.

Coherent states and balanced metrics

As we described above, the geometric quantization picture is characterized by the prequantum

line bundle, L⊗k → X, a holomorphic line bundle onX which is endowed with a U(1) connection

with Kähler 2-forms kω. As the positive integer k always appears multiplying the symplectic

form, one can interpret k−1 = ~ as a discretized Planck’s constant. Thus, according to this

convention, the semiclassical appears in the limit k →∞.

In the local trivialization U ⊂ X, where K(z, z) is the Kähler potential and e−kK(z,z) the

hermitian metric on L⊗k|U , one can set the compatible Dolbeault operator to be locally trivial

and write the covariant derivative as

∇̃ = dzi(∂i − k∂iK) + dzı∂ı,

where K is the yet undetermined Kähler potential on L. One can also determine the associated

unitary connection up to a U(1) gauge transformation,

∇ = dzi(∂i +Ai) + dzı(∂ı −A†i ),

with Ai =
√
h−k∂i

√
hk, and h = exp(−K(z, z)).

As explained above, the Hilbert space Hk corresponds to the kernel of the covariant half-

derivative ∇(0,1) : Ω(0)(L) → Ω(0,1)(L), which are the holomorphic sections of L⊗k

Hk = H0(X, L⊗k) = spanC {|sα〉}Nα=1 .

The dimension of the quantum Hilbert space is

N = dimHk =
1
n!

∫

X

c1(L)nkn +
1

2(n− 1)!

∫

X

c1(L)n−1c1(X)kn−1 +O(kn−2). (3.34)

We identify |sα〉 as the basis elements of Hk. The coherent state localized at x ∈ X can be

defined (see [73]) on the trivialization L⊗k|U → U ⊂ X as the ray in PHk generated by

|Ω̃x〉 =
∑
α

sα(x)exp(−kK(x, x)/2)|sα〉 ∈ Hk, (3.35)

where sα(x)exp(−kK(x, x)/2) is the evaluation of the holomorphic section |sα〉 at the point

x ∈ U ⊂ X, in the trivialization L⊗k|U . The coherent states are an overcomplete basis of Hk,
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and obey the Parseval identity

〈ζ|ξ〉 =
∫

X↪→PHk

〈ζ|Ω̃x〉〈Ω̃x|ξ〉ω
n(x, x)
n!

, ∀ζ, ξ ∈ Hk. (3.36)

These points in PHk are independent of the trivialization, and they have the property of being

localized at x ∈ X with minimal quantum uncertainty. The distortion function, diagonal of the

Bergman kernel, or expected value of the identity at x, ρ(x, x) is defined as

ρ = 〈Ω̃x|Ω̃x〉 =
∑

α,β

sα(x)sβ(x)exp (−kK(x, x)) 〈sα|sβ〉, (3.37)

which measures the relative normalization of the coherent states located at different points of

X. Imposing ρ(x, x) = 〈Ω̃x|Ω̃x〉 = constant, constrains the Kähler potential K(x, x) to be a

Fubini-Study Kähler potential:

K(x, x) =
1
k

log


∑

α,β

sα(x)sβ(x)〈sα|sβ〉

 . (3.38)

One of the most important ingredients in the quantization procedure is the definition of the

quantization map, T : C∞(X) → Herm(Hk). This maps classical observables, i.e. smooth

real functions on the phase space X, to quantum observables, i.e., self-adjoint operators on

the Hilbert space Hk. If we work with an orthonormal basis 〈sβ |sα〉 = δβα, the quantization

condition

T (1X) = Id ∈ Hk ⊗H∗k

implies that the embedding of the coherent states satisfies the balanced condition [33],

δαβ = 〈sα|sβ〉 =
∑
x

〈sα|Ω̃x〉〈Ω̃x|sβ〉 =
∫

X

sα(x)sβ(x)∑
γ |sγ(x)|2

ω(x, x)n

n!
; (3.39)

here, we have used the Parseval identity Eq. (3.36), and the Liouville’s volume form on the

phase space X, which can be written as

1
n!
ω(z, z)n =

1
n!

[
∂∂iK(z, z)dzi ∧ dz]n .

In summary, in the geometric quantization of an algebraic Kähler manifold, the homogeneity

of the distortion function 〈Ω̃x|Ω̃x〉 and the mapping of the constant function on X to the identity

operator Id: Hk → Hk, determines a unique metric on X known as balanced metric. In the

semiclassical limit, k → ∞, this sequence of balanced metrics approaches the Kähler-Einstein

metric (if it exists) as explained below (see [31, 36]).
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Emergence of classical geometry

For every k, the balanced metric has just been defined as result of setting 〈Ω̃x|Ω̃x〉 to be the

constant function on X. In the semiclassical limit, k → ∞, we can expand the distortion

function in inverse powers of k (see [91])

〈Ω̃x,k|Ω̃x,k〉 ∼ 1 +
1
2k
R+O(k−2) + . . . , (3.40)

and therefore the sequence of balanced metrics will converge to a metric of constant scalar

curvature at k = ∞. For a Calabi-Yau manifold this is equivalent to a Ricci flat Kähler metric.

It is interesting to note that if the identity matrix is identified with the quantum Hamiltonian,

and the coherent states with the semiclassical states, the balanced metric can also be defined

as the metric that yields a constant semiclassical vacuum energy 〈Ω̃x,k|Ω̃x,k〉, as a function of

x ∈ X and fixed k. In the next section, we show how one can compute such balanced metrics

explicitly.

Other geometrical elements that one can recover naturally are the Lagrangian submanifolds

with respect the Kähler-Einstein symplectic form. In the Kähler n-fold (X,ω), the level sets of

n commuting functions (f1, f2, . . . fn) under the Poisson bracket

{fa, fb}PB = ωi(∂ifa∂fb − ∂ifb∂fa) = 0, ∀ a, b,

define a foliation by Lagrangian submanifolds. One can recover such commutation relations as

the classical limit of n commuting self-adjoint operators on the Hilbert space Hk, [21]:

〈Ω̃x,k|[f̂a, f̂b]|Ω̃x,k〉 ∼ i

k
{fa, fb}PB +O(k−2),

with 〈Ω̃x,k|f̂a|Ω̃x,k〉 → fa(x), and |Ω̃x,k〉 the coherent state peaked at x ∈ X. Thus, one

can approximate Lagrangian submanifolds by using n-tuples of commuting matrices for large

enough k. One can impose further conditions, i.e. Im(Ω)|SLag = 0, in order to describe special

Lagrangian submanifolds. More precisely, we define the quantum operator

Iαβα1β1···αnβn =
1
2i

∫

X

ωn

n!
sαsβe−kK

(
Ωi1···in∂

i1(sα1sβ1e
−kK) · · · ∂in(sαnsβne−kK)

−Ωı1···ın∂
ı1(sα1sβ1e

−kK) · · · ∂ın(sαnsβne−kK)
)
, (3.41)

with ∂i = gi∂ and ∂ı = gıj∂j . If Herm(Hk) is the space of hermitian matrices in Hk and

Comm(⊕nHerm(Hk)) is the space of n mutually commuting tuples of hermitian matrices in Hk,

we can write the map as I : Comm(⊕nHerm(Hk)) → Herm(Hk). Therefore, one can use the

kernel of I to approximate special Lagrangian submanifolds as the level sets of the n functions

“〈Ω̃x,k|ker(I)|Ω̃x,k〉”.
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Also, one can generalize this quantum system by coupling the particle to a rank r holomor-

phic vector bundle V → X. We will give more details of this generalization below, although

we will say a few words. For instance, the system can be interpreted as a particle endowed

with certain U(r)-charge. The associated quantum Hilbert space is H0(X,V ⊗ L⊗k). One can

also define an analogous set of coherent states and an associated distortion function. In the

semiclassical limit, setting the generalized distortion function to be constant as a function of

X gives rise to generalized balanced metrics, and therefore, to hermite-Yang-Mills metrics on

V → X when k−1 = 0, [35].

Finally, as a technical comment, the balanced metric equations Eq. (3.39) and Eq. (3.38)

can be explicitly solved for finite k, and its solutions used to approximate Ricci-flat metrics

and hermitian Yang-Mills connections. A method to solve them involves the concepts of T-map

and algebraic Monte-Carlo integration [33, 36], which can be applied whenever one has enough

analytical control on the Kodaira’s embeddings X ↪→ PH0(X,L⊗k). We explain more about

these methods in the upcoming sections.

3.3.2 Balanced metrics

The balance metric construction goes back to [83] which provides a mathematical precise nu-

merical scheme which is guaranteed to converge to it.

Let us phrase this construction in a way which can be used for an arbitrary manifold X. We

choose a holomorphic line bundle L over X, with N global sections. Denote a complete basis

of these as sα, where 1 ≤ α ≤ N , and consider the map

ik : X −→ PN−1 ik(Z0, . . . , Zn) = (s1(Z), s2(Z), . . . , sN (Z)).

The geometric picture is that each point in our original manifold X (parameterized by the Zi)

corresponds to a point in CN parameterized by the sections sα. Since choosing a different frame

for L would produce an overall rescaling sα → λsα, the overall scale is undetermined. Granting

that s1(Z), s2(Z), . . . , sN (Z) do not vanish simultaneously, this gives us a map to PN−1.

The simplest example is to embed P1 using L = OP1(k) into Pk. In this case the map is

ik(Z0, Z1) = (Zk0 , Z
k−1
0 Z1, Z

k−2
0 Z2

1 , . . . , Z0Z
k−1
1 , Zk1 ).

In general we want this map to be an embedding, i.e. that distinct points map to distinct

points with non-vanishing Jacobian. In general, we can appeal to the Kodaira embedding

theorem, which asserts that for positive L this will be true for all Lk for some k ≥ k0. For

non-singular quintics, this is true for OM (k) for all k ≥ 1. As a point of language, the pair of
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a manifold X with a positive line bundle L is referred to as a polarized manifold (X,L); the

condition that this construction provides an embedding for some k is that L is ample.

Now, we consider the family (3.38) of Fubini-Study Kähler potentials, and rewrite them as

Kh = log


∑

α,β

hαβsαsβ




or simply

Kh ≡ log ||s||2h (3.42)

for short, where sα plays the role of a degree k monomial. We now have an N2-parameter

family of Kähler potentials, and will seek a good approximating metric in this family. Just as

before, this amounts to using the pull-back of a Fubini-Study metric from PN−1 as our trial

metric.

Mathematically, the simplest interpretation of Eq. (3.42) is that it defines a hermitian metric

on the line bundle L = OM (k). This is a sesquilinear map from L ⊗ L to smooth functions

C∞(X), here defined by

(s, s′) = e−Kh · s · s′ =
s · s′∑

α,β h
αβsαsβ

.

The point is that a change of frame, which acts on our explicit sections as sα → λsα, cancels

out of this expression.6

This metric allow us to define an inner product between the global sections:

Gαβ = 〈sβ |sα〉 = i

∫

X

sαsβ
||s||2h

dvolX . (3.43)

This is the “physical” inner product in a sense we will explain further below. Note that it

depends on h in a nonlinear way, since h appears in the denominator.

Here dvolX is a volume form on X, which has to be chosen. If X is Calabi-Yau, it is simplest

to use Ω ∧ Ω as the volume form dvolX . If X is not Calabi-Yau, the standard choice of dvolX

is to take dvolω = ωn/n!, where ω is the Kahler metric derived from Eq. (3.42). This depends

on h as well, so the expression is even more non-linear in h.

Thus, given h and a basis of global sections sα, we could compute the matrix of inner

products Eq. (3.43). Once we have it, we could make a linear redefinition, say s̃ = G−1/2s, and

go to a basis of orthonormal sections where

Gαβ = δαβ . (3.44)

6A possibly more familiar physics use of this is in N = 1 supergravity: taking K → −K and s → W , one
gets the standard expression for the gravitino mass eK |W |2. In an example such as the flux superpotential, in
which W is a sum of various terms sα with constant coefficients, Eq. (3.42) also applies to give K.
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On the other hand, Eq. (3.42) also implicitly defines a notion of orthonormal basis locally

in the bundle, in which

hαβ = δαβ . (3.45)

This is a priori different from Eq. (3.44); indeed we can freely postulate it when we write Eq.

(3.42). However, if the two notions agree,

Gαβ = (h−1)αβ ,

then we can go to a basis of sections in which

Gαβ = hαβ = δαβ . (3.46)

In this case, the embedding of X in PN−1 using these sections is called balanced. More generally,

we call a polarized manifold (X,Lk) balanced if such an embedding exists.

An equivalent definition of the balanced embedding is arrived at if we consider the function

on X defined as

ρ(ω)(x) =
∑

α,β

(G−1)αβ(sα(x), sβ(x)) (3.47)

or equivalently

ρ(ω)(x) =
∑
α

||sα(x)||2

where the second sum is taken over an orthonormal basis in which G = δαβ . X is balanced

precisely when ρ(ω)(x) is the constant function.

Many theorems have been proven about balanced manifolds. Let us first recall the following

theorem of Donaldson (Theorem 1 in [31]):

Theorem 3.3.1 Suppose the automorphism group Aut(X,L) is discrete. If (X,Lk) is balanced,

then the choice of basis in H0(X,Lk) such that ik(L) is balanced is unique up to the action of

U(N)× R∗.

The condition on Aut(X,L), i.e., there are no continuous symmetries, is true for the quintic

Q. This theorem then tells us that, if a metric h exists which gives a balanced embedding, it is

unique up to scale.

Given a balanced embedding, one defines the balanced metric on X as the pullback of the

Fubini-Study metric (3.42):

ωk =
2π
k
i∗k(ωFS), (3.48)

The cohomology class of the Kahler form [ωk] = 2πc1(L) ∈ H2(X) is independent of k. Using

these definitions Donaldson proves that (Theorem 2 in [31]):
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Theorem 3.3.2 Suppose Aut(X,L) is discrete and (X,Lk) is balanced for sufficiently large k.

If the metrics ωk converge in the C∞ norm to some limit ω∞ as k →∞, then ω∞ is a Kahler

metric in the class 2πc1(L) with constant scalar curvature.

The constant value of the scalar curvature is determined by c1(X), and in particular for c1(X) =

0 the scalar curvature is zero. Thus, the balanced metrics ωk, in the large k limit, converge to

the Ricci flat metric.

Therefore, if we can find the unique balanced metric for a given L, it is a good candidate

for approximating the Ricci flat metric on X. One may ask where the complex structure and

Kahler moduli on which this Ricci flat metric depends, are put in. The complex structure enters

implicitly through the basis for holomorphic sections sα, as we will see in examples below. As

for the Kahler class, recall that this is determined, up to scale, to be 2πc1(L). Of course, the

Ricci flatness condition is scale invariant, so the overall scale is irrelevant; however the point

of this is that if b1,1 > 1, then by appropriately choosing L we choose a particular ray in the

Kahler cone. This will not be relevant for our examples here but shows that in principle any

Ricci-flat Kahler metric could be approximated in this way.

Finding the balanced metric

In [32, 33] Donaldson proposes a method to determine the hermitian metric h in Eq. (3.42),

which will lead to a balanced metric. He defines the “T operator”, which given a metric h

computes the matrix G:

Gαβ = T (h)αβ ≡
N

vol(X)

∫

X

sαsβ
||s||2h

dvolX (3.49)

Now, suppose we find a fixed point of this operator,

T (h) = h.

Then, by a GL(N) change of basis s → h−1/2s, we can bring h to the unit matrix, which will

produce the balanced embedding.

The simplest way to find a fixed point of an operator is to iterate it. If the operator is

contracting, this is guaranteed to work. In our case we have the following theorem [31, 75]:

Theorem 3.3.3 Suppose that Aut(X,L) is discrete. If a balanced embedding exists then, for

any initial G0 hermitian metric, the sequence T r(G0) converges to the balanced metric G as

r →∞.
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Thus the T operator can be used to find approximate Ricci-flat metrics on Calabi-Yau manifolds,

and more generally approximate constant scalar curvature Kahler metrics. In [33] Donaldson

studies numerically explicit P1 and K3 examples. We will discuss some additional examples

below.

Balanced metrics and constant scalar curvature

In this subsection we outline the reason why the limit of a family of balanced metrics has

constant scalar curvature. This is the content of Theorem 3.3.2. This will be very useful later

on, when we generalize the T-operator to vector bundles.

Note that the function ρ(ω) is independent of the choice of orthonormal basis, and remains

unchanged if we replace h by a constant scalar multiple. Therefore, it is an invariant of the

Kahler form. As discussed before, the balanced condition for (X,Lk) is equivalent to the

existence of a metric ωk such that ρ(ωk) is a constant function on X. The asymptotic behavior

of the “distorsion” function ρ(ωk) as k → ∞ for fixed ω has been studied in [83, 25, 91, 59].

Note that for any metric

∫

X

ρk(ω) = N = dimH0(X,Lk) = a0k
n + a1k

n−1 + · · · , (3.50)

where the coefficients ai can be determined using the Riemann-Roch formula. Note that a0 is

just the volume of X and

a1 =
1
2π

∫

X

S(ω),

where S(ω) is the scalar curvature of ω. We will use the following result (Prop. 6 in [31]):

Proposition 3.3.4 1. ρ(ω) has an asymptotic expansion as k →∞

ρk(ω) ∼ A0(ω)kn +A1(ω)kn−1 + · · ·

where Ai(ω) are smooth functions on X defined locally by ω. In particular,

A0(ω) = 1, A1(ω) =
1
2π
S(ω).

2. The expansion holds uniformly in the C∞ norm; in that for any r,N > 0
∥∥∥∥∥ρk(ω)−

N∑

i=0

Ai(ω)kn−i
∥∥∥∥∥
Cr(X)

6 Kr,N,ωk
n−N−1

for some constants Kr,N,ω.
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Now assume that we are given balanced metrics ωk converging to ω∞. Then by the previous

proposition ∥∥∥∥ρk(ωk)− kn − 1
2π
S(ωk)kn−1

∥∥∥∥
C0(X)

6 ckn−2

for some constant c. Since ωk is balanced ρk(ωk) is constant: ρk(ωk) = dimH0(X,Lk)/V , and

we can use (3.50) to find that
∥∥∥∥

1
V

(V kn + a1k
n−1 + · · · )− kn − 1

2π
S(ωk)kn−1

∥∥∥∥
C0(X)

6 ckn−2,

or equivalently ∥∥∥∥
2π
V
a1 − S(ωk)

∥∥∥∥
C0(X)

= O(k−1)

Hence S(ω∞) = S0 = constant, where S0 = 1
V

∫
X
S(ω) is the mean curvature.

3.4 Balanced Hermitian metrics on stable holomorphic bundles

We are now ready to generalize the T-operator, which provided an approximation scheme for the

constant curvature metric, to a “generalized T-operator” which can be used to find a solution

of the Yang-Mills equations on a Calabi-Yau manifold X.

We briefly recall the argument that a solution of the Yang-Mills equations which preserves

N = 1 supersymmetry, must be hermitian Yang-Mills. First, the supersymmetry variation of

the gaugino has to vanish,

ΓµνF aµνε = 0,

where F aµν is the Yang-Mills field strength, and ε is the covariantly constant spinor.

Going to complex coordinates (i, i) and rewriting of the Clifford algebra as

Γi → dzi; Γi → ωij ∂
j ,

this is equivalent to

Fij = Fij = 0; ωijFij = 0.

This is the particular case of the hermitian Yang-Mills equations with TrF = 0. The general

case replaces the last equation with

ωijFij = c · 1

for a constant c, determined by the first Chern class. For convenience we abbreviate this

equation below as
∧
F = c · 1.
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Next we review the relation between solutions of these equations, and holomorphic bundles

carrying hermitian-Einstein metrics. In physics, one defines Yang-Mills theory in terms of a

connection on a vector bundle with a fixed metric. First, a connection on a vector bundle can

be described in terms of a connection one-form by choosing a frame for the bundle, say ea(x),

and defining the covariant derivative as

D(vaea) = (dva)ea + vaAbaeb.

In physics, one usually takes the frame to be orthonormal, (ea, eb) = δab, and thus

(u, v) = (uaea, vbeb) = (ua)∗va, (3.51)

where ∗ is complex conjugation.

The condition that the connection be compatible with the metric,

d(u, v) = (Du, v) + (u,Dv), (3.52)

reduces to requiring the connection one-form to be anti-hermitian,

A(phys)
i = −A(phys)†

i . (3.53)

In mathematics, one often considers a more general frame, for which the metric is a hermitian

matrix,

(ea, eb) = Hab, H = H†. (3.54)

Decomposing the positive definite hermitian matrix G as

H = h†h, (3.55)

we see that the math and physics conventions differ by a complex gauge transformation: u = h s.

This complex gauge transformation leads to a different form for the connection, according to

the standard relation

∂i +A(math)
i = h(∂i +A(phys)

i)h−1. (3.56)

Now, equations of the form

Fij = 0 ∀ i, j

will be integrability conditions for the covariant derivatives. In particular, this equation has the

general solution

∂i +A(phys)
i = g−1∂ig,

in other words the D covariant derivatives are obtained from the derivative ∂ by a complex

gauge transformation.



53

Thus, we can use Eq. (3.56) to bring the connection to the gauge A
(math)

= 0, at the cost

of losing the simple metric Eq. (3.51) and Eq. (3.53). Actually, the covariant derivative is still

compatible with the metric as in Eq. (3.52), we just have a non-trivial fiber metric H. The

metric compatibility condition becomes

0 = ∂(u, v) = (∂u, v) + (u,Dv)

so

∂Hab = HacA
(math)c

b

or equivalently

A(math) = H−1∂H.

Conversely, if we are given a metric H, then we can use the inverse complex gauge transfor-

mation to bring the connection back to the unitary form. This leads to the formula

A
(phys)

i = h(∂ih
−1).

Using Eq. (3.53), we can get the entire connection, so the metric contains the same information

as a connection satisfying F (0,2) = F (2,0) = 0. Thus we can rephrase the final equation on

F (1,1), as a condition on the metric. It is simplest to write this in the “mathematical” gauge

A
(math)

= 0, in which it is

c · 1 = ωijFij = ωji∂jA
(math)

i = ωji∂j
(
H−1∂iH

)
. (3.57)

A metric H satisfying this equation is a “hermitian-Einstein” metric. It is simply related to a

hermitian Yang-Mills connection as above.

Finally, using the complex gauge transformation above, the standard physical inner product

〈u|v〉 ≡
∫

X

(u∗)ava (3.58)

is equal to the natural inner product generalizing Eq. (3.43),

〈u|v〉 = 〈h s|h t〉 (3.59)

= i

∫

X

Gab s
b ta dvolX . (3.60)

3.4.1 Embeddings in Grassmannians and vector bundles

We now want to represent the hermitian metric Hab in the same way as we did for line bundles,

by introducing a complete basis of sections. Now an irreducible bundle E with c1 = 0, and thus

of interest for string compactification, will not have global sections. What we do instead is to
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make the same construction for E(k) ≡ E ⊗Lk, which will have global sections. We can again

think of these sections as a basis of polynomials approximating functions on which to base our

numerical scheme.

Thus, consider a rank r vector bundle E, and suppose that E(k) has N global sections.

Choosing a local frame as above, a basis for these will be an N by r matrix zaα. This is defined

up to a GL(N) change of basis, and up to a GL(r) change of frame. After making these

identifications, such a matrix z defines a point in the Grassmannian G(r,N) of r planes in CN .

Given a metric Hab on the fibers of E(k), we can define the matrix of inner products

Gαβ = 〈zβ |zα〉

as above. Such a metric could be obtained by multiplying a metric H(0) on E, by one on Lk

as defined earlier. Or, it might simply be an r × r hermitian matrix of functions (in each local

frame) with appropriate transformation properties.

Now there is a natural set of metrics on E(k) generalizing Eq. (3.42), again parameterized

by an r × r matrix, defined by

(H−1)ab = gαβzaα(z†)b
β
,

where the dagger is hermitian conjugation. Again, the approach will be to find a natural metric

in this class which is a good approximation to the hermitian-Einstein metric. This will lead

to a hermitian Yang-Mills connection on E(k). But this is simply related to the hermitian

Yang-Mills connection on E, because twisting by Lk only modifies the trace part of the field

strength.

3.4.2 Generalized T-operator

We will now turn to a proposal for a generalized T-operator, which produces the hermitian-

Einstein metric on a stable vector bundle. To begin with we use results by Wang about balanced

metrics on such bundles [85].

We consider again a polarized n dimensional manifold (X,L) and an irreducible holomorphic

vector bundle E of rank r on X. Then by Kodaira embedding we know that for k sufficiently

large, a basis zaα of the global sections of E(k) will give rise to an embedding

X
Â Ä i // G(r,N).

Now Wang proves the following:
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Theorem 3.4.1 E is Gieseker stable iff there is an integer k0 such that for k > k0, the kth

embedding given as above can be moved to a balanced place, i.e., there is a g ∈ SL(N,C) which

is unique up to left translation by SU(N) such that:

1
V

∫

g·X
z(z†z)−1z† dV =

r

N
IN×N .

We call the equation above the “balance equation.” In the case that E is a line bundle, this

definition reduces to that of a balanced embedding in PN−1.

Now, let h be a hermitian metric on L and H be a hermitian metric on E, and fix the Kähler

form on X to be ω =
i

2π
Ric(h). Let vol denote the volume of (X,ω). Suppose S1, . . . , SN is

an orthonormal basis of H0(X,E(k)) with respect to the induced L2 -metric 〈. , .〉. The Szegö

kernel Bk is a generalization of the function ρ(ω) defined in Eq. (3.47). It is defined as the

fiberwise homomorphism

Bk(x) =
N∑

i=1

〈., Si(x)〉Si(x) : Ex → Ex.

This expression is independent of the choice of orthonormal basis.

Now the local form of Theorem 3.4.1 can be stated as follows (Corollary 1.1 of [85]):

Theorem 3.4.2 E is Gieseker stable iff there is an integer k0 such that for any k > k0, we can

find a metric H(k), which we will call the balanced metric on E(k), such that the Szegö kernel

satisfies the equation

Bk(x) =
χ(k)
V r

IE

where IE is the identity bundle morphism and χ(k) is the Hilbert polynomial of E with respect

to the polarization L.

The theorem tells us that if E is Gieseker stable then for large k there is a balanced metric

H(k) on E(k). Hence we will have a sequence of hermitian metrics Hk := H(k) ⊗ h−k on E.

The importance of the balanced metric H(k) for physical applications follows from the following

theorem:

Theorem 3.4.3 Suppose E is Gieseker stable. If Hk → H∞ in the C∞ norm as k →∞, then

the metric H∞ solves the “weak hermitian-Einstein equation”,

i

2π

∧
F(E,H∞) +

1
2
S(ω)IE =

(
deg(E)
V r

+
s

2

)
· IE (3.61)

where
∧
F(E,H∞) is the contraction of the curvature form of E with ω, S(ω) is the scalar cur-

vature of X and s := 1
V

∫
X
S ω

n

n! . Conversely, suppose there is a hermitian metric H∞ solving

this equation, then Hk → H∞ in Cr norm for any r.
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To prove (3.61) one can work along the same lines as in the proof of Theorem 3.3.2, using

Catlin’s and Wang’s results for the expansion of the Szegö kernel.

Proposition 3.4.4 1. For fixed hermitian metrics H and h on E and OX(1) respectively,

there is an asymptotic expansion as k →∞

Bk(H,h) ∼ A0(H,h)kn +A1(H,h)kn−1 + · · · ,

where Ai(H,h) ∈ Γ( End E) are smooth sections defined locally by H. In particular,

A0(H,h) = IE , A1(H,h) =
i

2π

∧
F (E,Ric(h)) +

1
2
S(ω) · IE

2. The expansion holds uniformly in the C∞ norm; in the sense that for any r,N > 0

‖Bk(H,h)−
N∑

i=0

Ai(H,h)kn−i‖Cr 6 Kr,N,H,hk
n−N−1

for some constants Kr,N,H,h.

Now we can repeat the steps of the argument outlined in Section 3.3.2. Under the assumption

that Hk → H∞ in C∞ we find that for r > 0

‖Bk(Hk)− IEk
n − i

2π

∧
F (E,Ric(h)) +

1
2
S(ω) · IEkn−1‖Cr 6 Ckn−2

for some fixed constant C. By assumption H(k) is balanced, hence Bk(Hk) = χ(k)/rV IE . This

implies that

‖ i

2π

∧
F(E,H∞) +

1
2
S(ω)IE −

(
deg(E)
V r

+
s

2

)
· IE‖ = O(k1).

Generalized T-operator

Using the strong analogy between the construction of metrics with constant Kahler curvature

and metrics on stable bundles which obey the hermitian-Einstein equation, we propose the

following generalized T-operator:

T (G) =
N

V r

∫

X

z(z†G−1z)−1z† dV , (3.62)

where as before, z is an N by r matrix of holomorphic sections of E.

The relevance of this proposal follows from the following conjecture:

Conjecture 3.4.5 If a balanced embedding i : X ↪→ G(r,N) exists, then for every hermitian

N × N matrix G, the sequence T r(G) converges to a fixed point G0 as r → ∞. Using an

orthonormal basis with respect to G0, the embedding is balanced, and as outlined above, it

provides an approximate solution for the corresponding hermitian-Einstein equation.
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This conjecture may require additional technical assumptions, such as the earlier one of Aut(X,E)

being discrete. We have not attempted to prove it, but would hope that this can be done along

the same lines as [31, 75].

In the following section we will numerically test the conjecture for several stable vector

bundles on P2, and on the Fermat quintic in P4, and find that it works for these cases.

3.5 Numerical integration on Calabi-Yau varieties

In this work we develop numerical methods for approximating Ricci flat metrics on Calabi-Yau

hypersurfaces based on these ideas. This also supplies a detailed analysis of the numerical

methods used in [35]. We study the effectiveness of our approach in the example of a one

parameter family of quintics in CP4. As we review in section 3.3, we work with a space of

approximating metrics parameterized by an N × N hermitian matrix; the balanced metric is

then the fixed point of the so-called “T map” on this space, defined in [33].

The main computational problem in implementing the T map numerically is the evaluation

of a large number of integrals on the manifold. More precisely, given a Calabi-Yau n-fold X,

with its corresponding holomorphic n-form Ω ∈ Ωn,0(X) = Λn(T ∗X)1,0, and volume form

dµΩ = Ω ∧ Ω, one needs to compute integrals of the type

∫

X

f dµΩ, (3.63)

where f : X → C is a smooth complex valued (but not holomorphic) function. Consequently in

this section, we are devoted to developing a numerical approximation scheme to efficiently and

accurately compute these integrals.

A second technical point, which is very valuable in simplifying these computations, is to

take advantage of the discrete symmetries of the manifold. We discuss this in section 3.6.1 for

a concrete example.

Our explicit numerical results appear in section 3.6.2, where we also provide a general

discussion of the efficiency and accuracy of the algorithm, comparisons with alternatives, and

suggestions for future work.

Before we begin, let us briefly set out the problem. Denote the Ricci flat metric on X (which

is unique given a complex structure and Kähler class) as gRF . We want to propose a set of

approximating metrics gh parameterized by parameters h, and give a numerical procedure to

find the “best” approximation to gRF within this set.

The criteria that a best approximation should satisfy include
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1. Accuracy: we want to minimize the error ε = d(gh, gRF ), where d is some measure of

the distance between the approximate and true metrics. A simple and natural choice for

ε in the present context is to consider the function

ηh =
detωh
Ω ∧ Ω

(3.64)

on X, where ωh is the Kähler form for gh. For a Ricci flat metric, this will be the constant

function. We then take 7

ε = 1− minx∈X ηh(x)
maxx∈X ηh(x)

. (3.65)

Of course, one could use other norms, such as ||ηh − 1
vol X

∫
ηh||p, or curvature integrals.

2. Control: we want an explicit bound on the error,

ε(gh, gRF ) < εmax, (3.66)

depending on the parameters of the problem.

3. Systematic improvement: we would like to have a control parameter k, such that by

increasing k, we can bring the error estimate εmax down to any desired accuracy.

4. Mathematical naturalness. Our experience with string theory (and more generally in

mathematics and physics) has been that in exploratory work such as this, rather than

trying to incorporate all known aspects of a problem and find a “best” solution, we can

learn far more by studying a well chosen simplification in depth. This favors a scheme in

which one makes the smallest possible number of arbitrary or ad hoc choices not inherent

in the original statement of the problem.

Of course the approximation should be efficiently computable as well. We will comment on

these various aspects as they arise.

3.5.1 Basic setup

It is clear from the outset that analytic evaluation of the integrals appearing in the T-map

(3.49) is not possible. On the other hand, if the integrands are smooth and relatively slowly

varying functions, it will be possible to evaluate the integrals using Monte Carlo methods. This

is clear for the sections themselves. Since h is positive definite, the denominator in (3.49) is

strictly positive, mitigating (though not eliminating) the possibility of numerical blow-ups.

7We consider only compact varieties, hence both the minimum and the maximum are attained.



59

Let X be a compact Calabi-Yau n-fold,8 with its corresponding holomorphic n-form Ω ∈
Λn,0(X). The volume form Ω ∧ Ω determines a natural measure dµΩ on X in the sense that

∫

X

f dµΩ =
∫

X

f Ω ∧ Ω.

From now on we will not distinguish between a top form and the associated measure.

We can use dµΩ to measure volumes. For an open set U ⊂ X the indicator or characteristic

function 1U is defined by

1U (x) =





1 if x ∈ U
0 if x /∈ U .

The measure of U is its volume

µΩ(U) =
∫

X

1U dµΩ = vol(U).

To do a Monte Carlo integration, one would ideally like to produce samples of points on

X which are uniformly distributed according to the measure dµΩ. This means that for every

sample of points {qi ∈ X}Np

i=1, the expected number of points within each open subset U ⊂ X is

Np∑

i=1

1U (qi) = Np
µΩ(U)
µΩ(X)

.

Using this, we can estimate integrals as finite sums:

∫

X

fdµΩ ≈ µΩ(X)
1
Np

Np∑

i=1

f(qi), (3.67)

The statistical error of such an approximation is of order 1/
√
Np times a quantity proportional

to the mean of the f(qi)’s. [81].

In practice, producing samples of points which are distributed according to the measure µΩ

is not so easy. One way to overcome this problem is by producing points which are uniformly

distributed according to another auxiliary measure, say dµA. Let us assume that dµA is associ-

ated to the global top form A. The ratio Ω ∧ Ω/A is a global function on X, which we call the

mass function mA. At a point x it is defined to be the ratio of the two top forms evaluated at

x :

mA(x) =
Ω ∧ Ω(x)
A(x)

. (3.68)

In general this function is neither constant nor holomorphic.

While one could use this information to generate a sample distributed according to dµΩ

(e.g., by rejection sampling or MCMC), it is simplest to explicitly put the mass function into

8Although most of what we present generalizes to varieties other than Calabi-Yau, we restrict attention to
these spaces due to their importance in string theory.
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the integrand. Thus, given a sample of points distributed according to dµA, and the mass

function, we can estimate (3.63) as
∫

X

fdµΩ =
∫

X

f
dµΩ

dµA
dµA ≈ µΩ(X)∑

mj

Np∑

i=1

f(qi)m(qi), (3.69)

The presence of the mass function increases the statistical error. On the other hand, the generic

values of our mass function are order one, and this is a very mild penalty.

Rather than regarding the Monte Carlo as a way to estimate the original T-map, an alternate

point of view is to regard the right-hand side of (3.90) as defining a new measure ν and a new

T-map, leading to a new ν-balanced metric which approximates the desired (Ω ∧ Ω)-balanced

metric. An advantage of this point of view is that in [33] it is shown that (under a very mild

hypothesis on ν) the new T-map is contracting, and the new ν-balanced metric is unique.

Thus, numerical pathologies will not enter at this stage, provided that we use the same sample

of points throughout the computation of the balanced metric. This is also advantageous for

efficiency reasons, so we always do this. One can then repeat the computation with different

samples to estimate the statistical error.

3.5.2 Generating the sample

We now discuss how to efficiently generate points according to a known simple distribution. In

this paper we restrict to the case of X a degree d hypersurface in Pn+1. For definiteness let X

be defined as the zero locus of the degree d homogenous polynomial f . The case of a complete

intersection is a straightforward extension. Our main interest will be in d = n+ 2, but we can

be more general for the time being.

First, it is easy to generate random points distributed according to the Fubini-Study measure

(for any h) in the ambient Pn+1. We simply generate uniformly distributed points on S2n+3, a

standard numerical problem, and then mod out the overall phase.

Using this distribution, one approach to generating points on X would be to keep only the

points that lie sufficiently close to X, in other words satisfy the defining equation of X with a

given precision, and then use a root finding method (say Newton’s method) to “flow” down to

X. In essence this is a rejection-type algorithm. We implemented this strategy, but it has some

problems. First, it is hard to control the emerging distribution on X (this depends on details of

the root finding method). Second, it is an order of magnitude slower than the second method

we are about to describe.

The approach we use starts by taking a pair of independently chosen random points (X,Y ) ∈
Pn+1×Pn+1, which define a random line in Pn+1. By Bezout’s theorem, a generic complex line in
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Pn+1 intersects X in precisely d points, and we take these d points with equal weight. Repeating

this process M times generates some random distribution of Np = dM points.

One advantage of this approach is that finding all d roots of f(z) = 0 numerically is not

much harder than finding one root. But the main advantage, as we show in Section 3.5.3 using

results by Shiffman and Zelditch on zeroes of random sections, is that that the resulting points

are distributed precisely according to the Fubini-Study measure restricted to X. The mass

function (3.68) is then computable quite efficiently.

A possible disadvantage for some applications is that the resulting sample will have correla-

tions between the points in each d-fold subset. For our purpose of Monte Carlo integration, this

is not a problem, as (3.90) is the expectation value of a function of a single random variable, and

does not see these correlations. If one were considering functions of several independent random

variables, one would probably want to further randomize the sequence (say by permuting points

between subsets) to remove these correlations.

3.5.3 Expected values of currents

Let us start with a smooth compact algebraic variety X, and an ample line bundle L on X. As

reviewed in Section 3.3, this means that Lk defines an embedding ik into projective space for

any k ≥ k0, for some positive integer k0 :

ik : X −→ PH0(X, Lk)∗. (3.70)

The idea is to consider random global sections of Lk, distributed uniformly according to a

natural measure, and look at the expected value of the zero locus that they cut out in X. For

this it is convenient to use the Poincare dual formulation, where the divisor associated to a

section becomes a form, and ask what is the expected value of the random forms. Shiffman and

Zelditch answer this question, and the more general one when we intersect l such divisors, in

full generality using the language of currents. This section is a brief review of some aspects of

their work [79, 80]. For brevity we adapt their results to fit our needs, rather than reproducing

them verbatim.

The space of global sections Γ = H0(X, Lk) is a complex vector space of dimension dk. If

we choose a basis for it, then it automatically defines a hermitian inner product, with respect

to which the basis in question is orthonormal. Conversely, given a hermitian inner product 〈·, ·〉
on Γ, there is an orthonormal basis B = {s1, . . . , sdk

} on Γ. Now given s ∈ Γ, we can expand it

in the basis B, and the inner product induces a complex Gaussian probability measure on Γ:

dγ(s) =
1
πm

e−||c||
2
ddkc , where s =

∑dk

j=1 cjsj and ||c||2 =
∑dk

j=1 |cj |2 . (3.71)
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Given a metric h on the line bundle L, as explained in section 3.3, h defines a hermitian metric

on Γ. This is the inner product that we are going to use on Γ = H0(X, Lk) throughout this

section.

Given a random variable Y on the probability space (Γ, dγ), the expected value of Y in the

probability measure dγ is

E(Y ) =
∫

Γ

Y dγ. (3.72)

We can think of the probability space (Γ, dγ) in a slightly different way. Consider the unit

sphere

SΓ = S H0(X,Lk) = {s ∈ H0(X,Lk) : 〈s, s〉 = 1}.

The Gaussian probability measure on Γ restricts to the uniform measure dµ on SΓ. The

expected value of Y |SΓ is E(Y ) =
∫
SΓ
Y dµ. On the other hand, the uniform measure on the

sphere SΓ descends to the Fubini-Study measure on the projectivization PΓ. This alternative

view will be very useful later on.

If we choose a section s ∈ Γ = H0(X,Lk), then there is a divisor Zs associated to it, which,

roughly speaking, is the zeros of s minus the poles of s. Since we work with Lk very ample, Zs

consists of only the zero locus of s. Given the probability measure dγ on Γ, we can choose s

randomly, and ask what is the expected value of the random variable Z (defined by s 7→ Zs).

This same question can be asked in an equivalent form using Poincare duality. The Poincare

dual of Zs is a (1, 1) form Ts, and it is more convenient to work with forms in this context than

to work with divisors. In general Ts is not a C∞-form on X, but it can be given an explicit

expression using the notion of currents, i.e., distribution valued forms.

Currents are defined as it is customary in the theory of distributions.9 Let Ωp,q0 (X) be the

space of compactly supported C∞ (p, q)-forms on X, and for now we assume that dimX = n.

The space of (p, q)-currents is the distributional dual of Ωn−p,n−q0 (X): D p,q(X) = Ωn−p,n−q0 (X)′.

An element of D p,q(X) is a linear functional on Ωn−p,n−q0 (X) which continuous in the C∞ norm.

The usefulness of currents in our context stems from the fact that Poincare dual TY of an

algebraic subvariety Y , defined by

∫

X

TY ∧ α =
∫

Y

ι∗(α), for any α ∈ ΩdimY,dimY
0 (X),

oftentimes has an explicit form in terms of currents (ι : Y ↪→ X is the embedding). Let us

focus on the case when Y is a hypersurface, or more generally the zero divisor of a section

9For a nice introduction to distributions and currents in algebraic geometry the reader can consult [48],
Chapter 0 resp. Chapter 3.
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s ∈ Γ = H0(X,Lk). In this case the current is given by the Poincare-Lelong formula:

Ts =
i

π
∂∂ log〈s, s〉 ∈ D 1,1(X).

Ts is also known as the zero current of s. Thus, the Poincare-Lelong formula induces a map

T : PH0(X, Lk) −→ D 1,1(X), s 7→ Ts.

As discussed earlier, the Fubini-Study measure makes PH0(X, Lk) into a probability space,

and we can also view T as a random variable. Since the currents form a linear space, we can

inquire about their expected value in this probability measure

E(T ) =
∫

PH0(X,Lk)

Ts dµFS(s),

As it happens oftentimes in the theory of distributions, although Ts is not a C∞ form, E(T ) is,

and we have the following proposition:

Proposition 3.5.1 ([79, Lemma 3.1]) With X and L as above, for k sufficiently large so that

Kodaira’s map ik associated to H0(X, Lk), as defined in (3.70), is an embedding, the expected

value of the random variable T representing the zero current is

E(Ts) =
1
k
i∗k ω

FS
k ,

where ωFSk is the Fubini-Study 2-form on PH0(X, Lk), and i∗k is pullback of forms (in this case

restriction).

This result generalizes to the case when we intersect several divisors, and this will be the

case of main interest to us. Since intersection of subvarieties is Poincare dual to the wedge

product, there is an obvious guess how Prop. 3.5.1 should generalize. Let s1, . . . , sm be sections

of H0(X, Lk), and consider the zero current T (m)
s1,...,sm associated to the set

Zs1,...,sm = {x ∈ X : s1(x) = · · · = sm(x) = 0}.

It is obvious that if we consider any m linear combinations of s1, . . . , sm (which are themselves

linearly independent), then they determine the same zero set Zs1,...,sm . Hence Zs1,...,sm is really

associated to the m-plane spanned by s1, . . . , sm in H0(X, Lk). Therefore the probability space

is the Grassmannian of m-dimensional subspaces of H0(X,Lk), with its natural Haar measure

dµHaar (a generalization of the Fubini-Study measure). So we can ask what is the expected

value of this zero current, computed with dµHaar.
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Proposition 3.5.2 ([79, Lemma 4.3]) In the notation of Prop. 3.5.1, the expected value of the

zero current T (m), associated to the simultaneous vanishing of m random sections of H0(X, Lk),
distributed according the Haar measure of the corresponding Grassmannian, is

E(T (m)) = km−1
(
i∗k ω

FS
k

)m (3.73)

Note in particular, that unlike in Prop. 3.5.1, the distribution is according to the Haar

measure, but the final result still involves the Fubini-Study form on H0(X, Lk). This is in

fact natural, given that an m-tuple of sections, each distributed according to Fubini-Study on

H0(X, Lk), is the same thing as one m-plane, distributed according to Haar on the Grassman-

nian.

As usual, besides having expected values, random variables also have variance. The zero

current T (m) is no different in this respect. Its variance has been computed recently in [80,

Theorem 1.1]. In particular, it was shown that the ratio of the variance and the expected value

goes to zero as k is increased [
Var

(
T (m)

)]1/2
E

(
T (m)

) ∼ k−
m
2 − 1

4 .

The expected zero current

We chose to work with an arbitrary positive line bundle L = OX(1) on X. The associated

Kodaira embedding is precisely the defining one:

i1 : X ↪→ PH0(X, OX(1))∗.

If we take n sections of L = OX(1), and look at their common zero locus, then by Bezout’s

theorem this is generically
∫
X
c1(L)n/n! points (degenerations might occur). Therefore, consid-

ering random n-tuples of sections will give random (
∫
X
c1(L)n/n!)-tuples of points on X. But

now we can tell how these points are distributed, provided that the sections were distributed

according to the Fubini-Study measure on PH0(X, OX(1)). Using Prop. 3.5.2 we know that

the expected value of the zero current associated to the
∫
X
c1(L)n/n! points of intersection is

(
i∗1 ω

FS
Pn+1

)n. This is an (n, n) form on X, and plugging it into (3.68) we obtain the mass formula

m(x) =
Ω ∧ Ω(

i∗1 ω
FS
Pn+1

)n (x). (3.74)

Example (Application of the mass formula (3.74)).

We consider the elliptic curve in CP2 defined as the zero locus of the Weierstrass cubic

polynomial

Z2
2Z0 = 4Z3

1 − 60G4(i)Z1Z
2
0



65

with G4(τ) the Eisenstein series of index 4, evaluated at the complex parameter τ = i. Such

algebraic curve is the preimage under the Weierstrass map of the square lattice Γ ⊂ C generated

by ω1 = 1 and ω2 = i, thus the embedding C/Γ → P2 is given by

z 7→ (Z0 = 1, Z1 = P(z), Z2 = P ′(z))

with P(z) the Weierstrass function associated to the elliptic curve defined by the lattice Γ.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Figure 3.2: 10K points generated by random sections (left) and by a Monte Carlo simulation
using the mass formula (right).

In Fig. 3.2 we divide the fundamental square [1, 0] × [0, 1] ⊂ C that defines a coordinate

chart for the elliptic curve, in a set of smaller regions given by a sub-lattice. On the left we

plot more than 10K points generated by using random couples of sections. On the left, we

compare our result by generating the same number of points through a Monte Carlo using the

mass formula (3.74). Both results are equivalent as one expects.

3.6 Examples

3.6.1 Calabi-Yau hypersurfaces in projective spaces

In this section we put all the pieces together, and explicitly show how to build the numerical

measure {qi ∈ X, m(qi)}Np

i=1 introduced in Section 3.5.1. We will focus on a smooth Calabi-Yau

hypersurface X in Pn+1 of degree n+ 2. Let X be given by the zero locus of the degree n+ 2

homogeneous polynomial f , and let (Z0, Z1, . . . Zn+1) be the homogeneous coordinates on Pn+1.

We denote the embedding by

i : X = Z(f) ↪→ Pn+1.

Our approach is to generate random points on X using random lines on Pn+1, by looking at

the intersection of these random lines with X. We can view a random line as the intersection



66

of n random hyperplanes. This allows us to compute the expected value of the corresponding

zero current using the techniques of Section 3.5.3.

For computational purposes, designing an algorithm to generate points on X in such a

fashion is straightforward. To generate a random line on Pn+1 we generate two random points,

which lie on the unit sphere S2n+3 ⊂ Cn+2, and are distributed uniformly on this sphere. For

instance, to generate random points uniformly on S2n+3 we can start with the unit cube in

R2n+4, i.e., [−1, 1]2n+4 ⊂ R2n+4. Using a good quality random number generator we generate

an uniform distribution of points in [−1, 1]2n+4. Now take only those points which fall within

the unit disk D2n+4, and then project them radially to the boundary ∂D2n+4 = S2n+3.

The intersection of the random line with X can be computed by restricting the defining

polynomial f to the line. As a result, computing the common zero locus reduces to solving

for the roots of a polynomial of degree n + 2 in one variable. We find numerically the n + 2

roots using the Durand-Kerner algorithm [38, 56], which is a refinement of the multidimensional

Newton’s method applied to a polynomial. This whole approach turns out to be very efficient

in practice, in that one can generate a million points on a quintic in a matter of seconds.

The numerical mass

Let us look at the two differential forms involved in (3.74). For this we first choose affine

coordinates wa = Za/Z0, i = 1, 2, . . . , n+ 1 on Pn+1. The Fubini-Study 2-form on Pn+1 is

ωP
n+1

FS =

[∑
dwa ∧ dwa

1 +
∑
wawa

−
(∑

wadwa
) ∧ ( ∑

wadwa
)

(
1 +

∑
wawa

)2

]
. (3.75)

The pullback
(
i∗1 ω

FS
Pn+1

)n ∈ Ωn,n0 (X,Z) is a top form on X. Let x1, . . . , xn be local coordinates

on X. Then
(
i∗1 ω

FS
Pn+1

)
i

=
∂wa
∂xi

(
ωFSPn+1

)
ab

∂wb
∂x

, (3.76)

and
(
i∗1 ω

FS
Pn+1

)n is proportional to the determinant of this matrix. For obvious reasons we need

to evaluate this determinant. Let us outline how this can be done, paying attention to some of

the numerical aspects.

The idea is to choose local coordinates on X that are convenient to work with. Let us start

with the point P on X with homogenous coordinates Zi. To minimize the numerical error we

go to the affine patch where |Zi| is maximal. Without loss of generality let us assume that this

happens for i = 0. The affine coordinates are wa = Za/Z0.

Let p be the affine form of f , i.e., p(w) = f(1, w1, w2, . . . , wn+1). This equation determines

one of the wa-s in term of the others, as an implicit function. Let us assume for the sake of this
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presentation that ∂p/∂wn+1(P ) 6= 0. The implicit function theorem then tell us that in an open

neighborhood of P wn+1 is a function of the remaining variables: wn+1 = wn+1(w1, w2, . . . , wn).

This allows us to choose the coordinates w1, . . . , wn to be the local coordinates x1, . . . , xn on

X.

This choice of coordinates is quite advantageous for computing (3.76). All we need is to

compute ∂wn+1/∂xi, as ∂wj/∂xi = δij . This can be done algebraically, without explicitly

solving the p = 0 equation. Namely, using the fact that

p(w1, . . . , wn, wn+1(w1, . . . , wn)) ≡ 0

is the identically zero function, its derivative with respect to any wi vanishes identically, for

i = 1, . . . , n. As a result we have that

∂wn+1

∂wi
(P ) = − ∂p

∂wi
(P )/

∂p

∂wn+1
(P ). (3.77)

For numerical stability one should always solve for the variable for which |∂p/∂wi(P )| is the

largest.

The second differential form entering (3.74) is Ω∧Ω. The holomorphic n-form Ω ∈ Ωn,0(X,C)

can be represented using the Poincare residue map [48, Section 1.1]

Ω = (−1)i−1 dw1 ∧ dw2 . . . ∧ d̂wi ∧ . . . ∧ dwn
∂p(w)/∂wi

. (3.78)

where d̂wi means the omission of dwi in the wedge product.

These explicit expressions allow us to perform integrals numerically on elliptic curves, K3

surfaces and more interestingly, quintic 3-folds.

Symmetries

Suppose our Calabi-Yau X is preserved as a complex manifold by the action of a discrete group

Γ. Then a Ricci flat metric whose Kähler class ω is preserved by Γ will also be Γ-invariant,

because it is unique. As we will see in this section, the same statement applies to the balanced

metrics as well.

A general hermitian N by N matrix has N2 independent real coefficients. On the other

hand, if the Calabi-Yau X has discrete symmetries, then we expect to find symmetry relations

between the matrix elements of T (h). Taking advantage of these relations can drastically reduce

the size of the problem. In this section, we argue that these symmetry relations are respected

by the balanced metric and the T-map, and explain how we used them in the examples of

Section 3.6.2.
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Next, let us review the symmetries of X defined as a hypersurface in Pn+1 by the degree

n+ 2 homogenous polynomial

f =
n+1∑

i=0

Zn+2
i − (n+ 2)ψ

n+1∏

i=0

Zi. (3.79)

Here ψ controls the complex structure of the hypersurface. Using the fact that X is Calabi-

Yau, the symmetry group is finite. To find the symmetries of X we consider two natural group

actions on Pn+1, and impose conditions such that these group actions descend to X.

We start with the abelian group

n+1⊕

i=0

Zp ⊂ GL(n+ 2)

that acts by independently rescaling the n + 2 homogenous coordinates Zi 7→ αiZi, where αi

are pth roots of unity. Since the projective coordinates are defined only up to overall rescaling,

we have to mod out by the diagonal action 4Zp and find the group

n+1⊕

i=0

Zp/4Zp ⊂ PGL(n+ 2)

acting on Pn+1. In order for this group to descend to X, it must leave the defining equation

(3.79) invariant. In the Fermat case, that is ψ = 0, we set p = n+2 and find that the Calabi-Yau

is invariant under
n+1⊕

i=0

Zn+2/4Zn+2
∼= (Zn+2)

n+1
. (3.80)

For non-vanishing ψ, the αi have to obey the additional constraint
∏n+1
i=0 αi = 1. This shows

that the symmetry group is a subgroup of Zn+2/4Zn+2
∼= (Zn+2)

n+1, given by the kernel of

the product map (α0, . . . , αn+1) 7→
∏n+1
i=0 αi. We call this group Abn+2, and it is clear that

there is an isomorphism Abn+2
∼= (Zn+2)

n. For example, in the case of the torus defined by our

cubic in P2, Ab3 ∼= Z3. At the Fermat point this group is enhanced to Z2
3.

The second symmetry group we consider is the symmetric group on n+2 elements Sn+2. This

group acts by permuting the coordinates of Pn+1. Since (3.79) is invariant under permutations,

Sn+2 is a symmetry of X as well.

To see how these actions on the coordinates of Pn+1 induce an action on {sα}, the global

sections of the line bundle Lk on X defining the embedding in PN−1, we can use some simple

algebraic geometry. The fact that X is given by a hyperplane in Pn+1 gives a natural way to

parameterize the global sections of Lk = OX(k). We start with the short exact sequence (SES)

defining X:

0 //OPn+1(−n− 2)
·f //OPn+1 //OX //0
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Tensoring with OPn+1(k), and using the fact that H1(Pn+1,OPn+1(k − n − 2)) = 0, for k > 0,

we get another SES:

0 // H0(Pn+1,OPn+1(k − n− 2))
·f // H0(Pn+1,OPn+1(k)) // H0(X,Lk) //0 (3.81)

which shows that the global sections of H0(X,Lk) can be parameterized by degree k monomials

in n + 2 variables modulo the ideal generated by f . Therefore the sections inherit an obvious

group action.

In particular, we also find that

N = dim H0(X,Lk) =
(
n+ k + 1

k

)
−

(
k − 1

k − n− 2

)
.

In addition, note that the map ik : X ↪→ PN−1 factorizes

X
Â Ä i //

ik

::
Pn+1 Â Ä v // PN−1 (3.82)

The second embedding, v : Pn+1 ↪→ PN−1, is the (Veronese) map associated to the incomplete

linear system on Pn+1 induced by the complete linear system |Lk| on X.

We will now consider the consequences of these actions on the T -map and the sequence of

hermitian matrices {T l(h)}l=1,2,.... First we consider the action of Abn+2. We assume that

T 0(h) is invariant under the group action. This is a choice we can always make. Since Abn+2

is an abelian group, its irreducible representations are one dimensional, and can be labeled by

the characters. Each section sα transforms under a character χα. The operator T is defined

in terms of the sections, and the Abn+2 will force some of the T (h)αβ matrix elements to be

zero. To better understand this we look at a toy example: the integral of an odd function a

on R. The group G in question is Z2, and acts on R by x 7→ −x. Z2 has only one nontrivial

representation, and being odd, a transform in this irrep. Now we have that
∫ +∞

−∞
a(t) dt =

∫ −∞

+∞
a(−x) d(−x) = −

∫ +∞

−∞
a(x) dx,

where we used a change of variable t = −x. This implies that
∫ +∞
−∞ a(x)dx = 0.

More generally, in Rn for a function a, a group G, and an element g ∈ G, we can do the

change of coordinates t = g · x and then
∫

X

a(t) dV (t) =
∫

g·X
a(g · x)g∗ dV (x) =

∫

X

a(g · x) dV (x) . (3.83)

Here we assumed the measure to be G-invariant.

Applying (3.83) for G = Abn+2, and using the fact that sα transform as a character of

G = Abn+2, it gives that

T (h)αβ =
N

vol(X)

∫

X

χα(u)sαχβ(u)sβ
||s||2h

dµΩ = χα(u)χβ(u)T (h)αβ . (3.84)
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We used the fact that X is invariant under that action of Abn+2, and so is the measure Ω ∧Ω,

and the denominator ||s||2h. (The latter follows by induction from the initial choice of T 0(h)

being invariant.) In particular, if χα(u)χβ(u) 6= 1, for any u ∈ Abn+2, then the corresponding

T (h)αβ has to vanish. In our numerical routine we impose this vanishing condition on all the

matrices T l(h).

A similar argument applies for G = Sn+2. Since Sn+2 is not abelian, and hence its generic

irreducible representations are not one dimensional, this constraint does not result in vanishing

rules, but rather sets a priori independent coefficients of T (h) equal to each other. To see how

Sn+2 acts, recall from (3.81) that

H0(X,L) ∼= H0(Pn+1,OPn+1(1)) = Cn+2

is the fundamental representation of Sn+2, call it F . Then H0(Pn+1,OPn+1(k)) is the kth

symmetric tensor power of F , Symk F , and by (3.81) H0(X,Lk) is a quotient of this. Now

we can return to (3.83). Once again, we choose T 0(h) to be invariant under Sn+2, and then

induction and (3.83) tell us which matrix elements of T (h) equal each other.

Therefore, imposing the symmetries of both finite groups, the number of independent com-

ponents of T l(h) (for any l) reduces significantly. To illustrate this we consider k = 12 on the

quintic in P4, i.e., n = 3 (this was the largest k we computed). In this case N = 1490. This

means that T (h) is a hermitian matrix with 2,220,100 components. Taking into account the

Ab5 and S5 relations, one is reduced to computing 9800 components. This simplification speaks

for itself.

3.6.2 Numerical results for the quintic hypersurface

In this section we present our explicit numerical results. The main object that we compute

is the balanced metric associated to the embedding of the quintic threefold defined in (3.79).

For definiteness we chose to work with ψ = 0.1, but also tested other values of ψ. We also

considered the case of elliptic curves (n = 1) and K3 surfaces (n = 2). In all these cases we

obtained results similar to the ones to be presented here.

To find the balanced metric we study the associated N ×N matrix hk for several values of

k, from k = 1 to k = 12. We use hk to construct the associated Kähler form ωk on X, and

check how well it approximates the Ricci flat metric. We do this in several ways.

First, one can study the function defined in (3.99)

ηk =
det ωk
Ω ∧ Ω

: X −→ R.
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For a good approximation gk to the Ricci flat metric gRF the function ηk is almost constant.

We study the behavior of ηk statistically, by summing over all the regions of X, and also locally

paying attention to certain special regions of the threefold.

Second, one can compute the Ricci tensor of ωk. To check pointwise how close to zero the

Ricci tensor is, we need a diffeomorphism invariant quantity. We chose to work with the Ricci

scalar. We also perform this analysis for several values of k, and show how the Ricci scalars

decrease pointwise with k.

Before presenting the results let us comment on the errors coming from Monte Carlo inte-

gration. We estimate them by computing the balanced metrics associated to different samples

of points, and then looking at the mean and variance of each individual matrix element. Ide-

ally, one would like to produce samples of points with minimal induced error. Constructions

that reduce the standard deviation of the integrals are refinements to the theory of numerical

integration presented here. Markov Chain Monte Carlo techniques, construction of lattices on

Calabi-Yau varieties, and of quasi-random points on such manifolds are different approaches

that one could consider.

Approximating volumes v.s. Calabi-Yau volume

Here, we consider the way the function

|ηk − 1X | : X −→ R+, x 7→ |ηk(x)− 1|

behaves on X. As argued earlier, we expect |ηk − 1X | to approach the constant zero function.

One can study the deviation of |ηk − 1X | from the zero function by computing the integral

σk =
∫

X

|ηk − 1X | dµΩ . (3.85)

We compute this integral by our Monte Carlo method, which introduces an error, and this error

can be estimated by

δσk =
1√
Np

(∫

X

(|ηk − 1X | − σ)2 dµΩ

)1/2

, (3.86)

where Np is the number of points used to perform the Monte Carlo integration in (3.85).

In Fig. 3.3 we plot the values σk defined in (3.85) for k = 3, . . . , 12. The error bars for each

value are the corresponding standard deviations (3.86). We also see how the errors decrease,

along with σk, for higher and higher k. The fit in Fig. 3.3 is a curve of type

σk =
α

k2
+

β

k3
+ O

(
1
k4

)
,

as we expect from the theory.
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Figure 3.3: σk and Ricci scalars.

We can also study the local behavior of ηk by restricting it to a subspace. Given our quintic

3-fold, we consider the rational curve defined by

(Z0 = z0, Z1 = −z0, Z2 = z1, Z3 = 0, Z4 = −z1), (3.87)

where Zi are homogeneous coordinates on P4, while (z0, z1) are homogeneous coordinates for

P1. This rational curve lies on every quintic defined by (3.79).

Figure 3.4: The values of η on the rational curve, for k = 1, 3, 4, 5, 7, 9, 11 and 12.

In Fig. 3.4 we plot the values of function ηk restricted to the rational curve defined above for

12 different values of k, ranging between 1 and 12. More concretely, given the embedding (3.87),

we choose the local coordinate system on P1 defined by t = z1/z0, and take the stereographic

projection of the t-plane. Using spherical coordinates (θ, φ) on P1 ≡ S2 we embed it into R3,
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by the parameterization

z0 = sin θ cosφ, z1 = sin θ sinφ+ i cos θ.

In the radial direction of R3 we plot the function ηk. As expected, ηk approaches the constant

function 1 as k increases.

3.6.3 Hermite-Einstein metric on the tangent bundle of Pn

Let Pn be the complex projective space of dimension n, and {Zi}i=ni=0 its homogeneous coordi-

nates. We will work on the open set Z0 6= 0 and chose the local inhomogeneous coordinates

wi = Zi/Z0. The Fubini-Study metric on Pn

gij =
1

1 +
∑
i |wi|2

δij −
wiwj

(1 +
∑
i |wi|2)2

.

is the unique maximally symmetric metric, with its group of Killing symmetries isomorphic to

U(n+1). In addition, this metric is Einstein, that is its Ricci tensor is proportional to the metric

itself. Therefore its associated curvature tensor obeys the hermitian Yang-Mills equation. The

Donaldson-Uhlenbeck-Yau theorem then implies that the tangent bundle of Pn, TPn, is a rank

n stable bundle on Pn.10 It follow from this that the balanced metric on the bundle TPn must

be the Fubini-Study metric.

To describe the tangent bundle TPn we use the Euler sequence

0 −→ OPn −→ OPn(1)⊕(n+1) −→ TPn −→ 0. (3.88)

Here OPn(1) denotes the hyperplane line bundle. After twisting the sequence by OPn(k) and

taking the cohomology we find the short exact sequence (SES)

0 −→ H0(Pn,OPn(k)) −→ H0(Pn,OPn(k + 1)⊕(n+1)) −→ H0(Pn, TPn(k)) −→ 0. (3.89)

This gives an explicit description for H0(Pn, TPn(k)), which for sufficiently large k gives the

embedding

Pn ↪→ G(n, W ) (3.90)

where W = H0(Pn, TPn(k))∗, and G(n, W ) is the Grassmannian of n-planes in W .

Based on (3.89), we choose to describe the global sections of TPn(k) by an n+ 1 vector

(M0, . . . ,Mn)

10The stability of TPn also has purely algebraic proof.
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where {Mi}ni=1 are arbitrary monomials of degree k + 1 in the homogeneous coordinates Zi,

while M0 is any degree k + 1 monomial which does not contain an Z0.

Now we show how to construct the embedding (3.89) for any k ≥ 0. We start by choosing

a frame {êi}ni=0 for the vector bundle O(k + 1)⊕(n+1). This amounts to choosing a section for

every one the n + 1 summands. For simplicity we chose the same section in every summand.

The Euler sequence (3.88) imposes the condition
n∑

i=0

Ziêi = 0.

Locally this gives a frame for TPn, if we solve for

ê0 = −
n∑

i=1

Zi
Z0
êi = −

n∑

i=1

wiêi.

Expanding the global sections of TPn(k) in the local frame {êi}ni=1 gives an n×dim(W ) matrix,

which is the explicit realization of our embedding [48].

To illustrate the procedure consider TP2(0). OP2(1) has 3 global sections: Z0, Z1, Z2. Choos-

ing Z0 to be the local frame in every summand of OP2(1)⊕3, and discarding the global section

Z0 from the first OP2(1), we find the matrix

z =


 −w2

1 −w1w2 1 w1 w2 0 0 0

−w1w2 −w2
2 0 0 0 1 w1 w2


 (3.91)

For an initial hermitian metricG0 on the vector spaceW = H0(Pn, TPn(k))∗, our generalized

T-operator (3.70) gives the iterations

Gm+1 = T (Gm) =
dimW

nVol(Pn)

∫

Pn

z(z†G−1
m z)−1z† dV .

We tested the converges of the T -map starting with G0 = I in the case n = 2 for k = 1, . . . , 5.

In all cases we converged to a given G∞ for less than 10 iterations, with a precision of 0.1%.

The balanced metric H(k) on the vector bundle TPn(k) induced by G∞ is given by

H(k) = (z†G−1
∞ z)−1. (3.92)

Let h be Fubini-Study metric on the hyperplane bundle OPn(1), that is the metric with constant

scalar curvature. Then the metric

Hk := H(k) ⊗ h−k = (z†G−1
∞ z)−1 ⊗ h−k

is the balanced metric on TPn. Our numerical computations show that this is indeed the

Fubini-Study metric on TPn, as explained earlier. The numerical agreement is within 0.5%.

This provides the first non-trivial test of our conjecture.
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3.6.4 A stable rank 3 bundle over P2

In this section we test our generalized T-operator on a rank 3 vector bundle V ∗ over P2. We

first consider its dual V , defined by four linearly independent global sections {mi} of OP2(2)

through the SES

0 // V // O⊕4
P2

m // OP2(2) // 0.

This bundle has moduli, which are implicitly determined by the choice of the sections {mi}.
Before choosing these, let us check stability, which does not depend on the specifics of this

choice.

To check stability, we have to ensure that neither V nor ∧2V have destabilizing line bundles.

Using the canonical isomorphism

∧2V = detV ⊗ V ∗

we find the slopes

µ(V ) = −2/3, µ(∧2V ) = −4/3.

Since Pic(P2) = Z, all line bundles are of the form OP2(p) for some p. Hence it is sufficient to

show that

H0(P2, V ) = 0, H0(P2,∧2V (1)) = 0.

The first fact follows from the defining sequence of V , if we assume that {mi} are linearly

independent. To prove the second statement we use

H0(P2,∧2V (1)) = H0(P2, V ∗(−1)) = H2(P2, V (−2))∗.

Again, this statement follows easily from the defining sequence of V . Finally, stability of V

implies stability for V ∗.

We will now compute the hermitian Yang-Mills connection on V ∗ using our generalized

T-operator. First observe that V ∗(k) fits into the short exact sequence

0 → OP2(k − 2) → OP2(k)⊕4 → V ∗(k) → 0. (3.93)

This leads to another SES

0 → H0(P2,OP2(k − 2)) → H0(P2,OP2(k)⊕4) → H0(P2, V ∗(k)) → 0.

We can use this expression for an explicit parameterization of H0(P2, V ∗(k)).

For concreteness let us choose to be four global sections {mi}4i=1 defining V to be

Z1Z2, Z0Z1, Z0Z2, Z
2
0 .



76

Now we choose a frame {êi} for OP2(k)⊕4. The defining equation (3.93) of V ∗(k) imposes the

condition
∑
imiêi = 0, and gives a frame for V ∗. Locally we can solve for ê0, and working in

inhomogeneous coordinates wi we find that

ê0 = − 1
w2
ê1 − 1

w1
ê2 − 1

w1w2
ê3.

Expanding the global sections of H0(P2, V ∗(k)) in the frame {êi}3i=1 gives a matrix, which is

the embedding map.

We studied the convergence of our generalized T -operator numerically for k = 2, 3 and 4,

and found that convergence was achieved for less than 10 iterations. As before, the metric on

V ∗(k) is given by

H(k) = (z†G−1
∞ z)−1, (3.94)

while the corresponding metric on V ∗ is

Hk := H(k) ⊗ h−k = (z†G−1
∞ z)−1 ⊗ h−k,

where h is again the Fubini-Study metric on OP2(1).

Since in this case the balanced metric on V ∗ is not a priori known, one needs a different

approach, than used in the previous section for TP2, to test how close is the approximate

balanced metric to satisfying the hermitian Yang-Mills equation. But this quite easy to do

numerically once the balanced metric G∞ is known, as all we need to do is to check how close

we are to satisfying Eq. (3.57). In all cases considered Eq. (3.57) was satisfied to within 1%

accuracy.

3.6.5 A rank 3 bundle on the Fermat quintic

In this section we turn to a much more complicated case than our previous examples, that of a

stable rank 3 bundle on the Fermat quintic Q in P4:

Q : Z5
0 + Z5

1 + · · ·+ Z5
4 = 0. (3.95)

Testing our generalized T-operator in this case necessitates knowledge of the Ricci flat metric

on the Fermat quintic that computed above. In this example we consider the balanced metric

for k = 3.

Balanced metric on the Fermat quintic

We consider the embedding of Q given by the complete linear system of cubics, H0(Q,OQ(3)),

whose complex projectivization is isomorphic to P34. The balanced metric will be the restriction

of a Fubini-Study metric on P34.
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In our computations we build 10 different samples of 100,000 points, which we use inde-

pendently to iterate the T-map until convergence is reached, i.e., the sequence {T r(G0)}r=0

obeys

||T r+1(G0)− T r(G0)|| < ε.

In our simulations the fixed point of this discrete version of the T -map was reached after 15-

20 iterations. Each weighted point set gave rise to a convergent sequence. The 10 different

hermitian forms {Ge∞}10e=1 approximating the balanced metric in PH0(Q,OQ(3)) agree up to

max

[
σ(Ge∞)
|〈Ge∞〉|

]
≈ 0.9%, (3.96)

where |〈Ge∞〉| is the average matrix of the ten different outputs and σ(Ge∞) is the standard

deviation matrix. The ratio σ(Ge∞)/|〈Ge∞〉| is computed entry by entry, and the maximum is

taken over all entries. We used the average 〈Ge∞〉 as approximation for the balanced metric on

H0(Q,OQ(3)).

Solution of the hermitian Yang-Mills equation

Here, we use the generalized T-operator to produce a hermitian Yang-Mills connection on a

rank three stable vector bundle V on the Fermat quintic Q. We also implicitly test that the

previously obtained balanced metric on Q indeed has vanishing Ricci curvature.

We define the rank three bundle V by the following SES

0 // OQ(−1)
β // O⊕4

Q
// V // 0.

β is given by four generic global sections of OQ(1), which do not intersect on Q, hence V is

indeed a vector bundle. In addition, the first Chern class of V is c1(V ) = H, hence V is not a

simple twist of the tangent bundle of Q. It is a simple exercise to show that V is stable.

Once again, we use

0 // OQ(k − 1) // O⊕4
Q (k) // V (k) // 0,

and its associated long exact sequence in cohomology

0 // H0(Q,OQ(k − 1)) // H0(Q,O⊕4
Q (k)) // H0(Q,V (k)) // 0,

to derive a frame for V and an explicit parameterization for the global sections. We choose

β = (Z0, . . . , Z3). Using the frame {êi}4i=0 for O⊕4
Q , we also get a frame for V with the relation

ê0 = −
3∑

i=1

wiêi.
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In this paper we restrict to the case k = 1 for which dimH0(Q,V (1)) = 19. The coordinate

matrix

z(w) =




1 . . . w4 0 0 −w2
1 −w1w2 −w1w3 −w1w4

0 1 . . . w4 0 −w1w2 −w2
2 −w3w2 −w4w2

0 0 1 . . . w4 −w1w3 −w2w3 −w2
3 −w4w3


 (3.97)

gives the embedding into the Grassmannian Q ↪→ G(3, 19).

Using the integration techniques described in the previous section, we iterate the generalized

T-operator. We reach the fixed point after 12-15 iterations for several different samples of

weighted points which approximate the analytical measure, allowing us to estimate the balanced

metric for H0(Q,V (1)) with an error of 1.1%.11

The metric on V (1) is given by

H = (z†G−1
∞ z)−1, (3.98)

To test the accuracy of this metric we evaluate the right hand side of the hermitian Yang-Mills

equations (3.57). We find the mean to be

〈ωijFij〉 =
1

Vol(Q)

∫

Q

(
ωijFij

)
dµΩ ≈ 1.31× I3×3

with I3×3 the 3× 3 identity matrix. In our conventions the theoretical value of the constant is

4/3. The standard deviation of the individual matrix elements is

σ
(
ωijFij

)
= max

[√
1

Vol(Q)

∫

Q

(
ωijFij − 〈ωijFij〉

)2

dµΩ

]
≈ 0.15,

where the square-root and the square are performed entry by entry. Therefore, ωijFij is a global

constant on Q times the identity, within an error of 0.15/1.31 ≈ 11%. This implies that the

hermitian Yang-Mills equation (3.57) is satisfied with this accuracy.

Testing the hermitian Yang-Mills equation provides an implicit test of Ricci flatness, since

it is precisely the Ricci flat metric that is needed in the hermitian Yang-Mills equation. One

expects much better results for metrics with k > 3, as the ones that we constructed above.

Discussion

We will discuss further applications of these results elsewhere; here we discuss the advantages

and limitations of this approach compared to others, for example position space methods [49].

11We estimate the errors using (3.96).
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Our best approximation should minimize the error ε = d(gh, gRF ), where d is some measure

of the distance between the approximate and true metrics. A simple and natural choice for ε in

the present context is to consider the function

ηh =
detωh
Ω ∧ Ω

(3.99)

on X, where ωh is the Kähler form for gh. For a Ricci flat metric, this will be the constant

function. We then take

ε = 1− minx∈X ηh(x)
maxx∈X ηh(x)

. (3.100)

Of course, one could use other norms, such as ||ηh − 1
vol X

∫
ηh||p, or curvature integrals.

The runtime of a computation of the balanced metric can be approximated as

T = Nit ×Np × S2,

where S is the number of independent sections (taking into account discrete symmetry), Np is

the number of points used in the Monte Carlo integration, and Nit is the number of iterations

of the T-map required for convergence. Since convergence is exponential, this leads to a rough

scaling with the accuracy as

T ∼ log ε
ε2

S2.

The value of S required for a given accuracy depends on the symmetries and dimension. For

the balanced metrics, we expect to need k ∼ 1/
√
ε; as discussed in section 2 this could probably

be improved by choosing a different scheme if accuracy were paramount. For hypersurfaces

in n complex dimensions, we then have S ∼ N ∼ kn+1, leading to a rough overall scaling of

T ∼ 1/εn+3. This might be compared with a (naive) T ∼ 1/ε2n for position space methods, so

the two appear generally competitive. However, along with the other advantages we mentioned,

we believe the approach we are discussing is far easier to program, and requires relatively little

effort to adapt to different manifolds, and related problems such as hermitian Yang-Mills.

Since the sections sα of OX(k) are degree k polynomials, this basis is a simple type of

Fourier or momentum space basis. Very roughly speaking, a degree k basis should be able to

represent arbitrary structures on length scales down to 1/k. They are particularly well suited

for approximating smooth functions, as the Fourier coefficients of such a function fall off faster

than any power of k (see the appendix of [33] for more precise statements). This is advantageous

as the Ricci flat metric is smooth, suggesting that other approximation schemes could do better

than ε ∼ 1/k2.

On the other hand, in some limits (say a conifold limit) the metric can develop structure

on small scales, which might not be well represented by a fixed k basis. This is also a problem
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for position space methods with a fixed lattice; there one deals with it by multi-scale methods,

for example allowing the lattice spacing and structure to vary over the manifold. This is very

powerful but also very intricate to program. In the present context, rather than increase k,

one might look for analogous simplifications; either a multi-scale method which uses different

k in different regions (or even some sort of wavelet-inspired method). Or, since we have many

explicit expressions for Ricci flat metrics near singularities, it might be useful to develop a way

to patch these solutions into the global approximate solutions we discussed.

On the computer code

Our numerics is based on code that has been written entirely in C++. Our experience shows

that these computations must be done in a compiled language, rather than an interpreted one.

We have made extensive use of the following Boost libraries: uBlas, random, bind and thread.

These libraries are on par with Fortran code, due to implementation techniques using expression

templates and template metaprograms. The computations were done on an Athlon 64 4800+

dual core machine, with 4GB memory. The computational time ranges from minutes, for low

k, to hours, and eventually 2 days (for k = 12 on the quintic).
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Appendices

Clifford algebras in dimensions 10, 11 and 12

In this appendix we summarize our conventions for the Clifford algebras Cliff(n). We follow

the Clifford algebra multiplication convention

{γM , γN} = −2gMN . (3.101)

A natural basis for Cliff(n), is given by the set of matrices

γM1M2...Mp = γ[M1γM2 . . . γMp] p = 0, 1, . . . n. (3.102)

For n even, Cliff(n) is isomorphic to End(S) = S∨ ⊗ S, the vector space of endomorphisms of

the spinor bundle.

For n odd, there is a two to one correspondence between elements in Cliff(n) and elements

in S∨ ⊗ S. This map between vector spaces is understood through the action of the volume

element ω in Cliff(n), i.e. in local coordinates

ω = γ1γ2 . . . γn =
1
n!
εM1M2...Mnγ

M1γM2 . . . γMn (3.103)

verifies

ω2 = (−1)n(n+1)/21 (3.104)

where 1 is the identity matrix in S∨ ⊗ S. As the volume element ω commutes with every

element in Cliff(n) and the Clifford algebra is irreducible, Schur’s lemma implies that ω must

be represented by ±1. For n = 11, we choose ω = 1, by convention. In local coordinates,

Clifford multiplication by the volume form ω acts as a Hodge dual, that is, if H is a p-form and

H/ its associated Clifford multiplication

γ(H) = H/ = HM1M2...Mpγ
M1M2...Mp , (3.105)

then

ωγ(H) = γ(?H) (3.106)

with ? the Hodge star operator. Thus in odd dimensions, Clifford multiplication by a form and

by its Hodge dual are represented by the same element in S∨ ⊗ S.
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We will also use the relation between irreducible representations of Cliff(2n) and Cliff(2n−1),

i.e. if γM is an irrep of Cliff(2n− 1), an irrep ΓM for Cliff(2n) is given by

ΓM = σ1 ⊗ γM M = 1, . . . , 2n− 1 (3.107)

Γ2n = σ2 ⊗ 1 (3.108)

Γ2n+1 = σ3 ⊗ 1 (3.109)

where σi are the 2× 2 Pauli matrices.

Heat kernel expansions and Quantum Mechanics

There are several algorithms to evaluate the trace Tr
(
exp(−tD̂/ 2

)
)
. As we show in the main text

of this thesis, the coefficients associated with the expansion of such a trace in powers of t = 1/M2

determine the curvature of determinant line bundles and hence the anomalous divergence of the

gauge current. Although there are explicit calculations of such expansions for flat space, see

[40], we review here some of the techniques used to determine such coefficients, and explain

qualitatively the one based on path integrals in supersymmetric quantum mechanics.

The main idea is to separate the interacting heat kernel

〈x|K(t)|y〉 = 〈x|exp(−tD̂/ 2
)|y〉, (3.110)

as the product of the free heat kernel

〈x|K0(t)|y〉 =
1

(4πt)n/2
exp

(
− (x− y)2

4t

)
(3.111)

with n the dimension of the x-space, and an interacting part H

H(x, y; t) =
∞∑

k=0

ak(x, y)tk, (3.112)

i.e., we compute (3.110) through the ansatz

〈x|K(t)|y〉 =
1

(4πt)n/2
exp

(
− (x− y)2

4t

)
H(x, y; t). (3.113)

There is a large variety of algorithms to calculate the coefficients ak; they roughly fall in three

categories:

• Recursive x-space algorithms based on recursive relations among different heat kernel coeffi-

cients [87].

• Nonrecursive algorithms based on the insertion of a momentum basis [44].
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• The method of Zuk, based on graphical representations of the heat kernel coefficients [92].

If the supertrace of (3.113) is taken, we can evaluate the expansion using path integrals in

quantum mechanics. We can follow the ideas of [2, 6] and [43], to determine the coefficients

of the supertrace of the heat kernel expansion associated to a generalized Dirac operator D̂/ in

12-dimensions, as the ones which appear in the definition of the curvature of the M-theory line

bundle (2.72). Thus, given the operator D̂/ , the expansion

Trs
(
exp(−tD̂/ 2

)
)

=
Trsa0

t6
+

Trsa1

t5
+ . . .+ Trsa6 +O(t), (3.114)

can be determined through the partition function of a supersymmetric quantum mechanical

model. The idea is to interpret (3.114) as the time evolution operator of a quantum mechanical

system with Hamiltonian H = D̂/ 2
, and calculate explicitly the expansion (3.114), through the

path integral approach to quantum mechanics. A novelty introduced by the generalized Dirac

operators is that there are coefficients Trsak with k < 6 which are not zero. This differs sharply

from the super heat kernel expansions for standard Dirac operators, where the coefficients with

inverse powers of t are known to be zero 12.

In the standard case the vanishing of the coefficients Trsak with k < 6 allows us to determine

Trsa6 by evaluating the path integral in the limit t → 0. In the case of generalized Dirac

operators we find non-zero terms with inverse powers of t. Thus we have to be more careful

and evaluate the path integral for a finite time interval instead of taking the limit t → 0.

Path integrals in supersymmetric quantum mechanics for a finite time interval were analyzed in

detail by [19, 20], and used in [70], to determine index densities of generalized Dirac operators

in 4-dimensions, which agree with the older result of [69].

The type of quantum mechanical theory that we consider, is a supersymmetric non-linear

sigma model with target the 12-dimensional manifold Z = π−1(Σ) where π : X → T ∂ is

the projection to the space of M-theory and Σ ↪→ T ∂ is any surface where the curvature of

Det D̂/ → T ∂ is to be evaluated. Here, D̂/ = D/ + γ( hl ) stands for any of the chiral generalized

Dirac operators that couple to the M-theory fermions at the boundary.

Therefore, let R1|1 denote the super Euclidean space with one even variable and one odd

variable; i.e., C∞(R1|1) = C∞(R) ⊗ ∧∗(R). And let τ and θ be the natural even and odd

variables, respectively. We consider a quantum theory of maps

X : R1|1 → Z (3.115)

12In [45] E. Getzler calculates index densities for generalized Dirac operators. In his approach he introduces
further scalings of the fluxes by the regulating parameter t = 1/M2. The first non-vanishing term in his
alternative expansion to (3.114) is t-independent. However such scalings of the field variables are not appropriate
for our application.
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where the action we take is

SSQM = −1
2

∫

R1|1
dτdθ

{
gMN (X)

dXM

dτ
DXN +DXM1DXM2DXM3 hl M1M2M3(X)

}
, (3.116)

with gMN the metric tensor on Z and D is the superdifferential

D =
∂

∂θ
− θ

∂

∂τ
. (3.117)

The superfield that appears in (3.116), can be written in a local coordinate chart as

XM = xM + θψM (3.118)

where x is a local chart for Z. The supersymmetry transformations are generated by the

supercharge operator Q

Q =
∂

∂θ
+ θ

∂

∂τ
, (3.119)

with δXM = QXM . In quantizing (3.116), we construct the Hilbert space of the theory as

the space L2(S(Z)), i.e. the space of L2-sections of the spin bundle S → Z tensored by the

half-densities on Z. This space has a natural Z/2Z-grading induced by the chiral decomposition

S = S+ ⊕ S− → Z. Also, the quantum supercharge operator Q is:

Q = D̂/ = D/ + γ( hl ), (3.120)

which acts naturally on the quantum Hilbert space L2(S(Z)).

Thus, the super heat kernel expansion for Q+ can be expressed as the quantum mechanical

partition function

Z = Trs
[
exp

(− t(Q−Q+ +Q+Q−)/2
)]

=
∫

[dX] exp(−SSQM ), (3.121)

where we take the action SSQM defined in (3.116). More concretely, writing (3.116) in the field

variables and recalling that the path integral matches with the left-hand-side of (3.121) iff the

supercircle X : S1|1 → Z is chosen to be a supercircle of length t, we find 13

SSQM =
1
t

∫ 1

0

dτ
[1
2
gMN

dxM

dτ
dxN

dτ
+

1
2
gMNψ

MDψN

Dτ
− 1

2
(d hl )MNOPψ

MψNψOψP
]
, (3.122)

where
DψN

Dτ
=
dψN

dτ
+ ΓNMQẋ

MψQ − 3 hl NMQẋ
MψQ (3.123)

13See [70] for more details. There are terms of order O(t) which have to be included in the action, in order
to make the path integral well defined for a finite time interval due to Weyl ordering ambiguities. Here, we just
write out the classical expression derived by expanding (3.116) in the field variables.
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One can use the background field approximation and expand the fields as classical fields plus

quantum fluctuations

xM = xM0 + δxM (3.124)

ψQ = ψQ0 + δψQ. (3.125)

We are now ready to compute the path integral (3.122) via a loop expansion in the parameter

t, with t playing the role of ~. We only need compute graphs of 12th order in the background

fermions ψ0 in order to saturate the Grassmann integration. Due to the four-fermi interaction

in (3.122), the tree level contribution after integrating [d12ψ0] yields terms of order O(t−3). For

instance,

− 1
23 · 3!t3

(d hl )3. (3.126)

Thus, in order to extract the full O(t0) contribution we should take into account up to four-loop

diagrams which are of order O(t−3) × O(t3), since each loop order L contributes O(tL−1). In

this formalism, it becomes clear how inverse powers of t appear in the expansion due to the

presence of a non-vanishing hl -flux.

In other words, we have shown how the super heat kernel expansion will be of the type

1
t3

Trs(a3) +
1
t2

Trs(a4) +
1
t
Trs(a5) + Trs(a6) + . . . , (3.127)

and we will have to evaluate up to four-loop Feynman diagrams, in order to determine the heat

kernel coefficient Trsa6. Note that five-loop Feynman diagrams are at least of order O(t) and

hence do not contribute to Trsa6.

Finally, we remark that if we had put in an appropriate extra scaling in hl , as is done in [45]

we would have had no divergent terms for t→ 0 and would have obtained the index density

∫
Âed hl . (3.128)
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