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ABSTRACT OF THE THESIS

Measuring 3D Face Geometry for Integration with

Appearance Models

by Siddharth K. Madan

Thesis Director: Dr. Kristin J. Dana

Capturing the appearance of skin is a nontrivial problem. The appearance of skin

depends significantly on the illumination and viewing direction. The global and fine

scale local geometry influence the appearance of skin. In this thesis, we work towards

capturing the appearance of skin by acquiring the global geometry and modeling the

skin texture.

We explore the use of structured light techniques to acquire global geometry. Two

novel structured light techniques have been developed. The techniques use image ratios

to obtain reliable reconstruction of low albedo regions. The use of laser scanner for

geometry acquisition and it’s advantages and disadvantages have also been discussed.

We model the interaction of light with the skin surface as a combination of surface

and subsurface scattering. The reflectance due to subsurface scattering and the re-

flectance due to surface scattering have different properties and are modeled separately.

The subsurface components lie on a lower dimensional linear subspace and the surface

components lie on nonlinear manifolds. We look into the use of linear dimensionality

reduction techniques to model the subsurface reflectance and nonlinear dimensionality

reduction techniques to model the surface reflectance. In the initial results, separate

modeling of the surface and the subsurface components preserved the specularities.
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However, the specularities were lost when the reflectance were modeled without sepa-

rating the surface and the subsurface components.
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Chapter 1

Geometry Acquisition Using Structured Light

1.1 Geometry for Appearance Modeling

Integrating appearance and geometry is an important goal for computer modeling of

people, scenes and objects. A simple camera can be viewed as a scientific measurement

device (assuming careful photometric calibration and no-loss compression) where the

quantity being measured is appearance. Multiple images of the same object are samples

of appearance that need to be coordinated in order to support analysis. Specifically, the

images from multiple imaging parameters should be aligned so that the 3D spatial coor-

dinates of every pixel-based measurement is known. The imaging parameters are source

direction, camera pose and time (because objects may be monitored temporally). We

seek a modeling approach such that every point on the surface is imaged under varying

viewing and illumination directions by taking a series of images as the object, camera

and light source are moved. The collection of images provides several measurement

values for each point on the surface. By integrating appearance and geometry in this

manner, we have a sampling of the BRDF (bidirectional reflecance distribution func-

tion) at every point on the surface. This framework is a powerful approach to modeling

because it allows us to do methods of analysis that would not be possible on the raw im-

ages, e.g., locally modeling BRDF, clustering pixels based on appearance, and reducing

dimensionality of the image set. The pipeline is shown in figure 1.1.

1.2 Active and Passive Stereo

Geometry can be acquired using active and passive stereo techniques. In passive stereo

no interaction with the scene takes place. Two cameras are used to obtain the image
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Figure 1.1: The goal is to integrate geometric modeling with image based appearance.

of the scene from two different viewpoints. As shown in Figure 1.2, a triangulation [16]

problem is solved to determine the 3D coordinates of the scene points. Passive stereo

relies on the extraction of a large number of corresponding feature points to obtain

a reliable reconstruction of the scene. However, in many applications the scene to be

reconstructed may contain sparse feature points. Figure 1.3 shows examples of scenes

where very few features are available.

For scenes with few feature points, active stereo techniques are better suited to

extract the 3D coordinates. In active stereo, interaction with the scene takes place.

In particular, the scene is illuminated in a controlled way that creates features on the

object. One way to obtain the 3D coordinates using active stereo techniques is to

project light at one scene point at a time. The scene is imaged using two cameras,

the point illuminated by the scanning system is detected and the 3D coordinates are

extracted using triangulation. However, reconstruction by illuminating one scene point

at a time is very slow. The reconstruction procedure can be accelerated by illuminating
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P

p
2

O
1 O

2

Left Camera Right Camera

p
1

Figure 1.2: Determination of 3D coordinates by Triangulation. P is the world point.
p1 is the pixel location in the left camera. p2 is the pixel location in the right camera.

multiple points simultaneously. This idea is embodied in structured light techniques.

The 3D coordinates of the scene are obtained by triangulating between a camera and a

projector [10]. Obtaining the 3D coordinates of the scene using structured light tech-

niques consists of three main steps: calibration, encoding and spline smoothing. The

calibration step determines the position of the camera and the projector with respect

to the world coordinate frame. The encoding scheme determines the way in which the

information about the projector coordinate is encoded in the projected patterns. The

spline smoothing step is used to obtain sub–pixel accuracy from the recovered projector

coordinates.

1.3 Reconstruction with Structured Light

Structured light techniques [31] use a camera and a light source to obtain the 3D

coordinates of the points of the scene. In the imaging apparatus, the structured light
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      (a) (b)

Figure 1.3: Scenes with sparse feature points. (a): Image of a white plane placed in an
inclined position. (b): Image of a roll of packaging tape.

source is a projector. The projector projects a pattern of light on the scene to be

reconstructed. The image of the scene under the projected light pattern is acquired by

the camera. As shown in Figure 1.4 both the camera and the projector are modeled

using a pin hole model. The world point lies on the ray joining the camera center and

the pixel location of the world point. The world point also lies on the on a vertical

plane in the projector coordinate system.

The vertical plane is uniquely defined by the x coordinate of the coordinate system

associated with the projector’s plane. Once the x coordinate in the projector reference

frame and the pixel location are known the 3D coordinate can be obtained by simple

triangulation. Ignoring the lens distortion, the transformation from the world coordi-

nates to the pixel locations can be modeled as a linear transformation [5]. Let Cc be

the 3 × 4 calibration matrix which transforms the homogeneous world coordinate Xw

of the point to the homogeneous pixel location Xc.

Xc = CcXw, (1.1)

where,

Cc =




fx kfx cx

0 fy cy

0 0 1




[
Rc tc

]
.

The parameters fx and fy are the focal length of the camera scaled by the pixel size in

the x and y direction respectively, cx and cy are the origin of the coordinate system in
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p
1

O
1

Camera Projector

P

x

y O
2

Figure 1.4: Triangulation between a camera and plane. P is the world point.

the image coordinate frame and k denotes the shear of the camera coordinate system.

The transformation from the world coordinate system to the camera coordinate system

is defined by 3 × 3 rotation matrix Rc and the 3 × 1 translation vector tc. Let Cp

be the 2× 4 linear transformation from the homogeneous world coordinates Xw to the

homogeneous projector coordinate Xp given by

Xp = CpXw, (1.2)

where,

Cp =


 fp 0 cp

0 0 1




[
Rp tp

]
.

fp is the projector focal length scaled by the LCD dimensions and cp is the origin in the

projector coordinates. The transformation between the world coordinate frame and the

projector coordinate frame is defined by 3× 3 rotation matrix Rp and 3× 1 translation

vector tp.
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Let Xc denote the homogeneous pixel coordinates and Xp denote the homogeneous

projector coordinates. where,

Xc = [wcxc wcyc wc]T , (1.3)

Xp = [wpxp wp]T . (1.4)

Here, [xc yc]T is the inhomogeneous pixel location and xp is the inhomogeneous pro-

jector coordinate. Let c1, c2, c3 denote the rows of the camera calibration matrix and

p1,p2 denote the rows of the projector calibration matrix. Then equations 1.1 and 1.2

can be expanded as

wcxc = c1Xw, (1.5)

wcyc = c2Xw, (1.6)

wc = c3Xw. (1.7)

and

wpxp = p1Xw, (1.8)

wp = p2Xw. (1.9)

Substituting for wc and wp we get

xcc3Xw = c1Xw, (1.10)

ycc3Xw = c2Xw, (1.11)

xpp2Xw = p1Xw, (1.12)

which can be written in the matrix form QXw = 0 where matrix Q is given by

Q =




xcc3 − c1

ycc3 − c2

xpp2 − p1




.

The matrix Q can be written in the block form as Q = [R s], where R is a 3×3 matrix
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and s is a 3× 1 vector. Substituting, we get

[
R s

]




wwxw

wwyw

wwzw

ww




= R




wwxw

wwyw

wwzw




+ wws = 0.

Let xw = [xw yw zw]T denote the inhomogeneous world coordinates. The inhomoge-

neous world coordinates xw would be the solution to the linear systems of equations

defined by

Rxw = −s. (1.13)

The world coordinates would be given by

xw = −R−1s. (1.14)

1.4 Stripe Encoding Problem

In structured light systems, the projector is modeled as a pin hole device and a coor-

dinate system is defined on the projector plane. To obtain the 3D location of a scene

point the x-coordinate of the scene point with respect to the projector coordinate sys-

tem is required. In structured light systems, the x-coordinate is quantized as shown in

Figure 1.5. The location of the scene points is defined with respect to the quantized

coordinate system. As shown in Figure 1.6, due to quantization, the vertical planes

would have a finite width.

Greater the quantization step, thicker would be the planes. The information about

the location of the scene in the quantized projector coordinate frame is encoded in

the light pattern projected by the projector. Depending upon how the information is

encoded the coding method can be classified as spatial encoding or temporal encoding.

1.4.1 Spatial Coding Method

In spatial coding scheme the information about the location of the scene point in the

projector coordinate frame is encoded spatially. The image of the scene under the pro-

jected pattern is acquired. The coordinate of the scene point in the projector coordinate
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Figure 1.5: Quantization of projector coordinates.
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Figure 1.6: Figure shows thickness of projector planes due to quantization.

frame is contained in the surrounding pixels. For example, in [36] the authors project a

pattern with vertical color stripes. The image of the scene illuminated by the pattern

is acquired. As one moves from left to right horizontally, a change in the color in the

captured scene indicates a change in the projector location. The increase or decrease

in the red, green or blue intensities at the stripe transitions are noted and dynamic

programming is used to obtain the coordinates in the projector’s coordinate frame.

The method assumes that the red, green and blue sensors of the camera respond only

to the red, green and blue components of the light incident on the sensors. However,

decoupling of the channels is not always a valid assumption. In [6], [13] the authors give

the following analytic model for the relation between the red, green and blue intensities

sensed by the camera and the red, green and blue intensities projected by the projector.
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R

G

B




=




aRR aRG aRB

aGR aGG aGB

aBR aBG aBB







kR 0 0

0 kB 0

0 0 kG




φ




r

g

b




+




R0

G0

B0




. (1.15)

Here, [R, G,B]T denotes the red, green and the blue intensities sensed by the camera,

[R0, G0, B0]T is the intensity measured under ambient light conditions, φ(.) is the non-

linear transformation between the red, green and blue intensities input to the projector

and the red, green and blue intensities projected by the projector. The nonlinear trans-

formation φ(.) can be obtained offline by performing photometric calibration. Since the

color channels of the projector are decoupled, the nonlinear transformation consists of

three scalar transformation. All three scalar transformations are monotonic bijective

functions. The kR, kG and kB denote the albedos of the point for the red, green and

the blue channels respectively. The diagonal matrix defined by these albedos can be ob-

tained by acquiring an additional image under full white illumination. The aKL, where

K,L ∈ {R, G, B} measures the response of the Kth channel to the Lth component of the

light incident on the sensor. The projector–camera coupling matrix can be measured in

advance with calorimetric calibration. The authors assign a different color code to each

projected stripe. In the image of the scene acquired, the red, green and blue compo-

nents of the pixel location of the scene point is noted. Using measured intensity values

the projected color is estimated. Knowledge of the projected color gives the location

of the grid point in the projector coordinate frame. Then, using the pixel location and

the location in the projector coordinate frame the world coordinates of the point is

obtained. Spatial encoding schemes are time efficient. However, they produce sparse

depth maps and mediocre resolution. To obtain high resolution depth maps temporal

encoding of the projector coordinate is preferred.

1.4.2 Temporal Encoding Method

In the temporal encoding method [29], multiple patterns are projected on the scene.

For each projected pattern the image of the scene is acquired. The intensity of the scene

point, in the multiple acquired images is measured. The set of intensities define the scene
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point’s location in the projector coordinate frame. For example, suppose the projector

plane has 256 quantization levels. An eight bit Gray code would represent each level

uniquely. The first projected pattern would use black to represent quantization levels

with zero in the most significant bit and white to represent quantization levels with

one in the most significant bit. In the acquired image, whenever the pixel intensity

is greater than a certain threshold, the corresponding scene point is located in the

projector coordinate frame at a quantization level with the most significant bit as one.

Whenever the pixel intensity is less than a certain threshold the scene point would be

at a quantization level with most significant bit as zero. Similarly, the next projected

pattern would contain information about the next most significant bit and so on and so

forth. Apart from Gray code, other coding schemes like binary codes can also be used.

However, the advantage of Gray code is that an error in the detection of any bit would

contribute the same amount to the error in the detection of the scene point’s projector

coordinates. In binary or other codes the error would increase as the bit location moves

from the least significant bit to the most significant bit. Temporal coding schemes

generate much higher resolution depth maps than spatial encoding methods. However,

the disadvantage is that the number of patterns to be projected on the scene is large.

The use of large projection patterns increases the data acquisition time. The large data

acquisition time may generate problems in scenes which exhibit motion over time.

1.5 Calibration

In the calibration step, the position of the camera and the projector relative to the

world coordinate frame is determined. Figure 1.7 shows the experimental setup used in

the lab for the calibration and the data acquisition process. In the lab, a Lego cube was

used as the calibration target. The corner points of the Lego cube were detected using

the Harris corner detector. The coordinates in the projector coordinate frame, of the

corners, were extracted. The exact mechanism of obtaining the projector coordinates

depends on the coding scheme used. The world coordinates of the corner points are

assumed to be known.
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Calibration Cube

Camera
Projector

Figure 1.7: Experimental setup for the calibration and the data acquisition process.

Let (Xw)k, (Xc)k and (Xp)k be the homogeneous world coordinates, the pixel lo-

cation and the projector coordinates of the kth corner point. Let πc be the function

which projects the homogeneous world coordinates (Xw)k to the corresponding in-

homogeneous pixel locations
(
[xc yc]T

)
k
. Let πp be the function which projects the

homogeneous world coordinates (Xw)k to the corresponding inhomogeneous projector

coordinates (xp)k. The calibration problem is formulated as

Cc = arg min
Cc

n∑

k=1

‖πc ((Xw)k)−
(
[xc yc]T

)
k
‖2
2, (1.16)

Cp = arg min
Cp

n∑

k=1

‖πp ((Xw)k)− (xp)k ‖2
2. (1.17)

Here n is the total number of corner points. The objective function can be minimized

using the Levenberg–Marquardt algorithm [28]. The initial estimate can be obtained

using the least squares estimate. The least square problem for the camera can be

formulated as [33]
[
BT

1 ...BT
N

]T
θc = 0, (1.18)
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where,

Bk =




(Xw)k 0

0 (Xw)k

− (Xc)k (Xw)k − (Yc)k (Xw)k




T

,

θc = [c1 c2 c3]
T .

c1, c2 and c3 are the first, second and the third rows of the camera calibration matrix Cc.

Since the calibration matrix is defined up to a scale factor, the constraint ‖θc‖2 = 1 is

forced in the optimization process. Similarly the least square problem for the projector

matrix can be set up as
[
MT

1 ...MT
N

]T
θp = 0. (1.19)

In case of the projector

Mk =


 (Xw)k

− (xp)k (Xw)k




T

,

θp = [p1 p2]
T .

p1 and p2 are the first and second rows of the projector matrix cp. As in the case with

the camera calibration, the constraint ‖θp‖2 = 1 is enforced.

1.6 Spline Smoothing

The coordinates of the scene points in the projector coordinate are quantized. Due to

the quantization process the projector coordinates have a step like structure. Once the

coordinates have been recovered cubic spline approximation [3] can be used to remove

the step like structure. In a spline approximation problem, a piecewise continuous curve

approximating the data points is found. The piecewise continuous curve does not pass

through the available data points but passes close to the available data points as shown

in Figure 1.8. Spline approximation enables local control. Whenever the value of a

data point is changed, only the portion of the curve near the data point changes. Since,

each data point influences the characteristics of the approximation curve near it, the

data points are called as control points.
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Control Vertices

Spline Approximation

Figure 1.8: Spline approximation.

Consider the problem of spline approximation in one dimension. We denote the

location of the data points by the scalar u. Suppose we are given a set of data points

{Yr}, where r ∈ {1, ..., R}. The data point Yr is located at ur. In the spline approxi-

mation problem, we find a piecewise continuous function Q(u) which passes close the

the data points. Q(u) is given by,

Q(u) =
∑

i

giBi(u), (1.20)

where, gi are the weights and Bi’s are called as the basis functions. Piecewise continuity

can be achieved by ensuring that the basis functions themselves are piecewise continu-

ous. Local control is obtained by ensuring that at any point only a few basis functions

are nonzero. To achieve local control the basis functions have a compact support. Let

(ui
1, u

i
2) be the support of the basis function Bi(u). In the interval (ui

1, u
i
2), the basis

functions Bi(u) is a cubic polynomial given by

Bi(u) = aiu
3 + biu

2 + ciu + di. (1.21)

To obtain a spline approximation the parameters ai, bi, ci and di need to be esti-

mated. To estimate the parameters we use the ‘csaps’ function in the MATLAB spline

toolbox. The function requires as input the data points {Yr} and the location of the

data points {ur} to perform spline approximation.
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1.7 Summary

We discussed the different steps involved in the use of structured light techniques for

geometry acquisition. We first discussed the calibration step. The calibration problem

required the pixel locations, coordinates in the projector coordinate frame and the

world points of fiducial points. In the experimental sessions, a Lego cube was used as

the calibration target and the corner points were used as the fiducial points. The use

of spatial and temporal encoding schemes was discussed. The choice between spatial

or temporal encoding schemes was a trade off between the resolution and the number

of projected patterns. Finally, the use of spline smoothing to remove the step like

structure of the scene coordinates in the projector coordinate frame was discussed.
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Chapter 2

Novel Encoding Schemes for Structured Light

2.1 Introduction

As discussed in Chapter 1, the reconstruction using structured light techniques involves

three steps: calibration, coding and smoothing. In the calibration step, the position

of the camera and the projector with respect to the world coordinates is determined.

In the coding step, the method of encoding the projector coordinate information in

the projected patterns is determined. In the smoothing step, spline fits are used to

remove the quantization noise. A major limitation of the the existing techniques is the

dependency on the surface albedo. In the low albedo regions the projected patterns

are not visible, making the reconstruction of the low albedo regions difficult. We will

propose two new structured light techniques targeted towards the reliable reconstruction

of the low albedo regions. Both techniques use image ratios to determine the coordinates

in the projector coordinate frame. The invariance of image ratios to the surface albedo

[23] enables the reliable reconstruction of the low albedo regions.

In the proposed temporal encoding scheme, the use of image ratios has been com-

bined with high dynamic range imaging (HDR). To obtain reliable ratios in the low

albedo regions the intensities measured by the camera in the low albedo regions should

be reliable. The intensities measured by the camera are reliable only if the measured

intensities lie in the linear range. The intensities measured in the low albedo regions

would lie in the linear range only under the overexposed settings of the camera. The

temporal encoding scheme is called as the ‘HDR–Ratio Method’.

The proposed novel spatial encoding scheme requires three images to be projected

by the projector. The projector coordinates are obtained by counting the stripes. It

is assumed that the center stripe hits the scene and that no occlusions occur. The
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resolution obtained by using novel spatial encoding scheme is lower than the resolution

of the HDR–Ratio method. However, the data acquisition is much faster with the

spatial encoding scheme. The spatial coding scheme is called as the ‘Edge Counting

Method’.

From this point onwards, a scene point’s projector coordinate would be referred as

the stripe id.

2.2 HDR–Ratio Method

In HDR–Ratio method the focus has been on the reliable reconstruction of the low

albedo regions. When the light from the projector hits the low albedo regions the light

patterns are not clearly visible. The poor visibility of light patterns makes it difficult to

extract the stripe id in the low albedo regions. For example, Figure 2.1 shows the image

of a face illuminated by the projector’s light pattern. It is clearly seen that the projected

Figure 2.1: The projected stripes are not clearly visible in the low albedo regions.

pattern is not visible in the low albedo hair region. This makes the reconstruction of

the low albedo hair region extremely difficult. In the HDR–Ratio method the problem
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of reliable reconstruction of the low albedo regions is addressed by using image ratios

and high dynamic range imaging.

2.2.1 Image Ratios and the Gray Code Encoding Scheme

The quantization levels of the projector coordinate frame is coded using the Gray code

encoding scheme. The advantage of Gray code encoding scheme is that an error in any

bit causes the same amount of error in the inference of the stripe id. In other coding

schemes, the error depends significantly on the position of the bit detected erroneously.

For example, suppose an eight bit binary encoding scheme is used and the stripe id of

a scene point has been detected as b7b6b5b4b3b2b1b0 = 10101010. Now, if the true value

of b2 is one instead of zero, the detected stripe id would have an error of 22 = 4. If

the true value of b7 is zero instead of one, the detected stripe id would have an error

of 27 = 128. An erroneous detection of b7, in the binary encoding scheme, generates a

much higher error in the stripe id than an erroneous detection of b2. In the Gray code

encoding scheme, however, an error in b7 or b2 would lead to the same amount of error

in the detected stripe.

In the HDR–Ratio method, to determine the most significant bit of a pixel’s stripe

id the ratio of the images acquired under the first two projected patterns is taken. We

call the image obtained by taking the ratios as the ratio image. In the ratio image,

pixels where the ratio is greater than one have the most significant bit of the Gray

code as one, and the intensities at these pixel locations are set to one. Pixels where the

ratio is less than one have the most significant bit of the Gray code as zero, and the

intensities at these pixel locations are set to zero. Similarly the ratio of the next two

projected patterns is used to determine the next most significant bit. In this way the

ratio of successive projected patterns enable the identification of the stripe id of the

scene points. The patterns projected by the projector is shown in Figure 2.2.

2.2.2 HDR

The dynamic range of a digital or film camera is very limited. With one camera setting

it is not possible to capture all scene points reliably. For a particular camera setting,
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(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.2: Patterns projected by the projector in the HDR–Ratio method.

some scene points may be too dark to be captured reliably, while some scene points

may be too bright to be captured reliably. The intensities measured by the camera are

reliable only if they lie in the linear range of the camera response. To reliably capture

the intensities at all points it is necessary that the intensities measured at the scene

points lie in the linear range of the camera. To ensure that that all the scene points

lie in the linear range of the camera it is necessary to image the scene under multiple

exposure settings. The technique of imaging the scene under multiple camera settings

and combining the different images is called as HDR [9]. In the HDR–Ratio method,

high dynamic range imaging has been used to obtain reliable ratios in the low albedo

regions.

In high dynamic range imaging the image of the scene illuminated by the projected

pattern is acquired under multiple exposure settings of the camera. The image is

first acquired under normal exposure. Normal exposure settings enable the reliable
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capture of scene points with high albedos. However, scene points with low albedos are

not reliably captured. To reliably capture scene points with low albedo the scene is

overexposed. In the overexposed image the low albedo regions are within the dynamic

range of the camera while the points with high albedos are saturated. Figure 2.3 shows

the face image acquired under normal and overexposed conditions. It can be seen that

(a) (b)

Figure 2.3: Images of the scene acquired under multiple exposures. (a): Image of
the scene under normal exposure settings. (b): Image of the scene under overexposed
settings. The stripes in the low albedo regions are clearly brought out in the overexposed
image.

under normal conditions the low albedo regions are not reliably captured but the high

albedo regions are reliably captured. Under overexposed conditions the low albedo

regions are reliably captured but the high albedo regions are saturated. In the low

albedo regions the ratios obtained from the overexposed setting is more reliable. The

ratios in the normally exposed regions are reliably captured under normal exposure

settings and not under the overexposed conditions. To obtain the final ratio image we

combine the ratio images obtained under the two exposure settings. A threshold is set.

At pixel locations where the intensity is greater than a certain threshold the ratio value
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in the ratio image obtained from normal exposure settings are retained. Whenever the

intensity is below a certain threshold the ratio value in the ratio image obtained from

overexposed conditions is retained. The threshold is set at the intensity value below

which the camera response becomes unreliable. In our experiments, for eight bit images,

the threshold value is selected as fifty. If the intensity value at the pixel location is less

than fifty, the ratio obtained using the overexposed images is selected.

Figures 2.4-2.7 shows the images of the side view of a face acquired under the normal

exposure and overexposed settings.

Figure 2.4: Sideview face images acquired by the camera (Images 1− 8).
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Figure 2.5: Sideview face images acquired by the camera (Images 9− 16).
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Figure 2.6: Sideview face images acquired by the camera (Images 17− 24).
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Figure 2.7: Sideview face images acquired by the camera (Images 25− 32).
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The resulting ratio images are shown in Figure 2.8. Figure 2.9 shows the ratio image

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 2.8: Ratio images obtained in the HDR–Ratio method. (a), (b),...(h) indicate
the 1st, 2nd,...8th most significant bits of the Gray code. In any ratio image, at a
particular pixel location, an intensity value of 1 indicates that the corresponding bit in
the Gray code is 1. In any ratio image, at a particular pixel location, an intensity of
value of 0 indicates that the corresponding bit in the Gray code is 0.

and the corresponding camera image. Note that the stripes are well brought out in the

low albedo regions in the ratio images. Using the ratio images the stripe id of each

pixel is determined. Figure 2.10 shows the stripe id of each pixel. In Figure 2.10 each

pixel has been assigned an intensity equal to it’s stripe id divided by 256. The camera

images for the same face, when imaged from the front, is shown in Figures 2.11-2.14

The ratio images for the front view are shown in Figure 2.15. The stripe image for

the front view is shown in Figure 2.16.
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(a) (b)

Figure 2.9: (a): Ratio image HDR–Ratio Scheme. (b): Image of the scene under a light
pattern projected by the projector. In the ratio image, the stripes are clearly visible in
the low albedo regions. In the camera image the stripes are not clearly visible in the
low albedo hair region.

Figure 2.10: Stripe image of the side view of the face. Each pixel has been assigned an
intensity equal to it’s stripe id divided by 256.
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Figure 2.11: Front view face images acquired by the camera (Images 1− 8).
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Figure 2.12: Front view face images acquired by the camera (Images 9− 16).
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Figure 2.13: Front view face images acquired by the camera (Images 17− 24).
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Figure 2.14: Front view face images acquired by the camera (Images 25− 32).
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 2.15: Ratio images obtained in the HDR–Ratio method. (a), (b),...(h) indicate
the 1st, 2nd,...8th most significant bits of the Gray code. In any ratio image, at a
particular pixel location, an intensity value of 1 indicates that the corresponding bit in
the Gray code is 1. In any ratio image, at a particular pixel location, an intensity of
value of 0 indicates that the corresponding bit in the Gray code is 0.

Figure 2.16: Stripe image of the front view of the face. Each pixel has been assigned
an intensity equal to it’s stripe id divided by 256.
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2.2.3 Spline Smoothing

In Figure 2.10 each pixel location has been assigned an intensity value equal to its

stripe id divided by the maximum resolution of 256. Figure 2.17 shows the plot of

the stripe ids for pixels lying along a particular row in the camera image. Due to
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Figure 2.17: Stripe ids of pixels lying on a particular row. Due to quantization the plot
has a step like structure.

quantization the plot has a step like structure. The beginning of each step indicates

a change in the quantization level and would be unaffected by quantization noise. For

reconstruction purposes the beginning of each step is retained. The step points are

detected by looking at the discrete gradient function. The beginning of the step would

be accompanied by a significant increase or decrease in the gradient function depending

upon whether the stripe id increases or decreases. Once the beginning of each step is

detected, spline approximation is performed (see Section 1.6 on page 13 for discussion

on spline smoothing).

2.2.4 Image Acquisition

Humans cannot remain perfectly still due to breathing and other involuntary move-

ments. The HDR–Ratio method requires multiple patterns to be projected. The data
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acquisition time interval could be significant. If the human face is the scene to be

imaged then movement of the face during the acquisition time interval could lead to

erroneous results. Figure 2.18 shows the image of a face and the corresponding ratio

image. Note the presence of two lips and two noses in the ratio image. The two lips

and two noses are due to the movement of the face. To handle the scene movement,

(a) (b)

Figure 2.18: Incorrect measurement due to movement. (a): Actual face image. (b):
Ratio image of the scene. Due to movement we see two lips and two noses.

the acquisition speed must be accelerated. To achieve high acquisition speed the data

acquisition process needs to be automated. The data acquisition process is automated

using free open source utility called the autohotkey software [35, 1]. A screen shot of

a script in autohotkey is shown in Figure 2.19. The autohotkey script synchronizes

the camera and the projector. The projector patterns are automatically projected at

regular intervals using the Irfan view software. The script automatically detects the

position of the camera’s GUI interface. It then triggers the ‘capture’ button of the

interface and thus capturing the image of the scene. The speed at which the image

is acquired is synchronized with the projector’s projection speed, ie, immediately after

the first pattern is projected the autohotkey script triggers the camera and the image

is acquired, then the next pattern is projected and again the script triggers the camera

and the image is acquired and this process repeats. With the automation process the

entire acquisition can be completed before any significant movement of the scene being
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^N::

IfWinExist Nikon Capture Camera Control

{

 Run E:\tukituki\Sid_sync\sync_images_gc_0_535sec.exe /monitor=2

 sleep 100

 winActivate Nikon Capture Camera Control

 Click 284, 467

}

return

^B::

IfWinExist Nikon Capture Camera Control

{

 Run E:\tukituki\sid_sync\sync_images_gc_0_964sec.exe /monitor=2

 Sleep 100

 WinActivate

 Click 284, 467

}

return

^R::

IfWinExist Nikon Capture Camera Control

{

 Run E:\tukituki\Sid_sync\sync_images_0_500sec.exe /monitor=2

 Sleep 100

 WinActivate

 Click 284, 467

}

return

^T::

IfWinExist Nikon Capture Camera Control

{

 Run E:\tukituki\binary_code\binary_8B_0_350sec.exe /monitor=2

 Sleep 100

 WinActivate

 Click 284, 467

}

return

Figure 2.19: Script to synchronize the camera and the projector.

imaged takes place.

2.2.5 Reconstruction Results

Figure 2.20 shows the reconstruction of the side view of the face image. Note the

details in the ear and the side burns captured in the reconstruction. Also note the

reliable reconstruction of the low albedo hair region. Figure 2.21 shows the camera

image and the reconstruction of the same face, when imaged from the front.

2.3 Edge Counting Method

In the edge counting method the projector coordinate system is quantized to 256 dif-

ferent quantization levels. The stripe id of the imaged scene can be determined by

projecting the patterns shown in Figure 2.22. The projected patterns have 256 vertical

stripes which are alternately black and white. The first projected pattern starts with a

white stripe and the second projected pattern starts with a black stripe. The ratio of

the scene images acquired by the camera is taken. If the ratio of intensities is greater
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(b) (c) (d)

(a)

Figure 2.20: Reconstruction of the side view of a face. (a) shows the camera image.
(b)-(d) shows the reconstruction of the side view from different viewpoints.
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(a) (b)

Figure 2.21: Reconstruction of the front view of a face. (a) shows the camera image of
the face. (b) shows the reconstruction of the front view.
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(a) (b)

Figure 2.22: Projected patterns with 256 black and white stripes. (a) begins with a
white stripe and (b) begins with a black stripe.

than one it is quantized to one and if it is less than one it is quantized to zero. The

resulting ratio image is used to obtain the stripe ids of the scene points. Under the

assumptions that the center stripe hits the scene and there is no occlusion, the stripe ids

can be determined by counting from the center stripe. An edge detection is performed.

All points from the center stripe up to the detected first edge would have a stripe id

of 127. All points from the first detected edge to the next detected edge would have a

stripe id of 128. Similarly all stripes from the center to the first edge on the left would

have a stripe id of 127. All points from the first detected edge on the left to the second

detected edge on the left would have a stripe id of 126. In this way the stripe ids of all

the points in one scan line can be determined. The process is repeated for all rows. As

the counting process moves form row i to row i + 1 or row i − 1 the reference center

point at which the counting begins is changed to the average of the first detected edge

locations on the left and the right. The averaging step is necessary because vertical

stripes get deformed once they hit the scene to be imaged. In absence of the averaging

step the center point may move out of the center stripe resulting in an error in the

counting process.

When the high resolution 256 stripe pattern is projected, maintaining the reference

point within the center stripe is a non–trivial problem. To address the problem of

maintaining the reference point in the center stripe, in practice sixty four stripes are

projected and the ratio of the scene is taken. When sixty four stripes are projected,
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starting from the center, the first stripe edge on the right coincides with what would

have been the fifth stripe edge, from the center, if 256 stripes were projected. The

second stripe edge, from the center, on the right coincides with what would have been

the eighth stripe edge from the center if 256 stripes were projected. The first stripe

edge on the left, starting from the center, coincides with what would would have been

the third stripe edge if 256 stripes were projected. The second stripe edge on the left,

starting from the center, coincides with what would have been the fifth stripe edge if

256 stripes were projected. When sixty four stripes are projected, detected edges on

the right correspond to an increase of 5,3,5,3,... in the stripe ids, detected edges on the

left correspond to a decrease of 3,5, 3, 5,... in the stripe ids. With 256 projected stripes,

the center point has a stripe id of 127. With sixty four projected stripes, the detected

stripe edges on the right of the center point would have stripe ids of 127 + 5 = 132,

132 + 3 = 135, 135 + 5 = 140, 140 + 3 = 143,...; the detected stripe edges on the left of

the center point would have stripe ids of 127−3 = 124, 124−5 = 119, 119−3 = 116,...

The steps involved in detecting the stripe ids, in the edge image, is summarized

below:

1. Begin the counting at a point lying in the center stripe. Keep moving right, along

the same row, till an edge is encountered. The pixel at which the edge occurs

has a stripe id of 127 + 5 = 132. Keep moving towards the right, along the same

row, till the next edge is encountered. The edge point would have stripe id of

132 + 3 = 135. The process is continued till the end of the row is encountered.

2. Using the same starting point as in step one, move towards the left, along the

same row, till an edge point is detected. The pixel at which the edge was detected

would have a stripe id of 127− 3 = 124. Keep moving towards the left, along the

same row, till the next edge is encountered. The edge point would have stripe id

of 124− 5 = 119. The process is continued till the end of the row is encountered.

3. Move to the next row and repeat Steps 1 and 2. The starting point is the average

of the pixel locations of the first detected edge of step one and the first detected

edge of step two. Repeat until the last row, in the image, has been traversed.
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4. Move to the row before the first traversed row. Repeat Steps 1 and 2. Repeat

until the first row has been traversed.

Figure 2.23 shows the images projected in the experimental sessions. The single red

(a) (b) (c)

Figure 2.23: Patterns projected in the experimental session. The pattern with the
single red stripe is used to identify the location of the center stripe.

colored stripe corresponds to the location of the center stripe. Figure 2.24 shows the

images acquired by the camera. By clicking in the red stripe region of the third image

(a) (b) (c)

Figure 2.24: The images acquired by the camera in the edge counting method.

the location of the center stripe is found. The ratio image is shown in Figure 2.25. The

edge detection and the reconstruction has been done within the boundaries indicated

by the red line segments. Figure 2.26 shows the edge image of the region of interest.

The counting is done in the edge image. Once the stripe ids of the points lying on the

stripe edges are determined, a spline fit is done to obtain the stripe ids of all the scene

points. The reconstruction of the scene after the spline fit is shown in Figure 2.27 The

edge counting scheme has the advantage that it uses only three images to obtain the

reconstruction. However the resolution obtained is much less than that for HDR–Ratio

scheme.



40

Figure 2.25: Image obtained by taking ratios of the camera images. Ratios greater than
one have been set to one. Ratios less than one have been set to zero.

2.4 Summary

We proposed two novel encoding techniques, HDR–Ratio method and edge counting

method. Both techniques used image ratios to obtain the stripe ids in the low albedo

regions. In the HDR–Ratio method, the use of image ratios was combined with high

dynamic range imaging. Using image ratios and high dynamic range imaging a very

high resolution reconstruction of the scene was obtained. However, the HDR–Ratio

method required multiple patterns to be projected and had a high acquisition time.

The data acquisition time was accelerated using the autohotkey software. Compared

to the HDR–Ratio method, the edge counting method required only three images to be

projected. The acquisition time for the edge counting method was much lower, however,

the resolution wasn’t very high.
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Figure 2.26: Image obtained by performing edge detection in the region of interest.

Figure 2.27: Reconstruction obtained using the Edge Counting scheme.
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Chapter 3

Laser Scanner

3.1 Introduction

In Chapters 1 and 2, the use of structured light technique to obtain the 3D coordinates

of the scene was discussed. The advantage of structured light techniques was that the

coordinates were obtained in the camera coordinate frame. However, the disadvantage

of structured light techniques was that the resolution obtained wasn’t very high. A

number of 3D scanners are available in the market. An alternate way to obtain geometry

would be to use the 3D scanners available in the market. These scanners generate a

very high resolution geometry of the scene. A popular hand held 3D laser scanner is

the Polhemus fast scan. The Polhemus Fastscan 1 laser scanner was used in the lab to

obtain the 3D coordinates of the scene points. The Polhemus Fastscan gives a very high

resolution scan of the 3D coordinates. However, the disadvantage of the laser scanner

is that the coordinates obtained aren’t in the camera coordinate frame.

We will discuss the step by step procedure of using the laser scanner. We will

begin with a description of the different components of the laser scanner, then discuss

the steps involved, namely, setting up the scanner, calibrating the scanner, scanning

the object and using the stylus. We will conclude with a discussion of obtaining the

coordinates from the camera viewpoint. The coordinates in the camera viewpoint can

be obtained by calibrating using fiducial markers. In the fiducial marker method, black

round markers are placed on the scene being scanned. Using the 3D coordinates and

the pixel location of the fiducial markers, scene coordinates in the camera viewpoint

are obtained.

1Polhemus, 40 Hercules Drive, P.O. Box 560, Colchester, VT 05446
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3.2 Laser Scanner

We have used the Polhemus Fastscan laser scanner. The Polhemus Fastscan generates a

very high resolution geometry. The main components of the scanner are the processing

unit, wand, transmitter, receiver and the stylus. The processing unit is shown in Figure

3.1. The processing unit houses the electronics for the scanner. The processor unit

(a) (b) (c)

Figure 3.1: Processing unit of the hand held scanner. (a), (b) and (c) show the pro-
cessing unit from the front, top and back respectively.

contains the magnetic tracker and the video processing unit. The processing unit has

connections for the transmitter, the receiver and the wand.

The transmitter is shown in Figure 3.2 . The transmitter generates magnetic field

Figure 3.2: Transmitter of the laser scanner.

in all three directions. The amplitude of the magnetic field is used to track the position

of the wand with respect to the transmitter. Note the coordinate frame defined on

the transmitter. Either the transmitter or the receiver can be used as the reference

coordinate frame. When the transmitter is used as the reference, the world coordinates
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are obtained with respect to the coordinate frame defined on the transmitter. When

the receiver is used as the reference frame the coordinates are obtained with respect to

the receiver. Figure 3.3 shows the image of the receiver.

Figure 3.3: Receiver.

The wand is shown in Figure 3.4. The wand has two cameras attached at the two

Figure 3.4: Wand of the laser scanner.

ends. When a region is scanned, the wand projects a strip of laser light on the region

being scanned. The laser is detected by the wand and the two cameras triangulate to

obtain the 3D coordinates of the scene points.

The stylus is used to obtain the 3D coordinates of specific scene points. Figure 3.5

shows the screen shot of a stylus. To obtain the 3D coordinates of a particular scene
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Figure 3.5: Stylus of the laser scanner.

point the stylus is pointed towards the 3D point and clicked. Once all the desired 3D

locations are obtained, the points can be stored in a ‘.csv’ file. The ‘.csv’ file can be

read using any text editing program.

3.3 Using the Laser Scanner

Using the Polhemus scanner to scan an object consists of three major steps: setting up

the scanner, calibrating the scanner and scanning the object.

3.3.1 Setting up the Scanner

The following steps serve as a guideline to setup the scanner:

1. The processing unit is connected to the computer and to the power point. The

processing unit has connections for the transmitter, receiver and the wand in the

front (see Figure 3.1). The stylus and the receiver cannot be used simultaneously.

When the stylus is used, it is connected in the receiver’s position in the processor

unit.

2. Once the wand and the reference device (transmitter or receiver) are connected

to the processing unit the Fastscan software is started. The Fastscan software
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can be started by clicking on the software’s icon on the screen. Figure 3.6 shows

the screen shot when the Fastscan software is started. The ‘Scanner Offline’ at

Figure 3.6: Screen shot of the Fastscan software.

the lower right indicates that the power switch of the scanner is off. The power

switch of the scanner is located on the backside of the processor unit. When the

power switch is turned on, ‘scanner online’ is displayed on the lower right.

3. To register the position of the wand with respect to the reference (transmitter

or receiver), the wand is pointed in the direction of the transmitter and clicked.

If the transmitter is used as the reference, then, from this point onwards the

transmitter must remain stationary.

The scanner is now ready to be calibrated.

3.3.2 Calibrating the Scanner

When the wand leaves the factory it is fully calibrated. However, for optimum perfor-

mance it is necessary to check the calibration before using the scanner. The calibration

can be checked using the following steps:

1. In the scanner menu, click on the alignment check option. When ‘alignment

check’ is clicked the the instructions shown in Figure 3.7 gets displayed.
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Figure 3.7: Alignment Check.

2. The wand is placed very close to a white paper. The trigger is pulled and the

wand is slowly raised till the laser extends over the entire width of the white

paper. When the laser extends over the entire width of the paper the trigger is

released. On the screen a number is displayed. If the number is less than two the

wand is properly calibrated. If the number is greater than two the wand needs to

be calibrated.

The wand can be calibrated in the following steps

1. The calibration target is attached to the transmitter. The transmitter with the

calibration target attached is shown in Figure 3.8

2. From scanner menu select the calibration correction option.

3. Holding the wand 100mm above the calibration target, each side of the calibration

target is scanned. The computer beeps when the wand is held in the range

80 − 120mm during the first scan of the calibration target. Each side of the

calibration target is rescanned by holding the wand 200mm above the calibration

target. The computer beeps when the wand is held in the range 180 − 220mm

during the second scan of the calibration target.
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Figure 3.8: Calibration Target.

4. After the calibration step is performed, the alignment is rechecked. If the cali-

bration is incorrect then the calibration process is repeated.

3.3.3 Scanning the Object

Once the wand is calibrated the scanner is ready to be used to scan an object. A typical

scan session is shown in Figure 3.9. The wand projects laser light on the area to be

scanned. A camera is attached to each end of the wand. The laser light is detected and

the two cameras triangulate to estimate the 3D coordinates of the point with respect

to the wand. The entire object is scanned by moving the wand to different parts of the

object. The scanning procedure is completed in a few minutes.

3.4 Calibration

In the experimental sessions the transmitter has been used as the reference. The 3D

coordinates obtained using the laser scanner are with respect to the transmitter coor-

dinate frame. The transmitter coordinate frame is the world coordinate frame. When
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Figure 3.9: Illustration of a scan session with the laser scanner.

the image of the scene is acquired, the camera image gives the pixel location of each

scene point. In the calibration step, the transformation from the transmitter coordinate

frame to the pixel locations is determined. The transformation can be determined by

using fiducial points described below.

3.4.1 Calibration Using the Fiducial Points

Round circular black markers are attached to the object being scanned. The markers

serve as fiducial points for the registration of the geometry. Figure 3.10 shows the

camera image and the laser scan of a foam head. To obtain the world coordinates

(a) (b)

Figure 3.10: Camera image and the laser scan of the foam head.
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of the fiducial points the stylus is pointed to each fiducial point and clicked. The

coordinates of the fiducial points are stored in a ‘.csv’ file. The pixel locations of the

fiducial points can be detected by clicking on the image. Once the corresponding world

coordinates and camera coordinates is known calibration can be performed using Tsai’s

camera calibration algorithm [32]. Figure 3.11 shows the screen shot of the blender 2

interface once the calibration is performed. The square box indicates that the world is

being seen from the camera viewpoint.

Figure 3.11: Blender interface showing the world from the camera viewpoint.

3.5 Summary

We have discussed the use of a hand held laser scanner in obtaining the geometry of

the scene was discussed. We presented a step by step procedure to use the hand held

Polhemus Fastscan laser scanner. The major steps in using the scanner were setting

up the scanner, calibration, using the wand to scan the scene and using the stylus to

obtain the 3D coordinates of specific points. Using the laser scanner, high resolution

scans of the scene could be obtained. However, the disadvantage was that the world

points were not in the camera coordinate frame. The use of fiducial markers to obtain

the coordinates in the camera coordinate frame was also discussed.

2Blender is a free 3D content creation suite.
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Chapter 4

Texture Unwrapping

4.1 Introduction

Using geometry acquisition techniques like structured light or the laser scanner, it is

difficult to acquire fine scale geometry. However, the appearance of texture is greatly

influenced by fine scale local geometry. The effect of fine scale geometry on the appear-

ance of texture can be accounted for by unwrapping the mesh and mapping the texture

on the unwrapped mesh. We have used the least square conformal mapping technique

has been used to unwrap the mesh.

Mapping the reflectance data on the unwrapped mesh requires the solving of an

interpolation problem. Various interpolation techniques, suitable for the texture map-

ping problem, are available. We will discuss the bilinear interpolation technique to

interpolate the data.

4.2 Texture Mapping and Texture Unwrapping

Textures, in our case, are two dimensional images indexed by a two dimensional s–t

coordinate system. The s–t coordinate system is called as the texture coordinates. The

texture coordinates are commonly referred as texels. In texture mapping, the texture is

mapped on curved surfaces like spheres, cylinders or face scans. The surface is defined

in the world coordinate system. The surface is expressed in the parameterized form

(x(u, v), y(u, v), z(u, v)). The texture mapping problem defines a mapping from texels

to the u–v parameters.

u = u(s, t) (4.1)

v = v(s, t) (4.2)
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The texture mapping problem is difficult because the surface is curved. Mapping from

the planar texture to the curved surface results in some amount of distortion.

x

y

z

s

t

(x(u,v), y(u,v), z(u,v))

Figure 4.1: Mapping of texels to surface.

In the inverse texture mapping problem, the texture values at the integer u–v loca-

tions are evaluated. The resulting u–v image, formed by the texture values at integer

u–v locations is called as the texture image. To obtain the texture image, we need to

parameterize the mesh and perform interpolation. In the parameterization step we as-

sociate a unique u–v value with each mesh point. We parameterize the mesh using least

squares conformal mapping (LSCM). Generally an integer u–v location gets mapped to

a non integer s–t value. To obtain the texture at integer u–v locations, texture values

at non integer s–t locations are required. Texture values at non integer s–t locations

are obtained using interpolation.

Least Squares Conformal Mapping (LSCM)

In this section, we discuss least squares conformal mapping for unwrapping the mesh.

The notations and equations used are consistent with those used in the paper [22].

We emphasize that we have not implemented the LSCM algorithm. We have used

implementation in the 3D creation suite Blender to do the unwrapping of the mesh.

Consider the triangulation G={1...n,T,pj}. Here n is the number of vertices, T is

the set of n
′
triangles and pj is the geometric location of vertex j. With each triangle
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Figure 4.2: Integer u–v values are mapped to non integer s–t values.

in Tî, î ∈ {1, ..., n′}, an orthonormal basis is defined. Let (x1, y1), (x2, y2), (x3, y3) be

the coordinates of the vertices of a triangle with respect to the local coordinate system.

A conformal mapping U :(x, y) 7→ (u, v) has to be defined. The conformal constraint

requires that

∂U
∂x

+ i
∂U
∂y

= 0, (4.3)

where, U = u+ iv. In a practice exact conformality cannot be achieved and is enforced

in the least square sense. The least squares error for a particular triangle is:
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C(T ) =
∫

T

∣∣∣∣
∂U
∂x

+ i
∂U
∂y

∣∣∣∣
2

dA =
∣∣∣∣
∂U
∂x

+ i
∂U
∂y

∣∣∣∣
2

AT , (4.4)

where, AT is the area of the triangle. Summing over all the triangles the criterion is to

minimize

C =
∑

T

C(T ). (4.5)

Consider a triangle with local coordinates as (x1, y1), (x2, y2), (x3, y3). The partial

derivatives of u with respect to x and y can be approximated as:


 ∂u/∂x

∂u/∂y


 =

1
dT


 y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1







u1

u2

u3




, (4.6)

where, dT is twice the area of the triangle and u1, u2, and u3 are the mappings of the

triangle vertices. Equation 4.6 can be written as

∂u

∂x
+ i

∂u

∂y
=

i

dT
[W1 W2 W3][u1 u2 u3]T , (4.7)

where,

W1 = (x3 − x2) + i(y3 − y2),

W2 = (x1 − x3) + i(y1 − y3),

W3 = (x2 − x1) + i(y2 − y1).

Equation 4.3 can now be written as:

∂U

∂x
+ i

∂U

∂y
=

i

dT
[W1 W2 W3][U1 U2 U3]T = 0, (4.8)

where, Uj = uj + vj . The error criterion C can be written as

C = U∗ZU, (4.9)

where, U = [U1 U2...Un]T and Z = M∗M. M is a sparse matrix such that

mij =





Wjq
dT

î

if vertex j belongs to triangle Tî

0 otherwise
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Substituting Z = M∗M in equation 4.9 we get,

C = ‖MU‖2
2 (4.10)

To obtain a non trivial solution the values of some U ′
js need to be assumed. The

collection U can be split into [Uf Up]. The Uf is the vector of U ′
js whose values

haven’t been assumed and Up is the vector of U ′
js whose values have been assumed.

On the similar lines, the matrix M can be split into [Mf Mp]. Equation 4.10 can now

be written as,

C = ‖MfUf + MpUp‖2
2. (4.11)

Rewriting with real vectors we get,

C = ‖Ax− b‖2
2 (4.12)

where,

A =


 M1

f −M2
f

M2
f M1

f


 , b = −


 M1

p −M2
p

M2
p M1

p





 U1

p

U2
p


 .

Here, M1
f , M2

f denote the real and imaginary parts of Mf and M1
p, M2

p denote the

real and imaginary parts of Mp. The minimization problem is a least squares problem

[30]. The minimizing solution has a closed form solution and does not require the use of

iterative techniques. The minimization problem has the following interesting properties:

1. The matrix A is full rank. As a result the minimization problem has a unique

solution.

2. The solution is invariant to the resolution of the mesh. The solution, when re-

stricted to the original mesh, is invariant if the density of the mesh is increased.

3. All triangles are consistently oriented, ie, triangle flips do not occur

Figure 4.3 shows the scanned mesh of a foam head and the unwrapped mesh. The mesh

unwrapping was done in blender.
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(a)

(b) (c)

Figure 4.3: Unwrapping a mesh. (a) shows the laser scan of the foamhead. (b) shows
the unwrapped mesh obtained using LSCM. (c) shows the unwrapping of a particular
region of the mesh.

4.3 Mapping Reflectance Data on the Unwrapped Mesh

The unwrapped mesh gives the u–v coordinates of each vertex of the mesh. Each mesh

vertex is colored with its u–v coordinates, ie, when the mesh is rendered with the camera

parameters the red channel is colored with the u coordinate, the green channel with the

v coordinate and the blue channel is assigned any arbitrary color. The mesh is rendered

using the camera parameters obtained through the calibration process. The rendering

process generates an image where each each pixel has its red and green intensity as

the corresponding u and v values. The blue intensity is set to zero. The u–v value

associated with each pixel location is now known. Equivalently, we know the pixel

locations associated with non integer u–v values. To obtain a 2464 resolution texture

image the red, green and blue intensity values associated with integer u–v values is

required. However, rendering the mesh gives the intensity values at non–integer u–v

locations. The intensity values at integer u–v locations is interpolated using the the
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intensity values at non–integer u–v values. The interpolation was done using bilinear

interpolation. Figure 4.4 shows the camera image of a foam head and corresponding

the texture image obtained using bilinear interpolation.

(a) (b)

Figure 4.4: Camera image and texture image of a foamhead. (a) Shows the camera
image of the foam head. (b) Shows the texture image obtained by bilinear interpolation.

4.4 Summary

We discussed the procedure for texture unwrapping. Texture unwrapping accounts

for the effect of geometry on the appearance of texture. The different steps involved in

the mapping procedure, geometry acquisition, mesh unwrapping and interpolation, were

discussed in great detail. The geometry was acquired using the hand held laser scanner.

The unwrapping of the mesh was done using least squares conformal mapping. Least

squares conformal mapping had the advantages that minimizing solution was unique,

the solution was invariant to similarity in texture space and triangle flips did not occur.

The interpolation was done using bilinear interpolation.
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Chapter 5

Surface–Subsurface Separation

5.1 Introduction

The interaction of light with the skin surface is a complex process. To understand

the appearance of skin it is necessary to understand the different components of skin

contributing to the appearance of the skin surface. The components influencing the

appearance of the skin can be divided into the micro, meso and macro–scale. In this

chapter the micro, meso and the macro–scale components we be discussed.

The modeling of the complex interaction of light with the skin surface is discussed

in the chapter. The light reflected form the skin surface is divided into the surface and

the subsurface components. The surface and the subsurface components have different

properties and should be modeled separately. This chapter discusses the difference in

properties of the surface and the subsurface components. Separation of the surface and

the subsurface components using a polarizer are discussed in the chapter.

5.2 Skin

Skin is the topic of study in multiple areas like computer graphics, computer vision,

dermatology and cosmeology surgery [18]. The goal and the aspects of skin studied in

each field is different. In computer graphics and computer vision the study of skin finds

applications in photo realistic rendering, animation and geometric modeling. In derma-

tology the goal is to study and treat skin disorders and in cosmetology the applications

are cosmetic surgery and makeup development.

In many applications it is important to understand the appearance of skin. De-

pending on the size, the components which contribute to the appearance of skin can be
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classified as micro–scale, meso–scale and macro–scale.

Micro–Scale

The cellular level elements and the skin layers constitute the micro–scale components

of the skin. The micro–scale components are barely visible to the human eye. The

appearance of the micro–scale components depends upon the interaction of the compo-

nents with the incident light. The dominant effect produce at this scale are scattering

and absorption. These effects depends upon the size, shape and the refractive indices

of the components.

Meso–Scale

Skin and skin features constitute the meso–scale components. The meso–scale compo-

nents are clearly visible to the naked eye. The appearance of the meso–scale components

depends upon the interaction of the micro–scale components with the incident light.

Features like wrinkles, pores freckles are the meso scale components of skin.

Macro–Scale

Body parts and body regions constitute the macro–scale components of skin. The

appearance of the different body parts is different. For example, the forehead and

the nose are more glossy than the neck. Unfortunately there are no known physical

models that describe appearance variation in a unified framework. In order to analyze

and synthesize the appearance of skin it is necessary to computationally model the

appearance of skin. The commonly used models in computer vision and computer

graphics are bidirectional reflectance distribution function and bidirectional texture

function.
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Bidirectional Reflectance Distribution Function (BRDF)

The BRDF fr [26] at point x is the ratio of the light reflected in direction ~ω to the ratio

ratio of light incident in direction ~ω′.

fr(x, ~ω, ~ω′) =
dLr(x, ~ω)

dEi(x, ~ω′)
. (5.1)

The function assumes that the light incident at a particular point on the skin surface

would be reflected from the same point. However, when light is incident on the surface

of the skin part of the incident light penetrates into the skin surface, scatters and then

leaves the surface from a different point. Since part of the light incident to the skin

surface leaves the surface from a different point the BRDF function is not an accurate

model the interaction of light with the skin surface. However, since the BRDF function

has low computational cost it is widely used for skin rendering.

Bidirection Texture Function (BTF)

Rendering obtained using BRDF modeling is not realistic. Realistic rendering of human

faces requires the modeling of meso scale components like wrinkles, pores and freckles.

The BTF can be used to model the bidirectional appearance of meso scale components.

The BTF is a six–dimensional function which describes the dependency of texture on

the viewing and illumination directions. Details of BTF can be found in [8].

5.3 Subsurface and Surface Components

When light is incident on the surface of the skin, part of the light is reflected off the

surface of the skin and part of the incident light penetrates the skin’s surface. The

light which reflects off the surface of the skin is called the surface component. The light

which penetrates into the surface of the skin is called the subsurface component [7].

The subsurface and the surface components have significantly different properties and

should be modeled separately.
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Surface scattering

Subsurface scattering

Stratum Corneus

Epidermis

Figure 5.1: Surface and subsurface scattering.

5.3.1 Subsurface Component

Subsurface component is the part of the incident light which penetrates the skin surface.

The subsurface component follows the linear reflectance model [4, 25]. In the linear

reflectance model, if n(x) denotes the normal vector scaled by the albedo of the surface

at point x and a denotes the direction of the light source scaled by the intensity of the

light source, then the brightness of the point e(x) would be given by

e(x) = n(x) · a. (5.2)

Let {a1,a2,a3} denote three source vectors. The brightness of a point due to the three

source vectors is given by

e1(x) = n(x) · a1, (5.3)

e2(x) = n(x) · a2, (5.4)

e3(x) = n(x) · a3. (5.5)

If a is any arbitrary source vector then a can be expressed as a linear combination of

{a1,a2,a3} in the following way:

a = α1a1 + α2a2 + α3a3. (5.6)
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The intensity of the point when illuminated by the source vector a is given by

e(x) = n(x) · a (5.7)

= n(x) · (α1a1 + α2a2 + α3a3) (5.8)

= α1n(x) · a1 + α2n(x) · a2 + α3n(x) · a3. (5.9)

The intensity due to the source vector a is a linear combination of the intensities

due to {a1,a2,a3}. If the source vector a is distant and visible to all points the

resulting image I would thus be a linear combination of the images I1,I2 and I3. The

images of the subsurface component obey the linear reflectance model and hence lie

on a linear manifold of dimensionality three. As shown in Figure 5.2 the subsurface

component leaves the skin surface uniformly in all directions [11]. Since the subsurface

Figure 5.2: The subsurface component leaves the skin surface uniformly in all directions.

component leaves the skin surface uniformly in all directions the appearance of the

subsurface component images does not vary significantly with the viewing direction.

The subsurface component does not retain the fine scale details of the skin surface.

The fine scale details are captured in the surface component.
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5.3.2 Surface Component

Surface component is the part of the incident light which reflects off the surface of

the skin. As shown in Figure 5.3 the surface component reflects off the skin’s surface

in the direction of the spherical lobe [11, 27]. Since the reflection is concentrated in

Figure 5.3: The surface reflection is concentrated around the specular lobe.

the direction of the spherical lobe the appearance of the surface component depends

significantly on the viewing direction. The images of the surface component lie on a

nonlinear manifold and are more difficult to model than the images of the subsurface

component. However, fine scale details like pores, wrinkles, scars are well brought out

in the surface component images. The modeling of the surface component images to

preserve the fine scale details is a nontrivial but important problem. Preservation of

fine scale details is important in applications like dermatology and face rendering.

5.4 Separation of Surface and Subsurface Components

To separate the surface and the subsurface components, the skin surface is illuminated

by polarized light and a polarizer filter is attached to the camera. We discuss the

concept of polarized/unpolarized light and the use of a polarizer to separate the surface

and subsurface components.
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5.4.1 Polarized and Unpolarized Light

According to wave theory of light, the light is an electromagnetic wave characterized

by electric field vector perpendicular to the direction of propagation of light [21]. In

unpolarized light, at each spatial point, the the electric field is randomly oriented. In

Direction  of   Travel

E

E

E

E

E

E

E

Figure 5.4: Unpolarized light. At each point, the electric field is randomly oriented.

polarized light, the light field follows a certain pattern in the plane perpendicular to

the direction of travel. The electric field can be split into two arbitrary components.

In linear polarization the two components are in phase and the ratio of their amplitude

is constant. In circular polarization the electric field component perpendicular to the

direction of propagation is 90◦ out of phase with the electric field component parallel

to the direction of propagation. The horizontal and the vertical components have the

same amplitude. In elliptical polarization, the horizontal and the vertical components

either do not have the same amplitude or are not 90◦ out of phase. Figure 5.5 shows the

electric field vectors of a light ray from a viewpoint perpendicular to the direction of

travel. Figure 5.5 (a) shows the electric field vectors of unpolarized light. We see that

the electric field vectors are oriented in any random direction. Figure 5.5 (b) shows the

electric field vectors in linearly polarized light. The electric field vectors are parallel to

each other.
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(a) (b)

Figure 5.5: Electric field vectors of unpolarized and polarized light when viewed per-
pendicular to the direction of travel. (a) Shows the electric field vectors in unpolarized
light. (b) Shows the electric field vectors in linearly polarized light.

5.4.2 Surface/Subsurface Separation Using the Polarizer

The light incident on the skin surface is polarized by passing it through a polarizer

sheet. A Mitsubishi Electric XD60U data projector was used as a light source. Figure

5.6 shows an image of the projector. The light passing through the polarizer sheet is

(a) (b)

Figure 5.6: Mitsubishi Electric XD60U data projector. (a), (b) show the projector
from two different view points.

linearly polarized. The light source direction can easily be changed by changing the

position of the projector with respect to the skin surface. When the light is incident

on the surface of the skin, a part of the incident light penetrates into the skin’s surface

and a part of the incident light reflects off the surface of the skin. The former is called
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as the subsurface component while the latter is called as the surface component. The

subsurface component gets depolarized while the surface component remains polarized.

A polarizer filter is attached to the camera. The intensity measured by the camera [24]

is given by:

I = Ic + Isv cos 2(θ − α), (5.10)

where I is the intensity measured by the camera, Ic is the subsurface component incident

at the camera, θ is the angle of the polarizer filter, α is the phase angle determined

by the projection of the surface normal to the plane of the filter and Isv cos 2(θ − α) is

the surface component intensity sensed by the camera at the polarization angle θ. The

intensity measured at any point varies sinusoidally with the polarizer angle. At any
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Figure 5.7: Pixel intensity vs polarizer angle.

polarizer angle, the intensity at any pixel location is the sum of the intensities due to the

surface component and the subsurface component. The intensity due to the subsurface

component does not change with the polarizer angle. The intensity due to the surface
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component varies sinusoidally with the polarizer angle. The plot of the total intensity

verses the polarizer angle would be a sinusoid with a constant offset. To separate the

surface and the subsurface components images of the scene are acquired for polarizer

angles. Using the acquired images the parameters Ic, Isv, θ, α are estimated. Equation

5.10 is a nonlinear equation in the parameters Ic, Isv, θ, α. One approach to estimate

the parameters is to use iterative methods. However, the problem can be formulated

as a linear estimation problem [24]. By expanding the cosine term in equation 5.10:

Ii = Ic + Isv cos 2θi cos 2α + Isv sin 2θi sin 2α, (5.11)

where Ii is the intensity sensed by the camera for polarizer angle θi. Equation 5.11 can

be written in the vector form:

Ii = fT
i v, (5.12)

where v = [Ic Isv cos2α Isv sin 2α]T is the vector of unknowns and fi = [1 cos 2θi sin 2θi]T

is determined by the polarizer angle. Each polarizer angle gives one equation in the

unknown vector v. For n ≥ 3 the vector v can be uniquely determined by using least

squares estimation. Once vector v is uniquely determined the parameters Ic, Isv, θ, α

can easily be extracted from it.

5.4.3 Experimental Results

Figure 5.8 shows face images acquired at different positions of the polarizer filter. Note

the variation in the appearance with the polarizer angle. Using the face images, acquired

Figure 5.8: Images of the face at different positions of the polarizer.

at different positions of the polarizer, the surface and the subsurface components were

estimated. Figure 5.9 shows the plot, for a particular pixel location, of the red intensity
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verses the polarizer angle. Figure 5.10 shows the plot of the surface component and the

Figure 5.9: Intensity verses the polarizer angle. The red dots indicate the measured
intensity values of the red channel at a particular pixel location. The blue line indicates
the sinusoidal fit obtained with least squares estimate.

subsurface components of the face images.

Figure 5.11 shows the images of the orange acquired at different positions of the

polarizer. The subsurface and the surface components of the orange are shown in

Figure 5.12.

5.5 Summary

We discussed the different components of skin which contribute to the appearance of

skin. We discussed the use of BRDF and BTF in modeling the appearance of skin.

The interaction of light with the skin was modeled as a combination of subsurface and

surface reflection. The difference in the properties of the subsurface and the surface

components were discussed. The set of subsurface images, under constant pose, formed

a linear subspace with dimensionality three. However, the subsurface components did

not retain the fine scale details. The fine scale details are retained in the surface

components. However, compared to the subsurface components, the surface components

are much harder to model. The separation of the surface and the subsurface components
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Figure 5.10: (Subsurface/Subsurface components of a face image. (a): Subsurface
component of the face image. (b): Surface component of the face image.

using the polarizer was discussed. Experimental results obtained using a human face

and an orange were presented at the end of the chapter.
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Figure 5.11: Images of the orange at different positions of the polarizer.

(a) (b)

Figure 5.12: Surface/Subsurface components of an orange. (a): Subsurface component
of the orange. (b): Surface component of the orange.
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Chapter 6

Texture Modeling

6.1 Introduction

Face models have typically focused on appearance at a macroscopic scale which is consis-

tent with human visual observations. However, with the widespread availability of low

cost high resolution digital imagery, face details are of increasing interest. Facial details

provide an additional fingerprint for recognition and add realism to computer graphics

rendering. Our specific emphasis in face modeling is the capture of surface reflectance

which encompasses skin roughness, wrinkles, pore distributions and skin glyphs. Many

current skin reflectance models consider skin uniform and spatial variations are simply

mapped with a flat texture. Such an approach makes the implicit assumption that

all skin variations behave as a flat patterns like a tattoo, adding a multiplicative fac-

tor to the scattering path, but otherwise leaving the light path unchanged. Modeling

pores, wrinkles, moles, scars as flat patterns is overly simplistic. Skin models which do

consider the fine–scale geometry of skin include [19, 15]. Here the fine scale geometry

is measured and then a reflectance model is applied to the geometry. However, the

outer layer of skin is a complex structure. Just as a diffuse reflectance model applied

to measured global geometry is not enough to capture subsurface scattering [20, 14],

a specular reflectance model applied to measured fine–scale geometry is not sufficient

for the surface reflection component. More recent work has addressed this topic of fine

scale detail including, the pioneering large scale face measurement and modeling [34]

which contain detailed geometry and reflectance measurements and [12] which develops

a statistical model of facial detail.

Our contribution to this area is the development of a nonlinear PCA (principal com-

ponents analysis) based compression scheme that uses polarization at the measurement
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stage to isolate the surface component texture. As in a typical kernel PCA methods,

a higher dimensionality subspace is first constructed in order to create an appropriate

subspace for linear PCA. In our method, the higher dimensional subspace is obtained

by doubling the dimension of each image through separation of a subsurface reflectance

image and an at–surface reflectance image. The at–surface reflection occurs at the

boundary layer which often has relief texture or roughness. In particular, for human

skin, the boundary layer has an oily layer on a fine–scale height profile as shown in Fig-

ure 6.1. The separation of subsurface and surface reflection components is a nonlinear

epidermis

dermis

oily layer 

Complex Surface Geometry

Figure 6.1: Skin structure includes complex geometry at the air–skin interface as well as
layers of cells in the stratum corneus portion of the epidermis. The skin image examples
shown illustrate how the significant contribution of the first interface, the oily layer,
to appearance. Image–based capture of both the subsurface and surface reflection can
is a useful modeling approach because the surface geometry can be very complex and
difficult to measure.

preprocessing to traditional PCA. Consequently, the entire process can be cast in the

framework of nonlinear PCA for dimensionality reduction. The higher dimensional sub-

space is obtained explicitly for visualization and comparison of the representative basis

vectors. To remove variation in pose, conformal mapping is applied and all analysis

takes place in a projected two dimensional space. The resulting model has implications

for human skin modeling where surface texture is useful in recognition, classification

and rendering.
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6.2 PCA

Consider a set of data points {zi}, i ∈ {1, ..., N} in Rn. In PCA, we project the points

in a lower dimensional linear subspace of dimensionality k < n. The linear subspace is

defined by the basis vectors {vj}, j ∈ {1, ..., k}. In PCA, we define v1 to be the direction

in which, upon projection of data points, the variance is maximized . We define v2 to

be the direction which is orthogonal to v1 and gives the second highest variance upon

projection of the data points. The remaining vectors v3,...,vk are defined in the similar

way. It can be shown [2] that the vectors vj are the eigenvectors corresponding to the

decreasing eigenvalues of the covariance matrix S of the data points. The covariance

matrix S is given by,

S =
∑N

i=1(zi − z̄)(zi − z̄)T

N
. (6.1)

Here, z̄ is the sample mean of the data points given by,

z̄ =
∑N

i=1 zi

N
. (6.2)

If we define V = [v1...vk], the projection of the data point zi in the lower dimensional

subspace is given by VTzi.

6.3 Non–Linear PCA via Optical Separation

PCA is powerful representation which preserves major trends in the data, however,

small variations can be ignored. When these small variations are important for recon-

struction fidelity, traditional PCA can be problematic. A key insight in this approach

is that specular reflection from surface texture are the type of small variation that are

not well captured in PCA methods. But this problem is solved by optically separat-

ing the components and creating a higher dimensional subspace. After the separation,

two distinct PCA analyzes are performed. For the subsurface components we expect

a low dimensional subspace. For the at–surface reflection component, we have a fun-

damentally different situation. The surface normals change rapidly and the specular

component is strong. Therefore the image as a function of illumination exhibits rapid
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change, unlike the slow changes typical in lambertian reflectance. Consider what hap-

pens as the illumination direction changes in a rough specular surface. Specularities

appear and disappear abruptly in different places with the change in illumination di-

rection. Consider the more extreme case of paints with metallic flecks which cause

sparkle, the abrupt appearance of specularities in different spatial locations as the il-

lumination changes. The surface reflectance of skin with the multitude of crevices, has

a high frequency variation with respect to illumination changes as can be seen in the

skin images. Many of the imperfections and realism of skin lie on the surface and are

useful in characterizing both appearance and the difference of appearance between indi-

viduals. Using polarization–based separation, we are projecting our data into a higher

dimensional space in order to perform dimensionality reduction. This is the intuition

behind kernel PCA methods in our framework. Our approach to mapping the data to

a higher dimensional space gives a substantial benefit over standard PCA. In particular

we obtain basis functions that are tuned to either the subsurface or the surface variation

in the measurement data.

6.4 Results with Non–Linear PCA

The first tests were done with a foam face object depicted in Figure 6.2. This test

object was chosen because the separation of subsurface and surface reflection was sur-

prising similar to human skin as depicted in Figure 6.2. Also, with an inanimate object,

registration is not an issue, so it provides a good testbed. For the polarization based

analysis, precise alignment at all high–resolution pixels is essential to avoid artifacts.

Perfecting this alignment for breathing, moving humans is out of the thesis. Our exper-

iment is to image multiple illumination directions and then create a lower dimensional

subspace representation using nonlinear PCA. The nonlinear pre–processing consisted

of fitting the sinusoidal variation for each pixel to separate a surface and subsurface

component (as shown in Figure 6.2). After projecting to two dimensional texture co-

ordinates, PCA for the diffuse and specular components were performed individually

and the results were summed. The second row of Figure 6.3 shows the final result

when six illumination directions (coplanar, separated by approximately 20 degrees) are
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Figure 6.2: The foam head (top row) and real face (bottom row): (left) original image,
(middle) diffuse subsurface reflectance, (right) specular surface reflectance. There is a
similar pattern of subsurface and surface reflectance so the foam head is a reasonable
test model to avoid registering high resolution skin images.

represented with one basis image for the diffuse component and one basis image for the

specular component. The third row of Figure 6.3 shows the final result of PCA with

the combined diffuse and specular reflection. Column 4 of these results are shown in

a closer view in Figure 6.4. The basis images for the separated reflectance are better

tuned to the large diffuse variation and the specular variation as shown in Figure 6.5.
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Figure 6.3: Top Row: Original foam head images (projected to texture coordinates) for
six illumination directions. Note that all of the images have been projected to a ‘texture
plane’ using least squares conformal mapping so that variations in pose are removed.
Middle Row: Reconstructed images using nonlinear PCA. (The final result is obtained
by summing the individual components). Bottom Row: Reconstructed images when
standard PCA is applied to the original images (without surface/subsurface separation).
Notice that the specularities are not well reconstructed in the bottom image set. All
reconstructions are done using a single basis image to represent the 6 illumination
directions.

6.5 Impact

Nonlinear PCA via optical separation provides a better representation for surfaces that

exhibit surface texture (fine–scale height variation) as well as subsurface scattering.

In addition to skin, numerous real world objects such as leaves, fruit, coated wood

have reflections from the boundary layer at the surface and from subsurface scattering.

The structure or texture at that boundary layer is a significant contributor to overall

appearance. Our approach provides a computational representation tuned to capture

this variation. Representations for surface detail with added accuracy have a direct

impact in machine learning approaches to skin modeling. In particular local statistics of

eigen images and the corresponding coefficients can be used in classification algorithms.
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Figure 6.4: The differences in the reconstructions shown in Figure 6.3 are particularly
noticeable in the fourth column. Here, these images are shown for comparison. (Left)
Original image, (Middle) Reconstruction using nonlinear PCA, (Right) Reconstruction
using standard PCA. Notice the specularities are not well reconstructed in the rightmost
image.

6.6 Summary

We discussed the modeling of texture by separating the surface and the subsurface

components and modeling them separately. For initial experiments, we used a foam

head instead of human faces. Like human faces, the foam head had a significant surface

and subsurface component. With the foam head, registration of the multiple images

acquired was not an issue. The initial results obtained by modeling the surface and

the subsurface components separately preserved the specularities in appearance. The

specularities were not preserved when the texture was modeled without separating the

surface and the subsurface components.
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Figure 6.5: (Top) Basis image (left) and mean image (right) using standard linear PCA.
Notice that the basis image must simultaneously encode the changes of the specularities
as well as the diffuse shading. (Middle) Basis image (left) and mean image (right) of the
diffuse subsurface component. Here the basis image is better tuned for the variation
due to diffuse shading as can be seen from the overall structure of this basis image.
(Bottom) Basis image (left) and mean image (right) of the specular surface component.
By comparing this basis image to the top row basis image, it is clear that this basis is
better tuned to the varying specularity in the image sequence that occurs when lighting
changes.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

We have looked at the use of structured light techniques and the laser scanner to ac-

quire the geometry of the scene. We proposed two new structured light techniques,

the HDR–Ratio method and the edge counting method, targeted towards the reliable

reconstruction of the low albedo regions of the scene. The geometry acquired using

the structured light techniques was not as high resolution as desired. To obtain very

high resolution geometry we used a hand held laser scanner. The coordinates obtained

from the laser scanner were in the laser coordinate frame. To integrate the geometry

for appearance modeling, we solved a calibration problem which gave us the transfor-

mation from the laser coordinates to the corresponding image pixels. We accounted for

the influence of geometry on the appearance of texture by unwrapping the mesh and

mapping the texture on the unwrapped mesh.

To model appearance we modeled the interaction of light with the surface as a sum

of surface reflection and subsurface scattering. The surface reflection and the subsurface

scattering have significantly different properties. So, we separated out the surface and

the subsurface components and modeled them separately using principal component

analysis. In the initial results obtained using principal component analysis we saw that

separately modeling the surface reflectance and the subsurface components preserved

the specularities in the images.

An important step in modeling appearance is to separate out the surface and the

subsurface components. State of the art techniques separate the surface and the subsur-

face components by using a polarizer. In future, we would like to learn the appearance

of the surface and subsurface components. Given a training set of unpolarized images
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and the corresponding surface and subsurface components we would like to learn the

relation between the unpolarized images and the surface/subsurface components. Once

the relation is learned, given any new unpolarized image we would be able to predict

the corresponding the surface and the subsurface components. The learning of the sur-

face/subsurface components is closely related to the image analogies [17] problem. In

this chapter, we will discuss the image analogies problem and how it motivates us to

learn the surface and the subsurface components.

7.2 Image Analogies

The problem of image analogies is as follows: Suppose we have a pair of images A and

A’. Given an image B can we generate an image B’ which is related to B in the way A’

is related to A? We refer to A as the unfiltered source image and to A’ as the filtered

source image. B and B’ are referred as the unfiltered and the filtered target images.

Image analogies is a desirable goal for a number of applications. For example, let A

be a blurry image and A’ the corresponding high resolution image. Image analogies

learn the transformation from the blurry image to the corresponding high resolution

image. Once the transformation is learned, given any new blurry image B, we can

predict the corresponding high resolution image B’. Another application is the learning

of the traditional filters like Gaussian blurring. Given an image A and a Gaussian

blurred image A’, we learn the transformation from A to A’. Given any new image B

we generate the Gaussian blurred version without actually applying the Gaussian filter.

Image analogies use local statistics to learn the transformation from A to A’. We

use A(p) and A′(p) to denote the local statistics around pixel p in the unfiltered source

image A and filtered source image A’ respectively. We use B(q) and B′(q) to denote

the local statistics around pixel q in the unfiltered target image B and filtered target

image B’. Note that we have used p to denote the pixel locations of both the unfiltered

and the filtered source images and q to denote the pixel locations of both the filtered

and unfiltered target images. The choice of which features to use is an open problem.

In the paper [17] the authors convert the RGB vector at each pixel location to the

corresponding YIQ values and use the luminance values define the local statistics. The
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authors claim that the human visual system is more sensitive to changes in Y than to

changes in I and Q channels.

To find the local statistics B′(q) at pixel location q of the filtered target image, the

entire images A, A’ and B are used along with the partially generated image B’. The

authors find the local statistics in A which is closest to B(q). To find the closest local

statistics a distance metric has to be defined. The definition of the distance metric is

still an open problem. The distance metric must account for both statistical closeness

as well as perceptual closeness. Perceptual closeness is required to obtain a smooth

visually appealing image B’ at the end of the procedure. Suppose the closest local

statistics is found at pixel location p0. Then, the feature vector B′(q) is defined to be

A′(p0).

7.3 Learning the Surface/Subsurface Components

In future, we are interested in learning the appearance of surface/subsurface compo-

nents using unpolarized images. Given a set of unpolarized images, we would like to

find the transformation to the corresponding surface and subsurface components. The

problem in many ways is similar to the image analogies problem. We are trying to learn

the transformation from the unpolarized images to the surface/subsurface components

and then predict the transformation for a new image. State of the art techniques use

a polarizer to obtain the surface/subsurface separation. The use of a polarizer requires

the acquisition of multiple images of the scene. Acquiring multiple images is undesirable

when we are imaging humans. Small movements due to breathing gives rise to mis-

alignments between the acquired images. Successfully learning of the surface/subsurface

components would enable us to separate out the surface/subsurface components using

a single unpolarized image of the scene. In this way, learning of the surface/subsurface

components eliminates the need of using a polarizer and acquiring multiple images,

resulting in a reduction of acquisition time and elimination of registration problems
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