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ABSTRACT OF THE THESIS

EFFICIENT SEQUENTIAL DECISION-MAKING

ALGORITHMS FOR CONTAINER INSPECTION

OPERATIONS

by SUSHIL MITTAL

Thesis Director: Professor David Madigan

Sequential diagnosis is an old subject, but one that has become increasingly impor-

tant recently. There exists a need for new models and algorithms as the traditional

methods for making decisions sequentially do not scale. Motivated by the problem of

container inspection at the U.S. ports, we investigate the problem of finding efficient

algorithms for sequential diagnosis. More specifically, we formulate the port of entry

inspection sequencing task as a problem of finding an optimal binary decision tree for

an appropriate Boolean decision function. We provide new algorithms that are compu-

tationally more efficient than those previously presented by Stroud and Saeger [31] and

Anand et al [1]. We achieve these efficiencies through a combination of specific numer-

ical methods for finding optimal thresholds for sensor functions and two novel binary

decision tree search algorithms that operate on a space of potentially acceptable binary

decision trees. The improvements enable us to analyze substantially larger applications

than was previously possible.

We try to solve the problem of finding an optimal inspection strategy by breaking it

into two sub-problems - 1. Finding sensor threshold values that minimize the cost for

a given binary decision tree and 2. “Searching” for the cheapest binary decision tree
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in a large space of trees or equivalence classes of trees. For solving the first problem,

we explore various standard non-linear optimization techniques and also propose a

novel algorithm by combining the gradient descent method and Newton’s method in

optimization to compute optimal thresholds for any given tree. We propose two novel

search algorithms - A stochastic search method and a genetic algorithms based search

method, as a solution to the second sub-problem. We also propose “neighborhood”

operations to move from one tree to another in the proposed tree space and prove that

the tree space is irreducible under these neighborhood operations.

We report results from numerous experiments with and without imposing restric-

tions on the tree space and examine how the optimal binary decision trees vary with

these changes. For example, for most of the work in this thesis, we restrict the tree

space to constitute only “complete” and “monotonic” binary decision trees. Later, we

“shrink” the tree space by discovering equivalence classes of trees while we “expand”

the tree space by removing the monotonicity constraint.
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Chapter 1

Introduction

Making sequential decisions is an important problem that belongs to the otherwise

broader area of decision theory. The key to the problem solving would be as simple

as answering the question “What to do next?”. Roughly speaking, it is a method of

arriving at a final decision based on a sequence of smaller decisions. Making each of

these decisions obviously involves answering a question. The choice of what question

to ask is made on the basis of the answer to the previous question. However, there

might be some problem-specific constraints that govern some of the rules about the

sequencing of these questions. On the topmost level, there is usually an optimization

function to make a choice of a specific question from a bunch of possible questions

that can be asked at that point. The choice of this optimization function can vary

based upon how the problem is formulated. For example, a user can choose one or

more criteria to optimize and also the scope of optimization, i.e., greedy or global etc.

Greedy optimization is usually simpler to achieve but doesn’t always give the overall

best solution to the problem. Therefore, in general, globally optimized systems are

considered better systems because they are supposed to give a global (or near global)

optimum solution. But obviously, finding a global solution is not always mathematically

and computationally trivial. Throughout this thesis, we will try to address one such

problem and discover various ways to solve it. We try to break up the problem into

smaller, independent problems and propose one or more solutions to each one of them.

Most of the proposed solutions are results of simple intuitions and basic concepts of

optimization theory and combinatorics.

As explained in [1] and [29], sequential decision making problems appear in many

areas. These include problems in the fields of communication networks for testing
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connectivity in a circuit or paging celluar customers. In manufacturing, it is used for

testing machines, fault diagnosis and routing customer service calls etc. In artificial

intelligence and computer science, besides numerous other applications, it is used in

particular for obtaining optimal derivation strategies in knowledge bases and coding

decision tables etc. And finally, in medicine, it is used for diagnosing patients and

sequencing their treatments. A selected list of references for such applications includes

[15], [27] and [30].

Sequential diagnosis is an old subject, but one that has become increasingly impor-

tant with the need for new models and algorithms as the traditional methods for making

decisions sequentially do not scale. We investigate the problem to find algorithms for

sequential diagnosis efficiently, through the container inspection procedure at the U.S.

ports. Although the problem of container inspection is quite nicely formulated, we hope

that the solutions we provide are generic to most sequential diagnosis applications.

1.1 Problem Definition

Finding ways to intercept illicit materials, in particular weapons, destined for the U.S.

via the maritime transportation system is an exceedingly difficult task. Practical com-

plications of inspection approaches involve the negative economic impacts of surveillance

activities, errors and inconsistencies in available data on shipping and import termi-

nal facilities, and the tradeoffs between costs and potential risks, among others. Until

recently, even with increased budget and emphasis, and rapid development of modern

technology, only a very small percentage of ships entering U.S. ports have their cargo

inspected. Thus there is a great need to improve the efficiency of the current inspection

processes. Recently, there has been a series of attempts to develop algorithms that will

help us to inspect for and intercept chemical, biological, radiological, nuclear, and ex-

plosive agents, as well as other illicit materials. Such algorithms need to be developed

with the constraint that seaports are critical gateways for the movement of interna-

tional commerce. Slowing the flow long enough to inspect either all or a statistically

significant random selection of imports would be economically intolerable [23].
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As a stream of containers arrives at a port, a decision maker must decide which “in-

spections” to perform on each container. Current inspections include neutron/gamma

emissions, radiograph images, induced fission tests, and checks of the ship’s manifest.

See [29], Section 2.5 and [4] for a more detailed description about the types of sensors

that can be used. The specific sequence of inspection results will ultimately result in a

decision to let the container pass through the port, or a decision to subject the container

to a complete unpacking. Finding algorithms for sequential diagnosis that minimize the

total “cost” of the inspection procedure, including the cost of false positives and false

negatives, presents serious computational challenges that stand in the way of practical

implementation.

1.2 Preliminaries: The Stroud and Saeger [31] Approach

We will think in the abstract of containers having “attributes” and having a sensor to

test for each attribute; we will use the terms attribute and sensor interchangeably. In

practice, we dichotomize attributes and represent their values as either 0 (“absent” or

“ok”) or 1 (“present” or “suspicious”), and we can think of a container as corresponding

to a binary attribute string such as 011001. Classification then corresponds to a binary

decision function F , that assigns each binary string to a final decision category. If the

category must be 0 or 1, as we shall assume, F is a Boolean decision function (BDF).

Stroud and Saeger [31] consider the problem of finding an optimal binary decision tree

(BDT) for calculating F . In the BDT, the interior nodes correspond to sensors and

the leaf nodes correspond to decision categories. Two arcs exit from each sensor node,

labeled left and right. By convention, the left arc corresponds to a sensor outcome of 0

and the right arc corresponds to a sensor outcome of 1. Figure 1.1 provides an example

of a binary decision tree with three sensors denoted a, b, and c1. Thus, for example,

if sensor a returns a zero (“ok”), sensor b returns a one (“suspicious”), and sensor c

returns a one (“suspicious”), the tree outputs a one (i.e., a conclusion that something

is wrong with the container).

1We allow duplicates of each type of sensor. Thus, we allow multiple copies of a sensor (of type a,
and similarly for b and c). When we speak of n sensors, we mean n types and allow such duplicates.
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Figure 1.1: A binary decision tree τ with 3 sensors. The individual sensors classify
good and bad containers towards left and right respectively.

Even if the Boolean function F is fixed, the problem of finding an “optimal” BDT

for it is hard (NP-complete) [21]. Brute force enumeration can provide a solution.

However, even if the number of attributes, n, is as small as 4, this is not practical.

In present-day practice at busy US ports, we understand that n is of the order of 3

to 5, but this number is likely to grow as sensor technology becomes more advanced.

Even under special assumptions, Stroud and Saeger [31] were unable to produce feasible

methods for finding optimal binary decision trees beyond the case n = 4. They ranked

all trees with up to 4 sensors according to increasing tree costs using a measure of cost

we describe in Chapter 3, Section 2.1.

1.3 Our Approach

Following work of Stroud and Saeger [31], we report on new algorithms that are more

efficient computationally than those presented by Stroud and Saeger [31]. We break

the overall problem into two sub-problems. In the first problem we try to determine

the optimum thresholds of the sensors at inspection stations. We describe efficient ap-

proaches to the computation of sensor thresholds (Chapter 3, Section 2.3), that seek to

minimize the total cost of inspection. The second problem deals with the determination

of the optimum sequence of inspection or the structure of the inspection decision tree

in order to achieve the minimum expected inspection cost. This problem is similar to

finding optimal sequential inspection procedure for reliability systems as described by

[7], [19], [20], [3], [14], [13], and [2]. We also modify the special assumptions of Stroud

and Saeger [31] to allow search through a larger number of possible Boolean decision

functions, and introduce an algorithm for searching through the space of allowable



5

binary decision trees that avoids searching through the Boolean decision functions en-

tirely. Later we modify the space again by putting better theoretical constraints on it.

However, all our experiments parallel those of Stroud and Saeger [31].

1.4 Previous Work

The problem of inspecting containers is quite well-posed by now. Many people have

worked on the problem, and all of them assume different models, different model pa-

rameters and they try to analyze the problem by converting it to into various different

kinds of optimization problems. For example, [6] uses a polyhedral description of deci-

sion trees and develop a large scale linear programming model for container inspection.

It incorporates various realistic limitations like budget, sensor capacity and time limits

etc. Also, it assumes a very generic sensor model in a sense that it allows multiple

thresholds for each sensor. Finally, it also allows a mixture of various inspection strate-

gies instead of single best strategies. In [34], the optimization method is illustrated

for inspection systems with decision functions of series, parallel, series-parallel, and

parallel-series Boolean functions. For a comprehensive description of all these methods,

please see [5].

In terms of the model parameters and other assumptions, the work that we present

in this thesis is somewhat similar to the one presented in [1] and [29]. Both in [1] and

[29], the authors report on an experimental analysis of the robustness of the conclusions

of the Stroud and Saeger [31] analysis and show that the optimal inspection strategy

(or the optimum BDT) is remarkably insensitive to variations in the parameters needed

to apply the Stroud and Saeger [31] method. In their first set of experiments, they vary

the values of costs of false negative and false positive and the prior probability of the

occurence of a bad container in the ranges given by Stroud and Saeger [31] in [31].

But throughout these experiments, they use fixed threshold values (set such that the

probabilities of false negative and positive are equal) for all the sensors across all the

BDTs. In their second set of experiments, they fix the values of misclassification costs

and the prior probability of a bad container and then find the optimum cost of any given

BDT over the range of sensor threshold values by an exhaustive search with a fixed step
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size. Both these sets of experiments were performed exhaustively over all possible trees

with 3 and 4 sensors, beyond which it becomes infeasible to find the optimum strategy

using exhaustive search. As we shall see in the chapters to follow, the work presented in

this thesis tries to achieve targets similar to the ones in their second set of experiments.

1.5 Organization of the Thesis

The thesis is organised as follows. Chapter 2 explains the sensor model including the

relevance of the sensor threshold, cost of a binary decision tree and efficient ways to

compute it. Chapter 3 discusses the theoretical constraints of the Boolean decision

functions being “complete” and “monotonic”, given by Stroud and Saeger [31]. We

modify these constraints to suit binary decision trees instead of Boolean functions

by defining complete and monotonic BDTs. Chapter 4 explains various algorithms

to “search” for the optimum trees in a space of complete and monotonic BDTs. In

Chapter 5, we remodify the definitions of complete and monotonic BDTs by extending

them to “equivalence classes” of complete and monotonic trees. We also define the

“irreducibility” of a BDT and argue that only irreducibile trees can belong to the class

of most optimum trees. Later, we modify the previously discussed search algorithms

to suit the newer space of trees. The results from Chapters 3, 4 and 5 are combinedly

presented in Chapter 6. In Chapter 7 we give conclusions and future work.
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Chapter 2

Cost of a Binary Decision Tree

Following Anand et al. [1] and Stroud and Saeger [31], we assume the cost of a binary

decision tree comprises two components: (i) the cost of utilization of the tree and (ii) the

cost of misclassification of the tree. In general, the cost of utilization of each individual

sensor has several smaller costs associated with it: the unit cost of inspecting one item

with it, the fixed cost of purchasing and deploying it and the delay cost from queuing

up at the sensor station. In our study, we have disregarded the fixed and delay costs

and take only the unit cost of inspection into account.

2.1 The Cost Function

Keeping above things in mind, the cost of utilization of a tree is computed by per-

forming a summation over the cost of each sensor in the tree times the probability

that a container is inspected by that particular sensor. We compute the cost of mis-

classification for a tree by adding the probabilities of false positive and false negative

misclassifications by the tree and multiplying by their respective costs. Both the costs

described above depend on the distribution of the containers (into good and bad) and

the probabilities of misclassification of the individual sensors.

Figure 2.1: A binary decision tree τ with 3 sensors.

For example, consider the decision tree τ in Figure 2.1 with 3 sensors. The overall cost
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function to be optimized can be written as:

f(τ) = P0

(
Ca + Pa=0|0Cb + Pa=0|0Pb=1|0Cc + Pa=1|0Cc

)
+ P1

(
Ca + Pa=0|1Cb + Pa=0|1Pb=1|1Cc + Pa=1|1Cc

)
+ P0

(
Pa=0|0Pb=1|0Pc=1|0 + Pa=1|0Pc=1|0

)
CFP

+ P1

(
Pa=0|1Pb=0|1 + Pa=0|1Pb=1|1Pc=0|1 + Pa=1|1Pc=0|1

)
CFN (2.1)

Here, P0 and P1 are the prior probabilities of occurrence of “good” (ok or 0) and

“bad” (suspicious or 1) containers, respectively (so P0 + P1 = 1). For any sensor s,

Ps=i|j represents the conditional probability that the sensor returns an output i given

that the container is in state in j, i, j ∈ {0, 1}. For real-valued attributes, Stroud

and Saeger [31] describe a simple Gaussian model, which, combined with a specific

threshold, leads to the requisite conditional probabilities; we discuss this further below.

Cs is cost of utilization of sensor s, and CFP and CFN are the costs of a false positive

and a false negative respectively. (The notation here differs from that in [1]). In the

above expression, the first and second terms on the right hand side of equation 2.1,

together give the total cost of utilization of the tree τ while the third and fourth terms

represent the costs of positive and negative misclassifications respectively.

2.2 Sensor Model

We use the same sensor model that was proposed by Stroud and Saeger in [31] and was

also used in [1] and [29]. It is basically a threshold model using counts (e.g., Gamma

radiation counts). If the count exceeds some threshold, we conclude that the attribute

being tested for is present. We assume that the sensor readings for good containers

follow a Gaussian distribution and so do the readings for bad containers. Figure 2.2

below shows a typical sensor model assumed for a sensor s.

Ks is the called the discrimination power of the sensor and is basically the separation

between the means of the two Gaussians. Each of the two Gaussians can have a different

spread which also varies for various sensor types. The thin red line represents a hard
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Figure 2.2: Typical sensor model characterstics.

threshold Ts. If we assume that all the containers with readings below Ts are labelled

bad and all the containers with readings above Ts are labelled good, then as shown

in the figure, the yellow region would represent the probability of correct detection of

good containers for sensor s. Similarly, the green region would represent the probability

of correct detection of bad containers for s. Likewise, the blue and the purple regions

respectively give the probabilities of false negative and false positive for s1. Therefore,

trivially,

Ps=0|0 + Ps=1|0 = 1 (2.2)

Ps=1|1 + Ps=0|1 = 1 (2.3)

2.3 Sensor Thresholds

As mentioned in the previous section, every sensor s is associated with a hard threshold

Ts. The variation of sensor thresholds obviously impacts the overall cost of the tree.

While sensor characteristics are a function of design and environmental conditions, the

thresholds can, at least in principle, be set by the decision maker. However, throughout

our work, we restrict multiple sensors of the same type in a tree to have identical

thresholds. Although this assumption is quite realistic, even in the absence of such

assumption the optimization techniques discussed further in this chapter should still,

1A part of the green region overlaps with the purple one. Basically, the entire region inside the
second Gaussian on the right side of the threshold should be considered green. Similarly, the entire
region inside the first Gaussian to the left of the threshold should be considered yellow.
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in principle, be applicable. Mathematically, for any given tree τ , a set of optimum

thresholds can be defined as a vector of threshold values that minimizes the overall cost

function f(τ) for that tree. Anand et. al. [1] describe the outcomes of experiments in

which individual sensor thresholds are incremented in fixed-size steps in an exhaustive

search for optimal threshold values, and trees of minimum cost are identified. For

example, for number of sensors types, n = 4, [1] reported 194, 481 experiments leading

to lowest cost trees, with the results being quite similar to those obtained in experiments

in [31]. Unfortunately, the methods do not scale and quickly become infeasible as the

number of sensor types increases.

2.4 Optimum Threshold Computation

One of the aims of our work is to calculate the optimum sensor thresholds for a tree

more efficiently and avoid an exhaustive search over a large number of threshold values

for every sensor. The exhaustive search method suffers from a lot of drawbacks like

a large search step size and limited range of search. Apart from this, the exhaustive

search algorithm grows exponentially in computational time with the number of sensors,

hence making it practically infeasible to go beyond a very small number of sensors. To

deal with these drawbacks, we implemented various standard algorithms for nonlinear

optimization problems. We note that the objective function, f(τ) is expected to be

multimodal with respect to the various sensor thresholds. We used random restarts to

address this concern. In the next two sub-sections we describe a couple of standard

algorithms for solving non-linear optimization problems being applied to our problem.

We also explain how these algorithms suffer from some limitations. To address these

limitations, in the third sub-section, we come up with a novel, combined method for

obtaining the optimum thresholds. For more details about these methods please see

[24].
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2.4.1 Gradient Descent Method

Gradient descent method or steepest descent method is one of the most famous tech-

niques to solve optimization problems. To find a local minimum of a function using

gradient descent, we takes steps proportional to the negative of the gradient of the func-

tion at the current point. In this method we form a vector of thresholds by randomly

picking a threshold value for each sensor within some fixed range. Further, we find the

partial differentials of the total cost function f(τ), (e.g., see Equation 2.1), with respect

to each sensor threshold Ts, and form their vector ∂f by evaluating each of those partial

differentials at the threshold values selected above. Therefore,

∂f =
[
∂f

∂Ta

∂f

∂Tb
· · · ∂f

∂Tsn

]T
. (2.4)

The threshold vector is then updated using the equation:

T = T− λ∂f (2.5)

where λ is a very small, fixed step size. By doing this iteratively, we perform a gradient

descent on the overall cost function, f(τ) towards its minimum. The following algorithm

describes this method.

Algorithm 1 Gradient Descent Method for Optimum Threshold Computation

1 Initialize Tstart as a vector of random threshold values
2 T← inf
3 while |T−Tstart| > 0.001 of Tstart, do
4 T← Tstart

5 Compute ∂f
6 Tstart ← Tstart − λ∂f
7 end while
8 Output Topt ← T

As we can see, algorithm depends mainly on the choice of the step size λ. The

method is quite effective at limiting the exponential growth of computation with in-

creasing number of sensors. Also, it usually gives a minimum lower than the exhaustive

search method due to much finer resolution in step size. For our experiments with 3
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and 4 sensor trees, λ = 10−4 gave fairly good results with convergence achieved in a few

hundred iterations. However, it suffers from the usual drawback of choosing the step

size heuristically. If the step size is very small, the algorithm might take a long time to

converge to the optimum solution. If it is too big, we may never hit the minimum at

all.

2.4.2 Newton’s Method

To eliminate the problem of setting the value of λ heuristically, we search for the

minimum cost by using Newton’s optimization method. In this method, the constant

step size λ is replaced by the inverse of the Hessian matrix Hf(τ). The Hessian matrix

is a square matrix of second order partial derivatives of the overall cost function f(τ).

Since all the second derivatives of f(τ) are continuous over the sensor thresholds, the

Hessian matrix for our problem is symmetric and is given by:

Hf(τ) =



∂2f

∂T 2
a

∂2f

∂Ta∂Tb
· · · ∂2f

∂Ta∂Tsn

∂2f

∂Tb∂Ta

∂2f

∂T 2
b

· · · ∂2f

∂Tb∂Tsn

...
...

. . .
...

∂2f

∂Tsn∂Ta

∂2f

∂Tsn∂Tb
· · · ∂2f

∂T 2
sn


(2.6)

Other than that, as shown following, the algorithm is quite similar to the gradient

descent method.

Algorithm 2 Newton’s Method for Optimum Threshold Computation

1 Initialize Tstart as a vector of random threshold values
2 T← inf
3 while |T−Tstart| > 0.001 of Tstart, do
4 T← Tstart

5 Compute ∂f
6 Tstart ← Tstart − [Hf(τ)]−1∂f
7 end while
8 Output Topt ← T

Though the computation of the Hessian matrix is a little expensive and tedious, the

method quickly converges in fewer iterations than the gradient descent method. The



13

convergence of this method depends largely on the starting vector Tstart. Since an

absolute prior knowledge of the neighborhood of the minimum is absent, this method

occasionally drifts in the wrong direction and hence fails to converge.

2.4.3 A Combined Method

For the above algorithm to converge to a minimum, it is required that the Hessian

matrix Hf(τ) is a positive definite and well-conditioned matrix. But in practice, it

might not be the case. Therefore, we explored alternative approaches to computing

positive definite approximations to Hf(τ). These methods involve modified Cholesky

decomposition schemes and have been nicely summarized by [16]. For example, a

naive way to convert a non-positive definite matrix into a positive definite matrix is

to decompose it to LDLT (where L is a lower triangular matrix and D is a diagonal

matrix) form and then make all the non-positive elements of D positive. This crude

approximation may result in the failure of factorization of the new matrix or make it

very different from the original matrix. Therefore to address this issue more reasonably,

we use a modified LDLT factorization method from [18] which incorporates small error

terms in both L and D at every step of factorization. Further, if the Hessian matrix

Hf(τ) is ill-conditioned, we take small steps towards the minimum using the gradient

descent method until it becomes well-conditioned. In this way we try to combine the

advantages of both gradient descent and Newton’s method. The following algorithm

summarizes the final scheme for finding the optimum thresholds.

Algorithm 3 A Combined Method for Optimum Threshold Computation

1 Initialize Tstart as a vector of random threshold values
2 T← inf
3 while |T−Tstart| > 0.001 of Tstart, do
4 T← Tstart

5 Compute ∂f
6 Compute Hf(τ)
7 if Hf(τ) is not positive definite, then
8 Make Hf(τ) positive definite
9 end if
10 if Hf(τ) is well-conditioned, then
11 Tstart ← Tstart − [Hf(τ)]−1∂f
12 else
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13 Tstart ← Tstart − λ∂f
14 end if
15 end while
16 Output Topt ← T

2.5 Brief Summary

As we saw in this chapter, these optimization techniques provide better ways to converge

to the set of optimum thresholds for each sensor. Using these techniques, the problem

of calculating optimum thresholds only increases linearly with the increasing number of

sensor types as opposed to its exponential growth using the exhaustive search method

(in a fixed range and a fixed step size). Also, these optimization techniques work on any

given binary decision tree irrespective of any theoretical limitation(s) on their structure,

which we impose in the next chapter.
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Chapter 3

Completeness and Monotonicity

In this chapter, we discuss some of the theoretical restrictions applied on the structure

of binary decision trees. We will also prove how these restrictions suit our sensor model.

The total number of binary decision trees that can be generated for a given number

of sensor types increase very rapidly with the increasing number of sensor types. For

n sensor types, the number of Boolean Decision Trees (BDTs) is given recursively by

Nn = 2 + nN2
n−1. For more details on this please see [31]. Table 3.1, Column 2 shows

the total number of BDTs for n = 2, 3, 4, and 5. It becomes practically infeasible

even to enumerate all trees for n = 5. In the following sections we first explain the

restrictions applied by Stroud and Saeger [31] on Boolean decision functions (BDFs).

Then, due to various reasons, we extend these restriction beyond Boolean functions to

BDTs themselves.

3.1 Complete and Monotonic Boolean Decision Functions

According to Stroud and Saeger [31], BDTs representing only a “complete” and “mono-

tonic” Boolean function, correspond to the potential best (cheapest) trees. Their claim,

although quite intuitive, lacks a proof. But, they are able to get a significant amount of

reduction in the number of “feasible” Boolean functions (see [31]) and hence the total

number of BDTs. Table 3.1, shows some of the numbers for n = 2, 3, 4, and 5. Column

2 shows the total of number of BDTs possible, while Column 3 shows the number of

complete and monotonic (CM) Boolean functions and Column 4 shows the total number

of possible BDTs that correspond to these CM Boolean functions.
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Number of Number of Number of Number of BDTs
Sensor Types Distinct BDTs CM BDFs from CM BDFs

2 74 2 4
3 16,430 9 60
4 1,079,779,602 114 11808
5 5 x 1018 6894 263,515,920

Table 3.1: Number of complete and monotonic Boolean functions for 2, 3, 4 and 5
sensor types.

3.1.1 Complete BDFs

A Boolean decision function is called complete if all attributes contibute towards the

output. However, a more formal definition could be stated by defining “incomplete”

trees as follows.

Incomplete BDFs. A Boolean decision function F over n attributes will be called

incomplete if F can be calculated by finding at most n− 1 attributes and knowing the

value of the input string on those attributes. The function F will be called complete if

all the attributes contribute towards the output.

Therefore, if we list out the function output for all different combinations of input

attribues, then for every attribute, switching the attribute value (from 0 to 1 or vice-

versa) should flip the output at least once.

3.1.2 Monotonic BDFs

The definition of monotonic Boolean functions is a little trickier than that of complete

Boolean functions.

Monotonic BDFs. Given two strings of input attributes, x1, x2, ..., xn & y1, y2, ..., yn

such that xi > yi ∀ i ∈ {1, n}, a Boolean decision function F over these attributes will

be called monotonic if and only if F (x1, x2, ...xn) > F (y1, y2, ..., yn). In simpler words,

if F (x1, x2, ...xn) = 1 and F (y1, y2, ..., yn) = 0 (given, xi > yi ∀ i ∈ {1, n}), then F is

monotonic.
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3.2 Complete and Monotonic Binary Decision Trees

We propose here definitions of monotonicity and completeness for BDTs themselves

rather than limiting them to just the Boolean functions whence the trees are derived.

We do this because of two reasons. Firstly, unlike Boolean functions, binary decision

trees may not always consider all individual sensor outputs to give a final classification

and hence incomplete and/or non-monotonic Booleans functions can in fact lead to

useful trees. Therefore, it seems more natural to apply restrictions on the structure

of BDTs and not the Boolean functions. Secondly, as we describe in Chapter 4, we

apply various techniques to “search” for the optimum trees, instead of enumerating all

of them and sometimes enlarging the “space” of objects to search can lead to more

efficient search algorithms.

3.2.1 Complete BDTs

Consider, as an example, the Boolean function and its corresponding BDT’s in Figure

3.1. The Boolean function is incomplete since the function does not depend on the

attribute a. However, trees (i) and (ii), while representing the incomplete function

faithfully, are themselves potentially viable trees with no redundancies present. Trees

(iii) and (iv) on the other hand, are problematic insofar as they each contain identical

subtrees at a. Sensor a is redundant in tree (iii) and tree (iv). Such considerations lead

to the following definition of complete BDT.

Complete BDTs: A binary decision tree will be called complete if every sensor (at-

tribute) occurs at least once in the tree and, at any non-leaf node in the tree, its left

and right sub-trees are not identical.

3.2.2 Monotonic BDTs

Next consider the Boolean function and its corresponding BDTs in Figure 3.2. The

Boolean function is not monotonic - when b = 1 and c = 0, then a = 0 yields an

output of 1 whereas a = 1 yields an output of 0. Except for tree (i), the corresponding

trees also exhibit this non-monotonicity because in all of those trees, there is a right
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Figure 3.1: A Boolean function incomplete in sensor a, and the corresponding decision
trees obtained from it.

arc from a to 0 or a left arc from a to 1 or both. However, tree (i) has no problems

and might well be a useful tree. Thus, we have the following definition of monotonic

BDTs.

Monotonic BDTs. A binary decision tree will be called monotonic if all leaf nodes

emanating from a left branch are labeled 0 and all leaf nodes emanating from a right

branch are labeled 1.

Figure 3.2: A Boolean function non-monotonic in sensor a, and the corresponding
decision trees obtained from it.

3.3 A Few Trivial Proofs

In this section we prove some of the things related to complete and monotonic BDTs.

We claim to “expand” the space of BDTs derived from complete and monotonic Boolean
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functions to complete and monotonic trees. Therefore, we prove that all the trees that

were initially there in Stroud and Saeger’s [31] analysis are still present in our space of

trees. We also justify the completeness and monotonicity constraints by showing that

an incomplete or non-monotonic tree cannot potentially be a best tree.

Theorem 3.1. All binary decision trees corresponding to complete Boolean functions

are complete.

Proof: Let F be a complete Boolean function over n attributes. Then, according to

the definition of complete Boolean function, its output (at least once) should depend

on every attribute. That means that for any attribute s, there must exist a set of input

attribute values in which switching only the value of s (either from 0 to 1 or vice-versa)

should change the output of the Boolean function. That clearly implies that in a BDT

obtained from this Boolean function, there must be at least one instance of s where

its ouputs to left and right correspond to complementary overall outputs. Therefore,

it means that the presence of attribute s in that tree is not redundant and hence the

tree is complete in attribute s. A similar reasonig proves that the tree is complete in

all other attributes.

Theorem 3.2. All binary decision trees corresponding to monotonic Boolean functions

are monotonic.

Proof: We prove this theorem by contradiction. Let F be a monotonic Boolean function

over n attributes. Let τ be a non-monotonic BDT, non-monotonic in attribute s with

F as its Boolean function. Now, if that is the case, then somewhere in the tree, one of

the following must exist: (i) there is a 1 to the left of s, (ii) there is a 0 to the right of

s or (iii) there is a 1 to the left of s and a 0 to the right of s. Now, in case (i) there

must be a 0 leaf somewhere down in the right subtree of s and similarly, in case (ii)

there must a 1 leaf somewhere down in the left subtree of s. Therefore, in all the three

cases, there must be (at least one) set of attribute values, in which switching the value

of only attribute s from 0 to 1, would switch the overall output of the tree from 1 to
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0. In terms of Boolean function, this would mean that there exist a set of attribute

values wherein switching just the value of attribute s from 0 to 1 changes the output

of Boolean function from 1 to 0. Clearly, this would imply that the Boolean function

is non-monotonic in attribute s which is contradictory to what we assumed about F .
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Chapter 4

Searching Through the Generalized Tree Space

By generalizing the idea of completeness and monotonicity to BDTs, in the newer

space of trees, the number of trees increase even more rapidly than in the space of

trees from complete and monotonic Boolean functions. For example, for n = 3 we now

have 114 complete and monotonic trees instead of 60 trees from complete and monotonic

Boolean functions. Similarly, for n = 4, we now have 66,600 trees as compared to 11,808

trees earlier and for n = 5, we now have more than 22.5 billion trees as compared to

263,515,920 trees earlier. Therefore, it becomes practically infeasible to enumerate all

trees and check each one’s cost beyond n = 4. Therefore, in this chapter we introduce a

notion of “neighborhood” of the trees in the tree space. We then propose to “search” for

the optimum trees using the algorithms described in the later sections of the chapter.

4.1 Tree Neighborhood and Tree Space

Expanding the space of trees in which to search for a cost-minimizing tree to the space

of complete, monotonic trees, “CM tree space” can be beneficial. While finding a cost-

minimizing tree in CM tree space also presents a significant computational challenge as

the number of sensors increases, we are able to address this challenge via heuristic search

strategies that build on notions of neighborhoods in this space. Chipman et al. [9] and

Miglio and Soffritti [26] provide a comparison of various definitions of neighborhood

and proximity between trees. Also, Chipman et al. [8] describe methods to traverse

the tree space and in what follows we develop a similar approach. We define neighbors

in CM tree space via the following four kinds of operations on a tree.

• Split: Pick a leaf node and replace it with a sensor that is not already present in

that branch, and then insert arcs from that sensor to 0 and to 1.
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• Swap: Pick a non-leaf node in the tree and swap it with its parent node such that

the new tree is still monotonic and complete and no sensor occurs more than once

in any branch.

• Merge: Pick a parent node of two leaf nodes and make it a leaf node by collapsing

the two leaf nodes below it, or pick a parent node with one leaf node, collapse both

of them and shift the sub-tree up in the tree by one level. In both the operations

the resultant tree should still be complete and monotonic.

• Replace: Pick a node with a sensor occurring more than once in the tree and

replace it with any other sensor such that no sensor occurs more than once in any

branch.

Figure 4.1 shows an example of neighboring trees obtained from these operations for a

particular tree. Please note that the average number of neighbors for a tree increases

with the number of sensor types.

4.1.1 Proof for the Tree Space Irreducibility for n > 2

Let τn represent the entire space of CM trees in n sensors. We will prove that any

tree τ2 in τn can be obtained from any other tree τ1 in τn by an arbitrary sequence

of neighborhood operations (split, swap, merge, and replace). First, we will define the

notion of a simple tree. Then we will show that given τ1, we can get from this tree to

some simple tree σ1 by these neighborhood operations. Similarly, we can get from τ2 to

some other simple tree σ2. Next we show that any simple tree can be reached from any

other simple tree by these operations and therefore we can reach σ2 starting from σ1.

It is easy to see that the entire process of getting from an arbitrary tree to a simple tree

is exactly reversible. For example, any split operation can be reversed using a merge

operation and since, as we will see, we only merge nodes with both children as leaves,

the converse is also true. The swap and replace operations can be reversed by opposite

swap and replace operations, respectively. Thus, we see that we can get from σ2 to τ2

using the steps to reach τ2 from σ2 in the exact reverse order. Therefore, putting the

three pieces together, we can go from τ1 to σ1 to σ2 to τ2. However, this proof is only
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Figure 4.1: An example of notion of neighborhood.
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valid for n > 2. For n = 1, the tree space consists of just one tree and hence the notion

of tree neighborhood does not exist. For n = 2, there are just four trees in the space

and the space is not irreducible under the neighborhood operations. For convenience

in understanding, we will use one single example (Figure 4.6) that covers all the three

pieces in τ6. Figure 4.2 shows the starting tree τ1 and the destination tree τ2 used in

the example.

Figure 4.2: An example of a start tree and a destination tree in τ6.

Simple tree. A simple tree is defined as a complete and monotonic decision tree in which

every sensor occurs exactly once in such a way that there is exactly one path (called

the “essential path”) in the resultant tree with all sensors in it. For example, Figure

4.3 shows a few examples of simple trees for n = 4.

Figure 4.3: A few examples of simple trees.

We prove that we can reach some simple tree from any arbitrary tree. While we

prove that, we will make frequent use of an algorithm called “smartMerge” which is used

to merge (in the sense of repeated neighborhood operations) the left or right subtree of

a given tree, in such a way that after every step in this algorithm, the resultant tree is

complete and monotonic, i.e., every intermediate tree belongs to τn. First we describe
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the types of problems associated with subtree merger and then we describe the details

of the smartMerge algorithm. Later, we will describe how to use this algorithm to arrive

at a simple tree from any arbitrary tree by iterative removal of subtrees at different

depths in the tree.

The repeated merger of nodes to remove a subtree in a tree is non-trivial since we

cannot merge a node that would lead to the overall tree becoming incomplete at a

certain node. If we remove a sensor of depth k with both the child nodes as leaves,

there is at most one of k−2 nodes (starting from the k−2 depth node in the same path,

upwards till the root node) where the resultant tree can become incomplete. In other

words, there can be at most one of k− 2 nodes in the resultant tree, whose left subtree

would become exactly identical to the right subtree after the removal, thus resulting in

an incomplete tree which may not belong to τn. This is so, because after we remove

the sensor at depth k and insert a leaf there, the tree cannot become incomplete at

that leaf. Also, since we always insert an appropriate leaf (0 if the sensor is a left

node, 1 otherwise) after removing a sensor, the tree cannot become incomplete at the

parent node of the new leaf. Also, we can merge a sensor only if that sensor is present

at some other place(s) in the tree, so that the resultant tree is still complete in n

sensors after the merger. Therefore, if we merge such a sensor, the presence of another

instance of that sensor at some other place in the tree guarantees that there is one of

the k − 2 nodes where the tree cannot become incomplete after the merger. Now we

can deduce that there can be at most one out of k − 3 nodes in the tree where a tree

can become incomplete. However, in general, we still need to inspect all k − 2 nodes

for completeness. Figure 4.4 shows an example of a tree where removal of the sensor d

from the leftmost branch of the tree results in the tree becoming incomplete in a higher

sensor b (circled). Notice that since d is also present at other places in the tree, the

tree cannot become incomplete in sensor a (circled) after we remove sensor d.

smartMerge Algorithm. Let τ represent a tree in τn and let τsub1 and τsub2 be the

two subtrees at its root node. Further, let us assume that we want to merge τsub1

and retain τsub2. Let the maximum depth of τsub1 be k (as measured from the root

node in τ). We then propose to merge the deepest node n1k in τsub1 first. As argued
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Figure 4.4: An example of a tree where removal of sensor d from the leftmost branch
of the tree will result in a tree which is incomplete in sensor b (circled).

above, there are k− 2 nodes that need to be checked for completeness. If a subtree (in

τsub1) at depth r, denoted by τr1 and containing n1k becomes identical to its sibling

subtree τr2 after the removal of n1k, then we can not merge n1k. Instead, if n1k has

a sibling node, n2k (obviously it would also be at depth k), we try removing its exact

counterpart, n′2k in τr2. Again in this case, we need to check at most k − 2 nodes in

the tree for completeness, but we know for sure that at least τr1 cannot be identical to

τr2 after the removal of n′2k because of the presence of n1k in τr1. Therefore, there are

just k−3 nodes that we need to check for the completeness constraint for the proposed

removal of n′2k. If the sibling of n1k is a leaf and its parent node is m1k, then we try

removing its counterpart m′2k in τr2. In this case, again we need to check k − 3 nodes

for completeness constraint. By continuing in this fashion for t such steps, suppose we

reach a node n1p (k − t ≤ p ≤ k). At this point there will be at most k − t − 2 nodes

to check for completeness for the proposed removal of n1p. Suppose that the removal

of n1p results in the tree becoming incomplete at certain higher node at depth s. Then

according to our algorithm, if n2p is the sibling node of n1p, we will try to merge its

counterpart node n′2p (with (k− t− 2)− 1 completeness constraints) in σ2. But, if both

the children of n′2p are non-leaf nodes, we do not merge n′2p. In that case we try to

merge the deepest node in the subtree whose root node is n′2p. If the depth of that node

is q (p ≤ q ≤ k), then we have at most (k− t− 2)− 1 + (q− p) completeness constraints

for the removal of that node. Therefore, even in the worst case, when p = k − t and

q = k, (k − t − 2) − 1 + (q − p) = (k − t − 2) − 1 + (k − (k − t)) = k − 3. Therefore,

by continuing in this fashion, we can reach, by induction, to a node which requires
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(k − k) = 0 nodes to be checked for completeness, and hence can be merged without

making the tree incomplete in any node. After that, we repeat this procedure again to

one of the deepest node of the subtree that we want to merge, until the entire subtree

is merged. Next, let us consider the special case when r = 1 (that is τr2 = τsub2). An

interesting point to note here is that during the entire procedure of merging τsub1, this

situation can occur at most once. This is so because τsub2 is retained completely during

the entire procedure while nodes from τsub1 are continuously removed. Therefore, τsub1

can become exactly identical to τsub2 only when the number of nodes in τsub1 is equal

to that in τsub2. However, the way we merge a subtree takes care that such a situation

never happens. For example, we always merge a subtree that has fewer nodes in it than

the other. This will become clearer from discussion later in this section. The following

pseudocode summarizes the smartMerge algorithm.

Algorithm 4 smartMerge

1 Initialize n1k ← maximum depth node in τsub1

2 while τsub1 is not a leaf node, do
3 flag delete ← TRUE
4 for r = 1 to k − 2 in the path containing n1k, do
5 if τr1 = τr2, then
6 if n′2k (the counterpart node of the sibling node of n1k), exists, then
7 k ← q (maximum depth in τn′2k

)
8 n1k ← n′2q

9 else
10 k ← k − 1
11 n1k ← m′2k (the counterpart node of the parent node of n1k)
12 end if
13 flag delete ← FALSE
14 break
15 end if
16 end for
17 if flag delete = TRUE
18 merge n1k

19 n1k ← maximum depth node in τsub1

20 end if
21 end if

For reducing any given arbitrary tree to some simple tree, we start at the root node,

merge one of its left or right subtrees (using smartMerge) and then repeat the same

procedure on the next deeper node and so on until we reach a leaf node. By doing this
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iteratively, we can guarantee to arrive at a simple tree σ1. Let sk be the current sensor

whose subtree we want to merge where k is the depth of sk, such that 1 ≤ k ≤ n. k = n

means that both the children of sk are leaves and hence we do not need to merge. For

1 ≤ k < n one of following cases must be true:

Case 1: Both left and right subtrees are complete in n − k sensors: In this case,

the removal of any of the subtrees will not affect the completeness of the overall tree.

Therefore we use the smartMerge algorithm to merge the subtree which has fewer nodes

in it. If both the subtrees have equal number of nodes, then we can merge any one of

the two.

Case 2: One of the left and right subtrees is complete in n− k sensors: In this case,

since one of the subtrees is complete in n−k sensors, we can be sure that the removal of

the other subtree will not affect the overall completeness of the tree. Therefore we use

the smartMerge algrithm to merge the subtree which is not complete in n− k sensors.

Case 3: None of the left and right subtrees is complete in n−k sensors: In this case,

we cannot merge any one of the subtrees until we make sure that the other subtree is

made complete in n − k sensors. Therefore, we select to retain the subtree which has

a larger number of different sensors in it. If both the subtrees have an equal number

of different sensors, then we choose to merge the subtree that has fewer nodes. If the

two subtrees have equal number of different sensors and equal number of nodes, we

can merge any one of those two subtrees. Before doing that, we iteratively insert the

remaining sensors at one of the deepest nodes of the subtree that we decide to retain,

till that subtree is complete in n − k sensors. Then we use the smartMerge algorithm

to merge the other subtree. Figure 4.6 (trees numbered (1) through (23)) shows an

example of obtaining a simple tree from an arbitrary tree in τ6 by repeated use of the

smartMerge algorithm.

Finally, we prove that any simple tree σ2 in τn can be reached from any other simple

tree σ1 in τn using the four operations repeatedly. Let P1 and P2 be the essential paths
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of simple trees σ1 and σ2 respectively, where:

P1 = s1
d1−→ s2

d2−→ . . .
dn−1−→ sn

P2 = s′1
d′1−→ s′2

d′2−→ . . .
d′n−1−→ s′n

where s1, s2, . . . , sn are sensors at depth 1, 2, . . . , n in the essential path of σ1 and

s′1, s
′
2, . . . , s

′
n are sensors at depth 1, 2, . . . , n in the essential path of σ2. Also, D1 =

{d1, d2, . . . , dn−1} and D2 = {d′1, d′2, . . . , d′n−1} are direction (n − 1)-tuples such that

di, d
′
i ∈ {Left,Right}, i = 1, . . . , n. Also, we use di to denote the direction comple-

mentary to di, that is, di = Left ⇔ di = Right and vice-versa. Lastly we say that

D1 = D2 ⇔ di = d′i, i = 1, . . . , n.

In order to go from σ1 to σ2, we first modify σ1 such that D1 = D2 Let k be an

integer such that 1 ≤ k ≤ n and

di =


d′i if 1 ≤ i < k

d′i if i = k and k < n

Note that if k = n (i.e. D1 = D2), then σ1 can be transformed to σ2 only by repeated

use of swap operation. If k = n− 1, then D1 differs from D2 only in dn−1. In this case

we temporarily add sn towards d1 at s1, then merge sn from P1, re-insert sn towards

dn−1 at sn−1 and finally merge sn from d1 at s1. Lastly, if k < n−1, we add sn towards

d′k at sk (because dk = d′k) and merge sn from P1. We then add sn−1 at sn towards

d′k+1 and merge sn−1 from P1. We repeat this procedure for all k ≤ i < n − 1 until

D1 = D2. After that we rearrange the sensors in σ1 using repeated swap operations so

that σ1 becomes exactly identical to σ2. Figure 4.5 and Figure 4.6 (trees numbered (23)

through (42)) show an example of the method described above. In this way, we prove

that any simple tree can be reached from any other simple tree, using neighborhood

operations repeatedly in τn.

Figure 4.6 (trees numbered (42) through (55)) also shows an example of reaching

to an arbitrary tree from a simple tree. Notice that all the steps in this sequence are
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Figure 4.5: An example showing that any simple tree can be reached from any other
simple tree using the four neighborhood operations repetitively. The first tree in the
chain is σ1 and the last one is σ2.

reversible, hence showing that the entire smartMerge algorithm is exactly reversible.

This completes the proof.

4.2 Tree Space Traversal

We have explored alternate ways to search for a minimum cost trees in the entire CM

tree space. In this section we describe two such methods. Please see [24] and [25] for

more details about these algorithms.

4.2.1 The Stochastic Search Method

Our initial approach to search for the minimum cost trees using the the above men-

tioned neighborhood operations was a simple greedy search - randomly start at any

arbitrary tree in the space, find its neighboring trees using the above operations, move

to the neighbor with the lowest cost, and then iterate. As expected, however, the cost

function is multimodal and the greedy strategy gets stuck at local minima. For exam-

ple, there are 9 modes in the entire space of 114 trees for 3 sensors and 193 modes in the

space of 66,600 trees for 4 sensors. To address the problem of getting stuck in a local



31

Figure 4.6: An example showing that any arbitrary tree in τ6 can be reached from
any other arbitrary tree using the four neighborhood operations repeatedly. The sensor
marked * in every tree is subject to a neighborhood operation while the circled sensors
show a possible conflict with completeness constraint.



32

minimum, we developed a stochastic search algorithm coupled with simulated anneal-

ing. The algorithm is stochastic insofar as it selects moves according to a probability

distribution over neighboring trees. The simulated annealing aspect involves a so-called

“temperature” t, initiated to one and lowered in discrete unequal steps after every m

hops until we reach a minimum. Specifically, if we are at the ith tree τi, then the

probability of going to its kth neighbor, denoted τik, is given by the following equation.

Pki =
(f(τi)/f(τik))1/t∑ni

j=1 (f(τi)/f(τ)ij)
1/t

(4.1)

where f(τi) and f(τij) are the costs of trees τi and τij , respectively and ni is the

number of trees in the neighborhood of τi. Therefore, as the temperature is decreased,

the probability of moving to the least expensive tree in the neighborhood increases.

The following algorithm describes the stochastic search method for finding minimum

cost trees.

Algorithm 5 Stochastic Search Method using Simulated Annealing

1 for p = 1 to numberOfStartPoints do
2 t← 1
3 numberOfHops ← 0
4 currentTree ← random(allTrees)
5 do
6 Compute ci
7 neighborTrees ← findNeighborTrees(currentTree)
8 for all 1 ≤ k ≤ ni do
9 Compute cik
10 Compute Pki

11 end for
12 currentTree ← random(neighborTrees, Pki)
13 numberOfHops ← numberOfHops +1
14 if numberOfHops = m then
15 t← t−∆t
16 numberOfHops ← 0
17 end if
18 while ci > cik ∀ 1 ≤ k ≤ ni

19 end for
20 Output lowest cost tree over all p
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4.2.2 Genetic Algorithms based Search Method

We have also used a genetic algorithm (GA) based approach to search CM tree space.

The underlying concept of this approach is to obtain a population of “better” trees from

an existing population of “good” trees by performing three basic genetic operations on

them - Selection, Crossover, and Mutation. In our application, “better” decision trees

correspond to lower cost decision trees than the ones in the current population. As

we keep on generating newer generations of “better” trees (or currently best trees),

the gene pool, genePool, keeps on increasing in size. We describe each of the genetic

operations in detail below. The use of GAs to explore tree spaces was also considered

by Papagelis and Kalles [28] and Fu [17].

1. Selection: We select an initial population of trees, bestPop, randomly out of the

CM tree space to form a gene pool. We always maintain a population of size N of

the lowest cost trees out of the whole population for the crossover and mutation

operations.

2. Crossover: The crossover operations are performed between every pair of trees in

bestPop. For each crossover operation between two trees τi and τj , we randomly

select nodes s1 and s′1 in τi and τj respectively and replace the subtree τis1 (rooted

at s1 in τi) with τjs′1 (rooted at s′1 in τj). A typical crossover operation is shown

using the example in Figure 4.7.

We randomly perform these crossovers repeatedly, resulting in k distinct trees (or

all distinct trees k′ if k′ < k) from a pair of trees. However, we impose some

restrictions on the random selection of the nodes to make sure that the resultant

tree obtained after the crossover operation also lies in the CM tree space. For

example, if τis1 is a right subtree, then τjs′1 cannot be a 0 leaf. Similarly, if τis1

is a left subtree, then τjs′1 cannot be a 1 leaf. These restrictions ensure that the

resulting tree would also be a monotonic tree. To make sure that the resulting

tree is complete, we impose two restrictions: the sibling subtree of τis1 , which is

denoted by τis2 , should not be exactly identical to τjs′1 and τjs′1 should have all

the sensors which the tree τi would lack, once τis1 is removed from it. In other
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Figure 4.7: An example of the crossover operation.

words, the tree resulting from the crossover operation should have all the sensors

present in it.

3. Mutation: The mutation operations are performed after every m generations of

the algorithm. We do two types of mutations. The first type of mutation operation

consists of generating all the neighboring trees of the current best population of

trees using the four neighborhood operations described earlier and putting them

into the gene pool. The second type of mutation operations consists of replacing(
1
M

)
th of the trees in bestPop with random samples from the CM tree space which

are not in the gene pool, therefore increasing the probability of generating trees

that are quite different from the ones in the current gene pool.

The following algorithm explains the GA based search method for finding the minimum

cost trees.

Algorithm 6 Genetic Algorithms based Search Method

1 Initialize bestPop ← generateTreesRandomly(N)
2 Initialize genePool ← bestPop
3 Initialize lastMutation ← 0
4 for p = 1 to totalNumberOfGenerations do
5 for all τi, τj ∈ bestPop, i 6= j
6 GATrees ← generateGATreesRandomly(τi, τj , k)
7 genePool ←genePool

⋃
GATrees

8 end for
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9 bestPop ← selectBestTrees(genePool, N)
10 lastMutation ←lastMutation + 1
11 if lastMutation = m then
12 for all τ ∈ bestPop do
13 neighborTrees ← findNeighborTrees(τ)
14 genePool ←genePool

⋃
neighborTrees

15 end for
16 bestPop ← selectBestTrees(genePool, N)
17 bestPop ← selectBestTrees(bestPop, N −N/M)
18 bestPop ←bestPop

⋃
generateTreesRandomly(N/M)

19 genePool ←genePool
⋃

bestPop
20 lastMutation ← 0
21 end if
22 end for
23 Ouput bestPop
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Chapter 5

Shrinking the Tree Space

As we have commented earlier, the number of trees increase more than double expo-

nentially with the number of sensors types. In Chapter 3 we looked into the notions of

monotonicity and completeness. We noticed that these notions are theoretical assump-

tions to lower the number of potentially cheap trees by an appreciable factor. Further,

in Chapter 4 we molded the problem for finding the optimum tree as a search problem

through a space of trees which is irreducible under the defined neighborhood operations.

Also, we discussed GA based algorithms as another experimental technique to enable

us to search for the optimum tree(s) by evaluating as fewer number of trees as possible.

In this chapter we look at yet another theoretical aspect of the trees. We introduce

the ideas of “equivalence” of two or more trees and the “irreducibility” of a BDT and

try to show how these ideas help us reduce the tree space into the space of classes

of equivalent trees. We also do a more rigorous theoretical analysis of the definitions

of completeness and monotonicity. Later, we modify and apply the search algorithms

discussed in Chapter 4 on the space of equivalence classes of trees. The experimental

results of this chapter together with those from the previous chapters are combined

together and presented in Chapter 6.

5.1 Tree Equivalence

Equivalence of decision trees is an interesting property and has been discussed quite

extensively in [11], [22] and [32]. In general, equivalence of two or more decision trees

corresponds to their being “decision-equivalent”. We, on the other hand, are interested

in a definition of equivalence that results in smaller equivalence classes. We obtain this

subclass by putting an additional cost constraint on definition of decision equivalent
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trees and hence define the “cost-equivalence” of two or more decision trees. In the

following sub-sections, we describe both the notions of equivalence. Later, we also

define a canonical representation for the class of cost-equivalent decision trees.

5.1.1 Decision Equivalent BDTs

Most of the machine learning literature that talks about equivalence classes of decision

trees, focuses its interest on two or more trees being decision-equivalent. For exam-

ple, [32] defines the concept of equivalence for trees as follows: two decision trees are

equivalent if and only if they represent the same hypothesis. Also, [10] and [11] describe

different ways, in which two or more decision trees can be equivalent. Finally, given two

decision trees, [32] also discusses a fast algorithm to establish if they are decision equiv-

alent or not. In other words, two or more decision trees are called decision-equivalent if

their underlying Boolean function is same. That is, two or more decision trees are called

decision-equivalent if and only if they give exactly same outputs for similar sets of input

attribute values. Therefore, under such a setting, it does not matter how the attributes

are arranged relative to each other in a tree, all that matters is the final output of the

tree. However, in our case, since the attributes are sensors, we need to put an addi-

tional constraint that the threshold value for any sensor should be the same across all

the trees. Figure 5.1 shows an example of the trees that are decision-equivalent to one

another and their Boolean function F (a,b, c) = 00011111 represents the equivalence

class that they belong to. (Please note that we can form many more different trees with

the same boolean function by relaxing the completeness constraint.) Also note that all

these trees are equally “efficient” in their classification (i.e., their misclassification rates

are equal) as long as all the sensors have fixed threshold values across all the trees.

5.1.2 Cost Equivalent BDTs

Decision-equivalent trees, in general, can have different costs because of the difference

of number of sensors and their relative positions across different trees. To extend

the definition of decision-equivalence to cost-equivalence, we put an additional cost
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Figure 5.1: An example of decision-equivalent binary decision trees.

constraint on the trees. Therefore, saying loosely, two or more trees are called cost-

equivalent if and only if they are decision-equivalent and have exactly same costs for

same values of sensor threshold values. This additional constraint gives rise to a very

interesting relationship between the structures of all the trees belonging to the same

cost-equivalence class. To understand this structural relationship between the trees, we

borrow the definition of Transposition from [11]. But before that, we briefly explain the

definitions of a “path” (or “spine”) in a tree and “bag-equivalence” of two paths or two

sets of paths first. We will be using these notions throughout the rest of this chapter.

Path: A path, P in a tree is defined as a sequence of (attribute, output) pairs (starting

from the root node till the last sensor above a leaf node in that branch), together with

the label of the leaf node. Therefore,

P = [((s1, Ys1), (s2, Ys2), ..., (sk, Ysk)) , l] (5.1)

where, si is the ith sensor (attribute) from root, Ysi is the output of the that sensor,

k is the total number of sensors in the path and l is the label of the leaf node. In the

case of attributes with discrete outputs, both Ysi and l belong to a finite set of possible

output values. For example, in our case of binary decision trees, Ysi ∈ {left, right} and

l ∈ {0, 1}. Also, the set of all the paths in a tree is called the path-set and is denoted

by P.

Bag-equivalence: Two paths P 1 and P 2, both of length k, are called bag-equivalent if
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and only if the sets,

{(s1
1, Y

1
s1), (s1

2, Y
1
s2), ..., (s1

k, Y
1
sk)} = {(s2

1, Y
2
s1), (s2

2, Y
2
s2), ..., (s2

k, Y
2
sk)}, and

l1 = l2.

Now, trivially, two path-sets are called bag-equivalent if the above two identities hold

for all the paths in the two sets. Note, however, that two bag equivalent paths may not

be identical because of the different order of sensors in the two paths. Therefore, we

can now define transposition property of two or more trees quite easily as follows.

Transposition: Two (or more) trees are called transposition-equivalent or simply, trans-

poses of each other, if and only if their path-sets are bag-equivalent.

This gives us an alternate and more precise definition of cost-equivalent decision

trees - two or more trees are called cost-equivalent if and only if1 they are transposi-

tion equivalent to one another. (Therefore, we use the terms “cost-equivalence” and

“transposition-equivalence” interchangeably). The proof of this fact is quite intuitive

because the transposition-equivalent trees have bag-equivalent path-sets. Therefore,

their cost functions must be exactly identical to one another and so do their optimum

costs. For example, Figure 5.2 shows an example of two cost-equivalent trees. Notice

that their path-sets are bag-equivalent.

Figure 5.2: An example of cost-equivalent binary decision trees.

The size of a class of cost-equivalent trees varies for different trees in the tree space,

but the size of the largest equivalence class also grows double-exponentially with the

number of sensor types. Since one of the trees belonging to its equivalence class is

1While we state this, we ignore the case where two non-transpose trees might have identical cost
spuriously.



40

sufficient to represent the entire class, we can now have a tree space which consists of

classes of cost-equivalent trees, instead of individual trees themselves. This gives us a

significant potential reduction in the size of the tree space we want to search. However,

we still do not have a unique representation of each of these equivalence classes. Before

we establish a unique, canonical representation of a class of cost-equivalent trees, we

need to look at some other issues, like how a decision tree can be reduced to its min-

imal form and how transpose-equivalence disturbs the definitions of completeness and

monotonicity. We shall do that in the following sections.

5.2 Revisiting Monotonicity

In this section, we will see how the definition of completeness and monotonicity are af-

fected by the concept of transposition. Since the tree space now comprises equivalence

classes of cost-equivalent trees, we now want the definitions of completeness and mono-

tonicity to suit these equivalence classes rather than the trees themselves. For example,

a tree that was considered complete and monotonic earlier, might have a cost-equivalent

tree which is incomplete or non-monotonic or both. Therefore we redefine a monotonic

decision tree as follows. To avoid confusion with the previous definition of monotonicity,

we call this new class of monotonic decision trees as “equi-monotonic” decision trees.

Equi-monotonic Decision Trees. A binary decision tree will be called equi-monotonic if,

in all the trees belonging to its class of cost-equivalent trees, all leaf nodes emanating

from a left branch are labeled 0 and all leaf nodes emanating from a right branch are

labeled 1.

Figure 5.3 shows an example of an equivalence class of trees. Trees (i) and (ii) were

previously considered monotonic, are now considered non-monotonic because they have

an equivalent tree (iii), which is clearly non-monotonic in a.

We now take a closer look at the definition of monotonicity. If we lift the constraint

that every instance of the same sensor in a tree should have identical thresholds, we can

easily prove that a non-monotonic tree in that scenario, can never be an optimum tree.

But before going to the actual proof, we would like to define a “general non-monotonic
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Figure 5.3: An example of equivalence class of trees non-monotonic in sensor a.

tree” formally as follows.

General Non-monotonic Binary Decision Trees. A binary decision tree will be called a

general non-monotonic BDT if different instances of a sensor in that tree can be set to

different thresholds and the tree has at least one sensor whose left leaf node is labeled

1 or whose right leaf node is labeled 0 or both.

Therefore, in the most general case where every instance of a sensor in a tree can

have different threshold.

Theorem 5.1. For a finite values of sensor thresholds, a general non-monotonic binary

decision tree, can never be the cheapest binary decision tree.

Proof: We will start by proving the theorem for a single sensor tree. Consider a

monotonic tree τ ′ with sensor s shown as the left tree in Figure 5.4. Let T ′s be its

current (or even optimum) threshold value. The various detection probabilities of τ ′

are shown in different colors2. Also consider a monotonic counterpart τ shown to

the right. Further, let us assume that we set the value of its threshold, Ts such that

Ps=0|0 = P ′s=1|0 (and Ps=1|0 = P ′s=0|0). Therefore, in Figure 5.4, the area of the yellow

region in (i) is equal to that of the purple region2 in (ii) and similarly the area of the

purple region in (i) is equal to that of the yellow region in (ii). Also notice that there

is a tiny blue region to the left of the threshold in (ii).

2A part of the green region overlaps with the purple one. Basically, the entire region inside the
second Gaussian on the right side of the threshold should be considered green. Similarly, the entire
region inside the first Gaussian to the left of the threshold should be considered yellow.
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Figure 5.4: An example of a one sensor non-monotonic tree and its corresponding
monotonic tree.

For any finite value of the threshold T ′s selected, Ps=0|1 < P ′s=1|1 if we always use the

above mentioned condition to choose the value of Ts. Therefore, the respective cost

functions of τ ′ and τ can be written as follows.

f(τ ′) = P0Cs + P1Cs + P0P
′
s=0|0CFP + P1P

′
s=1|1CFN (5.2)

f(τ) = P0Cs + P1Cs + P0Ps=1|0CFP + P1Ps=0|1CFN . (5.3)

We claim that f(τ) < f(τ ′), therefore, from equations 5.2 and 5.3,

P0Ps=1|0CFP + P1Ps=0|1CFN < P0P
′
s=0|0CFP + P1P

′
s=1|1CFN .

Now, since P ′s=1|0 = Ps=0|0, therefore the above equation, without loss of generality,

becomes

P1Ps=0|1CFN < P1P
′
s=1|1CFN

or,

Ps=0|1 < P ′s=1|1

which, as discussed above, is true. Also, since T ′s =∞⇒ Ts = −∞, therefore,

Ps=0|1 = P ′s=1|1 = 0
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and hence,

f(τ) = f(τ ′).

That means that we assign every input a label 1, which obviously becomes independent

of s in both τ ′ and τ . Similarly, T ′s = −∞,⇒ Ts =∞, and again,

f(τ) = f(τ ′)

Since we assign every input a label 0 it is again independent of τ ′ or τ . Other possibilities

of a non-monotonic tree τ ′ are shown as follows.

Figure 5.5: Other possibilities of non-monotonic trees (i) and (ii), and their correspond-
ing monotonic trees (iii) and (iv) respectively.

As shown in Figure 5.5 (i) and (ii) a tree can be non-monotonic in a sensor s in two

ways (i) sensor s has a 1 to its left and a subtree to its right, or (ii) sensor s has a 0 to

its right and a subtree to its left. In case (i) we can get the monotonic counterpart tree,

τ (Figure 5.5(iii)) of τ ′ by switching the right subtree of s with the 1 on the left. In this

tree we can again set the value of Ts such that P ′s=0|0 = Ps=1|0 and leave the threshold

values of all other sensors unchanged. Using a similar analysis as above, we can show

that without any loss of generality, f(τ) < f(τ ′). In case (ii) we can get the monotonic

counterpart tree, τ (Figure 5.5(iv)) of τ ′ by switching the left subtree of s with the 0

on the right. In this tree, we can set the value of Ts such that P ′s=1|1 = Ps=0|1 and leave

all other sensor thresholds unchanged. Again, writing down the cost functions of the

trees τ ′ and τ , we can easily prove that f(τ) < f(τ ′). This completes the proof.

Note, however, in practice, we put a constraint on the sensors of same type to have

identical thresholds. In that case the above theorem doesn’t necessarily hold. For

example, we can have multiple instances of a sensor in a tree, one or more (but not

all) of which can be non-monotonic. In this case, we cannot guarantee to have a tree
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cheaper than that non-monotonic tree. Figure 5.6 (i) shows an example of one such

tree.

Figure 5.6: An example of a non-monotonic tree τ ′ that can be an optimum tree and its
corresponding monotonic tree τ . Only one of the two instances of sensor a is monotonic
in τ ′.

Next we prove that the tree shown in Figure 5.6 (i) can infact be the cheapest cost

tree. We compare this tree τ ′ with its corresponding monotonic tree τ (Figure 5.6 (ii)).

We know that in general, τ can be the cheapest cost tree. Therefore, if we can prove

that τ ′ can be cheaper than τ even for one specific choice of sensor thresholds in τ ,

that should be a sufficient argument to prove that trees like τ ′ are potentially valid

candidates for the cheapest trees and thus should be included in the search space. To

start, we compare the cost functions of the two trees. The individual cost functions of

the two trees are given by the following equations. Here, f(τ) is the cost function for

τ while f(τ ′) is the cost function of τ ′ with all sensors set to the same threshold values

as τ .

f(τ ′) = P0

(
Cb + Pb0|0Cc + Pb0|0Pc0|0Ca + Pb1|0Ca

)
+ P1

(
Cb + Pb0|1Cc + Pb0|1Pc0|1Ca + Pb1|1Ca

)
+ P0

(
Pb0|0Pc1|0 + Pb0|0Pc0|0Pa1|0 + Pb1|0Pa0|0

)
CFP

+ P1

(
Pb0|1Pc0|1Pa0|1 + Pb1|1Pa1|1

)
CFN (5.4)
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f(τ) = P0

(
Cb + Pb0|0Cc + Pb0|0Pc0|0Ca + Pb1|0Ca

)
+ P1

(
Cb + Pb0|1Cc + Pb0|1Pc0|1Ca + Pb1|1Ca

)
+ P0

(
Pb0|0Pc1|0 + Pb0|0Pc0|0Pa1|0 + Pb1|0Pa1|0

)
CFP

+ P1

(
Pb0|1Pc0|1Pa0|1 + Pb1|1Pa0|1

)
CFN . (5.5)

Therefore,

f(τ ′)− f(τ) = P0

(
Pb1|0

(
Pa0|0 − Pa1|0

))
CFP

+ P1

(
Pb1|1

(
Pa1|1 − Pa0|1

))
CFN . (5.6)

Let us assume that the optimum threshold value of sensor a, Ta > µ2 (as shown in

Figure 5.7), where µ2 is the mean of the second Gaussian. This, in practice, is quite

possible if P0 >> P1 and the distribution of samples as seen by sensor a (in the left

subtree of sensor b) consists of almost all the negative samples and almost none of the

positive samples.

Figure 5.7: An example of possible optimum threshold value of sensor a.

Clearly from Figure 5.7, Pa0|0 > Pa1|0 and Pa0|1 > Pa1|1. If P1Pb1|1CFN >>

P0Pb1|0CFP , then it is possible that f(τ ′) < f(τ). This completes the proof for the

example.

5.3 Revisiting Completeness

Revising the definition of completeness to account for cost equivalence presents two

specific problems. Firstly, as we noticed, the definition of completeness in Chapter 2,

Section 3.2.1 only accounts for the left and right subtrees of any node being exactly



46

identical to each other. But what if they are cost-equivalent to one another? In that

case either of the subtrees can be rearranged using just the transposition operation(s)

to look exactly identical to the other subtree, resulting in the overall tree becoming

incomplete at that particular node. Therefore, a tree should not have any non-leaf

node in it with cost-equivalent subtrees. Secondly, in a complete tree, we allowed the

nodes to have subtrees with same Boolean function, (as long as the subtrees are not

exactly identical). For example, in Figure 3.1, we defined trees (i) and (ii) as complete

trees because they do not have any nodes with similar left and right subtrees. However,

in both the trees the sensor a has subtrees with same Boolean function, F (b, c) = 0111.

Therefore, according to the definition of decision-equivalent trees, the two subtrees are

decision equivalent and hence are equally efficient in their classification of containers

into good and bad. But, in general, they can have different cost. Therefore, we can

always replace the higher cost subtree with the lower cost one, to achieve a tree with

lower overall cost, without affecting the overall efficiency of the tree. In that case, the

resultant tree would become exactly identical to either tree (iii) or (iv) in Figure 3.1

and thus would be incomplete in sensor a. These considerations lead to the following

definitions.

Equi-complete Decision Trees. A binary decision tree will be called equi-complete if

every sensor occurs at least once in the tree and, at any non-leaf node in the tree, the

left and right subtrees do not correspond to same Boolean function.

Following this definition, it is quite trivial to prove that all equi-complete trees

correspond to complete Boolean functions (Chapter 2, Section 3.1.1). However, in

practice, it is not trivial to verify if a given tree according to this newer definition of

completeness, is complete or not. Enumerating all equivalent trees and checking each

one of them for completeness appears to be the only way to do it [33]. It is not that

hard to check if in a given tree (or in any of its equivalent trees), there exists a node

whose left and right subtrees are exactly identical. We discuss that in the following

section.
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5.4 Tree Reduction

From the definition of completeness in Chapter 2, Section 3.2.1 it follows that if we have

a tree in which a node has identical left and right subtrees, then we can replace the

subtree with that node as root, with its left or right subtree. The new tree is guaranteed

to have a lower cost (and at least as efficient in its classification of containers) as

compared to the original tree. However, the tree might still be incomplete because of

absence of certain types of sensor(s) or because of having the same problem with at

some other node. If we forget the problem of missing sensor types, and keep removing

all redundant nodes, we will reach a point in which no node would have its left and

right subtrees identical. However, the tree can still have an equivalent tree which might

have the same problem. If we make sure that all its equivalent trees are “complete”,

the tree must be in its minimal or “irreducible form”. Therefore,

Irreducible Trees. A tree will be called irreducible, if in every tree that belongs to its

cost-equivalent class of trees, at any non-leaf node in the tree, its left and right sub-trees

are not identical.

There exists an efficient algorithm for reducing any given binary decision tree into

its minimal or irreducible form. Please see [12] for details of the algorithm.

5.4.1 Canonical Representation of an Equivalence Class

In order to exploit the shrinkage of tree space due to transposition-equivalence of trees,

we need a unique, canonical representation of an equivalence class. With a unique,

canonical form of every equivalence class, we only need to check the cost of only one of

the trees of that class. Section 5.5.1 describes how we incorporate the use of canonical

form representation into our modified search algorithms. Now, to represent the entire

equivalence class of trees, with a unique, canonical form, we adopt a lexicographic

representation of the equivalence class. To obtain this lexicographic arrangement in the

given irreducible tree, we find all sensors that appear in all the paths from the root node

to leaf nodes of the given tree. Then, by using repeated transposition operations, we

pull the smallest sensor out of those sensors up as the root node. Then we repeat the
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same procedure recursively on the left and right subtrees of the root node and proceed

until the lexicographical arrangement is achieved. The resultant tree then represents

the entire equivalence class uniquely. Any tree in the equivalence class can be converted

to the same canonical representation using the above mentioned procedure. Figure 5.8

shows an example of converting a given tree irreducible tree to its unique canonical

representation.

5.5 Space of Equivalence Classes of Irreducible Trees

Following from the above discussion on the definition of monotonic trees, it is quite

evident that with our current constraint of identical threshold for every instance of

a sensor type, a non-monotonic tree, in fact, can be an optimum tree. Therefore, it

seems logical to include all non-monotonic trees in our search space of trees. Since it

is very hard to verify if a given tree satisfies the definition of completeness as defined

in Section 5.3, we therefore decided not to enforce equi-completeness. However, since

for any given tree, the irreducibility constraint discussed above can be verified quite

efficiently without actually enumerating all its equivalent trees, we decided to impose

this restriction on the trees in our search space. The irreducibility constraint also partly

takes care of the completeness constraint by checking that no two subtrees of a node

should be identical. We still have to additionally check that all the sensor types appear

at least once in the irreducible form of any given tree. Therefore, after making all these

changes, our search space is now modified to a space of equivalence classes of irreducible

trees with atleast one instance of every sensor type. Also, each equivalence class in this

space is represented by a unique canonical form tree.

5.5.1 Searching through the New Space

In this section we modify the search algorithms discussed in Chapter 4 to enable them

to search for the optimum trees in the new space of equivalent classes of irreducible

trees. We have to make only a few changes to both the stochastic search method

and the genetic algorithms based method to make them suitable for our new space
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Figure 5.8: An example showing the procedure for obtaining unique canonical repre-
sentation of a given tree.
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of trees. Firstly, we need to relax the monotonicity constraint on the output trees

in the definitions of the four neighborhood operations. Secondly, while generating

a random tree or generating trees with the crossover and mutation operations, the

generation of monotonic and non-monotonic trees as output should be equally likely.

Lastly, all the trees generated (either randomly, through neighborhood operations or

through mutation and crossover operations) should be reduced to their canonical form

before checking for their cost. This would facilitate us in following two ways. 1. We can

get the minimum cost of the tree after removing any redundancies. 2. We do not need

to check more than one tree belonging to the same equivalence class for their costs.

Apart from these changes, the rest of the search algorithms remain entirely the same.

The results from these algorithms on the new space of equivalent classes of irreducible

trees are presented in Chapter 6.
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Chapter 6

Experimental Results

In this chapter we present results from all the experiments from Chapters 2, 4 and 5.

For all the experiments, the model parameters were assumed as prescribed by Stroud

and Saeger [31]. Most of the experiments were performed for 3,4 and 5 sensors. Some

of the results are compared to those of Anand et. al. [1].

6.1 Optimizing Thresholds

Our first set of experiments focused on evaluating the optimization algorithm for thresh-

old setting that we proposed in Chapter 2, Section 2.4. In these experiments, for any

given tree, starting with some vector of sensor thresholds, we tried to reach a minimum

cost in as few steps as possible. For comparison purposes, we did an exhaustive search

for optimum thresholds with a fixed step size in a broad range for 3 and 4 sensors.

Also, in all these experiments, the various sensor parameter values were kept the same

as in the threshold variation experiments conducted in [1]. Both the misclassification

costs and the prior probability of occurrence of a “bad” container were fixed as the re-

spective averages of their minimum and maximum values used by Anand et. al. in [1].

We did this for both the method of exhaustive search over thresholds with fixed step

size and the optimization method described in Chapter 2, Section 2.4.3, to maintain

consistency throughout our experiments. With our new methods we were able reach a

minimum every time with a modest number of iterations. For example, for 3 sensors,

it took an average of 0.032 seconds, as opposed to 1.34 seconds using exhaustive search

over thresholds with fixed step size, to converge to the minimum for all 114 trees using

MATLAB on an Intel 1.66 GHz dual core machine with 1GB system memory. Similarly,

for 4 sensors, it took an average of 0.195, seconds as opposed to 317.28 seconds using
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exhaustive search, to converge to the minimum for all 66,600 trees. Figure 6.1 shows

the plots for minimum costs for all 114 trees for 3 sensors using both the methods.

Figure 6.1: Minimum costs for all 114 trees for 3 sensors. To avoid confusion, dashed
vertical lines join markers for the same trees.

In each case the minimum costs obtained using the optimization technique are equal

to or less than those obtained using the exhaustive search. Also, many times the

minimum obtained using the optimization method was considerably less than the one

from the exhaustive search method.

6.2 Searching the CM Tree Space

Our second set of experiments consists of searching the tree space for the cheapest trees

using the stochastic search method and the genetic algorithms based search method

described in Chapter 4.
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6.2.1 The Stochastic Search Method

For the stochastic search method, we randomly started 10 times at some tree in the

CM tree space of 66,600 trees for 4 sensors and then kept moving stochastically in the

neighborhood of the current tree, forming a chain of trees, until we reached a minimum.

The exponent 1
t was initialized to 1 and was incremented by 1 (i.e., 1

t′ = 1
t−1) after every

10 hops in a chain. We found that the average number of trees evaluated for their costs

for a set of 100 such experiments was 4890. Table 6.1 summarizes the results of these

experiments. Each row in the table corresponds to the tree number that was obtained

as the least cost tree along with its cost and frequency (out of 100). The last column

in the table gives the rank of each of these tree minima among all the local minima

in the entire tree space. For example, the algorithm was able to find the best tree 42

times, second best tree 15 times and so on. The algorithm was able to find one of the

least cost trees most of the time. However, these trees are different from the lowest cost

trees obtained in Anand et al. [1] and are in fact less costly than those trees. Another

important observation is that although each of these four trees differ in structure, they

still correspond to the same Boolean function, F (abcd) = 0001010101111111, where

the ith digit gives F (abcd) for the ith binary string abcd if strings are arranged in

lexicographically increasing order. Interestingly, this Boolean function is both complete

and monotonic.

Tree Number1 Cost2 Frequency3 Mode Rank
30995 59.3364 42 1
30959 59.3364 15 2
31011 59.3364 25 3
31043 60.1924 10 4

1 Tree numbers differ from those used in Anand et al. For actual tree

structures, please see Figure 6.2 .
2 The costs of the first three trees differ only in the 14th place after

decimal, but all the trees are listed in the order of increasing costs.

3 Frequency out of 100.

Table 6.1: Summary of results for stochastic search for 4 sensor tree space.
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Figure 6.2: Best trees obtained for 4 sensors. Trees numbered 30995, 30959, 31011 and
31043 respectively.

6.2.2 Genetic Algorithms based Search Method

In our third set of experiments, we performed similar experiments using genetic algo-

rithms described in Chapter 4, Section 4.2.2. For 4 sensors, we started with a random

population of 20 trees. At each crossover step we crossed every tree in this population

with every other tree. We set the value of k = 1 so that we get one new tree for each

crossover operation. Also, with m = 3, we performed the mutation step after every

three generations. During every mutation step, we replaced one half of the population

of best trees (M = 2) with random samples from the tree space. We performed a set

of 100 such experiments each consisting of a total of 27 generations (including the ones

obtained after mutations). We noticed that for each such experiment, we had to evalu-

ate only 1439.6 trees for their costs on an average. Table 6.2 summarizes the results of

these experiments. It is clear from the results that every time we were able to find one

of the cheapest trees in the CM tree space. Also, we observed that as opposed to the

stochastic search technique, where the algorithm returned a single best tree in most of

the cases, the genetic algorithm based search algorithm returned a whole population of

trees, most of which belonged to the 50 cheapest trees.

6.2.3 Going beyond 4 Sensors

Our algorithms enable us to go beyond 4 sensors. We performed experiments for up

to n = 10. We present the results for n = 5 and n = 10. The sensor parameter for

the fifth sensor were assumed to be the average of those of first four sensors. The last

five sensors were assumed to be exactly identical to the first five sensors. For example:



55

Tree Number1 Cost2 Frequency3 Mode Rank
30995 59.3364 52 1
30959 59.3364 40 2
31011 59.3364 8 3

1 Tree numbers differ from those used in Anand et al. For actual tree

structures, please see Figure 6.2 .
2 The costs of the first three trees differ only in the 14th place after

decimal, but all the trees are listed in the order of increasing costs.

3 Frequency out of 100.

Table 6.2: Summary of results for genetic algorithm based search for 4 sensor tree space.

sensor f has same parameters as sensor a, sensor g has same parameters as sensor b and

so on. (Obviously all the ten sensors can be set to different threshold values). As we

commented earlier also, that the number of trees grow double exponentially, therefore

for n = 5, the CM tree space consists of more than 22.5 billion trees. Due to better

performance of genetic algorithms (GA) based search method over stochastic search

method, we were motivated to use it for obtaining the low-cost trees. However, we

modified it a little bit in a sense that instead of starting just once with a big random

population, we started multiple times with smaller random populations. Also, the total

number of generations were also not fixed apriori. Instead, we stopped producing new

trees, if the best population remained constant over a few subsequent generations. We

then performed GA on all the optimum trees obtained from each such start until the

cost of the best trees stabilizes again. We noticed that for n = 5, with 100 runs, the

results were on the same lines as those for n = 4, since we got only very few trees as

the best trees, with similar costs. Figure 6.3 gives the actual structures of these trees

and their respective cost.

For n = 10, we performed only a few runs. We observed that unlike n = 4, 5, here

we always ended up with different population of best trees. However, the cost of these

trees were close and also, the trees were similar at the top few nodes. Figure 6.4 gives

the actual structures of these trees and their respective cost.
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Figure 6.3: Best trees obtained for 5 sensors over 100 runs. The cost of each of these
trees is 41.4668.

Figure 6.4: Best trees obtained for 10 sensors over four different runs. Their costs are
8.6508, 8.5499, 8.7236 and 8.6189 respectively.
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6.3 Searching the Space of Equivalence Classes of Irreducible Trees

This section presents results for Chapter 5. As discussed in Chapter 5, we modify

the search space of trees by removing the monotonicity constraint and introducing the

concept of equivalence classes of trees. We then modify the search algorithms to suit

the newer space of trees. The following sections present results obtained using the

stochastic search method and the genetic algorithms based method.

6.3.1 The Stochastic Search Method

As discussed in Chapter 5, we modify the neighborhood operations to allow generation

of non-monotonic trees. For example, the split operation is now allowed to insert a

new non-monotonic sensor in a branch where that sensor is not already present. Also,

each neighboring tree obtained is converted to its “irreducible form” before calculating

its cost. However, the lexicographical canonical representation of a tree is only stored

to make sure that none of the other trees belonging to the same equivalence class is

checked for its cost. We again started randomly 20 times with some tree in the search

space of trees for 4 sensors and then kept moving stochastically in the neighborhood of

the current tree, forming a chain of trees, until we reached a minimum. The exponent

1
t was initialized to 1 and was incremented by 1 (i.e., 1

t′ = 1
t − 1) after every 10 hops

in a chain. We found that the average number of trees evaluated for their costs for a

set of 100 such experiments was 9805. The algorithm was able to find a tree from the

cheapest equivalence class 88 times. Interestingly, in all these runs, the best classes

of trees obtained constitued the trees that came out as best trees in the experiments

presented in earlier sections (Sections 6.2.1 and 6.2.2).

6.3.2 Genetic Algorithms based Search Method

The genetic algorithms based search method discussed in Chapter 4, Section 4.2.2

is modified to suit the new space of equivalence classes of trees and to include the

non-monotonic nature of the trees. To do this, we modify the crossover and mutation

operations so that the generation of monotonic and non-monotonic trees is equally likely.
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Like in the stochastic search method discussed in Section 6.3.1, each tree is converted

to its irreducible form before checking for its cost, while the lexicographic canonical

form is just stored to make sure that multiple trees belonging to same equivalence class

are not checked for their cost. The rest of the algorithm remains entirely the same. For

4 sensors, we conducted 100 experiments. In each experiment we started 20 times with

a random population of 6 different trees. However, the total number of generations

were not fixed apriori. Instead, we stopped generating new trees, if the best population

remained constant over a few subsequent generations. We then performed GA on all

the optimum trees obtained from each of the 20 starts until the cost of the best trees

stabilizes again. We observed that for n = 4, the algorithm was able to find the cheapest

cost tree 92 out of 100 times. We noticed that for every such experiment, we had to

evaluate around 5008 trees for their costs on an average. The cheapest cost tree class

obtained constitutes the cheapest trees obtained in the experiments in Section 6.2.2 (the

first three trees in Figure 6.2). Similarly, for n = 5, 84 out of 100 times, the cheapest

cost tree class returned by the algorithm constitutes the cheapest trees obtained in

Section 6.2.2.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

After analysing the binary decision trees, their various spaces and their equivalence

classes, we draw the following conclusions. Firstly, we noticed that the exhaustive

search method, for finding the optimum thresholds for a given tree, become practically

infeasible beyond a very small number of sensors. The various threshold optimization

techniques discussed in our work provide faster and better ways to calculate the optimal

total cost of a tree. Secondly, we noticed that the exhaustive search method, for finding

the cheapest tree in the entire space of trees is also hard to extend beyond a very small

number of sensors.

Thirdly, we noticed that expanding the ideas of monotonicity and completeness from

Boolean decision functions as suggested by Stroud and Saeger [31] to binary decision

trees, proved to be a more reasonable for two reasons. Certain trees obtained from

incomplete/ non-monotonic Boolean decision functions are potentially valid BDTs and,

it facilitates tree search algorithms. This way we get rid of the exhaustive search method

over the entire space of trees. Further, we were able to prove that the proposed space of

complete and monotonic trees is irreducible under the defined neighborhood operations.

We described a couple of efficient search methods to find the best trees in the space

of complete and monotonic BDTs. Later, we were able to extended these ideas to

the space of equivalent classes of decision trees. These search methods (especially the

genetic algorithms based search method) helps us go beyond trees with four sensor

types successfully.

Finally, we discussed the ideas of completeness and monotonicity more thoroughly
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and argued why certain non-monotonic trees can actually be the cheapest cost trees.

This led us to removing the monotonicity constraint from the tree space. We introduced

the ideas of tree equivalence and tree reduction that helped us shrink the tree space. We

also discussed a way to convert any given binary decision tree to its unique, canonical

form.

7.2 Future Work

As one of the tasks for future work, a more basic and rigorous analysis of monotonicity

is required. The empirical results show that the best trees do not change even after

lifting the monotonicity constraint. As per our present understanding, the reason for

this behavior relates to the specific sensor parameter values assumed in our experiments.

In other words, non-monotonic trees can appear as the cheapest trees for some different

values of sensor parameters; a more detailed analysis is needed.

Another important future task could be the removal of the constraint that every

instance of a sensor in a tree should be set to identical thresholds. This would lead to

the expansion of dimensionality of the threshold optimization function from the number

of sensor types to the number of actual sensor instances in a tree and hence would make

the task of finding the optimal thresholds for any given tree slower. This might also

limit the present search capabilities to smaller trees. Therefore, newer or more optmized

versions of the current search algorithms might be required.
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